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Materials Science and Technology
Division
Los Alamos National Laboratory

Professor Surya Kalidindi
School of Mechanical Engineering &
Materials Science and Engineering
Georgia Institute of Technology

Date Approved: October 16, 2015



ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Laurent Capolungo, for his enthusiasm, his insightful guidance and his constant

support during the last four years. Besides, I would like to thank Dr. David McDowell,

Dr. Surya Kalidindi, and Dr. Hamid Garmestani, who have kindly accepted to serve

as members of my dissertation committee, and who have had the formidable task of

examining the present manuscript. My special thanks go to Dr. Carlos Tomé, for his
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2.13 Schematic of dislocation-dislocation reaction: (a) when the distance be-
tween two dislocation segments moving towards one another is smaller
than a critical capture radius dcrit, (b) a junction node is inserted at
the intersection of the slip planes of both dislocations. (c) The repeti-
tion of process (a) to (b) between the arms of the junction node leads
to the formation of a junction segment. The passage from steps (b) to
(c) corresponds to the zipping process. . . . . . . . . . . . . . . . . . 60

2.14 2D schematic of the Box Method. The primary volume is partitioned
into a predefined number of boxes. (a) Neighbor boxes of red box α
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box ~xα. (b) In this case, box α lies at an edge of the primary vol-
ume such that neighbor boxes are determined using periodic boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1 Sheared area dAij produced by the glide of a dislocation segment ij
during time dt. The dislocation segment is defined by its end nodes
i and j moving from their initial positions ~xi and ~xj at velocities ~vi
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swept by the glide of a portion of a dislocation segment, and (b) the
resulting elementary homogeneous plastic shear dγ associated with an
elementary spherical volume dφ of radius h/2 centered on the sheared
area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Numerical regularization procedure of the plastic shear produced by
the glide of a dislocation segment when using the DCM as implemented
in [234]. The surface integration in (3.5) is numerical calculated as fol-
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dφ(~x) centred in ~x, or b) equal to the shear associated with dS when
~p lies in dφ(~x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Schematic of portions of neighbor segments that must be accounted for
as supplementary local interactions. Red sub-segment kl corresponds
to the portion of neighbor segment mn whose distance to segment ij is
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3.4 Set up used for evaluating the stress field of a prismatic loop using the
DDD-FFT approach. Only the primary volume of the periodic simula-
tion is shown here. (a) The prismatic dislocation loop is composed of

four edge segments of length l0 = 1000b with Burgers vector ~b = [010]
and lying on the (010) plane. The loop is initially positioned at the
center of the simulation box of side length L = 0.5µm. (b) The pris-
matic loop is introduced in the simulation following the Volterra-like
process: two initial vertical edge segments with same Burgers vector
~b = [010] but opposite line directions are introduced at position x = 0.
One of the segments is then held at its original position while the sec-
ond segment is moved apart at a distance l0 on the (010) plane thereby
creating the closed prismatic loop. The blue arrows indicate the line
direction of each segment. . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5 σ23 shear component of the stress field of a prismatic loop along a (100)
slice taken at position x = L/2 (see figure 3.4(a)) obtained: (a) using
the analytical solution, (b) using the DDD-FFT approach with a grid
of 64× 64× 64 voxels. Numerical oscillations pertaining to the Gibbs
phenomenon are occurring, and (c) using the DDD-FFT approach with
a grid of 64 × 64 × 64 voxels and by spreading the regularized plastic
strain over 3 × 3 × 3 voxels. Numerical oscillations are removed and
the dislocation core spreads as a result. . . . . . . . . . . . . . . . . . 115

3.6 Evolution of the σ23 shear component of the stress field of a prismatic
loop along the green line showed in the inset. In this frame, the origin
of the y-axis is aligned with the position of the dislocation core. (a)
Comparison between the analytical solution and the DDD-FFT ap-
proach with and without numerical spreading for a grid of 64×64×64
voxels. (b) Comparison between the analytical solution and the re-
sult obtained with the DDD-FFT approach including the numerical
spreading for different grid sizes. . . . . . . . . . . . . . . . . . . . . . 116

3.7 (a) Schematic of the positioning of the two prismatic dislocation loops

of opposite Burgers vectors ~b = [010] forming a dislocation dipole.
(b) Comparison of the evolution of the σ23 shear component of the
stress field of a prismatic dipole along the green line showed in the
inset between the analytical solution and the result obtained with the
DDD-FFT approach for a resolution of 128 × 128 × 128 voxels. In
this frame, the origin of the y-axis is taken at the middle of the two
dislocation loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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3.8 σ23 shear component of the stress field of a prismatic loop along a
(100) slice taken at position x = L/2 (see figure 3.4(a)) for different
anisotropic ratios: (a) A = 0.5 (b) A = 1 (isotropic case) and (c)
A = 7.5. (d) Evolution of the σ23 component normalized with µb/l0
as a function of the distance to the dislocation core. The results have
been obtained for a Fourier grid made of 64 × 64 × 64 voxels. Note
that the computational cost associated with cases (a), (b) and (c) is
identical when using the DDD-FFT approach. . . . . . . . . . . . . . 119

3.9 Activation stresses τact of Frank Read sources of different length ob-
tained with the regular DDD approach used in [22] and the DDD-FFT
approach for different grid sizes. In the inset, the activation stresses
τact are normalized with µb/l0 and reported on a logarithmic scale. . . 121

3.10 (a) Example of the intersection between the area swept by a dislocation
segment ij gliding on plane with unit normal ~n and the elementary
sphere dφ(~p) of radius h/2 centered in grid point ~p. The intersection
between the sphere dφ(~p) and the glide plane of the dislocation results
in a circle of radius reff =

√
h2/4− d2 and of center ~pn where ~pn is

the orthogonal projection of ~p onto the dislocation plane such that
~p − ~pn = d~n. (b) The intersection area dS ~p

ij (shaded region) can be
analytically calculated using Green’s theorem by following the oriented
contour composed of the straight segments 12, 23 and 34, and the arc
4̂1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.11 Slice in the (yz) plane of a dislocation segment ij shearing the volume
in the (xz) plane. The red dislocation segment is aligned with grid
point ~p while the blue segment is away from a distance d. (a) For
h = L = Lmesh the union of all elementary spheres centered in grid
points does not map the entire volume. As a result, the plastic shear
induced by the blue dislocation segment ij is not entirely transferred to
the mesh, leading to inaccurate results. (b) For h =

√
3Lmesh the union

of all elementary spheres maps the entire volume, such that the entire
plastic strain is transferred to the mesh. However, the overlapping
between the elementary spheres results in a smearing out of the plastic
strain that needs to be corrected for. . . . . . . . . . . . . . . . . . . 139
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3.12 Schematic of two dislocation segments shearing the volume along the
(xz) plane. The red dislocation segment is aligned with grid point ~p
while the blue segment is positioned at a distance d from grid point
~p, hence at distance Lmesh − d from the subsequent grid point ~q. (a)
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(see equation (3.94)) at grid point ~p, such that the spatial position-
ing of the dislocation core is not properly accounted for. (b) A linear
interpolation of the shear strain distribution with respect tot he core
position can be achieved by using diamond-shaped elementary volumes.
However such shape is not directly extensible in three dimensions and
would produce inaccurate results for tilted dislocations in the (yz) plane.141

3.13 (a) Schematic of the different tested positions for the (010) prismatic
dislocation loop with respect to the Fourier grid. Two consecutive grid
points ~p and ~q are separated by the mesh size distance Lmesh and the
red, blue and green dislocation segments introduced as depicted in fig-
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point ~p, respectively. (b) Effect of the correction on shear component
σ23 of the stress field of a prismatic loop along the green line showed in
the inset as a function of the dislocation position with respect to the
Fourier grid made of 64× 64× 64 voxels. . . . . . . . . . . . . . . . . 144
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3.18 Evolution of the ratio N2/(N logN) as a function of N in logarithmic
scales. Assuming both complexity prefactors are of the same order
of magnitude, this ratio provides an insight on the difference of the
computational cost between FFT-based and FEM solvers as a function
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3.20 (a) Relative CPU execution times of the three main stages of the DDD-
FFT cycle, namely the FFT-solver, the regularization procedure and
the force calculations, as a function of the number of dislocation seg-
ments and for different resolutions. For each stage, the relative time is
calculated as the ratio of the execution time of the stage to the total
time per simulation step when executed on a single CPU. (b) Speed-up
factors obtained when running the host DDD-FFT program on a single
CPU and using the GPU-FFT-solver on a GeForce GTS 450 device.
The blue lines correspond to the speed-up factor associated with the
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SUMMARY

This thesis focuses on the effects of slip-slip, slip-twin, and slip-precipitates inter-

actions on strain hardening, with the intent of developing comprehensive modelling

capabilities enabling to investigate unit processes and their collective effects up to the

macroscopic response.

To this end, the modelling strategy adopted in this work relies on a two-way ex-

change of information between predictions obtained by discrete dislocation dynamics

(DDD) simulations and crystal plasticity laws informed by DDD.

At the scale of lattice defects, a DDD tool enabling simulations on any crys-

talline structure is developed to model dislocation-dislocation, dislocation-twin and

dislocation-particles interactions. The tool is first used to quantify the collective effect

and strength of dislocation-dislocation interactions on latent-hardening, especially in

the case of pure Mg. With regards to slip-twin interactions, an atomistically-informed

transmission mechanism is implemented in the DDD framework so as to investigate

the collective effects of dislocation transmission across a twin-boundary. With respect

to slip-particles interactions, an efficient novel DDD approach based on a Fast Fourier

Transform (FFT) technique is developed to include the field fluctuations related to

elastic heterogeneities giving rise to image forces on dislocation lines. In addition, the

DDD-FFT approach allows for the efficient treatment of anisotropic elasticity, thereby

paving the way towards performing DDD simulations in low-symmetry polycrystals.

The information extracted from the collective dislocation interactions are then

passed to a series of constitutive models, and later used to quantify their effects at

the scale of the polycrystal. For such purpose, a constitutive framework capable

xxviii



of receiving information from lower scales and establishing a direct connection with

DDD simulations is notably developed.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Worldwide, the development of new material systems with advanced mechanical prop-

erties (yield strength, ductility, etc.) has become one of the top research priorities

in response to environmental and economic challenges, as illustrated by the recent

launch of the Materials Genome Initiative. In metals, present strategies to obtain ma-

terials with superior mechanical properties rely on taking action on several structural

factors such as alloying elements, stacking-fault, grain sizes, etc. As a result, the

complexity of new microstructures increases, which in turn leads to more complex

behaviors, whereby multiple dissipative processes can be activated simultaneously.

Dissipation is mediated by the different lattice defects present within the crystalline

structure, such as point defects, line defects – also referred to as dislocations –, and

interfaces such as grain boundaries.

Clearly, the mechanical behavior of metals (yield strength, strain hardening,

strain-rate sensitivity, ...) directly depends on the activation of deformation mech-

anisms – whose selection is dictated by both intrinsic material properties such as

crystallography and stacking-fault energies (SFE) [211, 105] and external conditions

including strain rate and temperature [126, 127] – that induce microstructural changes

resulting from nucleation, transport and interactions of defects. The latter for in-

stance include the key mechanisms of dislocation-dislocation interactions, dislocation-

interfaces interactions – of which dislocation-twin interactions are a particular case –

and dislocation-precipitate interactions, for which TEM images are reported in figure

1.1, and whose role and effects on the mechanical behavior depend on the crystalline
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(Robertson et al., 2005) (Bulatov et al., 2006) 

Mg17Al12 
precipitates  

(Zeng et al., 2013) 

(a) Dislocation-dislocation interactions (b) Dislocation-twin interactions (c) Dislocation-precipitates interactions 

Figure 1.1: Examples of the types of defects interactions governing the microstruc-
ture evolution in metals. TEM micrographs of (b) dislocation-dislocation inetractions
(reproduced from [31]), (c) dislocation-twin interactions (reproduced from [204]), (d)
dislocation-particles interactions (reproduced from [268]).

structure and deformation regime (e.g. dislocation-dislocation interactions are domi-

nating in slip-driven plasticity).

The case of the mechanical behavior of HCP crystals illustrates well the intricacy

of the deformation process in metals. In figure 1.2(a), the spectrum of stress-strain

responses as a function of the loading orientation in plane-stress compression of single

crystal magnesium [121] is striking. Specifically, the rate of strain-hardening observed

in orientations E and F between 6% and 8% strain significantly differs from that

obtained in all other orientations and results from the simultaneous activation of

slip and twinning deformation modes. Thus, although twin boundaries have been

identified as important obstacles to dislocation motion in this process [213, 160, 222],

a comprehensive understanding of their role and effects is still to be obtained [159,

158, 160].

As yet another example, the introduction of second-phase particles within crystal

lattices has a direct impact on the mechanical response of metals. As illustrated

in figure 1.2(b), while the presence of precipitates induces larger strain-hardening

rates, the latter further differ depending on the alloying composition. Thus, although

precipitation hardening has been extensively studied and the interactions between

dislocations and precipitates have been evidenced as responsible for the improved

strengthening [92, 15, 183], current approaches are not yet fully suited to predict
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Figure 1.2: (a) Stress-strain responses in pure magnesium single crystals under plane-
strain compression along different crystallographic directions at room temperature.
(b) Stress-strain responses in the E orientation for different alloying compositions.
Reproduced from the work of Kelley and Hosford [121].

the distinct effects induced by different particle compositions, whose assessment still

largely relies on experiments [183, 185].

More generally, the increase in the complexity of the microstructures necessitates

the use and development of complex modelling capabilities in order to interpret ex-

perimental data allowing to guide the development of new material systems.

1.2 Objectives and challenges

1.2.1 Multi-scale modelling approach

In the past decades, the development and refinement of constitutive laws to account

for the increasing complexities of the microstructures has primarily relied on intro-

ducing sophistications in the internal state variables of the models. While such phe-

nomenological approaches have in many cases demonstrated their ability to repro-

duce experimental results (e.g. [194, 33, 7, 162, 25, 123]), their predictive capabilities

remain nonetheless limited, as attested by the persistent difficulties to predict me-

chanical responses in complex loading conditions [200, 122, 95]. Specifically, these
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Figure 1.3: Diagram of the classical multiscale modelling approach in terms of time
and length scales capabilities.

limitations are primarily associated with the difficulty in delineating approaches to

establish connections between the evolution of the internal state variables and the

activation and interactions of the different deformation modes driving microstructure

evolution.

In this context, the core idea to circumvent the above limitations is to resort to

a high hierarchical multiscale modelling approach, such as illustrated in figure 1.3.

This diagram does not aim at representing all existing methods, but provides an

overview of the methods used in the context of this work. Thus, at the lowest scale,

atomistic simulations in which individual atoms are considered are used to investigate

mechanisms associated with unit processes. Among them, Molecular Dynamics (MD)

allow for simulating the motion of atoms whose interactions are modelled according

to inter-atomic potentials. However, although computational capacities grow at a

nearly exponential rate, modelling the deformation of a macroscopic sample of metal
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with MD still remains an unrealistic objective at the present time. In other words,

computational limitations impose restrictions on the domain of applicability of each

approach in terms of time and length scales. Therefore, the modelling strategy con-

sists in delineating homogenization techniques to establish a continuous connection

between the different modelling scales as a way to exchange information. As a result,

outcomes of atomistic simulations are typically used to inform dislocation dynamics

simulations in which solely dislocation lines are represented. Following the same ap-

proach, discrete dislocations dynamics (DDD) simulation aiming at simulating the

individual and/or collective behavior of dislocation lines provides a powerful tool to

extract relevant microstructural parameters that can be incorporated into constitutive

laws in which ensemble of dislocations are represented by means of densities. Delin-

eating methods to achieve the exchange of information aforementioned is precisely

the focus of this work.

Thus, crystal plasticity constitutive models informed by DDD have been devel-

oped at a higher scale [54, 7, 44, 161, 25]. A successful example of scale transitioning

between DDD and constitutive models notably include the incorporation of the col-

lective effect of dislocation-dislocation interactions by way of latent hardening coeffi-

cients ass
′
that have been quantified using DDD for FCC [164, 165, 65] and BCC [198]

materials. These latent hardening coefficients – related to the statistically representa-

tive effect of the strength of pairwise dislocations interactions between systems s and

s′ – have become a key ingredient of current dislocation density based constitutive

models [112, 65, 132], and are typically accounted for in crystal plasticity frameworks

to define the critical resolved shear stress (CRSS) τ sc on slip system s via the use of

the Franciosi and Zaoui slip-hardening law [90]:

τ sc = τ s0 + µb

√∑
s′

ass′ρs′ (1.1)
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where τ s0 and ρs denote the lattice friction and the total dislocation density on system

s, and where b and µ are the magnitude of the Burgers vector and the elastic shear

modulus of the material, respectively. The use of these types of approaches has for

instance allowed to refine orientation-dependent hardening rate predictions in single

and polycrystals [7, 44, 25] and have permitted to account for complex slip mode

selection processes [165, 64].

1.2.2 Challenges

In the context of this thesis, the hierarchical modelling approach needs to address

the questions of dislocation-dislocation, dislocation-twin and dislocation-particles in-

teractions. In the following, the shortcomings and challenges associated with current

DDD approaches and with the information pass from DDD to constitutive laws to

treat these defects interactions are presented.

Low-symmetry crystals: As a result of the anisotropic properties of dislocations

in low-symmetry crystals (e.g. friction stress [37], mobilities [102]) arising from the

presence of several slip modes, considerably less DDD studies have been dedicated

to HCP metals compared to cubic crystals. Particularly, except for ice single crystal

[62], hardening coefficients have not been calculated for hexagonal materials, for which

generic latent parameters are currently used in constitutive laws.

In addition, most of current dislocation density based constitutive models rely

upon two different slip hardening formulations, namely that proposed by Franciosi

and Zaoui (FZ) whose expression is given in equation (1.1) [90], and that suggested

by Lavrentev and Pokhil (LP) [142]. While the FZ law was specifically developed for

FCC materials, the LP law appears to have been introduced for a broader variety of

crystal structures. However, the validity of both these laws has never been assessed

for HCP materials, and their accuracies have never been compared.

6



Anisotropic elasticity: Complementarily to the above limitation, current DDD

simulations are generally limited to resort to elastic isotropic approximations when

performing simulations on low-symmetry crystals, thereby not accounting for the

anisotropic effects on dislocations stress fields [257, 14]. This limitation arises from

the fact that, in contrast with isotropic elasticity, no closed-form solutions are avail-

able for the stress fields induced by dislocations in anisotropic media. Although sub-

stantial efforts have been undertaken in the past years to develop new numerical tech-

niques allowing for savings in computation time [264, 12, 13], the cost of anisotropic

calculations is typically one order of magnitude greater than that of isotropic calcu-

lations, and remains conditioned by the amount of anisotropy and the desired level

of accuracy.

Heterogeneous elasticity: The study of dislocation-slip and dislocation-precipitates

interactions requires to finely account for the effects of heterogeneous elasticity giving

rise to image forces on dislocation lines. However, only a few DDD frameworks are ca-

pable of treating heterogeneous materials, such that only very few studies have been

performed to investigate slip-particles interactions (e.g. [171, 218, 235, 199]), and

these suffer from important limitations in terms of spatial and time resolutions. Par-

ticularly, the high computational burden associated with the finite element method

(FEM) required in current approaches to enable inhomogeneous elasticity in DDD

has precluded any fine investigations on such materials thus far.

Interfacial dislocation transmission: From a modelling standpoint, the trans-

mission mechanisms of dislocations across twin-boundaries have mainly been inves-

tigated via atomistic simulations to examine unit processes (e.g. [119, 273, 265]).

At the DDD scale, simulations have primarily relied on incorporating a line tension

model to account for transmission events [56, 272], in place of incorporating dedi-

cated local dissociation rules, thereby not accounting for important effects, especially
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regarding interfacial plasticity.

Constitutive modelling: To account for the complexities associated with the pres-

ence of several deformation modes and address the remaining difficulties associated

with complex loading conditions such as strain-path changes, sophisticated disloca-

tion density-based constitutive models have emerged in the past years [195, 25, 196,

124, 189, 29, 122]. However, in addition to the limited predictive capabilities of phe-

nomenological models, the incorporation of additional mechanisms often comes at

the price of an increase in the number of fitting parameters, which may paradoxically

lead to a disconnection from the physics of the dislocation. For instance, a given

stress-strain response can be identically reproduced by the same model with two dif-

ferent sets of parameters, while predicted internal state variables evolve in drastically

distinct manners [22]. Furthermore, it has been reported that predicted dislocation

densities often do not concur with experimental observations, and are generally un-

derestimated by one order of magnitude [49]. In addition, refinements of current

models by ways of further decomposing the total density in a crystal into several

distinct populations inevitably lead to additional complications. Specifically, their

short-range interactions, physically taking the form of junctions or annihilations, are

yet to be accounted for in constitutive laws. Doing so requires the development of

novel approaches for their quantification.

Therefore, the development of comprehensive constitutive models with enhanced

predictive capabilities still constitutes a challenging objective in material science.

It follows that to finely capture intricate hardening mechanisms associated with low-

symmetry crystals or complex loading conditions, constitutive models necessarily have

to rely more closely on the physics of the dislocations. As a result, it is expected

that constitutive models could greatly benefit from being informed by outcomes and

parameters extracted at lower scales.
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1.2.3 Objectives

The main objective of this work is to develop numerical tools to investigate defects

interactions and quantify their collective effects on strain hardening in single crys-

tals where deformation is primarily driven by slip. For such purpose, the philosophy

adopted relies on a scale transitioning approach in which existing results extracted

from atomistic simulations are used to inform and develop DDD simulation tools aim-

ing at investigating unit processes associated with dislocation-dislocation, dislocation-

twin, and dislocation-particles interactions. Further, massive DDD simulations are

performed to assess their collective effects so as to validate, calibrate, and develop

constitutive models accounting for defects interactions in a statistically representa-

tive fashion. Consequently, the strategy adopted in this work to contribute to the

scale transition includes three aspects: 1) extracting parameters and laws from DDD

simulations that would be incorporated in higher scales models, 2) developing a new

efficient DDD approach that paves the way towards performing DDD simulations in

heterogeneous / poly crystals, and 3) developing new constitutive laws establishing

direct connections with lower scales modelling approaches.

In this thesis, the applications and studies are performed on various metals of

different structures depending on the availability of critical data (e.g. atomistic re-

sults), for validation purposes, or to address specific needs of the material science

community.

1.3 Scope of the thesis

In this thesis, the literature review is done within each chapter. In order to address

the challenges presented in the previous sections, the manuscript is organized in the

following manner:

Chapter 2 is dedicated to the development of a robust and efficient DDD simu-

lation tool incorporating an explicit treatment of dislocation junctions and capable
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of treating any kind of crystallography. For such purpose, the fundamental physical

properties of dislocations are first reviewed and their continuum based representation

is presented. Then, state-of-art numerical techniques are discussed and implemented.

The code developed will then be used in Chapter 4 to compute latent hardening

parameters in magnesium, and will serve as a framework for the novel FFT-based

approach introduced in Chapter 3 and employed in Section 5.2, the transmission

mechanism scheme implemented in Section 5.1, and the novel constitutive Hybrid

Model developed in Chapter 6.

In Chapter 3, a novel formulation for DDD simulations based on an eigenstrain

formalism and on fast Fourier transforms is developed for homogeneous and het-

erogeneous periodic microstructures. The objective of the DDD-FFT approach is to

address current limitations of DDD simulations by enabling efficient and accurate cal-

culations in anisotropic and heterogeneous elasticity, thereby paving the way towards

performing DDD simulations in polycrystals.

Chapter 4 is dedicated to the quantification of dislocation-dislocation interactions

parameters used in constitutive laws in the case of HCP magnesium, using the DDD

simulation tool developed in Chapter 2. To this end, the crystallography of dislocation

interactions in Mg is first analyzed. Then, latent hardening parameters are extracted

and their effects on the macroscopic response predicted by polycrystalline models are

investigated. Further, the validity of two widely used slip-hardening laws is assessed

for HCP crystals.

Chapter 5 focuses on the investigation of dislocation interactions with different

types of phases. Thus, the interaction between dislocations and coherent twin-

boundaries is first examined by developing a transmission scheme to allow for the

treatment of dislocation reactions upon intersection with coherent interfaces in DDD

simulations. With this, the role of dislocation-twin interactions is investigated by

focusing on dislocation multiplication and generation of internal strains. Then, the
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heterogeneous DDD-FFT approach is employed to study dislocation-second phase

particles in HCP Mg.

In Chapter 6, a novel strain hardening constitutive model for slip-driven plasticity

is proposed. To address the limitations of current constitutive laws, the model distin-

guishes between glissile and stored dislocations, and establishes a direct connection

with DDD simulations to quantify the evolution of dislocation densities due to glide

and the transformation between the different populations by ways of interactions.

The model is applied to FCC Al to demonstrate its capabilities.

Finally, conclusions and perspectives of this thesis are discussed in Chapter 7.

1.4 Notations

1.4.1 Mathematical notations

In this thesis, vectors are represented with an overhead arrow (e.g. ~x) and tensorial

quantities are represented using a bold symbol (e.g. X).

Both of these quantities can interchangeably be expressed in their Cartesian com-

ponents form (e.g. xi for the i-th component of a vector, Xij for the component of a

second-order tensor, Yijkl for the component of a fourth-order tensor, etc...).

Spatial derivatives in the component form are denoted using a comma followed

by the component index (e.g. xi,j for the spatial derivative of the i-th component of

vector ~x with respect to the j-th direction).

Unless stated otherwise, Einstein summation convention is implicitly meant in the

component form, so as to carry summations on repeated indices. For instance, one

shall read the following equivalence:

Aij = CijklBkl = Aij
∑
k

∑
l

CijklBkl (1.2)
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1.4.2 General variables

In the following, the notation of the general variables is presented. These notations

are also introduced at the location of their first appearance in the text.

I2, δij – Kronecker delta function

eijk – Levi-Civita permutation symbol

~u, ui – Displacement vector

ε, εij – Total strain tensor

εe, εeij – Elastic strain tensor

εp, εpij – Plastic strain tensor

σ, σij – Cauchy stress tensor

C, Cijkl – 4th order stiffness tensor

G, Gij – Green’s function

Γ, Γijkl – Modified Green’s function

~x, xi – Coordinate in the real space

~ξ, ξi – Coordinate in the Fourier space

ρs – Dislocation density on system s

τ s – Resolved shear stress on system s

τ sc – Critical resolved shear stress on system s

γ̇s – Shear strain rate on system s

V – Volume of a body

λ, µ – Lamé constants
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CHAPTER II

DISCRETE DISLOCATION DYNAMICS

2.1 Introduction

At small scales, lattice defects and their interactions have long been determined as

responsible for the plastic activity in metals [52, 136, 93]. Among these defects, linear

defects – also referred to as dislocations – mediate the plastic slip through their motion

and govern strain hardening through their interactions. The study of these defects and

their role in the deformation process and in strain hardening behaviors has required

over the years the development of dedicated numerical tools and techniques. These

numerical tools have been particularly useful in providing insightful understandings

of several mechanisms and, in specific cases, have allowed to go beyond what exper-

imental capabilities can offer. Thus, to capture the physical mechanical behavior of

slip-mediated plasticity, three-dimensional dislocation dynamics simulations, aiming

at simulating the motion and interactions of dislocation lines, have emerged in the

1990s [134, 61, 67, 266, 30].

Several dislocation dynamics approaches have been developed, among which two

classes of simulations can be distinguished. The first class is composed of front track-

ing methods in which dislocations are discretized into segments and tracked individ-

ually, while the second class regroups all alternative methods in which dislocations

are not explicitly discretized. For instance, the second class includes the phase field

approach in which dislocations are represented by density functions [246, 128, 116],

and the level set method in which dislocation lines are represented by the intersection

of higher order parametrized surfaces [262, 244]. In contrast, simulations in which dis-

location lines are discretized are referred to as Discrete Dislocation Dynamics (DDD)
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simulations, and are the subject of this chapter.

Since its development, DDD has proven to be a powerful tool aiding at under-

standing the collective behavior of large ensembles of dislocations at the mesoscale

[67, 266, 30, 97, 5], and have successfully been used to investigate plasticity and strain

hardening behaviors and processes at the scale of the dislocation. Well known appli-

cations include the study of plasticity in thin films [191, 242, 252, 272, 84] and micro-

pillars [212, 255, 271], the quantification of the strength and formation likelihood of

dislocation junctions in materials with different crystal symmetries [164, 39, 260], the

unravelling of the formation process of triple dislocation junctions [31], the quantifica-

tion of latent-hardening effects in cubics and hexagonal systems [165, 65, 198, 62, 22],

and the quantification of the effect on dislocation interaction with irradiation-induced

damage on strength [8, 84, 221]. DDD has also been successful in quantifying disloca-

tion mean-free paths [19, 63, 132], in understanding the role of cross-slip in dislocation

patterning [167, 249], in relating slip activity to plastic anisotropy [250], in elucidating

the role of non-Schmid effects in tension/compression asymmetry [247], in quantifying

the importance of elastic anisotropy [101, 40] and inertial effects [248], and in studying

the interactions between mobile dislocations and grain boundaries [163, 152].

However, an exhaustive survey on the literature reveals that most of DDD studies

have been performed on cubic materials. This is because supplementary complexities

arise when dealing with low-symmetry crystals. For instance, performing DDD sim-

ulations on low-symmetry crystals such as HCP Mg necessarily requires the proper

treatment of the anisotropic properties of dislocations [16, 37, 176], including friction

stresses, mobilities [102], and anisotropic stress fields [108, 40, 85], each associated

with the different slip modes. Although open-source codes such as ParaDis [5] or

microMegas [69] are available – and could theoretically be modified to perform sim-

ulations on low-symmetry crystals –, these are usually distributed as black-boxes –

especially regarding numerical efficiency purposes –, and are therefore not readily
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designed to be edited. As a result, the choice is made for this thesis to develop a

complete DDD code, for which the use for specific applications and studies would

be simplified. Specifically, the code developed should enable the treatment of any

crystallography. To this end, current DDD codes are analyzed and state-of-the-art

techniques are implemented into the DDD code presented in this chapter, so as to

develop a robust, efficient and competitive numerical tool.

The chapter is organized as follows. First, the general procedure in DDD and the

complete DDD cycle are presented in Sections 2.1.1 and 2.1.2. Then, a review on

the theory of dislocations laying the ground for the physical model underlying DDD

simulations is given in Section 2.2. Finally, the physical and numerical aspects of

each component of the regular DDD simulation approach are fully presented through

Sections 2.3 to 2.9.

2.1.1 General procedure in DDD

Conceptually, the general procedure in DDD simulations is to adopt a discretization

scheme of the dislocation network and derive thermodynamically consistent sets of

equations of motion for each segment in the dislocation ensemble. For instance, the

first approaches proposed a segment-based discretization scheme in which the orienta-

tion of segments was constrained to fixed sets (e.g. pure edge and pure screw segments

[67, 240], mixed characters [164, 68]). Later, the nodal approach was introduced such

as to allow for a continuous description of line orientation, using linear [266] or spline

approximations [96, 97]. Once dislocation lines are discretized, the DDD procedure

includes two main aspects: (i) the quantification of dislocation motion and (ii) the

treatment of intersections between dislocation segments. Due to the non-linear behav-

ior of dislocation motion and the complex interaction processes, DDD simulations are

performed through an iterative process in which a time discretization is introduced.
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As a result, steps (i) and (ii) are performed at each time step of the simulation. Fur-

ther, as will be described in coming sections, the determination of dislocation motion

(i) requires the precise knowledge of the mechanical state (stress state) throughout

the whole simulation volume, which needs to be evaluated at each time step, since it

depends on the position (or on the motion) of dislocation lines. On the other hand,

intersections between dislocation lines (ii) that pertain to core reactions are generally

treated via topological local rules based on static or dissipative criteria. Once steps

(i) and (ii) have been performed, a new dislocation configuration is determined and

the simulation can advance to the next time step. However, DDD simulations are

complex numerical simulations that require supplementary stages to be implemented

at each time step. Therefore, the full numerical DDD cycle is presented below.

2.1.2 DDD cycle

Numerically, the development and implementation of a DDD simulation is a complex

task that requires the development of several components. Each of the main stages

composing the basic DDD cycle are presented in the diagram in figure 2.1, and will

be fully detailed throughout the coming sections of the present chapter. Sequentially,

the main tasks to be performed at each time increment of the DDD cycle are the

following:

(a) As any discrete approach, the evaluation of dislocation motion requires the

dislocation network to be discretized. This procedure must be dynamically

performed at each time increment since the topology of the network evolves

from step to step: as dislocations move, the length (and shape) of dislocation

segments changes and the connectivity between segments is modified by ways

of dislocation intersections. The dynamic discretization (a), also referred to as

segment remeshing, is required to ensure that, at each time step, the length

of each dislocation segment allows for a correct representation of dislocation
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Figure 2.1: Diagram of the main stages composing the basic cycle performed at each
time step in DDD simulations. (a) Dynamic discretization of dislocation lines: the
topology of the dislocation network evolves at each time step requiring discretezation
to be performed dynamically. (b) Forces calculation: the stress driving dislocation
motion is evaluated from the spatial configuration of the dislocation network. (c)
Velocities calculation: once forces on dislocations have been computed, the motion
of dislocation lines can be calculated through the mobility law. (d) Plastic strain
calculation: the areas swept by dislocation motion allow for the determination of
the plastic activity. (e) Interactions: collisions between dislocations during glide are
treated via topological rules. The DDD cycle (a) to (e) is repeated until simulation
is completed.

lines and curvatures, and prevents the appearance of numerical instabilities.

More details on the dislocation discretization schemes are provided in Section

2.3 while the different remeshing strategies are presented in Section 2.7.

(b) Once the dislocation network is well discretized, forces on dislocation segments

resulting from the interactions of dislocations with the other dislocations and

the applied loading are computed. Such forces correspond to the well-known

Peach-Koehler forces [111] and are the driving forces for dislocation motion.

The definition and coupling between the different contributions to the driving
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force are presented in Section 2.4, while the calculation and assembly of nodal

forces are detailed in Sections 2.5 and Appendix C.

(c) After nodal forces have been evaluated, nodal velocities are obtained from the

use of the mobility law describing the gliding behavior of dislocation lines. This

stage is explained in Section 2.5. Dislocation positions are then updated from

dislocation velocities by virtue of time integration, thereby yielding a new dis-

location configuration. Such procedure is described in Appendix C.4.

(d) Following the calculation of dislocation motion, the plastic activity is calculated

by determining the areas swept by each dislocation segment, i.e. the sheared

portions of the simulation volume in which slip has occur. This stage is required

for the determination of the mechanical response of the simulated material and

is described in Section 2.8.

(e) The last stage of a DDD simulation step pertains to dislocation core interactions.

This includes the detection and treatment of dislocation collisions, leading to

junction formations or annihilations, and the dissociation procedure. These

procedures are presented in Section 2.6, while their numerical implementation

is detailed in Appendix D.1.

Note that the order in which stages are performed may differ according to the

different implementations. Thus, the interactions procedures (e) can be performed

before the calculation of the plastic strain (d), for instance.

2.2 Theory of dislocations

In this section, the physical properties of dislocations and their effects are presented.

Specifically, the continuum theory to derive stress fields associated with dislocation

lines – whose evaluation is the core component of DDD simulations – is reviewed.
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2.2.1 Concept

The concept of dislocation was first introduced by Volterra in 1907 [241]. A dislocation

corresponds to a line defect within a crystal structure, associated with a displacement

jump, and is characterized by its Burgers vector, usually denoted ~b, and its line

direction ~t. The relative orientation between these two vectors defines the character

of the dislocation, of which three types exist: edge, screw and mixed. An edge

dislocation corresponds to a dislocation for which the Burgers vector is perpendicular

to the line direction, while a screw dislocation is defined by the collinearity between

its Burgers vector and its line direction. Therefore, edge and screw dislocations

correspond to particular cases, and dislocations found in crystals are generally mixed

dislocations, i.e. dislocations for which the Burgers vector form an angle 0◦ ≤ θ ≤ 90◦

with its line direction.

To illustrate the concept of dislocation, an edge dislocation inserted in an initially

perfect cubic crystal is depicted in figure 2.2. As drawn, an edge dislocation corre-

sponds to the presence of an extra half plane of atoms, whose bottom termination

delineates the line direction of the dislocation, usually represented with a ⊥ symbol.

In this case, the line direction is orthogonal to the paper (along the ~z direction).

The definition of the Burgers vector associated with the dislocation depends on

the sense of the line direction. Once a convention is adopted, the Burgers vector ~b,

defining the magnitude and the direction of the displacement induced by the pres-

ence of the dislocation, is usually determined using the Burgers circuit procedure

as introduced by Frank [91]. The procedure is as follows: a reference circuit C is

delineated in the perfect crystal and is compared to the same circuit drawn in the

dislocated crystal. The extra closure vector obtained in the case of the dislocated

crystal is the Burgers vector. The existence of such closure vector arises from the

elastic displacements of the atoms with respect to their perfect sites induced by the

presence of the dislocation, as depicted in figure 2.2(c). Therefore, in an equivalent
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Figure 2.2: Schematic of an edge dislocation in a cubic crystal. (a) Perfect crystal:
the reference Burgers circuit delineated in blue starts at position S and ends at the
same position F = S. (b) Edge dislocation: when drawing the same circuit in the

dislocated crystal, an extra vector ~FS = ~b is required to close the circuit. Vector ~b is
the Burgers vector that defines the direction and the magnitude of the displacement
induced by the dislocation. The dislocation line located with a ⊥ symbol is orthogonal
to the paper (along the ~z direction). (c) Superposition of the atomic positions of
the perfect (green) and dislocated (red) crystals highlighting the atom displacements
induced by the presence of the dislocation. The extra plane of atoms characteristic
of the edge dislocation is shown in blue.

manner, the Burgers vector is mathematically given as the line integral of the elastic

displacements ~u along the Burgers circuit:

bi =

∮
C
dui =

∮
C
ui,jdxj (2.1)

The integral in (2.1) vanishes when the crystal structure is not altered, or yields the

Burgers vector when circuit C encircles a dislocation line. With this definition, it

clearly appears that the presence of the extra plane, i.e. of the dislocation, induces

a jump or a discontinuity in the displacement field, which cannot be well-defined

everywhere in the crystal. Note that in order to obtain the true value of the Burgers

vector, the circuit C should be taken along atoms that are sufficiently away from the

dislocation line. This is to avoid dealing with the singularity of the displacements

near the dislocation line, i.e. in the dislocation core. The dislocation core is more

generally defined as the region where the elastic displacements of atoms are so large

that the elastic approach is likely not to apply. The size of this region depends on
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the lattice structure, and there is still substantial ongoing research to obtain a better

understanding and description of dislocation cores [111, 16].

In contrast to the edge dislocation, the visualization of a screw dislocation is more

difficult. As depicted in figure 2.3, a screw dislocation can be imagined as to introduce

a cut along a plane in a perfect crystal along which one half of the crystal would have

slipped by one atomic distance with respect to the other half. In this case, the Burgers

vector ~b required to close the reference Burgers circuit is parallel to the dislocation

line L.

� 

� 

� 

� 

b) a) 

� 

� 

Figure 2.3: Schematic of a screw dislocation in a cubic crystal. (a) Perfect crystal:
the reference Burgers circuit delineated in blue starts at position S and ends at the
same position F = S. (b) Screw dislocation: when drawing the same circuit in the

dislocated crystal, the Burgers vector ~FS = ~b is required to close the circuit. In
this case, ~b is parallel to the dislocation line L shown in red. The surface in green
delineates the plane of atoms on which slip has occurred.

As mentioned earlier, both edge and screw dislocations correspond to particular

orientations. In general, the orientation of a dislocation found in a real material is not

constant along its line, but typically continuously evolves from edge to screw charac-

ters, as illustrated in figure 2.4. When the Burgers vector ~b is neither perpendicular
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nor parallel to the line direction, the dislocation line is of mixed character.
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screw 

edge 
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� 

Figure 2.4: Schematic of a dislocation line L found in a cubic crystal. The line
continuously evolves from edge to screw characters. When the Burgers vector ~b is
neither perpendicular nor parallel to the line direction, the dislocation line is of mixed
character.

From a more general perspective, a dislocation can be imagined as resulting from

a cut introduced over a surface ~S within an otherwise continuous material. As illus-

trated in figure 2.5(a), let ~S be the surface defined by its normal ~n and bounded by

line L (here ~S denotes the ensemble of points ~x located on the surface). If the domain

S+ of the crystal located above the surface of the cut ~S is slipped by an amount ‖~b‖

in the direction of~b/‖~b‖ with respect to the domain S− located below the cut, then a

dislocation with Burgers ~b and line L is introduced in the material. This is evidenced

by the fact that taking the Burgers circuit C anywhere around dislocation line L will

yield the Burgers vector ~b in this case. Therefore, a dislocation can be seen as the

boundary of a surface in which slip has occurred by an amount ~b, such that the jump

in displacement [~u] across surface ~S, i.e. when going from S− to S+, is given by

[~u] = ~b. In other words, there exists a discontinuity in the displacement on surface

~S, such that the displacements are multi-valued on this surface. Further, the fact
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Figure 2.5: (a) Schematic of a dislocation loop L defined as the boundary of a cut

introduced over a surface ~S within a continuous material. Here, S+ denotes the
region of the crystal above surface ~S while S− denotes the region below the surface.
A dislocation with Burgers vector ~b is introduced when the crystal in domain S+ is
slipped by an amount b = ‖~b‖ in the direction of ~b/‖~b‖ with respect to the crystal in
domain S−. With that, the Burgers circuit taken anywhere along L yields the Burgers
vector~b such that the discontinuity [~u] in the displacement field across surface ~S when

going from S− to S+ is given by [~u] = ~b. (b) In the eigenstrain theory, dislocations are

considered as plate-like Eshelbian inclusions of thickness t. Surface ~S corresponding
to the slip plane of the dislocation is defined by the plane formed by the Burgers

vector ~b and the line direction ~t such that ~n =
~b×~t
‖~b×~t‖

. For a dislocation, t corresponds

to the inter-atomic distance associated with its slip plane.

that a dislocation is solely defined by the boundary L of a surface induces two main

consequences. First, it implies that a dislocation cannot end within a perfect crystal,

but must be closed or terminate at the intersection with another defect, such as a

dislocation, a disclination or a grain boundary. In other words, this implies that the

Burgers vector must be conserved along the dislocation line. Second, it implies that

the definition of the dislocation is independent of the shape of surface ~S bounded by

L. In general, ~S is the plane formed by the Burgers vector ~b and the line direction

~t of the dislocation that together define its glide plane (see Section 2.2.4). As shown

in figure 2.5(b), this definition directly leads to the representation of dislocations in

the eigenstrain theory, in which they are considered as plate-like inclusions.
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2.2.2 Statics of dislocations

The presence of a dislocation in a crystal primarily gives rise to internal strain and

stress fields associated with the elastic displacement field induced by the dislocation.

Therefore, a brief review of the elasticity theory is given here.

In continuum mechanics, the state at each material point of an elastic medium is

primarily described by two quantities: the stress and the strain. Both these quantities

are second-order tensors and their continuous distribution at each point over the

medium defines the strain and stress fields, respectively. The stress tensor is usually

denoted σ, for which each component σij represents the force on the i-th direction

acting on a surface whose unit normal is parallel to the positive j-th direction. In a

three-dimensional setting, indices i and j range from values 1 to 3. When the Cauchy

definition of the stress tensor is used, the latter is symmetric, i.e. σij = σji, such that

the mechanical equilibrium of an elementary volume element at rest is respected.

Further, the equilibrium equation writes:

σij,j(~x) + fi(~x) = 0 (2.2)

where fi denotes the body force, and where the Einstein summation convention is

used. In words, equation (2.2) states that the divergence of the stress must be bal-

anced by the body forces at each material point ~x of the medium.

In contrast to the stress which relates to forces, the strain is related to the defor-

mation, i.e. to the response to the force. The definition of the total strain tensor,

usually denoted ε, is given from the displacement ~u by the compatibility equation as:

εij =
1

2
(ui,j + uj,i) (2.3)

Note that definition of the strain in equation (2.3) is an approximation valid under

the small strain hypothesis. The constitutive equation relating the stress to the strain
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is given by Hooke’s law as:

σij = Cijklε
e
kl (2.4)

where εekl is the elastic strain and Cijkl are the coefficients of the fourth-order stiffness

tensor. From the symmetries of the strain and stress tensors, it follows that the

stiffness matrix respects major and minor symmetries:

Cijkl = Cjikl = Cijlk = Cklij (2.5)

In the presence of a dislocation, a plastic strain distribution εp is prescribed in order

to account for the inelastic deformation induced by the displacement discontinuity

introduced in Section 2.2.1. In the case of infinitesimal deformations, the total strain

can be written as the sum of the elastic and plastic contributions, i.e. ε = εe + εp.

With this, the elasto-plastic formulation of equation (2.4) rewrites:

σij = Cijkl (εkl − εpkl) (2.6)

Similarly, the gradient of the displacement ui,j, also referred to as the total distortion

βji, is decomposed as the sum of the elastic distortion βeij and the plastic distortion

βpij, such that:

ui,j = βji = βeji + βpji (2.7)

and εpij =
1

2

(
βpij + βpji

)
(2.8)

In the absence of body forces, the equilibrium equation (2.2) applied to (2.6) yields

the following expression that must hold at every point ~x in the medium:

Cijkluk,lj(~x) = Cijklε
p
kl,j(~x) (2.9)
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When the distribution of plastic strain εpkl,j(~x) is known throughout the medium,

expression (2.9) can be integrated to solve for the displacement field ~u(~x) everywhere

in the medium. Usually, such integration is performed via the introduction of the

Green function Gij, which defines the displacement in the i-th direction in response

to a point force exerted in the j-th direction. More details on the Green function

and a method to determine its expression are given in [72, 181] and in Section 2.2.3.

Solving equation (2.9) leads to the expression of the displacement field as a function

of the prescribed plastic strain as:

ui(~x) = −
∫
V

Cklmnε
p
mn(~x′)Gik,l(~x− ~x′)dV ′ (2.10)

where the integration is performed over volume V where the plastic strain εpmn(~x′)

does not vanish. Complete details for obtaining equation (2.10) from (2.9) will be

given in Section 3.3. In the case of the presence of a dislocation line defined by its

Burgers vector~b and an arbitrary defect surface ~S with unit normal ~n, the associated

plastic distortion is given as [181]:

βpij = −bjniδ(~S − ~x) (2.11)

where δ(~S−~x) denotes the three-dimensional Dirac delta function that is unbounded

on surface ~S and 0 otherwise. Here, as depicted in figure 2.5, ~S is the cut surface

bounded by the dislocation line L and on which the displacements are multi-valued.

Therefore, δ(~S − ~x) here accounts for the displacement discontinuity [~u] = ~b across

~S. From expression (2.8), the plastic strain associated with (2.11) writes:

εpij = −1

2
(binj + bjni) δ(~S − ~x) (2.12)

Combining expressions (2.10) and (2.12) leads to the following surface integral to

define the total displacement field induced by the dislocation:
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ui(~x) =

∫
S

CklmnGik,l(~x− ~x′)bnnmdS ′ (2.13)

Equation (2.13) is the original formula obtained by Volterra [241]. Differentiating

this equation to obtain the total distortion ui,j allows for an expression of the total

strain using equation (2.3). The latter can be further converted to a line integral

upon using Stokes’ theorem [181]. From there, the stress induced by the presence of

a dislocation line is obtained from equation (2.6) as:

σij(~x) = Cijkl

∮
L

elnhCpqmnGkp,q(~x− ~x′)bmdx′h (2.14)

where the integration is performed along the dislocation line L defined as the bound-

ary of surface ~S and with elementary line direction d~x′, and where eijk is the permu-

tation tensor. Equation (2.14) appears to have been first obtained by Mura [180] and

constitutes the basis for evaluating the stress field of discrete dislocation lines. Note

here that the stress field is given as a closed line integral, i.e. for a closed disloca-

tion loop. In practice however, since a dislocation loop can be decomposed into the

sum of parametric segments connected to one another, the stress field produced by a

dislocation segment can be evaluated using equation (2.14). Nevertheless, difficulties

arise when evaluating the stress of terminating segments, since the solution cannot

be uniquely determined in that case [80, 14].

2.2.3 Elastic stress field of a static dislocation

As detailed in Section 2.2.2 and in [72, 181], the stress field σ(~x) of a dislocation line

L with Burgers vector ~b is obtained at any field point ~x from expression (2.14) as:

σij(~x) = Cijkl

∮
L

elnhCpqmnGkp,q(~x− ~x′)bmdx′h (2.14 repeated)

where Cijkl is the fourth order elastic stiffness tensor, eijk is the permutation tensor,
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~x′ is the coordinate that spans the dislocation, Gkp,q = ∂Gkp/∂xq and Gij(~x− ~x′)

is the static Green function for an homogeneous elastic medium. Gij(~x− ~x′) defines

the displacement in the i-th direction at point ~x due to an elementary force applied

in the j-th direction at point ~x′. It can be shown that the Green function satisfies

[99]:

CijklGkm,lj(~x− ~x′) + δimδ(~x− ~x′) = 0 (2.15)

where δim denotes the Kronecker symbol and δ(~x− ~x′) is the three-dimensional delta

function that vanishes everywhere expect where ~x = ~x′, i.e. on the dislocation

line. In equation (2.14), the evaluation of the stress field of a dislocation requires an

expression of the Green function which has not been given thus far. In the following,

expressions for the Green function in the case of isotropic and anisotropic elasticity

are provided.

2.2.3.1 Isotropic elasticity

There are several ways in which the Green function can be determined. Usually, such

is done by solving for equation (2.15) in an infinite medium under the assumption that

Gij(~x− ~x′) vanishes at infinity, i.e. Gij(~x− ~x′)→ 0 when ‖~x− ~x′‖ → ∞. The use of

Fourier transforms techniques is then probably the most straightforward and elegant

approach to obtain an expression for Gij [181]. In the case of an elastically isotropic

medium, the need of solely two elastic constants to describe the elastic properties of

the medium greatly simplifies its determination. Thus, for isotropic elasticity, the

static Green’s function is analytically expressed as [99]:

Gkp(~R) =
1

8πµ

[
δkpR,qq −

1

2(1− ν)
R,kp

]
(2.16)

where µ and ν are the shear modulus and the Poisson’s ratio, δij is the Kronecker

tensor and ~R = ~x−~x′ is the radius vector of norm R = ‖~x−~x′‖ =
√
~R · ~R =

√
RiRi.
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Combining equations (2.14) and the first derivative of (2.16), the stress field of a

dislocation line in an elastically isotropic infinite medium is expressed as [72]:

σij(~x) =
µbn
8π

∫
L

[
R,mpp

(
ejmndx

′
i + eimndx

′
j

)
+

2

1− ν
ekmn (R,ijm − δijR,ppm) dx′k

]
(2.17)

where the derivatives of the radius norm R in (2.16) and (2.17) are given by:

R,i =
Ri

R

R,ij =

(
δij −

Ri

R

Rj

R

)
/R

R,ijk =

[
3
Ri

R

Rj

R

Rk

R
−
(
δij
Rk

R
+ δjk

Ri

R
+ δki

Rj

R

)]
/R2 (2.18)

Full details on the derivation of relations (2.18) are provided in Appendix A.

Here, it is important to notice that R,ijk becomes unbounded as R→ 0. In other

words, equation (2.17) provides a singular expression of the stress field when evaluated

on the dislocation line, i.e. when ~x = ~x′. As will be shown in the next paragraph, this

results from the fact that the Green’s function is not defined for ~R = ~0 in the case

of general anisotropy, such that the general formulation (2.14) is similarly singular

along the dislocation line L. This indicates that with this continuum approach, the

stress field becomes unbounded in the dislocation core, which obviously does not

occur in real crystals. To address this discrepancy, Cai et al. recently proposed

a non-singular formulation, in which the dislocation core is spread according to an

isotropic distribution [35]. Besides removing the singularity along dislocation line, this

formulation allows for obtaining an explicit analytical formulation of the stress field

induced by straight segments in isotropic elasticity. More details on the non-singular

formulation are given in Appendix A.2.

For an infinite straight edge dislocation align with the z-axis and with Burgers
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(a) σxy (b) σxx

(c) σyy (d) σzz (plane strain)

Figure 2.6: Non-zero components of the stress field produced by an infinitely long
straight edge dislocation along the z-axis. The Burgers vector ~b of magnitude b =
‖~b‖ = 1 is parallel to the positive x direction and the medium is isotropic elastic with
material parameters µ = 0.6 and ν = 0.2.

vector ~b = [b00] parallel to the x-axis, the stress field components given by the

classical singular theory in equation (2.17) reduce to:
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σxx = − µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2

σyy =
µb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2

σxy =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2

σzz = ν(σxx + σyy) = − µbν

π(1− ν)

y

x2 + y2

σxz = σyz = 0 (2.19)

where component σzz is given for a plane strain situation (εzz = 0). A graphical

representation of the non-zero components of the stress field in a plane perpendicular

to the line direction is given in figure 2.6.

In the case of an infinite screw dislocation along the z-axis with Burgers vector

~b = [00b] parallel to the z-axis, the stress field components given by equation (2.17)

reduce to:

σxz = −µb
2π

y

x2 + y2

σyz =
µb

2π

x

x2 + y2

σxx = σyy = σxy = σzz = 0 (2.20)

for which a graphical representation is given in figure 2.7.

2.2.3.2 Anisotropic elasticity

In the case of general anisotropic elasticity, the determination of the Green function is

more complex, and requires to solve a sextic equation in terms of the Stroh eigenvalues

[230]. Following the formalism proposed by Ting and Lee [230], explicit formulations

of first and second derivatives of the Green’s function have been recently derived
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(a) σxz (b) σyz

Figure 2.7: Non-zero components of the stress field produced by an infinitely long
straight screw dislocation along the z-axis. The Burgers vector ~b of magnitude b =
‖~b‖ = 1 is parallel to the z direction and the medium is isotropic elastic with material
parameters µ = 0.6 and ν = 0.2.

[146, 32], but their numerical evaluation cannot be directly obtained. Note that

analytical solutions for the stress field of dislocations in transverse isotropy have

been obtained by Pan and Chou [46, 190]. In the general case however, no closed

form expression can be found. The first approaches to evaluate Gij in an anisotropic

medium concentrated on obtaining approximations of the solution for equation (2.15)

by expanding Gij in series form [182]. Later, Bacon and Barnett proposed an angular

integral expression of the Green function and its derivatives [17, 14] for anisotropic

elasticity. With this approach, the expression of Gij is given as:

Gkp(~R) =
1

4π2R

∫ π

0

M−1
kp (~ξ)dψ (2.21)

where ~R = ~x − ~x′ is the radius vector of norm R = ‖~R‖. By denoting (~eR1,~eR2)

any arbitrary plane orthogonal to ~R and ~T = ~R/R the unit vector direction of ~R,

~ξ(ψ) denotes the unit vector on plane (~eR1,~eR2) making an angle ψ with ~eR1. By

definition, ~ξ(ψ) satisfies ~T · ~ξ = 0. With this, the tensor M−1 in equation (2.21) is

expressed as:
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M−1
kp (~ξ) =

eksmeprwKsr(~ξ)Kmw(~ξ)

2elgnK1l(~ξ)K2g(~ξ)K3n(~ξ)
(2.22)

where Kik(~ξ) = Cijklξjξl and the elastic tensor C is expressed in the global frame

(~e1,~e2,~e3) in which the coordinates of ~ξ are also expressed. The first derivative of

the anisotropic Green’s function expressed in equations (2.21) and (2.22) is given by

[17]:

Gkp,q(~R) =
1

4π2R2

∫ π

0

(
−TqM−1

kp (~ξ) + ξqCjrnwM
−1
kj (~ξ)M−1

np (~ξ)(ξrTw + ξwTr)
)
dψ

(2.23)

for which no closed form solution exists. Therefore, the evaluation of the stress field

of a dislocation in an anisotropic medium requires the calculation of nested numerical

integrations given in equations (2.23) and (2.14). More details on the calculation

and approximations of stress fields in anisotropic elasticity using expression (2.23)

are given in Appendix B.

2.2.4 Dislocation glide

In Sections 2.2.2 and 2.2.3, the theory of static dislocations was introduced, i.e. dislo-

cations were considered as static defects under no motion. However, when subjected

to an applied stress – which may arise from a macroscopic loading or from the dis-

tortion induced by the presence of other dislocations or defects –, dislocations can

glide and propagate. The resulting motion of an ensemble of gliding dislocations is

generally referred to as dislocation slip. As a matter of fact, slip is one of the most

common deformation modes in metallic materials and is characteristic of the plastic

regime.

The permanent displacement of atoms, corresponding to the slipping of atomic

planes with respect to each other, is associated with the plastic deformation and

is facilitated by the presence of dislocation lines within the material: as depicted in
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Figure 2.8: Schematic of the glide of an edge dislocation. The snapshots from left
to right illustrate the glide of a dislocation line under an applied shear stress τ . The
bonds between atoms successively break and reconnect as the dislocation propagates
through the crystal. The slip plane on which gliding occurs is defined by the Burgers
vector~b and the line direction~t (orthogonal to the paper in this case) of the dislocation

such that its unit normal is given by ~n =
~b×~t
‖~b×~t‖

. At the end of the deformation, the

dislocation has entirely sheared the crystal such that the part of the crystal above
the slip plane has slipped by one lattice distance with respect to the bottom part.

figure 2.8, the glide of a dislocation line follows a step by step process in which atomic

bonds around the dislocation are successively broken and reconnected, inducing a

relative slip between both sides of the slip plane. Without the presence of such lattice

defect, the slip of atomic planes would be much more difficult, since it will require

the simultaneous breaking of all atomic bonds across the slip plane, thereby requiring

a much higher energy. Besides, the atomic planes on which slip occurs generally

correspond to the planes and directions in which the atoms are the most packed.

This is because the step that needs to be overcome by atoms to be moved to their

next lattice position is all the smaller than the plane and direction are dense, therefore

requiring less energy. As a result, the combinations of slip plane and slip direction –

referred to as slip systems – on which plastic deformation preferably occurs depend

on the crystalline structure of the material. Thus, for instance, slip primarily occurs

by motion of dislocations of the family of 1
2
〈1̄10〉{111} slip systems in face-centered

cubic (FCC) materials, where 1
2
〈1̄10〉 refers to the family of Burgers vectors and {111}

to the family of slip planes associated with these slip systems.

Note that different properties are associated with the slip systems depending on
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the geometrical and physical properties of the dislocations that constitute them. For

instance, the lattice friction resistance and the dislocation mobility governing dislo-

cation motion are intrinsic properties of slip systems and crystalline structures.

When considering a single dislocation line as in figure 2.8, its slip plane, defined

by its unit normal ~n, is determined by its Burgers vector~b, giving the magnitude and

the direction of the slip, and its line direction ~t such that ~n =
~b×~t
‖~b×~t‖

. In other words

a dislocation is generally constrained to move on its plane. However, the case of a

screw dislocation is particular since no slip plane can be defined: the Burgers vector

and the line direction are collinear in this case. For this reason, screw dislocations

have the ability to cross-slip, i.e. to change slip planes during glide. Thus, when local

conditions are met, a screw portion of a dislocation line can potentially glide on any

slip planes containing its Burgers vector. This thermally-activated mechanism is for

instance particularly encountered in the bypassing process of obstacles lying on the

original slip plane of a dislocation.

As illustrated in figure 2.8, the propagation of a dislocation shears the crystal

along its slip plane. The elementary plastic shear strain γ associated with the motion

of a dislocation is given as:

γ =
bA

V
(2.24)

where b = ‖~b‖ is the magnitude of the Burgers vector, A is the area swept by the

dislocation during glide, and V is the volume of the sheared crystal. Without further

details, equation (2.24) can be intuitively obtained from the purposely oversimplified

following reasoning: let the crystal presented in figure 2.8 be of height h (along ~n),

length l (along ~b) and width w (along ~t). When a dislocation of length w has fully

propagated through the crystal from left to right, the upper part of the crystal is

translated by an amount b with respect to the lower part such that the resulting

amount of shear in the crystal is given by γ = b/h. In this process, the dislocation
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has travelled a distance l and, consequently, swept an area A = lw. Therefore,

the resulting shear can be expressed as γ = bA/hA where V = hA is the volume

of the crystal, thereby recovering equation (2.24). Extending this reasoning to the

collective glide of dislocations, the total plastic shear resulting from the global motion

of dislocations on slip system s is given as:

γs =
∑
i∈s

bsAsi
V

(2.25)

where the sum is performed on all dislocations i on system s, Asi is the area sheared

by dislocation i, and bs is the magnitude of the Burgers vector associated with slip

system s. With that, the plastic strain εp and the plastic rotation ωp resulting from

the collective dislocation slip on all slip systems are given as:

εp =
1

2

∑
s

(
~b
s
⊗ ~n s + ~n s ⊗~b

s
)
γs (2.26)

ωp =
1

2

∑
s

(
~b
s
⊗ ~n s − ~n s ⊗~b

s
)
γs (2.27)

2.3 Discrete dislocation representation

In this section, the discrete representation of dislocation lines in DDD simulations is

presented, and the numerical approach to model the physical properties of dislocations

that are described in Section 2.2 is introduced.

2.3.1 Line discretization

2.3.1.1 Nodal approach

Several approaches have been developed to represent and discretize the dislocation

network in DDD simulations. The first type of approaches rely on a discretization

scheme in which dislocation segments – successively connected to one another –, were
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restricted to a fix set of orientations. This representation resulted from the argument

that the positions along dislocation lines should correspond to lattice sites, thereby

geometrically constraining dislocation segments orientations. Following this lattice-

based representation, the first simulations solely relied on pure edge and pure screw

segments [67, 240]. Later, additional orientations were introduced, especially to better

represent the formation of junctions whose orientations cannot be well described solely

relying on pure edge or pure screw characters [164, 68]. Further, the need for a more

accurate representation allowing for a continuous description of orientations led to

the development of nodal approaches that have progressively gained interest and are

currently widely used [266, 96]. A nodal-based scheme is adopted and implemented

in the present work.

1 

2 
3 4 

5 

6 

7 

Figure 2.9: Schematic of nodal dislocation line discretization. The dislocation net-
work is discretized into nodes connected to one another by parametric segments.
Physical nodes correspond to nodes that have three or more connections, while nodes
with two connections are referred to as discretization nodes. Nodes that possess only
one connection correspond to end nodes associated with the artificial end of the defect
within the crystalline structure.

In the nodal approach, dislocation lines are discretized into segments connected to

one another through dislocation nodes, as depicted on figure 2.9. With this approach,

the motion of dislocation lines is governed by the motion of their nodes, thereby

allowing dislocation segments to attain any orientation. Each node can have one or

several connections. A node that possesses only one connection is an end node and

is physically constrained not to move, as it artificially corresponds to the end of a
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defect within the lattice structure. A node that has three or more connections is a

junction node as it corresponds to the intersection between two or more dislocations.

In that sense, end nodes and junction nodes are considered as physical nodes, whereas

nodes that possess two connections are referred to as discretization nodes, and are

only introduced to allow for a correct description of the curvature of dislocation lines.

intersection of slip 

planes �怠 and �態 

junction 

segment 
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node 

end node 
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plane normal 
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Figure 2.10: Schematic of a dislocation group and its properties. To each nodal
connection is associated a Burgers vector and the normal of the glide plane(s) of
dislocation segments. To maintain the Burgers continuity, each dislocation node i
that is not an end node must respect

∑
j
~bij = 0, where the sum is performed on

every connection j and ~bij is the Burgers vector of oriented segment ij.

To accurately model the behavior of dislocations, discrete segments need to ac-

count for the physical properties presented in Section 2.2. Therefore, as depicted in

figure 2.10, each dislocation segment is described by a Burgers vector and a glide

plane defined by a Miller index. To account for the polarity of the line direction,

the Burgers vector of a segment takes plus (+) or minus (−) signs depending on the

orientation of the segment. Thus, for two nodes i and j that are connected together,

segment ij, defined as oriented from node i to node j, possesses a Burgers vector ~bij

opposite to that of segment ji defined from node j to node i whose Burgers vector

is ~bji = −~bij. This directly results from the necessity to maintain Burgers continuity

along dislocation lines [111]. In other words, with this convention, it follows that

the sum of Burgers vectors at each node i connected to nodes j respects
∑

j
~bij = 0,
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provided that node i is not an end node. In practise, it is easier to assign the Burgers

vectors of the dislocation segments directly to the nodes. Thus, for each connection,

a node i is associated with (1) the node j to which it is connected and (2) the Burgers

vector ~bij of segment ij going from node i to node j.

The Miller indices associated to dislocation segments define the normal of the slip

planes dislocations are gliding on. Depending on the local configuration, the motion

of dislocation segments can be constrained to lie in one to three slip planes. Thus, a

non-junction segment is necessarily gliding on a single slip plane, and the pair formed

by its slip plane and its Burgers vector defines its slip system. However, junction

segments, resulting from the intersection of several dislocations gliding on different

planes, are generally constrained to move along the intersection of the slip planes

associated with the initial segments that formed it. Physically however, the slip

plane of a dislocation is defined by the plane formed by its Burgers vector and its line

direction (see Section 2.2.4). If such plane is dense and allows for slip – considering the

friction resistance exerted by the lattice and the mobility of dislocations along that

plane –, a dislocation will be able to glide on that plane under a sufficient resolved

shear stress (RSS).

Note that, as will be discussed in Section 2.5, in DDD, the motion of a node

connected to segments with two distinct slip planes is constrained to the line defined

by the intersection of the two planes, while a node connected to segments with three

distinct planes is geometrically constrained to be fixed, since the intersection between

three non-coplanar planes reduces to a single point. In practice, glide planes are

associated to the segments such that, when node i and node j are connected together,

segment ij and segment ji are assigned the same Miller indices.

To allow any type of crystallography to be simulated, the DDD code developed

in this work relies on a set of crystallographic planes {~n}, slip directions {~b} and

available slip system properties (magnitude of the Burgers vector, lattice friction
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stress, dislocation mobilities), that define the available slip systems on which discrete

dislocation segments can move. These information are incorporated into the DDD

framework for common crystalline structures (FCC, BCC, HCP) or can be imputed

to treat complex user-defined crystal structures.

2.3.1.2 Segments parametrization

Depending on the approaches, dislocation segments can be represented by straight

segments or splines. In the general case, each dislocation segment ij can be described

by a parametric line spanned with coordinate s for 0 ≤ s ≤ 1, such that the posi-

tion ~xij(s) at coordinate s along the segment can be obtained from an interpolation

between Nd coordinates as:

~xij(s) =

Nd∑
a

Na(s)~q
a
ij (2.28)

where Na(s) denotes the interpolation function associated with the a-th generalized

coordinate ~q a
ij describing segment ij. The spline approximation is generally per-

formed using a quadratic or cubic interpolation between dislocation node positions

and requires the definition of the line tangent at each node [97, 251, 21]. The tangent

vector ~tij(s) along segment ij can be expressed as:

~tij(s) =

Nd∑
a

N ′a(s)~q
a
ij (2.29)

where N ′a(s) denotes the derivative of the shape function with respect to the curvilin-

ear abscissa s. For a cubic spline interpolation, the generalized coordinates are given

by [96]:
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Nd = 4

~q 1
ij = ~xi ; ~q 2

ij = ~xj

~q 3
ij = ~ti ; ~q 4

ij = ~tj (2.30)

where ~xi and ~ti denote the position and the tangent vector at node i, respectively,

while the interpolation functions and their derivatives are given by:

N1(s) = 2s3 − 3s2 + 1 and N ′1(s) = 6s2 − 6s

N2(s) = −2s3 + 3s2 and N ′2(s) = −6s2 + 6s

N3(s) = s3 − 2s2 + s and N ′3(s) = 3s2 − 4s+ 1

N4(s) = s3 − s2 and N ′4(s) = 3s2 − 2s (2.31)

The spline approach allows for a precise description of dislocation lines, partic-

ularly because the curvature is defined everywhere along the line. However, when

integrations are to be performed over the lines, such as when computing stress fields

(see equation (2.14)), closed form expressions can generally not be obtained. For in-

stance, evaluating the length of a dislocation segment ij described with a cubic spline

can be achieved by calculating:

lij =

∫ 1

0

(
4∑

a,b=1

~q a
ij ·N ′a(s)N ′b(s) · ~q

b
ij

)1/2

ds (2.32)

Numerically, equation (2.32) can be evaluated using a Gaussian quadrature approx-

imation, for instance. However, any numerical integration technique becomes very

costly when the number of integration points becomes large, i.e. when seeking for a

good approximation. Thus, in general, closed form solutions are favored in numerical

simulations, principally as a way to alleviate the computational cost while ensuring

an optimal accuracy. Conveniently, a linear interpolation can be used to describe
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straight segments between dislocation nodes. Using the general interpolation scheme

introduced in equation (2.28), straight segments are obtained by setting:

Nd = 2

N1(s) = 1− s and N2(s) = s

~q 1
ij = ~xi and ~q 2

ij = ~xj (2.33)

Such approximation is perfectly appropriate as long as the discretization size (i.e.

the average length of dislocation segments) remains sufficiently small with respect to

line curvature. Moreover, analytical formulations for stresses and nodal forces can

be derived for straight segments [35, 5], thereby allowing for a considerable gain in

computation time and accuracy with respect to numerical integrations. With such

description, any property at each point along a segment line can be deduced from

the nodal properties values through the linear interpolation. For the sake of clarity,

the position ~xij(s) of a point located at curvilinear abscissa s along the dislocation

segment ij is for instance obtained from equations (2.28) and (2.33) as:

~xij(s) = (1− s)~xi + s~xj with 0 ≤ s ≤ 1 (2.34)

Note that with this description, the curvature is not defined at every point along

the dislocation line, since it is not uniquely defined at each node i. Conversely, the

tangent vector defined in equation (2.29) is constant over the segment length and

given by:

~tij =
~xj − ~xi
‖~xj − ~xi‖

(2.35)

lij = ‖~xj − ~xi‖ (2.36)

where lij denotes the length of dislocation segment ij.
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2.3.2 Periodic boundary conditions

In DDD simulations, periodic boundary conditions (PBC) are often employed as they

are particularly adapted to study plasticity in the bulk. The use of PBC includes two

aspects: (1) the unit cell, also referred to as the primary volume, and its dislocation

content are replicated in all spatial directions (x, y, z), and (2) all dislocations exiting a

surface are periodically reintroduced through the opposite face with the same velocity,

so as to ensure the conservation of dislocation fluxes. As depicted for two dimensions

in figure 2.11, the use of PBC allows for circumventing the difficulties associated with

the treatment of free external surfaces. When PBC are prescribed in the three spatial

directions (x, y, z), the primary volume is replicated 26 times. The replicated volumes

are referred to as image volumes while the replicated dislocations are referred to as

image dislocations. Note that when PBC are applied, primary dislocations elastically

interact with their own images, as well as with the images of all other dislocations

present in the primary volume.

primary 

volume 

image 

volumes 

捲 

検 

Figure 2.11: Schematic of 2D PBC in the (x, y) directions. The primary volume
delimited in red is repeated in 8 times in all directions of the plane. The corresponding
primary and image dislocations are drawn with solid and dashed lines, respectively.
Dislocations that pass through one face of the primary volume are reintroduced on
the opposite face by periodicity.
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2.4 Boundary value problem in DDD

2.4.1 Mechanical boundary value problem

The framework used for the determination of the mechanical state in DDD simu-

lations follows the fundamental boundary value problem of continuum mechanics.

Essentially, the mechanical state at each point ~x of the simulation volume Vs must

respect the mechanical equilibrium (introduced in equation (2.2)) and satisfy the

displacement and traction boundary conditions:

σ(~x) = C(~x) : εe(~x), ∀~x ∈ Vs (2.37)

div(σ) = 0 (2.38)

~u = ~u ∗ on ∂Vu (2.39)

σ · ~n = ~t
∗

on ∂Vt (2.40)

where C(~x) is the elastic stiffness tensor at point ~x, εe is the elastic strain tensor,

and ∂Vu and ∂Vt denote the external surfaces of volume Vs with normal ~n subjected

to displacement ~u ∗ and traction ~t
∗

boundary conditions, respectively.

Two main approaches have been developed in DDD simulations to solve for the

boundary value problem expressed in equations (2.37) to (2.40). The first approach,

which is currently widely used, consists in assuming that the medium Vs is elastic (out-

side of the dislocation cores). With this approach, the total stress σ is decomposed as

the sum of different contributions that are added by virtue of the superposition prin-

ciple [232]. In contrast, the second approach, the Discrete-Continuous Model (DCM),

relies on an eigenstrain formalism in which the determination of the mechanical state

follows an elasto-viscoplastic framework [147]. In the rest of this thesis, the method

relying on the superposition principle will be referred to as the regular or conven-

tial DDD approach. This method, upon which most of current DDD simulations

are grounded, is fully presented in the forthcoming sections. On the other hand, the
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DCM approach will be fully presented in Section 3.2 as it constitutes the basis of the

DDD-FFT method introduced in Chapter 3.

2.4.2 Superposition approach

In a vast majority of current conventional DDD simulations, the framework used to

solve for the boundary value problem (2.37) to (2.40) follows the work of Van der

Giessen and Needleman [232]. In this framework, the medium subjected to displace-

ment and traction boundary conditions is considered to be linear elastic, outside of

the dislocation cores. As a result, the initial complete problem is decomposed as two

subsidiary problems that can be added making use of the superposition principle. As

illustrated in figure 2.12, the original problem can be seen as the sum of a problem in

which the dislocations are lying within an unbounded infinite elastic medium under

no loading, and a problem in which the effect of the dislocations displacement and

stress fields are removed from the original boundary conditions so as to define correc-

tive boundary conditions. Following this decomposition, the total stress σ(~x) acting

at each material point ~x is given as the sum of (1) the internal stresses σint arising

from the presence of dislocations in an infinite medium, and (2) external stress σext

coming from the imposed boundary conditions, such as to define:

σ = σint + σext (2.41)

Depending on the loading and boundary conditions, the external contribution is also

often referred to as the correction field required to ensure that the total stress σ

respects the boundary conditions and the mechanical equilibrium stated in equations

(2.37)–(2.40).
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Figure 2.12: Decomposition of the boundary value problem as suggested in [232].
By considering the volume as linear elastic so as to make use of the superposition
principle, the initial problem (a) defined through equations (2.37) to (2.40) can be
decomposed as the superposition of two sub-problems: (b) a problem in which the
dislocations are inserted into an infinite elastic medium under no load, and (c) a
correction problem in which displacements and stresses induced by the dislocations
are removed from the initial applied boundary conditions.

2.4.3 Internal stress contribution

In the regular approach, the internal stresses σint at each point ~x in the volume are

obtained by virtue of the superposition principle, whereby the contributions of the

elastic stress field of each dislocation segment calculated in an infinite medium are

added. As presented in Section 2.2.3, in its general form, the line integral expression

of the stress induced by a dislocation loop with Burgers vector ~b at any field point ~x

was obtained by Mura from the eigenstrain theory as [181]:

σij(~x) = Cijkl

∮
L

elnhCpqmnGkp,q(~x− ~x′)bmdx′h (2.14 repeated)

where eijk is the permutation tensor, Gij,k is the derivative of the Green function, and

~x′ is the coordinate that spans the dislocation line L. As detailed in Section 2.2.2,

this formulation stems from the boundary value problem (2.37) to (2.40) expressed

in an infinite medium, i.e. for which no boundary conditions are prescribed, and in
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which the stress results from the plastic distortion induced by the dislocation line L.

Note however that equation (2.14) is singular along the dislocation line, such that the

stress becomes unbounded. As a result, in the regular approach, the medium is con-

sidered elastic outside of the dislocation core. Note nonetheless that the non-singular

formulation introduced by Cai and co-workers allows for a removal of the singularity

by introducing a spreading of the Burgers vector [35] (see Appendix A). Following

the discretization of dislocation lines used in DDD (see Section 2.3), equation (2.14)

is generally decomposed as the sum of integrals over individual connected segments.

As a result, the internal stress contribution σint is usually written as:

σint(~x) =
∑
kl

σkl(~x) (2.42)

where the sum is performed over all segments kl present in the volume and σkl denotes

the stress field induced by segment kl at point ~x obtained by equation (2.14). When

PBC are prescribed, the summation also includes image segments pertaining to the

replicated volumes. However, as indicated in (2.14), the classical theory provides an

expression for the stress field of a dislocation line L when the latter is closed, i.e.

when the integral is taken over a closed contour. In practice however, the dislocation

network in regular DDD simulations is not enforced to be closed, and dislocations may

intersect internal or external surfaces, if any. Using expression (2.14) to calculate the

stress field of a dislocation intersecting a free surface will result in a violation of the

mechanical equilibrium [154, 60]. Therefore, to ensure that the total stress remains

divergence-free, the latter is corrected by the external contribution, when needed.

2.4.4 External stress contribution

In the literature, the external stress σext contribution is often referred to as a cor-

rection field required for the total stress to satisfy the imposed loading conditions
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[232, 253]. Particularly, this contribution is used to perform simulations in finite vol-

ume by imposing vanishing traction conditions on external surfaces such as to simulate

the presence of free surfaces [253, 254]. Sometimes, this contribution is subdivided

into two parts [77]:

σext = σu + σt (2.43)

where σu pertains to the imposed displacement and σt to the surface traction. This

decomposition is particularly apparent when PBC are used. In this case, the period-

icity of the traction boundary conditions is ensured when contribution σt corresponds

to the sum of the stress fields of image dislocations belonging to the replicated vol-

umes [77]. In the general case however, σext is determined by solving the boundary

value problem illustrated in figure 2.12(c). The resolution of this problem requires

the evaluation, at boundaries ∂Vt and ∂Vu, of internal stress and displacement fields

induced by all dislocations in the volume, respectively. Such is done by using the

superposition approach described in Section 2.4.3, whereby the stress can be calcu-

lated using equation (2.42). Using the non-singular formulation introduced by Cai et

al., an analytical formulation for computing the internal stress field on a surface ele-

ment has been recently developed [197]. However, special treatment for dislocations

intersecting free surfaces must be included [254, 154, 252].

When PBC are used, a direct mean-field method can be used to solve for the

external contribution. This is because in this case, simple displacement boundary

conditions generate an homogeneous and uniform external stress throughout the sim-

ulation volume. As a result, the unique stress (respectively strain) value holding for

the whole volume is readily obtained from the constitutive law (2.37), depending on

the type of loading (a simulation can be alternatively driven in strain or stress, see

Section 2.8.2 for complementary details). However, the direct method is only applica-

ble to fully periodic simulations, and cannot be employed when boundary conditions
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are complex or when elastic inhomogeneities are to be treated.

As an alternative to the mean-field method, the Finite Element Method (FEM)

offers a full-field approach capable of overcoming the limitations of the direct method

by providing a method to solve for the boundary value problem more rigorously.

Expressing relations (2.37)–(2.40) in a weak form and applying the principle of virtual

work for any arbitrary virtual displacement δ~u yields the following expression:

∫
Vs

σijδui,jdV −
∫
∂Vs

tiδuidS = 0 (2.44)

where ∂Vs denotes all external surfaces of simulation volume Vs. Consistently with

relations (2.39)–(2.40), formulation (2.44) allows for applying both displacements and

traction boundary conditions. Thus, ~u ext and σext of the correction problem in figure

2.12(c) can be determined by discretizing simulation Vs into elements such as to nu-

merically solve for (2.44). Full details on the FEM formulation and its implementation

for linear elasticity are provided in Appendix E.

2.5 Motion of dislocations

2.5.1 Driving force and equation of motion

In metallic solids, dislocation slip constitutes one of the main plastic deformation

modes. Slip corresponds to the generation and glide of dislocation lines, and occurs

when local stress conditions are sufficient to activate dislocation propagation, as a

way to accommodate the deformation (see Section 2.2.4). In other words, disloca-

tion motion is mainly driven by the stress acting on dislocation lines. The stress

contributions are either external, i.e. related to the imposed loading, or internal, i.e.

induced by the presence of other defects within the lattice structure that give rise to

internal displacement fields. As any crystallographic defect, dislocations contribute

to the free energy of the crystal. As a result, a change in dislocation position through

dislocation motion generally results in a change in the energy of the crystal. Thus,
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from thermodynamical considerations, the driving force ~f of dislocation motion is

defined as the negative gradient of the energy E with respect to dislocation motion

[73]:

~f = −∂E
∂~x

= ~f
pk

+ ~f
os

(2.45)

where ~f is the force per unit length. The general expression of the force ~f on a

dislocation includes a mechanical and a chemical contributions [73]. The former,

corresponding to the well-known Peach-Koehler force, arises when the dislocation is

subjected to a stress field σ and expresses as [111]:

~f
pk

=
(
σ ·~b

)
×~t (2.46)

where ~b denotes the Burgers vector corresponding to the elementary amount of dis-

placement induced by the dislocation, and ~t denotes its unit line tangent. The chemi-

cal force ~f
os

, also referred to as the osmotic force, accounts for the presence of vacan-

cies concentration and is given by the Bardeen-Herring equation [157, 73]. However,

this contribution is usually neglected when modelling dislocation dynamics such that

the following approximation is generally made:

~f = −∂E
∂~x
≈ ~f

pk
(2.47)

Note however that a more general expression of the force per unit length practically

used in DDD simulations such as to account for line tension and lattice friction stress

will be given later in equation (2.55).

In response to a force, the motion of a dislocation differs depending on the ma-

terial, the crystal structure, the slip system, the Burgers vector, the line orientation,

etc. In a general setting, the relation between the force and the velocity along the

dislocation line is modelled by a mobility function M:
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~v =M
(
~f
)

(2.48)

where ~v = d~x
dt

is given as the time derivative of dislocation positions ~x. The mobil-

ity function M is chosen such that dislocation motion reproduces well experimental

observations and atomistic simulations. In particular, the motion of dislocations in

elastic crystals is generally approximated by an overdamped equation of motion mim-

icking the viscous drag arising from phonons interactions with moving dislocations.

With such description, and neglecting the effects of inertia, equation (2.48) simply

writes as a linear expression:

B~v = ~f (2.49)

where B denotes the viscous drag coefficient matrix. Details for the case where

inertia is accounted for are given in Appendix C.1.1. Note that more complex mobility

functions may be required to better reflect dislocations motion [36, 176]. For instance,

sophisticated phenomenological approaches, such as those based on Arrhenius-type

laws, have been developed to reproduce the kink-pair mechanism controlling the screw

mobility in HCP crystals [176].

2.5.2 Determination of nodal dislocation motion

The linear equation of motion (EOM) (2.49) expresses the general relation between

dislocation force and velocity from thermodynamical considerations. Using a varia-

tional approach, a weak formulation can be obtained to solve for dislocation motion

when the dislocation network is discretized into segments. From equation (2.49), the

EOM relating the force ~f and the velocity ~v at each position along a closed dislocation

loop can be expressed as [97]:

∮
δ~x · (~f −B~v) |d~x| = 0 (2.50)
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where δ~x is a virtual displacement of the dislocation line and the integration is per-

formed along the entire dislocation line. Using the segment parametrizations de-

scribed in Section 2.3.1, a finite element approach based on the weak formulation

(2.50) can be used to evaluate motion of the discrete dislocation network. Full de-

tails on the Garlekin variational method to discrete dislocation motion are provided

in Appendix C. As a result, the determination of nodal velocities associated with

dislocation segments at each time step is achieved by solving the system of equations

defined by:

~F i =
∑
j

Bij
~V j

∀ node i,

∀ node j connected to node i including i = j

(2.51)

where ~V j is the velocity of dislocation node j to solve for, ~F i is the force at node i,

and Bij is the resistivity matrix pertaining to the viscous drag of segment ij. Using

the classical finite element approach, the forces ~F i at each dislocation node i required

in system of equations (2.51) are assembled as:

~F i =
∑
j

~f ij (2.52)

where ~f ij, denoting the force on segment ij acting at node i, is obtained by integration

of the total force ~f(~x) along the segment length |d~x| as:

~f ij =

∫ ~xj

~xi

Ni(~x)~f(~x) |d~x| (2.53)

where ~xi and ~xj denote the positions of end nodes i and j delimiting segment ij, and

Ni(~x) is the interpolation function associated with dislocation node i. When using

the segment linear interpolation introduced in relations (2.33) to map dislocation

segments as straight lines, equation (2.53) reduces to:
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~f ij = lij

∫ 1

0

(1− s)~f (~xij(s)) ds (2.54)

where lij = ‖~xj−~xi‖ denotes the length of segment ij, and ~xij(s) defined in equation

(2.34) is the straight line mapping dislocation segment ij with curvilinear abscissa

s ∈ [0, 1]. In order to account for the lattice friction resistance, the effective force ~f ij

is practically obtained as (see Appendix C.2):

~f ij =


~f
pk

ij −
∣∣∣~f fric

ij

∣∣∣ · ( ~f
pk
ij

‖~f pkij ‖

)
if
∣∣∣~f pk

ij

∣∣∣ > ∣∣∣~f fric

ij

∣∣∣
0 if

∣∣∣~f pk

ij

∣∣∣ ≤ ∣∣∣~f fric

ij

∣∣∣ (2.55)

where ~f
fric

ij is the force arising from the lattice friction resistance, which can be readily

obtained by integration of the lattice friction stress over the dislocation segment

length, and ~f
pk

ij is the Peach-Koehler force acting at node i obtained from integration

of ~f
pk

in expression (2.46) as:

~f
pk

ij = lij

∫ 1

0

(1− s)~f
pk

(~xij(s)) ds (2.56)

From the expression of the Peach-Koehler force per unit length in (2.46) and the

definition of the stress state using the superposition approach in expression (2.41),

~f
pk

ij in equations (2.55) and (2.56) can be decomposed as:

~f
pk

ij = ~f
int

ij + ~f
ext

ij (2.57)

where the force ~f
ext

ij arising from a uniform external applied stress σext is given by

(see details in Appendix C.2.4):

~f
ext

ij =
1

2
lij

([
σext ·~bij

]
×~tij

)
(2.58)

where ~bij and ~tij denote the Burgers vector and the unit tangent of segment ij. In
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contrast, ~f
int

ij corresponds to the force arising from the internal stress fields induced

by all dislocations in the medium. Following the framework introduced in Section

2.4.3 whereby the contributions of the elastic stress fields of individual dislocation

segments are added by virtue of the superposition principle, the internal force ~f
int

ij

can be expressed as a sum over all dislocation segments kl in the volume as:

~f
int

ij = ~f
s

ij +
∑
kl 6=ij

~f
kl

ij (2.59)

where ~f
s

ij denotes the self-force for which details can be found in Appendix C.2.3,

and where the force ~f
kl

ij on segment ij due to the elastic interaction with segment kl

is calculated for every segment kl distinct from ij.

As a result, the computation of all nodal forces is a very expensive O(Nseg) process

where Nseg is the total number of dislocation segments in the simulation volume, that

constitutes a bottleneck in regular DDD simulations. Thus, special care needs to be

taken so as to implement efficient methods for their computation. While segment-

segment elastic interactions forces ~f
kl

ij will be detailed in Section 2.5.3, approxima-

tions to improve the efficiency of their computation will be presented in Section 2.9.2.

Once the nodal forces have been computed, the resistivity matrix Bij in system

(2.51) is assembled and computed for each segment ij as described in Appendix C.3.

After simplification and considering straight segments, system of equations (2.51)

reduces to the following system:

~F i =
∑
j 6=i

lij
6
B(θij)(2~V i + ~V j) (2.60)

where lij denotes the length of dislocation segment ij. Assuming the viscous drag

exerted along a dislocation line continuously varies as a function of its character, a

simple expression for the drag matrix B(θij) can be obtained as:
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B(θij) =
(
Beij sin2 θij + Bsij cos2 θij

)
I2 (2.61)

where Beij and Bsij are the edge and screw mobilities associated with the slip system

of segment ij, and I2 is the second-order identity tensor.

With this approach, the velocity ~V i of each node i is determined by solving

the system of equations given in (2.60). Note that the resulting velocities must be

further projected on the glide planes of dislocation segments to ensure that glide of

dislocations takes place in their slip planes (see Appendix C.3.2) and that a special

treatment must be implement for junction segments (see Appendix C.3.3).

Finally, the new position ~x t+∆t
i of each dislocation node i at time t + ∆t can

be obtained by time integration of velocities ~V i. For instance, when an implicit

backward Euler time integrator is used, the new positions are obtained from:

~x t+∆t
i = ~x t

i + ~V i

(
~x t
i

)
∆t (2.62)

where ~V i

(
~x t
i

)
denote the nodal velocities obtained from system (2.60) as a function

of nodal positions ~x t
i at time step t, and ∆t is the time step increment. When using

a more robust iterative time integration scheme, the forces and velocities need to be

computed from (2.60) at each iteration as described in Appendix C.4.

At each time increment, once the new positions of the nodes have been com-

puted, intersections between segments are considered (collisions, junction formations,

node dissociations, etc.) and dislocation lines are dynamically remeshed. While the

remeshing process is presented in Section 2.7, the treatment of dislocation interactions

is discussed in Section 2.6.

2.5.3 Segment-segment elastic interactions

The computation of segment forces pertaining to internal stresses as presented in

equation (2.59) has a computational complexity of O(N2
seg) where Nseg is the number
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of dislocation segments in the simulation volume: the evaluation of ~f
int

ij for each

segment ij requires the computation of the elastic interaction force ~f
kl

ij induced by

every other segment kl. From a physical standpoint, this results from the fact that

the presence of a dislocation line corresponds to the displacement of a certain number

of atoms, thereby inducing a stress field throughout the elastic solid (see Section 2.2).

As a result, each dislocation elastically interacts with all other dislocations present in

the medium through the stress field that each of them produces. From a modelling

standpoint, this translates by the fact that (1) the evaluation of all interaction forces

~f
kl

ij is a function of the segment positions and needs to be calculated at every time

step, and (2) the computational cost associated with their evaluation constitutes a

bottleneck in regular DDD simulations. Thus, it becomes very expensive when dealing

with large numbers of segments, especially considering that one of the particularities

of DDD simulations lies in the colossal multiplication of dislocation segments during

simulations (e.g. Frank-Read source mechanism). Besides, as detailed in Section

2.3.2, PBC are often in employed in DDD simulations to study plasticity in the

bulk. In such case, the stress fields pertaining to the image dislocation segments

belonging to the replicated volumes have to be further accounted in the evaluation of

the internal stress state σint, increasing thereby the computational burden by a factor

26. For these reasons, although approximation and optimization procedures have been

developed and permit significant savings in computation time (see Section 2.9.2),

dislocation-dislocation elastic interactions yet remain the most intensive procedure in

regular DDD approaches, and particular care must be taken in the implementation

of their numerical evaluation.

From expression (2.53) and the definition of the Peach-Kohler force in equation

(2.46), the force ~f
kl

ij acting at node i induced by the stress field of dislocation segment

kl on segment ij is expressed as:
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~f
kl

ij =

∫ ~xj

~xi

Ni(~xij)
[(
σkl(~xij) ·~bij

)
×~tij

]
|d~x| (2.63)

where σkl(~x) denotes the stress field induced by dislocation segment kl at field point

~x, whose components are given in equation (2.14). Using the linear parametric seg-

ment representation introduced in relations (2.33), equation (2.63) reads:

~f
kl

ij = lij

∫ 1

0

(1− s)
[(
σkl (~xij(s)) ·~bij

)
×~tij

]
ds

or ~f
kl

ij = lji

∫ 1

0

s
[(
σkl (~xji(s)) ·~bji

)
×~tji

]
ds (2.64)

As mentioned in Section 2.2.3, the stress field induced by a dislocation becomes sin-

gular in its core when using the classical theory (2.14). To tackle this issue and

ensure that integral (2.64) remains finite, several approaches have been adopted. For

instance, the use of a cut-off radius has been one of the common techniques. However,

the arbitrary choice for the cut-off value renders such approach more numerical than

physical. Recently, Cai and co-workers proposed a more consistent non-singular ap-

proach for isotropic elasticity [35]. Besides removing the singularity in the dislocation

core, this theory has also permitted to obtain fully analytical expressions of (2.64), al-

lowing for an efficient numerical evaluation of isotropic segment-segment interactions

~f
kl

ij . While details of the non-singular approach are presented in Appendix A.2, the

full analytical expressions of integral (2.64) for parallel and non-parallel interacting

segments in isotropic elasticity are provided in reference [5].

In general anisotropic elasticity, no analytical formulation for (2.64) can be found

since no closed-form solution exists for the Green’s function in this case. The eval-

uation of interaction forces therefore requires the calculation of nested numerical in-

tegrations using expressions (2.23), (2.14) and (2.64) (see Section 2.2.3). Such direct

approach has been reported to be extremely computationally prohibitive, inducing

a cost ranging between 200 and 500 times that of isotropic elasticity [202, 108, 40].
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Thus, to alleviate this computational burden, different anisotropic approaches have

been developed, such as that based on the Willis-Steeds-Lothe formalism [264]. Nev-

ertheless, the most important improvement was recently allowed by the development

of an approach based on expansions in spherical harmonics [12], permitting significant

savings in the computational cost. Details on the spherical harmonics approach for

anisotropic media are provided in Appendix B.2.

2.6 Dislocation core-reactions and dissociations

During deformation, dislocation segments are likely to interact with one another as

they propagate. Such core-dislocation reactions require a proper treatment as they

constitute a very important feature of DDD simulations. Specifically, the formation

of junctions that occur upon intersection of dislocation lines via the zipping, unzip-

ping, and annihilation mechanisms, have been identified as crucial to accurately model

strain hardening [31, 5]. In practice, there are several ways in which such reactions can

be treated. The simplest way is to assume that dislocation-dislocation reactions are

governed solely by elastic interactions. For instance, this method was used in [39] to

compute the strength of junctions for pairs of dislocations in Mg. With this method,

no additional local rules need to be implemented as junctions form by elastic attrac-

tion, and intersections of dislocation lines do not induce topological modifications of

the dislocation network. Annihilations, however, cannot be treated directly with this

method since it requires segments to be removed from the simulation. Another disad-

vantage of this method is that it requires extremely small time step increments and

very precise calculations of the stress fields in order for dislocations to attain stable

and realistic configurations while intersecting. Because this method is computation-

ally intensive, it is generally not suitable for massive simulations, or when a large

amount of plastic strain is desired [5]. To overcome these limitations, an approach in
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which the formation of junction is treated explicitly is generally used in DDD simu-

lations. Such approach is implemented via the introduction of local intersection rules

and induces topological changes in the dislocation discretized network. While the

explicit intersection approach implemented in this work is presented in Section 2.6.1,

the topological operations implemented in the DDD simulation to support numerical

topological changes are fully presented in Appendix D.1.1.

2.6.1 Junctions formation and annihilations

The dislocation-dislocation interaction local rules implemented in the DDD code

should allow for junction formation, junction unzipping and annihilation operations.

Therefore, the collision procedure implemented in the DDD simulation is as follows:

as illustrated in figures 2.13(a) and 2.13(b), a junction node is inserted when two

dislocation segments are within a predefined capture radius dcrit with respect to each

other. Note however that an additional criterion on dislocation velocities is used, such

that the creation of a junction node only occurs when both dislocation segments are

moving towards one another, i.e. only in the case where a collision between both dis-

locations is predicted. To conserve the properties of the initial dislocation segments,

the intersection node is constrained to lie on the intersection of the planes of the two

intersecting dislocations. It is usually placed along this line at a position minimiz-

ing the distance from each initial segment. As a result, the two initial dislocation

segments of interest are split and get pinned through a 4-connected junction node.

As depicted in figures 2.13(b) to 2.13(c), a junction segment is able to form follow-

ing a “zipping” process: if two of the four arms of the junction node lie within their

mutual capture radius, a new junction node is inserted following the same process

as that described above. Consequently, the two junction nodes are connected by a

junction segment, whose resulting Burgers vector is the sum of the Burgers vectors

of the initial intersecting dislocation segments. Thus, the junction is glissile if its
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Figure 2.13: Schematic of dislocation-dislocation reaction: (a) when the distance
between two dislocation segments moving towards one another is smaller than a crit-
ical capture radius dcrit, (b) a junction node is inserted at the intersection of the slip
planes of both dislocations. (c) The repetition of process (a) to (b) between the arms
of the junction node leads to the formation of a junction segment. The passage from
steps (b) to (c) corresponds to the zipping process.

Burgers vector lies within one of the existing slip planes of the crystal – assuming

motion is possible on this slip system –, sessile otherwise. A special situation occurs

when two interacting dislocations have opposite Burgers vectors: in this case, the

resulting junction possesses a null Burgers vector, such that the junction segment can

be removed from the simulation. This case corresponds to the annihilation process.

Therefore, the advantage of this approach is that it makes no distinction between

junction formation and annihilation in the dislocation reaction treatment. In this

process, one has to ensure that the formation of the new junction leads to a mini-

mization of the strain energy [111]. This is done by checking whether the dissipation

induced by the new junction is greater than that of the initial configuration. If not,

the junction is not formed, and the interaction remains purely elastic. Such step is

usually performed through the dissociation procedure presented in Section 2.6.2.

The unzipping of a junction is also handled by the DDD code through the following

mechanism. As discussed in Appendix C.3.3, when a sessile junction is formed, its

two end nodes are restricted to move along the junction direction only, i.e. along the

intersection of the two planes of the dislocations that formed it. Therefore, unzipping
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of a junction is implicitly handled by the remeshing procedure (see Section 2.7 for

more details): when two nodes become too close to one another, they merge into a

single node. As a result, the junction unzips. However, this unzipping mechanism

functions until the junction is left with a single junction node, in which case it can

no longer operate. Therefore, junction unzipping is also governed by the dissociation

procedure presented in Section 2.6.2. Full details on the numerical implementation

of junction formation are provided in Appendix D.1.2.

2.6.2 Dissociation procedure

As shown in figure 2.13, intersections of dislocation segments lead to the creation

of 4-connected nodes. Those are of special interest as they can physically represent

either the nucleation or the destruction of a junction, a crossed state or a repulsive

state. To distinguish between these options, each 4-connected node is dissociated

into 2 nodes, leading to the formation of an artificial junction segment connecting

them. For the sake of comprehension, the sequence of operations associated with the

dissociation of a 4-connected node is similar to that depicted in going from config-

uration in figure 2.13(b) to that in figure 2.13(c). For each node with four arms,

three dissociation configurations are possible, given the different possibilities of arm

connections (see Appendix D.1.3 for more details). The dissipation induced by each

of these configurations is computed, and, as detailed in [5], the configuration inducing

the greatest dissipation is kept. Thus, among every configuration jk corresponding

to the dissociation of a 4-connected dislocation node i into two nodes j and k, the

most favorable configuration is that inducing the maximum dissipation, i.e. the one

that yields:

max
jk

(
Pdissjk

)
= max

jk

(
~F j · ~V j + ~F k · ~V k

)
(2.65)

where Pdissjk is the dissipation induced by configuration jk and scalar quantity ~F j · ~V j
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is the contribution of node j to the total dissipation, where ~F j and ~V j are the

nodal forces and velocities, respectively. If the dissipation induced by the original

configuration is the most favorable, i.e. Pdissi = ~F i · ~V i > maxjk
(
Pdissjk

)
, the 4-

connected node i is left undissociated, which, in that case, corresponds to a crossed

or repulsive state. Full details on the numerical implementation of the dissociation

procedure are provided in Appendix D.1.3.

2.7 Adaptive dislocation meshing

During DDD simulations, the dislocation configuration drastically evolves as a re-

sult of line increase via glide (e.g. Frank-Read source mechanism) and dislocation

intersections. Therefore, a dynamical discretization of dislocation lines must be per-

formed to maintain the dislocation network well discretized. In practice, the adaptive

line remeshing procedure must prevent the occurrence of two problematic situations.

First, it must be ensured that connected dislocation nodes are not too far apart,

i.e. that dislocation segments do not become too long. Long dislocation segments

inevitably lead to strong numerical inaccuracies in the overall dislocations behavior,

especially because the curvature cannot be precisely defined (when using straight

segments), and because it restricts the number of degrees of freedom for dislocation

motion. Alternatively, it must also be ensured that dislocation segments are not too

short. Practically, short segments induce harmful numerical vibrations that may bias

the entire simulation behavior and lead to the collapse of the simulation, or require

excessively small time step increments (small time step increments are also needed for

short segments in order not to miss segment-segment intersections). For such reason,

a remeshing procedure is performed on all dislocation segments at each time step.

The two different remeshing approaches that have been implemented are presented

below.
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2.7.1 Segment remeshing

The simplest efficient remeshing approach preventing the rise of segments of prob-

lematic length (i.e. either too short or too long) consists in maintaining the length

of every segment close to an average predefined value lavg. This can be achieved by

systematically merging close connected nodes, thereby removing short segments, and

splitting long segments into shorter ones by inserting new nodes. Both these oper-

ations are performed thanks to the topological procedures introduced in Appendix

D.1.1. Obviously, the use of this approach requires a wise choice for the average

length lavg of dislocation segments, that depends on the size of the simulation, the

dislocation configuration, the time step increments, etc. Thus, dislocation segments

whose length are greater than lavg are split. Further, for the sake of consistency,

connected nodes are merged when segments are shorter than 1
4
lavg. This is to avoid

that newly split segments immediately trigger the merge of their end nodes, thereby

restoring the initial configuration.

2.7.2 Spline remeshing

Although the simple segment remeshing method presented in the above paragraph is

suitable for most DDD simulations, it might become unsatisfactory for some specific

applications or configurations. The two main limitations associated with this method

are the following: the dislocation network ends up being unevenly discretized, i.e.

the maximum relative length between dislocation segments typically reaches 2, and

the curvature is not necessarily preserved as straight dislocation segments are split

along their line. To overcome these limitations, a spline remeshing procedure has

been implemented in the DDD code. The core idea of this approach relies on inter-

polating dislocation lines with a cubic spline whose control points are the dislocation

nodes. Note that such interpolation is uniquely performed during the remeshing step,

and follows the cubic spline parametrization introduced in Section 2.3.1. With this,

63



dislocation nodes can be moved along the spline such as to remain equally spaced

and respect the curvature defined through the spline interpolation.

2.8 Mechanical response: stress and strain calculation

2.8.1 Plastic strain calculation

As discussed in Section 2.2.4, the motion of dislocations shears the crystal. From a

physical standpoint, the shear induced by the glide of a dislocation line corresponds

to the product between the magnitude of its Burgers vector and the area swept by

the dislocation over the sheared volume V , as defined in equation (2.24):

γ =
bA

V
(2.24 repeated)

where b = ‖~b‖ is the magnitude of the Burgers vector, A is the area swept by the

dislocation during glide, and V is the volume of the sheared crystal. Extrapolating

this definition to a discrete dislocation representation, the total increment of shear

dγs induced by the collective movement of dislocation segments on system s can be

evaluated as:

dγs =
bs
∑

ij∈s dAij

V
(2.66)

where V is the primary simulation volume, bs is the magnitude of the Burgers vector

of system s, and dAij corresponds to the incremental area swept by each dislocation

segment ij of the primary volume belonging to system s. The determination of area

dAij is obtained by integrating the segment displacement over its length, i.e.:

dAij =

∫ 1

0

~V ij(s)dt · ds (2.67)

where ~V ij(s) is the velocity at curvilinear abscissa s ∈ [0, 1] along segment ij interpo-

lated from nodal velocities ~V i and ~V j, and dt is the time step increment. When using
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a linear interpolation, the area swept by each dislocation segment forms a quadrilat-

eral, such that the integration can be circumvented, and the incremental area can be

analytically computed using the quadrilateral area formula:

dAij =
1

2
‖
(
~xj −

(
~xi − ~V idt

))
×
(
~xi −

(
~xj − ~V jdt

))
‖ (2.68)

where ~xi and ~xj denote the initial positions of nodes i and j before motion has

occurred, and operator × is the vectorial cross product. With this, the total plastic

strain increment is computed from equation (2.26) as:

dε̃pij =
1

2

∑
s

(
bsin

s
j + nsi b

s
j

)
dγs (2.69)

where bsi and nsi are the components of the unit Burgers vector and the unit normal of

the plane of slip system s, and where the summation is performed over all slip systems.

Thus, expression (2.69) provides a discrete quantification of the homogenized plastic

strain tensor produced by the motion of the ensemble of dislocation segments present

in the simulation volume during a time step increment.

2.8.2 Homogenized stress and strain response

In practice, the homogenized stress-strain σ−ε relation holding within the simulation

volume is given by the classical three-dimensional Hooke’s law:

σ̃ = C :
(
ε̃− ε̃p

)
(2.70)

where C denotes the forth-order elastic stiffness tensor, σ̃ is the stress tensor, and ε̃

and ε̃p are the total and plastic strain tensors, respectively. Since the plastic strain

is solely computed over the whole volume in the regular approach (see Section 2.8.1),

the quantities in equation (2.70) are therefore necessarily considered as uniform and

homogeneous throughout the primary simulation volume, hence the use of symbol ·̃
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indicating homogenized quantities. Depending on the type of boundary conditions

with which the simulation is driven, different schemes have been implemented to

update the stress-strain response in the incremental time framework. Thus, when

driving the simulation with a strain rate ε̇, the total strain increment dε̃ = ε̇dt is

imposed at each time step t+dt such that the stress σ̃ can be incrementally computed

from (2.70) as:

ε̃ t+dt = ε̃ t + dε̃ = ε̃ t + ε̇dt

dσ̃ = C :
(
dε̃− dε̃p

)
σ̃ t+dt = σ̃ t + dσ̃ (2.71)

where σ̃ t and ε̃ t denote the previous stress and strain state at time t, respectively,

and dε̃p is given by formulation (2.69). When driving the simulation with stress, a

stress increment dσ̃ = σ̇dt is imposed at each time step t + dt such that the new

strain ε̃ can be incrementally computed as:

σ̃ t+dt = σ̃ t + dσ̃ = σ̃ t + σ̇dt

dε̃ = C−1 : dσ̃ + dε̃p

ε̃ t+dt = ε̃ t + dε̃ (2.72)

Thus, with schemes (2.71) and (2.72), macroscopic stress-strain curves corresponding

to the mechanical response of the simulated crystal can be obtained.

2.9 Numerical implementation and optimizations

2.9.1 Development of the DDD code

Following the general procedure presented in Section 2.1.1, the development of a DDD

code requires the numerical implementation of the different stages of the DDD cycle

presented in figure 2.1 and detailed in all previous sections. For such purpose, a code
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written in Fortran 90 has been developed during this work to incorporate all features

mentioned through Sections 2.1 to 2.8. During the development, particular care has

been taken to ensure that the code remains modular, i.e. allows for the addition of

supplementary features in an easy fashion, while being robust and computationally

efficient. Considering the prohibitive computational time associated with DDD sim-

ulations – essentially induced by the costly calculation of segment-segment elastic

interactions and the significant multiplication of dislocation segments during strain

hardening – particular care and efforts have been dedicated to develop an efficient

parallel implementation. While the strategy adopted for the parallel implementation

is summarized in Section 2.9.3, some of the various optimizations that have been

incorporated to the DDD code are presented in Section 2.9.2.

2.9.2 Approximations

2.9.2.1 Long-range elastic interactions

As detailed in Section 2.5.3, the calculation of segment-segment elastic interaction

forces is the most intensive computational task in DDD simulations. Since every

dislocation segment interacts with every other segment present in the volume, this

computational process scales with O(N2
seg) where Nseg is the total number of segments

in the simulation. Furthermore, the number of operations (multiplications, additions,

logarithmic and sinusoidal functions) involved in the analytical computation of a

single isotropic elastic interaction force amounts to about 1500 [12]. Consequently,

the complexity associated with a full O(N2
seg) calculation would preclude any rel-

evant simulation in terms of achievable level of strain or dislocation density. For

such reason, different approximation methods have been developed to alleviate the

overall computational cost of elastic interactions. The two principal methods that

are currently used take advantage of the physical decay in 1/R of the stress field

induced by a dislocation, where R is the distance between the dislocation line and
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the field point (see equations (2.14) and (2.17)). Thus, a distinction can be intro-

duced between short-range and long-range elastic interactions, allowing to resort to

approximated methods to evaluate the forces associated with long-range interactions,

while accurately computing that for short-range interactions. Such distinction was

first introduced via the Box Method [240], and such method is implemented in the

DDD code. As depicted in two dimensions in figure 2.14, the Box Method regularly

partitions the primary volume into a fixed total number of boxes Nbox. With this,

each dislocation segment ij is contained within a box α, and the union Uα of the

26 surrounding boxes and the box α itself defines the neighbor boxes of segment ij.

With this, the ensemble of segments contained in Uα defines the short-range interac-

tions of segment ij, while that outside of Uα are considered as long-range interactions.

Following this partitioning, the stress fields associated with long-range interactions

are approximated by computing them at the center ~xα of each box α. Practically,

the saving in computational cost results from the evaluation of a single long-range

interaction force for all segments belonging to the same box. Therefore, the global

complexity Cbox of this approach can be estimated as:

Cbox ∝ Nbox ×
(

27
Nseg

Nbox

× Nseg

Nbox

)
︸ ︷︷ ︸

short-range
interaction forces

+Nbox ×
(

(Nbox − 27)× Nseg

Nbox

)
︸ ︷︷ ︸

long-range
interaction stresses

(2.73)

where Nseg/Nbox is the average number of dislocation segments per box considering an

homogeneous segment distribution. Further, since long-range interactions pertain to

pairs of segments whose mutual distance is relatively large, their relative motion over a

small increment of time is not expected to induce significant changes in the associated

interaction forces. For such reason, long-range stresses may be solely evaluated at a

certain frequency fbox. For instance, long-range stress fields can be updated at the

center of each box α every 10 time steps, i.e. for fbox = 1/10. Including this, the

complexity Cbox of the Box Method can be estimated from (2.73) as:
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Figure 2.14: 2D schematic of the Box Method. The primary volume is partitioned
into a predefined number of boxes. (a) Neighbor boxes of red box α are delineated by
the green region Uα. For any red dislocation lying in box α, the elastic interactions
induced by green dislocation segments in neighbor boxes will be accurately computed
while that of long-range black dislocation segments will be approximated at the center
of the box ~xα. (b) In this case, box α lies at an edge of the primary volume such that
neighbor boxes are determined using periodic boundary conditions.

Cbox ∝ 27
N2
seg

Nbox︸ ︷︷ ︸
short−range

+ fbox(Nbox − 27)Nseg︸ ︷︷ ︸
long−range

(2.74)

Clearly, when fbox is fixed, the computational savings allowed by the use of the Box

Method is governed by the ratio Nbox/Nseg. When it is low, the overall complexity

is dominated by the evaluation of short-range interactions and tends to O(N2
seg).

In that case, the gain is minimal. On the contrary, when Nbox/Nseg is large, the

computation cost becomes dominated by the evaluation of long-range interactions.

In that case, it must be ensured that the long-range approximation remains valid, as

the critical distance defining the transition between precise short-range calculations

and approximated long-range evaluations is fixed by Nbox. Furthermore, selecting a

number of box such that Nbox/Nseg > 1 can lead to overrunning the initial O(N2
seg)

complexity. In other words, there exists a region of optimality for Nbox/Nseg, such

that the choice of the number of boxes Nbox must be made wisely in order to optimize

the computational load while ensuring that the long-range approximation remains
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valid. Ideally, the number of boxes Nbox partitioning the simulation volume should be

dynamically determined every fbox iterations by optimization of the ratio Nbox/Nseg.

Note also that the estimation of the complexity given here does not account for

PBC. When PBC are used (see Section 2.3.2), image dislocations would be directly

accounted for in the long-range fields.

As another approach, the Fast Multipole Method (FMM) is also currently widely

used in DDD simulations. This technique, whose original core idea initially relies

on an expansion in Taylor series of the kernel (2.14) formed by the integral over the

derivatives of the Green’s function, has the advantage to reduce the computational

complexity of long-range interactions to a O(Nlong) process, where Nlong are the long-

range dislocations [266, 148, 251, 5]. To make it fully compatible with a partitioning of

the simulation volume into cells and subcells, a hierarchical FMM has been developed,

in which translation operators are introduced to calculate and combine the multipole

expansions between the different levels of the hierarchy [5]. Here again, there exists

a region of optimality dynamically conditioning the choice of the number of subcells

as a function of the number of dislocation segments. Specifically, the accuracy of

the expansion to compute the stress of a segment increases with both the distance

at which the stress is evaluated and the length of the segment. Consequently, when

using the FMM, the discretization size lavg of the dislocation network is voluntarily

reduced as the number of segments increases so as to allow for a more important

number of subcells (decreasing the average size of segments renders the expansion

approximation valid at shorter distances, thereby allowing for a larger number of

subcells). This process ensures that the number of short-range interactions remains

relatively constant as segments multiply, while preserving the accuracy of the series

expansion. Note also that the prefactor associated with the O(Nlong) complexity

is fairly large due to the complex form of the translation operators. Recently, an

improvement of the FMM technique has been achieved by using spherical harmonics
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to diagonalize the translation operators [270]. Further, the FMM was adapted to

stress calculations in anisotropic elasticity [263]. The FMM algorithm has not been

implemented in the DDD code developed during this thesis.

2.9.2.2 Local velocities approximation

As detailed in Section 2.5, the determination of the nodal velocities – and consequently

that of the nodal displacements – involves solving for the linear system of equations

(2.60) for each dislocation group. As illustrated in figure 2.10, a dislocation group

here refers to a connected ensemble of nodes, in the sense of graph theory. Thus,

for large groups of dislocation nodes, system (2.60) may become computationally

expensive to solve – even when sparse solvers are used – and approximations may be

considered. Further, large groups of dislocation nodes are not uncommon in practice.

As a matter of fact, as junctions form, the whole dislocation network may end up being

lumped into a single dislocation group. Therefore, to alleviate the computational cost

associated with the resolution of system (2.60), the following approximation can be

used. If one assumes that the dislocation network is well discretized, then one can

assume that the velocities of moving nodes connected together are roughly identical,

i.e. ~V j ≈ ~V i for all moving nodes j connected to node i, and ~V k = 0 for all fixed

nodes k connected to node i. Using this local approximation, the velocity of node i

can be directly obtained from equation (2.60) by solving the following equation:

~F i ≈

[∑
j

lij
2
B(θij) +

∑
k

lik
3
B(θik)

]
~V i (2.75)

where indices j and k denote the moving and fixed nodes connected to node i, respec-

tively. With equation (2.75), the force-velocity relation reduces to a 3×3 system which

can be solved independently for each node. In that sense, it allows for a decoupling

of equations (2.60) in which the initial full system of size 3N is now decomposed into

N systems of size 3 for a group of N nodes. Furthermore, using such approximation,

71



better numerical stability is observed in the computation of nodal velocities.

2.9.3 Parallel computing

The computational cost of DDD simulations constitutes one of the principle limita-

tions associated with this numerical method. Practically, simulations are currently

limited to reach level of strains of the order of 1–2%, thereby preventing any direct

connection with higher-scale models so far. Furthermore, the attainment of such level

of deformation is currently only possible by means of parallel computation – when

using the regular method –, and any sub-optimal implementation would necessar-

ily preclude it. Therefore, the objective of this work is to build an efficient tool by

adopting an appropriate parallel implementation, so that relevant simulations can be

achieved in a reasonable amount of time, provided limited computational resources.

Different strategies can be envisioned for the parallel computing implementation of

DDD simulations depending on the number of processors that are to be used. Thus,

the goal of this thesis is not to compete with massively parallel algorithms such

as ParaDis [5], that was designed to enable simulations on supercomputers up to

100,000+ CPUs [31], but rather to build a competitive and scalable DDD simulation

tool for small clusters up to 100 CPUs. Besides, note that the alternative DDD-FFT

method as a way to address the current computational limitations of the regular

approach will be presented in Chapter 3.

As detailed in Section 2.5.3, the most computationally intensive task in regular

DDD simulations pertains to the calculation of the elastic interactions between pairs

of segments. This procedure generally accounts for more than 90% of the total time

of the simulations. Therefore, particular efforts have been undertaken to optimize

the numerical implementation and adopt a proper parallelization scheme for this pro-

cess. In the context of parallel computing, the achievement of a good scalability

is essentially conditioned by the achievement of an excellent load balance between
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the CPUs, especially when communications between processors are required at each

time step. This is because when the computational load is not perfectly balanced,

the relative waiting time of the fastest CPU (i.e. that which has been attributed

the lowest load, assuming all CPUs have the same frequency) to the slowest CPU

(i.e. that which has been assigned the highest load) leads the overall efficiency of the

algorithm to dramatically drop. In [5], the parallel strategy relies on a dynamical

domain decomposition that partitions the simulation volume along all three spatial

directions using a recursive k-d tree data structure. Further, at each time step, the

boundaries of the different cells are moved so as to ensure that the computational load

remains balanced between all domains as the dislocation configuration evolves. With

this approach, each domain can be separately handled by a single CPU, provided

that the information about dislocation segments close to the external boundaries

of each computational domain are transferred across CPUs via cheap point-to-point

communications. Further, such parallel architecture is conveniently coupled with a

hierarchical Fast Multipole Method (FMM) [266, 148, 251, 5] so as to directly in-

corporate an approximation of long-range elastic interactions (see Section 2.9.2.1 for

more details). Although such strategy is probably the most efficient algorithm for

treating very large dislocation configurations since it provides excellent scalability, it

can also become heavy for relatively small size simulations, and substantially increase

the complexity of the numerical implementation, thereby hindering the overall versa-

tility and modularity of the tool. For this reason, a different strategy was adopted in

this work. It is detailed below.

As mentioned in Section 2.5.3, the bottleneck of DDD simulations pertains to the

O(N2
seg) process associated with the computation of the elastic interactions between

pairs of individual segments, where Nseg is the total number of segments in the simu-

lation. Recall that this quadratic complexity physically stems from the fact that each

dislocation segment interacts with all other segments present in the volume through
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their elastic stress fields. As detailed in Section 2.9.2.1, the decay in 1/R of the stress

field can be advantageously exploited so as introduce approximation techniques to

evaluate the long-range elastic interactions. With this, and assuming that the dislo-

cation segments are homogeneously distributed over the volume, the computational

complexity of analytical short-range elastic interactions reduces to O(N2
nei), where

Nnei ≤ Nseg is the average number of neighbor segments associated with short-range

interactions. In practice however, assuming a constant number of neighbors Nnei for

each segment so as to equally distribute the segments among the CPUs would lead to

a sub-optimal load balancing strongly affecting the global scalability. As a matter of

fact, a good load balance can only be achieved when the number of individual elastic

interactions to compute is equal on each CPU. For such purpose, the strategy adopted

here consists in distributing dislocation segments among processors so as to balance

the total number of their actual neighbors. Full details on the parallel numerical

implementation of the critical stages of the DDD cycle are presented in Appendix

D.2.

2.10 Conclusion

In this chapter, a DDD nodal code relying on the superposition principle formalism

was developed. The present tool includes an explicit treatment of junction formations

and is able to treat any kinds of crystallographies, especially by handling the addi-

tional complexities associated with low-symmetry crystals. In addition, by adopting

a rigorous parallel strategy and implementing several numerical optimizations, a ro-

bust, efficient and competitive numerical tool that shows good scalability up to 100

CPUs is obtained.

To assess the accuracy of the DDD code developed in this work, several validations

were performed. Thus, it was ensured that the stress fields computed for infinitely

long straight edge and screw dislocations match the analytical solutions. Further,
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the activation stress of a Frank-Read source was assessed as a function of its length

and of the segment discretization size, and was compared to analytical solutions and

other DDD simulation tools results.

In this thesis, the DDD code developed in this chapter will be used in Chapter 4

to quantify dislocation-dislocation interaction coefficients in HCP Mg and test for the

validity of slip-hardening laws used in current constitutive models. Prior to doing so,

the present DDD code will be used to compute latent-hardening coefficients for FCC

materials, and will yield similar values as those obtained in the literature, thereby

providing a supplementary validation of the present implementation.

Further, the present DDD code was developed in a modular fashion such that

additional features can be added easily. For instance, a transmission scheme will be

implemented in Chapter 5.1 to study the interactions and reactions of dislocations

across twin-boundaries. Finally, the present code will serve as a basis for the novel

DDD FFT-based approach developed in Chapter 3 to address current limitations of

regular DDD simulations pertaining to the treatment of anisotropic and heterogeneous

elasticity.
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CHAPTER III

DDD-FFT: A FAST FOURIER TRANSFORMED BASED

FORMULATION FOR PERIODIC DISCRETE

DISLOCATION DYNAMICS

3.1 Motivation

Through Chapter 2, a detailed overview of the physical model and the numerical ap-

proach and implementation underlying regular DDD simulations is given. Recall that

in this work, as mentioned in Section 2.4, the designation of regular or conventional

simulations is indifferently used to refer to DDD simulation approaches in which stress

fields of dislocation segments are individually computed in an infinite elastic medium

and added to one another by virtue of the superposition principle to define the inter-

nal stress at every material point. With this approach, it has also been emphasized in

Sections 2.5.3 and 2.9 that the very expensive O(N2
seg) computational cost associated

with the calculation of elastic interactions was the bottleneck of those simulations.

Despite the tremendous efforts that have been undertaken in the recent years, such as

the introduction of a non-singular dislocation theory leading to analytical interaction

force expressions for isotropic elasticity [35] and the development of approximation

techniques such as the Box Method [240] or the FMM method, that have certainly

permitted significant savings in the computational time [148, 5, 270], the evaluation

of individual segment-segment interactions still remains the most costly procedure in

regular DDD simulations.

More generally, the main limitations of current DDD codes lie in the treatment

of anisotropic elasticity and elastic inhomogeneities. The first limitation arises from

the fact that, in contrast to isotropic elasticity, no closed-form solution is available
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for the stress field induced by a dislocation in an anisotropic medium. Thus, the non-

singular theory developed by Cai et al. [35] cannot be simply extended to the case

of anisotropic elasticity. Consequently, analytical expressions for elastic interaction

forces cannot be derived, requiring to resort to substantially more costly numerical

integration techniques such as the Gauss quadrature. Although substantial efforts

have been undertaken in the past years to develop new numerical techniques allow-

ing for savings in computation time [202, 108, 264], notably via the use of spherical

harmonics [12, 13] (see Appendix B.2), the relative cost of anisotropic calculations

usually amounts to at least one order of magnitude larger than that of isotropic cal-

culations, and remains conditioned by the amount of anisotropy and the desired level

of accuracy [12]. Practically, the significant increase in computation time associated

with anisotropic calculations has precluded large simulations on such materials thus

far. For this reason, to date, most of DDD simulations have been performed on

FCC crystals, and the few studies performed on low-symmetry crystals have gen-

erally neglected the effects of elastic anisotropy [176, 62, 22]. The second limitation

results from the high computational burden associated with the finite element method

(FEM) (see Appendix E) required in current approaches to enable the incorporation

of inhomogeneous elasticity in DDD. Further, in such simulations, special multilayer

formulations of elastic interaction forces should be included to account for the elastic

mismatch across the different media [107, 2].

From a practical perspective, such current limitations in terms of time and length

scales (one is usually limited to 1–2% strain on 1–100 µm3 samples with current

approaches, provided important computational resources) have precluded large simu-

lations on anisotropic and heterogeneous structures so far, limiting their application

to the study of relatively small systems.

In parallel to the regular DDD approach, Lemarchand and co-workers [147] pro-

posed a framework based on an eigenstrain formalism, the Discrete Continuous Model
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(DCM), in which each dislocation is treated as a plate-like inclusion. By coupling

this approach with a FEM framework, the stress state can be directly computed from

a classical elasto-viscoplastic constitutive law in which the plastic strain is obtained

from the motion of discrete dislocations [234]. In contrast with conventional DDD

approaches relying on the superposition principle, the FEM mesh in the DCM ap-

proach accounts for both the boundary conditions and the long-range isotropic or

anisotropic elastic interactions. Particularly, the intensive computation of internal

stresses coming from dislocation-dislocation elastic interactions can potentially be re-

duced to a minimum with this approach, since it only concerns local pairs of segments

whose interaction distance is smaller than half of the FEM mesh size. Besides, when

using PBC, this approach does not require the computation of the elastic stress field

of image dislocations [234]. In addition, this model has shown its capability to deal

with inhomogeneous and anisotropic elasticity. However, the coupling of the DCM

with a FEM framework eventually renders the approach computationally prohibitive

(if not impractical for fine meshes), thereby limiting its use to coarse meshes and

consequently requiring a significant a number of local interactions to be computed.

In the present thesis, a new approach for DDD simulations is proposed so as to

simultaneously address the main limitations of current approaches, i.e. the compu-

tational cost of dislocation-dislocation interactions and the treatment of anisotropic

and heterogeneous elasticity. For such purpose, a novel full-field approach based on

Fast Fourier Transforms (FFT) and on the DCM is developed for the computation of

mechanical fields in periodic DDD simulations. Of particular interest, the new DDD-

FFT method allows for the treatment of both elastic anisotropy and heterogeneities

in a very computationally efficient fashion.

As mentioned in Section 2.2, the use of Fourier techniques to solve problems in

continuum mechanics has been long been identified as a convenient approach. It was

already used by Green [99] and has been extensively employed by Mura in his seminal
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work on micromechanics [181]. Later, the development of the FFT algorithm pro-

viding a very efficient technique to numerically compute discrete Fourier transforms

has received a considerable echo in many scientific domains. In particular, the use of

FFT techniques to solve problems in continuum mechanics has, over the past years,

constituted an increasingly attractive technique and has shown to lead to significant

computational gains [153]. Originally, the use of the FFT algorithm applied to me-

chanics of materials was introduced by Moulinec and Suquet [178, 179]. The authors

introduced the first FFT-based formulation in computational mechanics of materials

so as to enable fast computation of the local responses of composites. Interestingly,

the FFT-based approach was first used for heterogeneous elasticity as a way to obtain

the effective overall mechanical response. It was later extended by Lebensohn and

co-workers to model the viscoplastic [143] and the elasto-viscoplastic [144] response of

polycrystalline aggregates. Regarding dislocation dynamics, FFT-based formulations

for computing dislocation elastic interactions have been used in approaches where

dislocation lines are not tracked individually, such as in the level set method [262]

and in phase field approaches [246, 116]. However, the DD level set method has been

reported to be computationally costly due to the need of higher order parametriza-

tions to represent dislocation lines [243], and the formation of junctions, crucial to

accurately model strain hardening [31, 5], is not explicitly treated in both approaches.

Particularly, the absence of discretization of dislocation lines either restricts junction

formation to be purely governed by elastic interactions, generally requiring very small

time step increments, or prevents its accurate description. Therefore, in the present

thesis, a FFT-based approach was developed at the length scale of DDD simulations,

such as to benefit from the computational efficiency of the FFT method while allow-

ing for a discrete representation of dislocation lines. Thus, the proposed approach

paves the way towards achieving scale transition from DDD to mesoscale plasticity.

Specifically, with the ability of DDD-FFT formulation to account for heterogeneous
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elasticity, it is to be expected that the method presented here could enable efficient

DDD simulations on polycrystals.

The present chapter is organized as follows. First, the DCM model is fully pre-

sented and its advantages and limitations are discussed in Section 3.2. Then, the

homogeneous formulation of the DDD-FFT method is introduced in Section 3.4, in

which spectral formulations for continuum mechanics are first presented from a gen-

eral perspective. Further, the development of an elastically heterogeneous model is

detailed in Section 3.5. Finally, details related to the delicate numerical implementa-

tion of FFT-based approaches are provided in Section 3.6.

3.2 The Discrete-Continuous Model

3.2.1 General overview

In parallel to the development of the framework used in regular DDD simulations

and presented in Chapter 2, Lemarchand and co-workers [147] have proposed a dif-

ferent approach to the DDD problem: the Discrete-Continuous Model (DCM). This

approach was for instance used to study of the effect of elastic anisotropy in thin

films [101], model the plastic deformation in metal matrix composites [100], and in-

vestigate plasticity in nickel-based single-crystal superalloys in which matrix channels

were formed by the presence of precipitate phases [235, 236]. In this section, a brief

overview of the DCM will be given, as it constitutes the basis on which the DDD-

FFT model is built. For a complete presentation of the DCM, the reader is referred

to references [147] and [234].

In contrast with the regular approach, the DCM model relies on an eigenstrain for-

malism, in which each dislocation is considered as an Eshelbian inclusion of thickness

h, as depicted in figure 2.5(b). Such consideration has several implications, which will

be discussed in details through the rest of this section. First, it requires that each

initial dislocation should be introduced as a closed loop. As depicted in figure 2.5(a)
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and discussed in Section 2.2.2, the definition of a dislocation line in the eigenstrain

theory is given as the boundary of the surface defect, implying a closed line contour.

Further, in contrast with the regular approach in which the medium is considered as

purely elastic, the DCM involves an elasto-viscoplastic framework in which the plastic

strain εp results from the motion of dislocations. Thus, the constitutive law at each

material point ~x of the simulation volume is given by:

σDCM(~x) = C : (ε(~x)− εp(~x)) (3.1)

where tensors σDCM and ε denote the stress associated with the DCM and the total

strain, respectively, and C is the elastic stiffness matrix. Importantly, the numerical

quantification of the plastic strain within the simulation volume requires a dedicated

regularization procedure. Specifically, in [147] and [234] the DCM is coupled by its

authors to a FEM framework. With this, the constitutive law that must hold at each

integration point ~p of the mesh is given from relation (3.1) as:

σDCM(~p) = C : (ε(~p)− εp(~p)) (3.2)

where εp(~p) is the history-dependent accumulated plastic strain tensor resulting from

the motion of all dislocations regularized at point ~p, whose increment over time is

classically given from expression (2.26) as:

dεp(~p) =
1

2

∑
s

(
~b
s
⊗ ~n s + ~n s ⊗~b

s
)
dγs(~p) (3.3)

where the summation is performed over all slip systems s with Burgers vector ~b
s

and unit normal ~n s. The calculation of the plastic shear increment dγs(~p) via the

regularization procedure is explained in details in the following. Before, notice that by

taking advantage of the time discretization used in DDD, the non-linear constitutive

law (3.3) is often solved for via an explicit scheme, whereby the plastic strain state
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εp at step t is used to compute the stress and strain states at step t+ dt.

Following the eigenstrain formulation, the DCM relies on considering each dis-

location loop as a plate-like inclusion of thickness h. Obviously, the analogy with

Mura’s theory [181] giving rise to the derivation of the stress state associated with

a dislocation loop (e.g. equation (2.14)) presented in Section 2.2.2 is evident. Thus,

the core idea of the DCM is to directly obtain the stress state associated with the

dislocation configuration from the calculation of the plastic strain associated with the

motion of the ensemble of dislocation loops, following the procedure given from equa-

tions (2.10) to (2.14) to solve for the classical boundary value problem in continuum

mechanics (2.37)–(2.40). Consequently, it is to be noticed that, in contrast with the

regular approach, the DCM approach does not invoke the principle of superposition.

The apparent difficulty of the DCM resides in the calculation of the plastic strain

at each integration point. As illustrated in figure 2.5(b), the inclusion thickness t

associated with a dislocation physically corresponds to the inter-atomic distance as-

sociated with its slip plane. In the context of a numerical formulation however, the

thickness h differs from t, and is related to the length scale of the numerical discretiza-

tion. Thus, the shear produced by the motion of a dislocation can be determined as

follows. As depicted in figure 3.1, it is considered that the elementary sheared area

dS swept by the glide of a portion of a dislocation segment ij produces an elementary

homogeneous plastic shear dγ within an elementary spherical volume dφ of radius

h/2 centered on the sheared area dS [234], such that:

dγ =
b dS

dφ
=

6b dS

πh3
(3.4)

where b is the magnitude of the segment’s Burgers vector, and πh3/6 is the volume

of any elementary sphere dφ of radius h/2. This approach is naturally consistent

with the crystallographic definition of dislocation shear given in expression (2.24).

However, one of the challenging aspects of this model lies in the distribution of the
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Figure 3.1: Sheared area dAij produced by the glide of a dislocation segment ij
during time dt. The dislocation segment is defined by its end nodes i and j moving
from their initial positions ~xi and ~xj at velocities ~vi and ~vj, respectively. Schematic
of (a) an elementary sheared area dS swept by the glide of a portion of a dislocation
segment, and (b) the resulting elementary homogeneous plastic shear dγ associated
with an elementary spherical volume dφ of radius h/2 centered on the sheared area.

plastic strain to the mesh in order to perform accurate and realistic simulations.

Specifically, the choice of the elementary sheared volume V in equation (2.24) – i.e.

the choice of the regularization parameter h in (3.4) – is critical since it constitutes

a key parameter of the elasto-viscoplastic model (3.2).

In the recent implementation of Vattré and co-workers [234], the numerical pro-

cedure to regularize the plastic shear contribution of a gliding dislocation segment at

an integration point of a FEM mesh is as follows: the shear dγ ~pij induced by the glide

of dislocation segment ij at integration point ~p is not null only if ~p lies within one

or more elementary volume dφ(~x) centered in ~x when ~x spans the entire segment’s

glide area dAij, i.e.:

dγ ~pij =
6b

πh3

∫
dAij

χ(~p,~x)d~x (3.5)

where the characteristic function χ(~p,~x) of integration point ~p takes value χ(~p,~x) = 1

if ~p lies within the elementary sphere dφ(~x) centered in ~x, χ(~p,~x) = 0 otherwise. By

denoting:

dS ~p
ij =

∫
dAij

χ(~p,~x)d~x (3.6)

83



�沈 �珍 �珍�� �沈�� 
な 

に 

��沈珍  

�� �  

� 

� 

��沈珍� += ど 

�沈 �珍 �珍�� �沈�� ��沈珍  

�� �  

� � 

��沈珍� += �� ��岫�岻 a) b) 

Figure 3.2: Numerical regularization procedure of the plastic shear produced by
the glide of a dislocation segment when using the DCM as implemented in [234].
The surface integration in (3.5) is numerical calculated as follows. By successively
discretizing the sheared area dAij into elementary swept areas dS(~x), the increment

of plastic shear dγ ~pij at integration point ~p is: a) null when ~p does not lie within the
elementary sphere dφ(~x) centred in ~x, or b) equal to the shear associated with dS
when ~p lies in dφ(~x).

the integral of the characteristic function over the area swept by dislocation segment

ij, equation (3.5) is rewritten as:

dγ ~pij =
6b

πh3
dS ~p

ij =
b

Ve
dS ~p

ij (3.7)

where Ve is the volume of the elementary sphere dφ(~x). As a result, the total regular-

ized shear increment dγs(~p) on system s in equation (3.3) is calculated as the sum of

the shear increments produced by all dislocation segments ij belonging to slip system

s at integration point ~p:

dγs(~p) =
∑
ij∈s

dγ ~pij (3.8)

In [234], the numerical integration associated with dS ~p
ij in equation (3.6) is performed

by successively discretizing the glide area dAij into elementary areas dS along the

segment length and its glide direction (see figure 3.2). As discussed in [147], in this

approach h is a parameter whose value must be chosen of the order of the mesh size

Lmesh so as to ensure that the union of the elementary spheres dφ when dS spans
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the entire sheared area dAij at least contains one integration point. This is to ensure

that the shear produced by the motion of any dislocation segment will be entirely

transferred to the mesh. Thus, in reference [147], the value h = 3/2Lmesh has been

determined as optimal and the same value has been used in reference [234]. More

details on the numerical implementation of the DCM can be found in both these

papers.

3.2.2 Advantages and limitations

With equations (3.2) to (3.8), the DDD boundary value problem (2.37)–(2.40) can be

solved using the FEM method (see Appendix E.3 for details on the elasto-viscoplastic

FEM formulation). Note here that the visco-plastic behavior directly follows from the

plastic strain increment dεp dependence on the stress. Indeed, the general framework

laid out in Section 2.5 to determine dislocation nodal velocities is retained. However,

the Peach-Koehler force is here directly taken as the integral of the stress σDCM(~p)

obtained in equation (3.2) thanks to the DCM-FEM coupling. This procedure is

obviously valid since, thanks to the eigenstrain formalism, the resulting stress field

σDCM(~x) determined everywhere in the simulation volume encompasses both the ex-

ternal (from the applied loading and the boundary conditions) and the internal (from

the dislocation microstructure) contributions without redundancies. More precisely,

the DCM-FEM eventually provides a discrete stress state at each mesh node. From

there, the Peach-Koehler force ~f
pk

ij in equation (2.55) on any dislocation segment ij

can be calculated by interpolating σDCM(~x) along the segment length as:

~f
pk

ij =

∫ ~xj

~xi

Ni(~xij)
[(
σDCM(~xij) ·~bij

)
×~tij

]
|d~x| (3.9)

where the different quantities in expression (3.9) have the same meaning as that

used in Section 2.5. However, as explained in [234], the resort to such interpolation

leads to lose in the evaluation of ~f
pk

ij the interaction forces corresponding to pairs
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of segments whose interaction distance is smaller than h/2. Consequently, solely the

internal stresses pertaining to long-range dislocation-dislocation elastic interactions

are inherently accounted for by the mesh. In this approach, long-range elastic in-

teractions refer to pairs of segments whose interaction distance is larger than half of

the regularization parameter h. In other words, the DCM model requires the addi-

tional computation of interaction forces for pairs of segments which are closer than

h/2. Such interactions can be for instance computed using the non-singular analyt-

ical formulation [35] (see Section 2.5.3), and must be added as supplementary local

contributions to the Peach-Koehler force.

The main interest of the DCM certainly lies in that it introduces an alternative

approach that theoretically transforms the initial O(N2
seg) problem of regular DDD

simulations into a O(N2
el) problem, where Nel is the number of elements of the FEM

mesh (the best achievable complexity of the standard FEM approach is generally

accepted to be O(N2
el), see Appendix E). At first sight, the potential gain that it

may allow is not obvious, and it would be inopportune to consider that choosing

Nel ≤ Nseg would provide a direct improvement with respect to regular DDD simula-

tions. This is for two reasons: first, because the equivalence between the complexity

of both approaches is only valid when the number of supplementary local interac-

tions to compute is small in the DCM method, i.e. when the mesh is relatively fine.

Second, the prefactor associated with both complexities has a significant impact and

prevents the direct comparison of both approaches. While the second reason cannot

be assessed from a general perspective – the prefactor highly depends on the numer-

ical implementation of the approaches –, the first point can provide an idea on the

performance of the DCM-FEM method. When the mesh is coarse, the cost of the

FEM may be reasonable, but the important number of local interactions to compute

(h/2 is large in this case) reshapes the DCM approach to the original O(N2
seg) prob-

lem. Alternatively, when the mesh is fine, the number of short-range interactions to
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calculate can be reduced to a minimum. However, the cost of the FEM procedure gen-

erally becomes impractical in that case. For instance, a mesh of Nel = 323 elements

is the upper limit in terms of resolution that can be achieved – provided reasonable

computational resources –, and at this relatively low resolution, the DCM has been

reported not to be competitive in comparison with the regular approach [234].

Nevertheless, one of the most attractive advantages of the DCM is its inherent

ability to treat anisotropic and heterogeneous elasticity. This is because the general

definition of the stiffness tensor can be easily used in the FEM formulation, and

each integration point can be assigned a different material. Therefore, the long-range

stresses accounted for by the mesh are calculated at the same cost in isotropic or

anisotropic elasticity. However, the short-range interactions still remain an issue in

this case since they must be explicitly computed using similar methods as in the

regular DDD approach for anisotropic elasticity (e.g. spherical harmonics approach).

In the case of heterogeneous elasticity, the difficulty arises from the resolution that

must be adopted in order to precisely describe the different phases. Thus, while the

case of a bi-crystal will not pose any problem in general, the modelling of inclusions

of small size or of complex shape will be impractical. For instance, a resolution of

Nel = 163 was used to model precipitate phases in Ni-based single crystal superalloys

[235, 236], restricting precipitates to be coarsely represented as large square inclusions.

Notice that in order to alleviate the overall computational cost of the DCM-FEM,

Vattré and co-workers suggested to perform the FEM computation according to a

certain time step frequency. However, such cannot be done when a fine mesh is

used, as dislocations may change cells in between two updates of the FEM, leading

to dangerous artefacts such as double-counting their stress fields.

Furthermore, the use of a FEM framework is not the only computationally inten-

sive process associated with the DCM. As mentioned in Section 3.2.1, the regular-

ization procedure of the plastic strain involves the numerical integration introduced
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in equation (3.6). As any numerical integration procedure, this process is costly and

adds a significant computational burden to the simulation. This point is all the more

important that the integration in expression (3.6) must be evaluated very precisely

as the accuracy of the regularization is fundamental to the DCM. This characteris-

tic finds its origin in the history-dependent formulation of the model. As a matter

of fact, any inaccuracy will inevitably propagate and accumulate during the whole

simulation, leading the internal stress state to depart from the actual dislocation con-

figuration after some iterations. Notice that this issue does not exist as such in the

regular approach since stresses are recomputed from the actual spatial positions of

dislocation segments at each time step.

Finally, an interesting feature of the DCM should be mentioned at this point. The

direct recourse to the eigenstrain theory implies that the initial mechanical state cor-

responding to the presence of the initial microstructure has to be taken into account in

this approach (this stems from the history-dependent formulation). This can be done

by introducing initial dislocation loops according to a Volterra-like process described

in [234]. Although it imposes constraints on the initial dislocation microstructure

that can be simulated, it also enforces the initial configuration to be relevant from a

physical perspective [69]. One simple way to create a realistic initial microstructure

in which dislocation sources are present consists in letting the initial Volterra loops

relax. During this process, the formation of junctions creates physical pinning points

for dislocations, thereby circumventing the necessity of introducing artificial pinning

points (e.g. terminating segments) as usually employed in regular DDD.

In conclusion of this section, it is apparent that the DCM model presents an

interesting alternative approach to the DDD problem. However, the method is ren-

dered impractical by its computational cost. Specifically, the expensive computational

load associated with the FEM procedure either restricts its use to coarse meshes –

therefore requiring the computation of an important number of supplementary local
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dislocation-dislocation interactions – or makes the procedure impractical due to the

computational complexity of 3D FEM. To alleviate such complexity, a novel approach

in which the DCM procedure is coupled to a FFT-based solver is proposed in this

thesis, aiming at efficiently performing periodic DDD simulations in isotropic and

anisotropic media.

3.3 Spectral methods in continuum mechanics

Over the course of the past decades, spectral methods have been widely employed to

determine the mechanical state of a medium in continuum mechanics. As a matter

of fact, Fourier-based methods are particularly adapted to derive analytical and nu-

merical solutions for a medium subjected to distributed applied forces. Specifically,

this results from the convenient use of the Green’s function in the Fourier space,

whose expression is straightforward. Further, Fourier-based methods have received

much attention thanks to the development of the Fast Fourier Transform (FFT) algo-

rithm, allowing to numerically calculate discrete Fourier transforms in a very efficient

manner [51].

In this section, before the formulation for the DDD-FFT approach is introduced

for an homogeneous and an heterogeneous medium, respectively, the solution of the

boundary value problem in continuum mechanics using the spectral Green’s function

method is first detailed, and its application to the eigenstrain theory is discussed.

3.3.1 Boundary value problem solution using the spectral Green function
method

As mentioned earlier, the resort to Fourier techniques has long been identified as a

simple and convenient approach to solve for the fundamental boundary value problem

in continuum mechanics. Thus, in linear elasticity, the mechanical state of a volume

V subjected to traction and displacement boundary conditions can be determined by

solving the boundary value problem introduced in equations (2.37)–(2.40), expressed
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here in indicial notation as:

σij = Cijklε
e
kl (3.10)

σij,j + fi = 0 (3.11)

ui = u∗i on ∂Vu (3.12)

σijnj = t∗i on ∂Vt (3.13)

where the first equation refers to the elastic Hooke’s law, the second to the mechan-

ical equilibrium the stress must satisfy everywhere in the volume, and the last two

equations correspond to the displacement and traction boundary conditions applied

on the external volume surfaces ∂Vu and ∂Vt, respectively. Note that in addition to

the divergence of the stress, the mechanical equilibrium here accounts for the body

force fi per unit volume defined throughout volume V . Using the definition of the

stress (3.10) in equations (3.11) and (3.13) and that of the strain given in relation

(2.3), the boundary value problem is expressed as:

Cijkluk,lj + fi = 0 in V

ui = u∗i on ∂Vu

Cijkluk,lnj = t∗i on ∂Vt (3.14)

Considering an homogeneous infinite volume V governed by linear elasticity and as-

suming that the body force fi is localized and that the medium is traction-free at

infinity, then for every spatial coordinate ~x belonging to V = R3 one has:

fi(~x)→ 0 when ~x→∞

Cijkluk,l(~x)nj = t∗i → 0 when ~x→∞ (3.15)

Under these assumptions, the displacement field in the medium is expected to be
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bounded such that:

Cijkluk,lj + fi = 0 in V

ui(~x)→ 0 when ~x→∞ (3.16)

Several approaches can be used to solve the boundary value problem expressed in ex-

pressions (3.14) to (3.16). Among them, the spectral technique based on the Fourier

transforms constitutes an elegant and powerful approach to tackle such complex prob-

lem based on a system of partial differential equations. Such approach was for instance

extensively used by Mura [181] in the context of the eigenstrain theory. As the use of

Fourier techniques eventually involves Fourier transforms, the notations and defini-

tions adopted in the rest of this thesis are introduced here. If ~x denotes a coordinate

in the 3D Cartesian space R3 and ~ξ denotes a frequency of the reciprocate Fourier

space F(R3), the Fourier transforms ĝ(~ξ) of any integrable function g(~x) over R3 can

be defined by:

ĝ(~ξ) = F (g(~x)) =

∫
R3

g(~x)e−i~x·
~ξd~x

g(~x) = F−1
(
ĝ(~ξ)

)
=

1

(2π)3

∫
R3

ĝ(~ξ)ei~x·
~ξd~ξ (3.17)

where F and F−1 denotes the forward and inverse (or backward) Fourier transform

operators, i =
√
−1 denotes the complex number, and where any quantities f̂ will

denote a function expressed in the Fourier space, whose reciprocate function will be

denoted f in the real space. Note that the definition of the Fourier transform is not

unique and generally depends on the domain of application. One of the most remark-

able properties associated with the use of the Fourier transform is that any spatial

derivative of a function expressed in the real space becomes a simple multiplication

in the Fourier space, i.e.:

91



F (g,j(~x)) = iξj ĝ(~ξ) (3.18)

This last result is simply obtained by performing an integration by parts using rela-

tions (3.17). With this, applying the Fourier transform to the equilibrium equation

in (3.16) by using the relations defined in (3.17) and (3.18) leads to:

Cijklξlξjûk(~ξ) = f̂i(~ξ) in F(V ) (3.19)

where the displacement field ûk is expressed in the Fourier space F(V ) associated

with volume V . By introducing the following quantity:

Kik = Cijklξlξj (3.20)

the displacements in the Fourier space can be obtained from (3.19) as:

ûk(~ξ) = Ĝki(~ξ)f̂i(~ξ)

Ĝki(~ξ) = Kik = [Cijklξlξj]
−1 = Nik(~ξ)D−1(~ξ)

∀~ξ 6= ~0 (3.21)

where Nij is the cofactor of Kij and D its determinant, both given as:

Nij(~ξ) =
1

2
eiklejmnKkm(~ξ)Kln(~ξ)

D(~ξ) = emnlKm1(~ξ)Kn2(~ξ)Kl3(~ξ) (3.22)

Full expressions of N and D for different crystal structures (i.e. for different shapes

of the elasticity tensor C) can be found in the literature (e.g. see reference [181]). In

equation (3.21), Gki refers to the spectral Green’s function expressed in the Fourier

space. By switching the indices in equations (3.21), the solution of the displacement

field can be expressed in the Fourier space as:
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ûi(~ξ) = Ĝik(~ξ)f̂k(~ξ)

Ĝik(~ξ) = [Ckjilξlξj]
−1

∀~ξ 6= ~0 (3.23)

Further, displacements in the real space can be obtained from equation (3.23) by

taking the inverse Fourier transform of ûi as:

ui(~x) =

∫
R3

Ĝij(~ξ)f̂j(~ξ)ei~x·
~ξd~ξ

f̂j(~ξ) =
1

(2π)3

∫
R3

fj(~x)e−i~x·
~ξd~x (3.24)

Finally, combining the two relations in (3.24), the solution displacement field can be

expressed as:

ui(~x) =

∫
R3

Gij(~x− ~x′)fj(~x′)d~x′ (3.25)

where

Gij(~x− ~x′) =
1

(2π)3

∫
R3

Ĝij(~ξ)ei(~x−
~x′)·~ξd~ξ (3.26)

is the static Green’s function for an infinite homogeneous linear elastic medium ex-

pressed in the real Cartesian space, whose expression for isotropic elasticity is given

in equation (2.16). Interestingly, the Green function Gij(~x− ~x′) solely depends on the

material properties and on the relative position of the source ~x′ and field ~x points. In

that sense, Gij is independent of the loading and body force to which the medium is

subjected to. Therefore, the convolution in (3.25) appears as a convenient manner to

obtain the displacement field of a medium in response of the body force fj. The result

in (3.25) precisely constitutes the basis of the spectral approach to the eigenstrain

theory, whose application is presented in Section 3.3.2. Further, it is interesting to

notice from the comparison between expressions (3.23) and (3.25) that a convolution
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in the real space corresponds to a simple multiplication in the Fourier space. There-

fore, the interest of spectral methods in numerical applications via the use of the FFT

algorithm will be presented in Section 3.3.3.

3.3.2 Application of the spectral method to the eigenstrain theory

In Section 3.3.1, the use of a spectral method to solve for the response of an infinite

linear elastic medium to a body force was introduced. In this section, the framework

is generalized to the case of material in which a distribution of eigenstrain exists. As

detailed in [181], an eigenstrain is defined as an inelastic strain distribution arising

from the presence of a local thermal expansion, a phase transition or a defect. From

a general perspective, when the eigenstrain denoted ε∗ij is prescribed within a finite

domain Ω of medium V, region Ω is referred to an inclusion within the matrix V −Ω.

In regions where eigenstrains exist, the total strain εij is decomposed as:

εij = εeij + ε∗ij (3.27)

where εeij denotes the elastic strain. Therefore, assuming a given distribution of

eigenstrain throughout the whole medium V , the mechanical state at each material

point ~x must respect the constitutive law and the mechanical equilibrium:

σij(~x) = Cijkl (εkl(~x)− ε∗kl(~x))

σij,j(~x) = 0

∀~x ∈ V (3.28)

where the body forces are assumed to be vanishing everywhere. Combining both

equations in (3.28) and using the small strain definition in (2.3), relations (3.28) can

be written as:
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Cijkluk,lj(~x)− ϕij,j(~x) = 0

ϕij(~x) = Cijklε
∗
kl(~x) (3.29)

where the quantity ϕij referred to as the polarization tensor is introduced. Following

the same procedure as that detailed in Section 3.3.1 for going from relations (3.16)

to (3.23), the displacement field in the Fourier space can be expressed as:

ûi(~ξ) = −Ĝik(~ξ)ϕ̂kl,l(~ξ) ∀~ξ 6= ~0 (3.30)

Further, taking advantage of the properties of the derivation in the Fourier space

given in (3.18), equation (3.30) can be conveniently written as:

ûi(~ξ) = −iξlĜik(~ξ)ϕ̂kl(~ξ)

= −Ĝik,l(~ξ)ϕ̂kl(~ξ)

∀~ξ 6= ~0 (3.31)

such as to express the resulting displacement field in the Fourier space as a function

of the polarization tensor ϕ̂ij and the first derivative of the Green’s function Ĝij,k.

Finally, taking the inverse Fourier transform of (3.31) leads to the following expression

for the solution displacement field and its spatial derivative:

ui(~x) = −
∫
R3

Gik,l(~x− ~x′)ϕkl(~x′)d~x′

ui,j(~x) = −
∫
R3

Gik,lj(~x− ~x′)ϕkl(~x′)d~x′ (3.32)

where the expressions of the derivatives of the Green’s function can be directly ob-

tained from (3.26). Obviously, the analogy with the previous section is complete

when considering the divergence of the polarization as a body force so as to write

fi = ϕij,j. Replacing the polarization tensor ϕij by its complete expression given in

(3.29), relation (3.32) is finally expressed as:
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ui(~x) = −
∫
R3

Cklmnε
∗
mn(~x′)Gik,l(~x− ~x′)d~x′ ∀~x ∈ V (3.33)

Expression (3.33) is the fundamental solution for the displacement field produced by

an eigenstrain distribution in an infinite homogeneous medium. Of particular interest,

expression (3.33) corresponds to the solution given in (2.10) for the displacement

field produced by the presence of a dislocation in an infinite medium, i.e. when the

eigenstrain ε∗ij corresponds to the plastic strain εpij given in (2.12) associated with

the dislocation, and for V = R3. Therefore, the procedure from going from equation

(3.28) to (3.33) provides the complete derivation of equation (2.10) from constitutive

relation (2.9) in Section 2.2.2. Further, using the small strain compatibility equation

(2.3), the resulting strain field is expressed as:

εij(~x) = −1

2

∫
R3

Cklmnε
∗
mn(~x′)

(
Gik,lj(~x− ~x′) +Gjk,li(~x− ~x′)

)
d~x′ ∀~x ∈ V

(3.34)

where Gij,kl denotes the second-order derivative of the Green function. Note that

for the coming sections, it will be convenient to rewrite the convolution in (3.34) in

tensorial form as:

ε(~x) = −Γ ∗ [C : ε∗] (~x), ∀~x ∈ V (3.35)

where ∗ is the convolution operator in the real space, and Γ is the forth-order tensor

associated with the minor and major symmetrizations of the second-order derivatives

of the Green function in the real space, sometimes referred to as the modified Green

operator. From expression (3.34), when ~ξ 6= ~0, the modified Green operator Γ̂ijkl(~ξ)

in the Fourier space can be expressed as:

Γ̂ijkl(~ξ) =
1

2

(
ξlξjĜik(~ξ) + ξlξiĜjk(~ξ)

)
(3.36)
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where Ĝik(~ξ) = [Ckjilξlξj]
−1 is the static Green’s function as introduced in (3.21). In

a more general fashion, the modified Green’s operator can be written as:

Γ̂ijkl(~ξ) =
{
ξj [ξmCkminξn]−1 ξl

}
sym

, ∀~ξ 6= ~0 (3.37)

where {}sym denotes the major and minor symmetrizations of a given quantity. Natu-

rally, equation (3.37) provides an expression for Γ̂ijkl that is valid for general anisotropy,

and whose numerical evaluation does not induce any difficulty since it solely involves

the inversion of a second-order tensor. Further, a simple fully analytical expression

can be obtained in the case of elastic isotropy. First, it must be recalled from equation

(3.21) that the Green’s function can be conveniently written as:

Ĝik(~ξ) = Nik(~ξ)D−1(~ξ), ∀~ξ 6= ~0 (3.38)

where Nik(~ξ) and D−1(~ξ) are the cofactor and the determinant of quantity Kik =

Cijklξlξj, respectively, and whose general expressions are given by relations (3.22).

For isotropic elasticity, the stiffness tensor Cijkl can be expressed solely as a function

of two materials parameters, such that:

Cijkl = λδijδkl + µ (δikδjl + δilδjk) (3.39)

where λ and µ are the Lamé constants, such that Nik(~ξ) and D−1(~ξ) can be simply

expressed from (3.22) as [181]:

Nik(~ξ) = µξ2
(
(λ+ 2µ)δikξ

2 − (λ+ µ)ξiξk
)

D(~ξ) = µ2(λ+ 2µ)ξ6 (3.40)

where ξ2 = ξqξq. As a result, the Green’s function is analytically expressed as:
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Ĝik(~ξ) =
(λ+ 2µ)δikξ

2 − (λ+ µ)ξiξk
µ(λ+ 2µ)ξ4

, ∀~ξ 6= ~0 (3.41)

and an expression of the modified Green’s operator for isotropic elasticity is finally

obtained by combining relations (3.37) and (3.41):

Γ̂ijkl(~ξ) =
(δikξlξj + δilξkξj + δjkξlξi + δjlξkξi)

4µξ2
− (λ+ µ)ξiξjξkξl

µ(λ+ 2µ)ξ4
(3.42)

and where the condition Γ̂(~0) = 0 enforces ε̂(~ξ) = 0 at the highest frequencies in the

current formulation.

Before concluding this section, an interesting perspective is worth mentioning

here. As mentioned earlier, the presence of an eigenstrain in a finite region Ω of

the medium V relates to the well-known case of an inclusion. When both the matrix

V −Ω and the inclusion Ω have the same elastic properties, the inclusion is considered

as homogeneous, and the displacement field in V due to the eigenstrain distribution

ε∗ij in Ω is given from (3.33) by:

ui(~x) = −
∫

Ω

Cklmnε
∗
mn(~x′)Gik,l(~x− ~x′)d~x′ ∀~x ∈ V (3.43)

Note that in expression (3.43), the integral is solely carried out over region Ω since,

by definition, the eigenstrain field ε∗ij vanishes outside the inclusion, i.e. in V − Ω.

However, expression (3.43) provides an expression for the displacement field valid in

the whole medium V , and is the basis of the Eshelbian micromechanics theory. Of

particular interest, one of the most remarkable results of Eshelby is that, provided an

uniform eigenstrain distribution in Ω, the resulting strain field – and consequently the

resulting stress field – are uniform in the interior points of an homogeneous inclusion

in an isotropic medium [79], such that one has:

εij(~x) = Sijklε
∗
kl ∀~x ∈ Ω (3.44)
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where Sijkl denotes the Eshelby tensor, whose components are independent of the

position ~x and are given as a function of the shape of the inclusion and the elas-

tic properties of the material. Thus, for particular geometries such as ellipsoidal

inclusions, analytical expressions of Sijkl have been obtained [181]. Although result

(3.44) cannot be directly applied to the case of dislocations, the relevance of adopt-

ing a spectral approach to address problems based on an Eshelbian representation of

dislocations as used in the DCM model (see Section 3.2.1) becomes apparent.

3.3.3 Comparison of FFT-based techniques with FEM approaches

In Sections 3.3.1 and 3.3.2, Fourier-based formulations for the boundary value prob-

lem (3.10)–(3.13) in continuum mechanics are presented. The advantage of such spec-

tral method primarily lies in that it allows to conveniently obtain a solution for the

displacement and strain fields in response to a body force or an eigenstrain distribu-

tion from their convolution with the Green’s function. However, although analytical

solutions can be obtained in particular cases, the calculation of a convolution is gen-

erally a daunting task when performed in the real space. Nevertheless, as noticed

in Section 3.3.1, the convolution in the real space reduces to a simple multiplication

in the Fourier space. Therefore, in numerical applications whereby the medium is

discretized into a regular grid, fast algorithms such as the Fast Fourier Transform

(FFT) algorithm – enabling the efficient computation of the discrete Fourier trans-

form and its inverse – can be advantageously used to solve for the boundary value

problem (3.10)–(3.13) directly in the Fourier space. Further, the transformation of

spatial derivatives in the real space into simple multiplications in the Fourier space

allows for a fast and simple numerical solution for the partial differential equations

associated with problem (3.10)–(3.13). Consequently, FFT-based techniques provide

an alternative full-field method to the FEM approach to solve for partial differential

system of equations. Here, the notion of full-field refers to methods in which the
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mechanical fields are inherently determined at every grid point – respectively mesh

nodes – of the discretized simulation volume V .

Of particular importance, FFT-based and FEM formulations differ in two aspects,

namely in their computational complexity and in the treatment of the boundary con-

ditions. The first point is the principal reason spectral methods have received so much

attention in the last years. In the standard FEM approach (assuming simple linear

elements), a complexity of O(N2
tot) can be achieved in the most favorable case, where

Ntot is the total number of elements of the mesh, since the overall complexity in FEM

is primarily associated with the cost of the linear solver that is used (see Appendix

E). In comparison, for a regular Fourier grid made of the same total number of grid

points Ntot, i.e. for the same resolution, the complexity drops to O(Ntot logNtot).

In this case, the cost is directly that of the efficient FFT algorithm (see Appendix

F). Obviously, for large values of Ntot , the difference between Ntot logNtot and N2
tot

becomes significant, hence the gain in the computation time up to several orders of

magnitudes generally attributed to FFT-based approaches with respect to their FEM

counterparts [153]. Note however that more efficient FEM methods such that the

hp-FEM that achieves exponential convergence rates exist and should be compared

to FFT-based approaches. However, to the author’s knowledge, such higher orders

FEM methods have not been directly applied to mechanical stress-strain computation

yet, probably because of their challenging numerical implementation.

Regarding the treatment of boundary conditions, the FEM method offers a flexible

approach in which displacements can be directly prescribed to the mesh nodes and

surface forces can be imposed on external surfaces. Thus, in general, mixed and

complex boundary conditions can be prescribed, and the presence of surface boundary

conditions specifically allows for the treatment of free surfaces. Comparatively, the

treatment of boundary conditions in spectral methods offers less degrees of freedom.

First, the formulations presented in Sections 3.3.1 and 3.3.2 are given for an infinite
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medium. In discrete numerical applications, the use of finite simulation volumes V

requires mechanical fields to be fully periodic for the formulation to remain valid (see

Appendix F for more details). In that sense, no boundary conditions can be applied

on external surfaces, as those do not exist as such. Furthermore, the imposition of

the external loading in spectral methods can only be performed by prescription of

”macroscopic” average quantities (e.g. average strain or stress, see next sections).

Therefore, in FEM approaches, the simulation volume can be regarded as a finite

region on which displacements and forces are locally applied, whereas in FFT-based

methods, the simulation volume should be seen as a small region of an infinitely

repeating domain on which a macroscopic loading is imposed.

The numerical superiority of FFT-based approaches with respect to the widely

used FEM approach has led to the development of numerous numerical spectral for-

mulations in various scientific areas where its application is relevant. The first FFT-

based formulation for mechanics of materials was introduced by Moulinec and Suquet

to efficiently compute the response of composites [178, 179]. It was later extended

to polycrystalline simulations [143, 144]. In these works, the spectral formulations

presented in Sections 3.3.1 and 3.3.2 were extended to account for inhomogeneous

elasticity. In contrast with the the homogeneous formulation, heterogeneous spectral

approaches involve iterative schemes, whose enhancement of the convergence has been

the subject of many studies [81, 168, 267, 27, 174, 104, 177, 259, 258] (see Section 3.5.1

for the heterogeneous formulation). Note also that very recently, spectral approaches

were developed as a way to solve Field Dislocation Mechanics (FDM) [26, 20].
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3.4 Homogeneous FFT-based formulation for DDD

3.4.1 Homogeneous formulation

3.4.1.1 FFT-based solution of the boundary value problem

As an alternative full-field stress-strain computational approach, a FFT-based method

to be used with the DCM procedure for periodic DDD simulations is developed in

this work: henceforth it will be referred to as the DDD-FFT approach [23]. The

core idea of the approach relies on coupling the DCM model presented in Section 3.2

with the spectral approach to the eigenstrain theory presented in Section 3.3.2, so

as to develop an homogeneous discrete-continuous spectral model of plasticity. With

this, it is expected that the DDD-FFT approach will benefit from the computational

efficiency of the FFT algorithm while allowing for a discrete representation of dislo-

cations. As mentioned earlier, the determination of the mechanical state throughout

the entire simulation volume Vs in DDD simulations is achieved by solving the funda-

mental mechanical boundary value problem expressed in equations (2.37)–(2.40). As

described in Section 3.2.1, the constitutive law σ(~x) = C : (ε(~x)−εp(~x)) is linearized

by considering the plastic strain εp, computed using the DCM, as a constant input

of the FFT-based solver at each simulation step. With this, the application of the

spectral method to the eigenstrain theory can be directly employed by considering

the plastic strain field generated by dislocation motion as a particular inelastic eigen-

strain distribution. Under this approximation and using the small strain hypothesis,

the local mechanical equilibrium σij,j(~x) = 0 reads:

Cijkluk,lj(~x)− ϕij,j(~x) = 0

ϕij(~x) = Cijklε
p
kl(~x)

∀~x ∈ Vs (3.45)

where the polarization tensor ϕij is here associated to the plastic strain εpij. Assuming

the mechanical fields are periodic in the three spatial directions and denoting ~ξ the

(frequency) coordinate on the Fourier space, the equilibrium equation (3.45) in the
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Fourier space writes:

Cijklξlξjûk(~ξ) + ϕ̂ij,j(~ξ) = 0 (3.46)

where û and ϕ̂ denote the Fourier transforms of the displacement field ~u and the

polarization tensor ϕ defined in the real space, respectively. From there, the dis-

placements in the Fourier space can be obtained as:

ûi(~ξ) = −Ĝik(~ξ)ϕ̂kl,l(~ξ)

Ĝik(~ξ) = [Ckjilξlξj]
−1

∀~ξ 6= ~0 (3.47)

where Ĝik(~ξ) denotes the periodic Green’s function expressed in the Fourier space,

whose expression is valid for general anisotropic elasticity. Further, using the small

strain compatibility equation (2.3), the strain ε̂ij(~ξ) can be directly computed in the

Fourier space as:

ε̂ij(~ξ) =
1

2

(
ûi,j(~ξ) + ûj,i(~ξ)

)
=

1

2

(
ξlξjĜik(~ξ) + ξlξiĜjk(~ξ)

)
ϕ̂kl(~ξ)

∀~ξ 6= ~0 (3.48)

where the property of the spatial derivative in the Fourier space expressed in (3.18)

has been used. From expression (3.48), the following quantity can be introduced:

Γ̂ijkl(~ξ) =
1

2

(
ξlξjĜik(~ξ) + ξlξiĜjk(~ξ)

)
∀~ξ 6= ~0 (3.49)

The fourth-order tensor Γ̂ijkl denotes the modified Green’s function in the Fourier

space, whose expression in the real space has already been introduced in equation

(3.36). With expressions (3.48) and (3.49), the total strain in the Fourier space is

simply written as:
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ε̂ij(~ξ) = Γ̂ijkl(~ξ)ϕ̂kl(~ξ)

ε̂ij(~0) = 0

∀~ξ 6= ~0 (3.50)

where condition ε̂ij(~0) = 0 is enforced by the numerical choice for the modified Green’s

function at the null frequency Γ̂ijkl(~0) = 0, for which the Green’s function is not

defined (the consequence of this choice will be discussed in the following). For DDD-

FFT simulations in which the primary volume is discretized into a regular three-

dimensional grid of Ni voxels {~xd} in each direction i = {1, 2, 3}, the polarization

tensor ϕ(~xd) related to the plastic strain via equation (3.45) can be determined

at every grid point ~xd in the real space through the DCM procedure described in

Section 3.2.1. Consequently, its discrete Fourier transform ϕ̂(~ξd) at corresponding

discrete frequencies ~ξd required in the calculation of ε̂(~ξd) in equation (3.50) can be

easily computed via the use of the FFT algorithm. Conversely, the FFT algorithm

can be used to compute the inverse discrete Fourier transform of ε̂(~ξd). Note that

the solution obtained from taking the inverse Fourier transform of equation (3.50)

gives the fluctuations from the mean strain 〈ε〉, where symbol 〈·〉 denotes the spatial

average over the primary volume Vs. Therefore, by imposing the condition ε̂(~0) = 0

on the average strain in equation (3.50), the corresponding strain field ε(~xd) in the

real space is obtained by:

εij(~xd) = FFT −1
(
ε̂ij(~ξd)

)
+ Eij (3.51)

where FFT −1 denotes the inverse discrete Fourier transform operation performed

with the FFT algorithm andE = 〈ε〉 corresponds to the average imposed macroscopic

strain. With this approach, the primary volume can be regarded as being periodically

replicated in all spatial directions and immersed in the material bulk subjected to a

macroscopic strain E.
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Besides, note that the formulation in (3.51) is given for a simulation driven in

strain. The simulation can be alternatively driven in stress by substituting the im-

posed value of the macroscopic strain E in equation (3.51) with its resultant when

imposing a macroscopic stress Σ as:

Eij = [Cijkl]
−1 Σkl + 〈εp〉ij (3.52)

3.4.1.2 Stress and segment force calculations

From equation (3.51), the stress field at each grid point ~xd is directly obtained from

the compatible strain using the constitutive law:

σFFT (~xd) = C : (ε(~xd)− εp(~xd)) (3.53)

With this formulation, the stress field obtained with the FFT-based approach σFFT (~xd) =

σint(~xd) + σext(~xd) encompasses both the contributions of the dislocations elastic

stress field and the stresses arising from the imposed loading conditions without re-

dundancy. Further, by performing a simple interpolation between the grid points,

the total stress state can be obtained at every point ~x in the simulation volume. Of

particular interest, the total stress can be readily obtained along every dislocation

segments such that the Peach-Kohler force ~f
pk

ij in equation (2.55) can be determined.

However, as mentioned in Section 3.2.2, the grid does not account for short-range

interactions when using the DCM approach. As a result, a local contribution must

be added to the stress in equation (3.53) when computing the Peach-Koehler force

along dislocation segments whose neighbors are closer than h/2, such that the Peach-

Koehler force is readily expressed as:

~f
pk

ij =

∫ ~xj

~xi

Ni(~xij)
[(
σFFT (~xij) ·~bij

)
×~tij

]
|d~x|+ ~f

loc

ij (3.54)

where ~f
loc

ij denotes the local force arising from the supplementary local interactions,
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Figure 3.3: Schematic of portions of neighbor segments that must be accounted for
as supplementary local interactions. Red sub-segment kl corresponds to the portion
of neighbor segment mn whose distance to segment ij is closer than h/2. End points
~xk and ~xl can be analytically determined by computing the intersections between
segment mn and (1) the finite cylinder of radius h/2 and of axis ~tij bounded by
normal planes at ~xi and ~xj, and (2) the two half spheres of radius h/2 centered in ~xi
and ~xj.

and all other quantities in (3.54) have the same meaning as that used in Section

2.5. By considering all portions kl of neighbor dislocation lines whose distance to

dislocation segment ij is smaller than h/2, the local force can be expressed as:

~f
loc

ij =
∑
kl

~f
kl

ij (3.55)

where ~f
kl

ij denotes the interaction force between segment ij and sub-segment kl de-

fined between end nodes ~xk and ~xl. As depicted in figure 3.3, sub-segments kl cor-

respond to portions of neighbor dislocation segments mn included in the union of

spheres of radius h/2 centered in ~x when ~x spans dislocation segment ij, i.e. for

~x = (1 − s)~xi + s~xj, s ∈ [0, 1]. In order to avoid any computational burden associ-

ated with numerical integration, the determination of sub-segments kl is analytically

performed by computing the intersections between (1) the finite cylinder of axis ~tij

and bounded at s = 0 and s = 1, and (2) the two half spheres of radius h/2 cen-

tered in ~xi and ~xj, respectively. With that, the local force ~f
kl

ij can be computed by

integration of the analytical stress induced by segment kl along segment ij given by

Mura formula (2.14), or by the non-singular formulation for isotropic elasticity [5],
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as described in Section 2.5.3. Naturally, the calculation of the Peach-Koehler force

via expression (3.54) resembles that used in the regular DDD approach when using a

long-range approximation method, such as the Box Method or the FMM (see Section

2.9.2.1). However, it is important to keep in mind that the definition of short-range

interactions is not the same in both approaches. Specifically, the value of the regu-

larization parameter h, which will be discussed in Section 3.6.1, is on the order of the

mesh size in DCM approach, and does not depend on the segment discretization size.

This implies that for fine grid resolutions, the calculation of short-range interactions

generally does not scale with O(N2
nei), since only few local interactions are needed to

be evaluated. Further, in contrast with the Box Method and the FMM, no approxi-

mation is made for the calculation of long-range stress fields, and the latter comes at

the same computational cost for isotropic and anisotropic elasticity.

3.4.1.3 Coincidence with analytical stress expressions

Note that the local force ~f
kl

ij on segment ij cannot be directly obtained by integration

of the stress induced by segment kl as expressed in (2.63), but requires an extra

factor, for which a justification and an expression are given in the following. As

mentioned earlier, the stress field σFFT in equation (3.53) obtained with the FFT-

based approach encompasses both the contributions of the applied loading and the

internal stress fields induced by the presence of dislocation lines within the simulation

volume Vs and its replica. By definition, for any arbitrary dislocation configuration,

the stress obtained with equation (3.53) for E = 0, i.e. in the case where no loading

is imposed, corresponds to the internal stresses produced by the dislocation segments

in an infinite periodic free medium. Therefore, let us denote σE=0(~x) the stress

obtained in (3.53) by the DDD-FFT method under no applied loading. An important

characteristic of the present FFT-based formulation is that the internal stress field

σE=0 is not expected to coincide with the Mura-based solution σ̃int that would be
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obtained for the same load-free microstructure. Here the Mura-based solution σ̃int

refers to the solution used in regular DDD simulations in which the stress field is

obtained by superposition of the stresses induced by individual dislocation segments

and their images using the line integral formula (2.14) or the non-singular approach

developed by Cai et al. [35] (the non-singular formulation is based on Mura formula

and matches it outside of the dislocation cores). As pointed out in Section 3.3.3, this

difference finds its origin in the fact that the imposed loading does not have the same

physical meaning in both approaches: in the FFT-based formulation, the loading is

prescribed by fixing the value of the average strain E = 〈ε〉 (or stress) corresponding

to a macroscopic loading. Thus, a load-free microstructure in the DDD-FFT approach

corresponds to a microstructure for which E = 〈ε〉 = 0 is imposed, which is not the

case when using the Mura-based formulation. In other words, the boundary value

problem is not solved for the same boundary conditions in both approaches. As

a result, since the only difference between both approaches lies in the value of the

average total strain, the stress field σE=0 obtained with the FFT-based approach for

an arbitrary microstructure differs from the analytical solution σ̃int by a constant

translation tensor σ such that:

σE=0(~x) = σ̃int(~x) + σ , ∀~x ∈ Vs (3.56)

Note however that the Mura-based and the FFT-based solutions would coincide for a

microstructure yielding 〈εp〉 = 0. The condition 〈εp〉 = 0 physically manifests by the

presence of a dipolar configuration: in that case, 〈σ̃int〉 reduces to 0 in the analytical

solution, and as a result 〈ε̃〉 = C−1 : 〈σ̃int〉 + 〈εp〉 = 0 would match the FFT-based

solution for 〈ε〉 = E = 0. With that in mind, it follows that σE=0 and σ̃int are

not expected to coincide during a DDD-FFT simulation, since the evolution of an

arbitrary microstructure does not yield 〈εp〉 = 0 in general.

Consequently, for the sake of consistency, both the stress obtained in equation
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(3.53) and the Mura-based stress must coincide when computing the supplementary

local contribution for segments whose interaction distance is smaller than half of the

regularization parameter h. In other words, σ must be determined for the superpo-

sition in expression (3.54) to remain valid. Since the translation tensor σ is constant

and hence does not depend on the spatial position on the grid, it can be easily cal-

culated by comparing σE=0 and the Mura-based stress solution σ̃int at any arbitrary

point ~x in the simulation volume. Therefore, in the current formulation, the determi-

nation of σ requires the computation of the analytical stress solution at one arbitrary

point in the volume at each simulation step. As a result, a translation force must be

accounted for in the calculation of the local force, such that ~f
kl

ij in equation (3.55) is

decomposed as:

~f
kl

ij = ~̃f
kl

ij + ~f
kl

ij (3.57)

where ~̃f
kl

ij , denoting the Mura-based nodal force for the pair of segment ij defined

between end points ~xi and ~xj and sub-segment kl defined between end points ~xk and

~xl, is given from expression (2.63) by:

~̃f
kl

ij =

∫ ~xj

~xi

Ni(~xij)
[(
σ̃kl(~xij) ·~bij

)
×~tij

]
|d~x| (3.58)

for which a non-singular analytical expression is given in [5] for isotropic elasticity,

and ~f
kl

ij is the constant translation force given by:

~f
kl

ij =

∫ ~xj

~xi

Ni(~xij)
[(
σ ·~bij

)
×~tij

]
|d~x| = 1

2
lij

[(
σ ·~bij

)
×~tij

]
(3.59)

where lij denotes the length of segment ij. When dealing with anisotropic elasticity,

nodal force ~̃f
kl

ij in equation (3.58) can be obtained using recent efficient methods

based on spherical harmonics expansions [12] (see Appendix B.2) or by numerical

integration of the anisotropic stress field σ̃kl given in equation (2.14) [108].
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3.4.1.4 Perspectives

In this section, equations (3.45) to (3.52) establish a complete framework to couple

the DCM model presented in Section 3.2 with the very efficient FFT-based solver.

As discussed in Section 3.7, such coupling allows for substantial gains in computation

time with respect to both the DCM-FEM and the regular approaches. However,

besides the prohibitive cost of the FEM procedure, two other important features

pertaining to the original DCM approach were pointed out in Section 3.2.2. The

first one was related to the expensive regularization procedure involving a numerical

integration. To tackle this burden, a fully analytical regularization procedure has

been developed and is presented in Section 3.6.1. The other point was related to the

accuracy of the DCM model. As mentioned earlier, the history-dependent formulation

may lead to an accumulation of errors during the simulation, leading the resulting

stress state to eventually depart from the actual dislocation configuration. Obviously,

replacing the FEM procedure with a spectral solver has no effect on this behavior,

which is inherent to the DCM. Although a quantification of the numerical accuracy

of the DCM method is difficult to evaluate in general, it is not expected to become

a major issue as long as the regularization procedure remains accurate. However, to

overcome this potential issue, an alternative DCM spectral method is proposed here.

First, recall that the history-dependent formulation of the DCM model lies in that

the plastic strain εp directly results from the accumulated motion of dislocations over

the time. Such is not the case in the regular DDD approach since the stress state

is calculated at each step from the actual spatial position of dislocations. Precisely,

the same could be done in the DCM by adopting a linear elastic model so as to

directly regularize the dislocation field tensor α associated with the spatial position

of dislocation segments. As a matter of fact, the definition of the Burgers vector ~b

associated with a closed dislocation line L is given in Section 2.2.1 by:
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bi =

∮
C
dui =

∮
C
ui,jdxj (2.1 repeated)

where C denotes any circuit irreducibly enclosing the dislocation line. By using the

definition of the distortion βji = ui,j introduced in equation (2.7) and applying Stokes’

theorem, definition (2.1) may be rewritten as:

bi =

∮
C
βjidxj =

∫
S

ekljβji,ldSk ≡
∫
S

αkidSk (3.60)

where S denotes the surface spanning the contour C and eijk is the permutation

tensor. In equation (3.60), ekljβji,l = αki provides an expression for the dislocation

tensor α = curl β [131, 72, 180]. Further, the Burgers vector ~b can be defined as an

integral over the same surface S as [139]:

bi =

∫
S

bitkδ(~L)dSk (3.61)

where ~t is the line tangent to the dislocation line L whose position is located by vector

~L and δ(~L) is the two-dimensional delta function in the plane perpendicular to ~L.

Since the circuit C to define ~b is arbitrary, the integrands in (3.60) and (3.61) are

necessarily equals, such that one obtains:

αki = bitkδ(~L) (3.62)

Thus, by regularizing the dislocation tensor α whose components are given in (3.62)

on the Fourier grid, the boundary value problem (3.10)–(3.13) would lead to a Poisson-

type equation in which the elastic constitutive law is given as σij = Cijklβkl, where β is

the elastic distortion. Such problem, that can be solved using a FFT-based method,

would constitute a direct dynamical extension of the Field Dislocation Mechanics

(FDM) whose solution for the static formulation was recently implemented using a
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spectral approach [26, 20]. Further, by adopting the Stokes-Helmholtz decomposition

of the distortion so as to differentiate between the compatible and the incompatible

parts, it is expected that the resort to the translation stress σ in (3.56) could be

eliminated. Note finally that such formulation would become very similar to that

used in the Level set method, where the elastic stress fields of the dislocation network

are computed using (3.62), but in which the positions of dislocation lines are defined

by the intersection of higher-order surfaces [262].

Finally, independently of the formulation used, the principal limitation of the

present DDD-FFT approach lies in its prerequisite to deal with fully periodic simu-

lations, i.e. with simulations for which PBC are prescribed in all spatial directions.

In other words, the present formulation of the DDD-FFT approach cannot be used

to simulate bounded simulations in which free surfaces are to be accounted for. How-

ever, the recent development of spectral methods to account for the effects of free

surfaces [252] may be adapted to the DDD-FFT approach as a way to overcome the

limitation associated with the periodicity. Implementing these is beyond the scope of

the present work, and shall be undertaken in a separate study.

In the rest of this chapter, the validity of the DDD-FFT approach is first as-

sessed by application to static and dynamic cases, and the method’s ability to treat

elastic anisotropy is demonstrated. Then, the current formulation is extended to

heterogeneous elasticity in Section 3.5. Finally, the critical aspects of the numerical

implementation of the DDD-FFT model are detailed in Section 3.6 while the perfor-

mance of the approach is investigated and compared with the regular approach in

Section 3.7.
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3.4.2 Application and validation of the approach

In this section, the validity of the DDD-FFT approach is assessed. First, it is ensured

that the internal stresses generated by the presence of one or multiple static disloca-

tion loops in an isotropic medium match the analytical solution. Then, the results

for several anisotropic ratios are investigated so as to assess the inherent ability of

the method to capture the effects of anisotropic elasticity. Finally, the activation of

a Frank-Read source is investigated to ensure the validity of the DDD-FFT approach

in dynamic cases.

3.4.2.1 Static dislocations in isotropic elasticity

As a first validation of the DDD-FFT approach, the stress field obtained for a pris-

matic loop is assessed. For the basis of comparison, the set-up of the simulation

is similar to that taken in reference [234] in which the original DCM-FEM method

was revisited by its authors. The simulation cell is assumed to be fully periodic, i.e.

infinitely replicated in all spatial directions. As depicted in figure 3.4, a prismatic

square loop is introduced at the center of the simulation box. The loop is composed

of four edge segments of length l0 = 1000b with Burgers vector ~b = [010] and such

that ‖~b‖ = b = 0.25nm. The four segments are lying on the (010) plane of a simple

cubic lattice. The prismatic dislocation loop is introduced in the simulation box fol-

lowing the Volterra-like process: two parallel edge segments of same Burgers vector

but opposite line directions are initially introduced at the same position and are then

moved apart along the (010) plane until forming the square prismatic loop (see fig-

ure 3.4(b)). The material is assumed to be elastically isotropic with shear modulus

µ = 51GPa and Poisson’s ratio ν = 0.37. In order for the mesh size Lmesh to be

identical in each direction, the primary simulation volume Vs is taken as a cube with

side L = 0.5µm such that Vs = 0.5µm× 0.5µm× 0.5µm, and discretized into N grid

points in each direction, i.e. for a total of Nvox = N ×N ×N grid points (or voxels).
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Figure 3.4: Set up used for evaluating the stress field of a prismatic loop using the
DDD-FFT approach. Only the primary volume of the periodic simulation is shown
here. (a) The prismatic dislocation loop is composed of four edge segments of length

l0 = 1000b with Burgers vector ~b = [010] and lying on the (010) plane. The loop is
initially positioned at the center of the simulation box of side length L = 0.5µm. (b)
The prismatic loop is introduced in the simulation following the Volterra-like process:
two initial vertical edge segments with same Burgers vector ~b = [010] but opposite
line directions are introduced at position x = 0. One of the segments is then held at
its original position while the second segment is moved apart at a distance l0 on the
(010) plane thereby creating the closed prismatic loop. The blue arrows indicate the
line direction of each segment.

The resulting stress field obtained for the prismatic dislocation loop through this

process is compared to the analytical solution obtained with the non-singular formu-

lation of Cai and co-workers [35]. Figure 3.5 shows the σ23 component of the resulting

stress fields on a (100) slice taken at the center of loop (x = L/2) for a Fourier grid

made of 64× 64× 64 voxels. The oscillations observed in figure 3.5(b) pertain to the

well-known Gibbs phenomenon associated with spectral methods: this phenomenon

occurs in taking Fourier transforms of discontinuous fields. Because of the discon-

tinuities in the plastic strain field induced by dislocation motion – the glide of a

dislocation segment produces a jump in the displacement field across its slip plane,

see Section 2.2 –, the undesirable Gibbs effect is to be expected.

In order to tackle this undesirable effect, several approaches have been recently
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Figure 3.5: σ23 shear component of the stress field of a prismatic loop along a
(100) slice taken at position x = L/2 (see figure 3.4(a)) obtained: (a) using the
analytical solution, (b) using the DDD-FFT approach with a grid of 64 × 64 × 64
voxels. Numerical oscillations pertaining to the Gibbs phenomenon are occurring,
and (c) using the DDD-FFT approach with a grid of 64 × 64 × 64 voxels and by
spreading the regularized plastic strain over 3× 3× 3 voxels. Numerical oscillations
are removed and the dislocation core spreads as a result.

proposed. For instance, an approach based on a numerical spreading was proposed

in the work of Brenner et al. [26]. In their two-dimensional implementation of static

field dislocation mechanics, the authors proposed to spread any dislocation density

α defined at a pixel across its neighboring pixels and studied the effect of different

distribution schemes. It was found that spreading the core of a dislocation over 3× 3

pixels using a triangular distribution was sufficient to strongly attenuate the oscilla-

tions produced from Gibbs phenomenon. As another approach, the use of discrete

gradient operators in the Fourier space has provided an efficient manner to attenuate

the oscillations [259, 20]. In addition, such approach has been reported to substan-

tially accelerate the convergence of iterative heterogeneous spectral methods [258].

Extensive details on the different solutions for the removal of the Gibbs oscillations

are presented in Appendix G.1. In the rest of this section, a method based on a

numerical spreading is used, while the approach based on discrete gradients will be

presented in details in Section 3.5 when introducing the iterative schemes associated

with the heterogeneous DDD-FFT formulation.
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Figure 3.6: Evolution of the σ23 shear component of the stress field of a prismatic
loop along the green line showed in the inset. In this frame, the origin of the y-
axis is aligned with the position of the dislocation core. (a) Comparison between the
analytical solution and the DDD-FFT approach with and without numerical spreading
for a grid of 64× 64× 64 voxels. (b) Comparison between the analytical solution and
the result obtained with the DDD-FFT approach including the numerical spreading
for different grid sizes.

Consequently, a similar numerical spreading as that introduced in [26] is used to

distribute the plastic strain with a 3D triangular distribution over 3×3×3 voxels, for

which details are provided in Appendix G.1.1. Practically, the plastic shear computed

at each grid point from the numerical regularization in equations (3.5) to (3.8) (for

which an analytical alternative procedure is developed in Section 3.6) is distributed

over the 27 neighboring voxels using a triangular distribution. This numerical spread-

ing is somehow analogous to the isotropic core spread introduced in [35], expect that

the core width is related to the mesh size in this case.

The stress field obtained with the spreading is shown in figure 3.5(c). One can

observe that the oscillations have been removed and that the dislocation core is ap-

parently spread as a consequence. For the sake of comparison, the stress component

σ23 is plotted along a line passing through the core of the dislocation, as shown in

figure 3.6(a). While the stress fields obtained with the DDD-FFT approach perfectly

match the analytical solution away from the core, the numerical spreading naturally
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induces a smearing out in the vicinity of the core. Nevertheless, oscillations as shown

in figure 3.5(b) are not acceptable in DDD – the stress constitutes the driving force

of dislocation segments – and must be eliminated. In other words, if such numerical

oscillations were present in the resulting stress field, they would inevitably propagate

throughout the motion of dislocations, thus leading to non-physical behaviors, and

eventually provoking the collapse of the whole simulation.

In line with the examination of the numerical accuracy of the method, the effect

of the grid resolution is plotted in figure 3.6(b) for grids ranging from resolutions of

16 × 16 × 16 to 128 × 128 × 128 voxels. As expected, a finer grid produces more

accurate results as we approach the dislocation core. In addition, a finer mesh will

induce a smaller spatial spread of the dislocation core. Besides, it must be recalled

that from the DCM procedure, the stress field in the vicinity h/2 of the core of a

dislocation cannot be accounted for by the mesh [234], such such that solely the the

long-range stress is plotted in figure 3.6. Obviously, providing a careful numerical

implementation, the analytical solution in figure 3.6 is recovered in the vicinity h/2

of the dislocation core when adding the supplementary local short-range contribution

to the long-range stress computed with the DDD-FFT approach for all resolutions.

Furthermore, the validity of the DDD-FFT approach must be assessed when mul-

tiple dislocations are present in the simulation. To this end, the stress field produced

by a dislocation dipole is examined. The prismatic dislocation dipole is created by si-

multaneously introducing two prismatic loops of opposite Burgers vectors. To ensure

that the procedure will be valid in a more general context, the two prismatic loops

forming the dipole are positioned in between grid points, respectively at distances

d = Lmesh/4 and d = 3Lmesh/4 according to the frame depicted in figure 3.7(a). The

resulting stress field shown in figure 3.7(b) is seen to perfectly match the analytical

solution given in [35] away from the direct vicinity of the dislocation cores. This
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Figure 3.7: (a) Schematic of the positioning of the two prismatic dislocation loops

of opposite Burgers vectors ~b = [010] forming a dislocation dipole. (b) Comparison
of the evolution of the σ23 shear component of the stress field of a prismatic dipole
along the green line showed in the inset between the analytical solution and the result
obtained with the DDD-FFT approach for a resolution of 128× 128× 128 voxels. In
this frame, the origin of the y-axis is taken at the middle of the two dislocation loops.

example assesses the ability of the FFT-based technique to achieve direct superposi-

tion of the mechanical fields of distinct dislocations, hence validating the DDD-FFT

approach to simultaneously handle multiple dislocations.

3.4.2.2 Anisotropic elasticity

As detailed in Section 3.4.1, solving for the mechanical equilibrium in the Fourier

space enables for the direct use of the periodic Green’s function through its definition,

expressed in equation (3.26) and valid for general anisotropy. Therefore, computing

the exact stress state – outside of the direct vicinity of the core – associated with

periodic dislocations in an anisotropic medium comes at no supplementary cost than

for an isotropic medium. In this section the aim is to show the applicability of the

DDD-FFT method developed in this work to the case of anisotropic elasticity.

Several measures on the elastic constants can be associated with the deviation

from elastic isotropy. Among them, the anisotropy ratio defined as:
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Figure 3.8: σ23 shear component of the stress field of a prismatic loop along a (100)
slice taken at position x = L/2 (see figure 3.4(a)) for different anisotropic ratios:
(a) A = 0.5 (b) A = 1 (isotropic case) and (c) A = 7.5. (d) Evolution of the σ23

component normalized with µb/l0 as a function of the distance to the dislocation core.
The results have been obtained for a Fourier grid made of 64× 64× 64 voxels. Note
that the computational cost associated with cases (a), (b) and (c) is identical when
using the DDD-FFT approach.

A =
2C44

(C11 − C12)
(3.63)

is commonly taken as a quantification of the anisotropy of cubic crystals, where

A = 1 is characteristic for isotropy [111]. For the prismatic loop examined in Sec-

tion 3.4.2.1, the isotropic material parameters chosen as µ = 51GPa and ν = 0.37

corresponds to elastic constants of C11 = 247GPa, C12 = 145GPa, and C44 =

(C11 − C12)/2 = 51GPa. In order to provide insights on the current approach’s

ability to treat anisotropic elasticity, the effect of anisotropy ratios on the resulting
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stress of the prismatic loop is compared here. To cover a wide range of possible

departures from isotropy, three different anisotropy ratios have been selected: (a)

A = 0.5 (C44 = 25.5GPa) which would correspond to Nb crystals [111], (b) A = 1

(C44 = 51GPa) corresponding to an isotropic case, and (c) A = 7.5 (C44 = 382GPa)

that is found for α-Fe at high temperatures [12]. The σ23 components of the result-

ing stresses for the configuration depicted in figure 3.4 are reported in figure 3.8.

In comparing figures 3.8(a)-(c), the change in shape of the stress fields induced by

the variation of the anisotropy ratio is clearly visible, as attested by the isocontours

delineated by the thin white lines, going from elliptical-like shape for A = 0.5 to

triangular-like shape for A = 7.5. In figure 3.8(d), where the stresses are normalized

by µb/l0, the increase in the stress magnitude associated with the increase in the

anisotropy ratio is even more apparent.

Of particular interest, note that the computational cost associated with each of

these three cases is identical when using the DDD-FFT approach to compute the long-

range stress fields. Nevertheless, it must be recalled that the DCM procedure requires

the calculation of additional local stress fields in the vicinity h/2 of the core of a

dislocation (see Section 3.4.1). This supplementary contribution is crucial for a proper

treatment of junction formation. In the original DCM procedure, the additional

intensive computational layer associated with the FEM solver is restraining its use

to relatively coarse meshes, thus requiring the computation of a substantial number

of local interactions. Conversely, the efficiency of the FFT-based approach allows

for the use of finer grids, thus significantly reducing the number of local interaction

calculations. Therefore, in the case where the mesh size is chosen sufficiently small

such that a marginal number of local interactions have to be computed, the treatment

of anisotropic elasticity comes at a roughly equivalent cost as for isotropic elasticity.

120



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2000  4000  6000  8000  10000

A
c
ti

v
a
ti

o
n

 S
tr

e
s
s
 τ

a
c

t 
(M

P
a
)

Source length (l0/b)

Frank Read source activation stresses

Normalized Stress

log(l0/b)

τ
a

c
tl

0
/µ

b

Regular DDD

DDD-FFT 32x32x32

DDD-FFT 64x64x64

DDD-FFT 128x128x128

 1

 1.2

 1.4

 1.6

 1.8

 2

 1000  10000

Figure 3.9: Activation stresses τact of Frank Read sources of different length obtained
with the regular DDD approach used in [22] and the DDD-FFT approach for different
grid sizes. In the inset, the activation stresses τact are normalized with µb/l0 and
reported on a logarithmic scale.

3.4.2.3 Dynamic case: Frank-Read source activation

To assess the validity of the approach in dynamic cases, the activation stress of a

Frank Read source is investigated. As mentioned earlier, when using the DCM ap-

proach, all dislocations present in the simulation volume must be introduced as loops

via the Volterra-like process. One simple way to create a realistic initial microstruc-

ture in which dislocation sources are present consists in letting the initial loops relax.

During this process, the formation of junctions creates physical pinning points for dis-

locations, thereby circumventing the necessity of introducing artificial pinning points

as usually employed to initiate terminating dislocation sources.

In this section, for the sake of simplicity, the Frank Read source is artificially

created by immobilizing three of the four edge segments of the prismatic loop depicted

in figure 3.4(a). With this, the only remaining mobile segment will act as an edge

source pinned at its end points. Here, the activation stresses of prismatic loops of

size ranging from l0 = 1000b to l0 = 10000b are examined. The Burgers vector

b = [010] is chosen such that ‖~b‖ = b = 0.3nm and the loops are introduced into
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cubic simulation volumes of sides a = 5l0 discretized into 323, 643 and 1283 grid

points. Only the bottom edge segment is set mobile such that the Frank Read source

is gliding on the (001) plane. The material is assumed to be elastically isotropic

with shear modulus µ = 130GPa and Poisson’s ratio ν = 0.309. In this setting, the

dislocation source is solely driven by the σ23 stress component and produces a εp23

shear. The values obtained for the activation stresses τact when using the regular

DDD code and the DDD-FFT approach are reported in figure 3.9. The results show

that the Frank Read source activates at similar stresses in all cases, thereby assessing

the ability of the present method to deal with dynamics cases. Essentially, obtaining

similar activation stresses as when using the regular DDD method in which internal

stresses are analytically calculated demonstrates the capacity of the present approach

to efficiently capture the evolution of internal stresses directly from the motion of

dislocation segments.

3.5 Heterogeneous FFT-based formulation for DDD

In this section, the spectral method for homogeneous DDD simulations presented in

Section 3.4 is extended to heterogeneous elasticity. First, FFT-based formulations

for composite materials are reviewed, and the DDD-FFT approach for heterogeneous

elasticity is then described in details.

3.5.1 Spectral methods for composite materials

As mentioned earlier, the first use of a FFT-based formulation in continuum me-

chanics was introduced by Moulinec and Suquet as an efficient novel computational

approach to determine the overall and local responses of composites [178, 179]. Es-

sentially, in heterogeneous materials (the notion of heterogeneity is here associated

to the contrast in the elastic properties of a multi-phase material), the fundamental

boundary value problem initially expressed by relations (3.10)–(3.13) becomes:
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σ(~x) = C(~x) : εe(~x) (3.64)

div σ(~x) + ~f(~x) = ~0 (3.65)

~u = ~u ∗ on ∂Vu (3.66)

σ · ~n = ~t
∗

on ∂Vt (3.67)

where the constitutive equation (3.64) and the mechanical equilibrium (3.67) hold at

each material point ~x in the volume. The main difference with the homogeneous for-

mulation lies in the fact that the value of the stiffness tensor C(~x) in the constitutive

law (3.64) is now a function of the spatial position ~x. Consequently, the strategy pre-

sented in Section 3.3.1 for homogeneous elasticity cannot be directly applied since the

expansion of the constitutive law (3.16) in Fourier series will involve a multiplication

of Fourier integrals, such that no expression in the Fourier space similar to equation

(3.19) can be obtained. To circumvent this issue, Moulinec and Suquet proposed to

introduce a reference linear elastic medium with stiffness tensor C0 so as to express

the constitutive law (3.64) as:

σ(~x) = C0 : εe(~x) + (C(~x)−C0) : εe(~x) (3.68)

To retrieve the formalism introduced in Section 3.3.1, constitutive relation (3.68) can

be conveniently written as:

σ(~x) = C0 : εe(~x) + τ (~x)

τ (~x) = δC(~x) : εe(~x)

δC(~x) = C(~x)−C0 (3.69)

where τ (~x) denotes the inhomogeneous polarization tensor and δC(~x) is a fourth-

order tensor quantifying the elastic deviation from the reference medium at each
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material point ~x. Following the same procedure as that detailed in Sections 3.3.1 and

3.3.2 (and neglecting the body force ~f), the solution for the strain field is given by

(see equation (3.35)):

Real space: εe(~x) = −Γ0 ∗ τ (~x) +E = F−1
(
ε̂(~ξ)

)
∀~x ∈ D

Fourier space: ε̂e(~ξ) = −Γ̂
0
(~ξ) : τ̂ (~ξ) = −Γ̂

0
(~ξ) : δ̂C : εe(~ξ) ∀~ξ 6= ~0, ε̂e(~0) = E

(3.70)

where Γ0 is the modified Green’s function associated with the reference medium and

for which an analytical expression in the Fourier space for isotropic elasticity is given

in equation (3.42), and E is the average imposed strain. Relations (3.70) are analo-

gous to the Lippmann-Schwinger equation in quantum mechanics [130]. Specifically,

they provide an implicit expression of the strain εe, requiring the use of iterative

techniques to numerically determine the latter. As a matter of fact, the convergence

associated with the determination of problem (3.70) has been the subject of several

studies, and different iterative schemes have been proposed [179, 81, 168, 177]. In the

general case, it is to be noticed that, provided an appropriate choice for the reference

medium C0, the convergence of (3.70) can always be achieved for finite contrasts.

Further details and comparisons between the different schemes are provided in ref-

erence [177]. In this thesis, the comparison between the schemes and the different

strategies that have been employed to accelerate the numerical convergence will be

given in Section 3.5.3 for the case of heterogeneous DDD-FFT simulations.

3.5.2 FFT-based formulation for heterogeneous DDD

In Section 3.5.1, the spectral formulation for heterogeneous linear elasticity is pre-

sented. However, as mentioned in Section 3.4.1, the stress-strain behavior in DDD-

DCM simulations is governed by an elasto-plastic constitutive law. As a result, the

constitutive mechanical equilibrium is expressed as:
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σ(~x) = C(~x) : (ε(~x)− εp(~x))

σij,j(~x) = 0

∀~x ∈ Vs (3.71)

where the constitutive law is linearized by regarding the plastic strain εp, computed

using the DCM approach, as a constant input of the FFT-based solver at each sim-

ulation time step. Following the procedure presented in the previous section and the

introduction of a reference medium defined by C0, the stress can be expressed as:

σ(~x) = C0 : ε(~x) + τ (~x)

τ (~x) = δC(~x) : ε(~x)−C(~x) : εp(~x) (3.72)

where δC(~x) has the same definition as in (3.69). In addition to its expression in

the linear elastic case, the polarization tensor τ (~x) accounts for the constant product

of the stiffness tensor and the plastic strain. By comparison with its expression

(3.45) in the homogeneous case, the polarization tensor – previously denoted ϕ(~x)

– is augmented by the product δC(~x) : ε(~x) accounting for the inhomogeneous

elasticity distribution. Therefore, following the approach developed by Moulinec and

Suquet, the total strain field resulting from the presence of dislocation lines within

an elastically heterogeneous DDD simulation volume can be obtained as:

Real space: ε(~x) = −Γ0 ∗ τ (~x) +E = F−1
(
ε̂(~ξ)

)
∀~x ∈ D

Fourier space: ε̂(~ξ) = −Γ̂
0
(~ξ) : δ̂C : ε(~ξ) + Γ̂

0
(~ξ) : C0 : ε̂p(~ξ) ∀~ξ 6= ~0, ε̂(~0) = E

(3.73)

Naturally, given that the plastic strain distribution is constant at each time increment,

the same iterative schemes as those developed in the linear case can be applied to

numerically solve for the total strain implicitly expressed in relations (3.73). However,

it is to be noted that the convergence associated with iterative methods to solve for
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(3.73) is now expected to depend on both the elastic contrast between the phases

– which is expected to be constant for a given simulation – and the distribution of

plastic strain – which is directly associated with dislocation motion and therefore

evolves during straining.

3.5.3 Iterative and discrete gradient schemes

The development of numerical schemes to improve the convergence of iterative meth-

ods dedicated to the implicit formulation in (3.70) (and consequently in (3.73)) has

been the subject of many investigations. In this section, the different schemes investi-

gated in this work are presented, while their accuracy and efficiency will be compared

in Appendix G.2. Further, the associated algorithms and their numerical implemen-

tation will be presented in Section 3.6.3.

3.5.3.1 Heterogeneous iterative schemes

When initially introduced by Moulinec and Suquet, a simple scheme, usually referred

to as the basic scheme in the literature, was proposed to solve for the heterogeneous

linear elastic spectral formulation (3.70) [179]. When applied to the elasto-plastic

DDD-FFT formulation (3.73), the basic scheme can be written as:

εi+1(~x) = −Γ0 ∗ [δC : εi −C : εp] (~x) +E (3.74)

where εi+1 denotes the value of the total strain at iteration i + 1, and where the

first term is initialized as ε0(~x) = E. Essentially, the basic scheme follows from

a Neumann series expansion and is numerically analogous to a fixed-point method.

As will be detailed in Section 3.6.3 when discussing the numerical implementation

of the heterogeneous DDD-FFT method, at each iteration of the basic scheme, the

convolution in (3.74) is directly calculated as a multiplication in the Fourier space

using the FFT algorithm, after which the polarization tensor is calculated back in the
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real space using an inverse FFT so as to iterate on real values of εi+1. Although not

apparent provided its simplicity, the convergence of the basic scheme was established

for finite contrasts, and it has further been established that the optimality of the

convergence rate is tied to the choice of the reference medium [168]. Thus, for an

isotropic medium, the optimal choice is mathematically given for:

κ0 =
1

2

(
κmin + κmax

)
µ0 =

1

2

(
µmin + µmax

)
(3.75)

where κ = λ + 2/3µ is the elastic bulk modulus, and where superscripts min and

max denote the minimum and maximum values of the constants among the different

phases. This choice comes down to select the reference medium as the arithmetic

mean of the extremum elastic constants associated with the phases. To the author’s

knowledge, no study has allowed to determine the optimal reference medium choice in

the case of general anisotropy, and it would be assumed that conditions (3.75) can be

extended to all elastic constants. Further, in elastic isotropy, a conservative measure

of the contrast K between the phases can be given by:

K = max

(
κmax

κmin
,
µmax

µmin

)
(3.76)

The simplicity of the basic scheme comes at the cost of a rather slow convergence

rate. Thus, when K is sufficiently large, the number of iterations N to reach conver-

gence scales with K. Furthermore, convergence is not ensured in the case of infinite

contrasts.

To improve the convergence rate, Eyre and Milton suggested an accelerated scheme

based on a series expansion of an extended Green’s operator [81]. This scheme,

originally devised for current conductivity problems, was latter extended to elasticity

by Michel et al. [168]. In the case of the elasto-plastic DDD-FFT framework (3.73),
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the accelerated scheme can be formulated as [168, 258]:

εi+1(~x) = εi(~x) + 2
(
C +C0

)−1
: C0 :

(
E − εi(~x)− Γ0 ∗ [δC : εi −C : εp] (~x)

)
(3.77)

As a result, a better convergence is obtained than with the basic scheme since the

number of iterations N required has been demonstrated to be proportional to
√
K

[168]. For this scheme, the optimal choice for the reference medium in elastic isotropy

is given by:

κ0 =
√
κminκmax

µ0 =
√
µminµmax (3.78)

i.e. the elastic constants should be chosen as geometric means of the extremum

properties of different phases. Incidentally, note that along with the introduction of

the accelerated scheme, Eyre and Milton suggested a grid refinement technique so as

to accelerate the convergence rate by progressively seeking the solution on grids with

increasing resolutions [81]. However, as for the basic scheme, the convergence of the

accelerated scheme is not ensured for infinite contrasts. To overcome this limitation,

other approaches such as the augmented Lagrangian scheme [168] have been proposed

but are not detailed here. An exhaustive review can be found in reference [177].

As an alternative numerical approach, Zeman and co-workers proposed to solve

for the inhomogeneous FFT-based formulation (3.73) using the conjugate-gradient

method [267]. In the case of an elasto-plastic behavior, the homogenization problem

(3.73) can be rewritten as:

ε(~x) + Γ0 ∗ [δC : ε] (~x) = Γ0 ∗ [C : εp] (~x) +E

⇔ A (ε(~x)) = B (εp(~x),E) (3.79)
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where A(ε(~x)) is a non-linear function of the unknown total strain distribution ε(~x)

to solve for, and B (εp(~x),E) is a constant function of the plastic strain distribution

and the imposed loading. Thus, system (3.79) can be regarded as a system of equa-

tion Ax = b that can be solved numerically using the conjugate gradient method.

Although form A cannot be expressed explicitly – specifically because it includes a

convolution –, the conjugate gradient method can be employed as it solely requires to

be provided with a method to compute product Ax for any given x. In that sense, the

conjugate gradient method can be used to solve for non-linear systems of equation

A(x) = b, as long as an explicit formulation of function A(x) is known. In the context

of formulation (3.79), function A(X) is given for all X as:

A(X) = X + Γ0 ∗ [δC : X] (3.80)

whereX represents any vector whose rows are formed by the components of a second-

order tensor associated with each voxel of the grid. Mathematically, the convergence

of the conjugate gradient method requires a symmetric positive-definite matrix A.

Despite the non-trivial functional form of A(X) in (3.80), successful applications of

the conjugate gradient method have been reported in [267, 27, 28]. For non-symmetric

matrices, the biconjugate gradient method making use of the conjugate transpose A∗

can be used.

As for the basic and accelerated schemes, the efficiency of this method stems from

the use the FFT algorithm to compute the convolution in equation (3.80) at each

iteration of the conjugate gradient method. Note that the faster converging biconju-

gate gradient stabilized method can also be employed, but requires two evaluations

of form A(X) per iteration when only one is needed in the regular conjugate gra-

dient. As a result, although a better convergence is generally obtained, the gain in

the convergence rate must be balanced with the increase in the numerical cost. In

the case where non-linear behaviors are to be considered, such as to consider the
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plastic strain εp(ε) as a function of the strain (or stress), a non-linear extension of the

conjugate-gradient scheme has been recently proposed [104]. However, as discussed

in Section 3.4.1, the plastic strain at each simulation step of DDD-FFT approach is

considered as a constant input of the FFT-solver, such that the mechanical behavior

in problem (3.73) is linearized. By default, values (3.75) are used for the reference

medium. At this point it must also be mentioned that the conjugate-gradient method

to solve for inhomogeneous FFT-based formulations was simultaneously introduced

in the energetic variational framework based on the Hashin and Shtrikman principle

developed by Brisard and co-workers [27, 28].

As any iterative methods, the three numerical schemes presented above generate a

sequence of improved approximated solutions for the total strain field ε. The iterative

process is then stopped when a satisfactory approximation of the solution is obtained.

To define this, several criteria can be used. In this work, convergence is assumed to

be reached when two successive iterations i and i+ 1 produce results such that:

‖εi+1 − εi‖ ≤ εtol (3.81)

where εtol is the convergence precision. Other convergence tests such as to compare

the deviation from the mechanical equilibrium may be employed [177].

In this work, the two traditional approaches, namely the basic and accelerated

schemes, and the conjugate-gradient method – all three methods presented above –

will be employed and compared.

3.5.3.2 Discrete gradient schemes

Very recently, the introduction of discrete gradient operators in the Fourier space

has permitted significant additional enhancements in the convergence of the iterative

schemes. The principle of the discrete derivatives is as follows. If one considers a sin-

gle Fourier mode ei
~ξ·~x, its exact derivative with respect to the j-th spatial coordinate
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is given by iξj × ei~ξ·~x. However, a discrete approximation can be used, such that the

derivative is replaced by kj(~ξ) × ei~ξ·~x where ~k(~ξ) is called the effective wavenumber

associated with the discrete gradient operator. Thus, in a discrete Fourier representa-

tion, the compatibility equation εij = 1/2(ui,j + uj,i) and the mechanical equilibrium

σij,j = 0 are expressed as [258]:

ε̂ij(~ξ) =
1

2

(
kj(~ξ)ûi(~ξ) + ki(~ξ)ûj(~ξ)

)
σ̂ij,j(~ξ) = k∗j (~ξ)σ̂ij(~ξ) = 0 (3.82)

where ~k
∗
(~ξ) is discrete divergence operator corresponding to the complex conjugate

of ~k(~ξ). In the case of a centered-scheme (C), one has:

kCi (~ξ) = i sin(ξi) (3.83)

that is obtained from the following spatial finite difference approximation:

f,i(~x) =
f(~x+ ~δi)− f(~x− ~δi)

2δi
(3.84)

where ~δi is the unit voxel vector in the i-th direction whose magnitude δi corresponds

to the spacing between subsequent voxels in the i-th direction. For a backward

difference scheme (W), the discrete gradient operator is expressed as:

kWi (~ξ) = eiξi − 1 (3.85)

which corresponds to the backward differentiation formula given by:

f,i(~x) =
f(~x)− f(~x− ~δi)

δi
(3.86)

The primary valuable consequence following the use of discrete gradient operators

is the acceleration of the convergence rates that is observed [258] (see Appendix
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G.2). Although its origin results from several factors, the resort to discrete schemes

generally produces more accurate local field responses. However, the efficiency of

the different methods is specific to the application, and it would be difficult to draw

general conclusions on the superiority of one scheme with respect to the others. For

instance, while the backward scheme estimates the derivatives more locally than the

centered scheme, it also breaks the symmetry and may therefore be inappropriate

for certain problems where the symmetry must be respected. Very recently, Willot

proposed a new discretization scheme referred to as the rotational scheme (R) [258].

The core idea of this discretization lies in evaluating the displacement fields at the

corners of each voxel, while calculating the stress and strain at the center of the voxels.

The direction joining each corner of a voxel to its center forms a 45◦–rotated basis with

respect to the original frame, hence the name of this scheme. In a three-dimensional

setting, the resulting discrete gradient operator (R) is obtained as [258]:

kRi (~ξ) =
i

4
tan

(
ξi
2

)(
1 + eiξ1

) (
1 + eiξ2

) (
1 + eiξ3

)
(3.87)

From relations (3.82), the general form of the new discrete modified Green’s operator

is obtained as:

Γ̂ijkl(~ξ) =

{
kj(~ξ)

[
km(~ξ)Ckmink

∗
n(~ξ)

]−1

k∗l (~ξ)

}
sym

, ∀~ξ 6= ~0 (3.88)

where the only difference from its original continuous counterpart expressed in (3.37)

follows from the use of complex conjugates in the effective wavenumbers. This results

from the fact that when using discrete differentiations, the gradient operator may lose

its pure imaginary character. As a matter of fact, when setting

ki(~ξ) = iξi (3.89)

in expression (3.88), the continuous modified Green’s operator (3.37) is recovered.
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In addition to accelerating the heterogeneous iterative schemes, the use of discrete

gradients has been reported to further attenuate the spurious Gibbs oscillations asso-

ciated with FFT-based methods. The effects of the different operators presented in

this section on the Gibbs oscillations are fully discussed in Appendix G.1.2.

3.5.4 Validation of the heterogeneous DDD-FFT approach

Assessing the validity of the heterogeneous DDD-FFT framework developed in this

work includes two major aspects: (1) the validation of the solution fields obtained

for heterogeneous elasto-plastic problems, and (2) the investigation of the accuracy

of the discrete and iterative schemes presented in Section 3.5.3.

The first aspect cannot be validated directly since, to the author’s knowledge, no

analytical solution exists for elasto-plastic problems in heterogeneous elasticity, and

current simulation techniques do not offer sufficient accuracy to establish a trustful

comparison. As a result, the heterogeneous formulation has been validated for elastic

problems, for which analytical solutions are available and comparisons with other

numerical works are feasible. For such purpose, and to incorporate the examination of

the discrete and iterative schemes independently, an incremental validation approach

has been used. Thus, the accuracy of the discrete gradient schemes have been first

investigated for the case of a static dislocation loop in an homogeneous medium.

Details and results related to this aspect are provided in Appendix G.1.2. Then, the

validity of the solution of elastic problems in heterogeneous media has been assessed,

and the impact of the discrete and iterative schemes on the convergence rate has been

investigated. Full details are provided in Appendix G.2.

Consequently, by virtue of the superposition principle – the plastic strain distribu-

tion is considered as a constant input of the elastic Lippmann-Schwinger problem in

the heterogeneous DDD-FFT formulation, see equation (3.73) –, independent valida-

tions of the homogeneous elasto-plastic (see Section 3.4.2) and heterogeneous elastic

133



formulations demonstrate the validity of the heterogeneous elasto-plastic DDD-FFT

method. Application of the heterogeneous DDD-FFT approach, i.e. when accounting

for the presence of dislocations in heterogeneous elastic media, will be presented Sec-

tion 5.2 when investigating the interactions between dislocations and second-phase

particles.

3.6 Numerical implementation

Although the development of the DDD-FFT method may appear as relatively simple

from the formulations given in Sections 3.4.1 and 3.5.2, its numerical implementation

requires special care and involves several challenges. As already stated, one of the

main challenges associated with spectral methods lies in the treatment of the spurious

numerical oscillations pertaining to the Gibbs effect, and whose sole presence would

inevitably result in the collapse of DDD-FFT simulations. Although such aspect has

been one of the principal difficulties to be addressed during the development of the

DDD-FFT model, the different solutions that were implemented have already been

presented in Sections 3.4.2 and 3.5.3, and are extensively discussed in Appendix G.1.

Therefore, they are not further presented in this section.

Consequently, the focus of this section is placed on the implementation of a novel

analytical regularization approach to replace the prohibitive original DCM regulariza-

tion procedure, and on the coupling between the regular DDD framework developed in

this work and presented in Chapter 2 and the FFT-based solver for homogeneous and

heterogeneous elasticity. Particular attention will be given to the strategy adopted for

the parallel computing implementation, while the development of a GPU-accelerated

version of the DDD-FFT method is presented in Appendix G.4.

3.6.1 Analytical regularization procedure

While the use of a FFT-based solver has permitted to remove the burden associated

with the first aspect, the cost of the numerical regularization procedure as originally
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introduced by its authors would have certainly prevented the DDD-FFT method

to become competitive with regular DDD simulations. Therefore, a new efficient

analytical regularization procedure is developed in this work.

Following the DCM method described in Section 3.2.1, the plastic shear dγ ~pij

produced by the glide of a dislocation segment ij with Burgers magnitude b can be

regularized at each grid point ~p according to equation (3.7) as:

dγ ~pij =
6b

πh3
dS ~p

ij =
b

Ve
dS ~p

ij (3.7 repeated)

where Ve = πh3/6 is the volume of the elementary spherical sheared volume dφ(~x) of

radius h/2. In refrence [234], the computational cost of the regularization procedure

stems from the the numerical integration procedure employed to determine quantity

dS ~p
ij . Thus, as indicated by equation (3.6), the value of the incremental surface dS ~p

ij

is numerically determined by discretization of the total glide area dAij produced by

motion of dislocation segment ij into elementary areas dS, such that:

dS ~p
ij =

∫
dAij

χ(~p,~x)d~x (3.6 repeated)

where χ(~p,~x) is the characteristic function associated with dS(~x) when ~x spans the

area swept by dislocation segment ij, and that takes value 1 when integration point

~p lies into dφ(~x), 0 otherwise (see figure 3.2). In addition to its cost, the original

regularization procedure is also limited to the case of trapezoidal glide areas associ-

ated with segment-based discretization approaches in which dislocation segments do

not rotate in their slip plane, and would therefore not be applicable to nodal DDD

representations.

Therefore, in this thesis, an alternative analytical method to perform the integra-

tion in equation (3.6) that should be suitable for general dislocation motions in nodal-

based discretization schemes – i.e. compatible with rotation of dislocation segments
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in their slip plane – is proposed. The main idea behind this alternative regulariza-

tion procedure results from the observation that computing dS ~p
ij is mathematically

equivalent to computing the intersection between the sphere dφ(~p) of radius h/2 cen-

tered at integration point ~p and the quadrilateral defined by the segment sheared

area defined in figure 3.1(a). In the formulation, ~p now refers to the position of any

point of the Fourier grid. From a purely geometrical perspective, the intersection

between a sphere and a quadrilateral reduces to an in-plane intersection between a

circle – resulting from the intersection between the sphere and the plane containing

the quadrilateral – and the quadrilateral itself. As result, the contour of such in-

tersection is exclusively composed of a succession of straight segments and arcs, as

depicted in figure 3.10. Following that, dS ~p
ij can be analytically computed by line

integration using Green’s theorem:

dS ~p
ij =

1

2

∮
C~pij

(−ydx+ xdy) (3.90)

where C~pij denotes the closed contour defined by the intersection between the quadri-

lateral defined by the motion of segment ij and the sphere dφ(~p) centered in grid point

~p, and x and y are the coordinates spanning the contour in the two-dimensional frame

defined in the dislocation glide plane. Full details on the Green’s theorem and on the

derivation of equation (3.90) are provided in Appendix G.3. For a closed contour

formed of n successive straight segments and arcs, expression (3.90) can be further

decomposed as the summation of individual line integrals (see figure 3.10(b)):

dS ~p
ij =

∣∣∣∣∣
n∑
k=1

1

2

∮
Ck

(−ydx+ xdy)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

ICk

∣∣∣∣∣ (3.91)

where {Ck}k=1,n denotes the piecewise continuous set of individual curves defining

the entire contour C~pij, and where the absolute value is taken so as to avoid dealing

with the difficulty associated with the orientation of the contour. For any straight
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Figure 3.10: (a) Example of the intersection between the area swept by a dislocation
segment ij gliding on plane with unit normal ~n and the elementary sphere dφ(~p) of
radius h/2 centered in grid point ~p. The intersection between the sphere dφ(~p) and
the glide plane of the dislocation results in a circle of radius reff =

√
h2/4− d2 and of

center ~pn where ~pn is the orthogonal projection of ~p onto the dislocation plane such
that ~p− ~pn = d~n. (b) The intersection area dS ~p

ij (shaded region) can be analytically
calculated using Green’s theorem by following the oriented contour composed of the
straight segments 12, 23 and 34, and the arc 4̂1.

segment Ck defined between vertices (x0, y0) and (x1, y1), the line integral ICk along

this segment can be analytically derived from equation (3.90) as:

IsegCk =
1

2
(x0y1 − y0x1) (3.92)

Similarly, for any arc Ck defined as a portion of a circle of radius r centered in (xc, yc)

and delimited by end vertices (x0, y0) at angle θ0 and (x1, y1) at angle θ1 (assuming

θ1 > θ0), the line integral ICk along this arc can be analytically derived from equation

(3.90) as:

IarcCk =
1

2

[
r2(θ1 − θ0) + xc(y1 − y0)− yc(x1 − x0)

]
(3.93)

Thus, expressions (3.92) and (3.93), for which derivations are given in Appendix

G.3.1, provide fully analytical solutions to compute the intersection area dS ~p
ij with

equation (3.91), provided that the individual pieces {Ck}k=1,n forming the contour

C bounding region dS ~p
ij are determined. Such contour is constructed by ordering

and joining the quadrilateral vertices and the circle-quadrilateral intersection points
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through straight segments and arcs (see figure 3.10(b)). Note that this contour can

be directly obtained by using computational geometry libraries such as CGAL [42].

In the present work however, the numerical algorithm presented in Appendix G.3.2

is implemented.

With that, the amount of shear produced by each dislocation segment at every

voxel ~p of the Fourier grid can be calculated. However, as discussed in Section 3.2.1,

a critical aspect of the regularization procedure in terms of validity and the accuracy

is the value of the regularization parameter h. In the novel analytical formulation

proposed in this work, this translates by the fact that the value of dS ~p
ij is a direct

function of h, as h corresponds to the diameter of the elementary sphere dφ(~p) asso-

ciated with each grid point ~p such that it defines the effective radius reff (see figure

3.10). In the current implementation, the value of h must be chosen such that the

union of the spheres associated with every grid point at least maps the entire simu-

lation volume. In other words, care must be taken to ensure that the entire sheared

area produced by any dislocation segment intersects with elementary spheres, such

that the total plastic strain produced is entirely transferred to the mesh. In other

words, this issue is related to the concept of partition of unity.

With that, the minimum acceptable value for any regular three-dimensional mesh

of size Lmesh (i.e. for which the distance between two consecutive grid points is Lmesh

in each direction) is h =
√

3Lmesh (see figure 3.11). Note that for such value of h,

an overlap between the elementary spheres exists, resulting in a smearing out of the

plastic strain, i.e. in a loss of accuracy. While in [147], the value h = 3/2Lmesh has

been determined to be optimal and the same value has been used in [234], the analyt-

ical regularization procedure introduced in the present work induces a dependency of

dS ~p
ij on the position of the dislocation line with respect to the grid (this will be shown

later in figure 3.13). If the dislocation core is perfectly aligned with grid points (red

dislocation line in figure 3.11), the obtained stress field is similar to the analytical
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Figure 3.11: Slice in the (yz) plane of a dislocation segment ij shearing the volume
in the (xz) plane. The red dislocation segment is aligned with grid point ~p while
the blue segment is away from a distance d. (a) For h = L = Lmesh the union of
all elementary spheres centered in grid points does not map the entire volume. As
a result, the plastic shear induced by the blue dislocation segment ij is not entirely
transferred to the mesh, leading to inaccurate results. (b) For h =

√
3Lmesh the union

of all elementary spheres maps the entire volume, such that the entire plastic strain
is transferred to the mesh. However, the overlapping between the elementary spheres
results in a smearing out of the plastic strain that needs to be corrected for.

solution; however inaccuracies occur when the dislocation core lies in between two

grid points (blue dislocation line in figure 3.11). For this reason, in the following, we

propose a method to correct the plastic shear distribution depending on the position

of the dislocation with respect to the grid.

According to the description of the regularization procedure, the position depen-

dency of the regularized plastic strain may originate from two sources: (1) the overlap

between contiguous elementary spheres, and (2) the evolution of the regularized plas-

tic strain as a function of the distance between the grid points and the dislocation

core. Recall from equation (3.7) that if Ve = πh3/6 is the volume of the elementary

sphere dφ(~p) of radius h/2 around each grid point, the shear dγ ~pij induced by the

glide of dislocation segment ij at grid point ~p is writes:
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dγ ~pij =
6b

πh3
dS ~p

ij =
b

Ve
dS ~p

ij (3.7 repeated)

where dS ~p
ij is the intersection area defined in figures 3.10 and G.9. To circumvent

the first source of position-dependency, let us use an elementary volume such that

the union over all grid points exactly maps the simulation volume, without inducing

any overlapping. As illustrated on figure 3.12, only an elementary volume chosen

as a square box of side a = Lmesh would satisfy such a mapping. With a square

box, the plastic strain dγ ~pij induced by a dislocation segment ij entirely shearing the

elementary box (centered at grid point ~p) along the (xz) plane would amount to:

dγ ~pij =
bL2

mesh

L3
mesh

=
b

Lmesh
= dγrefij (3.94)

This result is simply obtained from equation (3.7) with dS ~p
ij = L2

mesh and Ve = L3
mesh

for a dislocation segment entirely shearing a square box of side length Lmesh. However,

as depicted in figure 3.12(a), with such elementary volume, a red dislocation segment

aligned with a grid point ~p will yield the same plastic strain dγ ~pij at point ~p as a

blue dislocation segment positioned at a distance d from the grid point, since the

intersection area dS ~p
ij = L2

mesh is the same in both cases. In other words, using

elementary square boxes leads to disregard the spatial positioning of the dislocation

core for any dislocation lying at distance ±d from a grid point. This issue is precisely

related to second source of position dependency, namely the evolution of dγ ~pij with

respect to the distance d from the grid point ~p. Note that for the rest of this section,

dγrefij as defined in equation (3.94) will denote the reference amount of regularized

plastic shear required to obtain an exact stress field for any red dislocation aligned

with the grid, i.e. for which d = 0.

However, a linear interpolation of the plastic shear with respect to the distance

d between the dislocation plane and the grid point (0 < d < Lmesh) is seen to
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Figure 3.12: Schematic of two dislocation segments shearing the volume along the
(xz) plane. The red dislocation segment is aligned with grid point ~p while the blue
segment is positioned at a distance d from grid point ~p, hence at distance Lmesh − d
from the subsequent grid point ~q. (a) When the elementary volumes associated to
each grid point are chosen to be square boxes of side a = Lmesh, the simulation
volume is entirely mapped and no overlapping is present. However both red and
blue dislocation segments would induce the same plastic shear dγ ~pij = b/Lmesh (see
equation (3.94)) at grid point ~p, such that the spatial positioning of the dislocation
core is not properly accounted for. (b) A linear interpolation of the shear strain
distribution with respect tot he core position can be achieved by using diamond-
shaped elementary volumes. However such shape is not directly extensible in three
dimensions and would produce inaccurate results for tilted dislocations in the (yz)
plane.

yield correct stress field values (this will be later shown in figure 3.13). Such linear

interpolation between two successive grid points can be illustrated by the use of

diamond-shaped elementary volumes as depicted in figure 3.12(b). For the sake of

clarity, when considering a linear interpolation, a blue dislocation segment located

at a distance d from grid point ~p – and consequently at distance Lmesh − d from

subsequent grid point ~q – yields a plastic strain dγ ~pij = (Lmesh − d)/Lmesh · dγrefij at

point ~p and dγ ~qij = d/Lmesh ·dγrefij at point ~q. Note that, as required, a red dislocation

segment located at d = 0 from grid point ~p yields dγ ~pij = dγrefij and dγ ~qij = 0. However,

the elementary volume illustrated in figure 3.12(b) is only depicted in the (yz) plane

and is not straightforwardly extensible to the three-dimensional space. Furthermore,

the procedure would collapse for any dislocation segment tilted on the (yz) plane, as
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the cross-sectional area of such shape is not solely a function of the distance d from

its center, but also of the orientation of the intersecting plane. With that in mind, it

seems inevitable that the shape of the elementary volume should be a sphere. This

is because partitioning the volume with spheres is the sole choice that would ensure

that the method remains valid regardless of orientation of the dislocation glide plane.

Using expression (3.7) and considering a sphere of radius r fully sheared, the evolution

of dγ ~pij (d) as a function of the distance d to grid point ~p can be expressed as:

dγ ~pij (d) =
bπr2

eff

(4/3)πr3
=
b(r2 − d2)

(4/3)r3
(3.95)

where reff =
√
r2 − d2 denotes the effective radius of the circle resulting from the

intersection between the elementary sphere dφ(~p) and the glide plane of the dislo-

cation, as depicted in figure 3.10. Clearly, when using a sphere as the elementary

volume, dγ ~pij (d) is not a linear function of d. However, it can be corrected such that

dγ ~p,corrij (d) becomes a linear function of d. To obtain a linear interpolation, such

corrected function must be bounded by dγ ~p,corrij (0) = dγrefij and dγ ~p,corrij (Lmesh) = 0.

In order to fulfill these requirements, the sphere radius can be conveniently chosen as

r = Lmesh, i.e. h = 2r = 2Lmesh. With that, expression (3.95) rewrites:

dγ ~pij (d) =
b(L2

mesh − d2)

(4/3)L3
mesh

(3.96)

The linear interpolation with respect to d is obtained for 0 < d < Lmesh if and only if

dγ ~p,corrij (d) = (Lmesh − d)/Lmesh · dγrefij . Using equation (3.96) and denoting c(d) the

correction function defined such that dγ ~p,corrij (d) = c(d) · dγ ~pij (d), one can write:

dγ ~p,corrij (d) = c(d) · dγ ~pij (d) =
Lmesh − d
Lmesh

dγrefij (3.97)

Finally, using the definitions of dγrefij and dγ ~pij (d) from equations (3.94) and (3.96),

the correction function c(d) can be determined from equation (3.97) as:
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c(d) =
4

3

(L2
mesh − Lmeshd)

(L2
mesh − d2)

(3.98)

Essentially, equation (3.97) states that for h = 2Lmesh, the plastic strain increment

dγ ~pij produced by any dislocation shearing the spherical elementary volume dφ(~p)

needs to be corrected by a position dependent factor c(d) whose expression is given

in equation (3.98).

To assess the validity of this correction, the stress field of the prismatic loop

depicted in figure 3.4 is compared to the analytical solution when the loop is positioned

at three different locations with respect to the grid. The three positions chosen for

the dislocation loop lying on the (010) plane are illustrated in figure 3.13(a) and the

resulting stress fields obtained with and without the correction are reported in figure

3.13(b). As attested by the dashed lines, it clearly appears that the resulting stress

field deviates from the analytical solution depending on the position of dislocation

with respect to the grid when the correction introduced in equations (3.97) and (3.98)

is not accounted for. Conversely, the resulting stress fields superimpose irrespective

of the position in the grid and converge towards the analytical solution when the

plastic shear transfer is corrected, as shown by the solid lines.

With such correction in the regularization procedure, the DDD-FFT approach is

found to provide an exact match with the analytical solution for the stress field of dis-

location segments, irrespectively of their position and orientation on the Fourier grid,

as attested in Section 3.4.2. Therefore, the diameter of the elementary spheres asso-

ciated with every grid point is set to h = 2Lmesh in the DDD-FFT approach and the

regularized plastic strain computed with expressions (3.7) and (3.91) is systematically

corrected with equations (3.97) and (3.98).
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Figure 3.13: (a) Schematic of the different tested positions for the (010) prismatic
dislocation loop with respect to the Fourier grid. Two consecutive grid points ~p
and ~q are separated by the mesh size distance Lmesh and the red, blue and green
dislocation segments introduced as depicted in figure 3.4 are positioned at distances
d = {0, Lmesh/4, Lmesh/2} from grid point ~p, respectively. (b) Effect of the correction
on shear component σ23 of the stress field of a prismatic loop along the green line
showed in the inset as a function of the dislocation position with respect to the Fourier
grid made of 64× 64× 64 voxels.

3.6.2 Homogeneous FFT-based implementation

With respect to the regular DDD framework developed in Chapter 2, the main changes

to be implemented in the DDD-FFT method pertain to the calculation of the stress

state associated with the microstructure. Thus, (1) the regularization procedure,

(2) the FFT-based solver and (3) the calculation of nodal forces are the principal

components that must be implemented or modified. Furthermore, apart from the

development and the implementation of the analytical procedure detailed in Section

3.6.1, the numerical implementation of the homogeneous DDD-FFT approach does

not involve major difficulties.

The main difficulty associated to the development of the FFT-based solver relates

to the removal of the Gibbs oscillations, whose implementation is fully discussed in

Appendix G.1. In contrast, the numerical implementation of the FFT-based approach

is straightforward and is described in the following. First, the primary simulation

volume is discretized into a regular grid of Nvox = N1×N2×N3 voxels with coordinates
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{~xd}d=1,Nvox . Although some discrete Fourier transforms formulations allow for non-

regular grids, the discretization must be here chosen such as to ensure that each voxel

are cubes, i.e. that the spacing Lmesh = li = Vi/Ni between the center of subsequent

voxels is identical in all directions i = {1, 2, 3}, where Vi is the size of the volume in

the i-th direction. Besides the FFT requirement, this condition is also required when

spherical elementary volumes of radius Lmesh are used in the regularization procedure.

Thus, when li are different for i = {1, 2, 3}, ellipsoids with principal axes of length

li should be used and a corresponding overlapping correction should be developed,

which is out of the scope of this work. Furthermore, to ensure full computational

efficiency, the number of voxels in each direction must be chosen as powers of 2. Any

choice for Ni that is not a power of 2 will induce a significant drop in the performance

of the FFT algorithm. Therefore, it must be noted that the requirements on the

numerical discretization of the primary volume induce constraints on its size.

Once an appropriate discretization is chosen for the simulation volume, the plastic

strain produced by the glide of dislocations can be calculated via the regularization

procedure described in Section 3.6.1. When initializing a simulation, the initial dislo-

cation loops are introduced using a Volterra-like process described in Section 3.4.2.1

and illustrated in figure 3.4(b). In this process, the area swept corresponding to the

entire domain enclosed by the dislocation loop is simply transferred to the mesh with

the regularization procedure such that the initial plastic strain is computed. Obvi-

ously, in general, the swept area may intersect several elementary spheres, and the

intersection should be computed independently for each of them. Numerically, the

regularization procedure is therefore a O(NsegNvox) procedure, since the intersection

between the sheared area produced by each segment and the sphere associated with

each voxel must be theoretically calculated. However, many of these intersections

will be empty as dislocation segments are localized and their size is usually signifi-

cantly smaller than the size of the simulation volume. Therefore, to avoid testing for
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all possible intersections, solely the intersections between the sheared area and the

spheres lying within the bounding box of the sheared area are calculated. With this,

the computational complexity of the regularization is reduced to O(Nseg), and it is

ensured that no intersection will be missed such that the plastic strain will be entirely

transferred to the mesh. To ensure good scalability of the DDD-FFT approach, this

procedure is further parallelized. To achieve optimal load balance among the CPUs,

dislocation swept areas are distributed across the processors based on the number of

voxels comprised in their bounding boxes.

Once the regularization procedure has been performed for all dislocation seg-

ments, the plastic strain distribution {εp(~xd)}d=1,Nvox is known at each voxel ~xd. At

this stage, the FFT algorithm is used to compute the discrete Fourier coefficients

{ε̂p(~ξd)}d=1,Nvox such that the total strain {ε̂(~ξd)}d=1,Nvox can be calculated in the

Fourier space from equation (3.50) as:

ε̂(~ξd) = Γ̂(~ξd) : C : ε̂p(~ξd)

ε̂(~ξd = ~0) = 0

∀ voxel ~ξd (3.99)

where ε̂(~ξd), ε̂
p(~ξd) and Γ̂(~ξd) denote the total strain, plastic strain and modified

Green’s function tensors in the Fourier space at voxel ~ξd. Then, the FFT algorithm is

used a second time to compute the resulting total strain distribution {ε(~xd)}d=1,Nvox

in the real space (see equation (3.51)). In turns, the sequence of operations performed

in one time step of the DDD-FFT approach is listed in figure 3.14.

In figure 3.14, the FFT and FFT −1 operators denote the discrete Fourier trans-

forms and inverse discrete Fourier transforms that are performed using the FFT

algorithm. Details on the calculation of the Fourier coefficients and on the FFT

algorithm are given in Appendix F. Obviously, the performance of the DDD-FFT

approach is tied up to its numerical implementation and to the choice of the FFT

library. In this work, the FFTW library is used [94]. In steps iv(b) and iv(d) of figure
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(i) Compute nodal forces ~F (σ(~xd))

(ii) Integrate dislocation motion and determine swept areas

(iii) Regularize plastic strain εp(~xd)

(iv) Compute new stress state σ(~xd) using the FFT solver

(a) ϕ(~xd) = C : εp(~xd)

(b) {ϕ̂(~ξd)} = FFT ({ϕ(~xd)})

(c) ε̂(~ξd) = Γ̂(~ξd) : ϕ̂(~ξd)

(d) {ε(~xd)} = FFT −1
(
{ε̂(~ξd)}

)
+E

(e) σ(~xd) = C : (ε(~xd)− εp(~xd))

Figure 3.14: General algorithm describing the main stages composing one time step
of the homogeneous DDD-FFT approach.

3.14, the FFT computation of tensors ϕ and ε̂ is performed independently for each

component. Thus, given the symmetry, a total of 2× 6 three-dimensional FFTs need

to be performed at each time step.

The computation of each FFT in steps iv)(b) and iv)(d) has a complexity of

O(Nvox logNvox), while that of the calculation of the total strain in iv)(c) scales

with O(Nvox). However, the prefactor of step iv)(c) associated with the numerical

evaluation of the modified Green’s operator Γ̂(~ξd) (81 components) and the double

dot product Γ̂(~ξd) : ϕ̂(~ξd) exceeds O(logNvox) in general, so that step iv)(c) amounts

to more flops than the FFTs. For isotropic elasticity, step iv)(c) can be alleviated.

Recall that in the Fourier space, the expression of the modified Green’s operator

Γ̂(~ξd) is given from equation (3.49) as:

Γ̂ijkl(~ξd) =
1

2

(
ξlξjĜik(~ξd) + ξlξiĜjk(~ξd)

)
∀~ξd 6= ~0 (3.100)

where Ĝik(~ξd) = [Ckjilξlξj]
−1 is the Green’s function. When using discrete gradient

operators, its expression is given by equation (3.88). In the case of isotropic elasticity,
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the polarization tensor in step iv)(a) is expressed as:

ϕ̂ij(~ξd) = λδij ε̂
p
qq(~ξd) + 2µε̂ pij(

~ξd) (3.101)

where λ and µ are the Lamé constants, and an analytical expression of the modified

Green’s operator is given by equation (3.42) as:

Γ̂ijkl(~ξd) =
(δikξlξj + δilξkξj + δjkξlξi + δjlξkξi)

4µξ2
− (λ+ µ)ξiξjξkξl

µ(λ+ 2µ)ξ4
(3.42 repeated)

Therefore, the total strain in step iv)(c) can be directly obtained as:

ε̂ij(~ξd) =

(
λ

µξ2

(
1− (λ+ µ)

(λ+ 2µ)

)
ε̂ pqq(~ξd)−

2(λ+ µ)

(λ+ 2µ)ξ4
ξkξlε̂

p
kl

)
ξiξj

+
1

ξ2

(
ξlξj ε̂

p
il(
~ξd) + ξlξiε̂

p
jl(
~ξd)
)

(3.102)

such that the cost of the full numerical evaluation of Γ̂(~ξd) and of the product Γ̂(~ξd) :

ϕ̂(~ξd) can be reduced. However, such analytical result cannot be obtained for general

anisotropy. As a result, another strategy to reduce the computational time is used.

The remarkable property of the modified Green’s operator is that it solely depends

on the elastic stiffness tensor C of the medium and on the voxel to which it is

associated. Therefore, it can be precomputed at the beginning of each simulation

for each voxel and stored in the memory, or recomputed at each time step for each

voxel. Although at first sight a precomputation may appear as the most efficient

approach, the benefit that can be obtained strongly depend on the architecture and

hardware capacities. Thus, when running simulations on desktop computers, the cost

of computing Γ̂(~ξd) at each time step is usually lower than that of storing the Γ̂(~ξd)

tensor (81 components in general) and accessing the memory. In this work, it is

seen that an optimal computational efficiency is obtained when storing the Green’s

function Ĝik(~ξd) (9 components) for each voxel and recomputing the modified Green’s
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operator on the fly from equation (3.100).

On top of its efficiency, the FFTW library offers a parallel implementation. In

the regular DDD code, the parallel implementation has been primarily devised to

distribute segment-segment elastic interactions among CPUs (see Section 2.9.3). Al-

though the computation of segment-segment elastic interactions is reduced to a min-

imum in the DDD-FFT approach, a fully parallel implementation is desirable, as a

non-parallel FFT-solver will dramatically affect the overall performance of the code.

In the parallel FFTW library, a slab decomposition technique is used, whereby the

3D primary discretized volume is decomposed into Ncpu layers in one of the spatial

directions, where Ncpu is the number of CPU to be used. With this procedure, each

CPU only needs to know the field values at the voxels lying in its slab. Similarly, after

the FFT is computed, each CPU can solely access the values of the Fourier coefficients

associated with the voxels contained in its slab. However, since the quantities in the

Fourier space are independent from one another – the frequencies are only associated

with the voxels – each CPU can perform step iv)(c) in figure 3.14 in a fully parallel

manner. As a result, the parallel implementation of the DDD-FFT is expected to

scale well, provided that the FFTW library offers a good scalability. Since the par-

allel FFT algorithm involves numerous point-to-point communications, the overall

scalability is highly dependent on the hardware capabilities and configuration.

Regarding memory usage, a minimum of two real-valued and one complex-valued

arrays of size 6Nvox are required. Following the history-dependent character of the

DCM approach, one real-valued array must be dedicated to contain the plastic strain

distribution {εp(~xd)}d=1,Nvox . The other real-valued array can be used to sequentially

store {ϕ(~xd)}d=1,Nvox , {ε(~xd)}d=1,Nvox and {σ(~xd)}d=1,Nvox values, while the complex-

valued array is used to contain {ϕ̂(~ξd)}d=1,Nvox and {ε̂(~ξd)}d=1,Nvox distributions in

the Fourier space.
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To further accelerate the DDD-FFT method and fully exploit the benefits asso-

ciated with the FFT algorithm, a GPU-accelerated version of the FFT-based solver

has been developed in this work, for which implementation details are provided in

Appendix G.4

3.6.3 Heterogeneous FFT-based implementation

The implementation of the heterogeneous DDD-FFT approach share most of the

developments introduced in the homogeneous DDD-FFT framework implementation

detailed in Section 3.6.2. The main modification lies in the implementation of the

basic, accelerated and conjugate-gradient iterative schemes in place of the direct FFT-

based solver used in Section 3.6.2.

When dealing with heterogeneous elasticity, the first step consists in defining the

reference medium C0. For isotropic elasticity, the elastic constants can be chosen

as those reported in equations (3.75) and (3.78) for the basic and the accelerated

schemes, respectively. Following the results obtained in Appendix G.2, it is seen that

the convergence of the conjugate-gradient method is not very sensitive to the choice

of C0, such that any of the previous choices can be used. In the case of anisotropic

elasticity, and to the author’s knowledge, no such optimal values for the reference

medium have been reported in the literature, and, by default, the results obtained in

equations (3.75) and (3.78) are extended to all elastic constants.

Following the iterative formulation of the basic scheme given by relation (3.74),

the computation of the discrete stress distribution σ(~xd) in step iv) in figure 3.14 for

the homogeneous formulation is replaced by the algorithm provided in figure 3.15.

This scheme corresponds to the original implementation proposed by Moulinec and

Suquet [179]. In this work, the convergence test is given by equation (3.81) and is

performed on the value of the total strain εi+1 such that step A)(a) is optional and

step B)(e) only needs to be performed when the convergence criterion is satisfied.
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(iv) Compute new stress state σ(~xd) using the FFT solver

(A) Initialization

(a) ε0(~xd) = E

(b) σ0(~xd) = C(~xd) : (ε0(~xd)− εp0(~xd)) (optional)

(B) Iteration i

(a) τ i(~xd) = δC(~xd) : εi(~xd)−C(~xd) : εp(~xd)

(b) {τ̂ i(~ξd)} = FFT ({τ i(~xd)})
(c) ε̂i+1(~ξd) = −Γ̂

0
(~ξd) : τ̂ i(~ξd)

(d) {εi+1(~xd)} = FFT −1
(
{ε̂i+1(~ξd)}

)
+E

(e) σi+1(~xd) = C : (εi+1(~xd)− εp(~xd))
(f) Convergence test

Figure 3.15: Algorithm to iteratively solve for the stress distribution {σ(~xd)} when
using the basic scheme (3.74) in the heterogeneous DDD-FFT approach. Indices 0,
i and i + 1 refer to the values of the field quantities at iterations 0, i and i + 1,
respectively.

Nevertheless, such criterion implies the usage of a supplementary real-valued array

of size 6Nvox with respect to the homogeneous implementation to store the values of

the total strain field at the previous iteration. Note that other convergence criteria

can be used such as to test for the departure from the mechanical equilibrium [177].

The algorithm for the accelerated scheme is provided in figure 3.16. In contrast

with the basic scheme, the accelerated algorithm involves a supplementary step whose

cost is generally largely compensated by the increase in convergence rate that it

provides (see Appendix G.2). Furthermore, quantity 2
(
C(~xd) +C0

)−1
: C0 can be

precomputed for each phase so as to avoid inverting a fourth-order order tensor at

each iteration for each voxel. Besides, by appropriately using the arrays containing

quantities {ε(~xd)}d=1,Nvox and {σ(~xd)}d=1,Nvox , no supplementary memory usage is

required to store the intermediate quantity {e(~xd)}d=1,Nvox .

The implementation of the conjugate-gradient (CG) method is slightly different
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(iv) Compute new stress state σ(~xd) using the FFT solver

(A) Initialization

(a) ε0(~xd) = E

(b) σ0(~xd) = C(~xd) : (ε0(~xd)− εp0(~xd)) (optional)

(B) Iteration i

(a) τ i(~xd) = δC(~xd) : εi(~xd)−C(~xd) : εp(~xd)

(b) {τ̂ i(~ξd)} = FFT ({τ i(~xd)})
(c) êi+1(~ξd) = −Γ̂

0
(~ξd) : τ̂ i(~ξd)

(d) {ei+1(~xd)} = FFT −1
(
{êi+1(~ξd)}

)
+E

(e) εi+1(~xd) = εi(~xd) + 2
(
C(~xd) +C0

)−1
: C0 : (ei+1(~xd)− εi(~xd))

(f) σi+1(~xd) = C : (εi+1(~xd)− εp(~xd))
(g) Convergence test

Figure 3.16: Algorithm to iteratively solve for the stress distribution {σ(~xd)} when
using the accelerated scheme (3.77) in the heterogeneous DDD-FFT approach. Indices
0, i and i + 1 refer to the values of the field quantities at iteration 0, i and i + 1,
respectively.

from both the previous schemes. Essentially, it consists in implementing the classical

CG algorithm to solve for system Ax = b to the functional system of equations

A(Xd) = B described in equation (3.79), for which an expression of form A(Xd)

is given in equation (3.80). The algorithm developed in this work is presented in

figure 3.17. In contrast with the previous schemes, the CG algorithm requires the

calculation of a convolution in the initialization stage to evaluate the constant right-

hand side term B(~xd) containing the plastic strain distribution εp(~xd). To avoid the

calculation of A(ε0(~xd)) involving a second convolution, the initial value of the total

strain ε0(~xd) is set to 0 at every voxel ~xd. As the CG method has been observed to be

insensitive to the choice of the initial guess in this work, this choice is expected to have

no impact on the convergence rate. Then, the classical algorithm of the CG method

is applied, in which quantity A(P i(~xd)) involving a convolution with the modified

Green’s operator (see equation (3.80)) is calculated in the Fourier space using FFTs.
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(iv) Compute new stress state σ(~xd) using the FFT solver

(A) Initialization

(a) ε0(~xd) = 0

(b) Compute B(~xd) = Γ0 ∗ [C : εp] (~xd) +E

(1) B(~xd) = C(~xd) : εp(~xd)

(2) {B̂(~ξd)} = FFT ({B(~xd)})
(3) B̂(~ξd) = Γ̂

0
(~ξd) : B̂(~ξd)

(4) {B(~xd)} = FFT −1
(
{B̂(~ξd)}

)
+E

(c) R0(~xd) = B(~xd)−A(ε0(~xd)) = B(~xd)

(d) P 0(~xd) = R0(~xd)

(e) σ0(~xd) = −C(~xd) : εp0(~xd) (optional)

(B) Iteration i

(a) Compute Qi(~xd) = A(P i(~xd)) = P i(~xd) + Γ0 ∗ [δC : P i] (~xd)

(1) Qi(~xd) = δC(~xd) : P i(~xd)

(2) {Q̂i(~ξd)} = FFT ({Qi(~xd)})
(3) Q̂i(~ξd) = Γ̂

0
(~ξd) : Q̂i(~ξd)

(4) {Qi(~xd)} = FFT −1
(
{Q̂i(~ξd)}

)
+ {P i(~xd)}

(b) αi =
RTi (~xd)Ri(~xd)

P Ti (~xd)Qi(~xd)

(c) εi+1(~xd) = εi(~xd) + αiP i(~xd)

(d) σi+1(~xd) = C : (εi+1(~xd)− εp(~xd))
(e) Convergence test

(f) Ri+1(~xd) = Ri(~xd)− αiQi(~xd)

(g) βi =
RTi+1(~xd)Ri+1(~xd)

RTi (~xd)Ri(~xd)

(h) P i+1(~xd) = Ri+1(~xd) + βiP i(~xd)

Figure 3.17: Algorithm to iteratively solve for the stress distribution {σ(~xd)} when
using the conjugate-gradient (CG) method (3.79) in the heterogeneous DDD-FFT
approach. Indices 0, i and i+ 1 refer to the values of the field quantities at iteration
0, i and i+ 1, respectively.

As attested by the algorithms provided in figures 3.15, 3.16, and 3.17, the conjugate-

gradient scheme requires more calculations per iteration than the basic and accelerated

schemes. However, these calculations are not very demanding as they only involve
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dot-products and vector additions. Furthermore, the gain in the number of iterations

to reach convergence that it allows largely balances the slightly higher cost associated

with individual iterations. Nonetheless, the main drawback of the CG method lies in

its memory requirements. Thus, compared to the basic and accelerated schemes, three

supplementary real-valued array of size 6Nvox are required to store {P (~xd)}d=1,Nvox ,

{R(~xd)}d=1,Nvox and {Q(~xd)}d=1,Nvox quantities.

Details on the GPU-accelerated implementation of the DDD-FFT heterogeneous

schemes are provided in Appendix G.4

3.7 Performance of the DDD-FFT approach

In this section, the computational performance of the DDD-FFT approach is com-

pared with that of the regular DDD simulation developed in Chapter 2. First, to

overcome the complications associated with the comparison between parallel imple-

mentations, the comparison between both approaches is made on the basis of a single

CPU utilization for homogeneous simulations. Then, the performance of the homo-

geneous and heterogeneous GPU implementations is assessed.

3.7.1 Homogeneous serial implementation

The overall efficiency of the DDD-FFT code primarily results from the use of the

very efficient FFT algorithm to compute the mechanical fields (see Appendix F). For

a DDD simulation volume discretized according to a regular Fourier grid composed

of N voxels in each spatial direction, i.e. for Ntot = N3 total number of grid points,

the complexity associated with the computation of the discrete Fourier transform

and its inverse scales with O(Ntot logNtot) while the computation of the strain field

in the Fourier space as defined in equation (3.50) is a O(Ntot) process. Compara-

tively, a complexity of O(N2
tot) can be achieved in the most favorable case with the

standard 3D FEM (assuming simple linear elements), where Ntot is the total num-

ber of elements, i.e. for comparable resolutions. Obviously, for large values of Ntot,
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Figure 3.18: Evolution of the ratio N2/(N logN) as a function of N in logarithmic
scales. Assuming both complexity prefactors are of the same order of magnitude,
this ratio provides an insight on the difference of the computational cost between
FFT-based and FEM solvers as a function of the mesh resolution.

the difference between Ntot logNtot and N2
tot becomes considerable, hence the gain

in the computation time up to several orders of magnitudes generally attributed to

FFT-based approaches.

Although a direct comparison between the recent implementation of the DCM-

FEM model proposed in [234] and the DDD-FFT approach cannot be made – the

DCM-FEM code is currently not available to the author –, insights on the compu-

tational gain offered by the FFT-based solver with respect to the FEM framework

are provided in figure 3.18. In this figure, the ratio N2/(N logN) is plotted as a

function of N . Considering that the pre-factors are roughly identical in both meth-

ods, this ratio provides a basis of comparison for the gain in computational time that

can be obtained with FFT-based over FEM solvers. For instance, for a resolution of

Ntot = 163, the gain amounts to a factor 500 and for Ntot = 323 it exceeds 3000. For

a resolution of Ntot = 218 = 643 = 1282 pixels/voxels generally used in DDD-FFT, an

equivalent FEM calculation would require about 21000 times the number of flops.
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In parallel, by coupling the FFT-solver with the DCM procedure, the DDD-

FFT approach benefits from the significant reduction in the number of dislocation-

dislocation elastic interaction calculations compared to most of the current DDD ap-

proaches. Thus, in the case where sufficiently fine grids are used, the DDD complexity

is significantly less dependent on the number of dislocation segments Nseg present in

the volume, but more on the number of grid points Ntot, i.e on the resolution. The nu-

merical complexity associated with the DCM procedure alone is a O(Nseg) process re-

quiring considerably less numerical operations than computing dislocation-dislocation

interactions (even with an analytical formulation), since it solely consists in analyti-

cally determining the intersection area between the dislocations sheared area and the

elementary spheres of their neighboring grid points, as detailed in Section 3.6.1. In

the current implementation, the algorithm to compute the intersection areas is able

to process a million intersections in 0.2 seconds. Furthermore, as mentioned earlier,

the computation of supplementary local contributions requires the determination of

pairs of interacting portions of dislocation segments whose distance are closer than

h/2 = Lmesh. The analytical method presented in Section 3.4.1.2 to determine such

portions of segments is implemented so as to process a million segment pairs in 0.5

seconds.

Figure 3.19 shows a comparison of the execution run times per time step as a func-

tion of the number of segments Nseg and of the DDD approach used for a periodic

DDD simulation on an elastically isotropic material. Here, the regular DDD refers

to the version of the DDD code developed in Chapter 2 in which the nodal forces

on neighbor dislocation segments are analytically computed from the non-singular

formulation developed in [35], while the Box Method technique is employed to com-

pute far-field elastic interactions [240] (see Section 2.9.2.1). The computation of the

far-field elastic interactions via the use of the Box Method is performed every 10 sim-

ulation steps. The averaged execution times per simulation step obtained using the
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Figure 3.19: (a) Comparison of the computational cost between regular DDD sim-
ulations and the DDD-FFT approach as a function of the number of segments in
the simulation volume for elastically isotropic materials. The times, averaged over
several simulation steps, are given for the utilization of a single CPU and measured
according to the current implementation of the DDD code. The times of the regular
DDD simulations are given based on the full O(N2

seg) calculation and on the utiliza-
tion of the box method for different number of boxes. The times for the DDD-FFT
approach are given for different grid sizes. (b) Close-up on the computation times
obtained with the DDD-FFT approach for different grid sizes.

regular DDD approach with different number of boxes Nbox are compared to those

obtained with the DDD-FFT approach for different grid sizes Nvox. For the sake of

comparison, the run time corresponding to a full O(N2
seg) calculation is also reported.

For a fair comparison, i.e. not accounting for the complications associated with par-

allel computation, the execution times have been measured in running the code on a

single CPU.

Examination of figure 3.19 clearly shows that the DDD-FFT becomes very efficient

when large numbers of segments are to be treated, hence highlighting the potential

of the approach. Note as well that in order to obtain the same precision with the

regular DDD approach than with the DDD-FFT approach, the Box Method would

have to be performed at every simulation step. In practice, as discussed in Section

2.9.2.1, the calculation of far-field interactions with the Box Method is generally per-

formed at a specified frequency fbox in order to reduce the computation time, taking
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advantage of the fact that the 1/R elastic field of far dislocations is not expected to

drastically change from one time step to another. In the computation times reported

in figure 3.19, fbox = 1/10, i.e. the Box Method is performed every 10 steps. If it

were to be performed at every step, i.e. working with the same precision as with the

DDD-FFT approach, the computation times of the regular DDD method reported

in figure 3.19 would roughly increase by a factor 10. A close-up on the DDD-FFT

computation times as a function of the grid size is given in figure 3.19(b). Inter-

estingly, the computation time associated to the grid made of 32 × 32 × 32 voxels

becomes significantly more important than that of finer meshes as the number of

segments Nseg increase. This is because the number of local interactions becomes

all the more prevalent than the mesh is coarse when Nseg increases. For the same

reason, the computation cost for a grid of 64×64×64 voxels becomes more expensive

than that for 128× 128× 128 voxels for Nseg > 50000 in the current implementation.

Therefore, for optimal performances, the size of the grid should be chosen as a func-

tion of the maximum number of segments to be treated, if such quantity is known

a priori. Alternatively, considering the multiplication of dislocation segments during

DDD simulations, a grid refinement technique may be implemented to dynamically

select the optimal resolution [81]. However, implementing such technique would re-

quire the development of grid interpolation operators so as to accurately transfer the

accumulation of plastic strain between grids of different sizes. For Nseg = 100000,

the computation times for grids of 64 × 64 × 64 and 128 × 128 × 128 voxels remain

under 5 seconds per simulation step, thereby allowing for a gain in time of a factor

up to 30 compared to the regular DDD method when using the Box Method. Finally,

note that for a grid of 256× 256× 256 voxels, the computation time ranges between

9 and 11 seconds according to the number of segments. For that resolution, the FFT

solver alone (including the computation of both Fourier transforms and that of the

strain in the Fourier space) requires about 8 seconds. While the actual computation
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of local interactions is insignificant for such mesh size, the sole search for the portions

of segments closer than h/2 amounts for the rest of the time.

As underlined in Section 2.9.2.1, the more efficient Fast Multipole Method (FMM)

has progressively replaced the Box Method approximation for the computation of

long-range interactions in DDD simulations [148, 5, 270, 263]. Since this technique

has not been implemented in the regular DDD code in this thesis, a direct comparison

is difficult. However, through implementation of their new version of the FMM, Zhao

and co-workers reported a gain of a factor 21 in the isotropic stress calculation when

using the FMM compared to the full calculation for Nseg = 25000 [270]. In the present

work, the gain in the total step time compared to the full calculation amounts to 230

when using the DDD-FFT with 64 × 64 × 64 voxels and to 140 for 128 × 128 × 128

voxels for Nseg = 20000.

Further, the results reported in figure 3.19 are given for simulations using ho-

mogeneous isotropic elasticity. In the case of anisotropic elasticity, the computation

gain is expected to amount to a supplementary order of magnitude, since the overall

cost is expected to be comparable to that of isotropic elasticity for fine meshes. In

contrast, anisotropic calculations are rarely used in regular DDD simulations due to

their prohibitive cost. For instance, in previous works [202, 40, 264], the relative cost

of anisotropic calculations was reported to amount between 200 and 500 times that of

isotropic calculations when numerically integrating the anisotropic Green’s function

given (2.23). However, the recent development of approximations based on expan-

sions in spherical harmonics have permitted significant gains in computational time,

but their efficiency remains largely conditioned by the amount of anisotropy and the

desired level of accuracy, and their relative cost still remains above one order of mag-

nitude [12, 13]. In the case of heterogeneous elasticity, a direct comparison with the

DDD-FFT method and current approaches is more difficult. For bicrystal materials,

line integral solutions for the stress field of dislocation segments have been developed
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[107, 2, 48] and can be used in replacement of the analytical formulation in the regular

DDD framework. However, the cost of their numerical integrations is expected to be

similar to that of line integral anisotropic formulations, and is therefore prohibitive.

In the case of more complex heterogeneous geometries, current techniques solely in-

clude the DCM-FEM approach, whose relative cost with the DDD-FFT approach can

be estimated with figure 3.18.

Finally, note that the times reported here are strongly dependent on the current

numerical implementation and optimizations of the DDD code, as well as on the

software and hardware configurations, and are therefore meant to provide a basis for

comparison. As such, the results reported in figure 3.19 were extracted using a single

Intel Xeon CPU at 3.40 GHz and the Intel Fortran mpiifort compiler.

3.7.2 GPU-accelerated version

In this section, the performance and acceleration provided by the GPU-FFT-solver

developed in Appendix G.4 are assessed for the elastically homogeneous and hetero-

geneous DDD-FFT formulations.

3.7.2.1 Homogeneous FFT-solver

As discussed in Appendix G.4, the GPU-accelerated version of the present DDD-

FFT code is, by lack of time, limited to the development of a GPU-accelerated FFT-

based solver, while the other components of the DDD cycle remain performed on

the CPU(s). Therefore, to first assess the overall acceleration that would be allowed

by the GPU implementation, the relative CPU times associated with three most in-

tensive stages of the DDD cycle – namely the FFT-based solver, the regularization

procedure and the forces calculation – are plotted in figure 3.20(a) for different num-

bers of dislocation segments and different resolutions. In this graph, the relative times

correspond, for each of the three stages, to the ratio of the execution time of each

stage to the total execution time of a single DDD-FFT step executed on a single
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Figure 3.20: (a) Relative CPU execution times of the three main stages of the
DDD-FFT cycle, namely the FFT-solver, the regularization procedure and the force
calculations, as a function of the number of dislocation segments and for different
resolutions. For each stage, the relative time is calculated as the ratio of the execution
time of the stage to the total time per simulation step when executed on a single CPU.
(b) Speed-up factors obtained when running the host DDD-FFT program on a single
CPU and using the GPU-FFT-solver on a GeForce GTS 450 device. The blue lines
correspond to the speed-up factor associated with the FFT-solver alone and the red
lines to the speed-up achieved for the total simulation step.

CPU.

These three main stages, forces calculation, regularization procedure and FFT-

based solver, correspond to stages (i), (iii) and (iv) in the general homogeneous

DDD-FFT algorithm presented in figure 3.14, respectively. When summing the rela-

tive times associated with these three main stages, the value of 1 is nearly reached,

attesting that these three stages together account for most of the computational work

per simulation step. Interestingly, it is observed that when the number of segments

is small (Nseg < 10000), the FFT-solver accounts for most of the computational time

per simulation step. Conversely, as the number of segments increases, the part of the

FFT-solver to the total computational time diminishes, especially due to the increase

in the computational cost of force calculations – here force calculations involve the

interpolation of the stress field from the FFT grid and the computations of the sup-

plementary local contributions, see equation (3.54) –. This is particularly apparent
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for the resolution of 643 voxels for which the computation time associated with the

FFT-solver drops to 5% of the total time, while that of the force calculations rises

to nearly 85% for Nseg = 100000. For a resolution of 1283 voxels, the contrast is less

pronounced as the FFT-solver accounts for half of the execution time while the force

calculations require approximately 30% of the total time per step. As a result, and

since the GPU implementation solely pertains to the FFT-solver, the acceleration al-

lowed by the GPU-accelerated version is expected to be maximal for high resolutions

and small numbers of segments.

The speed-up factors obtained with the GPU-accelerated implementation are re-

ported in figure 3.20(b). As briefly discussed in Appendix G.4, these results and the

associated performance are intrinsically linked to the hardware configuration that is

used. Here, the homogeneous DDD-FFT code is primarily executed on a single Intel

Xeon E31270 CPU at 3.40 GHz using the GNU Fortran 90 gfortran compiler, while

the GPU-FFT-solver is executed on a entry-level GeForce GTS 450 GPU device. This

GPU device features 192 CUDA cores, a graphics clock at 783 MHz, a processor clock

at 1566 MHz, and a memory bandwidth of 57.7 GB/s. In figure 3.20(b), two speed-up

factors are reported. The first, denoted Sfft and plotted with blue lines, corresponds

to the speed-up associated with the FFT-solver only, i.e. the ratio of the execution

times when the FFT-solver is executed on the CPU to that when it is performed on

the GPU, and is given as:

Sfft =
TCPUfft

TGPUfft

(3.103)

where TCPUfft denotes the execution time of the FFT-solver on the CPU and TGPUfft that

when executed on the GPU. From figure 3.20(b), Sfft = 15 for a resolution of 643

voxels, and ranges from 22 to 25 when using 1283 voxels. The quasi-constant value

of the speed-up factor Sfft as a function of the number of segments highlights the

independence of the FFT-solver cost to the microstructure complexity, as attested
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for the resolution of 643 voxels. In the case Nvox = 1283, the increase in the speed-up

factor with the number of segments is linked to the increase in ram page time due

to higher memory usage when executed on the CPU. In the current implementation

and using a GeForce GTS 450, the homogeneous GPU-FFT-solver requires approxi-

mately 0.0366 second per step for 643 voxels and 0.2751 second for 1283 voxels. Note

that for the execution with 643 voxels, 0.0157 second is dedicated to memory copy,

while it amounts to 0.1175 second for 1283 voxels. Therefore, in both cases, 43% of

the homogeneous GPU-FFT-solver execution time is dedicated to memory transfers.

Therefore, both better hardware capabilities in terms of number of CUDA cores and

memory bandwidth will induce higher values of the Sfft speed-up factor reported in

this work.

The second speed-up factor Stot reported with red lines in figure 3.20(b) corre-

sponds to the overall acceleration allowed by the GPU-accelerated FFT-solver for the

DDD-FFT homogeneous formulation. If TCPUtot and TGPUtot denote the total execution

time per step when performing the FFT-solver computation on the CPU or on the

GPU, respectively, Stot is expressed as the ratio:

Stot =
TCPUtot

TGPUtot

≡
TCPUfft + Trem

TGPUfft + Trem
(3.104)

where Trem is the remaining time per step executed on the CPU and associated with

every other stages than the FFT-solver (e.g. including the regularization procedure,

force calculations, etc...). It is seen that the total acceleration Stot decreases with

increasing number of segments, as the FFT-solver accounts for less relative CPU time.

Thus, the overall speed-up factor of 5 for Nvox = 643 when Nseg = 1000 segments

drops to 1.03 when Nseg = 100000. Similarly for a resolution of Nvox = 1283, it falls

from 12 for Nseg = 1000 to 1.91 for Nseg = 100000. However, these results were to

be expected. From equation (3.104), the maximum theoretical overall speed-up Smaxtot

that can be achieved is estimated as:
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Smaxtot =
TCPUfft + Trem

Trem
(3.105)

As a result, for Nvox = 643 and Nseg = 100000, for which the relative CPU time of the

FFT-solver accounts for 5% (see figure 3.20(a)), i.e. Trem accounts for 95%, the max-

imum speed-up that can be achieved is Smaxtot = 1.05. For a resolution of 1283 voxels,

the FFT-solver accounts for 50% of the CPU time, such that a maximum speed-up

of Smaxtot = 2 can be achieved. These nearly correspond to the factors reported in fig-

ure 3.20(b). Consequently, for large numbers of segments, a GPU device with better

performance would not provide any further acceleration, and supplementary gains

necessarily involve running the other stages of the code in parallel or developing a

GPU-implementation of the remaining components. For local force calculations, the

GPU accelerated DDD approach recently developed in [83] can be adopted.

3.7.2.2 Heterogeneous FFT-solver

As detailed in Section 3.5.3 and 3.6.3, the heterogeneous DDD-FFT formulation in-

volves an iterative loop over the FFT calculations (e.g. see figures 3.15 and 3.16).

As a result, the heterogeneous GPU-FFT-solver is expected to yield larger speed-up

factors than for the homogeneous formulation since (1) the relative CPU execution

times of the FFT-solver accounts for a larger fraction of the total execution time,

and (2) the constant cost of the memory transfers to the GPU accounts for a smaller

fraction of the total heterogeneous GPU-FFT-solver execution time.

The speed-up factor Sfft defined in equation (3.103) associated with the heteroge-

neous FFT-solver alone is reported for different numbers of FFT iterations in figure

3.21(a). Thus, when using a GeForce GTS 450 device, the acceleration allowed by

the GPU implementation increases towards an asymptotic value for approximately
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Figure 3.21: (a) GPU speed-up factor associated with the heterogeneous FFT-solver
alone as a function of the number of FFT iterations to reach convergence. (b) Overall
speed-up that can be achieved with the heterogeneous DDD-FFT code in the current
configuration as a function of the number of dislocation segments when 20 iterations
are needed to reach convergence.

Niter = 100 iterations. As pointed out earlier, this increase can be principally at-

tributed to the decreasing fraction of the GPU execution time associated with mem-

ory copy as the number of iteration increases. As such, the overall memory transfers

drop from 43% for Niter = 1 (i.e. homogeneous formation) to 1% of the total FFT-

solver time for Niter = 100, thereby yielding the Sfft speed-up factor to increase by

nearly a factor 2 between Niter = 1 and Niter = 100.

Consequently, the overall speed-up factor Stot defined in equation (3.104) is ex-

pected to exceed that of the homogeneous formulation in all cases for heterogeneous

elasticity. Thus, as reported in figure 3.21(b) for Niter = 20, the overall accelera-

tion provided by the heterogeneous GPU-FFT-solver is more important than that

reported in figure 3.20(b), independently of the resolution and the number of disloca-

tion segments. Specifically, for small numbers of segments (Nseg < 10000), the overall

speed-up factor Stot is very similar to the FFT-solver speed-up Sfft alone. This is

because in this case, the heterogeneous FFT-solver accounts for nearly 100% of the

total CPU time per step. Therefore, in this case, better performance of the GPU
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device is expected to translate into a direct scaling in the overall acceleration that

can be achieved. Nonetheless, as in the homogeneous case – although at a slower rate

–, the overall acceleration drops when the number of segments becomes large. In this

case, other components of the code would benefit from (1) being run in parallel on

several CPUs or (2) receiving a GPU-implementation.

3.8 Conclusion

In this chapter, a new full-field approach to compute mechanical fields in periodic

DDD simulations is presented. The main idea of the DDD-FFT approach relies on the

computation of strains and stresses induced by the presence of dislocation segments in

a periodic simulation volume directly in the Fourier space, while the transformation

between the real Cartesian space and the Fourier space is performed thanks to the

FFT algorithm. To this end, the DDD-FFT approach is coupled with the DCM model

originally developed by Lemarchand and co-workers [147]. As a result, the stress state

calculated in the Fourier grid inherently incorporates long-range elastic interactions

with no distinction between isotropic and anisotropic elastic media. In addition, to

accurately evaluate the stress state associated with the microstructure, the DCM

approach requires the computation of supplementary local dislocation-dislocation in-

teractions than are not accounted for by the grid. The local contributions have to be

added for portions of segment pairs closer than the mesh size Lmesh = h/2 such that

the number of interactions inversely scales with the resolution. Consequently, in the

case where the Fourier grid is chosen to be sufficiently fine such that the computa-

tion of local contributions pertaining to neighbor segments seldom occurs, the gain

in computation time with respect to the regular DDD approach is significant when

a large number of segments are to be treated, and the computational cost become

insensitive to the shape of the elasticity tensor.

From a general perspective, given that the mean spacing of dislocations typically
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scales as λ = 1/
√
ρ where ρ is the dislocation density, and assuming that all disloca-

tion segments are equally spaced within the volume, the number of local contributions

to compute is not expected to be significant up to dislocation densities of ρ = 1/L2.

For instance, for a simulation volume of Vs = (5µm)3 discretized into 64×64×64 vox-

els, the DDD-FFT approach is theoretically expected to perform well up to densities

of ρ = 1014m−2. Thus, simulations on realistic microstructure can be performed on

desktop computers, without requiring a large number of CPUs. Conversely, when the

Fourier grid is coarse, the DDD-FFT approach becomes analogous to a DDD simula-

tion in which elastic far fields are computed via the FMM, and in which stress fields

are inherently computed from infinite replications of the primary volume. In addition,

it is interesting to notice that FFT-based approaches are easily parallelizable, espe-

cially thanks to efficient parallel 3D FFT implementations that have been developed,

and are particularly suitable for GPU-accelerated computing, for which a dedicated

implementation have been developed, thereby enabling further acceleration.

Furthermore, the ability of DDD-FFT approach to handle elastic heterogeneities

offers broad new possibilities to DDD simulations. Practically, as originally done in

FFT-based approaches for studying composite materials [178, 179] and polycrystalline

aggregates [143, 144], the primary DDD simulation volume can easily be partitioned

into grains with different elastic properties. Note that the FEM-based implementation

of the DCM approach proposed in the work of Vattré et al. [234] already provides such

possibility. However, the application to realistic simulations is not comparable to the

DDD-FFT approach in terms of achievable level of strains and accuracy. Therefore,

the method presented in this work paves the way towards achieving practical scale

transition between DDD scale plasticity and crystal plasticity. Especially, DDD can

be regarded as a tool to test and validate constitutive laws. Furthermore, the present

approach establishes a direct connection between DDD simulations and Field Disloca-

tion Mechanics models for which spectral methods were recently introduced for static
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cases [26, 20]. In that sense, the DDD-FFT can be regarded as a three-dimensional

dynamic extension of these works.

Note however that the principal limitation of the present formulation lies in its

prerequisite to deal with fully periodic simulations. Nonetheless, an heterogeneous

simulation including an outer layer composed of a porous phase may be used to sim-

ulate the presence of free-surfaces. Alternatively, the recent development of spectral

methods to account for the effects of free-surfaces [252] may be adapted to the DDD-

FFT approach as a way to overcome the limitation associated with the periodicity.

Implementing these is beyond the scope of the present work.
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CHAPTER IV

DISLOCATION-DISLOCATION INTERACTIONS

4.1 Motivation

The strain hardening behavior in single crystals deformed by slip is primarily gov-

erned by the interactions between dislocations. For instance, these can take the form

of glissile junctions, Lomer-Cottrell locks, Hirth locks or annihilations in face-centered

cubics depending on the crystallography of intersecting dislocations. Following the

difficulties associated with the experimental evaluation of the strength of the dif-

ferent types of intersections, small-scale studies of paired interactions between two

discrete dislocations have been first carried out analytically using dislocation theory

[207, 93, 209, 111], or numerically using atomistic and dislocation dynamics simula-

tions [30, 203, 205, 256]. Later, Madec and co-workers proposed a numerical approach

using DDD simulations to quantify the collective effect of specific dislocation interac-

tions on larger scale simulations, and extracted representative dislocation-dislocation

interaction coefficients [164, 165]. Following this approach, a hierarchy between slip

system interactions was established and latent-hardening coefficients were obtained

for FCC [65] and BCC [198] crystals. However, due to the additional complexities as-

sociated with HCP structures, such interaction coefficients have never been quantified

for hexagonal magnesium.

Consequently, in this chapter, the regular DDD tool developed in Chapter 2 is

used to extract latent-hardening parameters for pure hexagonal magnesium to be

used in constitutive models at higher scales. This chapter is organized as follows.

After a brief introduction on the role of latent-hardening parameters is given, the

incorporation of dislocation-dislocation interactions at higher scales is presented in
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Section 4.1.2. Then, the crystallography of HCP Mg is investigated and the different

types of interactions that can occur during deformation are detailed in Section 4.2. In

Section 4.3, the methodology for computing the hardening coefficients for single crys-

tal Mg is presented while the validity of the additive rule used in constitutive models

is examined in Section 4.4. The coefficients obtained and the effects of friction and

mobilities are discussed in Section 4.5. Finally, the influence of the hardening coef-

ficients on the macroscopic mechanical response of polycrystals is studied in Section

4.6 using the VPSC formalism.

4.1.1 Role of dislocation-dislocation interactions on strain hardening

In crystalline media, strain hardening primarily results from the interactions between

lattice defects. Focusing on slip-driven plasticity in single crystals, it has been ob-

served that, in addition to the lattice friction stress, the flow stress is proportional

to the square root of the dislocation density (Taylor law) during plastic deforma-

tion of metals [127]. This law can be readily related to the forest hardening model,

whereby the mean spacing between forest dislocations acting as obstacles for moving

dislocations define the mean free path of dislocations [18, 52, 207, 136, 88].

While early models relied solely on the total dislocation density, Franciosi and Za-

oui [90] and Lavrentev and Pokhil [141] proposed different extensions of the Taylor-law

accounting for individual slip systems dislocation densities in which latent-hardening

interaction coefficients were introduced. In these models, the latent-hardening co-

efficients account for the collective effect of the different dislocation-dislocation in-

teractions between slip systems, and their importance in predicting the mechanical

response of metals has been highlighted [65, 132]. For example, Hoc et al. [112] sug-

gested that the orientation dependence of stage I deformation of face-centered cubic

(FCC) crystals is strongly linked to the values of the hardening coefficients. In addi-

tion, the large values associated with interactions between slip systems with identical
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Burgers vectors – referred to as collinear interactions – have provided an explanation

for the unfavorable simultaneous activation of collinear systems [165, 64]. Also, la-

tent hardening is expected to play an important role in the mechanical response for

complex loadings paths [200, 95]. However, current constitutive models developed for

HCP materials incorporate latent hardening models that are not directly related to

the microstructure, but whose parameters are obtained by a fitting procedure. For

example, slip induced hardening is described through a Voce law [195, 243] or using

a single hardening coefficient in a dislocation density law [25, 189, 122].

Several efforts have been dedicated to evaluate these coefficients. Analytical ap-

proaches were used by Lavrentev and Pokhil [141] and Lavrentev [140], whereby values

of the coefficients were assumed to be related to the energy gain due to pairwise inter-

actions of dislocations. In addition, coefficients for different types of interactions were

experimentally determined at different deformation stages for Mg [142, 141]. However,

difficulties in measuring dislocation densities are likely to induce large uncertainty in

experimental estimates for these coefficients.

Interestingly, DDD simulations have allowed for a numerical quantification of the

hardening coefficients. Madec [164], Madec et al. [165] and Devincre et al. [65]

have computed the coefficients for face-centered cubic metals, and were further able

to construct junction formation maps depicting the nature of the interactions as a

function of the relative orientation of the intersecting dislocations. In doing so, they

also revealed the strong effect of collinear interactions on hardening [165]. Using the

same approach, Queyreau et al. [198] computed the coefficients for BCC α-iron. In

references [175] and [198], the effect of lattice friction on junction formation was also

investigated.

However, compared to cubic crystals, considerably less DDD studies have been

dedicated to the more complex case of HCP metals. As mentioned earlier, the primary

reason lies in the increasing complexity associated with HCP crystals and the nature
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of their dislocations. For instance, atomistic simulations have revealed 3D spread of

prismatic dislocations cores [16] as well as strong anisotropies in dislocation mobilities

and friction stress of slip systems [102]. Such anisotropies in core properties were

supported by in situ TEM experiments in which the presence of long screw segments

– suggesting significant lattice friction and low mobility of such dislocations – was

observed for prismatic dislocations [37]. In a first attempt to mimic such anisotropic

properties, Monnet et al. [176] used the DDD method in which dislocation mobilities

were modelled in a phenomenological manner to study prismatic slip in Zirconium. As

a result, it was found that junctions could not be formed between screw dislocations.

Using DDD as well, Capolungo [39] investigated the strength of junctions in Mg

relying on elastic interactions only. Similar work was further extended to Mg and

Be [260]. In these works, the formation and destruction of a single binary junction

was studied, leaving collective effects and other possible interactions pertaining to

latent hardening aside. DDD was also used to show the weak effect of anisotropic

calculations in the case of Mg, suggesting that an isotropic calculation could be safely

used as an approximation [40]. Nevertheless, to the author’s knowledge, except for

ice single crystal [62], hardening coefficients have not been calculated for hexagonal

materials.

In addition, although the flow stress dependence on dislocation density has been

verified against experimental data, the validity of multi-slip extensions, such as the

ones proposed by Franciosi and Zaoui (FZ) [90], and Lavrentev and Pokhil (LP)

[141] has rarely been tested. To the author’s knowledge, Queyreau et al. [198] were

the only ones to verify the validity of the Franciosi and Zaoui formulation using

DDD simulations on multi-slip conditions for BCC α-iron crystals, but the validity of

the superposition principle expressed through these laws has never been discussed for

HCP materials and the two multi-slip formulations have never been directly compared.
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Consequently, the goals of this chapter are to (1) quantify latent hardening co-

efficients based on both the FZ and LP models, (2) identify which model is more

appropriate for HCP metals, and (3) assess the importance of finely accounting for

latent hardening on the mechanical response of pure magnesium [22].

4.1.2 Modelling of latent hardening in constitutive approaches

In current constitutive laws, the effects of dislocation interactions on the critical

resolved shear stress (CRSS) are usually accounted for via an extended Taylor’s law,

which relates the CRSS on a given system to the total dislocation densities on all

slip systems. In order to account for different strengths in dislocation–dislocation

interactions, Franciosi and Zaoui [90] proposed the following expression for defining

the CRSS τ sc on slip system s:

τ sc = τ s0 + µb

√∑
s′

ass
′

FZρ
s′ (4.1)

where τ sc and τ s0 denote the CRSS and the lattice friction stress on system s, re-

spectively, µ and b are the shear modulus and magnitude of the Burgers vector, and

ass
′

FZ denotes the interaction coefficient pertaining to the strength of the interaction

between dislocations of systems s and s′, associated with the FZ formulation. In this

formulation, system s, on which the CRSS is evaluated, is generally referred to as the

primary system, while the other slip systems s′ are referred to as forest systems of

system s.

Note that the FZ formulation was originally proposed for FCC materials for which

the magnitude of the Burgers vector is identical for each slip system [90]. As a result,

formulation (4.1) must be modified in order to be applicable for HCP materials in

which the magnitude of the Burgers depends on the slip mode (e.g. the magnitude of

Burgers vectors of 〈a〉 and 〈c+a〉 dislocations are different, see Section 4.2 for further

details on the crystallography). In this work, the FZ formulation is extrapolated by
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considering the magnitude of the primary Burgers vector bs such that (4.1) rewrites:

τ sc = τ s0 + µsbs
√∑

s′

ass
′

FZρ
s′ (4.2)

The validity of generalization (4.2) of the FZ formulation will be investigated in

Section 4.4. Further, for the sake of consistency, µ is similarly replaced by the elastic

shear modulus µs in the direction of slip system s. However, as HCP Mg is almost

elastically isotropic [40], any differences in µs in equation (4.2) can be neglected [34].

Almost simultaneously with the introduction of the FZ formulation, Lavrentev

and Pokhil [141] suggested a different expression for evaluating the CRSS:

τ sc = τ s0 +
∑
s′

µs
′
bs
′
ass
′

LP

√
ρs′ (4.3)

In contrast with the FZ formulation, the LP formulation (4.3) was developed for a

broader variety of crystal structures and has been particularly employed for HCP

materials [141, 140, 34]. Therefore, further extension of (4.3) is not required.

Examining equations (4.2) and (4.3), FZ and LP expressions differ by two aspects:

(1) the square root encompasses the summation of the dislocation densities in the FZ

formulation whereas the summation is performed outside of the square root in the LP

formulation and, (2) the magnitude of the Burgers vector is that of the primary slip

system in the FZ expression whereas the Burgers vector is the one associated with

the forest slip systems in the LP expression. As a consequence, the values of the FZ

and LP coefficients are not expected to coincide.

As extensively discussed in reference [132], the CRSS can be interpreted as a

measure of the average force required to bow dislocation segments across a forest of

dislocations [111]. In line with this interpretation, a more complex form of expres-

sion (4.2) was proposed to account for contributions from line tension [132]. This

extension was shown to be of significant importance at large dislocation densities.
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Here, for the sake of simplicity, expressions (4.2) and (4.3) will be used to extract a

latent hardening matrix from DDD simulations. Overall, the following features are

expected to contribute to the strength of interactions between different systems: (1)

Frank’s rule, which identifies reactions that lead to a reduction in energy [111], (2)

the distribution of line orientations upon intersection, and (3) the friction stresses on

different systems. Note that in contrast to FCC materials – where all slip systems

have identical properties –, differences in the Burgers vector, dislocation mobilities

and friction stress associated with HCP slip systems are expected to yield a non-

symmetrical latent hardening matrix. Details on the different components of this

matrix for HCP Mg are presented in the following section.

At this point, it may also be noticed that, as discussed in references [21] and

[132], slip system interactions are not limited to latent hardening effects. Indeed, as

dislocation density based constitutive models account for stored dislocation densities,

another feature that needs to be accounted for is the latent storage of dislocations

associated with interactions between dislocations on different systems. This effect

pertains to the transformation with strain of glissile to stored dislocation density,

particularly through junction formation. Different approaches have been proposed in

the literature to account for such effects. The present work is limited to the case of

latent hardening, i.e., the effect of the evolution of dislocation densities on the CRSS.

4.2 Dislocation-dislocation interactions in pure Magnesium

4.2.1 Slip systems in hcp Magnesium

Pure magnesium has an hexagonal closed-packed (HCP) crystalline structure. The

hexagonal structure is composed of compact layers of atoms stacked on top of each

other and where the atoms of each layer are positioned in the lattice gaps of the

preceding layer. In each layer, the packing consists of a pattern composed of six

atoms arranged in an hexagonal shape and a seventh atom lying at the middle, as
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Figure 4.1: Schematic of the hexagonal closed-packed (HCP) crystalline structure.
(a) Packing of atoms in the (0001) basal plane and its coordinate system (~a1,~a2,~a3).
(b) The unit HCP cell is composed of the stacking of (0001) basal layers in a ABA...
sequence, where atoms of the B layer are positioned in the gap of the A layers. For
the sake of simplicity, the crystallographic elements (planes, Burgers vectors) of the
HCP structure are given in the 4-axis coordinate system (~a1,~a2,~a3,~c), where axes
~ai are given in (a), and ~c = (0001) is perpendicular to the (0001) basal planes.

shown in figure 4.1(a). Using the 4-axis coordinate system (~a1,~a2,~a3,~c) depicted in

figure 4.1(b), each layer corresponds to a (0001) plane, referred to as the basal plane.

As a result, the unit cell represented in figure 4.1(b) is composed of three layers of

atoms ABA, for which atoms in layers A are arranged in the hexagonal shape, and

where layer B is a triangle of atoms whose positions are aligned with the center of

the triangles formed by the adjacent layers A. Since the 12 atoms at the corners of

the top and bottom A layers are common to six unit cells, and those at the middle

of the same layers are common to two unit cells, the HCP unit cell is composed of 6

atoms.

In the HCP structure, the lattice parameter a is given as the distance between the

centers of subsequent atoms along the ~ai axes, while c denotes the distance between

the centers of atoms in two subsequent A layers, as indicated in figure 4.1(b). In

the ideal case where all atoms are considered as rigid spheres of identical radius, it

can be shown that the ratio c/a =
√

8/3 ≈ 1.633. Interestingly, of all HCP crystals,
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Table 4.1: List of the different possible slip modes and systems for the HCP structure.

Burgers vector Slip direction Slip plane Number of systems

〈a〉 〈112̄0〉 basal (0001) 3

〈a〉 〈112̄0〉 first-order prismatic {101̄0} 3

〈a〉 〈112̄0〉 first-order pyramidal {101̄1} 6

〈c+ a〉 〈112̄3〉 second-order pyramidal {112̄2} 6

〈c〉 〈0001〉 first-order prismatic {101̄0} 3

〈c〉 〈0001〉 second-order prismatic {112̄0} 3

magnesium has the nearest to the ideal ratio, with c/a = 1.623 [193].

Despite the apparent simplicity of the HCP crystalline structure, HCP metals

activate a large variety of deformation modes and systems, including slip and twin-

ning, generally resulting in a greater complexity in deformation mechanisms than in

their body-centered cubic (BCC) and face-centered cubic (FCC) counterparts. In this

chapter, the focus is placed on slip-mediated deformation only, i.e. deformation re-

sulting from the motion of dislocations. Following the crystallographic arrangements

of atoms in HCP structures, a list of all independent slip systems is reported in table

4.1. From a general perspective, there exist three families of Burgers vector and five

families of planes, leading to a combination of six slip modes. This profusion of modes

highlights the complexity of slip deformation compared to FCC materials in which

the plastic slip activity is mediated by a unique mode.

In practice however, all slip systems listed in table 4.1 are typically not activated

simultaneously, and their selection strongly depends on material properties such as

lattice friction stresses and dislocation mobilities. In general, the basal systems are

easily activated in all HCP metals. However, non-basal slip is commonly required to

satisfy the von Mises criterion (five independent slip systems must activate to generate

uniform plasticity [169]) and accommodate the deformation in the ~c direction. In

magnesium, the observed slip systems are depicted in figure 4.2. Besides the glide of

〈a〉 dislocations in (0001) basal planes, slip can occur via glide of 〈a〉 dislocations in
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Table 4.2: Slip systems used to model hexagonal pure Mg in this work.

Mode Slip system Slip plane Burgers vector

Basal 〈a〉 B1 (0001) 1
3
[21̄1̄0]

B2 (0001) 1
3
[1̄21̄0]

B3 (0001) 1
3
[1̄1̄20]

Prismatic 〈a〉 P1 (01̄10) 1
3
[21̄1̄0]

P2 (101̄0) 1
3
[1̄21̄0]

P3 (1̄100) 1
3
[1̄1̄20]

Pyramidal 〈c+ a〉 Pca1 (2̄112) 1
3
[21̄1̄3]

Pca2 (12̄12) 1
3
[1̄21̄3]

Pca3 (112̄2) 1
3
[1̄1̄23]

Pca4 (21̄1̄2) 1
3
[2̄113]

Pca5 (1̄21̄2) 1
3
[12̄13]

Pca6 (1̄1̄22) 1
3
[112̄3]

{101̄0} first-order prismatic systems [86] and 〈c + a〉 dislocations in {112̄2} second-

order pyramidal systems [225, 188, 1]. Although glide of 〈a〉 dislocations on {101̄1}

first-order pyramidal systems have been reported [201] and have been considered

in numerical investigations [102, 196], these are not considered in this work as it

is assumed that basal and prismatic modes – that are easier to activate – provide

sufficient 〈a〉 activity. As a result, the slip systems in HCP Mg considered in this

work and their notation are reported in table 4.2. Note that throughout the rest

of this chapter, for the sake of simplicity, prismatic systems will refer to first-order

prismatic 〈a〉{101̄0} systems, and reference to 〈c + a〉 slip systems will exclusively

designate second-order pyramidal systems.

4.2.2 Geometry of interactions

For the sake of simplicity, all dislocations are considered perfect in this work. In other

words, it is assumed that the dislocation cores are constricted when interactions occur.

Interactions between two dislocations can lead to different configurations depending
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(a) 〈a〉(0001) basal systems (b) 〈a〉{101̄0} prismatic systems

(c) 〈a〉{101̄1} first-order pyramidal systems

(d) 〈c+ a〉{112̄2} second-order pyramidal systems

Figure 4.2: Schematic of the different slip systems observed in HCP Mg. The blue
planes illustrate the different slip planes belonging to the same family. The red arrows
delineate the Burgers vector associated with each slip plane.

on the slip systems and the orientation of the dislocation lines that interact. Four

outcomes are possible as the result of line interactions: a repulsive interaction, a

so called crossed state, junction formation or annihilation. Junctions will form if

they result in a reduction in strain energy. Generally, Frank’s criterion is used to

determine the likelihood of junction formation between two dislocations with Burgers

vectors ~b1 and ~b2. Given that the strain energy of a dislocation line is proportional
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Table 4.3: Frank’s criteria and corresponding reduction in strain energy for Burgers
possible combinations in hexagonal Mg (c/a = 1.623).

Interaction Junction Burgers Initial energy Junction energy Frank’s Reduction in
~b1 ~b2 ~bj = ~b1 +~b2 ‖~b1‖2 + ‖~b2‖2 ‖~b1 +~b2‖2 criterion strain energy

Interactions 〈a〉/〈a〉
~b〈ai〉

~b〈ai〉 2~b〈ai〉 2a2 4a2 No

~b〈ai〉 −~b〈ai〉 0 2a2 0 Annihilation 2a2

~b〈ai〉
~b〈aj〉 −~b〈ak〉 2a2 a2 Yes a2

~b〈ai〉 −~b〈aj〉 ~b〈ai〉 −~b〈aj〉 2a2 3a2 No

Interactions 〈c+ a〉/〈c+ a〉
~b〈c+ai〉

~b〈c+ai〉 2~b〈c+ai〉 2(c2 + a2) 4(c2 + a2) No

~b〈c+ai〉
~b〈c−ai〉 2~b〈c〉 2(c2 + a2) 4c2 No

~b〈c+ai〉
~b〈−c+ai〉 2~b〈ai〉 2(c2 + a2) 4a2 Yes 3.268a2

~b〈c+ai〉
~b〈−c−ai〉 0 2(c2 + a2) 0 Annihilation 7.268a2

~b〈c+ai〉
~b〈c+aj〉 2~b〈c〉 −~b〈ak〉 2(c2 + a2) 4c2 + a2 No

~b〈c+ai〉
~b〈c−aj〉 2~b〈c〉 +~b〈ai〉 −~b〈aj〉 2(c2 + a2) 4c2 + 3a2 No

~b〈c+ai〉
~b〈−c+aj〉 −~b〈ak〉 2(c2 + a2) a2 Yes 6.268a2

~b〈c+ai〉
~b〈−c−aj〉

~b〈ai〉 −~b〈aj〉 2(c2 + a2) 3a2 Yes 4.268a2

Interactions 〈a〉/〈c+ a〉
~b〈ai〉

~b〈±c+ai〉 ±~b〈c〉 + 2~b〈ai〉 c2 + 2a2 c2 + 4a2 No

~b〈ai〉
~b〈±c−ai〉 ±~b〈c〉 c2 + 2a2 c2 Yes 2a2

~b〈ai〉
~b〈±c+aj〉 ±~b〈c〉 −~b〈ak〉 c2 + 2a2 c2 + a2 Yes a2

~b〈ai〉
~b〈±c−aj〉 ±~b〈c〉 +~b〈ai〉 −~b〈aj〉 c2 + 2a2 c2 + 3a2 No

to the square of the magnitude of its Burgers vector, a reduction in energy upon

dislocation intersection is expected to occur when ‖~b1 +~b2‖2 < ‖~b1‖2 + ‖~b2‖2 [111],

where ~bj = ~b1 +~b2 denotes the Burgers vector of the resulting junction. Conversely,

junction formation is expected not to be energetically favorable when this criterion is

not satisfied. In the case of Mg dislocation-dislocation interactions, Frank’s criterion

for the possible combinations of Burgers vectors is listed in table 4.3. Note that

annihilation can only occur between collinear slip systems, i.e. when the two reacting

dislocations have opposite Burgers vectors. In this case, the resulting Burgers vector

vanishes, leading to a total reduction in strain energy.

Numerically, as detailed in Section 2.6, the formation of junctions in DDD simu-

lations is governed by the zipping/unzipping mechanism [30] whereby the most en-

ergetically favorable dislocation-dislocation configuration is determined via the use
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of a dissipation criterion. When a junction does not form, the intersecting disloca-

tions do not combine, but only interact elastically. This elastic interaction can be

classified either as a crossed state – where attractive interactions are not sufficient to

overcome the line tension such that a junction cannot form [166] – or as a repulsive

configuration.

Considering the slip systems listed in table 4.2, apart from self-interactions, 11

possible different crystallographic configurations of interactions can be distinguished.

These can be grouped into three classes of interactions: (1) 〈a〉/〈a〉 interactions, (2)

〈c + a〉/〈c + a〉 interactions and (3) 〈a〉/〈c + a〉 interactions. These are illustrated

in figures 4.3 to 4.5 and the following convention is used: blue and green vectors

indicate the Burgers vector of interacting segments. For each of these, the two possible

directions of the Burgers vector are considered (blue vectors). Red vectors indicate

the possible Burgers vector resulting from the interaction. Red solid and dashed lines

correspond to junction Burgers vector that do and do not lead to a minimization

of energy, respectively. Finally, when applicable, a yellow line is used to denote the

orientation of the junction.

Within the set of interactions between 〈a〉 dislocations, six different cases can

occur, namely basal/basal, prismatic/prismatic, collinear basal/prismatic and pris-

matic/basal, and non-collinear basal/prismatic and prismatic/basal intersections. These

are depicted in figure 4.3. In the case of collinear interactions, Frank’s rule suggests

that only annihilation can occur, as the formation of a junction with 2~b〈ai〉 Burgers

vector does not lead to a reduction in strain energy. In all the other cases, only

combinations between dislocations of Burgers +~b〈ai〉 and +~b〈aj〉 can lead to junction

formation with a resulting −~b〈ak〉 Burgers vector. Note that for all 〈a〉/〈a〉 junctions,

the resulting Burgers vector lies in the basal plane, such that all of them are glissile.

In the case of 〈c + a〉/〈c + a〉 interactions, two types are considered. First are
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(a) basal / basal (b) prismatic / prismatic

(c) non-collinear basal / prismatic (d) collinear basal / prismatic

Figure 4.3: Schematic of 〈a〉/〈a〉 interactions.

interactions between slip systems whose Burgers vectors share the same 〈a〉 compo-

nents, such as reactions between ~b〈c+ai〉 and ~b〈−c+ai〉 Burgers vectors. Here, we refer

to these reactions as semi-collinear interactions, as they share only one component of

their Burgers vectors, as opposed to collinear interactions which are typically related

to interactions between slip systems having the same Burgers vectors. As depicted in

figure 4.4, semi-collinear interactions involve intersections between semi-collinear slip

systems, i.e. between systems Pca1 and Pca4, Pca2 and Pca5, and Pca3 and Pca6,

following the convention adopted in table 4.2, respectively. For these semi-collinear

systems, Frank’s rule suggests that only reactions between Burgers vectors that do not

lead to the cancelling of the 〈a〉 component are energetically favorable, leading to a

resulting ±2~b〈ai〉 Burgers vector where the 〈c〉 component has cancelled out. Second,
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(a) semi-collinear
pyramidal / pyramidal

(b) 〈c+ ai〉/〈c+ ak〉
pyramidal / pyramidal

(c) 〈c+ ai〉/〈c− ak〉
pyramidal / pyramidal

Figure 4.4: Schematic of 〈c+ a〉/〈c+ a〉 interactions.

non-semi-collinear pyramidal/pyramidal interactions involve both 〈c + ai〉/〈c + ak〉

and 〈c + ai〉/〈c − ak〉 Burgers combinations. In both cases, favorable junctions are

those pertaining to a cancellation of the 〈c〉 component.

The 〈a〉/〈c + a〉 interactions include combinations of dislocations from basal slip

systems with pyramidal systems and dislocations from prismatic slip systems with

pyramidal systems. In the case of semi-collinear reactions, a reduction in strain en-

ergy is expected only for reactions leading to pure 〈c〉 junctions. For other reactions,

junctions are expected to form when the combination of 〈a〉 components leads to an-

other 〈a〉 component, as in the case of 〈a〉/〈a〉 reactions described earlier. Schematics

of these interactions are given in figure 4.5.

As a result, the full latent hardening matrix that needs to be quantified contains

19 distinct coefficients for hexagonal Mg, each pertaining to one specific interaction.

These interactions are listed in table 4.4 and the corresponding components of the

hardening matrix are reported in table 4.5. As mentioned earlier, the hardening

matrix is not expected to be symmetric when interactions occur between different

slip modes. By comparison, in the case of FCC, the hardening matrix is symmetric

and populated with only six independent coefficients since interactions solely occurs

between slip systems belonging to the same 1
2
〈1̄10〉{111} slip mode [90].
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(a) semi-collinear basal / pyramidal (b) semi-collinear prismatic / pyramidal

(c) basal / pyramidal (d) prismatic / pyramidal

Figure 4.5: Schematic of 〈a〉/〈c+ a〉 interactions.

4.3 Latent-hardening coefficients quantification

4.3.1 Methodology and simulations setting

In this work, the parallel three-dimensional regular DDD nodal code developed in

Chapter 2 was further modified such that latent-hardening coefficients can be ex-

tracted. The use of the regular DDD simulation is allowed here since it has been

demonstrated that an elastic approximation could be safely used to model HCP Mg

[40] – the anisotropy ratio A ≈ 0.979 (see equation (3.63)) of HCP Mg is very close to

unity. Therefore, the non-singular isotropic analytical formulation developed by Cai

and co-workers [35] will be used to evaluate dislocation-dislocation elastic interactions.

The methodology used here to extract latent-hardening coefficients for Mg is sim-

ilar to that used in the work of Devincre and co-workers to compute coefficients
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Table 4.4: Different types of interactions to be quantified in HCP Mg.

Interaction # Designation

S1 Basal self-interaction (not computed)

S2 Prismatic self-interaction (not computed)

S3 Pyramidal 〈c+ a〉 self-interaction (not computed)

1 Coplanar basal/basal (not computed)

2 Prismatic/prismatic

3 Collinear basal/prismatic

4 Non-collinear basal/prismatic

5 Collinear prismatic/basal

6 Non-collinear prismatic/basal

7 Semi-collinear basal/pyramidal 〈c+ a〉
8 Non-collinear basal/pyramidal 〈c+ a〉
9 Semi-collinear prismatic/pyramidal 〈c+ a〉
10 Non-collinear prismatic/pyramidal 〈c+ a〉
11 Semi-collinear pyramidal 〈c+ a〉/basal

12 Non-collinear pyramidal 〈c+ a〉/basal

13 Semi-collinear pyramidal 〈c+ a〉/prismatic

14 Non-collinear pyramidal 〈c+ a〉/prismatic

15 Semi-collinear pyramidal 〈c+ a〉/pyramidal 〈c+ a〉
16 Non-collinear pyramidal 〈c+ a〉/pyramidal 〈c+ a〉

for FCC materials [65]. To obtain the coefficient value for one specific interaction,

the method consists in letting a mobile dislocation lying on a primary system glide

through a prescribed forest of dislocations. The primary and the forest systems are

chosen such that the possible intersections between primary and forest dislocations

will lead to one type of reaction only. Consequently, in the case of the FZ formulation,

the value of the coefficient corresponding to the specific type of interaction p/f can

be directly obtained from (4.2):

apfFZ =

(
τ p − τ p0
µbp
√
ρf

)2

(4.4)

while in the case of the LP formulation, the coefficient value is extracted from equation
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Table 4.5: Components of the latent hardening matrix for HCP Mg. Definitions of
the coefficient numbers are given in table 4.4.

Forest systems B1 B2 B3 P1 P2 P3 Pca1 Pca2 Pca3 Pca4 Pca5 Pca6
P

ri
m

a
ry

sy
st

em
s

B1 S1 1 1 3 4 4 7 8 8 7 8 8

B2 1 S1 1 4 3 4 8 7 8 8 7 8

B3 1 1 S1 4 4 3 8 8 7 8 8 7

P1 5 6 6 S2 2 2 9 10 10 9 10 10

P2 6 5 6 2 S2 2 10 9 10 10 9 10

P3 6 6 5 2 2 S2 10 10 9 10 10 9

Pca1 11 12 12 13 14 14 S3 16 16 15 16 16

Pca2 12 11 12 14 13 14 16 S3 16 16 15 16

Pca3 12 12 11 14 14 13 16 16 S3 16 16 15

Pca4 11 12 12 13 14 14 15 16 16 S3 16 16

Pca5 12 11 12 14 13 14 16 15 16 16 S3 16

Pca6 12 12 11 14 14 13 16 16 15 16 16 S3

(4.3) as:

apfLP =
τ p − τ p0
µbp
√
ρf

=

√
apfFZ ·

bp

bf
(4.5)

In expressions (4.4) and (4.5), apfFZ and apfLP denote the coefficients characterizing the

strength of interactions occurring when a moving dislocation belonging to primary

system p glide through a forest of dislocations lying on system(s) f , for the FZ and LP

formulations, respectively. The total density of the dislocations composing the forest

is denoted with ρf . According to equations (4.4) and (4.5), the value of the coefficient

computed depends on the forest density. As discussed in references [65, 132], the

value of the coefficient actually presents a logarithmic dependence on forest density.

As a result, the coefficient is computed for a reference forest density and its value

is then be extrapolated for different densities through a logarithmic corrective term.

In the simulations performed in this work, the reference total forest density is set to

ρref = ρf = 1012m−2, for a simulation volume of 4.82× 4.14× 5.68µm3.

The forest is represented by sets of initially straight dislocation segments, each

of length 1.6µm, randomly generated such that the mean free path of the moving
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dislocations remains close to 1
√
ρf . The dislocation orientation – defined by the

angle between dislocation lines direction and their Burgers vectors – is randomly

generated, leading to a random distribution of edge, screw and mixed characters.

Such an initial forest configuration allows us to have enough dislocation lines for the

simulations to be statistically representative of an actual microstructure. As a matter

of fact, care must be taken in choosing large enough simulation volumes allowing for

sufficiently large number of intersection events to occur. In other words, too few

forest dislocations may bias the desired result on collective interaction effects, as all

intersection orientations may not be represented.

The primary density is initially composed of six mobile dislocations of length

7.2µm, artificially pinned at their ends. In order to avoid dipoles interactions leading

to self-hardening, apart from self-forces, primary dislocations are only subjected to

the elastic stress fields of the forest dislocations and to the macroscopic loading.

Conversely, in order for the forest density to remain roughly constant during the

simulations, forest dislocations are not subjected to the external stress arising from

the applied strain rate, but only to internal stresses induced by elastic stress fields of

other dislocations present in the volume.

In order to evaluate the different interaction coefficients presented in tables 4.4

and 4.5, combinations of primary and forest slips systems for each type of interaction

are reported in table 4.6. Here, it is first interesting to notice that self-hardening

and basal/basal interactions are special cases as they involve coplanar interactions.

In both these cases, two mechanisms are expected to govern the interactions: (1)

annihilations when dislocations are lying on the same slip plane and (2) dipolar in-

teractions when dislocations are lying on parallel but distant slip planes. However, it

is not clear how such interactions can be accurately quantified since the distinction

between primary and forest systems in the current formalism may be delicate, while

it remains unclear how to ensure that the occurrence of mechanisms (1) and (2) is
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Table 4.6: Primary and forest slip systems used to compute the hardening matrix
components. The notation are those introduced in table 4.2

Coefficient # Interaction designation Primary system Forest system(s)

S1 Basal self-interaction Not computed

S2 Prismatic self-interaction Not computed

S3 Pyramidal 〈c+ a〉 self-interaction Not computed

1 Coplanar basal/basal Not computed

2 Prismatic/prismatic P1 P2, P3

3 Collinear basal/prismatic B1 P1

4 Non-collinear basal/prismatic B1 P2, P3

5 Collinear prismatic/basal P1 B1

6 Non-collinear prismatic/basal P1 B2, B3

7 Semi-collinear basal/pyramidal 〈c+ a〉 B1 Pca1, Pca4

8 Non-collinear basal/pyramidal 〈c+ a〉 B1 Pca2, Pca3, Pca5, Pca6

9 Semi-collinear prismatic/pyramidal 〈c+ a〉 P1 Pca1, Pca4

10 Non-collinear prismatic/pyramidal 〈c+ a〉 P1 Pca2, Pca3, Pca5, Pca6

11 Semi-collinear pyramidal 〈c+ a〉/basal Pca1 B1

12 Non-collinear pyramidal 〈c+ a〉/basal Pca1 B2, B3

13 Semi-collinear pyramidal 〈c+ a〉/prismatic Pca1 P1

14 Non-collinear pyramidal 〈c+ a〉/prismatic Pca1 P2, P3

15 Semi-collinear pyramidal 〈c+ a〉/pyramidal 〈c+ a〉 Pca1 Pca4

16 Non-collinear pyramidal 〈c+ a〉/pyramidal 〈c+ a〉 Pca1 Pca2, Pca3, Pca5, Pca6

representative of real microstructural events. Therefore, and because our interest pri-

marily lies in computing latent-hardening coefficients, self-hardening and basal/basal

coefficients are not considered in the present work, and their evaluation should be

undertaken in a dedicated study, as proposed in reference [66] for FCC crystals.

As a result, 15 distinct dislocation interaction coefficients need to be determined:

these correspond to coefficient numbers 2 to 16 in tables 4.5 and 4.6. As already

mentioned, the hardening matrix for HCP Mg is not expected to be symmetric. For

instance, as reported in table 4.6, two different simulations will be used to determine

the coefficients associated with collinear basal/prismatic interactions and collinear

prismatic/basal interactions. Differences in the values of these coefficients are ex-

pected to result from the different dislocation properties associated with each slip

mode. Specifically, the values of the friction stresses and mobilities used in this work

are reported in table 4.7. Peierls stresses values have been extracted from experimen-

tal results obtained by Conrad and Robertson [50] for basal slip and by Reed-Hill and
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Table 4.7: Parameters used for each slip mode in HCP Mg. Friction stresses are ex-
tracted from Conrad and Robertson [50], Reed-Hill and Robertson [201], Staroselsky
and Anand [224], while mobilities were computed by Groh et al. [102].

Property Basal systems Prismatic systems Pyramidal 〈c+ a〉 systems

Friction stress (MPa) 0.52 39.2 105

Edge drag coefficient (Pa.s) 4.7× 10−6 7.7× 10−6 8.0× 10−5

Screw drag coefficient (Pa.s) 1.3× 10−5 3.7× 10−5 5.0× 10−4

Robertson [201] for prismatic systems, while numerical values obtained in matching

experimental data for second-order pyramidal systems in [224] are used. Dislocation

mobilities values are taken as those computed in the work of Groh and co-workers [102]

using both molecular statics and molecular dynamics, in which the strong anisotropies

between slip modes and dislocations characters was revealed.

Further, to perform a complete investigation, the effects of dislocation mobilities

and lattice friction stress on latent-hardening are investigated. To this end, the

coefficients are computed for three different cases:

(1) Different dislocation mobilities with friction stress

(2) Different dislocation mobilities without friction stress

(3) Same dislocation mobilities without friction stress

In cases (1) and (2), different mobilities are assigned to edge and screw disloca-

tions, as reported in table 4.7. Note that sophisticated phenomenological approaches,

such as those based on Arrhenius law [176], are required to reproduce the kink-pair

mechanism controlling the screw dislocation mobility in HCP. However, for the sake of

simplicity here, a linear interpolation between these two ideal characters is performed

for mixed dislocations.

In order for the different simulations in table 4.6 to be comparable, the crystal

is rotated for each coefficient calculation to ensure that the Burgers vectors and

the normal of the slip plane of the primary gliding dislocations are aligned along the
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Table 4.8: Material parameters used to model pure hexagonal Mg.

Material parameter Value

Shear modulus µ = 16.39 GPa

Poisson’s ratio ν = 0.34

Elastic constants C11 = C22 = 59.74 GPa

C33 = 61.70 GPa

C44 = C55 = C66 = 16.39 GPa

C12 = 26.24 GPa

C13 = C23 = 21.70 GPa

Lattice parameters a = 3.21× 10−10 m

c/a = 1.623

same direction for each simulation, such that primary dislocations are subjected to the

same resolved shear stress in each case. Further, to account for statistical distribution

effects, each coefficient is averaged over five different simulation configurations. For

each batch of computed coefficients (here a batch refers to the computation of the

15 coefficients for the 3 cases, i.e. 45 simulations), forest dislocations were generated

using the same random seed positions for all simulations, allowing for fair comparison

between different coefficients values. Overall five different dislocation seeds were

used in this work, for a total of 5 × 45 = 225 simulations. In all cases, the initial

primary dislocations were pure edge dislocations and were allowed to reach a relaxed

configuration under zero applied strain before the strain rate ε̇ = 500s−1 was applied.

An example of the initial and final dislocation configurations is given in figure 4.6.

Single crystal Mg material parameters used in this work are reported in table 4.8.

4.3.2 Results

4.3.2.1 Validation of the current approach

As a way to validate the approach and the regular DDD code developed in Chapter

2, the interaction coefficients are first computed for FCC materials and compared

with the most recent values obtained by Devincre and co-workers [65, 132]. To this

end, simulations were performed on FCC Copper and the coefficients were extracted
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Figure 4.6: Example of (a) an initial dislocation configuration after relaxation. (b)
Same dislocation configuration after 0.2% plastic strain. Primary dislocations are
shown in red, forest dislocations in yellow and green, and junctions in blue.

Table 4.9: Interaction coefficients computed for FCC using DDD simulations and
obtained with the FZ formulation.

Hirth interaction Lomer interaction Collinear interaction

Devincre et al. 0.070 [132] 0.122± 0.012 [65] 0.625± 0.044 [65]

This work 0.084± 0.007 0.118± 0.005 0.657± 0.105

for Hirth, Lomer and collinear interactions. As reported in table 4.9, the present

code gives a similar hierarchy and very close values for the interaction coefficients

compared to those computed in [65, 132] in the case of the FZ formulation.

This preliminary result is important for two reasons. First, it ensures that the

current approach and simulation setting to compute coefficients for Mg are consistent

with the seminal work of Madec [165], Devincre [65], Kubin [132] and co-workers to

numerically evaluate dislocation-dislocation interaction coefficients. Second, it con-

stitutes an excellent validation procedure for the DDD code developed in Chapter

2. As many complex numerical techniques, an important sensitivity to numerical

parameters and approaches is sometimes observed in DDD simulations. Specifically,

the numerical approaches used in the work of Devincre and co-workers [65] and this

work differ on two remarkable aspects: a edge / screw model with a fine discretization
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length (lavg ≈ 10b) is used in [65] while a nodal scheme with a coarser discretization

(lavg ≈ 500b) is used here, and a criterion on static equilibrium is used for junction

zipping/unzipping in [65] while a dissipative approach is used in the current work (see

Section 2.6). Consequently, the convergence that is observed here between the differ-

ent regular approaches reinforces the overall confidence on the validity and relevance

of DDD simulations in general.

4.3.2.2 Mg interaction coefficients

The evolution of all FZ interactions coefficients for Mg computed for case (1) (i.e.

accounting for the lattice friction stresses and the system mobilities given in table

4.7) as a function of strain are plotted in figure 4.7.

As shown in figure 4.7, the values of the coefficients increase before oscillating

around a quasi-stable value. This is because during the simulated deformation, the

flow stress τ p on the primary system increases until it reaches a quasi-saturation value.

The saturation in the flow stress corresponds to the regime where the imposed strain

is entirely accommodated by primary dislocation glide through the forest. However,

when this regime is established, fluctuations remain. These are due to interactions

between dislocations. For example, when one primary dislocation gets pinned by two

forest dislocations, an increase in the flow stress is required for the moving dislocation

to overcome this obstacle. At some point, the resolved shear stress becomes high

enough such that the dislocation can bow-out or break away from the forest, leading

to a decrease in the flow stress as glide is suddenly able to relax the stress that has

built up. During this process, once the quasi-stationary regime is established, the

value of the primary flow stress is seen to oscillate around an average value. As

expected from equation (4.2) (respectively (4.3)), similar oscillations are reflected in

the coefficient values, given that the forest density is constant during deformation.

Therefore a measure of the coefficients can be given as their average value once the
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Figure 4.7: Evolution of the averaged values (over 5 simulations) of the interaction
coefficients versus plastic strain computed by DDD simulations using the FZ formula-
tion. (a) 〈a〉/〈a〉 interactions, (b) 〈c+a〉/〈c+a〉 interactions, (c) basal/pyramidal and
prismatic/pyramidal interactions and (d) pyramidal/basal and pyramidal/prismatic
interactions.

quasi-static regime is established, i.e., past a certain amount of strain.

Further, as reported in references [65, 198], such type of simulations are expected

to be rather insensitive to strain rate when the waiting time of moving dislocations

in the quasi-static regime is larger than their gliding time. The results reported in

this work are obtained for an imposed strain rate ε̇ = 500s−1. Following the relatively

large value of the drag coefficient associated with the pyramidal systems, care was

taken to ensure that the simulation results involving these systems were falling in

similar ranges for higher strain rates. Consequently, simulations for these coefficients

were performed up to 0.8% plastic strain to ensure that the quasi-static regime is

attained, as reported in figures 4.7(b) and (d), while 0.2% plastic strain is found to
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Table 4.10: Averaged values of the interaction coefficients computed for hexagonal
Mg for a reference density ρref = 1012m−2.

Coef. Interaction FZ Rank FZ value (ass
′

FZ) LP Rank LP Value (ass
′

LP )

2 Prismatic/prismatic 10 0.038± 0.008 12 0.193± 0.020

3 Collinear basal/prismatic 1 0.707± 0.029 1 0.841± 0.017

4 Non-collinear basal/prismatic 8 0.054± 0.006 9 0.232± 0.014

5 Collinear prismatic/basal 2 0.535± 0.096 2 0.729± 0.067

6 Non-collinear prismatic/basal 7 0.060± 0.005 7 0.245± 0.009

7 Semi-collinear basal/pyramidal 3 0.367± 0.067 3 0.317± 0.029

8 Non-collinear basal/pyramidal 4 0.293± 0.031 5 0.284± 0.015

9 Semi-collinear prismatic/pyramidal 6 0.068± 0.023 14 0.135± 0.023

10 Non-collinear prismatic/pyramidal 5 0.088± 0.011 13 0.155± 0.010

11 Semi-collinear pyramidal/basal 13 0.017± 0.003 6 0.246± 0.018

12 Non-collinear pyramidal/basal 15 0.011± 0.004 11 0.197± 0.033

13 Semi-collinear pyramidal/prismatic 11 0.025± 0.005 4 0.301± 0.031

14 Non-collinear pyramidal/prismatic 14 0.015± 0.002 8 0.231± 0.019

15 Semi-collinear pyramidal/pyramidal 12 0.018± 0.004 15 0.132± 0.017

16 Non-collinear pyramidal/pyramidal 9 0.042± 0.005 10 0.205± 0.012

be sufficient to evaluate the interaction coefficients for basal and prismatic primary

systems.

The values for both FZ and LP formulations averaged over the quasi-static regime

are reported in table 4.10. As already mentioned, given that both FZ and LP ap-

proaches differ in their formulation, the interaction coefficients associated with each

of them are not expected to coincide. This clearly appears in the coefficients values

reported in table 4.10. Also, except for the collinear interactions, i.e. these per-

taining to annihilation events, the interaction strength hierarchy established using

the FZ formulation differs from that using the LP formulation. As expected from

equation (4.3), the coefficients that show the greatest sensitivity to the formulation

used are those related to interactions for which the magnitude of the primary Burgers

vector differ from that of the forest, namely 〈a〉/〈c + a〉 and 〈c + a〉/〈a〉 interactions

(b〈a〉 = 0.321nm and b〈c+a〉 = 0.612nm for HCP Mg).

Therefore, at this stage, it appears necessary to test for the validity and accuracy

of both formulations before drawing conclusions on the strength of the interactions.
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4.4 Examination of the validity of current hardening laws

As reported in Section 4.3.2.2, the use of the Franciosi and Zaoui (FZ) [90] law or

Lavrentev and Pokhil (LP) [141] formulation leads to distinct results for the inter-

action coefficients. More importantly, the hierarchy established for the interaction

strengths is significantly different between both formulations (see table 4.10). There-

fore, in order to draw physical interpretations of the interaction coefficients results,

both laws need to be compared in order to obtain insights on their accuracy and

domain of applicability.

Interestingly, although the flow stress dependence on dislocation density has been

verified against experimental data, the validity of both multi-slip extensions of the

Taylor law has rarely been tested in the literature. To the author’s knowledge,

Queyreau and co-workers [198] were the only ones to test for the validity of the FZ

formulation using DDD simulations on multi-slip conditions for BCC α-iron crystals.

However, the validity of the superposition principle expressed through these laws has

never been discussed for HCP materials – the proposed extension (4.2) of the original

FZ law (4.1) has never been discussed prior this work –, and the two FZ and LP

multi-slip formulations have never been directly compared.

Therefore, the goal of this section is to assess the accuracy of the superposition

principle expressed through the two common multi-slip extensions of the Taylor law,

particularly when applied to the case of HCP materials. To this end, DDD simulations

are performed on HCP Mg in the presence of multiple types of dislocation-dislocation

interactions to compare flow stress estimates with hardening law predictions.

4.4.1 Methodology

In order to examine the validity of the superposition principle expressed through

the two commonly used FZ and LP hardening laws in equations (4.2) and (4.3),

respectively, latent hardening simulations with forest populations leading to multiple

195



 0

 20

 40

 60

 80

 100

Sim
ulation 1

Sim
ulation 2

Sim
ulation 3

Sim
ulation 4

Sim
ulation 5

Sim
ulation 6

Sim
ulation 7

Sim
ulation 8

Sim
ulation 9

Sim
ulation 10

Sim
ulation 11

R
e
la

ti
v

e
 f

o
re

s
t 

p
o

p
u

la
ti

o
n

s
 (

%
)

Simulations forest populations

Single interaction 
 reference simulations

Multi-interactions 
 simulations

Non-collinear prismatic Collinear prismatic Non-collinear pyramidal

Figure 4.8: Forest populations’ distribution interacting with primary basal disloca-
tions for the different simulations.

types of interactions – as opposed to those performed in Section 4.3 whereby only one

type of interaction was prescribed at a time – are performed using DDD. In doing so,

the validity of the FZ and LP formulations can be assessed by comparing the primary

flow stress predictions given by equations (4.2) and (4.3) using reference individual

interaction coefficients computed in Section 4.3.2.2 to the flow stress predicted by

DDD when multiple types of interactions are involved.

Here, the case of primary basal dislocations gliding through a forest of either

prismatic, pyramidal or a combination of both dislocations types is investigated.

Therefore, the coefficients computed in Section 4.3.2.2 for the (1) non-collinear basal

/ prismatic (a4
FZ = 0.054; a4

LP = 0.232), (2) collinear basal / prismatic (a3
FZ = 0.707;

a3
LP = 0.841) and (3) non-collinear basal / pyramidal 〈c + a〉 (a8

FZ = 0.293; a8
LP =

0.284) interactions are used as reference individual interaction coefficients.

Multi-interactions simulations are carried out with different forest population pro-

portions as shown in figure 4.8. The choice of such populations ensures that the forest

dislocations differ not only by their slip planes but also by the magnitude of their

Burgers vector.
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An example of the FZ and LP predictions for simulation # 7 is plotted in figure 4.9.

For the sake of clarity, in that case, the FZ flow stress prediction τ basalFZ is computed

from (4.2) as τ basalFZ = τ basal0 + µb〈a〉
√
a4
FZρ

4 + a8
FZρ

8, where ρ4 and ρ8 designate the

dislocation densities on non-collinear prismatic and non-collinear pyramidal 〈c + a〉

systems predicted by the DDD simulation, respectively, and where the dislocation

density on the collinear prismatic system is ρ3 = 0. To alleviate the numerical

fluctuations in the computed flow stress induced by the discrete approach used in

DDD – and hence to allow for a fair comparison –, the mean FZ and LP predictions

are also compared to the mean primary DDD flow stress averaged over the plastic

strain interval 0.1–0.2%.

4.4.2 Results

Relative errors for both mean FZ and LP predictions with respect to the mean DDD

primary flow stress are presented for each case in figure 4.10. As reported, one can
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see that the FZ model gives predictions within less than 6% of the mean flow stress

value for interactions that do not involve collinear reactions. By comparison, LP

formulation systematically overestimates the flow stress between 17% and 30%.

However, for multi-interactions involving collinear interactions, the agreement is

poorer in both cases, with relative errors that reach 17% for the FZ model, and rise

up to 80% for the LP formulation. In each case, the FZ and LP models predict higher

flow stresses than that calculated by DDD. It is also interesting to note that larger

error is found when a smaller fraction of collinear interactions is involved. Several

factors can be considered for explaining such discrepancies. First, values of collinear

interaction coefficients are greater relative to all other coefficients pertaining to non-

collinear reactions (e.g. see tables 4.9 and 4.10). In that sense, significant differences

in the value of the interaction coefficients are seen to lead to less accurate predictions

using FZ and LP formulations. Second, flow stresses computed in the presence of

collinear interactions are generally less stable (i.e. more fluctuations are observed)

with strain than for other interactions. Third, and complementarily to the second

point, discrepancies may be linked to the nature of the collinear interaction itself.

As a matter of fact, unlike every other dislocation-dislocation interaction potentially

leading to junction formation, collinear reaction leads to annihilation, i.e. junction

with zero Burgers vector, inducing therefore a total reduction in the strain energy

of the annihilated segments [165, 64]. In that sense, the collinear interaction can be

considered as a special type of reaction, and hence may contribute to the flow stress

in a different manner than other reactions.

It is nonetheless clear that the FZ formulation, for which suitability is demon-

strated in the above for HCP crystals with the extension suggested in equation (4.2),

should be preferred in dislocation density based constitutive models to predict CRSS,

as it consistently yields closer agreement with simulated flow stress than the LP

model. Note that modifying the LP formulation so as to consider the magnitude of
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the primary Burgers vector in (4.3) was tested and found to result in still poorer

agreements than those obtained with the FZ formulation. The reason is likely to be

a fundamental one. The square root of the dislocation density is a measure of the

inverse of the mean free path for mobile dislocations. However, according to equation

(4.3), the LP amounts to regard the sum of individual inverses as the effective mean

free path, which is physically questionable. Additionally, the fact that the sum of

square roots is always larger than the square root of the sum leads to overestimating

the critical stress when several interactions are simultaneously present.

Consequently, for the rest of this chapter, the discussions and results presented

will be based on the interaction coefficient values obtained with the FZ formulation.

4.5 Discussion on latent hardening for Mg

4.5.1 Strength of interactions

Based on the FZ formulation approach, it is found from the results reported in table

4.10 that the interaction coefficients computed for HCP Mg can be classified into 4
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strength groups. The first group is composed of the collinear interactions, i.e. those

pertaining to annihilation events. As for the case of FCC materials discussed in [64],

these are found to be the strongest interactions. This is because when annihilations

occur, parts of the interacting segments length are removed, leaving shorter length

primary dislocation lines and reducing the energy. Remobilization of these short

segments requires higher stresses, since bowing out of a segment inversely scales with

its length [87]. As expected, figure 4.11(a) shows that no junctions are formed in

the case of collinear interactions; apart from annihilations, the only possible Burgers

combination is not energetically favorable. The second group of interactions comprises

the basal/pyramidal 〈c+ a〉 interactions, which are found to be very stable.
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Moving down in rank, the third group includes the prismatic/pyramidal 〈c + a〉

interactions, the non-collinear prismatic/basal and basal/prismatic as well as the

prismatic/prismatic interactions. Except for the non-collinear pyramidal 〈c + a〉 /

pyramidal 〈c+a〉 interaction which is also found in the third group, the fourth group

is composed of all interactions involving primary pyramidal 〈c+a〉 dislocations. Note

that interactions in the third and fourth groups are weak (ass
′

FZ < 0.1) and are thus

not expected to significantly contribute to strain hardening.

At this stage, it is interesting to notice that the hierarchy established for the

interactions strengths in this work is consistent with that experimentally determined

by Lavrentev and Pokhil [142, 141] for some slip systems interactions in single crystal

Mg, and with experimental results on single crystal and polycrystalline Mg reviewed

by Caceres and Lukac [34]. Although values of the coefficients obtained in these works

cannot be directly compared with the ones computed in the present study because

the hardening formulations used in both works are different, Lavrentev and Pokhil

conclude that second order pyramidal/pyramidal interactions are weaker than the

basal/prismatic interaction, and that the semi-collinear basal/pyramidal interaction

is very strong, which agrees with the predictions of the present simulations.

Another interesting aspect of slip system interactions is the number of junctions

that form in the different cases. Figure 4.11 shows the instantaneous number of junc-

tions present during the course of deformation. As reported in figure 4.11(c), the two

basal/pyramidal 〈c + a〉 interactions seem to lead to the most junction formations

among all interactions at 0.2% plastic strain. This suggests that junctions formed

in these cases are very stable and hence form strong obstacles, as already noticed

by Capolungo [39] using elastic DDD. In the present study, the semi-collinear inter-

action is found to be stronger than the non-collinear one. Experimentally, a similar

observation was reported by Lavrentev and Pokhil [142], who suggest that the smaller

reduction in strain energy associated with the junction formation in the non-collinear
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basal/pyramidal case is likely to be responsible for its lower strength (see table 4.3).

Interestingly, fewer instantaneous junctions are observed for the pyramidal 〈c +

a〉/basal interactions, suggesting that junctions that are formed are destroyed shortly

after they have combined, i.e. are weak obstacles. As a result, lower coefficient val-

ues are expected for those interactions, as less stress will be required for mobilizing

primary segments across the forest. Thus, this explains the lower values of the pyra-

midal/basal interactions compared to those of the basal/pyramidal, and evidences

the non-symmetrical property of the hardening matrix. Such a result can also be

interpreted as considering that it is harder for basal 〈a〉 dislocations to overcome

pyramidal 〈c + a〉 dislocations than the opposite. Following the same reasoning, fig-

ure 4.11(d) shows that almost no junctions are formed in the case of non-collinear

pyramidal/prismatic interaction, explaining thereby the low value of the coefficient

associated with it.

Finally, the case of prismatic/pyramidal interactions is surprising. Figure 4.11(c)

clearly shows that fewer junctions are formed in the non-collinear case compared

to the semi-collinear case. Nonetheless, the coefficient associated with the latter is

found to be lower than the one pertaining to the non-collinear interaction. In this

case, however, it is found that a large amount of 4-connected nodes are present. These

correspond to crossed states – i.e. junctions with null length – and to repulsive states.

Similarly to junctions, they behave as obstacles by pinning primary dislocations, and

are found to induce higher hardening than junctions in the semi-collinear case. This

shows that crossed and repulsive states can also significantly contribute to strain

hardening when they are numerous and junctions are weak.

4.5.2 Effect of friction stress

The simulation results for cases (1) and (2), i.e. when friction stress is accounted

for or not, are reported in figure 4.12. Consistently for all interactions, the friction
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stress is found to lead to a decrease in the computed coefficient. This effect is con-

sistent with the work of Monnet and Devincre [175] in which statics and dynamics

dislocations simulations were employed to study the effect of lattice friction on forest

hardening. From static equilibrium the authors derive that the junction length was

inversely proportional to the value of the friction stress, which was verified by DDD

simulations. As a result, it is found that increasing friction stress leads to decaying

junction stability. In turn, this leads to a larger spacing between pinning points and

thus to a lower latent hardening coefficient. A similar result was also reported in

reference [198] on BCC α-iron. Correspondingly, in the present work, interactions

involving primary pyramidal systems, for which dislocations have the highest lattice

friction stress, exhibit the greatest sensitivity to friction. The significant influence of

the friction stress also explains the very low coefficients obtained for interactions of

primary pyramidal systems in case (1). Conversely, interactions involving primary

basal dislocations, such as in the case of the very stable basal/pyramidal interactions,

are found to be the least sensitive to lattice friction, as the friction stress of the basal

system is almost negligible.

When friction stress is not accounted for, it clearly appears that non-collinear pris-

matic/basal interactions are inducing more hardening than non-collinear basal/prismatic

interactions. This asymmetry was observed for hexagonal ice [62] for which no friction

stress was considered, and was attributed to the anisotropy of line tension between

basal and prismatic systems. When a junction between basal and prismatic segments

is to form, the basal screw character is parallel to the junction line. Therefore, screw

segments, that are easier to bow-out, are found to connect successive junction seg-

ments, thus lowering the stress required for their remobilization. However, in case

(1), such asymmetry is attenuated by the presence of significant prismatic lattice

friction stress. Similarly, the prismatic friction stress seems to be responsible for the

lower value of the collinear prismatic/basal interaction with respect to the collinear
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Figure 4.12: Comparison of the averaged values of the coefficients with friction stress
(solid lines) and no friction stress (dashed lines) using the FZ formulation.

basal/prismatic interaction in case (1). Finally, it is interesting to notice that with no

lattice friction, similarly to what is reported in reference [62], the prismatic/prismatic

interaction becomes the strongest non-collinear interaction, omitting the interaction

involving second order pyramidal systems, which were not considered in reference

[62].

4.5.3 Effect of dislocation mobility

As discussed in reference [102], dislocations in Mg exhibit a strong anisotropy in their

mobilities, depending on their slip system and their character. When studying pris-

matic dislocations with DDD, Monnet et al. [176] used a phenomenological mobility

law in which screw dislocations were orders of magnitude slower than edge ones. Such
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an approach was adopted to match experimental observations of anisotropic loop ex-

pansion favoring long screw segments and short edge segments [37]. To evaluate the

effect of mobility on hardening, simulations of interactions with no friction stress and

anisotropic mobilities (case (2)) given in table 4.7 are compared with two simulations

where (a) edge and (b) screw mobilities are assigned to all dislocations, respectively

(case (3)). Results for the non-collinear basal/prismatic interaction are reported in

table 4.11.

Examining the results, one can observe that the averaged value of the interac-

tion coefficient, when all dislocations are assigned screw mobilities, is higher than

that when all dislocations are assigned edge mobilities. This result can be expected.

Assigning the faster edge mobility values to all dislocations will impart more shear

to the crystal than if slower screw mobilities were assigned: dislocations with higher

mobilities are sweeping larger areas when gliding under a similar stress. As a result,

more plastic strain is generated overall, reducing the stress and the value of the coeffi-

cient. On the contrary, if all dislocations are slower, as in the case where all mobilities

are taken to be those of screw dislocations, then the stress will be higher, hence so

will the interaction coefficient. Therefore, increasing the velocity of the dislocations

reduces the value of the coefficient. Based on the foregoing, two issues arise. First,

a lower value of the coefficient does not necessarily imply lower interaction strength,

but mainly reflects a strain-rate scaling effect. Second, it suggests that more meaning

needs to be placed on the hierarchy of the coefficients, i.e., relative strengths of the

interactions, rather than values themselves. With this in mind, it seems difficult to

conclude on the true effect of dislocation mobilities because of the coupling between

the effect of (1) the average mobility value and (2) the contrast between edge and

screw mobilities. In latent hardening simulations, setting such a contrast would fa-

vor the appearance of screw dislocations, assuming we assign the latter the slowest

velocity. This would mainly reduce the range of possible intersection orientations
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Table 4.11: Averaged values of the coefficients computed for different velocity pro-
files.

Simulation Edge mobility (Pa.s) Screw mobility (Pa.s) Coefficient value

0: Different mobilities Bedge = 4.7× 10−6 Bscrew = 1.3× 10−5 0.054

a: Edge mobility Bedge = 4.7× 10−6 Bscrew = 4.7× 10−6 0.044

b: Screw mobility Bedge = 1.3× 10−5 Bscrew = 1.3× 10−5 0.059

between primary and forest dislocations as more primary screw segments are likely

to interact with the forest. However, for randomly generated forest dislocations, in-

tersection orientations would remain random, such that this effect is not expected to

be significant. Similar conclusions were drawn by Wang and Beyerlein [247] when

studying BCC materials with DDD, in which a high contrast between edge and screw

mobilities was observed to have little influence on material response.

4.6 Effect of the latent hardening coefficients on strain hard-
ening

As attested by the considerable development of dislocation density-based crystal plas-

ticity models, the latent hardening coefficients defining the strength of dislocation-

dislocation interactions have rapidly become a key ingredient in constitutive modelling

via the use of the FZ (4.2) or LP (4.3) laws [65, 132]. Furthermore, their accurate

evaluation was found to play an important role for modelling and predicting the

mechanical response of materials, specifically to predict the directionality and depen-

dence of slip activation with respect to crystal orientation [165, 112, 65] and in the

case of complex loading paths such as strain path change [200, 95].

However, so far, interactions coefficients were not available for HCP Mg such that

default values were used in constitutive models. Consequently, in this section, the

effect of hardening coefficient values on the macroscopic response is investigated. To

this end, the values of the hardening coefficients computed in this work and reported

in table 4.10 are introduced into a visco-plastic-self-consistent (VPSC) polycrystal
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Figure 4.13: Initial rolling texture pole figure used to simulate tension in the rolling
direction on polycrystalline pure HCP Mg.

model developed for HCP materials [25, 24], and tension in the rolling direction is

simulated for the rolling Mg alloy texture reported by Jain et al. [117]. To represent

such texture whose pole figure is plotted in figure 4.13, approximately 2000 grains

are used. The loading condition is selected in order to avoid twin activation and to

test solely for the effect of the hardening coefficients related to slip so that the latent

effects of dislocations-twin boundary interactions need not to be considered here.

The dislocation density model proposed in references [25, 24] was initially devel-

oped to account for dislocation densities per slip mode. Here, a modified version of

the model which accounts for dislocation densities on each individual slip system is

used [122]. Their evolution is given by the following Kocks-Mecking type law:

∂ρs∈α

∂γs
= ks1
√
ρs − kα2 (ε̇, T )ρs

kα2 (ε̇, T ) = kα1
χbα

gα

(
1− kT

Dαb3
ln

(
ε̇

ε̇0

))
(4.6)

where χ is an averaged dislocation interaction parameter and ρs∈α denotes the dislo-

cation density on system s belonging to slip mode α. The CRSS on each slip system

is computed using equation (4.2). The parameters of the dislocation model used here

are reported in table 4.12.

In this section, four different cases are tested and compared. Each case corresponds
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Table 4.12: Slip modes parameters used in VPSC simulations. For parameters details
the reader is referred to reference [25].

Parameter α = basal α = prismatic α = pyramidal 〈c+ a〉
bα (m) 3.231× 10−10 3.231× 10−10 6.077× 10−10

ε̇0 (s−1) 107 107 107

gα 1.55× 10−3 1.55× 10−3 1.55× 10−3

Dα (MPa) 21.5 21.5 21.5
Aα 0 0 0
q 0 0 0
HPα 0 0 0

to a different set of coefficients values and is listed below:

(a) Self-hardening, corresponding to a diagonal hardening matrix, and for which

the same hardening coefficient is associated to each slip system interaction.

(b) Mode-hardening, in which latent hardening is only considered between slip sys-

tems belonging to the same slip mode, and for which the same hardening coef-

ficient is assigned for each slip mode interaction.

(c) Same-hardening, for which the same value is assigned to all hardening coeffi-

cients.

(d) Latent-hardening, corresponding to the FZ hardening coefficients computed in

this work and reported in table 4.10.

The values of the hardening coefficients associated to each case are given in table

4.13. Note that case (b) corresponds to the dislocation density model proposed by

Beyerlein and Tomé [25] and case (c) to the original Taylor law. In case (d), the

coefficients are those computed in Section 4.3.2.2 where lattice friction is taken into

account and mobilities are derived from atomistic simulations. As stated in the

above, self-hardening coefficients were not computed in this work. Here, they are set

to 0.150, which corresponds to the average value of the coefficients reported in table

4.10. The same value is used for the coplanar basal/ basal interaction. Also, the

averaged interaction parameter χ in equation (4.6) was set to 0.150.
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Table 4.13: Set of interaction coefficients values for the different cases.

Coefficient
case (a): case (b): case (c): case (d):

self-hardening mode-hardening same-hardening latent-hardening

S1, S2, S3 0.150 0.150 0.150 0.150
1 0 0.150 0.150 0.150
2 0 0.150 0.150 0.038
3 0 0 0.150 0.707
4 0 0 0.150 0.054
5 0 0 0.150 0.535
6 0 0 0.150 0.060
7 0 0 0.150 0.367
8 0 0 0.150 0.293
9 0 0 0.150 0.068
10 0 0 0.150 0.088
11 0 0 0.150 0.017
12 0 0 0.150 0.011
13 0 0 0.150 0.025
14 0 0 0.150 0.015
15 0 0.150 0.150 0.018
16 0 0.150 0.150 0.042

For each case, the experimental tensile stress strain responses obtained by Jain et

al. [117] on 20 µm grain-sized AZ31B are fitted with VPSC. Note that the specific

stress-strain data used here is not critical, but rather meant to provide a base value for

comparison. For instance, one interesting macroscopic metric that can be compared

is the Lankford coefficient (r-value) prediction, which provides a sensitive measure of

plastic anisotropy. Given that tension is simulated along the rolling direction (RD),

the r-value corresponds here to the ratio of strain in the transverse direction (TD)

over strain in the normal direction (ND). Here the interest is not specifically to match

the experimental data, but rather to give insights on the impact of the choice made

for the interaction coefficients on such macroscopic measures. An in-depth study of

the impact of dislocation interaction strength on latent hardening and mechanical

response, such as in the case of single-crystals, is not within the scope of this study,

but could certainly be the subject of future work.

Figure 4.14 shows the simulated stress-strain responses obtained in the four cases

(a)–(d) as well as the associated Lankford coefficients (r-values) predictions. The
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dislocation density hardening law parameters used to reproduce the experimental

stress-strain response in each case are reported in table 4.14.

Several observations are noteworthy. First, notice that appropriate fits of experi-

mental stress–strain data can be achieved using any of the different sets of coefficients.

However, internal state variables of the model associated to the different cases do not

necessarily evolve in a similar fashion. Interestingly, the r-values predicted using the

coefficients computed in this work (case (d)) are close to those predicted in mode-

hardening case (b), and are in excellent agreement with the experimental values of

around r = 2 reported in reference [117]. However, it also appears that the predictions

of r-values can be significantly affected by the set of coefficients used, as demonstrated

in the same-hardening case (c), for which the Lankford coefficient reaches a value of

5 at 14% strain.

Furthermore, as shown in figure 4.15, the use of different interaction coefficient val-

ues induces differences in the predicted slip modes activities. While mode-hardening

(b) and latent-hardening (d) cases predict similar r-values, they nonetheless exhibit

different dislocations densities evolutions. Such differences are most noticeable in
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Table 4.14: Dislocation density based hardening parameters used to fit experimental
data for the different cases.

Case Slip mode α kα1 (m−1) τα0 (MPa)

case (a): self-hardening α = basal 3.5× 109 20
α = prismatic 1.0× 109 65
α = pyramidal 〈c+ a〉 4.0× 109 105

case (b): mode-hardening α = basal 8.5× 108 20
α = prismatic 7.0× 108 70
α = pyramidal 〈c+ a〉 7.0× 108 110

case (c): same-hardening α = basal 2.8× 109 25
α = prismatic 1.6× 108 58
α = pyramidal 〈c+ a〉 1.0× 108 85

case (d): latent-hardening α = basal 3.0× 109 15
α = prismatic 6.0× 108 55
α = pyramidal 〈c+ a〉 6.0× 108 80

the case of same-hardening (c) – corresponding to the classical Taylor-law –, as at-

tested by the lack of pyramidal activity and the strong predominance of prismatic

dislocations compared to the other cases.

4.7 Conclusion

In this chapter, the regular DDD code developed during this thesis and presented

in Chapter 2 was employed to compute the strength-interaction matrix for pure

hexagonal Mg for the first time. In addition to providing a precise quantification

of dislocation-dislocation interaction coefficients in HCP Mg, this work revealed sev-

eral interesting features.

First, similar to FCC materials, it was found that collinear interactions potentially

contribute the most to latent hardening. Via annihilations of portions of segments,

interactions between collinear systems leave segments of shorter length that require

an increase in the flow stress to be remobilized, hence yielding a strong hardening.

Besides, it was shown that basal/pyramidal 〈c+a〉 interactions are very stable, leading

to significant hardening, while interactions involving primary second order pyrami-

dal 〈c + a〉 dislocations were found to be the weakest ones. Further, it was shown
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Figure 4.15: Evolution of the dislocation densities for each slip mode as a function
of strain for tension in the rolling direction (RD) for the different cases.

that crossed and repulsive states could significantly contribute to strain hardening

when junctions are weak as for the prismatic/pyramidal interaction. Also, the large

contrast between intrinsic properties of the different HCP slip systems (mobilities,

friction stress) was shown to induce non-symmetrical latent hardening. Furthermore,

the effect of lattice friction has been studied, and, consistent with previous studies,

it was found that lattice friction tends to lower the forest hardening effect. Nonethe-

less, it was observed that while the dislocation mobility is seen to have an impact

on the interaction coefficient value by virtue of strain-rate sensitivity, the contrast

between edge and screw dislocation mobilities was found hard to quantify, and an

in-depth investigation would require the incorporation of more sophisticated mobility

functions.

In addition, this work revealed that Franciosi and Zaoui [90] formulation, whose
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extension suggested in equation (4.2) is demonstrated to be applicable to HCP crys-

tals, gives accurate predictions when multiple interaction types are involved in the de-

formation process, whereas the formulation suggested by Lavrentev and Pokhil [141]

consistently overestimates the flow stress predictions. As a result, it is suggested

that the FZ law (4.2) should be preferred to the LP formulation (4.3) in dislocation

density-based constitutive modelling.

Finally, in studying latent hardening effects on polycrystal response, it was shown

that an accurate quantification of the interaction coefficients seemed to have an im-

portant impact on predicting the macroscopic plastic anisotropy. Specifically, it was

demonstrated that although any experimental stress-strain response could be repro-

duced with any set of interaction coefficient parameters, differences in their values

can lead to significantly different predictions in terms of dislocation densities and slip

systems activities.
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CHAPTER V

DISLOCATION-PHASES INTERACTIONS

5.1 Dislocation-twin interactions

5.1.1 Motivation

The mechanical behavior of polycrystalline metallic materials is strongly affected

by the interaction between moving dislocations and grain boundaries and interfaces

[245, 222]. Of particular interest, the presence of twins has been reported to have a

significant impact on the mechanical response of nanostructures FCC crystals [273,

275, 274]. Specifically, particular attention has been recently directed towards nano-

twinned FCC materials, exhibiting significant improvements in terms of strength

and ductility, unveiling promising processes to fabricate materials with enhanced

mechanical properties [159, 158, 160].

Experimentally, the substantial work-hardening obtained has been primarily at-

tributed to the accumulation of dislocations at the twin boundaries (TB) [47, 159,

158, 149, 160], and twinning deformation in nano-crystalline materials has been

found to generate a greater plastic activity than in their coarse-grained counterparts

[138, 150, 233, 261]. Presumably, slip-twin interactions can be regarded as inducing

two correlated effects: while dislocation motion is impeded by TBs because of the

crystallographic reorientation, twin growth is conversely expected to be hindered by

interactions between moving TBs and slip bands. In this section, the focus is placed

on the interaction of moving dislocations with fixed TB interfaces.

Overall, the prominent role of dislocation interactions with TB is expected to

yield two major correlated effects. First, upon accumulation, the pile-ups of disloca-

tions at the boundary are expected to generate large stress concentrations. Second,
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these high stress concentrations are expected to create favorable conditions for dis-

location reactions to occur. Depending on the local conditions, the crystallography,

and the stacking-fault energies, dislocation-twin reactions can either lead to absorp-

tion, formation of locks or transmission of dislocations. In certain circumstances, the

transmission of dislocations across the twin boundary via dissociation of their Burg-

ers vectors may lead to the generation of partial twinning dislocations mobile on the

interface. In that sense, it is apparent that dislocation-twin boundary interactions

are more complex than producing a simple Hall-Petch effect by reducing the effective

mean free path of dislocations in the nano-grains.

From a modelling standpoint, atomistic simulations studies on FCC crystals have

confirmed the prominent role of dislocation transmission across coherent twin bound-

aries (CTB) on the strengthening observed experimentally [119, 118, 59]. However,

due to limitations in terms of time and length scales, MD simulations solely permit to

gain insights on unit processes, and are therefore not able to provide an extensive com-

prehension of the collective effect of dislocation interactions with CTB. Furthermore,

very few DDD studies have been dedicated to investigate such mechanism and those

relied on the use of simple line tension models [57, 272]. Therefore, by lack of informa-

tion, the role of dislocation-twin has rarely been incorporated into constitutive laws

[120, 208, 25]. However, note that very recently, Fan et al. studied dislocation-CTB

interactions in polycrystalline HCP Mg by incorporating transmission rules in their

DDD framework [82]. However, while their work primarily focused on the resulting

macroscopic hardening response, dislocation multiplication and interfacial plasticity

was not studied in details.

Consequently, dislocation transmission across a coherent twin boundary in FCC

materials using DDD is proposed to be investigated in this thesis so as to assess the

role of dislocation-CTB transmission and its effects on interfacial and mesoscale plas-

ticity. For such purpose, the DDD code developed in this work is further extended
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to incorporate details on individual transmission events based on atomistic simula-

tions and predictive models resulting from experimental observations. It is expected

that a fine study at this scale would provide relevant information on the transmission

mechanism that could be incorporated into crystal plasticity models to refine current

transmutation-induced hardening approaches [78, 189].

The present section is organized as follows. First, current modelling approaches

dedicated to the role of dislocation-twin interactions and their results are reviewed in

Section 5.1.2. Then, the methodology used to model dislocation-CTB interactions in

DDD and the associated numerical implementation are presented in Section 5.1.3. Fi-

nally, results of the present study are discussed in Section 5.1.4 while new perspectives

on the effects of dislocation-twin interactions are presented in Section 5.1.5.

5.1.2 Earlier studies of dislocation-twin boundary interactions

5.1.2.1 Predictive models

The first studies dedicated to the investigation of individual interactions between

dislocations and boundaries – of which coherent twin boundary (CTB) is a special

case – focused on developing transmission rules to predict the activation of slip in the

neighboring grain due to a dislocation pile-up the grain boundary (GB). Following

the illustration given in figure 5.1, Livingston and Chalmers [156] first suggested a

geometrical criterion, referred to as the N -criterion, in which the activated slip system

i was proposed to be that maximizing the N value defined as

N = (~np · ~mi)(~np · ~mi) + (~np · ~mi)(~mp · ~ni) (5.1)

where ~np and ~mp denote the unit normal and slip direction associated with the in-

coming slip system in which the pile-up occurs, and ~ni and ~mi that of the potential

transmitted slip system i in the neighbor grain. The principal shortcoming of this

model is that it does not account for the orientation of the grain boundary plane,
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Figure 5.1: Schematic of the notations used for the N and M predictive criteria in
equations (5.1) and (5.2), respectively. Reproduced from [222].

but solely accounts for the misorientation between both the incoming and the trans-

mitted system. This was later incorporated in the approach developed by Shen and

co-workers [214, 215]. In this approach, a combined geometrical and stress-based cri-

terion was proposed, in which the N criterion in equation (5.1) was replaced by the

M criterion to account for the GB orientation as:

M = (~Lp · ~Li)(~bp ·~bi) (5.2)

where ~Lp, respectively ~Li, denotes the line intersection direction between the incom-

ing p plane, respectively the transmitted plane i, and the grain boundary plane, as

depicted in figure 5.1. In this approach, the geometrical M criterion in equation (5.2)

to select the most favorable slip plane ~ni was further complemented by a stress-based

criterion to determine the slip direction ~mi, so as to ensure that the resolved shear

stress (RSS) on the transmitted slip system is maximum.

Although devised from experimental observations, in both these seminal approaches,

the activation of slip systems in the neighboring grain can be regarded as resulting

from stress concentrations generated by the dislocation pile-up at the grain boundary.

In other words, the accumulation of dislocation lines on one side of the GB triggers
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the activation of distinct dislocations lines on the other side of the GB through elas-

tic effects. As such, the transmission of dislocations across the GB, which has been

observed experimentally, was not readily accounted for. In studying Ni bicrystals,

Lim and Raj [151] further underlined the important role of residual dislocation ar-

rays in the GB upon absorption and re-emission of dislocations. As a result, and to

address the limitations of the model of Shen et al. [214, 215], Lee and co-workers

[145] suggested a new predictive approach, in which (1) the activated transmitted

slip plane is determined so as to maximize (~Lp · ~Li), i.e. minimize the incoming and

transmitted planes misorientation, and where (2) the activated slip direction is deter-

mined upon maximization of the RSS and minimization of the residual Burgers. This

criterion was further refined to ensure that the RSS on the selected slip system is

larger than the critical resolved shear stress (CRSS) on that system, thereby allowing

for dislocation motion on the transmitted plane [170]. Via in situ TEM studies, the

approach of Lee et al. [145] was demonstrated to provide good predictive capabilities

for GB transmission due to pile-ups, especially by removing the inconsistencies of

earlier models. Further, it is interesting to notice that this criterion can be readily

used for dislocation transmission across twin boundaries, as no specific description of

the structure of the interface is involved.

5.1.2.2 Atomistic simulations

Several investigations have been performed using Molecular Dynamics (MD) simu-

lations to study the interaction between dislocation and twin-boundaries (TB) for

different crystalline structures. Such studies have provided a better understanding of

the absorption and transmission mechanisms, and have allowed to speculate about

possible factors underlying the occurrence of the different reactions.

Regarding FCC crystals, Jin and co-workers investigated the slip transmission of

screw [119] and 60◦ [118] dislocations across coherent twin-boundaries (CTB) in Al,
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Cu and Ni. In the case of screw dislocations, it was found that recombination of

Shockley partial dislocations at the CTB was first necessary before interactions to

occur, further leading to either absorption and dissociation into partials spreading

along the CTB in Al, or transmission into the twin by cutting through the CTB in

Cu. For this last case, the constriction of partials at the CTB is required for the

leading and trailing partials to exchange order before propagation in the twin [119].

In the case of a 60◦ dislocation, the resulting interaction processes can lead to several

outcomes depending on the sign of the dislocation, the amount of strain, and the

material. In all cases, and similarly to the screw dislocation, the two Shockley partials

first recombine to form a perfect 1
2
[101] incoming dislocation at the CTB. Then, the

different interactions consist in various dissociations of the 60◦ 1
2
[101] dislocation.

Thus, in Cu, the dislocation either decomposes into (1) another perfect dislocation

transmitted in the twin plus a twinning dislocation lying in the CTB, or into (2)

a transmitted Shockley partial and a remaining defect forming a sessile ”i-lock”,

depending on its sign. In Al, the interaction mechanism either proceeds in a similar

way than case (1) for Cu at high strains, leads to the decomposition into a partial in

the CTB and a defect forming a sessile Frank lock at lower strains, or produces two

repulsive twinning partials along the CTB [118]. In addition, following their results,

Jin et al. suggested that a novel criterion for slip transmission should preferably rely

on energetic considerations rather than on geometric and stress-based approaches, and

postulated that the different types of dissociations accompanying transmission are

related to the material-dependent energy barriers to form partial dislocations [118].

While these conclusions were later supported by the work of Chassagne et al. [43]

in which the same interaction mechanisms were studied for 10 different inter-atomic

potentials, it was further highlighted that transmission events require dislocations to

be forced into the CTB by ways of pile-ups.
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5.1.2.3 Dislocation dynamics simulations

Very few DDD studies have been dedicated to the investigation of dislocation interac-

tions with interfaces. To the author’s knowledge, Zhou and co-workers were the first

to employ DDD simulations accounting for dislocation-boundary interactions to study

the size-dependent plasticity in polycrystalline thin-films [272]. In their simulations,

the line tension model developed by de Koning et al. [57, 56] from atomistic simula-

tions results was implemented into the DDD framework to account for transmission

across GB. As a result, the authors were able to describe the resulting stress-strain

response with a Hall-Petch relation, attesting for the plasticity dependence to the

grain size. However, for the sake of simplicity, the line tension model in their work

was limited to model transmission events that do not produce residual dislocations

at the boundary. Therefore, such approach would not be appropriate to study in de-

tails the dislocation-twin interactions reported in the previous sections. Alternatively,

an explicit treatment of dislocation-TB interactions should be incorporated in order

to account for the different possible dissociations occurring at the interface, thereby

allowing for gaining insights on their collective effects.

Nonetheless, it is to be noticed that very recently, the effect of CTB interactions on

the macroscopic response have been investigated in HCP Mg using DDD simulations

in which a transmission mechanism involving dissociation of dislocations was explicitly

incorporated into the DDD framework [82]. The study revealed the complex role of

CTB reactions inducing a competition between a hardening effect resulting from

the hindered motion of dislocations and a softening effect arising from twin growth.

However, while the focus was placed on the overall mechanical response, the precise

role of dislocation-CTB reactions and their effects were not investigated in details.
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5.1.3 Methodology and numerical implementation

Here, the collective effect of interactions between dislocations and CTB and their

role on the multiplication of dislocations at the interface are studied using the DDD

simulation tool developed in Chapter 2, in which an explicit transmission mechanism

has been implemented. For the sake of simplicity, and to depart from the work of Fan

et al. on HCP Mg [82], the present investigation is carried out on FCC Cu crystals.

5.1.3.1 Geometry of dislocation-twin intersection in FCC crystals

The crystallography of slip in FCC materials is conveniently represented using the

Thompson’s tetrahedron shown in figure 5.2(a), in which perfect 1
2
〈1̄10〉(111) dislo-

cations and 1
6
〈2̄11〉(111) Shockley partials are delineated.

In FFC crystals, twinning occur by glide of 1
6
〈2̄11〉 twinning dislocations on suc-

cessive {111} planes. The type I twinned lattice of a FCC crystal can be regarded

as a mirror reflection of the parent lattice across the {111} twin plane, i.e. as a

180◦ rotation around the normal to the twin plane. A simple way to illustrate parent-

twin orientation relationship is to consider the double Thompson’s tetrahedron drawn

in figure 5.2(b). In this simple case, the atomic structure of the {111} interface is

coherent; hence it is referred to as a coherent twin-boundary (CTB).

The different possible dissociation reactions that can occur upon interaction of

a dislocation and a {111} CTB in FCC crystals have been systematically identified

in [275]. As reported in MD simulations [119, 118], leading and trailing partials

recombine in each case upon interaction. Therefore, the interaction of a perfect

1
2
〈101〉 dislocation with a {111} CTB is investigated in this work.

In the following, the intersection between a (111) twin boundary and dislocations

on the (1̄11) plane is considered. As illustrated by the tetrahedron representation in

figure 5.2, perfect dislocations on the (1̄11) plane have either screw of 60◦ characters

upon intersection with the (111) plane. The case of the 1
2
[01̄1] screw dislocation does
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Figure 5.2: (a) Thompson’s tetrahedron [229] centered in the (111) plane. The crys-
tallographic relative orientations between the four {111} slip planes is recovered when
the three external sides of the tetrahedron are folded such that points D at each corner
meet in a single position. Perfect 1

2
〈1̄10〉 and Schokley partial 1

6
〈2̄11〉 dislocations are

represented on each of their slip planes. The notation [101〉, for instance, instead of
[101], is used to indicate the direction of the Burgers vector. (b) Double Thompson’s
tetrahedron to represent parent–(111) twin orientation relationship.

not present any particular interest for this study since it has been shown in MD

simulations that such dislocation does not dissociate but readily cuts through the

CTB by cross-slip in Cu [119]. The two remaining 60◦ 1
2
[101] and 1

2
[110] dislocations

exhibit symmetric properties with respect to the interface and are therefore expected

to behave similarly upon intersection. The different possible reactions that can occur

upon intersection are extensively discussed in [275].

5.1.3.2 Simulation settings

To study the transmission mechanism across a CTB and its effects, the setting showed

in figure 5.3 is used. Initially, a single 1
2
[110]1(1̄11)1 straight dislocation source (green

dashed line) is introduced in the A6 (using Schmid and Boas notation) slip system of

the parent crystal (1) of a nano-twinned FCC Copper bi-crystal with (111) CTB. In

the rest of this section, subscripts 1 and 2 associated with the planes and directions
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Figure 5.3: Bicrystal simulation setting: a type I twin with (111) twinning plane and
volume fraction f = t/(s + t) is introduced within a FCC Copper crystal. Initially,

a straight dislocation source (green dashed line) with Burgers vector ~binc = 1
2
[110]1

is introduced on the (1̄11)1 plane of the parent phase (1). Upon transmission (see
Section 5.1.4) the incoming dislocation dissociates into a red transmitted dislocation

with ~btrans = 1
2
[101]2 propagating on the (1̄11)2 plane of the twin and a residual

twinning dislocation ~bres = 1
6
[2̄11]2 gliding on the (111) interface.

indicate the lattice on which they are expressed, i.e. (1) corresponding to the parent

phase and (2) to the twinned lattice. In this setting, the normal to the (111)1 = (111)2

interface is aligned with the ~z axis of the global frame, and ~x and ~y axes correspond

to the [2̄11]1 and [01̄1]1 directions of the parent lattice (1), respectively. The twinned

crystal (2) corresponds to a rotation of 180◦ of the parent lattice (1) around the ~z

axis such that the [21̄1̄]2 and [011̄]2 are aligned with the ~x and ~y axes, respectively.

The total height of the parent crystal is given by s and that of the twin by t, such

that the volume fraction f occupied by the twin is expressed as f = t/(s+ t).

Upon transmission, the incoming dislocation line has a 60◦ character and its core

is considered to be constricted. As mentioned earlier, this assumption is consistent

with MD simulations in which the leading and trailing partials are seen to recombine
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in a perfect dislocation at the CTB [118], and allows for circumventing the difficulties

associated with the treatment of partial dislocations in DDD simulations.

For the sake of simplicity, the crystal is assumed to be elastically isotropic so

that the effects of elastic anisotropy are neglected when transmission occurs. Under

such assumption, the twin solely corresponds to a rotation of the crystallographic

structure in which no elastic mismatch is generated. As a result, the regular DDD code

developed in Chapter 2 will be employed using the non-singular isotropic formulation.

In the simulations performed in this work, a constant stress σext is applied to the

simulation volume, such that:

σext =


0 σxy 0

σxy 0 0

0 0 0

 (5.3)

The shape of the applied stress tensor in (5.3) is chosen such that the Schmid factor m

is large on the incoming A6 slip system (m = −0.33) and vanishes on the (111) twin

plane (m = 0). To investigate the transmission mechanism under different situations,

different values for the magnitude of the stress σxy are chosen.

Simulations are further performed for several twin thicknesses t: 0a (no twin),

100a, 500a and 1000a, where a = 0.3634nm is the lattice spacing in FCC Cu. Note

that periodic conditions are used and that the size of the primary simulation volume

V = (s + t)w2, where w = 5000a is the length of the simulation volume along the

x and y axis (see figure 5.3), is held constant for all simulations. Therefore, any

variation in the twin thickness t equivalently corresponds to a variation in the twin

fraction f .

The material parameters used to model isotropic FCC Copper are reported in

table 5.1.
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Table 5.1: Material parameters used to model isotropic FCC Copper.

Material parameter Value

Shear modulus µ = 45 GPa

Poisson’s ratio ν = 0.33

Friction stress 0 MPa

Drag coefficient 10−4 Pa.s

Lattice parameters a = 3.634× 10−10 m

5.1.3.3 Numerical implementation

The principal difficulty in studying dislocation-twin interactions in DDD simulations

resides in the development and implementation of local interfacial rules to model the

dissociation and transmission mechanisms across the twin boundary. As illustrated in

figure 5.3, the twinned crystal is considered as a specific layer in which the crystallo-

graphic orientation differs from that of the parent phase, and the interface separating

both phases is assumed to be perfectly coherent. Thus, a dislocation initially gliding

in slip system sinc in the parent grain can generally not continue gliding along the

same plane and direction as it crosses the interface, simply because its plane and

direction do not necessarily exist as such in the twinned rotated crystal.

The local rules to model transmission across a CTB that have been implemented

directly follow from the prediction framework suggested by Lee et al. [145] presented

in Section 5.1.2 and involve geometrical and energetic considerations. The numerical

process implemented to treat dislocation interaction with CTBs is as follows. After

nodal velocities are calculated in the DDD code (see Section 2.5), dislocation nodes

that cross the interface upon motion are first stopped at the interface along the di-

rection of their velocity to attain the configuration depicted in figure 5.4(a). Then,

the criteria proposed by Lee et al. [145] are used to determine the most favorable slip

system strans for the portion of dislocation to be transmitted. Thus, (1) the trans-

mitted slip plane with normal ~ntrans is selected so as to minimize the misorientation

θ = arccos(~ninc · ~ntrans) between the incoming and transmitted planes, while (2) the
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Figure 5.4: Schematic of the numerical treatment of dislocation transmission across
a coherent twin boundary (CTB). (a) When crossing the boundary, dislocation nodes
in the incoming slip system sinc are first stopped at the interface. (b) If a favorable
slip system strans is found, a trial transmitted configuration is formed by moving
interfacial nodes on the transmitted system (red nodes) while inserting residual nodes
(blue nodes), if required. Then, forces on transmitted nodes are computed to ensure
glide will take place in the transmitted grain. If not favorable, the configuration is
set back to its initial setting in (a).

transmitted direction~btrans is chosen so as to minimize the norm of the residual Burg-

ers vector ~bres = ~binc −~btrans that is required to conserve Burgers continuity upon

transmission involving a change in slip direction.

If a favorable slip system strans for transmission is found, a trial transmitted

configuration is created by dissociation of the initial dislocation portion stopped at

the boundary: interfacial nodes are moved onto the transmitted slip system at a

small distance from the interface and a supplementary residual dislocation line with

Burgers ~bres is inserted along the interface, if ‖~bres‖ 6= 0, as illustrated in figure

5.4(b). Then, forces on transmitted dislocation nodes are computed to ensure that

the new configuration is energetically favorable and will not drive the transmitted

line back to the interface so as to recombine with the residual dislocation and retrieve

its undissociated state. If forces on the transmitted line tend to drive the dislocation

away from the interface, the transmission is considered as energetically favorable, and

the trial transmitted configuration is conserved. However, if forces on the transmitted

line act to drive the line towards the interface, the configuration is set back to its

initial undissociated state and the dislocation is stopped at the interface. In that

case, the transmission process will be reconsidered at the next time step.
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In this process, the force calculation on transmitted dislocation lines ensures that

dislocations are transmitted solely when local stress conditions allow for such events.

Here, the stress includes both the contributions from the microstructure, i.e. from

the other dislocation lines present in the volume, and the applied loading. Thus,

when the internal stresses and the applied loading are not sufficient for transmission

to occur, long untransmitted dislocation portions typically spread along the interface

(this will be later shown in figure 5.6(a)). A simple approach to treat transmission

would consist in testing for the simultaneous transmission of all consecutive interfacial

dislocation nodes so as to determine whether all of them are transmitted or none of

them are. However, when interfacial dislocations become long, local transmission

conditions might be met solely along a portion of m ≤ n nodes of the initial n

consecutive interfacial nodes, such that treating all dislocation nodes as a whole is not

satisfactory. For this reason, a recursive algorithm has been developed to sequentially

test for the transmission of n, n− 1, n− 2, ... nodes of the interfacial dislocation, such

as to ensure that a portion with m ≤ n dislocation nodes can be transmitted if

conditions are satisfied locally (e.g. see figure 5.6(b)).

Further, it is to be noticed that in addition to the crystallographic reorientation

of the twin with respect to the parent, the rotation of the twin crystal may induce

coherency stresses due to the elastic mismatch between both phases. In the case of

elastic isotropy, the rotation of the twin crystal does not induce any elastic mismatch,

such that forces on both sides of the interface can be computed using the non-singular

isotropic formulation developed by Cai et al. [35] implemented in the regular DDD

code developed in Chapter 2. Nonetheless, elastic mismatch will arise in general for

anisotropic crystals. In this case, the isotropic stress formulation cannot be used and

computationally costly bicrystal formulations must be employed [107, 2]. To alleviate

this, the heterogeneous DDD-FFT approach developed in Chapter 3 could be em-

ployed. However, additional developments would be required to properly implement

227



the recursive approach to compute forces on transmitted dislocation lines. For this

reason, and for the sake of simplicity, the regular DDD code developed in Chapter

2 will be employed in this work to study dislocation-CTB interactions in isotropic

crystals.

5.1.4 Results and discussion

For each of the simulations, the sequence of events resulting from the interaction

of the dislocation with the CTB is illustrated by the snapshots in figure 5.5 and

is detailed in the following. Under constant applied stress, the initial dislocation

bows out following the Frank-Read source process and propagates until reaching the

CTB. At first, transmission does not systematically occur as the stress state is not

necessarily sufficient to allow it. Instead, the portion of the dislocation in contact with

CTB spreads into a straight line with a 60◦ character. Eventually, a pile-up forms

as a consequence of the Frank-Read source process continuing behind the CTB front

until the stress becomes sufficiently high for the transmission to occur. Naturally, as

will be shown in the coming section, the rate at which transmission occurs depends

on the value of the applied stress σxy.

Upon transmission, the observed reaction is described by the following relation:

1

2
[110]1(1̄11)1 →

1

2
[101]2(1̄11)2 +

1

6
[2̄11]2(111)2 (5.4)

where subscripts 1 and 2 denote the parent and the twin phases, respectively, in

which the crystallographic quantities are expressed. In relation (5.4), ~binc = 1
2
[110]1,

~btrans = 1
2
[101]2 and ~bres = 1

6
[2̄11]2. Since the residual Burgers vector lies in the (111)

interface, it is equivalently expressed as ~bres = 1
6
[21̄1̄]1 in the parent crystal. Relation

(5.4) essentially states that, upon intersection, the perfect incoming 60◦ dislocation on

system (A6) in the parent dissociates into another perfect 60◦ dislocation on system

(A3) in the twin and a residual Shockley partial dislocation on the interface. This
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(a) (b)
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Figure 5.5: Snapshots depicting the different steps of dislocation-CTB interactions.
(a) The dislocation source first stops at the CTB until (b) the stress becomes sufficient
for transmission to occur. (c) Transmission events further proceed (d) eventually
generating a dense network of parallel interfacial dislocations.

reaction is consistent with that observed in MD [119, 118]. Further, given that the

Burgers vector ~bres = 1
6
[2̄11]2 of the Shockley partial is contained in the (111) CTB

plane, reaction (5.4) produces a glissile dislocation which has the same Burgers vector

than a twinning dislocation in FCC crystals, and that produces a step whose height

is equal to the spacing of the (111) planes. Thereby, such reaction could theoretically

evidence a twin growth mechanism via the generation of glissile Shockley partials

along the interface. The rate at which dislocations are generated from transmission

across the interface is investigated in the next section.
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5.1.4.1 Dislocation multiplication and plastic activity

In the current simulations, the transmission of a single intial dislocation source is

studied for different values of applied stress σxy. For each case, the value of the applied

stress is chosen below the critical transmission stress σcrit = 410 MPa such that

transmission cannot occur spontaneously. The value of the critical stress obtained

in this work has been determined as the value beyond which transmission of the

dislocation line occurs when the latter first contacts the interface.

Snapshots of the transmission process of a single dislocation source are reported in

figure 5.6. As expected, the time after which transmission occurs – or the conditions

in which transmission occurs – are found to depend on the magnitude of the applied

stress σxy. Thus, for σxy = 190 MPa, transmission does not occur and the initial

dislocation spread along the interface as the Frank-Read source proceeds while the

stress induced by the newly formed source resulting from the loop self-annihilation

is not sufficient to push the interfacial dislocation across the boundary. In that

case, supplementary sources will be required so as to form a pile-up in front of the

interface for transmission to occur. For σxy = 270 MPa, the initial source similarly

spreads along the interface. However, the new source created from self-annihilation

of the initial source then pushes the portion of the previously deposited interfacial

dislocation as it reaches the boundary. As a result, transmission initiates locally where

stress concentrations arising from the pile-up are the most important. For σxy = 380

MPa, the process is nearly identical, except that the sole bowing of the initial source

is sufficient for the transmission to occur. This result is logical since, in that case,

the applied stress is very close to the critical value σcrit = 410 MPa.

Besides, the influence of the applied stress is not limited to the activation of

the transmission process. The evolutions of dislocation densities associated with the

present DDD simulations as a function of time (simulations are performed under

constant stress) are reported in figure 5.7. Interestingly, as evidenced in figure 5.7(b)
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(a) σxy = 190 MPa (b) σxy = 270 MPa (c) σxy = 380 MPa

Figure 5.6: Proceeding of the transmission of a single dislocation source across the
CTB as a function of the applied stress σxy. In (a), the dislocation source spreads
along the interface and transmission does not occur. In (b), transmission occurs
after the interfacial dislocation line is pushed by a second source. In (c), the sole
bowing-out of the initial source is sufficient for transmission to occur.

for σxy = 380 MPa, it is found that the sole presence of a twin induces a greater

increase in the total dislocation densities (solid lines) than in a single crystal where t =

0. This can be explained by the rapid multiplication of dislocations at the CTB when

transmission occurs. Essentially, as described by relation (5.4), this mainly results

from the fact that an initial incoming dislocation dissociates into two new dislocations

upon transmission. This phenomenon has two direct consequences. First, it raises

the internal stress state in the vicinity of the CTB promoting further transmission

events. Second, the profusion of transmission events leads to a rapid multiplication

of partial dislocations moving on the CTB. Such mechanism was already pointed out

in [47], in which the rapid consumption of the pile-up by the twin was suggested

to eventually mitigate the tendency of hardening by the Hall-Petch effect. This

observation is also consistent with the very recent work of Fan et al. [82]. Thereby,

such mechanism theoretically evidences a twin growth mechanism via the generation

of glissile Shockley partials along the interface. This interpretation is reinforced by

the significant number of transmission events occurring in a relatively short lapse of

time, as attested by the increase in interfacial dislocation densities (dashed lines) in

figure 5.7, and by the fact that these are the sole product of a single initial dislocation

source.
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Evolution of dislocation densities
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Figure 5.7: Evolution of the total (solid lines, in m−2) and interfacial (dashed lines,
in m−1) dislocation densities with time as a function of the twin thickness for (a)
σxy = 270 MPa and (b) σxy = 380 MPa. Results show that the presence of the twin
(i.e. cases where t > 0) induces a greater increase of total dislocation densities than
when no twin is present (t = 0) in (b), and that the multiplication of interfacial
dislocation densities is proportional to the evolution of the total densities.

Another interesting point can be observed by comparing the densities evolutions

as a function of the twin thickness t. It clearly appears from figure 5.7 that a thinner

twin produces a more important total dislocation density. The same observation

holds for the evolutions of interfacial densities, whose rates of increase are all the

more important than the twin fraction is small, and whose evolutions appear to be

closely correlated to the total densities for the case σxy = 380 MPa. To obtain a better

understanding of the relation between total and interfacial densities, the evolutions

of the different populations of dislocations composing the total density, namely the

densities in the parent, in the twin and on the interface, are plotted in figure 5.8.

For each of the populations, the densities are given as the ratio of the total length

of dislocation lines over the whole simulation volume. This figure reveals that the

density of interfacial dislocations becomes the most important contribution to the

total density, followed by dislocations in the parent and in the twin.

Further, besides the evolution of dislocation densities, another interesting aspect
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Evolution of dislocation densities
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Figure 5.8: Evolution of the densities (in m−2) of the different populations of dislo-
cations with time as a function of the twin thickness for σxy = 380 MPa. For each
population, the densities are calculated as the ratio of the total length of dislocation
lines over the simulation volume V .

to investigate is the plastic activity. For this purpose, the plastic shear rates γ̇ pro-

duced by the different populations are reported figure 5.9. First, the figure shows a

decrease in the total plastic activity with increasing twin thickness t, which is con-

sistent with the lower rate of dislocation multiplication observed in figure 5.8 as the

twin fraction increases. However, it is interesting to notice that, although interfacial

dislocations are the most important contribution to the total density, those do not

contribute much to the plastic activity in this case. Instead, incoming dislocations

in the parent crystal account for most of the plastic activity. This result has several

origins and consequences. First, in the current simulation setting, the applied stress

state was purposely chosen so as to obtain a zero Schmid factor on the interface along

the direction of the residual Burgers (see Section 5.1.3.2). This implies that the mo-

tion of twinning dislocations is solely driven by internal stresses arising from other

dislocations. Second, it is to be noticed that the the norm of twinning Burgers vector
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Evolution of plastic activities
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Figure 5.9: Evolution of the plastic shear rate γ̇ (in s−1) of the different populations
of dislocations with time as a function of the twin thickness for σxy = 380 MPa.

‖~bres‖ = 0.148nm is smaller than that of perfect 1
2
[110] dislocations (‖~b‖ = 0.257nm),

such that individual twinning dislocations can accommodate less deformation upon

motion than their perfect counterparts, and hence are expected to generate less plas-

tic activity under the same stress. Consequently, despite their ability to glide along

the interface, residual twinning dislocations resulting from transmission events do not

systematically produce the plastic activity required for twin growth. Specifically, in

cases where the direction of the applied stress does not favor their motion, inter-

nal stresses alone are not expected to generate significant interfacial plastic activity.

Instead, interfacial dislocations can be regarded as stress risers (see Section 5.1.4.2).

5.1.4.2 Evolution of internal stresses in the twin

In the previous paragraph, the origin of the antagonistic evolutions of dislocation den-

sity and plastic activity associated with twinning dislocations has been discussed. In

this section, the focus is placed on the evolution of the interfacial densities and the re-

sulting internal stresses as a function of the twin fraction. Thus, as reported in figure
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Figure 5.10: Schematic of the generation of interfacial twinning dislocation dipoles
upon dislocation transmission across CTB.

5.7(b), it is observed for σxy = 380 MPa that a higher twin fraction leads to a lower

density of interfacial dislocations. To understand this result, the stress state induced

by the partial interfacial dislocations alone is investigated. First, as illustrated in fig-

ure 5.5(d), the subsequent multiplication of transmission events eventually leads to the

formation of a dense network of interfacial dislocations. Remarkably, those disloca-

tions are quasi-parallel, especially because the crystallography constrains transmission

to initially produce pure edge interfacial dislocations. In addition, the line directions

of dislocations forming on both edges of the twin are opposite. Consequently, dense

arrays of dipolar edge partial dislocations are generated from transmission across the

CTB, as schematized in figure 5.10. Interestingly, such arrays have been recently used

to describe semi-coherent interfaces via the use of the quantized Frank-Bilby equa-

tion [237, 239], and have led to the development of models for the design of patterned

interface [238]. Given that partial dislocations are here generated on a single system

whose Burgers vector is comprised in the interface, tilt or twist interfaces cannot be

reconstructed from this configuration, and the later solely corresponds to pure slip,

i.e. inducing twin growth/shrinking.

To assess the stress distribution generated by the interfacial dislocations alone,

235



(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  50  100  150  200  250  300

B
ic

ry
s
ta

l 
h

e
ig

h
t 

(a
)

Stress VM (MPa)

Interfacial stress evolution as a function of twin thickness

twin interfaces

t=100a

t=500a

t=1000a

(b)

Figure 5.11: (a) Idealized network of parallel interfacial dipolar dislocations. (b)
Average Von Mises stress distribution along the height of the bicrystal as a function
of the twin thickness. Positions of the twin interfaces are plotted in dashed lines. It
is observed that the average stress concentration is inversely proportional to the twin
thickness t.

the average stress induced by the idealized dipolar parallel arrays of density ρint =

2×107m−1 shown in figure 5.11(a) is investigated. Figure 5.11(b) shows the resulting

Von Mises stress profile averaged at different heights within the bicrystal for several

twin thicknesses. The results reveal that, as the twin thickness increases, the average

internal stress produced by the interfacial dislocations alone decreases. This is because

the distance between interfacial dislocation dipoles resulting from reactions occurring

on opposite CTBs is equal to the twin thickness. Therefore, the thinner the twin

is, the higher the internal stress concentrations within the twin are. Furthermore,

it is seen that the maximum stress concentrations are reached at the CTB, further

favoring transmission in their vicinity. Consequently, under a given applied stress,

the number of transmission events inversely scales with the twin thickness, hence the

higher densities obtained for the case t = 100a in figures 5.7 and 5.8. Conversely, it

is observed that internal stresses generated in the parent phase are more important

and decay at a slower rate when the twin fraction is important. Thus, interfacial

dislocations associated with thin twins generate high stress concentrations in the

twin domain while far-field stresses are vanishing rapidly in the parent phase.
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5.1.5 New perspectives on dislocation-twin boundary interactions

At higher scales, the observations made in this study are generally not accounted

for, and, overall, only few models have attempted to incorporate dislocation-twin

interactions in a constitutive fashion or to establish a link with twin-growth. Inter-

estingly, in the work of Capolungo et al. [41] where a slip-assisted twin growth model

was proposed, it was suggested that twin growth was predominantly resulting from

slip-independent (SI) mechanisms. Specifically, it was suggested that the dislocation

activity of partial twinning dislocations at the twin boundary was not sufficient to

sustain alone the rate of twin growth. However, it was noticed that the storage co-

efficient kt1 in the twin was required to be approximately 2 times larger than that

in the parent so that experimental responses can be fitted. Although such result is

going against intuition – the presence of the twin boundary is expected to affect both

the mean free paths of the parent and the twin in the same way –, it was attributed

to a greater disorder in the twin leading to a vast number of initial defects. In line

with this interpretation, El-Kadiri, Oppedal and co-workers suggested a transmuta-

tion model, in which the higher storage rate of dislocations in the twin is attributed

to the increasing density and multiplicity of dislocation types initially in the parent

to be incorporated in the twin as the latter grows over the parent phase [78, 189]. In

this work, the supplementary internal stress contribution essentially generated in the

twin and induced by interfacial dislocations provides an additional explanation for

the higher storage rate in the twin.

Further, in all these constitutive models, the precise effect of the dislocation mul-

tiplication at the interface is not considered, and the interface is regarded as a CTB

during twin growth. The important density at the interface that is observed in this

work suggests another behavior. First, it must be recalled that the presence of in-

terfacial Shockley dislocations produce steps and leave stacking faults behind as they

are pushed away by other partials. Second, the important dislocation density and the
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reactions between interfacial dislocations (e.g. formation of junctions or patterns)

suggest important modifications in the character of the interface. Thus, the inter-

face is expected to rapidly become incoherent. Such conclusions have been recently

supported by experimental TEM observations on metallic nanocrystals [269]. Fur-

ther, it is to be noted that simulations are here performed for a single dislocation

source. In real crystals, it is expected that dislocations on the 9 incoming systems

intersecting plane (111) would similarly dissociate and that the resulting core reac-

tions between the induced partials on the interface would produce an increasingly

significant modification of the interface structure as transmission proceeds. Although

a precise description of the interface cannot be easily modeled in DDD simulations

such that the following consequence is not apparent in the present simulations, it

is to be expected that the transmission mechanism expressed in relation (5.4) will

eventually stop – or at least will be hindered – by the progressive decoherence of the

interface.

In light of the above, a different perspective can be adopted regarding the different

sequence of events and the resulting behavior pertaining to dislocation-twin bound-

ary interactions. First, the incoming dislocations in the parent phase pile up against

the CTB until the stress state is sufficiently high to allow for transmission. Then,

transmission occurs, leading to a rapid increase in the dislocation density, whereby

the rate of dislocation generation can exceed that observed when no twin is present.

During transmission, full dislocations propagate in the twin, while partial dislocations

glide along the twin plane, creating steps, both favoring twin growth. In the mean-

time, the increase in the internal stress induced by interfacial dislocations leads to

increasing the dislocation storage rate in the twin. However, the rapid multiplication

of interfacial dislocations briefly transforms the coherent interface into an incoherent

boundary, eventually leading to the shutdown of the transmission mechanism. After

this point, SI mechanisms take over to sustain twin growth.
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In some extent, the investigations of this work may also provide an explanation

for the overall hardening obtained in nano-twinned FCC metals. Following the clas-

sical interpretation, the transmission at twin boundary tends to produce a softening

effect by the promotion of twin growth via the creation of mobile interfacial twinning

dislocations, thereby acting against the hardening produced by the Hall-Petch effect.

However, it has been seen that, when not favorably oriented, interfacial dislocations

generate little plastic activity. In addition, the transmission mechanism is expected

to become rapidly difficult to operate due to the incoherency of the interface, such

that hardening by pile-ups is overall dominant. Therefore, the complexity of the

transmission mechanism highlights the difficulty in incorporating such global picture

into higher-scale models. This is probably why a simple Hall-Petch law is not always

able to describe it well, especially because it does not account for the initial multi-

plication of dislocations and the rise of internal stresses in the twin that accompany

transmission when the twin boundary remains sufficiently coherent to allow it.

5.2 Dislocation-particles interactions

5.2.1 Motivation

5.2.1.1 Particle-strengthening

Particle strengthening, whereby arrays of precipitates are introduced within a crystal

matrix, has been extensively studied in the literature from experimental and theo-

retical standpoints [183]. Essentially, interactions between moving dislocations and

precipitates constitute a very important source of strain hardening in metallic mate-

rials, and are particularly dominating in the case of alloys.

In details, particles in the matrix can be of different types – shearable or non-

shearable, coherent or incoherent –, of different shapes, and of different spatial dis-

tributions, and their effect on the mechanical behavior depends on these factors.
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Specifically, second-phase particles are expected to play an important role in hinder-

ing dislocations via two aspects. First, in the case of impenetrable obstacles such as

incoherent particles, dislocations are stopped upon contact. In that case, bypassing

of particles only occurs when dislocations entirely bow around the obstacle to self-

annihilate on the other side. Second, differences in the elastic moduli between the

matrix and the precipitates give rise to elastic interaction fields that remotely affect

the behavior and propagation of dislocation segments. In that case, several factors

such as the shape of the obstacle and its distance to the dislocation plane govern the

dislocation-particle elastic interaction.

In order to obtain a better understanding of precipitation hardening, several mod-

elling capabilities have been developed at different scales over the past decades. At the

constitutive scale, models such as the Dispersed Barrier Hardening [210] and Bacon,

Kocks and Scattergood (BKS) [15] have been proposed to account for the collective

influence of particle strengthening. However, these models typically rely on simple

approaches such as the Orowan bowing of dislocation segments [87, 125], not suited

to fully capture the complexity of these interactions. Consequently, refinements of

the current obstacle-strengthening models are yet to be developed [171, 221]. To this

end, DDD simulations have been employed to obtain insights on individual interac-

tions and on their collective effect so as to delineate enhanced higher-scale predictive

models.

5.2.1.2 Previous DDD studies from the literature

Several DDD studies have been dedicated to the interactions between dislocations

and particles, in which details were accounted for to a greater or lesser extent. For

instance, simple line tension approximations were used to study particles strengthen-

ing as a function of particles spacing [88], size [137] and strength [76, 58]. Including

more details, Mohles et al. successfully studied the propagation of dislocation lines
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within an array of coherent and incoherent shearable particles using DDD simulations

in which obstacles were modelled by a supplementary stress contribution arising from

an antiphase boundary energy density [171, 173, 172]. While this supplementary

contribution was added to the Peach-Koehler force on dislocation lines inside the

particles, the latter was not considered outside the particles, such that elastic inter-

action effects were ignored. Similarly, in the work of Queyreau and co-workers where

the Orowan by-passing mechanism on incoherent carbides was studied in BCC reac-

tor pressure vessel steels, no stress field was associated to the impenetrable obstacles

[199]. More recently, the regular DDD code developed in this thesis was further used

in [221] to assess the validity of particle-hardening models for a combination of voids

and self-interstitial atom loops. In this last work, elastic interactions with voids were

modelled using an atomistically-informed breakaway angle.

Nonetheless, a few DDD simulations have readily incorporated particles elastic in-

teraction effects. This was first achieved in the seminal work of Shin and co-workers

[219, 217, 218]. In their approach, the superposition method proposed by Van der

Giessen and Needleman [232] (see Section 2.4.2) was further extended to account for

second-phase elastic inclusions in the matrix. By coupling the DDD simulations to a

FEM code, the heterogeneous stress field generated by the elastic mismatch between

the matrix and the precipitate were accounted for in the form of image forces so as

to investigate the interaction of dislocations with cubical [219] and spherical [217]

precipitates. Using the same superposition approach, interaction forces between a

straight dislocation line and spherical particles [216] and voids [106] were calculated.

However, such approach is computationally very intensive due to the fine FEM meshes

that are required, and studies are therefore limited to the investigation of static or

relaxed configurations and cannot be practically extended to perform dynamic simu-

lation up to relevant levels of strain. As an alternative approach to the problem, the

DCM-FEM model [147] was used to model the plastic deformation in metal matrix
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composites [100], and investigate plasticity in nickel-based single-crystal superalloys

in which matrix channels were formed by the presence of precipitate phases [235, 236].

However, as mentioned in Section 3.2, although inherently accounting for heteroge-

neous elasticity, the DCM-FEM approach is limited to a coarse representation of

precipitates and cannot be employed to finely model particles. Furthermore, most of

the current methods are limited to use elastic isotropy.

5.2.1.3 Challenges and objectives

In light of the above, current DDD approaches need to be refined and their limitations

need to be addressed so as to (1) incorporate more details when studying interactions

between particles and dislocations, (2) extend their time and length scales such that

refined models to be incorporated at the constitutive level can be delineated. Par-

ticularly, an accurate and efficient treatment of image forces arising from the elastic

mismatch between the matrix and the particles needs to be incorporated.

For such purpose, and to address the limitations of current approaches, the hetero-

geneous extension of the DDD-FFT tool developed in Chapter 3 of this thesis appears

as a perfectly suited tool. With this approach, it is expected that a level of details

never achieved so far can be incorporated to study interactions between dislocation

and particles.

This section is organized as follows. First, the elastic interactions between straight

dislocations and particles are investigated in a static setting using the elasto-plastic

heterogeneous DDD-FFT approach, for which numerical aspects are discussed in

Section 5.2.2. Then, the method is employed in the dynamic case to examine the

relaxation of a dislocation line near a shearable particle in Section 5.2.3. Finally,

perspectives on the present method’s ability to address current open challenges are

discussed in Section 5.2.4.
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5.2.2 Elastic interactions

As a first application, the heterogeneous DDD-FFT approach is used to study elas-

tic dislocation-particle interactions in a static setting. By assigning different elastic

properties to the voxels partitioning the simulation volume, the method is inherently

capable of solving for the stress field associated with the heterogeneous elasto-plastic

continuum. Further, the numerical efficiency associated with FFT-based solver allows

for the use of very fine grids, thereby producing high-resolution results compared to

what is currently achievable with DDD-FEM approaches. For a detailed description

of the heterogeneous DDD-FFT formulation and its numerical implementation, the

reader is referred to Sections 3.5.2 and 3.6.3. As a result, elastic interaction fields

between a dislocation line and a particle due to the elastic mismatch between phases

– giving rise to image forces on dislocation lines – are directly accounted for in the

stress field computed at the Fourier grid points.

In this first section, several aspects of the method and the results are studied.

Thus, the elastic interactions obtained for different particle stiffnesses are compared,

and the computational efficiency and the numerical convergence of the different het-

erogeneous iterative schemes presented in Section 3.5.3 are assessed. For this study,

HCP Mg, whose material parameters used in this section are given in table 5.2, is

chosen as a paradigm material. As reported in table 5.2, transversely isotropic elastic

constants are used. Although the corresponding anisotropic ratio A = 0.979 (see

definition in equation (3.63)) is very close to unity, deviations from isotropic elas-

ticity in the resulting stress field are clearly perceptible, especially because using an

isotropic elastic approximation requires averaging the elastic coefficients to obtain

two independent values whose choice is not unique (e.g. Reuss or Voigt bounds).

The two settings that are investigated are illustrated in figure 5.12. First, a

prismatic loop is introduced on one side of a bicrystal at a distance d from the

interface. Then, the interaction with the same prismatic loop is investigated when a
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Table 5.2: Material parameters used to model transversely isotropic HCP Mg.

Material parameter Value

Elastic constants C11 = C22 = 59.74 GPa

C33 = 61.70 GPa

C44 = C55 = C66 = 16.39 GPa

C12 = 26.24 GPa

C13 = C23 = 21.70 GPa

Lattice parameters a = 3.21× 10−10 m

c/a = 1.623

a) b) 
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Figure 5.12: Settings used to investigate the heterogeneous elasto-plastic DDD-FFT
framework. (a) A prismatic loop is introduced on the left side (1) of the bicrystal at
a distance d from the interface. The position of the dislocation core on the (yz) plane
is located with the ⊥ symbols. (b) A prismatic loop and a spherical inclusion (2) are
simultaneously introduced in matrix (1).

spherical particle is introduced in the center of the simulation volume.

5.2.2.1 Dislocation in a bi-crystal

In this first setting, a prismatic loop is introduced on the (xz) plane in the left side

of a bicrystal at a distance d from the interface (see figure 5.12(a)). The left crystal

(1) is chosen as a pure HCP Mg crystal with transversely isotropic elastic constants

reported in table 5.2. In contrast with the procedure described in figure 3.4, the

width of the prismatic loop in the x direction is chosen as the volume size L in this

direction such as to end up with two edge segments parallel to the x direction – by

periodicity the two complementary edge segments parallel to the z direction mutually
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annihilate on the edge of the simulation volume. As a result, the initial configuration

in the left crystal (illustrated along a yz slice in figure 5.12(a)) includes a dislocation

dipole composed of two edge 1
3
[1̄21̄0] dislocations on (0001) basal planes.

To simulate the interaction of the dislocation with a large square particle, the

right crystal (2) is chosen as a coherent HCP crystal with the same lattice spacing a

as the Mg crystal (1), but whose contrast K in the elastic constants is given as:

K =
C2

11

C1
11

=
C2

12

C1
12

=
C2

13

C1
13

=
C2

33

C1
33

=
C2

44

C1
44

(5.5)

where C1
ij and C2

ij denote the elastic constants of the left Mg crystal (1) and that of

the particle (2), respectively.

The periodic simulation volume is chosen as a square box of side L = 2000a where

a = 0.321nm is the lattice parameter of Mg, discretized into 1283 voxels, and the

backward scheme (W) is used. First, the dislocation is positioned at the center of

the left crystal, i.e. at d = L/4. The results at convergence obtained for the σ23

component along a slice at x = L/2 under no loading (E = 0) for different contrasts

K are plotted in figure 5.13.

Here, the purpose of this analysis does not rely in the assessment of the validity

of the method – such is done in Appendix G.2 and to the author’s knowledge no

direct analytical solution exists – but rather to provide insights on the influence of

heterogeneous elasticity on the stress field of dislocations. Thus, when the dislocation

lies in a stiffer medium than the right crystal, i.e. for K ≤ 1, a contraction at the

edge of the resulting stress field occurs, as attested by the case reported in figure

5.13(b) for K = 10−1. Such result is consistent since the softer crystal can withstand

less stress than when the medium is homogeneous. Conversely, the edge of the stress

field appears as stretched when the right crystal is stiffer than the first phase, as

plotted in figure 5.13(c) for K = 10. The case K = 103 reported in figure 5.13(d)

is interesting as no clear difference appears from a visual comparison with K = 10.
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(a) K = 1 (homogeneous medium) (b) K = 10−1

(c) K = 10 (d) K = 103

Figure 5.13: Results for the σ23 stress component produced by a prismatic dislocation
loop in an elastic bicrystal at a distance d = L/4 from the interface (see figure
5.12(a)) and for different contrast values K. The reported results are obtained with
the backward (W) scheme for a resolution of 1283 voxels after convergence is reached
for a precision εtol = 10−4 (see equation (3.81)).

A finer comparison can be made by looking at figure 5.14(a) where the evolution of

the stress along a y-line is given for different values of contrast K. As shown, the

stress evolutions for K = 10 and K = 103 are extremely close, and it is further seen

(not reported here) that increasing the value of K has no further effect on the stress

evolution. Therefore, there exists an upper limit (here K ≈ 103) beyond which the

stress field asymptotically tends towards the evolution reported for K = 103. The

same is observed for the cases K ≤ 0. Thus, the case K = 10−3 represents the lower

asymptotic limit in which the stress in the right crystal vanishes, and below which

lower values of K lead to the same stress evolutions.
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Figure 5.14: Evolution of the σ23 stress component produced by a prismatic dislo-
cation loop in an elastic bi-crystal for different contrast values K and for a resolution
of 1283 voxels. The evolution is plotted along the red y-line shown in the insets when
the dislocation is positioned at a distance (a) d = L/4 and (b) d = L/32 from the
interface located at abscissa y = L/2 = 0.5.

Regarding numerical aspects, the number of iterations to reach convergence strongly

scales with the magnitude of the contrast K, as attested by the results provided in

table 5.3. Surprisingly, it is also to be noted that, in comparison with the purely

elastic results obtained in Appendix G.2, the choice of the gradient operator has no

effect on the convergence rate when a distribution of plastic strain exists. Instead, it

solely has an influence on the Gibbs phenomenon, as already reported for the case

of an homogeneous medium (e.g. see figure G.2). Further, the results show that

while the accelerated scheme provides a faster convergence than the basic scheme, the

conjugate-gradient method consistently yields superior efficiency, which is especially

remarkable for high contrasts. Consequently, the conjugate-gradient scheme will be

preferably used in the heterogeneous DDD-FFT formulation.

Besides, as can be suspected from the results in figure 5.14(a), the alteration

of the initially homogeneous stress profile as a function of K is intrinsically linked

to the distance of the dislocation core to the interface – or more generally, to the

distribution of the plastic strain with respect to the heterogeneous elastic distribution.

The resulting stresses obtained when the dislocation is positioned at a closer distance
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Table 5.3: Effect of the different iterative and gradient operators schemes on the
number of iterations N to reach convergence for a precision εtol = 10−4 and for
different contrasts K between both crystals. NC indicates that the scheme does not
converge.

Iterative scheme Gradient operator K = 10−3 K = 10−1 K = 2 K = 10 K = 102 K = 103

basic continuous NC 85 16 73 611 4951
accelerated continuous 28 19 11 42 326 2653
conjugate gradient continuous 10 9 7 10 17 20
basic centered (C) NC 85 16 73 611 4951
accelerated centered (C) 28 19 11 42 326 2653
conjugate gradient centered (C) 10 9 7 10 17 20
basic backward (W) NC 85 16 73 611 4951
accelerated backward (W) 28 19 11 42 326 2653
conjugate gradient backward (W) 10 9 7 10 17 20
basic rotational (R) NC 85 16 73 611 4951
accelerated rotational (R) 28 19 11 42 326 2653
conjugate gradient rotational (R) 10 9 7 10 17 20

d = L/32 from the interface are reported in figures 5.14(b) and 5.15. As expected, the

modification of the stress distribution as a function of the contrast K is significantly

more pronounced than for d = L/4. Although this result cannot be interpreted

as a validation of the heterogeneous DDD-FFT approach, it nevertheless provides

insights on the method’s ability to handle elastic interactions between dislocation

lines and inclusions. However, recall that the formulation solely ensures that the

mechanical equilibrium (3.71) is respected (within the tolerance) everywhere in the

medium – including in the vicinity of the interface –, and the question of whether

a supplementary interfacial condition must be included is not trivial. A complete

validation of the approach would require a comparison with an analytical formulation,

which is not directly available. Finally, it is observed that the number of iterations to

reach convergence is identical to that reported for d = L/4 in table 5.3. Therefore, it

is expected that, overall, the convergence rate would be rather linked to the contrast

K than to the plastic distribution.

5.2.2.2 Dislocation interaction with spherical inclusion

As a second application, the interaction between a prismatic dislocation loop and a

spherical inclusion is investigated. The configuration of the simulation illustrated in
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(a) K = 1 (homogeneous medium) (b) K = 10−1

(c) K = 10 (d) K = 103

Figure 5.15: Results for the σ23 stress component produced by a prismatic dislocation
loop in an elastic bicrystal at a distance d = L/32 from the interface (see figure
5.12(a)) and for different contrast values K. The reported results are obtained with
the backward (W) scheme for a resolution of 1283 voxels after convergence is reached
for a precision εtol = 10−4.

figure 5.12(b) is as follows: a dislocation loop and a spherical particle of diameter d are

simultaneously introduced at the center of a matrix phase. The resulting stress field

obtained on a (yz) slice at x = L/2 under no loading for different values of contrasts

K and for d = L/4 are plotted in figure 5.16. The effect of the elastic interaction

with the inclusion on the stress field of the dislocation is clearly apparent and differs

according to the contrast. Thus, for K = 10−3 where the inclusion is porous and

can be assimilated to a void, the side lobes of the stress field are attracted to the

void while the main lobes are repelled and pushed backwards. Conversely, when the

particle is stiffer than the matrix, as in the case K = 103 for instance, the edges of
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(a) K = 1 (homogeneous medium) (b) K = 10−3 (≈ void)

(c) K = 10 (d) K = 103

Figure 5.16: Results for the σ23 stress component along a (yz) slice resulting from
the interaction between a prismatic dislocation loop and a spherical inclusion of di-
ameter d = L/4 for different contrasts K. The reported results are obtained with the
backward (W) scheme for a resolution of 1283 voxels after convergence is reached for
a precision εtol = 10−4.

the main lobes of the stress field are attracted by the inclusion.

Although no Gibbs oscillations are produced, the stress field obtained at the

boundary of the inclusion is jagged. This simply results from the discrete description

of the spherical inclusion: in this example, all voxels whose center position lies within

the sphere of diameter d = L/4 are assigned the inclusion elastic properties, while

the other voxels are assigned that of the matrix. As a result, the outer contour of the

inclusion is approximated by a succession of small square surfaces (facets of the vox-

els) forming a staircase delimitation. To attenuate the stress gradients in the vicinity

of the inclusion boundary, a smoother description of the contour could be adopted.
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For instance, an interpolation based on the volume ratio of each voxel covered by

the inclusion could be used to define the elastic properties of the voxels lying in the

vicinity of the boundary.

Regarding the convergence rate, it is observed that, independently of the size of

the inclusion size d, the number of iterations to reach convergence when using the

conjugate-gradient scheme systematically lies within a 10% interval around the values

reported in table 5.3 in the case of the bi-crystal. For instance, similar convergence

results were observed for an array of 10 × 10 regularly spaced spherical inclusions

of diameter d = L/50 (not reported here). Therefore, the number of iterations to

convergence is expected to be independent of the geometry and volume fraction of

the inclusion(s), but to be primarily a function of the contrast K.

Finally, it must be noticed that, as illustrated throughout this section, the het-

erogeneous DDD-FFT approach provides an efficient way to perform simulations in

which the elastic effects of dislocation–particles can be included. Such simulations

were already permitted with original DCM model, although precipitates were limited

to be represented by coarse square inclusions [235, 236]. In this work, the higher

resolutions offered by the FFT-based solver allows for a finer description of particles

(e.g. small precipitates).

5.2.3 Dynamic interactions

In this section, the heterogeneous DDD-FFT approach is used to study dislocation-

particle interactions in a dynamic context. Specifically, the relaxation of an initially

straight edge dislocation in the vicinity of a particle introduced on its slip plane is

examined. For this purpose, the setting illustrated in figure 5.17 is employed. As

in Section 5.2.2, a prismatic dipole is initially introduced in a HCP Mg crystal with

properties given in table 5.2. Upon insertion, the prismatic loop is elongated along

the x-axis such that both segments parallel to the z-axis annihilate by periodicity.
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Figure 5.17: Setting used to investigate the relaxation of a basal edge dislocation in
the vicinity of a spherical particle in a HCP Mg crystal. (a) A prismatic dislocation

loop with Burgers vector ~b〈a〉 = 1
3
[1̄21̄0] and of length L× l0 is initially introduced on

the (xz) plane at the middle of a simulation volume of size V = L3. By periodicity,
both dislocation segments parallel to the z-axis annihilate. (b) Top view in the
(0001) basal plane of the top mobile dislocation. A spherical particle of diameter d
is introduced at a distance e from the line pinned at the edges.

As a result, two dipolar edge 1
3
[1̄21̄0] dislocations separated by a distance l0 are

initially obtained on (0001) basal planes. A spherical shearable particle of diameter

d = L/5 and elastic contrast K is introduced in the (0001) basal slip plane of the top

dislocation at a distance e = L/5 from its line. To avoid unconstrained motion, the

top dislocation is pinned at the edge of the simulation volume, while the bottom one

is held immobile.

Results for a porous particle with contrast K = 10−1 are illustrated in figure 5.18.

In this dynamic simulation, no external strain is imposed (E = 0) and a resolution

of 1283 voxels is used. As expected, the dislocation line is attracted by the porous

inclusion to reduce the elastic energy of the system. Since the particle is shearable, the

dislocation bows out as its middle portion is dragged into the particle until reaching

an equilibrium position. For a non-shearable precipitate, the dislocation would have

stopped at the surface of the particle. In that case, a special numerical treatment
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(a) initial state (b) relaxed state

(c) initial state, slip plane view (d) relaxed state, slip plane view

Figure 5.18: Snapshots of the (a) initial and (b) final states of the relaxation of
an initially straight edge basal dislocation in HCP Mg in the vicinity of a porous
inclusion with contrast K = 10−1 for a resolution of 1283 voxels. Upon relaxation,
the dislocation is attracted by the particle and the middle part of the line is dragged
inside it to a minimum energy state. The driving σ23 stress component resulting from
the interaction between the dislocation and the inclusion is plotted on a (yz) slice at
x = L/2. σ23 stress fields on the (0001) slip plane of the dislocation are shown in (c)
and (d).

such as that employed in [199] should be implemented to ensure that dislocation stop

upon contact with the particle.

Results for the relaxation of the dislocation in the vicinity of a stiff particle with

contrast K = 10 are reported in figure 5.19. Conversely to the porous inclusion, the

stiff inclusion repels the dislocation line. As a result, the middle portion of the line
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(a) initial state (b) relaxed state

(c) initial state, slip plane view (d) relaxed state, slip plane view

Figure 5.19: Snapshots of the (a) initial and (b) final states of the relaxation of an
initially straight edge basal dislocation in HCP Mg in the vicinity of a stiff particle
with contrast K = 10 for a resolution of 1283 voxels. Upon relaxation, the dislocation
is repelled by the particle and the line bows out until reaching equilibrium. The
driving σ23 stress component resulting from the interaction between the dislocation
and the inclusion is plotted on a (yz) slice at x = L/2. σ23 stress fields on the (0001)
slip plane of the dislocation are shown in (c) and (d).

– i.e. the closet to the particle – is first pushed away from the particle, after which

the self-force comes into play to give the dislocation line a curved shape (see figure

5.19(d)) so as to minimize the elastic energy of the system.

Through these two relaxation examples, the inherent ability of the heterogeneous

DDD-FFT method to incorporate image forces resulting from heterogeneous elasticity
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is assessed in the dynamic case. With respect to the DCM-FEM approach, the current

approach developed in this thesis is computationally more efficient (see Section 3.7)

and allows for finer resolutions that enable a precise description of stress fields and

particle morphologies in heterogeneous elasticity. Furthermore, as a full-field method,

the current approach allows for a direct visualization of mechanical fields within the

whole simulation volume, as reported in figures 5.18 and 5.19 for instance.

5.2.4 Conclusion and perspectives

In Sections 5.2.2 and 5.2.3, a first application of the heterogeneous DDD-FFT method

developed in Section 3.5 was successfully dedicated to the investigation the interac-

tions between dislocations and particles of various shapes in transversely isotropic

HCP Mg for static and dynamic configurations. Through these diverse examples, the

promising potential of the DDD-FFT tool developed in this thesis – which is capa-

ble of simultaneously treating anisotropic and heterogeneous elasticity while being

numerically efficient – was demonstrated.

Naturally, the results presented in this section constitute a first application and

further studies will be undertaken using heterogeneous DDD-FFT approach. Particu-

larly, it is expected that this method could be successfully employed to investigate the

effect of the shape (plate, rod, sphere, see figure 5.20) and orientation of precipitates

as barriers to dislocation propagation in HCP Mg, so as to assess the validity of the

Orowan strengthening models postulated in [184]. For instance, Nie suggested that

precipitate plates on prismatic planes should induce higher strengthening compared

to all types of possible precipitates in the basal planes, by providing the most efficient

barrier to basal slip and {101̄2} twin propagation [185]. However, such speculations

were never investigated at the DDD scale in HCP Mg. In doing this, it is further

expected that hardening trends could be extracted to be further incorporated into

constitutive laws, thereby guiding microstructural design for fabricating Mg alloys
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Figure 5.20: Examples of various shapes obtained for Al-Mn-(Mg) particles in AZ91
magnesium alloy: (a) irregular globule, (b) short rod, (c) long rod, (d) tear-drop, (e)
rounded rectangle, (f) irregular hexagon. Reproduced from [268].

with higher strength.

In addition, the method could be employed to study dislocation-particle interac-

tions in various metals, and should be particularly useful to examine such mechanisms

in low-symmetry crystals in which the amount of elastic anisotropy is important. Fur-

thermore, as demonstrated in this section, the current method is not limited to model

precipitates, but can be employed to examine interactions with voids and phases of

different shapes. For instance, DDD simulations in bi-crystals or multi-layered lam-

inates could be performed, and the effect of anisotropic elastic mismatch to study

dislocation-twin interactions –which was not accounted for in the study presented in

Section 5.1 – could be examined.

Finally, it is important to notice that, in contrast to the applications presented

in this section, the heterogeneous DDD-FFT method can virtually be employed to

treat an infinite number of phases simultaneously, thereby paving the way towards

performing full-scale DDD simulations in polycrystalline materials.
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CHAPTER VI

CONNECTING DDD SIMULATIONS TO

CONSTITUTIVE LAWS: THE HYBRID MODEL

6.1 Introduction

The main objective of this chapter is to delineate novel routes allowing for the con-

nection between DDD and dislocation density based models so as to incorporate in a

more direct fashion the information pertaining to the collective effect of unit processes

and extracted at lower scales, with the intent to improve the predictive capabilities

of constitutive laws. For such purpose, a slip-driven dislocation density-based crystal

plasticity model – called the Hybrid Model –, that extends current formulations to

incorporate more details on the physics of dislocations is developed.

The primary motivation for this work arises from the various limitations associ-

ated with current models. Specifically, it has been observed that current approaches

generally focus on describing the evolution of stored dislocations, whereas evolution

of mobile dislocations, acting as plastic carriers, is often disregarded. Furthermore,

the increasing number of fitting parameters accompanying the incorporation of addi-

tional mechanisms in current models may paradoxically lead to a disconnection from

the physics of dislocations. Specifically, it has been shown that a given stress-strain

response can be identically reproduced by the same model with two different sets of

parameters, while predicted internal state variables evolve in drastically distinct man-

ners [22]. In addition, it was reported that predicted dislocation densities often do not

concur with experimental observations [49]. In light of the above, a new constitutive

model is proposed. The goal of this work is to develop a model that intrinsically

accounts for the physics of dislocations, such as to incorporate the treatment of their
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motion, interactions and transformations.

The idea is thus to allow for a quantification of the different dislocation densities

in a constitutive fashion. To this end, the dislocation density in each slip system is de-

composed into glissile and stored dislocations, and interconnected rate equations are

introduced for their evolution. This is achieved by introducing a two step-approach

in which all glissile non-polar dislocations on a given slip system are represented by

a virtual dislocation loop which evolution is modelled by a dislocation dynamics ap-

proach, while transformations of dislocations from glissile to stored, resulting from

short-range dislocation-dislocation interactions, are based on phenomenological rela-

tions informed by dislocation dynamics simulations on dislocation pair interactions.

With this, the proposed Hybrid Model connects DDD to larger scale dislocation

based density constitutive models in ways that (1) it will benefit from a reduction

in the number of fitting parameters with respect to current dislocation density based

models and (2) it should lay the framework of models capable of predicting the me-

chanical responses under complex loading paths (i.e. strain path changes, shock,

Bauschinger effect, etc.).

As a first application, the Hybrid Model is utilized for predicting the stress-strain

response of a single crystal aluminum as a function of its orientation, slip activity,

and junction formation, all with a single set of parameters.

6.2 Dislocation populations

The core idea of dislocation density based models relies on introducing a distinction

between different dislocation types and deriving specific sets of evolution laws for

each of them. As each individual dislocation population dominantly contributes to

plasticity at different stages of deformation and under different loading conditions,

the predictive capabilities of the models ideally increases with the sophistication of

the dislocation type description. In general, several possible decompositions of the
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total dislocation density have been proposed. Among them, distinctions based on

the polarity of the dislocations are often considered. Thus, statistical dislocations

– for which the volume integral over all dislocations of the inner product between

their Burgers vector and their line tangent is null – are referred to as non-polar

dislocations and are distinguished from geometrically necessary dislocations (GNDs),

or polar dislocations, whose presence produces a net Burgers vector [187, 53, 10]

and that are required to accommodate lattice incompatibilities and misorientations

[129, 74, 55, 6].

As a result, the dislocation density at a given material point in the Hybrid Model

is decomposed into distinct populations, as shown in figure 6.1. First, each density ρ

contains both polar (p) and non-polar (np) densities, i.e.:

ρ = ρp + ρnp (6.1)

Each non-polar and polar density further consists of both glissile g and stored s

dislocations, which gives:

ρnp = ρnp,g + ρnp,s

ρp = ρp,g + ρp,s (6.2)

In this work, glissile dislocations refer to the subset of dislocations whose Burgers

vectors lie on the glide plane and can glide in unconstrained motion (e.g., forward and

backward). Both actively gliding and inactive dislocations satisfying these constraints

are glissile. Stored dislocations are constrained to move in one direction (e.g., stalled

in a repulsive state, piled-up against an obstacle) or are sessile.

Each type of dislocation population density in equations (6.1) and (6.2) can be

considered the sum of the same type of density present on all slip systems α, α =

1, ..., n, where n is the number of slip systems, such that:
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Figure 6.1: Dislocation decomposition and transformation mechanisms in the Hybrid
Model.

ρi =
∑
α

ραi with i = (p, g); (p, s); (np, g); (np, s) (6.3)

where superscript α refers to the slip system. For instance, ραnp,g refers to the non-

polar, glissile density on system α.

6.3 Single-crystal kinematics

The relationship between the dislocation populations introduce in Section 6.2 and the

deformation of the single crystal is discussed in this section. Following the analysis

of Asaro and Rice [9], the total deformation gradient F relating the deformed config-

uration of a crystal to its undeformed reference state is decomposed as the product

of an elastic and a plastic contribution:

F = F e · F p (6.4)
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where superscripts e and p refer to the elastic and plastic parts, respectively. While

the elastic gradient F e solely accounts for elastic stretches and contractions and rigid

rotations of the reference crystal, the plastic part F p describes the effects of the

plastic activity (e.g. presence of dislocations) on the elastically undistorted reference

configuration. Following the flow rule, the rate of change of the plastic deformation

gradient is given by:

Lp = Ḟ
p · F p−1 (6.5)

When the plastic activity solely results from the motion of dislocations on their re-

spective slip planes, the plastic velocity gradient Lp can be written as the sum of the

contributions from dislocations of different polarities as:

Lp = Lpnp +Lpp (6.6)

where Lpnp and Lpp respectively denote the contributions from non-polar (statistical)

and polar (geometrically necessary) dislocations. Considering statistical dislocations

on all n slip systems of the crystal, tensor Lpnp is given as:

Lpnp =
n∑
s=1

γ̇s (~m s ⊗ ~n s) (6.7)

where the scalar quantity γ̇s is the shear strain rate due to the motion of glissile non-

polar dislocations on slip system s, and ~m s and ~n s denote the unit slip direction and

unit normal to the slip plane. Note that equation (6.7) is based solely on kinematics

and thus applies to both a discrete and a statistical description of dislocation-mediated

plasticity. In the case of polar dislocations, Lpp is expressed as:

Lpp =
n∑
s=1

αs × ~V
s

(6.8)
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where αs is the dislocation density tensor (usually called the geometrically necessary

dislocation tensor or Nye’s tensor) associated with system s and ~V
s

is the velocity

vector of dislocations on s. For the rest of this chapter, it is interesting to notice that

dislocation density tensor αs, whose definition is given in equation (3.60), vanishes

for statistical dislocations when considered over a representative volume element in

which their net Burgers is null [187, 131, 6]. In equation (6.8), the polar dislocations

can be either glissile or stored.

In this framework, the Green-Lagrange tensor Ee can be taken as a measure of

the elastic strain. Thus, it is defined from the elastic part of the deformation gradient

as:

Ee =
1

2

(
F eT · F e − I2

)
(6.9)

where I2 denotes the second-order identity tensor. The second Piola–Kirchoff stress

tensor T is related to the strain tensor via:

T = C : Ee (6.10)

where C denotes the fourth-order tensor of elastic moduli. From there, the symmetric

Cauchy stress σ is obtained from the stress tensor T via the elastic deformation

gradient as:

σ = det
(
F eT

)−1
F e · T · F eT (6.11)

Further, at each step of the deformation, the crystal orientation in the current con-

figuration is given by the rotation matrix R computed from the elastic deformation

gradient as:

R = F e ·R0 (6.12)
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where R0 is the initial rotation matrix given by the orientation of the crystal. Note

that equation (6.12) holds when elastic strains are assumed to be small, which is

generally the case in metals.

6.4 Work hardening modelling

Sections 6.2 and 6.3 provide a general framework, including both non-polar and polar

dislocations, within which a constitutive law for single crystal deformation can be

grounded. In this work, only the contribution from glissile and stored non-polar

dislocations will be considered, as it is chosen to emphasize the coupling between

DDD and dislocation density based models. In a general case, polar dislocations

would have to be considered. However, in this work, the application of the current

model is limited to the study of uniaxial tension of single crystals, such that it can

be acknowledged that under those conditions, lattice rotations, which are accounted

for in this formulation, will be homogenous. Hence no polar dislocations need to be

generated.

The non-polar densities are assigned a line orientation, denoted by θ, which cor-

responds to the minimum angle between the dislocation line and its Burgers vector.

As such, ραnp(θ) denotes the density of non-polar dislocations on system α with an

orientation θ. The total non-polar density on system α, ραnp, is thus given by:

ραnp =

∫ 2π

0

ραnp(θ)dθ (6.13)

Operations that govern the evolution of ραnp(θ) are shown on the right-hand side

of figure 6.1. First, let us consider the glissile component of ραnp(θ). The glissile non-

polar dislocation density ραnp,g(θ) increases in line length via dislocation glide (growth

in figure 6.1). Glissile non-polar dislocations can also interact with other non-polar

dislocations, those from other systems and with other orientations. These interactions

lead to a loss in glissile dislocation density either via their annihilation with other
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glissile dislocations or transformation into stored non-polar dislocations (see figure

6.1) and are dependent on the relative orientation of the two interacting dislocations.

The latter transformation can happen, for instance, when a pair of dislocations form

a junction or become locked in a repulsive state that prevents forward motion. The

loss in non-polar glissile density via these orientation-dependent transformation inter-

actions directly results in a gain (+) in non-polar stored density. Such glissile-stored

transformations have been envisioned in the work of Roters and co-workers [206]. As

shown in figure 6.1, orientation-dependent interactions can also lead to a loss (-) in

stored non-polar dislocation density via annihilation with other stored dislocations

and remobilization. The latter, remobilization, can occur in many ways. For instance,

dislocations stored in repulsive and junction states can be remobilized by a simple

change in the loading direction, such as in a Bauschinger test, or by a local fluctuation

in the stress fields. Junctions can unzip, or a pair of dislocations in a repulsive state

can move apart via a change in the sign of the resolved shear stress [166, 135]. The

non-polar stored dislocation density ραnp,s(θ) is the outcome of all possible interac-

tions with other dislocations, some leading to an increase (+) and other leading to a

decrease (-), i.e. it can be written as:

ραnp,s(θ) =
∑
α′,θ′

ρα,α
′+

np,s (θ, θ′)− ρα,α′−np,s (θ, θ′) (6.14)

where ρα,α
′

np,s(θ, θ
′) is the density of non-polar stored dislocations on α with orientation

θ due to an interaction with dislocations on system α′ and with orientation θ′.

In the following, the growth, annihilation, and transformation operations involved

in the evolution of non-polar glissile dislocations are discussed first (Section 6.4.1),

followed by a similar description of the evolution of non-polar stored dislocations

(Section 6.4.2) and the annihilation and remobilization interactions that are involved

in equation (6.14). Hereinafter, glissile and stored dislocations are non-polar only.

264



6.4.1 Non-polar glissile dislocation density evolution

Each oriented non-polar glissile dislocation density ραnp,g(θ) evolves with the defor-

mation as a result of glide and interactions with other dislocations. The incremental

change in ραnp,g(θ) is expressed as:

dραnp,g(θ) = dρα+
np,g(θ)− dρα−np,g(θ) (6.15)

where superscripts + and − refer respectively to processes leading to an increase and

decrease in the glissile line length. The processes involved in each are described in

turn below.

6.4.1.1 Glissile line density increase

To evaluate the increase in the non-polar density dρα+
np,g(θ) for a given orientation, the

following decomposition can be adopted:

dρα+
np,g(θ) =

∑
α′

∂ρα+
np,g(θ)

∂γα′
dγα

′
(6.16)

where ∂γα
′

is the increment in slip with respect to time given by ∂γα
′

= γ̇α
′
∂t. The

slip rate γ̇α on any slip system α is directly related to the product of the density

of glissile dislocations, the Burgers vector and the dislocation velocity according to

Orowan’s law, such that:

γ̇α =

∫ 2π

0

ραnp,g(θ)b
α‖~V

α
(θ)‖dθ (6.17)

where bα is the magnitude of the Burgers vector and ‖~V
α
(θ)‖ is the magnitude of the

dislocation velocity directed normal to the loop.

Several processes can cause an increase in the glissile dislocation density dρα+
np,g(θ),

such as line expansion by glide and remobilization of stored dislocations into glis-

sile dislocations. The individual contributions from glide (glide) and remobilization
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(remob) on α are additive such that:

∂ρα+
np,g(θ)

∂γα′
=
∂ρα+,glide

np,g (θ)

∂γα′
+
∂ρα+,remob

np,g (θ)

∂γα′
(6.18)

Nucleation of glissile dislocations, propagation via cross-slip, and an increase in

the number of sources via double cross-slip can also result in an increase in glissile

line density. For simplicity, these are not treated, but could, in principle, be added

later. The increase in line length due to dislocation glide dρα+,glide
np,g (θ), whose quantifi-

cation is not is non-trivial, is discussed next in detail and that due to remobilization

dρα+,remob
np,g (θ) will be discussed later in connection with the recovery of stored non-

polar dislocations in Section 6.4.2.

In the following, the numerical quantification of the increase in non-polar dislo-

cation line density is presented. In the current framework, the increment in the total

glissile non-polar density on a due to glide dρα+,glide
np,g is given by:

dρα+,glide
np,g =

∫ 2π

0

dρα+,glide
np,g (θ)dθ (6.19)

In order for the total ραnp,g to remain non-polar as it grows, line continuity must

be maintained, i.e., by definition, the corresponding dislocation density tensor αα

must vanish when averaged over a representative volume element. The line closure

constraint leads to a coupling among the increments in all glissile, non-polar oriented

dislocation densities ραnp,g(θ), θ = {0, ..., 2π}, belonging to slip system α. In the

work of Arsenlis and Parks [7] and Cheong and Busso [44], the non-polar glissile

density on each slip system is modelled as a square loop in which two opposing sides

have pure screw characters and the other two sides pure edge. Propagation of one

of the edge segments by ∆x leads to an increase ∆x in the length of both screw

segments. Thus, the resulting increase in the dislocation density ∆ρ in a volume

V containing this loop is equal to ∆ρ = 2∆x/V (m−2). In this picture, the loop is
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discrete. However, the square loop can also be conceptually extended to represent the

edge and screw dislocation densities on system α. In this sense, it becomes a virtual

square dislocation. The relationship between the increments in the screw and edge

dislocation densities on system α such that the line closure constraint is satisfied, can

be determined analytically [7].

In the present approach, rather than constraining the line orientation on slip

system a to solely edge and screw segments, a continuous description of dislocation

orientations θ on slip system α is used. Thus, all the oriented densities ραnp,g(θ)

composing the total density ραnp,g on system α are represented by a single virtual

dislocation loop. Each point along the loop represents a different oriented density

ραnp,g(θ) with the same Burgers vector ~b
α
, but different θ and tangent vector ~t(θ). If

slip system α is active and gliding, the total ραnp,g will increase; however, densities of

different orientation belonging to this system could grow at different rates, since some

lines with specific orientations could be more likely to grow, transform, or annihilate

than others (figure 6.1). Recall that, during growth, the change in the total ραnp,g

must be divergence free to ensure that the density remains non-polar; that is, for all

deformation steps, the following circuit integral along a virtual loop for slip system

α must be null:

∮
~b
α
· d~t(θ) = 0 (6.20)

The above condition can be inferred from the definition of the Nye’s tensor αα in

equations (3.60) to (3.62) given as a function of the Burgers vector. More generally, it

can also be noticed that any non divergent-free change in ραnp,g can be interpreted as a

transformation of statistical dislocations into polar (GNDs) densities. Accordingly, in

order to maintain line continuity, a change in a θ-oriented density dρα+,glide
np,g (θ) due to

glide may necessitate changes in others θ′-oriented densities dρα+,glide
np,g (θ′) belonging to

α. In summary, representation of the non-polar glissile dislocation content on a given
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Figure 6.2: Virtual dislocation loop discretization. The blue loop is the initial loop
and the red loop is the loop after some deformation. Note that the loop remains
closed but changes in shape.

system α by use of an oriented density ραnp,g(θ) poses the problem of the quantification

of dρα+,glide
np,g (θ) for all θ, such that line continuity is ensured and Burgers vectors are

conserved among all oriented densities belonging to slip system α.

In the case where cubic splines are used to define dislocation loops so as to obtain

a continuous description of orientation θ, no analytical solution can be found to

determine the increment of dislocation density due to the propagation of a segment

line, as opposed to what can easily be done when dealing with only pure edge/screw

densities. To overcome this problem, a method based on using DDD is developed

in order to calculate dρα+,glide
np,g (θ) due to glide under the constraint imposed by line

closure, thereby alleviating the difficulty of deriving an analytical expression.

Figure 6.2 illustrates the virtual loop representation of the glissile line oriented

density on a given slip system α. The initial state is presented by the blue loop.

Its circular shape signifies that on system α the initial configuration is given by the

uniform distribution ραnp,g(θ) = ραnp,g/2π for all θ ∈ [0, 2π], which models an initially

random distribution of a large number of Frank-Read sources of equal length.

Due to glide, the virtual loop changes shape from the blue loop to the red loop.
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To calculate this expansion, a nodal DDD approach in which each virtual dislocation

loop is discretized into Ns splines connected to dislocation nodes is employed. To this

end, the regular DDD code developed in Chapter 2 is used to treat the evolution of

close dislocation loops representing the densities distribution on each slip system α.

Because the loop represents the non-polar densities, it must remain closed at all times

in the DDD code. To this end, the formulation employed in the DDD code used here

only treats closed loops. For the sake of clarity, at each step, the DDD code computes

the new position of the dislocations nodes, but the connection between the nodes is

not altered, such that the loops remain closed as they were in the previous step.

Each position along the splines represents an oriented dislocation density ραnp,g(θ) and

a change in the length of the spline corresponds to a non-zero dρα+,glide
np,g (θ) for all θ

along the spline. The nodal velocities are governed by the over-damped equation of

motion (2.49) whose variational form given by equation (2.50) is expressed as:

∮
δ~x · (~f

pk
−B~v) |d~x| = 0 (6.21)

where the integral is carried out along the closed circuit of the dislocation loop, ~v is

the velocity vector of the dislocation that acts normal to the dislocation line, B is the

drag coefficient matrix for which a simple expression is given in equation (C.46), and

δ~x is the virtual displacement of line d~x. For more details on the variational approach

to dislocation motion, the reader is referred to Appendix C.1. The Peach-Koehler

force ~f
pk

is the force exerted on each dislocation density (represented by line d~x) by

the macroscopic stress σ and defined from (2.46) as:

~f
pk

=
(
σ ·~b

α
)
×~t(θ) (6.22)

As such, the driving force of dislocation motion does not directly account for the

stress field resulting from interactions with the loop itself and other loops, since the
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loop is a virtual representation, not an actual discrete dislocation loop. Instead, the

influence of the surrounding dislocation network on the velocity for a given ραnp,g(θ)

is accounted for in each deformation step by transformation processes as described

in the next paragraph. The velocity for each density is then used to calculate the

slip rates, strain rates, and rates of annihilation, transformation, and remobilization

according to a set of evolution equations, described hereinafter and in the glissile line

removal paragraph.

In the DDD calculation in which the dislocation loop illustrated in figure 6.2 is

discretized into a finite number of segments, the shape of each segment line ij (i.e.

position and tangent) describing each virtual loop can be represented via the use

of the generalized coordinates ~qij introduced in equations (2.28)–(2.32) [96, 97]. For

more details on discrete nodal dislocation representation, please refer to Section 2.3.1.

In this work, a cubic spline representation for the virtual loop is used, and the position

~xij and tangent vector ~tij of each segment ij are thus given by equations (2.28) and

(2.29), respectively.

To illustrate the passage from a loop representation to a dislocation density rep-

resentation, consider again the two virtual loops in figure 6.2; one shown in blue and

the other in red. The orientation of each segment is related to the tangent vector by:

θ(s) = arccos

(
~b
α

‖~b
α
‖
·~t(s)

)
(6.23)

where s is the curvilinear coordinate along the spline. The total glissile dislocation

density on system α, ραnp,g, is the integral of the position vector ~x over the entire loop.

From this, the oriented dislocation density is given by:

ραnp,g(θ) = ραnp,g · f(θ) (6.24)

where ραnp,g corresponding to the line length of virtual loop α is given from equation
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(2.32) as:

ραnp,g =
Ns∑
ij

∫ 1

0

(
4∑

a,b=1

~q a
ij ·N ′a(s)N ′b(s) · ~q

b
ij

)1/2

ds (6.25)

where the derivatives of the shape functions N ′a(s) for cubic splines are expressed in

equation (2.31), and where f(θ) denotes the distribution function of θ, which can be

obtained by a least-square fit to essentially invert system (2.30).

At each step, the equation of motion (6.21) allows for the determination of the

distribution of the velocity vectors ~v α(θ) for all orientations θ belonging to a single

virtual loop for a given slip system α (see Section 2.5 for more details on the numerical

evaluation of nodal velocities). This velocity is then updated to ~V
α
(θ) to account

for the influence of the current dislocation (obstacle) network via the rate at which

dislocations can overcome obstacles via thermal activation. In this case, ~V
α
(θ) is

generally expressed as a product of an average rate term and the temperature T

dependent probability Pα(T ) of overcoming an obstacle by thermal activation:

~V
α
(θ) = ~v α(θ) · Pα(T ) (6.26)

The probability Pα(T ) for thermally activated dislocation motion most often is

modelled using Arrhenius-law, for which several expressions have been proposed [126,

33, 127, 44, 45, 162]. In this work, the thermally activated glide probability model as

suggested by Busso [33] is adopted, and its expression reads:

Pα(T ) = exp

(
− F0

kT

〈
1−

〈
ταeff
ταcrit

〉p〉q)
(6.27)

where k and F0 denote Bolzmann’s constant and the Helmholtz free activation energy,

exponents p ∈ [0, 1] and q ∈ [1, 2] characterize the shape of the activation energy

profile [127], and function 〈x〉 = max(x, 0).

The basic phenomenological arguments directly follow from the work of Kocks and
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co-workers [126, 127]. The stress terms ταeff and ταcrit denote respectively the effective

driving stress and the maximum strength at which dislocations can be mobilized

without the assistance of thermal activation. These two terms have been described

in several ways. For instance, in Busso [33] and Cheong and co-workers [44, 45], ταeff

is set as the difference between the resolved shear stress ταres and a back-stress term

related to the density of stored dislocations. Alternatively, one can relate both the

back-stresses and the critical resolved shear stress to different dislocation populations,

such as in Ma et al. [162], who related dislocations parallel to the slip system to

back stresses and forest dislocations that cut-through the slip system to the critical

resolved shear stress. Following these ideas, in this work, the driving stress ταeff is

simply defined as:

ταeff = |ταres| − Sα (6.28)

where Sα is the athermal forest resistance. Both ταcrit and Sα at the deformation

temperature are scaled from their values at 0 K, τ0 and Sα0 , respectively, and the

ratio of the shear moduli at the deformation temperature to 0 K, i.e.:

ταcrit = τ0
µ

µ0

Sα = Sα0
µ

µ0

(6.29)

For Sα0 , the Fransiosi and Zaoui extension [90] of the Taylor formulation to multi-slip

systems is used, such that:

Sα0 = µb

√∑
α′

aαα′ρα′np,s (6.30)

where ρα
′
np,s denotes the non-polar stored dislocations on system α′ that contribute to

slip resistance via the strength-inter-action matrix aαα
′
.
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6.4.1.2 Glissile line density removal

Glissile line density removal dρα−np,g occurs by either annihilation between glissile dis-

locations, transformation of glissile dislocations into stored dislocations via junction

formation or repulsion between glissile dislocations. Whether two glissile dislocations

repel, form a junction, annihilate, or none of the above depends on their relative

orientation. The sum of the individual contributions from different interactions and

all possible paired interactions between system α and system α′ yields an expression

for dρα−np,g(θ):

dρα−np,g(θ) =
∑
α′,θ′

dρα,α
′−

np,g (θ, θ′) (6.31)

where dρα,α
′−

np,g (θ, θ′) describes the density of glissile dislocations on system α with

orientation θ that are transformed via interactions with all dislocations on system α′.

It is the sum of the contributions of junction formation, repulsive interactions and

annihilation:

dρα,α
′−

np,g (θ, θ′) = dρα,α
′−

np,g,jun(θ, θ′) + dρα,α
′−

np,g,ann(θ, θ′) + dρα,α
′−

np,g,int(θ, θ
′) (6.32)

where the subscripts refer to the end states, that is, jun, ann, or int for junction,

annihilation and immobilization by repulsion, respectively. Note that each term in

equation (6.32) is generally not a symmetric function of α and α′. The increment

dρα,α
′−

np,g,end(θ, θ
′) for each end state can be seen to generally follow:

dρα,α
′−

np,g,end(θ, θ
′) = Hαα′

end (θ, θ′)
Lαα

′
(θ, θ′)U(θ, θ′)dNαα′

V
(6.33)

where the transformation-interaction matrix Hαα′

end (θ, θ′) is zero or unity depending on

whether the interaction leads to the corresponding end-state, end = {jun, ann, int}.

For example, Hαα′
jun(θ, θ′) for equals unity if the interaction leads to a junction and
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 Figure 6.3: Example of a junction formation map for the intersection of two prismatic
dislocations in HCP Zr. The map is computed by DDD following the method used
in reference [39]. Such a map depicts the nature of the intersection event (junction
formation, crossed state, or repulsion) as a function of the orientation of the two
interacting dislocations (where φi denotes the angle between dislocation line i and its
Burgers vector).

equals zero otherwise. Similarly for Hαα′
ann(θ, θ′) or Hαα′

int (θ, θ′), which take on value of 1

if the interaction leads to annihilation or a repulsive state and zero if not. Maps that

define the outcomes of paired α−α′ dislocation-dislocation interactions in (θ, θ′) space

have been calculated by DDD [164, 165] for FCC crystals. As an example, figure 6.3

shows a map that indicates whether the interaction of two dislocations with different

orientations form a junction or attain a repulsive state or neither (cross-state). Such

maps have been calculated for Cu [135], Mg [39], and Zr [176].

The fraction on the right-hand side of equation (6.33) is the total line length, given

by Lαα
′
(θ, θ′)U(θ, θ′)dNαα′ , per unit volume V involved in the interaction. Lαα

′
(θ, θ′)

is the dislocation length involved in the interaction between two glissile segments of

orientation θ and θ′ and belonging to system α and α′, U(θ, θ′) is the fraction of

Lαα
′
(θ, θ′) that is transformed, and dNαα′ is the number of interactions events that

occurred within the increment. Lαα
′
(θ, θ′) can be approximated as to be proportional

to the length of the initially shorter segment or the smaller of the two populations

involved, such that one can write Lαα
′
(θ, θ′)/V = k ·min

(
ραnp,g(θ), ρ

α′
np,g(θ

′)
)
, where k
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is a fitting parameter. The fraction U(θ, θ′) has been observed in DDD simulations

to decrease with an increase in misorientation angle of the two initial segments [164].

Therefore, as a first approximation, U(θ, θ′) can be expressed as a simple function of

the misorientation between the lines, e.g. U(θ, θ′) = |cos(θ − θ′)|. As a result, the

increment dρα,α
′−

np,g,end(θ, θ
′) for each end state can be expressed as:

dρα,α
′−

np,g,end = Hαα′

end · k |cos(θ − θ′)| ·min
(
ραnp,g(θ), ρ

α′

np,g(θ
′)
)
· dNαα′ (6.34)

As a first approximation, dNαα′ , corresponding to the number of interaction events

between systems α and α′, can be given as:

dNαα′ = k0

√∑
α′′

dα′α′′(ρα′′np,g + ρα′′np,s) · |dγα| =
k0

λα′
|dγα| (6.35)

where k0 |dγα| corresponds to the average distance travelled by dislocations on a due

to the slip on that system, and

λα
′

=
1√∑

α′′ d
α′α′′(ρα′′np,g + ρα′′np,s)

(6.36)

is the mean free path on system α′, i.e. the average distance a glissile dislocation is

likely to travel before being stopped by another dislocation (either glissile or stored).

The matrix dα
′α′′ is a length-interaction matrix, which engenders a dependence of

the mean free path on the two slip systems that are interacting. The interaction

is considered to encompass glissile-glissile and glissile-stored interactions. Generally,

the stronger the interaction is, the smaller the mean free path will be. Substituting

equation (6.35) into (6.50) introduces a material parameter k1 = k · k0, which is

synonymous with the coefficient for the rate of trapping of glissile dislocations or rate

of storage of dislocations in other models [127, 25, 132].
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Notice that with equations (6.31)-(6.35), it is possible that, as the overall dislo-

cation density on all systems becomes so large, the fraction of glissile dislocations

transformed into stored dislocation can reach one and thus the rate of change in the

glissile dislocation density zero.

6.4.2 Non-polar stored dislocation density evolution

As for the case of glissile densities, the evolution of non-polar stored dislocation

density on slip system α of a given orientation h results from the interactions with

other densities on other slip systems and orientations:

dραnp,s(θ) =
∑
α′,θ′

dρα,α
′

np,s(θ, θ
′) (6.37)

The non-polar stored dislocation intersection density evolves via two main phe-

nomena: (1) junction formation and (2) repulsive interactions. The strength of both

junction and repulsive states are dependent on the relative orientations of the two

interacting segments. Here, it is proposed to formally account for the evolution of

each as a function of their orientation relationship (θ, θ′). Accordingly, the following

decomposition is used:

dρα,α
′

np,s(θ, θ
′) = dρα,α

′

np,s,jun(θ, θ′) + dρα,α
′

np,s,int(θ, θ
′) (6.38)

where the subscripts j and int refer to junction and repulsive interactions, respec-

tively. The evolution of each is governed by a balance of storage and removal rates:

dρα,α
′

np,s,jun(θ, θ′) = dρα,α
′+

np,s,jun(θ, θ′)− dρα,α
′recov

np,s,jun (θ, θ′)− dρα,α
′remob

np,s,jun (θ, θ′)

dρα,α
′

np,s,int(θ, θ
′) = dρα,α

′+
np,s,int(θ, θ

′)− dρα,α
′recov

np,s,int (θ, θ′)− dρα,α
′remob

np,s,int (θ, θ′) (6.39)

In the above, the first terms with superscript + in each evolution equation refer to

the rates of increase in storage due to junction (jun) or repulsive interactions (int).
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Via the transformation mechanism proposed in this work, they also correspond to

the decrement in the glissile dislocation density in equation (6.32). As a result, the

transformation mechanisms from glissile to stored densities write:

dρα,α
′+

np,s,jun(θ, θ′) = dρα,α
′−

np,g,jun(θ, θ′)

dρα,α
′+

np,s,int(θ, θ
′) = dρα,α

′−
np,g,int(θ, θ

′) (6.40)

These mechanisms lead to stage II hardening. The second terms in equation (6.39)

with superscript recov represent the decrease due to line removal by dynamic recovery,

which is characteristic of stage III. To model dynamic recovery, we employ the model

suggested by Kocks and Mecking [126, 127]:

dρα,α
′recov

np,s,jun (θ, θ′) = k2 · ρα,α
′

np,s,jun(θ, θ′) · |dγα|

dρα,α
′recov

np,s,int (θ, θ′) = k2 · ρα,α
′

np,s,int(θ, θ
′) · |dγα| (6.41)

where k2 depends on strain rate and temperature [25]. The example later considers

a fixed temperature and strain rate and thus, k2 is treated as a fitting parameter.

Note that with the present formulation, k2 is a single parameter valid for all slip

systems α, whereas it is usually treated as a mode-dependent parameter kα2 in current

constitutive models (e.g. in reference [25]). As before, |dγα| is the increment of shear

due to gliding on system α.

The last terms in equation (6.39) with superscript remob represent the loss in

stored non-polar density due to remobilization and hence correspond to a gain in the

glissile non-polar density, such that:

dρα+,remob
np,g (θ) =

∑
α′,θ′

[
dρα,α

′remob
np,s,jun (θ, θ′) + dρα,α

′remob
np,s,int (θ, θ′)

]
(6.42)

As mentioned earlier, remobilization corresponds to the unzipping of junctions or
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unlocking of repulsive states due to a change in local stress state. As such, remobi-

lization is particularly important and non-negligible in the case of complex loading

states or when undergoing a change in loading path. The rate of unzipping depends

on the local stress state relative to the strength of the junction. The junction strength

is a function of the type of junction (e.g. Lomer-Cottrell lock vs Hirth lock), junc-

tion length, and line misorientation. In the case of FCC metals, junction strength

decreases with junction line length and in turn, the length of the junction formed

decreases with increasing line misorientation. Further for HCP metals, as shown in

DDD simulations on Mg single crystals, the junction strength can exhibit significant

anisotropy [39].

To capture these effects, the rate of remobilization is expressed as the product of

the current dislocation junction density, the fraction that is remobilized U(θ, θ′), and

the probability of junction unzipping Y (τα,α
′
) given the junction type and the current

resolved shear stress:

dρα,α
′remob

np,s,jun (θ, θ′) = ρα,α
′

np,s,jun(θ, θ′)U(θ, θ′)Y (τα, τα
′
) (6.43)

where τα and τα
′
respectively denote the resolved shear stresses on α an α′. Y (τα, τα

′
)

is defined such that it equals unity if the stress state exceeds the strength of a given

junction and zero otherwise. The non-polar dislocations stored as result of repulsive

interaction can be remobilized via a simple change in the load direction (at the local

scale). Similar to equation (6.43), the rate of remobilization of repulsive states is:

dρα,α
′remob

np,s,int (θ, θ′) = ρα,α
′

np,s,int(θ, θ
′)U(θ, θ′)S(τα, τα

′
) (6.44)

where S(τα, τα
′
) takes the value one if either resolved shear stresses on α or α′ changes

in sign. Both Y (τα, τα
′
) and S(τα, τα

′
) can, in principle, be determined from strength-

interaction maps, such as the one in figure 6.3, obtained from DDD calculations.
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Sections 6.2 to 6.4 provide the main constitutive equations of the Hybrid Model.

In the following, the numerical implementation of the model is discussed and a simple

application on uniaxial tension on FCC Copper is presented to highlight the capabil-

ities of the model. Further, note that a simplified version of the model will be used

and its constitutive equations will be presented in Section 6.4.3.

6.4.3 Simplified formulation

In Sections 6.4.1 and 6.4.2, the complete set of evolution and transformation laws were

given for non-polar glissile and stored dislocations as a function of their orientation.

However, there may be some situations in which a simplification to the model is

desired and the degrees of freedom associated with all possible orientation pairs (θ, θ′)

can be reduced to consider no orientation dependence.

On top of providing a lighter formulation of the Hybrid Model that should allow

to grasp the essence of the model more directly than from the previous sections, the

removal of densities orientations also alleviate numerical difficulties (see Section 6.5.1)

by restraining the shape of the virtual loops (see figure 6.2) to perfect circles. Further,

if one restricts this simplified version to be used in monotonic loading conditions, such

as done for single crystal aluminium in Section 6.6, then no remobilization mechanism

needs to be considered.

As a result, the simplified version of the model solely accounts for the modelling of

non-polar glissile and stored overall densities per system based on the Kocks-Mecking

approach [127]. Thus, the various mechanisms affecting their evolution, that may

either lead to an increase (+) or a decrease (-) in the dislocation densities, can be

described in a simpler fashion by the following set of rate laws for each system s:
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Evolution of glissile (g) densities: ρ̇αnp,g = ρ̇α+
np,g − ρ̇α−np,g (6.45)

Transformation (trapping): ρ̇α−np,g = ρ̇α+
np,s (6.46)

Evolution of stored (s) densities: ρ̇αnp,s = ρ̇α+
np,s − ρ̇α−np,s (6.47)

in which the increase dρα+
np,g of glissile dislocations due to glide is quantified using

circular virtual loops. Further, in this case, the loss in non-polar glissile density via

the transformation mechanisms introduced in relations (6.40) directly results in the

gain in non-polar stored density. Their quantification, corresponding to equation

(6.31) in the complete version, reduces to:

dρα−np,g = dρα+
np,s =

∑
end

∑
α′

dρα,α
′−

np,g,end (6.48)

where dρα,α
′−

np,g,end denotes the increment of transformed glissile non-polar densities

stored on system α due to the interaction with system α′ and for end = {jun, ann, int}.

Following expression (6.33), it is here simply given by:

dρα,α
′−

np,g,end = Pαα′

end ·
Lαα

′
UdNαα′

V
(6.49)

where Pαα′

end is the probability that the intersection between lines due to interaction

between systems α and α′ results in a given end stage, i.e. end = {jun, ann, int}. Pαα′

end

can be obtained by integration of the transformation-interaction matrix Hαα′

end (θ, θ′)

over the (θ, θ′) space. The ratio Lαα
′
U/V corresponds to the average length of the

junction to be formed per unit volume when system α interacts with system α′. It

is proportional to the lesser glissile dislocation density between system α and α′, i.e.

min
(
ραnp,g, ρ

α′
np,g

)
, such that:

dρα,α
′−

np,g = Pαα′ · k ·min
(
ραnp,g, ρ

α′

np,g

)
· dNαα′ (6.50)
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Finally, the Kocks-Mecking approach for dynamic recovery [127] is employed to model

the rate of annihilations of stored dislocations as:

dρα−np,s = k2 · ρα−np,s |dγα| (6.51)

6.5 Numerical implementation

In this section, the numerical implementation of the Hybrid Model is briefly discussed.

First, the representation of virtual loops using the DDD code is presented for FCC

crystals, after which the coupling of the crystal plasticity framework with the finite

element method is detailed.

6.5.1 Virtual loops

As introduced in Section 6.4.1, the concept of a virtual loop is used to calculate

dρα+,glide
np,g (θ), the increase in the non-polar glissile dislocation density population of

orientation θ due to glide. In the case of FCC crystals, the 12 〈110〉{111} are dou-

bled. Practically, two polarized virtual loops with opposite Burgers vectors (+/-) are

associated to each slip system α to ensure that growth of virtual loops is granted

independently of the sign of the applied stress. Table 6.1 lists the 24 virtual slip

systems used in this work along with their Schmid and Boas (SB) notation. The (+)

and (-) in SB denotes the sign of the Burgers vector, the (+) being the conventionally

adopted one in the literature.

Initially, each virtual loop is perfectly circular, i.e., the densities in each orienta-

tion are identical (see for instance, the blue loop in figure 6.2). This is intended to

represent an initially random distribution of a large number of Frank-Read sources.

At each deformation step, only the systems whose virtual loop length has increased

are updated. Those systems whose loop length would shrink are forced to remain

fixed in their previous position as if their average velocity is zero. Nonetheless, these

zero-velocity loops do not contribute to the plastic shearing rate (see equation (6.17)).
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Table 6.1: Properties and notation for the 24 virtual loops used in the model.

Slip plane ~b
α

Index SB ~b
α

Index SB

(111) 1
2 [1̄10] 1 B5+ 1

2 [11̄0] 13 B5-

(111) 1
2 [1̄01] 2 B4+ 1

2 [101̄] 14 B4-

(111) 1
2 [01̄1] 3 B2+ 1

2 [011̄] 15 B2-

(11̄1) 1
2 [110] 4 D6+ 1

2 [1̄1̄0] 16 D6-

(11̄1) 1
2 [011] 5 D1+ 1

2 [01̄1̄] 17 D1-

(11̄1) 1
2 [1̄01] 6 D4+ 1

2 [101̄] 18 D4-

(111̄) 1
2 [1̄10] 7 C5+ 1

2 [11̄0] 19 C5-

(111̄) 1
2 [101] 8 C3+ 1

2 [1̄01̄] 20 C3-

(111̄) 1
2 [011] 9 C1+ 1

2 [01̄1̄] 21 C1-

(1̄11) 1
2 [110] 10 A6+ 1

2 [1̄1̄0] 22 A6-

(1̄11) 1
2 [01̄1] 11 A2+ 1

2 [011̄] 23 A2-

(1̄11) 1
2 [101] 12 A3+ 1

2 [1̄01̄] 24 A3-

For loops associated with active slip systems, the loops will expand and deform,

and will not necessarily remain perfectly circular, as suggested by the red loop in

figure 6.2, since some lines with specific orientations could be more likely to grow,

transform, or annihilate than others. Once the new non-polar glissile densities ραnp,g(θ)

have been computed for all orientations θ – based on the rates of annihilation and

transformation–, the virtual loops must be reconstructed accordingly. During recon-

struction, convexity and closure conditions of the loops are enforced such that (i) the

density of each orientation can be uniquely retrieved and (ii) virtual loops represent

the glissile non-polar dislocations densities. Therefore the passage between the virtual

loop representation and the non-polar glissile dislocation densities proceeds in three

steps: (i) the increase in glissile densities dρα+,glide
np,g (θ) due to glide is computed as

described in Section 6.4.1, (ii) the removal dρα−np,g(θ) due to interactions is computed

using equations (6.31)–(6.35) and (iii) the virtual loops are reconstructed from the

new densities sραnp,g(θ) (see equation (6.15)).

In the case of the simplification introduced through equation (6.48) and (6.50) in
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which line orientation dependence is removed, the virtual loops will remain perfectly

circular as they grow. This simplification leads to a significant gain in computation

time since (1) the suppression of orientation dependence enables us to work with only

one density per slip system and per type, and (2) the number of discretization points

required to describe the virtual loop can be reduced to a minimum.

Both approaches for updating dρα+,glide
np,g (θ) are employed in this work for the case

of monotonic, uniaxial loading of a single crystal. In either case, an increase in

the non-polar glissile density can be associated with the transformation of non-polar

glissile densities into stored densities. The transformations are computed using the

formulation expressed through equations (6.31), (6.33) and (6.35).

6.5.2 Crystal plasticity finite element coupling

Both the fully orientation-dependent and simplified orientation-independent versions

have been implemented in a finite element (FE) framework such that equilibrium

and boundary conditions are respected at each step. The general FEM framework

to incorporate stress-strain formulations is presented in details in Appendix E. The

algorithm for the fully orientation-dependent approach is provided in figure 6.4. The

coupling between the FE and the DDD procedures is based on a two-step approach.

First, the DDD code computes the evolution of the virtual loops solving the dynam-

ics for a given stress state. The new values of every density population are then

computed once interactions processes have been handled, yielding the plastic strain

increment. Second, the FE code computes the displacement field making use of the

plastic deformation gradient computed during the first step. This coupling is per-

formed using an implicit scheme in which the stress state for an element at step t,

σ(t), is obtained from the elastic deformation gradient F e(t) according to equation

(6.11). The latter is computed using the decomposition introduced in equation (6.4)

where the total deformation gradient given by the imposed increment of deformation,
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Figure 6.4: Flowchart of the coupling between DDD and FEM. Fundamental equa-
tion of non-linear FEM Rn =

∫
V
BTσndV −F = 0 directly follows from the principle

of virtual work applied to a medium (V) subjected to displacement and stress bound-
ary conditions (see Appendix E.4). Here B denotes the spatial partial derivatives
matrix of the element discretized nodes and σn represents the stress at increment n
given by equation (6.11). The use of an implicit iterative method (Newton-Raphson)
to solve for the non-linear system Rn = 0 requires the introduction of the tangent
modulus (or material jacobian) Ltan = ∂σ/∂ε.
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and the plastic deformation gradient F p(t) at the same step t using equation (6.7). A

Newton–Raphson procedure is used to solve the non-linear dependence between the

stress and the plastic strain. (The general non-linear FEM formulation for stress cal-

culation is detailed in Appendix E.4.) Therefore, at the beginning of each increment

t, the stress state σ(t) has to be defined everywhere in the FE mesh, as it constitutes

an input for the next increment of the DDD code. As indicated by equations (6.21)

and (6.22), σ(t) is the driving force used to determine the motion of the dislocation

lines of the virtual loop.

6.6 Application to FCC single crystal aluminium

As a first application, the Hybrid Model described in the previous sections has been

implemented to simulate uniaxial tension of single crystal aluminum. In the present

formulation, only the evolution of glissile and stored non-polar dislocations are con-

sidered. Under uniaxial tension, the applied deformation does not impose any rota-

tion, and in the calculations that follow, the imposed boundary conditions are such

that crystal rotation is uniform, and hence no polar dislocations will be generated.

Moreover, because the crystals are being loaded monotonically, the remobilization

mechanism is assumed not to affect the mechanical response and is suppressed in the

following calculations. Thus, for this application, the rate of growth of non-polar

glissile dislocations is due solely to glide, and the rate of storage of non-polar stored

dislocations is governed by the rate of annihilation, junction formation and immobi-

lization of non-polar glissile dislocations.

6.6.1 Dislocation interactions

There are three interaction matrices introduced in the present hybrid model. The

first is the strength-interaction matrix aαα
′

found in equation (6.30) in the definition

of the critical resolved shear stress for system α. This interaction matrix describes

the interaction between dislocations from all possible pairs of slip systems in an FCC
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crystal that give rise to the glide resistance known as the critical resolved shear stress.

Due to the symmetry of the FCC crystal, this matrix is composed of six independent

coefficients, each of them accounting for a different type of interaction [90, 89]. An

example matrix aαα
′

for FCC crystals is shown in table 6.2.

The two coefficients a0 and a1 account for in-plane interactions, whereas the four

other coefficients a2 through a5 account for out-of-plane interactions. The first a0

describes self-interactions, namely the interactions between dislocations belonging to

the same system. Even when gliding on different parallel planes, like-signed, same

system dislocations can increase their mutual glide resistance through long-range in-

teractions via dipolar interactions [4]. Next, a1 describes interactions between copla-

nar dislocations that have different Burgers vectors, while a2 accounts for the collinear

dislocations; that is, for dislocations that have the same Burgers vector but are lying

on different planes. This last interaction is related to the ability of dislocations to

cross-slip. Finally, a3, a4 and a5 describe three types of junctions that are likely to

be formed, namely the Hirth lock, the glissile junction and the Lomer-Cottrell lock,

respectively. The glissile junctions are able to move since their resulting Burgers

vector lies in the plane in which they are formed, but still largely contribute to the

hardening of the forest [164]. Alternatively, the Hirth and Lomer-Cottrell locks form

sessile junctions of different strengths, with the Hirth lock being the weaker of the

two.

The components aαα
′

are taken from the results of DDD simulations conducted

in reference [132]. These are reported in table 6.3. Although interaction coefficients

evolve with the dislocation densities [65], they will be taken as constant during de-

formation.

Second, in equation (6.35), the length-interaction matrix dαα
′

is introduced to

describe the increment in the number of intersection events occurring while systems

α and α′ are interacting. As described by equation (6.35), this number is related to the
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Table 6.2: Strength-interaction matrix aαα
′

coefficients for FCC crystals.

Systems A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6
A2 a0 a1 a1 a2 a4 a4 a3 a4 a5 a3 a5 a4
A3 a0 a1 a4 a3 a5 a4 a2 a4 a5 a3 a4
A6 a0 a4 a5 a3 a5 a4 a3 a4 a4 a2
B2 a0 a1 a1 a3 a5 a4 a3 a4 a5
B4 a0 a1 a5 a3 a4 a4 a2 a4
B5 a0 a4 a4 a2 a5 a4 a3
C1 a0 a1 a1 a2 a4 a4
C3 a0 a1 a4 a3 a5
C5 sym a0 a4 a5 a3
D1 a0 a1 a1
D4 a0 a1
D6 a0

Table 6.3: Interaction coefficients computed via DDD simulations by Kubin and
co-workers [132] and used for the present work.

Self a0 Coplanar a1 Collinear a2 Hirth a3 Glissile a4 Lomer a5

0.122 0.122 0.625 0.07 0.137 0.127

mean free path, which in turn depends on the average lengths of the two interacting

dislocations segments. As such, it gives rise to an orientation dependence on the

rate of storage of glissile dislocations. The length-interaction matrix dαα
′

exhibits the

same structure as matrix aαα
′
. It also describes the interaction between all possible

pairs of slip systems and has six independent coefficients corresponding to the same

interactions as those in matrix aαα
′
. Although the values of its six coefficients may

differ from those for matrix aαα
′
, for the sake of simplicity, the coefficients of matrices

aαα
′

and dαα
′

are assumed identical.

Third, the transformation-interaction matrix Hαα′

end (θ, θ′) was introduced in equa-

tion (6.33), and can also be directly determined from DDD simulations. Such maps,

for which an example is given in figure 6.3, indicate the end-state attained, i.e. junc-

tion, annihilation, repulsive state or otherwise (cross-state), as a function of the ori-

entations of the two interacting glissile segments. Studies performed on collinear in-

teractions in reference [165] have also managed to provide maps for these interactions.
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Table 6.4: Averaged intersection probabilities Pαα′
jun taken for FCC aluminum.

Types of junctions Pαα
′

jun

Lomer-Cottrell lock PLomer = 0.593

Glissile Pglissile = 0.547

Hirth lock PHirth = 0.378

Collinear interactions Pcollinear = 0.895

These maps not only inform on the nature of the interaction configuration between

two oriented dislocation segments, but also on the length on junctions to be formed

according to segments orientations: junctions lengths decrease with an increasing mis-

orientation of the two interacting segments [164]. Here, the transformation-interaction

coefficients will be taken as constant and independent of the length of the dislocations

during plastic deformation. These are given in table 6.3. It should also be mentioned

that very little is known about the interaction between coplanar slip systems, as no

studies have been devoted to those interactions. Kubin et al. [132] suggest that the

coplanar and self-interactions can be treated in a similar manner. For this reason, as

listed in table 6.3, their interaction coefficients are taken as identical.

As mentioned, a simplified approach given in Section 6.4.3 will also be utilized. In

this case, the probability of forming a junction or reaching a repulsive configuration

Pαα′

end (see equations (6.50) and (6.49)) can be related to Hαα′

end (θ, θ′) introduced in

equation (6.33). For instance, Pαα′
jun for junction formation can then be expressed as:

Pαα′

jun =
Aαα′jun

Aαα′tot

(6.52)

where Aαα′jun denotes all the mapped areas corresponding to interactions between sys-

tems α and α′ that lead to junction formation, and Aαα′tot is the total map area. For

the FCC aluminum crystals modelled here, values of Pαα′
jun obtained from junction

formation maps of Madec and co-workers [164, 165] are reported in table 6.4.
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6.6.2 Simulation setting

In the numerical model, the single crystal is represented by a single 3D 8-noded

brick element. In order to simulate uniaxial tension of single crystals, the following

boundary conditions have been adopted: the element, which is subjected to uniaxial

traction on its upper face (along the Z-axis), is set up to represent 1/8th of a cube

by taking advantage of the symmetries (FCC materials). Therefore, to reproduce the

ideal tension boundary conditions, the lower face of the element is pinned along the

traction direction and one of its vertices is pinned, whereas the others are blocked to

avoid rotation of the lower face. The lateral sides of the entire cube are traction free.

Tension is simulated by imposing a uniaxial strain rate ε̇33 on the upper face. All

boundary conditions on the 1/8th cube are schematically presented in figure 6.5.

In order to test the response of uniaxial tension to different crystal orientations,

a crystal coordinate system has been implemented. Its rotation with respect to the

global coordinate system (element) is performed via the use of Euler angles (using

Bunge convention). The models were tested for four orientations: [001], [111], [112]

and [123], to evaluate their ability to capture and predict the orientation-dependent

tensile behavior of single-crystal aluminum. Results are compared to experiments

conducted by Hosford et al. [115] at 273 K. Materials parameters used to simulate

single crystal aluminum at 273 K are reported in table 6.5.

The initial density of non-polar glissile dislocation is set to 3.5× 1010m−2 on each

of the 24 virtual slip systems, which is equivalent to 7 × 1010m−2 on each of the

12 actual slip systems. The initial density of non-polar stored dislocations is set to

the same value. Uniaxial tensile tests are simulated under a constant strain rate

ε̇33 = 3×101s−1. The time step used in the simulation is set to ∆t = ×10−8s for both

the FE and the DDD procedure. The drag coefficient B in equation (6.21) is chosen

to be identical for edge and screw orientations, such that its value remains constant

for all possible lines orientation. The Helmholtz free activation energy F0 found in
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Figure 6.5: Schematic of the 1/8th cube element and its boundary conditions to
simulate uniaxial tension on a single crystal Al.

Table 6.5: Materials parameters used to model single crystal aluminum.

Property Value

Elastic constants C11 = 108 GPa
C12 = 61.3 GPa
C44 = 28.5 GPa

Shear modulus µ = 25 GPa
Burgers vector b = 2.863× 10−10 m
Velocity exponents p = 0.5 and q = 1.5
Drag coefficient B = 10−5 Pa.s
Lattice friction at 0K τ0 = 30 MPa
Free activation energy F0 = 5× 10−20 J
Trapping coefficient k1 = 6.7× 10−3

Recovery coefficient k2 = 1.7× 10−8

the Boltzmann distribution (equation (6.27)) is typically given in 0.05 ≤ F0

µb3
≤ 2

whereas the exponents p and q are to be comprised in the ranges 0 ≤ p ≤ 1 and

1 ≤ q ≤ 2.

Finally, it is important to notice that the present model has only two adjustable

material parameters, k1 and k2, that are independent of the slip systems. The first

parameter represents the coefficient for the rate of trapping of glissile dislocations by

other dislocations and the second the recovery processes between stored dislocations.

These are determined by fitting the tension response in the perfectly aligned [111]
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Figure 6.6: Stress vs strain predictions for the four tested crystal orientations using
the simplified version of the model versus experimental data.

direction. Simulations of the [001], [112] and [123]-oriented crystals have then been

performed using the same values for these two parameters. In doing so, we found

that the best agreement of the model with experimental data have been obtained

introducing a 1◦ misorientation for the [001]-oriented crystal. This slight adjustment

is well within the expected error of the experiment. The orientations of specimens

used in the experiments conducted by Hosford et al. [115] are likely to deviate from

the perfect alignment up to 2◦.

6.7 Results and discussion

Figure 6.6 compares the hybrid model with experiments conducted by Hosford et al.

[115], for four crystal orientations: [001], [111], [112] and [123]. The model captures

the strain hardening response and more importantly, the differences and order in

the flow stresses among the four orientations. Notably, the response of the [001]

orientation is fully reproduced.
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Table 6.6: Schmid factors for the four different tested orientations.

System SB [001] [111] [112] [123]

11 A2 0.408 0 0.136 0.117
12 A3 0.408 0.272 0.408 0.467
10 A6 0 0.272 0.272 0.350
3 B2 0.408 0 0.272 0.175
2 B4 0.408 0 0.272 0.350
1 B5 0 0 0 0.175
9 C1 0.408 -0.272 0 0
8 C3 0.408 -0.272 0 0
7 C5 0 0 0 0
5 B2 0.408 0.272 0.408 0.292
6 B4 0.408 0 0.136 0.117
4 B5 0 0.272 0.272 0.175

6.7.1 Slip activity and work hardening

The model predicts that the two more symmetrical orientations [001] and [111] deform

plastically in multi-slip, whereas the other two orientations [112] and [123] deform

predominantly by one or two slip systems (although the others are mildly active).

This difference classifies these four orientations into two groups, which are discussed

in turn below. The Schmid factors computed for the tested orientations are reported

in table 6.6.

The [001] and [111] orientations deform in tension by activating eight and six slip

systems, respectively. For the [001] oriented crystal, systems A2, A3, B2, B4, C1,

C3, D1 and D4 are activated, whereas for the [111]-oriented one, systems A3, A6,

C1, C3, D1 and D6 are activated. These systems have identical Schmid factors and

are activated simultaneously at the onset of plastic deformation, marking the end of

the elastic stage. Because of multi-slip, stage I is not present and strain hardening

begins with stage II at a very high hardening rate. All the remaining non-active slip

systems have a zero Schmid factor. The [111]-oriented crystal exhibits the highest

hardening rate among the four orientations, and a flow stress at 10% strain that is
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roughly four times higher than in any other orientation. However, unlike the [111]-

oriented crystal, the hardening rate of the orientation [001] (with eight equally active

slip systems) drops drastically after 2–3% strain, such that the stress level has almost

reached an asymptotic value at 10% strain.

It has been observed experimentally that at most half of the slip systems with non-

zero Schmid factors are actually activated during tensile deformation for [001] and

[111] orientations [113]. For the [111] orientation, Franciosi and Zaoui [90] observed

that only three distinct slip systems are activated. The selection of activated slip

systems has been argued based on the types of junctions that could form. In [90], at

the beginning of plastic deformation, the preferred combinations of systems involved

were those that do not form junctions. Using both DDD and continuum models,

Devincre et al. [64] found that the selection of slip systems proceeds in such a way

that collinear interactions between a slip system and its cross-slip system are avoided.

Collinear junctions form when collinear slip systems, which have the same Burgers

vector but lie on different planes, interact. These junctions are by far the strongest,

as seen through the a2 coefficient in table 6.3, which is more than five times higher

than the second highest glissile junction. In the present hybrid model, the junction

types formed and slip activity are predicted and their relationship is discussed in the

next section.

For orientations [112] and [123], one to two slip systems dominate and accommo-

date most of the strain, although all systems with non-zero Schmid factors are actually

activated during the course of the deformation. This provides an explanation for why

stage I does not manifest in either orientation. In the case of the [112]-oriented crys-

tal, it has been observed experimentally for FCC materials that a small single glide

stage I could occur, with secondary slip on the conjugate slip system (the maximum

resolved shear stress is identical for two slip systems in this direction). This has

been reported for Copper in [90] and appears clearly in the experiments conducted in
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[226]. However, in the case of aluminum, stage I is not present as double conjugate

slip occurs at the onset of the plastic deformation [90]. Similarly in the case of tension

along the [123] direction for aluminum at 273 K, experiments in [115] show that single

glide stage I is nonexistent such that stage II immediately occurs after the onset of

plasticity, whereas at 4.2 K and 77 K, stage I is clearly present until 2–3% strain.

The main discrepancy of the model is found in the yield stress of the [112] and

[123] orientations, measured to be around 2–3 MPa, but predicted to be 10 MPa.

The model presented here follows a rate-dependent formulation and hence the elasto-

plastic transition is sensitive to strain rate. Therefore, imposing lower strain rates is

expected to lead to a decrease in the predicted yield stress.

6.7.2 Junction formation and work hardening

In the present formulation, junctions form as a result of the interactions between

glissile dislocations. Among them, we account for both active-active (interactions

between two active systems) and active–inactive (interactions between an active and

a non-active system) interaction pairs. Active-inactive paired interactions contribute

to the junction densities to a lesser extent than the active-active pairs, as the rates

of transformation from glissile dislocations to stored dislocations is directly limited

by the smaller of the two interacting populations (see equation (6.50)). However,

these interactions are responsible for reducing the density of the latent systems, de-

spite their inactivity, and more importantly contribute to dislocation storage. This

directly characterizes the latent-storage process. Through these various interactions,

different types of junctions form, and the present hybrid model determines which

junctions form based on the orientation of the two slip systems and frequency of their

interaction. Both are tied to the number and distribution of active slip systems in

the crystal.

The [111]-oriented crystal has the highest hardening rate due to the large fraction
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Table 6.7: Active slip systems and resulting interaction types predicted by the model.
In (a), active slip systems are ranked in terms of predominance. For the [001] and
[111]-oriented crystals, the activation of each slip system is identical due to the sym-
metrical configuration.

Traction direction [001] [111] [112] [123]

(a) Active slip 8 6 8 9

systems A2, A3, B2, B4,
C1, C3, D1, D4

A3, A6, C1, C3,
D1, D6

A3, D1, A6, B2,
B4, D6, A2, D4

A3, A6, B4, D1,
B5, D6, B2, D4, A2

(b) Number of dis-
tinct active-active
pairs interactions

28 15 28 36

Collinear 4 (14%): A2-B2,
A3-C3, B4-D4, C1-
D1

3 (20%): A3-C3,
A6-D6, C1-D1

3 (11%): A2-B2,
A6-D6, B4-D4

3 (8%): A2-B2,
A6-D6, B4-D4

Coplanar 4 (14%): A2-A3,
B2-B4, C1-C3, D1-
D4

3 (20%): A3-A6,
C1-C3, D1-D6

7 (25%): A2-A3,
A2-A6, A3-A6, B2-
B4, D1-D4, D1-D6,
D4-D6

9 (25%): A2-A3,
A2-A6, A3-A6, B2-
B4, B2-B5, B4-B5,
D1-D4, D1-D6, D4-
D6

Lomer-Cottrell 4 (14%): A2-D4,
A3-D1, B2-C3, B4-
C1

3 (20%): A3-D1,
A6-C1, C3-D6

4 (14%): A2-D4,
A3-D1, A6-B4, B2-
D6

6 (17%): A2-D4,
A3-B5, A3-D1, A6-
B4, B2-D6, B5-D1

Glissile 9 (32%): A2-B4,
A2-C3, A3-B2, A3-
C1, A3-D4, B2-D4,
B4-D1, C1-D4, C3-
D1

6 (40%): A3-C1,
A3-D6, A6-C3, A6-
D1, C1-D6, C3-D1

11 (39%): A2-B4,
A2-D6, A3-B2, A3-
D4, A3-D6, A6-B2,
A6-D1, A6-D4, B2-
D4, B4-D1, B4-D6

12 (33%): A2-B4,
A2-B5, A2-D6, A3-
B2, A3-D6, A6-B2,
A6-D1, A6-D4, B2-
D4, B4-D1, B4-D6,
B5-D4

Hirth locks 7 (25%): A2-C1,
A2-D1, A3-B4, B2-
C1, B2-D1, B4-C3,
C3-D4

0 (0%) 3 (11%): A2-D1,
A3-B4, B2-D1

6 (17%): A2-D1,
A3-B4, A3-D4, A6-
B5, B2-D1, B5-D6

of strong junctions, particularly the strongest collinear junctions, formed from its slip

activity. In the [111]-oriented crystal, the six activated systems lead to 15 distinct

systems interactions, as reported in table 6.7. Among them, the collinear, coplanar

and Lomer locks interactions account for the total interactions in the same proportion

(20% each), whereas the glissile junctions occur twice as often, representing 40% of

the overall interactions. However, the weakest junction, the Hirth lock, cannot form

for the given set of activated systems. As a result, interactions leading to the harder

rather than weaker junction configurations occur more often, which in turn gives rise

to the highest hardening rate in stage II among the four orientations tested.

The [001]-oriented crystal activates the largest number of slip systems, namely

eight, leading to the largest number of distinct interaction types predicted among all
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Figure 6.7: Predicted densities of junctions populations for the four orientations.

four orientations. As in the [111]-oriented crystal, glissile junctions are the dominant

junction type (32% of the total interactions) and the collinear, coplanar and Lomer

interactions form in equal proportions. However, unlike in the [111]-oriented crystal,

this orientation favors the formation of Hirth locks, as shown in figure 6.7. This

large proportion of weak junctions is partly responsible for the lower hardening of the

[001]-oriented crystal during stage II than the [111]-oriented crystal.

The model also captures the lower hardening rate for the [123] orientation than

the [112] orientation in agreement with experiment. Although eight and nine slip

systems are activated during the course of the deformation for the [112] and [123]-

oriented crystals, respectively, the slip activity is inhomogeneous. Only two systems

A3 and D1 are found to be predominant for the [112] orientation, and only one system

A3 in the [123] orientation. The model predicts that compared to that of the [123]

orientation, the slip activity of the [112] orientation produces more collinear junctions

and glissile junctions, which are commonly considered as being some of the strongest
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ones. As a result, stage II hardening for the [112] orientation is calculated higher than

the one for the [123] direction. The extent of straining involved in stage II, however,

is the same; in both the [112] and [123] orientations, stage II transitions to stage III

at around 4–5% strain.

6.7.3 Glissile dislocation density evolution

One advantage of the hybrid single crystal constitutive law is that it contains evolu-

tion laws for both glissile and stored dislocation densities. For both [111] and [001]

orientations, it is found that the evolution of glissile densities on all active slip systems

are identical (see figure 6.8(a) and (b)). This corresponds to the fact that the veloci-

ties of the dislocations are uniform among the active system throughout deformation.

For the [112] and [123] orientations, slip is inhomogeneous, with one to two systems

being the most active among several systems of lesser activity. Consequently, glissile

dislocation velocities are distributed, and do not evolve at the same rate, as observed

on figure 6.8(c) and (d).

The total dislocation density and the ratio of glissile-to-stored densities predicted

by the model are given in figure 6.9. The total densities predicted by the model ranges

from 1×1014m−2 for the [123]-oriented crystal to 3.2×1014m−2 for the [111]-oriented

crystal at 10% strain. X-ray measurements conducted on copper and aluminum single

crystals by Hordon et al. [114] have shown dislocation densities to reach magnitude

between 1014 and 1015m−2 for a plastic shear strain of 30%. More recently, Groma

et al. [103] have measured dislocations densities of 1014m−2 using X-ray line profile

analysis on compressed Cu single crystal. Other techniques such as TEM imaging

have also been used by Staker and Holt [223] where the dislocation density in a

Cu sample deformed at 10% strain in tension was measured to be 1.18 × 1014m−2.

Similar results were obtained by Heuser [109], using neutron scattering techniques,

who measured 1.9×1014m−2 at 16% compression of Cu single crystal. Thus, the total
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Figure 6.8: Predicted densities of glissile and stored non-polar dislocations for the
four orientations.
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Figure 6.9: (a) Total densities of non-polar dislocations and (b) ratio of the glissile
to the stored dislocation densities.

dislocation densities reported in figure 6.9(a) are in good agreement with the ones

obtained experimentally.

Calculations for these monotonic loading conditions indicate that during plas-

tic deformation, most dislocations are glissile. In other words, the stored densities

comprised of junctions and repulsive states make up a small fraction of the total

dislocation density. As shown in figure 6.8 and figure 6.9(b), the model predicts

glissile dislocation densities that are roughly one order of magnitude greater than

those predicted for stored dislocations. This result largely agrees with many DDD

simulations of single crystal deformation [248, 249, 250]. In the present model, the

calculated velocities of the glissile dislocations are distributed and so the glissile dis-

tribution includes a velocity range from the immobile, inactive systems to the slowly

moving dislocations that contribute little strain to the very fast glissile dislocations

that accommodate most of the strain [248]. The stored densities correspond only to

the small portions of dislocations that have formed junctions or that are stalled by a

repulsive interaction.

Apart from a few exceptions [276, 206, 11, 249, 250, 38] wherein evolution laws for

glissile and stored dislocations were also introduced, in most single crystal constitutive

laws, the glissile density is assumed constant (having reached a saturation value)

and/or some fraction of the total density. Under this assumption, only the evolution
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of stored dislocations is treated [127, 25, 29, 122]. For instance, in the work of Devincre

and Kubin [70] and Kubin et al. [132, 133], it is assumed that glissile dislocations

account for no more than 5% to 10% of the total densities, such that the density

of stored dislocations can be approximated by the total density. Alternatively, in

the work of Arsenlis and Parks [7], all dislocations are assumed glissile. The glissile

densities and their evolution govern both the plastic shearing rate via Orowan’s law

and the glide resistance.

6.7.4 Discussion

In order to quantify the effects of latent-storage and latent-hardening independently,

simulations were performed on a [111]-oriented crystal in two specific cases: (a) only

self-storage is accounted for, i.e. transformations from glissile to stored dislocations

is solely due to interactions of dislocations belonging to the same slip system families,

and (b) only self-hardening is accounted for, i.e. all other coefficients of the strength-

interaction and length-interaction matrices are set to zero.

Figure 6.10(A) shows the stress responses of the [111]-oriented crystal in cases

(a) and (b) where the parameters k1 and k2 are equal to that of the initial fitted

response. As expected, for both simulations (a) and (b), the hardening rate is higher

when full latent-storage and latent-hardening are taken into account. In case (a) the

transformations from glissile to stored dislocations result exclusively from coplanar

interactions. As all densities are contributing to the hardening of the material, case (a)

has the highest flow stress as well as the lowest stored dislocation density, as shown in

figure 6.10(B). In case (b) in which the strength and length-interaction coefficients of

table 6.3 are set to zero (only self-hardening is present), the hardening rate is reduced

substantially (by approximately half). Interestingly in this case (b), the density of

stored dislocations is about two times greater than for the initial configuration (full

hardening). Also, the total glissile dislocation density is the lowest among the three
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Figure 6.10: (A) [111] stress responses and (B) total dislocation densities where (a)
self-storage and (b) self-hardening are only taken into account for the same material
parameters k1 and k2.

Table 6.8: Values of the trapping coefficient k1 and the recovery coefficient k2 to
achieve the same stress response.

Initial configuration (a) Self-storage only (b) Self-hardening only

Trapping coefficient k1 k1 = 6.7× 10−3 k1 = 2.1× 10−2 k1 = 2.4× 10−2

Recovery coefficient k2 k2 = 1.7× 10−8 k2 = 1.7× 10−8 k2 = 1.2× 10−8

configurations, and because only self-interactions contribute to strain hardening, the

flow stress is the lowest as well.

For these two simulations (a) and (b), the two constitutive law parameters k1

and k2 have also been fitted such that the mechanical response of the [111]-oriented

crystal concur with experimental results. Values of parameters k1 and k2 are reported

in table 6.8 for simulations (a) and (b), and for the initial configuration presented in

figure 6.6, where latent-storage and latent-hardening are fully accounted for.

In case (a) the results show that in order to achieve the same level of stress, the

amount of transformations needs to be identical to that of the initial case. Hence, as

shown in figure 6.11(a), the total densities of glissile and stored dislocations are nearly

identical to the case where latent-storage is fully accounted for. However, in case (a),

the stored dislocations are uniquely comprised of coplanar junctions, whereas they

are comprised of glissile, collinear, Lomer and coplanar junctions populations in the

case where transformation coefficients are chosen according to table 6.4, as shown in
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Figure 6.11: Total glissile and stored dislocations densities in all slip systems for (a)
self-storage only and (b) self-hardening only compared to that of the initial configu-
ration for the [111]-oriented crystal.

figure 6.7(a).

For simulation (b), the results show that the attainment of the same level of stress,

when the material is solely hardened by the self-interactions, requires a significantly

larger amount of transformations from glissile to stored dislocations. As a result, as

shown in figure 6.11(b), the model now predicts a total amount of stored dislocations

much larger than when full hardening is accounted for. In case (b), it is interesting to

notice that the total amount of glissile dislocations on all systems is quasi equivalent

to that when full latent-hardening is simulated. This type of approach is somehow

similar to models where the plastic shearing rate is expressed as an exponential ther-

mally activated factor (e.g. equation (6.27)) pre-multiplied by a reference shearing

rate γ̇s0 [33, 45].

The model presented here is therefore able to replicate features of other simpler

validated models by simple choice of parameters, and more generally, poses the ques-

tion of the quantification of densities from an experimental standpoint.

Figure 6.12 shows the evolution of the mean dislocation velocities for the [111]-

oriented crystal. At the onset of dislocation glide, the dislocation velocities computed

from the DDD procedure, denoted DDD velocities, range from 20–100 m/s. These
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values are consistent with those measured experimentally [192, 231] for compara-

ble level of stresses. The DDD velocities represent the speed at which dislocations

are gliding when they are not impeded or pinned by other dislocations in the crys-

tal. In thermally activated dislocation glide, only a fraction of the dislocations are

moving at full speed. To determine this fraction, DDD velocities are multiplied

by a temperature-dependent probability Pα(T ) that represents the probability that

thermal fluctuations are sufficient to unpin dislocations (see equation (6.26)). The

product is referred to as the model velocity. Fig. 11 shows that the model velocity

decreases and varies between 0.01 and 0.002 m/s. This indicates that most of the

glissile segments are impeded by local obstacles. As strain increases, the dislocation

density increases, causing more dislocations to become pinned and the model velocity

to decrease. Fewer dislocations are actually moving. Because fewer are required to

accommodate most of the deformation, their velocity is much higher than the average

value shown in figure 6.12. In other words, the plastic deformation is being carried

by fewer and fewer dislocations as straining increases, a result consistent with DDD

simulations in [248].

In this model, dislocation density based evolution laws and DDD simulation have
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been coupled to address two separate underlying mechanisms of strain-hardening,

namely latent-storage and latent-hardening. First, latent-storage described by the

transformation-interaction matrix Hαα′

end (θ, θ′) introduced in equation (6.33) (or Pαα′

end

in its simplified form in equation (6.49)) pertains to the transformation rate of glissile

into stored dislocations according to the nature of the interactions between intersect-

ing dislocations, and is directly informed by DDD simulation data. To the author’s

knowledge, except for the model suggested by Roters et al. [206], transformations

such as those described in equation (6.40) have not been explicitly accounted for

before in those terms. Second, latent-hardening, which describes the hardening of

slip systems that are not active during plastic flow, is treated in a classical fashion

via the use of an individual CRSS for each slip systems (see equation (6.30)). This

formulation was first presented by Teodosiu et al. [228] as an extension of Taylor law

to account for the effects of different forest densities. It introduces a multi-system

strength-interactions matrix aαα
′
[90], which in this work is informed by DDD results.

Note that in order to obtain results for the four different orientations tested here,

the two parameters of the model – namely the trapping coefficient k1 and the recovery

coefficient k2 – were fitted for the perfectly aligned [111]-oriented crystal. Simulations

of the [001], [112] and [123]-oriented crystals were then performed using the same

values for these two parameters. Alternatively, in the work of Kubin et al. [132] and

Devincre and Kubin [70], where the storage rate is expressed as:

dρ

dγ
=

1

bLf
with Lf =

Khkl√∑
u a

suρu
(6.53)

where Lf is the mean free path. This implies an orientation dependence of strain hard-

ening, such that the dimensionless mean free path coefficient Khkl, which is dependent

of the number of active slip systems, needs to be computed using DDD simulations
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for each deformation path, although in practice many authors use an orientation-

independent coefficient in their models. In the model proposed here, however, deter-

mining the orientation-independent trapping parameter k1 does not require massive

DDD simulations involving numerous dislocations, but a simple fitting procedure.

In summary, the Hybrid Model proposes a new approach for integrating DDD

information into larger length scale dislocation density based constitutive models.

This allows for (1) the explicit integration of junctions formation and (2) a significant

reduction in computational time thanks to the use of a small set of virtual dislocation

loops. In order to simulate a representative volume describing a single crystal, classic

DDD simulations usually treat up to several thousands of dislocation segments. In

this model, the evolution of only 24 virtual loops has to be calculated, with each loop

being representative of one of the polarized slip systems presented in table 6.1.

Finally, the overarching goal of the Hybrid Model is to predict single crystal and

polycrystal response under complex loading conditions. Achieving this necessarily

requires inclusion of polar dislocation densities. In metallic polycrystals, generation

of polar dislocations is required in order to accommodate strain gradients arising from

strain and curvature incompatibilities. The framework proposed here can be extended

to account for such effects. Following the same reasoning as that taken in the above,

it is likely that as a result of transformation of mobile non-polar segments, polar

segments could be generated at a rate that can be estimated by direct computation

of the incompatibility arising from the transformed lines due to junction formation

and to forward immobilizations. One could therefore suggest a complementary source

mechanism for the generation of polar dislocations coupled with the kinematically

based rate evolution laws, by virtue of which the polar dislocation density tensor

evolves at a rate equal to that of the curl of the plastic strain tensor.
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6.8 Conclusion

In this section, a dislocation density based constitutive model referred to as the Hy-

brid Model is introduced. The model proposes a decomposition of dislocation densities

into glissile and stored as well as polar and non-polar densities. The present formula-

tion introduces highly coupled and separate rate laws for glissile (with unconstrained

motion) and stored (sessile or constrained motion) dislocations, the latter including

different junction types. The rate laws of the (non-polar) glissile dislocations make

use of a virtual dislocation loop representation for dislocations of all orientations

belonging to the same system. The interconnected motion of these dislocations is

numerically calculated via the DDD method. Rate laws for stored dislocations are

also developed such that several model parameters can be directly extracted from

DDD simulations, such as outcomes of paired dislocation interactions and dislocation

junction yield surfaces. As a first application, the model demonstrated its capability

to capture the crystal orientation dependence in the uniaxial tensile response of sin-

gle crystal aluminum with one small set of material parameters. The model reveals

quantitatively the relationship between dislocation storage rates, junction formation,

strain hardening, and slip activity. Prediction of the material behavior under more

complex strain paths entails further refining the Hybrid Model such as to incorporate

junction remobilization mechanisms and as to account for polar dislocation densities.

In doing so the model shall be applicable to well-known strain path change tests, such

as the Bauschinger test and cross tests.
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CHAPTER VII

CONCLUSIONS

The main goal of the present research was to contribute to scale transitioning by

introducing novel numerical tools and techniques to investigate and obtain a bet-

ter understanding of dislocation interactions with lattice defects in metals, such as

to address the questions of dislocation-dislocation, dislocation-twin, and dislocation-

precipitates interactions. For such purpose, a careful and rigorous methodology was

used to (1) develop a novel powerful discrete dislocation dynamics approach that ad-

dresses the limitations of current simulations and extends their range of applicability,

(2) use it to extract critical parameters and laws that will be used into higher-scale

models, and (3) develop a new constitutive framework that delineates novel routes

allowing for the connection between discrete dislocation dynamics simulations and

dislocation density based models.

The first challenge of this work was to build a robust, efficient and trustworthy

discrete dislocation dynamics tool capable of treating any kind of crystalline structure

and incorporating the treatment of junctions’ formation in an explicit and physically

relevant manner. This first step was particularly important as this tool was further

intended to serve as a basic framework for all other models developed and all stud-

ies undertaken in this thesis. This was achieved by implementing state-of-the-art

numerical techniques and by devising an appropriate parallel computing strategy.

The DDD tool was first employed to quantify dislocation-dislocation interaction

coefficients for HCP magnesium for the first time. In doing so, the asymmetry in

the hardening matrix and the strong stability of basal / pyramidal interactions were

notably revealed. As such parameters have never been calculated thus far, generic
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coefficients obtained through a fitting procedure were used in constitutive models.

Therefore, the impact of their precise estimation on the macroscopic response of

polycrystalline aggregate was assessed, and it was found that their values have a

significant impact on the predictions of dislocation densities and plastic anisotropy

response. The DDD tool was further used to demonstrate the validity of the FZ slip-

hardening law – for which an extension for HCP crystals was proposed –, while it was

shown that the FZ law consistently overestimates the multi-hardening predictions.

In order to study the interaction between dislocations and twin boundaries, a

transmission scheme was then implemented in the DDD framework to model disloca-

tion reactions upon crossing of a coherent interface. By studying the collective effect

of transmission events, a rapid multiplication of dislocations due to dissociations of

perfect dislocations at the TB was revealed. Further, it was observed that, in addition

to providing a mechanism for twin growth, partial interfacial dislocations generated

in this process act as stress riser agents in the twin while their profusion rapidly

transforms the interface into an incoherent boundary.

The next challenge was to devise a novel approach that addresses the limita-

tions of current DDD simulations, especially regarding the treatment of anisotropic

and heterogeneous elasticity, so as to enable the study of plasticity in heterogeneous

structures. To address both these limitations at the same time, a novel computa-

tionally efficient DDD approach based on an eigenstrain formalism and on the use

of fast Fourier transforms was devised and implemented: the DDD-FFT. As a first

approach, the method was used to examine the interaction between dislocations and

second-phase particles. From a more general perspective, this approach offers new

perspectives to DDD simulations. Particularly, it is expected that it could be success-

fully employed to investigate the effect of the shape and orientation of precipitates on

dislocation propagation with a level of details never achieved before, so as to extract

hardening trends that will be incorporated into constitutive laws, thereby guiding
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microstructural design for fabricating alloys with higher strength. Furthermore, the

heterogeneous DDD-FFT method developed in this thesis can virtually be employed

to treat an infinite number of phases simultaneously, thereby paving the way towards

performing full-scale DDD simulations in polycrystalline materials that include the

effects of anisotropic elasticity.

Using the knowledge gained from fine-scale applications, a new strain hardening

constitutive framework informed by DDD was then developed. In order to account for

the evolution of glissile dislocations that is generally overlooked in current approaches,

the core idea of the model relied in introducing a direct coupling with a DDD approach

so as to precisely quantify the motion due to glide and dislocation interactions leading

to glissile to stored transformations. The model was first applied to simulate tension

in aluminium and demonstrated its capability to capture the orientation dependence

response while highlighting the prominent role of glissile dislocations. Furthermore,

the model could be ideally extended to incorporate a stochastic approach so as to

account for the field distributions observed at lower scales, for which the full-field

DDD-FFT method would provide a powerful tool for their quantification.

Finally, the work done in this thesis paves the way towards bridging the gap be-

tween fine and macro scales by providing new tools that allow for an exchange of

information between the scales. In that sense, the present work opens up new po-

tential areas of research. Particularly, the expertise earned and the novel approaches

developed in this thesis are expected to guide the development of new predictive

constitutive laws that are in direct connection with the physics of the dislocations.
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APPENDIX A

STRESS FIELD OF A DISLOCATION IN AN ISOTROPIC

MEDIUM

In this appendix, the formulations used for evaluating the stress field produced by

dislocations in an elastically isotropic infinite medium are presented in detail. First,

the general singular formulation introduced for a closed dislocation loop is recalled and

details on its derivation are provided. Then, the non-singular formulation proposed

by Cai et al. [35] is presented and the derivation of a fully analytical coordinate-

independent form is detailed.

A.1 General formulation

As derived in Section 2.2.2, the stress field induced by a static dislocation loop in

an infinite medium is given by the general line integral (2.14) first obtained by Mura

[180, 181]:

σij(~x) = Cijkl

∮
L

elnhCpqmnGkp,q(~x− ~x′)bmdx′h (A.1)

where ~x is the field point at which the stress is evaluated, Cijkl is the elasticity tensor

of the medium, ~b is the Burgers vector of the dislocation, and where the integral

of the first derivative of the Green’s function Gkp,q is carried out along the closed

dislocation line L spanned with coordinate ~x′. For an elastically isotropic infinite

medium, an analytical expression of the static Green’s function is given by (e.g. see

refs [99, 72, 181]):

Gkp(~x− ~x′) =
1

8πµ

[
δkpR,qq −

1

2(1− ν)
R,kp

]
(A.2)
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where µ and ν are the shear modulus and the Poisson’s ratio of the medium, respec-

tively, δij is the Kronecker symbol, and R = ‖~x− ~x′‖ is the norm of the radius vector

linking the field point ~x and the source point ~x′. If one denotes the radius vector as

~R = ~x− ~x′ with coordinates Ri = xi − x′i, its norm R is explicitly given as:

R =
√
~R · ~R =

√
RiRi =

√
(xi − x′i)(xi − x′i) (A.3)

In equation (A.2), R,ij = ∂i∂jR = ∂2

∂i∂j
R. Taking the first derivative of the Green’s

function yields:

Gkp,q(~x− ~x′) =
1

8πµ

[
δkpR,mmq −

1

2(1− ν)
R,kpq

]
(A.4)

In isotropic elasticity, the stiffness tensor Cijkl is conveniently written as:

Cijkl = λδijδkl + µ (δikδjl + δilδjk) (A.5)

Combining equations (A.1), (A.4) and (A.5) yields the line integral isotropic expres-

sion (2.17) for evaluating the stress field of a dislocation:

σij(~x) =
µbn
8π

∮
L

[
R,mpp

(
ejmndx

′
i + eimndx

′
j

)
+

2

1− ν
ekmn (R,ijm − δijR,ppm) dx′k

]
(A.6)

where the derivatives of the radius norm R are given by:

R,i =
Ri

R

R,ij =

(
δij −

Ri

R

Rj

R

)
/R

R,ijk =

[
3
Ri

R

Rj

R

Rk

R
−
(
δij
Rk

R
+ δjk

Ri

R
+ δki

Rj

R

)]
/R2 (A.7)

The terms in (A.7) are obtained by successively differentiating the norm of the radius
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vector given in (A.3) with respect to the field coordinates xi. Thus, the explicit

expressions of R,i, R,ij and R,ijk are obtained as:

R,i =
∂R

∂xi
=

∂

∂xi

√
RjRj =

2Ri

2
√
RjRj

=
Ri

R
(A.8)

R,ij =
∂R,i

∂xj
=

∂

∂xj

(
Ri

R

)
= Ri

∂

∂xj

(
1

R

)
+

1

R

∂Ri

∂xj

= Ri

(
− 1

R2

Rj

R

)
+

1

R
δij

=
1

R

(
δij −

RiRj

R2

)
(A.9)

R,ijk =
∂R,ij

∂xk
=

∂

∂xk

(
1

R
δij

)
− ∂

∂xk

(
RiRj

R3

)
= δij

(
−Rk

R3

)
−RiRj

∂

∂xk

(
1

R3

)
− 1

R3

∂

∂xk
(RiRj)

= −δij
Rk

R3
−RiRj

(
−3

R4

Rk

R

)
− 1

R3
(Riδjk +Rjδik)

=
3RiRjRk

R5
− δij

Rk

R3
− δjk

Ri

R3
− δik

Rj

R3
(A.10)

Notice that the expression of R,ijk in (A.10) presents a symmetry between all indices,

such that R,ijk = R,jki = R,kji. Further, the terms R,mpp and R,ppm in equation (A.6)

involve an implicit summation on index p, such that one can write:

R,mpp = R,m11 +R,m22 +R,m33 (A.11)

where the expression of R,m11 is given from equation (A.10) as:

R,m11 =
3RmR1R1

R5
− δm1

R1

R3
− δ11

Rm

R3
− δm1

R1

R3

=
3Rm

R5
R2

1 −
Rm

R3
− 2δm1

R1

R3
(A.12)
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and that of R,m22 and R,m33 are similarly obtained by replacing index 1 by indices 2

and 3, respectively, such that R,mpp is expressed as:

R,mpp = R,m11 +R,m22 +R,m33

=
3Rm

R5
(R2

1 +R2
2 +R2

3︸ ︷︷ ︸
R2

)− 3
Rm

R3
− 2

R3
(δm1R1 + δm2R2 + δm3R3) (A.13)

and since the first two terms cancel out, R,mpp finally writes:

R,mpp = R,ppm = −2Rm

R3
(A.14)

With this, equation (A.6) can be evaluated at every field point ~x in the medium.

However, when ~x = ~x′ the expression of the stress field becomes singular. In other

words, the stress field is not defined on the dislocation line itself when using this

approach. To address this issue, Cai and co-workers [35] recently developed a non-

singular approach that is presented in Appendix A.2.

Note further that expression (A.6) is given for a dislocation loop, i.e. when the

integral is performed over a closed contour L. As detailed in Section 2.2.2, this

results from the eigenstrain definition of the dislocation line that corresponds to the

boundary L of the arbitrary defect surface ~S. However, since a dislocation loop can

be regarded as a succession of parametric segments, equation (A.6) can be used to

evaluate the stress on finite segments. Nevertheless, difficulties arise when evaluating

the stress field along terminating segments, i.e. for segments whose at least one end

finishes within the crystal. This is because the stress field for such segment cannot

be determined uniquely [80, 14].

A.2 Non-singular formulation

The expression of the stress field induced by a dislocation given in equations (2.17)

and (A.6) presents a singularity when evaluated on the dislocation line, i.e. for
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~x = ~x′. This is because the Green’s function and its derivative become unbounded

as R → 0. Mathematically, this results from the description of the discontinuity

in the displacement field [~u] = ~b across defect surface ~S whose boundary defines

the dislocation line in the eigenstrain-based approach: specifically, the dislocation

core (i.e. the Burgers vector) is represented by a Dirac delta function that vanishes

everywhere expect on the dislocation line. Obviously, such core singularity does not

exist in real materials, and, despite taking complex forms in this region, the stress

field remains finite.

Numerically, different approaches have been adopted to remove the stress singu-

larity in the dislocation core. The most straightforward one consists in introducing a

cut-off radius beyond which the stress field is assumed to be constant. However, this

approach remains unsatisfactory since it corresponds to a crude approximation that

is physically questionable.

To address this issue in a more rigorous way, Cai and co-workers recently pro-

posed a consistent non-singular formulation whose main idea relies on introducing

a spread of the Burgers vector, such as to remove the singularity on the core [35].

This approach is more consistent with the physics of dislocations and allows for a

direct connection with molecular dynamics simulations: for instance, the distribution

of the Burgers vector may be chosen such as to mimic arrangements of atoms in MD

simulations. However, for the sake of simplicity, the authors first suggested to find an

isotropic distribution of the Burgers vector such that the non-singular radius vector

Ra expresses as:

Ra =
√
R2 + a2 =

√
RiRi + a2 =

√
(xi − x′i)(xi − x′i) + a2 (A.15)

where parameter a, denoting the core width, is introduced, and where R is the orig-

inal radius vector of the classical theory whose expression is given in (A.3). Math-

ematically, Ra can be seen as the convolution between R and a particular isotropic
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distribution of the Burgers vector. The obvious advantage of choosing the form for

Ra given in (A.15) lies in the fact that its derivatives follow the expressions given in

(A.7). Thus, one directly obtains:

Ra,i =
Ri

Ra

Ra,ij =

(
δij −

Ri

Ra

Rj

Ra

)
/Ra

Ra,ijk =

[
3
Ri

Ra

Rj

Ra

Rk

Ra

−
(
δij
Rk

Ra

+ δjk
Ri

Ra

+ δki
Rj

Ra

)]
/R2

a (A.16)

Note however that the non-singular stress field cannot be readily obtained from equa-

tion (A.6) by simply substituting R by Ra. Specifically, care must be taken when

calculating Ra,mpp, that is given as:

Ra,mpp = Ra,m11 +Ra,m22 +Ra,m33

=
3Rm

R5
a

(R2
1 +R2

2 +R2
3︸ ︷︷ ︸

R2=R2
a−a2

)− 3
Rm

R3
a

− 2

R3
a

(δm1R1 + δm2R2 + δm3R3)

= −
(

3a2

R5
a

+
2

R3
a

)
Rm (A.17)

in which a supplementary term involving a2 appears with respect to R,mpp. With this

formulation, the non-singular stress field produced by a dislocation can be obtained

at every point field ~x by evaluating:

σij(~x) =
µbn
8π

∮
L

[
Ra,mpp

(
ejmndx

′
i + eimndx

′
j

)
+

2

1− ν
ekmn (Ra,ijm − δijRa,ppm) dx′k

]
(A.18)

The absence of singularity facilitates the derivation of a general analytical formulation

of expression (A.18). Thus, considering that dislocation loop L with Burgers vector

~b is approximated by a prismatic loop composed of successive straight dislocation
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segments, one has for each segment defined between end points ~x1 and ~x2:

σij(~x) =
µbn
8π

∫ ~x2

~x1

[
Ra,mpp

(
ejmndx

′
i + eimndx

′
j

)
+

2

1− ν
ekmn (Ra,ijm − δijRa,ppm) dx′k

]
(A.19)

A coordinate-independent analytical expression of (A.19) can be obtained as follows.

As depicted in figure A.1, if one denotes by ~x0 the orthogonal projection of field

point ~x on the dislocation line, the following segment parametric representation can

be introduced:
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Figure A.1: Parametrization used to describe the straight dislocation segment defined
between end points ~x1 and ~x2. Point ~x0 is the orthogonal projection of field point
~x on the dislocation line. With this representation, the unit tangent ~t and vector
~d = ~x − ~x0 form an orthogonal basis, such that coordinate ~x′ = ~x0 + s~t spans
segment 12 and the radius vector is defined by ~R = ~d− s~t with s ∈ [s1, s2].

~d = ~x− ~x0 with ~d ·~t = 0 (A.20)

such that ~d = ~R− (~R ·~t)~t (A.21)

where ~d is the constant vector linking the field point ~x to its projection ~x0, such that

d = ‖~d‖ is the distance from the field point to the segment, and ~t is the unit tangent

vector to the segment defined by:
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~t =
~x2 − ~x1

‖ ~x2 − ~x1‖
(A.22)

With this, the dislocation segment ~x′ can be conveniently described with the following

parametric representation:

~x′ = ~x0 + s~t (A.23)

where the bounds for parameter s are given by:

s1 = (~x1 − ~x0) ·~t (A.24)

s2 = (~x2 − ~x0) ·~t (A.25)

With this setting, vectors ~t and ~d form an orthogonal basis such that the original

radius vector ~R = ~x− ~x′ and its non-singular norm Ra can be expressed as:

~R = ~d− s~t (A.26)

~R · ~R = (~d− s~t) · (~d− s~t) = ~d · ~d+ s2 (A.27)

Ra =

√
~R · ~R+ a2 =

√
~d · ~d+ s2 + a2 (A.28)

such that Ra is solely a function of parameter s, both other terms being known con-

stants associated with the segment. Thus, the first integral to be carried in expression

(A.19) can be written as:

Iim(~x) =

∫ ~x2

~x1

Ra,mppdx
′
i = ti

∫ s2

s1

Ra,mppds

= −ti
∫ s2

s1

(
3a2

R5
a

+
2

R3
a

)
Rmds (A.29)

where the segment parametric representation (A.23) is used to perform the change of

variable and Ra,mpp is replaced by its expression in (A.17). Rm here denotes the m-th
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component of the radius vector, such that one has:

Rm = ~R · ~em = (~d− s~t) · ~em

= ~d · ~em︸ ︷︷ ︸
dm

−s~t · ~em︸ ︷︷ ︸
tm

(A.30)

where dm et tm denote the m-th components of vectors ~d and ~t, respectively. Integral

(A.29) is therefore decomposed as:

Iim(~x) = −ti
[
dm

∫ s2

s1

(
3a2

R5
a

+
2

R3
a

)
ds− tm

∫ s2

s1

(
3a2

R5
a

+
2

R3
a

)
sds

]
(A.31)

Further, by defining Jij to be the following line integral:

Jij =

∫ s2

s1

si

Rj
a

ds (A.32)

expression (A.31) writes:

Iim(~x) = −ti
[
3a2dmJ05 + 2dmJ03 − 3a2tmJ15 − 2tmJ13

]
(A.33)

Similarly, the remaining integral to be evaluated in equation (A.19) writes:

Kijkm(~x) =

∫ ~x2

~x1

Ra,ijmdx
′
k = tk

∫ s2

s1

Ra,ijmds

= tk

∫ s2

s1

(
3RiRjRm

R5
a

− δij
Rm

R3
a

− δjm
Ri

R3
a

− δim
Rj

R3
a

)
ds

= tk [−(δijdm + δjmdi + δimdj)J03 + (δijtm + δjmti + δimtj)J13

+3(didjdm)J05 − 3(didjtm + ditjdm + tidjdm)J15

+3(ditjtm + tidjtm + titjdm)J25 − 3(titjtm)J35] (A.34)

Finally, inserting expressions (A.33) and (A.34) in (A.19) yields the following expres-

sion for the non-singular stress field:
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σij(~x) =
µbn
8π

[
ejmnIim(~x) + eimnIjm(~x)

+
2

1− ν
ekmn (Kijkm(~x)− δijIkm(~x))

]
(A.35)

where tensors Iim(~x) and Kijkm(~x) depend on specific line integrals Jij for which an

analytical solution is given as follows:

J03 =

∫ s2

s1

1

R3
a

ds =
s

(~d · ~d+ a2)Ra

∣∣∣∣∣
s2

s1

J13 =

∫ s2

s1

s

R3
a

ds = − 1

Ra

∣∣∣∣s2
s1

J05 =

∫ s2

s1

1

R5
a

ds =
2s3

3(~d · ~d+ a2)2R3
a

∣∣∣∣∣
s2

s1

+
s

(~d · ~d+ a2)R3
a

∣∣∣∣∣
s2

s1

J15 =

∫ s2

s1

s

R5
a

ds = − 1

3R3
a

∣∣∣∣s2
s1

J25 =

∫ s2

s1

s2

R5
a

ds =
s3

3(~d · ~d+ a2)R3
a

∣∣∣∣∣
s2

s1

(A.36)

Thus, equations (A.33) to (A.36) together provide a fully analytical solution for the

stress field induced by a dislocation segment. Note besides that a vectorial form of

this coordinate-independent expression might be convenient. Thus, equation (A.19)

can be written as [35]:

σ(~x) =− µ

8π

∫ ~x2

~x1

(
2

R3
a

+
3a2

R5
a

)[
(~R×~b)⊗ ~dx′ + ~dx′ ⊗ (~R×~b)

]
+

µ

4π(1− ν)

∫ ~x2

~x1

(
1

R3
a

+
3a2

R5
a

)[
(~R×~b) · ~dx′

]
I2

− µ

4π(1− ν)

∫ ~x2

~x1

1

R3
a

[
(~b× ~dx′)⊗ ~R+ ~R⊗ (~b× ~dx′)

]
+

µ

4π(1− ν)

∫ ~x2

~x1

3

R3
a

[
(~R×~b) · ~dx′

]
~R⊗ ~R (A.37)

where I2 is the second-order identity tensor and operator ⊗ denotes the vector outer
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product. Following the line parametrization introduced through equations (A.20) to

(A.28), the tensorial form of (A.35) is given as a function of line integrals Jij as [197]:

σ(~x) =
{
− µ

4π

[
(~d×~b)⊗~t+~t⊗ (~d×~b)

]
+

µ

4π(1− ν)

[{(
~d×~b

)
·~t
}
I2 + (~t×~b)⊗ ~d+ ~d⊗ (~t×~b)

]}
· J03

− µν

4π(1− ν)

[
(~t×~b)⊗~t+~t⊗ (~t×~b)

]
· J13

+

{
−3µa2

8π

[
(~d×~b)⊗~t+~t⊗ (~d×~b)

]
+

3µ

4π(1− ν)

[{
(~d×~b) ·~t

}(
a2I2 + ~d⊗ ~d

)]}
· J05

+

{
3µa2

8π

[
(~t×~b)⊗~t+~t⊗ (~t×~b)

]
− 3µ

4π(1− ν)

[{
(~d×~b) ·~t

}(
~t⊗ ~d+ ~d⊗~t

)]}
· J15

+
3µ

4π(1− ν)

[{
(~d×~b) ·~t

}(
~t⊗~t

)]
· J25 (A.38)

Thus, expressions (A.35), (A.37) or (A.38) provide an analytical non-singular formu-

lation of the stress field of a dislocation segment within an infinite elastically isotropic

medium. Practically, these expressions are directly used in regular DDD simulations

to compute the internal stress state associated with the presence of the microstruc-

ture. However, as extensively discussed in Section 2.5, the computation of nodal

velocities requires the calculation of segment forces. From equation (2.63), the force

on segment 34 induced by dislocation segment 12 is expressed as:

~f
12

34 = l34

∫ 1

0

(1− s)
[(
σ12
(
(1− s)~x3 + s~x4

)
·~b34

)
×~t34

]
ds (A.39)

where ~b34 and ~t34 are the Burgers vector and the line direction of segment 34, respec-

tively, and where σ12(~x) denotes the stress field of dislocation 12 that is given by

equations (A.35), (A.37) or (A.38). Thus, the calculation of segment forces requires

an additional integration over segment 34 length. However, when stress field σ12(~x)
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is non-singular and 34 is a straight segment, an analytical formulation of expression

(A.39) can be obtained following a similar methodology as that described above. Full

details and expressions for segment forces ~f
kl

ij are provided in reference [5].
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APPENDIX B

STRESS FIELD OF A DISLOCATION IN AN

ANISOTROPIC MEDIUM

B.1 General anisotropic formulation

In this appendix, the numerical approaches to calculate the stress field of a dislocation

loop in an anisotropic medium are presented. As derived in Section 2.2.2, the stress

field induced by a static dislocation loop L at point ~x in an infinite medium is given

as a function of the first derivative of the Green’s function Gij,k by the general line

integral (2.14) first obtained by Mura [180, 181]:

σij(~x) = Cijkl

∮
L

elnhCpqmnGkp,q(~x− ~x′)bmdx′h (B.1)

where eijk is the permutation tensor, ~b is the Burgers vector and Cijkl is the fourth-

order elastic stiffness tensor expressed in the global frame (~e1,~e2,~e3). In the case of

an anisotropic elastic medium, the primary difficulty lies in the fact that no closed

form expression of the Green’s function exists. In general, it has been shown that

its determination can be achieved by solving a sextic equation in terms of the Stroh

eigenvalues following the method proposed by Ting and Lee [230], but the numerical

evaluation of its derivatives cannot be directly obtained with this approach [146,

32]. Alternatively, the use of Fourier transforms techniques is probably the most

straightforward approach to obtain an expression for Gij [181]. Thus, as detailed in

Section 3.3.1, the static Green’s function for an infinite homogeneous linear elastic

medium can be expressed from equation (3.26) as:
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Gij(~x− ~x′) =
1

(2π)3

∫
R3

Ĝij(~ξ)ei(~x−
~x′)·~ξd~ξ (B.2)

where Ĝij(~ξ) is the static Green’s function in the Fourier space that can be conve-

niently written from expression (3.21) as:

Ĝik(~ξ) = Nik(~ξ)D−1(~ξ), ∀~ξ 6= ~0 (B.3)

where Nik(~ξ) and D−1(~ξ) are the cofactor and the determinant of quantity Kik =

Cijklξlξj, respectively, and whose general expressions are given by relations (3.22) as:

Nij(~ξ) =
1

2
eiklejmnKkm(~ξ)Kln(~ξ)

D(~ξ) = emnlKm1(~ξ)Kn2(~ξ)Kl3(~ξ) (B.4)

where ~ξ denotes the frequency coordinate in the Fourier space. By plugging the

analytical expressions of Nij(~ξ) and D−1(~ξ) given in equations (3.40) for isotropic

elasticity, the closed-form expression for Gij given in equations (2.16) and (A.2) is

directly retrieved. However, for general anisotropy, such direct expressions do not

exist. Nevertheless, as proposed by Bacon and Barnett, an angular integral expression

of the Green’s function expressed in (B.2) can be obtained [14] as:

Gkp(~R) =
1

4π2R

∫ π

0

M−1
kp (~ξ)dψ (B.5)

where ~R = ~x− ~x′ is the radius vector of norm R = ‖~R‖, and where M−1
kp (~ξ) = Gkp(~ξ)

is used to conserve the original notation. Equation (B.5) is obtained by successively

transforming the triple integration in (B.2) into a double integration on the unit

sphere in the ~ξ-space, and into a line integral over the unit circle formed by the

intersection of the unit sphere and the plane perpendicular to ~R. Full details of these

integrations can be found in reference [181]. Consequently, by denoting (~eR1,~eR2)
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any arbitrary plane orthogonal to ~R, and ~T = ~R/R the unit vector direction of ~R,

~ξ(ψ) in equation (B.5) denotes the unit vector on plane (~eR1,~eR2) making an angle

ψ with ~eR1, and that satisfies ~T · ~ξ = 0 by definition. With this, the first derivative

of the anisotropic Green’s function expressed in equation (B.1) is given by [17]:

Gkp,q(~R) =
1

4π2R2

∫ π

0

(
−TqM−1

kp (~ξ) + ξqCjrnwM
−1
kj (~ξ)M−1

np (~ξ)(ξrTw + ξwTr)
)
dψ

(B.6)

that can be conveniently rewritten as:

Gkp,q(~R) =
gkpq(~T )

4π2R2

gkpq(~T ) =

∫ π

0

(
−TqM−1

kp (~ξ) + ξqCjrnwM
−1
kj (~ξ)M−1

np (~ξ)(ξrTw + ξwTr)
)
dψ (B.7)

where gkpq(~T ) is the angular part of the Green’s function derivative that is solely a

function of the unit direction vector ~T = ~R/R.

No closed form solution exists for equation (B.7). As a result, the stress of a

dislocation in an anisotropic medium is usually computed by successive numerical

integrations of equations (B.7) and (B.1) [202, 108]. However, such integrations are

extremely prohibitive in term of computational cost and render anisotropic regular

DDD simulations impractical.

B.2 Spherical harmonics-based approach

Until very recently, the use of anisotropic elasticity to perform full-size DDD simu-

lations was prohibited by the significant increase in computational time induced by

the absence of analytical solution for the Green’s function (B.7). To address this

issue, Aubry and co-workers developed an approach based on spherical harmonics

expansions as a way to numerically approximate equation (B.7) and decrease the

computational cost of anisotropic calculations [12]. In this section, the method de-

veloped in reference [12] is presented.
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The decomposition in spherical harmonics can be regarded as a numerical method

to approximate a function on the unit sphere. Thus, the application of such technique

to the calculation of the stress field of dislocations directly follows from the angular

formulation of the derivative of the Green’s function introduced by Barnett [17] in

equation (B.7). In this expression, gkpq(~T ) is solely a function of the unit vector ~T =

~R/R whose union of all possible orientations spans the unit sphere. Consequently, if

one denotes by (θ, ϕ) the coordinates of ~T in the spherical coordinate system, one has

gkpq(~T ) = gkpq(θ, ϕ), and the function gkpq is suitable for a decomposition in spherical

harmonics. Practically, it can be expanded in the following series:

gkpq(~T ) =
∞∑
l=0

l∑
m=−l

glmkpqY
m
l (~T ) (B.8)

which converges on the unit sphere, and where glmkpq are the coefficients of expansion

and Y m
l (~T ) are the spherical harmonics. The main advantage of such decomposition

lies in the fact that the expansion coefficients are independent of ~T and express as:

glmkpq =

∫ 2π

0

∫ π

0

gkpq(θ, ϕ)Y m∗
l (θ, ϕ) sin θdθdϕ (B.9)

where Y m∗
l denotes the complex conjugate of the spherical harmonic Y m

l defined by:

Y m
l (θ, ϕ) = (−1)mMm

l P
m
l (cos θ)eimϕ

with Mm
l =

√
(2l + 1)

4π

(l −m)!

(l +m)!
(B.10)

where (−1)m is the Condon-Shortley phase factor and Pm
l (cos θ) are the associated

Legendre polynomials. For any m ∈ [−l, l], the spherical harmonics Y m
l on the unit

sphere can be explicitly expressed in spherical coordinates as:
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Y m
l (θ, ϕ) =(−1)mM

|m|
l eimϕ(sin θ)|m|

b(l−|m|)/2c∑
k=0

(−1)k
m!

2l

(
l

k

)(
2l − 2k

l

)(
l − 2k

m

)
(cos θ)l−|m|−2k (B.11)

Incidentally, the similitude between the graphical representation of the first spherical

harmonics Y m
l and the isocontours of the stress field of a dislocation is striking. In

Cartesian coordinates, Y m
l (x, y, z) is obtained from (B.11) as:

Y m
l (x, y, z) =(−1)mM

|m|
l eimϕ(x+ iy)m

b(l−|m|)/2c∑
k=0

(−1)k
m!

2l

(
l

k

)(
2l − 2k

l

)(
l − 2k

m

)
zl−|m|−2k (B.12)

In equations (B.11) and (B.12), bnc refers to the largest integer ≤ n. Of particular

interest, the expansion coefficients glmkpq do not depend on the geometry of the dis-

locations but solely on the stiffness tensor Cijkl, and are therefore identical for any

dislocation segments. Consequently they can be conveniently computed once at the

beginning of the simulation. Besides, equation (B.8) can be regarded as an interpola-

tion of function gkpq(~T ) making use of the Legendre interpolation polynomials Y m
l (~T )

that form a complete set of orthonormal functions, and of the constant interpolation

coefficients glmkpq. Note that through their definition in equation (B.9), the expansion

coefficients are analogous to Fourier coefficients. Following expression (B.12), when

~T is expressed in the global frame (~e1,~e2,~e3), gkpq(~T ) in equation (B.8) writes:

gkpq(~T ) =
∞∑
l=0

l∑
m=0

2R
((
~T · ~e1 + i(~T · ~e2)

)m
glmkpq

) b(l−m)/2c∑
s=0

4π2

2
Qlm
s (~T · ~e3)l−m−2s

(B.13)

where R(x) denotes the real part of complex number x and scalar quantity Qlm
s is

defined as:
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Ql0
s =

(−1)s

4π2

√
(2l + 1)

4π

1

2l

(
l

s

)(
2l − 2s

l

)
for m = 0

Qlm
s = 2

(−1)m+s

4π2

√
(2l + 1)

4π

(l −m)!

(l +m)!

m!

2l

(
l

s

)(
2l − 2s

l

)(
l − 2s

m

)
for m > 0 (B.14)

Further, by substituting ~T = ~R/R in equation (B.13) and by denoting ~e12 = ~e1 +

i~e2, the expansion of the Green’s function derivative Gkp,q(~R) in equation (B.7) in

spherical harmonics series reads:

Gkp,q(~R) =
∞∑
l=0

l∑
m=0

b(l−m)/2c∑
s=0

R

(
Qlm
s g

lm
kpq

(~R · ~e12)m(~R · ~e3)l−2s−m

Rl−2s+2

)
(B.15)

Note that the expression of the Green’s function derivative in (B.15) contains even

powers of 1/R which may be removed as the Green’s function derivative is solely

a function of odd powers of 1/R. One can further notice that the terms that are

functions of R solely depend on indices l − 2s and m. Therefore, by introducing the

change of index l = 2q + 1, expression (B.15) can be simplified as:

Gkp,q(~R) =
∞∑
q=0

2q+1∑
m=0

R

(
Sqmkpg

(~R · ~e12)m(~R · ~e3)2q+1−m

R2q+3

)
(B.16)

where only odd powers of 1/R remain and where the terms Qlm
s and the expansion

coefficients glmkpq are conveniently lumped into Sqmkpg as:

Sqmkpg =
∞∑
i=0

Q2i+1+2q,m
i g2i+1+2q,m

kpg (B.17)

In practice, the summation over q in (B.16) is truncated to the order of the expansion

qmax, whose choice is conditioned by the level of precision to be achieved, the compu-

tational cost and the ratio of anisotropy A (e.g. see equation (3.63)) of the medium

[12]. For instance, the solution obtained for Gkp,q(~R) for isotropic elasticity would

be exact for qmax = 1, while it may require qmax = 10 for large ratios of anisotropy
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(A > 7). Combining equations (B.1) and (B.16), the stress field of a dislocation seg-

ment defined between vertices ~x1 and ~x2 and with Burgers vector ~b in an anisotropic

medium can be approximated by:

σij(~x) = CijklelnhCpgmnbm

qmax∑
q=0

2q+1∑
m=0

R

(
Sqmkpg

∫ ~x2

~x1

(~R · ~e12)m(~R · ~e3)2q+1−m

R2q+3
dx′h

)

with Sqmkpg =

qmax−q∑
i=0

Q2i+1+2q,m
i g2i+1+2q,m

kpg (B.18)

Since Sqmkpg is independent of the geometry of the dislocations, it can be precomputed

at the beginning of the simulation. Conveniently, the line integral from ~x1 to ~x2

can be computed analytically using recurrences relations when dealing with straight

segments so as to obtain a computationally efficient approximation of dislocation

stress fields and segment forces [12].
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APPENDIX C

FINITE ELEMENT FORMULATION FOR NODAL

DISLOCATION MOTION

C.1 Garlekin variational method for dislocation motion

The linear equation of motion (EOM) (2.49) expresses the general relation between

dislocation force and velocity from thermodynamical considerations. Using a varia-

tional approach, a weak formulation can be obtained to solve for dislocation motion

when the dislocation network is discretized into segments. From equation (2.49), the

EOM relating the force ~f and the velocity ~v at each position along a closed dislocation

loop can be expressed as [97]:

∮
δ~x · (~f −B~v) |d~x| = 0 (C.1)

where δ~x is a virtual displacement of the dislocation line and the integration is per-

formed along the entire dislocation line. Equation (C.1) holds when inertial effects

are neglected. Knowing the force ~f exerted at each point along the dislocation line

and the drag matrix B, corresponding to the viscous resistance to dislocation motion,

the velocity ~v at each point ~x along the dislocation line can be determined from equa-

tion (C.1). Using a discrete nodal representation, as detailed in Section 2.3, whereby

each dislocation line is discretized into Ns segments ij delimited by nodes i and j at

positions ~xi and ~xj, equation (C.1) rewrites:

Ns∑
ij

∫ ~xj

~xi

δ~xij ·
(
~f(~xij)−B(θij(~xij))~v(~xij)

)
|d~x| = 0 (C.2)

where ~x is the vector that spans segment ij taking positions ~xij(~x). Here, subscript
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ij is used to specify that integral (C.2) is performed from node i to node j along the

dislocation line connecting these two nodes. Therefore, throughout the rest of this sec-

tion, note that subscript ij does not stand for the components of the vectors/matrices

such that no implicit summation using Einstein’s convention is meant. B(θij(~xij)) is

the drag matrix associated with the angle θij(~xij) that makes dislocation segment ij

at point ~xij with its Burgers vector ~bij. Describing each dislocation segment ij as a

parametric line spanned with coordinate ~x (~xi ≤ ~x ≤ ~xj), the position ~xij(~x) at

coordinate ~x along the segment can be obtained from the interpolation between Nd

nodes as defined in (2.28) by:

~xij(~x) =

Nd∑
a

Na(~x)~x a
ij (C.3)

where Na(~x) and ~x a
ij denote the interpolation function and the coordinate of the a-th

node of segment ij, respectively. (Note that the use of generalized coordinates in

(2.28) has been replaced by nodal coordinates in (C.3) for the sake of simplicity).

For straight segments, the linear nodal interpolation is recovered by using the setting

introduced by relations (2.33). Similarly to expression (C.3), one can write the virtual

displacement δ~xij and the velocity ~v(~xij) as:

δ~xij(~x) =

Nd∑
a

Na(~x)δ~x a
ij (C.4)

~v(~xij(~x)) =

Nd∑
a

Na(~x)~v aij (C.5)

where ~v aij denotes the unknown velocity of node a belonging to segment ij. Using

such parameterization and the expressions given in equations (C.3) to (C.5), equation

(C.2) can be written as:

Ns∑
ij

∫ ~xj

~xi

(
Nd∑
a

Na(~x)δ~x a
ij

)
·

(
~f(~xij)−B(θij(~xij))

Nd∑
b

Nb(~x)~v bij

)
|d~x| = 0 (C.6)
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From equation (C.6), one can express the following nodal quantities:

~f
a

ij =

∫ ~xj

~xi

Na(~x)~f(~xij) |d~x| (C.7)

babij =

∫ ~xj

~xi

Na(~x)Nb(~x)B(θij(~xij)) |d~x| (C.8)

where ~f
a

ij denotes the nodal force on segment ij acting at node a and babij is the drag

matrix of segment ij associated with nodes a and b. With expressions (C.7) and

(C.8), system (C.6) rewrites:

Ns∑
ij

[
Nd∑
a

δ~x a
ij ·

(
~f
a

ij −
Nd∑
b

babij~v
b
ij

)]
= 0 (C.9)

The discretization of continuous dislocation lines induces that dislocation segments

share some common nodes when connected to each other. As a result, the two quanti-

ties in equation (C.9) can be assembled as done in a classical finite element approach:

Ns∑
ij

Nd∑
a

δ~x a
ij · ~f

a

ij =
Nt∑
k

δ ~Xk
~F k (C.10)

Ns∑
ij

Nd∑
a

Nd∑
b

δ~x a
ij · (babij~v

b
ij) =

Nt∑
k

Nt∑
l

δ ~XkBkl
~V l (C.11)

where Nt ≤ Ns×Nd is the total number of nodes used in the description of the entire

dislocation line. Therefore system (C.9) reduces to:

Nt∑
k

δ ~Xk ·

(
~F k −

Nt∑
l

Bkl
~V l

)
= 0 (C.12)

Since equation (C.12) must hold for any arbitrary virtual line displacement δ ~Xk, the

system of equations finally writes:
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~F k =
Nt∑
l

Bkl
~V l ∀ node k, i.e. F = BV (C.13)

In equation (C.13), ~F k and ~V k respectively denote the force and velocity at node

k, andBkl denotes the drag matrix pertaining to nodes k and l. Therefore, expression

(C.13) corresponds to the full system of equation of size Nt necessary to describe the

motion of a dislocation line discretized into Ns segments and governed by the linear

mobility law (2.49). Note however thatBij is only defined along dislocation segments,

i.e. when nodes i and j are connected. Consequently, system (C.13) is generally

extremely sparse. With that in mind, the Nt nodal forces ~F i can be expressed as:

~F i =
∑
j

Bij
~V j ∀ node i, ∀ node j connected to node i, including i = j (C.14)

With equation (C.14), the velocity of each dislocation node can be determined from

the forces acting at each node. The assembly and the computation of nodal forces

are presented in Appendix C.2 while the construction of the resistivity matrix B is

detailed in Appendix C.3.

C.1.1 Equation of motion accounting for inertial effects

At high strain rates, inertial effects on dislocation motion become important and

need to be accounted for in order to obtain accurate predictions [248]. (Notice that

relativistic effects are usually neglected in DDD simulations.) To directly account for

inertial effects, equation (C.1) may be replaced by:

∮
δ~x · (~f −B~v −m~a) |d~x| = 0 (C.15)

where ~a denotes the acceleration and m is the effective dislocation mass per unit

length. Taking advantage of time discretization used in the DDD framework (see
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Section 2.1.1), the acceleration associated with the dislocation line can be approxi-

mated using a backward finite difference scheme, such that:

~a =
d~v

dt
=
~v − ~vprev

dt
(C.16)

where ~vprev designates the velocity at previous time step, ~v is the unknown velocity

to be solved for from equation (C.15), and dt denotes the current time step increment

of the DDD simulation. Inserting expression (C.16) into equation (C.15) leads to the

following EOM:

∮
δ~x ·

(
~f −B~v − m

dt
(~v − ~vprev)

)
|d~x| = 0 (C.17)

Rearranging the terms in (C.17) yields the alternative EOM for high strain rates:

∮
δ~x ·

(
~f +

m

dt
~vprev −

(
B +

m

dt
I3

)
~v
)
|d~x| = 0 (C.18)

∮
δ~x · ( ~f∗ −B∗~v) |d~x| = 0 (C.19)

In cases where inertial effects are to be accounted for, equation (C.1) can be

substituted by equation (C.19), for which the corresponding inertial forces ~f∗ and

inertial B∗ drag matrices are expressed with respect to the actual forces ~f and drag

matrices B as follows:

~f∗ = ~f +
m

dt
~vprev

B∗ = B +
m

dt
I2 (C.20)

In equation (C.20), I2 denotes the 3× 3 identity matrix and m is the effective mass

per unit length associated with the dislocation line. An expression of the latter was

derived by Hirth et al. [110]. Considering pure screw and pure edge dislocations,
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their effective mass, respectively denoted ms and me, can be expressed as:

ms =
W0

v2

(
−γ−1 + γ−3

)
me =

W0C
2

v4

(
−8γl − 20γ−1

l + 4γ−3
l + 7γ + 25γ−1 − 11γ−3 + 3γ−5

)
(C.21)

where γl and γ are two quantities related the longitudinal Cl and transversal C sound

velocities, respectively, such that:

γl =
(
1− v2/C2

l

)1/2

γ =
(
1− v2/C2

)1/2
(C.22)

where v is the magnitude of the velocity of the dislocation line. To avoid equation

(C.19) from being non-linear, the velocity in equation (C.22) can be taken as that of

the previous step ~vprev. In equations (C.21), W0 is the rest energy factor of dislocation

lines, expressed as:

W0 =
µb2

4π
ln

(
R

r0

)
(C.23)

where R and r0 are the inner and outer cut-off radii in the integration of energy terms,

generally chosen such that W0 = µb2. With that, the effective mass of screw disloca-

tion at zero velocity expresses as µb2/C2, and the rest energy of an edge dislocation

is µb2/C2(1 + C4/C4
l ). As a simple approximation, the effective mass m of a mixed

dislocation line can be taken as a simple interpolation from the effective masses of

pure edge and screw dislocations given in equations (C.21), such that:

m = me sin2 θ +ms cos2 θ (C.24)

where θ is the angle between the dislocation line tangent and its Burgers vector.

Finally, it follows from equations (C.20) that the nodal forces and resistivity matrices
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when accounting for inertia are expressed from (C.7) and (C.8) as:

~f
a

ij =

∫ ~xj

~xi

Na(~x)
[
~f(~xij) +

m

dt
~vprev(~xij)

]
|d~x| (C.25)

babij =

∫ ~xj

~xi

Na(~x)Nb(~x)
[
B(θij(~xij)) +

m

dt
I3

]
|d~x| (C.26)

Finally, assembly of equations (C.25) and (C.26) with the finite element approach to

obtain system (C.14) for the nodal velocities at high-strain rates is performed with

equations (C.10) and (C.11).

C.2 Nodal forces and segment elastic interactions

C.2.1 Assembly of nodal forces

Expression (C.14) defining the system of equations to solve for the nodal velocities ~V j

requires the evaluation and the assembly of the nodal forces ~F i. For each dislocation

node, the latter is assembled according to the classical finite element method and is

given from (C.10) as:

~F i =
∑
j

~f
i

ij (C.27)

where ~f
i

ij is the contribution at node i of the force on segment ij, and the summation

is performed over every node j connected to node i. Expressions of ~f
i

ij are given

from equation (C.7) when inertial effects are neglected, and from (C.25) when these

are accounted for. However, for the rest of this section, for the sake of simplicity, the

expression of the forces will be given for the case when inertial effects are disregarded.

As defined in equation (C.7), ~f
a

ij corresponds to the force on segment ij acting

at node a, where index a takes the values corresponding to the segment end nodes,

i.e. i and j. When using the linear interpolation between the end nodes defined by

relations (2.28) and (2.33) such as to consider dislocation segments as straight lines,
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the nodal force (C.7) expresses as:

~f
a

ij =

∫ ~xj

~xi

Na(~x)~f(~xij) |d~x| = lij

∫ 1

0

Na(s)~f (~xij(s)) ds (C.28)

with |d~x| = ‖~xj − ~xi‖ds = lijds (C.29)

where lij = ‖~xj − ~xi‖ denotes the length of segment ij delimited by end nodes i and

j at positions ~xi and ~xj, respectively, and where s ∈ [0, 1] is the curvilinear abscissa

used for the parametric representation of the segment. Recall from (2.33) that the

linear interpolation function at first node i is given by Ni(s) = 1 − s and that at

second node j is given by Nj(s) = s. For the sake of simplicity, when superscript a

takes the value of the first node i, exponent i will be omitted such that ~f
i

ij = ~f ij.

Similarly, by virtue of the symmetry induced by the linear interpolation, when a refers

to the second node j, we will denote ~f
j

ij = ~f ji. With this notation, equation (C.27)

rewrites:

~F i =
∑
j

~f ij (C.30)

and the force contribution ~f ij at node i of segment ij can be interchangeably com-

puted from (C.28) as:

~f ij = ~f
i

ij = lij

∫ 1

0

(1− s)~f (~xij(s)) ds

or ~f ij = ~f
i

ji = lji

∫ 1

0

s~f (~xji(s)) ds (C.31)

As explained in Section 2.4, in the regular nodal DDD approach, the force ~f in equa-

tions (C.31) acting on a dislocation segment encompasses two stress contributions,

internal and external, when defined according to equation (2.47). The internal stress

state arises from the elastic stress field induced by the presence of the other dislo-

cations while the external contribution pertains to the imposed loading. Therefore,
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the Peach-Kohler force per unit length (see equation (2.46)) at any point ~xij along

dislocation segment ij is generally written as:

~f
pk

(~xij) =
(
σ(~xij) ·~bij

)
×~tij (C.32)

where ~bij and ~tij are the Burgers vector and the unit tangent to segment ij, respec-

tively. Here, the total stress tensor σ encompasses both the internal σint and the

external σext contributions. As detailed in Section 2.4.2, both these contributions are

generally superimposed in the regular approach to define the effective total stress σ

driving dislocation motion:

σ = σint + σext (2.41 repeated)

Note here that an alternative approach to define the total stress without invoking

the superposition principle is discussed in Chapter 3. In practice, to account for the

lattice friction stress, the effective force ~f ij integrated along dislocation segment ij

in equations (C.31) is obtained as:

~f ij =


~f
pk

ij −
∣∣∣~f fric

ij

∣∣∣ · ~dir
(
~f
pk

ij

)
if
∣∣∣~f pk

ij

∣∣∣ > ∣∣∣~f fric

ij

∣∣∣
0 if

∣∣∣~f pk

ij

∣∣∣ ≤ ∣∣∣~f fric

ij

∣∣∣ (C.33)

where ~f
fric

ij is the force arising from the lattice friction resistance (here function ~dir(~v)

denotes the unit vector pointing in the direction of vector ~v such that the friction force

is opposed to dislocation movement) and ~f
pk

ij is the Peach-Koehler force obtained

from integration of expression (C.32) along the segment length. Here it is interesting

to notice that by combining equations (C.32) and (2.41), the Peach-Kohler force is

obtained as the sum of two contributions:

~f
pk

ij = ~f
int

ij + ~f
ext

ij (C.34)
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where ~f
ext

ij corresponds to the external applied force whose calculation is detailed in

Appendix C.2.4, and ~f
int

ij corresponds to the force arising from the internal stress

fields induced by all dislocations in the medium. Following the framework introduced

in Section 2.4.3, the internal stresses σint at each point of the simulation volume in

regular DDD codes are calculated by virtue of the superposition principle, whereby

the contributions of the elastic stress field of each dislocation segment computed in

an infinite medium are added. Therefore, the force ~f
int

ij on segment ij resulting from

the internal stresses can be expressed as:

~f
int

ij =
∑
kl

~f
kl

ij (C.35)

where ~f
kl

ij denotes the force acting at node i induced by the stress field of disloca-

tion segment kl on segment ij. Note that the sum is performed over all dislocation

segments kl present in the volume, including segment ij itself. As a matter of fact,

~f
ij

ij = ~f
s

ij corresponds to the self-force of segment ij, i.e. the force of the segment

on itself. To avoid singularities, the self-force is usually computed separately (see

Appendix C.2.3), such that equation (C.35) is decomposed as:

~f
int

ij = ~f
s

ij +
∑
kl 6=ij

~f
kl

ij (C.36)

where the summation over the segment-segment elastic interaction forces ~f
kl

ij is per-

formed on every segment kl different from ij. From equation (C.36) it clearly appears

that the computation of the force on each dislocation segment requires the evaluation

of the stress field induced by all other dislocations present in the volume. Therefore,

the computation of all nodal forces is a O(N2
seg) process where Nseg is the total num-

ber of dislocation segments in the simulation volume, which can become extremely

computationally expensive. Thus, special care needs to be taken so as to imple-

ment efficient methods for the computation of the segment elastic forces ~f
kl

ij . While
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segment-segment elastic interactions forces ~f
kl

ij are detailed in Section 2.5.3, approxi-

mations to improve the efficiency of their computation are presented in Section 2.9.2.

C.2.2 Segment-segment elastic interactions

See Section 2.5.3.

C.2.3 Self force

The self-force ~f
s

ij corresponds to the force exerted by a segment ij on itself. The

general expression of the self-force can be readily deduced from equation (2.64) as:

~f
s

ij =

∫ ~xj

~xi

Ni(~xij)
[(
σij(~xij) ·~bij

)
×~tij

]
|d~x| (C.37)

where σij denotes the stress field of dislocation segment ij. Therefore, the evaluation

of the self-force involves the integration of the stress field produced by the segment

along itself, hence its name. The precise evaluation of the self-force is a very important

aspect of DDD simulations as it directly affects the bowing of dislocations, and hence

plays a major role in the activation of dislocation glide. However, in the general

expression given from the classical theory in equation (2.14), the stress field of a

dislocation is singular in its core, i.e. is not defined along the dislocation segment

itself, such that contribution (C.37) cannot be directly evaluated. To circumvent

this, different expressions of the self-force based on the dislocation local curvature

have been proposed [71, 87, 98, 97]. In this case, the self-force is referred to as the

line tension, corresponding to the restoring force induced by the increase in energy

associated with the increase in line length of a bowing segment (e.g. Frank-Read

source). However, the accuracy of curvature-based approaches are closely tied to the

parametric line representation, and are inconsistent with the use of straight segments.

In the case of isotropic elasticity, the non-singular approach developed by Cai
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and coworkers [35] (see Appendix A.2) allows for an analytical expression of the self-

force (C.37). The latter is directly derived from the general closed-form solution for

computing the forces between two parallel segments, and is simplified due to the

fact that both segments are identical in this specific case. As a result, its expression

simplifies to the following for isotropic elasticity [5]:

~f
s

ij = − µ

4π

[
~tij ×

(
~tij ×~bij

)](
~tij ·~bij

)
[

ν

1− ν

(
ln

[
la + lij
a

]
− 2

la + a

lij

)
− (la − a)2

2lalij

]
(C.38)

where µ and ν are the shear modulus and Poisson’s ratio, a is the dislocation core

width and la =
√
l2ij + a2. In this formulation, the core width radius a is a key

parameter that governs the stiffness of dislocation bowing. Thus, the choice of a is

usually calibrated such as to obtain a correct activation stress for dislocation sources.

Furthermore, it clearly appears from equation (C.38) that the contribution of the

self-force of segment ij on node j can be directly computed as ~f
s

ji = −~f
s

ij.

When dealing with anisotropic elasticity, the self-force can be efficiently computed

using the Willis-Steeds-Lothe formalism and a cut-off radius to remove core singular-

ities [257, 264].

C.2.4 Applied force

The applied force ~f
ext

ij corresponds to the contribution of the external stress to the

Peach-Kohler force, as defined in equations (C.32) and (2.41). As introduced in

Section 2.4.4, the external stress σext results from the imposed loading and boundary

conditions, and the different methods that can be used for its evaluation are presented

in Section 2.8.2. The general expression for the applied force ~f
ext

ij on segment ij can

be readily obtained from the Peach-Kohler force expression as:
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~f
ext

ij =

∫ ~xj

~xi

Ni(~xij)
[(
σext(~xij) ·~bij

)
×~tij

]
|d~x| (C.39)

When using the linear interpolation defined in (2.33) such as to consider straight

dislocation segments, expression (C.39) reduces to:

~f
ext

ij =

∫ 1

0

(1− s)
[(
σext(~xij(s)) ·~bij

)
×~tij

]
ds (C.40)

where σext is integrated along dislocation segment ij with Burgers vector ~bij and

unit tangent ~tij. In the case where the external stress is uniform over the simulation

volume (see Section 2.8.2), the integration in (C.40) reduces to the following analytical

form:

~f
ext

ij =
1

2
lij

([
σext ·~bij

]
×~tij

)
(C.41)

C.3 Determination of nodal velocities

C.3.1 Assembly of the resistivity matrix

The determination of nodal velocities of dislocation segments at each time step is

achieved by solving the system of equations defined in (C.14):

~F i =
∑
j

Bij
~V j ∀ node i, ∀ node j connected to node i, and for i = j

(C.14 repeated)

where ~V j is the velocity of dislocation node j, ~F i is the force at node i, and Bij is the

resistivity matrix associated with the viscous drag of segment ij. Once the dislocation

nodal forces ~F i have been obtained through the procedure detailed in Appendix C.2,

matrix Bij is assembled using a classical finite element approach. From expression

(C.11) one obtains:
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Bij = bijij if i 6= j

Bii =
∑
k

biiik if i = j, ∀ node k 6= i connected to node i (C.42)

where babij is the nodal quantity defined in equation (C.8). When straight lines are

used to describe dislocation segments between connected nodes by using the linear

interpolation defined in (2.33), babij can be written as:

babij = lij

∫ 1

0

Na(s)Nb(s)B(θij(s))ds (C.43)

with |d~x| = ‖~xj − ~xi‖ds = lijds (C.44)

Note that in expression (C.43), the drag matrix B(θij) is now solely a function of the

orientation θij = arccos
(
~bij

‖~bij‖
·~tij
)

of the dislocation segment ij, which is constant

throughout the entire segment when using a linear interpolation. With this, sub-

matrices babij pertaining to the drag resistance of segment ij can be evaluated for

a = i, j and b = i, j from equation (C.43) as:

biiij = lijB(θij)

∫ 1

0

(1− s)(1− s)ds =
lij
3
B(θij)

bijij = lijB(θij)

∫ 1

0

(1− s)sds =
lij
6
B(θij)

bjiij = lijB(θij)

∫ 1

0

s(1− s)ds =
lij
6
B(θij)

bjjij = lijB(θij)

∫ 1

0

s2ds =
lij
3
B(θij) (C.45)

Assuming a simple mobility law whereby the drag resistance exerted on a dislocation

line continuously vary with its character, a simple interpolation from edge to screw

properties can be used, such that:

B(θij) =
(
Beij sin2 θij + Bsij cos2 θij

)
I2 (C.46)
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where Beij and Bsij are the edge and screw mobilities of segment ij, and I2 is the

second-order identity tensor. As mentioned in Section 2.5, the mobility coefficients

account for the phonon interactions with moving dislocations. Their values depend on

the material properties and on the temperature, and can be measured experimentally

or estimated via atomistic simulations.

Using equations (C.42) to (C.45), the velocity ~V j of each node j can be determined

by solving the system of equations given in (C.14). Separating the case i = j from

that of i 6= j, equation (C.14) can be decomposed as:

~F i = Bii
~V i +

∑
j 6=i

Bij
~V j (C.47)

From the definition of Bij given in (C.42), expression (C.47) reads:

~F i =
∑
j 6=i

biiij ~V i +
∑
j 6=i

bijij ~V j (C.48)

where sub-matrices biiij and biiij are obtained from (C.45) as:

biiij =
lij
3
B(θij) for a = b = i

bijij =
lij
6
B(θij) for a 6= b (C.49)

Finally, inserting (C.49) into (C.48) yields the following system of equations:

~F i =
∑
j 6=i

lij
6
B(θij)(2~V i + ~V j) (C.50)

System of equations (C.50) describe the motion of groups of connected dislocation

nodes. Thus, for a group of N connected nodes, system (C.50) is of size 3N . However,

because all nodes are not individually connected to all other nodes, such system is

generally extremely sparse. For example, in the case of a dislocation group comprising

no junction node (i.e. for a dislocation line where each node, expect for the end nodes,
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is connected to two nodes), system (C.50) results in a banded matrix of width 9. For

such reason, special algorithms dedicated to sparse systems have been implemented

to efficiently compute nodal velocities. Furthermore, a local velocity approximation

is presented in Section 2.9.2.

C.3.2 Glide velocity

As presented in Section 2.2.4, dislocation lines are physically constrained to glide on

their slip plane(s). As a result, each nodal velocity ~V i computed in equation (C.50)

must be projected on the glide plane(s) on which the dislocation node lies, i.e. on the

glide plane(s) associated with each connection of node i. Therefore, for each node i

connected to nodes j, the nodal velocity ~V i must satisfy:

~V i · ~nkij = 0 ;
∀ node j connected to node i

∀ plane k associated with segment ij
(C.51)

where ~nkij designates the unit normal associated with the k-th glide plane of segment

ij. Note that the glide plane of any dislocation segment that is not a sessile junction

is defined by its Burgers vector and its line direction.

C.3.3 Junction case

The motion of nodes belonging to junction segments requires a specific treatment.

As mentioned in Appendix C.3.2, the velocity of a dislocation node needs to be pro-

jected into the glide plane(s) of all segments connected to the node. Thus, in the

case of a sessile junction node, lying at the intersection of two planes, the direction of

the velocity becomes collinear to the line formed by the intersection of both planes,

such that the node can only move along the direction of the junction. Therefore, the

resulting motion is artificial in the sense that the movement is purely tangential to

the line direction, leading to either an increase or a decrease in the junction length.

Physically, the growth of a junction occurs via the zipping process, which is solely
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governed by segment-segment collisions and whose implementation is detailed in Sec-

tion 2.6. Therefore, to remain consistent with the collision procedure and adopt a

numerical framework closely based on the physics of dislocations, only the shrinking

of junction segments is allowed by motion of dislocation nodes. This can be enforced

by ensuring that the velocity of each junction node i is pointing in the same direction

as junction segment ij oriented from node i to node j, i.e. each node i connected to

node j for which segment ij is a junction segment must verify:

~V i ·~tij = 0 ; ∀ junction segment ij (C.52)

where ~tij denotes the line direction (or unit tangent) of junction segment ij, i.e.

the line defined by the intersection of the slip planes of the two dislocations that

formed the junction. Note here that the use of equation (C.52) applies to simple

sessile junctions only, i.e. to junctions that result from the intersection between two

dislocations belonging to two different slip systems, and for which the Burgers vector is

not comprised in one of the existing slip planes of the crystal. If the junction is glissile,

i.e. if its Burgers vector lies in one of the slip planes of the crystal, the dislocation node

is treated as a regular dislocation node and projected on its unique slip plane defined

by its Burgers vector and its line direction. In the case of more complex junction

segments resulting from the intersection of more than two dislocation segments, two

cases may appear: (1) the motion of the junction node is null if the junction is sessile,

since the intersection of three planes reduces to a single point, or (2) the nodes are

treated as glissile nodes in the case of glissile triple junctions as evidenced in [31].

C.4 Time integration

System of equations (C.14) allows for the determination of nodal velocities ~V i for

each dislocation node i. The conversion of the velocities into nodal displacements
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defining dislocation motion therefore requires time integration. The choice of an ap-

propriate time integrator is crucial in DDD, especially as it controls the time step size

versus the numerical stability [5, 220]. Thus, the choice of a stable time integrator

may allow for the use of large time steps improving the computational efficiency of

the simulations. On the other hand, the choice of a poor time integrator may impose

the use of small time steps to avoid numerical instabilities in dislocations motion.

The different types of time integrators are broken down into two classes, explicit and

implicit. While explicit integrators are usually very simple to implement as they only

require the evaluation of forces and positions from the previous time step, their stabil-

ity is known for being very sensitive to the size of the time step. On the other hand,

implicit integrators allows for larger time steps thanks to their more robust stability,

but the use of an implicit formulation to determine dislocation motion requires the

knowledge of positions and forces at the previous and next time step. Therefore, when

implicit integrators are used, the determination of nodal velocities must be achieved

by iterative implicit schemes, such as the Newton-Raphson method, thereby requir-

ing significant additional computational work. Particularly, each iteration within an

implicit scheme involves the evaluation of the nodal forces, which is known to be

the most intensive computational process in DDD simulations (see Appendix C.2).

Moreover, the use of very large time steps in DDD simulations is not always desired,

and depends on the dislocation configuration. This is because when time steps are

too large, interactions and collisions between dislocation segments may be missed,

leading to non-physical behaviors. This last point is particularly important since

dislocation-dislocation interactions are known to play a crucial role in strain harden-

ing [227, 52, 136, 93] (see Chapter 4). As a result, the vast majority of current DDD

codes are using explicit time integrators to date [97, 68, 254, 5, 69]. For this reason,

explicit methods have been implemented.

The simplest explicit method consists in a backward Euler integration, where the
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new position ~x t+∆t
i of each dislocation node i at time t + ∆t is updated from the

position and the velocity at previous step as:

~x t+∆t
i = ~x t

i + ~V i

(
~x t
i

)
∆t (C.53)

where ~V i = ~V i

(
~x t
i

)
is the velocity at node i given as a function of the nodal positions

~x t
i at time t and ∆t is the current time step increment. Although this method is the

simplest to implement, it is also the less stable one. Thus, when the time step is

large and the dislocation discretization is fine, i.e. when the nodal displacement

~V i∆t approaches the size of the segments to which it is connected, vibrations may

appear, leading to non-physical multiplication of dislocations, that can further lead

to the collapse of the simulation. To address this issue, enhanced explicit integration

schemes have been proposed. Among them, the trapezoidal Euler integration relies

on a predictor-corrector scheme in which the nodal position ~x t+∆t
i at each node i and

time step t+ ∆t is iteratively determined as:

~x t+∆t
i

∣∣
0

= ~x t
i + ~V i

(
~x t
i

)
∆t (C.54)

~x t+∆t
i

∣∣
j+1

= ~x t
i +

~V i

(
~x t+∆t
i

∣∣
j

)
+ ~V i

(
~x t
i

)
2

∆t (C.55)

where ~x t+∆t
i

∣∣
j

denotes the j-th iterate of the corrector, and the iterative process is

stopped when all nodes converge towards a new position, i.e. when the error between

two subsequent iterations becomes smaller than a prescribed tolerance. Although

this method yields a better numerical stability, and therefore theoretically allows for

larger time steps or finer segment mesh sizes, the total cost of the evaluations of nodal

forces required in the calculations of the correctors ~x t+∆t
i

∣∣
j

at each iterate j needs to

be balanced against the gain in time step increment it permits.

Note also that very recently, the development of a local time-step subcycling

approach has demonstrated potential significant improvement of the global efficiency
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for explicit and implicit integrators [220], but has not been implemented in this work.

348



APPENDIX D

NUMERICAL IMPLEMENTATION OF THE DDD

SIMULATION TOOL

In this appendix, important details on the numerical implementation of the DDD

simulation tool developed in the course of this thesis and presented in Chapter 2 are

provided.

D.1 Topological changes of the dislocation network

During a DDD simulation, dislocation segments multiply and interact with one an-

other as a result of their motion. Therefore, an adaptive meshing of dislocation

segments must be implemented in order to (1) keep the dislocation network well dis-

cretized, such as to allow for a good description of dislocation line curvature and avoid

numerical vibrations, and (2) permit the treatment of dislocation core reactions whose

incorporation is fundamental to reproduce strain hardening behaviors. For these pur-

poses, specific topological operations are implemented to serve as supporting functions

of dislocation line operations inducing changes in the network topology.

D.1.1 Topological operations

In the present nodal code, a set of topological operations allowing to perform topo-

logical changes in the dislocation network is implemented. A topological change here

refers to a modification of the dislocation network that induces a change in the seg-

ments connectivity. Such changes principally occur during dislocation intersections

(e.g. junctions formation and annihilations) and allows for dynamical line remeshing

(see Section 2.7). The two main topological operations implemented in the DDD

code, namely the split of a segment and the merge of nodes, are presented below.
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D.1.1.1 Split of dislocation segment

件 
倹 � �沈 �沈珍岫�岻 

�沈� = ��珍 = �沈珍 �珍  

Figure D.1: Schematic of the split of a dislocation segment ij defined between end
nodes at positions ~xi and ~xj and with Burgers vector~bij. The original segment is split
by inserting a new node S at coordinate ~xij(s). In doing so, the properties of original
segment ij (Burgers vector, Miller indices, ...) are transferred to new segments iS
and Sj.

As depicted in figure D.1, the procedure to split a dislocation segment consists in

inserting a new node at a given abscissa along the segment, in between the existing

end nodes defining the segment. Through this procedure, the connectivity between

the nodes is updated, and the properties of the original segment are transferred to

the new segments, such that (1) the Burgers convention introduced in Section 2.3.1

is respected, and (2) the dislocation slip plane remains definite for each segment.

D.1.1.2 Merge of dislocation nodes

�珍 
(a) 

�沈 
intersection 

of slip planes 

(b) 

�沈 �珍 
(c) 

�沈 
(d) 

�沈賃岫頂岻 �沈賃岫鳥岻 = �沈賃岫頂岻 + �珍賃岫頂岻 

(e) 

�沈賃岫勅岻 = 0 �珍賃岫頂岻 �賃 �賃 �賃 �沈 �沈 

Figure D.2: Schematic of the merge of two dislocation nodes i and j. From stages
(a) to (b), nodes i and j are merged into new node i who lies into the intersection
of the slip planes of the initial nodes. In case (c), nodes i and j are connected to a
common node k, such that the outcome of the merging procedure leads either (d) to
the formation of a junction or (e) to an annihilation.
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As illustrated in figure D.2, the procedure for merging two dislocation nodes consists

in merging nodes i and j into the single node i. In this procedure, the new position

of node i is determined by the union of the geometrical constraints applying to both

nodes i and j. Thus, if nodes i and j belong to two different planes, the merged node

will necessarily be located along the intersection of both planes, such as to conserve the

properties of initial intersecting segments. However, the merge can also be performed

between two coplanar nodes or two nodes belonging to the same dislocation line.

When the merge has been performed, all connections of node j are transferred to

node i, and node j is finally deleted.

Note however that a special case occurs when nodes i and j are connected to

a common node k, as depicted in figure D.2(c). In that case, a new segment ik

will be formed, whose resulting Burgers vector is equal to the sum of the Burgers

vectors of the two initial segments ik and jk. If the resulting Burgers vector is null,

it corresponds to an annihilation and new segment ik is deleted by removing the

connection between nodes i and k (see figure D.2(e)).

D.1.2 Numerical implementation of junction formation

In this section, the numerical implementation of junction formation and annihilations

presented in Section 2.6.1 is detailed. The numerical implementation of the dislocation

segment-segment interactions requires the development of different steps, which are

detailed in the following. First, a list of dislocation neighbor segments is created

for each dislocation segment. Then, the minimum distance between a dislocation

segment and each of its neighbors is computed, such that pairs of segments whose

minimum distance dmin satisfies dmin ≤ dcrit are considered as intersecting. Using the

topological procedures presented in Appendix D.1.1 enabling the split of dislocation

segments and the merge of dislocation nodes, segment intersections are performed,

and, finally, newly formed topology is checked for potential errors arising from the
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above procedures. All the steps are described in detail below.

D.1.2.1 Determination of neighbor segments

Potential segment interactions only occur between close unconnected segments. For

this reason, and for avoiding a time-consumingO(N2
seg) distance calculation procedure

involving all Nseg dislocation segments present in the simulation volume, a neighbor

list is created to reduce the number of segment-segment distances to compute. To

create the neighbor list, the simulation volume is partitioned into a certain number

of boxes. The optimum box size is determined from the length of the longest segment

of the simulation. With this partitioning, each dislocation segment lying in a box B

will have as neighbors all segments lying in the 27 surrounding boxes (26 surrounding

boxes and box B itself). Although dcrit is usually way smaller than the average

segment length, the use of 27 boxes is required in order to properly handle the case

where a segment lies closely to the boundary of the central box B.

D.1.2.2 Calculation of the minimum distance between two segments

Once the neighbor list has been created, the minimum distance between a segment

and each of its neighbors is computed. Assuming straight segments, the shortest

distance dmin(ij, kl) between two segments ij and kl is found by minimizing the

following expression:

dmin(ij, kl) = min
s,t
‖~xij(s)− ~xkl(t)‖ with


0 ≤ s ≤ 1

0 ≤ t ≤ 1

i 6= j 6= k 6= l

(D.1)

From this expression, the curvilinear positions s and t corresponding to the positions

for which the distance between the two segments reaches a minimum can also be

determined. If the distance satisfies dmin(ij, kl) ≤ dcrit, and the dislocation segments

are moving towards each other, the intersection procedure is performed. Note here
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Figure D.3: Sequence of operations performed during the intersection procedure.
(a) When two dislocation segments ij and kl are moving towards each other and are
approaching at a distance lower than dcrit, the intersection procedure is as follows:
(b) first, both segments are split via insertion of nodes S and T . Then, (c) nodes S
and T are merged into single node S lying at the intersection of the glide planes of
the initial segments. As a result, the initial dislocation segments become connected
through a 4-connected junction node S.

that for the sake of consistency, the value of dcrit must be chosen such that (1) dcrit is

smaller than the average dislocation length, and (2) dcrit is not too large with respect

to dislocation nodal displacements.

D.1.2.3 Intersection procedure

The sequence of operations performed during the intersection procedure depicted in

figure D.3 is detailed here. When two dislocation segments meet the intersection

criterion, new nodes S and T are inserted along segments ij and kl at curvilinear

positions s and t, respectively. Such is done by using the split procedure. Nodes S

and T are then merged into a new single node S using the merge nodes procedure

(see Appendix D.1.1). In order to respect the physics of dislocations, S is constrained

to lie in the intersection of the glide plane(s) of initial segments ij and kl. Further,

in order to avoid numerical instabilities induced by the creation of short segments,

when position ~xij(s) along segment ij (that corresponds to the minimum distance to

segment kl) is very close to node i (respectively to node j), segment ij is not split,

and node i (respectively j) is used in the merging procedure. As shown in figure 2.13

and discussed in Section 2.6.1, with this process, junction formation and annihilation
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result from successive intersections of connected segments.

D.1.2.4 Verification of the new topology

As presented in the above, the numerical treatment of intersections induces topo-

logical changes in the discretized dislocation network. After interactions have been

performed between all intersecting segments, the new dislocation topology is verified

to ensure that potential errors that may have occurred are fixed or circumvented, such

that the simulation can continue running properly. The verifications mainly consist

in checking the consistency of the segment slip systems and the reciprocity of the

nodal connectivity.

D.1.3 Numerical implementation of node dissociation

In this section, the numerical implementation of the dissociation procedure presented

in Section 2.6.2 is detailed. From a topological perspective, the dissociation of a

junction node is similar to the passage from the configuration depicted in figure

2.13(b) to that in figure 2.13(c), where the formation of the junction segment results

from the sequence of operations illustrated in figure D.3 performed on two arms

of the junction node. The two arms on which the split and merge occur depend

on the dissociation configuration. Thus, for a 4-connected node i, the dissociation

procedure yields three different possible outcomes, each of whose corresponds to a

different choice of arms on which the split and merge operations are performed. When

node i connected to nodes 1 to 4, i.e. i → {1, 2, 3, 4}, is dissociated into connected

junction nodes j and k, the three final possible configurations are as follows: (1)

j → {1, 2} and k → {3, 4}, (2) j → {1, 3} and k → {2, 4}, and (3) j → {1, 4}

and k → {2, 3}. For each case, the new configuration is created and the nodal

forces and velocities on newly created junction nodes j and k are calculated, such

that the power dissipation of the configuration can be evaluated. Then, the initial

4-connected node configuration is restored and the dissipation of the next possibility
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is evaluated. After evaluations of the dissipation of the three configurations, the

one yielding the maximum power dissipation is recreated and kept in the simulation.

Also, to ensure that junction segment jk would not vanish after its creation, only

configurations in which velocities of nodes j and k are in opposite directions are

considered, i.e. configurations corresponding to a zipping process. Further note

that the length of junction segment jk, that is created as a result of the dissociation

procedure of initial node i, is chosen to be slightly greater than the critical intersection

radius dcrit to ensure that nodes j and k are not merged through the intersection

procedure immediately after their creation (see Section 2.6.1). With this process, the

Burgers vector of junction segment jk generally differs for each configuration. Of

special interest, the dissociation procedure is able to treat unpinning events by ways

of selecting configurations in which the junction Burgers vector is null.

D.2 Parallelization of the DDD simulation tool

In this section, details on the numerical implementation of the critical stages of the

DDD cycle are presented. For a global overview of the parallel computing and load

balancing strategies adopted in this work, the reader is referred to Section 2.9.3.

D.2.1 Short-range interactions calculation

Practically, the implementation of the current strategy based on an homogeneous

distribution of total number of neighbors across the CPUs includes several steps.

It also to be noticed that such distribution tacitly relies on the assumption that

the computational cost of interaction forces is identical for any pair of segments.

When using the non-singular analytical formulation for isotropic elasticity given in

[5] and presented in Section 2.5.3, two cases are distinguished, collinear and non-

collinear segments, whose costs differ. However, the occurrence of collinear cases is

statistically limited compared to the general non-collinear case, such that, on average,

an equivalent cost between all interactions can be safely considered. With that in
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mind, the parallel distribution can be performed as follows. First, the number of

neighbors must be determined for each segment. Here, the definition of short-range

neighbors must remain consistent with the use of the Box Method (see Section 2.9.2.1)

used in the current code. Thus, to avoid either disregarding or double counting

segment interactions, the neighbors of each segment lying in box α are taken as the

ensemble of segments lying in the union Uα composed of the 26 boxes surrounding box

α and box α itself. Therefore, the number of neighbors Nnei = Nα of each segment

belonging to box α can be efficiently determined using a bucket sort algorithm on the

3D spatial coordinates of the segments. For the sake of efficiency, all segments are

sorted by box at the beginning of each time step so as to define both short-range and

long-range interactions simultaneously. Once the number of neighbors is determined

for each segment, a distribution of segments ensuring an optimal load balance can be

achieved using the inexpensive best fit decreasing algorithm. With this process, the

segments are first sorted in decreasing order by their number of neighbors, and then

sequentially assigned in order to the CPU with the largest remaining space (i.e. the

lowest total load). Here, the decreasing sort is used to ensure that the segments with

the largest number of neighbors are not to be distributed once the bins are already

filled. This sort is achieved using a O(Nseg logNseg) heapsort algorithm. Note that in

general, a simple selection sort algorithm of complexity O(N2
seg) will lead the overall

scalability to dramatically drop as Nseg increases.

Once dislocation segments have been distributed on each CPU, short-range inter-

actions can be computed locally and nodal velocities and displacements can be de-

termined (see Section 2.5) thanks to the nodal velocities approximation (see Section

2.9.2.2). The new nodal positions are then updated on all CPUs via point-to-point

communications. At this stage, most of the computational work of the DDD cycle

has been performed, as the calculation of interaction forces usually accounts for more

than 90% of the total cost per simulation step. However, as stated by Amdahl’s
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law, the maximum theoretical speed-up that can be achieved with parallel comput-

ing quickly saturates when all portions of a program are not parallelized, i.e. when

sequential operations remain [3]. In other words, the scalability will fall all the more

quickly than the fraction of sequential operations is large when the number of pro-

cessors increases. Therefore, other important stages such as long-range calculations,

the dissociation procedure and the treatment of dislocation intersections (see Section

2.6 and Appendix D.1), require a parallel implementation as well.

D.2.2 Long-range calculation

When using the Box Method (see Section 2.9.2.1), the most straightforward strategy

consists in equally distributing the Nbox boxes across the CPUs so as to locally com-

pute the total stress arising from long-range dislocations at the center of each box.

Naturally, this approach will provide a good scalability when dislocation segments

are well distributed within the volume. However, as for short-range interactions, the

optimal strategy consists in distributing the boxes according to the total number of

long-range interactions associated with each of them.

D.2.3 Dissociation procedure

For the dissociation procedure, the 4-connected nodes are first distributed among

the processors (ensuring that pairs of 4-connected nodes connected to each other

remain on a single CPU so as to avoid treating topological conflicts between CPUs)

and the determination of the optimal configuration is determined locally (see Section

2.6.2 and Appendix D.1.3). Note that this determination involves the computation

of several interaction forces and is in general identical in terms of computational cost

for every 4-connected node. Every new configuration is then transferred back to all

other CPUs.

357



D.2.4 Dislocation intersections

In the case of dislocation intersection, the picture is slightly different. As detailed in

Section 2.6.1, the treatment of dislocation collisions involve two main steps, namely

the determination of potential pairs of intersecting segments and the application of

the resulting topological changes. Clearly, the last step does not involve any calcu-

lation, but solely invokes topological operations to modify the dislocation data (see

Appendix D.1.1). In this case, the reduction in the sequential fraction of operations

of the code must be balanced with the cost of the communication induced by the par-

allelization, which is not accounted for in Amdahl’s model [3]. Practically, following

the numerical intersection procedure detailed in Appendix D.1.2, it appears that only

the parallelization of the determination of neighbor segments and of the calculation

of the minimum distance between pairs of neighbor segments will contribute to an

increase in the scalability of the code. Here, the determination of neighbor segments

can be achieved using the same strategy as that described earlier to distinguish be-

tween short and long-range interactions. However, the metric used to determine the

size of the boxes is not the same in both cases. In the first case, the choice is dictated

by the validity of the long-range approximation based on the 1/R physical decay of

the elastic stress fields. In the case of intersections, the size of the box is typically

chosen to be smaller since neighbor segments in the context of intersections only per-

tain to pairs of segments whose distance is potentially smaller than the critical radius

dcrit ≤ lavg, where lavg is the average length of dislocation segments. Using a bucket

sort algorithm, dislocation neighbors can be determined and distributed across the

CPUs. Then, the computation of the minimum distance between pairs of neighbors

can be performed locally. Further, potential collisions are transferred to all CPUs

and the relatively inexpensive topological changes are finally performed sequentially.
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APPENDIX E

FINITE ELEMENT FORMULATION FOR

STRESS-STRAIN CALCULATION

E.1 Principle of virtual work

In continuum mechanics, the mechanical state at each point of a body V subjected to

displacements and traction boundaries conditions can be determined by considering

the following fundamental boundary value problem:

σij = Cijklε
e
kl (E.1)

σij,j = 0 (E.2)

ui = u∗i on Su (E.3)

σijnj = t∗i on St (E.4)

where σij denotes the components of the stress tensor, εekl is the elastic strain, and

Cijkl is the fourth-order elastic stiffness tensor. In equations (E.3) and (E.4), ~u ∗

and ~t
∗

denote the applied displacements and tractions boundary conditions imposed

on volume external surfaces Su and St with normal ~n, respectively. Under the small

strain framework, the total strain ε is expressed as the symmetric part of the gradient

of the displacement:

εij =
1

2
(ui,j + uj,i) (E.5)

Since the mechanical equilibrium σij,j = 0 (here the body forces are neglected) must

hold at every material point in volume V , the following relation must hold for the en-

tire medium, for any differentiable suitable trial function ~ψ that satisfies the boundary
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conditions:

∫
V

σij,jψidV = 0 (E.6)

Performing an integration by parts on (E.6) and using the divergence theorem, one

can derive the weak formulation associated with the boundary value problem (E.1)–

(E.4):

∫
V

σij,jψidV =

∫
V

(σijψi),j dV −
∫
V

σijψi,jdV = 0

=

∫
S

σijψinjdS −
∫
V

σijψi,jdV = 0 (E.7)

where S = ∂V denotes the outer surface enclosing volume V , with normal ~n. Since

relation (E.7) must hold for any suitable vector field ~ψ, one can denote δ~u any

admissible virtual displacement field in the body and use ~ψ = δ~u as a trial function.

With that, and using the definition of the traction vector ti = σijnj, equation (E.7)

can be written as:

∫
V

σijδui,jdV −
∫
S

tiδuidS = 0 (E.8)

Equation (E.8) is generally known as the Principle of Virtual Work (PVW). Essen-

tially, the PVW states that the stresses and tractions are in equilibrium in the medium

if the internal virtual work (left side of (E.8)) equates the external work (right side

of (E.8)) done when a virtual displacement field is applied. The weak form (E.8)

of the fundamental boundary value problem (E.1)–(E.4) is the starting point of the

Finite Element Method (FEM) formulation of the classical approach in continuum

mechanics. Depending on the ingredients of the constitutive law, it can be used to

solve for linear elastic problems, or be extended to inelastic formulations, such as to

account for elasto-plastic or elasto-viscoplastic behaviors.
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E.2 Linear elasticity

This section is dedicated to the derivation of the mechanical FEM formulation in

the case of linear elastic behaviors. This formulation is for instance used in DDD

simulations to solve for the correction problem when using the superposition approach

(see Section 2.4.2). In a linear elastic medium, the constitutive law simply writes:

σij = Cijklε
e
kl = Cijklεkl = Cijkluk,l (E.9)

where the elastic strain εe is equal to the total strain ε such that the strain definition

in (E.5) can be directly used. Replacing the stress in the weak form (E.8) by its

definition in (E.9) for linear elasticity yields:

∫
V

Cijkluk,lδui,jdV −
∫
S

tiδuidS = 0 (E.10)

Expression (E.10) describes a linear partial differential equation on displacements ~u,

that can be numerically solved for using the FEM technique. Introducing a spatial

discretization whereby medium V is partitioned using three-dimensional elements,

the i-th component of the displacement field ui at position ~x anywhere in the volume

can be interpolated from the displacement values uai at mesh nodes as:

ui(~x) =

Nd∑
a=1

Na(~x)uai (E.11)

where Na is the shape function at node a and Nd is the number of nodes per element.

More details on the type of elements used in the DDD code and their properties are

given in Appendix E.5. Following the FEM framework, the spatial derivative of the

displacement can be expressed as a function of the spatial derivative of the shape

functions:
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ui,j(~x) =

Nd∑
a=1

Na
,j(~x)uai (E.12)

where Na
,j designates the spatial derivative of the shape function Na with respect to

the j-th component. By plugging the discretization introduced in equations (E.11)

and (E.12) into equation (E.10), one obtains:

Nd∑
a=1

[
Nd∑
b=1

∫
V

CijklN
b
,lu

b
kN

a
,jdV −

∫
S

tiN
adS

]
δuai = 0 (E.13)

and since system of equations (E.13) must hold for any virtual displacement δ~u

satisfying the boundary conditions (E.3) and (E.4), it can be written as:

Nd∑
a=1

[
Nd∑
b=1

(
Kab
ik u

b
k

)
− F a

i

]
= 0 (E.14)

where the nodal quantities Kab
ik and F a

i are defined as:

Kab
ik =

∫
V

CijklN
b
,lN

a
,jdV (E.15)

F a
i =

∫
S

tiN
adS (E.16)

System (E.14) is assembled using the conventional FEM assembly procedure. With

equation (E.14), displacements ~u a at each FE node a can be can solved for, leading

to the determination of the strain and stress fields using constitutive equations (E.5)

and (E.9). Evaluation of the integrals (E.15) and (E.16) at mesh nodes is usually

done by performing a Gaussian integration over the elements/surfaces. In matrix

form, system of equations (E.14) can be simply written:

K [u] = F (E.17)

where K is a square matrix of size 3Nt × 3Nt where Nt is the total number of nodes
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in the FEM mesh, and F and [u] are column vectors of length 3Nt. Here vector [u] is

populated with values uai associated with the components of the nodal displacements,

for i = {1, ..., 3} and a = {1, ..., Nt}. Therefore, solving linear system (E.17) for [u]

leads to the determination of all nodal displacements ~u a. From there, the resulting

strain and stress can be calculated at the mesh nodes using constitutive relations (E.5)

and (E.9). Numerically, system (E.17) can be solved for using direct methods such

as the LU decomposition or the QR factorization. However, although such methods

are robust and allow to obtain the solution in a single pass, the computational cost is

usually prohibitive. As a matter of fact, their computational complexity scales with

O(N3
t ), which becomes impractical for large systems. As a result, iterative techniques

such as the Jacobi method or the Gauss-Seidel method are usually preferred as their

complexity drops to O(N2
t ). Further, the density of matrix K directly results from

the mesh connectivity between elements. Consequently, system (E.17) is usually

very sparse and dedicated sparse system solvers are generally used. Although from

a general standpoint it is hard to evaluate the computational complexity of sparse

solver (it generally depends on the sparsity of the system), the lowest complexity that

can usually be achieved with standards FEM approaches is O(N2
t ).

Note that it is sometimes convenient to write the whole formulation using a matrix

notation. In order to benefit from the symmetry of stress and strain tensors, the Voigt

notation is generally used. With this, the elastic constitutive law (E.9) can be written

for general anisotropy as:

σ = C : ε

σ11

σ22

σ33

σ12

σ13

σ23


=


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11

ε22

ε33

2ε12

2ε13

2ε23


(E.18)
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where coefficients CIJ with indices I, J = {1, ..., 6} correspond to the Voigt coun-

terparts of stiffness coefficients Cijkl with indices i, j, k, l = {1, 2, 3}, and where the

correspondence ij ↔ I and kl↔ J defines the convention that is adopted. With this,

the strain definition (E.5) writes:

ε =
1

2

[
∇~u+ (∇~u)T

]
= D~u (E.19)

whose terms and their dimensions are explicitly given by:

~u =

u1

u2

u3

 (3× 1); ε =



ε11

ε22

ε33

2ε12

2ε13

2ε23


(6× 1); D =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2


(6× 3) (E.20)

where ~u is the displacement vector field, andD is the symmetrized gradient operator.

When the medium is discretized into Nd-noded elements, the value of vector field ~u

at every material point can be interpolated from the mesh nodal displacement values

as:

~u = N [~u] (E.21)

where N is the matrix of shape functions and [~u] denotes the nodal displacements

vector. Essentially, for each element defined with Nd nodes, [~u] can be expressed as:

[~u] =
{
u1

1 u
1
2 u

1
3 u

2
1 u

2
2 u

2
3 ... u

Nd
1 uNd2 uNd3

}T
(3Nd × 1) (E.22)

where uai denotes the i-th component of nodal displacement vector ~u a. The interpo-

lation function matrix N in (E.21) is given by:
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N =

N1 0 0 N2 0 0 ... NNd 0 0
0 N1 0 0 N2 0 ... 0 NNd 0
0 0 N1 0 0 N2 ... 0 0 NNd

 (3× 3Nd) (E.23)

where the nodal interpolation functions Na depend on the types of element and

interpolation, and are provided in Appendix E.5. With definitions (E.22) and (E.23),

it can be noticed that equation (E.21) is the matrix form of (E.11). Combining

equations (E.19) and (E.21), the strain can be expressed as a function of the nodal

displacements as:

ε = D~u = DN [~u] ≡ B [~u] (E.24)

where B = DN is the matrix whose components are literally given from relations

(E.20) and (E.23) as:

B = DN =



N1
,1 0 0 N2

,1 0 0 ... NNd
,1 0 0

0 N1
,2 0 0 N2

,2 0 ... 0 NNd
,2 0

0 0 N1
,3 0 0 N2

,3 ... 0 0 NNd
,3

N1
,2 N1

,1 0 N2
,2 N2

,1 0 ... NNd
,2 NNd

,1 0

N1
,3 0 N1

,1 N2
,3 0 N2

,1 ... NNd
,3 0 NNd

,1

0 N1
,3 N1

,2 0 N2
,3 N2

,2 ... 0 NNd
,3 NNd

,2


(6× 3Nd)

(E.25)

where Na
,j = ∂Na/∂xj denotes the derivative of Na with respect to the j-th spatial

coordinate. Therefore, the PVW expressed in (E.8) reads in matrix notation:

(∫
V

BTσdV −
∫
S

NT~tdS

)
[δ~u] T = 0 (E.26)

where BT and NT denotes the transpose of the B matrix and the shape functions

matrix, respectively, and ~t is the traction vector. Expression (E.26) is obtained

by noticing that σijδui,j = σijδεij thanks to the symmetry between indices i and

j. Further, since it must hold for any admissible displacement field δ~u, the PVW
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rewrites:

∫
V

BTσdV −
∫
S

NT~tdS = 0 (E.27)

Finally, substituting σ by the constitutive expression in (E.2) and using the nodal

stain expression in (E.24), one obtains:

∫
V

BTCB [~u] dV −
∫
S

NT~tdS = 0 ⇔ Kel [~u] = F el (E.28)

where the matrix quantities associated with each element are given by:

Kel =

∫
V

BTCBdV (3Nd × 3Nd) (E.29)

F el =

∫
S

NT~tdS (3Nd × 1) (E.30)

The global system in equations (E.14) and (E.17) is finally constructed by assembly

of element quantities Kel and F el following the classical FEM assembly procedure.

The FEM approach using linear elasticity is used in DDD simulations to account

for specific boundary conditions, especially in the case of the presence of free surfaces

(see Section 2.4). As depicted in figure 2.12, DDD simulations performed on confined

volumes require the determination of the mechanical state associated with a correction

problem. In this correction problem, the boundary conditions account for both the

initial boundary conditions imposed on the original volume, and the virtual boundary

conditions arising from the presence of dislocations within an infinite medium. With

that, correction fields σext and ~u ext are directly determined by solving the linear

system of equation (E.17).

E.3 Linearized elasto-plastic framework

The use of linear elastic behavior laws in continuum mechanics remains a special

case whose validity is limited to specific problems. In general, the finite element
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method is used to solve for more sophisticated behaviors such as elasto-plastic or

elasto-visco-plastic responses.

In the case of an elasto-plastic behavior, the constitutive law can be written as:

σij = Cijkl (εkl − εpkl)

=
1

2
Cijkl (uk,l + ul,k)− Cijklεpkl

= Cijkluk,l − Cijklεpkl (E.31)

where εkl and εpkl are the total and plastic strain tensors, respectively, and where the

small strain relation (E.5) is used. Physically, the stress is generally the driving force

of the plastic activity, such that equation (E.31) describes a non-linear relation. In

practice, such behavior may be linearized for the sake of simplicity. Therefore, in

this section, the formulation for linear elasto-plastic behaviors is introduced, while

the case of more complex non-linear behaviors will be detailed in Appendix E.4.

The simplest approach to linearize the elasto-plastic behavior in (E.31) is to con-

sider that the plastic strain is a constant input of the FEM procedure. Under this

assumption, the PVW in (E.8) expresses as:

∫
V

Cijkluk,lδui,jdV −
∫
V

Cijklε
p
klδui,jdV −

∫
S

tiδuidS = 0 (E.32)

such that the weak form using the FEM discretization introduced in expressions

(E.11) and (E.12) writes:

Nd∑
a=1

[
Nd∑
b=1

∫
V

CijklN
b
,lu

b
kN

a
,jdV −

∫
V

Cijklε
p
klN

a
,jdV −

∫
S

tiN
adS

]
δuai = 0 (E.33)

Following the same procedure as that described in Appendix E.2, the system of equa-

tion (E.33) to solve for the displacement field can be written as:
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Nd∑
a=1

[
Nd∑
b=1

(
Kab
ik u

b
k

)
− F a

i

]
= 0 (E.14 repeated)

where the nodal quantities Kab
ik and F a

i associated with the linearized elasto-plastic

behavior are given by:

Kab
ik =

∫
V

CijklN
b
,lN

a
,jdV (E.34)

F a
i =

∫
V

Cijklε
p
klN

a
,jdV +

∫
S

tiN
adS (E.35)

Essentially, the resistivity matrix Kab
ik is similar to that obtained in the linear elastic

case, while the force vector F a
i requires the computation of an additional volume

integral related to the plastic strain field εpkl. Therefore, when the plastic strain field

is assumed to be a constant input at each time step of the FEM procedure, the latter

can be directly accounted for in the formulation as a supplementary body force.

E.4 Non-linear formulation

Non-linear behaviors arise when the stress tensor σ can no longer be expressed as

a linear function of the displacement ~u. Common non-linear examples include the

cases of elasto-plastic and elasto-viscoplastic behaviors in which the plastic strain can

no longer be considered as a constant input of the model. In visco-plastic behaviors

for instance, the constitutive law is often written as:

σ̇ = C : (ε̇− ε̇p(σ)) (E.36)

where the plastic strain rate ε̇p is a function of the stress state σ. Such behavior is for

instance found in the classical flow rule, in which the plastic strain rate is expressed

as:

ε̇p = λS (E.37)
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where λ is the plastic multiplier and S denotes the deviatoric stress tensor, and is

also very common in crystal plasticity laws in which a power law is used to model the

plastic slip such that the plastic strain rate is expressed as:

ε̇p =
∑
s

M sγ̇s ≡
∑
s

M sγ̇s0

∣∣∣∣M s : σ

τ sc

∣∣∣∣n (E.38)

where M s is the symmetric Schmid tensor, τ sc denotes the CRSS, γ̇s0 the reference

plastic shear and n an exponent related to the rate sensitivity.

Thus, when considering non-linear behaviors, the stress σ(~u) becomes a non-linear

function of the displacement ~u. As a result, the PVW in equation (E.8) is expressed

in matrix form (see equation (E.27)) as:

∫
V

BTσ(~u)dV −
∫
S

NT~tdS = 0 (E.39)

Since equation (E.39) cannot be be solved for directly, a practical solution consists in

resorting to iterative methods to minimize the residual quantity R(~u) defined as:

R(~u) =

∫
V

BTσ(~u)dV −
∫
S

NT~tdS (E.40)

For such purpose, the Newton-Raphson method can be employed. With this method,

a new solution for the displacement ~ui+1 can be evaluated at each iteration i+ 1 as:

~ui+1 = ~ui −
[
∂R(~ui)

∂~u

]−1

·R(~ui) (E.41)

Further, by denoting ∆~ui+1 = ~ui+1 − ~ui the correction obtained at each iteration of

the Newton-Raphson, equation (E.41) can be conveniently rewritten as:

K′(~ui) [∆~ui+1] = −R(~ui) (E.42)

where the expression of quantity K′(~ui) is given from equation (E.40) as:
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K′(~ui) =
∂R(~ui)

∂~u
=

∫
V

BT ∂σ(~ui)

∂~u
dV =

∫
V

BT ∂σ(~ui)

∂ε

∂ε

∂~u
dV (E.43)

such that equation (E.43) can finally be written as:

K′(~ui) =

∫
V

BTLtani BdV (E.44)

where Ltani is referred to as the tangent modulus, or material jacobian, and is defined

as:

Ltani =
∂σ

∂ε

∣∣∣∣
~ui

(E.45)

In this context, the Newton-Raphson procedure iterates until convergence is reached,

at which step the final value displacement field ~uconv is obtained as:

~uconv = ~u0 +
n∑
i=1

∆~ui (E.46)

where ~u0 denotes the initial guess for the displacement, and n is the total number of

iterations to achieve convergence.

E.5 Element and shape functions

In this work, height-noded C3D8 elements are used. With this, any field variable X

can be interpolated from its nodal values Xa from equation (E.11) as:

X(~x) =

Nd=8∑
a=1

Na(~x)Xa (E.47)

where Nd = 8 for C3D8 elements, and for which the shape functions {Na(~s)}a=1,8 of

the curvilinear abscissa ~s with spatial components {si}i=1,3 ∈ [−1, 1] are given as:
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N1(~s) = 1/8(1− s1)(1− s2)(1− s3)

N2(~s) = 1/8(1 + s1)(1− s2)(1− s3)

N3(~s) = 1/8(1 + s1)(1 + s2)(1− s3)

N4(~s) = 1/8(1− s1)(1 + s2)(1− s3)

N5(~s) = 1/8(1− s1)(1− s2)(1 + s3)

N6(~s) = 1/8(1 + s1)(1− s2)(1 + s3)

N7(~s) = 1/8(1 + s1)(1 + s2)(1 + s3)

N8(~s) = 1/8(1− s1)(1 + s2)(1 + s3) (E.48)

Spatial derivatives of the shape functions given in expressions (E.48) are obtained as:

N1
,1(~s) = −1/8(1− s2)(1− s3)

N1
,2(~s) = −1/8(1− s1)(1− s3)

N1
,3(~s) = −1/8(1− s1)(1− s2)

... (E.49)
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APPENDIX F

DISCRETE FOURIER TRANSFORMS AND THE FFT

ALGORITHM

In this appendix, the mathematical concepts underlying FFT-based approaches are

presented. First, the expansion of functions in Fourier series is recalled and the result-

ing continuous Fourier transform is derived. Then, the discrete Fourier transform for

numerical application is introduced and the efficient Fast Fourier Transform algorithm

for calculating the latter is exposed.

F.1 Fourier series

Let us consider a piecewise continuous function f over the one-dimensional Cartesian

space R. If function f is L-periodic such that f(x) = f(x+L),∀x ∈ R, then one can

define for all N ∈ N its Fourier series expansion SNf(x), also referred to as Fourier

projection, as:

SNf(x) = a0(f) +
N∑
k=1

(
ak(f) cos

kπx

L
+ bk(f) sin

kπx

L

)
(F.1)

where the trigonometric Fourier coefficients are defined by:

a0(f) =
1

L

∫
[L]

f(x)dx

an(f) =
2

L

∫
[L]

f(x) cos
nπx

L
dx

bn(f) =
2

L

∫
[L]

f(x) sin
nπx

L
dx (F.2)

where [L] denotes every segment of length L. Further, using Euler’s formula, it can
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be easily shown that expression (F.1) can be equivalently written as:

SNf(x) =
N∑

k=−N

f̂(k)ei
kπx
L (F.3)

with

f̂(k) =
1

L

∫ L

0

f(x)e−i
kπx
L dx (F.4)

where the coefficients {f̂(k)}−N≤k≤N are called the spectral or Fourier coefficients

of function f , and i =
√
−1 is the complex number. One of the most remarkable

properties of the Fourier series is that, when f is piecewise continuous, defined and

integrable over R, its expansion SNf(x) is convergent for all x when N →∞ and its

sum is:

S∞f(x) =
∞∑

k=−∞

f̂(k)ei
kπx
L =

1

2

(
f(x+) + f(x−)

)
(F.5)

In other words, such property, known as the Dirichlet’s theorem, states that the

infinite Fourier series S∞f(x) is equal to f(x) where f is continuous. Further-

more, one very interesting practical property of SNf(x) is its exponential convergence

|SNf(x)− f(x)| ≤ e−η
α√N , x ∈ R, where the root exponent α > 1 and factor η are

tied to the global smoothness of f . Thus, SNf(x) enjoys the spectral accuracy, that

is, benefits from the exponential decay rate of SNf(x) − f(x). Therefore, SNf(x)

constitutes a good approximation of f(x), and conversely, and more importantly, a

good approximation of f can be practically reconstructed from a limited set of its

Fourier coefficients {f̂(k)}−N≤k≤N according to relation (F.3).

F.2 Continuous Fourier transform

The case L→∞ is of particular interest since it no longer requires the periodicity of

function f . In this case, the infinite sum in (F.5) tends to an integral such that the
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function can be expressed as:

f(x) =

∫ +∞

−∞
f̂(ξ)eiξxdξ (F.6)

with

f̂(ξ) =
1

2π

∫ +∞

−∞
f(x)e−iξxdx (F.7)

where ξ = nπ
L

. Expressions (F.6) is called the Fourier integral form of f and (F.7) is

known as the continuous Fourier transform of f . However, note that depending on

the domain of application, the definition of the Fourier transform and its inverse is

not unique. Specifically, factors 2π or
√
π may be removed or added, and the sign in

the exponential may vary depending on the formulations. In the current work, the

definition of the Fourier transform is given by:

f̂(ξ) =

∫ +∞

−∞
f(x)e−iξxdx (F.8)

Practically, expression (F.8) can be regarded as a way to transform the original func-

tion f defined in the real space into its spectral/frequency representation defined in

the Fourier space via the calculation of the Fourier coefficients. Then, the original

function f can be retrieved from its spectral representation from the inverse Fourier

transform that is defined in this work as:

f(x) =
1

2π

∫ +∞

−∞
f̂(ξ)eiξxdξ (F.9)

F.3 Discrete Fourier transforms

Any numerical application involving Fourier transforms requires to work with dis-

cretized data. Let us therefore assume that the piecewise continuous L-periodic func-

tion f is sampled at N evenly spaced grid points along the x direction for 0 ≤ x ≤ L.
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If we denote δ = L/N the interval between two consecutive sample positions, then

the sampled function values {fj}0≤i≤N−1 are defined as:

fj = f(xj), xj = δj, j = 0, ..., N − 1 (F.10)

Taking advantage of the spectral accuracy resulting from the exponential convergence

of the Fourier series given in (F.1), let us assume that writing the Fourier series of a

function f sampled at N grid points requires N Fourier coefficients values to obtain

a good approximation. Thus, following the expression given in (F.1) in the case of

continuous Fourier series, the approximated discrete function can be reconstructed

from its Fourier coefficients {f̂n}0≤n≤N−1, such that one can has:

fj = f(xj) =
N−1∑
n=0

f̂ne
iknxj , j = 0, ..., N − 1

with f̂n = f̂(kn) =
1

L

∫ L

0

f(x)e−iknxdx (F.11)

where kn is the discrete wave number and xj the discrete j-th position in the real

space at which fj is sampled. Values of the discrete wave numbers kn should be

chosen such that the Fourier coefficients satisfy the periodicity conditions and should

be equally spaced. The following choice satisfies both these conditions:

kn =
2πn

Nδ
, n = 0, ..., N − 1 (F.12)

where ω = 2π
L

= 2π
Nδ

is the pulsation associated with a L-periodic function. Using the

definitions given in (F.10) and (F.12), the discrete transformation expressed in (F.11)

writes:

f(xj) = fj =
N−1∑
n=0

f̂ne
i 2πn
Nδ

δj =
N−1∑
n=0

f̂ne
i 2πjn
N , j = 0, ..., N − 1 (F.13)
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In order to reconstruct the discrete function f , the N Fourier coefficients {f̂n}0≤n≤N−1

in (F.13) need to be computed. These coefficients define the spectral representation

of function f in the frequency domain. Numerically, as opposed to their continuous

formulation given in (F.11), the discrete Fourier coefficients f̂n are obtained from the

sampled values {fj}0≤j≤N−1 through the discrete Fourier transform (DFT). Given

that N sampled values fi are known, it cannot be expected to obtain more than N

independent output values f̂n. More importantly, from the fundamental sampling

theorem, there exists a special frequency ξc = 1
2δ

associated to any sampling interval

δ. This frequency is called the Nyquist frequency and the spectral representation of

f is said to be not aliased only within the frequency interval [−ξc, ξc]. Therefore, to

avoid aliasing and ensure that the function can be entirely recovered without loss of

information, the N discrete values f̂n are solely estimated in the range [−ξc, ξc], i.e.

at discrete frequencies:

ξn =
n

Nδ
, n = −N

2
, ...,

N

2
(F.14)

for which the extremes values at n = −N/2 and n = N/2 corresponds to the Nyquist

frequencies −ξc and ξc, respectively. Note that equation (F.14) provides a set of

N + 1 frequencies, but since the extreme values produce identical spectral coefficients

by periodicity, only N independent values are obtained. If we associate each frequency

ξn with its wave number kn given in (F.12), the discrete formulation in (F.11), i.e. the

Discrete Fourier Transform (DFT) of f – to obtain the discrete Fourier coefficients

{f̂n}0≤n≤N−1 – writes:

f̂n = f̂(kn) =
1

L

∫ L

0

f(x)e−iknxdx

=
1

L

N−1∑
j=0

f(xj)e
−iknxjδ =

1

N

N−1∑
j=0

fje
−i 2πjn

N (F.15)
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To summarize, the discrete Fourier coefficients {f̂n}0≤n≤N−1 of any discrete function

f sampled at N evenly spaced grid points can be obtained from the sampled values

{fj}0≤j≤N−1 through the direct DFT expressed in (F.15) as:

f̂n =
1

N

N−1∑
j=0

fje
−i 2πjn

N , n = 0, ..., N − 1 (F.16)

where the Fourier coefficients {f̂n}0≤n≤N−1 define the discrete spectral representation

of the discrete function f in the frequency domain. Conversely, from its N Fourier

coefficients, the values fj = f(xj) of any discrete function f can be accurately recov-

ered at its N grid sampled positions xj through the inverse DFT defined in expression

(F.13) as:

fj =
N−1∑
n=0

f̂ne
i 2πjn
N , j = 0, ..., N − 1 (F.17)

Naturally, by relating the DFT and the inverse DFT to the spectral accuracy of

the Fourier series, it appears that increasing the number of sampling values N leads

to an increase of resolution and accuracy in the discrete Fourier representation and

consequently in the reconstruction from the discrete Fourier coefficients. Also, one

can notice from expressions (F.16) and (F.17) that the complete determination of the

discrete Fourier transforms in their fundamental form each initially requires O(N2)

calculations.

Fortunately, the Fourier transforms are not limited to one-dimensional functions,

and can be easily extended to higher dimensions. For instance, the Fourier transform

(and its inverse) of any complex function f = f(~x) defined over the three-dimensional

Cartesian space R3 with coordinates ~x = {xi}i=1,3 can be extended from expressions

(F.8) and (F.9) so as to write:
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f̂(~ξ) =

∫∫∫ +∞

−∞
f(~x)e−i

~ξ·~xd~x

f(~x) =
1

(2π)3

∫∫∫ +∞

−∞
f̂(~ξ)ei

~ξ·~xd~ξ (F.18)

where ~ξ = {ξi}i=1,3 denotes the frequency in the Fourier space and ~ξ · ~x = ξixi is

the dot product between frequency and spatial coordinates ~ξ and ~x using indicial

notation. Such three-dimensional definitions are those used in relations (3.17) when

introducing spectral methods for continuum mechanics in Section 3.3. Essentially, the

three-dimensional Fourier transforms expressed in equations (F.18) can be regarded

as one-dimensional Fourier transforms sequentially taken on each dimension.

For any periodic numerical simulation performed in 3D such as in DDD-FFT

simulations, the primary volume V = L1 × L2 × L3 can be discretized into Ni voxels

in each i-th spatial direction, leading to the determination of a 3D grid of N =

N1×N2×N3 points {~x} in the Cartesian real space. Following the definition in (F.18)

and the DFT expression in (F.16), the direct 3D DFT of any Li-periodic discrete

function f = f(x1, x2, x3) evenly sampled in all spatial directions i = {1, ..., 3} with

intervals δi = Li/Ni is computed as:

f̂npq =
1

N1N2N3

N1−1∑
i=0

N2−1∑
j=0

N3−1∑
k=0

f(~xijk)e
−i(~knpq ·~xijk), n, p, q = 0, ..., N1,2,3 − 1 (F.19)

where~knpq =
(

2πn
N1δ1

, 2πp
N2δ2

, 2πq
N3δ3

)
is the 3D discrete wave number and ~xijk = (δ1i, δ2j, δ3k)

is the spatial position at which function f is sampled. By denoting f(~xijk) = fijk

and using the definitions of ~knpq and ~xijk, the 3D DFT of f can be written as:

f̂npq =
1

N

N1−1∑
i=0

N2−1∑
j=0

N3−1∑
k=0

fijke
−i2π

(
in
N1

+ jp
N2

+ kq
N3

)
, n, p, q = 0, ..., N1,2,3 − 1 (F.20)

and following equation (F.17), the inverse DFT of f is given as:
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fijk =

N1−1∑
n=0

N2−1∑
p=0

N3−1∑
q=0

f̂npqe
−i2π

(
in
N1

+ jp
N2

+ kq
N3

)
, i, j, k = 0, ..., N1,2,3 − 1 (F.21)

Note that 3D DFTs given in equations (F.20) and (F.21) can be computed using the

FFT algorithm. Practically, the transforms are obtained by sequentially applying the

one-dimensional FFT algorithm to the three spatial dimensions of f .

F.4 FFT algorithm: Fast Fourier Transforms

As presented in the previous section, the determination of the DFT (or its inverse)

of a function is basically a O(N2) process according to their definitions in (F.16)

and (F.17), or in (F.20) and (F.21) for their three-dimensional extensions. However,

Fourier-based methods would probably not have received that much attention and

being so widely employed if the computation of DFT would have practically required

O(N2) calculations. As a matter of fact, in 1965, James Cooley and John Tukey

proposed a fast algorithm to compute the DFT of a function, taking advantage of the

recursivity appearing between the different spectral coefficients – which was already

spotted by Danielson and Lanczos in 1942 – and coupling it with a numerical scheme

based on the divide-and-conquer technique [51]. Incidentally, it was later discovered

that this algorithm has already been devised by Gauss in 1805. With this fast algo-

rithm, commonly known as the Fast Fourier Transform (FFT) algorithm, the number

of computations required to obtain the DFT (or its inverse) falls to O(N logN).

Obviously, for large values of N , the difference between N logN and N2 rapidly be-

comes considerable, hence the phenomenal success of numerical Fourier-based meth-

ods. However, the only limitation is that, to enjoy such theoretical performances, the

choice of N should be restricted to power of 2 (e.g. N = 64, 128, 256, 512, ...). If not

the case, the performance of the algorithm drastically departs from the O(N logN)

complexity.
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APPENDIX G

SUPPLEMENTARY MATERIAL FOR THE DDD-FFT

APPROACH

G.1 Removal of the Gibbs oscillations

One of the main numerical difficulties associated with FFT-based spectral meth-

ods is the apparition of spurious oscillations in the computed solution fields. This

phenomenon occurs in taking Fourier transforms of discontinuous fields, and is for

instance illustrated in figure 3.5(b) in the context of this work. In the DDD-FFT

approach, the undesirable Gibbs effect arises because of the discontinuities in the

plastic strain field induced by dislocation motion – the glide of a dislocation segment

produces a jump in the displacement field across its slip plane, see Section 2.2.

For instance, when a single dislocation loop is introduced in the simulation vol-

ume, the plastic strain in the volume presents a delta-function like distribution. Thus,

for the configuration illustrated in figure 3.4(a), the value of the plastic strain along

a y-line taken at height z = L/2 on slice (100) at position x = L/2, is 0 everywhere,

except at position y = L/2 where its value is related to the area swept by the loop

during its introduction in the simulation volume. Naturally, interpolating such delta

distribution with a finite set of sinusoidal functions – such as done when computing

the Fourier coefficients via the FFT algorithm – leads to the apparition of spurious

oscillations in the areas surrounding the discontinuities, that further spread to the

region of smoothness when computing the inverse discrete Fourier transforms. Con-

sequently, oscillations arise in the resulting stress calculation leading to a global loss

of accuracy.
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In order to tackle this undesirable effect pertaining to spectral methods in gen-

eral, several techniques have been proposed. In signal processing where the FFT is

extensively used, low-pass filters on the discrete spectral signal are generally used in

order to attenuate the numerical oscillations carried out by high frequencies. Fol-

lowing this, exponential filters have for instance been used in the spectral method

developed in [75] to solve for the dislocation density transport equation. Alterna-

tively, an approach a based on a numerical spreading was proposed in the work of

Brenner et al. [26]. In their two-dimensional implementation of static field dislo-

cation mechanics, the authors proposed to spread any dislocation density α defined

at a pixel across its neighboring pixels and studied the effect of different distribu-

tion schemes. The authors reported that spreading the core of a dislocation over

3 × 3 pixels using a triangular distribution was sufficient to strongly attenuate the

oscillations produced from the Gibbs phenomenon. As another approach, the use

of discrete gradient operators in the Fourier space has provided an efficient manner

to attenuate the oscillations. In this approach, the continuous derivatives taken in

the Fourier space are replaced by discrete operators derived from finite difference

schemes. Thus, Berbenni and co-workers used discrete gradient operators based on

the centered-scheme in their implementation of the two-dimensional static field g-

disclinations mechanics [20]. Note also that very recently, Willot proposed a novel

discrete operator based on a rotational scheme allowing to substantially accelerate

the convergence of iterative spectral methods [258] while reducing the oscillations.

Interestingly, in developing the DDD-FFT method, it appears that the efficiency of

the different methods to attenuate the Gibbs oscillations cannot be assessed from a

general perspective, but strongly depends on the formulation of the specific problem

to which it is applied. Therefore, while the discrete gradient approach based on the

centered-scheme is seen to perform very well when solving the Poisson equation in

two dimensions, it is seen to completely fail when applied to the DDD-FFT method.
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In this work, several numerical techniques to attenuate the Gibbs oscillations have

been investigated. First, the implementation of the numerical spreading technique

used in the homogeneous FFT formulation and whose effects are studied in Section

3.4.2 is detailed in Appendix G.1.1. Then, the discrete gradient operators approach

and their results are discussed in Appendix G.1.2. Finally, the effects of the discrete

gradients on the convergence of the heterogeneous iterative schemes are examined in

Appendix G.2.

G.1.1 Numerical spreading

Following the work of Brenner and co-workers [26], a similar numerical spreading

of the plastic strain with a three-dimensional triangular distribution over 3 × 3 × 3

voxels has been implemented to the DDD-FFT code. Practically, the plastic shear

computed at each grid point from the numerical regularization in equations (3.5)

to (3.8) (for which an analytical alternative procedure is developed in Section 3.6) is

distributed over the 27 neighboring voxels using a triangular distribution. As depicted

in figure G.1(a), the 27 neighboring voxels of each grid point can be classified into

four sets of voxels as a function of their distance to the center point, such that the

ensemble comprises 1 center voxel, 6 face center voxels, 12 edge voxels and 8 corner

voxels. Thus, a triangular distribution around the center point consists in affecting

the following weights to the different sets: w to the center voxel, w/n to a face center

voxel, w/n2 to an edge voxel, and w/n3 to a corner voxel, where n is the spread

parameter of the distribution. To ensure that the plastic shear transferred to the

mesh remains valid, the total weight W of the distribution must respect:

W =
∑
i

niwi = w +
6w

n
+

12w

n2
+

8w

n3
= 1 (G.1)

where coefficients ni and wi denote the number of voxels and the weigth associated

to each set of voxels i. To select the best distribution, the effect of the spreading for
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(b)

value of n value of w = w1

n = 1 w = 1/27 ≈ 0.037
n = 2 w = 1/8 = 0.125
n = 3 w = 27/125 = 0.216
n = 4 w = 8/27 ≈ 0.296

Figure G.1: (a) Classification of the different sets of voxels in an ensemble of 27
neighbors surrounding the center voxel. (b) Values of the weight w for the different
tested values of the spreading parameter n. Here w = w1 refers to the weight of
the center voxel. The weights of the other sets of voxels are calculated using the
quantities given in equation (G.1).

different values of n has been tested. The different values of n and their resulting

weight w are given in table G.1(b). Logically, the smaller n, the smoother the distri-

bution. In contrast, the removal of the numerical spreading is theoretically recovered

for n → ∞, i.e. for w → 1. From the results (not reported here), it is seen that for

the value n = 1, the spread is too important in that it produces a smearing out of

the dislocation core. As a result, the oscillations disappear, but the description of

the stress field in the vicinity of the core departs from the analytical solution. On

the opposite, choosing a value of n = 4 does not produce a sufficient spread so that

the oscillations are not fully removed. However, it appears that the spread for n = 2

offers a satisfactory compromise: the description of the dislocation core remains ac-

curate while the oscillations become imperceptible. Besides, despite the fact that a

two-dimensional setting was used, the triangular distribution used in [26] was tacitly

based on this choice of parameter. Note however that other types of distributions

could be considered. Ideally, the best achievable distribution would be that which

ensures consistency with the non-singular formulation of Cai et al. [35] that is used to

compute local interactions, so as to prevent any double counting to occur [100]. Such

approach was for instance suggested, although in a different context, in the work of
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Liu and al. [155]. Nevertheless, for the sake of simplicity, a numerical spreading with

parameter n = 2 is chosen in this work.

G.1.2 Discrete gradient operators

In this section, the effect of the discrete gradients operators presented in Section

3.5.3.2 on the resulting stress field of a static dislocation in an homogeneous medium

is assessed. To this end, the setting used in Section 3.4.2.1 and depicted in figure 3.4

is reused and results are given for a (yz) slice at x = L/2 made of N ×N pixels. The

dislocation loop with unit Burgers ~b in the y-direction is similarly introduced using a

Volterra-like process in the middle of the simulation volume of size V = 1×1×1. The

medium is chosen as elastically isotropic with Lamé constants λ1 = 0.4 and µ1 = 0.6

and no load is prescribed, i.e. the average imposed strain is set to E = 0.

Results for the σ23 stress component for a resolution of 64 × 64 pixels on the

(yz) slice are presented in figure G.2. When using the continuous gradient operator

(3.89), Gibbs oscillations appear. Here, the numerical spreading technique employed

in Section 3.4.2.1 is not used in order to solely test for the effect of discrete gradi-

ent operators alone. As already explained in details, these oscillations result from

the spectral representation of the discontinuous (delta-like) plastic strain field distri-

bution produced by the dislocation loop. Interestingly, it is seen that the centered

scheme (C) using discrete operator (3.83) leads to a disastrous propagation of these

oscillations through the entire volume. Such observation seems all the more sur-

prising that the centered scheme has been reported to be particularly efficient to

remove oscillations in the context of static field dislocation mechanics [20]. Beyond

any mathematical and numerical considerations, this result highlights the importance

in selecting the appropriate strategy in accordance with the specific problem when

dealing with spectral approaches.

Conversely, the backward (W) and rotational (R) discrete schemes allow for a
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(a) Continuous gradient (b) Centered scheme (C)

(c) Backward scheme (W) (d) Rotational scheme (R)

Figure G.2: Effect of the different discrete gradient schemes on the σ23 stress com-
ponent produced by a static prismatic dipole in an homogeneous isotropic elastic
medium for a resolution of 64 × 64 pixels on the (yz) slice. (a) When using the
continuous gradient operator, Gibbs oscillations are produced as a result of the delta
function-like distribution of the plastic strain field. (b) With the centered scheme
(C), the oscillations widely propagate through the whole domain. In (c) and (d), the
oscillations are removed with schemes (W) and (R), but the description of the core
is different for both schemes.

removal of all spurious fluctuations by producing smooth stress fields within the

volume. However, a difference between both schemes is spotted in the vicinity of the

dislocation core. This difference is highlighted in figure G.3 where the evolution of the

stress is plotted along a y-line passing through the core of the dislocation. As shown,

the rotational scheme (R) produces a clean profile in which the staircase evolution of

the continuous operator is entirely smoothed out. Alternatively, the backward scheme

(W) exhibits a slight loss of accuracy in the vicinity of the core as attested by the
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Figure G.3: Evolution of the σ23 stress component produced by a prismatic dislo-
cation loop for a resolution of 128 × 128 pixels on the (yz) slice. The evolution is
plotted along the red y-line passing through the core of the dislocation as shown in
the inset. While the rotational scheme (R) produces a smooth and accurate profile
in which all oscillations have been removed, the backward scheme (W) suffers from a
slight loss of accuracy in the immediate vicinity of the core whose position has been
slightly translated due to its unsymmetrical definition.

lower maximum magnitude that is obtained. Also, by looking closely at figure G.3,

it appears that its unsymmetrical definition (see equation (3.86)) leads to a small

translation of the actual position dislocation of the dislocation core.

In figure G.4, the results for the σyz stress component on the (yz) slice are reported

for a finer resolution of 512×512 pixels. Globally, the conclusions are similar than that

drawn for a resolution of 64×64 pixels, and the oscillations produced by the centered

scheme (C) are still preventing the use of this approach. Furthermore, it becomes

apparent than the Gibbs oscillations naturally fade with increasing resolution, and,

consequently, it is expected that the different schemes will eventually converge as

N →∞, where N is the number of pixels.

From these observations, it appears that the numerical spreading introduced in

Section 3.4.2.1 and employed in the homogeneous DDD-FFT formulation can be

replaced by the use of the discrete operators (W) or (R) defined in equations (3.85)

and (3.87), respectively, or both can techniques be combined so as to simultaneously

ensure that spurious oscillations are removed while preserving a mean to control the
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(a) Continuous gradient (b) Centered scheme (C)

(c) Backward scheme (W) (d) Rotational scheme (R)

Figure G.4: Effect of the different discrete gradient schemes on the σ23 stress com-
ponent produced by a static prismatic dipole in an homogeneous isotropic elastic
medium for a resolution of 512× 512 pixels on the (yz) slice. Conclusions are similar
than that drawn for a resolution of 64× 64 pixels, although the increase in resolution
naturally induces an increase in accuracy and an attenuation of the Gibbs oscillations
in (a).

width of the dislocation core via the selection of the spreading distribution.

G.2 Validation and comparison of the heterogeneous schemes

In this section, the accuracy and convergence rate of the different schemes presented

in Section 3.5.3 are compared in the context of the DDD-FFT framework. To ease the

comparison with existing results, the following results are given for a two-dimensional

setting. Given that, to the author’s knowledge, no analytical solution exits for an
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elasto-plastic problem in heterogeneous elasticity, the heterogeneous DDD-FFT ap-

proach will be assessed here for elastic problems, i.e. when no dislocations are present

in the medium. The presence and effects of dislocations in heterogeneous elastic me-

dia will be investigated in Section 5.2 to study the interactions between dislocations

and phases or precipitates.

To validate the implementation of the heterogeneous DDD-FFT approach and

that of the different iterative schemes presented in the previous section (for which full

details are given in Section 3.6.3), the results produced by Willot in reference [258]

where the different discrete gradient operators are compared are first reproduced.

To this end, the setting depicted in figure G.5(a) is used: a square inclusion with

elastic constants λ2 and µ2 is embedded at the top-right corner of a matrix with

elastic constants λ1 = 0.4 and µ1 = 0.6 and of size L × L. In this configuration,

the setting is linear elastic and no dislocation is present in the domain. To simulate

the deformation, an average pure shear Eij = 1/2(δi1δj2 + δi2δj1) is imposed to the

periodic medium. The medium size is set to L = 1 and the contrast between the

inclusion and the matrix defined as

K =
λ2

λ1
=
µ2

µ1
(G.2)

is first varied between values of K = 1 and K = 103, i.e. for stiff inclusions.

The case K = 1 corresponds to an elastic homogeneous medium. In this case, all

schemes are converging to an uniform elastic response in a single step. Although not

fundamental, this result ensures that the heterogeneous DDD-FFT formulation can

be regarded as a general framework to which homogeneous elasticity is a special case.

The analytical result of the σyz component for a contrast of K = 103 is provided in

figure G.5(b). As no analytical solution for this specific problem has been found in

the literature, the solution corresponds to that consistently obtained with the (W)

and the (R) gradient operators at convergence for a precision εtol = 10−4, for which
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Figure G.5: Setting used for investigating the accuracy of local responses and the
convergence rate associated with the different discrete gradient operations and iter-
ative schemes. (a) A sharp white square inclusion (2) is embedded at the top-right
corner of a gray matrix (1) of size L × L. The red domain of size Ω = 2

25
L × 2

25
L

centered in the medium delineates the region on which an emphasis on the results
will be placed. (b) Analytical solution for the σyz stress component over the entire
medium for a contrast K = 103. This solution is given as the consistent convergent
solution obtained with the (W) and (R) gradient operators for a 512×512 resolution.

the convergence is reached when:

‖εi+1 − εi‖ ≤ εtol (G.3)

where εi+1 denotes the full strain vector of length 3N2
pix composed of rows of the

spatial components of ε for each pixel at iteration i+ 1, where Npix is the number of

pixels in each direction. Further, the solution in figure G.5(b) is given for a resolution

of 512×512 pixels and is in perfect agreement with that obtained in the work of Willot

[258], thereby validating the current implementation. As depicted, and unsurprisingly,

the most severe stress concentrations arise at the corners of the inclusion (recall that

the medium is periodically repeated in the y and z directions). For this reason the

analysis of the accuracy of the local responses of the different schemes is performed

in the following for a subdomain Ω = 2
25
L× 2

25
L centered around the lower-left corner

of the inclusion, as delineated in figure G.5(a).
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(a) Continuous gradient (b) Centered scheme (C)

(c) Backward scheme (W) (d) Rotational scheme (R)

Figure G.6: Effect of the different discrete gradient schemes on the σyz stress compo-
nent produced by a square inclusion using isotropic elasticity for a contrast K = 103

and a resolution of 512× 512 pixels. The reported results are obtained after conver-
gence is reached for each scheme (i.e. not after the same number of iterations) and for
a precision εtol = 10−4. The continuous gradient operator suffers from Gibbs oscilla-
tions while the centered scheme (C) exhibits a downgraded resolution. No oscillations
are present when using discrete schemes (W) or (R). While the backward scheme (W)
produces a sharp stress distribution at the corner, the latter is more diffuse with the
rotational scheme (R).

The results on Ω for the continuous gradient and the three discrete gradient oper-

ators are reported in figure G.6 for a grid made of 512× 512 pixels total and for the

same contrast K = 103. The results reported in this figure are given after convergence

has been reached for each different case. Therefore, they do not correspond to the

results obtained after the same number of iterations, but those obtained when the

precision defined in (G.3) is set to εtol = 10−4. In case of the continuous gradient
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operator, Gibbs oscillations arise along the boundary of the inclusion and the stress

state around the corner tip seems muddled. When using the centered scheme (C),

it is not evident if the oscillations are removed as the resolution appears as blurred

and downgraded outside of the vicinity of the inclusion tip. Conversely, the backward

(W) and rotational (R) schemes provide smooth and clean stress fields. However,

both schemes exhibit different stress distribution profiles at the corner tip: while the

backward (W) method produces a sharp stress distribution with important gradients

between neighboring pixels, the rotational scheme provides a narrower but smoother

stress distribution.

Up until this point, the effect of the different gradient operators has been solely

assessed in terms of accuracy in the local fields. However, their impact on the conver-

gence rate of the implicit schemes has not been investigated. As presented earlier, the

iterative methods considered in this work are the basic and the accelerated schemes,

whose formulations are respectively given in equations (3.74) and (3.77), and the

conjugate-gradient method formulated in (3.79). The number of iterations N required

to achieve convergence with the different iterative and discrete gradient schemes for a

precision εtol = 10−4 are reported in table G.1. The results are given for a resolution

of 128×128 pixels and for contrasts of K = 2, 10, 102, and 103. Clearly, the contrast is

the most important factor on the number of iterations. Thus, for K = 2, six to eight

iterations are expected for every scheme, and, apart from removing the oscillations,

the effect of the iterative and discrete gradient operators on the convergence rate re-

mains limited. However, as the contrast increases to large values, the efficiency of the

discrete schemes becomes obvious as they substantially accelerate the convergence.

Besides, the use of the conjugate-gradient scheme consistently allows for the fastest

convergence, and the accelerated scheme shows superior efficiency with respect to the

basic scheme.
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Table G.1: Effect of the different iterative and gradient operators schemes on the
number of iterations N to reach convergence for a precision εtol = 10−4 and for
different contrasts K between the matrix and the upper-right inclusion. Values are
reported for a resolution of 128× 128 pixels.

Iterative scheme Gradient operator K = 2 K = 10 K = 100 K = 1000

basic continuous 8 34 281 2303
accelerated continuous 8 17 101 587
conjugate gradient continuous 6 14 42 107
basic centered (C) 8 30 88 112
accelerated centered (C) 8 17 39 49
conjugate gradient centered (C) 7 15 24 28
basic backward (W) 8 31 107 147
accelerated backward (W) 8 17 49 67
conjugate gradient backward (W) 7 14 26 30
basic rotational (R) 8 25 47 51
accelerated rotational (R) 8 17 24 25
conjugate gradient rotational (R) 6 9 10 10

For the sake of direct comparison, the resulting stress state for a contrast of

K = 103 when using the continuous gradient with (a) the basic scheme and (b)

the accelerated scheme is plotted in figure G.7 after 100 iterations. The difference

between the convergence rates of both schemes distinctively appears: while the stress

obtained with the accelerated scheme strongly resembles its state at convergence (see

figure G.6(a)), that provided by the basic scheme, particularly in the inclusion domain,

is far from providing a satisfactory approximation and exhibits very high gradients

between neighboring pixels. In contrast, convergence is practically established at this

stage with the conjugate-gradient method (107 iterations are required). In addition

to its superior efficiency, the conjugate-gradient method is also shown to be nearly

insensitive to the choice of the reference medium. Note that the biconjugate gradient

stabilized method has been tested in this work, and, although it allows for a decrease

in the number of iterations with respect to the standard conjugate gradient technique,

it eventually leads to an overall increase in the computational cost (four FFTs need

to be performed per iteration when only two are required in the standard conjugate

392



(a) basic scheme (b) accelerated scheme

Figure G.7: Effect of the different iterative schemes on the convergence of the σyz
stress component produced by a square inclusion using isotropic elasticity for a res-
olution of 512 × 512 pixels. The results presented here are those obtained after
100 iterations when using the continuous gradient operator (3.89) with (a) the basic
scheme (3.74) and (b) the accelerated scheme (3.77).

gradient). Further, it is interesting to notice that, although the convergence criterion

(G.3) is directly linked to the size of the grid, the resolution does not have a great

impact on the convergence rate. For instance, for a resolution of 512×512 pixels, the

number of iterations to convergence is seen to increase by less than 10% on average

with respect to a 128× 128 grid, while the number of pixels is increased by a factor

16.

As another important factor, the precision εtol defined in equation (G.3) plays

a crucial role in controlling the accuracy of the results and governs the number of

iterations to reach convergence. For instance, the effect of the precision has been

tested for a contrast K = 10 and a grid of 128× 128 pixels, for which the results are

reported in table G.2 for εtol = 10−4 and εtol = 10−10. As expected, a lower tolerance

leads to a decrease in the convergence rate for all schemes, and, given that the schemes

are mathematically proven to be convergent for elastic behaviors and finite contrasts

[168], to a better accuracy in the response. Therefore, as with any iterative method,

the efficiency of the heterogeneous approach resides in finding a compromise between

the accuracy and the computational cost. Nevertheless, it must be noticed that from
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Table G.2: Effect of the precision εtol on the number of iterations to convergence
for a contrast K = 10 between the matrix and the upper-right inclusion and for a
resolution of 128× 128 pixels. The results are reported for two values εtol = 10−4 and
εtol = 10−10 of the precision defined in (G.3).

Iterative scheme Gradient operator εtol = 10−4 εtol = 10−10

basic continuous 34 103
accelerated continuous 17 52
conjugate gradient continuous 14 41
basic centered (C) 30 82
accelerated centered (C) 17 39
conjugate gradient centered (C) 15 32
basic backward (W) 31 86
accelerated backward (W) 17 43
conjugate gradient backward (W) 14 33
basic rotational (R) 25 48
accelerated rotational (R) 17 34
conjugate gradient rotational (R) 9 17

a numerical standpoint, choosing a very low tolerance may lead the different schemes

never to reach convergence. As a matter of fact, the number of iterations reported

in this section are those obtained when using the FFTW library, but it has been

observed that the use of others library or FFT algorithms produces different results.

Specifically, convergence cannot be reached for low tolerances with certain libraries,

as the convergence measure (G.3) starts fluctuating around an asymptotic value in

some cases. For this reason, a conservative value of εtol = 10−4 is chosen for the

DDD-FFT approach.

In the following, the case of a porous inclusion K ≤ 1 is investigated. To this

end, the classical problem of a hole in a plate depicted in figure G.8(a) is examined.

Although a direct comparison with the analytical solution for this simple problem

cannot be made – here it must be recalled that the 2D setting neither corresponds to

a plane-stress or plane-strain situation and that PBC are to be accounted for –, the

resulting stress profile still provides a qualitative appreciation of the validity of the

method. In the present setting, the hole of diameter d = L/4 is placed at the center
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Figure G.8: Setting used for investigating the solution of a porous inclusion K ≤ 1.
(a) A circular inclusion (2) of diameter d = L/4 is embedded at the center of a
rectangular plate (1) of side L = 1. (b) Results for the σyy stress component when
the infinite plate is subjected to an uniaxial tension Eyy = 0.5 and for a contrast
K = 10−3. On the right, the σyy component is plotted along the vertical white z-line
delineated on the left figure.

of the plate of size L×L, and the contrast is set to K = 10−3 to simulate the hole as

a porous inclusion. The resulting σyy stress component obtained under an uniaxial

average tension Eyy = 0.5 imposed on the plate is plotted in figure G.8(b). At a first

glance, the resulting stress distribution is very similar to that associated with a hole

in a plate. More precisely, taking a look at the evolution of the σyy along the vertical

z-line passing through the middle at the plate reveals a perfect qualitative agreement

with the analytical solution of a hole in a plate, with a maximum stress concentra-

tion at the edge of the inclusion, and where the stress vanishes inside the inclusion.

Although the maximum stress concentration factor cannot be directly compared with

that of the analytical solution for the reasons mentioned earlier – a value of approxi-

mately 2 is obtained here –, the excellent qualitative agreement validates the current

elastic heterogeneous approach and implementation for porous inclusions and voids.

At this stage, the validity of the DDD-FFT approach to treat dislocations in

homogeneous elasticity has been assessed (see Section 3.4.2) and the effect of the gra-

dient operators on the resulting stress field has been investigated in Appendix G.1.2.

Further, the validity of the solution of elastic problems in heterogeneous media has
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been assessed and the impact of the discrete and iterative schemes on the convergence

rate has been investigated in this section. Consequently, by virtue of the superpo-

sition principle – the plastic strain distribution is considered as a constant input of

the elastic Lippmann-Schwinger problem in the heterogeneous DDD-FFT formula-

tion, see equation (3.73) –, independent validations of the homogeneous elasto-plastic

and heterogeneous elastic formulations demonstrate the validity of the heterogeneous

elasto-plastic DDD-FFT method. Application of the heterogeneous DDD-FFT ap-

proach when accounting for the presence of dislocations in heterogeneous elastic media

will be presented Section 5.2 when investigating the interactions between dislocations

and second-phase particles.

G.3 Analytical regularization implementation

G.3.1 Intersection area calculation using Green’s theorem

As described in Section 3.6.1, a new analytical regularization procedure is introduced

in this work to distribute the plastic shear produced by the glide of a dislocation

segment. As illustrated in figure 3.10, the new procedure requires the calculation

of the area dS ~p
ij defined by the intersection between the quadrilateral sheared area

produced by the glide of dislocation segment ij and the sphere dφ(~p) of radius h/2

centered at grid point ~p. From a purely geometrical perspective, the intersection

between a sphere and a quadrilateral reduces to an in-plane intersection between a

circle – resulting from the intersection between the sphere and the plane containing the

quadrilateral – and the quadrilateral itself. As result, the contour of such intersection

is exclusively composed of a succession of straight segments and arcs, as depicted in

figure 3.10. Following that, dS ~p
ij can be analytically computed by line integration

using Green’s theorem that establishes the relation between a curvilinear integral

carried out along a simple closed contour C and the double integral integral on the

region D delimited par C. Thus, if C+ denotes a positively oriented, piecewise smooth,
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simple closed curve in plane (x, y) that delimits region D, and if P and Q are functions

of (x, y) that have continuous partial derivatives on D, one has:

∮
C+
Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy (G.4)

Of particular interest, this theorem allows for the area calculation A(D) of any

bounded domain D defined by C = ∂D by choosing P and Q that satisfy ∂Q
∂x
− ∂P

∂y
= 1.

For instance, the choice P (x, y) = −y/2 and Q(x, y) = x/2 verifies the latter condi-

tion, and leads to:

A(D) =

∫∫
D
dxdy =

1

2

∮
C+

(−ydx+ xdy) (G.5)

Consequently, surface dS ~p
ij in equation (3.6) can be analytically determined by:

dS ~p
ij =

1

2

∮
C~pij

(−ydx+ xdy) (G.6)

where C~pij denotes the closed contour defined by the intersection between the quadri-

lateral defined by the motion of segment ij and the sphere dφ(~p) centered in grid point

~p, and x and y are the coordinates spanning the contour in the two-dimensional frame

defined in the dislocation glide plane. Notice that equation (G.6) generally holds for

any types of dislocation motion since the swept area produced by the latter is ex-

pected to generate non-intersecting quadrilaterals, thereby generating simple closed

contours C. Here the notion of simplicity refers to the absence of self-intersection.

However, in the case of purely rotational dislocation motion, self-intersecting swept

areas may be generated: in this case, Green’s theorem cannot be applied, but the

resulting cross-quadrilateral can be decomposed into two connected triangles, whose

intersection areas with sphere dφ(~p) can be independently computed using (G.6).

Importantly, as stated in equation (G.4), the contour C~pij must be oriented, i.e. the
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sequence of each portion of the contour delimiting the intersection area must be care-

fully determined and consistently oriented when travelling along the closed curve.

Further, the area is obtained when the contour is positively oriented. This is because

when the contour is negatively oriented, the resulting area is negative. Practically,

to avoid dealing with the difficulty associated with contour orientation, the absolute

value of equation (G.6) is used.

For a closed contour formed of n successive straight segments and arcs, expression

(G.6) can be further decomposed as the summation of individual line integrals (see

figure 3.10(b)):

dS ~p
ij =

∣∣∣∣∣
n∑
k=1

1

2

∮
Ck

(−ydx+ xdy)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

ICk

∣∣∣∣∣ (G.7)

where {Ck}k=1,n denotes the piecewise continuous set of individual curves defining the

entire contour C~pij. As mentioned earlier, the contour delimiting the intersection of

a circle and a quadrilateral (or a triangle for self-intersecting swept areas) is neces-

sarily formed of a set of straight segments and arcs. Therefore, ICk can be computed

analytically. The easiest way to evaluate the line integral in (G.7) probably lies in

rewriting equation (G.4) in vector field notation such that:

∫
Ck
Pdx+Qdy =

∫
Ck

~F · d~s (G.8)

where ~F = (P,Q) and d~s = (dx, dy) is the differential field, such that upon parametriza-

tion of line contour Ck using vector function ~r(t) with parameter t ranging from t0 to

t1, one obtains:

∫
Ck

~F · d~s =

∫ t1

t0

~F (~r(t)) · ~r′(t)dt (G.9)

where vector function ~r′(t) denotes the derivative of function ~r(t) with respect to pa-

rameter t. Following this, it appears convenient to parametrize any straight segment
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Ck defined between vertices (x0, y0) and (x1, y1) with the following vector function:
~r(t) =

(
(x1 − x0)t+ x0, (y1 − y0)t+ y0

)
~r′(t) =

(
x1 − x0, y1 − y0

) 0 ≤ t ≤ 1 (G.10)

Consequently, the line integral IsegCk along this segment can be analytically derived

from equation (G.7) as:

IsegCk =
1

2

∫
Ck

(−ydx+ xdy) =

∫ 1

0

~F (~r(t)) · ~r′(t)dt

=
1

2

∫ 1

0

(−(y1 − y0)t− y0, (x1 − x0)t+ x0) · (x1 − x0, y1 − y0) dt

=
1

2

∫ 1

0

[−(y1 − y0)(x1 − x0)t− y0(x1 − x0)

+ (x1 − x0)(y1 − y0)t+ x0(y1 − y0)] dt

=
1

2
(−y0(x1 − x0) + x0(y1 − y0))

=
1

2
(x0y1 − y0x1) (G.11)

where ~F = (−y/2, x/2). Similarly, for any arc Ck defined as a portion of a circle of

radius r centered in (xc, yc) and delimited by end vertices (x0, y0) at angle θ0 and

(x1, y1) at angle θ1 (assuming θ1 > θ0), the following parametric representation can

be used: 
~r(t) =

(
r cos t+ xc, r sin t+ yc

)
~r′(t) =

(
− r sin t, r cos t

) θ0 ≤ t ≤ θ1 (G.12)

With this, the line integral IarcCk along this arc can be analytically derived from equa-

tion (G.7) as:
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IarcCk =
1

2

∫
Ck

(−ydx+ xdy) =

∫ θ1

θ0

~F (~r(t)) · ~r′(t)dt

=
1

2

∫ θ1

θ0

(−r sin t− yc, r cos t+ xc) · (−r sin t, r cos t) dt

=
1

2

∫ θ1

θ0

[
r2 sin2 t+ ycr sin t+ r2 cos2 t+ xcr cos t

]
dt

=
1

2

[
r2(θ1 − θ0) + xcr(sin θ1 − sin θ0)− ycr(cos θ1 − cos θ0)

]
=

1

2

[
r2(θ1 − θ0) + xc(r sin θ1 + yc − r sin θ0 − yc)− yc(r cos θ1 + xc − r cos θ0 − xc)

]
=

1

2

[
r2(θ1 − θ0) + xc(y1 − y0)− yc(x1 − x0)

]
(G.13)

Thus, expressions (G.11) and (G.13) provide fully analytical solutions to compute the

intersection area dS ~p
ij with equation (G.7), provided the individual pieces {Ck}k=1,n

forming the contour C bounding region dS ~p
ij are determined. The numerical algorithm

developed in this work for the determination of such contour is presented in Appendix

G.3.2

G.3.2 Numerical construction of the contour of the intersection area

The full contour C of the intersection area dS ~p
ij described in Appendix G.3.1 is con-

structed by ordering and joining the quadrilateral vertices and the circle-quadrilateral

intersection points through straight segments and arcs (see figure G.9(a)). Note that

this contour can be directly obtained by using computational geometry libraries such

as CGAL [42]. In the present work however, the following numerical algorithm is

implemented.

Let us consider a dislocation segment ij defined between end nodes i and j mov-

ing from their initial positions ~xi and ~xj at velocities ~vi and ~vj during time dt,

respectively, and gliding on plane P with unit normal ~n. First, the sheared area

produced by the glide of the segment forms a quadrilateral Q defined by vertices

{~P 1, ~P 2, ~P 3, ~P 4} = {~xi,~xj,~xj + ~vjdt,~xi + ~vidt} (see figure 3.10(a)). Second, the
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Figure G.9: Schematic of the intersection between quadrilateral Q defined by the
sheared area produced by the glide of a dislocation segment on a plane P and circle
C of radius reff resulting from the intersection between the sphere dφ(~p) and plane

P . (a) The intersection area dS ~p
ij = area(Q ∩ C) (shaded region) can be analytically

calculated using Green’s theorem (G.7) by following the oriented contour composed

of the straight segments I1P 2, P 2P 3 and P 3I2 and the arc Î2I1 where {~P j}j=1,4

denotes the vertices of Q and {~Ik}k=1,n the n intersection between edges of Q and C
(here n = 2). (b) Arc Î2I1 can possibly be travelled along the positive (+) or the
negative (−) direction. When n = 2, the direction along which it must be travelled
can be determined as that whose middle point, respectively ~m+ and ~m−, lies within
quadrilateral Q. In the present case, ~m+ ∈ Q and the arc should be travelled in the
positive (+) direction.

intersection between the sphere dφ(~p) and the glide plane P results in a circle C of

radius reff =
√
h2/4− d2 centered at ~pn, where ~pn is the orthogonal projection of

~p onto plane P such that ~p − ~pn = d~n. Therefore, as depicted in figure G.9, the

intersection area dS ~p
ij (shaded region) is defined by the area of the region Q∩ C.

As mentioned earlier, the contour of Q ∩ C can be solely composed of straight

segments and arcs. Numerically, its determination can be achieved using the method

described hereafter. First notice that (Q∩ C) ∈ P such that the problem can be

conveniently solved in the two-dimensional space. Let us select a frame (O, x, y) on

plane P in which the coordinates of vertices {~P j}j=1,4 are given by (xj, yj). The first

step to determine the contour of Q∩C consists in sequentially finding the intersections

points {~Ik}k=1,n of coordinates (xij, y
i
j) between the oriented edges {sj}j=1,4 of Q and

the circle C, where sj denotes the segment defined between points ~P j and ~P j+1.

Since each edge sj may either not intersect with circle C, intersect in one point,
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or intersect in two points, the total number of intersections n can take values of

0 ≤ n ≤ 8. Region Q ∩ C is then delimited by sequentially joining the intersection

points {~Ik}k=1,n and the quadrilateral vertices {~P j}j=1,4 through straight segments

and arcs while travelling the entire contour in one given direction. With that, area

dS ~p
ij is computed using expression (G.7), in which straight segments and arcs line

integrals are calculated using equations (G.11) and (G.13), respectively.

The only remaining difficulty lies in the determination of the angle θj − θi (see

equation (G.13)) in the case of arc portions Î iIj, as a circle can always be travelled

along two different paths from coordinates (xij, y
i
j) to (xki , y

k
i ), namely along the pos-

itive (+) or negative (−) direction, i.e. anti-clockwise or clockwise. In other words,

contrary to a segment, the knowledge of the entry point on an arc supported by a

circle does not determine its orientation. This difficulty can easily be tackled in the

case where more than two intersections are detected (i.e. for n > 2): in that case,

the arc defined between two intersection points should be travelled along the path

that does not include any other intersection point ~Ik. If the only detected intersec-

tion points are those defining the arc, the middle point of each possible path can be

tested to choose the path for which the middle point lies inside the quadrilateral Q

(see figure G.9(b)). The latter condition can be checked using a Point-In-Polygon

(PIP) algorithm based on the ray casting approach. Note that in the case where

no intersection between the circle and the quadrilateral are found (i.e. for n = 0),

either the circle is entirely comprised into the quadrilateral, or the quadrilateral is

fully comprised into the circle, or both are well separated. Such configurations can

be easily identified, especially via the use of bounding boxes and PIP techniques.
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G.4 GPU-accelerated implementation

Traditionally, the use of graphics processing units (GPUs) was dedicated to numerical

calculations related to computer graphics, as way to supplement the primary com-

putational capacities of the CPUs. Primary applications include effect rendering in

video and image processing. However, in the recent years, general-purpose computing

on graphics processing units (GP-GPU) has developed out to scientific computing in

various domains such as bioinformatics and molecular biology.

The main advantage of GPU computing is to benefit from the massively paral-

lel architecture offered by the profusion of interconnected processing units in GPUs.

Further, the development of dedicated interfaces and libraries for mathematical cal-

culations such as CUDA provides a convenient solution to accelerate up to orders of

magnitudes any sort of parallelizable computations traditionally handled by CPUs.

In this thesis, a GPU-accelerated version of the DDD-FFT code is developed.

Although several stages of the DDD cycle might benefit from a GPU implementa-

tion, the focus is placed here on developing a GPU implementation of the FFT-based

solver. This choice is dictated by the observation that, in the DDD-FFT approach,

most of the computation time is dedicated to the evaluation of the stress state via the

FFT-based approach. Other stages of the cycle such as local dislocation-dislocation

calculations could as well benefit from a GPU implementation following the proce-

dure developed in [83] – although their overall computational cost is expected to

remain limited when the resolution is chosen adequately –, but, by lack of time, their

implementation would not be considered in this work.

G.4.1 General principles and constraints

The general principle for GPU computing through the use of the CUDA framework is

as follows. First, the fundamental processing flow describing the interaction between

the host (CPU) and the device (GPU) can be summarized by the 4 following steps:
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(1) Copy the main memory to the GPU memory

(2) CPU instructs the process to GPU

(3) GPU executes the process in parallel in each thread

(4) Copy the GPU results back to the main memory

The main difficulty of the GPU implementation lies in the development and design

of the computational processes to be performed on the GPU, i.e. step (3) in the above.

The efficiency of GPU-accelerated calculations essentially stems from a fully parallel

program architecture, which practically involves the implementation of kernels. A

kernel is the equivalent of a function on the CPU, and for the sake of simplicity, can

be regarded as a set of instructions that will be executed on each thread. The total

number of threads available defines the performance of the GPU device (it corresponds

to the total number of logical cores) and corresponds to the maximum simultaneous

parallel calculations the GPU can treat. Threads are further regrouped into blocks,

such that a thread corresponds to the execution of a kernel with a given index.

The design and implementation of kernels are subjected to specific constraints.

First, the kernels can only access the memory of the GPU. Therefore, when performing

calculations on arrays originally defined and populated on the host CPU, these must

be copied to the GPU memory in order to be accessible for the kernels. As CUDA

features a fully shared memory, data will be accessible to every thread. Nonetheless,

when working with large arrays, the sole cost associated with their copies can in

certain cases exceed the total computational cost, and can therefore significantly

impact the performance. Although it can be alleviated by using asynchronous memory

transfers, the cost of the copies, i.e. steps (1) and (4), should not be overlooked in

the evaluation of the overall speed up that can be achieved.

Further, the number of threads per block should be a multiple of the warp size

(32 threads). Although each group can execute different branch of a program, the

performance is not expected to be impacted as long as the load remains balanced
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across each group. However, the use of divergent paths within a group significantly

affects the performance, and should be avoided. For this reason, the usage of if-else

statements (or any other divergent instructions) is usually prohibited in kernels, or

should be coupled with templated kernels dedicated to specific groups. This induces

strong algorithmic constraints so as to ensure that each specific branch of a program

is designed to be executed by a minimum of a multiple of 32 parallel threads.

Finally, other parameters and procedures can greatly influence the performance

of GPU computations (synchronization, double-precision, loop-unrolling, ...) but are

not detailed here. For more information on GPU implementation using CUDA, the

reader is referred to the CUDA documentation [186].

G.4.2 GPU-FFT-solver implementation

The development and implementation of a GPU-accelerated version of the DDD-

FFT code developed in this thesis comprises two principal components. The first

component pertains to the development of an interface between the original Fortran

code and the CUDA kernels, and the second to the implementation of the kernels to

perform the calculations associated with the FFT-based solver in a parallel fashion.

As mentioned in Chapter 2, the DDD code developed in this thesis and on which

the DDD-FFT approach is inserted is written in Fortran 90. This host program,

running on the CPU, will call the GPU kernels to execute the GPU-FFT-solver.

Alternatively, the GPU kernels need to be programmed using CUDA. Practically,

CUDA instructions are coded using CUDA C++, that can be regarded as an over-

loaded version of the C++ language featuring specific additional instructions, and

that need to be compiled with the dedicated CUDA C++ compiler (nvcc). As a

result, an interface between Fortran and C++ is developed to bind the host program

to the GPU kernels.

The general algorithm describing the main stages of the homogeneous DDD-FFT
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cycle is presented in figure 3.14. The use of a GPU-FFT-solver solely consists in

performing the sequence of operations in step (iv) in figure 3.14 on the GPU device. In

the heterogeneous formulation, the operations of step (iv) are replaced by those given

in figures 3.15, 3.16 or 3.17 depending on the numerical scheme. Essentially for both

the homogeneous and heterogeneous approaches, the computational operations to be

performed involve 5 elementary steps, namely (a) the calculation of the polarization

tensor, (b) the direct FFT, (c) the calculation of the strain in the Fourier space, (d)

the inverse FFT, and (e) the calculation of the stress state. For the heterogeneous

formulation, the main difference lies in that those 5 steps are repeatedly calculated in

an outer iterative loop, so that both formulations can share the same implementation.

Devising a parallel strategy for the kernels of the GPU-FFT-solver is a straight-

forward task. This is because, whether in the real space or in the Fourier domain,

the behaviors associated with each voxel are independent from a voxel to another.

Thus, in the real space, the calculation of the polarization tensor (a) and that of the

stress state (e) at a given voxel do not require the knowledge of the state at other

voxels. Similarly, in the Fourier domain, the calculation of the Green’s function at a

given frequency is independent of any other frequencies. Mathematically, this results

from the orthogonality of the Fourier decomposition, and the interactions between

voxels solely pertain to the FFT calculations. As a result, the kernels associated with

elementary steps (a), (c) and (e) can be conveniently implemented such as to process

one voxel per thread. This way, it can be further ensured that these kernels do not

contain any divergent path.

The computation of the FFTs (direct FFT of the polarization tensor (b) and

inverse FFT of the strain tensor (d), see figure 3.14) is performed via the use of the

CUDA native cufft library. The cufft library is a pre-built kernel that computes the

complex FFT of any complex input data. As done in the CPU implementation, the

computation of the FFT of a tensor field is achieved by independently computing the
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FFT on each component, i.e. 6 FFTs for a second-order symmetric tensor field.

Following the above, the solution employed in this work to handle memory in

the most efficient way and avoid costly unnecessary copies is to fragment and copy

the real-valued array {εp(~xd)}d=1,Nvox of size 6Nvox stored on the CPU into 6 real-

valued arrays of size Nvox in the GPU memory, each of them storing a different tensor

component. After the plastic strain array is copied to the GPU at each simulation

step, the computation of the steps (a) to (e) is performed as indicated in the above.

During these computations, intermediate tensor fields are sequentially stored in 6

complex-valued arrays of size Nvox allocated on the GPU. After step (e), the resulting

stress distribution {σ(~xd)}d=1,Nvox is transferred back to the CPU memory.

Apart from the plastic strain distribution {εp(~xd)}d=1,Nvox , the calculations in the

5 elementary steps (a)–(e) require the knowledge of the elastic stiffness tensors C of

every phase. Such data, independent of the microstructure evolution, can be copied

to the GPU memory once at the beginning of each simulation.

In the case of the heterogeneous formulation, a supplementary convergence test

needs to be performed to determine whether the computation of the 5 elementary

steps needs to be repeated in a subsequent iteration to reach convergence (e.g. see

figure 3.15). As defined in equation (3.81), the convergence criterion, that consists

in evaluating the norm of the change in the strain tensor between two consecutive

iterations, is efficiently computed using the reduce kernel of the CUDA thrust library.

The same library is used to performed vector operations in the case of the conjugate-

gradient scheme (see figure 3.17).

Although GPU implementations generally allow for substantial computational ac-

celerations, their performance remains dictated by the specifications the GPU de-

vice(s) that are used. Further, as mentioned earlier, the cost of the memory copy is

generally significant; therefore, it is expected that the GPU-FFT-solver will provide

larger speed-up in the heterogeneous formulation, in which case the overall copy time
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accounts for a smaller portion of the total calculations. Finally, it is to be noted

that, extending Amdahl’s law [3], the overall gain allowed by GPU-implementation is

limited by the fraction of the program executed on GPU. Performance of the GPU-

accelerated version of the DDD-FFT code is assessed in Section 3.7.2.
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Annales Scientifiques de l’Ecole Normale Supérieure, vol. 24, pp. 401–517, 1907.

428



[242] von Blanckenhagen, B., Arst, E., and Gumbsch, P., “Discrete dislo-
cation simulation of plastic deformation in metal thin films,” Acta Materialia,
vol. 52, no. 3, pp. 773–784, 2004.

[243] Wang, H., Wu, P. D., Wang, J., and Tome, C. N., “A crystal plasticity
model for hexagonal close packed (hcp) crystals including twinning and de-
twinning mechanisms,” International Journal of Plasticity, vol. 49, pp. 36–52,
2013.

[244] Wang, H. and Xiang, Y., “An adaptive level set method based on two-
level uniform meshes and its application to dislocation dynamics,” International
Journal for Numerical Methods in Engineering, vol. 94, no. 6, pp. 573–597, 2013.

[245] Wang, J. and Misra, A., “An overview of interface-dominated deformation
mechanisms in metallic multilayers,” Current Opinion in Solid State and Ma-
terials Science, vol. 15, no. 1, pp. 20–28, 2011.

[246] Wang, Y. U., Jin, Y. M., Cuitino, A. M., and Khachaturyan, A. G.,
“Nanoscale phase field microelasticity theory of dislocations: Model and 3d
simulations,” Acta Materialia, vol. 49, no. 10, pp. 1847–1857, 2001.

[247] Wang, Z. Q. and Beyerlein, I. J., “An atomistically-informed dislocation
dynamics model for the plastic anisotropy and tension-compression asymmetry
of bcc metals,” International Journal of Plasticity, vol. 27, no. 10, pp. 1471–
1484, 2011.

[248] Wang, Z. Q., Beyerlein, I. J., and Lesar, R., “Dislocation motion in high
strain-rate deformation,” Philosophical Magazine, vol. 87, no. 16-17, pp. 2263–
2279, 2007.

[249] Wang, Z. Q., Beyerlein, I. J., and LeSar, R., “The importance of cross-
slip in high-rate deformation,” Modelling and Simulation in Materials Science
and Engineering, vol. 15, no. 6, p. 675, 2007.

[250] Wang, Z. Q., Beyerlein, I. J., and LeSar, R., “Plastic anisotropy in fcc
single crystals in high rate deformation,” International Journal of Plasticity,
vol. 25, no. 1, pp. 26–48, 2009.

[251] Wang, Z., Ghoniem, N., Swaminarayan, S., and LeSar, R., “A paral-
lel algorithm for 3d dislocation dynamics,” Journal of Computational Physics,
vol. 219, no. 2, pp. 608–621, 2006.

[252] Weinberger, C. R., Aubry, S., Lee, S. W., Nix, W. D., and Cai, W.,
“Modelling dislocations in a free-standing thin film,” Modelling and Simulation
in Materials Science and Engineering, vol. 17, no. 7, 2009.

429



[253] Weygand, D., Friedman, L. H., van der Giessen, E., and Needleman,
A., “Discrete dislocation modeling in three-dimensional confined volumes,” Ma-
terials Science and Engineering a-Structural Materials Properties Microstruc-
ture and Processing, vol. 309, pp. 420–424, 2001.

[254] Weygand, D., Friedman, L. H., Van der Giessen, E., and Needleman,
A., “Aspects of boundary-value problem solutions with three-dimensional dis-
location dynamics,” Modelling and Simulation in Materials Science and Engi-
neering, vol. 10, no. 4, pp. 437–468, 2002.

[255] Weygand, D., Poignant, M., Gumbsch, P., and Kraft, O., “Three-
dimensional dislocation dynamics simulation of the influence of sample size on
the stress-strain behavior of fcc single-crystalline pillars,” Materials Science and
Engineering a-Structural Materials Properties Microstructure and Processing,
vol. 483-84, pp. 188–190, 2008.

[256] Wickham, L. K., Schwarz, K. W., and Stölken, J. S., “Rules for forest
interactions between dislocations,” Physical Review Letters, vol. 83, no. 22,
pp. 4574–4577, 1999.

[257] Willis, J. R., “Stress fields produced by dislocations in anisotropic media,”
Philosophical Magazine, vol. 21, no. 173, pp. 931–949, 1970.

[258] Willot, F., “Fourier-based schemes for computing the mechanical response
of composites with accurate local fields,” Comptes Rendus Mecanique, vol. 343,
no. 3, pp. 232–245, 2015.

[259] Willot, F., Abdallah, B., and Pellegrini, Y.-P., “Fourier-based schemes
with modified green operator for computing the electrical response of hetero-
geneous media with accurate local fields,” International Journal for Numerical
Methods in Engineering, vol. 98, no. 7, pp. 518–533, 2014.

[260] Wu, C. C., Chung, P. W., Aubry, S., Munday, L. B., and Arsenlis,
A., “The strength of binary junctions in hexagonal close-packed crystals,” Acta
Materialia, vol. 61, no. 9, pp. 3422–3431, 2013.

[261] Wu, X. L., Liao, X. Z., Srinivasan, S. G., Zhou, F., Lavernia, E. J.,
Valiev, R. Z., and Zhu, Y. T., “New deformation twinning mechanism gener-
ates zero macroscopic strain in nanocrystalline metals,” Physical Review Letters,
vol. 100, no. 9, p. 095701, 2008.

[262] Xiang, Y., Cheng, L. T., Srolovitz, D. J., and E, W. N., “A level set
method for dislocation dynamics,” Acta Materialia, vol. 51, no. 18, pp. 5499–
5518, 2003.

[263] Yin, J., Barnett, D. M., Fitzgerald, S. P., and Cai, W., “Computing
dislocation stress fields in anisotropic elastic media using fast multipole expan-
sions,” Modelling and Simulation in Materials Science and Engineering, vol. 20,
no. 4, 2012.

430



[264] Yin, J., Barnett, D. M., and Cai, W., “Efficient computation of forces
on dislocation segments in anisotropic elasticity,” Modelling and Simulation in
Materials Science and Engineering, vol. 18, no. 4, 2010.

[265] Yuasa, M., Masunaga, K., Mabuchi, M., and Chino, Y., “Interaction
mechanisms of screw dislocations with 10(1)over-bar1 and 10(1)over-bar2 twin
boundaries in mg,” Philosophical Magazine, vol. 94, no. 3, pp. 285–305, 2014.

[266] Zbib, H. M., Rhee, M., and Hirth, J. P., “On plastic deformation and the
dynamics of 3d dislocations,” International Journal of Mechanical Sciences,
vol. 40, no. 2-3, pp. 113–127, 1998.
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