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SUMMARY 
 

 

The focus of this dissertation is the development of a fundamental understanding 

of the acoustics and piezoelectric transducer governing the operation of piezoelectric 

inkjets and horn-based ultrasonic atomizers when utilizing high viscosity working fluids.  

This work creates coupled, electro-mechanical analytical models of the acoustic behavior 

of these devices by extending models from the literature which make minimal 

simplifications in the handling terms that account for viscous losses.  Models are created 

for each component of the considered fluid ejectors: piezoelectric transducers, acoustic 

pipes, and acoustic horns.  The acoustic pipe models consider the two limited cases when 

either the acoustic boundary layer or attenuation losses dominate the acoustic field and 

are adapted to account for changes in cross-sectional area present in acoustic horns.  A 

full electro-mechanical analytical model of the fluid ejectors is formed by coupling the 

component models using appropriate boundary conditions. 

The developed electro-mechanical model is applied to understand the acoustic 

response of the fluid cavity alone and when combined with the transducer in horn-based 

ultrasonic atomizers.  An understanding of the individual and combined acoustic response 

of the fluid cavity and piezoelectric transducer allow for an optimal geometry to be 

selected for the ejection of high viscosity working fluids.  The maximum pressure 

gradient magnitude produced by the atomizer is compared to the pressure gradient 

threshold required for fluid ejection predicted by a hydrodynamic scaling analysis.  The 

maximum working fluid viscosity of the standard horn-based ultrasonic atomizer and 

those with dual working fluid combinations, a low viscosity and a high viscosity working 

fluid to minimize viscous dissipation, is established to be on the order of 100mPas. 
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 The developed electro-mechanical model is also applied to understand the 

acoustic response of the fluid cavity and annular piezoelectric transducer in squeeze type 

ejectors with high viscosity working fluids.  The maximum pressure gradient generated 

by the ejector is examined as a function of the principle geometric properties.  The 

maximum pressure gradient magnitude produced by the ejector is again compared to the 

pressure gradient threshold derived from hydrodynamic scaling.  The upper limit on 

working fluid viscosity is established as 100 mPas. 
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CHAPTER 1: INTRODUCTION 
 

 

Since the first practical devices were developed in the 1950’s, inkjet printing with 

fluid ejectors has seen a rapid improvement in performance and diversification in areas of 

application.[5, 6]  Inkjet fluid ejectors are now the preferred means to deposit small 

amounts of fluid due to their excellent controllability over droplet formation, inexpensive 

fabrication cost, and conservation of expensive working fluids.  The advantages of inkjet 

printers has motivated the use of the technology in numerous application areas, the most 

familiar being the deposition of ink onto porous surfaces to produce text and images.[5]  

Recent work with inkjets has expanded this to include biotechnology[7-10], drug 

delivery[11-14],   mass spectrometry[15, 16], electronics fabrication [17-20], and 

nanotechnology/materials science [21-23].  Useful reviews regarding the technological 

development of inkjet printing are given by Ford et al. and Wijshoff.[5, 6]   

While inkjet ejectors are growing in popularity and are useful in many specific 

applications, there are challenges associated to applying the technology more generally.  

For example, working fluids which are thermally sensitive and degrade at high 

temperatures cannot be utilized with some inkjet devices due to the necessity of heating 

the working fluid during actuation.[24]  Other limitations on inkjets stem from 

rheological limitations on the working fluid.[25]  Most devices require a high surface 

tension, low viscosity working fluid.  A low surface tension working fluid results in 

weeping of fluid from the fluid cavity aperture.[1]  A large working fluid viscosity damps 

the driving acoustic field and prevents fluid ejection.  While the surface tensions of most 

working fluids vary only slightly, the large variation in working fluid viscosity makes the 
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latter restriction a greater concern.  Moreover, many processes utilize high viscosity 

fluids which would be conducive to inkjet printing, such as additive manufacturing with 

stereolithography resins and biological samples with biogels.[26, 27]    

Previous research has demonstrated the ability of a new category of ultrasonic 

fluid ejector, the horn-based ultrasonic atomizer, to eject working fluids of high 

viscosity.[28]  These devices use resonant operation to produce a large amplitude 

acoustic field to overcome the larger viscous dissipation and shear stresses that occur 

with high viscosity working fluids.  Horn-based ultrasonic atomizers operate typically 

operate between 100 kHz and 5 MHz and utilize acoustic horns to further increase the 

amplitude of the acoustic field near the fluid cavity aperture.  Ejection with working 

fluids as high as 3000 mPas have been experimentally demonstrated.[28]  However, the 

underlying mechanism which permits the ejection of such fluids is not well understood. 

The current research seeks to develop a fundamental understanding of the 

acoustics and piezoelectric transducer coupling underlying the operation of piezoelectric 

inkjets and horn-based ultrasonic atomizers with highly viscous working fluids.  The 

understanding gained by this work can be applied to explore new concepts for 

piezoelectric transducer-driven fluid atomizers to achieve the ejection of high viscosity 

fluids.  In particular, this research develops models for the acoustic behavior of inkjets 

and horn-based ultrasonic atomizers operating with high viscosity working fluids by 

extending models from literature with minimal simplifications in accounting for viscous 

losses. The analytical fluid cavity models consider two limiting cases when either the 

acoustic boundary layer or the attenuation losses dominate acoustic behavior in the cavity 

components.  Furthermore, models of piezoelectric transducers that include losses have 
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been incorporated with the acoustic models to provide a comprehensive electro-

mechanical modeling methodology of the entire device.  This methodology, having been 

validated using analytical and experimental results from the literature, can be applied to 

various micromachined fluid ejectors to understand and optimize their acoustic response 

for use with high viscosity working fluids. 

Chapter 2 provides a detailed discussion of inkjets and horn-based ultrasonic 

atomizers, including their operating principles and common device geometries.  The 

major sources of viscous dissipation resulting from the acoustic boundary layer in the 

presence of a wall and bulk attenuation without a wall are discussed.  Historical efforts at 

understanding the acoustic field in inkjets by a variety of experimental, numerical, and 

analytical approaches are also presented and serve to frame subsequent model 

development. 

A modeling framework for fluid ejectors is introduced in Chapter 3, concentrating 

on modeling the electro-mechanical response of ejectors with viscous dissipation 

included in the acoustic field.  Ejector models are created by considering each device 

component individually – the transducer, the acoustic pipe, and the acoustic horn – and 

coupling components together through appropriate boundary conditions to represent 

ejector physics.  Moreover, scaling relationships that govern the viscous loss mechanisms 

within the fluid cavity are also explored.  The acoustic response predicted by the 

developed analytical models is confirmed by comparison with finite element simulations 

and experimental data from literature.   

Chapter 4 applies the developed analytical model for horn-based ultrasonic 

atomizers to understand the device acoustic response and optimize the device geometry 
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for operation with high viscosity working fluids.  Each component of the atomizer is 

optimized in turn to produce the maximum possible pressure gradient magnitude.  The 

upper limit on the working fluid viscosity able to be ejected by horn-based ultrasonic 

atomizer is established by the use of scaling arguments to create an order of magnitude 

estimate of the pressure gradient required for ejecting fluids of various viscosities.  The 

predicted atomizer performance with physical fluids is also investigated. 

In Chapter 5, potential modifications to the traditional, single fluid horn-based 

ultrasonic atomizer are investigated in an effort to further increase the pressure gradient 

magnitude generated by the device.  The developed component models are utilized to 

examine dual fluid configurations, consisting of both a standard fluid reservoir and a 

secondary acoustic horn.  The performance of each proposed design modification is 

evaluated against configurations loaded with only the high viscosity working fluid and 

the standard, unaltered horn-based ultrasonic atomizer. 

The acoustic response of squeeze type piezoelectric inkjets is examined in 

Chapter 6, with an emphasis on understanding physical devices presented in the 

literature.  The maximum pressure gradient generated by squeeze type ejectors is again 

compared to the required pressure gradient threshold derived from scaling analysis to 

predict the upper limit on fluid viscosity able to be ejected by squeeze ejectors.  Key 

geometric parameters – fluid cavity length, transducer length, capillary radius, and 

transducer thickness – are also investigated for their effect on the maximum pressure 

gradient magnitude created by the ejector.   
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CHAPTER 2: DEVICE BACKGROUND AND MOTIVATION 
 

Atomization, the production of liquid droplets from a large reservoir of fluid, is 

utilized in engineering applications ranging from additive manufacture and drug delivery 

to fuel injection and spray drying.[29]  Atomization of high viscosity liquids is of 

particular concern in many engineering applications.  For example, high viscosity liquids 

are important parts of additive manufacturing and biological material processing where 

the viscosity of the polymer and biogel working fluids can exceed several Pas.[26, 27]  

Atomization of high viscosity fluids has traditionally required special treatments, 

typically either preheating or imparting a large kinetic energy to the working fluid.[30] 

Preheat takes advantage of the inverse relationship between viscosity and temperature 

present in many liquids, increasing the temperature to reduce the viscosity of the 

liquid.[31]  A common use of preheating is in applications such as injection molding of 

plastic polymers.  Atomizers that impart kinetic energy to the working fluid apply a 

sufficiently large amount of energy to overcome the increased viscous dissipation and 

shear stresses in high viscosity liquids.  Common forms are pneumatic atomizers, which 

utilize a coflowing stream of gas, and rotary atomizers, which utilize spinning disks to 

accelerate and disperse the liquid.[32]  Such atomizers are commonly utilized when a 

spray of droplets is required from a jet of liquid.  While these methods atomize highly 

viscous liquids, they are not applicable to all cases where droplets of high viscosity 

liquids are necessary.  Working fluid preheat can damage thermally sensitive liquids, 

while kinetic atomizers lack fine control of droplet size and placement. For wide 

applicability, the following attributes are sought in a potential atomization method for 

high viscosity liquids: 
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 A high degree of control over the timing of droplet creation.  Individual 

droplets must be produced only when necessary for the process into which the 

atomizer is integrated. 

 A high degree of control over the placement of droplets on the substrate.  

Droplets must leave the atomizer in a controlled manner with a predictable 

velocity and impact characteristics on the substrate. 

 Low temperature operation.  Elevated temperatures should not be required to 

reduce working fluid viscosity as the working fluid may degrade. 

Controlled atomization of high viscosity liquids thus poses an ongoing challenge 

requiring new atomization methods.  Inkjet fluid ejectors have a high degree of control 

over atomization but have traditionally lacked to ability to eject working fluids of high 

viscosity.[25]  However, a new form of fluid ejector called horn-based ultrasonic 

atomization has shown the potential to overcome the limitations on working fluid 

viscosity.[28]  This dissertation research addresses the potential of fluid ejectors, and 

horn-based ultrasonic atomizers in particular, to eject high viscosity working fluids in a 

controlled, on-demand fashion. 

2.1 Review of inkjet fluid ejector devices 

Inkjet fluid ejection is an atomization method that has been integrated into many 

processes due to its excellent controllability and uniformity in atomizing low viscosity 

fluids.[33]  Inkjet devices descend from the work of Lord Kelvin and Plateau, who first 

examined the breakup of liquid jets, and Weber, who considered the same behavior in 

viscous jets.[6]  Elmquist of Siemens-Elma introduced the first practical inkjet device in 

1951.  This first device produced a continuous stream of charged droplets that were 
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directed based on an applied voltage.  Further development throughout the 1980s led 

most users to move away from continuous inkjets in favor of drop-on-demand (DOD) 

inkjets that produce single droplets as needed.  Droplet placement with DOD devices is 

not only more easily controlled than continuous inkjets, but DOD devices also 

significantly reduce the amount of working fluid required.[34]  A full history of inkjet 

development is given by Ford et al.[5]  Recent work continues to broaden the 

applications of inkjets; printing of biological tissues/samples, fabrication of electronics, 

and additive manufacturing have all been recent areas in which inkjets have been 

applied.[25, 35-37] 

Fluid ejection from inkjet fluid ejectors is governed by the same physical 

processes regardless of actuation method and device geometry.[25]  Inkjets confine a 

quantity of the working fluid targeted for ejection in a chamber to form a fluid cavity.  A 

small aperture connects the fluid chamber to the ambient environment and provides a 

means for fluid to be ejected from the fluid cavity.  Inkjets operate by producing a small 

displacement wave at a fluid cavity wall which travels from the wall to the fluid cavity 

aperture.  Fluid is ejected from the aperture when a sufficiently large displacement occurs 

at the aperture following wave propagation.  The amount of fluid ejected, as well as 

whether ejection takes place in a continuous jet or drop-on-demand (DOD) fashion, are 

determined by the geometry and operating parameters of the ejector. 

Inkjets are can be broadly divided into classes based on the mechanism which 

imposes the displacement on the fluid cavity, the two most common being thermal 

bubbles and piezoelectric transducers.[6, 38]  Thermal inkjets, shown in Figure 2.1, 

impose the displacement on the fluid cavity by heating a small volume of fluid until it 
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vaporizes producing a gas bubble.  As the bubble expands, the imposed displacement 

grows as a function of time.  As the bubble contracts, the imposed displacement shrinks 

and returns to zero.  Two common thermal inkjet geometries are the roof shooter and side 

shooter configuration.  In the roof shooter geometry, the vapor bubble is produced at the 

bottom of the fluid cavity.  As the wave propagates towards the aperture, the 

displacement is focused by the geometry of the ejector.  In the side shooter geometry, the 

vapor bubble is produced and fills a small channel.  The imposed displacement wave 

propagates to the aperture along the small channel without additional concentration from 

the geometry.  Due to the simplicity of these devices, thermal inkjets were the first class 

of inkjets to gain widespread adoption and are used extensively in commercially available 

desktop printers from Hewlett-Packard and Canon.[5, 6, 39, 40]  However, their 

simplicity also restricts their operation.  Due to the need to heat the working fluid, such 

devices can only be utilized with working fluids that are not thermally sensitive and do 

not chemically breakdown at high temperatures.  Also, because the displacement imposed 

on the fluid cavity is dependent on the growth and contraction of the vapor bubble, fine 

control of the imposed displacement waveform and amplitude is difficult. 

 

 
 

 

Figure 2.1: Common thermal inkjets.  Left: Roof shooter geometry. Right: Side shooter 

geometry.[1] 
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As the roles of inkjets has expanded from two-dimensional printing of simple 

working fluids on paper to more complex roles, the restrictions associated with thermal 

inkjets has motivated the development of piezoelectric inkjets.  Piezoelectric inkjets, 

shown in Figure 2.2, impose the displacement on the fluid cavity by the use of an applied 

voltage to a transducer.  By controlling the voltage across the transducer, a displacement 

as a function of time can be imposed on the fluid cavity with fine temporal resolution.  

Moreover, as the working fluid is not directly heated, piezoelectric inkjets can be utilized 

with a wider variety of working fluids.   

Piezoelectric inkjets can be broadly divided into four categories based on their 

geometry and the polarization of the transducer: bending mode top shooter, bending 

mode side shooter, bump mode, and squeeze mode.  The bending mode top and side 

shooter geometries closely mirror the thermal inkjet designs with the vapor bubble 

replaced by the piezoelectric transducer.  The transducer is polarized in the thickness 

direction with the voltage applied across the transducer thickness as well.  The push type 

devices are in the side shooter style, with the transducer polarization and applied voltage 

in the thickness direction, but the displacement in the transverse direction is utilized.  Due 

to their similarities outside of the transducer polarization, bending and push mode 

piezoelectric inkjets are often considered jointly.  Most investigations of these inkjets 

center on the characteristics of the produced droplets and the optimal actuation voltage 

waveform in the particular geometry under investigation by the researcher.  Voltage 

waveforms are studied so as to minimize the displacement of the free surface after the 

ejection of the primary droplet to prevent satellite droplet production, typically by 

experimental methods.[41-44]  Droplets are an area of focus as they are the desired 
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output of the device.[45, 46]  Commercially, Epson is a main producer of bending and 

push piezoelectric ejectors.[47]  Due to the small length scales associated with bending 

and push mode inkjets as compared to the acoustic wavelength at the low operating 

frequencies characteristic of the devices, the pressure induced by the transducer motion 

equilibrates rapidly throughout the fluid cavity which permits a lumped-element 

description of these device types.[6, 38] 

The fourth type of piezoelectric inkjet, the squeeze type, has a cylindrical fluid 

cavity bounded by an annulus of piezoelectric material that deforms radially inward when 

actuated.  As squeeze type devices are typically long axially compared to the acoustic 

wavelength at the actuation frequency, the applied energy propagates as an acoustic 

wave.  As for bending and push mode devices, the primary areas of investigation for the 

squeeze type ejectors remain the driving waveform and the shape of the produced 

droplets as these are the key input and output parameters for a given ejector 

geometry.[48-53]  However,  Bogy and Talke also experimentally examined the acoustic 

field governing the devices, showing that for the optimal duration of the driving pulse, 

the motion of the transducer reinforces the acoustic wave present in the fluid cavity.[2]  

However, the description provided by Bogy and Talke does not generalize to all squeeze 

ejector geometries and did not account for viscous dissipation mechanisms present in the 

fluid cavity.  The various commercial ejectors produced by MicroFab Technologies use 

squeeze type piezoelectric inkjets extensively.[54] 
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Figure 2.2: Common piezoelectric inkjets. Top left: Bending mode top shooter. Top right: 

Bending mode side shooter. Bottom left: Push mode.  Bottom right: Squeeze mode.[1]   

2.3 Horn-based ultrasonic atomizer concept and design 

Resonant ultrasonic atomizers, a type of fluid ejector that produces droplets by 

means of resonant ultrasonic waves, range in form from surface wave atomizers to open 

pool devices.[55-57]  Horn-based ultrasonic atomizers are a subgroup that enclose fluid 

in a cavity and utilize acoustic horns.[3, 58]  These devices are composed of a 

piezoelectric transducer, a fluid reservoir, and a micromachined array of horns as shown 

in Figure 2.3.  When the transducer is driven at one of the resonant frequencies of the 

fluid cavity, a high amplitude standing wave forms within the cavity.  The acoustic horns 

act to increase the volume velocity of the standing wave near the horn aperture, resulting 

in a locally large pressure gradient and an efficient means for fluid ejection. [3] Horn-

based ultrasonic atomizers typically operate in the frequency range between 100 kHz and 

several MHz depending on the dimensions of the fluid cavity which can vary in height 

from few millimeters to hundreds of micrometers. Fluid ejection occurs in either droplet-
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mode or jet-mode as a function of the aperture size, operating frequency, and properties 

of the fluid.[59]  Scalability is achieved by including multiple horns to form an array, the 

use of multiple arrays of horns, or by multiplexed operation of the device.[60]  Horn-

based ultrasonic atomization has been studied in various applications ranging from fuel 

injection to additive manufacturing.[61-63]  Further work also examined effect of droplet 

charging on the behavior of horn-based ultrasonic atomizers for applications in 

electrospray generation.[64]   

2.4 Viscosity limitations on atomization in inkjet fluid ejectors  

 Fluid ejection from current inkjet fluid ejectors is generally limited to working 

fluids which closely match the rheological properties of water, that is low viscosity (1 

mPas) Newtonian fluids with high surface tension (72 mN/m).  Atomization of working 

fluids which differ significantly from water encounter two principle challenges: the 

generation/propagation of the pressure wave within the fluid cavity and the droplet 

formation dynamics at the horn aperture. The former requires that the ejection-driving 

displacement in the form of an acoustic pressure wave propagates from the source 

(transducer) to the fluid cavity aperture while maintaining a sufficiently large intensity to 

expel fluid.[2]  The latter necessitates control of the fluid mechanics at the fluid cavity 

aperture. The pressure field must be repeatable and of sufficient frequency to maintain 

uniformity between ejection cycles at the desired ejection mode, be it jetting or drop-on-

Figure 2.3: Schematic of the horn-based ultrasonic atomizer showing multiple unit cells.  
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demand, while minimizing the production of satellite droplets.[37, 65, 66] Though an 

understanding of fluid mechanics is necessary to fully characterize droplet ejection from 

inkjet fluid ejectors, a prerequisite for fluid ejection is that the focused acoustic wave 

generates a sufficiently large pressure gradient to expel fluid from the aperture.  As such, 

this work focuses on the acoustic field of fluid ejectors with an emphasis on evaluating 

the viscous effects on the acoustics of such devices and developing the guidelines for 

ejectability of high viscosity fluids by them. 

High viscosity fluids rapidly dissipate, i.e. convert to heat, the mechanical energy 

of the propagating wave through two principle mechanisms, bulk attenuation and 

boundary layer losses.  Bulk attenuation results from the shear stress in the propagating 

direction of the wave and occurs in direct proportion to the fluid viscosity.[67]  

Attenuation results in an exponential decay of the acoustic wave amplitude as a function 

of distance from the wave source.[68, 69] The attenuation effect of viscosity is often 

stated in terms of a complex wavenumber using the spatial attenuation coefficient, 𝛼𝑠 

with units of inverse meters, which accounts for both fluid viscous heat generation and 

heat dissipation by conduction and is also typically expressed as a frequency (𝑓) 

independent value, 𝛼𝑠 𝑓2⁄ .  The second means of viscous dissipation in fluid ejectors is 

the acoustic boundary layer.  The acoustic boundary layer is present near device walls 

where the acoustic field must conform the no-slip condition at the wall surface.  The 

boundary layer acts to transfer energy from the acoustic field to thermal energy due to 

tangential shear stress in the boundary layer, thereby reducing the amplitude of the 

acoustic field.[70]   
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For fluids of low viscosity or ejectors with small propagation distances, viscous 

losses from both dissipation mechanisms are insignificant and can be neglected in the 

acoustic analysis.[3]  However, as the fluid viscosity or the propagation distance become 

large, significant decreases in the amplitude of the acoustic field will occur between the 

wave source and ejection point at the cavity aperture. This diminishes the pressure 

gradient magnitude produced by the ejector which is necessary to overcome the increased 

shear stress of high viscosity fluids near the horn aperture which grows linearly with the 

fluid shear stress/viscosity.[71] Thus, ejection of the high viscosity fluid presents a 

double challenge; not only do highly viscous fluids dampen the driving acoustic field but 

such working fluids also increase the required pressure gradient magnitude required for 

fluid ejection.  The upper limit on working fluid viscosity able to be ejected by 

micromachined fluid ejectors is established when the ejector is no longer able to generate 

a sufficiently large amplitude acoustic field to overcome viscous dissipation and produce 

sufficient pressure gradient required for fluid ejection.  The dominant viscous dissipation 

mechanism in any ejector is a function of working fluid properties, the device geometry, 

and the driving frequency.[72] 

2.4.1 Acoustic losses in cylindrical capillaries and horns 

The relatively simple geometries of most fluid ejectors parallel well studied 

standard acoustic components, namely capillaries/tubes and horns.  This permits an 

understanding of the effect of working fluid viscosity on the acoustic field of each 

component.  The acoustic field within tubes has been an intensive area of historical study.  

Kirchoff and Rayleigh were among the first to study the acoustic fields in tubes, 

developing solutions for limiting cases when the acoustic boundary layer was much 
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smaller and much larger compared to the tube radius.[73]  The early twentieth century 

was also an era of significant research with Bogert, Lambert, and Beatty each developing 

analytical solutions for the acoustic field in a capillary under various conditions.[74-76]  

The result of their efforts is a series analytical descriptions for how the acoustic boundary 

layer behaves as a function of working fluid properties and operating frequency of which 

Tijdeman provides a review.[73] When the acoustic boundary layer is large compared to 

the radius of the tube, the axial flow profile reduces to a parabolic profile.  As the 

acoustic boundary layer becomes smaller compared to the tube radius, the flow 

transitions to plug flow with the variation occurring only near the capillary walls.  In this 

region near the wall, the flow reverses direction compared to the flow at the centerline 

during part of the cycle.  As the working fluid viscosity is increased, the amplitude of 

acoustic field in the capillary goes through a maximum as the fluid initially becomes 

more stiff and then falls monotonically with increasing viscosity due to greater viscous 

dissipation.  For most common working fluids (such as glycerol) operating below 1 MHz, 

the losses associated with the acoustic boundary layer will be several orders of magnitude 

greater than that due to bulk attenuation.[70, 72] 

Viscous dissipation within horns is less well understood.  For axisymmetric horns, 

the same physics governing cylindrical capillaries can be applied.  However, this does not 

account for the change in cross-sectional area throughout the horn.  The most common 

method of analyzing the acoustic field in horn structures is by the use of the Webster 

Wave Equation (WWE).[77]  The WWE, first derived by Daniel Bernoulli but attributed 

to Webster, is able to relate the change in cross-sectional area to the change in amplitude 

of an acoustic wave to the first order.[78]  Historically, the WWE has been extensively 
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utilized to understand the acoustic field within horns with numerous researchers 

employing it: Merkulov and Kharitonov to predict changes in amplitude across a horn 

connecting two different sized capillaries; Amza and Drimer to determine the gain of 

various horn structures; Stewart to explain his experimental results for conical horns; Lal 

to predict the wave amplitude in various solid horns; and Donskoy and Cray to form a 

transmission network model for various pipe sections connected together.[79-83]  

However, the WWE does not innately include viscous dissipation, requiring instead the 

use of a complex wavenumber to account for bulk attenuation losses.  Furthermore, this 

method neglects the viscous dissipation associated with the boundary layer which is the 

dominant loss mechanism at low viscosities and frequencies in the presence of solid 

bounding surfaces. Work has also been done on ducts of varying cross-sections more 

generally, but these do not directly examine the effect of the viscosity of the medium on 

wave propagation or extend beyond small working fluid viscosity. [84-88] 

2.4.2 The effect of high viscosity working fluids on ejector behavior 

The influence of working fluid viscosity has been extensively studied in physical 

ejectors.  Liu et al. maintained a fixed driving waveform in glycerol/water mixtures of 

increasing viscosity using a squeeze type ejector, demonstrating that as the working fluid 

viscosity grows the amplitude of the acoustic field declines.[89]  Continued increases in 

working fluid viscosity ceased fluid ejection completely.  Tai et al., Raman et al., and Jo 

et al. each reported a similar result in high viscosity glycerol/water concentrations in 

squeeze ejectors driven at a constant voltage, requiring a larger driving voltage to 

overcome the increase in viscous dissipation.[90-92]  Each of these studies maintained a 

fixed voltage across the piezoelectric transducer below the dielectric breakdown value, 
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preventing them from examining the upper limit on working fluid viscosity able to be 

ejected from the devices.  Jang et al. broaden their analysis to consider numerous working 

fluid mixtures and set the upper limit on working fluid viscosity as 12 mPas.  Their limit 

was due to limited controllability of the ejected fluid and not on an inability to cause fluid 

ejection.[33]  Sun et al. determined the minimum ejection voltage as a function of 

working fluid viscosity, again in glycerol/water mixtures.[93]  At 1 mPas, the reported 

minimum ejection voltage is 20 V which increases minimally at 30 mPas to 30 V.  Above 

30 mPas, the minimum voltage for ejection increases rapidly to 150 V at 90 mPas.  

Extrapolating this curve to greater viscosities yields a driving voltage in excess of the 

dielectric breakdown voltage of the piezoelectric transducer.  Due to the wide variability 

in ejector geometry, material properties, and working fluid properties, the upper limit on 

working fluid viscosity is generally taken to lie at 100 mPas.[6, 25]   

Recent work has shown that horn-based ultrasonic atomizers may have the 

potential to overcome the historical limitation on the working fluid viscosity able to be 

ejected with micromachined fluid ejectors.  Horn-based ultrasonic atomizers have 

experimentally shown the capability to eject high viscosity working fluids, including both 

pure glycerol with 1.4 Pas viscosity and proprietary photopolymer resins with a viscosity 

of 3 Pas.[28]  This was done without external preheat, albeit for only short time periods at 

the higher range of viscosities.[62] Significant heating of the transducer was observed 

when ejecting high viscosity fluids, which may have resulted in heating of the fluid and 

reduction of its viscosity. Fundamentally, operation of horn-based ultrasonic atomizers, 

and inkjets more broadly, with high viscosity fluids and the basic physics governing 
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ejection of such fluids are still not well understood to provide definitive answers on their 

potential and limits for ejection of high viscosity fluids.    

2.5 Previous modeling of fluid ejectors 

The ability of fluid ejectors to eject high viscosity fluids is ultimately determined 

by effective generation and propagation of the acoustic wave in the fluid cavity.  Previous 

efforts to understand the acoustic field present in the fluid cavity of piezoelectric fluid 

ejectors/inkjets have relied on a combination of empirical, numerical, and analytical 

approaches.  The empirical acoustics description most often invoked is that given by 

Bogy and Talke.[2]  By measuring the meniscus displacement in a squeeze type inkjet, 

Bogy and Talke were able to infer the reflection behavior of waves propagating in the 

device fluid cavity as well as to determine the optimal driving pulse duration to amplify 

the meniscus displacement leading to fluid ejection.  A second often cited study of 

acoustic behavior is that of Antohe and Wallace who measured the electrical impedance 

of an inkjet with compliant cavity walls to determine resonance behavior, though they did 

not look explicitly at the acoustic field in the fluid cavity.[94]  Empirical correlations to 

the fluid cavity acoustic properties can provide only limited insight into device behavior 

as the enclosed geometry and small tube diameter restrict one’s ability to obtain detailed 

measurements. Horn-based ultrasonic atomizers have also been studied by experimental 

approaches. Meacham et al. studied the ejection of high viscosity fluids, developing 

empirical jettability criteria based on the plume height observed in the atomization of 

water/glycerol mixtures and a photopolymer resin.[28]  This study clearly demonstrated 

that increasing working fluid viscosity was detrimental to fluid ejectability and eventually 

led to the cessation of ejection.   
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In contrast, numerical modeling permits exploration of the full acoustic field of 

the fluid cavity.  Numerous numerical models of inkjets have been developed; however, 

the focus of most models has been on the characteristics of the ejected droplets rather 

than the acoustics of the fluid cavity.[43, 46, 92, 95]  This is unsurprising as the final 

droplet characteristics are of principal interest in most applications.  An exception to this 

is Pan et al. who simulated the entirety of the fluid cavity but assumes incompressible 

fluid thereby precluding any acoustic effects.[96]  Chen et al. also included the influence 

of acoustics on device behavior and reported the pressure near the aperture.[97]  Wijshoff 

performed the most extensive acoustic modeling for various inkjet geometries using 

finite-element based commercial software ANSYS but reported only limited results for 

each geometry.[6]  Computational work with horn-based ultrasonic atomizers is more 

substantive.  Previous investigations into fluid atomization with horn-based ultrasonic 

atomizers have centered on the device acoustic field and how it varies as a function of 

working fluid properties. Meacham et al. utilized ANSYS to study the acoustic field of a 

horn-based ultrasonic atomizer in the lossless case. [3]  Tsai et al. modeled atomizers in 

single and multiple horn configurations, also with no accounting for acoustic power 

losses.[58]  Percin et al. simulated atomizers driven by annular disks focusing on the 

droplet characteristics.[98, 99]  While useful to understanding acoustic behavior and 

atomization of low viscosity working fluids, the computational tools employed in these 

studies cannot account for losses due to both the acoustic boundary layer and bulk 

attenuation.  Moreover, finite-element based methods are computationally expensive 

which prohibits detailed parametric analyses and extensive optimization. 
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The limitations of numerical and empirical models have motivated the 

development of analytical models for understanding the acoustic behavior of 

piezoelectric droplet generators.  Due to the simplifications necessary to analytically 

solve the governing equations, the available models consider device behavior in limiting 

cases with simplified geometries.  The simplest models assume Hagen-Poiseuille flow to 

predict droplet volumes.[100]  Lumped element and inviscid assumptions have also both 

been utilized to formulate models. [101-103]  Narrow channel acoustics can be utilized in 

geometries with sufficiently small cross-sectional area.[6]  More detailed models also 

exist for squeeze type devices that incorporate losses due to the acoustic boundary 

layer.[72]  Furthermore, the WWE has been utilized to examine the acoustics of 

pipe/horn systems but has not been applied to atomizers.[77-80, 83]  Analytical models 

provide significant advantages over numerical and empirical methods.  First, analytical 

models yield the closed-form solutions to the problem that reveal the combination of 

parameters and scaling relationships that define device acoustic behavior. Additionally, 

analytical models are usually computationally less expensive than numerical models, 

allowing for fast exploration of a large parameter space. These benefits make analytical 

models useful tools for both an in-depth understanding and efficient design optimization 

of ultrasonic fluid ejectors. 

2.6 Concluding remarks on device background 

 This chapter introduced various kinds of fluid ejectors, both piezoelectric inkjets 

and horn-based ultrasonic atomizers, the latter of which has shown the potential to eject 

high viscosity working fluids.  The principle sources of viscous dissipation of wave 

mechanical energy were identified and attributed to the viscous boundary layer in the 

presence of bounding solid surfaces and bulk attenuation far from the walls.  Historical 
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efforts toward understanding the acoustics of fluid ejectors were also presented.  The 

characterization of ejectors consisted of experimental, numerical, and analytical 

approaches, none of which satisfactorily describe the fluid cavity acoustic field in 

sufficient detail to permit the design of ejectors which can overcome the increased 

viscous dissipation associated with high viscosity working fluids.  Subsequent sections of 

this thesis analyze the performance of fluid ejectors, focusing on horn-based ultrasonic 

atomizers and squeeze type of ejectors, using comprehensive electromechanical modeling 

which includes both acoustics of the wave guiding/focusing cavity and transducer 

behavior with an ultimate goal to understand and define the capabilities and limits in 

using such devices for atomization of high viscosity fluids.  
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CHAPTER 3: DEVELOPMENT AND VALIDATION OF 

ANALYTICAL MODELS  
 

 

Simplified electro-mechanical models are developed for micromachined fluid 

ejectors in order to investigate the ejection of high viscosity liquids.  This effort 

concentrates on modeling the acoustic response of ejectors with viscous dissipation 

included in the fluid cavity acoustic field.  The effect of the driving piezoelectric 

transducer on the fluid cavity acoustic field is obtained by coupling the fluid cavity 

acoustic field to a transducer model.  Device models are created by considering each 

ejector component separately – the transducer, the acoustic pipe, and the acoustic horn – 

and coupling components together through appropriate boundary conditions to represent 

ejector physics.  The scaling relationships that determine the acoustic behavior within the 

fluid cavity are also established to understand and account for the primary viscous loss 

mechanisms in the modeling framework.  The developed analytical models are validated 

by comparison with finite element simulations and experimental data from literature.   

3.1 Description of the micromachined fluid ejectors to be modeled 

Two types of fluid ejectors will be considered during the subsequent model 

development, horn-based ultrasonic atomizers and squeeze ejectors, due to their 

demonstrated potential for ejecting high viscosity working fluids and the possibility to 

generalize the geometries across additional ejector types.  The horn-based ultrasonic 

atomizer under investigation  (Figure 3.1) consists of a piezoelectric transducer 

generating ultrasonic waves, a planar fluid reservoir, and an array of pyramidal nozzles 

etched in silicon acting as acoustic horns.[3]  The displacement wave created by the 

transducer propagates through the fluid reservoir to the acoustic horn where it is 
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concentrated at the horn aperture.  When the transducer is driven at the resonant 

frequencies of the fluid cavity, a locally increased pressure gradient results at the horn 

aperture producing an efficient means of fluid ejection.  Micromachined horn-based 

ultrasonic atomizers consist of numerous horns ejecting in parallel from a shared fluid 

reservoir.[3]  As the lateral dimensions of the fluid reservoir and number of horns 

become large, the acoustic field in the fluid reservoir becomes one-dimensional in the 

vertical direction as end effects at the reservoir walls become negligible.  The acoustic 

response of the atomizer can then be simplified to the response of an individual cell, an 

enlarged version of which shown in Figure 3.1.  Further simplification can be made by 

considering the atomizer cell to be axisymmetric about the center of the horn to aid in 

model formulation.  This assumption modifies both the shape of the horn, which must be 

treated as circular rather than square, and the boundary condition on the exterior of the 

unit cell, which is symmetric in Cartesian but not in polar coordinates.  The modification 

of the exterior boundary condition is unimportant as the acoustic field has been simplified 

to one-dimensional behavior in the axial direction which is unchanged by the 

transformation in coordinate systems; a change in the exterior boundary condition would 

only affect the acoustic field were a two-dimensional field permitted in the fluid cavity as 

the axisymmetric assumption would then influence the radial direction.  The change in 

the horn shape affects both the surface area of the horn and acoustic impedance of the 

horn section; these are expected to differ from the pyramidal geometry only by a constant 

factor as the conical, axisymmetric horn closes approximates the pyramidal shape.  

Moreover, the horn taper between the entrance and aperture remains linear and a similar 

reduction in the cross-sectional area of the horn is achieved over the horn length.  The 
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axisymmetric atom izer cell model is therefore expected to be representative of large 

horn-based ultrasonic atomizers with many cells operating in parallel. 

As squeeze type fluid ejectors can vary widely in geometry, selection of an 

archetypal form that is representative of the overall class of ejectors is necessary for 

modeling.  The squeeze ejector geometry utilized by Bogy and Talke was selected, a 

reproduction of which is given in Figure 3.2.[2]  The main part of the ejector is composed 

of a cylindrical, fluid-filled glass capillary divided into three sections.  The left and right 

capillary sections are exposed to the atmosphere while the center section is surrounded by 

an annular piezoelectric transducer.  When a voltage is applied to the transducer, it 

imposes a radial displacement on the glass capillary which is transmitted to the fluid 

cavity.  As the diameter of the fluid cavity is much less its axial length, the resulting 

Figure 3.1: Representation of the modeled horn-based ultrasonic atomizer geometry.[3]  The 

device consists of a fluid filled acoustic horn, a fluid reservoir, and a driving planar 

piezoelectric transducer. 
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acoustic field is one-dimensional in the axial direction a short distance away from the 

transducer ends and transmits the displacement wave laterally from the transducer to the 

capillary ends.   The capillary is bounded on one end by a large fluid reservoir used to fill 

the capillary and the other end by a short horn through which fluid is ejected. 

3.1.1 Identification of common ejector components 

Analytical model development can take advantage of common physical features 

shared between horn-based ultrasonic atomizers and squeeze ejectors.  These features can 

be seen by breaking the devices into constitutive components based on the physics which 

govern each component. The structure of the horn-base ultrasonic atomizer cell (Figure 

2.1) can be divided into three component sections as seen in Figure 3.3: a planar 

piezoelectric transducer, an acoustic pipe without a confining wall, and a horn section.  

The structure of squeeze ejectors (Figure 3.2) is similarly considered in Figure 3.4, 

yielding five components of four different types: an annular piezoelectric transducer, an 

acoustic pipe with a confining wall, a “driven” acoustic pipe with a confining wall, and a 

horn section.  As the acoustic pipe with a confining wall exists in both “driven” and 

“undriven” states, a unified model capable of handling both cases will be developed.  By  

Figure 3.2: Representation of the modeled squeeze ejector geometry.  The device consists of a 

fluid filled cavity which tapers to a small aperture, a glass capillary which confines the fluid in a 

cavity, and a driving annular piezoelectric transducer.  The left side is bounded by the fluid 

reservoir (not shown) used to fill the capillary.  
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Figure 3.3: A schematic of a horn-based ultrasonic atomizer with its constitutive components 

identified.  The device can be modeled as an individual planar piezoelectric transducer, an 

acoustic pipe without a wall, and a horn coupled together with the appropriate boundary 

conditions. 

 

Figure 3.4: A schematic of a squeeze ejector with its constitutive components identified.  The 

device can be modeled as an individual annular piezoelectric transducer, acoustic pipes with a 

wall, a driven acoustic pipe with a wall, and a horn coupled together with the appropriate 

boundary conditions. 

examining constitutive components of the ejectors, five necessary models have been 

identified for the following components: a planar piezoelectric transducer, an annular 

piezoelectric transducer, an acoustic pipe without a confining wall, an acoustic pipe with 

a confining wall, and an acoustic horn.  By developing each model independently, 
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incorporating viscous dissipation into each fluid cavity component, and joining the 

components together with appropriate boundary conditions, development of coupled 

electro-mechanical models of the fluid ejectors is possible. 

3.2 Development of piezoelectric transducer models 

The first type of component to be considered is the piezoelectric transducer.  A 

transducer model for each of the planar and annular geometries is necessary to model the 

micromachined fluid ejectors under investigation.  Development of a model for each 

transducer geometry draws on established impedance matrix methods commonly utilized 

in transducer design.   

3.2.1 Planar transducers 

The planar piezoelectric transducer geometry is modeled using an impedance 

matrix formulation as outlined by Auld.[104]  The impedance matrix, given in Equation 

3.1, characterizes the behavior of a one-dimensional, planar transducer by relating its 

mechanical and electrical properties.  The formulation assumes the transducer has three 

ports, two mechanical consisting of the front and back planes and an electrical port across 

the planes.  Polarization is assumed in the thickness direction between the planes.  The 

system of equations is solved by dividing the force across the mechanical ports by their 

respective velocities to eliminate the force terms in favor of mechanical impedances.  In 

reference to Figure 3.3, the front side of the transducer is then taken to be loaded by the 

fluid cavity impedance (𝑍𝑚,𝑐𝑎𝑣) and the backside by the impedance of air (𝑍𝑚,𝑎𝑖𝑟).  When 

one assumes a user specified sinusoidal voltage signal 𝑉 driving the transducer, the 

system of equations can be solved given the material properties of the transducer: 
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[
𝐹1

𝐹2

𝑉
] =

[
 
 
 
 
 
 −𝑗𝑍𝑐cot(𝛽𝑙) −𝑗𝑍𝑐csc(𝛽𝑙)

−𝑗ℎ33

𝜔

−𝑗𝑍𝑐csc(𝛽𝑙) 𝑍𝑐cot(𝛽𝑙)
−𝑗ℎ33

𝜔
−𝑗ℎ33

𝜔

−𝑗ℎ33

𝜔

−𝑗

𝜔𝐶0 ]
 
 
 
 
 
 

[

𝑣1

𝑣2

𝐼3
] 3.1 

where 𝑍𝑐 is the transducer characteristic impedance given by 𝑆𝑡𝑟𝑎𝑛𝑠√𝜌𝑡𝑟𝑎𝑛𝑠𝑐33
𝐷 , 𝛽 is the 

wavenumber in the transducer given by 𝜔√𝜌𝑡𝑟𝑎𝑛𝑠 𝑐33
𝐷⁄ , 𝑙 is the transducer thickness, ℎ33 

is the transmitting constant, 𝐶0 is the clamped capacitance, and 𝑐33
𝐷  is the elastic stiffness 

constant at constant displacement in the thickness direction.  The specific material 

properties utilized for the model can be found in Appendix A.  The area of the transducer 

𝑆𝑡𝑟𝑎𝑛𝑠 is taken to be large such that one-dimensional behavior is maintained.  Dielectric 

and mechanical losses can be incorporated into the model by modifying ℎ33 with the loss 

tangent tan(𝛿) and the wavenumber with the mechanical quality factor 𝑄𝑚: 

ℎ33 =
𝑒33

𝜖33
𝑠 =

𝑒33

𝜖𝑟𝜖0(1 − 𝑗𝑡𝑎𝑛(𝛿))
 

3.2 

𝛽 = 𝜔√
𝜌𝑡𝑟𝑎𝑛𝑠

𝑐33
𝐷 (1 −

𝑗

2𝑄𝑚
) 

3.3 

where 𝑒33 is the piezoelectric stress constant, 𝜖33
𝑠  is the clamped dielectric constant, 𝜖𝑟 is 

the relative permeability of the transducer, and 𝜖0 is the permeability of free space.  The 

system of equations given in the impedance matrix formulation can be solved directly for 

the velocity associated with the front/fluid cavity side of the transducer which is then 

applied as the inlet boundary condition to the fluid cavity model.  In addition, the 

electrical behavior of the transducer, such as its electrical impedance and energy loss, can 

be readily determined.  As the behavior of the Mason impedance matrix formulation is 

well documented, a detailed verification of its validity is not required.[105-107] 
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3.2.2 Annular transducers 

The annular piezoelectric transducer geometry is modeled using an impedance 

matrix formulation as outlined by Liang.[4]  The formulation describes the electrical and 

mechanical behavior of an infinitely long, annular transducer as shown in Figure 3.5.  

The transducer is assumed to be polarized in the radial direction with the electrodes 

covering the inner and outer surfaces.  Liang uses the same three-port structure as 

outlined by Auld but modifies the impedances for the annular geometry.[104]     

The system of equations in Equation 3.4 is again solved by dividing the force 

across the mechanical ports by their respective velocities to eliminate the force terms in 

favor of mechanical impedances.  The inner surface of the transducer is then taken to be 

loaded by the fluid cavity impedance (𝑍𝑚,𝑐𝑎𝑣) and the outer surface by the impedance of 

air (𝑍𝑚,𝑎𝑖𝑟).  When a sinusoid driving voltage 𝑉 is specified, the only remaining terms are 

material properties of the transducer: 

Figure 3.5: The annular piezoelectric transducer geometry as modeled by Liang.[4]  The 

transducer is assumed to be infinite in axial length.  The inner and outer surfaces are active and 

poling is in the radial direction. 
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[
𝐹1

𝐹2

𝑉
] = [

𝑧11 𝑧12 𝑧13

𝑧21 𝑧22 𝑧23

𝑧31 𝑧32 𝑧33

] [

𝑣1

𝑣2

𝐼3
] 3.4 

 

𝑧11 =
2𝜋𝛽𝑅1

𝑗𝜔
[
𝑐33

𝐷 [𝐽𝜈−1(𝛽𝑅1)𝑌𝜈(𝛽𝑅2) − 𝐽𝜈(𝛽𝑅2)𝑌𝜈−1(𝛽𝑅1)]

𝐽𝜈(𝛽𝑅2)𝑌𝜈(𝛽𝑅1) − 𝐽𝜈(𝛽𝑅1)𝑌𝜈(𝛽𝑅2)
−

𝜈𝑐33
𝐷 − 𝑐13

𝐷

𝛽𝑅1
] 3.5 

𝑧12 = 𝑧21 =−
4𝑐33

𝐷

𝑗𝜔

1

𝐽𝜈(𝛽𝑅2)𝑌𝜈(𝛽𝑅1) − 𝐽𝜈(𝛽𝑅1)𝑌𝜈(𝛽𝑅2)
 3.6 

𝑧13 = 𝑧31 = −
𝑗

𝜔
[ℎ33 + ℎ31

𝑌𝜈(𝛽𝑅2)𝑏1 − 𝐽𝜈(𝛽𝑅2)𝑏2

𝐽𝜈(𝛽𝑅2)𝑌𝜈(𝛽𝑅1) − 𝐽𝜈(𝛽𝑅1)𝑌𝜈(𝛽𝑅2)
] 3.7 

𝑧22 =
2𝜋𝛽𝑅2

𝑗𝜔
[
𝑐33

𝐷 [𝐽𝜈−1(𝛽𝑅2)𝑌𝜈(𝛽𝑅1) − 𝐽𝜈(𝛽𝑅1)𝑌𝜈−1(𝛽𝑅2)]

𝐽𝜈(𝛽𝑅2)𝑌𝜈(𝛽𝑅1) − 𝐽𝜈(𝛽𝑅1)𝑌𝜈(𝛽𝑅2)
+

𝜈𝑐33
𝐷 − 𝑐13

𝐷

𝛽𝑅2
] 3.8 

𝑧23 = 𝑧32 =−
𝑗

𝜔
[ℎ33 + ℎ31

𝑌𝜈(𝛽𝑅1)𝑏1 − 𝐽𝜈(𝛽𝑅1)𝑏2

𝐽𝜈(𝛽𝑅2)𝑌𝜈(𝛽𝑅1) − 𝐽𝜈(𝛽𝑅1)𝑌𝜈(𝛽𝑅2)
] 3.9 

𝑧33 = −
𝑗

𝜔
[
ln(𝑅2 𝑅1)⁄

2𝜋𝜖33
𝑠

−
ℎ31

2

4𝑐33
𝐷 [

[𝑌𝜈(𝛽𝑅1)𝑏1 − 𝐽𝜈(𝛽𝑅1)𝑏2][𝑌𝜈(𝛽𝑅2)𝑏1 − 𝐽𝜈(𝛽𝑅2)𝑏2]

𝐽𝜈(𝛽𝑅2)𝑌𝜈(𝛽𝑅1) − 𝐽𝜈(𝛽𝑅1)𝑌𝜈(𝛽𝑅2)

+ ∫
1

𝑟
∫

𝐽𝜈(𝛽𝑟)𝑌𝜈(𝜇) − 𝐽𝜈(𝜇)𝑌𝜈(𝛽𝑟)

𝜇
𝑑𝜇𝑑𝑟

𝛽𝑟

𝛽𝑅1

𝑅2

𝑅1

]] 

3.10 

where 𝑅1 is the inner transducer radius, 𝑅2 is the outer radius, and 𝜈 is the order of the 

Bessel functions given by √𝑐11
𝐷 𝑐33

𝐷⁄ .  The elastic stiffness constants at constant 

displacement are 𝑐11
𝐷 ,𝑐33

𝐷 , and 𝑐13
𝐷  in azimuthal, radial and off-diagonal azimuthal/radial 

cross directions respectively.  Coefficients 𝑏1 and 𝑏2 are obtained through the following 

integrations: 
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𝑏1 = ∫
𝐽𝜈(𝜇)

𝜇
𝑑𝜇

𝛽𝑅2

𝛽𝑅1

 3.11 

𝑏2 = ∫
𝑌𝜈(𝜇)

𝜇
𝑑𝜇

𝛽𝑅2

𝛽𝑅1

 3.12 

Due to the cylindrical geometry, the impedances are expressed in terms of Bessel 

functions of the first and second kinds.  Mechanical and electrical losses can again be 

included by modifying the wavenumber and transmitting constant as in Equations 3.2 and 

3.3.   The system of equations given in the impedance matrix formulation can be solved 

directly for the velocity associated with the i nner surface of the transducer which is then 

applied as the boundary condition to the fluid cavity model.  In addition, the electrical 

behavior of the transducer, such as its electrical impedance and energy loss, can be 

readily determined. 

Figure 3.6: A comparison of the predicted electrical impedance magnitude for an annular 

transducer using both ANSYS and the Liang impedance matrix.  The geometry is taken to have a 

9 mm inner radius and a 11.54 mm outer radius. Material properties are taken as PZT5. 
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 As the annular impedance matrix formulation is less well documented than its 

planar counterpart, a validation was conducted by comparing the response of a free 

transducer as predicted by the analytical model to an ANSYS Mechanical (ANSYS) 

model (Figure 3.6).[108]  ANSYS is a commercially available, finite element software 

package designed to solve problems involving coupled physics which is able to simulate 

the behavior of piezoelectric transducers.  Pre-programmed element types provide the 

basis for model construction and incorporating material behavior.  The domain was 

comprised of a piezoelectric transducer (APC International PZT855) with Plane13 

elements driven by 1V peak amplitude sinusoidal signal.  Due to the assumption of 

infinite axial length, only thickness and hoop resonances are to be expected in the 

transducer response.  The hoop mode is also commonly referred to as a “breathing” mode 

as the hoop moves radially outward uniformly about the centerline.  As the transducer 

thickness is much less than the circumference, the thickness mode should be the higher 

frequency mode.  The Liang formulation and ANSYS both predict a similar thickness 

resonant frequency near 850 kHz.  However, the Liang impedance matrix predicts a hoop 

resonance at approximately twice the frequency of ANSYS.  ANSYS predicts a hoop 

resonance closer to the analytical value given by McMahon: 

𝑓 =
1

2𝜋
√

𝑐11
𝐸

𝜌𝑡𝑟𝑎𝑛𝑠�̅�2
 3.13 

with �̅� being taken as the mean radius of the annulus.[109]  This implies that the Liang 

formulation over predicts the stiffness of the transducer in the azimuthal direction.  The 

discrepancy does not prevent the use of the Liang impedance matrix; however, it must be 

recognized that response of any component model driven by the annular transducer will 
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be higher in frequency as compared to physical devices.  This is due to the higher 

frequency of the transducer hoop resonance in the Liang formulation and the over 

prediction of the amount of energy placed into the frequencies near the hoop resonance.  

The off-resonance difference in electrical impedance magnitude results from the lack of 

damping in the ANSYS model which lowers the overall impedance magnitude.  Based on 

this analysis, the Liang impedance matrix can be utilized to model squeeze type 

transducers, recognizing the bias toward higher frequencies as a result of the discrepancy 

in the hoop resonance. 

3.3 Development of the acoustic pipe models  

The second component to be considered is the acoustic pipe.  Two pipe models, 

one for pipes bounded by a wall and a second for pipes without a wall, are necessary to 

model wave propagation in the micromachined fluid ejectors under investigation.  While 

pipes without confining walls have an established modeling methodology, the complexity 

of wave propagation in pipes with walls causes the development of an analytical model to 

be nontrivial. The governing equations must be simplified to be amenable to closed-form 

analytical solutions by retaining significant terms and neglecting terms small in 

magnitude based on ejector operating regimes.  Moreover, the effect of the wall 

compliance on the pipe acoustic field must also be incorporated.  The complexity of wave 

propagation in acoustic pipes motivates the development of a regime map to aid in 

determining applicability of the subsequently developed models in ejector operating 

regimes. 
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3.3.1 Development of the acoustic pipe without a wall model 

Considering the case of acoustic pipe lacking a wall, the component can be 

modeled as a one-dimensional acoustic pipe with length 𝑙 and radius 𝑅 as given in Figure 

3.7.  The acoustic field is assumed to be uniform across the radius with propagation 

occurring only in the axial direction.  The pipe acoustic field is composed of two 

harmonic propagating waves with complex amplitudes 𝐴 and 𝐵, the values of which are 

determined by the boundary conditions at the left and right ends.  The acoustic field can 

be represented with pressure and volume velocity of the form: [110] 

𝑃 = 𝑅𝑒{(𝐴𝑒−𝑗𝑘𝑧 + 𝐵𝑒𝑗𝑘𝑧)𝑒𝑗𝜔𝑡} 3.14 

𝑉𝑧 = 𝑅𝑒 {
𝑆

𝜌0𝑐
(𝐴𝑒−𝑗𝑘𝑧 − 𝐵𝑒𝑗𝑘𝑧)𝑒𝑗𝜔𝑡} 3.15 

where k is the wavenumber, 𝜔 is the angular frequency, 𝜌0 is the fluid density, 𝑐 is the 

fluid speed of sound, S is the cross-sectional area, z is the spatial position along the pipe, 

and 𝑡 is the time. The two imposed boundary conditions at each end must be either 

pressure, volume velocity, or volume impedance conditions.  As the pipe is situated 

between two other components, a boundary condition must be applied at both ends of the 

domain to ensure proper coupling between domains.  The coupling between domains will 

be discussed in further detail in Sections 3.5 and 3.6.   

A result of the absence of constraining surfaces is that the only mechanism of 

energy loss within the subdomain is bulk attenuation.  This can be included in the 

acoustic pipe through the use of a complex wavenumber, �̅� = 𝑘 − 𝑗𝛼𝑠, where 𝛼𝑠 is the 

classical attenuation coefficient expressed as 2𝜔2𝜇 3𝜌𝑐3⁄  for liquids, where 𝜇 is the fluid 



35 

 

viscosity.[67]  

3.3.2 Development of the acoustic pipe with a wall model 

Dijksman derived a model for an axisymmetric, compliant tube confined by a 

wall and driven by a radial displacement.[72]  The geometry, a schematic of which is 

shown in Figure 3.8, has a length 𝑙, radius 𝑅, and is surrounded by a wall of thickness ℎ.  

The acoustic boundary layer is directly incorporated into the model by cross-sectionally 

averaging the pressure and density, assuming that only the velocities vary radially so as 

to accommodate the no-slip condition at the wall.  This assumption constrains the model 

to one-dimensional acoustic behavior in which the wavelength is much greater than the 

tube diameter.  The elasticity of the wall is accounted for through the introduction of 

spatial dispersion, resulting in a modified speed of sound that depends on fluid and wall 

mechanical properties.   

 

 

Figure 3.7: Left: Geometry of the acoustic pipe without a wall model.  Right: The boundary 

conditions and components of the acoustic field within the acoustic pipe without a wall. 
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To begin the development of the model, one must confine analysis to Newtonian 

fluids in axisymmetric devices.  Assuming that the radial length scale is much smaller 

than the wavelength and the radial velocity is much less than the axial velocity, one can 

neglect the radial component of momentum.  These assumptions simplify the full three-

dimensional formulation to a system governed by the continuity and axial momentum 

conservation equations: 

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑟) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0 3.16 

(
𝜕𝜌𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝜌𝑣𝑧

𝜕𝑟
+ 𝑣𝑧

𝜕𝜌𝑣𝑧

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) +

𝜕2𝑣𝑧

𝜕𝑧2
) 3.17 

with the following boundary and initial conditions for the pipe: 

 

 

 

 

Figure 3.8: Left: Geometry of the acoustic pipe with a wall model.  Right: The boundary 

conditions and components of the acoustic field within the acoustic pipe with a wall. 
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𝑣𝑟(𝑡, 𝑟 = 𝑅, 𝑧) = 𝑣𝑤 No slip at the wall 

𝜕𝑣𝑧

𝜕𝑟
(𝑡, 𝑟 = 0, 𝑧)=0 Symmetry 

𝑣𝑧 (𝑡, 𝑟 = 𝑅, 𝑧) = 0 No slip at the wall 

𝑑(𝑡, 𝑟 = 𝑅, 𝑧) = 𝑑(𝑡) Radial displacement imposed on exterior of the jacket 

𝑃 (𝑡 = 0, 𝑟, 𝑧) = 0 Quiescent cavity 

𝜕𝑃

𝜕𝑡∗
(𝑡 = 0, 𝑟, 𝑧) = 0 

Quiescent cavity 

𝑃(𝑡, 𝑟, 𝑧 = 𝑙𝐿) = 𝑃𝐿(𝑡) Pressure condition at the subdomain inlet 

𝑃(𝑡, 𝑟, 𝑧 = 𝑙𝑅) = 𝑃𝑅(𝑡) Pressure condition at the subdomain outlet 

where 𝑑 is the squeeze displacement on the outer surface of the surrounding jacket 

material, 𝑣𝑟 is the radial velocity component, and 𝑣𝑧 is the axial velocity component.  The 

boundary conditions imposed at pipe inlet and outlet can be either a pressure, volume 

velocity, or volume impedance condition; for the purposes of developing the model a 

pressure condition can be assumed without loss of generality.  One can then decompose 

the velocities, density, and pressure into mean values denoted by the zero subscript and 

deviations from the mean denoted by the prime superscript.  As the flow rate from 

micromachined ejectors during ejection is small, one can assume that the mean velocity 

in the fluid cavity is approximately zero.[3]  Further neglecting terms that are second 

order gives: 

𝜕𝜌′

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌0𝑣𝑟′) +

𝜕

𝜕𝑧
(𝜌0𝑣𝑧′) = 0 3.18 

𝜌0 (
𝜕𝑣𝑧′

𝜕𝑡
+ 𝑣𝑟′

𝜕𝑣𝑧′

𝜕𝑟
+ 𝑣𝑧′

𝜕𝑣𝑧′

𝜕𝑧
) = −

𝜕𝑃′

𝜕𝑧
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧′

𝜕𝑟
) +

𝜕2𝑣𝑧′

𝜕𝑧2
) 3.19 

Averaging all properties across the cross-section is done to obtain mean values, 

excepting the density and pressure which are assumed not to vary significantly across the 

cross-section such that they can be considered independent of r.  This assumption holds 
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as along as the actuation wavelength remains much larger than the tube diameter.  Both 

the radial and axial velocities are taken to be functions of r.  The radial velocity can then 

be eliminated from the equations through application of the boundary conditions at the 

wall to yield: 

𝜕𝜌′

𝜕𝑡
+

2𝜌0

𝑅
(𝑣𝑟′)|𝑅 + 𝜌0

𝜕𝑣�̅�′

𝜕𝑧
= 0 3.20 

𝜌0 (
𝜕𝑣�̅�′

𝜕𝑡
+

2π

πR2
∫ (𝑣𝑟′

𝜕𝑣𝑧′

𝜕𝑟
+ 𝑣𝑧′

𝜕𝑣𝑧′

𝜕𝑧
) 𝑟𝑑𝑟

𝑅

0

)

= −
𝜕𝑃′

𝜕𝑧
+

2𝜇

𝑅

𝜕𝑣𝑧′

𝜕𝑟
|𝑅 + 𝜇

𝜕2𝑣𝑧′̅̅ ̅̅

𝜕𝑧2
 

3.21 

where 𝑣�̅� is the cross-section averaged axial velocity. Further assuming that the advection 

is small compared to the inertia, one can eliminate the advective terms from the 

momentum equation.  The assumption holds as long as:  

𝑣𝑧𝜔𝑟 ≫ 𝑣𝑟𝑣𝑧 (
𝜌𝜔𝑟

𝜇
)

1
2
 

𝜔𝑟 ≫
𝜇

𝜌0𝑅2
 

3.22 

𝑣𝑧𝜔𝑟 ≫
𝑣𝑧

2

𝑙𝑡
 

𝜔𝑟 ≪
𝑐

𝑤0
 

3.23 

The remaining radial velocity term in Equation 3.20 is eliminated by relating the 

radial velocity imposed on the external surface of the tube surrounding the fluid cavity to 

the velocity on the interior surface of the tube using stress-strain relations for thin walled 

cylinders.  Timescale analysis provides a means to validate the thin wall approximation.  

The three acoustic timescales can be defined based on the propagation time of acoustic 

perturbations within the fluid and tube material: the radial propagation time in the glass 

(𝑡𝑔), the radial propagation time in the fluid cavity (𝑡𝑟), and the axial propagation time in 

the fluid cavity (𝑡𝑧). These can be defined mathematically as: 
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𝑡𝑔 =
ℎ

𝑐𝑔
 𝑡𝑟 =

𝑅

𝑐𝑓
 𝑡𝑧 =

𝑙𝑡
𝑐𝑓

 3.24 

where 𝑅 is the inner radius of the jacket material, 𝑙𝑡 is the total fluid cavity length, 𝑐𝑔 is 

the sound speed within the jacket material, and 𝑐𝑓 is the fluid sound speed.  The driving 

of the ejector will be governed by the fourth timescale, 𝑡𝑑 , inversely proportional to the 

signal repeat rate 𝜔𝑟.  In general, one expects that the propagation time within the glass 

to be much less than either the radial or axial propagation times within the fluid cavity as 

𝑐𝑔 > 𝑐𝑓 and ℎ < 𝑅 < 𝑙𝑡.  Furthermore, as propagation time in the glass is generally much 

less than the driving timescale, the displacement within the glass can be considered 

uniform as a function of space with the imposed displacement instantaneously applied 

from the jacket exterior to the jacket interior.  The displacement and velocity imposed 

then by the transducer on the inner jacket surface are 𝑑(𝑡) and  
𝜕𝑑

𝜕𝑡
, respectively. 

Utilizing the thin-walled cylindrical stress-strain relationships, one can determine 

the response of the jacket material to the combination of the imposed displacement and 

the pressure field in the fluid cavity.[111]    The thin walled approximation is permitted 

as long the wall thickness (ℎ) is much less than the inner diameter (2𝑅) of the cylinder.   

Figure 3.9 shows an axial representation of a loaded, thin walled cylinder. 

One can express the average hoop stress and radial strain within the cylinder as: 

𝜎 =
𝑃 (𝑅 +

1
2

ℎ)

ℎ
 

3.25 𝜖 =
Δ𝑟

𝑅 +
1
2ℎ

 3.26 

with P as the pressure on the inner surface and Δ𝑟 as the change in radial displacement 

due to the stress.  As the wall is thin, uniform stress and strain are assumed across the 
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shell which makes the mean tube radius the appropriate governing radius.  Equating the 

stress to the strain using the Young’s modulus (E) of the tube yields: 

𝜎 = 𝐸𝜖 3.27 

Δ𝑟 =
(𝑅 +

1
2ℎ)

2

𝑃

ℎ𝐸
 

3.28 

A time derivative of Equation 3.28 produces wall velocity due to the internal pressure 

field: 

𝑣𝑟,𝑃 =
(𝑅 +

1
2 ℎ)

2

ℎ𝐸

𝜕𝑃

𝜕𝑡
 

3.29 

Utilizing superposition, the total wall velocity is the sum of the imposed transducer 

velocity and the velocity resulting from the internal pressure field: 

𝑣𝑤 =𝑣𝑟,𝑇 + 𝑣𝑟,𝑃 

 

𝑣𝑤 =
𝜕𝑑

𝜕𝑡
+

(𝑅 +
1
2ℎ)

2

ℎ𝐸

𝜕𝑃

𝜕𝑡
 

3.30 

The wall velocity can be substituted into Equation 3.20 as 𝑣𝑟evalutated at 𝑟 = 𝑅 to give:  

 Figure 3.9: A representation of a thin cylinder of radius R and thickness h loaded on the interior 

with a pressure P.  The cylinder has length L into the page. The stress and strain are assumed to 

be uniform due to the thinness of the wall. 
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𝜕𝜌′

𝜕𝑡
+

2𝜌0

𝑅𝑖
(

𝜕𝑑

𝜕𝑡
+

(𝑅 +
1
2ℎ)

2

ℎ𝐸

𝜕𝑃

𝜕𝑡
) + 𝜌0

𝜕𝑣�̅�′

𝜕𝑧
= 0 3.31 

Through application of the chain rule and the definition of sound speed, a modified speed 

of sound (𝑐̅) can be introduced which accounts for elasticity and thickness of the jacket 

material: 

𝜕𝑃′

𝜕𝑡
(

1

𝑐2
+

2𝜌0

𝑅

(𝑅 +
1
2ℎ)

2

ℎ𝐸
) +

2𝜌0

𝑅

𝜕𝑑

𝜕𝑡
+ 𝜌0

𝜕𝑣�̅�′

𝜕𝑧
= 0 3.32 

1

𝑐̅2
=

1

𝑐2
+

2𝜌0

𝑅

(𝑅 +
1
2ℎ)

2

ℎ𝐸
 3.33 

The modified speed of sound reflects the spatial dispersion caused by the changing 

physical properties of the jacket material along the axial length of the subdomain. The 

outlined simplifications produced a coupled system of differential equations for 

continuity and conservation of axial momentum given by: 

1

𝑐̅2
𝜕𝑃′

𝜕𝑡
+

2𝜌0

𝑅

𝜕𝑑

𝜕𝑡
+ 𝜌0

𝜕𝑣�̅�′

𝜕𝑧
= 0 3.34 

𝜌0

𝜕𝑣�̅�′

𝜕𝑡
= −

𝜕𝑃′

𝜕𝑧
+

2𝜇

𝑅

𝜕𝑣𝑧′

𝜕𝑟
|𝑅 + 𝜇

𝜕2𝑣𝑧′̅̅ ̅̅

𝜕𝑧2
 3.35 

Differentiating Equation 3.34 by time, Equation 3.35 by 𝑧, and subtracting results 

in the system of equations as follows, dropping the prime notation for convenience:   

1

𝑐̅2
𝜕2𝑃

𝜕𝑡2
+

2𝜌0

𝑅

𝜕2𝑑

𝜕𝑡2
−

𝜕2𝑃

𝜕𝑧2
+

2𝜇

𝑅

𝜕

𝜕𝑧
(
𝜕𝑣𝑧

𝜕𝑟
|𝑅 ) + 𝜇

𝜕3𝑣�̅�

𝜕𝑧3
= 0 3.36 

𝜌0

𝜕𝑣𝑧

𝜕𝑡
=

−𝜕𝑃

𝜕𝑧
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) +

𝜕2𝑣𝑧

𝜕𝑧2
) 3.37 
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Nondimensionalization is the first instance of deviation from the approach 

outlined by Dijksman.[72]  In the present methodology, nondimensionalization is 

conducted to correctly reflect the scaling of the attenuation losses with frequency by the 

use of the acoustic wavelength as the axial length scale.  Additionally, the resulting terms 

are written as common fluid mechanics nondimensional numbers to facilitate 

interpretation of ejector behavior.  The utilized scales are:  

𝑃∗ =
𝑃

𝑃0
 𝑡∗ = 𝜔𝑟𝑡 𝑣𝑧

∗ =
𝑣𝑧

𝜔𝑟𝑤0
 𝑧∗ =

𝑧𝜔𝑟

𝑐
 3.38 

𝑟∗ = 𝑟 (
𝜌0𝜔𝑟

𝜇
)

1
2
 𝑑∗ =

𝑑

𝑤0
   

 

where 𝑃0 is the ambient pressure, 𝜔𝑟 is the repeat rate of the driving pulse in transient 

cases or the driving frequency in the single harmonic case, and 𝑤0 is the maximum 

spectral density of the Fourier transform of the driving signal.  Selection of the repeat rate 

as the temporal scale normalizes the time during an ejection cycle between zero and one.  

The maximum spectral density is utilized to normalize all imposed displacements 

between zero and one.  The radial dimension scaled as the boundary layer thickness to 

expand the boundary layer.  Defining the following nondimensional terms as: 

𝐸𝑢 =
𝑃0

𝜌0𝑤0
2𝜔𝑟

2
 Euler number 

Ratio of the ambient pressure to the kinetic 

energy imposed at the transducer surface, 

defining the extent of energy transfer to the 

fluid cavity from the transducer 

𝑅𝑒 =
𝜔𝑟𝑤0𝜌0𝑅

𝜇
 Particle Speed 

Reynolds number 

Ratio of fluid inertia to viscous effects on 

the radial length scale, defining the 

importance of the radial component of the 

viscous stress  

𝑀𝑎 =
𝜔𝑟𝑤0

𝑐
 Mach number 

Ratio of driving velocity to the speed of 

sound, defining the importance of 

compressibility effects 
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𝑅𝑎 =
𝑤0

𝑅
 Displacement ratio 

Ratio of the driving displacement 

amplitude to the radius of the fluid cavity, 

defining the importance of the imposed 

radial displacement 

𝑅𝑐 =
𝑐̅

𝑐
 Dispersion ratio 

Ratio of the modified fluid speed of sound 

resulting from wall compliance to the true 

fluid speed of sound, defining the 

importance of spatial dispersion 

𝑅𝑒∗ =
𝑅𝑒𝑅𝑎

𝑀𝑎2
=

𝑐2𝜌0

𝜇𝜔𝑟
 Sound Speed 

Reynolds number 

Ratio of fluid inertia to viscous effects on 

the wavelength length scale, defining the 

importance of axial component of the 

viscous stress 

 

the governing equations become: 

𝜕2𝑃∗

𝜕𝑡∗2 − 𝑅𝑐
2
𝜕2𝑃∗

𝜕𝑧∗2 +
2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2

𝜕2𝑑∗

𝜕𝑡∗2 +
2𝑅𝑐

𝐸𝑢𝑀𝑎
(
𝑅𝑎

𝑅𝑒
)

1
2 𝜕

𝜕𝑧∗
(
𝜕𝑣𝑧

∗

𝜕𝑟∗
|𝑅∗)

+
𝑅𝑐

2𝑀𝑎

𝐸𝑢𝑅𝑒2

𝜕

𝜕𝑧∗
(∫

𝜕2𝑣𝑧
∗

𝜕𝑧∗2

𝑅∗

0

𝑟∗𝑑𝑟∗) = 0 

3.39 

𝜕𝑣𝑧
∗

𝜕𝑡∗
= −𝐸𝑢𝑀𝑎

𝜕𝑃∗

𝜕𝑧∗
+

1

𝑟∗

𝜕

𝜕𝑟∗
(𝑟∗

𝜕𝑣𝑧
∗

𝜕𝑟∗
) +

𝑀𝑎2

𝑅𝑒𝑅𝑎

𝜕2𝑣𝑧
∗

𝜕𝑧∗2  3.40 

where 𝑅∗ is the radius of the pipe nondimensionalized by the acoustic boundary layer 

thickness. 

Nondimensionalization in this manner is advantageous as it produces five groups 

of dimensionless numbers that govern device behavior.  In order from left to right, the 

magnitude coefficients of Equation 3.39 can be taken as showing the relative importance 

of inertia, the axial pressure gradient, the radial driving component, radial component of 

the viscous stress, and axial component of the viscous stress.  As the inertial term remains 

important regardless of the magnitude of the other terms, its coefficient is set to one by 

dividing the equation by the appropriate scales.  Unfortunately, an analytical solution of 
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the governing equations in the present form retaining all terms is not possible.  However, 

by examining the magnitude of viscous stress and spatial pressure gradient 

nondimensional groups as a function the particle and sound speed Reynolds numbers, as 

is done in detail in Section 3.3.3, one can make informed simplifications to the governing 

equations based on the regimes of ejector operation where each of the viscous loss 

mechanisms is dominant.  This allows the development of simplified models which 

capture the physics relevant to ejector operation but are limited to a region of device 

operation.  If one confines the analysis to when the radial component of the viscous stress 

is dominant, that is boundary layer losses are more important than the bulk attenuation 

losses, one can eliminate the z-component of the viscous stress. The inertial, spatial, and 

radial driving terms are also retained as the magnitude of the terms is comparable to or 

larger than the boundary layer term.  

𝜕2𝑃∗

𝜕𝑡∗2 − 𝑅𝑐
2
𝜕2𝑃∗

𝜕𝑧∗2 +
2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2

𝜕2𝑑∗

𝜕𝑡∗2 +
2𝑅𝑐

𝐸𝑢𝑀𝑎
(
𝑅𝑎

𝑅𝑒
)

1
2 𝜕

𝜕𝑧∗
(
𝜕𝑣𝑧

∗

𝜕𝑟∗
|𝑅∗) = 0 3.41 

𝜕𝑣𝑧
∗

𝜕𝑡∗
= −𝐸𝑢𝑀𝑎

𝜕𝑃∗

𝜕𝑧∗
+

1

𝑟∗

𝜕

𝜕𝑟∗
(𝑟∗

𝜕𝑣𝑧
∗

𝜕𝑟∗
) 3.42 

The system of differential equations are simplified in such a way as to have a 

closed form analytical solution, which is subject to the following boundary and initial 

conditions: 

𝑃∗ (𝑡∗, 𝑧∗ =
lL𝜔𝑟

𝑐
) = P1

∗(𝑡∗) 
Pressure condition at the subdomain inlet 

𝑃∗ (𝑡∗, 𝑧∗ =
lR𝜔𝑟

𝑐
) = P2

∗(𝑡∗) 
Pressure condition at the subdomain aperture 

𝜕𝑣𝑧∗

𝜕𝑟∗
(𝑡∗, 𝑟∗ = 0, 𝑧∗)=0 Symmetry 

𝑣𝑧
∗(𝑡∗, 𝑧∗, 𝑟∗ = 𝑅∗) = 0 No slip at the wall 
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𝑑∗ =
𝑑(𝑡)

𝑤0
 Displacement imposed by the transducer on glass surface 

𝑃∗(𝑡∗ = 0, 𝑧∗) = 0 Quiescent cavity 

𝜕𝑃∗

𝜕𝑡∗
(𝑡∗ = 0, 𝑧∗) = 0 

Quiescent cavity 

To solve the system of equations given by Equations 3.41 and 3.42, a Fourier 

transform is taken and a separation of variables solution is sought in the following form: 

𝑃∗ = 𝑅𝑒{Ψ(𝑧)𝑒𝑗𝑡∗
} 3.43 

𝑣𝑧
∗ = 𝑅𝑒 {(Φ(𝑟) + 𝑗)𝐸𝑢𝑀𝑎

𝑑Ψ

𝑑𝑧∗
𝑒𝑗𝑡∗

} 3.44 

𝑑∗ = 𝑅𝑒{𝑒𝑗𝑡∗
} 3.45 

where 𝑅𝑒{} indicates the real component of the term contained within the braces. 

Substituting the proposed solution into Equation 3.42 yields the differential 

equation governing Φ: 

𝑟∗2 𝑑2Φ

𝑑𝑟∗2 + 𝑟∗
𝑑Φ

𝑑𝑟
− 𝑗Φ𝑟∗2 = 0 3.46 

Φ = 𝐴[𝑏𝑒𝑟0(𝑟
∗) + 𝑗𝑏𝑒𝑖0(𝑟

∗)] + 𝐵[ker0(𝑟
∗) + 𝑗𝑘𝑒𝑖0(𝑟

∗)] 3.47 

the solutions of which are Kelvin functions of the zeroth order.[112]  The coefficients A 

and B must be determined by recasting the radial boundary conditions on 𝑣𝑧 to conditions 

on Φ:   

𝜕𝑣𝑧∗

𝜕𝑟∗
(𝑡∗, 𝑟∗ = 0, 𝑧∗) = 0 

 
dΦ

dr∗
(𝑟∗ = 0) = 0  

3.48 

 𝑣𝑧
∗(𝑟∗ = 𝑅∗) = 0 

 

0 = Φ(𝑅∗) + 𝑗 
Φ(𝑅∗) = −𝑗 

3.49 

 

Φ(𝑟∗) = −
𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
 3.50 
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Applying the radial boundary conditions to Φ causes only the Kelvin function of the first 

kind to be retained.  Substituting Equation 3.50 into Equation 3.44 gives an expression 

for the axial velocity in terms of 𝑟∗, which can be differentiated, evaluated at 𝑅∗, and 

substituted into Equation 3.41 to obtain Ψ. 

𝑣𝑧
∗ = 𝑅𝑒 {(−

𝑏𝑒𝑟0(𝑟
∗) + 𝑗𝑏𝑒𝑖0(𝑟

∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗)𝐸𝑢𝑀𝑎

𝑑Ψ

𝑑𝑧∗
𝑒𝑗𝑡∗

} 3.51 

𝜕𝑣𝑧
∗

𝜕𝑟
= 𝑅𝑒 {(−

𝑏𝑒𝑟0′(𝑟
∗) + 𝑗𝑏𝑒𝑖0′(𝑟

∗)

𝑏𝑒𝑖0(𝑅
∗) − 𝑗𝑏𝑒𝑟0(𝑅

∗)
)𝐸𝑢𝑀𝑎

𝑑Ψ

𝑑𝑧∗
𝑒𝑗𝑡∗

} 3.52 

𝜕𝑣𝑧
∗

𝜕𝑟
|𝑅∗ = 𝑅𝑒 {(−

𝑏𝑒𝑟0′(𝑅
∗) + 𝑗𝑏𝑒𝑖0′(𝑅

∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
)𝐸𝑢𝑀𝑎

𝑑Ψ

𝑑𝑧∗
𝑒𝑗𝑡∗

} 3.53 

 

𝜕2

𝜕𝑡∗2 (Ψ𝑒𝑗𝑡∗
) − 𝑅𝑐

2
𝜕2

𝜕𝑧∗2 (Ψ𝑒𝑗𝑡∗
) +

2𝑅𝑎𝑅𝑐
2

𝐸𝑢𝑀𝑎2

𝜕2

𝜕𝑡∗2 (𝑒𝑗𝑡∗
)

+
2𝑅𝑐

𝐸𝑢𝑀𝑎
(
𝑅𝑎

𝑅𝑒
)

1
2 𝜕

𝜕𝑧∗
((−

𝑏𝑒𝑟0′(𝑅
∗) + 𝑗𝑏𝑒𝑖0′(𝑅

∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
)𝐸𝑢𝑀𝑎

𝑑Ψ

𝑑𝑧∗
𝑒𝑗𝑡∗

) = 0 

3.54 

Ψ + [𝑅𝑐
2 + 2𝑅𝑐 (

𝑅𝑎

𝑅𝑒
)

1
2
(
𝑏𝑒𝑟0′(𝑅

∗) + 𝑗𝑏𝑒𝑖0′(𝑅
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
)]

𝑑2Ψ

𝑑𝑧∗2 +
2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2
= 0 3.55 

 

Defining 𝜖 as: 

𝜖 = 𝑅𝑐
2 + 2𝑅𝑐 (

𝑅𝑎

𝑅𝑒
)

1
2
(
𝑏𝑒𝑟0′(𝑅

∗) + 𝑗𝑏𝑒𝑖0′(𝑅
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
) 3.56 

Equation 3.55 can be written more compactly as: 

𝜖
𝑑2Ψ

𝑑𝑧∗2 + Ψ +
2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2
= 0 3.57 

A solution for Ψ can be determined using the method of undetermined coefficients, 

assuming a form of the solution of: 

Ψ = 𝐴𝑒−𝑗𝑚𝑧∗
+ 𝐵𝑒𝑗𝑚𝑧∗

+ 𝐶 3.58 
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which yields the following expression for Ψ:   

Ψ = 𝐴𝑒
−𝑗

1

√𝜖
𝑧∗

+ 𝐵𝑒
𝑗

1

√𝜖
𝑧∗

−
2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2
 3.59 

Ψ can be substituted into Equations 3.43 and 3.44 to obtain expressions for the axial 

particle velocity and the acoustic pressure. 

𝑣𝑧
∗ = 𝑅𝑒 {𝐸𝑢𝑀𝑎 (−

𝑏𝑒𝑟0(𝑟
∗) + 𝑗𝑏𝑒𝑖0(𝑟

∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) (

−𝑗

√𝜖
𝐴𝑒

−𝑗
1

√𝜖
𝑧∗

+ 𝑗
1

√𝜖
𝐵𝑒

𝑗
1

√𝜖
𝑧∗

)𝑒𝑗𝑡∗
} 

3.60 

𝑃∗ = 𝑅𝑒 {(𝐴𝑒
−𝑗

1

√𝜖
𝑧∗

+ 𝐵𝑒
𝑗

1

√𝜖
𝑧∗

−
2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2
) 𝑒𝑗𝑡∗

} 3.61 

The two unknown complex amplitude coefficients A and B must be determined by the 

boundary conditions on the inlet and exit of each element, giving a system of algebraic 

equations for the velocity and pressure that represent the acoustic field in the horn. As the 

Fourier transform of the governing equations was taken during the course of model 

development, the Fourier transform of the boundary conditions must also be taken: 

𝑃∗ (𝑡∗, 𝑧∗ =
𝑙𝐿𝜔𝑟

𝑐
) = 𝑃1

∗̂𝑒𝑗𝑡∗
 

𝑃∗ (𝑡∗, 𝑧∗ =
𝑙𝑅𝜔𝑟

𝑐
) = 𝑃2

∗̂𝑒𝑗𝑡∗
 

3.62 

The hat notation indicates the spectral density of the boundary condition.  An expression 

for the volume velocity can be obtained by integrating Equation 3.60 over the cross 

section: 
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𝑉𝑧
∗ = 𝑅𝑒 {2𝜋𝐸𝑢𝑀𝑎𝑒𝑗𝑡∗

(−𝑗
1

√𝜖
𝐴𝑒

−𝑗
1

√𝜖
𝑧∗

+ 𝑗
1

√𝜖
𝐵𝑒

𝑗
1

√𝜖
𝑧∗

)∫ (−
𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) 𝑟∗𝑑𝑟∗

𝑅∗

0

} 

3.63 

For acoustic pipes without squeeze type actuation, the squeeze driving term in 

Equation 3.61 (2𝑅𝑎𝑅𝑐
2 𝐸𝑢𝑀𝑎2⁄ ) is set to zero. 

3.3.3 Applicability of the pipe models in various ejector regimes 

The appropriate pipe model for ejector operational regimes can be obtained by 

comparing the groups of nondimensional numbers developed for the walled acoustic pipe 

model that govern the radial component of the viscous shear stress, the axial component 

of the viscous shear stress, and the spatial pressure gradient.  Comparing the magnitude 

of these terms produces the regime map as shown in Figure 3.10, given in terms of the 

particle velocity Reynolds number (𝑅𝑒 = 𝜔𝑟𝑤0𝜌0𝑅 𝜇⁄ ) and the sound speed Reynolds 

number (𝑅𝑒∗ = 𝑐2𝜌0 𝜇𝜔𝑟⁄ ).  These two Reynolds numbers utilize different characteristic 

velocities and length scales (radius and wavelength respectively) to account for the 

difference in scaling associated with radial and axial viscous losses. 

Examining Figure 3.10 more closely, line A is produced by balancing the radial 

and axial components of viscous stress while retaining the spatial pressure gradient in the 

axial direction.  This produces the transition between where each viscous stress 

component dominates ejector behavior; above the line the radial component dominates 

and below it the axial component dominates.  Line B in the upper left is produced by 

balancing the spatial pressure gradient against the radial component of the viscous stress, 

yielding the transition between propagating and lumped element behavior in the radial 

direction.  Lumped element behavior occurs when the magnitude of the viscous stress 
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becomes much larger than the spatial gradient; as a consequence, the fluid has minimal 

spatial variation in the pressure over the associated length scale and moves as a rigid 

body.  Line C in the lower right balances the spatial pressure gradient against the axial 

component of the viscous stress, giving the transition to lumped element behavior in the 

axial direction.   

A scaling analysis of ejectors thus reveals four unique regions of pipe behavior: a 

propagating wave region where radial viscous losses due to the boundary layer dominate, 

a propagating wave region where the axial viscous losses due to bulk attenuation 

dominate, a lumped element region in the axial direction, and a lumped element region in 

the radial direction. As all terms necessary to model the lumped element behavior of 

acoustic pipes are captured in the models for the propagating operating regions, specific 

Figure 3.10: A regime map for the operation of acoustic pipes based on the dimensionless 

parameter groups produced during model formulation.  Four operating regions exist from 

balancing the radial component of the viscous stress, the axial component of the viscous stress, 

and spatial pressure gradient. 
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focus on the lumped element regions is unnecessary. The previously developed pipe 

models capture both the region where the axial component of the viscous stress 

dominates through bulk attenuation in the model for an acoustic pipe without a wall and 

the region when the radial component of the viscous stress dominates through boundary 

layer losses in the model for an acoustic pipe with a wall.  By calculating the particle 

speed and sound speed Reynolds numbers for a working fluid, the regime map can be 

used to select the appropriate model to capture the dominant source of viscous dissipation 

in the pipe.  In general, acoustic pipes without walls will only have bulk attenuation as a 

source of viscous dissipation.  In acoustic pipes with walls, viscous dissipation by 

boundary layer losses will be several orders of magnitude larger than bulk attenuation 

losses in most working fluids.  However, for very high viscosity working fluids (>10Pas) 

or high operating frequencies, the dominant source of viscous dissipation can transition to 

bulk attenuation requiring the use of the acoustic pipe without a wall model even in the 

presence of a confining wall. 

3.4 Derivation of the horn models 

 The third component to be considered is the acoustic horn which comprises the 

region of the ejectors with a changing cross-sectional area.  Mirroring model 

development of acoustic pipes, multiple horn models are sought in order to capture the 

dominant sources of viscous dissipation while permitting an arbitrary horn shape.  Horn 

models are constructed by first allowing the shape of the horn to vary continuously as a 

function of axial position within the horn and second by treating the change in area as a 

series of small, discretized area changes in an acoustic pipe.  The result is three models, 

two of which capture bulk attenuation and one for boundary layer losses, which can be 

utilized for modeling the acoustic field in horn components. 
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3.4.1 Continuous variation in horn shape through the Webster Wave Equation  

The change in horn cross-sectional area can be modeled as a continuous function 

of position using the Webster Wave Equation (WWE).  The WWE predicts the acoustic 

field in a horn by relating the change in cross-sectional area to a change in acoustic field 

amplitude for one-dimensional waves.[113] Such an analysis yields the acoustic field 

within the horn to first order accuracy. [114, 115]  Due to its simplicity, the WWE is 

commonly utilized as a means to predict amplitude changes in acoustic horns.[77, 83]  

Derivation of the acoustic field for a conical horn, given in Figure 3.11, follows; by 

utilizing the same procedure the WWE can be readily extended to horns of differing 

profiles. 

The WWE is obtained by combining the continuity and conservation of axial 

momentum equations to form a wave equation, during which the advection and both 

viscous stress terms are neglected and a change in cross-section along the domain is 

permitted.  This results in: 

 

 

Figure 3.11: Geometry of a conical horn modeled with the WWE. 
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Figure 3.12: The boundary conditions and components of the conical horn modeled with the 

WWE. 

�̈� − 𝑐2
𝜕𝜙

𝜕𝑧

𝜕

𝜕𝑧
(𝑙𝑛𝑆) − 𝑐2

𝜕2𝜙

𝜕𝑧2
= 0 3.64 

𝑆 = 𝑆0𝑧
2 3.65 

where Φ is the velocity potential, 𝑐 is the speed of sound, and 𝑆 is the change in cross-

section expressed as a sole function of 𝑧, the spatial position in the horn.[77]  The apex of 

the horn is taken to be the origin of the coordinate system.  The resulting differential 

equation is solved using the method of unknown coefficients and d’Alembert two-wave 

decomposition, producing an algebraic equation for the velocity potential: 

𝜙 =
𝐴

𝑧
ej(𝜔𝑡−𝑘𝑧) +

𝐵

𝑧
ej(𝜔𝑡+𝑘𝑧) 3.66 

where 𝐴 and 𝐵 are the complex amplitude coefficients.  Taking a time and space 

derivative of the velocity potential results in the pressure and volume velocity of the 

wave within the horn respectively: 

𝑃 = −
𝑗𝜔𝜌𝐴

𝑧
ej(𝜔𝑡−𝑘𝑧) −

𝑗𝜔𝜌𝐵

𝑧
ej(𝜔𝑡+𝑘𝑧) 3.67 

𝑉𝑧 = −
𝑆(1 + 𝑗𝑘𝑧)𝐴

𝑧2
ej(𝜔𝑡−𝑘𝑧) −

𝑆(1 − 𝑗𝑘𝑧)𝐵

𝑧2
ej(𝜔𝑡+𝑘𝑧) 3.68 
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The unknown coefficients are determined using the boundary conditions at the 

horn inlet and aperture. The boundary conditions imposed at pipe inlet and outlet can be 

either a pressure, volume velocity, or volume impedance condition.  The effect of the 

axial component of the viscous stress, namely bulk attenuation, is added into the horn 

model by the use of a complex wavenumber and the attenuation coefficient.  The result is 

an analytical horn model based on a simplified one-dimensional treatment of the 

geometry which includes bulk attenuation losses but lacks any wall compliance.   

While the WWE is useful in that it gives an exact solution for wave propagation 

in a domain of changing cross-sectional area, the method is limited by the geometries that 

can be solved analytically.  In general, a horn has four parameters of interest – an inlet 

radius, an outlet radius, a length, and a radius profile between the inlet and outlet radii – 

each of which is independently specified.  The WWE approach utilizes a two parameter 

shape profile – an initial area constant and a flare constant – which is insufficient to 

specify four independent parameters outside of a conical geometry.  One cannot for 

example maintain fixed inlet, outlet radii, and length for a changing flare constant using 

other WWE area functions.  This limitation requires the use of the discretized pipe 

approach for non-conical geometries. 

3.4.2 Discretization of the acoustic pipe models 

To overcome the geometric limitations of the WWE approach, horns can be 

modeled as a discretized acoustic pipe.  The length over which the horn radius changes is 

divided into elements, with each element having a different cross-sectional area as shown 

in Figure 3.13.  The number of elements is set so that the variation in the acoustic 

amplitude from element entrance to exit is linear and so that the change in area between 
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adjacent elements is small. The volume velocity and pressure are matched at the interface 

between elements to form a continuous acoustic pipe with varying cross-sectional area. 

 Utilizing Figure 3.13 as a reference, the matching of pressure and volume 

velocity at the interface between elements can in general be expressed as: 

𝑃1(𝜔, 𝑧 = 𝑙1)|𝑙1− = 𝑃2(𝜔, 𝑧 = 𝑙1)|𝑙1+ 3.69 

𝑉𝑧,1(𝜔, 𝑧 = 𝑙1)|𝑙1− = 𝑉𝑧,2(𝜔, 𝑧 = 𝑙1)|𝑙1+ 3.70 

The “-“ subscript denotes evaluation of the acoustic field for the element on the left of 

side of the interface while the “+” subscript denotes the element on the right side.  The 

form of Equations 3.69 and 3.70 will be dependent on whether the model for an acoustic 

pipe with or without a wall is utilized.  If scaling shows that bulk attenuation is dominant 

and the pipe model without a wall is utilized, Equations 3.69 and 3.70 become: 

(𝐴𝑒−𝑗𝑘𝑙1 + 𝐵𝑒𝑗𝑘𝑙1)|
𝑙1

− = (𝐶𝑒−𝑗𝑘𝑙1 + 𝐷𝑒𝑗𝑘𝑙1)|
𝑙1

+ 3.71 

𝑆(𝐴𝑒−𝑗𝑘𝑙1 − 𝐵𝑒𝑗𝑘𝑙1)|
𝑙1

− = 𝑆(𝐶𝑒−𝑗𝑘𝑙1 − 𝐷𝑒𝑗𝑘𝑙1)|
𝑙1

+ 3.72 

where amplitude coefficients (A,B,C,D) and area S will in general have different values 

on each side of the interface.  If scaling shows that boundary layer losses are dominant 

and the pipe model with a wall must be utilized, Equations 3.69 and 3.70 become the 

following: 

(𝐴𝑒
−𝑗

1

√𝜖

𝜔𝑟𝑙1
𝑐 + 𝐵𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙1
𝑐 −

2𝑅𝑎𝑅𝑐
2

𝐸𝑢𝑀𝑎2
)|

𝑙1
−

= (𝐶𝑒
−𝑗

1

√𝜖

𝜔𝑟𝑙1
𝑐 + 𝐷𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙1
𝑐 −

2𝑅𝑎𝑅𝑐
2

𝐸𝑢𝑀𝑎2
)|

𝑙1
+

 

3.73 
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Figure 3.13: Left: Diagram of the discretization of the acoustic pipe without a wall model.   

Right: Diagram of the discretization of the acoustic pipe with a wall model. Elements in both 

models are coupled together by matching pressure and volume velocity at the interface 

between elements.   

 

𝑅2𝑀𝑎 (−𝑗
1

√𝜖
𝐴𝑒

−𝑗
1

√𝜖

𝜔𝑟𝑙1
𝑐 + 𝑗

1

√𝜖
𝐵𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙1
𝑐 ) 

∫ (−
𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) 𝑟∗𝑑𝑟∗

𝑅∗

0

|
𝑙1

−

= 

𝑅2𝑀𝑎 (−𝑗
1

√𝜖
𝐶𝑒

−𝑗
1

√𝜖

𝜔𝑟𝑙1
𝑐 + 𝑗

1

√𝜖
𝐷𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙1
𝑐 ) 

∫ (−
𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) 𝑟∗𝑑𝑟∗

𝑅∗

0

|
𝑙1

+

 

3.74 

By repeating the above coupling between successive discretized pipe elements, a change 

in cross-sectional area can be modeled.  Moreover, as no restrictions have been placed on 

the way the area changes besides a requiring area changes be small between any two 

adjacent elements, arbitrary shapes can be accommodated. 
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3.5 Development of an electro-mechanical model for horn-based ultrasonic 

atomizers 

The structure of the horn-based ultrasonic atomizer cell was previously shown to 

be composed of three components (Figure 3.3): a planar piezoelectric transducer, an 

acoustic pipe without a wall, and a horn section.  With the development of the component 

models done in the preceding sections, the appropriate component models must now be 

selected and joined together via boundary conditions to form a complete 

electromechanical atomizer model of the ejector.  Figure 3.14 describes the atomizer 

model components and the boundary conditions that are used for coupling them.  The 

planar piezoelectric transducer (A) is modeled with the Mason impedance matrix, and the 

fluid reservoir (B) is modeled as an acoustic pipe without a wall.  As acoustic boundary 

layer losses will dominate bulk attenuation losses for the majority of working fluids due 

to low bulk attenuation coefficients and the comparatively low frequencies under 

consideration, the acoustic horn (C) is modeled as a discretized acoustic pipe with a wall.  

However, as the WWE with no boundary layer losses is a commonly employed 

methodology for modeling wall bounded acoustic horns, a second model is also 

developed where component C is taken as a conical WWE section for the purposes of 

comparison. 

Considering first the atomizer model utilizing the discretized acoustic pipe with a 

wall model for the horn component (also referred to as the modified Dijksman model for 

clarity), the boundary condition at the aperture of the acoustic horn is assumed to be a 

pressure release condition, given by: 

𝑃0 (𝐴𝑒
−𝑗

1

√𝜖

𝜔𝑟(𝑙𝑟𝑒𝑠+𝑙ℎ𝑜𝑟𝑛)
𝑐 + 𝐵𝑒

𝑗
1

√𝜖

𝜔𝑟(𝑙𝑟𝑒𝑠+𝑙ℎ𝑜𝑟𝑛)
𝑐 )|

(𝑙𝑟𝑒𝑠+𝑙ℎ𝑜𝑟𝑛)−

= 0 3.75 
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The components are coupled by enforcing continuity of pressure and volume velocity at 

their interfaces.  At the interface between components B and C, the coupling condition is 

given by: 

(𝐴𝑒−𝑗𝑘𝑙𝑟𝑒𝑠 + 𝐵𝑒𝑗𝑘𝑙𝑟𝑒𝑠)|
𝑙𝑟𝑒𝑠

− = 𝑃0 (𝐶𝑒
−𝑗

1

√𝜖

𝜔𝑟𝑙𝑟𝑒𝑠
𝑐 + 𝐷𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙𝑟𝑒𝑠
𝑐 )|

𝑙𝑟𝑒𝑠
+

 3.76 

𝑆(𝐴𝑒−𝑗𝑘𝑙𝑟𝑒𝑠 − 𝐵𝑒𝑗𝑘𝑙𝑟𝑒𝑠)|
𝑙𝑟𝑒𝑠

− = 

𝐸𝑢𝑀𝑎(𝜔𝑟𝑤0𝜋𝑅2)𝑀𝑎 (−𝑗
1

√𝜖
𝐶𝑒

−𝑗
1

√𝜖

𝜔𝑟𝑙𝑟𝑒𝑠
𝑐 + 𝑗

1

√𝜖
𝐷𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙𝑟𝑒𝑠
𝑐 ) 

∫ (−
𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) 𝑟∗𝑑𝑟∗

𝑅∗

0

|
𝑙𝑟𝑒𝑠

+

 

3.77 

where Equation 3.76 is the for pressure and Equation 3.77 is for the volume velocity.  

Coupling the components results in a single fluid cavity with a continuous acoustic field.   

Figure 3.14: A schematic diagram of the ultrasonic atomizer based on the acoustic horn structure 

and its decomposition into the components used to develop the analytical acoustic models of the 

atomizer. 
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The coupling between components A and B again enforces continuity of pressure 

and volume velocity, formulated in terms of the fluid cavity mechanical impedance.  The 

fluid cavity mechanical impedance is determined by first applying an arbitrary velocity 

condition at the reservoir inlet surface assuming a perfectly rigid driver.  The acoustic 

pressure within the fluid cavity is then calculated, yielding the pressure at the driving 

surface corresponding to the arbitrarily imposed velocity.  The ratio of these quantities is 

the cavity impedance which is used as the load on the transducer.  The Mason impedance 

matrix is then used to calculate the velocity at the driving surface based on the cavity 

acoustic impedance, the properties of the transducer, and the applied voltage. The 

calculated velocity is then reapplied to the driving surface to obtain an accurate acoustic 

field for the ejector when driven by the transducer.  At the fluid cavity inlet/transducer 

surface, the coupling condition can be expressed as: 

𝑆𝑣𝑡𝑟𝑎𝑛𝑠 = 𝑆(𝐴 − 𝐵)|0+ 3.78 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 3.79 

with Equation 3.78 being continuity of volume velocity and Equation 3.79 being the 

impedance matching condition.  The following conditions are associated with the 

piezoelectric transducer: 

𝑉(𝜔) = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝜔) 3.80 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 3.81 

where 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑is the voltage applied to the transducer. 

 The model applying the WWE for the acoustic horn differs only in the form of the 

equations at the aperture pressure release condition: 
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𝐴𝑒−𝑗𝑘𝑙𝑎𝑝𝑒𝑥 + 𝐵𝑒𝑗𝑘𝑙𝑎𝑝𝑒𝑥|
𝑙𝑎𝑝𝑒𝑥

− = 0 3.82 

and similarly at the interface between components B and C: 

(𝐴𝑒−𝑗𝑘𝑙𝑟𝑒𝑠 + 𝐵𝑒𝑗𝑘𝑙𝑟𝑒𝑠)|
𝑙𝑟𝑒𝑠

− =

= (−
𝑗𝜔𝜌𝐶

𝑙ℎ𝑜𝑟𝑛 + 𝑙𝑎𝑝𝑒𝑥
e−j𝑘(𝑙ℎ𝑜𝑟𝑛+𝑙𝑎𝑝𝑒𝑥)

−
𝑗𝜔𝜌𝐷

𝑙ℎ𝑜𝑟𝑛 + 𝑙𝑎𝑝𝑒𝑥
ej𝑘(𝑙ℎ𝑜𝑟𝑛+𝑙𝑎𝑝𝑒𝑥))|

𝑙𝑟𝑒𝑠
+
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𝑆(𝐴𝑒−𝑗𝑘𝑙𝑟𝑒𝑠 − 𝐵𝑒𝑗𝑘𝑙𝑟𝑒𝑠)|
𝑙𝑟𝑒𝑠

−

= (−
𝑆 (1 + 𝑗𝑘(𝑙ℎ𝑜𝑟𝑛 + 𝑙𝑎𝑝𝑒𝑥)) 𝐶

(𝑙ℎ𝑜𝑟𝑛 + 𝑙𝑎𝑝𝑒𝑥)
2 e−j𝑘(𝑙ℎ𝑜𝑟𝑛+𝑙𝑎𝑝𝑒𝑥)

−
𝑆 (1 − 𝑗𝑘(𝑙ℎ𝑜𝑟𝑛 + 𝑙𝑎𝑝𝑒𝑥))𝐷

(𝑙ℎ𝑜𝑟𝑛 + 𝑙𝑎𝑝𝑒𝑥)
2 ej𝑘(𝑙ℎ𝑜𝑟𝑛+𝑙𝑎𝑝𝑒𝑥))|

𝑙𝑟𝑒𝑠
+
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The position of the interface for the WWE horn has been modified to account for the 

change of the coordinate system for the horn, locating the origin at the horn apex rather 

than the entrance to the fluid reservoir.  The transducer, fluid reservoir, and solution 

methodology parallel those of the modified Dijksman model. 

3.5.1 Model validation 

The ability of the atomizer models to accurately capture the acoustics of horn-

based ultrasonic atomization was tested by comparing model predictions to finite element 

based simulations implemented in ANSYS.[116]  ANSYS is able to simulate the wave 

propagation in the fluid cavity as well as the behavior of the piezoelectric transducer in a 

single coupled computational domain.  ANSYS has been previously shown to capture 

ultrasonic atomizer operation with a high degree of accuracy.[3] The fluid cavity 
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resonance frequencies, electrical input impedance of the piezoelectric transducer, and 

acoustic field characteristics are compared against ANSYS to determine if the analytical 

models accurately predict atomizer behavior.   

ANSYS simulations were limited to a single, two-dimensional axisymmetric cell 

as shown in Figure 3.14.  The domain is comprised of a 1.5mm thick piezoelectric 

transducer (APC International 855 material) with Plane13 elements driven by 10V peak 

AC signal.  The fluid cavity is implemented as Fluid79 elements. Fluid79 is a secondary 

acoustic fluid element that incorporates bulk attenuation loss but does not accurately 

model the acoustic boundary layer.  Element shape is constrained to rectangular with two 

displacement degrees of freedom requiring fine discretization of any sloped surfaces to 

minimize numerical error.  The horn is treated as acoustically lossless silicon having a 

Young’s Modulus of 150 GPa, a Poisson’s ratio of 0.21, and a density of 2330 kg/m3 

with Plane183 as the element type.  The fluid reservoir was taken to be 2.1mm in height, 

coupled to 0.5mm horn with a 725 micrometer entrance and 50 micron aperture diameter 

which is a typical device geometry used in experiments.[3, 59] The exterior boundary of 

the computational domain is subjected to the symmetry boundary condition, recognizing 

that this condition only approximates the condition in an array of multiple cells. Further 

details regarding the ANSYS simulation can be found in Appendix B.  These parameters 

are replicated as closely as possible in the analytical models. 

Table 3.1 compares fluid cavity resonance frequencies between the analytical 

models and ANSYS for water.  Fluid cavity resonance was defined as the frequency 

which corresponded to the peak pressure gradient a nozzle radius away from the aperture, 

generally  consistent  with   the  short  circuit  resonance  frequency   of  the  piezoelectric  
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Table 3.1: A comparison of the fluid cavity resonant frequencies predicted by the modified 

Dijksman, WWE, and ANSYS models for water as the working fluid. 

Mode number 

Modified Dijksman WWE ANSYS 

Frequency 

(kHz) 

Frequency 

(kHz) 

Error 

(%) 

Frequency 

(kHz) 

Error 

(%) 

0 62 72 16.1 60 3.3 

1 333 340 2.1 338 1.5 

2 647 654 1.1 656 1.4 

3 958 966 0.8 965 0.7 

 

transducer.  Agreement between the modified Dijksman and ANSYS models across all 

resonant modes is generally good with error at or less than 1.5%. The large error at the 

zeroth order mode is due to the behavior of the Fluid79 element at low frequencies; 

below 100kHz, the element begins to incorrectly account for fluid mass and, at 

sufficiently low frequencies, produces large numerical error manifest as a discontinuous 

acoustic field between numerical elements.  The WWE model shows a much greater 

discrepancy at the zeroth order mode as compared to the constrained horn model; this 

results from the difference in the fluid cavity impedance caused by the lack of spatial 

dispersion introduced by the wall compliance which is ignored in the WWE model. 

The electrical behavior of the transducer can be determined by examining the 

electric input impedance as given in Figure 3.15.  The electrical impedance was 

calculated by imposing a constant voltage across the transducer and sweeping the 

frequency from 100 kHz to 1 MHz.  All the models agree closely across the frequency 

spectrum with the main discrepancies occurring near the fluid cavity resonances. Both the 

WWE and ANSYS models show a slight frequency offset from the modified Dijksman 

model as well as  a difference  in the predicted magnitude.  While the shift  in fluid cavity  
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Figure 3.15: The magnitude of the electrical input impedance as predicted by the modified 

Dijksman, WWE, and ANSYS models with water as the working fluid. 

resonance is determined by the boundary layer viscous loss mechanism and wall 

compliance incorporated only into the modified Dijksman model, the difference in the 

magnitude of the electrical input impedance results from the sensitivity of the model near 

the fluid cavity resonances to the transducer behavior.  The models each predict similar 

fluid cavity mechanical impedances but, due to the difference in the operating frequency, 

the transducer response varies significantly.  The shift in the fluid cavity resonance 

frequency is thus accentuated and produces the difference in the electrical impedance 

amplitude.    

Predictive capabilities of the constrained horn model were investigated by plotting the 

pressure amplitude along the centerline of the atomizer, shown in Figure 3.16 for 500 

kHz in water as a function of distance from the transducer surface.  At this frequency, the 

predicted electrical impedance magnitudes of the models coincide, and the pressure field 

of the analytical models and ANSYS closely agree.  As the considered frequency moves 
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toward one of the fluid cavity resonances, the magnitude of the electrical impedance 

begins to differ and the pressure field has less agreement.  Figure 3.17 shows this for first 

order fluid cavity resonance of water.  To reduce the effect of sampling frequencies at 

differing resonance qualities, the resonant frequency for each model was determined to 

the nearest Hertz.  At the first order cavity resonance, the modified Dijksman model 

underestimates the ANSYS prediced amplitude by a factor of two.  This discrepancy 

results in part from the difference in the quality factor at the sampled frequency for each 

model, with the ANSYS model sampling a point with a greater quality factor than the 

modified Dijksman model. The transducer in the ANSYS model therefore transfers more 

energy to the fluid cavity than the modified Dijksman model, producing a higher pressure 

amplitude.  The discrepancy also results in part from ANSYS lacking the dominant 

source of viscous dissipation through the acoustic boundary layer.  The amplitude of the 

ANSYS acoustic field will therefore always overstate the amplitude of the modified 

Dijksman model all else being equal.  While the matching of quality factors issue can be 

partly eliminated by increasing the sampling resolution near the fluid cavity resonances, 

the computational time associated with the ANSYS model prohibits increasing the 

frequency resolution indefinitely.  Understanding that a discrepancy may occur near the 

fluid cavity resonances for low viscosity liquids is necessary for application of the 

modified Dijksman model to such working fluids. 

As the viscosity of the working fluid is increased, the effect of the quality factor 

variation on the pressure field is lessened due to the viscous damping in the device.  

Figure 3.18 shows the predicted electrical input impedance for glycerol as a working 

fluid. The additional viscous damping in the system reduces the quality factor of the fluid  
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Figure 3.16: A comparison of the pressure amplitude along the atomizer axis as predicted by the 

modified Dijksman, WWE, and ANSYS models for 500kHz in water as a function of the distance 

from the transducer surface.  The amplitude of the voltage signal applied to the transducer was 

10V. 

Figure 3.17: A comparison of the pressure amplitude along the atomizer axis as predicted by the 

modified Dijksman, WWE, and ANSYS models for the first order cavity resonance mode in water 

as a function of the distance from the transducer surface.  The amplitude of the voltage signal 

applied to the transducer was 10V.  The frequencies for each model are as given in Table 3.1. 
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cavity resonances for the modified Dijksman and ANSYS models while that of the WWE 

model continues to remain relatively large.  The reduction in the quality factor translates 

into better agreement in the pressure field as seen in Figure 3.19 for glycerol at the first 

order cavity resonance.  While a small difference in the fluid cavity resonance frequency 

exists, the predicted pressure field of the modified Dijksman and ANSYS models agree 

closely.  Moreover, the modified Dijksman model predicts the ANSYS distribution with 

much better accuracy than the WWE model. While part of the disagreement between 

analytical models is undoubtedly related to the difference in dimensionality and the 

inclusion of acoustic boundary layer losses, the combination of the wall compliance 

(captured by ANSYS) and radial viscous losses (not captured by ANSYS) clearly 

dominate the behavior of the atomizer and must be included in any analytical model.  

Furthermore, the pressure gradient magnitude at the horn aperture, which is a critical 

parameter for fluid ejection, is not very accurately determined by ANSYS due to finite 

discretization of the acoustic field near the nozzle. In contrast, the modified Dijksman 

model provides a consistent and continuous pressure variation to calculate this quantity. 

The modified Dijksman model therefore provides a new tool for understanding the effect 

of geometry, working fluid, and transducer properties on the acoustic field of horn-based 

ultrasonic atomizers when the radial component of the viscous stress is of greater 

magnitude than the axial component, thereby precluding the use of the WWE modeling 

framework.   
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Figure 3.18: The magnitude of the electrical input impedance as predicted by the modified 

Dijksman, WWE, and ANSYS models with glycerol as the working fluid. 

 
Figure 3.19: A comparison of the pressure amplitude along the atomizer axis as predicted by the 

modified Dijksman, WWE, and ANSYS models for the first order cavity resonance mode in 

glycerol as a function of the distance from the transducer surface.  The amplitude of the voltage 

signal applied to the transducer was 10V. 
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3.6 Development of an electro-mechanical model for squeeze type inkjets 

The structure of the squeeze ejector was previously shown to be comprised of five 

components (Figure 3.4): an annular piezoelectric transducer, an acoustic pipe with a 

confining wall, a driven acoustic pipe with a confining wall, and a horn section.  Using 

the component models developed in previous sections, the appropriate models must now 

be selected and coupled together via boundary conditions to form a complete 

electromechanical squeeze ejector model.  Figure 3.20 describes the squeeze ejector 

model components and the boundary conditions used to couple them.  The annular 

piezoelectric transducer (A) is modeled with the Liang impedance matrix, tube sections B 

and D are modeled as an acoustic pipe with a wall, and tube section C is modeled as an 

acoustic pipe with a wall surrounded by the annular piezoelectric transducer in 

component A.  The acoustic horn (E) is modeled as a discretized acoustic pipe with a 

wall.   

 

Figure 3.20: A decomposition of the squeeze ejector into the basic components utilized for 

developing an analytical model.   
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At the aperture of the acoustic horn, a pressure release condition is assumed given 

by: 

𝑃0 (𝐴𝑒
−𝑗

1

√𝜖

𝜔𝑟(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛+𝑙ℎ𝑜𝑟𝑛)

𝑐 + 𝐵𝑒
𝑗

1

√𝜖

𝜔𝑟(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛+𝑙ℎ𝑜𝑟𝑛)

𝑐 )|
(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛+𝑙ℎ𝑜𝑟𝑛)−

= 0 

3.85 

Similarly, inlet of component B is also taken as a pressure release with the acoustic 

pressure set to zero: 

0 = 𝑃0(𝐴+ + 𝐵+)|0+ 3.86 

The mean pressure imposed by the fluid reservoir at the left side of component B is 

assumed to be uniform over the extent of the ejector and thus has no effect on the 

acoustic analysis.  The interfaces between components are coupled by enforcing 

continuity of pressure and volume velocity at their interfaces.  At the interface between 

components B and C, the coupling condition is given by: 

𝑃0 (𝐴𝑒
−𝑗

1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 + 𝐵𝑒
𝑗

1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 )|
𝑙𝑠𝑝𝑎

−

= 𝑃0 (𝐶𝑒
−𝑗

1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 + 𝐷𝑒
𝑗

1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 −
2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2
)|

𝑙𝑠𝑝𝑎
+

 

3.87 

𝐸𝑢𝑀𝑎(𝜔𝑟𝑤0𝜋𝑅2)𝑀𝑎 (−𝑗
1

√𝜖
𝐴𝑒

−𝑗
1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 + 𝑗
1

√𝜖
𝐵𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 ) 

∫ (−
𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) 𝑟∗𝑑𝑟∗

𝑅∗

0

|
𝑙𝑠𝑝𝑎

−

= 𝐸𝑢𝑀𝑎(𝜔𝑟𝑤0𝜋𝑅2)𝑀𝑎 (−𝑗
1

√𝜖
𝐶𝑒

−𝑗
1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 + 𝑗
1

√𝜖
𝐷𝑒

𝑗
1

√𝜖

𝜔𝑟𝑙𝑠𝑝𝑎

𝑐 ) 

3.88 
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∫ (−
𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) 𝑟∗𝑑𝑟∗

𝑅∗

0

|
𝑙𝑠𝑝𝑎

+

 

with Equation 3.87 being the condition on the pressure and Equation 3.88 being the 

condition on volume velocity.  As component C is driven with a squeeze displacement, 

the driving term must be retained in Equation 3.87.   Similar coupling conditions can be 

written between components C and D: 

𝑃0 (𝐴𝑒
−𝑗

1

√𝜖

𝜔𝑟(𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)
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𝑗

1

√𝜖
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2𝑅𝑎𝑅𝑐

2

𝐸𝑢𝑀𝑎2
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(𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)−

= 𝑃0 (𝐶𝑒
−𝑗

1

√𝜖
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(𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)+

 

3.89 

𝐸𝑢𝑀𝑎(𝜔𝑟𝑤0𝜋𝑅2)𝑀𝑎 (−𝑗
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𝑏𝑒𝑟0(𝑟

∗) + 𝑗𝑏𝑒𝑖0(𝑟
∗)

𝑏𝑒𝑖0(𝑅∗) − 𝑗𝑏𝑒𝑟0(𝑅∗)
+ 𝑗) 𝑟∗𝑑𝑟∗

𝑅∗

0

|
(𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)+

 

3.90 

as well as between D and E: 

𝑃0 (𝐴𝑒
−𝑗

1

√𝜖

𝜔𝑟(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)

𝑐 + 𝐵𝑒
𝑗

1

√𝜖

𝜔𝑟(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)

𝑐 )|
(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)−

= 𝑃0 (𝐶𝑒
−𝑗

1

√𝜖

𝜔𝑟(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)

𝑐 + 𝐷𝑒
𝑗

1

√𝜖

𝜔𝑟(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)

𝑐 )|
(2𝑙𝑠𝑝𝑎+𝑙𝑑𝑟𝑛)+

 

3.91 
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𝐸𝑢𝑀𝑎(𝜔𝑟𝑤0𝜋𝑅2)𝑀𝑎 (−𝑗
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0
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3.92 

Coupling the components results in a single fluid cavity with a continuous acoustic field.   

The coupling between components A and C again enforces continuity of pressure 

and volume velocity, formulated in terms of the fluid cavity mechanical impedance.  The 

fluid cavity mechanical impedance is determined by first applying an arbitrary velocity 

condition on the exterior tube surface assuming a perfectly rigid driver.  The acoustic 

pressure within the fluid cavity is then calculated, yielding the pressure at the interior 

wall surface corresponding to the arbitrarily imposed velocity.  The mean pressure and 

radial particle velocity are calculated at the interface of the fluid cavity and glass wall by 

averaging Equations 3.61 and 3.30 along the length of component C.  The ratio of these 

quantities is the cavity impedance which is used as the load on the transducer as the stress 

and strain are assumed to be uniform across the tube wall.  The Liang impedance matrix 

is then used to calculate the velocity and pressure at the inner transducer surface based on 

the fluid cavity acoustic impedance, the properties of the transducer, and the applied 

voltage. The calculated velocity is then reapplied as the driving velocity to obtain an 

accurate acoustic field for the ejector when driven by the transducer.  At the interface 

between the glass tube and transducer, the coupling condition can be expressed as: 
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𝑣𝑡𝑟𝑎𝑛𝑠(𝜔) =
𝑑𝑑

𝑑𝑡
(𝜔) 

3.93 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 3.94 

with Equation 3.93 being continuity of volume velocity and Equation 3.94 being the 

impedance matching condition.  The following conditions are associated with the 

piezoelectric transducer: 

𝑉(𝜔) = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝜔) 3.95 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 3.96 

where 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑is the voltage applied to the transducer. 

3.6.1 Model validation 

The ability of the analytical model to accurately capture the acoustics of squeeze 

type ejectors was evaluated by comparing model predictions to finite element based 

simulations implemented in ANSYS.[116]  ANSYS is able to simulate the wave 

propagation in the fluid cavity as well as the behavior of the piezoelectric transducer in a 

single coupled computational domain.  ANSYS simulations were limited to the 

axisymmetric domain as shown in Figure 3.20.  The domain is comprised of a 100 μm 

thick piezoelectric transducer (APC International 855) with Plane13 elements driven by 

1V peak AC signal.  The fluid cavity is implemented as lossless Fluid29 elements.  The 

glass is treated as a material having a Young’s Modulus of 150 GPa, a Poisson’s ratio of 

0.21, and a density of 2500 kg/m3 with Plane183 as the element type.  The fluid reservoir 

was taken to be 500 μm in diameter a 1.5 mm in length, composed of a 1 mm central 

driving section with a 250 μm undriven section on each end so as to minimize the size of 

the computational domain while maintaining realistic dimensions of physical ejectors.  
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The exterior boundaries of the fluid cavity were taken as pressure release with stress free 

conditions on the remainder of the ejector exterior.  Further details regarding the ANSYS 

simulation can be found in Appendix B.  These parameters are replicated as closely as 

possible in the analytical model. 

Figures 3.21 through 3.22 give the predicted pressure and velocity amplitudes on 

the interior surface of the glass tube for the squeeze ejector and ANSYS models.  In 

general, the pressure predicted by the models agree to within a factor of two.  The same 

holds for the velocity except for the lowest investigated frequency at 10 kHz.  At this 

frequency, the ejector model predicts a constant axial velocity due to the long wavelength 

in the fluid cavity while ANSYS predicts a distribution with a significant amplitude 

reduction near the ends of the driven segment.  This discrepancy is a product of the 

assumptions built into the models.  The ejector model coupled with the Liang impedance 

matrix formulation assumes that the transducer is axially infinite, meaning axial motion is 

not permitted in either the transducer or the glass.  In the ANSYS model, the 

piezoelectric transducer has a finite length which introduces an axial response to the 

transducer.  The amount of axial deformation predicted by ANSYS at the ends of the 

transducer is particularly significant as the transducer looks less one-dimensional as 

compared to the transducer center.  Moreover, the introduction of axial resonances can 

significantly alter the transducer behavior as compared to the Liang formulation, 

particularly at low frequencies where axial resonances will be dominant.  Understanding 

that a discrepancy may occur at low operating frequencies due to the geometric 

differences between models is necessary for application of the model to squeeze type 

ejectors. 
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In addition to the geometric considerations given to the squeeze type ejector utilized by 

Bogy and Talke, a key reason for its selection as the basis of the squeeze type model was 

the availability of experimental data for validation.[2]  Bogy and Talke measured the 

deformation of the meniscus for the squeeze type ejector pictured in Figure 3.24 at the 

ejector aperture as a function of time for various ejector lengths, data for which is 

reproduced in Figure 3.25.  Confirmation of the modeling methodology is possible by 

comparing the displacement at the ejector aperture predicted by the squeeze ejector 

model to the experimental data.  However, the comparison is complicated by the fact that 

no data regarding the transducer thickness is reported in reference [2] and ejector 

diameters are not stated other than at the aperture.  Selection of the unknown ejector 

parameters was informed by currently available components and tuned such that the 

model reproduced the experimental results. 

 

  
Figure 3.21: Comparison of the predicted pressure and axial velocity magnitudes on the inner 

glass tube surface of the squeeze ejector model when driving the piezoelectric transducer with 

sinusoidal 1V amplitude voltage signal at 10kHz.  Glycol was utilized as the working fluid. 
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Figure 3.22: Comparison of the predicted pressure and axial velocity magnitudes on the inner 

glass tube surface of the squeeze ejector model when driving the piezoelectric transducer with 

sinusoidal 1V amplitude voltage signal at 250kHz. Glycol was utilized as the working fluid. 

 

 

  
Figure 3.23: Comparison of the predicted pressure and axial velocity magnitudes on the inner 

glass tube surface of the squeeze ejector model when driving the piezoelectric transducer with 

sinusoidal 1V amplitude voltage signal at 500kHz. Glycol was utilized as the working fluid. 
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Figure 3.24: The squeeze ejector geometry as investigated by Bogy and Talke.[2]  The device 

consists of a glass tube surrounded by an annular piezoelectric transducer connected to undriven 

tube segments on either side.  The tube opens to the environment through a nozzle plate on the 

right and to a large fluid reservoir on the left. 

 

Figure 3.25: Meniscus displacement at the ejector aperture as measured by Bogy and Talk for 

squeeze ejectors of various lengths.  The duration of driving pulse for each geometry is indicated 

at the left[2] 
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Table 3.2: The driving pulse parameters used by Bogy and Talke for squeeze type ejectors of 

varying lengths.[2] 

Ejector Total  

Length (mm) 

Transducer  

Length (mm) 
Time on Peak (μm) Peak Voltage (V) 

12.3  8.2 12.7 

18.7  11.8 8.5 

33.9  22.4 4.5 

 

Figure 3.26 shows the prediction of the squeeze model for the three geometries 

and driving conditions given by Bogy and Talke.  The values not explicitly specified in 

reference [2] were taken to be an inner tube diameter of 1 mm, an outer tube diameter of 

2 mm, and a transducer outer diameter of 3 mm.  These dimensions are feasible when 

considering small tubes.  The spacer length was taken as 3mm with a horn length of 100 

µm.  The time-dependent meniscus displacement was calculated by imposing a time-

dependent voltage signal on the transducer analogous in shape to the square pulse voltage 

applied by Bogy and Talke.  Both the time on peak and the peak voltage of the signal 

were adjusted to be equivalent to the values used experimentally for each ejector length 

which are provided in Table 3.2.  The Fourier transform of the applied voltage was then 

taken assuming a repeat rate of 1000 Hz, and the squeeze model solved for each 

frequency component up to 300 kHz.  Additional frequencies above 300 kHz were not 

necessary to obtain a converged solution.  The meniscus displacement was calculated by 

taking the inverse Fourier transform of the velocity at the element nearest to the aperture 

which was subsequently integrated to obtain the displacement as a function of time.  As 

Figure 3.26 demonstrates, the squeeze model resolves the first peak in the meniscus 

displacement particularly well.  In subsequent peaks, the error between the experimental 

and model prediction grows due to two main effects.  First, as the Liang impedance 
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matrix formulation used for the transducer predicts a hoop resonance higher in frequency 

than that of actual devices, the transducer stimulates the higher frequencies of the fluid 

cavity associated with shorter wavelengths.  The increased amplitude of the higher 

frequency components in the fluid cavity response directly yields a reduction in the 

period between peaks in the meniscus displacement as the mean wavelength is shorter in 

the fluid cavity.  Secondly, as the transducer becomes a larger fraction of the ejector 

length, the change in the wall elasticity due to the presence of the transducer becomes 

more important to wave propagation in the fluid cavity, a factor which is currently 

neglected as only the glass elasticity is considered.  Despite these effects, the first several  

 
Figure 3.26: Model result corresponding to the conditions of the Bogy and Talke experiment 

which measured meniscus displacement in various ejector operating configurations.  The tube 

inner diameter was taken to be 1 mm with an outer diameter of 2 mm.   The transducer outer 

diameter was taken as 3 mm. The time in μm at which the first several peaks occur is indicated.  

18.5 
37.1 58.8 

26.1 
53.5 

81.3 

45.9 
92.4 
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Figure 3.27: Model results corresponding to the conditions of the Bogy and Talke experiment for 

the meniscus velocity using squeeze ejector model.  The tube inner diameter was taken to be 1 mm 

with an outer diameter of 2 mm.   The transducer outer diameter was taken as 3 mm. The ejector 

ends are assumed to be pressure release conditions.  

peaks which are of most interest in terms of fluid ejection are well predicted by the 

analytical squeeze ejector model. 

The second aspect investigated by Bogy and Talke was the velocity of the ejected 

fluid droplet.  The voltage on the transducer was increased until the droplet velocity 

attained 3.5 m/s, corresponding to 12.7 V in the 12.3 mm geometry and 4.5 V in the 33.9 

mm geometry respectively.  The necessary voltage for the 18.7 mm geometry is not 

reported in reference [2] and is assumed to be 8.5 V, approximately half the difference in 

voltage between the larger and smaller fluid cavity lengths.  In general, the velocity of the 

ejected droplet should correspond to the acoustic velocity of the fluid at the ejector 

aperture.  This provides a means to determine if the squeeze ejector model accurately 

predicts the amplitude of the acoustic field.  The velocity at the ejector aperture is given 

in Figure 3.27.  The squeeze model over predicts the maximum velocity at the aperture 
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but remains below the maximum experimental values recorded by Bogy and Talke. This 

gives confidence that the squeeze ejector model accurately models the physics governing 

squeeze type ejectors.  The model therefore provides a new tool for understanding the 

effect of geometry, working fluid, and transducer properties on the acoustic field in the 

squeeze type fluid ejector.   

3.7 Concluding remarks on model development 

A coupled electro-mechanical modeling approach was developed which yielded 

closed-form analytical solutions that accurately capture the electrical and mechanical 

properties for a broad class of fluid ejectors, specifically horn-based ultrasonic atomizers 

and squeeze type devices.  The modeling strategy divided an ejector into components, 

modeled each component individually, and then coupled the component models to 

establish a complete ejector model.  Impedance matrix formulations were developed and 

validated for planar and annular piezoelectric transducers.  Modeling the fluid acoustic 

pipes was facilitated by simplifications to the governing acoustic equations through an 

understanding of the dominant loss mechanisms.  This allowed the formulation of two 

different models which jointly cover a broad range of atomizer operation in terms of 

operation frequency and working fluid viscosity: the acoustic pipe with a wall model for 

the regime in which the losses due to the radial component of the viscous stress in the 

acoustic boundary layer are the dominant loss mechanism and the acoustic pipe without a 

wall model for the regime in which the losses due to the axial component of the viscous 

stress are the dominant loss mechanism.  By examining the nondimensional groups that 

govern atomizer behavior using scaling analysis, the bounds on the applicability of each 

model were established by comparing the magnitudes of the viscous stress components 

and the spatial pressure gradient.  Modeling the change in the ejector cross-sectional area 
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within the horn was accomplished through the WWE and discretizing the acoustic pipe 

into sections with changing area.   

The fluid cavity resonances, electric input impedance, and the axial pressure 

distribution for the horn-based ultrasonic atomizer model were compared to ANSYS 

finite-element simulations to confirm that the modified Dijksman model accurately 

predicts atomizer behavior within its applicable regime.  The fluid cavity resonance 

frequencies agree with ANSYS to a small margin of error. The electric input impedance 

was shown to agree between the analytical and ANSYS models, as was the acoustic field 

along the device centerline, particularly for fluids with high viscosities.  Discrepancies in 

the acoustic field were attributable to the transducer response and the difference in 

modeled viscous dissipation mechanisms. The modified Dijksman model emerged as a 

valid and computationally efficient analytical tool for horn based ultrasonic atomizers 

operating with high viscosity fluids.  

 The acoustic field predicted by the squeeze ejector model was compared to both 

ANSYS simulations and experimental data to confirm that the model accurately predicts 

ejector behavior.  The coupling between the fluid cavity and transducer agree with 

ANSYS simulations when sufficiently far from the hoop resonance in operating 

frequency.  The acoustic field of the model was also shown to agree with that present in 

an experimentally characterized device, both in terms of the propagation characteristics 

of the cavity as well as the amplitude of the acoustic field.  
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CHAPTER 4: OPTIMIZATION OF HORN-BASED ULTRASONIC 

ATOMIZER GEOMETRY  
 

 

The ejection of viscous liquids is investigated and a design methodology for horn-

based ultrasonic atomizers is developed through comprehensive analytical electro-

mechanical acoustic modeling of device operation.  A coupled electromechanical model, 

shown in the previous chapter to predict the acoustic field and viscous loss mechanisms 

in ultrasonic fluid ejectors, is applied to determine the atomizer geometry and operating 

parameters that maximize the pressure gradient magnitude for working fluids of various 

viscosities.  The maximum pressure gradient magnitude is then compared to the required 

pressure gradient derived by hydrodynamics scaling to predict fluid ejectability as a 

function of the fluid viscosity.   

 

 
Figure 4.1: Left: A schematic of the ultrasonic atomizer based on an array of acoustic horn 

structures.   The cell under consideration is defined by the dashed lines. Right: A magnified view 

of atomizer unit cell horn geometry.  The horn has a fixed aperture radius, 𝑟𝑎𝑝𝑡=25 µm, and horn 

entrance radius, 𝑟𝑒𝑛𝑡 = 387.5 µm.  The entrance flat region, 𝑟𝑠𝑝𝑎, is set equal to the aperture 

radius.  The horn length, ℎℎ𝑜𝑟𝑛 and flare constant 𝑚 are varying parameters of the horn model.   

4.1 Performance of current horn-based ultrasonic atomizers 

Optimization of horn-based ultrasonic atomizer performance first requires 

characterization of commonly utilized geometries in order to establish a baseline for later 

device modifications.  An atomizer geometry was selected which consists of a 2.1 mm 

fluid reservoir, a 500 µm horn, and a 1.5 mm transducer for this purpose.  The conical 
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horn has an entrance diameter of 775 µm, an aperture diameter of 50 µm, and an initial 

wall thickness (𝑟𝑠𝑝𝑎) of 25 µm. A schematic of the horn is provided in Figure 4.1.  The 

appropriate atomizer model for this geometry can be determined by plotting the sound 

speed and particle speed Reynolds numbers for the fluid cavity resonance modes below 1 

MHz in several working fluids.   As is shown in Figure 4.2, for all considered fluids 

atomizer operation falls into the regime captured by the modified Dijksman model.  The 

model should therefore capture the dominant sources of viscous dissipation present in 

physical devices and scale correctly with the physical device response.  

Atomizer characterization was conducted by examining the pressure gradient 

magnitude at horn aperture as a function of working fluid viscosity for the fluid cavity 

modes below 1 MHz, given in Figure 4.3 for a transducer driven by a 1 V sinusoidal 

signal.  To isolate the influence of working fluid viscosity on the horn acoustic field, an 

Figure 4.2: The regime map for horn-based ultrasonic atomizer operating with common working 

fluids.  The considered fluids fall into the region where the discretized acoustic pipe with wall 

model applies for the horn.  The multiple points for each considered fluid represent all fluid 

cavity resonant modes occurring below 1MHz. 
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artificial working fluid is introduced with a fixed density and sound speed equal to those 

of water and only changing the fluid viscosity.  The pressure gradient magnitude was 

determined by sampling the acoustic pressure an aperture radius back from the horn 

aperture and dividing by the aperture radius as this is the length scale relevant to fluid 

ejection from the aperture. Fluid cavity resonances were defined as the frequencies at 

which a maximum in the pressure gradient occurred that is not attributable to a transducer 

resonance.  The dependence of the generated pressure gradients on the fluid cavity 

resonance mode is most evident in low viscosity working fluids.  At low working fluid 

viscosities, the pressure gradient amplitude near the horn aperture can be increased with 

the use of higher order fluid cavity resonance modes.  The increase in the pressure 

gradient is most significant when shifting from the zeroth to the first mode and 

subsequently decreases with increasing cavity mode, implying a decreasing return from 

increasing the fluid cavity resonance frequency used for atomization as viscous 

dissipation increases. 

When working fluids with viscosities greater than that of water are considered, 

the effect of the fluid cavity resonant mode on the atomizer pressure gradient is reduced.  

For working fluid viscosities on the order of 1 Pas, the first, second, and third order fluid 

cavity resonances collapse to a similar pressure gradient amplitude.  This behavior is 

intuitive as the increased pressure amplitude from the larger displacement imposed by the 

transducer is offset by the greater viscous dissipation present at the higher order fluid 

cavity resonances.  Interestingly, the model predicts a local maximum in the pressure 

gradient amplitude occurring near 5 Pas as a result of the standing wave pattern in the 

nozzle.  The atomizer response thus displays two kinds of behavior based on the viscosity 
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of the working fluid.  In the low viscosity case, the greatest pressure gradient occurs at 

high order fluid cavity resonant modes as viscous dissipation remains insignificant even 

at high frequencies.  In the high viscosity case, the maximum pressure gradient is largely 

independent of the fluid cavity resonant mode until the zeroth mode becomes favored at 

the largest viscosities.  Viscous dissipation increases by such an extent at higher order 

cavity modes that the third order fluid cavity resonance is damped completely from the 

fluid cavity response above 95 Pas. 

It is assumed that the pressure gradient at the horn aperture must achieve a 

frequency independent value of the pressure gradient, called the pressure gradient 

threshold which depends on the fluid viscosity, for ejection to take place from an 

atomizer.  The atomizer model can be applied to predict if the ejection of a working fluid 

is possible by determining if the maximum pressure gradient created by the atomizer is 

Figure 4.3: Variation in the predicted pressure gradient at the horn aperture for each fluid cavity 

resonance as a function of viscosity when driven by a sinusoidal voltage input of 1V.  The sound 

speed and density of the working fluid are taken to be equal to those of water.  The fluid cavity 

resonant frequencies are adjusted to account for their change as a function of working fluid 

viscosity. 
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greater than a specified pressure gradient threshold.  Atomizer configurations which yield 

a pressure gradient below the pressure gradient threshold can be eliminated as unviable.  

To estimate the pressure gradient thresholds for fluids of various viscosities, a scaling 

approach is utilized.  Numerical simulations and comparison with experiments for water 

atomization by Meacham and coworkers, showed successful ejection with pressure 

gradients on the order of 1010 Pa/m.[1]  Taking this as the order of magnitude for the 

pressure gradient required to achieve fluid ejection at that (water) viscosity, one can 

develop a relationship for the pressure gradient threshold as function of the fluid viscosity 

by balancing the driving pressure gradient against the viscous stress and assuming a 

quasi-steady liquid flow rate from the ejector, ∇𝑃 ∝ ∇𝑃𝑟𝑒𝑓(𝜇 𝜇𝑟𝑒𝑓⁄ ).  One therefore 

expects the pressure gradient required for fluid ejection to increase linearly with 

increasing viscosity as the ejection resisting shear stresses at the fluid cavity aperture 

grow.  By substituting in the pressure gradient threshold for water as the reference fluid, 

one can obtain an order of magnitude estimate for the pressure gradient threshold of any 

other fluid.   

Table 4.1: Maximum values of the pressure gradient generated by the atomizer as a function of 

the working fluid viscosity and fluid cavity resonance mode.  The examined geometry consisted of 

a 2.1 mm fluid reservoir, a 500 µm horn, and 1.5 mm transducer driven at its dielectric 

breakdown voltage.   

Working Fluid 

Viscosity (Pas) 

Maximum Pressure Gradient 

Magnitude (GPa/m) Pressure Gradient 

Threshold (GPa/m) 

Fluid 

Ejection 
Mode 0 Mode 1 Mode 2 Mode 3 

0.001 18.5 1047.9 4264.6 7389.8 10 Yes 

0.01 7.2 337.8 1486.0 3144.4 100 Yes 

0.1 3.7 148.5 606.4 1240.8 1000 Yes 

1 10.2 94.5 206.0 358.7 10,000 No 

10 30.6 105.4 97.9 127.2 100,000 No 
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The displacement amplitude imposed on the fluid cavity by the transducer 

provides the upper bound on the atomizer pressure gradient magnitude at a given 

operating frequency. The maximum pressure gradient magnitude for a given transducer 

thickness occurs at the upper limit on the voltage allowed across the transducer given by 

the dielectric breakdown voltage.  Typical piezoelectric transducers are limited to 

voltages resulting in an electric field on the order of 5 V/mil (1.97x105 V/m).[116]  The 

maximum pressure gradient as a function of working fluid viscosity and fluid cavity 

resonances for the 1.5 mm transducer of APC International 855 is given in Table 4.1 

along with the pressure gradient threshold.  For the 1 mPas viscosity, any fluid cavity 

resonance produces a sufficiently large pressure gradient to yield fluid ejection.  

However, for 100 mPas, only the third order fluid cavity resonance yields a sufficient 

pressure gradient for fluid ejection.  The 10 Pas working fluid shows no viable fluid 

cavity resonances.  Increased working fluid viscosity simultaneously reduces the 

maximum pressure gradient magnitude able to be generated in the horn-based ultrasonic 

atomizer while requiring an increased pressure gradient threshold to overcome the greater 

shear stresses present at the horn aperture.  The question thus becomes whether all 

potential atomizer configurations exhibit a similar limitation. 

4.2 Geometric optimization of horn-based ultrasonic atomizers 

Fluid ejection from horn-based ultrasonic atomizers is governed by the pressure 

gradient magnitude at the horn aperture produced by the atomizer fluid cavity acoustic 

field.  As the viscosity of the working fluid is increased, a greater pressure gradient is 

required at the horn aperture to overcome the larger viscous shear stresses resisting 

ejection.  Maximization of the pressure gradient to eject high viscosity working fluids 

necessitates consideration of each of the three main components of the atomizer: the 
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horn, the fluid reservoir, and the piezoelectric transducer.  The maximum atomizer 

pressure gradient can then be compared to the pressure gradient required to eject a 

working fluid, i.e. the pressure gradient threshold, to determine the ability of a working 

fluid to eject with horn-based ultrasonic atomization.   

The examined horn-based ultrasonic atomizer horn geometries are guided by the 

actual devices created by Meacham et al.[3]  To facilitate the comparison among the 

atomizer configurations, the entrance and aperture radii of the silicon horn are fixed as 

given in Figure 4.1.  The piezoelectric transducer material also remains fixed as APC 

International 855 with a varying thickness and quality factor.[116]   

4.2.1 The effect of horn shape on the generated pressure gradient 

The acoustic horn increases the pressure gradient magnitude at the atomizer 

aperture by concentrating volume velocity from a larger cross-sectional area at the horn 

entrance to a smaller cross-sectional area at the horn aperture.  For a fixed horn length, 

the two geometric parameters which determine the acoustic response of the horn section 

are the magnitude and rate of the area reduction across the horn.  The magnitude of the 

reduction in area, given by the diameter ratio (𝑅𝑑 = 𝑟𝑒𝑛𝑡/𝑟𝑎𝑝𝑡) between the entrance and 

aperture, determines by how much the volume velocity in concentrated across the horn 

while the horn profile determines how rate at which the contraction in area occurs.  Both 

these parameters influence the acoustic boundary layer loss which is the dominant source 

of dissipation in the fluid cavity.  It is therefore desirable to select a horn geometry which 

maximizes the concentration of volume velocity while minimizing the boundary layer 

losses to yield a large pressure gradient. 
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The effect of the horn diameter ratio on the pressure gradient magnitude is shown 

in Figure 4.4 as a function of frequency for silicon horns 0.5 and 2.5 mm in length with 

1mPas and 10Pas working fluid viscosities.  The artificial working fluid is again utilized 

with sound speed and density equal to water to isolate the effect of changing working 

fluid viscosity.  The aperture diameter was also maintained at 25 µm and the entrance 

diameter increased to obtain changing 𝑅𝑑.  A 𝑅𝑑 of one corresponds to a straight acoustic 

pipe with larger 𝑅𝑑 indicating a greater reduction in area across the conical horn.  The 

upper limit on the considered diameter ratio is established by two limits on the entrance 

diameter: the first being numerical in the ability to evaluate the modified Dijksman horn 

model and the second being a physical constraint on the assumptions underlying the 

development of the analytical model.  Considering first the numerical limitation, during 

model formulation the pipe radius is scaled by the acoustic boundary layer thickness 

(𝑟∗ = 𝑟(𝜌0𝜔𝑟 𝜇⁄ )
1

2) to produce a non-dimensional radius.  As the pipe radius and 

operating frequency become large or the viscosity becomes small, the nondimensional 

radius becomes large.  For large nondimensional radii, the Kelvin functions which govern 

the radial dependence of the axial particle velocity cannot be numerically evaluated.  In 

the 1 mPas case, the maximum pipe radius that can be considered for a 1 MHz operating 

frequency prior to the Kelvin functions becoming numerically undefined is 390 µm 

corresponding to 𝑅𝑑 = 15.6.  As the viscosity of the working fluid is increased, the 

nondimensional radius becomes smaller which permits larger pipe radii to be considered.  

For these cases, the maximum entrance radius is established through the assumption of a 

one dimensional acoustic field in the axial direction during model formulation.  For this 

assumption to hold, the pipe radius must be less than half of an acoustic wavelength: 
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𝑅𝑚𝑎𝑥 =
𝜆

2
=

𝑐

2𝑓
 

Above this value, the acoustic field in the horn becomes two dimensional and cannot be 

captured by the developed analytical model. 

 As the horn diameter ratio is increased, the pressure gradient magnitude generated 

in the horn section grows.  This is a result of the greater volume velocity which is 

imposed at the horn entrance with the constant amplitude driving driving condition which 

is subsequently concentrated to the same aperture area.  While an increase in pressure 

gradient magnitude occurs across all considered geometries, the effect is most significant 

in high viscosity working fluids for long horns as seen in the 10 Pas working fluid and 

the 2.5 mm horn.  For the 𝑅𝑑 = 1 case corresponding to the straight acoustic pipe, the 

pressure gradient magnitude declines rapidly with operating frequency as viscous 

dissipation becomes large.  For the 𝑅𝑑 = 30 case, while viscous dissipation effects are 

again large at high operating frequencies, the volume velocity imposed at the entrance of 

the horn is sufficiently large that a meaningfully large acoustic field amplitude remains 

after propagation to the horn aperture.  In both low and high viscosity working fluids, the 

maximum pressure gradient magnitude is generated in the horn when the largest diameter 

ratio is utilized that maintains a one-dimensional axial acoustic field in the horn. 

When the maximum diameter ratio is utilized across the horn, the only remaining 

parameter for a fixed length horn is the horn flare.  Horn flare governs the rate at which 

the reduction in cross-sectional area occurs as well as the contact surface area between 

the horn and the working fluid.  To determine an optimal horn flare, the horn component 

model was applied to horns of varying flare, resulting in Figure 4.5 which examines 

pressure gradient as a function of frequency for silicon horns 0.5 and 2.5 millimeters in   
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Figure 4.4: Pressure gradient magnitude in the horn as a function of frequency and diameter 

reduction when driven by sinusoidal pressure input of 1 Pa.  The horn aperture diameter is 50 

µm with a varying entrance diameter.  The sound speed and density of the working fluid are taken 

to be equal to those of water.  Top left: 500 μm horn with 1 mPas working fluid viscosity.  Top 

right: 500 μm horn with 10 Pas working fluid viscosity. Bottom left: 2500 μm horn with 1mPas 

working fluid viscosity. Bottom right: 2500 μm horn with 10 Pas working fluid viscosity. 
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Figure 4.5: Pressure gradient magnitude in the horn as a function of frequency and horn flare 

when driven by sinusoidal pressure input of 1 Pa.  The horn entrance is 775 micrometers with an 

aperture diameter of 50 micrometers.  The sound speed and density of the working fluid are taken 

to be equal to those of water.  The legend values next to the exponential are the flare constant of 

the horn, with higher numbers indicating greater flare.  Top left: 500 μm horn with 1 mPas 

working fluid viscosity.  Top right: 500 μm horn with 10 Pas working fluid viscosity. Bottom left: 

2500 μm horn with 1mPas working fluid viscosity. Bottom right: 2500 μm horn with 10 Pas 

working fluid viscosity. 
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length at a fixed entrance to aperture diameter ratio.  Figure 4.5  again utilizes the 

artificial working fluid with viscosities of 1 mPas and 10 Pas.  The conical horn 

consistently results in the largest pressure gradient across working fluid viscosities and 

horn resonance modes as it minimizes the surface area that generates a boundary layer.  

As one expects these results to be independent of horn length, the following analyses are 

confined to conical horn profiles with a fixed diameter ratio.  Selection of a horn length, 

which also determines the magnitude of the acoustic boundary layer losses for a given 

horn profile, is dependent on reservoir length and is therefore considered in the 

subsequent section.   

4.2.2 The effect of horn and reservoir length on the generated pressure gradient 

The horn and fluid reservoir, in their combined length and fraction of the 

combined length, determine the fluid cavity resonance modes available for fluid ejection 

as well as magnitude and mechanism of the dissipated acoustic power.  The importance 

of the fluid cavity resonant mode utilized for operation can be seen in Figure 4.6 where 

acoustic behavior of a fixed geometry fluid cavity is evaluated when driven by a constant 

amplitude sinusoidal inlet velocity condition at the first six fluid cavity resonance modes.  

The pressure gradient magnitude at the horn aperture initially increases with the fluid 

cavity resonance mode, reaches a maximum at the fourth order mode, and subsequently 

declines.  The increase with resonance mode is the combined effect of a greater fluid 

cavity acoustic impedance yielding a larger pressure amplitude within the cavity and the 

shifting of the final pressure antinode closer to the horn aperture due to the fluid cavity 

mode shape.  Beyond the fourth order fluid cavity resonance, the decline in the fluid 

cavity acoustic impedance and the growth in the acoustic energy dissipation, which scales 
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with a square root of the frequency, together result in a decreased atomizer pressure 

gradient.  This behavior demonstrates the sensitivity of atomizer performance to the 

selected fluid cavity configuration and operating parameters for a given working fluid.  

Systematic variation of the fluid cavity geometry and operating frequency 

provides a means to determine an optimal atomizer configuration for a given working 

fluid. Figures 4.6 through 4.8 illustrate the interplay among the horn length, reservoir 

length, and operating frequency that maximizes the atomizer pressure gradient magnitude 

for the artificial test fluids with viscosity of 1 mPas, 100 mPas, and 10 Pas, respectively.  

The figures were generated by the exhaustive comparison of various combinations of 

horn lengths, reservoir lengths, and operating frequencies with the atomizer model for a 

fixed velocity condition at the fluid cavity inlet.   

 

 
Figure 4.6: Pressure amplitude in the atomizer fluid cavity as a function of distance from the 

cavity inlet for the first six cavity resonance modes in the artificial test fluid with 1 mPas viscosity 

when driven by a constant amplitude (1 m/s) sinusoidal velocity inlet condition.   
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The fluid cavity filled with the low viscosity working fluid (Figure 4.7) yields the 

largest pressure gradient magnitudes when driven at one of the fluid cavity resonant 

modes.  Operation at fluid cavity resonances is beneficial as the fluid cavity amplifies the 

pressure imposed at the fluid cavity inlet and, due to the low viscosity, little acoustic 

energy dissipation occurs at the high operating frequencies associated with the high fluid 

cavity resonant modes.  Interestingly, while all fluid cavity resonant modes result in 

pressure amplification, the largest pressure gradient magnitude is seen at the first order 

fluid cavity resonance.  Near the first order fluid cavity resonance, the fluid cavity 

acoustic impedance is comparatively large which implies that an increased inlet pressure 

amplitude provides more benefit than the anti-node shifting towards the cavity aperture 

that occurs at high operating frequencies.  However, the configuration with the optimum 

pressure gradient magnitude is not concurrent with the configuration with the largest fluid 

cavity impedance.  This  indicates that small changes to the fluid cavity geometry and 

operating frequency affecting the fluid cavity mode shape and viscous dissipation can be 

influential on the pressure gradient magnitude resulting from a given fluid cavity inlet 

condition.  The linkage between the reservoir length, horn length, and the operating 

frequency is manifested as resonant bands in the maps, Figures 4.6 through 4.8, wherein 

the pressure gradient is large.  Each of these bands corresponds to the same cavity 

resonant mode, such that with an increase in the reservoir or horn length the operating 

frequency proportionally decreases.   

In contrast, the largest pressure gradient magnitudes for high viscosity fluids 

(Figure 4.9) are generated far below the fluid cavity resonance frequencies due to the 

strong  dependence of acoustic  energy  dissipation on operating  frequency  and  working   
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Figure 4.7: Representative maps of the pressure gradient magnitude (log10(Pa/m)) at the fluid 

cavity aperture for the artificial working fluid with 1mPas viscosity as a function of reservoir 

length and operating frequency. Top left: Horn length is 0.1 mm.  Top right: Horn length is 1 

mm. Bottom left: Horn length is 10 mm. The global maximum (not shown) occurs for a 258 µm 

horn and 649 µm reservoir operating at 1MHz, corresponding to the first order cavity resonance. 
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Figure 4.8: Representative maps of the pressure gradient magnitude (log10(Pa/m)) at the fluid 

cavity aperture for the artificial working fluid with 100mPas viscosity as a function of reservoir 

length and operating frequency. Top left: Horn length is 0.1 mm.  Top right: Horn length is 1 

mm. Bottom left: Horn length is 10 mm. The global maximum (not shown) occurs for a 271 µm 

horn and 642 µm reservoir operating at 1MHz, corresponding to the first order cavity resonance. 
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Figure 4.9: Representative maps of the pressure gradient magnitude (log10(Pa/m)) at the fluid 

cavity aperture for the artificial working fluid with 10 Pas viscosity as a function of reservoir 

length and operating frequency.    Top left: Horn length is 0.1 mm.  Top right: Horn length is 1 

mm. Bottom left: Horn length is 10 mm. The global maximum (not shown) occurs for a 1.47 mm 

horn and 1 µm reservoir operating at 1 kHz. 
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fluid viscosity.  At large working fluid viscosities, any increase in operating frequency 

causes significant dissipation of the wave energy, primarily in the acoustic boundary 

layer where energy losses scale with the square root of the operating frequency.  The 

degree to which acoustic power dissipation dictates the fluid cavity response is most 

evident in considering high frequency operation and configurations with long horns in 

which the fluid cavity resonances are completely damped.  Minimization of the acoustic 

power losses consequently forces the operating frequency to be as low as possible which 

prohibits operating at a fluid cavity resonance for any meaningful size of the fluid 

reservoir/horn.  It is also of interest to note that the unexpectedly long horn, and not the 

reservoir, appears to yield the highest pressure gradient for atomization of high viscosity 

fluids.  As the acoustic power loss the reservoir where bulk attenuation dominates is 

several orders of magnitude less than the acoustic boundary layer loss that dominates 

within the horn, one would expect an optimal configuration with a short horn and a long 

reservoir.  However, the optimal configuration with a short reservoir and long horn has a 

much greater impedance as compared to configurations with longer reservoirs/shorter 

horn, which produces a large pressure amplitude at the fluid cavity inlet that ultimately 

yields a larger pressure gradient despite the losses in the horn boundary layer.   

The 100 mPas working fluid given in Figure 4.8 exhibits behavior between the 

low and high viscosity cases.  At this viscosity, viscous dissipation has increased such 

that it is no longer negligible as in the 1 mPas case but not by such as extent as to 

eliminate the benefits of operation at the fluid cavity resonances as in the 10 Pas case.  

While the fluid cavity resonances still yield the largest pressure gradient magnitude, 

frequencies below 100 kHz show an improved pressure gradient over the 1 mPas case.  
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Moreover, the 100 mPas working fluid ceases to exhibit a clear zeroth order fluid cavity 

resonance for some horn lengths.  The low frequency, large pressure gradient region 

expands to encompass all frequencies less than 100 kHz.  Improved performance in this 

region is governed by the same phenomena as in the 10 Pas seconds case, minimization 

of the viscous energy dissipation and a high fluid cavity inlet impedance.  The 100 mPas 

working fluid marks the transition viscosity between an atomizer response governed by 

lossless behavior and one governed by viscous dissipation.  

4.2.3 The effect of transducer thickness on the generated pressure gradient 

The piezoelectric transducer drives the atomizer by imposing a time dependent 

displacement at the fluid cavity inlet.  Because the electromechanical response of the 

piezoelectric transducer is not independent of but coupled to the acoustics of the fluid 

cavity, the overall behavior of the atomizer cannot be predicted based on either the fluid 

cavity or piezoelectric transducer alone.  In general, the displacement generated by the 

transducer is a function of the fluid cavity inlet acoustic impedance, the operating 

frequency, and the transducer physical properties.  The transducer properties which 

impact atomizer operation most significantly are the transducer thickness and its 

resonance quality factor.   

The effect of transducer thickness on atomizer performance can be seen in Figure 

4.10 which plots the pressure gradient magnitude as a function of transducer thicknesses 

for a sinusoidal voltage input of 1V with the 1mPas and 10Pas viscosity artificial working 

fluids and a fixed fluid cavity configuration. The short circuit transducer resonances 

create maxima in the pressure gradient magnitude when they become comparable in 

frequency to the fluid cavity resonances.  At such frequencies, the large displacements 
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generated by the transducer are further amplified by the fluid cavity to result in high 

pressure gradient magnitudes.  The greatest pressure gradient magnitudes are associated 

with the first order transducer short circuit resonance which generates the largest 

transducer displacements; subsequent transducer short circuit resonances also yield the 

local pressure gradient maxima but of a lesser magnitude.  Maximization of the pressure 

gradient magnitude therefore calls for a selection of a transducer thickness such that its 

first order short circuit resonance is located near the optimal frequency mode of a fluid 

cavity that yields the highest pressure gradient at the horn aperture for a given viscosity 

fluid.  

The resonance quality factor of the piezoelectric transducer plays as significant 

role as the transducer thickness in determining atomizer performance.  Figure 4.11 plots 

  

Figure 4.10: Variation in the pressure gradient magnitude at the horn aperture for each fluid 

cavity resonant mode as a function of transducer thickness when driven with a sinusoidal 

voltage input of 1V and a transducer quality factor of 60.  The horn is 1mm with a 4mm 

reservoir.  The sound speed and density of the working fluid are taken to be equal to those of 

water. Left: Low viscosity (1mPas) fluids yield the highest pressure gradient at the highest 5th 

cavity mode using a thinner transducer. Right: Higher viscosity (10Pas) fluids favor 

transducers that yield large displacements per applied volt at a given fluid cavity resonance.  

The absolute value is also an order of magnitude lower than that for the low viscosity fluid. 
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the pressure gradient in the artificial working fluid with 100mPas viscosity as a function 

of frequency for varying transducer quality factors and a fixed fluid cavity configuration.  

The maximum pressure gradient magnitude is set by the atomizer component with the  

largest quality factor.  At low transducer quality factors, the fluid cavity resonant modes 

with high quality factor dominate the atomizer response, causing the maximum pressure 

gradient magnitude to occur at a fluid cavity resonance.  As the quality factor of the 

transducer increases and becomes comparable to that of the fluid cavity modes, a new 

local maximum is produced based on the transducer short circuit resonance that is largely 

independent on the fluid cavity behavior.  At very large transducer quality factors, the 

transducer quality factor completely dominates the atomizer response and the pressure 

gradient magnitude generated by the first order transducer short circuit resonance 

  

Figure 4.11: Left: Pressure gradient magnitude as a function of the resonance quality factor 

of the piezoelectric transducer when driven with 3.4mm transducer and a sinusoidal voltage 

input of 1V.  The horn is 1mm with a 4mm reservoir.  The sound speed and density of the 

working fluid are taken to be equal to those of water with a 100mPas viscosity.  Right: 

Pressure gradient magnitude at the first order transducer short circuit resonance as a 

function of the transducer resonance quality factor for various working fluid viscosities.  The 

horn is 1mm with a 4mm reservoir.  The sound speed and density of the working fluid are 

taken to be equal to those of water. 



102 

 

outperforms the fluid cavity resonances.  When the piezoelectric transducer is coupled to 

the fluid cavity, the quality factor of the fluid cavity convolves with that of the transducer 

to yield the overall quality of the atomizer; whichever quality factor is larger dominates 

the behavior of the atomizer with influence of the cavity mode shapes in frequency 

domain.  

The extent to which the transducer quality factor influences atomizer operation 

and the transition from fluid cavity to transducer dominance is a function of the working 

fluid viscosity.  Figure 4.10 utilizes the same transducer quality for fluids of differing 

viscosities and produces distinctly different fluid cavity responses.  Whereas the low 

viscosity case shows multiple distinct local maxima as a function of the fluid cavity 

resonance mode, the high viscosity case produces only a single maximum across the fluid 

cavity resonance modes.  For low viscosity working fluids, the quality factor of the fluid 

cavity resonances is sufficiently large to remain relevant to the atomizer response even 

when a transducer with a high quality factor is used.  For fluids of high viscosity, viscous 

losses have damped the wave propagation in cavities to such an extent that the transducer 

quality factor is much larger than the fluid cavity quality factor, causing the atomizer 

response to be a function of the piezoelectric transducer alone, in essence behaving as 

transducer driven liquid pump rather than a resonant acoustic device.  Figure 4.11 shows 

how working fluid viscosity influences the behavior of the atomizer, plotting the pressure 

gradient at the transducer resonance as a function of the transducer quality factor for 

fluids of increasing viscosity normalized by the maximum value of the gradient for each 

fluid viscosity.  Each curve represents how quickly with respect to an increase of its 

quality factor the piezoelectric transducer becomes the dominant component of the 
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atomizer for fluids of various viscosities.  For high viscosity working fluids, a 

piezoelectric transducer of any meaningful quality factor is dominant over the entire 

frequency spectrum, whereas in low viscosity fluids the transducer only becomes a 

significant factor at very high transducer quality factors and cavity resonances exert the 

dominant influence on the atomizer performance.   

This understanding of the coupled transducer-cavity electromechanical-acoustic 

behavior allows one to formulate a set of simple guidelines for optimal design of horn-

based ultrasonic atomizers, in particular accounting for the viscosity of the working fluid 

to be atomized.  Atomizer performance with low viscosity working fluids can be 

optimized by selecting the fluid cavity geometry such that it operates at one of its fluid 

cavity resonances and also exhibits large acoustic input impedance.  A high quality factor 

transducer is then selected with a first order short circuit transducer resonance near the 

fluid cavity resonance.  Taken together, the combined effect of the high quality factor 

fluid cavity resonance and the high quality factor transducer short circuit resonance 

generate the largest pressure gradients.  Atomizer performance with high viscosity 

working fluids is a sole function of the transducer characteristics.  The generated pressure 

gradient is maximized by selecting a piezoelectric transducer with a high resonance 

quality factor and short circuit transducer resonance at the operating frequency of 

interest.  Atomizer operation would ideally occur at as low of frequency as possible to 

minimize the acoustic power loss in the cavity.  In this manner using the developed 

model for horn-based ultrasonic atomizers, an optimum atomizer can be constructed for 

any given working fluid to maximize the pressure gradient at the horn aperture and 

thereby promote fluid ejection to the greatest possible extent. 
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4.3 Application of the ejection threshold to determine fluid ejectability 

Maximization of the generated pressure gradient magnitude does not in itself 

guarantee the ejection of a working fluid by horn-based ultrasonic atomization.  The 

pressure gradient magnitude must attain a value in excess of the pressure gradient 

threshold for fluid ejection to take place.  As done for the initial geometry, the maximum 

generated pressure gradient magnitude when driven at the dielectric breakdown voltage 

can be compared to the pressure gradient threshold for atomizer configurations more 

broadly. Due to linearity of the problem, scaling the pressure gradient produced for 1V 

input to the transducer by the maximum voltage for each transducer thickness directly 

gives the maximum pressure gradient that can ever be achieved for each transducer 

thickness.  Figure 4.12 gives the maximum pressure gradient magnitude at the breakdown 

voltage as a function of transducer thickness for the artificial test fluids with 1mPas and 

10Pas viscosities and a fixed fluid cavity configuration.  These viscosities correspond to 

ejection thresholds of 1010 and 1014 Pa/m.  For 1mPas viscosity, almost any fluid cavity 

resonance produces a sufficiently large pressure gradient for fluid ejection.  The 10 Pas 

test fluid shows no viable fluid cavity resonances for fluid ejection in the examined 

atomizer configuration.   

When the fluid cavity geometry is allowed to vary, this same trend is found to 

hold across all the fluid cavity geometries - that is that most atomizer configurations are 

capable of ejecting low viscosity fluids at multiple cavity resonant modes but none are 

capable of producing a sufficient pressure gradient to eject liquids with viscosities greater 

than 1 Pas.  Table 4.2 provides the maximum generated pressure gradient magnitude as a 

function of viscosity in the artificial working fluid when the atomizer geometry is 

allowed  to  vary  as   well  as  the  associated  pressure  gradient  threshold.   The  highest   
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Figure 4.12: Variation in the pressure gradient magnitude at the horn aperture for each fluid 

cavity resonance as a function of transducer thickness when driven by a voltage signal limited by 

the transducer dielectric breakdown field threshold.  The pressure gradient threshold for each 

viscosity is shown in gray, with configurations in white zone capable of producing a sufficient 

pressure gradient for fluid ejection. The horn is 1mm with a 4mm reservoir.  The sound speed and 

density of the working fluid are taken to be equal to those of water. Top left: Working fluid 

viscosity is equal to 1mPas. Top right: Working fluid viscosity is equal to 100mPas.  Bottom left: 

Working fluid viscosity is equal to 10Pas. 
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Table 4.2: The maximum pressure gradient magnitude produced by a horn-based ultrasonic 

atomizer for increasing viscosity in the artificial working fluid.  The atomizer geometry was 

allowed to vary in order to generate the largest pressure gradient possible when the fluid cavity 

was driven at the dielectric breakdown voltage of the coupled transducer. 

Working 

Fluid 

Viscosity 

(Pas) 

Horn 

Length 

(µm) 

Reservoir 

Length 

(µm) 

Transducer 

Thickness 

(mm) 

Frequency 

(kHz) 

Maximum 

Pressure 

Gradient 

(GPa/m) 

Pressure 

Gradient 

Threshold 

(GPa/m) 

Ejection 

0.001 230 653 1.493 997 8300 10 Yes 

0.01 235 641 1.645 998 4943 100 Yes 

0.1 264 607 1.788 1000 2829 1000 Yes 

1 310 547 1.889 997 1723 10,000 No 

10 235 105 1000 217 2648 100,000 No 

 

working fluid viscosity for which the pressure gradient threshold is exceeded is 100 

mPas.  This indicates that there is a fundamental limit on ejectability as function of fluid 

viscosity that can be realized by the exploiting horn-based ultrasonic atomization beyond 

which alternative atomization approaches need to be explored. Specifically, this analysis 

suggests that working fluids with viscosities on the order of 100mPas present the upper 

limit of fluids able to be ejected by the horn-based ultrasonic atomizers. 

When multiple atomizer configurations are identified that produce a maximum 

pressure gradient above the pressure gradient threshold, the efficiency with which the 

pressure gradient is generated should be considered when selecting a configuration for a 

physical device.  The efficiency of the atomizer can be judged by the pressure gradient 

produced per unit of electric power input to the piezoelectric transducer. This metric is 

important to the atomizer operation as only a small fraction of the power input to the 

transducer is transferred to the ejected fluid; the remainder is dissipated as heat by the 

transducer and the acoustic field which heats the working fluid.[62]  Fluid heating could 
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result in degradation of the thermally sensitive polymers or premature curing of the 

working fluid.   

Figure 4.13 gives the pressure gradient per watt of electric input power for the 

maximum gradient configurations in the artificial working fluid for 1mPas and 100mPas 

viscosities.  In general, low order fluid cavity resonance modes tend to have the most 

efficient ejection; however, when a transducer short circuit resonance frequency becomes 

comparable to a fluid cavity resonance frequency, power consumption increases in the 

transducer resulting in a drop in atomizer efficiency.  This results in transducer 

thicknesses where higher order fluid cavity modes yield more efficient ejection than 

lower modes, making the selection of an atomizer configuration nontrivial.  Additionally, 

while the zeroth order fluid cavity mode efficiently produces pressure gradients, physical 

devices using piezoelectric transducers of reasonable thickness have difficulty accessing 

  

Figure 4.13: Variation in the pressure gradient magnitude per watt of input power to the 

transducer for each fluid cavity resonance as a function of transducer thickness.  The sound 

speed and density of the working fluid are taken to be equal to those of water. The transducer 

area corresponds to the area of an individual atomizer cell.  Left: Working fluid viscosity is 

equal to 1mPas.  Right: Working fluid viscosity is equal to 100mPas. 
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the zeroth order fluid cavity mode due to its low frequency in spite of the model 

prediction.  Feasible fluid cavity modes for ejection are thus confined to the first order 

and above.   One can utilize the atomizer model to develop curves as in Figure 4.13 to 

select a configuration that meets the pressure gradient threshold in the most efficient 

manner. 

Following a similar approach, it is possible to determine the ejectability of any 

working fluid as well as to determine an optimal atomizer configuration for its ejection.  

Although only an order of magnitude estimate, the ability to determine configurations 

that will eject working fluids of various viscosities is a powerful tool for optimizing both 

the design and operation of horn-based ultrasonic atomizers within the domain of the 

model applicability. 

4.4 The ejectability of physical fluids 

Characterization of the acoustic behavior of horn-based ultrasonic atomizers has 

thus far been limited to an artificial test fluid to isolate the effect of viscosity on fluid 

ejectability; here, the model is applied to two common liquids to determine their 

ejectability.  Table 4.3 shows the atomizer configurations that yield the largest pressure 

gradient in glycol (30 mPas) and glycerol (1.4 Pas) following an exhaustive search of 

Working 

Fluid 

Horn 

Length 

(µm) 

Reservoir 

Length 

(µm) 

Transducer 

Thickness 

(mm) 

Frequency 

(kHz) 

Maximum 

Pressure 

Gradient 

(GPa/m) 

Pressure 

Gradient 

Threshold 

(GPa/m) 

Ejection 

Glycol 245.6 707.8 1.691 1000 4115 3000 Yes 

Glycerol 310.8 699.1 1.863 1000 1980 14000 No 

Table 4.3: Configurations yielding the largest pressure gradient magnitude at the horn 

aperture for various working fluids when the piezoelectric transducer is driven by a voltage 

signal limited by its dielectric breakdown field. 
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various combinations of fluid cavity geometries and feasible transducer thicknesses.  The 

pressure gradient thresholds were taken as 3 × 1012 Pa/m and 1.4 × 1014 Pa/m, 

respectively, based on the previously established scaling arguments.  While the model 

predicts multiple atomizer configurations that are capable of ejecting glycol, no atomizer 

configuration yields a pressure gradient magnitude sufficient for glycerol ejection.  This 

stands in contrast to the experimental work of Meacham et al. and Margolin which 

demonstrated the ability to eject glycerol with horn-based ultrasonic atomization.[28, 62]  

While the exact cause of the discrepancy between the ejectability predicted by the 

analytical model and that seen in physical devices is unknown, it is expected that the 

inconsistency could result from two different mechanisms: a reduction in the pressure 

gradient threshold compared to the scaling analysis or a reduction of the working fluid 

viscosity through heating.   

The pressure gradient threshold obtained through scaling analysis, while useful in 

establishing an estimate of fluid ejectability, is limited by the assumptions inherent to a 

scaling analysis approach and the current understanding of the fluid mechanics that occur 

at the horn aperture.  Scaling analysis provides an order of magnitude estimate of the 

pressure gradient threshold required for fluid ejection, meaning values are accurate only 

to the nearest power of ten.  This produces a large uncertainty around the true ejection 

pressure gradient threshold for a given fluid as the true ejection threshold could be within 

a power of ten larger or smaller than the scaling analysis predicts, assuming that the 

fundamental mechanisms of fluid ejection remain consistent with increasing viscosity 

such that the scaling arguments remain valid.  For very low (1 mPas) or very high 

viscosity working fluids (>10 Pas), the uncertainty in the pressure gradient threshold is 
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less important as several orders of magnitude separate the generated pressure gradient 

magnitude from the pressure gradient threshold.  However, in medium viscosity working 

fluids (100 mPas - 1 Pas), this order of magnitude uncertainty in the pressure gradient 

threshold becomes significant in determining the ejectability of a working fluid.  A 

pressure gradient threshold with greater accuracy is required to be able to say with more 

confidence that a given working fluid can or cannot be ejected based on the produced 

pressure gradient alone. 

An additional limitation with the scaling analysis approach for the pressure 

gradient threshold lies in the assumption of a similar fluid mechanics regime at the horn 

aperture.  In low viscosity working fluids, the fluid mechanics regimes at the horn 

aperture have been well documented by Meacham et al., being governed by the relative 

magnitude of the Strouhal number (𝑆𝑡 = 𝑓𝑟𝑎𝑝𝑡/𝑣𝑧) and the Weber number (𝑊𝑒 =

𝜌0𝑣𝑧
2𝑟𝑎𝑝𝑡/𝜎).[59]  For different values of the nondimensional groups, the atomizer can 

transition from a drop-on-demand to jetting ejection regimes.  This alters the shear 

stresses present at the horn aperture and, in turn, modifies the pressure gradient threshold 

required for fluid ejection.  While the fluid mechanics at the aperture have been 

characterized for low viscosity fluids, a similar characterization has not been conducted 

for medium and high viscosity working fluids.  An increased working fluid viscosity 

could significantly alter the ejection characteristics at the aperture, potentially lowering 

the pressure gradient threshold.  The utilized scaling analysis assumes that both 𝑆𝑡 and 

𝑊𝑒 remained constant and that increasing viscosity does not influence the fluid 

mechanics behavior.  While the former is a reasonable assumption based on the similarity 

in physical properties between water and glycerol, the latter assumption must be explored 
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further to determine if a reduction in the pressure gradient threshold occurs due to 

changing fluid mechanics underlying the ejection of medium and high viscosity working 

fluids.  This would require additional research beyond the scope of the present work to 

develop a fundamental understanding of the fluid mechanics that occur at the aperture. 

The second mechanism which would permit the ejection of high viscosity 

working fluids, either in combination with the revisions to the pressure gradient threshold 

or on its own, is heating of the working fluid to reduce the working fluid viscosity.  When 

operating at a fluid cavity resonance, a large mechanical power in the acoustic field and 

electrical power in piezoelectric transducer is dissipated.  If a significant fraction of the 

thermal energy remains in the working fluid, the working fluid temperature will increase.  

The viscosity of most working fluids declines with increasing temperature.  Energy 

dissipation during operation could therefore result in a working fluid which, while not 

initially ejectable at room temperature due to high working fluid viscosity, becomes 

ejectable after a period of time due to rising working fluid temperature and lowering 

working fluid viscosity.  During their experiments with horn-based ultrasonic atomizers, 

both Meacham et al. and Margolin recorded significant temperature increases during 

operation.[28, 62]  However, neither rigorously recorded if fluid ejection preceded 

working fluid heating or if working fluid heating was a precondition to fluid ejection.  

The extent of working fluid heating expected during atomizer operation with high 

viscosity working fluids is subsequently examined in more detail. 

4.5 The importance of heating effects to device operation 

 Horn-based ultrasonic atomizers are sensitive to the amount of heat produced 

during device operation through the reduction in the working fluid viscosity that occurs 

as the working fluid increases in temperature.  The lowering of the working fluid 
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viscosity reduces both the viscous dissipation in the fluid cavity and the pressure gradient 

threshold.  The former increases the acoustic pressure gradient magnitude generated by 

the atomizer while the later decreases the pressure gradient magnitude that must be 

obtained for fluid ejection to occur.  The sensitivity of atomizer operation to working 

fluid heating depends on the how strong the viscosity of a working fluid is as a function 

of temperature.  Taking glycerol as an example, a temperature increase of just 15 degrees 

from 20° C to 35° C is sufficient to reduce the viscosity of glycerol from 1.4 Pas to 0.4 

Pas.[117]  With a reduction in viscosity of this extent, the maximum predicted pressure 

gradient generated by the ultrasonic atomizer is within the order of magnitude estimate of 

the pressure gradient threshold which would indicate that fluid could be ejected. 

 The strength of the dependence of working fluid viscosity on temperature can be 

captured through the nondimensional Nahme number which compares the rate viscosity 

decrease due to viscous shear stress heat to the rate of viscosity increase due to heat 

conduction from the working fluid, given as: 

𝑁𝑎 =
𝛼𝑇𝑣𝑧

2𝜇

𝑘𝑐𝑜𝑛𝑑
 4.1 

where 𝑘𝑐𝑜𝑛𝑑 is the thermal conductivity of the working fluid, 𝑣𝑧 is taken to be the 

characteristic velocity of fluid ejection(𝑓𝑟𝑎𝑝𝑡), and 𝛼𝑇 is a fitting parameter with units of 

inverse Kelvin which gives the rate at which the working fluid viscosity changes with 

temperature.[118]  The 𝛼𝑇 parameter can be found by experimentally measuring the 

change in viscosity as a function of temperature and fitting an exponential function to the 

data: 

𝜇 = 𝜇0𝑒
−𝛼𝑇(𝑇−𝑇0) 4.2 
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where 𝜇0 and 𝑇0 are the viscosity and temperature at a reference condition. Nahme 

numbers much less than one indicate that the working fluid viscosity is insensitive to 

changes in working fluid temperature due to the combination of heat being conducted 

efficiently from the liquid and a limited dependence of working fluid viscosity on 

temperature.  Nahme numbers much greater than one indicate that the working fluid 

viscosity is sensitive to change in working fluid temperature due to high shear stresses or 

a strong temperature dependence of the working fluid viscosity. 

 Figure 4.14 plots the Nahme number for various glycerol/water mixtures of 

increasing viscosity.  Viscosity, 𝛼𝑇, and thermal conductivity values used in generating 

the figure are given in Table 4.4 and are referenced to 20 ºC.  In both water and the 40% 

glycerol working fluids, 𝑁𝑎 is small due to the magnitude of 𝜇 and working fluid heating 

alters the viscosity little.  However, beginning with the 60% glycerol mixture, 𝜇 is 

sufficiently large that 𝑁𝑎 begins to exceed one indicating that changes to the working 

fluid viscosity will become important as the working fluid temperature increases.  Pure 

glycerol shows the most significant temperature dependence with Nahme values greater 

than one across all operating frequencies of interest.  One therefore expects, particularly 

in pure glycerol, that small changes in operating temperature will result in large changes 

to the viscosity of the working fluid which will, in turn, have a significant impact on 

atomizer operation and fluid ejectability. 

As the reduction in working fluid viscosity due to increased temperature is 

expected to be significant, an estimate of the rate of temperature increase in the working 

fluid is required to understand the magnitude of the heating effects.  There are two main 

sources of energy dissipation in the operating device: mechanical losses in the acoustic 
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field and electrical resistance losses in the piezoelectric transducer.  The dissipated power 

and the temperature increase associated with each dissipation mechanism can be 

determined through scaling analysis to obtain an order of magnitude estimate for the 

change in working fluid viscosity expected during device operation. 

 

  

Figure 4.14: The Nahme number predicted for glycerol/water mixtures as a function of operating 

frequency. 

 

 
Table 4.4: Physical data used to calculate the Namhe number for working fluid of increasing 

glycerol percentage by mass.[117, 119] A linear interpolation was utilized to obtain unavailable 

property values for mixtures between pure water and pure glycerol. 

Glycerol percentage 
𝛼𝑡 

1/K 

Thermal conductivity 

W/mK 

Viscosity 

mPas 

0% 0.021 0.578 1 

40% 0.029 0.448 3.7 

60% 0.036 0.381 10.8 

100% 0.078 0.285 1410 
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4.5.1 Heating due to power dissipation in the acoustic field 

 Power in the acoustic field is maximum at the fluid cavity/transducer interface 

and declines with propagation distance as energy is transferred into viscous dissipation, 

kinetic energy of the ejected fluid, and motion of the confining wall.  Of these three loss 

mechanisms, only viscous dissipation in the fluid cavity contributes significantly to fluid 

heating through bulk attenuation and boundary layer shear stresses.  As energy loss due 

to bulk attenuation is several orders of magnitude less than that due to the acoustic 

boundary layer, the principal dissipation mechanism can be taken as the radial component 

of the shear stress in the acoustic horn.  Moreover, as the overall magnitude of the 

viscous energy dissipation is small, an increased temperature is only expected in the 

aperture region where the radial component of the shear stress is largest. 

The extent of the localized increase in temperature and resulting reduction in 

working fluid viscosity can be determined through the use of scaling analysis.  

Considering the radial component of the viscous stress which is dominant in the aperture 

region, the viscous heat generation per unit volume is given as: 

𝑤𝑑𝑖𝑠𝑠 = 𝜇 [
𝜕𝑣𝑧

𝜕𝑟
]
2

 4.3 

The characteristic velocity in the aperture region is proportional to the operating 

frequency multiplied by the aperture radius.  Substituting and simplifying yields a 

volumetric energy dissipation at the aperture of the following form: 

𝑤𝑑𝑖𝑠𝑠 ∝ 𝜇
(𝑓𝑟𝑎𝑝𝑡)

2

𝑟𝑎𝑝𝑡
2 = 𝜇𝑓2 4.4 

The large shear stresses occur over a volume proportional to the area of the aperture with 

an axial length scale also proportional to the aperture radius: 
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𝑉~(𝜋𝑟𝑎𝑝𝑡
2 )𝑟𝑎𝑝𝑡 = 𝜋𝑟𝑎𝑝𝑡

3  4.5 

The total power dissipation in the aperture region is thus proportional to: 

𝑊𝑑𝑖𝑠𝑠 ∝ 𝜋𝜇𝑓2𝑟𝑎𝑝𝑡
3  4.6 

The dominant mechanism of heat dissipation in the aperture region is governed by 

the two timescales associated with the thermal diffusivity and fluid advection.  The 

thermal diffusivity timescale (𝑡𝑑𝑖𝑓𝑓) is associated with the time required for the heat 

generated in the aperture region to be conducted to the surrounding environment.  The 

advective timescale (𝑡𝑎𝑑𝑣) is associated with the fluid leaving the aperture region due to 

ejection:   

𝑡𝑑𝑖𝑓𝑓 ∝
𝐿2

𝛼
=

𝑟𝑎𝑝𝑡
2 𝜌0𝑐𝑝

𝑘𝑐𝑜𝑛𝑑
 4.7 

𝑡𝑎𝑑𝑣 ∝
𝐿

𝑣𝑧
=

𝑟𝑎𝑝𝑡

𝑟𝑎𝑝𝑡𝑓
=

1

𝑓
 4.8 

where 𝑐𝑝 is the specific heat at constant pressure. Two thermal regimes exist based on the 

relative magnitude of the two timescales. 

 Considering the case where 𝑡𝑑𝑖𝑓𝑓 ≪ 𝑡𝑎𝑑𝑣, heat is generated in the aperture region 

and has sufficient time to conduct axially to produce a uniform temperature.  All the 

produced heat goes into increasing the internal energy of the fluid in the aperture region.  

Assuming a uniform temperature in the aperture region, the change in internal energy can 

be expressed as: 

𝑑𝑈

𝑑𝑡
= 𝑚𝑎𝑝𝑡𝑐𝑣

𝑑𝑇

𝑑𝑡
 4.9 

where 𝑈 is internal energy, 𝑐𝑣 is the specific heat at constant volume, and 𝑇 is 

temperature.  Taking the volume as Equation 4.5, the change in internal energy becomes: 
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𝑑𝑈

𝑑𝑡
= 𝜋𝜌0𝑟𝑎𝑝𝑡

3 𝑐𝑣

𝑑𝑇

𝑑𝑡
 4.10 

In the aperture region, the governing timescale is the operating frequency.  This allows 

the change in temperature as a function of time to be approximated as: 

𝑑𝑇

𝑑𝑡
∝ Δ𝑇𝑓 4.11 

Substituting Equation 4.11 into Equation 4.10 and taking the increase in internal energy 

to be proportional to the energy dissipated in the aperture region (Equation 4.6), one can 

calculate the expected increase in temperature: 

Δ𝑇 ∝
𝜇𝑓

𝜌0𝑐𝑣
 

4.12 

Considering the case where 𝑡𝑑𝑖𝑓𝑓 ≫ 𝑡𝑎𝑑𝑣, fluid advection occurs much more 

rapidly than axial thermal conduction in the aperture region.  Heating in the aperture 

region can be modeled as flow through pipe with a constant radial temperature and 

volumetric heat generation, given as: 

�̇�𝑐𝑝

𝑑𝑇

𝑑𝑧
= 𝐴𝑤𝑑𝑖𝑠𝑠 4.13 

where �̇� is the mass flow rate, 𝑐𝑝 is the heat capacity at constant pressure, and 𝐴 is the 

cross-sectional area.  The mass flow rate in the aperture region can be taken to be 

proportional to the axial velocity and the cross-sectional area: 

�̇�~𝜌0𝐴𝑣𝑧 4.14 

The axial velocity can be approximated as the characteristic ejection velocity 𝑓𝑟𝑎𝑝𝑡 and 

substituting for the area gives: 

𝑚̇ ~𝜋𝜌0𝑓𝑟𝑎𝑝𝑡
3  4.15 
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The axial temperature derivative can be approximated as the change in temperature over 

an axial length scale proportional to the aperture radius: 

𝑑𝑇

𝑑𝑧
∝

Δ𝑇

𝑟𝑎𝑝𝑡
 4.16 

Substituting Equations 4.16 and 4.15 into Equation 4.13 as well as Equation 4.4 for the 

volumetric heat generation gives an estimate for the expected change in temperature: 

Δ𝑇 ∝ 
𝜇𝑓

𝜋𝜌0𝑐𝑝
 4.17 

This expression is a closely resembles Equation 4.12 for the expected temperature 

increase with 𝑐𝑝 substituted for 𝑐𝑣.  This follows physical intuition as all dissipated 

energy remains stored in the working fluid producing the maximum temperature increase.  

In general, this would be an upper value to the expected temperature increase as heat 

conduction would also transfer heat into the walls surrounding the working fluid. 

Of the two thermal regimes at the aperture, the advective timescale is expected to 

be much smaller than the diffusivity timescale, meaning the fluid advection regime will 

occur for the majority of operating conditions.  Operating at 1 MHz with water as a 

working fluid results in 𝑡𝑎𝑑𝑣 = 1 × 10−6 with 𝑡𝑑𝑖𝑓𝑓 = 5 × 10−3.  As the thermal 

conductivity of other working fluids will in general be less than water, the fluid advection 

regime will continue to be dominant as the thermal diffusivity timescale will increase.  

Table 4.5 gives the order of magnitude estimate for the local temperature increase at the 

aperture at 1 MHz as a function of working fluid viscosity, assuming a constant density 

and heat capacity equivalent to water.  The temperature increase per ejection cycle 

predicted at the aperture due to viscous dissipation is small and increases as a function of 

the working fluid viscosity.   
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Viscous heating at the aperture occurs rapidly upon the start of atomizer operation 

and is cumulative if ejection does not occur.  Mechanical energy in the acoustic field is 

transported to the aperture and dissipated by the local shear stresses at the timescale: 

𝑡𝑚𝑒𝑐ℎ =
𝐿

𝑐
 4.18 

where 𝐿 is the total ejector length.  The transport timescale is on the order of 10-6 s in 

typical device geometries with most working fluids.  As 𝑡𝑚𝑒𝑐ℎ is quite small in absolute 

terms, heating due to mechanical dissipation can be assumed to be immediate upon 

atomizer startup.  A limitation of the present analysis is the assumption that the working 

fluid will be advected via ejection with each ejection cycle.  If ejection does not advect 

the working fluid from the aperture region, the predicted fluid heating would accumulate 

and increase temperature beyond the predicted value.  The increase in working fluid 

temperature could become large and result in a significant reduction of the working fluid 

viscosity were fluid not to leave the aperture region for several ejection cycles.  The 

extent to which liquid fails to advect from the aperture region, particularly at atomizer 

startup, remains an area which requires further analysis beyond the scope of the present 

work. 

4.5.2 Heating due to power dissipation in the piezoelectric transducer 

 The second heating mechanism in the fluid cavity is the dissipation of electric 

energy in the piezoelectric transducer.  The electric power dissipated in the transducer 

can be directly calculated from the transducer electrical impedance and the applied 

voltage: 
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Table 4.5: Local temperature increase at the horn aperture due to viscous shear stresses as a 

function of working fluid viscosity. 

Working fluid viscosity 

mPas 

Temperature increase 

K 

1 2x10-4 

10 2x10-3 

100 2x10-2 

1000 2x10-1 

10,000 2x100 

 

�̇�𝑑𝑖𝑠𝑠 = 𝑅𝑒 {
𝑉𝑟𝑚𝑠

2

𝑍𝑒
} 4.19 

𝑍𝑒 = 𝑅 + 𝑗𝑋 4.20 

�̇�𝑑𝑖𝑠𝑠 =
𝑉𝑟𝑚𝑠

2 𝑅

𝑅2 + 𝑋2
 4.21 

Heat generated in the transducer is dissipated to both the working fluid and the air 

on either side of the transducer.  In general, as the thermal conductivity of the working 

fluid is larger than air, one would expect that heat preferentially is transferred into the 

working fluid.  Taking the limiting case where all the thermal energy generated by the 

transducer is transferred to the fluid cavity, one must calculate the time rate of change in 

the internal energy of the working fluid to determine the time rate of change in 

temperature of the atomizer cell with the addition of thermal energy.  The time rate of 

change in internal energy is given by: 

𝑑𝑈

𝑑𝑡
= 𝑚𝑐𝑉

𝑑𝑇

𝑑𝑡
 4.22 
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where 𝑚 is the mass of the working fluid in an atomizer cell.  The mass of the working 

fluid in the atomizer cell is given by the volume of the fluid in the fluid reservoir and the 

volume of the fluid in the horn section, multiplied by the fluid density: 

𝑚 = 𝜌0(𝑉𝑟𝑒𝑠 + 𝑉ℎ𝑜𝑟𝑛) 4.23 

The volume of the fluid in the reservoir can be treated as a cylinder with length equal to 

the length of the reservoir and a radius equal to the horn entrance area: 

𝑉𝑟𝑒𝑠 = 𝜋𝑟𝑒𝑛𝑡
2 𝑙𝑟𝑒𝑠 4.24 

The volume of fluid in the horn can be treated as a conical frustum with length equal to 

the horn length and with large and small diameters given by the entrance and aperture 

diameters respectively:[120] 

𝑉ℎ𝑜𝑟𝑛 =
1

3
𝜋𝑙ℎ𝑜𝑟𝑛(𝑟𝑒𝑛𝑡

2 + 𝑟𝑒𝑛𝑡𝑟𝑎𝑝𝑡 + 𝑟𝑎𝑝𝑡
2 ) 4.25 

The form of the change in internal energy can be found by substituting in for the mass of 

the liquid: 

𝑑𝑈

𝑑𝑡
= 𝜋𝜌 [𝑟𝑒𝑛𝑡

2 𝑙𝑟𝑒𝑠 +
1

3
𝑙ℎ𝑜𝑟𝑛(𝑟𝑒𝑛𝑡

2 + 𝑟𝑒𝑛𝑡𝑟𝑎𝑝𝑡 + 𝑟𝑎𝑝𝑡
2 )] 𝑐𝑉

𝑑𝑇

𝑑𝑡
 4.26 

One can then balance the dissipated power against the change in internal energy 

to arrive at an expected rate of temperature increase due to the dissipation of electric 

power alone: 

�̇�𝑑𝑖𝑠𝑠 ∝
𝑑𝑈

𝑑𝑡
 4.27 

𝑑𝑇

𝑑𝑡
∝

𝑉𝑟𝑚𝑠
2 𝑅

𝑅2 + 𝑋2

1

𝜌𝜋 [𝑟𝑒𝑛𝑡
2 𝑙𝑟𝑒𝑠 +

1
3 𝑙ℎ𝑜𝑟𝑛(𝑟𝑒𝑛𝑡

2 + 𝑟𝑒𝑛𝑡𝑟𝑎𝑝𝑡 + 𝑟𝑎𝑝𝑡
2 )] 𝑐𝑣

 4.28 

 Taking 40 𝑉𝑟𝑚𝑠 as the maximum voltage applied to the transducer during 

experimental operation, one can plot the expected increase in temperature for 
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glycerol/water mixtures as a function of operating frequency as is done in Figure 

4.15.[62]  The predicted temperature increase using this lumped thermal model is large 

when operating at fluid cavity resonances.  However, the transport of thermal energy 

from electrical dissipation occurs much more slowly than the transport and dissipation of 

mechanical energy in the working fluid.  The transport of thermal energy from the 

transducer where the electrical energy is dissipated to the fluid cavity aperture where 

viscosity reduction is of interest occurs over the timescale 𝑡𝑡ℎ𝑒𝑟𝑚, given by: 

𝑡𝑡ℎ𝑒𝑟𝑚 ∝
𝐿2

𝛼
 4.29 

where 𝐿 is again the total ejector length from the transducer surface to the ejector 

aperture.  The transport timescale is on the order of 10 s in typical device geometries with 

most working fluids.  An extended period of time is thus required for the fluid at the 

aperture to have an initial temperature increase from the dissipation of electrical energy.  

Furthermore, several multiples of 𝑡𝑡ℎ𝑒𝑟𝑚 would be necessary before the temperature at 

the aperture would become significantly elevated.  Figure 4.15 must be interpreted in the 

context of this extended thermal transport time; while the transducer dissipates sufficient 

energy to greatly increase the working fluid temperature, the temperature increase would 

significantly lag operation of the atomizer and require long times to obtain the uniform 

values predicted by the lumped thermal model.  Electrical dissipation in the transducer 

would therefore not contribute significantly to heating of the working fluid at the aperture 

during atomizer startup.  The atomizer would need to run for an extended period of time 

before heat from the transducer would become important and a viscosity reduction could 

be achieved.  After the device is powered off having been operated, heating of the 

working fluid would continue as the heat from the transducer would still be conducted 
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into the working fluid.  An extended time would be required between operating sessions 

in order to ensure the fluid cavity returns to ambient temperature. 

4.5.3 Comments on experimental results presented in literature 

In actual devices, the combined effect of mechanical power dissipation in the 

acoustic field and electric power dissipation in the transducer act to increase the 

temperature of the fluid cavity.  Either heating mechanism is sufficient to yield a 

significant increase in temperature and a reduction in working fluid viscosity provided 

long operating times and no fluid ejection.  However, if the reduction of working fluid 

viscosity through heating is the enabling mechanism for the ejection of high viscosity 

working fluids, working fluid heating must be shown to precede fluid ejection during 

atomizer  operation on the  timescales  of  mechanical  and  electrical  energy  dissipation.   

 

Figure 4.15: Time rate of temperature increase in glycerol/water mixtures due to electric power 

dissipation as obtained through scaling analysis.  The considered atomizer geometry was a 

2.1mm reservoir with a 0.5mm horn.  The transducer thickness was taken to be 1.5mm. 
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Understanding the order of events during atomizer operation necessitates an examination 

of the experiments conducted with the device.   

Considerable heating of the working fluid during atomizer operation is supported 

by the experimental work of Meacham et al. and Margolin, both which recorded 

operating temperatures and experimental observations for working fluids of various 

viscosities.[28, 62]  Meacham et al. operated the atomizer in two regimes for 

glycerol/water mixtures, a pulsed regime and a continuous regime.  In the pulsed regime, 

the atomizer was driven with a burst of pulses (10 < 𝑛 < 200) occurring at a repeat rate 

(𝑓𝑑𝑐 = 500 Hz) to minimize the operating time of the device while maintaining fluid 

ejection.  The atomizer was active for between approximately five and ten seconds with a 

net powered time of approximately one second.  Table 4.6 reproduces the operating 

temperature measured at the back port of the transducer in contact with air for the 

considered working fluids.  Meacham et al. a records an elevated operating temperature 

of 45 °C during the ejection of 100% glycerol.  Had a similar increase in temperature 

occurred in the fluid cavity, the viscosity of 100% glycerol would be reduced from 1.4 

Pas to 326 mPas.  While the magnitude of the transducer temperature implies that the 

temperature of the working fluid is also likely elevated, Meacham et al. made no direct 

measurements of the working fluid to confirm its temperature.  Moreover, as fluid 

ejection likely began at an elevated working fluid temperature, no definitive statements 

can be made as to whether fluid ejection or heating occurred first during atomizer 

operation.  In the continuous operation extending over 70 s, Meacham reports that the 

measured temperature rose as high as 50 °C for glycerol which would reduce the working 
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fluid viscosity to 150 mPas.  A reduction in the number of driving pulses was necessary 

to prevent the temperature from exceeding this value.   

Margolin also investigated the ejection of various medium to high viscosity 

working fluids with horn-based ultrasonic atomization.  In contrast to Meacham et al. 

who measured temperature on the back port of the piezoelectric transducer, Margolin 

made temperature measurements at the surface of the silicon horn array.  This is more 

representative of the fluid temperature as measurements are not influenced by the high 

transducer temperatures due to electrical dissipation.  In her experiments with 

glycerol/water mixtures, Margolin also recorded an increase in atomizer temperature, 

growing as high as 90 °C in continuous operation.  At this operating  temperature, the 

viscosity of the highest  

Table 4.6: Experimental operating temperatures as reported by Meacham et al. for pulsed 

operation trials with glycerol/water mixtures.[28]  

Glycerol percentage 
Operating temperature 

ºC 

Operating viscosity 

mPas 

Nominal viscosity 

@ 20 ºC 

mPas 

65% 30 10 15 

85% 30 59 109 

 30 59  

90% 30 112 219 

 30 112  

92% 32 131 310 

 36 101  

96% 40 143 624 

 40 143  

100% 45 201 1410 

 38 326  



126 

 

 

percentage glycerol mixture is greatly reduced from 625 mPas to 17 mPas.  A similar 

behavior is reported in polyethelene glycol with temperatures increasing from 20 °C to 66 

°C with a corresponding viscosity decrease from 500 mPas to 150 mPas.  While this 

work again validates the expectation that the viscosity of the working fluid is greatly 

reduced during device operation, it does not provide an answer as to whether viscosity 

reduction through heating is a prerequisite for the ejection in high viscosity working 

fluids.  However, Margolin also remarks that ejection of polyethelene glycol was not 

immediate with the powering on of the atomizer.  Several seconds of atomizer operation 

were necessary prior to the start of ejection, during which time polyethelene glycol 

bubbled from the aperture.  While this is indicative of the need to reduce the viscosity 

through heating for ejection to be possible, it is not a sufficient basis by itself to 

generalize the conclusion across high viscosity working fluids.   

The large increase in working fluid temperature predicted by the scaling analysis 

for extended operation times is supported by the experimental work with horn-based 

ultrasonic atomizers.  The importance of heating effects to the ejection of high viscosity 

working fluids is also circumstantially supported by the lag between powering the 

atomizer and the start of fluid ejection noted by Margolin, potentially indicative that 

power is being dissipated in the device and stored to induce the required working fluid 

heating.  However, this limited information is only sufficient to speculate that heating is 

the mechanism which permits the ejection of high viscosity fluids but is not sufficient to 

outright support the heating mechanism hypothesis.  The mechanism which enables the 

ejection of high viscosity fluids with horn-based ultrasonic atomizers remains an 
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unanswered question.  Additional research is necessary to examine both the fluid heating 

and pressure gradient threshold mechanisms to close the discrepancy between the 

analytical model and experimental results, such as experimental measurements of the 

working fluid temperature at the aperture as a function of operating time or a more 

detailed examination of the fluid mechanics at the fluid cavity aperture that govern fluid 

ejection. 

4.6 The transition to nonlinear device operation 

Nonlinear acoustic operation of horn-based ultrasonic atomizers would occur 

when the acoustic field amplitude generated by the atomizer becomes large enough to 

influence wave propagation within the fluid cavity.  A determination as to whether the 

atomizer has a nonlinear acoustic response can be made by examining the Goldberg 

number and shock distance.[121]  These parameters quantify nonlinearity in terms of the 

waveform steepening that results from the variation in acoustic impedance over a 

wavelength at large amplitudes.  The Goldberg number (𝐺𝑜), given in Equation 4.30, 

compares the rate of waveform steepening due to large acoustic amplitudes to the rate of 

waveform flattening due to energy dissipation: 

𝐺𝑜 = 
βMak

𝛼𝑠
 

4.30 

where 𝑀𝑎 is the Mach number, k is the wave number, 𝛽  is the coefficient of nonlinearity 

in liquids given by 𝛽 = 1 + 𝐵/2𝐴, and 𝛼𝑠 is the classical attenuation coefficient.  𝐵/𝐴 is 

measured quantity which relates the first and second derivatives of pressure with respect 

to density for a given medium.  As 𝐺𝑜 becomes large, the waveform steepens faster than 

attenuation can dissipate energy from high amplitude wave crests leading to shock 

formation.  Conversely, as 𝐺𝑜 becomes small, attenuation rapidly dissipates energy from 
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the wave crests thereby delaying shock development.  By calculating 𝐺𝑜 for the 

maximum 𝑀𝑎 seen in the atomizer, the likelihood of a nonlinear atomizer response can 

be established. 

Figure 4.16 plots 𝐺𝑜 as a function of 𝑀𝑎 for three physical fluids at the optimal driving 

configuration, with the 𝐺𝑜 number predicted by the atomizer model indicated for each 

fluid.  The nonlinearity and attenuation parameters utilized for the analysis are given in 

Table 4.7.  Previous work by Khelladi indicates that significant nonlinear effects can 

develop for a 𝐺𝑜 as low as 55 in water for free space propagation.[122]  The large values 

of 𝐺𝑜 predicted by the model for all three fluids suggest that significant waveform 

steepening would be present in the fluid cavity.  However, the 𝐺𝑜 values given in Figure 

4.16 represent an upper limit as bulk attenuation is utilized which is known to 

underpredict the losses in the fluid cavity by several orders of magnitude due to the 

greater extent of boundary layer dissipation.  It is therefore expected that the true 𝐺𝑜 of 

the fluid cavity to be much smaller than the calculated value.  Even with this reduction, 

the 𝐺𝑜 would still remain large which would indicate that nonlinear effects are important 

at the limiting cases of atomizer operation at the transducer dielectric breakdown voltage. 

 

Table 4.7: Parameters utilized for the nonlinearity analysis.  B/A ratios are those given by 

Hamilton and Blackstock.[121]  The maximum velocity for each fluid is the velocity at the 

aperture when each fluid is driven by its optimal atomizer configuration. 

Working Fluid B/A 
Classical Attenuation Coefficient 

(α/f2) 

Maximum Velocity 

(m/s) 

Water 5.0 8.12x10-15 500 

Glycol 9.7 1.56x10-13 213 

Glycerol 9.0 4.13x10-12 61 
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Figure 4.16: Goldberg number as a function of Mach number for various working fluids at their 

optimal driving configuration.  The maximum value predicted by the atomizer model is indicated 

by the dot. The utilized physical properties are given in Table 4.7 and the frequency corresponds 

to the optimal driving frequency of each fluid.   

The second parameter to examine when determining the importance of nonlinear 

effects is the shock distance.  The shock distance is the minimum distance from the 

source where the first shock could form in the acoustic field.  If the maximum extent of 

the considered domain in much less than the shock distance, the acoustic field can be 

considered linear as nonlinear effects have not had sufficient propagation distance to 

develop.  Hamilton and Blackstock derived an expression for shock distance given by 

Equation 4.31:  

𝑥𝑟𝑡 =
(𝑐 + 𝛽𝑣)2

𝛽𝑓′
 4.31 

where 𝑣 is the maximum particle velocity amplitude and 𝑓′ is the derivative of the source 

velocity forcing function.  This expression can be cast as a function of 𝑀𝑎 first by 

factoring the sound speed factor from the numerator: 
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𝑥𝑟𝑡 =
𝑐2(1 + 𝛽𝑀𝑎)2

𝛽𝑓′
 4.32 

Next, assuming that the source is driven harmonically, 𝑓′ can be related to 𝑓 which 

yields: 

𝑓′ = |𝑗𝜔𝑓| = 𝜔𝑓 4.33 

𝑥𝑟𝑡 =
𝑐2(1 + 𝛽𝑀𝑎)2

𝜔𝛽𝑓
 4.34 

Finally, a relationship between 𝑓 and 𝑣 must be developed to eliminate dependence on 

the source velocity.  In the linear regime, the velocity amplitude at the atomizer aperture 

scales directly with the velocity imposed by the source transducer: 

𝑓 = 𝛿𝑣 4.35 

where the unknown constant 𝛿 can be determined by relating 𝑓 and 𝑣 for a given driving 

configuration.  This assumption is sufficient to obtain an estimate of the shock distance, 

given by Equation 4.36 as a function of the 𝑀𝑎 number at the fluid cavity aperture.  

𝑥𝑟𝑡 =
𝛿𝑐(1 + 𝛽𝑀𝑎)2

𝜔𝛽𝑀𝑎
 4.36 

Figure 4.17 plots the shock distance as a function of 𝑀𝑎 at the fluid cavity 

aperture in three physical fluids for the optimal driving configuration, with the shock 

distance predicted by the atomizer model indicated for each.  The calculated shock 

distance for each fluid is more than an order of magnitude greater than the fluid cavity 

length associated with the optimal driving configurations.  This implies that the fluid 

cavity is sufficiently small as to minimize nonlinear effects over the propagation domain.  

While elevated 𝐺𝑜 would indicate that nonlinear effects are likely to be present at the 

largest driving voltages, the small propagation distance with respect to the shock distance 
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presents a minimal opportunity for nonlinear effects to accumulate and for the acoustic 

field to deviate significantly from the linear prediction.  The linear prediction of the 

atomizer model therefore remains a valid representation of physical atomizer behavior.  

4.7 Concluding remarks on fluid ejectability 

A coupled electro-mechanical model was applied to understand the behavior of 

and develop design guidelines for the ejection of high viscosity fluids by horn-based 

ultrasonic atomizers.  Each component of the atomizer - the horn, reservoir, and 

transducer - was examined for its impact on the pressure gradient magnitude produced by 

the atomizer. The analysis of horn flare showed that the maximum pressure gradient is 

achieved by the use of a conical profile which minimizes the horn surface area and 

associated acoustic boundary layer losses. The horn and fluid reservoir lengths were 

shown to affect the pressure gradient by defining the extent of the acoustic power 

Figure 4.17: Shock distance as a function of Mach number for various working fluids at their 

optimal driving configuration.  The maximum value predicted by the atomizer model is 

indicated by the dot. The utilized physical properties are given in Table 4.7 and the frequency 

corresponds to the optimal driving frequency for each fluid.   
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dissipation and the frequencies of the fluid cavity resonant modes.  Finally, the 

piezoelectric transducer was shown to impact the response of the atomizer through both 

its short circuit resonance frequency and its mechanical resonance quality factor.  By 

comparing the maximum pressure gradient magnitude produced by the optimal atomizer 

configuration against an estimated pressure gradient threshold value required for 

ejectability, it was shown that working fluids with viscosities on the order of 100 mPas 

are approaching the limits of ejection capabilities of horn-based ultrasonic atomization 

devices.  Application of the model to assess the ejectability of physical working fluids 

indicates a discrepancy between the predictive capabilities of the analytical model and 

experimental measurements.  Further research is required to clarify the source of the 

discrepancy, most likely due to either viscosity reduction through heating of the working 

fluid or a lack of understanding of the fluid mechanics governing the pressure gradient 

threshold.  

A simple design methodology emerged from the performed analysis for selecting 

an atomizer configuration as a function of working fluid viscosity.  For low viscosity 

working fluids, a fluid cavity length should first be selected that permits operation at a 

fluid cavity resonance.  A high quality factor transducer should then be selected with a 

first order short circuit resonance frequency near to the fluid cavity resonance frequency 

as the high displacements generated by the transducer will be amplified by the fluid 

cavity.  For high viscosity fluids in which the transducer dominates the atomizer 

response, selection of a high quality factor transducer is most important, preferably with a 

low frequency short circuit resonance to minimize acoustic losses if a particular operation 

frequency is not required for the application of interest.  A fluid cavity configuration with 
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a high fluid cavity inlet acoustic impedance occurring at a frequency near the short circuit 

transducer resonance should then be selected to establish a large pressure amplitude at the 

fluid cavity inlet.  
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CHAPTER 5: EXPLORATION OF ALTERNATIVE HORN-BASED 

ULTRASONIC ATOMIZER DESIGNS 
 

 

Modifications to the design of horn-based ultrasonic atomizers are examined in an 

effort to increase the maximum pressure gradient magnitude generated by the device and 

permit the ejection of higher viscosity working fluids.  The previously developed models 

of the ejector components are utilized to formulate electro-mechanical models of several 

atomizer designs which have potential to simultaneously minimize the viscous dissipation 

in the fluid cavity and maximize the amplitude of the acoustic field.    The performance 

of the proposed designs is evaluated with various working fluids and against the standard, 

unaltered horn-based ultrasonic atomizer. 

5.1 Alternative horn-based ultrasonic atomizer designs  

 Alternative designs to the standard horn-based ultrasonic atomizer given in 

Chapters 3 and 4 are of interest to increase the maximum pressure gradient magnitude 

generated by the atomizer so as to exceed the pressure gradient threshold and permit 

ejection in high viscosity working fluids.  Optimization of the standard atomizer 

geometry in Chapter 4 showed that the acoustic response of the atomizer with high 

viscosity working fluids is limited by the viscous dissipation occurring in the acoustic 

boundary layer.  Moreover, for highly viscous working fluids, a large acoustic impedance 

at the fluid cavity inlet is necessary to establish a high amplitude acoustic field to 

overcome viscous dissipation as the wave propagates to the fluid cavity aperture.  

Alterative atomizer designs are sought which both reduce the viscous dissipation in the 

fluid cavity as well as increase the amplitude of the acoustic field.  
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 Minimization of viscous dissipation occurring in the fluid cavity can be 

accomplished with low operating frequencies or by changing the propagation media 

within the fluid cavity to a less viscous liquid.  As low frequency operation was shown 

not to be optimal due to the low velocities imposed on the fluid cavity by the transducer, 

substitution of the propagation media becomes the viable means by which viscous 

dissipation can be reduced.  The high viscosity working fluid targeted for fluid ejection 

can be confined to the region of the fluid cavity nearest the aperture; the remainder of the 

fluid cavity can be filled with a low viscosity working fluid which is used as a low loss 

medium for acoustic wave propagation.  The two fluids are kept separate by a thin 

membrane which, due to its thinness as compared to the wavelength, is acoustically 

transparent.  By means of the impermeable membrane, the working fluid viscosity 

throughout the majority of the fluid cavity can be significantly reduced.  This, by 

extension, minimizes viscous dissipation and retains a larger fraction of the energy 

imposed by the transducer in the acoustic field. 

 The second means to increase atomizer performance is by imposing a larger 

driving amplitude at the inlet of the fluid cavity.  With a sufficiently large amplitude 

imposed at the fluid cavity inlet, a large amplitude wave can be maintained near the horn 

aperture where ejection occurs in spite of the viscous dissipation as the wave propagates 

to the fluid cavity aperture.  The boundary condition at the interface between the fluid 

cavity and the transducer surface is continuity of volume velocity, or the particle velocity 

at the transducer surface multiplied by the transducer area.  The maximum particle 

velocity imposed by the piezoelectric transducer is limited by the dielectric breakdown 

voltage.  However, a greater volume velocity can be generated by increasing the 
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transducer surface area with a second acoustic horn to concentrate the volume velocity to 

the entrance of the first horn.  The greater transducer area combined with the second 

acoustic horn achieves a greater imposed volume velocity at the entrance of the fluid 

cavity without damaging the transducer.  Furthermore, the secondary horn can utilize the 

low viscosity working fluid as previously outlined to minimize the losses due to the 

acoustic boundary layer. 

Application of these concepts gives two potential design modifications to the 

baseline horn-based ultrasonic atomizer, both shown in Figure 5.1.  The first design 

considers an acoustic horn with a high viscosity working fluid, joined to a reservoir with 

a low viscosity working fluid, and separated by an acoustically transparent membrane.  

  

Figure 5.1: Alternative horn-based ultrasonic atomizer designs aiming to increase the 

maximum generated pressure gradient.  The blue fluid indicates the high viscosity working 

fluid with the red fluid indicating the low viscosity working fluid.  Left: The high viscosity 

horn is coupled to a low viscosity reservoir.  The two fluids are separated by a thin 

membrane.  Right: The high viscosity horn is coupled to a low viscosity horn.  The two fluids 

are separated by a thin membrane. 
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The second design considers the case where an acoustic horn with a high viscosity 

working fluid is joined to a second acoustic horn with a low viscosity working fluid, 

again separated by an acoustically transparent membrane.  The subsequent sections 

develop an analytical model for each of the proposed designs using the previously 

developed modeling components.  The maximum pressure gradient magnitude generated 

by each design is then compared to the baseline design of the same device loaded in all 

domains with the high viscosity working fluid only and also to the standard horn-based 

ultrasonic atomizer configuration of similar horn dimensions as analyzed in the previous 

chapters. 

5.2 Modification of the horn-based ultrasonic atomizer with a low viscosity fluid 

reservoir 

 A horn-based ultrasonic atomizer model was developed to investigate a fluid 

cavity consisting of two media – a low viscosity fluid in the reservoir and a high viscosity 

fluid in the horn – separated by a thin, acoustically transparent membrane. Development 

of the model was motivated by the reduction in bulk attenuation resulting from the 

substitution of a lower viscosity propagation medium in the reservoir region.  The 

formulation of the low viscosity fluid reservoir model will be detailed utilizing the 

modeling components outlined in Chapter 3.  The low viscosity fluid reservoir model will 

subsequently be applied to various working fluid combinations to determine if such an 

atomizer configuration can increase maximum pressure gradient magnitude generated by 

horn-based ultrasonic atomizers. 

5.2.1 Development of the low viscosity reservoir model 

The structure of the horn-based ultrasonic atomizer with a low viscosity working 

fluid in the reservoir is equivalent to that of the previously developed atomizer, being 
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composed of three components: a planar piezoelectric transducer, an acoustic pipe 

without a wall, and a horn section.  Figure 5.2 describes the components of the low 

viscosity reservoir atomizer model and the boundary conditions that join them.  The 

planar piezoelectric transducer (A) is modeled with the Mason impedance matrix, and the 

fluid reservoir (B) is modeled as an acoustic pipe without a wall.  The acoustic horn (C) 

is again modeled as a discretized acoustic pipe with a wall.  The principal difference in 

the present model is the usage of two different sets of fluid properties, the first set for the 

reservoir and the second for the horn, rather than a single set of properties throughout the 

entire fluid cavity. 

At the aperture of the acoustic horn a pressure release condition is assumed given 

by: 

𝑃0 (𝐴𝑒
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= 0 5.1 

Figure 5.2: A schematic diagram of the ultrasonic atomizer utilizing both a low and high 

viscosity fluid as propagation media. The model is decomposed into the individual components 

and the boundary conditions are shown.  The low viscosity fluid is utilized in the reservoir with 

the high viscosity fluid in the horn. 
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The components are coupled by enforcing continuity of pressure and volume velocity at 

their interfaces.  However, the difference in fluid properties and thus the mismatch of 

acoustic impedances must be accounted for between the models by applying the fluid 

properties on either side of the interface.  At the interface between components B and C, 

the coupling condition is given by: 

(𝐴𝑒−𝑗𝑘𝑟𝑒𝑠𝑙𝑟𝑒𝑠 + 𝐵𝑒𝑗𝑘𝑟𝑒𝑠𝑙𝑟𝑒𝑠)|
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5.3 

where Equation 5.2 is the for pressure and Equation 5.3 is for the volume velocity.  

Terms denoted by the subscript res indicate fluid properties evaluated in the fluid 

reservoir while terms denoted by the subscript horn indicate fluid properties valuated in 

the horn.  Coupling of component models via the boundary conditions results in a single 

fluid cavity model.  It should be noted that as the speed of sound and density are different 

across the interface of components B and C, the acoustic field properties (pressure and 

velocity) will exhibit a discontinuity in slope at the interface. 

The coupling between the transducer (A) and the acoustic pipe without walls (B) 

again enforces continuity of pressure and volume velocity, formulated in terms of the 

fluid cavity mechanical impedance, and follows the procedure for the atomizer model 

outlined in Section 3.5.  The boundary conditions at the transducer/fluid cavity interface 

are similar as well, however the calculated fluid cavity acoustic impedance is now a 
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function of the combined response of the acoustic horn with the high viscosity working 

fluid and the fluid reservoir with the low viscosity working fluid. At the fluid cavity 

inlet/transducer surface, the coupling condition can be expressed as: 

𝑆𝑣𝑡𝑟𝑎𝑛𝑠 = 𝑆(𝐴 − 𝐵)|0+ 5.4 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 5.5 

with Equation 5.4 being continuity of volume velocity and Equation 5.5 being the 

impedance matching condition.  The following conditions are associated with the 

piezoelectric transducer: 

𝑉(𝜔) = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝜔) 5.6 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 5.7 

where 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑is the voltage applied to the transducer. 

5.2.2 Application of the low viscosity reservoir model  

 The potential for a low viscosity working fluid in the atomizer reservoir to 

increase the generated pressure gradient magnitude was evaluated by imposing both a 

specified frequency independent, sinusoidal velocity input and a more realistic condition 

of a piezoelectric transducer as the driving conditions at the fluid cavity inlet.  The 

velocity condition is utilized to characterize the behavior of the standalone fluid cavity 

without the electromechanical response of the transducer.  This permits a direct 

comparison of the dual fluid model to the single fluid, baseline atomizer model when 

driven by the same amplitude acoustic field. 

 Figure 5.3 gives the pressure gradient magnitude at the horn aperture as a function 

of frequency for two artificial working fluid combinations and water/glycerol.  All fluid 

combinations were driven with a sinusoidal velocity signal of 1 m/s amplitude applied at 
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the fluid cavity inlet.  Use of the artificial working fluid isolates the effect of working 

fluid viscosity by maintaining a fixed density and sound speed equal to those of water 

and only changing the fluid viscosity.  The high viscosity artificial working fluids were 

taken to be 10 Pas and 1 Pas with the reservoir working fluid viscosity as 1 mPas.  The 10 

Pas working fluid case demonstrates a factor of two improvement in the generated 

pressure gradient magnitude from using the low viscosity working fluid in the reservoir 

as compared to the case when both the reservoir and the horn are filled with a high 

viscosity fluid.  The increased pressure gradient occurs only at the fluid cavity resonances 

below 600 kHz; above 600 kHz the use of the low viscosity fluid cavity reservoir 

becomes beneficial off the fluid cavity resonances as well.  When the working fluid 

viscosity in the horn component is reduced from 10 Pas to 1 Pas, the difference between 

the dual fluid and the uniformly high viscosity fluid cavity becomes negligible.   

While atomizer performance can be improved using two working fluids, the dual 

working fluid configuration is not expected to increase the generated pressure gradient 

magnitude such that the pressure gradient threshold can be attained in working fluids of 

high viscosity.  Moreover, the enhancement of atomizer performance with dual working 

fluids will be limited across all potential geometries.  Substitution of the low viscosity 

working fluid in the atomizer reservoir is a means to minimize viscous dissipation in the 

fluid cavity.  However, the main source of viscous dissipation is the acoustic boundary 

layer in the horn component.  Substitution of a low viscosity working fluid in the 

reservoir component reduces the bulk attenuation which is initially several orders of 

magnitude smaller than the boundary layer losses in the horn component.  Substituting a 
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lower viscosity fluid in the reservoir region does reduce viscous dissipation but the effect 

of doing so is marginal as viscous dissipation primarily occurs in the horn. 

 For combinations of physical fluids (e.g., water and glycerol), the use of a low 

viscosity working fluid (water) in the reservoir has a marginal impact on atomizer 

performance.  Despite the large disparity in working fluid viscosity, the water/glycerol 

combination in Figure 5.3 generates similar pressure gradient magnitudes as compared to 

the glycerol/glycerol filled fluid cavity.  Since the viscous losses in the horn component 

are similar for both fluid combinations, one expects that the greater bulk attenuation of 

glycerol in the fluid reservoir should yield a lesser pressure gradient magnitude.  

However, due to its greater density and speed of sound, the glycerol filled fluid cavity has 

a larger acoustic impedance at the fluid cavity entrance producing a larger pressure 

amplitude (Figure 5.3).  The larger pressure amplitude at the fluid cavity entrance offsets 

the increased bulk attenuation in the fluid reservoir, yielding a similar pressure gradient 

magnitude at the horn aperture.  The effect of the acoustic impedance at the fluid cavity 

entrance on the pressure gradient magnitude can be seen in Figure 5.4.  For a glycerol 

filled cavity, the density of the fluid in the reservoir component was reduced until 

approximating water with all other parameters held fixed.  As the density of the working 

fluid in the reservoir decreases, the acoustic impedance at the fluid cavity inlet declines 

leading to a reduction in the pressure gradient magnitude.  The larger density and speed 

of sound in high viscosity working fluids increase the fluid cavity inlet acoustic 

impedance which offsets the effects of greater bulk attenuation, ultimately producing a   
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Figure 5.3: The acoustic response of the dual fluid horn-based ultrasonic atomizer when driven 

by a constant velocity boundary condition of 1 m/s at the fluid cavity inlet for various working 

fluid combinations.  The horn is 1mm with a 4mm reservoir.  Upper left: The working fluid is the 

artificial test fluid with 10 Pas high viscosity in the horn and 1 mPas low viscosity in the 

reservoir.  Upper right: The working fluid is the artificial test fluid with 1 Pas high viscosity in 

the horn and 1 mPas low viscosity in the reservoir.  Lower left: The working fluid is glycerol for 

the high viscosity in the horn and water for the low viscosity fluid in the reservoir.  Lower right: 

The magnitude of the fluid cavity inlet acoustic impedance as predicted by the model for the 

water/glycerol and glycerol/glycerol working fluid combinations. 
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similar pressure gradient magnitude at the horn aperture as the low viscosity reservoir 

case. 

The effect of the fluid cavity entrance acoustic impedance on the generated 

pressure gradient is accentuated when the behavior of the piezoelectric transducer is 

considered, given in Figure 5.5 for a 1.5 mm transducer thickness.  Cases with the 

artificial working fluid continue to predict better performance in the low viscosity/high 

viscosity model as there is no change in sound speed or density to alter the fluid cavity 

acoustic impedance placed on the transducer.  For the physical (actual) fluid combination, 

the glycerol filled cavity consistently produces a larger pressure gradient magnitude than 

the mixed water/glycerol case.  While part of the increased pressure gradient magnitude 

in the glycerol only case is attributable to the shift in the fluid cavity resonances toward 

the transducer resonance which increases the velocity imposed by the transducer, fluid 

cavity resonances that occur at a similar frequency still show better performance in the 

glycerol only filled cavity due to the larger fluid cavity acoustic impedance.  To 

determine if any transducer thickness would result in better performance in for the dual 

working fluid cavity, the transducer thickness was swept and the pressure gradient 

magnitude determined as a function of fluid cavity resonance mode, given in Figure 5.6.  

While some transducer thicknesses do yield a pressure gradient magnitude for the dual 

fluid cavity in excess of that for the high viscosity at certain fluid cavity resonance 

modes, in general no improvement in atomizer performance is seen as a function of 

transducer thickness.  The difference in the pressure gradient magnitude at a transducer 

thickness is attributable to the change in the fluid cavity resonance frequencies caused by 

the different speed of sounds in the glycerol only and water/glycerol fluid cavities.  This 
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remains insufficient for any meaningful increase in the upper limit of the working fluid 

viscosities able to be ejected by horn-based ultrasonic atomization. 

5.3 Modification of the horn-based ultrasonic atomizer with a second acoustic horn 

 A horn-based ultrasonic atomizer model was developed to investigate a fluid 

cavity consisting of two acoustic horns – the first filled with a low viscosity fluid and the 

second filled with a high viscosity fluid targeted for ejection – separated by a thin, 

acoustically transparent membrane.  Development of the model was motivated by the 

reduction in bulk attenuation resulting from the substitution of a lower viscosity 

propagation medium in the fluid cavity as well as the increase in volume velocity 

resulting from the larger cavity inlet entrance diameter.  This section details the 

formulation of the double horn model for horn-based ultrasonic atomizers utilizing the 

modeling components outlined in Chapter 3.  The double horn model will subsequently  

 Figure 5.4: Variation in the predicted pressure gradient magnitude and fluid cavity inlet 

impedance with the density of the working fluid in the low viscosity reservoir for glycerol.  The 

driving condition is a 1 m/s velocity at the fluid cavity inlet.  The horn is 1mm with a 4mm 

reservoir.  All fluid properties, including the working fluid density in the high viscosity reservoir, 

remain fixed and the density in the reservoir region artificially reduced to that of water. 
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Figure 5.5: The acoustic response of the dual fluid horn-based ultrasonic atomizer when driven 

by a 1.5mm piezoelectric transducer for various working fluid combinations.  The horn is 1mm 

with a 4mm reservoir.  Upper left: The working fluid is the artificial test fluid with 10 Pas high 

viscosity and 1 mPas low viscosity.  Upper right: The working fluid is the artificial test fluid with 

1 Pas high viscosity and 1 mPas low viscosity.  Lower left: The working fluid is glycerol for the 

high viscosity and water for the low viscosity fluid.   
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Figure 5.6: The acoustic response of the dual fluid horn-based ultrasonic atomizer when driven 

by a piezoelectric transducers of varying thicknesses driven by a 1V amplitude, sinusoidal signal.  

The horn is 1mm with a 4mm reservoir.  Left: The working fluid is glycerol for the high viscosity 

and water for the low viscosity fluid.  Right: The working fluid throughout the entire cavity is 

glycerol. 

be applied to various working fluid combinations to determine if such an atomizer 

configuration can increase maximum pressure gradient magnitude generated by horn-

based ultrasonic atomizers. 

5.2.1 Development of the double acoustic horn model 

The structure of a horn-based ultrasonic atomizer cell with two acoustic horns can 

be divided into three component sections as seen in Figure 5.7: a planar piezoelectric 

transducer, an acoustic horn with a low viscosity working fluid, and an acoustic horn with 

a high viscosity working fluid.  As walls are present in both acoustic horn components, 

the discretized acoustic pipe with a wall would be the appropriate model for wave 

propagation in the horns as it includes the dominant source of viscous dissipation due the 

acoustic boundary layer.  However, while the acoustic pipe with a wall model can be 

utilized for the high viscosity working fluid horn component, limitations of the model 

prevent its application to the horn with the low viscosity working fluid.  In spite of this 
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limitation, the low viscosity working fluid horn can still be well approximated by the 

discretized acoustic pipe without a wall model given relatively small acoustic boundary 

layer losses and spatial dispersion. 

The inability to numerically evaluate the radial dependence of the axial particle 

velocity prevents the application of the acoustic pipe with a wall model to the low 

viscosity working fluid horn.  The radial dependence of the axial particle velocity, 

reproduced in Equation 5.8 for convenience, employs Kelvin functions to account for the 

radial variation in the axial particle velocity in order to match the no-slip boundary 

condition at the wall.   

 

 
Figure 5.7: A schematic of a horn-based ultrasonic atomizer with dual acoustic horns, 

highlighting its constitutive components.  The device can be modeled as an individual planar 

piezoelectric transducer and two acoustic pipes with wall components utilizing different working 

fluid properties in each. 
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5.8 

A characteristic of the Kelvin functions is that for large argument values the functions go 

to infinity.  In the context of the acoustic pipe with a wall model, the argument of the 

Kelvin functions is the nondimensional radius of the acoustic pipe which is the radius of 

the pipe scaled by √𝜌𝜔𝑟 𝜇⁄ .  As 𝜔𝑟 or 𝑅 becomes large and 𝜇 becomes small, the 

nondimensional pipe radius becomes large such that the Kelvin functions cannot be 

numerically evaluated.  The second acoustic horn with the low viscosity working fluid 

exceeds the numerical capability to evaluate the Kelvin functions in water at 1 MHz.  As 

such, the discretized acoustic pipe with a wall model cannot be utilized for the low 

viscosity horn component. 

 The acoustic pipe without a wall can be reasonably substituted in the horn with 

the low viscosity working fluid due to limited viscous dissipation and spatial dispersion 

expected in the component.  The choice between the acoustic pipe model with or without 

a wall is determined by comparing the sound speed and particle speed Reynolds numbers 

in the context of the model regime map given in Section 3.3.3.  Table 5.1 gives the 

predicted values for each Reynolds number based on the entrance and exit radii of the 

low viscosity horn, using the maximum velocity predicted to occur in a horn-based 

ultrasonic atomizer filled completely with water.  The sound speed and particle speed 

Reynolds numbers are both much greater than one throughout the entirety of the horn, 

indicating that inertial effects are dominant over both types of viscous dissipation 

mechanisms and that the combined losses from both viscous dissipation mechanisms will 
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Table 5.1: Reynolds numbers and sound speeds at the entrance and exit of the low viscosity acoustic 

horn.  A frequency of 1 Hz was assumed with a maximum velocity of 500 m/s.  The inlet wall thickness 

was taken to be 25 μm with an exit thickness of 387.5 μm. 

be small.  This allows substitution of the acoustic pipe without a wall model as the 

viscous dissipation predicted in the fluid cavity will not be significantly altered. 

 The spatial dispersion present in the fluid cavity due to the compliance of the wall 

must also be considered.  Spatial dispersion is accounted for in the acoustic pipe with a 

wall model through a modified speed of sound which includes the wall elasticity and 

thickness, reproduced in Equation 5.9 for convenience: 
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5.9 

The inclusion of spatial dispersion in the acoustic pipe with wall model was previously 

shown to be necessary to accurately model the acoustic field in a standard horn-based 

ultrasonic atomizer.  For the discretized acoustic pipe without a wall to be a reasonable 

approximation, there must be limited spatial dispersion within the fluid cavity.  Table 5.1 

gives the modified speed of sound at the entrance and exit of the low viscosity working 

fluid horn.  The entrance radius is taken to be half the wavelength of water at 1 MHz with 

an initial wall thickness of 25 μm.  Horns with a larger entrance radius cannot be 

considered as this would violate the assumption of a one-dimensional axial acoustic field.  

The exit radius was taken to be 362.5 μm, half the difference between the entrance radius 

Location 

Sound Speed 

Reynolds Number 

(𝑅𝑒∗) 

Particle Speed 

Reynolds Number 

(𝑅𝑒) 

Sound 

Speed 

(m/s) 

Modified Speed 

of Sound (m/s) 

Entrance 348,386 374,250 1481 1073 

Exit 348,386 180,888 1481 1434 
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and fluid cavity aperture radius of 25 μm.  At the exit of the horn, the modified speed of 

sound is close to the physical speed of sound.  However, at the entrance of the horn, the 

modified speed of sound is significantly reduced due to the small wall thickness.  The 

assumed small wall thickness at the horn entrance is characteristic of the horn in standard 

horn-based ultrasonic atomizers and permits the wall to have significant radial 

deformation.  However, this need not be the case in the double horn model or physical 

devices which incorporate multiple acoustic horns.  By increasing wall thickness to 50 

μm, the speed of sound at the entrance of the horn can be increased to 1223 m/s, 

permitting the acoustic pipe without a wall to reasonably approximate the true behavior 

of the fluid cavity.  This would increase the spacing between atomizer cells in physical 

devices but would otherwise not affect atomizer behavior. 

The structure of the horn-based ultrasonic atomizer with a second, low viscosity 

working fluid acoustic horn can thus be modeled as three coupled components: a planar 

piezoelectric transducer (A), a discretized acoustic pipe without a wall for the low 

viscosity horn (B), and a discretized acoustic pipe with a wall for the high viscosity horn 

(C).  Figure 5.8 describes the components of the double horn atomizer model and the 

boundary conditions that couple them.  The double horn model must again utilize two 

sets of fluid properties, the first set for the low viscosity horn and the second for the high 

viscosity horn, rather than a single set of properties over the entire fluid cavity. 

At the aperture of the high viscosity acoustic horn a pressure release condition is 

assumed, given by: 
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Figure 5.8: A schematic diagram of the ultrasonic atomizer utilizing dual acoustic horns with a 

low and high viscosity fluids as propagation media. The model is decomposed into the utilized 

components and the boundary conditions are shown.  The low viscosity fluid is utilized in the first 

acoustic horn component with the high viscosity fluid in the second acoustic horn component. 
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The components are coupled by enforcing continuity of pressure and volume velocity at 

their interfaces.  However, the difference in fluid properties must again be accounted for 

between the models by applying the fluid properties on either side of the interface.  At the 

interface between horn components B and C, the coupling condition is given by: 
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5.11 



153 

 

𝑆(𝐴𝑒−𝑗𝑘ℎ𝑜𝑟𝑛,𝑙𝑜𝑤𝑙ℎ𝑜𝑟𝑛,𝑙𝑜𝑤 − 𝐵𝑒𝑗𝑘ℎ𝑜𝑟𝑛,𝑙𝑜𝑤𝑙ℎ𝑜𝑟𝑛,𝑙𝑜𝑤)|
𝑙ℎ𝑜𝑟𝑛,𝑙𝑜𝑤
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𝜔𝑟𝑙ℎ𝑜𝑟𝑛,𝑙𝑜𝑤
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0

|
𝑙ℎ𝑜𝑟𝑛,𝑙𝑜𝑤

+

 

5.12 

where Equation 5.11 is the for pressure and Equation 5.12 is for the volume velocity.  

Terms denoted by the subscript low indicate fluid properties evaluated in the low 

viscosity working fluid horn while terms denoted by the subscript high indicate fluid 

properties valuated in the high viscosity working fluid horn.  It should be noted that as 

the speed of sound and density will be dissimilar across the interface of components B 

and C, the acoustic field parameters will exhibit a discontinuity in slope at the interface. 

The coupling between components A and B again enforces continuity of pressure 

and volume velocity, formulated in terms of the fluid cavity mechanical impedance, and 

follows the procedure for the atomizer model outlined in Section 3.5.  The boundary 

conditions at the transducer/fluid cavity interface are similar as well, however the 

calculated fluid cavity acoustic impedance is now a function of the combined response of 

the acoustic horns. At the fluid cavity inlet/transducer surface, the coupling condition can 

be expressed as: 

𝑆𝑣𝑡𝑟𝑎𝑛𝑠 = 𝑆(𝐴 − 𝐵)|0+ 5.13 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 5.14 

with Equation 5.13 being continuity of volume velocity and Equation 5.14 being the 

impedance matching condition.  The following conditions are associated with the 

piezoelectric transducer: 
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𝑉(𝜔) = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝜔) 5.15 

𝑍𝑚,𝑙𝑜𝑎𝑑(𝜔) = 𝑍𝑚,𝑐𝑎𝑣(𝜔) 5.16 

where 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑is the voltage applied to the transducer. 

5.2.2 Application of the secondary acoustic horn model  

The potential for a dual acoustic horn atomizer to increase the generated pressure 

gradient magnitude was evaluated by imposing both a frequency independent, sinusoidal 

velocity signal and a piezoelectric transducer as the driving conditions at the fluid cavity 

inlet.  The velocity condition is utilized to characterize the acoustic response of the 

standalone fluid cavity to decouple it from an impact of the frequency dependent 

electromechanical behavior of the transducer.  This permits a direct comparison of the 

dual horn model to the single horn model when driven by the same amplitude acoustic 

field. 

 Figure 5.9 gives the pressure gradient magnitude at the fluid cavity aperture as a 

function of frequency for two artificial working fluid combinations and also for actual 

low and high viscosity fluids such as water/glycerol.  In all cases the cavity was driven 

with a sinusoidal velocity condition of 1 m/s at the inlet to the low viscosity working 

fluid horn.  The high viscosity artificial working fluids were again taken to be 10 Pas and 

1 Pas with the reservoir working fluid viscosity as 1 mPas.  The baseline performance of 

a standard, single horn fluid atomizer completely filled with the high viscosity working 

fluid throughout is also plotted for an equivalent reservoir length and entrance radius as 

the low viscosity horn.  The standard atomizer with the high viscosity working fluid 

generates a larger pressure gradient magnitude than every fluid combination in the dual 

acoustic horn atomizer.  This rather counterintuitive difference in performance results 
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from a greater fluid cavity inlet impedance, shown in Figure 5.9 for the water/glycerol 

combination.  The larger acoustic impedance at the fluid cavity inlet, taken together with 

the constant velocity boundary condition, results in a greater pressure amplitude at the 

fluid cavity inlet.  As the dissipation resulting from bulk attenuation is small regardless of 

working fluid viscosity, the higher amplitude wave propagates with little dissipation from 

inlet of the low viscosity horn to the interface with the high viscosity horn.  As the 

viscous dissipation in the high viscosity horn is similar among all simulated cases, the 

configuration with the largest pressure amplitude at the horn interface, i.e. the horn with 

the largest fluid cavity inlet acoustic impedance, yields the largest press gradient 

magnitude.   

The reduction in fluid cavity acoustic impedance for the dual horn models occurs 

as a result of two separate mechanisms.  The first is analogous to that seen in the dual 

fluid, single horn atomizer model discussed in the preceding section.  As the density and 

sound speed of the working fluid in contact with the transducer diminish, the acoustic 

impedance of the fluid cavity is reduced.  The second mechanism is a function of the 

shape of the second, low viscosity fluid horn.  Figure 5.10 plots the pressure gradient 

generated by the dual horn atomizer as a function of the diameter ratio across the low 

viscosity horn when driven by the constant velocity boundary condition; the overall 

diameter ratio across the fluid cavity remains fixed.  For simplicity, glycerol was 

assumed to be the working fluid in both horns.  As the low viscosity fluid-filled horn 

becomes more tapered, the pressure gradient magnitude is reduced due to a decline in the 

fluid cavity acoustic impedance.  This difference in the fluid cavity acoustic impedance is 

purely a function of the shape of the low viscosity region; a similar reduction will be 
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present for any working fluid with any horn lengths.  It is important to note that while the 

standard atomizer without a dual horn yields the largest acoustic impedance at the fluid 

cavity resonances, the dual horn atomizer has a larger acoustic impedance at low 

operating frequencies and thus outperforms the baseline atomizer. 

The effect of the fluid cavity inlet acoustic impedance on the generated pressure 

gradient is again accentuated when the behavior of the piezoelectric transducer is 

considered, as shown in Figure 5.11 for a 1.5 mm transducer thickness.  Above the zeroth 

order fluid cavity resonance, the standard atomizer outperforms the dual horn 

combinations by a factor of two in the pressure gradient magnitude.  At the zeroth order 

fluid cavity resonance, this behavior is reversed with the dual horn configuration 

performing better than the standard atomizer by a similar factor.  This difference in the 

predicted behavior is attributable to the fluid cavity acoustic impedance imposed on the 

transducer as the transducer generates a similar velocity for each fluid combination across 

models.  As detailed for the velocity driven case, the configuration with the largest 

pressure amplitude at the fluid cavity inlet yields the largest pressure gradient at the fluid 

cavity aperture due to the small magnitude of bulk attenuation losses and the similarity of 

the boundary layer losses in the high viscosity acoustic horn. 

While some fluid cavity resonances show an improvement with the dual horn 

configuration, the improvement in atomizer generated pressure gradient magnitude is 

small with the largest enhancement  being a factor of two.  Furthermore, above the zeroth   
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Figure 5.9: The acoustic response of the dual horn/dual fluid atomizer when driven by a constant 

amplitude of 1 m/s sinusoidal velocity boundary condition at the fluid cavity inlet for various 

working fluid combinations.  The baseline atomizer refers to an atomizer without the second 

acoustic horn filled with the high viscosity working fluid throughout.  Both the low and high 

viscosity fluid-filled horns are 1 mm in length.  The fluid cavity entrance radius is 750 μm with a 

362.6 μm interface radius and a 25 μm aperture radius.  Upper left: The working fluids are the 

artificial test fluid with 10 Pas high viscosity and 1 mPas low viscosity.  Upper right: The 

working fluids are the artificial test fluid with 1 Pas high viscosity and 1 mPas low viscosity.  

Lower left: The working fluids are glycerol for the high viscosity and water for the low viscosity 

fluid.  Lower right: The magnitude of the fluid cavity inlet acoustic impedance as predicted by the 

model for the water/glycerol working fluid combinations. 
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Figure 5.10: Variation in the predicted pressure gradient magnitude at the ejection apex and 

fluid cavity inlet impedance with the diameter ratio across the low viscosity horn for glycerol as 

the working fluid.  The driving condition is a 1 m/s amplitude sinusoidal velocity signal at the 

fluid cavity inlet.  The high viscosity horn is 1mm with a 2mm low viscosity horn.  The diameter 

ratio across the fluid cavity is fixed with an entrance radius of 750 μm and an aperture radius of 

25 μm. 

order fluid cavity resonance, no performance benefit with the dual horn configuration is 

predicted.  This result is expected to generalize across all dual horn geometries due to the 

strong dependence the fluid cavity acoustic impedance, which is the determining factor in 

the generated pressure gradient magnitude, on the shape of the low viscosity region.  

Additional performance gains in the dual acoustic horn atomizer may be possible with 

further increases to the entrance radius of the low viscosity horn; however a substantial 

increase in the atomizer base area quickly becomes impractical for implementation.  The 

developed analytical framework is unable to quantify this potential given the violation of 

the one-dimensional acoustic field assumption with a large increase in the reservoir 

radius. The trends revealed by the analysis are however sufficient to conclude that only 

limited increase in atomizer performance due to the use of a dual  horn configuration can 

be expected and it will remain  insufficient for any meaningful increase in the  upper limit  
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Figure 5.11: The acoustic response of the dual acoustic horn atomizer when driven by a 1.5mm 

piezoelectric transducer for various working fluid combinations. The baseline atomizer refers to 

an atomizer without the second acoustic horn filled with the high viscosity working fluid.  Both 

the low and high viscosity horns are 1 mm in length.  The fluid cavity entrance radius is 750 μm 

with a 362.6 μm interface radius and a 25 μm aperture radius.    Upper left: The working fluids 

are the artificial test fluids with 10 Pas high viscosity and 1 mPas low viscosity.  Upper right: 

The working fluids are the artificial test fluids with 1 Pas high viscosity and 1 mPas low viscosity.  

Lower left: The working fluids are glycerol for the high viscosity and water for the low viscosity 

fluid 
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of the working fluid viscosities able to be ejected by horn-based ultrasonic atomization. 

5.4 Concluding remarks on ejector design alternatives 

Potential design modifications to increase the maximum pressure gradient 

magnitude generated by horn-based ultrasonic atomizers were investigated through 

coupled electro-mechanical models.  The first proposed design, consisting of a fluid 

reservoir filled with a low viscosity working fluid as a wave propagation medium and a 

horn filled with a high viscosity working fluid targeted for ejection separated by an 

acoustically thin membrane, showed no performance benefit when physical fluids (water 

and glycerol, respectively) are employed due to the reduction in the fluid cavity inlet 

acoustic impedance and thus the amplitude of the output pressure generated by the 

transducer.  The second proposed design, consisting of a horn with a high viscosity 

working fluid coupled to a second horn with a low viscosity working fluid, showed 

similar performance limitations.  The pressure amplitude imposed by the transducer on 

the fluid cavity was again limited by the reduction in the fluid cavity inlet acoustic 

impedance due to the lowering of the overall fluid cavity acoustic impedance as seen by 

the transducer; moreover, the pressure gradient magnitude generated by the atomizer was 

reduced as the entrance radius of the low viscosity horn was increased to concentrate a 

larger volume velocity.  Application of the developed analytical models for the design 

modifications thus indicate that neither alternation would yield a meaningful increase in 

the maximum pressure gradient magnitude generated by the atomizer and would 

therefore not expected to increase the maximum working fluid viscosity able to be 

ejected by horn-based ultrasonic atomizers. 
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CHAPTER 6: CHARACTERIZATION OF SQUEEZE EJECTORS  
 

 

The ejection of viscous liquids by squeeze type ejectors is investigated through 

comprehensive electro-mechanical analytical modeling of device operation.  A coupled 

electro-mechanical model for squeeze ejectors, developed and validated in Chapter 3, is 

applied to understand the ejector acoustic response with working fluids of increasing 

viscosity.  The maximum predicted pressure gradient magnitude produced by the ejector 

is then compared to the required pressure gradient threshold derived from hydrodynamic 

considerations to predict fluid ejectability as a function of the working fluid viscosity.  

Emphasis is placed on the configurations investigated by Bogy and Talke in an effort to 

characterize the acoustic response of realized devices.[2]  Key geometric parameters – 

fluid cavity length, transducer length, capillary radius, and transducer thickness – are also 

investigated for their effect on the maximum pressure gradient magnitude created by the 

ejector.   

6.1 Overview of squeeze type ejectors 

The structure of the squeeze ejector under investigation mirrors that introduced in 

Section 3.1, a schematic of which is reproduced for convenience in Figure 6.1 with key 

dimensions indicated.  The main portion of the ejector is composed of a cylindrical, fluid-

filled glass capillary divided into four sections.  The left and right capillary sections (B 

and D) are loaded by the working fluid on the interior with the atmosphere on the 

exterior.  The center section (C), or “driven” section, is surrounded by an annular 

piezoelectric transducer which imposes a radial displacement on the glass capillary.  The 

capillary is bounded on one end by a large fluid reservoir used to fill the capillary and the 

other end by a short nickel horn through which fluid is ejected.   
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The investigation of squeeze ejectors for use with high viscosity working fluids is 

motivated by the potential advantages of the squeeze geometry.  First, as compared to 

horn-based ultrasonic atomizers, the squeeze geometry has a much increased transducer 

surface area in respect to the cross-sectional area of the fluid-filled capillary. This could 

allow the transducer to impart a larger volume velocity to the fluid cavity to achieve a 

higher amplitude acoustic field.  Secondly, a reduction in fluid cavity resonance 

frequencies can be achieved due to the larger axial length.  This permits the use of the 

amplification occurring at the fluid cavity resonances without incurring significant 

viscous dissipation which increases with higher frequency operation.  The subsequent 

sections apply the squeeze ejector model developed in Chapter 3 to understand the 

operation of squeeze ejectors of various geometries with high viscosity working fluids.   

 

 
Figure 6.1: A schematic of a squeeze ejector with its constitutive components and dimensions 

identified.  The device can be modeled as an individual annular piezoelectric transducer, acoustic 

pipes with a wall, a driven acoustic pipe with a wall, and a horn coupled together with the 

appropriate boundary conditions.  
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6.2 Bogy devices loaded with high viscosity working fluids 

The ejector geometries experimentally studied by Bogy and Talke are investigated 

to understand the acoustics governing squeeze type ejectors and to establish the 

performance of practically realized devices with high viscosity working fluids.[2] Bogy 

and Talke characterized three different lengths of ejector with varying driven section 

(component C) lengths, given in Table 6.1.  The left and right spacer sections 

(components B and D) are fixed at 3 mm in length.  The spacer and driven sections have 

equal inner radius and wall thickness, both taken as 500 μm.  The nickel horn is 125 μm 

in length and tapers from the tube radius to an aperture radius of 25 μm.  The thickness of 

the transducer, which is assumed to be composed of APC International PZT855, is taken 

to be 500 μm.  The squeeze ejector model with these geometric parameters was shown to 

accurately reproduce the measured acoustic response of realized ejectors as shown in 

Section 3.6.   

 Because the acoustic behavior of the fluid cavity is not independent of but 

coupled to the electro-mechanical response of the piezoelectric transducer, the overall 

behavior of the ejector cannot be predicted based on either the fluid cavity or the 

piezoelectric transducer alone.  To separately examine the effect of the fluid cavity and 

the transducer on the pressure gradient magnitude generated by squeeze ejectors, a 

constant amplitude sinusoidal velocity condition and an annular piezoelectric transducer 

were both applied as the driving conditions at outer capillary surface of the driven 

section.  The artificial working fluid is again utilized to isolate the effect of working fluid 

viscosity by maintaining a fixed density and sound speed; as the experimental ejectors 

were optimized for the speed of sound of glycol, the density and sound speed in the 

artificial working fluid are taken to equal to those of glycol and with an artificially 



164 

 

changing viscosity.  This change to the artificial test fluid will not affect the generality of 

the analysis due to the similarity of physical properties between water and glycol and will 

only move the fluid cavity resonances higher in frequency. 

The acoustic response of the standalone fluid cavity is strongly influenced by the 

fluid cavity resonances and the mode shape of the fluid cavity acoustic field.  Figure 6.2 

gives the predicted pressure gradient magnitude at the horn aperture of the 18.7 mm long 

ejector as a function operating frequency in the artificial working fluid when driven by a 

constant, sinusoidal velocity condition of 1 m/s at the glass surface.  Figure 6.3 gives the 

mean (length averaged) acoustic impedance magnitude at the interior capillary surface in 

the driven section.  At low operating frequencies sufficiently far from the first order fluid 

cavity resonance mode, the wavelength in the fluid cavity is long and the ejector operates 

as an acoustic pump with the displacement imposed at the capillary wall being directly 

transmitted to the horn aperture scaled inversely proportionally to the respective areas.  

The acoustic response of the fluid cavity at and above the first order fluid cavity 

resonance mode is governed by the number of quarter wavelengths present along the 

ejector axis.  An even number of quarter wavelengths corresponds to multiples of a half 

wavelength fluid cavity resonance.  In the ejector geometries examined by Bogy and 

Ejector 

Length 

(mm) 

Driven 

Length (mm) 

Driven 

Length 

Ratio 

Capillary 

Inner Radius 

(μm) 

Wall 

Thickness 

(μm) 

Transducer 

Thickness 

(μm) 

12.3 6.175 0.50 500 500 500 

18.7 12.575 0.67 500 500 500 

33.9 27.775 0.82 500 500 500 

Table 6.1: Geometric properties utilized in the simulation of each of the geometries given by 

Bogy and Talke. [2] 
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Talke, the half wavelength resonances also correspond to maxima in the pressure gradient 

magnitude generated by the ejector as the mode shape of the fluid cavity acoustic field 

induces strong coupling between the driven and spacer sections. 

The mode shape of the fluid cavity acoustic field and location of the driven/spacer 

section interfaces dictate how strongly the driven section couples to the spacer sections.  

Put another way, the fluid cavity mode shape and the location of the driven/spacer section 

interfaces determine the effectiveness with which the driven section converts the imposed 

radial particle velocity into axial particle velocity.  For a fixed length driven section and a 

constant imposed radial particle velocity, the same radial volume velocity is imposed on 

the driven section at every frequency.  The effectiveness with which the imposed radial 

volume velocity is converted into axial volume velocity is governed by the mode shape 

within the driven section.  A large axial particle velocity only leaves the driven section 

and enters the spacer sections when an antinode or a large amplitude point of the axial 

particle velocity mode shape occurs on the interface between sections.  When this occurs, 

the driving term given in Equation 3.87 (2𝑅𝑎𝑅𝑐
2 𝐸𝑢𝑀𝑎2⁄ ) efficiently drives the mode 

shape and which produces a large amplitude acoustic field.  In the 18.7 mm ejector 

geometry considered here, the length of the driven section is approximately an integer 

multiple of half wavelength shorter than the total cavity length at the fluid cavity 

resonances.  This positions a large amplitude point of the velocity mode shape at the 

interfaces between the driven/spacer sections and creates a large amplitude acoustic field 

as shown in Figure 6.4 which plots the pressure and mean (cross-section averaged) 

particle velocity as a function of distance from the cavity inlet for the first two half 

wavelength resonances at 38 kHz and 77 kHz.  The radial particle velocity imposed on 
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the glass capillary is effectively converted to axial particle velocity and a large axial 

particle velocity is imparted at both ends of the driven section of the fluid cavity into the 

spacer sections.  Higher order fluid cavity resonances exhibit similar behavior, again 

positioning a large amplitude point of the mean particle velocity mode shape at the 

interface between the driven and spacer sections to create effective coupling between the 

components.  This behavior can be generalized to understand when optimal coupling 

occurs between the driven and spacer sections.  When the driven section is an integer 

number of half wavelengths less than the total ejector length, the fluid cavity resonances 

will position antinodes in the particle velocity at the driven/spacer section interfaces, 

producing an effective conversion of the imposed radial particle velocity to axial particle 

velocity.  

By contrast, the minima in the pressure gradient magnitude correspond to an odd 

number of quarter wavelengths in the fluid cavity.  At these operating frequencies, nodes 

in the mean axial particle velocity are positioned at the interfaces between the driven and 

spacer sections.  This is shown in Figure 6.5 which plots the pressure and mean cross-

sectional particle velocity as a function of distance from the fluid cavity inlet for the first 

two minima in the pressure gradient magnitude occurring at 69 kHz and 88 kHz.  Only a 

small axial particle velocity is imparted at the exit of the driven section of the fluid 

cavity, creating a small amplitude acoustic field in the spacer sections.  The driven 

surface area and radial volume velocity imposed at these anti-resonances are the same as 

those imposed for the resonances, showing the importance of the particle velocity mode 

shape to how effectively the radial input velocity is converted to axial particle velocity.  It 

is interesting to note that some of the frequencies corresponding to an odd number of 
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quarter wavelengths in the fluid cavity do not produce as significant of reduction in the 

pressure gradient magnitude as other frequencies.  This is due to the slight left/right 

asymmetry in the fluid cavity introduced by the horn.  The mode shape associated with 

these frequencies does not have a node directly at the active/passive component interfaces 

but rather slightly askew which permits some energy to be transferred from the driven 

section of the capillary to the adjacent spacer components. 

The effect of the mode shape on ejector performance is directly reflected in the 

mean (length averaged) fluid cavity acoustic impedance in the driven section.  A large 

mean fluid cavity acoustic impedance is only produced when the imposed radial velocity 

results in a large amplitude acoustic pressure in the fluid.  This only occurs when half 

wavelengths occur in the driven section as the driven section couples effectively with the 

spacer sections to produce a large amplitude acoustic field.  The fluid cavity acoustic 

impedance is thus a direct proxy of the axial acoustic mode shape which accounts for 

how strongly the driven section couples to the spacer sections.   

The effect of working fluid viscosity on the fluid cavity acoustic response is 

dependent on operating frequency.  At low operating frequencies where the ejector 

behaves as an acoustic pump, the highest viscosity working fluid generates the largest 

pressure gradient magnitudes.  A greater fluid cavity acoustic impedance occurs due to 

the fluid becoming more stiff at large viscosities and long wavelengths, yielding a larger 

pressure amplitude.  The acoustic wave with an increased pressure amplitude is able to 

propagate through the spacer section to the nozzle aperture with minimal dissipation as 

boundary layer losses are small at low operating frequencies.  When operating near the 

fluid cavity resonance frequencies, the predicted pressure gradient magnitudes decline as  
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Figure 6.2: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity when driven by a constant 

amplitude (1 m/s) harmonic velocity signal on the capillary exterior.  The sound speed and 

density of the working fluid are taken to be equal to those of glycol. The ejector length is 18.7 

mm, composed of two 3 mm spacer sections, a 125 μm horn, and a 12.575 mm driven section. 

 
Figure 6.3: Variation in the mean (length averaged) acoustic impedance magnitude at the ejector 

driven section as a function of frequency for artificial working fluids of increasing viscosity.  The 

sound speed and density of the working fluid are taken to be equal to those of glycol. The ejector 

length is 18.7 mm, composed of two 3 mm spacer sections, a 125 μm horn, and a 12.575 mm 

driven section. 
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Figure 6.4: Pressure and mean particle velocity amplitude in the ejector fluid cavity as a function 

of distance from the cavity inlet for the first two fluid cavity resonance modes.  The working fluid 

is taken to be the artificial test fluid with 1 mPas viscosity and is driven by a constant amplitude 

(1 m/s) sinusoidal velocity signal on the capillary exterior.  The shaded area indicates the portion 

of the fluid cavity to which the driving condition is applied. 

 
Figure 6.5:  Pressure and mean particle velocity amplitude in the ejector fluid cavity as a 

function of distance from the cavity inlet for the first two minima in the pressure gradient 

magnitude.  The working fluid is taken to be the artificial test fluid with 1 mPas viscosity and is 

driven by a constant amplitude (1 m/s) sinusoidal velocity signal on the capillary exterior.  The 

shaded area indicates the portion of the fluid cavity to which the driving condition is applied. 



170 

 

a function of working fluid viscosity.  This follows intuition as the quality factor of the 

fluid cavity resonances decreases with an increase in the viscous dissipation in the 

acoustic boundary layer.  As working fluid viscosity is increased, the largest pressure 

gradient magnitude transitions from occurring at the first order fluid cavity resonance as 

in the 100 mPas working fluid to lower operating frequencies (5 kHz) as in the 10 Pas 

working fluid.  The change in the optimal operating frequency is a function of the 

increase of viscous boundary layer dissipation with the square root of frequency.[74]  

Operation at the fluid cavity resonances with high viscosity working fluids incurs 

significant viscous dissipation in the acoustic field as compared to low frequency 

operation.  The effect is analogous to that seen in horn-based ultrasonic atomizers where 

optimal ejection frequency was the lowest considered operating frequency. 

 To investigate the effect of the ejector total length in the physical ejector 

geometries examined by Bogy and Talke, the acoustic response of the 18.7 mm ejector is 

compared to that of the 12.3 mm long (Figure 6.6) and 33.9 mm long (Figure 6.7) 

ejectors. Changes to the ejector length affect the geometries considered by Bogy and 

Talke in two manners.  First, the resonance frequencies of the fluid cavity are altered.  

This does not have a significant impact on ejector operation as the maximum pressure 

gradient magnitudes still occur at the half wavelength resonances of the fluid cavity 

where a large particle velocity is generated in the driven section.  Behavior with high 

viscosity working fluids also is similar with largest pressure gradient magnitudes 

occurring at low operating frequencies.  The second mechanism is the increased length of 

the driven section as shown in Table 6.1.  Despite the 33.9 mm ejector having a much 

longer length with more surface area and boundary layer losses, the maximum pressure 
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gradient magnitude produced by the ejectors is comparable.  The reason becomes clear by 

examining how imposed radial velocity in the driven section of the ejector is converted to 

axial particle velocity and the resulting effect on the pressure amplitude of the 

propagating acoustic waves.  The only locations in the ejector where the driving constant 

term (2𝑅𝑎𝑅𝑐
2 𝐸𝑢𝑀𝑎2⁄ ) in the particle velocity does not cancel from the governing 

equations is at the interface of the driven and spacer sections.  The interfaces between the 

driven and space sections of the ejector can thus be thought of as the acoustic sources for 

the ejector.  As the spacer lengths are the same between ejectors, the viscous dissipation 

occurred through wave propagation from the driven/spacer interface is the same.  

Moreover, as a large amplitude point of the particle velocity mode shape occurs at the 

driven/spacer interface for each ejector, all the ejectors have a similar amplitude acoustic 

field produced by the driven section.  The similar propagation distance and imposed 

acoustic amplitude create a similar pressure gradient magnitude, thus the longer length of 

the 33.9 mm device is thus irrelevant to the pressure gradient magnitude at the fluid 

cavity aperture.   

When the acoustic response of the piezoelectric transducer is included with that of 

the fluid cavity, as done in Figure 6.8 for each of the ejectors lengths with a 500 μm 

transducer thickness, the achievable pressure gradient magnitude becomes more uniform 

across fluid cavity resonances.  The interaction of the piezoelectric transducer with the 

fluid cavity is a function the mode shape of the acoustic field and the radial velocity 

imposed by the transducer.  For a fluid cavity driven with a constant amplitude velocity 

input, the pressure gradient magnitude declined slowly with increasing fluid cavity 

resonance mode as the acoustic impedance declined and viscous dissipation grew.  These  
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Figure 6.6: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity when driven by a constant 

amplitude (1 m/s) harmonic velocity signal on the capillary exterior.  The sound speed and 

density of the working fluid are taken to be equal to those of glycol. The ejector length is 12.3 

mm, composed of two 3 mm spacer sections, a 125 μm horn, and a 6.175 mm driven section 

 
Figure 6.7: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity when driven by a constant 

amplitude (1 m/s) harmonic velocity signal on the capillary exterior.  The sound speed and 

density of the working fluid are taken to be equal to those of glycol. The ejector length is 33.9 

mm, composed of two 3 mm spacer sections, a 125 μm horn, and a 27.775 mm driven section 
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Figure 6.8: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity when driven by a 500 μm thick 

piezoelectric transducer with a sinusoidal input voltage of 1V. The sound speed and density of the 

working fluid are taken to be equal to those of glycol. Upper left: The ejector length is 12.3 mm, 

composed of two 3 mm spacer sections, a 125 μm horn, and a 6.175 mm driven section.  Upper 

right: The ejector length is 18.7 mm, composed of two 3 mm spacer sections, a 125 μm horn, and 

a 12.575 mm driven section. Lower left: The ejector length is 33.9 mm, composed of two 3 mm 

spacer sections, a 125 μm horn, and a 27.775 mm driven section. 
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effects are offset in the transducer driven fluid cavity as the velocity imposed by the 

transducer grows as the operating frequency approaches the transducer thickness 

resonance.  As the velocity imposed by the transducer grows linearly as a function of 

frequency much below the transducer thickness resonance, the variation in the predicted 

pressure gradient magnitude remains attributable to the response of the fluid cavity and 

the fluid cavity mode shape.  The variation in the pressure gradient magnitude caused by 

the joint behavior of the fluid cavity and the piezoelectric transducer precludes the 

prediction of an optimal ejection configuration as the response of neither component is 

known prior to application of the analytical model.   

 As the viscosity of the working fluid is increased in the transducer driven ejector, 

the ejector response becomes still more uniform.  For the 1 mPas artificial working fluid, 

the pressure gradient magnitude generated by the ejector is a strong function of operating 

frequency with the largest values occurring at the fluid cavity resonance modes.  

However, for the 10 Pas working fluid, most fluid cavity resonances are damped and the 

pressure gradient magnitude at low operating frequencies is the same order of magnitude 

as that occurring at high operating frequencies.  This leveling of the response across the 

entire frequency spectrum occurs for high viscosity working fluids in part because the 

greater velocity imposed by the transducer at high operating frequencies approaching the 

transducer’s resonance is offset by the greater viscous dissipation occurring at higher 

frequencies.  Moreover, as the ejector becomes longer in length, the acoustic response of 

the fluid cavity with high viscosity working fluids becomes increasingly uniform as the 

resonance quality is reduced across a greater number of fluid cavity resonance modes. 
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To determine the ability of squeeze ejectors to eject working fluids of various 

viscosities, the maximum generated pressure gradient magnitude produced when the 

ejector is driven at the maximum (dielectric breakdown) voltage is compared to the 

pressure gradient threshold determined from a balance between the applied pressure 

gradient and viscous damping at the ejector nozzle apex.  As the horn aperture radius is 

the same as in the previously examined horn-based ultrasonic atomizer and no 

fundamental change in the fluid mechanics governing fluid ejection is expected to exist 

between the device types, the pressure gradient thresholds as a function of working fluid 

viscosity developed in Chapter 4 can be applied. Due to linearity of the model, scaling 

the pressure gradient magnitude produced for 1V input to the transducer by the maximum 

voltage for each transducer thickness directly gives the maximum pressure gradient 

magnitude that can ever be achieved for each transducer thickness. 

Tables 6.2 through 6.4 provide the maximum generated pressure gradient 

magnitude as a function of viscosity in the artificial working fluid for the ejector 

geometries studied by Bogy and Talke, as well as the associated pressure gradient 

threshold.  Each ejector is assumed to be driven by transducer 500 μm in thickness.  In all 

of the ejectors, irrespective of the fluid cavity length, the highest working fluid viscosity 

for which the pressure gradient threshold is exceeded is 1 mPas.  This indicates that there 

is a fundamental limit on ejectability as function of fluid viscosity that can be realized by 

squeeze ejectors.  While a larger driven surface area is present in squeeze devices as 

compared to horn-based ultrasonic atomizers, the conversion from the imposed radial 

velocity to axial velocity must account for the coupling between ejector sections.  Greater 

viscous dissipation from the larger propagation length also overwhelms the benefits of   
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Table 6.2: The fluid cavity resonance frequencies and maximum pressure gradient magnitudes 

predicted in the squeeze ejector for artificial working fluids of increasing viscosity when driven 

by a 500 μm thick piezoelectric transducer at the dielectric breakdown voltage.  The sound speed 

and density of the working fluid are taken to be equal to those of glycol. The ejector length is 12.3 

mm, composed of two 3 mm spacer sections, a 125 μm horn, and a 6.175 mm driven section. 

Working Fluid 

Viscosity (Pas) 

Resonant Frequency (kHz) 

Mode 1 Mode 2 Mode 3 

0.001 54 113 176 

0.01 53 112 175 

0.1 50 106 172 

1 32 95 162 

10 80 152 330 

 

 

Working Fluid 

Viscosity (Pas) 

Maximum Pressure Gradient (GPa/m) Pressure Gradient 

Threshold (GPa/m) 

Fluid 

Ejection Mode 1 Mode 2 Mode 3 

0.001 211 307 579 10 Yes 

0.01 68 109 220 100 Yes 

0.1 27 46 78 1000 No 

1 42 72 60 10,000 No 

10 27 23 21 100,000 No 
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Table 6.3: The fluid cavity resonance frequencies and maximum pressure gradient magnitudes 

predicted in the squeeze ejector for artificial working fluids of increasing viscosity when driven 

by a 500 μm thick piezoelectric transducer at the dielectric breakdown voltage.  The sound speed 

and density of the working fluid are taken to be equal to those of glycol. The ejector length is 18.7 

mm, composed of two 3 mm spacer sections, a 125 μm horn, and a 12.575 mm driven section. 

Working Fluid 

Viscosity (Pas) 

Resonant Frequency (kHz) 

Mode 1 Mode 2 Mode 3 

0.001 38 77 118 

0.01 37 76 117 

0.1 35 68 113 

1 21 61 104 

10 46 90 140 

 

Working Fluid 

Viscosity (Pas) 

Maximum Pressure Gradient (GPa/m) Pressure Gradient 

Threshold (GPa/m) 

Fluid 

Ejection Mode 1 Mode 2 Mode 3 

0.001 198 153 139 10 Yes 

0.01 67 58 52 100 No 

0.1 32 35 22 1000 No 

1 47 65 26 10,000 No 

10 24 14 14 100,000 No 
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Table 6.4: The fluid cavity resonance frequencies and maximum pressure gradient magnitudes 

predicted in the squeeze ejector for artificial working fluids of increasing viscosity when driven 

by a 500 μm thick piezoelectric transducer at the dielectric breakdown voltage.  The sound speed 

and density of the working fluid are taken to be equal to those of glycol. The ejector length is 33.9 

mm, composed of two 3 mm spacer sections, a 125 μm horn, and a 27.775 mm driven section. 

Working Fluid 

Viscosity (Pas) 

Resonant Frequency (kHz) 

Mode 1 Mode 2 Mode 3 

0.001 22 44 67 

0.01 22 43 66 

0.1 21 85 109 

1 12 32 75 

10 16 68 134 

 

Working Fluid 

Viscosity (Pas) 

Maximum Pressure Gradient (GPa/m) Pressure Gradient 

Threshold (GPa/m) 

Fluid 

Ejection Mode 1 Mode 2 Mode 3 

0.001 152 45 130 10 Yes 

0.01 50 19 39 100 No 

0.1 34 32 16 1000 No 

1 44 49 37 10,000 No 

10 21 16 15 100,000 No 
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lowering the fluid cavity resonance frequencies to utilize the quality factor of the cavity.  

Collectively, these results indicate that the squeeze-type ejectors, as implemented by 

Bogy and Talke, are inferior in their ability to eject high viscosity fluids and fail to yield 

a sufficiently large pressure gradient magnitude for ejection of even moderately viscous 

fluids. 

6.3 The effect of ejector and driving section lengths on the generated pressure 

gradient 

The principal geometric parameters of squeeze type ejectors are examined to 

determine the potential for improving the maximum pressure gradient magnitude 

generated in the devices.  The total ejector length, the driving length ratio (the fraction of 

the ejector total length which is driven by a transducer), and the transducer thickness are 

the geometric properties which impact ejector operation most significantly; the radius of 

the fluid cavity will also be considered but is less influential to the acoustic response of 

the ejector.   

The ejector total length and the driving length ratio affect the ejector response 

primarily by determining the manner in which the piezoelectric transducer couples to the 

fluid cavity.  The effect of ejector length on performance can be seen in Figures 6.9 and 

6.10 which plot the pressure gradient magnitude as a function of ejector total length for 

the artificial test fluid.  The ejector length was set by maintaining the driven and horn 

sections at a fixed length and increasing the spacer length.  Figure 6.9 corresponds to a 5 

mm transducer length and Figure 6.10 to a 15 mm transducer length, both driven with a 

sinusoidal input voltage of 1 V.  Low working fluid viscosities exhibit a similar 

maximum pressure gradient magnitude above the first order fluid cavity resonance 

regardless of the ejector length as viscous dissipation is small for low viscosity working 



180 

 

fluids.  In contrast, the pressure gradient magnitude produced at the first order fluid 

cavity resonance declines as a function of ejector length.  As the ejector length grows, the 

mode shapes in the driven section are initially similar and yield similar velocities at the 

entrance to the spacer section.  However, the longest spacer section significantly extends 

the wavelength at the first order fluid cavity resonance which places the interface of the 

driven/spacer sections at lower point on the particle velocity mode shape, reducing the 

coupling between sections.  As the viscosity of the working fluid is increased, the 

similarity of mode shapes continues to produce comparable pressure gradient magnitudes 

for the smallest spacer lengths.  However, the pressure gradient magnitude for the largest 

spacer length underperforms the shorter spacer lengths.  The reduction in velocity 

entering the spacer sections combined with the greater viscous dissipation resulting from 

the longer spacer length yield a significantly reduced pressure wave amplitude at the horn 

aperture, resulting in a smaller pressure gradient.  At low operating frequencies which 

minimize the acoustic boundary layer losses, the performance of the 10 mm spacer length 

ejector matches and exceeds that of the shorter spacers as the ejector transitions to 

operating as an acoustic pump taking advantage of the large fluid cavity impedance. 

For the longer driven section length of 25 mm (Figure 6.10), the coupling effects 

between the fluid cavity and transducer are reduced.  The driven section ratio becomes so 

large that the wavelength in the fluid cavity is not set by the spacer sections but rather by 

the length of the transducer.  For small changes in the spacer length, similar large 

amplitude positions in the particle velocity mode shape fall on the interfaces between the 

driven/spacer sections.  The largest impact of the variation in spacer length occurs at the 

longest considered spacer.  For the 100 mPas working fluid, the ejector performance is   
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 Figure 6.9: Variation in the pressure gradient magnitude at the ejector aperture as a 

function of frequency for artificial working fluids of increasing viscosity when driven by 5 mm 

long piezoelectric transducer with increasing spacer length.  Each case was driven with a 500 μm 

transducer thickness and a 1V sinusoidal input voltage. The sound speed and density of the 

working fluid are taken to be equal to those of glycol. Upper left: Working fluid viscosity is equal 

to 1mPas. Upper right: Working fluid viscosity is equal to 100mPas. Lower left: Working fluid 

viscosity is equal to 10Pas. 
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Figure 6.10: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity when driven by 15 mm long 

piezoelectric transducer with increasing spacer length.  Each case was driven with a 500 μm 

transducer thickness and a 1V sinusoidal input voltage. The sound speed and density of the 

working fluid are taken to be equal to those of glycol. Upper left: Working fluid viscosity is equal 

to 1mPas. Upper right: Working fluid viscosity is equal to 100mPas. Lower left: Working fluid 

viscosity is equal to 10Pas. 
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improved with the 10 mm spacer length.  The long spacer length lowers the fluid cavity 

resonances such that higher order fluid cavity resonance modes occur in the frequency 

range of interest.  As higher order fluid cavity resonance modes have higher quality 

factors as compared to lower order resonance modes, they produce a larger amplitude 

acoustic field which offsets the large viscous dissipation occurring from the large ejector 

length.  Moreover, the length of the driven section is approaches half of the total ejector 

length which was shown to be optimal for coupling between ejector components due to a 

half wavelength occurring in the driven section.  However, as viscous dissipation is 

increased for fluids with 10 Pas viscosity, the performance of the longest spacer lengths 

again declines as viscous dissipation dominates the ejector acoustic response. 

The dependence of ejector performance on the coupling between the driven and 

spacer sections can be seen in Figures 6.11 and 6.12 which plot the pressure gradient 

magnitude as a function of driven length ratio for a fixed total ejector length in the 

artificial test fluid.  Fixed total ejector length is maintained by reducing the spacer length.  

Figure 6.11 corresponds to a 15 mm ejector length and Figure 6.12 to a 25 mm ejector 

length.  As the total ejector length is maintained at a fixed value, the fluid cavity mode 

shapes are the same between driving conditions.  Changes to the driven section length 

effect the extent of the mode shape within the driven portion of the capillary and, by 

extension, the fluid cavity acoustic impedance placed on the transducer.  Also, as the 

transducer grows in length, the location of the interface between the driven and spacer 

sections occurs at varying positions along the mode shape in the fluid cavity.  The 

resonances of the fluid cavity correspond to an integer number of half wavelengths along 

the extent of the fluid cavity; however, for optimal transducer coupling to occur between   
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Figure 6.11: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity in a 15 mm ejector driven by 

transducers of various lengths.  Each case was driven with a 500 μm transducer thickness and a 

1V sinusoidal input voltage. The sound speed and density of the working fluid are taken to be 

equal to those of glycol. Upper left: Working fluid viscosity is equal to 1mPas. Upper right: 

Working fluid viscosity is equal to 100mPas. Lower left: Working fluid viscosity is equal to 

10Pas. 
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Figure 6.12: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity in a 25 mm ejector driven by 

transducers of various lengths.  Each case was driven with a 500 μm transducer thickness and a 

1V sinusoidal input voltage. The sound speed and density of the working fluid are taken to be 

equal to those of glycol. Upper left: Working fluid viscosity is equal to 1mPas. Upper right: 

Working fluid viscosity is equal to 100mPas. Lower left: Working fluid viscosity is equal to 

10Pas. 
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the transducer and spacers an integer number of half wavelengths must also be confined 

in the driven section.  At the first order fluid cavity resonance mode, the change in the 

amplitude of the particle velocity mode shape at the driven/spacer section interface is 

small for increasing driven section ratio since the wavelength is long as compared to the 

driven section length.  The mean acoustic impedance loaded on the transducer for the 

transducer lengths is large as a pressure antinode occurs in the center of the ejector.  

However, when the driven section becomes long, it encompasses nearly the entire extent 

of the fluid cavity causing the mean acoustic impedance to decline as the low pressure 

regions near the pressure release conditions at the inlet/aperture are included in the mean 

acoustic impedance.  This affect is particularly strong at the higher order fluid cavity 

resonances.  Thus, as the transducer increases in length, the pressure amplitude produced 

by the transducer decreases.  Despite the considered variation in the driven and spacer 

sections, no combination of the geometric parameters was shown which produced a 

significant increase in the pressure gradient magnitude generated by squeeze type 

ejectors.   

6.4 The effect of ejector radius on the generated pressure gradient 

 The inner radius of the fluid ejector affects the viscous dissipation in the fluid 

cavity by defining the surface area over which the viscous boundary layer losses occur, as 

well as the spatial wave dispersion resulting from changes to the cross-sectional area of 

the capillary.  For low and medium viscosity working fluids, changes to the capillary 

radius affect the acoustic response of the ejector little as shown in Figures 6.13 and 6.14 

for a 12.3 mm and 18.7 mm ejector length, respectively.  All dimensions other than the 

capillary inner radius are taken to be equal to the dimensions given by Bogy and Talke 

for each ejector length.[2]  Increasing capillary radius for ejection of low and medium 



187 

 

viscosity working fluids improves the quality factor of the fluid cavity resonance modes 

to yield a larger pressure gradient magnitude at the nozzle apex without otherwise 

altering the behavior of the fluid cavity.  For the high viscosity working fluid, the 

pressure gradient magnitude produced by the ejector initially increases with the capillary 

radius but plateaus beginning at the radius beyond 500 μm.  This change in behavior as 

compared to the lower viscosity working fluids is a result of the increased rigidity of high 

viscosity fluids affecting the manner in which the fluid cavity responds to the pressure 

release condition at the horn aperture, as shown in Figure 6.15 for the 200 μm and 500 

μm radius cases.  For small capillaries, the area reduction between the capillary and the 

horn aperture is less which makes the transition from the fluid cavity to the horn more 

gradual with lesser impact of pressure release condition on the acoustic field in the horn.  

As the capillary radius is increased, the area reduction becomes more significant and the 

boundary condition at the end of the horn begins to appear more like a rigid condition (a 

solid wall) due to the drastic reduction in cross-sectional area.  While large capillary radii 

do increase the pressure gradient magnitude produced by the fluid ejector for high 

viscosity fluids due to the appearance of a rigid boundary condition at the horn and 

therefore an increase in the total impedance of the fluid cavity, this improvement is not 

sufficient to result in a substantial increase to the maximum working fluid viscosity able 

to be ejected by squeeze type ejectors. 

6.5 The effect of transducer thickness on the generated pressure gradient 

 The electro-mechanical response of squeeze fluid ejectors is determined by the 

interaction of the fluid cavity with the piezoelectric transducer.  The displacement 

imposed on the fluid cavity by the driving piezoelectric transducer is in general a function 

of the fluid cavity acoustic impedance, the input voltage signal driving a transducer, and   
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Figure 6.13: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity in a 12.3 mm ejector with increasing 

capillary inner radius.  Each case was driven with a 500 μm transducer thickness and a 1V 

sinusoidal input voltage. The sound speed and density of the working fluid are taken to be equal 

to those of glycol. Upper left: Working fluid viscosity is equal to 1mPas. Upper right: Working 

fluid viscosity is equal to 100mPas. Lower left: Working fluid viscosity is equal to 10Pas. 
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Figure 6.14: Variation in the pressure gradient magnitude at the ejector aperture as a function of 

frequency for artificial working fluids of increasing viscosity in a 18.7 mm ejector with increasing 

capillary inner radius.  Each case was driven with a 500 μm transducer thickness and a 1V 

sinusoidal input voltage. The sound speed and density of the working fluid are taken to be equal 

to those of glycol. Upper left: Working fluid viscosity is equal to 1mPas. Upper right: Working 

fluid viscosity is equal to 100mPas. Lower left: Working fluid viscosity is equal to 10Pas. 
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Figure 6.15: Pressure amplitude in the ejector fluid cavity as a function of distance from the 

cavity inlet for varying capillary radius at the first order fluid cavity resonance (80kHz).  The 

working fluid is taken to be the artificial test fluid with 10 mPas viscosity and is driven by a 500 

μm thick piezoelectric transducer.  The shaded area indicates the portion of the fluid cavity to 

which the driving condition is applied. 

the electromechanical properties of the transducer.  For a fixed fluid cavity geometry and 

piezoelectric material, the only adjustable transducer parameter is the thickness.   

 To determine the effect of the piezoelectric transducer thickness on squeeze type 

ejectors, the transducer thickness was varied in the 12.3 mm geometry for the artificial 

working fluid with increasing viscosity as shown in Figure 6.16.  Low viscosity working 

fluids can be ejected with almost any transducer thickness as the maximum pressure 

gradient generated by the ejector readily exceeds the ejection threshold obtained from 

scaling analysis.  In contrast, the pressure gradient threshold for high viscosity fluids is 

several orders of magnitude larger than the maximum pressure gradient predicted by the 

model, indicating that the geometry presented by Bogy and Talke cannot eject working 

fluids of high viscosity.  For working fluids with viscosities on the order of 100 mPas, 

fluid ejectability is determined by the thickness of the transducer.  Thin transducers are  
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Figure 6.16: Variation in the pressure gradient magnitude at the horn aperture for each fluid 

cavity resonance as a function of transducer thickness when driven by a voltage signal limited by 

the transducer dielectric breakdown field.  The pressure gradient threshold for each viscosity is 

shown in gray, with configurations in white zone capable of producing a sufficient pressure 

gradient for fluid ejection. The 12.3mm ejector geometry is utilized.  The sound speed and density 

of the working fluid are taken to be equal to those of glycol. Top left: Working fluid viscosity is 

equal to 1mPas. Top right: Working fluid viscosity is equal to 100mPas.  Bottom left: Working 

fluid viscosity is equal to 10Pas. 
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not able to impose a sufficiently large driving velocity on the fluid cavity to overcome the 

increased viscous dissipation and shear stresses at the nozzle aperture.  For thick 

transducers, the fluid cavity resonance and transducer thickness resonance frequencies 

become comparable in magnitude.  The large driving velocities imposed by the 

transducer are amplified by the fluid cavity, thus permitting the fluid ejection. 

This analysis suggests that the upper limit of working fluid viscosities able to be 

ejected by squeeze type ejectors is on the order of 100 mPas.  Large computational times 

prohibit a comprehensive multi-parameter optimization of squeeze ejector geometries to 

further refine the viscosity limit.  However, as the considered 12.3 mm geometry lies 

close to the ideal case with the driving section being a half wavelength shorter than the 

fluid cavity, one could not expect significant increases to the maximum pressure gradient 

magnitude were additional geometries to be considered. 

6.6 Concluding remarks on squeeze type ejectors 

A coupled electro-mechanical model was applied to understand the ejection of 

high viscosity working fluids by squeeze type ejectors.  The acoustic response of the 

realized ejector devices examined by Bogy and Talke were characterized and 

performance was shown to heavily depend on the placement of the driven section along 

the mode shape of the fluid cavity.  For strong coupling between different ejector sections 

(transducer, spacers, and the horn) and the generation of large pressure gradient 

magnitudes for a given driving condition, a point on the particle velocity mode shape 

with a large amplitude must lie on the interface between the driven and spacer sections.  

By comparing the maximum pressure gradient magnitude produced by the ejectors 

against an estimated pressure gradient threshold value required for ejectability, it was 

shown that ejection of working fluids with greater than 100 mPas viscosity is unlikely to 
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be possible.  This value agrees with the experimental values seen in Sun et al.[93]  The 

inability of squeeze ejectors to generate a sufficiently large pressure gradient magnitude 

to eject high viscosity working fluids was shown to extend across a broad range of 

geometric parameters of the ejector, namely the total length, driven length ratio, capillary 

inner radius, and transducer thickness.  Application of the developed analytical model to 

squeeze type fluid ejectors thus indicates that such ejectors could not generate greater 

pressure gradient magnitudes as compared to horn-based ultrasonic atomizers, and would 

therefore unable to extend the range of fluid viscosities that can be ejected by the 

ultrasonic atomizers relying on pressure waves to produce a driving force for 

atomization.   
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 
 

 

This dissertation presented the development of a series of coupled electro-

mechanical models for micromachined fluid ejectors of increasing complexity, and these 

models’ applications to horn-based ultrasonic atomizers and squeeze type ejectors aiming 

at understanding their performance with high viscosity working fluids.  The analytical 

models have been shown to accurately predict the acoustic field in fluid ejectors while 

incorporating the dominant sources of viscous dissipation in fluid cavity acoustic field 

due to the acoustic boundary layer and bulk attenuation in various operating regimes. In 

addition, the acoustics of the ejectors was coupled to the piezoelectric transducer 

behavior for various embodiments (planar quasi-1D and cylindrical), resulting in a 

complete electromechanical model of atomizers. The closed-form analytical solution of 

the ejector models was developed for a number of practically realizable designs, thus 

providing a computationally efficient means to analyze the effect of high viscosity 

working fluids on the operation of fluid ejectors.  

The models were developed by decomposing the ejectors into component parts, 

developing models for each component, and coupling the component models together via 

appropriate boundary conditions according to the specific ejector design.  Through 

comparison to finite-element simulations and experimental data from literature, the 

model was shown to accurately reproduce the acoustic response of fluid ejectors.  

Original contributions have been made in the development of analytical ejector models 

(Chapter 3) as well as understanding the acoustic response of various ejector geometries 

(Chapters 4 and 6).  Description of the ejector acoustic response was done in parallel with 



195 

 

device optimization for operation with high viscosity working fluids (Chapters 4 and 5).  

Application of the analytical ejector models and comparison against the “ejectability” 

pressure gradient threshold allowed us to establish an upper limit on the working fluid 

viscosity able to be ejected by ejectors within the limits of considered designs and 

geometries. 

   While substantially advancing the current state-of-the-art in the field, the device 

analytical models were formulated using certain assumptions about the behavior of the 

fluid cavity acoustic field, namely a one dimensional pressure/velocity fields and linear 

acoustics.  To more generally characterize the behavior of micromachined fluid ejectors, 

investigation of the following model modifications is recommended for future research: 

1. Retention of both the Radial and Axial Shear Stress Components in Model 

Formulation:  The development of closed form analytical solutions required that 

the components of the viscous shear stress be treated individually based on the 

operating regime in which each was the dominant source of viscous dissipation.  

While the viscous dissipation due to the boundary layer is the largest source of 

acoustic energy loss in geometries bounded by walls, bulk attenuation still 

occurs especially at higher frequencies as the wave propagates in the axial 

direction.  Moreover, for high working fluid viscosities, the magnitude of losses 

due to bulk attenuation can still be large in absolute terms.  Inclusion of both 

terms in the model would more accurately account for viscous dissipation, but 

would require the use of numerical solution methods as closed form analytical 

solutions would no longer be permitted. 
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2. Consideration of a Two-Dimensional Acoustic Field in the Fluid Cavity: The 

development of closed form analytical solutions for the fluid cavity acoustic 

field assumed a quasi-one-dimensional acoustic field in the axial direction, 

allowing for only a small variation in the axial particle velocity to match the no 

slip condition at the wall.  As the operating frequency for micromachined fluid 

ejectors is increased, the wavelength in the fluid cavity would eventually become 

comparable to the diameter of the fluid cavity causing the one dimensional 

acoustic field assumption to break down.  This is a particular concern as the horn 

entrance diameters become large.  Consideration of two-dimensional effects 

would allow larger in size and more complex in shape fluid cavity geometries to 

be considered which have the potential for large volume velocity concentration 

in viscous fluids. 

3. Inclusion of Nonlinear Wave Propagation in the Fluid Cavity Acoustic Field:  

During the formulation of the analytical models, the nonlinear terms were 

eliminated as they were assumed to be small compared to the linear terms.  

When the amplitude of the fluid cavity acoustic field becomes large this 

assumption will no longer hold.  Any substantial increases to the fluid cavity 

acoustic field, particularly in horn-based ultrasonic atomizers when driven with 

high input velocities/displacements, may produce a sufficiently large amplitude 

acoustic field that nonlinear effects must be considered for an accurate 

representation of the ejector acoustic response. 

The analytical model for horn-based ultrasonic atomizers was applied in Chapter 

4 to understand the acoustic response of the devices when loaded with working fluids of 
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increasing viscosity.  An exhaustive optimization was conducted of the atomizer 

geometry to yield the maximum pressure gradient producible by the device.  By the 

application of the pressure gradient threshold required for ejection, it was shown that 

horn-based ultrasonic atomizers are only capable of producing a large enough pressure 

gradient magnitude to eject working fluids with viscosities on the order of 100 mPas.  

The ejection of higher viscosity working fluids, which was demonstrated experimentally 

in the literature, are not predicted by the model and requires additional work to 

understand fully.  Based on the need to resolve the discrepancy between the predictions 

of the analytical model and experimental measurements, the following areas are 

recommended for future research: 

1. Further Study of the Pressure Gradient Magnitude Required to Eject Working 

Fluids as a Function of Working Fluid Properties: A more accurate estimate of 

the pressure gradient threshold obtained through a detailed understanding of the 

fluid mechanics at the horn aperture would reduce the uncertainty surrounding the 

current order of magnitude estimate.  The refined value could be applied to 

understand if changes in the fluid mechanics at the horn aperture reduce the 

pressure gradient threshold to enable the ejection of high viscosity working fluids.   

The value could also be applied to better optimize each given ejector geometry for 

operation with the targeted working fluid. 

2. Further Study of the Working Fluid Heating Effects: Previous experimental work 

with horn-based ultrasonic atomizers did not capture the transient working fluid 

temperature that could be the enabling ejection mechanism for high viscosity 

fluids through lowering of the working fluid viscosity.  Direct measurements of 



198 

 

the working fluid temperature are required to better understand this mechanism.  

Moreover, a record of the time delay between the powering of the atomizer and 

the start of ejection is necessary to understand the temperature increase that 

occurs prior to fluid ejection. 

In Chapter 5, potential modifications to the geometry of horn-based ultrasonic 

atomizers were investigated in order to increase the pressure gradient magnitude 

produced by the atomizer.  Two different designs were analyzed, both utilizing a low 

viscosity working fluid in the reservoir coupling the transducer to the horn filled with the 

high viscosity fluid to be ejected.  The first geometry consisted of a uniform cross section 

reservoir and the second geometry of an additional acoustic horn in place of the reservoir 

for greater concentration of the volume velocity imparted by the transducer.  It was 

shown that with available working fluids of desperate viscosities, such as water and 

glycerol, that any increase in ejector performance would be marginal and not provide any 

meaningful increase to the working fluid viscosity able to be ejected.  The considered 

geometric modifications were limited by the assumptions built into the analytical models, 

such as quasi-one-dimensional behavior and a slow change of cross-sectional area along 

the ejector length.  However, numerous additional modifications can be envisioned, 

which cannot be directly handled by the developed models.  As such, the following areas 

are recommended for future research: 

1. Incorporation of a Solid Secondary Horn to Concentrate Volume Velocity:  The 

poor performance of the secondary acoustic horn was attributed to the reduction 

in the fluid cavity impedance at the transducer surface.  Use of a solid secondary 

horn rather than a liquid horn (i.e. silicon) should increase the fluid cavity 
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acoustic impedance seen by the transducer, as well as should reduce the viscous 

dissipation in the fluid cavity due to the lower attenuation in the solid medium.  

Inclusion of a solid horn would require the development of a model which could 

describe the two-dimensional affects present in solids as well as the coupling 

between compression and shear wave modes.   

2. Use of Multiple, Fluid Filled Horn in Series:  Multiple acoustic horns would 

permit a greater amplification factor of the input driving condition.  Such 

structures have demonstrated a performance benefit in the atomization of low 

viscosity liquids, but still need to be evaluated for fluids of high viscosity.[123]  

Inclusion of multiple horns would require the development of a model which 

could describe the sudden change in area between horn components and the 

resulting two-dimensional acoustic field. 

3. Additional Driving Mechanisms to Increase the Energy in the Fluid Cavity 

Acoustic Field:  While minimization of viscous dissipation in the fluid cavity is 

important to achieving overall large pressure levels in the cavity, the pressure 

amplitude and thus the pressure gradient at the ejection aperture is ultimately 

governed by the amount of energy delivered by the transducer and transmitted to 

the ejection point.  The present analysis has shown that a fluid ejector with a 

single, optimized transducer imparts insufficient energy to the acoustic field for 

the large amplitudes required to eject viscous fluids. Additional driving 

mechanisms must be considered if a larger energy is to be imposed on the fluid 

cavity to elevate the pressure gradient magnitude to the extent that high viscosity 

fluids can be ejected.   
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The acoustic response of squeeze type ejectors was analyzed in Chapter 6.  The 

generated pressure gradient magnitude at the nozzle aperture was evaluated as a function 

the main ejector geometric parameters – ejector length, driven section length, and radius 

– and was shown to depend primarily on the interface location between the driven 

(active/wave generation) and the spacer (passive/wave propagation) sections to achieve 

an optimal component coupling and transmission of acoustic energy from the transducer 

to the ejection point at the nozzle aperture.  Using the pressure gradient threshold 

required for ejection, it was shown that squeeze type ejectors are only capable of produce 

a large enough pressure gradient magnitude to eject working fluids with viscosity on the 

order of 100 mPas.  However, due to the excessive computational time requirement, the 

investigation of squeeze type atomizers did not optimize the device across multiple 

geometric and operating parameters simultaneously for finding a global optimum in 

evaluating the ejectability of high viscosity working fluids.  While such an optimization 

investigation is not expected to significantly alter the presented findings, the following 

areas are suggested for further study: 

1. A Computationally Efficient Means to Optimize Squeeze Ejectors for Use with 

High Viscosity Working Fluids:  The optimization of squeeze ejectors is 

limited by the computational resources required to conduct the optimization.  

The geometry and limited number of parameters of horn-based ultrasonic 

atomizers permitted the development of an efficient optimization routine.  

However, the increase number of components and geometric parameters of 

squeeze type ejectors greatly increases the complexity of the optimization 

process.  Thus, a computational algorithm which minimizes computation 
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while consider considering the full variation of squeeze ejector geometries is 

an important avenue for further work to be able to conduct the global multi-

parameter optimization efficiently. 

2. Inclusion of Transducer Elasticity as Part of the Capillary Wall:  The 

presented analysis neglects the change in the elasticity of the wall due to the 

presence of the transducer, considering only the effect of elastic properties of 

the capillary itself.  A better representation of the true behavior of the wall can 

be achieved by the development of an effective wall elasticity model, which 

would account for the effect of both the capillary and transducer thicknesses 

and different elastic properties through the use of thick walled cylinder 

approximations. 

3. Inclusion of Planar Transducers/Additional Driving Mechanisms to Increase 

the Energy in the Acoustic Field:  As it was found for horn-based ultrasonic 

atomizers, the pressure gradient magnitude produced by squeeze type ejectors 

is also ultimately limited by the energy imparted by the driving mechanism to 

the fluid cavity.  Further increases to the pressure gradient magnitude require 

either a change in the main driving mechanism or the inclusion of additional 

driving mechanisms of the fluid cavity.  The most straightforward of these 

would be to include in squeeze ejectors a planar transducer at the fluid cavity 

inlet.  Analysis of such a hybrid design is possible, but would require 

substantial modifications of the current model to include both driving 

transducers and the use a superposition between the fields created by the 

transducers with the assumption that linear acoustics remains valid even for 
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the large amplitudes of the pressure waves due to dual transducer pumping. 
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APPENDIX A: MATERIAL PROPERTIES UTILIZED IN THE 

ANSYS AND ANALYTICAL MODELS 
 

 

The material properties need in the analytical models and ANSYS simulations are 

given in Tables A.1 to A.5.  Properties for each of the considered working fluids, 

structural solids, and piezoelectric ceramics are provided.  The elastic and piezoelectric 

properties for the piezoelectric transducer (PZT-855) were obtained from APC 

International, Inc and from Auld.[104, 116] 

The reference directions for the piezoelectric transducers vary based on the 

transducer geometry.  The component directions for each geometry are given in Table 

A.1. 

 

Table A.1: Component directions for the piezoelectric transducer properties for the planar and 

annular geometries 

Component direction Planar transducer Annular transducer 

1 X-direction Azimuthal direction 

2 Z-direction Axial direction 

3 Y-direction Radial direction 

 

Table A.2: Properties used to model silicon in the ANSYS simulations and analytical 

models.[124] 

Material Property Value 

Silicon Young’s modulus, 𝐸 150x109 N/m2 

 Poisson’s ratio, 𝜈 0.21 

 Mass density, 𝜌 2330 kg/m3 

 Damping coefficient, 𝛾 6x10-9 
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Table A.3: Properties used to model nickel in the analytical models[125] 

Material Property Value 

Nickel Young’s modulus, 𝐸 200x109 N/m2 

 

Table A.4: Properties used to model lead zirconate titanate (PZT-5) in the ANSYS simulations 

and analytical models. 

Material Property Value 

PZT-5 Young’s modulus in the unpolarized direction, Ep 6.06x1010 N/m2 

 Young’s modulus in the polarized direction, Ez 4.83x109 N/m2 

 Poisson’s ratio (unpolarized/polarized), p 0.290 

 Poisson’s ratio (polarized/unpolarized), zp 0.408 

 Shear modulus in the polarized direction, Gzp 1.149x1010 N/m2 

 Mass density,  7500 kg/m3 

 Piezoelectric stress constant relating charge 

applied in the polarized direction to the stress in 

the polarized direction, e33 

29.99 C/m2 

 Piezoelectric constant relating charge applied in 

the polarized direction to stress in the unpolarized 

direction, e31 

-5.377 C/m2 

 Piezoelectric constant relating charge applied in 

the unpolarized direction to the generated shear 

stress, e15 

17.028 C/m2 

 Relative permittivity in the unpolarized direction, 

r,p 
3400 

 Relative permittivity in the polarized direction, 

r,z 
3130 

 Damping Coefficient,  1x10-9 

 Mechanical quality factor, 𝑄𝑚 60 

 Loss tangent, tanδ 2.0x10-2 
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Table A.5: Properties used to model the working fluids in the ANSYS simulations and analytical 

models[2, 117, 126, 127] 

Material Property Value 

Water Mass density, 𝜌0 998 kg/m3 

 Speed of sound, 𝑐 1481 m/s 

 Dynamic viscosity, 𝜇 1.00x10-3 Pas 

Glycol Mass density, 𝜌0 1113 kg/m3 

 Speed of sound, 𝑐 1658 m/s 

 Dynamic viscosity, 𝜇 3.00x10-2 Pas 

Glycerol Mass density, 𝜌0 1261 kg/m3 

 Speed of sound, 𝑐 1920 m/s 

 Dynamic viscosity, 𝜇 1.4 Pas 

 

 

 

  



206 

 

APPENDIX B: TECHNICAL DETAILS OF THE SIMULATIONS 

PERFORMED IN ANSYS 
 

 

Additional details for each of the ANSYS simulations is provided here.  Each 

component of the models – the piezoelectric transducer, the fluid cavity, and the silicon 

nozzle – are individually discussed. 

 

Modeling the piezoelectric transducer 

 ANSYS solves the stress-charge form of the constitutive equations for 

piezoelectric behavior, given as: 

𝑻 = 𝒄𝑬 ∙ 𝑺 − 𝒆𝒕 ∙ 𝑬 B.1 

𝑫 = 𝒆 ∙ 𝑺 + 𝝐𝒔 ∙ 𝑬 B.2 

where T is the stress matrix in the piezoelectric element, 𝒄𝑬 is the stiffness matrix at 

constant electric field, 𝑺 is the strain matrix, E is the electric field matrix, D is the 

displacement, 𝒆 is the piezoelectric stress matrix, 𝒆𝒕 is the transpose of the piezoelectric 

stress matrix, and 𝝐𝒔 is the permittivity matrix at constant strain. [104] 

 As outlined by Meacham, additional matrix manipulations are required due to the 

assumptions built into the program for the planar transducer.[1]  The piezoelectric stress 

and stiffness matrices are given in references usually ordered as x, y, z, yz, xz, xy.  

ANSYS assumes an input order of x, y, z, xy, yz, and xz, which requires the 

interchanging of rows when inputting parameters.  ANSYS also requires that 

axisymmetric geometries be modeled in the XY plane with the y-axis being the 

symmetric axis and transducer polarization in the Y direction.  However, Equations B.1 

and B.2 are for material polarized in the z-direction.  To polarize the transducer in the 
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correct direction, the second and third rows and fourth and six rows of the piezoelectric 

stress and stiffness matrices must be interchanged.  The matrix columns must also be 

modified; the stiffness matrix also requires the second and third columns and fourth and 

six columns be switched; the piezoelectric stress matrix requires only the second and 

third columns be exchanged. 

 For the annular piezoelectric transducer, polarization is in the radial direction 

corresponding to the x-direction in ANSYS.  Given the outlined manipulations for the 

planar transducer, correct alignment of the transducer properties in ANSYS can be 

attained by rotating the property matrices 90° about the z-axis.  Details for the rotation 

procedure are given by Auld.[104] 

 

Modeling the fluid cavity 

 

As previously mentioned in Chapter 3, the fluid cavity is modeled using two-

dimensional  

FLUID79 acoustic elements.  The element type is a legacy element type models the fluid 

as a structural element with mass, stiffness, and damping matrices.  The inclusion of a 

damping matrix in the formulation of the element sets it apart from the traditional 

FLUID29 and FLUID30 elements used for acoustic analyzes which assume losses wave 

propagation.  Due to the geometric restrictions associated with the element type, all 

elements must be rectangular.  The slope of the nozzle is therefore represented as a series 

of steps, sufficiently small so as to not influence the acoustic field at the upper frequency 

of interest. 
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 The damping matrix can utilized to include the effects of bulk attenuation through 

the DMPR property.  Whereas damping would otherwise be zero, the DMPR property 

adds an amount of damping proportional to the amplitude of the acoustic field at the 

interfaces between elements.  To set the DMPR property, the classical attenuation 

coefficient (𝛼𝑠) is calculated for every frequency and the DMPR programmed using the 

MP command.  However, the DMPR property cannot be set as a frequency independent 

value and must be updated for every considered frequency.  As damping is a material 

property which can only be set before the solution command and cannot be updated once 

attached to an element type, this requires that the model be restarted for every considered 

frequency.  Once the solution for the fluid cavity is obtained for the first frequency, the 

necessary parameters are written to disk, the program is automatically cleared, the model 

remeshes with and updated damping matrix, and the solution obtained again for the next 

frequency of interest.   

 

 

Modeling the nozzle 

 

The silicon horn is modeled as SOLID182.  This is a standard solid element and 

required no special treatment in the developed models.  
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APPENDIX C: DEFINITION OF COMMONLY USED SYMBOLS 
 

 

Latin Symbols 
 

Symbol Definition 

𝐴, 𝐵, 𝐶, 𝐷 Complex amplitude coefficients 

𝐴 Cross-sectional area 

𝐵/𝐴 Nonlinearity parameter 

𝑐 Speed of sound 

𝑐𝑝 Specific heat capacity at constant pressure 

𝑐𝑣 Specific heat capacity at constant volume 

𝑐𝑛𝑚
𝐸  Piezoelectric stiffness at constant electric field in the direction 

indicated by n,m 

𝑐𝑛𝑚
𝐷  Piezoelectric stiffness at constant displacement in the direction 

indicated by n,m 

𝑑 Displacement imposed on the exterior of the driven glass 

capillary 

𝐸 Young’s modulus 

𝑒𝑛𝑚 Piezoelectric stress constant in the direction indicated by n,m 

𝐹 Force 

𝑓 Frequency; source driver amplitude 

ℎ𝑛𝑚 Transmitting constant in the direction indicated by n,m 

ℎ Capillary wall thickness 

𝐼 Electric current 

𝑗 Imaginary unit 

𝑘 Wavenumber in the fluid cavity 

𝑘𝑐𝑜𝑛𝑑 Thermal conductivity 

𝑙 Length 

𝑚 Mass 

�̇� Mass flow rate 

𝑃 Total pressure; acoustic pressure 

𝑃0 Ambient pressure 

𝑄𝑚 Transducer mechanical quality factor 
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𝑅, 𝑅𝑖, 𝑅𝑜 Radius; inner radius; outer radius 

𝑟 Radial position 

𝑆 Cross-sectional area 

𝑇 Temperature 

𝑡 Time 

𝑉 Voltage 

𝑉𝑧 Axial volume velocity 

𝑣𝑧, 𝜈𝑟 Axial velocity; radial velocity 

𝑣𝑤 Radial velocity at the wall 

𝑤0 Maximum component of the displacement spectral density 

imposed on the capillary wall 

𝑥𝑟𝑡 Shock distance 

𝑍𝑐 Transducer characteristic impedance 

𝑍 Mechanical impedance 

𝑧 Axial position; acoustic impedance 

 

 

Greek Symbols 
 

Symbol Definition 

𝛼𝑠 Spatial attenuation coefficient 

𝛼𝑇 Viscosity thermal fitting parameter 

𝛽 Wavenumber in the transducer; nonlinearity parameter 

𝛿 Linearity constant 

tan(𝛿) Loss tangent 

𝜖 Nondimensional wavenumber 

𝜖𝑟 Relative permittivity of free space 

𝜖0 Permittivity of free space 

𝜖33
𝑠  Clamped dielectric constant 

𝜇 Dynamic viscosity 

𝜈 Kelvin function order constant 

𝜌 Density 

𝜎 Stress, surface tension 
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𝜙 Velocity potential 

𝜔𝑟 Signal repeat rate 

 

 

 

Nondimensional Groups 
 

Symbol Definition 

𝐸𝑢 Euler number 

𝐺𝑜 Goldberg number 

𝑀𝑎 Mach number 

𝑁𝑎 Nahme number 

𝑅𝑎 Displacement ratio 

𝑅𝑐 Dispersion ratio 

𝑅𝑑 Diameter ratio 

𝑅𝑒 Particle speed Reynolds number 

𝑅𝑒∗ Sound speed Reynolds number 

𝑆𝑡 Strouhal number 

𝑊𝑒 Weber Number 

 

 

 

  



212 

 

BIBLIOGRAPHY 
 

 

[1] J. M. Meacham, "A micromachined ultrasonic droplet generator: Design, 

fabrication, visualization, and modeling," Ph.D. 3233561, Georgia Institute of 

Technology, United States -- Georgia, 2006. 

[2] D. B. Bogy and F. E. Talke, "Experimental and Theoretical Study of Wave 

Propagation Phenomena in Drop-on-Demand Ink Jet Devices," IBM Journal of 

Research and Development, vol. 38, pp. 314-321, 1984. 

[3] J. Meacham, C. Ejimofor, S. Kumar, F. Degertekin, and A. Fedorov, 

"Micromachined ultrasonic droplet generator based on a liquid horn structure," 

Review of Scientific Instruments, vol. 75, pp. 1347-1352, 2004. 

[4] K. Liang, "Analytic model for 1-D axisymmetric piezoelectric transducers," 2002 

Ieee Ultrasonics Symposium Proceedings, Vols 1 and 2, pp. 1149-1152, 2002. 

[5] S. J. Ford, M. J. Routley, R. Phaal, and D. R. Probert, "The industrial emergence 

of commercial inkjet printing," European Journal of Innovation Management, 

vol. 17, pp. 126-143, 01 / 01 / 2014. 

[6] H. Wijshoff, "The dynamics of the piezo inkjet printhead operation," Physics 

Reports, vol. 491, pp. 77-177, 2010. 

[7] P. Calvert, "Printing Cells," Science, p. 208, 2007. 

[8] R. E. Saunders, J. E. Gough, and B. Derby, "Delivery of human fibroblast cells by 

piezoelectric drop-on-demand inkjet printing," Biomaterials, vol. 29, pp. 193-203, 

01 / 01 / 2008. 

[9] T. Xu, C. A. Gregory, P. Molnar, X. Cui, T. Boland, S. Jalota, et al., "Viability 

and electrophysiology of neural cell structures generated by the inkjet printing 

method," Biomaterials, vol. 27, pp. 3580-3588, 07 / 01 / 2006. 

[10] M. Schumacher, U. Deisinger, G. Ziegler, F. Uhl, and R. Detsch, "Static and 

dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate 

scaffolds derived from an indirect rapid prototyping technique," Journal of 

Materials Science: Materials in Medicine, vol. 21, pp. 3039-3048, 11 / 01 / 2010. 

[11] P. J. Tarcha, D. Verlee, H. W. Hui, J. Setesak, B. Antohe, D. Radulescu, et al., 

"The application of ink-jet technology for the coating and loading of drug-eluting 

stents," Annals of Biomedical Engineering, vol. 35, pp. 1791-1799, 10 / 01 / 2007. 

[12] V. G. Zarnitsyn, J. M. Meacham, M. J. Varady, C. H. Hao, F. L. Degertekin, and 

A. G. Fedorov, "Electrosonic ejector microarray for drug and gene delivery," 

Biomedical Microdevices, vol. 10, pp. 299-308, Apr 2008. 

[13] G. Su, P. W. Longest, and R. M. Pidaparti, "A novel micropump droplet generator 

for aerosol drug delivery: Design simulations," Biomicrofluidics, vol. 4, pp. 

44108-44108, 2010. 

[14] S. Wagner, D. Sawitzky, B. Christ, G. Dues, and P. Frey, "Assessment of the 

biological performance of the needle-free injector INJEX using the isolated 

porcine forelimb," British Journal of Dermatology, vol. 150, pp. 455-461, 03 / 01 

/ 2004. 

[15] T. P. Forbes, R. B. Dixon, D. C. Muddiman, F. L. Degertekin, and A. G. Fedorov, 

"Characterization of Charge Separation in the Array of Micromachined 



213 

 

UltraSonic Electrospray (AMUSE) Ion Source for Mass Spectrometry," Journal 

of the American Society for Mass Spectrometry, vol. 20, pp. 1684-1687, Sep 2009. 

[16] T. P. Forbes, F. L. Degertekin, and A. G. Fedorov, "Electrochemical ionization 

and analyte charging in the Array of Micromachined UltraSonic Electrospray 

(AMUSE) ion source," Journal of Electroanalytical Chemistry, vol. 645, pp. 167-

173, Jul 2010. 

[17] T. H. J. Van Osch, J. Perelaer, U. S. Schubert, and A. W. M. De Laat, "Inkjet 

printing of narrow conductive tracks on untreated polymeric substrates," 

Advanced Materials, vol. 20, pp. 343-345, 01 / 18 / 2008. 

[18] J. Z. Wang, Z. H. Zheng, H. Sirringhaus, H. W. Li, and W. T. S. Huck, 

"Dewetting of conducting polymer inkjet droplets on patterned surfaces," Nature 

Materials, vol. 3, pp. 171-176, 03 / 01 / 2004. 

[19] J. H. Cho, J. Lee, Y. Xia, T. P. Lodge, C. D. Frisbie, B. Kim, et al., "Printable 

ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic," 

Nature Materials, vol. 7, pp. 900-906, 11 / 16 / 2008. 

[20] A. Rida, L. Yang, R. Vyas, and M. M. Tentzeris, "Conductive inkjet-printed 

antennas on flexible low-cost paper-based substrates for RFID and WSN 

applications," IEEE Antennas and Propagation Magazine, vol. 51, pp. 13-23, 01 / 

01 / 2009. 

[21] J. Hiller, J. D. Mendelsohn, and M. F. Rubner, "Reversibly erasable nanoporous 

anti-reflection coatings from polyelectrolyte multilayers," Nature Materials, vol. 

1, pp. 59-63, 09 / 01 / 2002. 

[22] A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, "Ink-jet printing of 

metallic nanoparticles and microemulsions," Macromolecular Rapid 

Communications, vol. 26, pp. 281-288, 02 / 21 / 2005. 

[23] S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson, "Ink-jet printed nanoparticle 

microelectromechanical systems," Journal of Microelectromechanical Systems, 

vol. 11, pp. 54-60, 02 / 01 / 2002. 

[24] B. De Heij, B. Van Der Schoot, N. F. De Rooij, H. Bo, and J. Hess, 

"Characterization of a fL droplet generator for inhalation drug therapy," Sensors 

and Actuators, A: Physical, vol. 85, pp. 430-434, 08 / 25 / 2000. 

[25] B. Derby, "Inkjet Printing of Functional and Structural Materials: Fluid Property 

Requirements, Feature Stability, and Resolution," Annual Review of Materials 

Research, vol. 40, pp. 395-414, 2010. 

[26] M. M. Gepp and et al., "Dispensing of very low volumes of ultra high viscosity 

alginate gels: a new tool for encapsulation of adherent cells and rapid prototyping 

of scaffolds and implants," Biotechniques, vol. 46, p. 31, 2009. 
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