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im   Exponent controlling the activation of the recall term in OW back 

stress hardening law 

Ntotal    Total fatigue life 

,Ninc part
  Life to incubate crack at particle-matrix interface   

Nnuc    Life to grow the crack through the nucleant grain 
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NMSC    Microstructurally small crack life 

NPSC    Physically small crack life 

NLC    Long crack life 

s   Slip direction vector of slip system α 

0s   Slip direction vector of slip system α in intermediate configuration 

T    Second Piola-Kirchoff stress tensor in intermediate configuration 

   Back stress on slip system α 

   Rate of change of back stress on slip system α 
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SUMMARY 

The objective of this work is to model the nucleation and propagation behavior of 

microstructurally small fatigue cracks in Al 7075-T6. This regime of crack growth 

accounts for much of the scatter present in fatigue lives, and can consume up to 90% of 

the total fatigue life during high cycle fatigue loading. To accomplish this objective, this 

thesis extends the doctoral and post-doctoral research of Gustavo Castelluccio, who 

developed a framework to model microstructurally small fatigue cracks in nickel-based 

superalloy RR1000.  

The major contributions of this work are twofold. First, the introduction of a 

crystal plasticity constitutive relation for Al 7075-T6, which correlates well to 

experimental stress-strain data over a large range of loading conditions, including loading 

with a mean stress or strain, and the incorporation of the fatigue algorithms of 

Castelluccio with this constitutive model. Second, the enhancement of the mesoscale 

fatigue modeling framework developed by Castelluccio to allow for Stage II growth 

along non-crystallographic planes of lowest life. 
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CHAPTER 1: INTRODUCTION 

1.1: Introduction 

Fatigue of metals is a problem that affects almost all sectors of industry, from 

energy to transportation, and failures to account for fatigue or incorrect estimations of 

service life have cost many lives. This is especially true in aerospace applications, where 

the consequences of a failure are particularly high and there is a strong motivation to 

reduce weight as much as possible. Aluminum alloys are widely used in the aerospace 

industry for their high specific strength, and thus large amounts of effort have been 

expended to characterize the performance of these alloys under cyclic loading. 

Obtaining the fatigue properties of a material under a wide range of loading 

spectra and environments, such as a component might see over the course of its service 

life, has traditionally required exhaustive experiments to generate the constants used in 

empirically-based laws. Although these relations are adequate for the prediction of 

fatigue lives under some conditions, because of their empirical nature they offer little 

insight into the underlying physical phenomena that govern the fatigue behavior of a 

particular material. The accumulation of fatigue damage is a complex multi-scale 

process, with length domains ranging from atomistic to structural, and is driven by 

multiple mechanisms that may compete with or enhance one another, and may change 

over the life of a specimen.  While some aspects of the process are well understood, such 

as the growth of long cracks, there are still a number of open questions.  

One such open issue is modeling fatigue cracks with dimensions on the order of 

the microstructure, the propagation of which is dominated by influence of the local 
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heterogeneity of the microstructure. Even for materials that been in use for many years, 

this process is not fully understood. For example, Al 7075-T6, a high-strength, low 

density precipitation hardened alloy used extensively in aerospace applications, was 

introduced to market in 1943 [1] and many researchers are still actively working towards 

better understanding microstructurally small crack (MSC) growth in this alloy. The 

creation of a computational model based on the governing physics of MSC growth in Al 

7075-T6 allows us to perform simulations evaluating the fatigue performance of the alloy 

under a large range of loading spectra much more rapidly than equivalent experiments 

could be performed. The insight gained from these simulations is twofold. First, we can 

gain insight into the microstructural parameters that control the fatigue life, and this 

knowledge can guide the modification of materials to enhance fatigue resistance. Second, 

comparison of the simulated results to experimental data gives us insight into the model 

itself, allowing us to assess if we are truly capturing the governing physics of the 

problem.  

In order to successfully model the growth of these microstructurally small cracks 

(MSCs), two computational frameworks are necessary. First, the local behavior of the 

material must be captured, necessitating a constitutive relation with resolution on the 

scale of grain size. Second, a physically based model for the nucleation and growth of 

microstructurally small fatigue cracks is needed. The overall objective of this thesis is 

best summarized as the introduction these two computational frameworks, the 

constitutive model and fatigue model, specifically for aluminum alloy 7075-T6. 

1.2: Scope of Thesis 

This thesis is primarily an extension of the research performed by Castelluccio 

[2], who introduced a crystal plasticity based, mesoscale fatigue model for nickel-based 
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superalloy RR1000. The model employed by Castelluccio is mesoscale in two senses. 

First, each computational loading cycle typically corresponds to many hundreds or 

thousands of simulated loading cycles. Second, the model simulates cracks propagating 

in increments comprising many cycles on the order of grain size, reducing the number of 

computational cycles that must be applied.  

The constitutive behavior of Al 7075-T6 differs substantially from that of 

RR1000, necessitating the use of a different constitutive model. Therefore, this work 

introduces a crystal plasticity constitutive model for aluminum alloy 7075-T6 based on 

the work of McGinty [3]. Additionally, the Al 7075-T6 constitutive model includes an 

Ohno-Wang type backstress evolution law adapted for crystal plasticity in order to better 

capture the material response under asymmetric cyclic loading. This is the first time such 

a back stress formulation has been employed in a crystal plasticity model, representing a 

key novel contribution of this work.  

The two materials also exhibit somewhat different underlying fatigue processes. 

When cyclically loaded the Ni-based superalloy tends to deform heterogeneously, with 

slip localizing in persistent slip bands which largely control the nucleation and MSC 

propagation behavior of the alloy. In contrast, cyclic loading of Al 7075-T6 produces 

more homogeneous deformation. The nucleation behavior of Al 7075-T6 is dominated by 

the effect of cracked second-phases and cracks may propagate on multiple slip systems 

within a grain. Therefore, this research extends the fatigue model of Castelluccio in order 

to consider the driving force of cracks propagating on multiple slip systems, and to allow 

for propagation on non-crystallographic planes. 
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1.3: Thesis Outline 

This thesis begins with a brief historical overview of the commonly employed 

fatigue life estimation methodologies, as well as some of the drawbacks to these 

traditional approaches. Critical plane and Fatigue Indicator Parameter (FIP) concepts are 

then introduced, along with a short review of recent advances in the field of 

computational fatigue modeling. The remainder of Chapter 2 covers the physical 

processes of fatigue, focusing on precipitation hardened aluminum alloys with specific 

attention given to Al 7075 in the peak aged condition.  

The constitutive modeling of Al 7075-T6 is covered in Chapter 3, which begins 

with an introduction to the kinematics of crystal plasticity. Once these kinematics have 

been established, the three forms of constitutive laws used in this research are presented, 

and the motivation behind the introduction of each model form is discussed. Focus then 

shifts to the implementation of the kinematics and constitutive laws within ABAQUS [4], 

a popular commercial finite element analysis software. Finally, the cyclic stress-strain 

responses of the three model forms are compared under fully reversed loading and 

loading with an imposed mean stress/strain. 

The mesoscale fatigue model is presented in Chapter 4. The conceptual and 

theoretical underpinnings of the fatigue model are presented first, including estimation of 

the driving force for MSC crack growth, the creation of digital microstructures, and the 

volume averaging scheme. After a brief review of the Stage I fatigue crack growth model 

developed by Castelluccio, a Stage II model is presented which incorporates the driving 

force on multiple slip systems and allows for crack growth across arbitrarily defined 

planes within the microstructure. The implementation of this fatigue model within the 

Abaqus environment is then discussed.  
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Chapter 5 focuses on the application of the mesoscale fatigue model to Al 7075-

T6 and begins with the calibration of the model to experimental data. The chapter then 

examines impact that the specific forms of the constitutive models introduced in Chapter 

3 have on the simulated FIP values and predicted fatigue lives. Next, results from 

simulations under uniaxial and shear loading applied at different amplitudes are presented 

and the agreement with experimental data and trends is examined. In addition, the impact 

of periodic overloads and combined uniaxial and shear loading are explored. The chapter 

closes with a discussion of the effects of mesh refinement and simulated microstructural 

volume. 

Finally, the contributions of this thesis are summarized in Chapter 6, along with 

conclusions and directions for future research. An appendix is included that provides 

further information regarding the implementation of the fatigue algorithms and crystal 

plasticity model in the ABAQUS [4] environment. 
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CHAPTER 2: FATIGUE OVERVIEW 

2.1: Introduction 

Fatigue is the process of crack formation and growth when materials are subjected 

to cyclic loads. This process occurs at load amplitudes below the static strength of the 

material and can result in the component failure with catastrophic consequences, 

including significant losses of both human life and capital. To mitigate such fatigue 

failures, engineers must be able to reliably predict the fatigue life of components under 

service conditions. Great progress has been made in this regard in the past 40 years. An 

aspect of fatigue that is still being actively researched is the behavior of microstructurally 

small cracks (MSCs), which can diverge significantly from that of long cracks. The 

portion of life spent nucleating and growing a MSC over the first few grains/phases can 

consume over 90% of the total fatigue life under High Cycle Fatigue (HCF) conditions 

and is the primary source of the scatter in fatigue lives. Therefore, the development of 

robust fatigue design methodologies requires that the MSC regime of crack growth can 

be adequately modeled.  

This chapter begins by discussing classical approaches to fatigue design and life 

prediction, as well as the limitations of these methodologies, in order to illustrate the 

motivation for the modeling preformed during the course of this thesis. Focus then shifts 

to the physical basis of the fatigue damage process in precipitation hardened aluminum 

alloys, particularly Al 7075-T6, which is the main focus of this work.  
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2.2: Fatigue Overview 

The first widely adopted tool for predicting the fatigue lives of metals subjected to 

cyclic loading was the stress-life (S-N) approach, which is still commonly used today. 

Although pioneered by Wӧhler (1860) it was Basquin in 1910 who related the applied 

stress range and fatigue life above the endurance limit through a power-law formulation 
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where the constant '

f  is the fatigue strength coefficient and b is the fatigue strength 

exponent. This equation is typically referred to as either the Basquin Equation or the 

stress-life approach, and is valid in the high cycle fatigue (HCF) regime where the 

material deforms elastically on a macroscopic scale.  

The second widely used approach to fatigue life estimation is the strain-life 

methodology. This approach is a combination of a modified form of the Basquin equation 

with a power law relation based on the separate work of both Coffin and Manson in 1954. 

The strain-life approach is expressed mathematically as  
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where the constants '

f  and c  are referred to as the fatigue ductility coefficient and the 

fatigue ductility exponent, respectively, and are used to fit the model to experimental 

data. The first term on the right hand side of Eqn. 2 captures the effect of the elastic 

component of strain and the second term the influence of the plastic component of the 

total strain. This particular approach is well suited for analyzing Low Cycle Fatigue 

(LCF) loading where significant levels of macroscopic plastic strain occur during cycling.   
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The development of linear elastic fracture mechanics in the 1900’s by researchers such as 

Inglis (1913), Griffith (1921), and Irwin (1957) laid the foundation for the introduction of 

fatigue laws based on the driving force at the crack tip. In 1961 Paris et al. [5] published a 

paper relating the driving force at the crack tip (quantified using the change in stress 

intensity factor, ΔK, over the loading cycle) to the increment in crack growth per cycle. 

This relation is known as the Paris law and is typically given in the form 

 
 

mda
C K

dN
   ( 3 ) 

   

where C and m are constants used to fit the equation to experimental crack growth data. 

Various modifications to the Paris law have been proposed in order to capture effects 

such as the influence of R-ratio or periodic overloads on the rate of crack propagation. 

When the relation between / dNda and K is plotted schematically as in Figure 1, there 

are three distinct regimes of crack growth. In Regime A the diving force ( K  ) is near or 

below the threshold level ( thK  ) for long crack growth. This can occur either because 

the crack is long and the far-field stresses in the body are low, or the crack is very short, 

typically less than a mm long. Regime B is referred to as the Paris Regime, and the 

relationship given by Eqn. 3 is valid. In Regime C the crack driving force ( K ) 

approaches the level of the materials fracture toughness of the material ( ICK ) and the 

crack propagates rapidly until failure. 
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Figure 1. Three regimes of crack growth and small crack effects. Adapted from [6]. 

 

While the Paris law can adequately model the growth of long cracks (typically on 

the order of millimeters), small cracks can grow orders of magnitude faster than long 

cracks for the same level of nominal driving force. This is shown in Regime A of  Figure 

1 where short cracks (dashed blue lines) propagate below the long crack threshold. 

Failure to account for this phenomenon could result in non-conservative fatigue life and 

have potentially disastrous consequences. The inability of the Paris law to adequately 

characterize the behavior of small cracks is due to the violation of the LEFM assumptions 

underlying the calculation of ΔK. At very small crack lengths the material can no longer 

be considered homogeneous and the local microstructure has a strong influence on the 

stress state at the crack tip. A crack is classified as a microstructurally small crack (MSC) 

when all dimensions are on the scale of the characteristic microstructural length, such as 

the grain size. For a microstructurally short crack, however, the crack size in the direction 

of propagation is on the order of the characteristic microstructural dimension, but the 
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other dimensions such as crack periphery may be large. The difference between a 

microstructurally short crack and a microstructurally small crack is illustrated 

schematically in Figure 2. 

 

 

Figure 2. Diagram illustrating the difference between short and small cracks [7]. 

 

Microstructurally small crack growth begins following nucleation, and as the 

crack grows through the MSC regime, it may retard or arrest as the crack front encounters 

microstructural barriers, which in Al 7075-T6 are primarily grain boundaries. The 

influence of the microstructure diminishes as the crack propagates and the crack front 

samples an increasing number of grains, until the crack has grown long enough that the 

cyclic plastic zone can be considered to be a homogeneous material and the crack growth 

rate is largely independent of microstructure. At this point the crack may still be small 

compared to the dimensions of the specimen or part geometry, and are thus classified as 

Physically Small Cracks (PSCs). Although there is not a sharp transition from MSC 

growth to PSC growth, many researchers consider a crack depth of 3-10 grains to be 

sufficient [8].  

Of the three fatigue analysis methodologies discussed, the stress-life and strain-

life approaches are both total-life approaches to a given, pre-defined crack size or 

definition of failure (e.g., specimen separated into two pieces), combining the multi-stage 

process of crack nucleation and growth into a single life value. This can obscure the 
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underlying physical phenomena that govern the nucleation and various stages of growth 

of a crack, which may change depending on a large number of factors such as the length, 

loading type, or environment. Additionally, all approaches discussed thus far are 

essentially macroscopic or at best mesoscopic (over many grains), empirical relations that 

fail to capture the influence of the microstructure on the driving force of small cracks 

with size on the order of individual grains or phases. Consequently, these laws provide 

little insight into the fatigue damage process and no guidance for the predictive design of 

materials and microstructures with enhanced fatigue resistance. 

2.3: Critical Plane Approaches and FIPs 

 A large number of enhanced stress, strain, and energy based models have been 

introduced to address the shortcomings associated with the basic stress- and strain-life 

approaches [9] and to address multiaxial fatigue loading.  With regard to multiaxial 

loading, the most notable and arguably successful of these models are based on the 

concept of a critical plane. Brown and Miller [10] argued that the because fatigue damage 

is driven by cyclic slip, which is in turn reflected  by shear strain, it is the plane of 

maximum shear strain range that best captures the crack driving force and and likely 

crack orientation for transgranular fatigue crack formation and growth. Additionally, they 

included the effect of tensile strain on the plane of maximum shear to account for 

enhancement of dislocation mobility and the decohesion process at the crack tip. This 

relation (slightly modified from the original form) is given by 

 
max i( )nS f N      ( 4 ) 
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where max is the maximum shear strain range, n  is the strain normal to the plane of 

maximum shear strain range, S  is a parameter that controls the influence of the tensile 

strain term, and i( )f N  is a constant for a given number of cycles to initiate a crack.  

Fatemi and Socie [11] proposed a modification to the approach of Brown and 

Miller, replacing the term capturing the normal strain on the plane of maximum shear 

with the peak stress normal to the same plane. To retain the dimensionless nature of the 

Brown and Miller parameter, Fatemi and Socie normalized the stress on the plane of 

maximum shear by the material cyclic yield strength. The macro-scale form of the 

equation is commonly expressed as 

 max

max
i1 ( )

2

n

ys

k f N
 



 
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where max

n is the stress normal to the plane of maximal shear, 
ys  is the yield strength of 

the material, and k  is a constant that controls the influence of the normal stress term. The 

physical basis for the enhancement effect of normal stress in the Fatemi-Socie parameter 

is that tensile stress act to separate the crack surfaces and thus reduce frictional forces 

along the length of the crack that dominantly propagates in shear. This leads to an 

increase of stress at the crack tip and increased rates of crack growth [9]. This effect is 

illustrated schematically in Figure 3, which compares two shear cracks: one loaded 

entirely in shear (left), and one with an additional tensile stress acting normal to the plane 

of the crack (right).  
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Figure 3. A diagram of the effect of normal stress on a crack propagating in shear. Adapted 

from [12]. 

 

Numerous researchers have demonstrated ability of the Fatemi-Socie critical plane 

approach to predict fatigue lives under multiaxial conditions for a range of materials. 

Notably, McDowell and Berard [13] demonstrated that for Stage I dominated growth the 

Fatemi-Socie parameter has an interpretation analogous to the ΔJ-integral of elastic-

plastic fracture mechanics (EPFM), capturing the driving force for microcrack 

propagation.  McDowell [14] further showed that the Fatemi-Socie parameter resulted in 

a parametric form across a range of strain states in multiaxial fatigue that reflected typical 

experimental findings. 

While originally derived for macro-scale analysis, critical plane approaches have 

recently been adopted for use on a microstructural scale in the form of Fatigue Indicator 

Parameters (FIPs), reviewed in depth by McDowell and Dunne [15]. When the stress and 

strain fields within a grain are computed using crystal plasticity constitutive models, the 

planes of maximum plastic shear strain range tend to align with the crystallographic 

planes on which Stage I fatigue cracks form.  Therefore, FIPs may be employed to 

capture the local driving force within a grain for the nucleation and growth of short 
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cracks. Good correlation has been shown by several researchers between local, 

microstructurally based FIPs and fatigue lives [2, 16, 17]. 

Recently, detailed modeling efforts have considered different aspects of fatigue 

crack formation specifically in Al 7075-T6. This body of work included: 

I. Probabilistic simulation of constituent particle cracking in Al 7075-T651 [18]. 

II. Physically based modeling of microstructure-dependent slip localization and 

crack nucleation mechanisms in Al 7075-T651 [19]. 

III. Development of a semi-empirical model for nucleation [20]. 

This approach employed a crystal plasticity constitutive model [18] along with a model 

for predicting cracking of constitutive particles under an applied load. This model was 

coupled with a slip-based, non-local nucleation metric [19] and five separate nonlocal 

nucleation parameters (including a FS-based parameter) were investigated, and these 

were compared to experimental results [20]. Using EBSD data, the microstructure of 

experimental specimens was represented in a finite element model, and the nucleation 

driving forces calculated. In Figure 4, an example is presented of a finite element 

reconstruction of an actual microstructure and subsequent calculation of one metric that 

can be used for fatigue crack nucleation, namely the maximum accumulated slip on a slip 

system (referred to as metric D1 in [20]). 
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Figure 4. Finite element representation and analysis of an Al 7075-T6 microstructure [20]. 

 

The study concluded that the computed magnitude of slip localization and accumulation 

provided a valid metric for determining which incubated cracks would nucleate, and that 

the computed tangential stress in the matrix surrounding the incubated the crack could be 

used to predict the number of cycles until nucleation [20]. The direction of nucleation and 

propagation of the crack was also shown to be strongly correlated with the peak 

tangential stress. An example of the correlation is shown in Figure 5. 
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Figure 5. Simulated tangential Stress versus arc angle compared to observed fatigue crack  

nucleation orientation [20]. 

 

Execution of a model as detailed as the one developed by Hochhalter et al. and coupling 

it with crack extension through the microstructure to simulate both crack nucleation and 

MSC growth would be prohibitively computationally expensive. However, there are still 

a number of important results that can be incorporated into our nucleation and early 

growth models: 

 Slip based metrics are valid for fatigue crack formation and early crack growth 

under these conditions. 

 Normal stress strongly influences the direction of crack propagation, albeit in 

perhaps a more subtle way from a physical standpoint (slip irreversibility and 

local crack advance) than is reflected by typical normal stress parameters and 

formulations. 

As noted by Castelluccio et al. [21], the work of Hochhalter et al. reinforces the 

importance of  both selecting an appropriate FIP and an appropriate domain of FIP 

computation that captures the underlying physical processes, i.e. because fatigue damage 

occurs in a finite physical volume, calculating a FIP value at a single point may result in a 

poor characterization of nucleation and growth behavior.  
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Modeling of fatigue crack formation and MSC propagation in Al 7075-T6 was 

also performed by Xue et al in 2007 [22], and was based on an earlier companion study 

of micromechanics in 7075-T6 [23] and earlier modeling work in cast aluminum alloy 

A356-T6 [24].  Analysis of multiple finite element models of a fractured spherical 

inclusion embedded in an Al matrix was done to evaluate the effect of size of initiating 

particle on resulting plastic strain accumulation at the micronotch root formed by the 

fractured inclusion. A non-localized metric of the maximum plastic shear strain at the 

micronotch root was determined as a function of remote applied strain amplitude and was 

related to the incubation life through a modified Coffin-Manson law. A Fatemi-Socie 

model for nucleation life was also proposed, but not discussed in detail. The study also 

modeled crack growth in the MSC and PSC regime. Growth rate of the crack was related 

to the range of the crack tip displacement via the relation  

 
 
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where   is a material constant that accounts for crack tip irreversibility, and ΔCTDth is 

the threshold crack tip displacement. The cyclic crack tip displacement range (ΔCTD) 

provides common ground for growth laws for all stages of fatigue beyond nucleation, and 

is often used as a driving force to model the growth of short cracks. Xue and coworkers 

found a good correlation between experimental data and the model for the 7075-T651 

alloy, for both high cycle and low cycle fatigue. 

 Johnson and coworkers [25] used a three dimensional crystal plasticity model to 

investigate the effect of grain orientation on the driving force of microstructurally small 

cracks in 7075-T651. The variability of the modeling results was compared to small crack 
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data obtained by Lankford et al. [26], and was found to be of the same order of 

magnitude.  Johnson et al. [25] concluded that the scatter in small fatigue crack growth 

was due in large part to crystallographic orientation effects. The results also showed that 

orientations with multiple slip systems at the crack tip exhibited faster growth rates and a 

larger ΔCTOD. Burns and coworkers [27] performed further analysis of the work 

performed by Johnson et al. to attempt to quantify the contribution of crystallographic 

orientation in their own data. It was hypothesized that if the mean peak equivalent plastic 

strain (εp-max) was proportional to da/dN, then the +/- 80% variation in εp-max in the 

simulations of five different crystallographic orientations done by Johnson et al. could 

explain +/- 80% of the variability found in the experimental results obtained by Burns 

and coworkers. This is a significant proportion of the total variability the experimental 

results (+/- 130%). The remaining difference in the variability between the FEA model 

and the experimental data was attributed to the effects of roughness induced closure, 

crack deflection and interaction with grain boundaries.  

2.4: Physical Basis of Fatigue in Al 7075-T6 

Al 7075 is a wrought Aluminum alloy based on the quaternary Al-Zn-Mg-Cu 

system. The nominal composition of Al 7075-T6 is given in Table 1. 

 

Table 1. Nominal composition of Al 7075-T6 [1]. Elements are listed by wt. %. 

Zn Mg Cu Fe Si Cr Ti 

5.1-6.1 2.1-2.9 1.2-2.0 0.5 0.4 0.18-0.28 0.2 
 

The alloy is precipitation hardened, with most applications typically using a peak aged (-

T6) or overaged (-T7) temper. In precipitation hardened Al alloys secondary phases are 
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typically categorized as precipitates, dispersoids, or constituents [28]. Typical sizes of 

these particles and examples in Al-7075 are listed in Table 2.   

 

Table 2. Secondary Phases in Al 7075 

Type 
 

Size 
 

Examples 

Constituent 
 

1-50 µm 
 

Al7Cu2Fe, Mg2Si 

Dispersoid 
 

20-500 nm 
 

CrMg2Al12 

Precipitates 
 

1-10 nm 
 

GP Zones, η and η' 

 

 

Strengthening precipitates harden the alloy by impeding the migration of 

dislocations and largely control the slip behavior of the alloy. The general trend is that 

increasing precipitate size and spacing (longer aging treatments) results in increasingly 

wavy slip and less coarse spacing of slip bands [29]. Differences in precipitate size and 

spacing due to aging treatments are visible in Figure 6 which compares a peak aged 

7075-T6 alloy to an overaged 7075-T73 alloy. 

 

  

Figure 6. A comparison of TEM bright field micrographs of a grain interior of an Al 7075 

alloy with T6 (left) and T73 (right) heat treatments [30].  
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LaFarie-Frenot and Gasc [31] conducted fatigue testing of several different heat 

treatments of 7075 under vacuum and identified the effect of precipitates on slip 

character. They found that precipitates in the underaged (UA) heat treatments consist of 

small Guinier Preston (GP) zones that are coherent with the matrix, and are easily 

sheared by moving dislocations. The presence of sheared GP zones results in 

mechanically reversible migration of dislocations, leading to planar slip and 

crystallographic fatigue facets. Crack propagation in this heat treatment was 

characterized by low growth rates due to the relatively higher degree of reversibility of 

planar slip compared to wavy slip. In general, the role of extrinsic plasticity- and 

roughness-induced closure is less prominent for microstructurally small cracks; 

accordingly,  intrinsic effects such as degree of slip planarity play a more important role 

[32]. 

In the peak-aged condition the material contains the highest volume fraction of 

closely-spaced η and η’ (MgZn2) precipitates, resulting in maximum strength. These 

precipitates are larger than the GP zones of the under-aged alloy, but are still amenable to 

shearing by dislocations. At low cyclic stress levels, only one slip system may be active, 

leading to a failure mode similar to the UA alloy; at higher stresses, multiple slip systems 

are activated, resulting in more homogeneous deformation, similar to the overaged (OA)  

condition and a flat crack path. This transition was found to correspond to a cyclic plastic 

zone size of 80 µm (compared to a grain size of 150 µm).  

In the OA alloy, particles are large and partially-incoherent with the Al matrix. They 

are not as easily shearable, so dislocations tend to loop (Orowan mechanism) or cross-slip 
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around these particles, creating a diffuse and wavy slip character. The higher 

irreversibility of this slip mode results in increased fatigue crack propagation rates. 

For 7000 series Al alloys, Lin and Starke [33] demonstrated the effect of Cu content 

on slip behavior; lower Cu-content Al-Zn-Mg-Cu alloys had a greater quantity of 

shearable precipitates, which led to strain localization and coarse planar slip. Increases of 

Cu content (up to 2.1%) were associated with increasingly diffuse slip and wavy slip-

bands, since strengthening precipitates are looped rather than sheared. Images comparing 

coarse planar slip to more diffuse slip are shown in Figure 7. 

 

 

  

Figure 7. Planar slip in a an Al-Zn-Mg-1%Cu alloy (left) compared to more homogeneous 

deformation in an Al-Zn-Mg-2.1%Cu alloy (right). Photographs from [33]. 

 

These changes in slip behavior observed by Lin and Starke had a direct effect on 

crack growth rates and propagation direction. Decreasing copper content resulted in 

decreasing crack growth rates, and was associated with zigzag crack growth and crack 

branching through slip plane decohesion. Higher Cu-content resulted in non-

crystallographic crack growth and a straight crack path running perpendicular to the 

loading axis, typical of Stage-II growth. 
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 Dispersoids are larger than precipitates and are formed in Al 7075 through solid state 

precipitation of chromium and serve to retard grain growth and prevent recrystallization 

during processing. The Al12Mg2Cr dispersoid particles formed in Al 7075 are incoherent 

with the matrix and do not have a substantial effect on strength. Some researchers have 

documented influence of dispersoid particles on fatigue behavior is at high ΔK values 

that approach the critical fracture toughness (KIC) [34].  

Constituent particles (or secondary intermetallics) are the largest second-phase in the 

matrix and play an important role in the nucleation of fatigue cracks.  Damage to these 

brittle particles can also contribute to the Bauschinger effect during reversed loading 

[35]. Typical constituent particles present in 7075-T6 include MgZn2, Mg3Zn3Al2, Al7Cr, 

Mg2Si and Al7Cu2Fe [36].  

2.4.1: Fatigue Crack Nucleation 

In precipitation hardened Aluminum alloys, fatigue crack formation is dominated 

by existing defects within the material.  For material exposed to corrosive atmospheres 

the initiating feature is typically a pit formed by corrosion. For normal ambient 

environments cracks typically form at fractured or debonded constituent particles, 

sometimes referred to as inclusion particles. These particles typically have a size of 

approximately 5 to 50 µm, an elongated aspect ratio along the rolling direction, and 

sometimes the cluster in small groups that are more detrimental to life.  This has been 

documented by many different researchers for many different precipitation Al alloy 

systems and heat treatments including 7075-T6 [23, 27, 36-42], 2024-T3 [43-48] and 

2024-T4 [49].    
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To facilitate discussion and analysis of crack formation of this particular alloy 

system, the total fatigue life ( totalN ) can be decomposed according to an hierarchical 

approach [24], i.e., 

 
total part,inc nuc MSC PSC LCN  =  N + N + N + N + N  ( 7 ) 

 

The incubation life (Npart,inc) is the number of cycles required to form a crack within or at 

the interface of a constituent particle/inclusion at the sub-grain scale, which may occur 

during the first few loading cycles depending on stress/strain amplitude. The nucleation 

life (Nnuc) is the number of cycles between the occurrence of a crack emerging from a 

constituent particle (cracked or debonded) and propagation of this crack into the 

surrounding matrix to a prescribed extent, typically on the order of the size of the 

nucleant grain or phase. In this work, the first two terms comprise the process of fatigue 

crack “formation”, whereas the remaining terms characterize fatigue crack growth.  The 

relative contributions of the MSC, PSC and LC fatigue crack growth regimes are 

discussed in greater detail later in this chapter.  

 Early work on 2024-T3 by Grosskreutz and Shaw [50] found that fatigue cracks 

formed in the vicinity of large inclusion clusters containing iron and silicon. Bowles and 

Schijve [48] obtained results in good agreement with Grosskreutz and Shaw, and also 

noted that particles at which fatigue cracks formed were typically 1 µm to 10 µm in size.  

For 2024-T4, Kung and Fine [49] found that cracks initiated from either S-phase 

(Al2CuMg) or β-phase (Al7Cu2Fe) particles, typically larger than 6 µm. 

Laz and Hillberry [47] performed statistical analysis of constituent particles in 

fatigued samples of 2024-T3. Inclusions that formed cracks were found to be in the tail 

end of the constituent particle distribution, as illustrated in Figure 8. 
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Figure 8. Size of particles/inclusions at which cracks formed compared to the overall 

particle distribution [47]. 

 

In addition, Laz and Hillberry measured the composition of the crack formation 

sites using EDS. The majority of particles that nucleated fatigue cracks contained iron, 

manganese, copper and Al. Iron containing particles were likely Al7Cu2Fe, consistent 

with the results obtained by Kung and Fine. 

Recent work by Mayer et al. [43] investigated the fatigue behavior of 2024-T351 

in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. In samples 

that survived stressing for up to 10
10

 cycles, fatigue cracks were observed to form at 

constituent particles or clusters of particles situated at or close to the surface. Mayer and 

coworkers suggest that these initiating particles are either Al7Cu2Fe or Al7Cu2Mn.  

In pristine samples of 7075-T6 fatigued at room temperature and in ambient air, 

cracks formed almost exclusively at fractured iron-bearing constituent particles, 

commonly reported to be  Al7Cu2Fe, sometimes referred to as the β-phase [38, 40]. The 

size of these particles varies from study to study, but most researchers report a typical 
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diameter of 4-50 µm [36, 39]. Xue et al. [23] reported that iron-bearing constituent 

particles 4-8 µm x 8-12 µm in size served as the sites of fatigue crack nucleation in 50.8 

mm thick 7075-T651 plate.  

Li et al. [40] investigated the effect of temperature on crack formation and early 

growth in 7075-T6 under LCF conditions. At temperatures below 120
o
C, cracks formed 

at constituent particles with little or no evidence of localized plastic deformation adjacent 

to the particles in the form of slip bands or slip lines. At high temperatures (260
 o

C), 

competition between formation within persistent slip bands and formation via grain 

boundary cracking was observed.   

Payne and coworkers [38] made direct observations of notched fatigue specimens 

of 7075-T651 under LCF testing and found that cracking (rather than debonding) of iron-

bearing constitutive particles was the only cause of fatigue crack formation. It was also 

found that Mg2Si particles did not contribute to fatigue crack formation. This was 

attributed to the difference in elastic moduli between the particles and the matrix; iron-

bearing particles (Al7Cu2Fe) are stiffer than the aluminum matrix with an elastic modulus 

of approximately 135 GPa, while Mg2Si particles are more compliant with a modulus of 

approximately 50 GPa, thus creating less of a stress concentration effect [51]. The 

sequence of crack formation from a typical constituent particle is shown in Figure 9. 
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Figure 9. (a)  and (b) Crack incubation and (c) nucleation via growth into the matrix 

[38]. 

 

Payne et al. [38] recorded information on the number of particles that had reached each 

stage of growth with progression of fatigue cycling, with results shown in Figure 10. 

Several trends are immediately clear from examination of Figure 10. First, incubation of 

the crack occurs within the first cycle for the majority of particles that fail; approximately 

2/3 of particles that form cracks are fractured prior to fatigue cycling, presumably in the 

processing stages. Second, nucleation of the crack via extension into the matrix trails 

incubation by a significant number of cycles, and growth lags yet further behind 

nucleation. The definitions of incubation and nucleation employed by Payne et al. differ 

from those presented in Eqn. 7. Payne el al. consider the incubation process to consist of 

cracking the constituent particle, and define nucleation as the first appearance of a crack 

at the particle/matrix interface. Together, these two events comprise the incubation life 

(Npart,inc) term in Eqn. 7. Furthermore, Payne et al. do not differentiate crack growth 
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within the nucleant grain (Nnuc) and MSC propagation within adjacent grains, labeling 

both as growth in Figure 10.   

 

Figure 10. Hard particles in the incubation, nucleation or growth phase vs. cycle [38]. 

 

Similar results were obtained by Weiland et al [39], who analyzed constituent 

particles in 76.2 mm thick 7075-T651 plate subjected to LCF loading. It was found that 

particle debonding occurred but did not contribute to the formation of cracks within the 

Al matrix, which were instead only associated with cracked particles. Only a small 

portion of cracked particles nucleated cracks that grew into the matrix, attributed to the 

availability of active slip systems in the matrix next to the particle. 

2.4.2: Fatigue Crack Propagation 

The application of ΔK-based growth laws to the MSC growth regime violates 

several of the assumptions required for valid LEFM analysis, including a region of K-

dominance, self-similitude, local mode mixity at the crack tip, and material homogeneity 

[8, 52]. However, this approach was widely used in early studies of MSC crack growth 

and much of the data for Al 7075-T6 collected from 1975 to the early 1990’s are usually 
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presented in the form of da/dN vs ΔK [26, 41, 42, 53-58]. These type of data provide 

evidence for general growth rate trends and the effects of loading ratio, environment, etc. 

on growth rates, but is not as useful for calibration of mesoscale fatigue crack growth 

models in the MSC regime because crack length must be backed out of the ΔK values. 

This is often difficult as some sources do not publish exactly how ΔK was calculated, or 

if it is applicable to a given length of crack considered. 

Lankford [41] observed the formation and propagation of small surface cracks in 

Al 7075-T6 specimens and was one of the first to quantify the growth rates of small 

cracks for this alloy. Figure 11 shows the results obtained by Lankford compared to long 

crack propagation data, and illustrates the “anomalous” behavior of small cracks.  

Lankford noted that the cracks formed at fractured intermetallic inclusions and had a 

half-penny geometry oriented normal to the loading direction.  
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Figure 11. MSC versus long crack (LEFM) fatigue crack growth data for 7075-T6 [41]. 

 

Lankford observed that very short cracks exhibited a high initial growth rate that 

decelerated as the half crack length approached a dimension approximately equal to the 

grain size in the propagation direction, typically between 30 µm to 40 µm for the samples 

tested. At this length, the growth of some cracks was arrested, while others began to grow 

an accelerated rate, up to two orders of magnitude faster than growth rates of long cracks 

subjected to the same nominal ΔK.  

Akiniwa et al. [59] found that the crack growth rate for small surface cracks in 

2024-T3 was highly variable and had a large dependence on microstructure. Figure 5 

shows a sketch of a small surface crack above a plot of crack propagation rate. The crack 

was observed to arrest at the first few grain boundaries it encountered. These results 
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clearly depict the “anomalous” small crack effect [8] in Aluminum alloys for relatively 

low amplitude fatigue and crack lengths on the order of the grain size. 

 

Figure 12.  (a) Propagation path of a small surface crack, and (b) plot of corresponding 

crack growth rate [59]. 

 

Akiniwa et al. also plotted the small crack growth rate against the cyclic stress 

intensity factor, ΔK. Figure 13 shows the maximum bound, mean, and minimum bound 

growth rates for crack growth in the low ΔK regime. Also included is the growth rate for 

a single crack, which exhibits behavior similar to the cracks observed by Lankford in 

7075-T6. The high initial growth rate quickly decelerated as the crack approached the 
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first grain boundary. Here the crack can either arrest or continue growing through the 

boundary. If the crack penetrated the first grain boundary, it continued to grow at a rate 

that is decreasingly influenced by microstructure and grain boundary effects, until the 

growth rate merged with long crack data.  

 

Figure 13. Short crack growth in 2024-T3  [59]. 

 

The results obtained by Lankford [41, 60] and Akiniwa et al. [59]are representative of the 

large body of small crack growth data available for Al alloys 2024 and 7075. Research 

findings generally agree that the crack growth rate in the small crack region is usually 

considerably higher than expected from extrapolation of long crack data, even for ΔK 

values below the crack arrest threshold (ΔKth). The large variability of crack growth rates 

for the same nominal ΔK value is a result of microstructural influence on the local crack 
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driving force. To accurately predict MSC crack growth rates, a local rather than a far 

field driving force (e.g., ΔK) must be used.  

The need for a local measurement of driving force was further reinforced  by the 

work of Chan et al. [61], who calculated ΔJ-integral contours around the tip of a small 

half-penny surface crack (36 µm) in an overaged 7075 alloy based on stereoimaging 

measurements of crack-tip displacement fields. They found that for small cracks the ΔJ-

integral was path dependent, decreasing in magnitude with increasing distance from the 

crack tip. Additionally, the local ΔJ-integrals were substantially larger in magnitude than 

the nominal far-field values. This means that the ΔJ-integral cannot be employed to 

characterize the growth of microstructurally small cracks. Chan et al. suggest that a more 

fundamental parameter describing crack tip fields would be based on the ΔCTD and thus 

offer better correlation with crack growth data.  

Early data for crack growth rates were typically obtained using only surface 

measurements, but more recent work has measured crack growth rates in three 

dimensions using load histories that are programmed to produce marker bands on the 

crack surface, allowing crack growth rates to be determined along the entire crack front 

[27, 62]. Burns et al. [27] used marker-band growth rate measurement in pre-corroded 

and two-holed specimens to determine crack contours and crack growth rates in Al 7075-

T651 along multiple radial directions as shown in Figure 14(a); their results show the 

high degree of variability present in early crack growth. Growth rate from a controlled 

corrosion pit for one specimen is shown in Figure 14(b). Each line represents growth rate 

along a vector drawn from the center of the corrosion pit outwards in the direction of 

crack propagation. 
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Figure 14. Crack growth from a controlled pit specimen [27]. (left) Crack contours and 

arrows indicating radial directions along which crack growth rates were measured. (right) 

Crack growth rates for multiple radial directions. 

 

The variability of the growth rate in Figure 14 is approximately an order of 

magnitude, but decreases as the crack grows and the influence of the microstructure is 

reduced. Less variability in the growth rates of two-holed samples was observed, with a 

maximum da/dN variation of +/-130% occurring between 7 µm and 10 µm from the 

microstructure nucleant feature. The crack shown in Figure 14 is propagating in the T-S 

plane of the microstructure, which had a grain size between 50-74 µm in the transverse 

dimension, and 8-19 µm in the short direction. At the largest contour shown in Figure 14 

left, the crack had grown to an approximate size of 200 µm.  

Burns and coworkers also compared the results of their marker-band growth rate 

analysis to earlier results obtained through surface measurements of cracks with the 

notable result that unlike studies done using surface measurements, no crack arrest at 

grain boundaries was ever observed on the interior crack front. They suggest that studies 
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done using only surface measurements of crack growth fail to capture the actual growth 

rate over a significant portion of the crack front in the sample interior. 

2.4.3: Stages of Crack Growth 

Currently there is a lack of consensus within the literature on whether nucleation 

and early crack growth in Al 7075-T6 alloys is a Stage-I or Stage-II process, and the 

issue is further clouded by the large number of factors that can influence crack 

propagation behavior in this alloy, such as applied load amplitude [31], stress ratio [56, 

58], and environment [63, 64].  

The terminology differentiating the Stages of fatigue crack growth was introduced 

by Forsyth [65] in 1963 based on his work in aluminum alloys. A Stage I crack grows 

primarily by single shear, propagating in the direction of the primary slip system, while 

Stage II crack growth duplex or multi-slip process with cracks typically propagating 

normal to the tensile loading axis.  This is illustrated in Figure 15.  

 

Figure 15. Schematic of the Stages of fatigue crack growth according to Forsyth [65]. 
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In practice, the assessment of Stage I to II for growth for small cracks can be 

difficult to determine, given the three-dimensional nature of the crack surface and the 

transitional period between the regimes of growth that occur as the primary slip system 

hardens and the stresses at the crack tip activate conjugate slip. Additionally, there is 

always the question of the scale of observations. For example, a crack may propagate 

normal the tensile loading axis in a macroscopic sense, but locally grow along 

crystallographic planes in a shear-dominated fashion. Conversely, a crack may appear to 

grow on a plane of maximum shear at the mesoscale, but may locally grow at the tip in an 

alternating non-crystallographic  sense via mixed conjugate slip system growth.  

Several researchers have introduced extensions to the traditional dual-Stage 

growth model. Li [66] framed the crack growth process in terms of the crack tip 

displacement vector ( CTD ), defined as 

 
CTD CTSD CTOD     ( 8 ) 

   
where CTSD and CTOD are vectors quantifying the crack tip opening and crack tip 

sliding displacements, respectively. Li classified Stage I growth as a pure shear crack 

propagating along a slip plane. Additionally, Li proposed the term ‘extended Stage I 

growth’ when a short secondary slip band is activated at the crack tip, which commonly 

occurs in single crystals and large grain polycrystalline materials. During Stage II growth 

(assuming that at the crack tip there exists a conjugate pair of slip systems with nearly 

equal Schmid factor) the crack propagates alternatively among slip bands on the 

conjugate slip systems in nearly equal increments. Figure 16 is a schematic representation 

of the types of crack growth and the resultant CTD  at the crack tip. In the Figure slip 

bands are shown by dashed lines.  
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Figure 16. Illustration of the slip band profiles of the primary and secondary slip system, 

and resultant vector displacements at a crystallographic crack tip. Adapted from [66].  

 

Note that in Figure 16 the crack tip displacements along slip bands are sliding 

displacements and that in absence of any opening displacements, the CTD  is a sum of 

only the CTSD  vectors on the primary and secondary slip system. This is a 

consequence of the assumption that for a crystallographic crack tip all displacements 

occur by shearing along slip planes, even for a Stage II crack. When the calculated 

CTD  at the crack tip for extended Stage-I cracks was compared to the growth rates of 

such cracks in aluminum bicrystals, good agreement was obtained. Li’s description of 

Stage II growth is somewhat similar to the coarse slip model of fatigue proposed by 

Neumann [67, 68], who observed the process in copper single crystals.  

Petit and Kosche [57] conducted experiments on single and polycrystalline Al-Zn-

Mg alloys under vacuum to identify the “intrinsic” Stages of crack growth that occur in 

the absence of environmental effects. They defined a period of “Stage I like” propagation 

where macroscopically the crack grows on a plane of maximum tensile stress, but within 

a grain propagates along crystallographic planes. They noted that this regime of growth 

was marked by a significant degree of crack branching and deviation at grain boundaries 
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and was slower than either of the Stage I or Stage II intrinsic regimes of growth. Petit and 

Kosche found that intrinsic Stage I propagation occurs at a higher rate that Stage II 

growth under vacuum, and that large and incoherent precipitates as well as the presence 

of grain boundaries promoted Stage II growth. Additionally, they observed evidence of 

Stage I crystallographic crack growth within the nucleant grain of the Al 7075-T6 alloy 

when tested in vacuum. 

Experimental research conducted by Agnew and co-workers [36, 69, 70] suggests 

that within the LCF regime, nucleation and early growth is essentially a Stage-II event. 

This assumption is reflected by the modeling work conducted by Hochhalter [71], who 

argued that within the nucleant grain, cracks tended to propagate on planes of maximum 

normal stress.  Other research [23, 38, 39, 56, 72] suggests that nucleation and early 

growth occurs on crystallographic planes of maximum shear (Stage-I response), even 

within the LCF regime. 

In a study of legacy and modern Al-Zn-Mg-Cu alloys, Gupta and Agnew [36] 

measured the crystallography of fatigue crack surfaces near initiating particles using 

SEM-based stereology and EBSD. The tests were conducted under LCF conditions with a 

stress ratio of 0.5, loaded at a frequency of 5 Hz in warm-humid air and 10 Hz in cold-dry 

N2 environments. Analysis of the fatigue crack surface in close proximity to the nucleant 

particle (1 to 50 µm) produced no evidence of extended {111} slip plane cracking 

commonly observed in pure face centered cubic metals with moderate to low stacking 

fault energy. In fact, no facets were found to have a crystallographic orientation within 

15
o
 of the {111} planes in either environment. This occurred for fatigue tests of both 

7075-T651 and 7050-T7451.  
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Weiland et al. [39] used focused ion beam (FIB) milling and orientation imaging 

microscopy (OIM) to evaluate the three dimensional shape and crystallography of an 

individual crack growing from an initiating particle in 7075-T651 under low cycle fatigue 

conditions conducted at R=0.  They found that nucleation and subsequent growth into the 

Al matrix for the surface portion of the crack was aligned with an available slip plane. 

However, after approximately 5µm of growth within the nucleant grain, the crack appears 

to change direction sharply and begin propagating perpendicular to the loading axis.  

Tokaji and Ogawa [56]  investigated the effect of stress ratio on nucleation and 

MSC growth in 7075-T6. They observed that for tests conducted at R = -1 and R = -2, 

cracks nucleated and grew within the first grains in Stage-I, and that the lower the cyclic 

load level, the farther the crack propagated in Stage-I before transitioning to Stage-II 

growth. For fatigue tests conducted at R = 0, cracks nucleated from inclusions, and 

exhibited only Stage-II growth.  

Misak et al. [73] conducted fatigue tests on pre-cracked, cruciform specimens of 

Al 7075-T6 to assess the effect of biaxiality on fatigue crack propagation. They found 

that higher ratios of biaxiality promoted higher growth rates than the equivalent uniaxial 

loading, and had lower crack growth thresholds (ΔKth). In addition, the surfaces of cracks 

from the uniaxially loaded specimens were typically smooth, while the surfaces of cracks 

under higher biaxiality ratios were rougher. This was attributed to the biaxial loading 

conditions promoting wavy slip, in contrast to the more planar slip in the uniaxially 

loaded specimen.    
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2.4.4: Environmental Effects 

It is well established that the presence of humidity in ambient air has a detrimental 

effect on fatigue properties. In aluminum alloys, this effect is attributed to the production 

of hydrogen by the interaction of water vapor with freshly exposed surfaces at the crack 

tip [63, 74, 75]. The mechanism of hydrogen-enhanced crack propagation in Al alloys is 

not fully understood, but it is attributed to:  

1) Hydrogen-enhanced localized plasticity (HELP) – where the presence of solute 

hydrogen in aluminum matrix near crack tip enhances dislocation emission. Sun et 

al. [76] performed molecular dynamics studies of the interaction of Hydrogen 

atoms with crack tips in aluminum and found that the presence of adsorbed could 

both enhance or suppress dislocation emission.  

2) Hydrogen-enhanced decohesion (HEDE) – where small amounts of hydrogen on 

the crack front can reduce cohesive strength, leading to brittle cleavage. 

Underaged, planar-slip 7075 alloys have been found to be more susceptible to 

hydrogen embrittlement than peak or overaged alloys of the same temper [63]. 

It is likely that HELP and HEDE mechanisms operate in some combination, with 

transport of hydrogen by dislocations serving to bridge them. The formation of oxides on 

crack surfaces can also effect crack growth. Vasudevan and Suresh [74] showed that the 

effect of oxide-induced crack closure in 2024-T3 and 7075-T6 alloys is not significant, 

unlike overaged alloys of the similar composition. In the overaged alloys oxide layer 

thicknesses on the order of the near-threshold CTOD were observed to form, leading to 

crack arrest.  
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2.4.5: Effects of Overloads and Underloads 

Numerous researchers have explored the impacts of overloads and underloads on 

the long crack growth behavior of aluminum alloys [62, 77-79]. However, the impact of 

overloads during MSC propagation is not well-studied for this alloy, and there is no 

research exploring the phenomenon in Al 7075-T6 of which this author is aware. 

However, Suresh [80] has suggested that in addition to the commonly listed mechanisms 

for growth retardation following overload (such as crack tip blunting, compressive 

residual stresses, crack closure in the wake of the crack, etc.), the effective stress intensity 

range at the crack tip can be reduced to such an extent that locally growth becomes Stage 

I, i.e. the crack grows along a single crystallographic slip system in shear despite 

nominally tensile loading conditions.  

 

2.5: Summary 

This Chapter has presented a brief historical overview of the methods used to 

predict fatigue phenomenon, as well as the physical basis of fatigue crack nucleation and 

growth in precipitation hardened aluminum alloys, with a focus on Al 7075-T6 which is 

the material modeled in this Thesis. The propagation of microstructurally small cracks is 

a complex phenomenon influenced by numerous factors, and traditionally employed 

fatigue design methodologies are often inadequate for the characterization of the behavior 

of small cracks. The difficultly of modeling the behavior of microstructurally small 

cracks is the motivation for this thesis, which seeks to do so by employing a FIP-based, 

mesoscale modeling approach introduced in Chapter 4. 
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CHAPTER 3: CONSTITUTIVE MODELING OF AL 7075-T6 

3.1: Introduction 

To accurately predict the fatigue behavior of a material it is first necessary to 

accurately model the response of the material to applied cyclic loads with a constitutive 

model. This constitutive model serves as the basis from which the stress and strain 

quantities used in any fatigue analysis are derived. Modeling microstructurally small 

crack growth requires a constitutive model that can resolve the stress-strain response 

within individual grains to capture the local driving forces on the crack. This is achieved 

through the use of a finite element based crystal plasticity model (CPFEM) calibrated to 

cyclic loading data for Al 7075-T6. This chapter will begin with a brief introduction to 

the mathematics underlying crystal plasticity constitutive models, and will then present 

three different crystal plasticity constitutive models for Al 7075-T6. The chapter will 

conclude with a discussion of the models and key differences between them, as well as 

the implications that these models have on modeling microstructurally small crack 

growth.  

3.2: Kinematics of Crystal Plasticity 

The mathematical underpinnings of crystal plasticity models have been presented 

in great rigor and detail in numerous sources, but for the sake of completeness this 

document will present an overview of the basic physical and mathematic principles. Note 

that the fatigue algorithms (introduced in Chapter 4) allow for the possibility of 

introducing damage to an element through the isotropic degradation of the elastic 

stiffness tensor. Thus, in introducing the kinematics of crystal plasticity, all elastic terms 
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are replaced by their elastic-damaged equivalents, i.e., eF  becomes edF  following the 

introduction of damage. 

Assuming a continuous distribution of dislocations, the local deformation in the 

neighborhood of an infinitesimal point can be represented by the deformation gradient 

,F  

 
0 0

1

N
p pF s m F


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




 
   
 
  ( 9 ) 

   

where x  is the position vector of the particle in the reference configuration and X  is the 

position vector of the same particle in the deformed configuration. Following the 

methodology of Bilby et al. [81] for deformed crystals and Lee for macroscale plasticity 

[82] the deformation is decomposed into elastic-damaged ( edF  ), and plastic ( pF  ) 

components according to 

  
1

0

p p pL F F


   
( 10 

) 
   

with edF  representing the elastic deformation gradient, which includes damage, and pF

representing the plastic component of the deformation gradient. This decomposition is 

shown schematically Figure 17.  
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.  

 

Figure 17. . Schematic showing the multiplicative decomposition of the deformation 

gradient. Adapted from [83]. 

 

In Figure 17, 
0s  is the slip direction vector in the reference configuration, and 

0m is the 

slip plane normal, also in the reference configuration. Note that the slip direction and 

normal vectors are unchanged by the plastic deformation gradient during the 

transformation from the reference to intermediate configuration because it is assumed 

that the lattice itself is undisturbed by the dislocation motion that occurs during plastic 

straining, and that any deformation of the crystal lattice is elastic in nature.   

Following the arguments presented by Asaro [83], the material time derivative of 

the plastic deformation gradient is related to current plastic deformation gradient by the 

relation 
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where    is the shearing rate on slip system α, 
0s  is the slip direction vector in the 

intermediate configuration, and 
0m is the slip plane normal vector also in the 

intermediate configuration. The plastic velocity gradient in the intermediate configuration 

may then be obtained by the following expression, 

  
1

0

p p pL F F


   ( 12 ) 

   

which simplifies to  
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The plastic velocity gradient in the current configuration is related to the plastic velocity 

gradient of the intermediate configuration through 

  
1

0

p ed p edL F L F


    ( 14 ) 

   

and the elastic velocity gradient is given by 

  
1

ed ed edL F F


  . ( 15 ) 

   

Summing the elastic damaged and plastic velocity gradients yields the total velocity 

gradient in the intermediate configuration, i.e., 

  
1ed pL L L F F


    . ( 16 ) 

   

The 2
nd

 Piola-Kirchhoff stress, T , is then obtained by multiplying the elastic damaged 

Green strain tensor, edE  , with elastic stiffness tensor, i.e., 

 : EedT C  ( 17 ) 

   

where the elastic damaged Green strain tensor is defined by 

 1
(F ) F

2

ed ed T edE I     . ( 18 ) 
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The Cauchy stress (  ) is then related to the 2
nd

 Piola-Kirchhoff stress tensor through 

 1
F (F )

det(F )

ed ed T

ed
T     ( 19 ) 

   

The resolved shear stress on slip system   is then obtained by 

  0 0: s m     . ( 20 ) 

   

With these kinematics in place, the next step is to introduce material-specific 

constitutive laws that relate the shearing rate on slip system   to the resolved shear 

stress on that slip system, 
 , through the flow rule, as well as slip system hardening 

laws. 

3.3: Al 7075-T6 Crystal Plasticity Constitutive Models 

During the research conducted for the completion of this thesis, three different 

crystal plasticity models for Al 7075-T6 were considered. The crystal plasticity modeling 

framework of McGinty [3], applied originally to Oxygen Free High Conductivity 

(OFHC) Cu, serves as the basis for the constitutive model implementation.  The flow rule 

is defined as 

 ( ) ( )
( ) ( ) ( )

0 ( )
( ),

m

sgn
g

 
  



 
   


   ( 21 ) 

   

where ( )  is the shearing rate for slip system  , ( )

0

  
 
is the reference shearing rate, and 

  ,   and g  are the corresponding slip system shear stress, back stress and drag 

stress, respectively. Here m is the strain rate sensitivity exponent.  

The three models used in this research differ primarily in the forms of the 

hardening laws that govern the evolution of the back stress and the drag stress on each 

slip system. These laws have the general form   
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 ˆ( ,g )g g    and ˆ( , )      . ( 22 ) 

   

In Eqn. 22 the rate of evolution of the drag stress, representing isotropic hardening, is a 

function of the shearing rate on all slip systems as well as the current value of the drag 

stress. However, the kinematic hardening response, captured by the evolution of the back 

stress, is only a function of the shearing rate on the current slip system as well as the 

current value of the back stress.  

3.3.1: Model Forms 

For the sake of brevity each of the three models is referred to by the designation 

used during development and calibration: models G31, OW44 and OW57. The first 

model form employed for fatigue simulations in Al 7075-T6 was model G31. In this 

model the back stress is  governed by an Armstrong-Frederick [84]  type non-linear 

relation and evolves according to 

 ( ) ( ) ( ) ( )| |h r         ( 23 ) 

   
where h  and r  are constants that capture the hardening and recovery of the back stress. 

With the AF form of the back stress hardening law, the saturation value of the back 

stress, b , is given by the ratio 

 h
b

r
 . ( 24 ) 

   

The G31 model assumes that the drag stress on each slip system, g , is a constant 

throughout the simulation, i.e., no isotropic hardening. 

Model OW44 was introduced in order to address some of the shortcomings of the 

Armstrong-Frederick back stress formulation when loaded cyclically with an imposed 

mean strain. The OW44 model incorporates a two-term, Ohno-Wang [85] (OW) type 
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equation for the back stress, adapted from a polycrystal macroscopic model proposed by 

McDowell [86]. The rate of change of this from of the back stress is given by 

 
( ) ( ) ( ) ( )

1 1

sys sysN N

dir dyng H h H g    

 

 
 

    ( 25 ) 

   

where h
 is the latent hardening matrix, controlling the relative contributions of self and 

latent hardening of the slip systems.  In the OW57 model the latent hardening matrix is 

defined as a function of the latent hardening ratio 

 (1 q)h q     ( 26 ) 

   

where 
 is the Kronecker delta. For FCC materials typical values given for the latent 

hardening ratio are between 1 and 1.4 [87]. Work by Yan et al. [88] on cyclically loaded 

pure aluminum single crystals suggests a latent hardening ratio between 0.9 and 1.1, with 

only a slight variance occurring during cycling. A value of 1.1 was selected for latent 

hardening ratio in the OW57 constitutive model.  

3.3.2: Implementation in Abaqus 

The crystal plasticity constitutive models are implemented in an Abaqus 6.9.1 [4] 

User MATerial (UMAT) subroutine. The UMAT subroutine allows the user to define a 

material constitutive model not included in the standard Abaqus models and the ability to 

interface with other user subroutines. The UMAT is called for every material calculation 

point of all elements for a given increment. The primary inputs into the UMAT from 

Abaqus are the deformation gradients at the beginning and end of the increment, tF  and

t tF  , respectively. The UMAT calculates the Cauchy stress tensor,   , and the material 

Jacobian matrix, J








 and then updates the internal state variables associated with 
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the solution before returning to Abaqus. This functionality of the UMAT in relation to 

Abaqus and solving the actual finite element equation is summarized in Figure 18.  

 

Figure 18. Diagram showing the basic interaction between Abaqus and the UMAT. Adapted 

from [3]. 

 

The implementation of the crystal plasticity constitutive model within the UMAT closely 

follows the general methodology employed by McGinty [3], employing a Newton-

Raphson implicit integration scheme coupled with a line search algorithm to improve 

convergence. A detailed flowchart of the UMAT is shown in Figure 19.  

In Abaqus Implicit, the simulation is divided into monotonic changes in the 

applied boundary conditions. These are the loading steps and for the fatigue simulations 

are performed under strain control. Each loading step is further divided into loading 

increments by Abaqus. At this point, Abaqus calls the UMAT subroutine for each 

material integration point within the mesh. The UMAT then begins the process of sub-

incrementation where the increment passed in by Abaqus is divided into a number of 
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smaller increments. During the first attempt to solve the constitutive equations, the 

increment and sub-increment are the same size. If the Newton-Raphson and line search 

loop are unable to converge to a solution, the increment is divided into twice as many 

sub-increments and the Newton-Raphson/line search algorithm begins again. This 

process continues until the solution converges or the number of sub-increments grows too 

large. In the case of non-convergence within the maximum number of sub-increments, 

the UMAT requests that Abaqus restart the current increment with half of the original 

time. If the solution has converged within the UMAT, the internal state variables (ISVs) 

associated with the solution are updated, and the Cauchy stress and Jacobian are returned 

to Abaqus. 
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Figure 19. Flowchart summarizing the steps executed by the Abaqus UMAT subroutine 

during a loading step. Adapted from [3]. 

 

Additionally, the UMAT writes the variables and arrays needed by the fatigue algorithms 

to the COMMONBLOCK, a feature of Fortran 95 that allows data to be shared between 
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separate Fortran programs, in this case the UMAT and the UEXTERNALDB 

subroutines. The COMMONBLOCK allocates a region of computer memory for storage 

of variables and arrays that is accessible by all programs that share the same 

COMMONBLOCK declaration. Note that COMMONBLOCK variables are persistent 

over the execution of the simulation, meaning that they remain unchanged from step to 

step and increment to increment unless explicitly modified. After these arrays are written, 

the UMAT exits and Abaqus then checks the global equations for convergence. If 

convergence is not obtained, the last increment is restarted with a smaller time step. It is 

important to note that the UMAT does not know if the converged solution it obtains for 

each material integration point will produce a converged solution for the global FE 

equations that Abaqus attempts to solve, and writes data to the COMMONBLOCK 

during each call. This can cause issues if the data is read by the other programs with the 

shared COMMONBLOCK before global convergence is obtained. Once the global FE 

equations have converged, Abaqus begins the next increment of the step. This process 

continues until all loading steps are completed. 

3.4: Model Calibration 

To accurately model the fatigue behavior under the loading conditions of interest 

the material constitutive model must be able to correctly predict the stress-strain response 

under that loading.  To do so requires that the model be calibrated to data that matches 

the loading conditions of interest. For the mesoscale fatigue model, the stabilized material 

response to cyclic loading is the main interest, therefore the model is calibrated using 

primarily the cyclically stable stress-strain hysteresis loops. 
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Under monotonic loading Al 7075-T6 exhibits a low degree of work hardening, 

typical of high stacking fault energy materials.  When loaded cyclically the material 

displays slight cyclic hardening behavior that stabilizes after approximately 10 to 100 

cycles, depending on strain amplitude [89]. Both of these behaviors are illustrated in 

Figure 20, which was adapted from experimental work conducted by Colin [90]. 

 

Figure 20. Comparison of monotonic and cyclic stress/strain curves for Al 7075-T6. 

Adapted from [90]. 

 

Several of the parameters within the flow rule are either known material properties or 

scaling parameters, and these parameters were held constant for all models and were not 

used to fit the material response. First among these parameters are the elastic constants 

that comprise the anisotropic stiffness tensor, 
ijklC . The values of these consents were 

chosen to match those used in the Al 7075-T6 modeling work of Bozek et al. [18] and 

provided good agreement with experimental results within the elastic regime. For all 
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models, 0  is taken to be 0.001. The values of the elastic constants and 0  used in this 

work are summarized in Table 3 . 

Table 3. Common parameters between models G31, OW44 and OW57 

C11 C12 C44 o  

107.3 GPa 60.9 GPa 28.3 GPa 0.001 s
-1 

 

The strain sensitivity exponent of the flow rule, m , was taken to be 150 for model 

G31 and 75 for models OW44 and OW57. The lower value of m was employed in 

models OW44 and OW57 in order to increase the speed of convergence. In comparison, 

Bozek et al. [18] used a strain sensitivity exponent of 200. When loaded quasi-statically 

in the strain ranges of interest for fatigue simulations, varying the value of m between 75 

to 200 had only a negligible effect on the constitutive response, justifying employing a 

reduced value to obtain increased convergence speeds.  

The initial fitting of all models was conducted using fully reversed cyclic stable 

stress-strain data obtained by Arcari [91] at strain amplitudes of 1% and 1.8%. 

Comparisons between the experimental data of Arcari and each of the three models are 

shown Figure 21. The simulations performed to generate the results in Figure 21 were 

conducted on a single microstructural instantiation with approximately 700 randomly 

oriented, equiaxed grains with a 14 µm mean grain diameter. The mesh has cubic 

geometry with 100 µm side lengths and 5 µm elements (for a total of 8000 elements) and 

was subjected to uniaxial, quasi-static, strain-controlled cyclic loading with 3D periodic 

boundary conditions.  A more in-depth discussion of the meshes employed and the 

process of generating these meshes is presented in Chapter 4. 
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Figure 21. Upper Left: best fit to experimental data using model G31. Upper Right: current 

best fit to experimental data using model OW44. Lower Center: Fit using model OW57. 

Plots are of saturated response after 12 cycles.  

 

As seen in the Figure, all three models do an adequate job matching the shape of the 

experimental hysteresis loops, however model G31 slightly underpredicts the peak stress 

at the 1.0% strain amplitude and slightly over-predicts peak stress at the 1.8% strain 

amplitude. This is because fitting the back stress evolution constants of the G31 model is 

essentially a compromise between matching experimental data at various strain 

amplitudes; one set of values for h  and r  can provide an excellent fit at a given strain 
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amplitude, but will provide erroneous results at a different applied strain amplitude. With 

the introduction of a multi-term equation, the total evolution of the back stress can be 

partitioned into short range components (quickly evolving terms that control the response 

at small cyclic strains) and long range components (slowly evolving terms that control 

the response at large cyclic strains). This allows the model response to be calibrated over 

the entire range of strains for which data is available. Additionally, the fitting procedure 

is made less difficult by the near linearity of the individual back stress components for 

the models with the Ohno-Wang type hardening law. The model parameters for models 

G31, OW44 and OW57 used to generate the plots in Figure 21 are listed in Table 4.  

 

Table 4. Summary of the constitutive model constants for Al 7075-T6. 

Model 

m 
G0 

(MPa) 

Hdir 

(MPa) 
Hdyn q 

h1  

(MPa) 
r1 

h2 

(MPa) 
r2 mi 

G31 150 130 - - - 7.56x104 720 - - - 

OW44 75 35 - - - 2x106 2x104 1.35x105 1421 200 

OW57 75 30 1x106 1x104 1.1 5x105 1.43x104 1.35x105 1421 200 

 

The ability of the OW44 model to match experimentally observed results over a 

larger range of strains is illustrated in Figure 22. To generate the Figure, experimental 

data obtained by Renard et al. [92] are plotted along with data generated by model G31, 

OW44 and OW57 under fully reversed uniaxial loading with applied strain amplitude 

varying from 0.2% to 2%. 



 

56 

 

 
 

Figure 22. Peak stress vs. plastic strain amplitude data [92] compared to results of 

simulations. Left: Data presented on linear plot. Right: Same data presented on semi-log 

plot. 

 

The semi-log plot on the right side of Figure 22 shows the close agreement between the 

plastic strains predicted by OW44 and the experimental data over the entire range of peak 

stresses considered. For the G31 model, the simulated plastic strain amplitude and the 

experimental results diverge significantly around a peak stress value of 280 MPa 

(corresponding to an applied strain amplitude of 0.4%). The OW44 model is able to 

capture plastic strain amplitude at and below applied strain amplitudes of 0.4% through 

the use of a much lower value of drag stress (35 MPa compared to 130 MPa in the G31 

model) coupled with a very rapidly evolving first back stress term. Under a peak stress of 

300 MPa, the results from the OW57 model lie in-between those of models OW44 and 

G31. However, the predicted plastic strain amplitudes in this regime are still up to orders 

of magnitude lower than the experimental data of Renard et al. This suggests that the 

saturation value of drag stress employed in the calibration of the OW57 model of 100 

MPa is too high, and that future calibrations should employ a lower value.    
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The importance of Figure 22 is to illustrate that matching the macroscopic stress-

strain response (see Figure 21), while necessary for calibrating a constitutive model, does 

not ensure that the model will accurately predict plastic strains at lower applied cyclic 

stress amplitudes. Therefore, it is critical that the constitutive model be calibrated to 

experimental stress-strain data within the range of stress amplitudes of interest. 

3.5: Model Response to Asymmetric Cyclic Loading 

While the agreement between the constitutive models and experimental results are 

adequate under fully reversed loading, the models must also be able to capture the 

material response when cyclically loaded in the presence of a mean stress or strain. Early 

results obtained using the G31 model with the AF hardening law for back stress 

accurately predicted the macroscopic material response under fully reversed conditions, 

but predicted large ratcheting strains when cyclically loaded with an imposed mean 

stress/strain. Ratcheting is the accumulation of a directional plastic strain under cyclic 

loading, shown schematically in Figure 23 for one complete loading cycle.  
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Figure 23. Schematic of a single loading cycle with a mean stress showing ratcheting 

behavior. 

 

In Figure 23, the total strain range is the difference between the maximum and minimum 

plastic strain over the complete cycle. The ratcheting strain is defined as the difference in 

plastic strain at the end and beginning of the loading cycle. The cyclic plastic strain range 

is then obtained by subtracting the ratcheting strain from the total plastic strain range over 

the cycle. 

The response of the G31 model when cyclically loaded with an imposed mean 

stress/strain is shown in Figure 24. This simulation was performed under uniaxial, strain-

controlled loading with an applied strain amplitude of 0.4% and an imposed mean strain 

of 1.4%. The simulation was conducted for a total of 100 computational cycles. The 

strain ratio was Rε =0.556 , and produces an initial equivalent stress ratio, R*σ , of 

approximately 0. As cycling progresses, the equivalent stress ratio is reduced through the 

effect of mean stress relaxation. The plot on the left of Figure 24 presents stress vs. total 
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strain, and the rectangle indicates the area of focus for the plot on the right, which 

presents stress vs. plastic strain.  

 
 

Figure 24. Cyclic stress-total strain (left) and cyclic stress-plastic strain curve (right) for 100 

computational cycles at εa = 0.4%,  Rε  = 0.556 using the G31 model.  

 

In Figure 24 both mean stress relaxation and ratcheting behavior are observed, and there 

is a large transient in the predicted response, with the magnitude of ratcheting strain 

decreasing as the simulation progresses. 

Survey of the available literature for Al 7075-T6 suggests that ratcheting is not a 

commonly encountered phenomenon in room temperature fatigue of this alloy. There is a 

good consensus among sources considered that in ambient, room temperature 

environments, nucleation and early growth behavior is transgranular in character [23, 33, 

38-41, 54, 60]. However, at higher temperatures (180 ºC - 270 ºC), ease of plastic 

deformation is increased and research has shown that cracking along grain boundaries 

becomes an increasingly important mechanism for crack formation and growth [40]. The 

pronounced absence of observed grain boundary cracking at room temperature suggests 

that ratcheting does not play a large role in fatigue damage of 7075-T6, and supports the 

case that the significant ratcheting behavior predicted by the constitutive model is an 



 

60 

 

artifact of the model form. The over prediction of cyclic strain accumulation by the AF 

rule under asymmetric loading has been widely noted in the literature of J2 plasticity [85, 

86, 93-96], so it is not surprising that the same issue persists when the model is adapted 

for use in crystal plasticity. 

To correct the deficiencies of the G31 model, additional forms of the back stress 

evolution equation were investigated. These model forms included multi-term 

Armstrong-Frederick and Ohno-Wang formulations. The most satisfactory results were 

obtained using a multi-term Ohno-Wang back stress evolution equation, and was 

introduced as model OW44. During the initial fitting process for this model, a 4-term 

form was used, but 2-terms were found to be sufficient to capture experimentally 

observed trends. 

To illustrate the evolution of the back stress with the G31 model form and fitting 

constants, Figure 25 presents the calculated value of back stress on a single slip system 

using prescribed values for ( ) and time increment. The back stress evolution in Figure 

25 is governed by the Armstrong-Frederick hardening law, given in Eqn. 22.  
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Figure 25. Evolution of the single term A-F back stress model. 

 

The loading shown in Figure 25 consists of 3 steps: an initial positive loading to a plastic 

shear strain of 0.01, a short reversal in the loading direction to a plastic shear strain of 

0.0099, and finally re-loading in the original direction to a final plastic shear strain of 

0.02. Although the values of ( ) and time increment used to generate this plot are taken 

to be constants over each loading step, the Figure serves as a useful aid in the discussion 

of the general features of AF hardening laws and for comparison with OW hardening 

laws.  

During the first loading step we can see that rate at which the back stress evolves 

decreases as it approaches the saturation level, b . The relative rate at which the back 

stress approaches the saturation level is related to the magnitude of the difference 

between h  and r ; the larger the difference, the faster the back stress approaches 
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saturation. The non-linearity is introduced by the second term in Eqn. 23, the dynamic 

recovery term. When the loading is reversed (seen in Figure 25 as the sharp decrease in 

the back stress level) the back stress level decreases at a high rate because the first term 

of Eqn. 23 (now negative due to the negative ( ) ) is increased in magnitude by the 

subtraction of a positive dynamic recovery term. When the loading is again reversed and 

proceeds in the original direction, the back stress evolves at a much slower rate than 

during the previous reverse loading step. It is this difference between the rate of back 

stress evolution in forward and reverse loading directions (when the back stress remains 

near saturation levels during the full cycle) that produces the ratcheting effect observed in 

the simulations. In Figure 25 the difference in plastic strain between the reverse loading 

step and the return to saturation is analogous to ratcheting; if the amount of plastic strain 

required to return to saturation levels is reduced, ratcheting is similarly reduced.  

A 4-term Ohno-Wang back stress model was fit to match the response of the AF 

model in Figure 25 during the initial loading to a plastic shear strain of 0.01. Note that the 

4-term OW back stress evolution is governed by Eqn. 25, with the exception that the 

summation is conducted with i from 1 to 4. The single term AF and 4-term OW models 

are compared in Figure 26, using the same imposed values for ( ) and time increment as 

in Figure 25. The overall response of the 4-term OW model is shown as a solid red line, 

while the contributions of each of the 4 terms are shown by dashed red lines. 
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Figure 26. Evolution of the 4-term Ohno-Wang back stress model compared to single term 

model. 

 

To generate Figure 26, the value im  was taken to be 12 for all terms in the OW hardening 

law. The OW model form provides a large improvement in the predicted response to load 

reversal while closely matching the stress-strain response during the initial loading. 

Increasing the value of im  further decreases the amount of plastic strain required to return 

to saturation levels following a load reversal, but at the cost of decreasing the smoothness 

of the initial loading response. This is shown in Figure 27. 
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Figure 27. A comparison of back stress evolution for varying values of mi in the Ohno-

Wang model. 

 

Figure 27 illustrates that as the values of im  is increased, the back stress evolution 

approaches a piecewise-linear form and the plastic strain required to return to saturation 

following load reversal is decreased.  

No experimental data in the form of complete hysteresis loops like those used to 

fit the fully-reversed cyclic response were found during a survey of the literature on Al 

7075-T6. Therefore, experimental mean stress relaxation data obtained by Arcari et al. 

[97] was used to assess the accuracy of the predicted cyclic response in the presence of a 

mean stress or mean strain, and to fit the value of 
im  used in the models with OW back 

stress evolution.  

To choose a value of 
im  for the OW backstress evolution equation, simulations 

were conducted with varying 
im values under fully reversed loading and loading with an 
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imposed mean strain. Although it is possible to have two separate values for 
im , each 

controlling the activation of a different recall term, the simulations focused on finding a 

single constant value for both terms. Despite having only one value, we will continue to 

refer to the exponent as 
im  to differentiate it from the strain rate sensitivity exponent. The 

value of 
im  has only a small effect on fully reversed simulations, shown in Figure 28, 

which plots the stress vs. plastic strain at over 5 cycles at an applied strain amplitude of 

0.8%. 

 

Figure 28. Comparison of response obtained by varying values of mi in the OW44 model. 

Loading is fully reversed with εa=0.8%. 

 

While some variation in the hysteresis loops is visible in Figure 28 for differing values of 

im , simulations using values larger than 30 produce nearly indistinguishable results.  

The value of 
im  has a larger effect on the stress-strain response under 

asymmetrical loading. A series of simulations with values of 
im  ranging between 10 and 
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400 were conducted in order to select a value that best fit experimental observations. 

These simulations considered uniaxial cyclic loading and were conducted at an imposed 

strain amplitude of 0.4%, with a mean strain (εmean) of = 1.4% (Rε = 0.556), for a total of 

100 computational cycles. The simulations were compared to a baseline simulation using 

calibration G31 with the same mesh and loading conditions. To compare the overall 

response predicted by the new OW44 model and that of the G31 model, Figure 29 

presents the stress vs. plastic strain over the entire 100 computational cycles. 

 

Figure 29. Cyclic Stress-Plastic Strain Curve comparison between two models over 100 

computational cycles at εa = 0.4%, εmean = 1.4%, and Rε = 0.556 loading.  

 

The general trend observed in Figure 29 is that the OW44 model predicts a reduced 

amount of ratcheting and mean stress relaxation compared to the G31 model, with higher 

values of 
im  reducing the degree of ratcheting and mean stress relaxation. Also visible is 
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the difference in the responses between the models during the initial load up before 

cycling is applied. However, as discussed previously different values of 
im  (at least 

above some threshold) do not have a large effect in this region of monotonic loading, and 

the results for values of 
im  ranging from 10 to 400 are indistinguishable during the initial 

loading.   

Figure 30 is a semi-log plot of the ratcheting strain per cycle vs. the 

computational cycle number for model G31 and model OW44 with varying values of
im . 

This Figure illustrates the trend of decreasing ratcheting strain with increasing 
im  very 

clearly, as well as the large reduction in ratcheting when compared to model G31.  

 

Figure 30. Ratcheting strain per cycle over 100 computational cycles at εa = 0.4%, εmean = 

1.4%, and Rε = 0.556 loading. 
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Another interesting feature in Figure 30 is the crossover in predicted ratcheting strain by 

model G31 and OW44 with im =10 around cycle 60. This indicates the tendency of the 

OW44 model to approach a saturated value in fewer cycles than the G31 model. 

In absence of available data regarding ratcheting strain in Al 7075-T6 at strain 

amplitudes around 0.4% and at room temperature, mean stress relaxation data can serve 

to validate the computational results and determine which value of im  should be used. 

Figure 31 plots mean stress relaxation data for Al 7075-T6 [97] against simulated results 

using the two models. Both models predict an initial mean stress about 6 MPa higher 

(approximately 2% higher) than the results reported by Arcari et al. [97], but predict 

differing amounts of mean stress relaxation.  

 

Figure 31. Mean stress relaxation over 100 computational cycles at εa = 0.4%, εmean = 1.4%, 

and Rε = 0.556 loading. 
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Clearly visible in Figure 31 is that increasing values of im  result in reduced degrees of 

mean stress relaxation, but have little effect on the initial mean stress during the first 

cycle. The G31 model over predicts the degree of mean stress relaxation by almost 100 

MPa. At the end of the 100 computational cycles the OW44 model with im  = 70 matches 

the experimental results obtained by Arcari et al., however it predicts a slightly larger 

amount of total mean stress relaxation. A comparison of the total mean stress relaxation 

over 100 cycles predicted by the OW44 model with different im  values is shown in 

Figure 32. The horizontal dashed line indicates the value of the experimental mean stress 

relaxation from the beginning of cycling until half of the fatigue life of the specimen [97]. 

An inverse 3
rd

 order polynomial was fit to the simulated results and plotted in the Figure.  

 

Figure 32. Simulated mean stress relaxation over 100 cycles using the OW44 model with 

varying values of mi. Uniaxial loading with εa = 0.4%, εmean = 1.4%, and Rε = 0.556.  
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Under these particular loading conditions, an im  value of 200 provides the best 

agreement with the experimental total mean stress relaxation obtained by Arcari et al. 

However, the key point from Figure 32 is that values of im  ranging from 100 to 400 all 

provide a predicted total mean stress relaxation that are of the same order of magnitude as 

the experimental data. To more clearly illustrate this we can compare the difference 

between the simulated mean stress relaxation and experimental mean stress relaxation to 

the magnitude of the mean stress at the half-life of the specimen. This provides a sense of 

the absolute error in the simulated mean stress induced by using differing values of im  

and can be represented by 

 exp

exp
Absolute error 100

sim

mean mean

mean

 



  
  
 
 

. ( 27 ) 

   
The absolute error in simulated mean stress compared to the experimental value is plotted 

in Figure 33 for simulations conducted using model OW44 with different values of im .  

 

Figure 33. Absolute error in simulated mean stress response for varying values of mi 

subjected to uniaxial loading with εa = 0.4%, εmean = 1.4%, and Rε = 0.556. 
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As in Figure 32, it is evident in Figure 33 that for this particular loading, an im  value of 

200 provides the best agreement with experimental results. Figure 33 also shows that for 

im  values from 100 to 400, the absolute error in predicted mean stress is 1% or less.  

The simulated cyclic plastic strain range for both models over 100 computational 

cycles is plotted in Figure 34. The cyclic plastic strain range predicted by the OW44 

model under fully reversed, uniaxial loading with an applied strain amplitude of 0.4% is 

represented by the red horizontal dashed line, while the cyclic plastic strain range 

predicted by the G31 model is indicated by the black dashed line. Figure 18 captures the 

large difference in predicted cyclic strain between the two models (shown previously in 

Figure 22), with the OW44 model predicting approximately 4 to 5 times as much plastic 

strain under both fully reversed loading and loading with a mean strain.  

 

Figure 34. Cyclic plastic strain range over 100 cycles at εa = 0.4%, εmean = 1.4%, and Rε = 

0.556 loading. 
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Figure 34 also shows that both models predict smaller plastic strains when loaded with a 

mean strain than when loaded under fully reversed conditions for the same applied strain 

amplitude. Plotting the cyclic plastic strain range during the mean strain simulations as a 

fraction of the cyclic plastic strain under fully reversed loading results in the plot is 

shown in Figure 35. The Figure illustrates that model G31 predicts a much smaller cyclic 

plastic strain range when loaded with a mean strain than the OW44 model regardless of 

the value of im  chosen. For the OW44 model with values of im  over 30, the cyclic plastic 

strain range reaches 95% of its value under Rε = -1 loading by the 5
th

 computational cycle 

and saturates to 97% of the value by the 100
th

 cycle. In comparison, the G31 model takes 

over 50 computational cycles to reach a cyclic plastic strain range that is 90% of its value 

under Rε = -1 loading and approaches 93% percent of the value by the 100
th

 cycle. Also 

shown in Figure 35 are dashed vertical lines corresponding to the 2
nd

, 4
th

 and 6
th

 complete 

computational cycles. During early fatigue simulations, the nucleation life of the nucleant 

grain and the 2
nd

 and 3
rd

 grain to crack were evaluated at these cycle counts under similar 

loading conditions. On the 2
nd

, 4
th

 and 6
th

 cycles the G31 model predicts 45%, 60% and 

66% of the fully reversed cyclic plastic range, respectively. This resulted in longer 

fatigue lives when cycling was conducted under conditions that introduce a mean stress, 

opposite of experimental observations. For simulations conducted with the G31 model, 

the fraction of the fully reversed cyclic plastic strain range continues changing rapidly 

until around the 60
th

 complete cycle (121 loading steps).  
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Figure 35. Cyclic plastic strain range over 100 cycles at εa = 0.4% and Rε = 0.556 as a 

fraction of cyclic plastic strain range at εa = 0.4% and Rε = -1 using the same model and 

mesh instantiation. 

  

The initially rapid changes and large number of cycles to approach a saturated response 

are undesirable in a mesoscale model because it would require the simulations to be run 

using a much larger number of computational steps before an accurate prediction could 

be made. The OW44 model approaches a saturated level of cyclic plastic strain much 

more rapidly than the G31 model, which is another advantage to using this model form.  

One complication introduced by the Ohno-Wang formulation is that the derivative of the 

back stress with respect to ( ) changes rapidly whenever any of the back stress terms 

approaches saturation, especially if the value of im  is high, O(10
2
). This can introduce 

some numerical instabilities in the solution which prevent convergence, requiring 

additional sub-incrementation in order to find a solution. This can lead to longer 
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simulation times when compared to simulations conducted with the G31 model and its 

AF based back stress evolution. The computational times and wall times required to 

perform the simulations with varied values of 
im  for 100 cycles are presented in Table 5. 

Also included in the table are CPU times for each simulation normalized to the baseline 

G31 simulation. 

Table 5. Computational Speed of Models and Calibrations 

 
Model 

 
G31 OW44 OW44 OW44 OW44 OW44 OW44 OW44 OW44 

  N/A m=10 m=30 m=70 m=100 m=150 m=200 m=300 m=400 

CPU Time (hrs) 451 495 442 451 508 523 538 570 565 

Normalized CPU Time 1 1.10 0.98 1.00 1.13 1.16 1.19 1.26 1.25 

Wall Time (hrs) 73 78 71 73 83 85 86 90 89 

 

There is some variability in the relation of 
im  to the CPU time required to complete the 

simulation, but the overall trend is a slight increase in CPU time with increasing values of 

im . Over the course of a typical fatigue simulation this results in an increase in wall time 

of less than 5 hours. Considering the large improvements using the OW44 model this is a 

very acceptable increase over the G31 model.  

3.5.1: Performance at Different Applied Strains 

Additional simulations were conducted to evaluate the performance of the OW44 

model over a range of applied cyclic strain amplitudes and mean strains. All of these 

simulations were conducted with uniaxial loading conditions and for 100 computational 

cycles. The applied strains during these simulations were selected to match those of 

Arcari et al.  [97] and are summarized in Table 6. Note that the results presented thus far 
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for mean stress relaxation simulations using model OW44 have been loaded to 

correspond to Test 9 in the Table.  

 

Table 6. Test details for mean stress relaxation experiments conducted by Arcari et al. [97]. 

 
Arcari 7076-T6 Test Number 

 
4 5 6 7 9 

Cyclic Strain amplitude (%)  0.72 0.675 0.63 0.5 0.4 

Mean Strain (%) 1.08 1.125 1.17 1.3 1.4 

Maximum Strain (%) 1.8 1.8 1.8 1.8 1.8 

Minimum Strain (%) 0.36 0.45 0.54 0.8 1 

Strain Ratio 0.2 0.25 0.3 0.444 0.556 

 

The simulations were conducted using the same mesh and a single value of
im .  The 

results from these simulations are compared to data from Arcari et al. [97] in Figure 36 

and Figure 37. In both Figures, the simulation data is presented by solid lines, and the 

experimental data by dashed lines.  
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Figure 36. Comparison of simulations using model OW44 with mi=70 to experimental data 

of Arcari et al. [98] for loading conditions 7 and 9.  

 

The simulations shown Figure 36 correspond to Tests 7 and 9 in Table 6, with applied 

strain amplitudes of 0.5% and 0.4%, respectively. In this regime, the agreement between 

the experimental results of Arcari et al. and the simulations is adequate, with absolute 

errors of less than 10 MPa. As the applied strain amplitude increases in Tests 4, 5, and 6 

(corresponding to applied strains of 0.72%, 0.675% and 0.63%) the response of the 

model becomes increasingly poor with absolute errors in excess of 50 MPa.  
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Figure 37. Comparison of simulations using model OW44 with mi=70 to experimental data 

of Arcari et al. [98] for loading conditions 4, 5, and 6. 

 

The error in the mean stress response between the experimental results and the 

simulations can be broken into two components, error in the initial mean stress during the 

first cycle, and error in the magnitude and rate of relaxation during subsequent cycling. 

These errors are summarized in Table 7 for each loading condition as a percent of the 

experimental values.  

Table 7. Table comparing the error between simulations using model OW44 with 

mi=70 to experimental data of Arcari et al [98]. 

 
Test Number 

 
4 5 6 7 9 

Error in initial mean stress 55% 18% -7% -1% 2% 

Error in mean stress relaxation -53% -26% 2% 2% 3% 
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Additional calibration of the constitutive model would be needed in order to 

match the results of Arcari et al. [97] over the entire range of applied strains. This would 

require data in the form of complete stress/plastic strain hysteresis loops for the 

simulations conducted, which are not typically published.  

The magnitude of mean stress relaxation over 100 computational cycles shows 

very little variation between the simulations conducted with model OW44, despite 

significant differences in applied strain amplitude. Simulated mean stress relaxation over 

100 cycles is plotted against the applied strain amplitude in Figure 38. 

 

Figure 38. Simulated mean stress relaxation over 100 computational cycles using the OW44 

model with mi = 70. 

 

The difference between the largest and smallest predicted mean stress relaxation is less 

than 3 MPa, and the trend is that increasing applied strain amplitude results in decreasing 

amounts of mean stress relaxation, opposite of what is typically observed experimentally. 

This suggests that to capture the magnitude of the mean stress relaxation effect over a 
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range of loading conditions, 
im  should be formulated as a function of the applied strain or 

the cyclic plastic strain. However, in absence of the data needed to obtain better 

agreement between the experimental and simulated initial mean stress values, such a 

formulation will not be pursued.  

3.5.2: Performance of the OW57 Model 

During the calibration process of model OW44 it was noted that the low valued, 

constant drag stress (35 MPa) resulted in slip activity among almost all slip systems 

during cyclic loading. The activation of all slip systems during loading is possibly 

unrealistic, and therefore an evolving drag stress was introduced to model OW44 in order 

to reduce the degree of slip system activation. This new model is referred to as OW57. 

During calibration, a saturation value of 100 MPa was selected for the drag stress, with 

an initial value of 30 MPa. This section will compare the performance of the OW44 and 

OW57 models when cyclically loaded with an imposed mean strain.  

The cyclic plastic strain responses of the two models when loaded with an applied 

strain amplitude of 0.4% and a mean strain of 1.4% (corresponding to loading 9 in Table 

6) for a total of 100 computational cycles are compared in Figure 39. The plot on the left 

side of the Figure compares the absolute value of cyclic plastic strain range during 

cycling to the stabilized cyclic plastic strain range obtained using the same model cycled 

under fully reversed loading conditions at the same amplitude. The plot on the right of the 

Figure compares the cyclic plastic strain ranges of the two models both normalized to 

their cyclic plastic strain range responses under fully reversed loading (referred to here as 

the cyclic plastic strain range fraction). 
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Figure 39. Comparison of the cyclic plastic strain range over 100 cycles for models OW44 

and OW57 with mi = 70. Applied loading conducted at εa = 0.4%, εmean = 1.4%, and Rε = 

0.556. 

 

Both plots of Figure 39 illustrate that the OW57 model has a more pronounced transient 

in the cyclic plastic strain range response than the OW44 model. During the first 5 cycles, 

the cyclic plastic strain range of the OW57 model increases from approximately 34% of 

its saturated value to 94% of the same value. In comparison, the OW44 model increases 

from 93% to 96% of its saturated cyclic plastic strain range under fully reversed loading 

during the first 5 cycles. Additionally, the cyclic plastic strain range fraction of the OW57 

model continues to increase during cycling, reaching a value of 1 by loading cycle 67. In 

the mesoscale approach to fatigue life modeling employed by this thesis, simulations are 

typically conducted for 40 computational cycles or  less and the evaluation of nucleation 

life is delayed until a near stable cyclic response is obtained, largely avoiding any 

inaccuracies that would be introduced by the large transients in cyclic plastic strain range. 

The left hand plot of Figure 39 shows that for both fully reversed cyclic loading and 

cyclic loading with a mean strain the OW57 model predicts a smaller plastic strain range 

than the OW44 model. At an applied strain of 0.4%, the OW57 model predicts less than 
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50% of the plastic strain range of the OW44 model, consistent with the results shown in 

Figure 22.  

A comparison of the ratcheting strain per cycle obtained with the two models is 

presented in Figure 40. The magnitudes of the ratcheting strains over 100 cycles are 

shown in the left side of the Figure, while the ratcheting strain of the OW57 model as a 

percent of the OW44 model is shown on the right. The overall responses of the two 

models are very similar, but again the OW57 model exhibits a larger transient in response 

over the first 5 cycles.  

  

Figure 40. Comparison of the ratcheting strain per cycle for 100 cycles using models OW44 

and OW57 with mi = 70. Applied loading conducted at εa = 0.4%, εmean = 1.4%, and Rε = 

0.556. 

 

During the 1
st
 cycle, the OW57 model predicts a ratcheting strain almost double that of 

the OW44 model. Then by the 3
rd

 computational cycle, the OW57 model predicts smaller 

ratcheting strains than the OW44 model, which continues until the end of the simulation.  

The mean stress responses for each of the five loading conditions listed in Table 6 

are plotted in Figure 41 for models OW44 and OW57, both with an 
im  value of 70.  In 

the Figure dashes lines correspond to results from model OW57 and solid lines to the 
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results from OW44. Simulations with the same applied loading are plotted in the same 

color. 

 

Figure 41. A comparison of the mean stress relaxation between models OW44 and OW57 

over 100 computational cycles at 5 different applied strain amplitudes, with mi = 70.  

 

The OW57 model predicts less mean stress relaxation over 100 cycles than the OW44 

model for all five loading conditions; although maximum the difference between the two 

models for any loading and cycle is less than 5 MPa. The magnitude of the mean stress 

relaxation predicted by the OW57 model increases with decreasing applied strain 

amplitude, consistent with the trend observed for the OW44 model. 

Overall, the addition of an evolving drag stress in the OW57 model has little 

effect on the ratcheting and mean stress relaxation response of the model compared to 

model OW44, which uses a constant valued drag stress. The OW57 model does introduce 

a steeper transient response during the first few loading cycles, but as long the evaluation 

of fatigue parameters is delayed until after the response stabilizes the impact of this is 
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negligible. The most critical differences between models OW44 and OW57 are the cyclic 

plastic strain ranges. For example, at a strain amplitude of 0.4% (typical strain amplitude 

of interest for the fatigue simulations conducted in this thesis), model OW44 predicts 

more than twice the cyclic plastic strain range of model OW57 under both uniaxial 

loading conditions and when loaded with a mean strain. The OW44 model is in good 

agreement with the data of Renard et al. [92] in this regime, so the difference between the 

models represents a significant under-prediction of cyclic plastic strain range by model 

OW57. The impact of the differences in cyclic plastic strain range on predicted fatigue 

lives are examined in Chapter 4. 

3.5.3: Influence of Integration Increment Size on Ratcheting 

The magnitude of the ratcheting effect predicted by the simulations can depend 

not only on the material model form and calibration, but on the size of the increments 

used during the loading step. When conducting a FE simulation with Abaqus it is 

possible to limit the maximum increment size, preventing the automatic increment size 

control procedures from attempting increments larger than a certain value. If the 

maximum increment size provides stable convergence over the entirety of a step, then 

this value essentially prescribes the increment size Abaqus will use to complete this step. 

In other words, by varying the allowable maximum increment size the actual increment 

size can be kept nearly constant over the step, provided good convergence is obtained.  

Simulations were conducted using the OW44 model with a value of mi=200 for a 

total of 5 complete computational cycles with varying values of maximum increment size 

to quantify this effect of increment size on ratcheting. For all simulations the loading was 

uniaxial with a strain amplitude of 0.33% and a strain ratio Rε = 0.5.  The step size was 
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30 s ( 4 11.1 10  s     ) and all maximum increment sizes had good convergence over the 

cyclic loading steps, requiring no sub-incrimination by Abaqus.  All simulations 

produced nearly the same values of cyclic plastic strain range, seen in Figure 42.  

 

Figure 42. Cyclic plastic strain range over 5 computational cycles for varying values of 

maximum increment size. Loading is uniaxial with εa = 0.33%, and Rε = 0.5. 

 

The larger maximum increment sizes produced larger cyclic plastic strain ranges for a 

given cycle, but overall the difference is negligible considering that by cycle 5 the largest 

increment size of 1.00 s results in a cyclic plastic strain approximately 1% larger than 

obtained using a maximum increment size of 0.01 s. Similarly, the mean stress relaxation 

behavior appears to be nearly independent of the maximum increment size, varying less 

than a tenth of a percent between simulations. The ratcheting strain, however, exhibited 

non-negligible dependence on the maximum increment size. This is illustrated in Figure 

43, a plot of the ratcheting strain per cycle normalized by the cyclic plastic strain per 

cycle.  
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Figure 43. Ratcheting strain as a fraction of cyclic plastic strain range over 5 computational 

cycles for varying values of maximum increment size. Loading is uniaxial with εa = 0.33%, 

and Rε = 0.5. 

 

The general trend observed in the Figure is that decreasing increment sizes result in 

decreased ratcheting strain per cycle, although results using a maximum increment size of 

0.50 s are anomalous over the 4
th

 and 5
th

 cycle.  On the 5
th

 cycle of these simulations, the 

ratcheting strain with the maximum increment size of 0.50 s was almost three times 

larger than the ratcheting strain when the maximum increment size was 0.05 s. The 

difference decreases substantially when the maximum increment size is below 0.2 s, but 

the ratcheting strain of the 0.2 s maximum increment size is still approximately 40% 

larger than the ratcheting strain of the 0.01 maximum increment size case. These 

simulations were conducted using a material model and calibration that produces a small 

degree of ratcheting in comparison to the G31 model (see Figure 30), but the dependence 

of ratcheting strain on increment size is similar between the two models. This can lead to 

drastic overpredictions of the ratcheting strain when the already large ratcheting strain 
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predicted by the AF back stress is coupled with inappropriate control of the maximum 

increment size.  

The value of the maximum increment size also has a strong effect on the time it 

takes to complete a simulation. The wall times and CPU times required to complete the 

simulations done to evaluate the effects of maximum increment size are listed in Table 8, 

along with the wall times and CPU times normalized to the respective values of the 0.05 

maximum increment size simulation which required the lowest CPU time to complete out 

of all the simulations conducted. All simulations were conducted with the same strain 

rate, 4 11.1 10  s    . 

 

Table 8. Effect of maximum increment size on the execution speed of simulations. 

Max Inc Size 
 (s) 

Strain 
per Inc 

CPU 
Time (h) 

Wall 
Time (h) 

Normalized 
CPU Time 

Normalized 
Wall Time 

0.01 1.1E-6 307.6 44.3 3.24 3.4 

0.05 5.5E-6 95.1 12.9 1.00 1.0 

0.1 1.1E-5 95.3 12.6 1.00 1.0 

0.15 1.7E-5 95.9 12.4 1.01 1.0 

0.2 2.2E-5 108.9 14.0 1.15 1.1 

0.5 5.5E-5 208.3 35.5 2.19 2.8 

1 1.1E-4 DNF DNF DNF DNF 

 

There is only a negligible difference between the CPU and wall times of the simulations 

conducted with maximum increment sizes between 0.05 and 0.15 s. In these simulations, 

almost no sub-incrimination by Abaqus was required in order to obtain a converged 

solution. At a maximum increment size of 0.01 s, no sub-incrimination by Abaqus was 

required, but the large number of increments required to complete a step results in the 
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implicit solver not being fully utilized and therefore increases the simulation time. At the 

larger maximum increment sizes of 0.2, 0.5, and 1.0 s, sub-incrimination was required 

frequently during the first loading step (the initial pre-strain before cycling, which larger 

in magnitude than the cyclic strain range). This wastes significant computational 

resources as the UMAT attempts to converge (and does so successfully for many 

elements) before requesting that Abaqus reduce the increment size further.  This caused 

the simulation conducted with the maximum increment size of 1.0 s to fail to complete 

the 1
st
 loading step (the initial pre-strain) over the entire 48 hour wall time, as indicated 

by the DNF entries in Table 8. The simulation was repeated with an initial maximum 

increment size of 0.05 s for the first step and a maximum increment size of 1.0 s for steps 

2-11 (corresponding to cycles 1-5) in order to generate the data in Figure 42 and Figure 

43. The total wall time for this simulation with mixed maximum increment sizes was 

approximately 9.5 hours, suggesting that the maximum larger increment size allows for 

better utilization of the implicit solver during cycling. 

To aid in the explanation of why the increment size has such a strong impact on 

the predicted ratcheting strain, the stress vs. plastic strain data for the 1
st
 complete loading 

cycle of the simulations conducted using a maximum increment sizes of 1.00 s and 0.01 s 

are plotted in Figure 44 and Figure 45. In both Figures, diamond markers indicate the 

output at the end of an increment. The two steps comprising the loading cycle were 

completed in a total of 105 increments when the maximum increment size was limited to 

1.00 s, and a total of 6,022 increments when the maximum increment size was 0.01 s.    
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Figure 44. Comparison of the hysteresis loops of the first complete loading cycle for the 

simulations conducted with max increment sizes of 0.01 and 1.00 s. Results from the 0.01 

maximum increment simulation are shifted right by a plastic strain of 4.8x10
-6

 such that 

both cycles begin at the same plastic strain. Loading is uniaxial with εa = 0.33%, and Rε = 

0.5. 

 

It is clear in Figure 44 that both simulations produce similar cyclic plastic strain ranges; 

however, there is significant divergence in predicted plastic strain at the end of the cycle 

despite both cycles beginning at the same value of plastic strain. Additionally, the 

magnitude of this difference is significant in comparison to the cyclic plastic strain range 

of the cycle. Figure 45 presents a magnified view of the stresses and plastic strains at the 

beginning and end of each of the two cycles, with the area of focus indicated by the 

rectangle in Figure 44. 
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Figure 45. Magnified comparison of the hysteresis loops of the first complete loading cycle 

for the simulations conducted with max increment sizes of 0.01 and 1.00 s. Results from the 

0.01 maximum increment simulation are shifted right by a plastic strain of 4.8x10
-6

 such 

that both cycles begin at the same plastic strain. The last 3 increments are labeled for the 

maximum increment size of 1 s case, and the last increment is labeled for the maximum 

increment size of 0.01 s case. Loading is uniaxial with εa = 0.33%, and Rε = 0.5. 

 

When starting a new step, Abaqus begins with a prescribed increment size and then 

increases the size of the increments if convergence is obtained without the need for sub-

incrementation. This leads to the overlap of the increment markers for the two 

simulations at the beginning of the cycle in Figure 45.  After approximately the first 15 

increments the plastic strains begin two diverge between the two simulations, however, it 

is not until the last increment of the simulation plotted in cyan (maximum increment size 

of 1.00 s) that the magnitude of the difference is significant. Note that the last increments 

of both simulations converge to the same stress at the end of the cycle, despite large 

differences in the maximum increment size.  
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This is a result of how the UMAT determines the plastic strain: Abaqus passes in 

the deformation gradient at the beginning ( Ft ) and end of the increment ( Ft t ) to the 

UMAT, which must then calculate a kinematically admissible plastic deformation 

gradient for the increment based on the individual contributions of each slip system 

shearing rate. The plastic strain over the increment is then obtained by multiplying the 

converged plastic shearing rate on each slip system by the time step of the increment. 

This results in an estimate of plastic strain that is a constant over the increment. If the size 

of the increment is fairly large (1 s in the example shown in Figure 45) and converged 

plastic shearing rates are very different from the end of one increment to the next, a large 

error in the estimated plastic strain may be introduced. The stress and plastic strain data 

plotted in Figure 45 are volume averaged macroscopic quantities, but the principal behind 

the increment size induced ratcheting effect is the same. For these macro-scale stresses 

and plastic strains we can define a plastic tangent stiffness as 

 p






. ( 28 ) 

   
For the increment of both simulations considered in Figure 45 (labeled with a color-

coded “n”) the plastic tangent stiffnesses are roughly the same. When the maximum 

increment size is limited to 0.01 s, the second and third to last increments (n-1 and n-2, 

respectively) have tangent stiffnesses very similar to the tangent stiffness of the final 

increment. However, when the maximum increment size is increased two orders of 

magnitude, the plastic tangent stiffnesses at increments n and n-1 differ substantially, 

resulting in a poor approximation of plastic strain.  

In simulations where the ratcheting strains are of interest (such as during fretting 

fatigue analysis) care must be taken to ensure that the ratcheting strains converge with 
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decreasing increment size, and that the increment size is limited where the plastic tangent 

stiffness changes rapidly. One possible solution to this problem is to limit the maximum 

increment size over the entire step, which was the methodology employed in the 

simulations investigating the ratcheting effect. However, this can limit the effectiveness 

of the implicit solver. A more efficient solution would be to require sub-incrementation in 

the case that some averaged measure of the plastic shearing rates diverges significantly 

from the same measure taken at the end of the previous increment. 

 

3.6: Conclusions 

This chapter introduced three crystal plasticity constitutive models for Al 7075-

T6, all based on a common flow rule but differing in the forms of the hardening equations 

and model calibration. The performance of the models was compared when subjected to 

both symmetric and asymmetric cycling loading across multiple applied strain ranges.  

It was shown that although each of the models was calibrated to the same fully 

reversed, macro-scale cyclic stress-strain data, there are large differences in the responses 

of the models at small applied strain amplitudes and when loaded cyclically with a mean 

strain. The model with an Armstrong-Frederick back stress evolution equation exhibited 

significant ratcheting strains that were determined to be an artifact of the model form, and 

were corrected through the implementation of a multi-term Ohno-Wang type hardening 

law. To summarize, the advantages of moving to a two-term Ohno-Wang type 

formulation of the back stress evolution equation from a single term Armstrong-Frederick 

model are: 
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 Enhanced ability to capture the magnitude of the plastic strain over a larger range 

of applied strains. 

 Increased ease of fitting due to nearly linear, independent terms. 

 Ability to match experimental mean stress relaxation data under asymmetric 

loading through selection of
im , which has only a minor effect on the shape of the 

fully reversed hysteresis loops. 

 Loading with an imposed mean strain results in only a slight reduction in cyclic 

plastic strain amplitude when compared to fully reversed loading conducted with 

the same applied strain amplitude. 

 Model approaches a near saturated value of cyclic plastic strain rapidly when 

loaded with an imposed mean strain. 

An evolving drag stress was added to the improved model, and while this addition had 

little effect on the ratcheting and mean stress relaxation response of the model, it reduced 

the magnitude of the cyclic plastic strain significantly under applied strain amplitudes of 

0.4% or less. A comparison of the fatigue lives obtained with each of the three models is 

presented in Chapter 5, but most of the results in that Chapter are obtained using model 

OW44, as it was best able to match cyclic plastic strain data over the entire range of 

applied strains investigated.  

Additionally, the effect increment size on predicted ratcheting strain per cycle was 

investigated. Changing the increment size between simulations resulted in less than a 1% 

change in the cyclic plastic strain range from the largest to smallest increment size used, 

but produced variation in the ratcheting strain per cycle of almost three times the value 

obtained using the smallest increment size. This is a significant change, and caution is 
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advised regarding incrementation control if the magnitudes of the ratcheting strains are of 

interest. To summarize, the numerical convergence of an increment does not insure 

similar convergence of the ratcheting strains.  The fatigue modeling in this work was 

conducted with the maximum increment size limited to 0.05 s in order to ensure 

convergence of the ratcheting strains. 
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CHAPTER 4: MESOSCALE FATIGUE MODEL 

4.1: Introduction 

This Chapter presents the mesoscale fatigue model including the algorithms for 

both Stage I and Stage II crack growth. The chapter begins with discussion of concepts 

central to fatigue algorithms and simulations, including the crystallographic FIPs, mesh 

generation and element band averaging scheme, and the incorporation of damage. The 

Stage I fatigue algorithm of Castelluccio is then introduced, along with the modifications 

necessary to model a Stage II crack propagating on multiple slip systems. The 

implementation of the Stage II model in the ABAQUS [4] environment is then discussed. 

4.1.1: Fatigue Indicator Parameter 

To quantify the local driving force within the microstructure, this work employs a 

crystallographic fatigue indicator parameter (FIP) based on the macroscopic quantity 

originally suggested by Fatemi and Socie [11]. During the simulations, the FIP is 

evaluated over every cycle for each of the slip systems within an element, i.e., 

 
FIP 1

2

p n

y

k

 


 



 
   

 

. ( 29 ) 

   

Here, p

   is the cyclic plastic shear strain range on slip system  , 
n

  is the stress 

normal to slip system  , and 
y  is the cyclic yield strength of the material. The value of 

k is typically taken to be between 0.5 and 1, and in this work a value of 0.5 is used due to 

an absence of sufficient data for correlation. The cyclic plastic shear strain range in Eqn. 
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29 corresponds to the reversed cyclic plastic strain range (
cycp

 ) over the cycle, 

calculated according to 

 
ratch end of cycle start of cycle

max,cycle min,cycle

cyc ratch

p p p

p

p p p

  

  

  

  

  

  

   

  

   

 ( 30 ) 

   

where 
ratchp

  is the ratcheting shear strain accumulated during the cycle. McDowell 

[99] has argued that a parameter based on a measure of reversed cyclic plastic strain is 

most appropriate from modeling crack decohesion in slip bands, and that ratcheting strain 

based measures are better mechanistically suited for Zener-Stroh cracking. In absence of 

experimental observations of either ratcheting or crack formation due to dislocation 

pileups at grain boundaries in Al 7075-T6 fatigued in ambient environments (see 

discussions in Chapters 2 and 3), the ratcheting strains are subtracted from the cyclic 

plastic strain quantity employed in the FIP calculation. 

4.1.2: FIP to ΔCTD Relation 

The foundation for the meso-scale fatigue model is the relation between band 

averaged FIP values and the cyclic crack tip displacement, ΔCTD, for a microstructurally 

small crack. The cyclic crack tip displacement is defined as 

 2 2CTD CTOD CTSD     ( 31 ) 

   

where CTOD  is the crack tip opening displacement and CTSD  is the crack tip sliding 

displacement. Following the work of Castelluccio [2], the band averaged FIP on a slip 

plane and the ΔCTD are related through a power law formulation 
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  CTD FIP
b

A   . ( 32 ) 

   

Here A and b are constants that can be found through simulations of explicitly modeled 

cracks or fit to experimental results. Castelluccio conducted simulations using two 

different material models and multiple crack geometries and levels of mesh refinement, 

loaded under uniaxial, shear, and mixed conditions, and found that for both Copper and 

Nickel-based superalloy RR1000 the CTD scales nearly linearly with FIP , with b ~ 1. 

This work assumes that the relation between CTD and FIP  retains the same from 

when applied to Al 7075-T6. The calibration of the constant A  is presented in Chapter 5.   

4.2: Mesh Generation 

The simulations presented in this research were conducted on microstructural 

instantiations created using a Mesh Generator program originally developed by Musinski 

[100] and further extended by Castelluccio [2] to generate the additional files utilized by 

the fatigue algorithms. The process of mesh creation begins with a voxellated mesh of 

reduced 8-node linear brick elements (C3D8R) created through the python-based 

ABAQUS Scripting Interface [4]. Elements of the mesh are then assigned to grains using 

a spherical packing algorithm, with the grain size distribution assumed to follow a 

lognormal distribution. The probability density function of the lognormal distribution is 

given by 

  
2

2

ln( )1
(x; , ) exp

22

x
f

x


 

 

  
  

  

. ( 33 ) 

   

In absence of quantitative data on grain size distributions in Al 7075-T6, it is 

assumed 0.1    and 0.4  following the approach employed by Castelluccio [2]. 
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Once all elements have been assigned to a grain, crystallographic orientation of each 

grain is assigned randomly so that there is no initial texture.  The Mesh Generator then 

writes the information regarding the mesh, crystallographic orientation of elements and 

loading conditions to the ABAQUS input file. An example of a cubic mesh geometry 

with voxellated grains is shown in Figure 46.  

 

Figure 46. Example mesh of an instantiation with 14 µm mean grain diameter, 60 µm side 

length, and 2.5 µm element size. Different colors indicate distinct grains.  

 

The Mesh Generator also performs the task of dividing each grain into bands of elements 

over which FIP values are averaged and cracks can propagate, described in greater detail 

in the next section. The current mesh generation and element banding algorithm allows 

the creation of meshes up to about 128,000 elements in approximately 2 hours; although 

such refinement is not needed for a mesoscale characterization of the fatigue evolution.  

The limitations of the Mesh Generator necessitate making some simplifying 

assumptions regarding the microstructure morphology in the alloy. Processing of plate 
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and sheet aluminum products typically produces a flattened and elongated grain structure, 

often referred to as a pancake microstructure. Typical aspect ratios of grains can be up to 

100:10:1, in the rolling direction (RD), transverse direction (TD), and short transverse or 

normal direction (ND), respectively. The rolling process can also introduce significant 

crystallographic texture [101].  

The mesh generator cannot currently reproduce either the high aspect ratio grains 

or the rolling texture, and is limited to the creation of equiaxed, randomly oriented grains. 

In order to minimize any error introduced by the assumption of equiaxed grains, the 

average grain diameter in the model is chosen to be representative of the first grain 

diameter encountered in the direction of propagation during experiments. In applications 

and experiments, loading is typically applied in the RD, and crack growth occurs on a 

plane roughly normal to the loading axis. A schematic of a half-penny shaped surface 

crack shown in Figure 47 illustrates that the first grain boundary encountered by the crack 

front is likely to be in the normal direction, i.e., the shortest grain dimension in rolled 

aluminum products.   

 

Figure 47. Schematic of a crack growing within the first grain for 7075-T6 [41]. 
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In small crack growth experiments conducted by Lankford [41], cracks were observed to 

arrest or slow down as they approached a surface length (2a) of approximately 30-40 

microns, which corresponds to a depth in the normal direction of 15-20 microns, very 

close to the average grain size in the normal direction of 18 um. This supports using the 

average grain size in the normal direction as the average equiaxed grain size in 

simulations.  

Work is currently underway to augment the in-house mesh generator for fatigue 

simulations with DREAM.3D [102], a free, open source program that supports the 

generation of synthetic microstructures as well as reconstruction of actual microstructures 

from EBSD data. DREAM.3D can create microstructures with elongated grains, match 

experimentally observed distributions of crystallographic texture, and handle multi-

phased materials. When integration of the DREAM.3D outputs with the current in-house 

mesh generator is complete, minor changes to the fatigue algorithms and material models 

will allow constituent particles in the aluminum matrix to be explicitly included in 

simulations. Additionally, the effects of grain aspect ratio and texture will also be able to 

be incorporated, and these initial simulations with equiaxed grains will serve as a useful 

comparison. 

4.3: Element Averaging Bands 

The fatigue algorithm uses FIP values averaged over bands parallel to the slip 

planes in a given grain in order to capture the driving force in the process zone of a Stage 

I crystallographic crack. For an FCC material there are four slip planes, thus each element 

within a grain is assigned to four different bands. The process of assigning elements to 
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bands is shown schematically for a 2D, voxellated grain in Figure 48. First, the centroid 

of the grain (shown in red on the left of the Figure) is determined. Next, sets of planes 

perpendicular to the slip plane normal direction are created, and they are spaced one band 

width apart. In cases of Stage I, shear-dominated MSC growth the band width 

corresponds physically to the shear bands that form under cyclic loading. For materials 

that do not exhibit coarse localization of slip in bands and instead exhibit more 

homogeneous deformation, the width of the bands has less of physical basis. Note that 

practically the minimum band width in the simulations is limited by the size of the 

elements: bands of less than one element width tend to be discontinuous and have 

elements that are not all connected. 

 

Figure 48. A schematic of the process of assigning elements to bands for one grain and slip 

plane. 

 

Elements with centroids that lie in between two planes are assigned to the band formed 

by the plane, which are then numbered. In the example, shown in Figure 48, the grain is 

divided into 8 bands of elements parallel to the slip plane under consideration (each band 

is assigned a unique color for visualization in the Figure). The number assigned to a band 

during pre-processing of the mesh becomes its layer number. For example in Figure 48 

layer five corresponds to the orange band of elements. Provided the orientation of the 
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grain is known (which it is in the simulations) it is possible to identify a unique 

crystallographic band within the mesh given its Grain number, layer number and plane 

number, abbreviated as GLP within the code.   

The four sets of bands corresponding to the four slip planes of an FCC material 

for a selected grain within a voxellated mesh are shown in Figure 49. The voxellated 

mesh in the Figure contains 150 grains, and Grain #3 on the surface (light green) was 

selected for the example. 

  

 

Figure 49. Four sets of bands for a selected grain within a voxellated mesh. Average grain 

size is 14 µm, mesh size is 2.5 µm, band width is 5.0 µm. 
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Each band of elements is assigned a unique color within the Figure. Grain #3 is 

comprised of 211 elements which are assigned to 20 overlapping sets of elements or 

bands.  

As stated before, the purpose of the bands of elements is to capture the physical 

process zone of a propagating fatigue crack. When modeling the growth of a Stage I 

crack, the planar bands of elements correspond to persistent slip bands (PSBs), where slip 

becomes highly localized and the crack growth through shear decohesion. Therefore, in 

the Stage I growth focused implementation of Castelluccio, these element bands served 

as the volume averaging domain of the FIP, and the propagation path of the crack. 

Modeling a crack propagating in Stage II introduces additional complexity, as multiple 

slip systems are active and the path of crack growth is no longer planar and perpendicular 

to a single slip plane within a grain. Modifications to the Stage I crack growth 

implementation of Castelluccio were made to capture Stage II MSC growth, and are 

discussed in detail in the Stage II section. The band averaging scheme also helps to 

mitigate the effect of extreme FIP values at the crack tip and issues associated with mesh 

dependence [2]. 

4.4: Incorporation of Fatigue Damage 

There are several methodologies employed in FEM based research in order to 

explicitly simulate a propagating crack, such as extended FEM (XFEM) or cohesive zone 

models. However, the code implementing of these approaches remain proprietary to 

ABAQUS, and they are thus not fully transparent to the user or easily controlled by user 

subroutines. Therefore, this work models the crack through the degradation of the elastic 

stiffness tensor of elements within the crack, when the plane of the crack is in tension. 
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This methodology is transparent to the controlling fatigue algorithms, and easily 

implemented in the user subroutines. Through this methodology it is possible for the 

effects of stress and strain redistribution due to the crack, as well as the effects of crack 

closure, to be accounted for in fatigue life calculations and updated as the crack 

propagates. For elements within the crack damage is applied according to 

  1ijkl ijklC d C   ( 34 ) 

   

where d is a scalar parameter representing the damage within an element, and varies 

between 0 when the crack plane is in compression and 0.99 when the crack plane is in 

tension, and 
ijklC  is the anisotropic, 4

th
 order elastic stiffness tensor. In order to prevent 

the degradation of the elastic stiffness tensor from introducing numerical instabilities, the 

damage is applied to the tensor isotopically and limited to a maximum value less than 1. 

The value of d is also increased or decreased gradually over the duration of a loading 

step by the relation  

 

t t t

step

t
d d v

t


 
    

 

 ( 35 ) 

   

where t td  is the damage value for the current increment, td is the damage value of the 

previous increment, t is the length of the current increment, 
stept is the time to complete 

the step, and v  is a constant that controls how quickly the damage is ramped over the 

step. Typically, a value of 5 is used for v , meaning that it takes slightly less than 1/5
th

 of a 

step for the damage to vary from 0 to 0.99 or vice versa. The  in Eq. 35 is controlled by 

the stress normal to the crack plane within the individual element; if the crack plane is in 

tension the damage is increased and if the crack plane is in compression the damage is 
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decreased. Additionally, when elements are damaged the UMAT will request that 

ABAQUS reduce the increment size ( t ) if it is larger than ( /100stept ) to avoid 

increasing or decreasing the damage too rapidly.   

4.5: Nucleation Life 

Following the approach employed by Castelluccio [2], the number of cycles to 

nucleate a crack within a grain is modeled using a power-law relation based on a 

simplified dislocation model proposed by Tanaka and Mura [103] and extended by Chan 

[104] and Shenoy [16], i.e., 

 
 

2

nucN FIP
g

grd


 

 . ( 36 ) 

   

where dgr is the size of the current grain plus a contribution of the neighboring grain that 

depends on the misorientation between the two grains. The number of cycles to nucleate 

a crack is correlated to experimental data by parameter αg, which is a measure of 

mechanical irreversibility during the nucleation process. As discussed in Chapter 2, 

nucleation behavior in Al 7075-T6 is reported to be dominated by the effect of cracked 

iron-bearing constituent particles. The mesh generator and fatigue growth algorithms 

currently lack the capability to explicitly include a cracked particle within the simulation, 

so the simulations conducted in this thesis incorporate their effect  implicitly through in 

the αg constant in the equation for nucleation life, the which is estimated based on 

experimental data in Chapter 5. 

In the MSC regime, crack growth rate is modeled according to 

 
(FIP ) CTDb

i th

msc

da
A

dN



   . ( 37 ) 
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Here, A  and b are scaling constants relating FIP to the CTD , and   is the mechanical 

irreversibility at the crack tip. The CTDth  is the crack tip opening displacement 

threshold; it is assumed that no crack advance occurs when the CTD  lower than this 

value.  The constants A  and CTDth  have associated units of length. The unitless 

parameter β accounts for grain size effects and the influence of neighboring grains and is 

given by 

 D D
n i i

st ndi
i ref

grd








 ( 38 ) 

   

where stD  is the diameter of the current band being evaluated, ref

grd  corresponds to the 

mean grain size of the material employed to calibrate the constitutive model. The term 

D
n i i

ndi
  accounts for the influence of the neighboring grains with low misorientation. 

In that summation term, n  is the number of neighboring bands, D i

nd
 is the diameter of 

the i
th

 neighboring band, and   is the disorientation factor, calculated according to 

 
1

20

dis
   . ( 39 ) 

   

Here, dis is the angle of disorientation (in degrees) between two adjacent bands. For 

bands that have no disorientation,   is 1, and the full length of the band is added to the 

sum. The Macaulay brackets enforce that   is zero if the misorientation angle is greater 

than 20 degrees, which is generally the taken to be the cutoff between low and high angle 

grain boundaries.  

To carry out the analytical integration of the MSC growth rate over the length of 

the band, the variation in driving force must be known as a band is cracked. Castelluccio 
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[2] found that the evolution of FIP within a band as the band was cracked could be 

modeled by the relation 

    0FIP FIP 1 n

i g ia P a    ( 40 ) 

   
where 

0FIP  is the initial band averaged FIP value on slip system α before damage is 

applied, ia  is the fraction of the band currently cracked (varying between 0 initially and 1 

when the band is fully cracked) and n  and 
gP  are constants with values of 2 and 0.5, 

respectively.  

Once FIP  as a function of ia  is known, analytically integrating the crack growth rate 

over the length of the band yields 

 1

1 1

20 1 2

1
tanh Di

i stmsc

msc

da c
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dN cc c



 
 
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 

  ( 41 ) 

   

where 1c  and 2c  are constants defined according to  

  

 

 

1 0

0

2 2

(FIP ) CTD

2 FIP

D D

b

i th

b

i

n i i

st ndi

c A

A
c





 

 



 





 ( 42 ) 

   

Due to the mesoscale nature of the model, grains are cracked sequentially during the 

progression of a simulation. Therefore, in order to account for the possibility of the crack 

growing simultaneously in multiple grains that are in contact with the crack, the 
historyN  

term is introduced and subtracted from the calculated life of the band, i.e., 

 
i historymsc

msc

N N N


   ( 43 ) 
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The history term becomes active when evaluating the life of the second grain to crack and 

beyond, and is not active during the evaluation of the nucleation life and the life of the 

first grain to crack.  

The functionality of the history counting term is best explained through an 

example. Consider the hypothetical voxellated microstructure shown in Figure 50 

consisting of 6 uncracked grains numbered G1 through G6, and a crack in the plane of 

the paper. At the start of the simulation there are four grains in contact with the crack, 

G1, G2, G3 and G5. The life of all the bands in contact with the crack within these four 

grains is evaluated, and the crack extends into the grain containing the band of lowest 

life, which is G3 in this example. 

 

 

Figure 50. Hypothetical mesh for the example illustrating the function of the history 

counting algorithm and the propagation of the crack into Grain 3.  

 

The algorithm then evaluates the fatigue lives of bands contacting the crack in grains G1, 

G2, G4, G5 and G6. The grains G1, G2, and G5 were in contact with the crack during the 

previous life evaluation, and have the life of the previous grain (G3 in the example) to 

crack, 
historyN , subtracted from the lives calculated according to Eqn. 43. It is important to 
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note that the simulations conducted for this thesis only consider the history of the 

previous band to crack, rather than a summation of the history values over the course of 

the simulation. This means that only the life of the previous grain to crack is subtracted 

from elements that have been in contact with the crack during previous fatigue life 

evaluations.  

4.6: Stage II Fatigue Crack Growth Algorithm 

The Stage II fatigue crack growth algorithm is an extension of the Stage I growth 

algorithms developed by Castelluccio [2] that considers the driving force across multiple 

averaging volumes and allows for crack propagation along planes of arbitrary orientation 

with minimum life. The main difference between the two algorithms is the separation of 

the crack propagation and FIP averaging volumes. The Stage I model employs the 

crystallographic bands of elements as both the volume over which the FIPs are averaged, 

and the potential propagation paths of the crack. While such a model is appropriate for 

materials that exhibit coarse slip band localization such as the Ni-based super alloy 

considered by Castelluccio, Al 7075-T6 deforms more homogeneously when cyclically 

loaded and the local crack front may meander among slip systems as it propagates within 

a grain. 

 Implementation of the Stage II code is similar to that of Castelluccio, relying on 

the ABAQUS UEXTERNALDB subroutine. However, in order to handle complications 

introduced by arbitrarily oriented element sets, the functionality of the UEXTERNALDB 

is extended through the use of a sub-program written in the Python programming 

language [105]. This subsection will focus on presenting both the mathematics and 
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physical justifications behind the Stage II code as well as the details of implementation in 

the UEXTERNALDB and Python sub-program.  

4.6.1: Description of Stage II Model  

The goal of the Stage II algorithm is to consider the driving force across multiple 

crystallographic planes and to determine the path of the propagating crack given the FIP 

values on the various planes. Additionally, due to the large computational cost of crystal 

plasticity constitutive models it is important that the model retain its meso-scale 

character, cracking multiple elements and entire grains at a time so that the simulations 

can be completed within a reasonable time frame. To achieve these goals the Stage II 

algorithm employs the concept of an intermediate plane representing the path of crack 

growth. The life of the plane is based on an intermediate plane FIP that has contributions 

from both the parent planes. Consider the diagram in Figure 51 showing a voxellated 

representation of a cracked grain adjacent to an uncracked grain. The cracked grain will 

be referred to as Grain 1 and represented by blue voxels, and the uncracked grain referred 

to as Grain 2 and represented by the grey voxels. The crack is represented by the black 

voxels. 
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Figure 51. Example crystal showing a cracked grain (blue) adjacent to an uncracked grain 

(grey). 

 

As in the Stage I algorithm, elements within a grain are assigned to crystallographic 

bands. This is shown for the proposed scenario in Figure 52. In the Figure and in this 

example, two sets of planes are considered. The band width for the planes considered is 

the same between the two sides of the figure and the planes of the bands extend into the 

paper.  

  

Figure 52. Sets of bands corresponding to two slip planes (referred to as A and B) within 

Grain 2. 
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Out of the 14 bands shown, only three are in contact with the crack and thus eligible 

volumes for crack extension: band 5 from the left set of bands (set A) and bands 2 and 3 

from the right set of bands (set B). For the sake of the example we will consider band 3 

from the right set and band 5 from the left set as the bands with the maximal FIP values.  

In this scenario both band 5A and 3B are considered to have crack driving forces 

(FIP values) of the same order of magnitude, and a crack propagating through Grain 2 

would likely grow in increments along both slip planes, illustrated by the solid black lines 

in Figure 53.  The partitioning of the crack growth between the slip planes is assumed to 

be proportional to the crack growth rates ( /da dN  ) on the planes, which is also 

proportional to the FIP values on these planes (assuming the threshold is small compared 

to the scaled FIP, ( )FIPiA  , see Eqn. 37). Therefore, the overall net direction of crack 

propagation can be captured by an intermediate plane that lies in-between the planes of 

alternating propagation and is weighted by the relative FIP values of the two parent 

planes. This approach is somewhat analogous to the ΔCTD description of Stage II cracks 

of Li [66], except the FIP- ΔCTD relation employed in this work also captures the cyclic 

crack tip opening displacement (ΔCTOD), assumed by Li to be negligible in comparison 

to the crack tip sliding displacement (ΔCTSD) for crystallographic cracks. The procedure 

for determining the intermediate plane is discussed further in the implementation section 

of this chapter.  
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Figure 53. Intermediate plane capturing the net direction of the Stage II crack as it grows 

on two slip planes. 

 

Once the constants associated with the general form of the plane equation have been 

determined for the intermediate plane, elements in the grain are assigned to the 

intermediate band if their centroids lie within half the band width from the plane. This is 

illustrated for the example bi-crystal by the green voxels in Figure 54. Similar to the 

Stage I implementation of the code, the intermediate band with the shortest life is 

selected as the crack propagation volume, and damage is applied to all elements within 

the band.  
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Figure 54. Path of the crack through Grain 2 (green elements) based on the point-to-plane 

distance between element centers and the intermediate plane. 

 

The implementation of the intermediate band concept requires departing from some of 

the methodology employed previously. In the Stage I algorithms bands of elements were 

referenced by the grain, layer, and plane to which they belonged. Additionally, in order to 

identify which band an element belongs to the orientation of the grain and the location of 

its centroid must be known. This approach works for bands parallel to slip planes within 

the grain but is insufficient to describe a randomly oriented plane. A plane of arbitrary 

orientation in the global Cartesian coordinate system has the general equation 

 0ax by cz d     ( 44 ) 

   

where ,  ,  a b c  and d  are four constants.  The same plane can also be represented in 

Hessian normal form 

 n x p   . ( 45 ) 

   

Here the three components of the unit normal ( xn ,
yn , zn ) to the plane are defined as 
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and the constant p is given by  

 
2 2 2

d
p

a b c
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 
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To generate the list of elements within a band given the constants of the general plane 

equation requires calculating the absolute point-to-plane distance for the centroid of 

eligible elements and the plane under consideration; if the point-to-plane distance is less 

than or equal to half of the band width the element is assigned to that band on elements. 

For the fatigue simulations, bands of elements are generated on a grain by grain basis, so 

the eligible elements for a given band are limited to those within the grain. Therefore, this 

methodology allows a unique band of elements to be defined by the grain number and the 

four constants of a plane.  

The Stage II crack growth algorithms employ the same approach used by the 

Stage I code to calculate the nucleation band and life. Therefore, the cracks nucleate in 

the same grain and have the same life for both the Stage I and Stage II algorithms. The 

calculation of the Stage II life begins by generating a list of elements adjacent to the 

crack. Following the approach of Castelluccio, the criteria for adjacency to the crack is 

that the element share a face with an element within the crack, as opposed to an edge or 

vertex (this concept will be explored further in the results section). All grains containing 

elements adjacent to the crack are eligible to crack during the current life evaluation. The 
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algorithm loops over the grains adjacent to the crack to find the two crystallographic 

bands with the highest averaged FIP values.  

Once the two bands of highest FIP on separate planes have been located, the next 

task is to calculate the intermediated plane. Assuming that the rate of propagation on each 

plane is proportional to the FIP value on that plane, the normal to the intermediate plane 

can be obtained by the vector sum of the scaled normal of each of the parent planes, i.e., 

   
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( 48 ) 

   

Here 1  and 2  are factors that account for the enhancement effect on plastic strain for 

bands with neighbors of low misorientation, defined as  
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Note that 1  and 2  are similar to the i  parameter employed by Castelluccio for Stage I 

growth, without the influence of the diameter of the current band, which is accounted for 

later in the MSC life calculation process. With the normal of the intermediate plane 

defined, 3 out of the 4 constants needed for the general definition of a plane are known. 

The remaining constant, d , is obtained by enforcing the criteria that the intermediate 

plane must contain the line of intersection of the two parent planes. Given the Hessian 

normal forms of the two parent planes, we define 
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( 50 ) 

   

and use a linear solver to find a particular x  such that mx b . The coordinates of a point 

on the line of intersection are then given by  0 0 0, ,x y z , and the direction vector by the 

null space of m [106]. Rearranging the general equation for a plane we obtain  

  0 0 0d ax by cz    . ( 51 ) 

   
Now that the 4 constants defining the intermediate plane are known, elements within the 

grain are assigned to plane if the element centroid  , ,e e ex y z has a point-to-plane 

distance from the intermediate plane of half the band-width or less. The point-to-plane 

distance for the element centroid is defined according to 
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where ,  ,  a b c  and d  are the four constants of the general plane equation of the 

intermediate plane.  

The crack growth rate on the intermediate plane is modeled by 
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This equation is similar to the equation for Stage I growth, with the exception of the 

value of intFIP , which is the sum of the FIP values on the parent planes, i.e., 
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 int

1 2FIP FIP FIP   ( 54 ) 

   

and the value of int , which captures the influence of the diameter of the current band 

length on the propagation life, i.e., 

 int Dst

ref

grd
  . 

( 55 ) 

   

Here, Dst  is the length of the band currently being evaluated and ref

grd is the mean grain 

diameter of the microstructure used for constitutive model calibration. Assuming the 

same variance in intFIP as 
0FIP during the cracking of the band, the life of the 

intermediate plane can be determined through analytical integration of the crack growth 

rate, i.e., 

 int1
int 1 1

20 1 2

1
tanh Di

history st historymsc

msc

da c
N N N

dN cc c


  

      
   

  ( 56 ) 

   

where 1c  and 2c  are constants defined according to  

    
  

 

int int

1 1 1 2 2

int int

1 1 2 2

2 2

FIP FIP FIP CTD

2 FIP FIP FIP

D

th

st

c A

A
c

   

   

   

 


 ( 57 ) 

Once the life of the intermediate plane has been determined, the calculation is repeated 

for each grain that contains elements in contact with the crack. The band formed by the 

intermediate plane with the minimum life is then selected as the crack propagation 

volume.  Note that this approach reduces to the same formulation employed in the Stage I 

algorithm if only one slip system is active in the candidate grain to crack.  
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4.7: Implementation 

The introduction of crack propagation through volumes that were not pre-defined 

before the start of the simulation adds significant complexities to the implementation of 

the algorithms developed by Castelluccio [2]. Previously, the code was implemented 

primarily in the ABAQUS User External Database subroutine (UEXTERNALDB) with 

minor modifications to the UMAT to allow information to pass between the two 

subroutines and to handle degradation of the elastic stiffness tensor. Both the UMAT and 

UEXTERNALDB subroutines are written in the Fortran 95 programming language, 

which requires that all variables have pre-declared types and that all arrays are 

dimensioned before use. This feature makes programs written in Fortran computationally 

efficient, but can be cumbersome when dealing with large numbers of lists with variable 

quantities of members (bands of elements for instance). 

Therefore, the portions of the code handling FIP averaging, life determination and 

selecting the cracked elements were moved to a separate program written in Python 

[105]. The features of the python language make it easier to handle arbitrary bands of 

elements using the list or dictionary data structures.  Other advantages of writing this 

portion of the code in Python are numerous and include increased ease of debugging, 

increased readability of the code, and a large library of built-in modules that simplify 

tasks such as logging code execution and file I/O operations. Additionally, the python 

sub-program allows for the ability to run the fatigue life calculations outside of the 

ABAQUS environment. This means that once a simulation has been completed, the 

fatigue algorithms can be re-run using the FIP data generated during cycling (which 

remains valid as long as the predicted crack path remains the same) in order to rapidly 
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assess the impact of changes of particular variables or the fatigue algorithms, or debug 

the code after introducing modifications.  

The UEXTERNALDB subroutine retains the task of calculating FIPs and is 

responsible for calling the Python sub-program. The flow of the UEXTERNALDB is 

shown in Figure 55. Once the UEXTERNALDB is called by ABAQUS after the 

completion of a loading increment, its first task is to read the arrays containing the shear 

strains and normal stresses for each element and slip system, which are stored in the 

COMMONBLOCK. Using these values, the cyclic plastic strain range over the current 

cycle is calculated and then used to evaluate the FIP  values for all elements in the mesh.  
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Figure 55. Flow chart illustrating the functionality of the UEXTERNALDB. 

 

When the increment completed prior to the UEXTERNALDB call corresponds to the end 

of a cycle, the UEXTERNALDB checks if the fatigue life must be calculated on after this 

particular cycle. If true, the FIP values for all elements in the mesh are written to a file 

and then the UEXTERNALDB calls the sub-program implemented in Python and waits 

for it to complete the calculation of the fatigue life. One the Python program has finished, 

the UEXTERNALDB reads in the list of cracked elements and crack plane normal 
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vectors and stores them in the COMMONBLOCK. When the storage of the variables is 

complete or if the fatigue life does not have to be evaluated on this call, the 

UEXTERNALDB returns control to ABAQUS.  

The functionality of the Python sub-program called from the UEXTERNALDB is 

illustrated in Figure 56. First, the program reads the FIP values for each element and slip 

system that were stored in a text file by the UEXTERNALDB and begins the task of 

averaging the FIP values by band. Once the band averaged FIPs are obtained, the Python 

script calculates either the nucleation life in all grains (according to Eqn. 36) or the MSC 

propagation life (according to Eqn, 56 if the Stage II model is active or Eqn. 43 if the 

Stage I model is active) of bands adjacent to the crack, depending on how far the 

simulation has progressed. The band with the minimum life is then set as cracked, and the 

list of elements within this band and normal vectors of the crack are appended to a text 

file in the simulation folder. Python then exits and returns control to the 

UEXTERNALDB, which reads in the list of cracked elements and the crack normal 

vectors.   
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Figure 56. Flow chart illustrating the steps completed by the python sub-program after 

being called by the UEXTERNALDB. 

 

Additional information regarding the implementation of the fatigue algorithms in the 

UEXTERNALBD and Python sub-program is available in Appendix A. 
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In order to illustrate the progression of a typical fatigue simulation, a 2D example 

is presented in Figure 57. The hypothetical microstructure consists of 8 grains, and 3 

grains are cracked over the course of the simulation. A total of 17 loading steps and 8 

complete computational cycles are applied, with the nucleation life of the hypothetical 

microstructure calculated after the 3
rd

 complete cycle and the MSC propagation life of the 

2
nd

 and 3
rd

 grain to crack calculated after 5
th

 and 7
th

 computational cycle, respectively. In 

this example, loading is uniaxial with a 0.4% applied strain amplitude and Rε = -1. 
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Figure 57. An example of crack propagation in a 2D microstructure, illustrating the crack 

path, applied loading, and damage. 

 

The damage of each cracked band over the course of the simulation is also shown, with 

the line color corresponding to the coloration of the parent grain containing the band that 

cracks. At the beginning of the simulation all bands within the mesh are undamaged. 

Then, at the end of the 3
rd

 computational cycle (end of 7
th

 loading step), the nucleation 
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life is evaluated and the band with minimum life (within the light red grain) is cracked. 

At this point, the crack plane is in tension, so the damage is ramped up to its maximum 

value of 0.99. As the 8
th

 loading step progress the damage normal to cracked plane in the 

red grain becomes compressive and the damage is ramped back down to 0 to restore the 

stiffness of the element. This process repeats until the end of the example. The second 

grain to crack (light green) has damage applied after the 11
th

 cycle (corresponding to 

MSC1) and in this example the stress normal to the crack plane remains tensile 

throughout the loading cycle. Thus, once damage is applied in this band there is no 

recovery of stiffness. Life of the third grain to crack (orange) is evaluated after cycle 7, 

and the damage varies from 0 to 0.99 in the same way as the first band to crack as the 

stress normal to the crack plane varies from compressive to tensile.  

4.8: Conclusions 

This Chapter addressed the theoretical and computational basis of the algorithms 

employed in this research to model the nucleation and propagation of microstructurally 

small fatigue cracks in Stages I and II. The calculation of FIP
α
 was presented, along with 

the FIP to ΔCTD relation that allows FIP to be employed in the calculation of the MSC 

growth rate. The mesh generator was also introduced, along with the crystallographically-

based averaging bands.  

In the Stage I focused implementation of Castelluccio the crystallographically-based 

bands served as both the FIP averaging and crack propagation volumes. To enable the 

model to capture Stage II fatigue crack growth, the concept of an intermediate plane of 

elements was introduced. The driving force on this intermediate plane is a function of the 

two non-coplanar, crystallographic parent bands with the highest band averaged FIP 
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values. The intermediate plane contains the line of intersection of the two parent planes, 

and its orientation depends on the relative magnitudes of the band averaged FIPs on those 

same planes.  This formulation reduces to the Stage I model of Castelluccio if only one 

slip system is active in the grain being evaluated, and retains the same mesoscale 

approach where damage is applied to planar bands containing multiple elements rather 

than on an element-by-element basis. Additionally, the implementation of these 

algorithms in the ABAQUS UEXTERNALDB and Python sub-program was discussed. 
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CHAPTER 5: APPLICATION OF THE MESOSCALE MODEL TO 

AL 7075-T6 

5.1: Introduction 

This chapter presents the results obtained using the mesoscale fatigue model to 

evaluate fatigue crack nucleation and microstructurally small fatigue crack growth 

behavior in Al 7075-T6. The chapter begins by introducing the boundary and loading 

conditions applied to the meshes. Next, the calibration of the fatigue model constants for 

Al 7075-T6 is presented. The remainder of the chapter focuses on the results obtained 

with the fatigue model, including: 

 Results under uniaxial loading and shear loading at different applied strain 

amplitudes and applied strain ratios, which are compared to experimental data.  

 Comparison of results obtained using the Stage I and Stage II fatigue algorithms. 

 Comparison of fatigue simulation results obtained using the three constitutive 

model variants introduced in Chapter 3.  

 Simulations are conducted to assess the effect of k in the FIP parameter.  

 Simulations conducted to evaluate the effects of mesh density, simulation volume, 

and choice of band width. 

The chapter concludes by summarizing the results and describing the key findings of this 

work.  
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5.2 Meshes and Boundary Conditions 

The majority of the simulations performed in this chapter where conducted using 

a voxellated polycrystalline mesh with a cubic geometry and 60 µm side lengths. The 

volume was meshed with 2.5 µm elements, for a total of 13,824 elements.  A mean grain 

size of 14 µm was used, and each of the 10 microstructural instantiations created 

contained 150 randomly oriented grains. The few modified mesh configurations that were 

used to investigate the effects of meshing on the fatigue results are described in detail in 

the section that presents those results.  

The boundary conditions employed for uniaxial loading and shear loading are 

illustrated schematically in Figure 58. Uniaxial loading is modeled by prescribing 

displacements to all nodes on the top XZ face (Y=60 µm in the Figure 58 example) in the 

X-direction and holding all nodes on the bottom XZ face (Y=0 µm in the Figure 58 

example) fixed in the X-direction. Additionally, in order to prevent rigid body motion the 

following nodal boundary conditions are enforced: 

 The origin at (0, 0, 0) is fixed to have zero displacement in all directions. 

 The vertex node at (1, 0, 0) is fixed to have zero displacement in the Z-direction. 

 The vertex node at (0, 0, 1) is fixed to have zero displacement in the X-direction. 

These conditions prevent rotation or translation of the mesh, but allow for contraction or 

expansion of the positive YZ face in the X-direction and of the positive XY face in the Z-

direction. Hence, the sides are effectively traction-free.  Simple shear loading was 

modeled by applying a relative displacement to the nodes in the XZ-plane faces of the 

mesh (at Y=0 µm and Y=60 µm for the meshes in Figure 58) in the Y-direction.  In this 

case, periodic boundary conditions were enforced on the YZ faces, requiring that the 
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difference of displacements for opposing nodes is zero in X, Y, and Z.  Additionally, the 

same nodal boundary conditions used to prevent rigid body motion in the uniaxial 

simulations were employed for simulations conducted under simple shear.  

 

 

Figure 58. Diagram of uniaxial boundary conditions (left) and shear boundary conditions 

(right) used in the fatigue simulations. 

 

Note that the boundary conditions of the fatigue simulations differ from those of the 

simulations used to evaluate the constitutive response of the material, which employed 

3D periodic boundary conditions. In contrast, for the loaded uniaxially fatigue 

simulations there is no enforced periodicity. For all the simulations conducted in this 

research the loading is applied quasi-statically at a strain rate of approximately 1x10
-4

 s
-1

.  

5.2.1: Definition of Equivalent Shear Strain Amplitude 

To compare results between simulations conducted under uniaxial tension-

compression and shear loading, the equivalent uniaxial, nominal strain amplitude ( a ) 

was defined for nominally elastic loading conditions as 
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a a   ( 58 ) 

   
for uniaxial loading, and as  

  / 1a a     ( 59 ) 

    

for shear loading. The value of the elastic Poisson’s ratio was taken to be 0.345, 

commonly reported for aluminum [107]. In the remainder of this chapter, any references 

to the applied strain amplitude are understood to be in terms of the equivalent uniaxial 

strain amplitude unless otherwise noted.  

5.3: Calibration of the Fatigue Constants 

Fatigue crack nucleation and MSC propagation data can be difficult to find in the 

open literature, particularly under loading conditions of interest. The data that are 

published in the open literature are typically limited to a small number of cracks due to 

the time- and labor-intensive nature of collecting such data, and the associated conflicting 

requirements of resolution and field of view. The experimental data chosen to calibrate 

the fatigue model were obtained by Tokaji et al. [56], who investigated the effects of 

applied stress ratio and amplitude on MSC crack growth in Al 7075-T6. The 

experimental data of interest were collected under R=-1, σmax = 270 MPa, uniaxial stress-

controlled cyclic loading, with a stress concentration factor of 1.02 in the shallow notch 

where cracks were observed to form. The equivalent strain-controlled loading conditions 

for the simulations was calculated by dividing the product of peak nominal stress with the 

stress concentration factor (275.4 MPa) by the elastic modulus from simulations used to 

fit the constitutive model (69 GPa).  Simulations were conducted on smooth specimens 

under fully reversed (Rε = -1), uniaxial strain-controlled cycling at a strain amplitude of 
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0.4% to match the experimental conditions used by Tokaji et al. [56]. A total of 10 

simulations, each with a different microstructural instantiation (14 µm mean grain size) 

were conducted, and FIP0 values for each of the first eight grains to crack are summarized 

by a box-and-whisker plot in Figure 59. 

 

Figure 59. Box-and-whisker plot of the initial FIP value in the first 8 grains to crack across 

10 instantiations, under Rε = -1,   εa = 0.4% uniaxial strain controlled cycling. Simulations 

were conducting using material model OW44.  

 

Note that in Figure 59 two different forms of the initial FIP at the onset of crack growth 

in each grain, FIP0, are employed: in the first grain to crack FIP0 is calculated based on a 

single slip system, FIP
α
, whereas in subsequent grains to crack FIP0 corresponds to the 

FIP on the intermediate plane, which is a sum of the contributions from the FIP
α
 values 

on the parent planes. The number of cycles to nucleate a crack is correlated to 

experimental data by parameter αg, which is a measure of mechanical irreversibility 

during the nucleation process. To estimate αg, Eqn. 36 can be rearranged into the form 
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 
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FIP

gr

g nuc

d





 , ( 60 ) 

   

where dgr is the size of the current grain plus a contribution of the neighboring grain that 

depends on the misorientation between the two grains. Although the nucleation lives of 

the cracks considered by Tokaji et al. [56] are not explicitly given, it is possible to 

estimate the cycles required to crack the first grain using data for crack surface length vs. 

cycle ratio (N/Nf) where the number of cycles to failure (Nf) is known for that loading 

condition. These data are plotted in Figure 60.  

 

Figure 60. Crack length vs. cycles based on experimental data from [56] at an 

equivalent strain amplitude of 0.4% and under fully reversed, uniaxial loading 

conditions. 

 

The dashed line in Figure 60 is drawn at a crack length of 14 µm, corresponding to the 

mean grain size in both the simulations and the experiments they emulate. From the 

intersection of this line with the crack growth data in the Figure, the life to grow the crack 
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to a length of approximately 1 grain size (the nucleation life) is computed to be 5,670 

cycles. While this is certainly a rough approximation, in absence of better data it provides 

an acceptable order of magnitude estimate for the number of cycles required to nucleate a 

crack under the loading conditions considered. The maximum FIP0 in the nucleant grain 

for the simulations considered was 6.072x10
-5

 (corresponding to the 1
st
 grain to crack in 

Figure 59). Using these values and assuming that the crack nucleates in a grain of mean 

diameter with no influence from low-misorientation neighbors, Eqn. 60 yields a value for 

αg of 2.9x10
-4 

µm-cycles. Overall, the effect of accounting for low-misorientation neighbors is 

insignificant in comparison to the uncertainty that arises from having only a single data point 

available with which to estimate a value for αg , and thus it is a reasonable assumption to 

neglect the influence of these neighbors. Of course, this estimate can certainly be refined 

as more highly resolved and detailed data become available regarding nucleation, 

particularly as related to cracks forming at nonmetallic particles. 

A similar approach can be employed to estimate the parameters controlling the 

rate of crack propagation using the Stage II crack propagation algorithm. The parameter 

of interest is A , which relates the band averaged FIP value to the CTD  through Eqn. 

32. The parameter A  can be estimated by assuming: 

 b = 1, simulations conducted for RR1000 and copper [2] suggest that the FIP 

scales nearly linearly with CTD , but this must be validated for Al 7075-T6 in 

future work. 

 β = 1, obtained by assuming that ref

grd is equal to the mean value grd (14 µm) of 

propagating cracks in the simulations conducted to fit A . 

 ΔCTDth = 2.86x10
-4

 µm, the Burgers vector for pure FCC Al [22]. 
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 FIP
α
 = 1.93x10

-4
, the maximum FIP in the 2

nd
 grain to crack.  

   = 0.35 following arguments by Xue et al. [22] and McDowell et al. [24]. 

 
da

dN
= 2.14x10

-3
 µm/cycle, the crack growth rate reported by Tokaji et al. for the 

simulated loading conditions for a crack length of approximately 14 µm.  

These assumptions result in an estimated value of A = 33.1. This methodology for 

estimating the fatigue parameters differs somewhat from that of Castelluccio [2], who 

conducted simulations using meshes with an explicit crack in order to obtain the relation 

between CTD  and band-averaged FIP for the RR1000 constitutive model. It should 

also be noted that this calibration is for the Stage II Fatigue model coupled with the 

OW44 constitutive model, and will be referred to as Calibration A. Previously, fitting of 

the fatigue constants was done using the Stage I fatigue model coupled with the G31 

constitutive model, referred to as Calibration B. This older calibration employed an αg 

value of 6x10
-3 

µm-cycles and an A value of 22.4, which were obtained using the same 

methodology employed to generate Calibration A. In general for the results presented in 

this chapter, the Stage II simulations employ Calibration A, while the comparative 

simulations illustrating the differences between the fatigue results obtained using 

different versions of the constitutive model employ Calibration B, unless otherwise 

noted. The calibration of the model is validated by comparing simulated crack growth 

rates to the experimental data of Tokaji et al. [56]  and the experimental data of  Zhao and 

Jiang [108], which are presented in within the next section of this chapter in Figure 62 

and Figure 65, respectively.  
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5.4: Stage II Fatigue Algorithm Results 

This Section presents results from fatigue simulations conducted using the Stage 

II algorithm coupled with the OW44 constitutive model version to assess the response to 

cyclic uniaxial or shear loading. All simulations presented in this section employed a 

cubic mesh with 60 µm sides, 2.5 µm elements, and 14 µm equiaxed grains with random 

orientation, which are discussed in detail in Section 5.2. 

5.4.1 Cyclic Uniaxial Results 

 For the set of uniaxial simulations four different applied stain amplitudes were 

considered: 0.2%, 0.3%, 0.4% and 0.5%. Simulations were conducted at applied strain 

ratios of -1 and 0.5, and 10 microstructural instantiations were evaluated under each 

loading, for a total of 60 uniaxial simulations. In each simulation, 20 complete 

computational loading cycles were applied, and 8 grains were allowed to crack before the 

simulation was terminated. Figure 61 is a semi-log plot of crack length vs. cycles for 

uniaxial simulations conducted with fully reversed straining conditions (Rε = -1).  
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Figure 61. Crack growth under uniaxial, fully reversed loading at various strain 

amplitudes, εa=0.2%, 0.3%, 0.4% and 0.5%.  

 

The results shown in Figure 61 agree with expectations; higher applied strain amplitudes 

produce shorter fatigue lives. One interesting aspect of Figure 61 is that the cycle 

increment of propagation over a grain is longer at smaller applied strain amplitudes, i.e., 

within a given grain, bands containing more elements are cracked preferentially as the 

applied strain is reduced. This effect is visible in Figure 61 as an increase in crack length 

after the crack has propagated through 8 grains from the highest to lowest applied strain 

amplitudes. Examining the data for simulations conducted at 0.5% applied strain (shown 

in magenta) we calculate that the average crack length has reached approximately 69 µm 

by the end of the simulation when 8 grains have cracked. In contrast, the average crack 

length for simulations conducted at a strain amplitude of 0.2% has reached 89 µm by the 

end of the simulation, despite cracking the same number of grains. The results for the 
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0.3% and 0.4% strain amplitude cases lie in the middle, with average crack lengths of 

approximately 74 µm  and 72 µm, respectively, after cracking 8 grains.  

The crack propagation rate in simulations conducted under fully reversed, 

uniaxial stain-controlled loading at 0.4% applied strain amplitude can be compared to the 

crack growth rate data obtained by Tokaji et al. [56] under equivalent stress-controlled 

cyclic loading. For the simulations, the crack propagation rate is calculated according to 

the secant method given in ASTM E647 [109] where 

 1

1

n n

n n

a ada

dN N N









. 

( 61 ) 

   

The secant methodology was used over the more traditionally employed 

incremental polynomial approach for two reasons. The first is small quantity of da/dN 

data produced for each crack: if a total of 8 grains cracked during a simulation, only 7 

da/dN data points are produced using the secant method. Applying an incremental 

polynomial would lead to a large reduction in the data available for consideration. 

Second, in the MSC propagation regime any smoothing introduced by polynomial or 

averaging based approaches can obscure the variability introduced by the interaction of 

the crack tip with the microstructure [110, 111], which is the behavior of interest in this 

research.  

The experimentally measured crack growth rate data of Tokaji et al. are plotted on 

a log-log scale in Figure 62, along with the simulated crack growth rate data calculated 

by the secant method. The methodology used to determine the experimental values of 

da/dN was not mentioned in the paper published by Tokaji et al. 
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Figure 62. Comparison of crack growth rate data from uniaxial simulations to the 

experimental data of Tokaji et al. [56] at an applied strain amplitude of 0.4% and fully 

reversed loading.  

There is a large degree of scatter in the simulated crack growth rates in Figure 62, with 

minimum and maximum rates of crack propagation differing by more than 3 orders of 

magnitude. Aside from a few outliers, the average rate of crack propagation (shown by 

dashed line) lies well within the experimental range observed by Tokaji et al.  

There are a few differences between the experimental data and simulated data that 

must be discussed to understand the limitations of the comparison. The most significant is 

that the experimental data are based on measurements of surface cracks at periodic 

increments during the cyclic loading, while the simulated crack lengths are calculated as 

the square root of the area of the crack after each grain fails. This has a few important 

implications. First, surface cracks may behave somewhat differently than cracks within 

the interior of a specimen, appearing to arrest or retard on the surface while continuing to 
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propagate internally. Second, assuming a semi-circular surface crack, a crack length 

calculation based on the square root of the area would predict a crack length 

approximately 37% shorter than the actual length of the crack along the surface of the 

specimen. Experimental observations of crack length are also conducted at set intervals 

and thus the crack growth rate is an average rate over the period between observations. 

Therefore, any brief periods of rapid crack growth may be offset by periods of slower 

growth and not reflected in the collected data. Finally, the data published by Tokaji et al. 

are limited, considering only the growth rate at two crack tips.  

Additional simulations were performed to assess the impact of an imposed mean 

strain on the uniaxially loaded meshes at applied strain amplitudes of 0.3% and 0.4%. 

These simulations employed an imposed strain ratio (Rε) of 0.5, which produced an 

equivalent stress ratio (Rσ) of approximately 0. The results for the 0.3% and 0.4% applied 

strain amplitude cases with an imposed mean strain are compared to the results at the 

same applied strain amplitude but under fully reversed loading in Figure 63 and Figure 

64, respectively. 
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Figure 63. A comparison of crack growth under uniaxial loading at εa = 0.3% and applied 

strain ratios of Rε = -1 and Rε = 0.5. 

 

The data for the 0.3% applied strain amplitude cases plotted in Figure 63 show a slight 

impact of the imposed mean stress/strain. Comparing the shortest lives to reach a crack 

length of 60 µm for both cases, the imposed mean strain reduces number of cycles by 

approximately 11%. The reduction in the average life to reach the same crack length is 

smaller, with the applied mean strain reducing the average number of cycles to a crack 

length of 60 µm by just 8%.  
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Figure 64. A comparison of crack growth under uniaxial loading at εa = 0.4% and applied 

strain ratios of Rε = -1 and Rε = 0.5.  

 

The detrimental effect of the imposed mean stress/strain on the predicted fatigue lives is 

significantly more pronounced for the 0.4% applied strain amplitude cases, plotted in 

Figure 64. The shortest life to reach 60 µm in the presence of a mean strain is 42% 

shorter than the shortest life to reach the same length under uniaxial loading conditions. 

Similarly, the average number of cycles to reach a length of 60 µm is reduced by 39% by 

the presence of a mean strain during cycling.  

Results from the simulations conducted under uniaxial loading are compared to 

experimental results obtained by Zhao and Jiang [108], shown in Figure 65.  
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Figure 65. Comparison of data from uniaxial fatigue simulations and uniaxial experimental 

data from [108]. Results for the 0.3% and 0.4% applied axial strain amplitude cases are 

shifted by +0.01% strain when Rσ = -1 and by -0.01% strain when Rσ = 0 to increase the 

clarity of the plot.   

 

It is important to note that for the experimental data (black and white symbols), axial 

strain amplitude is plotted against cycles to complete specimen failure, while for 

simulation results (aqua, blue, and red) axial strain amplitude is plotted against cycles to 

grow the crack to a length of 60 µm.  Assuming that the majority of the life is consumed 

by nucleation and early crack growth in the low strain amplitude HCF regime, we would 

expect life to grow a crack to 60 µm to be comparable to the total life of the experimental 

data. In the LCF regime, by contrast, we would expect nucleation lives to be significantly 

shorter than the total life. Therefore, in the plot it is evident that the simulated fatigue 

lives are within the correct order of magnitude for both the fully reversed loading cases 
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(Rσ = -1) and the cases with an imposed mean strain/stress (Rσ = 0). However, the 

detrimental effect of mean stress is not as pronounced in the simulations as in the 

experiments, particularly for the 0.3% applied strain amplitude cases. Possible 

explanations for this trend are presented in Section 5.4.3. 

5.4.2 Cyclic Shear Results 

Additional fatigue simulations were conducted using the Stage II algorithm 

coupled with the OW44 constitutive model version to assess the response to cyclic, 

simple shear loading. Three different applied equivalent stain amplitudes were 

considered: 0.3%, 0.4% and 0.5%. Simulations were conducted at applied strain ratios of 

-1 and 10 microstructural instantiations were evaluated under each loading, for a total of 

60 shear simulations. In each simulation, 20 complete computational loading cycles were 

applied, and 8 grains were allowed to crack before the simulation was terminated. The 

crack growth results for the shear simulations are compared to the results obtained under 

the equivalent uniaxial loading at applied equivalent strain amplitudes of 0.5%, 0.4% and 

0.3% in Figure 66, Figure 67, and Figure 68, respectively.  
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Figure 66. Comparison of crack growth under uniaxial and shear loading. In both cases 

loading is fully reversed and conducted at an applied equivalent strain amplitude ( a ) of 

0.5%. 

 

 

Figure 67. Comparison of crack growth under uniaxial and shear loading. In both cases 

loading is fully reversed and conducted at an applied equivalent strain amplitude ( a ) of 

0.4%. 
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Figure 68. Comparison of crack growth under uniaxial and shear loading. In both cases 

loading is fully reversed and conducted at an applied equivalent strain amplitude ( a ) of 

0.3%. 

 

The results plotted in Figure 66, Figure 67, and Figure 68 all show the same trend, with 

longer fatigue lives predicted under simple shear loading than for the same equivalent 

uniaxial strain amplitude.  

An additional set of 10 simulations was conducted at equivalent strain amplitude 

of 0.4% with an imposed mean shear strain of 0.5. The results from this set of simulations 

are plotted in Figure 69 along with data obtained under simple shear loading at an applied 

strain amplitude of 0.4% but with no mean strain.  
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Figure 69. Comparison of crack growth under shear loading with and without imposed 

mean shear strains (Rε = 0.5 and Rε = -1). In both cases loading is conducted at an applied 

equivalent strain amplitude ( a ) of 0.4%. 

 

It is clear from the overlapping data sets shown in Figure 69 that the model predicts no 

detrimental effect of imposed mean shear strains. This is in agreement with experimental 

results, as mean shear stress effects are not typically observed in fatigue, at least for 

fatigue crack initiation where the crack length is on the order of several hundred microns.    

Results from the simulations conducted under simple shear loading are compared 

to experimental results obtained by Zhao and Jiang [108], shown in Figure 70. Note that 

for the experimental data of Zhao and Jiang [108], shear strain amplitude is plotted 

against cycles to failure, which they defined for this case to be either a 10% load drop of 

the formation of a fatigue crack visible to the naked eye, while for the simulated data 

shear strain amplitude is plotted against cycles to grow a crack to 60 µm.  Additionally, 

the results obtained at an applied equivalent strain amplitude of 0.4% (corresponding to
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0.538%eq

a  ) are shifted slightly on the shear strain amplitude axis so that both data 

sets are visible, and the lack of mean shear strain effects are apparent.  

 

 

Figure 70. Comparison of data from shear fatigue simulations and shear experimental data 

from [108]. 

 

The data plotted in Figure 70 indicate that the simulations yield results that are 

conservative by approximately an order of magnitude. This trend is consistent for all 

applied shear strain amplitudes considered, but it does appear that at applied shear strain 

amplitudes larger than 0.673%, results from simulations will merge with experimentally 

observed lives.  

5.4.3 Discussion of Shear and Uniaxial Results 

 The overly conservative lives under shear loading and the smaller-than-

experimentally-observed reduction of fatigue lives due to a mean stress/strain require an 
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explanation. The most likely explanation is that the discrepancy is a result of a failure to 

fully account for the influence of nucleant particles. In this work, the life to crack the 

nucleant grain is modeled by Eqn. 36, a power-law formulation where the nucleation life, 

Nnuc, is a function of the grain diameter, band averaged FIP
α
, and the parameter αg which 

captures the degree of irreversibility in the nucleation process and is fit to experimentally 

observed lives to nucleate a crack. As discussed in Chapter 2, for Al 7075-T6 fatigued in 

ambient environments cracks tend to form at the interface between fractured constituent 

particles and the matrix (Ninc,part per Eqn. 7) before propagating through the nucleant 

grain. The current nucleation law lumps the process of incubation at a fractured particle 

and growth through the nucleant grain into a single equation, incorporating the effect of 

the constituent particles into the value of αg. This is partly why the value of αg used in this 

work differs significantly from the value found by Castelluccio for RR1000, an alloy in 

which cracks nucleate in favorable oriented surface grains through the formation of PSBs 

and intrusions and extrusions on the specimen surface. By homogenizing the effect of 

cracked inclusions into the αg parameter, the role that particle geometry, a significant 

source of variability in the incubation and nucleation process, is lost. 

A second possibly is that the discrepancy between simulated and experimental 

results in shear and uniaxial loading with a mean stress/strain arises as a result of an 

incorrect value of k in the FS FIP. The parameter k controls the influence of the normal 

stress term on the magnitude of the FIP, and in this work k was taken to have a value of 

0.5 in absence of available data for fitting. Larger values of k would increase the 

difference in FIP
α
 values, and thus fatigue lives, between uniaxial and shear loading and 

between uniaxial loading with and without a mean stress/strain. Recalibration would be 
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needed to again match experimentally observed uniaxial lives and crack propagation 

rates, but calibration of k offers a possible pathway to unifying results under multiple 

loading conditions more closely to what is experimentally observed.  

5.4.4 FIP Ratio 

The stage II growth model introduced in Chapter 4 employed the concept of an 

intermediate plane of crack propagation, with its orientation derived from the 

contributions of the two parent planes, and a driving force that is a summation of the 

averaged FIP
α
 values on the parent planes, referred to FIP1 and FIP2. If the values of FIP1 

and FIP2 are nearly equal, the crack grows in a stage II manner. However, if one parent 

plane has a driving force much larger than the other, the growth of the crack will 

approximate stage I behavior. This can be captured by the ratio of the FIP values on the 

two parent planes, FIP2/ FIP1, where FIP2 is the smaller of the two values. If the value of 

this ratio is close to unity, the two parent planes have nearly equal contributions to the 

growth of the crack, i.e. stage II growth. However, low values of FIP2/ FIP1 indicate 

dominance of a single slip system and near stage I growth.  

FIP ratio vs. crack length data for the uniaxial, fully reversed simulations 

considered in Section 5.4.1 are plotted in Figure 71. The plot also includes horizontal 

lines that correspond to the average FIP ratio during MSC propagation through 8 grains at 

a given applied strain amplitude. Note that all cracks are assumed to nucleate and grow 

through the nucleant grain in stage I, and thus initially have a FIP ratio of zero. 
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Figure 71. FIP ratio vs. crack length for simulations conducted under uniaxial, fully 

reversed loading at strain amplitudes of εa=0.2%, 0.3%, 0.4% and 0.5%. 

 

The general trend observed in Figure 71 is that increasing applied strain results in 

increasingly stage I crack propagation character (smaller FIP2/FIP1 values), and vice 

versa. This is illustrated more clearly in Figure 72, which only plots FIP ratio data for the 

highest and lowest applied strain amplitudes considered during the uniaxial, fully 

reversed loading simulations.  
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Figure 72. FIP ratio vs. crack length for simulations conducted under uniaxial, fully 

reversed loading at strain amplitudes of εa=0.2% and 0.5%. 

 

Note that even at the highest applied strain amplitude of 0.5%, the average FIP ratio of 

0.675 still indicates predominantly stage II growth. The trend of increasing average FIP 

ratio with decreasing applied strain amplitude roughly mirrors the trend of increasing 

average crack length with decreasing applied strain amplitude shown in Figure 61. Thus, 

the discrepancy in final lengths observed in Figure 61 can be attributed to differences in 

FIP ratio, with a higher stage II growth character favoring longer final crack lengths. A 

similar difference of final crack lengths is observed in Figure 80, which compares results 

from the stage I and stage II growth algorithms.  

The trend of increasing average FIP ratio with decreasing applied strain amplitude 

is also seen in the simulations considering shear loading. The FIP ratios for the 

simulations conducted under fully reversed simple shear loading at equivalent applied 

strain amplitudes of 0.3%, 0.4% and 0.5% are plotted in Figure 73. 
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Figure 73. FIP ratio vs. crack length for simulations conducted under fully reversed shear 

loading at applied equivalent strain amplitudes ( ) of 0.3%, 0.4%, and 0.5%. 

 

Again, similar to Figure 71, the simulations conducted with the highest applied shear 

strain have the lowest FIP ratio, indicating tendency towards greater stage I growth 

character at higher applied strains. The 0.3% and 0.4% applied shear cases have nearly 

the same FIP ratio, indicating that MSC growth occurs in primarily a stage II fashion in 

these simulations.  

Comparing the FIP ratio between uniaxial and shear simulations conducted at the 

same applied strain amplitude, we see that the uniaxial loading favors a higher average 

FIP ratio, and thus stage II growth. This is illustrated in Figure 74, a plot of FIP ratio vs. 

crack length for both the simulations conducted under uniaxial loading and shear loading 

at an applied equivalent strain amplitude of 0.5%. 

a
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Figure 74. Comparison of FIP ratio vs. crack length for simulations conducted under fully 

reversed shear and uniaxial loading at an applied equivalent strain amplitude ( ) of 0.5%. 

 

The average FIP ratios plotted in Figure 74 have a value of 0.68 for the uniaxially loaded 

cases, and a value of 0.36 for the cases loaded in shear, representing a significant shift 

towards stage I type growth when loaded in shear. Although the plots are not included for 

the sake of brevity, the simulations conducted at equivalent applied strain amplitudes of 

0.3% and 0.4% undergo a similar reduction in average FIP ratio when loaded in shear. 

For the 0.3% applied strain cases the average FIP ratio is reduced from 0.88 under 

uniaxial loading to 0.73 under shear loading, and for the 0.4% applied strain amplitude 

cases the average FIP ratio is reduced from 0.77 under uniaxial loading to 0.72 under 

shear loading. 

 A reduction in the average FIP ratio is also observed in the presence of an applied 

mean stress/strain. This is shown for the simulations conducted at an applied strain 

amplitude of 0.4% in Figure 75.  

 

a
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Figure 75. Comparison of FIP ratio vs. crack length for uniaxially loaded simulations 

conducted at a strain amplitude of 0.4%, with applied strain ratios of Rε = -1 and Rε = 0.5. 

 

The reduction in average FIP ratio shown the Figure is fairly significant, from 0.77 in the 

case of fully reversed loading to 0.54 under the presence of a mean stress/strain. The 

trend observed in Figure 75 for the 0.4% applied strain amplitude cases is also 

representative of the results observed at an applied strain amplitude of 0.3%, where the 

presence of a mean stress due to the imposed strain ratio of  Rε = 0.5 reduces the average 

FIP ratio from 0.88 under fully reversed loading to 0.67. For all the results presented in 

this section, no trend in FIP ratio is observed with increasing crack length.  

 

5.4.5 Size of Crack Relative to Computational Volume 

In this chapter, the majority of simulations conducted were run until a total of 8 

grains had cracked. As shown in Sections 5.4.1 and 5.4.2 considering uniaxial and shear 

results, the final crack length in these simulations can approach 100 µm. Considering the 

simulation volume is a polycrystalline cube with 60 µm sides and 14 µm grains, a total 

crack length of 100 µm seems very significant. However, this total length is obtained 
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through a summation of the length of each increment of crack growth and is not 

calculated based on the total projected area of the crack, which is somewhat smaller.  To 

illustrate this, we will present the results from a single simulation in which 8 grains were 

allowed to crack and the crack grew to a final length of 74.8 µm, but that is generally 

representative of the progression of a typical simulation. In this simulation, both the 

element size and band width were 2.5 µm and the loading was uniaxial and fully reversed 

at 0.4% applied strain amplitude.  

The total number of elements within the crack and the percentage of cracked 

elements out of the total elements in the mesh are plotted against the i
th

 grain to crack in 

Figure 76.  

 

Figure 76. Progression of a typical simulation in terms of the number and percentage of 

cracked elements. 

 

At the end of the simulation, the crack contains a total of 148 elements, representing less 

than 1.2% of the 13,824 elements in the mesh. Because the mesh has a cubic geometry 

with 60 µm sides and 2.5 µm elements, the cross section contains 576 elements. If we 
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assume that the crack grew entirely on one cross sectional plane, the total area of the 

crack would be 25.7% of the cross-sectional area of the mesh. In reality, due to the non-

planar nature of the crack growth the actual projected area of the crack would be a 

somewhat smaller percent of the cross sectional area. Thus, overall the presence of the 

crack has only a small effect on macroscopic stress-strain response of the mesh in 

response to loading. This is shown in Figure 77 and Figure 78, which compare the stress-

elastic strain response on the 1
st
 complete computational loading cycle (when there is no 

crack present) to the response on the 20
th

 computational cycle when 8 grains have been 

cracked. A slight decrease in stiffness is visible in the tensile loading portion of Figure 77 

on the 20
th

 cycle, which is recovered during the compressive half of the loading cycle as 

the crack closes.  

 

Figure 77. Comparison of the elastic strain response to loading before the addition of a 

crack (1
st
 cycle) and after cracking 8 grains (20

th
 cycle).  

 

The compressive portions of the loading cycles are omitted in Figure 78 to better 

illustrate the reduction in stiffness under tensile loading due to the presence of the crack.  
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Figure 78. Comparison of the elastic strain response to loading before the addition of a 

crack (1
st
 cycle) and after cracking 8 grains (20

th
 cycle) for the tensile portions of the loading 

cycles. 

 

The Young’s Modulus ( E ) was calculated to be 70.4 GPa for the initial loading cycle, 

and after the 20
th

 loading cycle the effective Young’s Modulus due to the damage (
effE )  

was calculated to be 67.8 GPa. Also visible in Figure 78 is a slight hysteresis in the 

elastic response during the tensile portion of the 20
th

 cycle due to the application and 

recovery of damage on individual elements.  
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5.5 Comparison of Fatigue Algorithms 

Figure 79 is a plot of the predicted crack propagation through the same microstructural 

instance using both the Stage I and Stage II fatigue growth algorithms. The mesh 

consisted of 150 grains and cracks were allowed to propagate through a total 8 grains 

before the simulations were terminated. The number of the grain containing the cracked 

band is included on plot to illustrate the general path of the crack. 

 

Figure 79. Comparison of predicted crack growth by Stage I and Stage II algorithms for a 

single microstructural instantiation. Generated using the OW44 Model subjected to Rε=-1,  

εa = 0.4% uniaxial strain controlled cycling. Scale is linear. 

 

The fatigue constants (corresponding to Calibration B) were taken to be the same in both 

simulations so that the results obtained using the two algorithms would be directly 

comparable. Both the Stage I and Stage II algorithms employ the same nucleation law, 

and thus nucleate in the same grain on the same cycle for a specific microstructure 

instantiation. Following nucleation, the two cracks propagate through the microstructure 
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slightly differently, with the SII crack growing faster than the SI crack. Out of the 8 

grains allowed to crack, the SI and SII cracks propagated within 7 of the same grains, 

with a slight variation in the order of cracking after the 3
rd

 cracked grain. Both cracks 

grow to a very similar length (78.1 µm vs. 78.3 µm) during the course of the simulation.  

The crack propagation data for all 10 microstructural instantiations considered are 

plotted in Figure 80. The overall trends in the Figure match those of the single 

instantiation, with the exception of the crack length at the end of the simulation. The 

average crack length after cracking 8 grains predicted by the Stage I algorithm is 66.1 

µm, while the Stage II algorithm predicts an average crack length of 77 µm. 

 

Figure 80. Comparison of predicted crack growth by Stage I and Stage II algorithms for 10 

microstructural instantiations. Generated using the OW44 Model subjected to Rε = -1, εa = 

0.4%, uniaxial strain controlled cycling. Scale is linear. 
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The average number of cycles to grow a crack to 60 µm is approximately 120,000 cycles 

when calculated with the Stage II algorithm and 180,000 cycles using the Stage I 

algorithm, or about 50% longer. However, the Stage I algorithm predicts a significantly 

larger scatter in predicted fatigue lives: the standard deviation of the cycles to reach 60 

µm for the Stage I algorithm is almost 30,000 cycles, while the Stage II algorithm has a 

standard deviation of only 12,000 cycles. Similarly, the range of lives predicted by the 

Stage I algorithm is more than double the range predicted by the Stage II algorithm.  

The difference in crack propagation rates between the Stage I and Stage II 

algorithms is illustrated more clearly Figure 81 which compares the simulated crack 

propagation rates of each with the experimental data of Tokaji et al. [56].  

 

Figure 81. Crack growth rate obtained using the Stage I and Stage II algorithms compared 

to the experimental data of Tokaji et al. [56] for Rε = -1, εa = 0.4%, uniaxial strain controlled 

cycling. 
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In the Figure, we can see both the higher average growth rates for the Stage II algorithm 

and the larger degree of variability predicted by the Stage I algorithm. Both the maximum 

and minimum growth rates in Figure 81 were predicted by the Stage I algorithm. Note 

that the data plotted in Figure 81 were obtained using fatigue model Calibration B 

coupled with constitutive model version OW44. Calibration B was derived using the G31 

constitutive model version, and because of the significant differences between these two 

constitutive models (explored further in Section 5.6) the results are not expected to be 

quantitatively accurate, but the comparison to Tokaji data is included to give the reader a 

sense of the difference between the Stage I and Stage II growth rates compared to the 

scatter in experimental data.   

Similar trends are observed in Figure 82, a box-and-whisker plot of the FIP value 

in the band of minimum life for each of the 8 grains to crack in the 10 microstructural 

instantiations considered. Note that the FIP value plotted for the Stage I results 

corresponds to 
0FIP  , the driving force on a single slip system, while for the Stage II 

results the driving force on the intermediate plane, intFIP , is plotted after the nucleant 

grain.   
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Figure 82. Comparison of FIP values of the i
th

 grain to crack for the Stage I and Stage II 

algorithms for 10 microstructural instantiations. Generated using the OW44 Model 

subjected to Rε = -1, εa = 0.4%, uniaxial strain controlled cycling. 

 

This plot reinforces the trends observed in Figure 80 and Figure 81, with generally higher 

levels of FIP for the Stage II algorithm, and higher degrees of scatter in the FIP values of 

the Stage II algorithm. For both fatigue models, the average FIP exhibits little variance as 

crack grows from the 1
st
 grain to the 8

th
 grain. However, the range in FIP values does 

increase substantially as the crack propagates, especially from the nucleant grain to the 

2
nd

 grain to crack.  

The change in FIP from the nucleant grain to the 2
nd

 grain to crack is highlighted 

in highlighted in Figure 83. Note that in the nucleant grain, the FIPs are the same for both 

the Stage I and Stage II algorithms, because they employ the same nucleation relation.  
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Figure 83. Comparison of FIP values of the 1
st
 and 2

nd
 grains to crack for the Stage I and 

Stage II algorithms for 10 microstructural instantiations. Generated using the OW44 Model 

subjected to Rε = -1, εa = 0.4%, uniaxial strain controlled cycling. 

 

Following nucleation, the median FIP in the 2
nd

 grain to crack (calculated by the Stage I 

algorithm) decreases by approximately 8% from the median FIP in the nucleant grain. 

This differs from the results of Castelluccio in RR1000, who observed that in that alloy 

system, the median FIP in the 2
nd

 grain to crack was approximately 40% lower than in the 

nucleant grain [2]. This is attributed to the notched specimen geometry employed by 

Castelluccio, which created a local stress concentration in the nucleant grain not present 

in the smooth mesh geometries used in this work.  

The data considered by Castelluccio in RR1000 also display a slight increase in 

the range of FIP values from the 1
st
 to 2

nd
 grain to crack, but the effect is much more 

pronounced in the simulations of Al 7075-T6. The increase in the variability of FIP 

observed in Al 7075-T6 compared to RR1000 is perhaps due to the higher propensity for 
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multi-slip in the aluminum alloy.  If a single slip system is active within a grain, the state 

of plastic strain can be captured entirely by maximum value of FIP
α
. However, if there 

are multiple slip systems active and the total plastic strain is proportioned among them, 

and the maximum value of FIP
α
 does not uniquely characterize the plastic strain state, 

and elements or grains with the same effective measures of plastic strain may have 

significant differences in FIP
α
 depending on how the plastic strain is proportioned 

between the slip systems. In contrast, a FIP summated over all slip systems would be 

expected to exhibit a similar degree of variability under both single and multi-slip 

conditions.   

 

5.6: Fatigue Results From Different Constitutive Model Versions 

Uniaxial simulations were conducted on a set of 10 microstructural instantiations 

using both the G31 and OW44 models to assess how the various forms of constitutive 

models affect the lives predicted by the fatigue algorithms. The meshes were subjected to 

20 cycles loading at an applied strain amplitude ( a  ) of 0.4%. For each instantiation and 

version of constitutive model, a simulation was conducted under both fully reversed 

loading ( 1R    ) and with an imposed mean strain ( 0.5R   ).  Nucleation life was 

evaluated after the 3
rd

 computational cycle, and MSC growth lives were evaluated every 

2 cycles following nucleation (5
th

 cycle, 7
th

 cycle etc.) until a total of 8 grains were 

cracked.  The comparison simulations were conducted using fatigue model calibration B 

and the Stage I growth algorithm. Results are shown in Figure 84 with data obtained with 

the G31 version of the constitutive model in blue and data obtained using version OW44 
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in red. Solid symbols denote fully reversed loading and hollow symbols denote results 

from loading with a mean strain.  

 

Figure 84. Comparison of fatigue lives between OW44 and G31 constitutive models under 

uniaxial loading with εa = 0.4%, and Rε = -1 or 0.5. 

 

There are a few key differences between results obtained using the two material models. 

First, simulations using the OW44 constitutive model correctly capture the slight 

reduction in fatigue lives caused by the imposed mean strain (and resultant mean stress). 

This is a significant improvement over the G31 model, which predicts longer fatigue 

lives when cycled with a positive mean strain/stress. This is due to the reduction in cyclic 

plastic strain range predicted by the G31 model when loaded with a mean stress/strain 

compared to when the model is loaded under fully reversed conditions, as discussed in 

Chapter 3. The incorrect trend in fatigue lives predicted by the G31 model was the 
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impetus behind the development and introduction of the OW44 model, as well as proper 

description of ratcheting and mean stress relaxation, which are related, of course. 

Second, the OW44 model predicts longer fatigue lives than the G31 model despite 

the OW44 model predicting a larger degree of macroscopic cyclic plasticity under this 

particular loading condition. Explanation requires comparing the FIP
α
 values for 

simulations conducted with the same microstructural instantiation and loading but with 

the different constitutive models. Figure 85 compares all FIP
α
 values (sorted from highest 

to lowest) within a mesh over the 3
rd

 computational cycle obtained using the G31 and 

OW44 models. The mesh is comprised of 8,000 elements and with 12 FIP
α
 values for 

each element there are 96,000 FIPs to compare.  

 

Figure 85. Comparison of FIP values during the 3rd computational cycle obtained using the 

G31 and the OW44 constitutive models under uniaxial loading with εa = 0.4%, and Rε = -1. 

 



 

167 

 

Figure 85 shows that the G31 model predicts maximum FIP
α
 values that are 

approximately twice as high as those predicted by the OW44 model. Also note the large 

number of near zero FIP
α
 values predicted by the G31 model and the crossover in sorted 

FIP
α 

values at approximately 3000 out of 96,000 total FIPs. While the G31 model has a 

larger number of high FIPs, the OW44 model has a much greater number of moderately 

high FIP
α 

values. This trend holds within individual elements and grains, with the G31 

model predicting plastic strain on a single system and the OW44 model predicting plastic 

strain on multiple slip systems. The difference in active slip systems is due primarily to 

the value of drag stress selected for the models. Both models were calibrated using a non-

evolving drag stress, but the value is much lower in the OW44 model than in the G31 

model (35 MPa vs 130 MPa). Because of this difference, the resolved shear stress on 

many slip systems is of sufficient magnitude to cause some amount of plastic strain when 

using the OW44 model, whereas the same resolved shear stress would have been 

insufficient to induce plastic strain on that particular slip system for the G31 model. The 

data were re-plotted on a semi-log scale in Figure 86 to more clearly display the high FIP 

regime. 
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Figure 86. Semi-log plot of FIP values during the 3rd computational cycle obtained using 

the G31 and the OW44 constitutive models under uniaxial loading with εa = 0.4%, and Rε = 

-1. 

 

The increased number of active slip systems for OW44 explains why the OW44 model 

predicts longer lives. For simulations conducted using the G31 constitutive model, most 

grains have only a single slip system active. In contrast, the plastic strain in the OW44 

model is carried among multiple slip systems, and although the average amount of plastic 

strain is larger, the maximum plastic strain on a single slip system is typically smaller 

than results from the G31 model.  Not only does this emerge from fitting ratcheting and 

mean stress relaxation, as well as specimen level plasticity, but it is consistent with 

physical understanding of the multi-slip character of Al alloys, which is physically a 

product of their high stacking fault energy [31, 33].  The Stage I-focused fatigue 

algorithm only considers FIP values for a single slip system at a time, and therefore 
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predicts shorter lives for the G31 model due to higher peak FIP
α
 values. The longer lives 

predicted for the OW44 model highlight the importance of developing Stage II fatigue 

algorithms that can account for the influence of cyclic plastic strain on multiple slip 

systems within a grain. 

Additional simulations were conducted to compare the performance of the G31, 

OW44, and OW57 versions of the constitutive model. These simulations were conducted 

under both uniaxial and shear loading conditions. The meshes were subjected to strain 

controlled loading at an equivalent strain amplitude ( a  ) of 0.33% for both fully reversed 

loading ( 1R    ) and with an imposed mean strain ( 0.5R  ).  Nucleation life was 

evaluated after the 5
th

 computational cycle, and MSC growth lives were evaluated every 

2 cycles following nucleation (7
th

 cycle, 9
th

 cycle, etc.) until a total of 8 grains were 

cracked.  Results are shown in Figure 87. Note that results from the G31 model are 

omitted due to the absence of cracks within the simulations caused by low levels of 

plastic strain (model G31 has a large value of drag stress). Data in red corresponds to 

results from model OW44 while data in green correspond to simulations conducted with 

model OW57. Solid symbols denote fully reversed loading and hollow symbols denote 

results from loading with a mean strain, while circular symbols denote uniaxial loading 

and diamonds represent shear loading cases.  
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Figure 87. Comparison of fatigue lives between OW44 and OW57 constitutive models. 

Loading is shear or uniaxial with an applied equivalent strain amplitude ( ) of 0.33%, and 

with an applied strain ratio (Rε) of 0.5 or -1.  

 

The key difference between the OW44 model and the OW57 model is that for almost all 

cases, the OW44 model predicts shorter fatigue lives and crack propagation over grains in 

larger cycle increments. This is due largely to the difference in drag stress evolution 

between the two models; model OW44 has a constant low valued drag stress (35 MPa) 

and the OW57 model has an evolving drag stress that saturates at a much higher value 

(100 MPa). Figure 87 illustrates the importance of the constitutive model when 

conducting fatigue simulations; the differences in results obtained under uniaxial vs. 

shear loading or at different strain ratios are smaller than the differences that result from 

using similar constitutive models calibrated to the same experimental data.  

Results for the OW44 model are shown in Figure 88 with the shear loading cases 

further distinguished from uniaxial loading cases by plotting in black hollow (Rε = 0.5) or 

a
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red and black (Rε = -1) diamonds with dashed connecting lines. There is an observable 

strain ratio effect for the simulations conducted under uniaxial loading conditions, which 

is consistent with experimental observations. The simulations conducted with a mean 

shear strain do not experience a similar detriment in fatigue life, as is expected based on 

general experimental trends. Another feature of note in in Figure 88 is that shear lives are 

approximately double those under the equivalent uniaxial strain amplitude. These results 

are consistent with those presented in Section 5.5 which considered the same 

microstructural instantiations, material model, and loading conditions, but with the Stage 

II fatigue model with updated calibration (calibration A).    

 

Figure 88. Comparison of shear and uniaxial results from the OW44 constitutive model 

cycled at an equivalent strain amplitude ( ) of 0.33%, with either Rε = 0.5 or Rε = -1. 

 

a
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Results for the OW57 model are shown in Figure 89 with the shear loading cases further 

distinguished from uniaxial loading cases by plotting in black hollow (Rε = 0.5) or green 

and black (Rε = -1) diamonds with dashed connecting lines. Unlike the results obtained 

using model OW44 or the results shown in the previous report using model OW57 cycled 

at a strain amplitude of 0.4%, there is no discernable effect of mean strain on the 

predicted fatigue life in Figure 89. In addition, all of the simulations loaded in shear 

arrested rapidly, with the longest simulation cracking a total of only 3 grains before 

arresting.  

 

Figure 89. Plot of fatigue crack growth results using the OW57 constitutive model cycled at 

an equivalent strain amplitude of 0.33%. 

 

The lack of crack growth under shear loading suggests that the saturation value of the 

drag stress is too high, resulting in levels of plasticity that are insufficient to drive crack 

growth.  

The interplay of the constitutive model explored in this section, including the 

representation of slip system activity, ratcheting, mean stress relaxation, etc., indicates a 



 

173 

 

very important aspect of the current MSC modeling framework.  Namely, one should 

apply this framework in conjunction with physically-based and validated crystal plasticity 

models.  This differs conceptually from the notions of fracture mechanics, where only a 

few crack growth parameters are assumed sufficient to capture differences among 

materials.  In the present framework, the constitutive model reigns supreme as providing 

driving forces for crack growth, the parameters of which are relatively straightforward to 

estimate apart from numerous experiments.  

 

5.7: Volume Effects 

Two additional mesh configurations were created to study the effect of mesh 

volume and total number of grains considered on the simulated fatigue behavior. Both 

mesh configurations used a mean grain size of 14 µm, an element size of 5 µm and a 

band width of 5 µm. The larger mesh (see Figure 90 left) had a volume of (100 µm)
3
 and 

a total of 696 grains, while the smaller mesh (see Figure 90 right) had a volume of (50 

µm)
3
 and a total of 87 grains, 1/8

th
 the volume of the larger coarse mesh. A total of 35 

microstructural instantiations were created for each mesh configuration. The average 

number of elements per grain of 11.5 is the same for both configurations.  
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Figure 90. Comparison of the meshes used to evaluate the effects of simulation volume and 

grains considered on fatigue lives. Relative volumes of the two mesh configurations are 

shown to scale.  

 

A comparison of the crack growth lives predicted for uniaxial, fully reversed, tension-

compression simulations conducted at a strain amplitude of 0.4% is shown in Figure 91.  

Results from the larger mesh are plotted in red while results from the smaller mesh are 

plotted in magenta.  

 

Figure 91. A comparison of crack propagation in meshes with varying volume, εa = 0.4%, Rε 

= -1. 



 

175 

 

There are two particularly noteworthy aspects of Figure 91. The first is the outcropping 

of six cracks with predicted life longer than 1x10
5
 cycles, and the higher rate of arrest 

(nonpropagating cracks) observed for the mesh with the smaller volume. This effect is 

likely due to the higher probability of a crack within the smaller volume mesh coming 

into contact with the surface of the overall volume element. The bands along the surface 

of the mesh have fewer neighboring bands (due to the non-periodic nature of these 

simulations) than a band within the center of the mesh; thus the crack has fewer candidate 

bands to extend along and a lower probability of being in contact with a favorably 

oriented grain.   

The second noteworthy aspect is the difference in nucleation lives between the 

two coarse meshes. This is seen more clearly in Figure 92, which plots the predicted 

number of cycles and crack length after nucleating and growing through the first grain for 

both meshes. 

 

 

Figure 92. A comparison of crack nucleation in in meshes with varying volume under 

uniaxial loading, εa = 0.4%, Rε = -1. 

 

In Figure 23, nucleation lives for the mesh containing a larger number of grains are 

shifted slightly to the left of the nucleation lives of the mesh with a smaller volume. This 
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effect is caused by the higher probability of finding a favorably oriented grain in which to 

nucleate a crack in the mesh with the larger number of grains considered.  

The magnitude of the effect is slight and suggests that for simulations randomly 

oriented grains, a computational volume encompassing approximately 100 grains is 

sufficient to approximate the spread in nucleation lives. Note that a much larger number 

of grains and microstructural instantiations would be needed to needed to properly 

evaluate the extreme value statistics associated with nucleation.  

Note that these simulations were conducted using the G31 version of constitutive 

model, fatigue model calibration B, and the Stage I growth algorithm. While the results 

using these parameters may not match the results obtained using different versions of 

constitutive model and fatigue model quantitatively, they qualitatively capture the trends 

that arise due to modifications of the mesh configuration. 

5.8: Mesh Refinement Effects 

An additional mesh configuration was introduced to explore the effects of mesh 

refinement on the fatigue algorithms. This mesh configuration had a volume of (50 µm)
3
 

and a total of 87 grains, with an element size of 2.5 µm.  Both mesh configurations used a 

mean grain size of 14 µm and a band width of 5 µm. In this section, the mesh with a 

volume of (50 µm)
3
 , 87 grains, and 5 µm elements introduced in the previous section is 

referred to as the coarse mesh, while the additional mesh with the same volume and 

number of grains, but with a 2.5 µm element size, is referred to as the refined mesh. 

Example instantiations of both the coarse and refined meshes are shown in Figure 93.  
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Figure 93. Coarse mesh with 5 µm elements (left) compared to a refined mesh with 2.5 µm 

elements. Both mesh configurations have the same volume and number of grains. 

 

Figure 94 is a semi-log plot of crack length vs. cycles for uniaxial, fully reversed, 

tension-compression simulations conducted at a strain amplitude of 0.4% using the coarse 

and refined meshes.  For this set of simulations, 35 instantiations of each mesh were 

considered and a total of 6 grains were allowed to crack. Results for the coarse mesh are 

plotted in magenta and results for the refined mesh are plotted in blue. 

 

 

Figure 94. A comparison of crack growth in coarse and refined meshes under uniaxial 

loading, εa = 0.4%, Rε = -1. 
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The largest difference in predicted crack growth between the coarse and refined mesh is 

the final crack length after cracking 6 grains. For the coarse mesh, most cracks have 

grown to approximately 70 µm in length by the end of the simulation. However, the 

refined meshes have only grown to a length of approximately 60 µm after cracking the 

same number of grains. Additionally, there is a sharp reduction in the number of run-outs 

predicted for the refined mesh, with none of the 35 simulations arresting, compared to 11 

for the coarse mesh.  The lack of run-outs observed for the refined mesh suggests that the 

run-outs observed for the coarse mesh simulations are entirely a product of the level of 

mesh refinement.  

The total life comparison considered in Figure 94 can be further separated into the 

life to nucleate and grow the crack to the size of one grain (referred to as “nucleation life” 

in the context of the simulations), and subsequent propagation through the 

microstructure. A comparison of the predicted nucleation life and initial crack size is 

presented in Figure 95. 

 

 

Figure 95. A comparison of predicted number of cycles and crack length after nucleating 

and growing through the first grain for coarse (magenta circles) and refined (blue triangles) 

meshes. Loading is uniaixal εa = 0.4% and Rε = -1. 
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In the Figure we can see that overall the predicted nucleation lives are similar for both 

meshes. The more refined mesh appears to predict a slightly wider range of nucleation 

lives, although most of the predicted nucleation life values overlap. The predicted 

propagation lives for the coarse and refined meshes are plotted in Figure 96. To generate 

this plot, every crack considered in Figure 94 is assumed to nucleate at 10,000 cycles 

with a length of 5 µm, and growth through the 5 subsequent grains to crack is plotted. 

 

 

Figure 96. A comparison of crack propagation in uniaxially loaded coarse and refined 

meshes, εa = 0.4%, Rε = -1. 

 

For both mesh sizes, crack growth rates appear to be similar with much of the crack 

propagation data overlapping. However, cracks in the more refined mesh tend to 

propagate in smaller increments, i.e. cracking smaller bands within a grain. This results in 

a shorter overall crack length after cracking six grains despite the average crack growth 

rate being slightly higher than that of the coarse mesh.  

To explain why cracks propagate in smaller increments in the refined mesh than 

in the coarse mesh (even though both meshes have the same grain size and nominal band 
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width) requires examination of the distribution of band lengths within the two respective 

meshes. The length of each band is calculated according to 

 
 

Mesh Size
Band length = Mesh Size  # of Elements in Band

Band Width
 . ( 62 ) 

   

Figure 97 is a histogram that compares the length of all bands within 5 coarse 

meshes and 5 refined meshes. To create the histogram band lengths were binned in 2 µm 

groups. Due to the discrete nature of the possible band lengths, finer binning produces 

gaps in the histogram which makes direct comparison between the two meshes more 

difficult. The 5 refined meshes had a total of 6690 bands and the coarse mesh had a total 

of 5484 bands, approximately 82% of the quantity of bands in the refined meshes.  

 

 

Figure 97. Distribution of band lengths within the coarse mesh and refined mesh. For both 

meshes the mean grain diameter is 14 µm and the band width is 5 µm. Loading is uniaxial 

with εa = 0.4% and Rε = -1. 
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In the Figure we can see that while both meshes have a nominal band width of 5 µm, the 

refined mesh (with 2.5 µm element size) has a significant number of bands with a length 

smaller than 5 µm, which is the smallest possible band size in the coarse mesh. The 

average band length is 9.1 µm in the coarse mesh and 7.9 µm in the refined mesh. It is 

this difference in average band length that likely accounts for the majority of the 

difference in total length after cracking 6 grains.  

To further investigate mesh refinement effects, the FIP value of the cracked band 

in the i
th

 grain to crack, for both coarse and refined meshes, is plotted in Figure 98. The 

FIP values in the plot are the average value obtained across 35 simulations, each 

considering a distinct microstructural instantiation.    

 

 

Figure 98. A comparison of the average FIP values of the i
th

 cracked bands in coarse and 

refined meshes, εa = 0.4%, Rε = -1. 

 

In the nucleant grain, the average FIP in the cracked band is higher for the coarse mesh, 

resulting in the shorter nucleation lives observed in Figure 95. In the 3
rd

 to 6
th

 grains to 
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crack, however, the FIP of the cracked band is higher for the refined mesh. This could 

possibly be due to the more refined mesh more accurately capturing the stress and strain 

intensification effects of the crack, and explains the slightly faster rate of crack 

propagation for the refined mesh observed in Figure 96.  

Overall, the difference in predicted fatigue lives between simulations conducted 

with the coarse and refined meshes is fairly insignificant, aside from the increased rate of 

run-outs observed in the with the coarser meshes, which suggests that at this loading 

amplitude any run-outs are a primarily a result of the mesh refinement.  This is an 

important finding, as the coarse meshes have almost an order of magnitude fewer 

elements per grain than do the refined meshes. Therefore, significant computational 

savings can be realized by employing a coarser mesh with only small losses in accuracy, 

but at the cost of increased run-outs. These run-outs are undesirable because they result in 

early termination of the simulation, consuming computational resources while producing 

little valuable data. The ideal mesh refinement would be coarse enough significantly 

reduce the computational cost of each simulation, but refined enough to prevent a large 

number of run-outs from occurring. More simulations would be needed to assess the 

optimal level of mesh refinement, but the simulations presented in this section suggest it 

is bounded between 92 and 11 average elements per grain.  

5.9 Band Size Effects 

The width of the crystallographic bands used as FIP
α
 averaging volumes and as the crack 

propagation path in the Stage I algorithm corresponds physically to the width of PSBs 

observed to form when the material is cyclically loaded. As noted previously, for planar 

slip materials such as RR1000 these persistent slip bands are well defined, but for Al 
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7075-T6, which exhibits more homogeneous deformation, the band width parameter has 

a less direct physical analog. There are however, practical considerations when selecting 

the width of the bands. For purposes of uniformity in actual thickness between the bands 

(after elements have been assigned based on the location of their centroids), the band 

width should be a multiple of the element size rather than an arbitrary length. The band 

width should also not be smaller than the element size to avoid the formation of bands 

with disconnected elements. For the microstructure considered in this thesis (with 

equiaxed 14 µm grains), these band width requirements, coupled with the need to sample 

a sufficient number of grains while retaining computational feasibility, lead to typical 

band widths equal to either one or two elements in thickness. For the meshes used to 

generate the results presented in Sections 5.4 through 5.6 (see Figure 46), this 

corresponds to a band width of either 2.5 µm or 5.0 µm. A 5.0 µm band width was 

employed in the simulations presented in Sections 5.4 through 5.6, but the use of a 2.5 

µm band width would have been equally valid in terms of physical justification. To 

investigate the effect of choosing a band width of either one or two elements in thickness 

on the predicted fatigue lives, two sets of microstructural instantiations were created. The 

first set of 10 instantiations corresponded exactly to the mesh geometry used to generate 

the results in Sections 5.4 through 5.6, with 60 µm side lengths, 2.5 µm cubic elements, 

14 µm grains, and 5.0 µm band widths. The second set of 10 instantiations differed only 

in the width of the bands, which was taken to be 2.5 µm. A comparison of the resultant 

bands in an example grain of approximately the same volume between the two 

instantiations is shown in Figure 99. 

 



 

184 

 

  

Figure 99. A comparison of a grain with a band width of two elements in thickness 

(left) compared to a grain of similar size but with a band width equal to a single 

element in thickness (right). Each band of elements is represented by a separate 

color. 

 

Fatigue simulations were performed on these two sets of microstructural instantiations 

with different band widths in order to assess the effect of band width on the resultant 

fatigue lives. Loading was uniaxial at an applied strain amplitude of 0.4%, and Rε = -1. 

Lives were evaluated using the Stage I algorithm, and a total of 8 grains were allowed to 

crack before the simulation was terminated. The results are shown in Figure 100 on a 

linear scale to emphasize the similarity between the data sets. 
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Figure 100. Comparison of results obtained using microstructural instantiations that differ 

only in the size of the band width. Loading is fully reversed, uniaxial tension-compression 

conducted at εa = 0.4%. 

 

The results in Figure 100 illustrate that the effect of band width on the fatigue lives 

predicted is fairly small, as no discernable trend is easily visible and most of the data for 

the two band widths considered are overlapping. Comparing the average number of 

cycles to grow a crack to 60 µm for the two cases there is a slight increase lives when 

employing a 5.0 µm band width, with an average life to 60 µm crack length of 

approximately 182,000 cycles, compared to 161,000 cycles for the 2.5 5.0 µm band width 

cases. This represents only 13% increase in predicted fatigue lives when employing 

bands encompassing twice the averaging volume, and illustrates the relative insensitivity 

of the fatigue algorithms to the choice of band width within the limits outlined in the 

introduction to this section.  
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5.10 Application of Stage II Algorithm to Coarse Meshes 

The results presented in Sections 5.7 through 5.9 considered the insensitivity of 

the stage I fatigue algorithm to changes in mesh geometry. The data presented in those 

Sections lead to the conclusion that the stage I fatigue crack growth algorithm is fairly 

insensitive to changes in mesh geometry up to the limits discussed in the respective 

sections. In this Section, data will be presented for simulations conducted with the stage 

II algorithm, comparing the results obtained for the refined meshes used to generate the 

bulk of the results presented in this chapter to results obtained using a much smaller, 

coarser mesh originally developed for debugging purposes.  

The refined mesh that was employed to generate the data presented in Sections 

5.4 through 5.6 consisted of 150 Grains with a 14 µm average grain size. The refined 

mesh had 60 µm sides and 2.5 µm elements, for a total of 13,824 elements. Fatigue 

simulations conducted using this mesh until 8 grains had cracked took in excess of 900 

CPU hours to complete. In contrast, the coarse mesh consisted of 30 Grains with a 14 µm 

average grain size. This coarse mesh had 35 µm sides and 5.0 µm elements, for a total of 

343 elements. Fatigue simulations conducted using this mesh until 8 grains had cracked 

took approximately 2 CPU hours to complete using the coarse mesh, a reduction in 

computational resources by a factor of 450 compared to the refined mesh. Two example 

microstructural instantiations, one representing the refined mesh and one representing the 

coarse mesh are presented in Figure 101.  
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Figure 101. A comparison of the refined (left) and coarse (right) meshes used to assess the 

mesh dependence of the Stage II algorithm.  

 

Four loading conditions were considered for the set of comparison simulations, at applied 

strain amplitudes of 0.3% and 0.4%, with applied strain ratios (Rε) of -1 and 0.5. Loading 

was uniaxial in all cases, and simulations were conducted until 8 grains cracked.  

The results for the refined mesh loaded with applied strain amplitudes of 0.3% 

and 0.4% under fully reversed, uniaxial conditions are reproduced from Section 5.4.1 in 

Figure 102. Ten microstructural instantiations were considered at each loading condition 

considered in Figure 102.  

 

Figure 102. Crack growth in 10 microstructural instantiations of the refined mesh under 

uniaxial, fully reversed loading at applied strain amplitudes of εa= 0.3% and 0.4%.   
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Results from simulations conducted using the same loading conditions of 0.3% and 0.4% 

applied strain amplitude with Rε = -1 on 50 microstructural instantiations of the coarse 

mesh are shown in Figure 103.  

 

Figure 103. Crack growth in 50 microstructural instantiations of the coarse mesh under 

uniaxial, fully reversed loading at applied strain amplitudes of εa= 0.3% and 0.4%.  

  

Through comparison of Figure 102 and Figure 103, which are plotted using the same 

scale and axis limits, it is clear that the vastly different mesh geometries predict similar 

fatigue lives and capture the same trends when subjected to the same loading conditions. 

Direct comparisons results obtained using the two different mesh geometries under fully 

reversed, uniaxial loading at strain amplitudes of 0.3% and 0.4% are presented in Figure 

105 and Figure 104, respectively, with results from the refined mesh geometry plotted in 

red or blue, and results from the coarse mesh plotted in black.  
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Figure 104. Comparison of crack growth in 50 microstructural instantiations of the coarse 

mesh (plotted in black) and 10 instantiations of the refined mesh (plotted in red) loaded at εa 

= 0.3% and Rε = -1. 

 

 

Figure 105. Comparison of crack growth in 50 microstructural instantiations of the coarse 

mesh (plotted in black) and 10 instantiations of the refined mesh (plotted in blue) loaded at 

εa = 0.4% and Rε = -1. 
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The data plotted in Figure 105 and Figure 104 show that on average the coarse mesh 

geometries predict longer fatigue lives than the more refined meshes under identical 

loading conditions. Additionally, the coarse mesh geometries predict a longer crack 

length after cracking 8 grains than in the simulations conducted with the more refined 

mesh geometry. However, there is a significant overlap between the results predicted 

using the two mesh geometries.  

The results also show clear differences in the nucleation regime, with shorter 

nucleation lives predicted by the refined mesh geometry. As discussed in Section 5.7, this 

effect can be partly explained by the higher probability of finding a favorable oriented 

gain in the more refined mesh geometry which encompasses a larger simulated volume, 

and thus samples more grains. However, this effect is offset by the increased number of 

microstructural instantiations considered for the coarse mesh geometry: although each 

refined mesh instantiation sampled 5 times as many grains as each coarse mesh 

instantiation (150 vs 30), simulations were conducted on 5 times as many coarse mesh 

microstructural instantiations as refined mesh instantiations (50 coarse instantiations vs 

10 refined instantiations). Thus, the consistent difference in observed nucleation lives 

between the two mesh geometries is more probably due to the larger effect of the 

imposed boundary conditions on the smaller mesh.  

Additional simulations were performed on the coarse mesh geometry to assess 

whether this much smaller geometry could capture the observed detriment in fatigue lives 

when cycled with an imposed mean stress/strain. Again, the applied loading conditions 

were identical to those presented in Section 5.4.1, with cyclic uniaxial loading at applied 

strain amplitudes of 0.3% and 0.4% at strain ratio (Rε) of 0.5 for 20 computational 
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loading cycles. The results from simulations conduced at a strain amplitude of 0.3% are 

plotted in Figure 106, with the fully reversed data in red and the cases with an imposed 

mean strain in white and black.  

 

Figure 106. Crack growth in 50 microstructural instantiations of the coarse mesh under 

uniaxial loading at an applied strain amplitude of εa = 0.3% and with Rε = -1 or 0.5. 

 

A slight detriment to the predicted fatigue lives when loaded with Rε = 0.5 is observed in 

both the nucleation and propagation regimes shown in Figure 106, but most of the data 

overlap between the two cases. To quantitatively assess the impact of the mean stress we 

can compare the shortest life to reach a length of 90 µm, and the average life to a crack 

length of 90 µm for both the Rε = -1 and Rε = 0.5 cases. The decrease in average life to a 

90 µm crack length was 14%, and the decrease in shortest life the same crack length was 

15%.  

In comparison, Figure 107 is a plot of the 0.4% strain amplitude simulation data, 

with the fully reversed data in blue and the Rε = 0.5 data black and white.  
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Figure 107. Crack growth in 50 microstructural instantiations of the coarse mesh under 

uniaxial loading at an applied strain amplitude of εa = 0.4% and with Rε = -1 or 0.5. 

 

The detriment to fatigue lives due to the presence of a mean strain/stress is more 

pronounced at this strain amplitude, with a decrease in the average life to a 90 µm crack 

length of 24%, and a decrease in the shortest life to the same length of 34%.  

Results from the simulations conducted with the coarse meshes compared to 

experimental results obtained by Zhao and Jiang [108] in Figure 108. Again, it is 

important to note that the life data of Zhao and Jaing correspond to macroscopic 

specimen separation (failure), while the simulated results consider life to grow the crack 

to a length of 90 µm. Additionally, the coarse meshes predict longer lives than the refined 

meshes under equivalent loading conditions, and because the parameters were calibrated 

with a refined mesh, this skews the coarse mesh results to the right (towards longer lives). 

However, the purpose of Figure 108 is to illustrate the relative difference between the 
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experimental and simulated decrease in fatigue lives in response to a mean stress/strain, 

rather than an exact numerical life prediction.  

 

 

Figure 108. Comparison of results from stage II fatigue simulations conducted using the 

coarse mesh geometry and uniaxial experimental data from [108]. 

 

Note that the trends observed in Figure 108 qualitatively match those seen in Figure 65 

for refined meshes subjected to the same loading conditions. For simulations conducted 

with both levels of mesh refinement there is an observable reduction in the predicted 

fatigue lives due to the presence of a mean stress during cycling, an effect which is more 

pronounced for the 0.4% applied strain amplitude cases than for the 0.3% applied 

amplitude cases. The reductions in average life to reach a prescribed crack length are 

similar for both the coarse and refined meshes, with the 0.3% applied strain amplitude 

cases undergoing a reduction of 14% and 8%, respectively, and the .4% applied strain 
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amplitude cases undergoing a reduction of 24% for the coarse meshes and 39% for the 

more refined mesh geometries.  

 The ability of the coarse mesh geometries to predict similar fatigue lives and the 

same observed trends as simulations conducted with highly refined mesh geometries is 

particularly encouraging because of the massive reduction in computational cost of the 

simulations conducted with the smaller, coarser microstructural volumes. However, at 

this level of mesh coarseness, boundary effects are certainty present because the crack 

represents a significant fraction of the total mesh volume. For this reason, the level of 

mesh coarseness studied in this Section (approximately 10 elements per grain) probably 

represents the lower limit of mesh geometry that will still produce acceptable results.  

5.11: Conclusions 

This chapter presented results obtained using the mesoscale fatigue algorithm to 

model nucleation and MSC growth in Al 7075-T6. After discussing calibration of the 

fatigue constants using experimental data, numerous scenarios were investigated using 

the model, including the fatigue behavior under uniaxial and shear loading at a range of 

applied strain amplitudes, the effect of constitutive model on the predicted fatigue lives, 

and differences between the Stage I and Stage II algorithms. The key findings of this 

chapter are summarized below.  

 The OW44 constitutive model coupled with the Stage II fatigue crack growth 

algorithm shows good correlation with experimental data and trends under 

uniaxial and shear loading. The model correctly predicts the detrimental effect of 

mean stress on the fatigue life.  
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 The constitutive model has a significant impact the fatigue life predictions and 

FIP distributions, even for models that were calibrated to the same macroscopic, 

fully-reversed cyclic loading data and are based on the same flow rule. The effect 

of the constitutive model on the predicted fatigue lives was found to be larger than 

the differences between uniaxial and shear loading, or between loading with 

different Rε values. Only loading at different applied strain amplitudes was found 

to have the same degree of impact on the fatigue lives.  

 The Stage II algorithm predicts faster growth rates than the Stage I algorithm, but 

the degree of scatter in predicted fatigue lives is reduced. This is partly attributed 

to the larger FIP averaging domain of the Stage II model, which considers the 

driving force in two bands rather than only one for the Stage I model. This 

effectively doubles the FIP averaging volume, and thus reduces variability 

accordingly. 

 Mesh dependency is significantly reduced by the averaging of FIPs over the band 

volume. Reducing the element size by a factor of 2 had only a small impact on the 

predicted fatigue lives, most of which was due to the change in the distribution of 

band lengths. Similarly, employing a much smaller simulated volume had only a 

small effect. This is an important result, as computational evaluation of the fatigue 

algorithms using the smaller volume coarse meshes is significantly faster than 

evaluation of the more refined mesh of the same volume. Therefore, these coarse 

meshes can be employed in situations where a large number of simulations are 

needed for statistical analysis without significant loss of accuracy.  
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CHAPTER 6: CONCLUSIONS AND DIRECTIONS FOR FUTURE 

WORK 

6.1: Summary 

This work modeled the cyclic stress-strain response of polycrystalline Al 7075-T6 

using a crystal plasticity based constitutive relation, which was then applied to model the 

nucleation and early growth of 3D microstructurally small fatigue cracks through several 

grains. The response of the model under asymmetric cyclic loading was evaluated and it 

was found that the model predicted an unrealistically high magnitude of plastic ratcheting 

and associated mean stress relaxation. Such a high degree of ratcheting is not 

experimentally observed for Al 7075-T6 (when cycled at room temperature at the applied 

strain ranges considered in this work) and is an artifact of the simple Armstrong-

Frederick back stress evolution. The over-prediction of the ratcheting response by 

Armstrong-Frederick back stress hardening laws has been observed by many researchers 

in traditional J2 plasticity, but there is no research of which this author is aware regarding 

similar findings for the Armstrong-Frederick hardening laws at the slip system level in 

crystal plasticity. It is often tacitly assumed that the intergranular interactions are 

somehow responsible for modifying the polycrystalline response to account for proper 

description of ratchetting, but this does not appear to be the case for Al 7075-T6, 

characterized by high symmetry fcc structure and ability to cross slip.  A modification to 

the back stress evolution equation was implemented, based on the work of  Ohno and 

Wang [85] and a polycrystal macroscopic model proposed by McDowell [86]. This is the 

first time such a back stress hardening law has been employed to model the back stress 
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evolution at the individual slip system level in a crystal plasticity model. An additional 

model with Ohno-Wang type back stress hardening and an evolving drag stress was also 

introduced. All versions of the constitutive model shared a common flow rule and 

differed only in the calibration and form of back stress and drag stress evolution 

equations. All models were calibrated to the same experimental data, and the cyclic 

stress-strain curves at 1% and 1.8% strain amplitude were nearly identical. However, 

significant differences were observed between the models at applied strain amplitudes 

below the point of macroscopic yielding (<0.6%).  Additionally, the models showed very 

different responses to cyclic loading with an imposed mean stress/strain. Overall, the 

model employing the Ohno-Wang back stress hardening law and a constant drag stress 

was best able to fit fully reversed cyclic stress-strain data and match mean stress 

relaxation data at the applied strain amplitudes of interest.  Later in the thesis, it is shown 

that this model properly captures trends of mean stress dependence in MSC fatigue crack 

growth.  

An enhanced algorithm for modeling MSC crack growth was introduced, based 

on a format originally developed by Castelluccio [2], and intended originally for planar 

slip alloys and Stage I crack formation and early growth. The enhanced Stage II fatigue 

algorithm captures the driving force on multiple slip systems and allows for crack 

propagation along arbitrary planes that are not defined before the simulations, but are 

instead determined by the FIP fields within a grain.  Such a model is critical for 

simulating the growth of microstructurally small cracks in alloys with an early transition 

to Stage II growth, such as Al alloys. The fatigue model was first implemented using the 

computational framework established by Castelluccio, who developed the algorithms 
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within the Abaqus UEXTERNALDB [4] subroutine. This framework was simplified 

significantly by shifting of the implementation of the fatigue algorithms from the 

UEXTERNALDB into another program written in Python [105].  

The fatigue model was then applied to Al 7075-T6 and simulations were 

conducted under a range of loading conditions. The results of the simulations for 

polycrystalline microstructure instantiations loaded uniaxially and in shear were in good 

agreement with experimental results. Additionally, the model correctly captured the 

detrimental effects of mean stress on the fatigue life.  

Results from simulations that employed different versions of the constitutive 

model were then compared. The difference in predicted fatigue lives between the three 

versions of the constitutive models was found to be substantial, highlighting the crucial 

role of appropriate physically-based constitutive laws in these 3D MSC growth 

algorithms.  

Results were obtained using the Stage I and Stage II algorithms to model the same 

microstructure instantiations and identical loading conditions to compare these 

algorithms. As expected, the Stage II algorithm was observed to predict higher rates of 

crack propagation under the same loading, because the model accounts for the diving 

force on multiple slip systems. The Stage II algorithm also showed a reduced degree of 

variability from the Stage I algorithm, which is likely a result of considering a FIP 

averaging domain of roughly twice the volume.  

The effects of differences in mesh configuration on the predicted fatigue lives 

were also examined and it was found that overall the impact of such changes is small. 

This is encouraging for applications that require a large number of simulations, such as 
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the evaluation of the extreme value statistics on surrogate driving force measures 

associated with fatigue, because smaller volumes with coarse meshing have significantly 

reduced computational requirements.  

6.2: Directions for Future Research 

With the Stage II fatigue model in place it is now possible to quantitatively study 

the factors that promote either Stage I or Stage II growth in this alloy. The nature of MSC 

growth in Al 7075-T6 is a hotly debated issue in the literature, and a model that 

incorporates the underlying physics of the problem could be instrumental in gaining a 

deeper understanding of what controls such behavior. 

Now that the fatigue model and constitutive model have both been shown to 

correlate well with experimental data, it is possible to employ the models to explore 

concepts that would otherwise require prohibitively numerous experiments. Follow-on 

work is currently underway to explore the gamma plane proposed by Brown and Miller 

[10] using the models developed in this Thesis to predict the propagation of MSC cracks 

under a wide range of multiaxial loading conditions.   

While developing a 3D MSC growth framework for one specific material has 

certainly has value, the model is of little use outside of that specific application unless it 

can be quickly adapted to a new material system and associated constitutive model. Thus, 

any fatigue model that can be applied to existing constitutive models easily and without 

major modification to the constitutive model itself will have a greater impact on future 

research and will be more likely to be employed. With the implementation of the fatigue 

algorithms within the Python based external program, the fatigue model and constitutive 

relations can be developed and maintained separately. With some small additions to the 
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Python code, the necessary modifications to the constitutive model needed for 

compatibility with the MSC formation and growth framework can be reduced to a bare 

minimum. This would allow the multistage MSC formation and early growth framework 

to be quickly adapted to a new constitutive model.   

There are a few aspects of the MSC formation and growth framework for which 

improvement could be made. First is the verification of the modeling assumptions, 

primarily the fitting of the FIP to ΔCTD relation. This work fit the FIP to match 

experimental crack growth rate data, while the previous work of Castelluccio [2] 

employed simulations of single crystals with explicitly modeled cracks in order to 

estimate the FIP to ΔCTD relation. Now that there is a higher degree of confidence in the 

constitutive model for Al 7075-T6, the simulations of cracked single crystals should be 

performed in order to verify the values of the parameters employed in this work and the 

linear variation of ΔCTD with FIP observed by Castelluccio. Second, a methodology 

should be developed to evaluate the twist and tilt angles between the crack and candidate 

bands for propagation (which can both be non-crystallographic during Stage II growth), 

accounting for the increase in driving force that would be needed to propagate a crack 

across grain boundaries of high twist/tilt compared to the boundary of between more 

closely aligned planes. Third, while results under uniaxial loading conditions are in good 

agreement with available experimental data, the predicted MSC fatigue lives under shear 

loading are conservative by approximately an order of magnitude. As discussed in 

Chapter 5, the incorporation of an additional incubation term into the equation governing 

the life of the nucleant grain offers a promising pathway to address this discrepancy with 

experimental results.  
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APPENDIX A 

Functionality of the UMAT, UEXTERNALDB, and Python sub-program 

The UEXTERNALDB and Python sub-program handle the large majority tasks 

associated with the fatigue algorithms, but the UMAT does contain critical sections of 

code that allow the fatigue algorithms to function. This Appendix is focused on 

explaining the details of operation and interaction of the UMAT, UEXTERNALDB, and 

Python sub-program in a complete and concise way. Several flowchart-type diagrams 

have been reproduced from earlier Chapters in enhanced levels of detail to explain the 

intent behind some aspects of the code. 

 The implementation of these user subroutines and external programs is illustrated 

in Figure 109. The first section of user written code accessed by Abaqus at the start of a 

simulation is the UEXTERNALDB. Abaqus passes in an integer valued variable named 

“LOP” into the UEXTERNALDB each time it is called to indicate from where in the 

analysis process the UEXTERNALDB is being called. For example, LOP = 0 

corresponds to the very first call of the UEXTERNALDB, before any loading has 

occurred. This call is only performed once.  After this call to the UEXTERNALDB, the 

application of loading begins in the form of steps. These steps are divided smaller sub-

steps called increments. For each loading increment, the UEXTERNALDB is called at 

least twice: before the increment (LOP = 1) and after the increment has converged (LOP 

= 2). In between these two calls of the UEXTERNALDB, the UMAT is called to return 

the stress tensor and Jacobian for each element. During the process of calculating these 

quantities, the UMAT may request sub-division of the current increment by setting 

PNEWDT to a value less than 1. In this case, the current increment is abandoned and 
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restarted. Additionally, if convergence of the global FE equations is not obtained by 

Abaqus, it may restart the increment as well. In both of these cases, it is critical to note 

two things: 

1) The UMAT will have written data to the COMMONBLOCK for non-

converging increments, so this data is probably erroneous.  

2) The UEXTERNALDB will be called again for the same increment number 

with LOP = 1 when the increment is restated.  

Therefore it is paramount that the data stored in the COMMONBLOCK is not read until 

the increment has converged, which corresponds to LOP = 2. After the last converged 

increment of a step, the Python program is run if either Eval_nuc or Eval_MSC are true. 

This process repeats until the simulation reaches the end, or the crack arrests and is 

terminated by the UMAT.  
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Figure 109. Diagram of the relation between the UMAT, UEXTERNALDB, and Python 

sub-program within the ABAQUS environment. 
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UMAT 

The tasks relevant to the fatigue calculation executed by the UMAT are: 

1) Degradation of the elastic stiffness tensor 

1a) Tracking current damage value and increasing/decreasing based on the stress 

normal to the crack plane 

1b) Calculating stress normal to the crack plane 

2) Calculation and storage of quantities for FIP calculation 

2a) Calculate and store current plastic shear strains for each element and slip 

system 

2b) Calculate and store current normal stresses for each element and slip system 

The flow of the UMAT is illustrated in Figure 110, with focus on only the tasks carried 

out to implement the fatigue algorithms. The first task the UMAT performs (related 

directly to the fatigue algorithms) is checking for crack arrest, stored as a logical variable 

named “crack_arrested” in the COMMONBLOCK. If “crack_arrested” is true, the 

UMAT calls the Abaqus subroutine XIT to terminate the simulation. Note that this task 

would more logically be performed by the UEXTERNALDB, but Abaqus does not allow 

XIT to be called from that particular user subroutine. Next, the UMAT calculates the 

damaged elastic stiffness tensor. If the element is not in the crack and thus undamaged, 

this calculation yields the standard stiffness tensor. Then, if the element is in the crack 

(damaged), the value of the damage is increased or decreased depending on if the plane 

of the crack is in tension or compression, respectively. The UMAT then performs its 

primary task of calculating the stress tensor and Jacobian for the element. Once this is 

complete, updated arrays for the fatigue calculations are stored in either the 

COMMONBLOCK or as SDVs to be read in the next time the UMAT is called for that 
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particular element. Note that while both the UMAT and UEXTERNALDB are executed 

in the Fortran 95 environment, they are written in fixed from format and the majority of 

the syntax corresponds to that of Fortran 77.  

 



 

206 

 

 

Figure 110. Flow of UMAT containing tasks that are carried out in support of the fatigue 

algorithms. 
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UEXTERNALDB 

In previous implementations, the UEXTERNALDB performed the majority of the fatigue 

related calculations. However, the implementation employed in this thesis has shifted 

away from this and transitioned the fatigue calculations to an external program written in 

Python. The UEXTENALDB still retains some critical tasks, which can be summarized 

as: 

1) Read plastic shear strains for each element (from gamma_cum_element array) 

and store the values at the start and end of the cycle, and store the minimum and 

maximum values over the cycle for each slip system of each element.  

2) Calculate cyclic plastic shear strain range and ratcheting strains for each slip 

system of each element. 

3) Calculate FIP
α
 for each slip system of each element and store in text file for 

python program. 

 4) Call the python program and wait for it to finish. 

5) Read the list of cracked elements written by the python program and check for 

crack arrest. Store the list of cracked elements in the COMMONBLOCK so that they 

may be accessed by the UMAT. Store the CRACK_ARRESTED flag in the 

COMMONBLOCK if it exists so the simulation may be terminated.  

The flow of the UEXTERNALDB execution is shown in Figure 111. One 

important task of the UEXTERNALDB besides the calculation of the variables 

associated with the fatigue evaluation is determining if the fatigue life (either nucleation 

or MSC) should be evaluated during this particular call. For this to occur, two conditions 

must be satisfied: 



 

208 

 

1) The Eval_Nuc or Eval_MSC flag is true 

2) pre_step is true 

The fatigue algorithms must be calculated following the completion of a loading cycle, 

and should logically occur at the end of the second loading step in that cycle. However, 

the UEXTERNALDB has no way of knowing if it is being called for the last increment of 

a particular loading step. Therefore, the fatigue life must be evaluated before the start of 

the next loading step. This is tracked by the logical variable ‘pre_step’ which is set to true 

if the UEXTERNALDB is being called with LOP = 1 for the first increment of a step. 

Note that pre_step could theoretically occur multiple times if the first increment of the 

loading step fails to converge, but because each new step begins with a very small initial 

increment size such an occurrence is unlikely.  
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Figure 111. Tasks performed by the UEXTERNALDB. 
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Python Program 

The tasks performed by the Python sub-program are split into multiple functions and 

modules for clarity, ease of debugging, and future expandability. The sections are: 

Main.py – This module controls the execution of the fatigue algorithms and is 

responsible for calling or including all the additional python modules. The nucleation and 

MSC fatigue lives for both Stage I and Stage II growth are calculated by this module. The 

Main.py program accepts a number of options when called: 

 -nABQ: If this option is included the program sequentially evaluates all the fatigue 

lives for which FIP data is available. This command is primarily used for post-

processing or debugging. 

 -SI: The program runs assuming a Stage I growth algorithm.  

 -nH: The Stage I or Stage II algorithms run without history counting (explained in 

Chapter 4) active.  

crack_neighbors.py – This module updates the lists of elements, grains, and bands that 

are in contact with the crack. The code in this module is directly executed by Main.py 

before the evaluation of MSC lives. 

elem_in_plane.py – this module contains the function elem_in_plane(grain #, a, b, c, d) 

which determines the elements which comprise an arbitrary plane based on the grain 

number and the four constants of a plane, using the point-to-plane distance formula. The 

band width of the plane is read in from the global_vars.py module.  

functions.py – as the name might suggest, this module contains a number of important 

functions: 
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 list_elem_in_band(grain, layer, plane) – returns a list of elements in a given 

crystallographic band, determined by reading the input file and scanning for the 

matching element set.  

 list_elem_in_grain(grain)  – returns a list of elements in a given grain, determined 

by reading the input file and scanning for the matching element set.  

 FIP_el_update(i
th

 cracked grain) – Updates the FIP arrays based on values after 

most recent complete cycle. This must be called before fatigue lives are evaluated. 

Reads the FIP*.txt files and parses them into lists.  

 Average_FIP(element list, slip system, list of FIPs) – calculates the volume 

averaged FIP on a particular slip system for a set of elements. 

global_vars.py – This code reads in the constants associated with the mesh geometry 

(from Geom_def.txt) and the fatigue life calculation (from Definitions.txt). In addition it 

configures the error, information, and debugging logging (written to PythonLog.txt). 

initialize_lists.py – This module is an executable section of code that runs each time 

Main.py is called. Its task is to initialize the numerous lists of elements and 

microstructural attributes needed for the evaluation of the fatigue life, and save them as 

serialized objects for fast future access using the python built-in pickle module. Thus 

these serialized lists, dictionaries, etc. are referred to collectively as “pickled objects”. If 

the code senses that a given pickled object already exists in the run folder, it skips 

initialization and simply loads the object into memory for subsequent use by Main.py.  

intermediate_plane.py –contains the function int_pln_cnsts(a1, b1, c1, d1, a2, b2, c2, d2, 

FIP1, FIP2) which returns the four constants of an intermediate plane defined by the 
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parent plane 1 and 2 and the two FIP values on these respective planes. The task executed 

by this function correspond to Eqn. 48, 50, and 51 given in Chapter 4. 

Plane_eqn_const.py – this module contains the function Plane_eqn_const(grain, layer, 

plane) which returns the four constants of a plane in global coordinates of the input 

crystallographic plane.  

 

Serialized Objects 

In addition to the *.py files listed above, the working directory where the fatigue 

simulation is run will contain numerous pickled objects, which are serialized lists, 

dictionaries, etc. that serve two purposes. First, they contain information about the mesh 

which is somewhat time consuming to generate. This way, such information must only be 

generated during the first call of the program and can just be read into memory during 

subsequent calls. Second, they serve to pass variables between different sequential calls 

of the Python program. For instance, they keep track of which grains and elements have 

cracked as the simulation progresses. Most of these pickled objects are generated during 

the execution of initialize_lists.py. 

 band_d_gr_nd.p – a dictionary object with a key of (G,L,SS) and a value 

corresponding to the increase in length of the band referenced by the key due to 

low misorientation neighbors. Generated by reading in d_gr_nd.txt which is 

written during the 1
st
 call of the UEXTERNALDB.  

 band_elem.p - a dictionary object that stores key: (Grain, Layer, Slip System), 

value: list of elements that band contains. 
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 band_history.p - a dictionary object that stores key: (Grain, Layer, Slip System), 

value: history information of the band. The value is only non-zero if the band was 

in contact with the crack during the last life evaluation.  

 band_length.p – a dictionary object that stores key: (Grain, Layer, Slip System), 

value: length of band. 

 crack_cycles.p – list containing the total cycles consumed after the i
th

 grain to 

crack 

 crack_len.p – list containing the crack length after the i
th

 grain to crack  

 crack_plane_normal.p – normal vector to the crack plane for each element, value 

is [0, 0, 0] if the element is not cracked.  

 cracked_elem.p – list of elements within the crack. 

 cracked_grain.p – list of grains that have been cracked. 

 el_cntr.p – list containing the centroid of each element. Accessed by el_cntr[0-

2][element # - 1] where indices 0 through 2 correspond to coordinates X through 

Z. Note that this list is zero indexed so raw element number cannot be used to 

access.  

 elem_in_band.p – a dictionary of elements within a given band accessed by a 

(G,L,P) triplet. 

 elem_in_grain.p – a list containing lists of element within a given grain. Accessed 

by elem_in_grain[grain #] which returns the list of elements.  

 FIP_ratios.p – The ratio of ( FIP2 / FIP1 ) calculated during the evaluation of the 

Stage II MSC life. Values closer to 1 indicate a higher propensity for Stage II 

growth, while very low values (~0.1) indicate near Stage I growth.  
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 grain_cntr.p – A list containing 3 lists of the grain centroids, corresponding to the 

X, Y, Z coordinates. For example, grain_cntr[0][4] accesses the X-coordinate of 

the centroid of grain 5 (due to 0 indexing of grains).  

 grain_of_elem.p – A list containing the grain number to which a given element 

belongs. Accessed by grain_of_elem[element #]. Note that this list not zero 

indexed so the raw element number can be used to access the list.  

 grain_orient.p – a list object containing the three Euler angles that define the 

orientation of a given grain, accesses by grain_orient[0-2][grain #] with 0-2 

corresponding to the 3 Euler angles. 

 min_life_band.p – A list soring the identifier of the band with minimum life 

determined to crack during each call of Main.py. If the band is a crystallographic 

band (corresponding to nucleation or MSC evaluation with only the Stage I 

algorithm active) the band is identified with a (G,L,P) triplet, else for arbitrary 

bands of elements (Stage II growth), the plane is identified by the grain number 

and four constants of a plane (G, a, b, c, d).   

 min_life_val.p – A list storing the minimum life of the band determined to crack 

during each call of Main.py. The total fatigue life is obtained by summing all the 

values in this list. 

The execution of the python program after being called by the UEXTERNALDB is 

illustrated in Figure 112.  
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Figure 112. Flow chart of the execution of the Python program after being called by the 

UEXTERNALDB. 
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Text Files 

Files required to run the fatigue simulation: 

 Common_block_Alv02.txt – defines the arrays and variables stored in common 

memory accessible by both the UMAT and UEXTERNALDB.  

 d_gr_nd.txt – file containing the contribution to band length due to low-

misorientation neighbors. 

 Definitions.txt – list of the fatigue constants 

 disAngle.txt – lists the angle of disorientation between neighboring grains 

 El_pos.txt -  list of the X, Y, Z coordinate of the center of each element 

 Geom_Def.txt – file containing constants associated with the mesh geometry, 

such as the number of elements, the mesh size, etc. 

 Grain_Centers.txt – file containing the X, Y, Z coordinate of the centroid of each 

grain.  

 Grains.txt – list of all the grains in the mesh and their crystallographic orientation 

as defined by the three Euler angles.  

 Min_dist.txt – a large file containing information about the connectivity among 

bands.  

 Neighbor_grains.txt – for each grain this contains both the total number of 

neighboring grains, and the number (as in the reference index) of each of these 

neighboring grains. For grain n, the number of neighboring grains is found on line 

(2n-1) and the index number of each of these neighbors is listed on line (2n). 

 Neighbors_el.txt – a sequential list of the elements neighboring a given element. 

The row corresponds to the element number, and columns 1-26 contain the 
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number of the element occupying that neighbor position. If the number is 0, than 

the element has no neighbor in that position.  

 Num_layer.txt - This file summarizes which grain and layer each element belongs 

to, as well as its orientation as defined by the three Euler angles.  

Files potentially present in the run folder after execution of a simulation: 

 CRACK_ARRESTED.txt – empty text file written by the python program if it 

determines the crack has arrested. The UEXTERNALDB checks for the presence 

of this file and terminates the simulation if found to avoid wasting computational 

resources.  

 cracked_elem.txt – contains a list of the elements within the crack and the normal 

vector of the crack plane for each element.  

 CrackGrowth_py.txt – file containing the summary of the crack length vs cycles 

and the FIP value in the cracked band.  

 CSSC_Data_11.txt – Cyclic stress strain data in the X direction, averaged over all 

elements within the mesh.  

 FIP_MSC#_el.txt – List of FIP
α
 for each of the 12 slip systems for each element 

in the mesh. A sequentially numbered file is generated by the UEXTERNALDB 

for each grain to crack. For instance, if 10 grains are cracked during a simulation, 

the run folder will contain the files FIP_MSC2_el.txt through FIP_MSC10.txt.   

 FIP_Nuc_el.txt - List of FIP
α
 for each of the 12 slip systems for each element in 

the mesh. Only one of these files is generated by the UEXTERNALDB before the 

nucleation life is evaluated.  
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 PythonLog.txt – Contains logging and debugging information written during the 

call of the python program from the UEXTERNALDB. Options for what is 

written to this file are configurable in global_vars.py.  

 

COMMONBLOCK 

The COMMONBLOCK is a feature of Fortran that allows data to be shared between 

separate Fortran programs, and is used in this implementation to pass arrays and variables 

between the UMAT and the UEXTERNALDB subroutines. The COMMONBLOCK 

allocates a region of computer memory for storage of variables and arrays that is 

accessible by all programs that share the same COMMONBLOCK declaration. Note that 

COMMONBLOCK variables are persistent over the execution of the simulation, 

meaning that they remain unchanged from step to step and increment to increment unless 

explicitly modified. The storage of variables within the COMMONBLOCK can lead to 

hard to detect errors if care is not taken during their storage and access. To minimize the 

risk of this occurrence, each variable passed between the UMAT and UEXTERNALDB 

is assigned to its own uniquely named COMMONBLOCK. Although it is possible to 

store multiple variables or arrays within a single named COMMONBLOCK, this is not 

advised because of the higher propensity for error. Additionally, the COMMONBLOCK 

is implemented in a text file that is included during the compiling of the UMAT and 

UEXTERNALDB to insure that the blocks are declared identically in both programs (i.e. 

all arrays and variables have the same name, size, and type).  
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