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vc Critical slider velocity (m / s) 

vgouge Gouge onset velocity (m / s) 
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SUMMARY 

 

The findings and analysis of the mechanical wear experiments presented in this 

dissertation provides the knowledge necessary to design more efficient and effective 

tribological systems under extreme sliding contact. A novel inertia loaded wedge 

experiment is employed at Georgia Tech utilizing a lab scale electromagnetic launcher to 

study mechanical wear of a 6061-T6 aluminum slider on a C110-H2 copper guider under 

conditions that have not been attained in prior studies. Sliding speeds in the range of 0 – 

1,200 m/s and contact pressures between 100 – 225 MPa were achieved.  

Three distinct wear regions were identified: plasticity dominated wear, severe plastic 

deformation and melt lubrication. The plasticity dominated wear region occurred at lower 

velocities, 0 – 800 m/s and is representative of localized plastic shearing. The severe 

plastic deformation wear region occurred at mid-range velocities between 800 – 1,000 

m/s and is characteristic of thermal softening resulting in bulk shearing / plastic 

deformation. The melt lubrication region occurred at high velocities, >1,000 m/s and is 

representative of large scale melting.  

Several different studies were conducted to explore the effects of pressure and 

velocity as well as guider mechanical and thermal properties on slider wear rates in the 

melt lubrication region. Normalized wear rates in the melt lubrication region were 

proportional to velocity. A critical velocity demarcated the shift from severe plastic 

deformation to melt lubrication and was found to decrease with increasing pressure. 

Additionally, the normalized wear rate in the melt lubrication region was correlated to the 
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product of velocity and pressure raised to the ¼ power, which is consistent with melt 

lubrication theory. 

Different tribomaterial pairings were tested to investigate the effects of guider 

material properties on slider wear. For all tests the slider material is 6061-T6 aluminum. 

It was found that the mechanical properties of the guider had a negligible effect on slider 

wear in the severe plastic deformation and melt lubrication regions.  

The effects of the guider thermal properties on slider wear in the melt lubrication 

region was investigated by selecting materials with vastly different volumetric thermal 

masses (ρ·c). A guider material with a large volumetric thermal mass resulted in a high 

critical velocity and a larger heat partition coefficient. These findings indicate that the 

condition under which heat transfer occurs is highly transient. 

Utilizing the results from the pressure – velocity and guider material property studies, 

a constitutive model was developed. The model is in a general form and is capable of 

predicting normalized wear rates in the melt lubrication region for a 6061-T6 aluminum 

slider at contact pressures between 100 – 225 MPa and peak velocities of 1,200 m/s for a 

variable guider material. The model can be used as a tool for designing more efficient and 

effective tribological systems subjected to these sliding conditions.  

Using the new insights from this investigation a materials selection exercise for 

guider durability was conducted. For high sliding speeds it is beneficial to select a guider 

material with a large volumetric thermal mass, high ultimate tensile strength, low density, 

a high melting point, and high compressive strength with moderate ductility.  
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CHAPTER 1: Introduction 

1.1 Overview 

Tribology can be defined as the science and engineering of interacting surfaces in 

relative motion, which encompasses the topics of wear, friction and lubrication. 

Tribological interactions can be found in bearings, cams, gears, internal combustion 

engines, turbine engines, etc. These tribological interactions can incur wear which 

reduces performance, increases energy consumption, and over time may result in 

component replacement or failure. There are several different forms of wear that include, 

but are not limited to adhesion, abrasion, erosion, corrosion, and surface fatigue, all of 

which through surface engineering or the use of lubrication may be minimized. While the 

negative effects of many tribological interactions are well known, there are many 

essential tribological interactions that are commonly found in everyday life. For example 

the friction between your feet and the ground is necessary to walk, the friction between a 

brake pad and rotor is necessary to slow down a moving car, and the friction between a 

pencil and piece of paper allows you to write. While man has known about friction and 

lubrication for thousands of years, dating back to 3200 - 3500 BC [16], it wasn’t until a 

1966 report from the Committee of the British Department of Education  and Science that 

the term tribology was actually coined [17]. 

Several studies have been conducted over the years to try and quantify the economic 

impact of wear. It was estimated in a 1966 report by Jost [17] that wear cost the U.K. 

approximately 1% of the GNP. In a 1977 study sponsored by ASME it was estimated that 

the energy cost to the U.S. associated with equipment failure due to wear was equal to 

1.3% of the total U.S. energy consumption [18]. In 1996 Bhushan cited according to 
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some estimates that up to 6% of the GNP [19] was lost by neglecting tribology and more 

recently in 2005 it was reiterated by Jost that based on investigations conducted in the 

U.K., Germany, U.S., Canada, and China that the application of tribological principles 

and practices could yield a savings of 1.0 to 1.4% of the GNP for industrialized nations 

[20]. In all cases the economic impact on industrialized nations has been fairly consistent 

over the past forty plus years and as energy and material costs continue to rise, more 

attention must be drawn to extending the service life and efficiency of machinery to 

offset these costs. This means understanding the influence and role that tribology has on 

machinery and accounting for it through the development and implementation of 

materials, manufacturing processes, lubrication or simply minimizing surface interactions 

through design. 

1.2 Research Background 

1.2.1 Overview 

The subject of this dissertation is on a specific facet of tribology related to lubrication 

by a melting solid. Melt wear, like most tribological interactions, is complex and 

encompasses all three aspects of tribology: friction, lubrication, and wear. In most 

applications it is typical to add lubrication to a system to reduce the coefficient of friction 

and remove heat in order to reduce component wear. In the case of melt wear, the sliding 

contact is initially unlubricated or dry and due to heat generated at the contact interface 

one or both of the sliding bodies may melt providing self-lubrication. If melt wear occurs 

at the contact interface it can be both beneficial and detrimental to a system’s 

performance. The melt may be beneficial in the sense that it acts as a lubricant and 

reduces friction and detrimental in that one or both of the sliding solids is wearing away 
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which may result in a decrease in component performance or life and potentially result in 

failure. A well-known and studied system that exhibits this behavior is that of a skate on 

ice. Melt wear can also be commonly found in engineering systems that contain metal on 

metal contact in a high sliding speed and high contact pressure system. Typical 

engineering applications that experience high sliding speeds include, but are not limited 

to ultrahigh speed machining at the tool-chip interface (>300 m/s) [21], rocket sleds used 

for aerospace research and development at the slipper-rail interface (2,300 m/s) [22],  

large caliber guns at the projectile-barrel interface (1,500 m/s) [13], and lastly 

electromagnetic launchers at the armature-rail interface (2,500 m/s) [23]. 

1.2.2 Experimental Research 

As previously mentioned one of the more commonly found self-lubricating 

tribological systems is that of a skate on ice [24] or ski on snow [25]. Initially it was 

hypothesized that pressure was the mechanism responsible for melting the ice. It wasn’t 

until years later that the notion of friction as a major contributor was recognized [26, 27]. 

It has been shown through simple energy calculations that only a small fraction of the 

frictional heat generated at the contact interface is necessary to produce localized melting 

[11]. A series of experiments at the Research Station at Jungfraujoch in Switzerland using 

a ski on ice/snow apparatus tested the hypothesis that frictional heat is the primary 

mechanism responsible for melt wear. Several key findings were made and they are as 

follows: 1) The coefficient of kinetic friction is nearly independent of load, apparent area 

of contact and sliding speed, with the exception of high loads and low sliding speeds. 2) 

The low coefficient of kinetic friction value for a ski on ice is due to melting at the ski-ice 

interface. At lower temperatures melting only occurs at local areas of contact and at high 
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temperatures a more continuous layer of water develops. 3) The effect of temperature on 

friction is much greater for ice than that of metals. 4) The coefficient of kinetic friction 

increases as the temperature decreases. 5) The thermal conductivity of the sliding body 

influences the coefficient of kinetic friction. A slider with a higher thermal conductivity 

dissipates heat away from the contact interface at a higher rate resulting in a larger 

coefficient of kinetic friction, as shown in Figure 1.1. 6) Lastly, the role of thermal 

conductivity suggests that frictional heat plays a major role in the melt wear process.  

 

 

 

 

 
 

 

Figure 1.1 - Effects of temperature and ski material, thermal conductivity, on the 

coefficient of kinetic friction. The thermal conductivity of brass is greater than 

ebonite by three orders of magnitude [9, 11]. 
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The melt wear study of a ski on ice is a practical experiment due to the reasonably 

low melting temperature of ice. However, for the case of metal on metal contact, where 

melting temperatures may be as much as two orders of magnitude higher than that of ice, 

has proven to be more difficult to study. An original experimental setup published by 

Bowden and Freitag [12], as shown in Figure 1.2, utilized a method developed for an 

ultracentrifuge [28] to study the behavior of two sliding metal surfaces at velocities up to 

1,000 m/s. An electromagnet was used to vertically suspend and rotate a half inch steel 

 

 

 

 

 
 

 

Figure 1.2 - A schematic of the electromagnet tribometer developed by Bowden 

and Freitag [12]. 
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ball. Three vertical surfaces, two rigid and one free, were equally positioned around the 

ball. Upon releasing a spring the free surface presses the ball into the two rigid surfaces. 

The deceleration of the spinning ball under a known load was used to calculate the 

coefficient of friction. Friction coefficients and micrographs of the worn vertical surfaces 

for two different materials, copper and bismuth, using a steel ball bearing under a 20 

gram load were collected. For both materials the coefficient of friction decreased towards 

a steady state value as the sliding speed of the ball increased, as shown in Figure 1.3. 

 

 
 

 

 

Figure 1.3 - Coefficient of friction vs. sliding speed for copper and bismuth on 

steel at high sliding speeds [12].  
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Bismuth which has both a lower melting temperature and thermal conductivity than that 

of copper reached a steady state coefficient of friction at a lower sliding speed than 

copper. An example of the molten metal splatter near the edge of a contact crater from a 

300 m/s test using bismuth, as shown in Figure 1.4, provides evidence that regions of the 

contact interface are molten. From these tests it was observed that the coefficient of 

friction is not constant, but rather it decreases to a lower value at higher sliding speeds. 

 

 

 

 

 
 

 

Figure 1.4 - High sliding speed (300 m/s) wear of Bismuth showing remnants of 

molten metal splatter [12]. 
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The response of the coefficient of friction can be attributed to thermal softening or 

melting of localized regions of contact and based on the results no apparent large scale 

melting occurred. 

In addition to the original copper and bismuth experiments a more complete set of 

results using the same electromagnet test apparatus was extended to include aluminum, 

aluminum alloys, antimony, molybdenum, tungsten, and diamond [29]. The majority of 

the experiments were conducted at loads in the range of 15 to 40 grams. The velocity 

range for each test differed depending on the material pair. A sensitivity analysis of the 

coefficient of friction versus load for copper was conducted at loads of 10 to 200 grams. 

The results showed that the coefficient of friction was independent of load under the 

sliding speeds tested. From these experiments it was observed that the coefficient of 

friction of metal on metal contact at high sliding speeds reduced to a relatively low value. 

This was consistent with previous work. The low coefficient of friction can be attributed 

to high temperatures at localized regions of contact. It was also shown, using heat transfer 

theory [30], that a very steep temperature gradient exists near the region of contact. For 

the case of copper it was calculated that at a distance of 1 μm below the contact surface 

the temperature reduced to 12% of the surface temperature, consequently creating a soft 

metal interface with low shear strength on a hard metal substrate. Limited knowledge or 

data of the stress-strain behavior of metals at high strain rates and high temperatures 

makes it exceedingly difficult to analyze the contact interface. From these experiments it 

was concluded that the response of the contact interface, that is friction and wear, is 

determined by the physical properties and the results suggest that adhesion was still valid 

under the conditions of the experiments. 
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A similar electromagnet test apparatus was developed to study wear at high sliding 

speeds and large loads [8]. An electromagnet was used to suspend and rotate a steel ball, 

except for this case the ball was dropped from a short distance onto a 30° inclined 

specimen, as shown in Figure 1.5. The apparatus was able to capture the normal and 

tangential loads on an inclined specimen through the use of a piezoelectric sensor. Two 

methods, one using contact forces and time and the other using geometry and deflection 

 

 

 

 
 

 

Figure 1.5 - High sliding speed impact experimental apparatus used by Bowden 

and Persson [8]. 
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of the ball, were used to calculate the coefficient of friction. This new method provided a 

means to study high sliding speeds, up to 700 m/s, at relatively large loads, in the 

kilogram range, two orders of magnitude higher than the previous experimental 

technique. The experiments included the use of a steel ball against several different 

materials of interest, of them bismuth was revisited. The wear marks of the bismuth 

specimen from the impact spinning ball test were similar to those produced from the 

vertical flat plate spinning ball test for velocities up to 200 m/s. A comparison of the 

evolution of the coefficient of friction as a function of sliding speed for the two different 

techniques is compared in Figure 1.6. The solid line represents the results of the vertical 

flat plate, spinning ball test at low loads, 0.008 kg, up to 200 m/s, and the circles and 

triangles represent the impact spinning ball test at 0.5 kg and 6 kg at velocities 

approaching 600 m/s. The results show good correlation between the two different tests at 

low speeds. For the impact spinning ball test at high speeds the appearance of the wear 

marks shows a rapid increase in the size and a more prominent smearing of the material 

with increased sliding speed. The smeared appearance of the wear marks at high sliding 

speeds combined with the molten metal splatter near the trailing edge provided evidence 

that at high speeds a molten layer was present and melting had occurred on a large scale.  

From the experiments with bismuth, a hypothesis that melting on a large scale is 

primarily dependent on the melt temperature and thermal conductivity of the metal was 

developed. The hypothesis was tested through several experiments over a range of sliding 

speeds using Wood’s alloy, which has a melting temperature of 65°C and a thermal 

conductivity of 0.032 cal cm
-1

 s
-1

 °C-1
, and bismuth, with a melting temperature of 271°C 

and a thermal conductivity of 0.016 cal cm
-1

 s
-1

 °C1
. The comparison of Wood’s alloy to 
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bismuth is shown in Figure 1.7.  Additional experiments were conducted using steel on 

lead, steel on tin, steel on silver nitrate, steel on copper, and steel on steel. The melting 

temperature and thermal conductivities of these materials is summarized in Table 1.1. 

The material response in both appearance and coefficient of friction of Wood’s alloy, 

lead, tin, and silver nitrate at high sliding speeds was similar to that of bismuth. Each of 

the materials experienced a transition velocity at which the coefficient of friction began 

to increase. This speed marks the formation of large scale melting and can be correlated 

to the material melting temperature. The transition velocities for bismuth, Wood’s alloy, 

 
 

Figure 1.6 - The evolution of the coefficient of friction for steel on bismuth as a 

function of sliding speed for two different test techniques [8, 9]. 
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Figure 1.7 - A comparison of the coefficient of friction for steel on Wood's alloy 

(triangles) and steel on bismuth (circles) [8]. 

 

Table 1.1 - Melting point and thermal conductivity properties for materials tested 

using the impact spinning ball test. 
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lead, tin, and silver nitrate follow the trend that lower melting temperatures result in 

lower transition speeds. For steel on copper and steel on steel experiments the transition 

velocity was never achieved due to the higher melting points and velocity limitations of 

the experimental setup. Instead thermal softening or melting occurred only at localized 

regions of contact leading to low coefficient of friction values, as shown in Figure 1.8. 

An alternative or modified test configuration capable of higher sliding speeds is 

necessary to explore the large scale melting region for copper and steel. It was concluded 

that a continuous molten film developed over the nominal area of contact for the lower 

melting temperature tribomaterials. This differed from previous experimental results 

 
 

 

Figure 1.8 - The response of coefficient of friction for copper on steel and steel on 

copper using the impact spinning ball test [8, 9]. 
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where thermal softening or melting only occurred at localized regions of contact. For a 

continuous molten metal film the resistance to sliding is influenced by the shearing of 

that film and heating at the contact interface, which is primarily viscous in nature and 

consequently the heat generated increases with increasing velocity resulting in 

accelerated wear rates. 

There have been many different test apparatuses developed and used to study 

tribological properties of different material pairs. Many one of a kind test apparatuses, 

like the aforementioned vertical flat plate and impact spinning ball, were developed 

specifically to replicate a component configuration and service condition. Some of the 

most commonly used tribological test apparatuses include the pin-on-disk, pin-on-flat, 

pin-on-cylinder, thrust washers, pin-into-bushing, rectangular flats on a rotating cylinder, 

crossed cylinders, and four ball [14]. The control factors for each of these apparatuses, 

such as geometry, load, velocity, etc. are defined based on design and equipment 

limitations. Of the apparatuses listed, the most commonly used apparatus to study wear at 

high sliding speeds is the pin-on-disk apparatus. 

Sternlicht and Apkarian conducted a set of experiments to study electrical sliding 

contacts at high sliding speeds using a pin-on-disk apparatus [31]. This work differed 

from previous melt wear work in that the combined effects of friction and Joule heating 

at the contact interface were under investigation. Test conditions included electrical 

current densities and velocities up to 930 MA/m
2
 and 610 m/s, respectively. Given the 

conditions of the experiments it was expected that a molten film would be present and 

viscosity, rather than elasticity, would be used to characterize the deformation process. 

Experiments and analysis showed that the surface temperatures were high enough to melt 
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at least one of the sliding materials and that a molten layer existed. It was assumed that 

the molten layer was continuous and in doing so hydrodynamic theory was applied to 

calculate wear rates, which proved to be within reason when compared to experimental 

results. 

Earles and Kadhim [32] also utilized a pin-on-disk apparatus to study wear for a steel 

pin, steel disk material pair at velocities up to 200 m/s. Like previous research, a low 

coefficient of friction was observed at high sliding speeds. It was shown from 

experiments that the coefficient of friction was proportional to N
1/2

U, where N is normal 

load and U is velocity. The term (N
1/2

U)
n
 was first introduced by Bowden and Thomas 

[33], where n is one for small values of N
1/2

U and n is ½ for large values. It can be 

implied that the term (N
1/2

U)
n
 is proportional to the average surface temperature at the 

contact interface. For large values of N
1/2

U there was microscopic evidence that a viscous 

layer had been smoothed out across the trailing edge of the pin and as N
1/2

U increased the 

smooth shiny layer eventually spanned across a larger portion of the contact interface. It 

was concluded that the contact was lubricated due to localized melting, resulting in a low 

coefficient of friction. 

The most complete set of pin-on-disk experimental results at high sliding speeds, up 

to 550 m/s, was published by Montgomery [13]. The experimental data was compiled 

from several experiments funded by the U.S. Army over a span of ten years. The 

experiments were conducted to gain a deeper understanding of the mechanism 

responsible for wear in rotating bands of projectiles for large caliber cannons. A frictional 

rate of heat generation parameter in the form of fPV, where f is the measured coefficient 

of friction, P is applied pressure and V is the sliding speed, was used to characterize the 
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heat generated at the contact interface and to correlate it to wear rates. Several pin 

materials, gilding metal, copper, projectile steel and annealed iron on a gun steel disk 

were thoroughly investigated and several miscellaneous materials, copper-nickel alloy, 

zinc, aluminum, nylon, and nickel were tested to a lesser extent. The results of these 

experiments are similar to the aforementioned high speed experiments in that the 

coefficient of friction decreased with increasing sliding speed. This meant that increasing 

the frictional rate of heat generation, which subsequently includes velocity, resulted in a 

decreasing coefficient of friction value. From the experimental data the wear rates for the 

set of materials tested were found to be proportional to the reciprocal of the melting 

point, as shown in Figure 1.9. The conclusion was drawn that wear at high sliding speeds 

is due to surface melting which acts as a lubricant and that the wear rate is predominantly 

a function of melting temperature, while thermal conductivity may have a secondary 

effect. 

Lastly, a more recent set of novel experiments developed by Stefani and Parker [4] at 

the Institute for Advanced Technology (IAT) at the University of Texas were conducted 

to study mechanical wear. The experiments utilized a medium caliber electromagnetic 

launcher (EML) to obtain high sliding speeds and high contact pressures. Several tests 

were conducted using aluminum wedges on copper rails with similar sliding speeds and 

different contact pressures. Wear results from the experiments for five different contact 

pressures are shown in Figure 1.10. Three key findings from the test include that wear as 

a function of sliding distance appears to be nonlinear, measurable wear does not begin 

until 50 cm of travel, at which point the sliding speed is approximately 1,000 m/s, and the 

wear rate increases with increasing contact pressure. Similarities may be drawn between 
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the critical velocity at which the wear became significant in these tests and the critical 

velocity from the aforementioned experiments at which the coefficient of friction began 

to steadily increase. The experimental methodology that was used in the IAT experiments 

is the one employed in the GT minor caliber EML as will be discussed in a later section 

of this dissertation. 

 

 
 

 

 

Figure 1.9 - Wear rate as a function of the reciprocal of the melting point of 

various materials for a fixed rate of heat generation [13]. 
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1.2.3 Wear Mechanism Maps 

A broad approach to understanding wear mechanisms and their interactions is through 

the use of wear mechanism maps. Wear mechanism maps are an attempt to provide order 

by defining the dominant wear mechanisms, trends, and models for a given tribomaterial 

pairing. Several decades worth of wear data characterizing the dry sliding behavior of 

steel on steel was compiled and organized by Lim and Ashby [10] using this novel 

approach.  A wear mechanism map for the dry sliding behavior of steel on steel as a 

 
 

 

Figure 1.10 - Mechanical wear data from high sliding contact experiments to 

study the effects of contact pressure on wear [2, 4]. 
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function of normalized pressure and velocity is shown in Figure 1.11. The different 

mechanisms are identified based on compiled experimental data and observations. 

Normalized pressure is defined 

 

 𝐹̃ =
𝜎

𝜎𝑈𝑇𝑆
 (1.1) 

 

 
 

 

Figure 1.11 - Wear mechanism map for the dry sliding of steel on steel [10].  
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where σ is the nominal contact pressure and σUTS is the room temperature ultimate tensile 

strength of the slider material. Normalized velocity is defined 

 

 

 

𝑣̃ =
𝑣𝑟𝑜

𝜒
 (1.2) 

 

where v is the slider velocity, ro is the radius of a circular nominal contact area, and χ is 

the thermal diffusivity.  

Regions of different wear mechanism schools were identified and physical wear 

models based off of the dominant wear mechanism for each region were developed. 

These physical models were fitted or calibrated to the empirical data within each wear 

mechanism region. Distinct boundaries between wear mechanism regions were defined 

and lines of constant normalized wear rates, based on the wear models, are shown in 

Figure 1.12. Normalized wear rate is defined 

 

 

 
𝑊̃ =

𝑉̂

𝐴𝑛
 (1.3) 

 

where 𝑉̂ is the volume worn per distance slid and An is the nominal contact area. The 

region of interest under high sliding speeds and high contact pressures is the melt wear 

region and beyond. The upper bound or right edge of sliding velocity, from the actual 

experimental data for the melt wear region is 550 m/s. Utilizing the wear mechanism map 

for dry sliding behavior of steel on steel for sliding velocities greater than 550 m/s would 

be an extrapolation and caution is required. Under high sliding speeds and high contact 
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pressures, melting of the sliding solid can occur locally (melt wear) or on a large scale 

(melt lubrication). Current wear mechanism maps do not distinguish between these 

mechanisms. Extrapolation of the existing wear mechanism map beyond the upper bound 

could lead to improperly characterizing the type of wear and the normalized wear rate. 

There is an inherent need for additional data to extend the existing wear mechanism maps 

and develop new physical wear models to properly categorize regions with sliding 

velocities greater than 550 m/s.    

 

 

 
 

 

 

Figure 1.12 - Wear mechanism map for dry sliding of steel on steel with 

empirically fit wear models with contours of constant wear coefficients [10]. 
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1.2.4 Theoretical Wear Modeling 

Experiments have shown that under high sliding speeds and high contact pressures 

there is evidence that melting of one of the solids provides lubrication, albeit locally or on 

a large scale at the contact interface. If the melting of the sliding solids occurs locally it is 

referred to as melt wear and if it occurs on a large scale it is referred to as melt 

lubrication. To this point the investigation into the topic of melt wear / lubrication has 

largely been experimental and theoretical modeling has been rather limited. One of the 

earlier theoretical models published by Wilson [34] is based on hydrodynamic lubrication 

theory derived from the Reynolds equation and several assumptions. Wilson analyzed 

both the case of the melting slider and guider. From his analyses he made the conclusion 

that these hydrodynamic systems are capable of supporting large loads and providing low 

friction. Additionally, both the load supporting capability and friction are proportional to 

the square root of the sliding speed. It was noted that further work was needed to address 

heat transfer losses at the contact interface, temperature dependent viscosity properties, 

and the effects of material softening. Wilson’s model was altered by Bicego et al. [35] to 

include both viscous dissipation and heat conduction through the melt lubrication film. 

Conventional hydrodynamic theory based on two parallel plates with relative motion 

has been used as the basis for prior models. Stiffler [36] was one of the first to propose 

that the melting slider mass was capable of supporting large loads under the conditions of 

melt lubrication. The model is based on the same premise as that used to model porous 

bearings. It was concluded that for high sliding speeds, those specifically related to a 

copper slider on a steel guider, that the temperature differential across the melt 

lubrication film is negligible and is approximately the melt temperature of the slider. 
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Additionally, changes in the melt lubricant film density were not probable and therefore 

the conditions necessary to form a thermal wedge were unlikely, and the rate of heat 

energy dissipated via “squeeze film” is negligible when compared to that of Couette flow. 

The theoretical coefficient of friction results from Stiffler’s model compared well to 

experimental data. The wear model is defined as follows 

 

 

 𝑉̂ =  
𝑊ℎ3

𝑙2µ𝑣𝛿
 (1.4) 

 

where 𝑉̂ is the worn volume per distance slid, W is the load, h is the melt film thickness, l 

is the length of the slider, µ is the dynamic viscosity, v is the slider velocity, and δ is a 

geometric factor equal to one for large ratios of slider length to width. The melt film 

thickness h is defined as follows 

 

 

 

ℎ =  {
(µ𝑣𝑙)2𝛿

[𝜌𝜎(𝐿 + 𝑐(𝑇𝑚 − 𝑇𝑜))]
}

1
4

 (1.5) 

 

 

where ρ is the density, σ is the contact pressure, L is the latent heat of fusion, c is the 

specific heat, Tm is the melt temperature, and To is the initial temperature. The model can 

also be represented as a 1D melt velocity, vm, in the form 
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 (1.6) 

 

 

A more general wear model published by Lim and Ashby [10] was developed based 

on steel pin and steel disk data compiled from melt wear experiments. Observations from 

these experiments indicated that the wear incurred was due to melting of one or both of 

the sliding contacts. From experimental data a wear model was developed. The melt wear 

model utilizes the 1D heat equation, considers frictional heat as the sole heat source, and 

partitions the heat between the slider and guider based on thermal properties and sliding 

speed. Heat transfer via conduction was incorporated into the model, while convection 

and radiation were neglected. Additionally it was assumed that all the melted material 

was ejected from the contact interface and that the melt provides lubrication, which 

results in low coefficient of friction values at high sliding speeds. Agreement between the 

melt wear model and the experimental data is reasonable. Unlike previous models, the 

melt wear model only considers frictional heat using coefficients of friction acquired 

from experimentation. Viscous heating due to the shearing of the liquid film is not 

considered. Lim and Ashby’s melt wear model is as follows 

 

 

 
𝑊̃ =  (

𝑇𝑚 − 𝑇𝑜

𝑇∗
)

𝐻𝑜

𝐿

1

𝛽𝜈
[𝑓𝐹̃𝜈

𝑇∗𝛽

(𝑇𝑚 − 𝑇𝑜)
− 1] (1.7) 

 



 

 25 

 

where 𝑊̃ is the normalized wear rate, Tm is the melting temperature, To is the initial 

temperature, T
*
 an equivalent metal temperature, Ho is the room temperature hardness of 

the metal, L is the latent heat, β is the dimensionless bulk heating parameter, 𝜈 is the 

normalized velocity,  is the heat partition coefficient, f is the coefficient of friction, and 

𝐹̃ is the normalized pressure.  

Stefani and Parker [4] revisited wear at high sliding speeds through a series of novel 

mechanical wear experiments using a lab scale EML. The work was spurred by the need 

to better understand the influence of mechanical and electrical heat generation at the 

contact interface of EML components. It was noted that the majority of published 

experimental data was at velocities below 100 m/s, well outside the operating range 

observed in EMLs. Additionally their work was unique in the sense that at the time the 

majority of the emphasis in EML component wear had been placed on the electrical 

component of the sliding contact. Several wear models [37-40] focusing on Joule heating 

as the primary heat source had been developed to predict the transition from non-arcing 

to arcing electrical contact. The mechanical wear experiments they conducted provided 

new data for melt lubrication modeling. Several melt lubrication models were developed 

following these experiments, most of which were extensions of existing models. One of 

the first models to reinvestigate melt lubrication was a thermal hydraulic model [41] 

based on the modeling done by Stiffler [36]. The thermal hydraulic model differed from 

Stiffler’s in that it assumed a portion of the melt film solidified under the slider. The 

results were able to predict reasonable melt velocities, but lacked the dependence on 

pressure and velocity that was observed in experiments. Several observations were made 
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from the model. The first is that the slider melt temperature is reached at approximately 

700 m/s, but it isn’t until 1000 m/s that a quasi-steady-state molten film is achieved. 

Reduced heat transfer to the guider, a higher melt viscosity, and a higher film thermal 

conductivity provided a better correlation to experimental data. It was concluded that film 

solidification under the slider did not need to be captured in the model. A follow up melt 

lubrication model [42] was developed that incorporated the effects of turbulence on the 

laminar viscosity term. The results significantly over predicted the melt velocity and were 

strongly dependent on the slider velocity and less dependent on contact pressure. These 

trends tend to disagree with those observed from experiments.  It was concluded that a 

thermal hydraulic model was not adequate in modeling high velocity, high pressure, 

mechanical wear and that this may be the result of another physical process such as 

viscoplastic heating or some complex combination of melting and shearing of the slider 

material. 

More recently, Wei and Batra [43] modeled and simulated high speed sliding and 

addressed thermal softening, melting, and melt lubrication, as it pertains to slider wear. 

Two heat sources, frictional and plastic dissipation, were considered in an attempt to 

better understand the contribution of each towards the temperature rise in the slider and 

subsequent melting. Additionally, like the aforementioned models they applied melt 

lubrication theory to develop a model capable of predicting both the melt film thickness 

and melt velocity. Several findings or conclusions were made. The first is that two 

boundary layers exist at the slider-guider interface, a deformation layer and a thermal 

layer. The second finding is that for large values of heat flux at the slider-guider 

interface, friction or viscous dissipation, rather than plastic dissipation, is the main 
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contributor to the local temperature rise. Finally, it’s difficult to achieve steady-state melt 

lubrication and the process itself can best be described by the transient melt lubrication 

solution. It was recommended that the strength of the slider material near its melting 

temperature needs to be considered. Additional experimental data is required to gain a 

deeper understanding of the influence of the slider and guider thermal and mechanical 

properties on the wear process. 
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CHAPTER 2: Experimental Methodology 

2.1 Experimental Overview 

The experiments conducted at Georgia Tech under high sliding speeds and high 

contact pressures are based off of wedge experiments conducted at the Institute for 

Advanced Technology (IAT) at the University of Texas [4]. A similar approach with two 

inertia loaded wedges was been developed and employed in the Georgia Tech minor 

caliber electromagnetic launcher (EML). The Georgia Tech EML system is composed of 

a breech, containment and catch tank, as shown in Figure 2.1, and electric power supply, 

as shown in Figure 2.2 [44].  The breech provides the physical connection between the 

power supply and the rails. The containment is the steel laminate structure comprised of 

two halves that are clamped together with high strength steel bolts. Inside the 

containment resides the bore. The bore consists of two C110-H2 copper flat rails, and two 

 
Figure 2.1 - Georgia Tech lab scale electromagnetic launcher. 
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sidewall G-10 glass composite insulators.  The bore configuration is a 14.0 millimeter by 

12.5 millimeter rectangle, and the overall length of the containment is 1.56 meters long. 

A cross-sectional view of the Georgia Tech minor caliber EML bore is shown in Figure 

2.3. The catch tank is constructed out of steel and contains a one foot long steel slug at 

the back of the tank. The tank itself is loaded with cloth dunnage as to provide a soft 

 

 
 

Figure 2.2 - Georgia Tech six module, capacitor bank electrical power supply. 

 

 

 
 

Figure 2.3 - Georgia Tech lab scale electromagnetic launcher bore. 
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catch for retrieval of the launch packages. The power supply consists of six 

independently triggerable sub modules. Each sub module contains five 210 µF capacitors 

giving each module the capability to store 17.1 kJ at 5.7 kV for a total stored energy of 

0.1MJ.  

The actual operation of the Georgia Tech minor caliber EML is based on the physics 

of a single turn inductor. An armature, which acts as a fuse, is placed between the rails to 

complete the electrical circuit.  The power supply stores the electrical energy and when 

discharged it generates a pulse of electrical current. The electrical current travels down 

one rail, crosses over the armature and returns down the opposing rail, as shown in Figure 

2.4. A magnetic field, created from the pulsed electrical current, encircles each of 

 

 

 
 

 

Figure 2.4 -Schematic of an electromagnetic launcher (EML).  
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the conductive rails. The interaction of the electrical current and magnetic field generates 

Lorentz forces that try to push the rails apart and accelerates the armature down the 

length of the rails [45]. Typical electrical currents are between 250-300 kA, producing 

velocities on the order of 1,000 m/s. The total launch duration is approximately 2 

milliseconds long. 

2.2 Experimental Setup  

The method developed using the Georgia Tech EML is capable of studying 

mechanical wear, with a negligible electrical component, at sliding speeds up to 1,200 

m/s and contact pressures up to 225 MPa. The methodology involves modifying the 

sidewall insulators as shown in Figure 2.5. The sidewall insulators are fabricated out of 

G-10 glass fiber composite and have been modified with a 7.57 millimeter deep channel 

milled down the length of the insulator. The channel is able to accommodate a 6.35 

square millimeter bar, 1.56 meters in length. The bar, embedded in the insulator, is 

referred to as the guider and the insulator design provides the flexibility of interchanging 

guider materials as desired. 

The tribo-slider is shown in Figure 2.6 and has a mass of approximately 10 grams. 

The aft end of the tribo-slider, referred to as the armature, is fabricated out of 6061-T6 

aluminum and is used to propel the tribo-slider down the rails and out of the containment. 

A ramp with a 25 degree angle from centerline, fabricated from G-10 is used to translate 

the inertia load, generated from the mass of the wedge and the acceleration of the tribo-

slider, into a normal contact load on the guider. Each of the wedges contains a wear tab, 

also referred to as the slider, which wears and deposits material onto the guiders. The 

wedges are machined out of 6061-T6 aluminum bar stock, can accommodate a slider
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Figure 2.5 - Cross-sectional view of the standard (left) and modified (right) GT 

minor caliber EML bore. 

 

 
 

 

Figure 2.6 -A solid model of a fully assembled tribo-slider. 
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contact area up to 3.18 square millimeters and provide the flexibility of selecting different 

tribomaterial pairings as desired. Finally, two nylon bore riders are used to support and 

align the wedges during loading and prior to launch. An overhead view of a loaded tribo-

slider with the bore riders and sidewall insulators removed is shown in Figure 2.7. 

Additionally, a half open view of the EML bore with a modified sidewall insulator and 

loaded tribo-slider is shown in Figure 2.8. 

A key design attribute of the modified bore and tribo-slider is that it provides 

electrical isolation of the guiders and wedges from the top and bottom rails through the 

G-10 sidewall insulators and G-10 ramp. The G-10 electrically isolates the guiders and 

 

 
 

 

Figure 2.7 - Overhead view of a tribo-slider and guiders. 
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wedges from the direct path of the electrical current, used to generate the tribo-slider 

propulsive force. However, the magnetic field that develops around both the 

electromagnetic launcher rails and armature due to the electrical current passing through 

the system, as shown in Figure 2.4, can induce eddy currents in the guiders. These eddy 

currents result in heat dissipation via Joule heating. It has been shown that the high 

magnetic field region is concentrated in the interior of the armature legs and throat region 

[46]. The contact interface between with the slider and guider occurs out in front of the 

armature where the magnetic field is less intense. For this reason the component of Joule 

heating at the contact interface can be considered negligible relative to the heat 

dissipation process due to the physical interaction of the slider and guider. 

 

 

 
 

 

Figure 2.8 - A half open view of the standard bore and armature (left) and 

modified bore and tribo-slider (right). 
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2.3 Test Conditions and Analysis 

For testing, the mass of the tribo-slider was held constant along with the electrical 

current profile for each EML launch. This provides a near constant acceleration for 

approximately the first 0.50 to 0.60 meters of travel. The contact pressure generated at 

the slider-guider interface is controlled via the tribo-slider acceleration, ramp angle and 

the mass of the wedge. An inertia load, due to the tribo-slider acceleration and wedge 

mass, generates a body force on the wedge. This body force can be decomposed using the 

wedge geometry / ramp angle to calculate the contact forces at the slider – guider 

interface.  Additional design considerations were taken to ensure that the center of the 

slider contact area was aligned with the wedge center of mass as to avoid any unwanted 

moments and to ensure uniform contact. A quasi-static analysis in the form of a free body 

diagram, as shown in Figure 2.9, is used to analyze the system. It is important to note 

 
 

 

Figure 2.9 – An inertia loaded wedge system used to generate contact pressures at 

the slider-guider interface. 
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when analyzing the system that the slider is moving relative to the guider. The guider 

shear load reacts on the slider in the opposite direction of the tribo-slider travel. The ramp 

normal and shear loads are the result of the wedge inertia load. These loads are necessary 

to accelerate the wedge mass with the rest of the tribo-slider. The sum of the forces in the 

x and y-directions are as follows 

 

 ∑ 𝐹𝑥 = 𝑊𝑁 sin
𝜃

2
+ 𝑊𝑆 cos

𝜃

2
−𝐺𝑆 − 𝐹𝐵 = 0 (2.1) 

 

 

 

 
∑ 𝐹𝑦 = 𝑊𝑁 cos

𝜃

2
− 𝑊𝑆 sin

𝜃

2
− 𝐺𝑁 = 0 (2.2) 

 

where FB, is the wedge inertia force, WN, is the ramp normal force, WS, is the ramp shear 

force,  GN, is the guider normal force, GS, is the guider shear force, and 
𝜃

2
 is the ramp 

angle. Equations 2.1 and 2.2 contain five unknowns. In order to solve the system of 

equations three additional equations are needed. They are as follows 

 

 𝐺𝑆 = 𝜇𝐺𝐺𝑁 (2.3) 

 

 

 𝑊𝑆 = 𝜇𝑅𝑊𝑁 (2.4) 
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 𝐹𝐵 = 𝑚𝑤𝑎𝑐 (2.5) 

 

where µG, is the coefficient of kinetic friction at the slider-guider interface, µR, is the 

coefficient of kinetic friction at the wedge-ramp interface, mw, is the wedge mass, and ac 

is the tribo-slider acceleration.  Both the mass of the wedge and tribo-slider acceleration 

are known. Combining Equations 2.1 – 2.5 and rearranging the terms to solve for the 

guider normal force 

 

 

 
𝐺𝑁 =

𝑚𝑤 · 𝑎𝑐 (cos
𝜃
2 − 𝜇𝑅 sin

𝜃
2)

[𝜇𝐺 (𝜇𝑅 sin
𝜃
2 − cos

𝜃
2) + sin

𝜃
2 + 𝜇𝑅 cos

𝜃
2]

 (2.6) 

 

The guider normal force is of interest in this case as it is used to calculate the pressure 

at the slider-guider interface. It is important to note that the resultant form of the guider 

normal force, Equation 2.6, is a function of the wedge mass, tribo-slider acceleration, the 

coefficient of kinetic friction at the wedge-ramp interface, and the coefficient of kinetic 

friction at the slider-guider interface. Simplifying assumptions can be made to further 

reduce this equation. These assumptions require insight into the coefficient of kinetic 

friction at the wedge-ramp and slider-guider interfaces. In order to correctly characterize 

the sliding behavior between the wedge and ramp it is important to understand there is a 

relative velocity difference between the two due to slider wear. As the slider wears the 

wedge moves down the ramp and there is a relative velocity between the wedge and 

ramp. For a representative set of test conditions the average velocity between the 6061-

T6 aluminum wedge and G-10 glass fiber reinforced epoxy ramp is on the order of 1 m/s 
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and the ramp normal load is on the order of 1000 N. Published data shows a coefficient of 

kinetic friction for a glass fiber reinforced epoxy on aluminum at a sliding speed of 5.3 

m/s and a contact load of 72 N to be 0.04 [47]. As shown in Equation 2.6, the coefficient 

of kinetic friction (µR) at the wedge-ramp interface affects the resultant guider normal 

load. A coefficient of kinetic friction on the order of 0.01 at the wedge-ramp interface 

reduces the guider normal load by approximately 2.5%. Similarly for the slider-guider 

interface at high sliding speeds, just prior to achieving melt lubrication, the coefficient of 

kinetic friction can be estimated at 0.01. This estimation is based on a wide range of 

published data using different tribomaterial pairings and load conditions at high sliding 

speeds [8, 10, 12]. A coefficient of kinetic friction on the order of 0.01 increases the 

guider normal load by approximately 2.2%. Thus the overall net effect of the wedge-

ramp and slider-guider coefficient of kinetic frictions for these conditions is a 0.3% 

decrease in guider normal load. Based on these conditions it is assumed that the change in 

the guider normal load due to changes at the wedge-ramp and slider-guider interface 

negate each other. By making this assumption Equation 2.6 reduces to the following form 

 

 

 

𝐺𝑁 =
𝑚𝑤𝑎𝑐

tan
𝜃
2

 
(2.7) 

 

This form is consistent with the method used by Stefani and Parker in which they assume 

the wedge is allowed to move freely [4].  

Mass measurements of each wedge and the launch package were taken prior to each 

test using a Mettler Toledo XS64 scale. Instrumentation in the form of  position (b-dots) 

[48-50] and electrical current (Rogowski coils) [51] sensors were used to obtain the tribo-
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slider position as a function of time during the EML launch. Acceleration and velocity 

were calculated using a second order polynomial fit of the position data coupled with the 

equations of motion. A representative b-dot sensor (position) plot and velocity plot for an 

EML launch are shown in Figures 2.10 and 2.11. The EML launch data combined with 

the wedge mass and geometry provides enough information to define and correlate the 

test conditions, pressure and velocity, to slider wear / deposition on the guider.  

 

 

 
 

Figure 2.10 Tribo-slider position data from magnetic field sensors (b-dots) as a 

function of time. 
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2.4 Slider Wear and Analysis 

2.4.1 Slider Wear Overview 

The experimental setup provides a combination of material properties and operating 

conditions that result in worn slider material and deposition on the guiders. The slider 

deposition is in the form of a visible and distinct “track” of material as shown in Figure 

2.12. The track is approximately the width of the wear tab (slider) on the wedge. The 

appearance of the slider deposition varies as a function of location on the guider and in 

turn can be related to the operating parameters pressure and velocity through the 

relationships described in section 2.2. Two different techniques are used to analyze the 

deposition. The first is optical microscopy, which offers a qualitative assessment of the 

 
 

Figure 2.11 – Tribo-slider velocity versus time. 
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deposition and the second is 3D profilometry, which provides a quantitative assessment 

of the deposition.  

Prior to analysis, the 1.56 meter long guiders are removed from the EML bore. The 

initial slider position is visually identified and several measurements and cuts are made to 

produce 12 centimeter long guider specimens. Additionally, the wedges are retrieved 

from the soft catch following each test. An example of a wedge pre-test and post-test is 

shown in Figure 2.13.  The forward end of each wedge sustains impact damage during 

deceleration in the catch tank. Slider wedge measurements are taken via a scale and an 

optical microscope. Wedge mass measurements, to quantify wear, have shown to be 

difficult to use due to the impact damage on the forward end of the wedge. Wedge slider 

height measurements taken using an optical microscope have shown to be more 

consistent and are used for comparison to wear deposition measurements taken with the 

3D profilometer.  

 
 

Figure 2.12 - Visual appearance of the guiders pre-test (left) and post-test (right). 
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2.4.2 Slider Wear Analysis 

Following each test the guider specimens are viewed under a Leica DM 4000 optical 

microscope to identify changes in the appearance of the slider deposition as a function of 

guider location. Typical identifying attributes include deposition form, consistency, color, 

and distribution.  A micrograph from an aluminum slider on copper guider test at 101 

MPa and 1,070 m/s is shown in Figure 2.14. The reddish-brown material is the copper 

guider and the dark gray, spherical protrusions that are somewhat uniformly dispersed 

over the surface are the deposited aluminum from the slider. A more in depth look at the 

evolution of wear as a function of pressure and velocity is discussed in Chapter 3. 

 

 

 
 

 

 

Figure 2.13 - A fully assembled tribo-slider (left) and wedge (center) prior to 

testing. Retrieval of the wedge from the soft catch post-test shows visible impact 

damage is sustained during deceleration (right).   
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After each guider specimen undergoes a qualitative assessment the specimen is then 

prepared for 3D profilometry. The aluminum deposition on each guider is quantified 

using a Zygo NewView 6k scanning white light interferometer (non-contact optical 

profilometry), as pictured in Figure 2.15. Discrete deposition measurements at 

incremental locations along the length of each guider provide wear data as a function of 

position, velocity, pressure and tribomaterial pairing. Prior to each scan the guider 

location of interest is marked into three different segments, a left reference area, a test 

area and a right reference area, as shown in Figure 2.16. The test area was masked using a 

steel fixture and the reference areas were cleaned by “flaking” off the deposition 

 
 

Figure 2.14 - A micrograph of slider deposition from an aluminum slider on 

copper guider test at 101 MPa and 1,070 m/s.  
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Figure 2.15 - The Zygo NewView 6k scanning white light interferometer (non-

contact optical profilometer) used to measure the aluminum deposition. 

  

 
 

 

Figure 2.16 - Example of a cleaned guider specimen. Reference areas and a test 

area are required for volume measurements using the 3D profilometer. 
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followed by a sodium hydroxide swab to remove any residual aluminum, as sodium 

hydroxide reacts with aluminum in a corrosive manner. The removal of the deposition to 

the left and right of the desired test area is necessary in order to properly characterize the 

guider surface roughness and any deformation that may have taken place due to contact 

with the slider. The MetroPro 8.1.5 software package that is part of the scanning white 

light interferometer system utilizes these reference areas to define a plane from which to 

take a volume measurement on in the test area. Due to the size of the scan, 10 millimeters 

by 5 millimeters, it is necessary to use an application within the MetroPro 8.1.5 software 

called “stitch.app.” The stitch application takes several smaller scans and combines them 

to form a larger representative scan of the test area. Due to the large scan area, an 

extended scan length option is necessary to capture the full range of depth. The 

combination of the large scan area coupled with the extended scan created a pixel-to-

pixel resolution of 2.18 micrometers with a vertical resolution of 0.02 micrometers. 

Typical deposition thickness, when averaged over the measurement area, is on the order 

of 10 micrometers, making the error due to vertical resolution approximately 0.2% of the 

measurement. An example of a scanned test area is shown in Figure 2.17. The red 

spherical shaped protrusions are the slider deposition and the blue underlying material is 

the guider surface defined through the use of the reference areas.  

Each test may have as many as eighteen different slider deposition locations that were 

quantified. A total of five volumetric deposition measurements were taken at each 

location in order to properly characterize the variation in the slider deposition. A 

statistical analysis was conducted to determine the mean and standard deviation for each 

set of five measurements. Using the methodology, as outlined in section 2.3, each mean 
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volumetric slider deposition measurement, for a given location, can be related to velocity 

and contact pressure so that further analysis can be performed. Before such analysis is 

conducted there is a final calculation that is performed on the volumetric wear data. In 

tribology when quantifying wear rates instead of per unit time they are quoted per 

distance slid. This is often due to the manner in which the tests are conducted. 

Volumetric wear of metal-metal sliding contacts, depending on the operating conditions, 

can be relatively small and require large distances under steady state conditions to 

quantify the worn material via mass loss or height change. For a specific material pairing 

 

 

 
 

 

Figure 2.17 - An example of a scan in the test area of the melt lubrication region 

using a scanning white light interferometer. 
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the volumetric wear, as defined by Archard and Holm [52, 53] can be predicted using the 

following definition 

 

 

 𝑉 =  
𝑘 · 𝑊 · 𝑥

𝐻𝑜
 (2.8) 

 

where k is a nondimensional wear coefficient dependent on the tribomaterial pairing, W is 

the normal load, x is the distance slid, and Ho is the room temperature hardness. For dry 

sliding contacts of aluminum and aluminum alloys on steel it has been shown that wear 

coefficients are on the order of 10
-5

 to 10
-8

 [13, 54, 55]. For the sliding conditions of the 

tests outlined in this dissertation, the operating parameters are representative of extreme 

metal-metal sliding contact and result in relatively large amounts of volumetric wear over 

short sliding distances with wear coefficients for aluminum on copper, steel, and titanium 

on the order of  10
-3

. The high wear coefficients, combined with the 3D profilometry 

measurement technique, requires that only a short distance slid is necessary to capture the 

local volumetric wear rate. A distance of 3.2 millimeters, equal to one slider length, is the 

distance over which the volumetric wear measurements are taken using the MetroPro 

8.1.5 software and because the 3.2 millimeter distance slid is relatively small, the change 

in velocity of the slider over this distance is also relatively small, approximately 0.2 to 

1.5%. The resultant form is a volumetric wear rate in units of cubic millimeters per 

millimeter.  

In addition to putting the volumetric wear data in a rate form, it is also useful to 

normalize it relative to the nominal area of contact. In doing so the normalized 
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volumetric wear rate data takes on a dimensionless form which provides distinct 

advantages when comparing and scaling data across different geometries and test setups. 

The normalized volumetric wear rate, while dimensionless, is often displayed in units of 

millimeter per millimeter. This is to remind the reader that wear rates, in Tribology, are 

with respect to distance slid, not time. The normalized wear rate is defined as   

 

 

 𝑊̃ =  
𝑉

𝐴𝑛 · 𝑥
 (2.8) 

 

 

where V is the volume of worn material, An is the nominal contact area of the slider and x 

is the distance slid . 

2.4.3 Data Interpretation 

At the end of each test, a set of volumetric wear data is collected from the guider, put 

into rate form, and normalized. The data can be plotted as function of guider location 

(position), velocity or some combination of operating parameters such as the product of 

pressure and velocity. The focus of this research is wear at high sliding speeds and high 

contact pressures. Based on literature reviewed in Chapter 1, it is expected that slider-

guider interface will be molten and a melt layer or film will support the slider load. The 

primary wear mechanism is melt lubrication and the source of heat in this case is viscous 

dissipation. For this reason the appearance of the deposition is important when surveying 

the guider specimens so as to focus the 3D profilometry measurements in the region of 
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interest. The melt lubrication region, depending on the test conditions for the experiments 

conducted, initiates between 25 and 35 centimeters of travel and ends at approximately 

45 to 50 centimeters of travel providing 10 to 25 centimeters of guider to analyze. The 

precursor to the melt lubrication region is marked by a high wear rate that steadily 

decreases until a critical velocity is achieved at which point a molten metal film capable 

of supporting the contact load has formed. The melt lubrication region continues until the 

acceleration begins to decrease at approximately 45 to 50 centimeters, at which point the 

aluminum deposition begins to lessen due to lighter contact loads.  

Each set of 3D profilometry measurements is compared to the optical microscopy 

qualitative assessment to ensure that the aluminum deposition appearance and the 

location at which the melt lubrication region initiates and ends correlates well with each 

other. Normalized wear rates in the melt lubrication region showed a linear dependence 

on velocity, as will be discussed in Chapter 3. There were instances when a data point 

deviated from this trend. In these instances the guider specifications were inspected. 

There are two reasons for the guider specification to be out of tolerance. During 

installation the guiders are seated into the sidewall insulators and flatness measurements 

are taken to ensure that guider “waviness” is minimized. This waviness in the guiders has 

two effects. The first being loss of contact if the slider moves from a high to low spot on 

the guider. This often results in an unusually low slider deposition. The second is an 

increase in the guider normal force due to slider movement from a low to high spot on the 

guider. This results in an unusually high slider deposition. If the guider was found to be 

out of spec in the location in question then the data point was removed from the set. 
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2.4.4 Data Error Assessment 

The slider deposition was quantified using a scanning white light interferometer at 

discrete locations along the length of the guider following the completion of a test. Each 

test may have as many as eighteen different slider deposition locations that were 

quantified and related to a set of operating conditions (pressure and velocity). A total of 

five volumetric deposition measurements were taken at each location to characterize the 

variation in the slider deposition. A statistical analysis was conducted to determine the 

mean and standard deviation for each set of five measurements. From this analysis the 

normalized wear rate and the associated uncertainty, with a 95% confidence interval, 

were calculated using Equation 2.8. An uncertainty of 5-10% of the calculated 

normalized wear rate value is typical for the wear regions quantified (severe plastic 

deformation and melt lubrication) in this dissertation.  

There are three potential sources of error that contributed to the 5-10% uncertainty. 

The first source of error is due to the resolution of the scanning white light 

interferometer, which varies depending on the depth of the scan. In order to properly 

capture the full vertical range of the slider deposition an extended scan was required, 

resulting in a vertical resolution of 0.02 micrometers. Typical deposition thickness in the 

wear regions investigated, when averaged over the measurement area, is on the order of 

10 micrometers, making the error due to the vertical resolution approximately 0.2%.  

The second source of error is due to the length over which the volumetric wear 

measurements are taken. A set of five measurements was incrementally taken over a 

distance of 5 millimeters to adequately capture the variability in slider deposition at each 

location. As it was discussed previously, in Section 2.3, the slider velocity increases as 
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the slider travels down the guider. This means for each set of five measurements the 

slider deposition measured is for a range of velocities. For analysis purposes the average 

velocity is reported. For a measurement distance of 5 millimeters the velocity increases 

by approximately 0.2 to 1.5%. The changing velocity results in a different set of contact 

conditions that may influence the rate of slider deposition. 

The third and final source of error is related to the surface topography of the guider. 

Material processing techniques used in forming each guider and deformation due to the 

interaction of the slider – guider contact results in a guider arithmetic mean surface 

roughness of ≤ 1 micrometer. Typical slider deposition, when averaged over the 

measurement area in the wear region of interest, is on the order of 10 micrometers. The 

MetroPro 8.1.5 software package, that is part of the scanning white light interferometer 

system, takes a best fit plane of the reference areas on each side of the test area so as to 

average out the effects of the guider topography and calculates the volume of material in 

the test area above the best fit plane. Both the slider deposition and the guider topography 

are included in this volume calculation. In doing so, error is introduced due to the 

statistical distribution of the guider topographical features (peaks and valleys). For an 

arithmetic mean surface roughness of 1 micrometer and an average deposition thickness 

of 10 micrometers, the resultant error in the volumetric measurement can be ±10%. 

Of the three sources of error introduced, the third source of error is the largest and 

compares well to the measured 5-10% uncertainty. This suggests that as the slider 

deposition increases the contribution of the error introduced through the MetroPro 

software calculation decreases. Conversely, for smaller amounts of slider deposition, less 

than 10 micrometers, this error becomes increasingly more significant. The average slider 
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deposition in the wear regions of interest quantified in this dissertation are on the order of 

10 micrometers.  
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CHAPTER 3: Experimental Results - Wear Regimes 

3.1 Overview 

The main objective to studying high velocity wear is to gain a fundamental 

understanding of the effects that the operating conditions, such as pressure and velocity, 

and tribomaterial pairings have on normalized wear rates. Limitations in the available 

diagnostic capabilities, due to the time scale of the test (microseconds), makes it difficult 

to assess normal loads, shear loads, and temperatures at the slider-guider interface using 

traditional measurement techniques. For this reason only the pressure and velocity 

operating parameters are known / calculated, as discussed in Chapter 2. A combination of 

qualitative (optical microscopy) and quantitative (3D non-contact profilometry) 

assessment techniques are used in conjunction with theory and existing literature to 

identify the wear type and the associated mechanism(s) responsible for the slider wear.  

The experimental technique used to study slider wear at high sliding speeds and high 

contact pressures covers a wide range of velocities, 0 – 1,200 m/s, and pressures, 100 – 

225 MPa, for a 6061-T6 aluminum slider on a C110-H2 guider. The normalized contact 

pressure, velocity and wear rates for the experiments conducted, as defined by Equations 

1.1 – 1.3, are summarized in Table 3.1. An aluminum alloy wear mechanism map [15], as 

shown in Figure 3.1, is used to evaluate the conditions of the experiments conducted in 

this dissertation versus those compiled from literature. The wear mechanism map and 

contours of normalized wear rates are empirically calibrated to wear data for aluminum 

alloys using the concepts and models developed by Lim and Ashby [10]. Five regions are 

defined: oxidation dominated wear, plasticity dominated wear, severe plastic 
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Table 3.1 - Normalized pressure, velocity and wear rates for 6061-T6 aluminum 

experiments. 

 

 

 
 

 

Figure 3.1 - An aluminum alloy wear mechanism map [15]. 
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deformation, melt wear and seizure. 

Each region is defined by the dominant wear mechanism. The wear debris in the 

oxidation dominated region is the result of high flash temperatures, due to frictional heat 

dissipation, that result in oxidation of the aluminum contact interface. When the oxide 

film reaches a critical thickness it spalls off leaving behind a wear fragment. The 

plasticity dominated region is characteristic of Archard’s wear [52, 53] in which the 

softer material is plastically deformed and sheared off as it adheres to the harder material. 

The underlying mechanism for this failure has been attributed to subsurface crack 

nucleation and propagation and the wear in this region can also be referred to as 

delamination [56]. The severe plastic deformation region is the result of thermal 

softening at the asperity level due to frictional heat dissipation at the contact interface 

resulting in localized plastic flow. When the heat dissipation is large enough the localized 

plastic flow transitions to localized melting and is representative of melt wear. Finally, 

seizure occurs when the contact load is large enough such that the real area of contact is 

equivalent to the nominal area of contact and can result in plastic indentation, large scale 

material flow or large scale metallic transfer. 

The slider operating conditions of the work presented in this dissertation are 

highlighted in red on the map and predominately operate in the seizure wear region, 

adjacent to the plasticity, severe plastic deformation and melt wear regions. The seizure 

boundary line is hypothetical as there is no experimental wear data for model calibration. 

If the seizure boundary line was shifted to a normalized pressure of 10
0
 and the adjacent 

wear regions were extrapolated, then three different types of wear: plasticity dominated 

wear, severe plastic deformation and melt wear would be expected. Additionally as 
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discussed in Chapter 1, for high sliding speeds and large contact loads a fourth wear 

region, melt lubrication, may exist. The normalized wear rate data collected from the 

experiments conducted in this dissertation provides new wear data that can be used to 

validate existing wear mechanisms and to identify / define new mechanisms. 

 A qualitative assessment of the slider wear for 6061-T6 aluminum on a C110-H2 

copper guider is made for sliding speeds in the range of 200 – 1,200 m/s at a contact 

pressure of 101 MPa. It is anticipated that at low sliding speeds, less than 1,000 m/s, the 

wear mechanisms are plasticity dominated wear and severe plastic deformation and for 

sliding speeds in excess of 1,000 m/s the expected wear mechanism is melt lubrication. 

The primary region of interest for this dissertation is at sliding speeds in the range of 

1,000 – 1,200 m/s. A quantitative assessment was made in this range for several different 

contact pressures between 100 – 225 MPa. Both the qualitative and quantitative results 

are discussed in the following sections. 

3.2 Qualitative Analysis of Slider Deposition 

A qualitative assessment was made for each of the tests conducted as to correlate the 

changes in the wear regions identified using optical microscopy to those measured using 

3D non-contact profilometry. In general three distinct wear regions presented themselves: 

plasticity dominated wear, severe plastic deformation and melt lubrication. The plasticity 

dominated wear region occurred at lower velocities, less than 800 m/s (𝑣̃ = 2.2·10
4
), 

while severe plastic deformation occurred at mid-range velocities, 800 to 1,000 m/s (𝑣̃ = 

2.2 – 2.7·10
4
), and melt lubrication at velocities greater than 1,000 m/s (𝑣̃ = 2.7·10

4
). A 

total of eight tests with varying contact pressure and slider-guider material pairings were 

conducted, as summarized in Table 3.2. For all eight tests the slider material was held 
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constant as 6061-T6, while four different guider materials were explored, C110-H2, 1018 

steel, 1045 steel, and titanium grade 2 commercial purity. Three sets of micrographs, one 

set for each wear region, are presented. Within each set there are four micrographs, one 

for each of the different slider-guider material pairings. In general the perceived 

difference between the slider deposition and the guider is easier to differentiate for the 

6061-T6 slider and C110-H2 guider material pairing due to the contrasting colors of the 

materials. These differences are more difficult to observe for the 6061-T6 slider 

deposition on the 1018 steel, 1045 steel, and titanium guiders as the materials are similar 

in color.  

A micrograph of the plasticity dominated wear region for a 6061-T6 aluminum slider 

on a C110-H2 guider at a contact pressure of 101 MPa and a sliding speed of 700 m/s is 

shown in Figure 3.2. The reddish brown colored material is the C110-H2 copper guider, 

while the darker gray material is the deposited 6061-T6 aluminum. Visually the slider 

 

Table 3.2 - Slider-guider material pairings and conditions for all eight tests. 
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Figure 3.2 - A micrograph of the plasticity dominated wear region for a 6061-T6 

aluminum slider on C110-H2 guider at a sliding speed of 700 m/s and a contact 

pressure of 101 MPa. 

 
 

Figure 3.3 - A micrograph of the plasticity dominated wear region for a 6061-T6 

aluminum slider on 1018 steel guider at a sliding speed of 490 m/s and a contact 

pressure of 134 MPa 
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Figure 3.4 - A micrograph of the plasticity dominated wear region for a 6061-T6 

aluminum slider on 1045 steel guider at a sliding speed of 560 m/s and a contact 

pressure of 135 MPa. 

 
 

Figure 3.5 - A micrograph of the plasticity dominated wear region for a 6061-T6 

aluminum slider on titanium commercial purity grade 2 guider at a sliding speed 

of 580 m/s and a contact pressure of 144 MPa. 
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deposition in the plasticity dominated wear region has a shiny appearance and is 

representative of uniformly smeared aluminum, leaving behind a track of material 

approximately equal to the width of the slider. Additional micrographs for a 6061-T6 

aluminum slider on a 1018 steel, 1045 steel, and titanium commercial purity grade 2 

guider in the plasticity dominated wear region are shown in Figures 3.3 – 3.5.  

A micrograph of the severe plastic deformation wear region for a 6061-T6 aluminum 

slider on a C110-H2 guider at a contact pressure of 101 MPa and a sliding speed of 930 

m/s is shown in Figure 3.6.  The reddish brown color material is the C110-H2 copper 

guider, while the darker gray material is the 6061-T6 aluminum. The severe plastic 

deformation wear region deposition differs in appearance from the plasticity dominated 

wear region. In general the deposition is representative of larger shapeless pieces of 

randomly distributed material with non-uniform coverage. Visually the deposition had a 

more matte finish rather than a shiny appearance. The change from plasticity dominated 

wear to severe plastic deformation can be thought of as a change from localized heating 

at the asperity level to larger scale heating, to a point where the temperature gradients 

between asperities begin to interact causing a bulk temperature rise at the surface. This 

rise in temperature results in thermal softening and in turn large scale shearing / plastic 

deformation of the slider surface. Additional micrographs for a 6061-T6 aluminum slider 

on a 1018 steel, 1045 steel, and titanium commercial purity grade 2 guider in the severe 

plastic deformation region are shown in Figures 3.7 – 3.9. 
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Figure 3.6 - A micrograph of the severe plastic deformation wear region for a 

6061-T6 aluminum slider on C110-H2 guider at a sliding speed of 930 m/s and a 

contact pressure of 101 MPa. 

 
 

Figure 3.7 - A micrograph of the severe plastic deformation wear region for a 

6061-T6 aluminum slider on 1018 steel guider at a sliding speed of 910 m/s and a 

contact pressure of 134 MPa. 
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Figure 3.8 - A micrograph of the severe plastic deformation wear region for a 

6061-T6 aluminum slider on 1045 steel guider at a sliding speed of 930 m/s and a 

contact pressure of 135 MPa. 

 
 

Figure 3.9 - A micrograph of the severe plastic deformation wear region for a 

6061-T6 aluminum slider on titanium commercial purity grade 2 guider at a 

sliding speed of 800 m/s and a contact pressure of 144 MPa. 
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Lastly, a micrograph of the melt lubrication wear region for a 6061-T6 aluminum 

slider on a C110-H2 guider at a contact pressure of 101 MPa and a sliding speed of 1,070 

m/s is shown in Figure 3.10. The reddish brown color is the C110-H2 copper guider and 

the darker gray material is the 6061-T6 aluminum deposition. The deposition in the melt 

lubrication wear region differs from both the plasticity dominated and severe plastic 

deformation regions. In general the melt lubrication wear deposition is hemispherical in 

shape and more uniformly dispersed. Visually the deposition has a matte finish. The 

deposition coverage appeared to increase with increasing velocity and this was confirmed 

through the use of 3D profilometry as discussed in section 3.3. Additional micrographs of 

for a 6061-T6 aluminum slider on a 1018 steel, 1045 steel, and titanium commercial 

purity grade 2 guider in the melt lubrication region are shown in Figures 3.11 – 3.13. 

The transition from severe plastic deformation to melt lubrication is the result of an 

increase in heat dissipation due to the shearing /plastic deformation of the slider surface. 

Under these conditions the resultant heat generated is sufficient to melt the slider 

interface and to form a melt film capable of supporting large contact loads. Upon cooling 

the aluminum film solidifies and takes on a hemispherical shape, exposing the underlying 

guider material. This is a product of how the aluminum wets and adheres to the surface. 

The solidified aluminum protrusions can have a height on the order of 100 micrometers. 

Volumetric measurements of the slider deposition in the melt lubrication region 

combined with the slider nominal contact area results in an average melt film thickness 

on the order of 10 micrometers, prior to solidification. This differs from the plasticity 

dominated wear region. In the plasticity dominated region the slider material is smeared 

across the guider surface providing more uniform coverage. The slider deposition in this
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Figure 3.10 - A micrograph of the melt lubrication wear region for a 6061-T6 

aluminum slider on C110-H2 guider at a sliding speed of 1,140 m/s and a contact 

pressure of 101 MPa. 

 
 

Figure 3.11 - A micrograph of the melt lubrication wear region for a 6061-T6 

aluminum slider on 1018 steel guider at a sliding speed of 1,100 m/s and a contact 

pressure of 134 MPa. 
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Figure 3.12 - A micrograph of the melt lubrication wear region for a 6061-T6 

aluminum slider on 1045 steel guider at a sliding speed of 1,120 m/s and a contact 

pressure of 135 MPa. 

 
 

Figure 3.13 - A micrograph of the melt lubrication wear region for a 6061-T6 

aluminum slider on titanium commercial purity grade 2 guider at a sliding speed 

of 1,020 m/s and a contact pressure of 144 MPa. 
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region has an average thickness between 0.1 – 1 micrometers. 

As discussed earlier the development of a melt film capable of supporting large 

contact loads is considered hydrodynamic in nature and the primary heating mechanism 

is viscous dissipation. These conditions are representative of melt lubrication, rather than 

melt wear. The wear mechanism map for aluminum alloys, shown in Figure 3.1, does not 

differentiate between melt wear and melt lubrication regions. This distinction needs to be 

recognized. Additionally, the qualitative results show that the seizure wear region needs 

to be shifted upwards. 

3.3 Quantitative Analysis of Slider Deposition 

A quantitative assessment was made for each test conducted to develop normalized 

wear rate relationships as a function of contact pressure, velocity and tribomaterial 

pairing in the severe plastic deformation and melt lubrication regions. The information 

obtained from assessing each guider specimen, using optical microscopy, was used to 

identify three wear regions and to relate those wear regions to the volumetric slider 

deposition measurements. Based on the analysis conducted using 3D non-contact 

profilometry there are three inflection points that were identified that correlate well to 

optical microscopy. These inflection points are shown in Figure 3.14 for the test case of a 

6061-T6 aluminum slider on a titanium grade 2 commercial purity guider at a contact 

pressure of 145 MPa. The first inflection point occurs at the shift from plasticity 

dominated wear to severe plastic deformation, the second occurs at the peak of the severe 

plastic deformation wear, and the third occurs at the shift from severe plastic deformation 

to melt lubrication. 



 

 67 

Prior to reaching the first inflection point the normalized wear rate is relatively low 

and consistent. For the most part the amount of deposited slider material is difficult to 

measure using the scanning white light interferometer as the volume of deposited 

material fell within the noise of the guider surface roughness. For this reason only an 

upper bound could be placed on the normalized wear rates in this region and it is on the 

order of 10
-4

. 

 

 

 
Figure 3.14 - Influence of velocity on normalized wear rate showing three 

inflection points representing the shift from plasticity dominated wear (1) to 

severe plastic deformation (2) to melt lubrication (3) for 6061-T6 aluminum on 

titanium grade 2 commercial purity at 145 MPa. 
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The low normalized wear rate prior to the first inflection point is representative of 

localized heating due to frictional effects at the asperity level. As the rate of heat 

generation increases the temperature gradients between asperities begin to interact, at 

which point the majority of the slider interface takes on a higher temperature. This causes 

thermal softening on a large scale and results in larger pieces of worn slider material 

deposited onto the guider. This is evident in the severe plastic deformation wear 

micrograph shown in Figure 3.6. The first inflection point signifies this change from 

localized slider wear to a larger bulk removal of material. From inflection point one to 

inflection point two, the shearing / plastic deformation that occurs is on a larger scale that 

eventually reaches a peak as indicated by the second inflection point. At which the 

normalized wear rate begins to decrease with increasing velocity. The heat dissipation 

due to the shearing / plastic deformation of these pieces of slider material is large enough 

to melt the bulk of the slider interface at a sufficient rate to form a melt film capable of 

supporting the slider normal contact load. This shift from large scale shearing / plastic 

deformation to a melt film is represented by the third inflection point. Once a melt film 

has been established the normalized wear rates are representative of melt lubrication and 

viscous dissipation is the primary heating mechanism.  

The melt lubrication region is of particular interest because it had not been identified 

on the aluminum alloy wear mechanism map previously and its wear rate has a clear 

relationship with velocity. The melt lubrication region is demarcated by a critical velocity 

at which the type of wear transitions from severe plastic deformation to melt lubrication, 

as shown in Figure 3.15. This critical velocity represents the development of a melt film 

capable of supporting large normal contact loads. A design of experiments to explore the 



 

 69 

effects of contact pressure, velocity, and guider material properties on melt lubrication 

normalized wear rates is discussed in Chapters 4 and 5. Individual normalized wear rate 

plots as a function of velocity with 95% confidence interval error bars for the wear 

regions of interest (severe plastic deformation and melt lubrication) are summarized in 

Appendix A.  

Some similarities may be drawn between the normalized wear rate plots as shown in 

Figures 3.14 and 3.15 to that of a Stribeck curve as shown in Figure 3.16 [14, 57]. The 

Stribeck curve, named after the German engineer who studied the frictional properties 

between two sliding lubricated surfaces was developed from a broad set of experiments 

conducted on journal bearings. The results are typically presented in the form of 

 
Figure 3.15 - Wear regions and normalized wear rates for 6061-T6 aluminum on 

C110-H2 copper at 101 MPa. 
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coefficient of friction, f, on the y-axis as a function of dynamic viscosity, µ, rotational 

speed, N, and contact pressure, σ, on the x-axis.  The curve itself provides a visualization 

of the different lubrication regimes encountered and can be used to gain a basic 

understanding of hydrodynamic lubrication in journal bearings.  The actual physical 

analysis of hydrodynamic lubrication was presented by Petroff and later altered by 

Sommerfeld and are commonly used in mechanical design of journal bearings [58, 59].  

Several different lubrication regimes exist. The hydrodynamic lubrication region is 

representative of a thick film that separates the two sliding surfaces. This region is 

 
Figure 3.16 - A Stribeck curve representative of the coefficient of friction for the 

different lubrication regions [14]. 
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demarcated by the inflection point in the elastohydrodynamic region. In typical 

applications the hydrodynamic lubrication region is the ideal region of operation as it 

ensures the sliding surfaces are fully separated. This often requires that the lubricant film 

thickness is much larger than the roughness or irregularities of the sliding surfaces. The 

friction coefficient in the hydrodynamic region typically increases with increasing sliding 

speeds due to viscous drag.  However, this is not the case in journal bearings where 

operating in the hydrodynamic region is often self-correcting due to the use of oil as a 

lubricant. This self-correction has to do with the physical properties of oil as they are 

sensitive to changes in temperature [60]. For example, an increase in rotational or sliding 

speed results in an increase in the coefficient of friction and a shift to the right or up the 

line per the Stribeck curve. This shift to the right results in a higher coefficient of friction 

due to the viscous / shear drag of the oil. An increase in shear drag results in an increase 

in the viscous heat dissipation and accordingly a rise in the lubricant temperature. The 

physical properties of oil are such that an increase in temperature results in a decrease in 

the dynamic viscosity, as shown in Figure 3.17 [1, 2]. A decrease in dynamic viscosity 

results in a decrease in the coefficient of friction and causes a shift to the left or down the 

line. For this reason hydrodynamic lubrication, as it applies to journal bearings, is often 

considered self-correcting.  

In the case of hydrodynamic lubrication or melt lubrication as it pertains to a melting 

slider, the physical properties of the melt film for molten metals do not possess the same 

self-correcting properties as oils. As the sliding velocity increases, the shear drag 

increases and the viscous heat dissipation rate increases, consequently melting more 

slider material and increasing the thickness of the melt film. Unlike in the self-correcting 
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Figure 3.17 - Dynamic viscosity of several different oils and other common fluids 

as a function of temperature [1, 2]. 
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Figure 3.18 - Dynamic viscosity measurements of molten aluminum compiled 

from seven different sources, labeled 1-7, plotted as a function of temperature [6, 

7]. 
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case, the dynamic viscosity of molten aluminum is relatively insensitive to temperature, 

as shown in Figure 3.18, when compared to typical engine oils [6, 7]. For typical engine 

oils an increase in temperature of 100ºC results in a decrease in in dynamic viscosity by a 

factor of 100, whereas as an increase in temperature of 100ºC for molten aluminum 

results in a decrease in dynamic viscosity by a factor of 1.4. So, as the sliding velocity 

increases, the viscous heat dissipation rate increases and consequently the slider melt rate 

increases. This is evident in both the qualitative and quantitative data presented in Figure 

3.15 where the normalized wear rate or the amount of slider material deposited on the 

guider increases linearly with velocity. 

A comparison in the trends among the five different lubrication regions of a Stribeck 

curve and the wear regions identified for a 6061-T6 aluminum slider on a titanium grade 

2 commercial purity guider at 145 MPa is made in Figure 3.19. Several assumptions are 

required and they are as follows: 

 

1) The molten aluminum acts as a Newtonian fluid. 

2) The molten aluminum is incompressible. 

3) The viscosity of molten aluminum is constant throughout the film. 

4) The viscosity of molten aluminum is insensitive to changes in temperature. 

5) The normalized wear rate is proportional to the coefficient of friction. 

6) The contact pressure at the slider-guider interface is uniform and constant. 

7) The normalized wear rate is proportional to the coefficient of friction at the slider-

guider interface. 

8) No-slip boundary conditions. 
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Figure 3.19 - Comparison of a Stribeck curve to a normalized wear rate plot of 

6061-T6 aluminum on titanium grade 2 commerical purity at 145 MPa. 
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The first region of the Stribeck curve is the cleaned surface region. This region is 

characteristic of high coefficient of friction values that approach unity and can be best 

correlated to seizure wear. Seizure wear was not identified as one of the three types of 

wear observed during testing. The second region is the boundary contact region. This 

region is representative of solid on solid contact at the asperity level, as adhesion is the 

primary wear mechanism and this region correlates well to the plasticity dominated wear 

region. The third region, termed mixed lubrication, is representative of partial 

hydrodynamic lubrication. In this region there is some solid on solid contact between the 

two sliding surfaces and a portion of the normal contact load is carried by a partially 

formed lubricant film. The mixed lubrication region correlates well to the severe plastic 

deformation wear region between the second and third inflection points. As this region is 

representative of a mixture of solid contact and partial surface separation. Both regions 

display a similar trend in that the coefficient of friction and normalized wear rates are 

decreasing with increasing sliding speed. The severe plastic deformation region between 

the first and second inflection points does not correlate well to the Stribeck curve, 

because in the Stribeck curve a lubricant is being pumped into the sliding interface. This 

differs from the high velocity wear experiments where the lubrication is being provided 

via the melting slider. This transition from localized to large scale melting of the slider 

occurs between inflection points one and two and consequently does not correlate well to 

a particular region of the Stribeck curve. 

The fourth region, elastohydrodynamic lubrication (EHL), is a subset of 

hydrodynamic lubrication. In the EHL region the film is thinner than that of the 

hydrodynamic lubrication region. The EHL region correlates well with the third 
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inflection point as it has been shown that the melting rate of the slider is sufficient 

enough to maintain a thin film. Lastly, the fifth region, the hydrodynamic lubrication 

region, is representative of thick film lubrication and is located beyond the third 

inflection point in the melt lubrication region. These two regions correlate well as slider 

deposition in the melt lubrication region is indicative of a thicker melt lubrication film, 

which is representative of full slider-guider separation.  

It is concluded that portions of the severe plastic deformation and melt lubrication 

regions followed similar trends to that of the mixed, EHL and hydrodynamic lubrication 

regions of a Stribeck curve. Several wear models have attempted to predict the melting 

rate of the slider in the melt lubrication region. The basis for these models is Stiffler’s 

melt lubrication model which is constructed on the concept of laminar flow [36]. Stefani 

and Kothmann tried to apply Stiffler’s melt lubrication model to high velocity wear data 

and found that the assumption of laminar flow under predicted the slider wear rate and 

that a larger molten aluminum viscosity value provided better results [41]. It was 

concluded that a higher effective viscosity is necessary to better predict the melting rates 

under these conditions. This conclusion indicates that the film could be better represented 

by a slurry or that turbulence needs to be accounted for when modeling the melt film. 

Stefani and Merrill investigated the effects of turbulence in thin films [42]. They utilized 

the Reynold’s Number to provide further insight into whether or not the melt film is 

operating in the laminar or turbulent regime. The Reynold’s Number for a thin film is 

defined as follows 

 

 
𝑅𝑒 =  

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝜌𝑣ℎ

µ
 

(3.3) 
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where v is the slider velocity, h is the film thickness, µ is the dynamic viscosity and ρ is 

the liquid density of aluminum at the melting point.  Using the sliding conditions and 

molten aluminum material properties, as shown in Table 3.3, a Reynold’s Number of 

approximately 12,000 is calculated [6, 7].  Stefani and Merrill found the transition from 

laminar to turbulent flow in journal bearings to be as low as 2,000 [61].  So, for the 

sliding conditions in the melt lubrication region the fluid film may be considered 

turbulent, which provides added complexity when analyzing the slider-guider contact 

interface. 

  

 

Table 3.3 - Typical sliding conditions and material properties of molten 

aluminum in the melt lubrication region 
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CHAPTER 4: Experimental Results – Velocity and Pressure 

4.1 Overview 

A set of experiments was designed to explore the effects of velocity and contact 

pressure on slider wear. Additional considerations such as the effects of the tribomaterial 

pairing are discussed in Chapter 5. For the modified EML experimental setup the peak 

sliding velocity is typically between 1,150 – 1,250 m/s and the critical velocity at which 

the type of wear shifts from severe plastic deformation to melt lubrication is in the range 

of 800 – 1,000 m/s. This leaves approximately 10 – 25 centimeters of slider deposition to 

analyze. Pressures in the range of 120 – 180 MPa were targeted as this pressure range 

provides an extension of previous work conducted by Stefani and Parker [4]. The 

material pairing is held constant, utilizing a 6061-T6 aluminum slider on a C110-H2 

guider as these materials are relevant to small caliber EML systems [62-66]. 

Additionally, the effect of nominal contact area is explored. The results presented in this 

chapter are in standard format with the normalized wear rate on the y-axis and the 

operating parameters or test conditions such as velocity on the x-axis. Data analysis 

combined with high velocity wear theory is utilized to plot the data in an insightful form. 

A design of experiments to study the effects of pressure and velocity on slider normalized 

wear rates is discussed. 

4.2 Design of Experiments 

A design of experiments to study the effects of high sliding speeds and high contact 

pressures on slider wear is explored. The test conditions achieved are limited by the EML 

system power supply and bore geometric constraints. The design space for the tribometer 
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is shown in Figure 4.1. Several different contact pressures were targeted within this 

design envelope. A comparison of the five targeted and measured pressures and test 

parameters is made in Table 4.1. Differences occurred for two primary reasons. The first 

has to do with the repeatability of the Georgia Tech minor caliber EML system. Several 

different electrical connections are made between the power supply and the EML bore. 

Assembly and disassembly of these connections is required for maintenance and can lead 

to different electrical contact resulting in variability in the electrical current passing 

through the system.  This variability directly impacts the electromagnetic propulsive 

force on the launch package, consequently causing the acceleration, in some instances, to 

dip below the targeted value.  

 

 
 

 

Figure 4.1 - Design space for the Georgia Tech minor caliber EML and 

tribometer design for a 6061-T6 aluminum slider on C110-H2 guider. 
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The second difficulty in replicating the target contact pressures has to do with the 

fabrication process. Additional mass in the form of a tungsten pin was added to each 

wedge to vary the mass and accordingly the contact pressure. The tungsten pin was added 

by drilling a blind hole into each wedge, cutting a pin to size and press fitting it into the 

hole. The relative size of each individual wedge coupled with tolerancing and the 

addition of a tungsten pin made a noticeable impact on the final wedge mass, which 

subsequently has an effect on the calculated pressure. 

This combination of EML system performance and wedge fabrication generated a 

variability that made it difficult to precisely meet the targeted contact pressures during 

actual testing as indicated by the differences in Table 4.1 For all tests the contact area 

was square (aspect ratio of one). It is important to note that test number 2 maintained a 

square shape, but had a 41% reduction in the contact area from tests 1 and 3-5  and the 

wedge mass was adjusted accordingly to achieve the targeted contact pressure.  

 

Table 4.1 - Summary of the targeted and measured wedge mass, acceleration and 

contact pressures. 
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Additionally test number 5 had a much larger mass than expected due to a deeper blind 

hole and a larger tungsten pin.  

A summary of the material pairing, contact pressure, peak velocity and nominal 

contact area for each of the five tests is displayed in Table 4.2. An even distribution of 

contact pressures was difficult to achieve due to the aforementioned issues, however the 

distribution is sufficient as the lower and upper bounds, 101 MPa and 225 MPa, of the 

design space were achieved and additional intermediary pressures were attained 

providing enough data to adequately capture the sensitivity of contact pressure on 

normalized wear rates. Additionally the peak velocity for the five tests are within 10-20 

m/s of the targeted 1,200 m/s and the velocity range of 600 – 1,200 m/s was properly 

captured such that the severe plastic deformation and melt lubrication regions can be 

explored. 

 

 

 

Table 4.2 - Summary of test conditions to study the effects of pressure and 

velocity on slider wear. 
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4.3 Experimental Results 

4.3.1 Overview 

The test results presented and discussed in this section focus on the melt lubrication 

region. A broad survey of slider deposition measurements is taken as to properly identify 

the critical velocity to adequately capture the melt lubrication region. A normalized wear 

rate plot for the melt lubrication region of a 6061-T6 aluminum slider on a C110-H2 

copper guider at five different contact pressures is shown in Figure 4.2. The normalized 

wear rates exhibit a dependence on both pressure and velocity. The critical velocity, vc, at 

which the wear transitions from severe plastic deformation to melt lubrication is sensitive 

 

 
 

Figure 4.2 - Melt lubrication test data for a 6061-T6 aluminum slider on C110-H2 

guider with varying contact pressure. 
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to pressure. The critical velocity decreases with increasing pressure. After the critical 

velocity is achieved the normalized wear rate increases linearly with velocity. This 

suggests that the rate of heat dissipation is directly related to the viscous drag and 

subsequently velocity.  Additionally, while it is difficult to visually identify, secondary 

pressure effects are present in the slope of each line. These effects are summarized in 

Table 4.3. An increasing contact pressure results in an increase in the slope. In the next 

section the effects of pressure and velocity are understood utilizing melt lubrication 

theory, which provides a means to develop an empirical model for predicting slider wear. 

 

4.3.2 Analysis: Melt Lubrication Theory 

Melt lubrication theory is used to provide insight in analyzing the experimental data. 

A melt lubrication model for a fully melting slider and a laminar viscous heat source was 

developed by Stiffler [36]. Stiffler utilized the Reynold’s equation (momentum and 

 

 

Table 4.3 - Influence of pressure and velocity effects on the slope of normalized 

wear rates in the melt lubrication region for a 6061-T6 slider on a C110-H2 

guider. 
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continuity) in conjunction with the heat equation to evaluate and predict melting rates. 

Several assumptions are made and they are 

 

1) Molten metal lubricant is laminar and incompressible 

2) The pressure, density and viscosity are constant across the film thickness 

3) Molten metal film thickness is small relative to the slider geometry 

4) Only the slider is melting 

5) Quasi-steady state conditions are reached in the molten film 

 

The normalized wear rate for a laminar melt lubrication film according to Stiffler is 

defined 

 

 

 
𝑊̃ =  
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4 · (𝜇𝑣)
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𝑙
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2 · 𝛿

1
4 · 𝜌
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4 · [𝐿 + 𝑐(𝑇𝑚 − 𝑇𝑜)]

3
4

 (4.1) 

 

where σ is the nominal contact pressure, µ is the dynamic viscosity, v is the slider 

velocity, l is the slider length, δ is a geometric factor, ρ is the room temperature mass 

density, L is the latent heat of fusion, c is the specific heat, Tm is the melting point, and To 

is the initial temperature. The thermal properties are those of the melting slider. The 

geometric factor [36]  is defined 
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where ζ is the aspect ratio of the slider contact area (length divided by the width).  

Equation 4.1 suggests that the normalized wear rate is proportional to the nominal 

contact pressure and sliding velocity raised to the ¼ and ½ powers, respectively. The data 

presented in Figure 4.2 is re-plotted as a function of σ
1/4

v
1/2

 in Figure 4.3. The results do 

not appear to correlate well as a good correlation would “collapse” the data onto a single 

line. As discussed in Chapter 3 an inherent uncertainty lies in the assumption of laminar 

flow and it has been shown that the melt lubrication film may operate in the turbulent 

 

 
 

 

Figure 4.3 - Melt lubrication test data for a 6061-T6 aluminum slider on C110-H2 

guider as a function of σ
1/4

v
1/2

. 
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regime. A turbulent melt lubrication film can have a strong dependence on velocity and 

therefore these effects need to be considered [42, 67]. 

Based on these results it is assumed that the molten metal film is turbulent and that 

the viscosity exhibits a linear dependence on velocity [2, 42]. The turbulent viscosity is 

defined 

 

 

 
µ𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 =  𝜆 · 𝑣 + µ𝑙𝑎𝑚𝑖𝑛𝑎𝑟  (4.3) 

 

where λ is the turbulent viscosity constant, v is velocity and µlaminar is the laminar 

viscosity. For high velocities, the first term dominates and the turbulent viscosity is 

reduced 

 

 

 
µ𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 =  𝜆 · 𝑣 (4.4) 

 

Substituting Equation 4.3 into 4.1 the normalized wear rate for a turbulent melt film is 

defined 
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It is important to note that the geometry terms, l and δ are constant for a fixed slider 

geometry. These terms can be represented by a single geometry constant, 

 

 

 

𝐺 =  
1

𝑙
1
2𝛿

1
4

 (4.6) 

 

As the slider thermal terms, ρ, L, c, Tm, and To, are representative of the energy required 

to melt the slider material, these terms can be represented by a single thermal constant, 
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1
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3
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3
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 (4.7) 

 

Combining Equations 4.5, 4.6, and 4.7 a simplified form for the normalized wear rate for 

a turbulent melt film is 

 

 𝑊̃ =  𝜆
1
2 · 𝐺 · 𝛤 · 𝜎

1
4 · 𝑣 (4.8) 

 

When the data in Figure 4.2 is re-plotted as a function of σ
1/4

v, as shown in Figure 

4.4, the lines of constant pressure “collapsed” onto a single line and the slope of each line 

is now representative of the viscosity, geometry and thermal constants λ, G, and Γ, 

collectively referred to as the melt lubrication proportionality constant Ψ defined by 

 

 𝛹 =  𝜆
1
2 · 𝐺 · 𝛤 (4.9) 



 

 89 

Substituting Equation 4.9 into 4.8 

 

 𝑊̃ =  𝛹 · 𝜎
1
4 · 𝑣 (4.10) 

 

This simplified form is useful when analyzing the experimental data as the slope of each 

line is representative of the melt lubrication proportionality constant. A comparison of the 

melt lubrication proportionality constants for each set of data and the associated percent 

difference from the data set average is summarized in Table 4.4.  

 

 

 

 
 

Figure 4.4 - Melt lubrication test data for a 6061-T6 aluminum slider on C110-H2 

guider as a function of σ
1/4

v. 
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A linear fit is made using the complete set of data in Figure 4.5. These results support 

the use of melt lubrication with turbulence as the normalized wear rates are sensitive to 

σ
1/4

v. The effective turbulent viscosity of the melt lubrication film is calculated using the 

melt lubrication proportionality constant of the fit data in Figure 4.5 and calculating the 

geometric and thermal constants using Equations 4.6 and 4.7 and the material property 

data in Table 4.5 [5-7, 9, 36]. Solving for the turbulent viscosity constant, λ, using 

Equations 4.9, a value of 8.6 Pa·s
2
 / m is calculated. For a viscosity constant of 8.6 Pa·s

2
 / 

m and a velocity range from 1,000 – 1,200 m/s an effective turbulent viscosity of 8.6 – 

10.3 x 10
3
 Pa·s is calculated using Equation 4.4. The effective turbulent viscosity is six 

orders of magnitude larger than that of molten aluminum 2.0 x 10
-3

 Pa·s without turbulent 

effects included. This demonstrations the effect that turbulence has on normalized wear 

rates in the melt lubrication film. Modeling of this film using the assumption of laminar 

 

 

Table 4.4 - A comparison of the melt lubrication proportionality constants for the 

6061-T6 slider on a C110-H2 guider data set. 
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Figure 4.5 - A linear fit of complete data set for a 6061-T6 aluminum slider on 

C110-H2 guider as a function of σ
1/4

v. 

 

 

Table 4.5 - Material properties and slider geometry used to calculate G·Γ. 
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flow (no turbulence) will significantly under predict the normalized wear rates in the melt 

lubrication region. 

Additionally, the melt lubrication model of Equation 4.5 assumes that all of the heat 

generated in the melt film is partitioned into the slider. This may not be appropriate as the 

guider acts as a heat sink, removing heat from the melt lubrication film. These effects are 

captured through the turbulent viscosity constant, which is adjusted to calibrate the melt 

lubrication model to the experimental data.  

4.3.3 Analysis: Empirical Modeling 

Experimental data from the tests of varying pressure show that the critical velocity or 

the velocity at which the type of wear transitions from severe plastic deformation to melt 

lubrication is sensitive to contact pressure. The larger the contact pressure, the lower the 

critical velocity. As discussed in section 4.3.2 the effects of pressure can be removed by 

plotting the normalized wear rates as a function of pressure and velocity (σ
1/4

v). A critical 

value of σ
1/4

v, referred to as the critical heat dissipation, A, exists and represents the shift 

from severe plastic deformation to melt lubrication. A comparison of the critical heat 

 

Table 4.6 - Melt lubrication constants. 
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dissipation for each set of data and the associated percent difference from the data set 

average is summarized in Table 4.7.  

 

The average A value shown in Table 4.7 is empirically derived and represents the 

conditions at which the heat dissipation is significant enough to develop a melt film. The 

critical velocity for a given contact pressure can be calculated as follows 

 

 

 

𝑣𝑐 =
𝐴

𝜎
1
4

 (4.11) 

 

where A, is the critical heat dissipation and σ, is the contact pressure. For a tribomaterial 

pairing of a 6061-T6 aluminum slider on a C110-H2 guider and a contact pressure in the 

range of 100 – 225 MPa the critical velocity at which the wear shifts from severe plastic 

deformation to melt lubrication can be predicted.  

 

 

Table 4.7 - Comparison of the critical heat dissipation values. 
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In addition to the sensitivity of the critical velocity on contact pressure, the 

normalized wear rate at the critical velocity displays a dependence on pressure, as shown 

previously in Figure 4.2. A large pressure results in a higher normalized wear rate at the 

critical velocity. The normalized wear rate at the critical velocity, 𝑊̃𝑐 for each data set is 

summarized in Table 4.8. A similar methodology used to define the critical heat 

dissipation is employed here to define the critical normalized wear rate, B. The 

significance of B is that it captures the pressure effects on the normalized wear rate at the 

critical velocity. In order to properly define B a dimensionless pressure ratio, σr, is 

defined 

 

 

 

𝜎𝑟 =
𝜎

𝜎𝑜
 (4.12) 

 

 

 

Table 4.8 - Comparison of the normalized wear rates at the critical velocity. 
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where σ, is the nominal contact pressure, and σo is the reference contact pressure, which 

for this case is 101 MPa and represents the lower bound of the pressures tested. The 

critical normalized wear rate, B, is defined 

 

 

 

𝐵 =
𝑊̃𝑐

𝜎𝑟

1
4

 (4.13) 

 

Similar to the critical heat dissipation parameter, the dimensionless pressure ratio is 

raised to the ¼ power as this parameter is of significance in melt lubrication theory. A 

comparison of the critical normalized wear rates, B, for each set of data and the 

associated percent difference from the data set average is summarized in Table 4.9. 

 

The transition from severe plastic deformation to melt lubrication was difficult to 

capture quantitatively. This required that the normalized wear rate at the critical velocity 

was estimated using the intersection of the linear fit of the experimental data in the severe 

 

 

Table 4.9 - Comparison of the critical normalized wear rates, B. 
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plastic deformation and melt lubrication regions. The differences between the critical 

normalized wear rates, B, and the data set average in Table 4.9 can be attributed to 

variability in the linear fit of each wear region as they are sensitive to the number of data 

points used to create the fit and the uncertainty in each normalized wear rate 

measurement. 

An empirical normalized wear rate equation, derived from Equation 4.10, in a general 

form as a function of the sliding speed and contact pressure is derived using the following 

linear expression  

 

 𝑊̃ = 𝛹 · 𝜎
1
4 · 𝑣 + 𝑏 (4.14) 

 

 

Using the boundary conditions at the critical velocity,  

 

 

 
𝑏 = 𝑊̃𝑐 − 𝛹 · 𝜎

1
4 · 𝑣𝑐 (4.15) 

 

Substituting Equation 4.11 - 4.13 into Equation 4.15  
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Substituting Equation 4.16 into Equation 4.14 and rearranging terms gives way to an 

empirical normalized wear rate equation 

 

 

 
𝑊̃ = 𝛹 · (𝜎

1
4 · 𝑣 − 𝐴) + 𝐵 · (

𝜎

𝜎𝑜
)

1
4

 (4.17) 

 

This equation is capable of replicating lines of constant pressure using the constants 

Ψ, A, B and σo. A summary of the constants and their mean values is given in Table 4.10. 

The equation is applicable for velocities in the melt lubrication region (vc ≤ v ≤ 1,200 

m/s) and pressures in the range of 100 – 225 MPa for a 6061-T6 aluminum slider on 

C110-H2 guider. 

 

A plot of the predicted lines of constant pressure using the normalized wear rate 

model and mean constant values for contact pressures of 101, 122, 124, 130, and 225 

 

 

 

Table 4.10 - Normalized wear rate equation constant and mean values. 
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MPa is shown in Figure 4.6. An error analysis is conducted to establish upper and lower 

bounds for a 95% confidence interval to evaluate the model results to experimental data. 

The associated error for each of the constants is presented in Table 4.10. The error in 

each of these individual constant values results in a propagated error that is used to define 

a 95% confidence interval in the form of an upper and lower bound. The propagated error 

is calculated using the following equation 
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Figure 4.6 – Response of the normalized wear rate model. 
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where 𝛥𝑊̃ is the uncertainty in the normalized wear rate, 𝛥𝑥𝑖 is the error or uncertainty 

in the constant value, and 
𝛿𝑊̃

𝛿𝑥𝑖
 is the partial derivative of the normalized wear rate model 

with respect to the constant 𝛿𝑥𝑖. Applying the error propagation equation to the 

normalized wear rate model results in the following form 
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 (4.14) 

 

 

A plot comparing the experimental data to the normalized wear rate model using 

mean constant values with a 95% confidence interval for a contact pressure of 130 MPa 

is shown in Figure 4.7. The plots for each test are presented in Appendix B. All of the 

experimental data sets fall within the 95% confidence bands. The two experimental data 

sets that show the largest difference to the model predictions are the 101 MPa and 225 

MPa tests. In general the uncertainty of the normalized wear rate measurements due to 

the variability in the slider deposition is the primary contributor to these differences. 

The empirically derived normalized wear rate model provides a design tool for 

predicting volumetric wear in the melt lubrication region for a tribomaterial pairing of 

6061-T6 aluminum on C110-H2 copper for sliding speeds ≤ 1,200 m/s and contact 

pressure between 100 – 225 MPa. Additional considerations, such as guider material 

properties are investigated in Chapter 5. The results from Chapter 5 can be used to further 

extend the normalized wear rate model for different guider materials. While the 



 

 100 

normalized wear rate model is only applicable to a 6061-T6 aluminum slider, it is 

important to note that the model can be used to gain insight into the behavior of different 

slider materials through the thermal constant, Γ. Future testing of slider materials with 

different thermal constants would be of interest to understand the effects on the melt 

lubrication proportionality constant, the heat dissipation rate, and the critical normalized 

wear rate constant. 

4.3.4 Analysis: Geometry Effects 

 

In the preceding two sections the effects of pressure and velocity on normalized wear 

rates for a 6061-T6 slider on a C110-H2 guider are discussed. Two tests were conducted 

 

 
 

Figure 4.7 - A comparison plot for a 130 MPa set of experimental data to the 

model prediction including a 95% confidence interval band. 
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under similar contact pressures, 122 MPa and 124 MPa, but differing nominal contact 

areas, 5.8 mm
2
 and 10.1 mm

2
, respectively, as to better understand the effects of nominal 

contact area on normalized wear rates. The test conditions for these two tests are 

summarized in Table 4.11. 

 

A comparison of the two tests is shown in Figure 4.8. Similar to the previous test 

results the critical velocity at which the wear shifts from severe plastic deformation to 

melt lubrication is sensitive to the contact pressure and follows the trend that the higher 

the contact pressure, the lower the critical velocity. This trend is consistent with previous 

test results and the data is ordered appropriately as the higher contact pressure test, 124 

MPa, has a lower critical velocity than the 122 MPa test. Additionally, the critical 

velocities, slopes, and initial normalized wear rate of the two tests are relatively similar as 

the pressure differences are small (<2%). 

A comparison of the two tests in terms of σ
1/4

v is made in Figure 4.9. Both the lines 

“collapse” on top of each other, indicating a good correlation. The effect of nominal 

contact area appears to be negligible as the two lines fall within the normalized wear rate 

error of ± 5 – 10%. These results indicate that the volumetric wear is proportional to the 

 

 

Table 4.11 - Summary of test conditions to study the effects of slider nominal 

contact area on wear. 
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nominal area of contact which is appropriate as the melt lubrication region is 

representative of large scale melting. This differs from traditional normalized wear rates 

or wear coefficients, which at low speeds are proportional to the real area of contact as 

determined by the normal contact load and  strength / hardness of the softer material [14, 

52, 53].  It can be concluded from Figures 4.8 and 4.9 that the effects of nominal contact 

area are negligible for the geometries tested. However, a better test to investigate the 

effects of nominal contact area on normalized wear rates in the melt lubrication region 

would be to modify the length of the slider and aspect ratio as this directly influences the 

geometry constant G, as defined in Equation 4.6. The geometry factor is sensitive to the 

 

 
 

Figure 4.8 - Normalized wear rates comparing tests with similar contact 

pressures and different nominal contact areas. 
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slider length and the aspect ratio such that a larger slider length and a larger aspect ratio 

results in a smaller geometry constant. The geometry constant is directly related to the 

melt lubrication proportionality constant, Ψ, and a larger slider length and aspect ratio 

would result in a smaller value of Ψ. It would be valuable in future testing to modify the 

slider length and aspect ratio to be vastly different as to exacerbate the differences. 

Currently for the 10.1 mm
2
 and 5.8 mm

2
 test cases with contact pressures of 124 MPa and 

122 MPa the G values are 22.0 and 25.1 which relates to Ψ values of 5.62 x 10
-6

 and 5.60 

x 10
-6

. A better choice would have been to design the contact area to produce a G value 

of 10 as this would have lowered the Ψ value for the 124 MPa case from 5.62 x 10
-6

 to 

2.55 x 10
-6

.  

 
 

Figure 4.9 - Normalized wear rate dependence on σ
1/4

v for different nominal 

contact areas. 
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CHAPTER 5: Experimental Results – Influence of Guider Material 

5.1 Overview 

A set of experiments was designed to investigate the effects of guider material 

properties on slider wear in the melt lubrication region. The concepts developed in the 

preceding chapters will be expanded on to include the effects of guider material 

properties. Three different guider materials were chosen. Peak sliding velocities between 

1,050 and 1,250 were achieved. A contact pressure of 130 MPa was targeted for each test 

so that direct comparisons could be made among the three different guider materials. As a 

result of the variability in the EML system and the wedge fabrication process, the 

measured contact pressure varied from the targeted contact pressure up to 15 MPa 

between tests. However, these differences were removed by plotting the normalized wear 

rates as a function of σ
1/4

v so that a direct comparison among the three different tests 

could be made to draw conclusions on the effects of guider material properties on 

normalized wear rates 

The objective of this study is to isolate the individual influence of mechanical 

properties (strength, hardness) and thermal properties (thermal conductivity, specific 

heat, and thermal diffusivity). To study the effects of guider mechanical properties on 

normalized wear rates, two materials with different mechanical properties, but similar 

thermal properties were first investigated. Then the effect of the guider thermal properties 

on normalized wear rates is studied. Using these results, the normalized wear rate model 

developed in Chapter 4 is further generalized with the addition of a guider material 

property term.  
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5.2 Experimental Results: Effect of Guider Mechanical Properties 

5.2.1 Design of Experiments 

A nominal contact pressure of 135 MPa was targeted with sliding velocities ranging 

from 0 – 1,200 m/s for a 6061-T6 aluminum slider to properly explore the effects of 

guider mechanical properties on slider wear. The mechanical property of interest in this 

study is hardness as it can be easily acquired through a bench top / hand held hardness 

tester in a laboratory environment. 

For this set of experiments the softer material is the slider and it is assumed that the 

slider deforms plastically to establish a real area of contact at lower velocities. At higher 

velocities the slider undergoes large scale plastic deformation due to thermal softening 

until the heat dissipation rate is significant enough to incur large scale melting. Large 

scale melting is representative of melt lubrication as the melting of the slider is capable of 

supporting the normal contact load and fully separating the slider – guider surfaces. For 

these reasons it is expected that two guider materials with differing hardness values and 

similar thermal properties will have minimal impact on the normalized wear rates in both 

the severe plastic deformation and melt lubrication regions.  

A broad survey of metals with a large hardness range, but similar thermal properties 

was conducted. Using CES EduPack, [5] two plots were generated comparing hardness to 

thermal conductivity and volumetric thermal mass (ρ·c), as these are the thermal material 

properties of interest and will be discussed in more detail in the Section 5.3.1. From this 

survey a group of low – medium plain carbon steels were identified as the ideal candidate 

materials to investigate the effects of hardness on normalized wear rates in the melt 

lubrication region.  Plain carbon steels are ideal as the primary constituent is iron 
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and small changes in carbon content can produce vastly different mechanical properties 

[68]. The carbon content in low – medium plain carbon steels is ≤ 0.50%, which means 

that the effects of varying carbon content will have minimal impact on the bulk thermal 

properties. An additional alloying element of manganese is also present, but in low 

amounts (0.6 – 0.9%), making iron the primary constituent and maintaining that the bulk 

thermal properties are driven by that of iron. Two plots of hardness versus thermal 

conductivity and hardness versus volumetric thermal mass are made in Figure 5.1 and 

5.2, respectively. These plots show the large range of mechanical properties that low – 

 

 
 

 

Figure 5.1 - Hardness versus thermal conductivity of low – medium plain carbon 

steels highlighted in red, generated by CES EduPack 2014 [5]. 



 

 107 

medium plain carbon steels provide, while maintaining similar thermal properties, 

making them an ideal group of materials to evaluate the effects of guider mechanical 

properties on normalized wear rates in the melt lubrication region.  

Two different plain carbon steels were selected. One of the major challenges during 

the final selection of materials is related to the guider form. For testing purposes as 

outlined in Chapter 2, the guiders need to be 6.35 mm x 6.35 mm x 1560 mm or 1.56 m 

in length. For this reason a 1018 low plain carbon steel and a 1045 medium plain carbon 

steel were selected as they are readily available in the correct form. Hardness values, 

surface roughness measurements, and material compositions are provided in Table 5.1 [5, 

 

 
 

 

Figure 5.2 - Hardness versus volumetric thermal mass of low – medium plain 

carbon steels highlighted in red, generated by CES EduPack 2014 [5]. 
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9, 68]. Hardness measurements were taken using a portable Riehle hardness tester. The 

resultant hardness of the 1018 and 1045 plain carbon steels is 238 HV and 281 HV, 

respectively, which differs by approximately 15%.  

 

5.2.2 Experimental Results 

A comparison of the test results from the guider mechanical property study is shown 

in Figure 5.3. A nominal contact pressure of 134 MPa and 135 MPa were achieved for 

the 1018 and 1045 steel guider tests. A comparison of the two tests in terms of σ
1/4

v is 

made in Figure 5.4.The test results of both plots indicate that the guider mechanical 

properties in the melt lubrication region have a negligible effect, as both lines have 

similar slopes and lie on top of each other. One difference among the two tests is the 

critical velocity, vc, and the heat dissipation constant, A (σ
1/4

vc) as a small but noticeable 

difference occurred. The critical velocity and the heat dissipation constant for the 1045 

steel is 1.7% higher than the 1018 steel guider test. The transition from the severe plastic 

deformation to melt lubrication was difficult to capture experimentally. This required that 

the critical velocity was estimated using the intersection of the linear fit of the 

 

 

Table 5.1 - Comparison of steel guider materials tested. 

 

 



 

 109 

experimental data in the severe plastic deformation and melt lubrication regions. The 

differences between the critical velocities can be attributed to variability in the linear fit 

of each wear region as they are sensitive to the number of data points used to create the 

fit and the uncertainty in each normalized wear rate measurement. 

Based on the results in Figures 5.3 and 5.4 it is concluded that the effects of guider 

mechanical properties on slider normalized wear rates in the melt lubrication region are 

negligible. Surface roughness measurements pre-test and post-test were taken for both the 

1018 and 1045 steel guiders, as shown in Table 5.2. These measurements were taken at 

several different locations. Post-test measurements required removal of the slider 

deposition by the methods described in Chapter 2, so as to properly characterize the 

 

 
 

Figure 5.3 - Normalized wear rates for a 6061-T6 slider on a 1018 steel and 1045 

steel guider in the melt lubrication region. 
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surface roughness in the slider-guider contact region. Test results showed good 

agreement with small differences in surface roughness indicating that no significant bulk 

deformation at the slider-guider interface occurred. These small differences in surface 

roughness are most likely representative of the variability in the guider material 

processing method.  

A test with a much lower hardness or ultimate tensile strength may provide more 

information regarding the effects of mechanical properties on normalized wear rates as 

the ultimate tensile strength of cold drawn 1018 and 1045 steel at room temperature is 

approximately 420 MPa and 590 MPa, respectively [9]. These values are significantly 

larger than the 310 MPa ultimate tensile strength of the 6061-T6 aluminum slider at room 

 

 
 

Figure 5.4 - Normalized wear rate dependence on σ
1/4

v for a 6061-T6 slider on a 

1018 steel and 1045 steel guider in the melt lubrication region. 
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temperature. In traditional wear theory the wear rate is proportional to the normal contact 

load and material hardness of the softer material or the material being worn, assuming the 

softer material is undergoing localized plastic deformation. For this reason a significantly 

harder guider material would be ideal at lower velocities. However, at higher velocities 

such as in the severe plastic deformation wear region, the slider has undergone thermal 

softening due to a rise in bulk temperature and accordingly the ultimate tensile strength is 

reduced as the interface temperature approaches the melting point of the 6061-T6 

aluminum. Once the type of wear has shifted to the melt lubrication region the slider and 

guider surfaces are fully separated due to a melt lubrication film. For this reason guider 

hardness or ultimate tensile strength is less important at these higher velocities due to the 

nature of the sliding conditions. 

 5.3 Experimental Results: Effects of Guider Thermal Properties 

5.3.1 Design of Experiments 

A design of experiments to study the effects of guider thermal properties on 

normalized wear rates of a 6061-T6 aluminum slider is explored. A nominal contact 

 

 

Table 5.2 - Comparison of pre-test and post-test surface roughness of the 1018 

and 1045 steel guiders tests. 
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pressure was targeted to make relative comparisons among the different tribomaterial 

pairings. As discussed previously the variability in the EML system and the wedge 

fabrication process provides difficulties in replicating nominal contact pressures from test 

to test. However, utilizing the melt lubrication concepts developed in Chapter 4, the 

pressure effects are removed by plotting normalized wear rate as a function of σ
1/4

v. 

Additionally it was shown in Section 5.2.2 that guider mechanical properties in the severe 

plastic deformation and melt lubrication regions have a negligible effect on normalized 

wear rates and no further correction is required. For these reasons a direct comparison 

can be made to better understand the effects of guider thermal properties on normalized 

wear rates in the melt lubrication region. 

 For this study the objective is to understand the influence of guider thermal 

properties on slider normalized wear rates. In order to properly capture this design space 

an upper and lower bound of relevant guider thermal properties must be defined. This is 

accomplished through the use of well-established heat transfer theory for sliding contacts. 

Additionally, an intermediate guider material that falls within the upper and lower bounds 

is desired to better understand the sensitivity of normalized wear rates to guider thermal 

properties. 

 For sliding contacts where the primary heat source is frictional dissipation and the 

mode of heat transfer is thermal conduction, two well-established theories (Jaeger and 

Blok) are used [69, 70]. These conditions differ from those of melt lubrication, as the heat 

source in melt lubrication region is viscous dissipation and the formation of a molten 

aluminum film would suggest the primary mode of heat transfer to be convection. 

However, limited published literature is available under the high sliding speeds and high 
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contact pressures examined in this dissertation. For this reason the traditional heat 

transfer theory is utilized as to provide insight for selecting guider materials with thermal 

properties of significance.  

Heat transfer between two sliding solid bodies is presented in the form of a heat flux, 

q, and a heat partition coefficient, α, as shown in Figure 5.5. The heat flux represents the 

heat generated from the interaction of the sliding surfaces and the heat partition 

coefficient represents the portion of the heat flux that is partitioned into the guider. A 

maximum value of one indicates that all of the heat flux is partitioned into the guider and 

a minimum value of zero represents the opposite, where all of the heat flux is partitioned 

 

 
 

Figure 5.5 - Diagram of the heat partition theory concept. 
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into the slider. The fundamentals of heat partition theory lie in the assumption of 

temperature continuity or matching of the slider-guider surfaces. Jaeger’s heat partition 

theory uses an average temperature matching, while Blok uses a maximum temperature 

matching approach. More recently, Bansal [71] matched localized temperatures at the 

slider-guider interface to form localized heat partition coefficients and showed a good 

correlation to that of Jaeger and Blok under the conditions investigated. For this materials 

selection exercise the two simple cases presented by Jaeger and Blok are analyzed as they 

are in a rather simplistic form for design purposes.  

Heat partition theory for average temperature matching, referred to as Jaeger’s theory, 

is presented in the following analytical form 

 

 

 

 =
𝐾1(𝑣 ∙ 𝑙)

1
2

1.125𝐾21

1
2 + 𝐾1(𝑣 ∙ 𝑙)

1
2

 (5.1) 

 

Heat partition theory for maximum temperature matching, referred to as Blok’s 

theory, is defined as 
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where α is the heat partition coefficient for the guider, K1 is the thermal conductivity of 

the guider, K2 is the thermal conductivity of the slider, χ1 is the thermal diffusivity of the 

guider, 2l is the length of the slider in the direction of travel, and v is the velocity. 

 

The two analytical forms in Equations 5.1 and 5.2 make simplifying assumptions 

based on the magnitude of the Peclet number and are applicable for large Peclet numbers. 

The Peclet number is a dimensionless heat transfer parameter that represents the ratio of 

advective to diffusive heat transport, meaning for small Peclet numbers, <0.1, thermal 

conduction dominates and for larger Peclet numbers, >10, convection dominates [72]. 

The Peclet number is defined as follows  

 

 

 
𝑃𝑒 =

𝑣 · 2𝑙

𝜒1
 (5.3) 

 

 

 

Table 5.3 - Heat partition coefficient properties and values for a 6061-T6 

aluminum slider on a C110-H2 guider. 
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For a 6061-T6 aluminum slider on a C110-H2 guider, with a sliding speed of 1,000 m/s, a 

slider length (2l) of 0.00318 meters, and a guider thermal diffusivity of 1.13E-04 m
2
/s, a 

Peclet number of 28,000 is calculated. This value is three orders of magnitude larger than 

the value of 10 used to define large Peclet numbers, in traditional heat partition theory. 

For large sliding velocities and thus large Peclet numbers the limits of the heat partition 

coefficients, defined in Equations 5.1 and 5.2, approach a value of one, meaning that 

approximately all of the heat generated at the slider-guider interface is partitioned into the 

guider. A comparison of the two heat partition theories as a function of slider velocity is 

made in Figure 5.6 for a 6061-T6 aluminum slider on a C110-H2 guider using the 

conditions as summarized in Table 5.3 [5, 9]. 

 

 
 

Figure 5.6 - Heat partition coefficient for sliding contacts with large Peclet 

numbers computed using two different theories. 



 

 117 

The results shown in Figure 5.6 suggest that for the melt lubrication velocity range 

(800 – 1,200 m/s) that the majority of the heat flux generated at the slider-guider interface 

is partitioned into the guider and only a small fraction is partitioned into the slider. 

Additionally, the difference between Jaeger and Blok’s heat partition theory is small 

<0.1%. For this reason Jaeger’s heat partition theory is used for the identification and 

selection of guider materials as the analytical form is more simplistic than Blok’s theory. 

Several simplifications are made to Equation 5.1 in order to put it into a form that can 

be used for screening potential guider materials. The first simplification requires fixing 

the slider length and velocity. For this study the slider geometry is fixed and the effects of 

velocity in the severe plastic deformation and melt lubrication regions have minimal 

impact on the heat partition coefficient, in which case Equation 5.1 can be simplified to 

the following form 

 

 

 

 =
𝐾1𝐶1

1.125𝐾21

1
2 + 𝐾1𝐶1

 
(5.4) 

 

where C1 represents (v·l)
1/2

. The second simplification requires fixing the slider thermal 

conductivity K2. A slider material of 6061-T6 aluminum is used for all experiments. This 

allows for Equation 5.4 to be simplified further to the form 
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where C2 represents (1.125·K2). Dividing the numerator and denominator by K1 gives the 

following form 

 

 

 

 =
𝐶1

𝐶2


1

1
2

𝐾1
+ 𝐶1

 
(5.6) 

 

Simplifying the thermal diffusivity χ1 term provides  
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𝐶2 (
1

𝜌1 · 𝑐1 · 𝐾1
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1
2

+ 𝐶1

 
(5.6) 

 

This provides a material index in the form  

 

 

 
𝑀1 = 𝜌1 · 𝑐1 · 𝐾1 (5.6) 

 

where ρ, is the density, c, is the specific heat, and K is the thermal conductivity of the 

guider material.  

Maximization of the material index M1 results in a larger heat partition coefficient 

and minimization of the material index M1 results in a smaller heat partition coefficient. 

Additionally, it is of interest to find an intermediary heat partition value for the guider 

thermal property study. A group of common materials available for purchase utilizing the 

material index M1 is evaluated with results shown in Table 5.4. A maximum material 
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index value of 13.3 x 10
8
 is identified for copper. This means using a copper guider 

results in a larger heat partition coefficient and provides the upper bound for the guider 

thermal study. A minimum material index value of 0.4 x 10
8
 is identified for titanium. 

The use of titanium results in a lower heat partition coefficient and provides the lower 

bound. A good intermediate material index of approximately 4.0 x 10
8
 is identified for 

molybdenum and tungsten. However, acquisition of molybdenum and tungsten proved 

costly. Several other potential material candidates were unavailable in the proper form 

and for this reason an intermediate material of plain carbon steel was selected. The 

selection of a plain carbon steel serves a dual purpose as it was used in the guider 

mechanical property study as well.  

 

 

 

Table 5.4 - Potential materials for the guider thermal property study. 
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The three materials selected were C110-H2 copper, 1018 / 1045 steel, and titanium 

grade 2 commercial purity. All three of these materials are in a high purity form. A plot 

of the heat partition coefficients as a function of sliding velocity for the three materials 

copper, plain carbon steel, and titanium is shown in Figure 5.7.  It is important to note 

that copper and titanium provide the upper and lower bounds, while steel falls in between 

as the intermediate material as predicted by the material index M1. 

A summary of the tribomaterial pairings, contact pressures, peak velocities and 

nominal contact areas used to investigate the effects of guider thermal properties on 

normalized wear rates is summarized in Table 5.5. Overlap between the pressure-velocity 

 

 
 

Figure 5.7 - A comparison plot of the heat partition coefficients for the three 

selected materials for the guider thermal properties study.  
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experiments discussed in Chapter 4, and the guider mechanical study in Section 5.2 

require that only a single test of 6061-T6 aluminum slider on a titanium grade 2 

commercial purity guider is required. These results are summarized and discussed in 

Section 5.3.2. 

 

5.3.2 Experimental Results 

A comparison of the test results from the guider thermal property study is shown in 

Figure 5.8. The data from the five tests of copper at different contact pressures is 

represented by the red triangles. The two steel tests are represented by the black 

diamonds and the single titanium test is represented by the blue squares. Each data set is 

fit to a linear function. A comparison of the eight experiments in terms of σ
1/4

v is made in 

Figure 5.9. As discussed previously the mechanical effects are negligible in the severe 

plastic deformation and melt lubrication regions, consequently isolating the guider 

thermal properties. A distinct reordering of the guider materials is apparent. The 

 

Table 5.5 - Tribomaterial pairings and test conditions used in the guider thermal 

study. 
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predicted ordering of the three guider materials, using material index, M1 = ρ·c·K, from 

Section 5.3.1, is titanium, steel, and copper. As titanium has the least favorable thermal 

properties of the three materials tested, meaning that of the heat generated at the contact 

interface a lesser portion of the heat is partitioned into the guider and a greater portion is 

partitioned into the slider, creating the conditions necessary to develop a melt lubrication 

film at a lower critical velocity. Accordingly, the same reasoning is applied to the steel 

and copper guider tests. However, an ordering of titanium, copper, and steel in Figure 5.9 

indicates the material index M1 is not applicable under the sliding conditions in the severe 

plastic deformation and melt lubrication regions.  

 

 
 

 

Figure 5.8 - Normalized wear rates as a function of velocity for three different 

guider materials in the melt lubrication region.  
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Further insight can be gained by comparing the dwell time, which is the time that a 

point on the guider stays in contact with the sliding heat source, to the diffusion time, 

which is the time it takes for the heat to penetrate into the bulk material [73]. The dwell 

time is defined as 

 

 

 
𝜏𝑑 =

2𝑙

𝑣
 (5.7) 

 

 
 

 

Figure 5.9 - Normalized wear rate dependence on σ
1/4

v for three different guider 

materials in the melt lubrication region.  
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where 2l, is the slider length, and v, is the slider velocity. Furthermore, the diffusion time 

is defined as 

 

 

 
𝜏ℎ =

𝑧2

𝜒
 (5.7) 

 

where z is the diffusion depth, and χ, is the thermal diffusivity. The ratio of the diffusion 

time to the dwell time is as follows 

 

 

 
Φ =

𝜏ℎ

𝜏𝑑
=

𝑣 · 𝑧2

2𝑙 · 𝜒
 (5.8) 

 

Equation 5.8 is representative of the ratio of time required for heat to diffuse into the bulk 

material to the available dwell time of the heat source. A Φ value less than one indicates 

that a sufficient amount of time is available for bulk diffusion to occur resulting in steady 

state heat transfer conditions, whereas a ratio greater than one results in transient heat 

transfer conditions. For the values of 2l = 0.00318 meters, v = 1,000 m/s, χ = 1.13e-04 

(thermal diffusivity of copper), and z = l = 0.00159, a Φ value of 7,000 is calculated, 

indicating that the conditions are representative of transient heat transfer. For this reason 

a simple transient conduction problem in which a small volume of guider material at the 

surface experiences a sudden change in surface temperature is considered. This approach 

is similar to that of quenching a hot metal forging. The concept is depicted in Figure 5.10. 

Based on the large calculated Φ value, it’s assumed that there is inadequate time for heat 

to diffuse into the bulk material, such that a small volume of material near the surface 



 

 125 

acts as a heat sink. The temperature of this volume is spatially uniform and the 

temperature gradients within the volume are negligible. Utilizing this assumption a 

lumped capacitance approach is taken and an energy balance is performed [72]. 

 

 

 
𝐸̇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝛼 · 𝐸̇𝑔𝑒𝑛 (5.9) 

 

 

 
 

 

Figure 5.10 - Diagram of the lumped capacitance approach to analyzing the 

guider thermal properties.  
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where  Ėgen, is rate of heat generated at the contact interface, α  the portion of that heat 

partitioned into the guider, and 𝐸̇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is the energy storage rate of the volume of guider 

material near the surface. The rate of energy storage can be rewritten as 

 

 

 
𝐸̇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝜌 · 𝑐 · 𝑉̅ ·

𝛥𝑇

𝜏𝑑
 (5.10) 

 

 

where ρ is the density, c is the specific heat, 𝑉̅ is the volume of guider material, ΔT is the 

rise in temperature and τd is the guider dwell time. It is assumed that the volume is fixed 

in size and relatively thin. 

The ratio of the energy storage rate to the total rate of energy dissipation 𝐸̇𝑔𝑒𝑛 is the 

definition for the heat partition coefficient and is represented in the following form 

 

 

 
𝛼 =

𝐸̇𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝐸̇𝑔𝑒𝑛

 (5.11) 

 

Substituting in Equation 5.10 into 5.11 and rearranging the terms 

 

 

 
𝛼 = 𝜌 · 𝑐 ·

𝑉̅ · 𝛥𝑇

𝜏𝑑 · 𝐸̇𝑔𝑒𝑛

 (5.12) 

 



 

 127 

Equation 5.12 can be used to better understand the effects of guider material properties 

on heat partitioning at the slider-guider interface. This provides a material index in the 

form  

 

 

 
𝑀2 = 𝜌 · 𝑐 (5.13) 

 

A material with a large value of M2 or volumetric thermal mass (ρ·c) will partition more 

heat into the guider than a lower one. Increasing the heat partitioned into the guider and 

consequently decreasing the heat partitioned into the slider, results in an increase in the 

critical velocity. Additionally, for the case with pressure effects removed this would 

mean that the heat dissipation rate constant (σ
1/4

·v) would also increase with increasing 

M2.  

The volumetric thermal mass values for the guider materials tested, C110-H2 copper, 

plain carbon steel (1018/1045), and titanium grade 2 commercial purity are provided in 

Table 5.6. The material properties for titanium grade 2 commercial purity are replaced by 

those of titanium dioxide as the bar was formed by a hot extrusion process and was 

cooled in open air [5]. This resulted in a thick slag or scale on the exterior of the bar that 

is representative of titanium dioxide. The experimental data was fit using the material 

properties for high purity titanium and titanium dioxide. The titanium dioxide provided a 

better fit and was used in this analysis. For the copper and steel guiders the natural oxide 

scale was relatively thin as the bars were cold drawn and for this reason the bulk 

properties of these materials are used. 
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A normalized volumetric thermal mass term β is introduced as 

 

 

 
𝛽 =

(𝜌 · 𝑐)𝑐𝑜𝑝𝑝𝑒𝑟

(𝜌 · 𝑐)𝑥
 (5.14) 

 

The normalized volumetric mass term is incorporated into the pressure term of the 

normalized wear rate equation, Equation 4.10, as follows 

 

 

 
𝑊̃ = 𝛹 · (𝛽 · 𝜎)

1
4 · 𝑣 + 𝑏 (5.15) 

 

Re-plotting of the normalized wear rate data for the eight experiments as a function of 

(β·σ)
 1/4

·v collapses the data onto a single line as shown in Figure 5.11. The experimental 

data supports the use of volumetric thermal mass as the guider material metric when 

operating in the severe plastic deformation and melt lubrication regions. This suggests 

that the effects of thermal conductivity on the heat partition coefficient are secondary in 

 

 

    Table 5.6 - Guider thermal properties. 
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nature, as the exposure time is on the order of a microsecond, making heat diffusion 

negligible. 

Utilizing the entire set of eight experiments the empirical model, Equation 4.17, 

developed in Chapter 4 is now updated to include guider thermal property effects as 

follows 

 

 

 
𝑊̃ = 𝛹 · [(𝛽 · 𝜎)

1
4 · 𝑣 − 𝐴] + 𝐵 · (

𝛽 · 𝜎

𝜎𝑜
)

1
4

 (5.16) 

 

 

 
 

 

Figure 5.11 - Normalized wear rate dependence on (β·σ)
1/4

v for three different 

guider materials in the melt lubrication region. 
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The normalized wear rate equation, as presented in Equation 5.16, is in a general form 

and is capable of replicating normalized wear rates using the constants Ψ, A, B and σo 

and their values summarized in Table 5.7. The equation is applicable for velocities in the 

melt lubrication region (vc ≤ v ≤ 1,200 m/s) and pressures in the range of 100 – 225 MPa 

for a 6061-T6 aluminum slider on different guider materials. The guider material 

correction factor, β, is calculated per Equation 5.14. The model is correlated to the 

experimental data as shown in Figure 5.12. Individual comparisons between the model 

and each set of data for the experiments with a 95% confidence band are available in 

Appendix B. 

 

 

 

Table 5.7 - Normalized wear rate equation constants for all eight experiments. 
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Figure 5.12 - Comparison of the normalized wear rate model (solid line) and 

experimental data in the melt lubrication region as a function of σ
1/4

v.  
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CHAPTER 6: GUIDER MATERIAL SELECTION 

6.1 Guider Material Properties Overview 

The primary focus of the preceding chapters has been on the characterization of the 

material response of the slider in the form of wear at high sliding speeds and high contact 

pressures. It is important to recognize that slider wear is a system response, which is 

dependent on both the tribomaterial pairing and operating conditions. It has been shown 

that slider wear is predominately a function of the slider thermal properties, while guider 

thermal properties have a secondary effect [13]. 

For practical engineering applications the guider is often subjected to repetitive use, 

while the slider more often than not is designed for single use. An example is that of a 

projectile rotating band on a rifled barrel in large caliber cannons [74]. In these instances 

it is essential that the guider is durable for performance and economic viability. Under 

high sliding speeds and high contact pressures there are three primary guider degradation 

mechanisms to consider when selecting a suitable material. They include, but are not 

limited to gouging, wear and fracture. The remainder of the chapter will summarize the 

key material properties to consider when selecting a guider material, as they relate to 

slider wear and guider durability.  

6.2 Guider Material Selection in the Melt Lubrication Region 

There are several different wear regions that may be encountered by an accelerating 

slider. Normalized wear rates or wear coefficients are influenced by the sliding 

conditions and tribomaterial pairings. In most applications a low coefficient of friction 

and low normalized wear rate is ideal. For high sliding speeds at low contact pressures 
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the ideal operating regions are the plasticity dominated and melt wear regions as shown 

in Figure 6.1 [15]. It is important to note that the boundary lines for the seizure and 

severe plastic deformation regions are theoretical as empirical data for aluminum alloys 

was not available at the time of wear mechanism map publication. If the seizure boundary 

line was shifted to a normalized pressure of 10
0
 and the adjacent wear regions were 

extrapolated, then three different types of wear: plasticity dominated, severe plastic 

deformation and melt wear would be expected at high sliding speeds and high contact 

pressures. Additionally as discussed in Chapter 3 a fourth wear region, melt lubrication, 

exists. For high sliding speeds and high contact pressures the slider may operate in the 

plasticity dominated, severe plastic deformation, and melt lubrication regions as 

identified in the present work. The ideal region under the present work is the plasticity 

dominated region (𝑊̃ = 0.1 – 1.0·10
-4

), characterized by lower wear rates than the severe 

plastic deformation (𝑊̃ = 1.0·10
-3

) and melt lubrication (𝑊̃ = 0.1 – 1.0·10
-2

) regions. For 

this reason it is important to identify the conditions at which severe plastic deformation 

and melt lubrication occurs as to avoid operating in these two regions if possible. 

The onset of the severe plastic deformation region is difficult to predict. However, a 

heat dissipation rate constant, as defined in Equation 4.11, can be used to predict the 

critical velocity at which the slider wear transitions from severe plastic deformation to 

melt lubrication. Based on the wear mechanism map in Figure 6.1, the severe plastic 

deformation region precedes the melt lubrication region and is bounded by a relatively 

small range of normalized velocities. For this reason the critical velocity is used to 

demarcate the low wear rate region (plasticity dominated wear) from the high wear rate 
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regions (severe plastic deformation and melt lubrication) as it can be predicted using the 

heat dissipation rate constant.  

Additionally, the critical velocity can be increased by selecting a guider material with 

a large volumetric thermal mass. In doing so the velocity range of the plasticity 

dominated wear region is extended. When operating in the plasticity dominated wear 

 

 
 

 

Figure 6.1 - An aluminum alloy wear mechanism map indicating the low and 

high wear rate regions under high sliding speeds [15].  
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region it is important to select a guider with a higher strength or hardness than the slider 

to ensure that deformation and wear is incurred in the slider at low sliding speeds. 

However, when operating in the severe plastic deformation and melt lubrication regions 

the guider strength is less important as the slider undergoes thermal softening and large 

scale melting.  

A survey of available materials was conducted to identify potential candidates with 

both a high volumetric thermal mass and high hardness as shown in Figure 6.2. For visual 

purposes the inverse of both the volumetric thermal mass and hardness are plotted on a 

log-log scale. Ideal material candidates reside in the lower left corner of the plot. Several 

material groupings, metals and alloys (red), technical ceramics (yellow) and glasses 

 
Figure 6.2 - Guider material selection targeting melt lubrication guider wear [5].  
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(magenta) appeared. Of these groupings the metals appear to have a large subset of 

materials with a high volumetric thermal mass and reasonable hardness. In particular 

steel, which is one of the guider materials tested, is a top performer of the metals. From 

the ceramics grouping, tungsten carbide is the top performer and the glass grouping is 

bounded by the metals and ceramics, making them less relevant. The results in Figure 6.2 

do not take into account operating conditions, such as contact pressure and ductility 

limitations, which may further reduce the material groupings to a single subset of 

materials.    

 6.3 Guider Durability 

6.3.1 Overview 

During operation under extreme sliding contact a guider may experience severe 

plastic deformation, wear or fracture, all of which limit the useful service life of the 

guider. In order to make a slider-guider tribomaterial system more economically feasible 

a guider may need to be durable enough to withstand hundreds to thousands of cycles. 

There are three primary forms of guider damage that need to be considered and they are 

gouges, wear/erosion and fracture/fatigue. Each of the three primary forms of guider 

damage is discussed in detail and the associated material properties to maximize guider 

durability are identified.  

6.3.1 Guider Damage: Gouges 

Gouges are an inherent form of severe plastic deformation that occurs at the guider 

surface. They are typically teardrop shaped craters with the blunt end facing the direction 

of slider travel as shown in Figure 6.3.  Guider gouging has been studied extensively over 
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the past forty plus years and was first reported by Graff and Dettloff [22] in rocket sled 

testing conducted in the 1960s. At the time sled velocity was attributed to the formation 

of the gouges. In 1982, Barber and Bauer [75] investigated sliding contact at low, high, 

and hypervelocities. Their gouge hypothesis was based on the principle of asperity 

contact at low velocities and asperity impact at high velocities. In 1997, Tarcza and 

Weldon [76] were able to show that gouges could be created at low velocities and that the 

gouging onset velocity could be predicted using the material properties of the slider. In 

1999, Stefani and Parker [3] developed a model for predicting the gouge onset velocity 

using the hardness, mass densities, and Hugoniot values for a given slider-guider 

tribomaterial pairing. The model is capable of predicting gouge onset velocities for a 

given slider-guider tribomaterial pair, but does not account for surface coatings or 

lubrication, which can further delay the velocity at which gouging occurs [77]. 

 

Understanding the operating conditions (i.e. pressure and velocity) at which a gouge 

occurs is important when selecting a guider material. A gouge in the guider, if significant, 

could condemn the guider and require repair or replacement. For this reason it is 

 

 

 
 

 

Figure 6.3 - An overhead view (left) and a side profile micrograph (right) of a 

gouge produced in Georgia Tech’s minor caliber electromagnetic launcher.  
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important to identify tribomaterial pairings with gouge velocities outside of the operating 

conditions. An established gouge model developed by Stefani and Parker [3] and 

published in more detail by Watt and Bourell [78] currently exists.  

The principles behind the  model are based on high-pressure shock compression 

theory, which is the result of an intense impulse loading in a solid medium that results in 

a shock wave [79]. A shock wave can be viewed as a discontinuity consisting of a 

particle velocity and a shock velocity. The particle velocity lags behind the shock 

velocity and it is the velocity that a segment of the solid acquires, whereas the shock 

velocity is the velocity that the disturbance moves through the solid body. Experimentally 

the response of a solid under these extreme conditions is studied using a flyer plate and a 

stationary target plate. The flyer plate is accelerated via a detonation of explosives such 

that it impacts the target plate at a high enough velocity to generate a shock wave. The 

state of a shocked solid can be found using the equation of state along with the three 

jump conditions (conservation of mass, momentum, and energy) to define a material 

specific Hugoniot curve. A Hugoniot curve represents all of the possible final physical 

states that can be achieved by a single shock wave for a given material and initial state. A 

Hugoniot curve may be expressed by any two of the following five variables: particle 

velocity, shock velocity, density, normal pressure, and specific internal energy.  

A comparison can be made between the slider-guider surface to surface interaction to 

that of a flyer and target plate, where the slider is representative of the flyer plate and the 

guider is representative of the target plate. The Hugoniot P-u curves, where P is pressure 

and u is particle velocity, for a given slider-guider material combination can be plotted 

together, as shown in Figure 6.4. For a given normal planar shock pressure the two curves 
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intersect at a common point. The slider velocity necessary to create a gouge in the guider 

is equivalent to the sum of the slider and guider particle velocities. For a guider material 

to fail in the form of a gouge, the shock pressure must be greater than or equal to the 

strength of the guider material. Given a slider-guider tribomaterial pairing the shock 

pressure can be estimated as the material strength of the guider and using the Hugoniot P-

u curves the gouge velocity can be calculated. 

 

Gouges are inherently a form of extreme plastic deformation, so hardness can be used 

as an indicator of a metal’s resistance to plastic deformation and in general it is 

proportional to ultimate tensile strength. For a materials screening / selection, ultimate 

 
 

Figure 6.4 - Hugoniot P-u diagram for a guider and slider surface-to-surface 

interaction [79]. 
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tensile strength is used. The upper bound of the normal planar shock pressure PN is 

proportional to the ultimate tensile strength σUTS of the guider material.    

 

 

 𝑃𝑁 ∝  𝜎𝑈𝑇𝑆  (6.1) 

 

The normal planar shock pressure for a shock wave can be obtained through the 

conservation of momentum and is defined as 

 

 

 𝑃𝑁 = 𝜌 · 𝑈 · 𝑢 (6.2) 

 

where ρ is density, U is shock velocity, and u is particle velocity. The shock velocity for a 

given material can be represented as a function of the particle velocity using Hugoniot U-

u data as 

 

 

 𝑈 = 𝐶 + 𝑠 · 𝑢 (6.3) 

 

 

where C and s are experimentally fit parameters. Combining Equations 6.1 – 6.3 and 

solving for particle velocity using the quadratic equation gives way to the following form 
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 𝑢 =
−𝐶

2 · 𝑠
+

1

2
· √

𝐶2

𝑠2
+

4 · 𝜎𝑈𝑇𝑆

𝜌 · 𝑠
 (6.4) 

 

Referring back to Figure 6.4 the gouge threshold velocity νgouge is the sum of the slider 

and guider particle velocities.  

 

 

 𝜈𝑔𝑜𝑢𝑔𝑒 = 𝑢𝑔𝑢𝑖𝑑𝑒𝑟 + 𝑢𝑠𝑙𝑖𝑑𝑒𝑟  (6.5) 

 

 

The gouge velocity, for the portion pertaining to the guider, can be maximized through 

Equation 6.4 and because Hugoniot data is not readily available for a wide range of 

materials, only ultimate tensile strength and density will be considered. Maximization of 

the gouge velocity νgouge is proportional to ultimate tensile strength σUTS divided by 

density ρ. A guider material with a high ultimate tensile strength and a low density is 

desired 

 

 

 𝜈𝑔𝑜𝑢𝑔𝑒 ∝  (
𝜎𝑈𝑇𝑆

𝜌
)

1/2

 (6.6) 
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Using published gouge experimental data and material properties, a plot of gouge 

velocity versus ultimate tensile strength and density is shown in Figure 6.5 [3, 5]. A 

general relationship between the experimental gouge velocity data and material properties 

of interest is apparent, confirming that for material screening purposes this relationship is 

reasonable.  

 

6.3.2 Guider Damage: Wear / Erosion 

Erosion in large caliber cannon has been extensively researched over the past 60 

years. Barrel erosion or multishot wear due to the interaction of the projectile and barrel 

rifling is complex and often times involves thermal, chemical, and mechanical erosion 

 

 
 

 

Figure 6.5 - A plot of experimental gouge velocity data versus ultimate tensile 

strength and density material properties [3, 5]. 
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mechanisms [74, 80, 81]. However, the primary driver for barrel erosion is temperature 

related as high temperatures reduce barrel mechanical properties and leave the barrel 

susceptible to corrosion. Significant research has been conducted on mitigating these 

temperature effects through the use of coatings and lubrication [82, 83].  

In addition to conventional gun barrels, multishot wear has more recently become an 

issue in electromagnetic launchers as the barrel is exposed to extreme electrical sliding 

contact [84]. Multishot wear in EML barrels has been attributed to excessive Joule 

heating that is intensified by high sliding speeds that produce high localized barrel 

temperatures [62, 84]. These high localized temperatures result in thermal softening of 

the barrel material. This thermal softening combined with the high velocity flow of 

molten metal from the melting projectile, facilitates chemical dissolution of the barrel 

material into the molten material, which results in barrel erosion [63, 85].  

In both applications research has shown that high localized temperatures are the 

driver for barrel or guider erosion. High temperatures are prevalent in all three wear 

regions of interest: plasticity dominated, severe plastic deformation and melt lubrication. 

At low sliding speeds and high contact pressures the high temperatures can be attributed 

to Coulomb heating, while at high sliding speeds and high contact pressures they can be 

attributed to viscous heating. A material screening index for guider wear can be derived 

through an energy balance 

 

 

 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 = 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒  (6.7) 
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where Ein is the heat energy input into a portion of the guider material near the surface, 

Eout is the heat energy removed via diffusion, and Estorage is the heat energy absorbed.  Ein 

is composed of two components. If the energy input into the guider Ein is due to Coulomb 

heating it is defined [45] 

 

 

 𝐸𝑖𝑛 = 𝑓𝑊𝑙 (6.8) 

 

 

where f is the coefficient of friction, W is the normal load, l is the slider length. For 

viscous dissipation, representative of the melt lubrication region, the energy input into the 

guider is defined [45]  

 

 

 𝐸𝑖𝑛 = µ
𝑣

ℎ
𝐴𝑛2𝑙 (6.9) 

 

where µ is the dynamic viscosity, v is the slider velocity, h is the thickness of the slider 

melt film, An is the nominal contact area and 2l is the slider length. Both of the heat 

sources presented in Equations 6.8 and 6.9 are rather simplistic views of the slider guider 

interface physics. Particularly the viscous dissipation heat source, which has been shown 

to be turbulent making the melt lubrication film physics complex.  



 

 145 

For the sliding speeds and geometries used in the aforementioned experiments, the 

dwell times for a section of the guider, due to the high sliding speeds, is on the order of a 

microsecond. For a given set of guider material properties the diffusion time or the time it 

takes to diffuse the heat at the guider surface into the bulk material is much larger relative 

to the dwell time. Based on this reasoning a simplifying assumption is made that there is 

insufficient time for diffusion to occur and the Eout term of the energy balance in 

Equation 6.7 is negligible. A transient conduction problem using a lumped capacitance 

approach is taken and assumes the volume of material near the guider surface has a 

spatially uniform temperature distribution. The heat energy absorbed by the guider 

material near the surface is represented as follows 

 

 

 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑉̅ ∙ 𝜌 ∙ 𝑐 ∙ (𝛥𝑇) (6.10) 

 

 

where ΔT is the rise in temperature, 𝑉̅ is the volume of material that absorbs the heat 

energy, c is the specific heat capacity of the guider material, and ρ is the density. 

Combining Equations 6.7 and 6.10, the increase in guider temperature is defined  

 

 

 𝛥𝑇 =
𝐸𝑖𝑛

𝑉̅ ∙ 𝜌 ∙ 𝑐
 (6.11) 
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However, a material with a high melting temperature exposed to the same rise in 

temperature may not experience the same material damage as a material with a lower 

melting temperature. This is accounted for by dividing Equation 6.11 by the melting 

temperature Tm, giving it the dimensionless form, 

 

 

 
𝛥𝑇

𝑇𝑚
=

𝐸𝑖𝑛

𝑉̅ ∙ 𝜌 ∙ 𝑐 ∙ 𝑇𝑚

 (6.12) 

 

 

Wear resistance is maximized through the guider material properties: mass density, 

specific heat capacity, and melting temperature. Additional considerations should be 

made related to the chemical interactions between the slider melt lubrication film and the 

guider material. Dissolution of the guider material into the slider melt is possible if the 

guider surface temperatures are high enough and the slider-guider tribomaterial pairing 

have an affinity towards each other [63, 86, 87]. 

6.3.3 Guider Damage: Fatigue / Fracture 

The final form of guider damage that needs to be considered is fatigue / fracture. It 

has been shown in gun barrel coatings that repeated thermal cycling can cause thermo-

mechanical cracking near the surface [88]. Extensive research has been conducted on 

modeling these conditions [89-91]. A simple thermal stress model can be used as a check 
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to ensure that tensile residual stresses are avoided upon cooling [82]. The applied thermal 

stress damage mechanism is defined as follows 

 

 

 𝑆𝑇 =
𝐸 · 𝛼𝑇 · (𝑇 − 𝑇𝑜)

(1 − 𝜐)
 (6.13) 

 

where E is the modulus of elasticity, αT is the coefficient of thermal expansion, T is 

temperature, To is the initial temperature, and υ is Poisson’s ratio. For brittle materials, 

such as coatings, if the thermal stresses exceed the compressive yield strength at 

temperature, Sy,c than residual tensile stresses will form on cooling. To avoid crack 

formation the following criteria needs to be met 

 

 

 
𝑆𝑦,𝑐

𝑆𝑇
> 1 (6.14) 

 

 

The material selection criterion of Equation 6.14 is important for brittle materials 

where the strain-to-fracture is relatively low. Additionally, surface treatments such as 

coatings, can have residual stresses and microvoids / microcracks due to processing 

techniques [92]. These residual stresses can be accounted for by superimposing them 

onto the thermal stresses when evaluating the thermal stress damage mechanism [93].  

Microvoids and microcracks coupled with relatively low fracture toughness and low 
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substrate stiffness can lead to fracture and need to be minimized during material 

processing. For these reasons ductility also needs to be considered when screening / 

selecting guider materials. Material properties such as fracture toughness or fatigue are 

avoided as material property data can be difficult to obtain or not readily available for a 

wide range of materials. A more simplistic and readily available material property is 

elongation or strain-to-fracture εf .  

A survey of available materials was conducted to identify potential candidates with 

both a high compressive strength and high strain-to-fracture as shown in Figure 6.6. For 

visual purposes the inverse of both the material properties are plotted on a log-log scale. 

Ideal material candidates reside in the lower left corner of the plot. Several material 

groupings appeared; elastomers (aqua), polymers (blue), metals and alloys (red), and 

natural materials (green). Of these groupings the metals and alloys have a large subset of 

materials with a high compressive stress and reasonable strain-to-fracture. Steels, which 

were one of the guider materials tested, is a top performer of the metals. The ceramics 

material group screened out as they have relatively poor strain-to-fracture properties. The 

results in Figure 6.6 do not take into account operating conditions that result in high 

temperatures at the slider-guider interface, in which case the elastomers, polymers and 

natural materials would all screen out as they do not have the same relative temperature 

capability as the metals and alloys. This leaves the metals and alloys material group as 

the top performing materials group with steels being an attractive subgroup.    
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6.4 Materials Selection 

The aforementioned forms of rail damage provide the background necessary for 

identifying the desired material attributes for rail durability. A systematic materials 

selection process, often referred to as the Ashby method, can be used in conjunction with 

the material properties presented in this chapter to screen and evaluate guider material 

solutions for further investigation [94]. The approach starts with a large electronic 

database of materials that covers the major engineering material families (metals, 

ceramics, glasses, polymers, elastomers, and hybrids) so that new or unforeseen 

 

 
 

Figure 6.6 - Guider material selection for the fatigue / fracture damage 

mechanisms [5].  
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opportunities are not overlooked. The four steps include translating the design 

requirements, screening using constraints, ranking using objectives, and then exploring 

top ranked material solutions further with more in-depth analysis.  

For engineering applications with multiple objectives it is often times advantageous 

to use a hybrid material configuration. Four potential hybrid material configurations that 

may be of interest include a fibrous composite, particulate composite, a monolayer 

structure, and a multilayer structure, as shown in Figure 6.7. For extreme sliding contacts 

the drawback to the first two hybrid configurations, fibrous and particulate composites, is 

that while the bulk properties are improved, locally at the guider surface durability is still 

a concern as the matrix material may still be susceptible to damage. However, this is not 

the case for the monolayer and multilayer structures which can be configured for 

durability at the guider surface. Furthermore each of these hybrid configurations adds 

different amounts of complexity in fabrication, which may incur additional cost over the 

use of a monolithic guider material. 

The most relevant configuration for extreme sliding contact with multiple objectives 

is a monolayer structure with a guider surface material that maximizes durability. Wear 

rates and temperature gradients need to be considered when sizing the thickness of the 

guider surface material. Additionally, in repetitive use applications where the bulk 

material of the guider experiences a rise in temperature, the mismatch of the coefficients 

of thermal expansion between layers needs to be considered. This may result in the 

addition of an intermediate layer in which case a multilayered hybrid configuration is 

ideal. 
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Figure 6.7 - Four potential hybrid material configurations for a durable guider 

material. 
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CHAPTER 7: Summary, Conclusions, Scientific Contributions and 

Recommendations 

7.1 Summary 

7.1.1 Chapter 1: Background 

In Chapter 1 an extensive literature review was conducted on the subject of sliding 

contact under high sliding speeds and high contact pressures with a focus on metal on 

metal sliding at speeds greater than 200 m/s. Safety concerns and limitations in test 

equipment make it difficult to replicate these extreme sliding conditions using traditional 

tribological test apparatuses. For these reasons many one of a kind apparatuses have been 

developed and often times modifications to the existing engineering application 

equipment is necessary to isolate and study extreme sliding contact.  

The study of sliding contacts can be viewed as the interaction of a moving solid, 

referred to as the slider with a stationary solid, referred to as the guider. The interaction 

of the slider and guider at the contact interface results in wear of one or both of the solids. 

For high sliding speeds and high contact pressures of metal on metal contact two distinct 

operating regions are identified. The first is melt wear, which is representative of 

localized melting at the asperity level with a primary heat mechanism of frictional 

dissipation. This region is characterized by a low coefficient of friction and low wear 

rates. The second region is melt lubrication, which is representative of large scale melting 

with a primary heating mechanism that is viscous in nature and is characterized by a high 

coefficient of friction and high wear rates. 



 

 153 

7.1.2 Chapter 2: Experimental Methodology  

A novel approach to studying mechanical wear of sliding metal contacts under high 

sliding speeds and contact pressures was developed using the Georgia Tech lab scale 

electromagnetic launcher (EML). Sliding speeds in excess of 1,000 m/s were achieved 

and an inertia loaded wedge technique was used to replicate contact pressures in the 

range of 100 – 225 MPa. Modifications to the EML core allowed for different 

tribomaterial pairings to be explored. A qualitative assessment of slider wear was 

performed using optical microscopy; while a quantitative assessment was conducted 

using a scanning white light interferometer. The resultant slider wear was correlated to 

the operating conditions of pressure and velocity. 

7.1.3 Chapter 3:  Experimental Results: Wear Regimes 

In Chapter 3 the results of a tribomaterial pairing of 6061-T6 aluminum sliding on a 

C110-H2 copper guider at 101 MPa and a peak velocity of 1,210 m/s was analyzed. A 

qualitative and quantitative assessment of slider wear as a function of velocity showed 

three distinct wear regions: plasticity dominated, severe plastic deformation and melt 

lubrication. At lower velocities, 200 – 800 m/s, the slider wear is characteristic of 

plasticity dominated wear. The severe plastic deformation region occurred at a velocity, 

typically between 800 – 1,000 m/s, during which the slider wear transitioned from 

plasticity dominated wear to melt lubrication. At high velocities, >1,000 m/s the slider 

wear is characterized as melt lubrication. A correlation between normalized wear rates as 

a function of velocity between these three regions and that of hydrodynamic lubrication 

theory were made using a Stribeck curve. It was concluded that portions of the severe 

plastic deformation and melt lubrication regions followed similar trends to that of the 
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mixed and hydrodynamic lubrication regions of a Stribeck curve and the conditions of the 

melt lubrication film are representative of turbulent flow.  

7.1.4 Chapter 4: Experimental Results: Velocity and Pressure 

In Chapter 4 the results of a tribomaterial pairing of 6061-T6 aluminum slider on a 

C110-H2 guider to investigate the effects of pressure and velocity on normalized wear 

rates was conducted. Five different pressures in the range of 100 – 225 MPa and peak 

velocities of 1,200 m/s were investigated. Normalized wear rates for the melt lubrication 

region showed a strong dependence on velocity. The velocity at which the type of wear 

transitions from severe plastic deformation to melt lubrication also called the critical 

velocity was sensitive to pressure. Higher pressures resulted in lower critical velocities. 

Additionally, the normalized wear rate data showed a strong dependence on the 

parameter σ
1/4

v, where σ is nominal contact pressure and v is velocity, which correlates 

well with melt lubrication theory for turbulent flow. Additionally it was found that effects 

of the slider nominal contact area on normalized wear rates were negligible for the slider 

geometries tested.  

A constitutive model was developed capable of predicting normalized wear rates in 

the melt lubrication region. The normalized wear rates were found to be proportional to 

σ
1/4

v and the proportionality constant, Ψ, was found to be a function of the slider 

viscosity, geometry and thermal properties. 

7.1.5 Chapter 5: Experimental Results: Guider Material Properties 

In Chapter 5 the results of three different tribomaterial pairings were tested to 

investigate the effects of guider material properties on slider wear. For all three tests a 
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6061-T6 aluminum slider was tested. Heat partition theory for sliding contacts was used 

to select three different guider materials: C110-H2 copper, 1018 / 1045 steel, and 

titanium grade 2 commercial purity. Test results differed from predictions using 

traditional heat partition theory. For extreme sliding contacts in the severe plastic 

deformation and melt lubrication regions it was found that volumetric thermal mass of 

the guider (ρ·c), not thermal diffusivity, was the material property of interest. A guider 

with a larger volumetric thermal mass resulted in a high critical velocity, meaning that 

more heat was partitioned into a guider than one with a lower volumetric mass.  

Additionally the effects of guider mechanical properties were investigated. Two 

different steels, 1018 and 1045, with similar bulk thermal properties were tested. The 

effects of guider mechanical properties were found to be negligible in the severe plastic 

deformation and melt lubrication regions as the slider had undergone significant thermal 

softening. The constitutive model developed in Chapter 4 was updated into a more 

general form to include the effects of guider material properties on slider wear. 

7.1.6 Chapter 6: Guider Durability Considerations 

In Chapter 6 a list of relevant guider material properties as they relate to slider wear 

and guider durability were considered. For the case of slider wear the volumetric thermal 

mass of the guider material influenced the critical velocity at which melt lubrication 

occurs and needs to be considered when selecting tribomaterial pairings for engineering 

applications. For guider durability there are three primary forms of damage: gouges, wear 

/ erosion, and fracture. To avoid gouging it is ideal to select materials with a high 

ultimate tensile strength and low density. Minimization of guider erosion can be achieved 

by selecting materials with high melt energies and avoiding tribomaterial pairings that 
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have an affinity towards each other. Lastly, fatigue and fracture can be mitigated by 

accounting for thermal stresses and identifying materials with moderate ductility. 

7.2 Conclusions 

The conclusions of the research conducted in this dissertation is as follows 

1)  The experimental data supports the use of melt lubrication theory for high sliding 

speeds and high contact pressures.  

2)  The heat dissipation mechanism in the melt lubrication region is viscous and turbulent 

in nature. 

3)  The slider normalized wear rates are insensitive to the guider hardness and sensitive to 

the volumetric thermal mass in the severe plastic deformation and melt lubrication 

regions.  

4)  A guider material with a high ultimate tensile strength, low density, high melting 

point, high compressive strength and moderate ductility is ideal for maximizing 

durability when the slider is operating in the severe plastic deformation and melt 

lubrication regions. 

7.3 Scientific Contributions 

The scientific contributions of the research conducted in this dissertation is as follows 

1)  Development of a New Experimental Method  

A one of a kind experimental methodology for studying high speed sliding contact 

was developed. This methodology provides the flexibility to study different 

tribomaterial pairings under sliding conditions beyond that of typical tribological test 

apparatuses. The experimental data obtained from the high velocity and high contact 
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pressure wear experiments provides new wear data beyond that of existing published 

literature. 

2)  Clarification of Wear Mechanisms 

Three different wear regions were identified: plasticity dominated, severe plastic 

deformation and melt lubrication. Operating boundaries for each of these regions was 

established through the use of qualitative and quantitative analysis. An additional 

wear region, melt lubrication was defined on the aluminum wear mechanism map. 

3)  Effects of Pressure and Velocity on Melt Lubrication 

Pressure effects on melt lubrication were characterized. It was found that the 

normalized wear rate data is sensitive to σ
1/4

v, where σ is nominal contact pressure 

and v is velocity, which supports the use of melt lubrication theory.  

4)  Influence of Guider Material Properties 

The heat partition coefficients or effects of guider material properties on slider wear 

in the melt lubrication region were studied. It was found that the volumetric thermal 

mass of the guider, not thermal diffusivity, influences the conditions at which melt 

lubrication occurs.  

5)  Empirical Wear Model 

A normalized wear rate constitutive model that captures the operating conditions, 

slider geometry and material properties, and guider material properties was developed 

such that it can be used to predict wear and used to design more efficient and 

effective tribological systems under extreme sliding contact. 

6) Melt Film Physics 
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The experimental methodology and data provides the foundation for future research 

in exploring the physics (i.e. heat transfer, fluid dynamics) of the melt lubrication 

film.  

7.4 Recommendations 

The recommendations for future research is as follows 

1)  Extend Existing Wear Mechanism Maps  

Include a new wear region identified as melt lubrication. 

2)  Exploration of the Melt Lubrication Proportionality Constant 

Understand the sensitivity of the slider geometry and thermal properties on 

normalized wear rates. This would include testing slider materials with vastly 

different aspect ratios and melt energies. 

3)  Investigate the Heat Dissipation Rate Constant 

Study how the mechanical and thermal properties of the slider influence the heat 

dissipation value at which the slider wear transitions from severe plastic deformation 

to melt lubrication. 

4) Melt Lubrication Film Fluid Dynamics 

Investigate the effects of different slider materials, such as metal matrix composites, 

on the fluid dynamics of the melt lubrication film. Introduction of a non-melting or 

higher thermal capability second phase into the melt lubrication film to delay the 

onset of turbulent flow would result in reduced normalized wear rates. 
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APPENDIX C 
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