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SUMMARY

Crane motion induces payload oscillation that makes accurate positioning of the

payload a challenging task. As the payload size increases, it may be necessary to

utilize multiple cranes for better control of the payload position and orientation.

However, simultaneously maneuvering multiple cranes to transport a single payload

increases the complexity and danger of the operation.

This thesis investigates the dynamics and control of dual-hoist bridge cranes trans-

porting distributed payloads. Insights from this dynamic analysis were used to de-

sign input shapers that reduce payload oscillation originating from various crane

motions. Also, studies were conducted to investigate the effect input shaping has

on the performance of human operators using a dual-hoist bridge crane to transport

distributed payloads through an obstacle course. In each study, input shaping sig-

nificantly improved the task completion time. Furthermore, input-shaping control

greatly decreased operator effort, as measured by the number of interface button

pushes needed to complete a task. These results clearly demonstrate the benefit of

input-shaping control on dual-hoist bridge cranes.

In addition, a new system identification method that utilizes input shaping for

determining the modal frequencies and relative amplitude contributions of individual

modes was developed to aid in the dynamic analysis of dual-hoist bridge cranes, as

well as other multi-mode systems. This method uses a new type of input shaper to

suppress all but one mode to a low level. The shaper can also be used to bring a

small-amplitude mode to light by modifying one of the vibration constraints.

x



CHAPTER I

INTRODUCTION

1.1 Motivation

Cranes are used to transport heavy loads in manufacturing facilities, at shipyards,

throughout nuclear sites, and during construction of buildings. All of these industries

value throughput and safety. However, crane motion induces payload oscillation that

makes accurate positioning of the payload a challenging task. Excessive payload sway

can result in collisions that damage equipment or injure people. A large payload

that swings outward from the base of a crane can also greatly increase the tipping

moment and lead to catastrophic collapse of the crane. To increase safety, cranes

are often driven slowly, at the expense of throughput, and the payloads are manually

constrained with ropes to avoid large swings.

Controlling distributed-mass payloads with a single-hoist crane can be challenging

because the payload can oscillate like a double-pendulum and twist about the rigging

cables [7]. As the payload size increases, it may be necessary to utilize multiple cranes

to better control the payload orientation. For example, Figure 1.1 shows two mobile

cranes hoisting a blade assembly during the erection of a wind turbine1. If a payload

exceeds the weight capacity of a single crane, then two cranes could also be used to

perform a tandem lift. However, simultaneously maneuvering multiple cranes to lift

a single payload increases the complexity and danger of the operation [3, 28].

Along with objects at the worksite, each crane must also avoid collisions with the

other moving cranes. The orientation of the payload is affected by the movement

1Stewart, Ashley. 2010. Web. 20 May 2015. Appears in: Stewart, Ashley. (2010, August 26).
Topping a Tower. Albert Lea Tribune
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Figure 1.1: Erection of Wind Turbine1

of each crane. Poorly executed moves can result in a configuration that causes one

or more cranes to collapse or tip over [27, 26, 11, 25]. Understanding the complex

response of multi-hoist cranes as a function of various inputs and configurations is an

important step in controlling them effectively.

1.2 Dual-Hoist Bridge Crane

Dual-hoist bridge cranes are the subject of this thesis. This type of crane has two

controllable attachment points that provide additional control of the payload orienta-

tion, compared to single-hoist cranes. This section describes the physical crane used

for experiments and a numerical model used for performing simulations.

1.2.1 Physical Crane

Figure 1.2a shows the dual-hoist bridge crane carrying a triangular payload. The

crane operates in a 10 m x 8.5 m x 2.6 m workspace. The two overhead trolleys can

move independently (or dependently) along a bridge. Each trolley is capable of lifting

up to 1 ton. The bridge itself can travel along rails (not shown) attached along either

2



(a) Annotated Photograph

8.5m

10m

Trolley 2Trolley 1

Bridge

Bridge
Track

Bridge
Track

(b) Overhead Schematic

Figure 1.2: Dual-Hoist Bridge Crane

side of the ceiling. The configuration is illustrated by the overhead schematic shown

in Figure 1.2b.

All motions of the trolleys and bridge are controlled by Siemens SIMOTION

drives. Supervisory control of the system is provided by a Programmable Logic Con-

troller (PLC). The PLC and drives communicate wirelessly through Siemens wireless

access points. The positions of the trolleys and bridge in the workspace are determined

by laser encoders attached to the trolleys and one end of the bridge, respectively. The

hook motions are measured using downward-pointing Cognex cameras attached to the

bottom of the trolleys. Table 1.1 summarizes the important parameters of the crane

shown in Figure 1.2a.

1.2.2 Numerical Model

A two-dimensional sketch of the dual-hoist bridge crane is shown in Figure 1.3. The

trolleys can move in the y direction, along a line that passes through the trolleys.

Each trolley has a hook attached at the end of its suspension cable. The hook masses

of trolley 1 and trolley 2 are MH1 and MH2, respectively. The suspension cables

are treated as massless, rigid bodies. The length of the trolley 1 suspension cable is

3



Table 1.1: Dual-Hoist Crane Parameters

Parameter Value
Workspace 10 m x 8.5 m x 2.6 m
Total Load Capacity 2 tons
Hook Mass, MH1 and MH2 7.65 kg
Max. Cable Length 2.6 m
Min. Trolley Separation 1.65 m
Max. Trolley Acceleration & Velocity 1 m/s2; 0.33 m/s
Max. Bridge Acceleration & Velocity 1 m/s2; 0.33 m/s

Trolley 1 Trolley 2

Payload

L, Mθ
1

M
H1

M
H2

L
1

y

z

β

W

L
2

θ
2

Figure 1.3: 2-D Dual-Hoist Bridge Crane Model

L1, and it can swing relative to its suspension point from trolley 1 by an angle θ1.

The length of the trolley 2 suspension cable is L2, and it can rotate by an angle θ2.

The triangular payload has a length L, width W , and mass M . The payload can

be rotated about an axis perpendicular to the bridge axis and the vertical direction.

This rotation can be considered a pitch angle β.

A three-dimensional sketch of a dual-hoist bridge crane is shown in Figure 1.4.

The trolleys can also move in the x direction, perpendicular to the y direction. Motion

4



Trolley 1
Trolley 2

θ
1

θ
2

φ
1

φ
2

M
H1

M
H2

L
1

L
2

x

y

z

γβ

Figure 1.4: 3-D Dual-Hoist Bridge Crane Model

in this perpendicular direction is called bridge motion. The trolley 1 suspension cable

can swing relative to its suspension point from trolley 1 about an axis parallel to the

y direction by an angle φ1. The trolley 2 suspension cable can rotate by an angle φ2.

Figure 1.5 shows the payload rotation angles. The pitch angle, β, is shown in Fig-

ure 1.5a. From a top view perspective, the twist angle γ is created by the intersection

of the line connecting the two trolleys with the line connecting the two hooks. In

Figure 1.5b, the payload is rotated to demonstrate γ from a side view perspective,

with dashed lines representing a projection of the line connecting the two trolleys

(trolleys not shown) and the line connecting the two hooks. Finally, the payload is

free to rotate about an axis that connects the two hooks through the roll angle ψ, as

shown in Figure 1.5c.

The inputs to the model are the accelerations of the two trolleys in the trolley-

motion direction, ÿ1 and ÿ2, and bridge-motion direction, ẍ1 and ẍ2. The model

5



(a) Pitch Angle, β (b) Twist Angle, γ (c) Roll Angle, ψ

Figure 1.5: Payload Rotation Angles

Table 1.2: Nominal Dual-Hoist Crane Simulation Parameters

Parameter Value
Payload Mass, M 7 kg
Payload Length, L 2.3 m
Payload Width, W 1.2 m
Hook Cable Lengths, L1 and L2 1.5 m
Hook Masses, MH1 and MH2 7.65 kg
Trolley Separation Distance 2.3 m
Max. Trolley Acceleration & Velocity 1 m/s2; 0.33 m/s
Max. Bridge Acceleration & Velocity 1 m/s2; 0.33 m/s

is similar to a hanging four-bar mechanism with two moveable support points (the

two trolleys). But, the payload “bar” can twist, as measured by the twist angle γ.

The mathematical model for this system was obtained using the commercial dynamics

package, MotionGenesis [1]. The computer code is listed in Appendix A. The nominal

simulation parameters are shown in Table 1.2.

The baseline reference motion command used in this investigation is a trapezoidal-

velocity profile (bang-coast-bang acceleration) because it utilizes the maximum ac-

celeration and velocity specified in the control program. Furthermore, trapezoidal

velocity profiles mimic the commands issued by crane operators through standard

6



push-button pendents. For small motions, the trapezoid reduces to a triangular-

velocity profile.

1.3 Crane Control

Payload oscillation originates from two sources. First, oscillation can be self-induced

when a crane moves in response to commands. Such commands can originate from a

human operator or a feedback loop. Second, the payload can be acted on by external

disturbances, such as wind or a collision with an obstacle. Rahman provides an

overview of open-loop and closed-loop crane control techniques developed during the

20th century [2].

Closed-loop techniques use feedback of the payload state to generate crane move-

ments that dampen payload oscillations. Unlike open-loop methods, these control

strategies can correct oscillations originating from external disturbances. However, it

can be challenging to accurately and reliably measure the payload state in non-ideal

settings, such as in a cluttered manufacturing facility with dim lighting. Also, sensors

for detecting the payload state can be expensive and unreliable.

Open-loop control strategies use knowledge about the dynamic system to diminish

motion-induced payload oscillations. These methods fall into two categories: optimal

control and input shaping [2]. The optimal control approach solves for an optimal

trajectory that minimizes a cost function. Some methods seek a solution that mini-

mizes payload oscillations, while others are only concerned with minimizing the travel

time [2]. The optimized trajectory is subject to boundary conditions, including the

start and end points, and must be resolved for each new move.

1.3.1 Input Shaping

Input shaping is a command filtering technique that reduces motion-induced oscil-

lations by intelligently transforming the reference command. The transformation

7



involves convolving the reference command with an impulse sequence, called the in-

put shaper. Input shapers can be designed for robustness to parameter variations

and for suppressing multiple modes. Input shaping is implementable in real-time and

can be used when humans generate the commands. This thesis uses input shaping to

suppress multi-mode oscillations of a dual-hoist bridge crane.

To design an input shaper, a series of constraints are imposed on the impulse

amplitudes, impulse times, and the vibration induced by the impulse sequence. Vi-

bration constraints depend on knowledge about the natural frequencies and damping

ratios of a system’s modes. For an undamped, second-order system with an undamped

natural frequency of ωn and a damping ratio of ζ, the residual amplitude resulting

from a sequence of impulses is described by [16]:

V (ωn, ζ) = e−ζwntn
√

[C(wn, ζ)]2 + [S(wn, ζ)]2 (1.1)

where,

C(ωn, ζ) =
n∑
i=1

Aie
ζwnticos(wdti) (1.2)

and

S(ωn, ζ) =
n∑
i=1

Aie
ζwntisin(wdti) (1.3)

Here, V is non-dimensional and is called the Percent Residual Vibration (PRV). It

is equivalent to the amplitude of residual vibration caused by the impulse sequence

divided by the residual vibration amplitude caused by a single unity-magnitude im-

pulse. The residual vibration amplitude can be reduced by choosing a vibration limit,

Vtol, and placing a constraint on the maximum tolerable PRV:

e−ζwntn
√

[C(wn, ζ)]2 + [S(wn, ζ)]2 ≤ Vtol (1.4)

To make the magnitude of the shaped command equal to that of the reference com-

mand, the impulse amplitudes can be constrained to sum to one:

8



n∑
i=1

Ai = 1 (1.5)

The first impulse time can be set to zero without loss of generality:

t1 = 0 (1.6)

The time locations of each impulse can be constrained to be in sequential order:

ti−1 < ti i = 2, ..., n (1.7)

An input shaper increases the rise time of the command by the final shaper impulse

time, tn. Therefore, the ideal solution minimizes tn:

min(tn) (1.8)

Constraints (1.4)-(1.8) are common for all input shapers described in this thesis.

Another constraint must be placed on the individual impulse amplitudes in order to

find a solution. The following subsections describe different types of input shapers

and their additional constraints.

1.3.2 Zero Vibration Shapers

By setting Vtol = 0 in (1.4), it is possible to obtain a shaper that theoretically achieves

zero residual vibration at the modeling frequency. This is known as a Zero Vibration

(ZV) shaper. The impulse amplitudes can be constrained to be greater than zero:

Ai > 0 i = 1, ..., n (1.9)

This is known as a positive ZV shaper. The impulse sequence for a positive ZV shaper

is a function of the damped period of oscillation (Td) and damping ratio (ζ) [22, 16]: Ai

ti

 =

 1
K+1

K
K+1

0 0.5Td

, i = 1, 2 (1.10)

9



Table 1.3: UM-ZV Shaper for Damped Systems [19]

ti = (M0 +M1ζ +M2ζ
2 +M3ζ

3)τ, τ = 2π/ω

Ai ti M0 M1 M2 M3

1 t1 0 0 0 0
-1 t2 0.16724 0.27242 0.20345 0
1 t3 0.33323 0.00533 0.17914 0.20125

The damping ratio, ζ, scales the impulse amplitudes through the variable K given

by:
K = e

(
−ζπ√
1−ζ2

)
(1.11)

1.3.3 Unity-Magnitude Zero Vibration Shapers

Input shapers that produce faster motion than positive shapers can be designed if we

allow negative impulses. One type of constraint that allows negative impulses, called

a unity-magnitude (UM) constraint, requires all impulses to alternate between 1 and

-1:

Ai = (−1)n+1 i = 1, ..., n (1.12)

If the UM constraint is combined with the zero vibration constraint, then the

resulting shaper is called a Unity-Magnitude Zero Vibration (UM-ZV) shaper. If

ζ = 0, then the UM-ZV impulse sequence is [19]:

 Ai

ti

 =

 1 −1 1

0 cos−1(0.5)
ωn

cos−1(−0.5)
ωn

, i = 1, 2, 3 (1.13)

When ζ is nonzero, the impulse times are functions of ζ. No closed form solution

exits. However, a third-order curve fit can be utilized to determine ti to within 0.5%

over the range 0 < ζ < 0.3 [19]. These curve fits are shown in Table 1.3.
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1.3.4 Convolved Multi-Mode Shapers

Input shapers can be designed to suppress multiple frequencies. One way to create

a multi-mode shaper is to design input shapers for each individual mode and then

convolve them together [19]. For two shapers containing n impulses and m impulses,

respectively, each new impulse is created by taking one impulse from each shaper and

calculating the product of the impulse amplitudes and the sum of the impulse times.

This is repeated for every combination of impulses between the two shapers, so the

convolved shaper will have nxm impulses.

1.3.5 Specified Insensitivity Shapers

Specified Insensitivity (SI) shapers enable the designer to specify the required robust-

ness for a particular application. This is accomplished by using a technique called

frequency sampling [15], where selected frequencies are limited within the desired

frequency suppression range. The number of suppressed frequencies is chosen by the

designer. A numerical optimization function can be used to solve for an impulse

sequence that satisfies the constraints.

1.3.6 Unity-Magnitude Maximum-Vibration Shapers

In his dissertation, Maleki provides a command shaper that is designed to increase

the amplitude of vibration at a particular design frequency [12]. This is accomplished

by enforcing a constraint that maximizes the PRV in (1.1) for ωn and ζ. The Unity-

Magnitude Maximum-Vibration Shaper is [12]:

 Ai

ti

 =

 1 −1 1

0 0.5Td Td

, i = 1, 2, 3 (1.14)

where Td is the damped period of oscillation.
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1.4 System Identification of Dynamic Structures

Structural dynamics is concerned with understanding the response of engineering

structures to dynamic loading. Dynamic forcing can cause vibration by exciting the

modes of a system. Large oscillations can occur if the applied force is periodic and

has a frequency close to the natural frequency of a mode. Typically, knowledge of

structural dynamics is used to design safer structures that are able to withstand

certain dynamic loading conditions.

Modal analysis is a process for identifying the natural frequencies, damping ratios,

and mode shapes of a system. Modal analysis has been applied to aluminum beams

[13], buildings [17], bridges [29], automobiles [23], and aircraft [24, 9]. He and Fu

provide a detailed treatment of experimental and analytical modal analysis in [6]. In

experimental modal analysis, energy is added to the system via a known force input

which causes the structure to vibrate at frequencies that are contained in the fre-

quency spectrum of the force input. The measured response and force input can then

be used to create a frequency response function (FRF). The choice of the excitation

force input determines the spectral energy content that is supplied to the system as

well as the testing time required for calculating the FRF [5]. Common excitation

waveforms are “harmonic excitation waveforms like discretely stepped sine, periodic

excitation like multi-sine, transient excitation like sinusoidal sweeps or impact, and

random excitation” [5].

Devices called shakers are used to apply sinusoidal excitations. In [5], the authors

review the International Standard ISO-7626, which provides guidelines for experimen-

tally determining a FRF from a sinusoidally swept input. The authors reference the

recommendation given in [4] “to check that progress through the frequency range is

sufficiently slow to check that the steady-state response conditions are attained be-

fore measurements are made.” A sinusoidal sweep is classified as linear or logarithmic

based on the algorithm used to transition throughout the frequency range of interest.
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The maximum linear swept-sine rate amax (Hz/min) recommended in ISO-7626 is [5]:

amax <
54f 2

r

Q2
(1.15)

where fr is the estimated resonance frequency and Q = 1/(2ζ). The maximum

logarithmic swept-sine rate Smax (oct/min) recommended in ISO-7626 is [5]:

Smax <
77.6fr
Q2

(1.16)

Based on these recommended maximum sweep rates, the swept-sine test can be

time-consuming for a system containing a lightly-damped, low-frequency mode. For

example, Figure 1.6 shows the time required to complete a sinusoidal sweep from 0.3

to 1.5 Hz using these maximum recommended sweep rates with fr ranging from 0.3 to

1.5 Hz and ζ ranging from 0.01 to 0.1. Note that cranes typically have damping ratios

very close to zero. Therefore, cranes represent a very time-consuming application for

swept-sine identification methods.

Schwarz and Richardson describe impact testing as “a fast, convenient, and low

cost way of finding the modes of machines and structures” [14]. Impact excitations,

which can be imparted by a hammer strike, excite a spectrum of frequencies. The

measured response can then be analyzed using Fast Fourier Transform (FFT) ana-

lyzers to determine the frequency response [14].

In control systems, many physical plants exhibit oscillatory behavior in response

to control inputs. For cranes, payload oscillation occurs when the trolley moves

in response to a velocity command. Also, a long, flexible robotic arm can vibrate

when a motor torque is applied to move the end effector. A controls engineer may

need to design a controller that limits oscillation in order to satisfy a performance

requirement. In this situation, understanding how the system response is affected

by the available control inputs, which are determined by the actuators, is critical for

designing an effective controller.
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Figure 1.6: Time Required for 0.3-1.5 Hz Frequency Sweep

This thesis proposes a new system identification technique that uses the system’s

own actuators to examine modal characteristics of multi-mode systems. The fre-

quency spectra of the reference commands are filtered by specially designed input

shapers so that the frequencies and relative amplitude contributions of each mode

can be determined. One advantage of this method is that the system’s own actuators

are utilized for system identification, and therefore, no additional excitation devices
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are required. The results, which are obtained by analyzing dynamic responses orig-

inating from the system’s own actuators, will also be representative of the system

during normal operation.

1.5 Thesis Contributions

This thesis makes the following contributions:

1. An input shaper, called a Selective Mode Amplification (SMA) shaper, that

amplifies one mode of a multi-mode system, while suppressing the others, in

order to bring the small-amplitude mode to light.

2. A new system identification technique where input shaping is used to mod-

ify the frequency spectrum of the reference command in order to identify the

frequencies and relative amplitude contributions of the individual modes in a

multi-mode system.

3. An investigation of the dynamic response of a dual-hoist bridge crane moving

distributed payloads using simulations and experiments.

4. An operator study where participants used a standard crane controller and an

input-shaping controller to drive a dual-hoist bridge crane carrying triangular

payloads through an obstacle in order to investigate human performance.
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CHAPTER II

SELECTIVE MODE AMPLIFICATION SHAPERS

Each mode of a multi-mode system responds differently to any given reference com-

mand. It can be difficult to determine the frequency of a small-amplitude mode if a

large-amplitude mode dominates the response to a given input. By modifying certain

vibration constraints, it is possible to design an input shaper that amplifies one mode

while suppressing the others. This process is effectively a type of band-pass filter.

However, the passed frequencies are amplified as much as possible, rather than passed

with a unity gain. This can be very beneficial for bringing the small-amplitude mode

to light.

As an example multi-mode system that is challenging to identify, consider the

dual-hoist bridge crane carrying a triangular payload that was shown in Figure 1.2a.

The crane was moved in the bridge direction in a simulation. The system identification

toolbox in MATLAB was used to determine the transfer functions of hook 1 (φ1) and

hook 2 (φ2) in response to bridge motion. The simulation parameters were shown in

Table 1.2.

The input used to drive the simulation was the acceleration profile required to

accelerate the bridge at 1 m/s2 to a maximum velocity of 0.33 m/s. The output was

φ1 for the hook 1 transfer function and φ2 for the hook 2 transfer function, and the

responses were simulated for 60 s. The first 6 seconds of the φ1 output is shown in

Figure 2.1. The function tfest was used for determining the transfer function from

the input and output data. Six poles were specified as a parameter. The resulting

transfer functions contained six complex poles with real parts close to zero. The

frequencies were correctly identified as 0.38 Hz, 0.45 Hz, and 0.79 Hz.
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Figure 2.1: Hook 1 Response with White Gaussian Noise

The wgn function was used to generate white Gaussian noise. Each data point was

divided by the maximum positive value contained in the data set and then multiplied

by four. The resulting white noise data were added to φ1 and φ2 to simulate noisy

hook angle measurements. The first 6 seconds of the noisy φ1 output is also shown

in Figure 2.1. The transfer function estimation process was repeated using the noisy

φ1 and φ2 outputs. The 0.38 Hz and 0.45 Hz modes were correctly identified from

the estimated hook 1 and hook 2 transfer functions. However, the highest frequency,

located at 0.79 Hz, was misidentified as 1.44 Hz and 1.24 Hz, respectively, from the

noisy φ1 and φ2 measurements. An input shaper designed to increase the small-

amplitude mode could be useful for improving the estimation of the 0.79 Hz mode

under noisy conditions.

The hook motions on the real crane are measured using downward-pointing cam-

eras attached to the bottom of the trolleys. The cameras track markers placed on

top of the hooks. If the camera cannot determine the position of the marker, then

the camera measurement is set to zero. To investigate the effect that this camera

measurement error can have on the determination of the oscillation frequencies, the

φ1 and φ2 simulation responses (without white noise) were randomly set to zero 15
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Figure 2.2: Hook 1 Response with Camera Measurement Error

times for a duration of 0.16-0.20 seconds each. The first six seconds of the altered

and original φ1 responses are shown in Figure 2.2. The transfer function estimation

process was repeated using the altered φ1 and φ2 outputs. The 0.38 Hz and 0.45 Hz

modes were correctly identified from the φ1 transfer function, while the highest fre-

quency mode at 0.79 Hz was misidentified as 1.28 Hz. From the φ2 transfer function,

the 0.38 Hz and 0.79 Hz modes were correctly identified, while the third mode was

identified to be 1.15 Hz instead of 0.45 Hz. This example demonstrates how camera

measurement error can affect the estimation of oscillation frequencies.

An input shaper designed to suppress a certain frequency will also generally sup-

press higher frequency modes. For example, a positive ZV shaper will suppress fre-

quencies that are odd integer multiples of the design frequency. The vibration per-

centage, or PRV, for an impulse sequence can be calculated using (1.1) for a range of

frequencies. A sensitivity curve shows the vibration percentage (y axis) as a function

of frequency (x axis) for an impulse sequence. Figure 2.3 shows the sensitivity curve

of a positive ZV shaper designed to suppress 0.37 Hz. If a system contained modes

at 0.37 Hz and 1.11 Hz, then the positive ZV shaper would suppress both modes. As

shown in Figure 2.3, a unity magnitude ZV (UM-ZV) shaper designed for 0.37 Hz
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Figure 2.3: Sensitivity Curves of Shapers Designed for 0.37 Hz

will excite the 1.11 Hz mode to 300% of the unshaped value. For this reason, it is

important to use an appropriate shaper if the goal is to suppress certain frequencies

in order to bring a small-amplitude mode to light.

Negative shapers can suppress certain frequencies while amplifying other frequen-

cies above that of positive shapers, as was demonstrated in Figure 2.3. This makes a

negative shaper well suited for amplifying the response of one mode while suppressing

other modes. Unity Magnitude amplitude constraints will be used for the Selective

Mode Amplification (SMA) shaper that will be used to clarify a mode of interest:

Ai = (−1)i+1 i = 1, ..., n (2.1)

To obtain a normalized result, the impulse amplitudes can be constrained to sum to

one:

n∑
i=1

Ai = 1 (2.2)

The first impulse time can be set to zero without loss of generality:

t1 = 0 (2.3)
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The time locations of each impulse must be in sequential order:

ti−1 < ti i = 2, ..., n (2.4)

Recall that (1.1) describes the residual amplitude resulting from an impulse se-

quence. A mode with a natural frequency ωj and damping ratio ζj can be suppressed

to below a specified limit, Vj, by imposing the constraint:

e−ζjwjtn
√

[C(wj, ζj)]2 + [S(wj, ζj)]2 ≤ Vj j = 1, ..., n (2.5)

In this equation, Vj is the ratio of the shaped response to the unshaped response at

ωj. In order to amplify a particular frequency, ωa, the vibration constraint is:

e−ζawatn
√

[C(wa, ζa)]2 + [S(wa, ζa)]2 ≥ Va (2.6)

where Va is the residual amplitude limit that ωa must exceed. The input shaper with

the shortest rise time is desired, so the final impulse time tn is the function to be

minimized:

fmin(x) = tn (2.7)

The goal of the optimization problem is to find an impulse sequence that minimizes

(2.7) subject to the constraints in (2.1)–(2.6).

2.1 Solution Approach

The SMA shaper can be derived numerically using a constrained nonlinear optimiza-

tion program, such as fmincon in MATLAB. However, the solution depends on an

initial guess X0 and the vibration constraints Vj and Va. Poor choices for these pa-

rameters may result in the program failing to find a solution. A practical choice for

X0 can be obtained by combining smaller shapers that are designed for the individual
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frequencies ωj and ωa. A ZV (1.10) or UM-ZV (1.13) shaper can be designed for each

suppressed frequency ωj, and a UM-MV shaper (1.14) can be designed for the mode

to be amplified, at ωa. These shapers can be convolved to generate a new shaper

that can be used for X0. Then, we know X0 has Vj0 = 0, and Va0 can be determined

by finding the PRV from (1.1) with ωa, ζa, and the impulse sequence X0. These

parameters can be used in the optimization function to find a SMA shaper, X, with

less impulses and a shorter duration tn. If X contains the desired frequency spectrum

and duration, then the solution process is completed.

It is also possible to solve for a different shaper with the desired performance

characteristics by modifying the constraints and resolving the optimization problem

using X as the initial guess. For example, Va can be increased by multiplying Va0 by

a factor, ka:

Va = kaVa0 (2.8)

where ka > 1. The tradeoff for an increased amplitude at ωa is a longer shaper rise

time. However, setting Vj to a small value, instead of zero, can decrease the rise time

at the expense of a larger residual amplitude at ωj.

2.2 SMA Shapers for Three-Mode Systems

A dual-hoist bridge crane with a triangular payload, such as the one shown in Figure

1.2a, has three modes. For the simulation parameters shown in Table 1.2, Figure 2.4

shows the undamped response of both hooks for a 0.4 m bridge motion. The hooks

oscillate at 0.38 Hz, 0.45 Hz, and 0.79 Hz. The 0.38 Hz amplitude is much greater

than that of the other two modes. Because the 0.38 Hz and 0.45 Hz frequencies are

close, there is a beating effect between the two hooks. Note that the 0.79 Hz frequency

is not readily apparent from this move. However, other motions might excite it to a

problematic level.
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Figure 2.4: Hook Response for 0.4 m Bridge Motion

Table 2.1: SMA Shaper Design Parameters

Parameter Value
Amplified Frequency, fa 0.45 Hz
Minimum Vibration Percentage, Va 65%
Suppressed Mode 1, f1 0.38 Hz
Maximum Vibration Percentage, V1 0
Suppressed Mode 2, f2 0.79 Hz
Maximum Vibration Percentage, V2 0

A two-mode Zero Vibration (ZV) shaper was created from the convolution of a

0.38 Hz ZV shaper and 0.79 Hz ZV shaper. Figure 2.5 shows the hook 1 response

for a 0.4 m bridge move using the convolved ZV shaper. The peak-to-peak residual

amplitude is approximately 0.02 m. A SMA shaper was designed to bring out the

remaining 0.45 Hz mode by using the parameters in Table 2.1:

 t(ms)

A

 =

 0 340 1040 1364 1689 2385 2727

1 −1 1 −1 1 −1 1

 (2.9)

The initial guess for the shaper-design optimization was the convolution of a 0.38 Hz
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Figure 2.5: Shaped Hook 1 Response for 0.4 m Bridge Motion

UM-ZV shaper, 0.79 Hz UM-ZV shaper, and 0.45 Hz UM-MV shaper. The minimum

vibration percentage, Va = 0.65, of the amplified mode was calculated from (1.1) with

ωn = 0.45, ζ = 0, and the impulse sequence in (2.9). The hook 1 response resulting

from a 0.4 m bridge move using the SMA shaper in (2.9) is also shown in Figure

2.5. The hook 1 residual amplitude is 0.08 m, which is four times greater than the

convolved ZV-shaped response amplitude. The 0.45 Hz mode can be further amplified

by increasing Va. To illustrate this, a different SMA shaper was solved for by using

(2.9) as the initial guess and increasing Va to 100%:

 t(ms)

A

 =

 0 481 1143 1455 1767 2431 2911

1 −1 1 −1 1 −1 1

 (2.10)

The peak-to-peak residual amplitude increases to 0.12 m when (2.10) is used to com-

plete a 0.4 m bridge move, as shown in Figure 2.5.

This chapter presented a new type of input shaper, called a Selective Mode Am-

plification (SMA) shaper, that can be used to bring a small-amplitude mode to light.

Chapter 3 presents a new system identification method, called Input-Shaped Sys-

tem Identification, that uses SMA shapers to distinguish the frequencies and relative
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amplitudes of the modes in a multi-mode system.
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CHAPTER III

INPUT-SHAPED SYSTEM IDENTIFICATION

This thesis proposes a new system identification technique, called Input-Shaped Sys-

tem Identification, that uses the system’s own actuators to examine modal charac-

teristics of multi-mode systems. The frequency spectra of the reference commands

are filtered by specially designed input shapers so that the frequencies and relative

amplitude contributions of each mode can be determined. One advantage of this

method is that the system’s own actuators are utilized for system identification, and

therefore, no additional excitation devices are required. The results, which are ob-

tained by analyzing dynamic responses originating from the system’s own actuators,

will also be representative of the system during normal operation. Input-Shaped Sys-

tem Identification is especially useful for an engineer who is designing input shapers

for lightly-damped systems. For systems with low damping, zero damping can be

assumed for the input shaper design with a minimal decrease in performance. Fur-

thermore, this method can be used to improve the frequency estimation from noisy

measurements.

In order to control a flexible system effectively, it is important to understand how

the system will respond to a specified input. This can be accomplished by applying

an input to the system and measuring the response. The impulse response of a single-

mode system is shown in Figure 3.1. The oscillation amplitude and frequency of the

single mode can be easily determined from the time response.

The impulse response of a three-mode system is also shown in Figure 3.1. The total

response is a combination of the three individual modes. The total response can be

represented as a combination of these three individual modes. However, determining
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Figure 3.1: Impulse Response of Two Systems

the three components is not easy, especially when one mode dominates, or there

is significant measurement noise. Knowledge about the contributions (oscillation

amplitudes) of each mode to the total response can be used to design a controller

that limits the total oscillation amplitude within a tolerable level. For example, an

input shaper can be designed to suppress the oscillation amplitudes of each mode to

within an acceptable level, resulting in an acceptable level of vibration for the total

response.

As an example multi-mode system that is challenging to identify, consider the

dual-hoist bridge crane carrying a triangular payload that was shown in Figure 1.2a.

The payload response to bridge motion contains three modes. If the bridge is moved,

then the frequencies can be determined by performing a Fast Fourier Transform (FFT)

of the φ1 and φ2 time response data. Some systems may have additional modes that

are not clearly identified by the FFT. To check for additional modes, the bridge can be

moved with an input shaper designed to suppress the modes that are already known.

As was demonstrated in Figure 2.3, an input shaper designed to suppress a certain
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Figure 3.2: Bang-Coast-Bang Command Construction

frequency will also generally suppress higher frequency modes. For this reason, it is

important to use an appropriate shaper if the goal is to suppress certain modes in

order to distinguish other modes.

The frequencies of a multi-mode system may change as a function of the system

parameters. For example, the mode frequencies vary as the triangular payload mass is

increased for the dual-hoist bridge crane configuration that was shown in Figure 1.2a.

Knowledge of how the modes vary as the system parameters are changed can be used

to design an oscillation-reducing controller that is robust to parameter variations.

However, the reference command determines the frequency content of the energy for

changing the system state, which also excites the modes. Therefore, it is important

to understand how the reference command affects the system response.

3.1 Bang-Coast-Bang Command

The dual-hoist bridge crane is programmed to generate trapezoidal bang-coast-bang

(BCB) trajectories in response to operator-issued commands from a human machine

interface (HMI). The generated BCB command depends on the acceleration (a), max-

imum velocity (vmax), and the duration of the operator-issued command. Alterna-

tively, the BCB trajectory can be derived from the desired move distance, xd, instead

of the command duration. The BCB command can be described as the convolution of

a series of four impulses, referred to as the trapezoidal shaper, with a ramp function.

27



This BCB command construction process is illustrated in Figure 3.2.

For vmax = 1 m/s, a = 1 m/s2, and xd = 1 m, the trapezoidal shaper is:

 Ai

ti

 =

 1 −1 −1 1

0 0.330 3.030 3.360

 (3.1)

If the move distance is change to xd = 1.2 m, then the trapezoidal shaper is:

 Ai

ti

 =

 1 −1 −1 1

0 0.330 3.636 3.966

 (3.2)

Finally, for xd = 1.4 m, the trapezoidal shaper is:

 Ai

ti

 =

 1 −1 −1 1

0 0.330 4.242 4.572

 (3.3)

Figure 3.3 shows the sensitivity curves for the trapezoidal shapers in (3.1)–(3.3). Each

curve has a unique frequency spectrum with different peaks and troughs. However,

when the peaks are observed together, they resemble another peak-trough profile that

stretches from 0 to 3 Hz.

The first and second impulses from the BCB commands in (3.1)–(3.3) are identical.

Figure 3.3 also shows the sensitivity curve, labeled 1/2 BCB, for these first two

impulses:

 Ai

ti

 =

 1 −1

0 0.330

 (3.4)

This sensitivity curve has the same shape, only with a smaller vibration percentage, as

the profile created by the peaks from the (3.1)–(3.3) sensitivity curves. This is because

the final two impulses in (3.1)–(3.3), which have the same elapsed time between them
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Figure 3.3: Trapezoidal Shaper Sensitivity Curve

as the first two impulses, either amplify or attenuate the response excited by the first

two impulses. The maximum vibration percentage in the 1/2 BCB curve is 200%,

and if the final two impulses in the full BCB command are applied at the proper time,

then the maximum vibration percentage of 400% will occur at a certain frequency.

3.2 Total Shaper

The total shaper describes all of the impulses that are used to control the system

in response to a reference command. For systems that are controlled with BCB

commands, the total shaper is the same as the trapezoidal shaper in the absence

of command shaping. When input shaping is used, the total shaper is the impulse

sequence created by the convolution of the trapezoidal shaper and the input-shaper

impulse sequences, as demonstrated in Figure 3.4.

An oscillatory response may result if a particular total shaper is used to move a

flexible system. If the response contains a single mode at a frequency of ωa, then
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the PRV at ωa can be determined by plugging ωa, ζa, and the total shaper impulse

sequence into the PRV equation in (1.1). The resultant is called the total shaper

factor. Dividing the residual vibration amplitude by the total shaper factor scales the

amplitude so that it represents the amplitude of ωa which originates from a single

impulse.

3.3 Method for Input-Shaped System Identification

This section presents a method for determining the frequencies and relative ampli-

tudes of each mode of a multi-mode system for different system configurations. The

Input-Shaped System Identification method consists of two parts. The first part uses

input shaping to modify the frequency spectrum of the reference command for discov-

ering the modal frequencies. The second part uses SMA shapers to suppress all but

one mode so that the measured response is primarily composed of the single mode of

interest. Then, the relative amplitude of each mode that results from a single impulse

can be determined.

3.3.1 Frequency Identification Process

The frequency identification process uses a FFT of the measured response to deter-

mine the modal frequencies after the system has been moved with it’s own actuators.

Then, input shapers are designed to suppress the discovered modes in order to increase

the signal-to-noise ratio of the measured response for the identification of additional
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Figure 3.5: Frequency Identification Process

modes.

The proposed frequency identification process, illustrated in Figure 3.5, is accom-

plished with the following process:

1. Apply the first two impulses of the trapezoidal shaper, and measure the oscilla-

tion response while the system is in motion. If it is not possible to appropriately

measure the response while the system is in motion, then measure the response

after a series of random movements along the same axis in order to reduce the
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probability of suppressing one of the modes.

2. Use a FFT to determine the frequency spectrum of the measured time response.

3. Design an input shaper to suppress the modes that are discovered. It is best to

use a shaper that has low robustness, such as a ZV shaper, UM-ZV shaper, or

SI shaper, to decrease the chance that higher modes will be suppressed.

4. Use the input shaper to repeat the move completed in step 1, and measure the

oscillation response

5. Repeat steps 2-4 until no other frequencies are found.

3.3.2 Amplitude Identification Process

The amplitude identification process uses SMA shapers designed to suppress all but

one mode so that the measured response is primarily composed of the single mode of

interest. Then, the amplitude of the remaining mode can be easily determined from

the time response. A SMA shaper can be designed for each mode. By systematically

measuring the SMA-shaped responses, the relative amplitude contribution of each

mode can be identified.

The flowchart in Figure 3.6 shows a process for experimentally determining the

relative amplitude of each mode in the response of a multi-mode system. The elements

in this flowchart will be explained, and then the entire process will be summarized.

If the modal frequencies are known for a given configuration of system parameters,

then it is possible to design a SMA shaper that suppresses, to a very low level, all

but one mode that has a natural frequency of ωa. Then, the system response can

be measured when the reference command is shaped by the SMA shaper in order

to determine the targeted mode’s residual vibration amplitude. The total shaper is

the convolution of the reference command and SMA shaper impulse sequences. The

PRV at the mode of interest, called the total shaper factor, can be determined by
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Figure 3.6: Amplitude Identification Flowchart

plugging ωa, ζa, and the total shaper impulse sequence into the PRV equation in

(1.1). Dividing the residual vibration amplitude by the total shaper factor scales the

amplitude so that it represents the amplitude of ωa which originates from a single

impulse. This can be repeated for each mode so that the relative amplitude of each

mode that originates from a single impulse can be identified. Then, the process can be

repeated for different system configurations to determine the frequency and relative

amplitude for each mode as the system parameters are changed.

It is important to use consistent reference commands when discovering the ampli-

tude of each mode so that the amplitudes can be directly compared at the completion
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of the amplitude identification process. For systems that use BCB commands, the ac-

celeration, a, should be kept constant because it affects the magnitude of the impulses

that act on the system. The other parameters affecting the shape of the reference

command will then be appropriately accounted for by dividing the residual vibration

amplitude by the total shaper factor.

The shape of the reference command can be selected based on the mode frequencies

and vmax. For example, if the mode of interest has a period that is less than the elapsed

time between the first and second impulses of the trapezoidal shaper, then the residual

vibration amplitude can be measured after only one impulse. The reference command

would be the single impulse. However, if the period is longer than the elapsed time

between the first two impulses, then the residual vibration amplitude can be measured

after the system reaches coasting velocity. This reference command would be the first

two impulses of the trapezoidal shaper.

If it is not possible to measure the residual vibration amplitude while the system

is in motion, then the complete trapezoidal shaper can be used as the reference

command. However, the selected move distance can result in cancellation of the

mode of interest. Therefore, a move distance should be selected that results in a

suitable residual vibration amplitude, in comparison to what occurs after the first

two impulses, to improve the accuracy of the amplitude identification process.

The amplitude identification process is summarized as follows:

1. For the current system configuration, design an input shaper, such as an SMA

shaper, that suppresses all modes except for one.

2. Measure the response after the system has been moved with the SMA-shaped

reference command.

3. Determine the residual amplitude of the measured response.
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Figure 3.7: Amplitude Identification Process

4. Divide the residual amplitude by the total shaper factor to determine the vi-

bration amplitude that results from a single impulse.

5. Repeat steps 1-4 for each additional mode.

6. Repeat steps 1-5 for each additional system configuration.

This chapter presented a new system identification method, called Input-Shaped

System Identification, that uses input shaping to distinguish the frequencies and rela-

tive amplitudes of the modes in a multi-mode system. In the frequency identification

process, input shapers are used to increase the signal-to-noise ratio of the measured
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response for determining the modal frequencies. In the amplitude identification pro-

cess, SMA shapers are designed to suppress all but one mode so that the SMA-shaped

response is primarily composed of the single mode of interest. Then, the amplitude of

the remaining mode can be easily determined from the time response. By systemati-

cally measuring the SMA-shaped responses for each mode and dividing the residual

amplitude by the total shaper factor, the relative amplitude of each mode that results

from a single impulse can be determined.

Chapter 4 investigates the dynamic response of a dual-hoist bridge crane moving

distributed payloads using simulations and experiments. The Input-Shaped System

Identification method is used to characterize the modes as a function of certain system

configuration parameters.

36



CHAPTER IV

DYNAMICS AND CONTROL OF DUAL-HOIST BRIDGE

CRANES MOVING DISTRIBUTED PAYLOADS

This chapter investigates the dynamic response of a dual-hoist bridge crane moving

distributed payloads using simulations and experiments. The mathematical model

used for simulations described in Section 1.2.2 was obtained using the commercial

dynamics package MotionGenesis [1]. The computer code is listed in Appendix A.

The results from the numerical model were validated with experiments performed

on a dual-hoist bridge crane described in Section 1.2.1 located in the Hibay of the

Manufacturing Research Center (MaRC) at Georgia Tech.

Most crane models ignore the inertial effects of the payload by lumping the hook

and payload together as a point mass [2]. However, as the payload size increases, the

rotational inertia effects of the payload can be evident in the oscillatory response of

the system. This chapter investigates a particular kind of distributed payload that

has a triangular shape, as was shown in Figure 1.2a. The triangular geometry was

chosen because it is simple to model and construct, while capturing the important

dynamic characteristics of generalized distributed payloads.

4.1 Dynamic Behavior and Control

The dual-hoist bridge crane has several degrees of freedom, so it can be operated in a

large variety of configurations. The dynamic response of the system depends strongly

on the input parameters and the system configuration. This section investigates the

effect of the system configuration and explores the response to various inputs. Table

1.2 showed the nominal parameters used to simulate the system.
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Figure 4.1: Response Induced by Simultaneous 0.4 m Motions by Both Trollies

4.1.1 Trolley Motion

Figure 4.1 shows the oscillation of both hooks induced by a 0.4 m motion in the trolley

direction. Both trolleys were moved simultaneously to keep the separation distance

constant. In this configuration, both hooks are initially hanging directly below the

cable attachment points, and the initial rotation angles of the payload (β, γ, and ψ),

and of the hooks (θ1, θ2, φ1, and φ2) are all zero. When the crane stops, both hooks

oscillate about the trolley positions with a peak-to-peak amplitude of approximately

50 cm. This configuration is similar to a planar, single-hoist crane. Therefore, the

response is a simple one-mode oscillation.

Figure 4.2 shows the residual swing amplitude of hook 2 induced by trolley moves

ranging from 0.1 m to 2.0 m. Because motion in the trolley direction induces a

single-mode swing, a simple input shaper, such as a Zero Vibration (ZV) shaper,

can be used to reduce the swing. The swing amplitudes induced by the ZV-shaped

commands (the damping ratio was assumed to be zero) are also shown in Figure 4.2.

The ZV shaper reduced the residual swing to near zero over the entire range of move

distances.
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Figure 4.3: Residual Amplitude for Hook 2

The dual-hoist bridge crane was used to collect experimental data for compari-

son with the simulation data. The trolleys were simultaneously moved for distances

ranging between 0.4 m and 2.0 m. Figure 4.3 shows the resulting peak-to-peak resid-

ual oscillation amplitude for Hook 2. The figure also shows the simulation results

that were previously shown in Figure 4.2. The experimental and simulation results

follow very similar trends. The residual amplitude curves contain peaks and troughs

as the move distance varies. The experimental peaks, however, get smaller as the

distance gets larger. This is due to the damping effect present in the real crane that
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is not modeled in the simulation. Figure 4.3 also shows the residual swing induced

by ZV-shaped commands for the same range of trolley motions. The ZV shaper was

designed for a frequency of 0.41 Hz (which is approximately the frequency of a simple

pendulum with a 1.5 m cable length). The ZV shaper reduced the residual oscillation

by an average of approximately 77% over the entire range of move distances.

4.1.2 Bridge Motion

To investigate non-planar dynamics, the dual-hoist bridge crane was moved in the

bridge direction. Note that the trolleys cannot move independently in the bridge

direction. Figure 4.4 shows the hook responses for a 0.9 m bridge motion for the

parameters that were shown in Table 1.2. Both hooks oscillate relative to the bridge

position.

Three modes are present in the oscillation of the hooks, and the 0.9 m bridge move

distance was chosen because all three modes are visible in the hook responses. The

lowest-frequency “swing” mode corresponds to the payload swinging like a pendu-

lum from the trolley hoists. The middle-frequency “twist” mode corresponds to the

twisting motion that was shown in Figure 1.5b. The highest-frequency “roll” mode

corresponds to the rolling motion that was shown in Figure 1.5c.

A FFT of the φ1 and φ2 time responses revealed oscillation frequencies of approx-

imately 0.38 Hz, 0.45 Hz, and 0.79 Hz. These frequencies correspond to the swing,

twist, and roll modes, respectively. Because 0.38 Hz and 0.45 Hz are close, there is a

beating effect between the two hooks in Figure 4.4.

The dynamics were simulated for 60 s. During that time, hook 1 oscillates with

a maximum peak-to-peak amplitude of approximately 14 cm, and hook 2 oscillates

with a maximum peak-to-peak amplitude of approximately 13 cm.

For the bridge motion shown in Figure 4.4, the payload twist angle (γ) is no longer

zero as it was for the planar motion induced by only trolley motion. Figure 4.5 shows
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Figure 4.5: Response Induced by 0.9 m Bridge Motion

how the γ angle changes due to the 0.9 m move. The payload twist also exhibits a

multi-mode oscillation.

The oscillation frequencies of the two hooks (if treated as independent of each

other) are determined by the suspension cable length, but the hooks are attached

together via the triangular payload. This configuration, the triangular payload ge-

ometry, and the non-planar motion result in the multi-mode oscillation shown in

Figure 4.6.

Figure 4.7 shows the residual swing amplitude induced by bridge moves between
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Figure 4.7: Residual Amplitude for Unshaped and Shaped Bridge Motions

0.1 m to 2.0 m. To reduce the hook swing induced by bridge motions, a three-mode

ZV shaper was designed for 0.38 Hz, 0.45 Hz, and 0.79 Hz (the damping ratio was

assumed to be zero). The swing amplitudes induced by the shaped commands are

also shown in Figure 4.7. The three-mode ZV shaper reduced the residual oscillation

of hook 1 and hook 2 to near-zero over the entire range of move distances.

Next, the dual-hoist bridge crane was used to experimentally determine the resid-

ual oscillation amplitude resulting from bridge motions. Figure 4.8 shows the residual

amplitude in response to bridge motion for a 7 kg triangular payload. The curves
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Figure 4.8: Residual Amplitude Plot for a 7 kg Payload Mass

generated from the simulation in Figure 4.7 are also shown. The peaks of the experi-

mental curves are much lower than the simulation curves because damping forces were

not modeled in the simulation. Also, the hook 1 experimental curve has a different

shape compared to the simulation curve.

New parameters were added to the simulation to account for damping between the

suspension cables and the trolleys (B1 and B2) and the wind resistance that acts on

the center of mass of the payload (Bp). Wind resistance has a greater impact on the
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Table 4.1: Dual-Hoist Crane Simulation Damping Parameters

Parameter Value
B1 5 Ns/rad
B2 1 Ns/rad
Bp 7 Ns/m
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Figure 4.9: Residual Amplitude Plot for a 70 kg Payload Mass
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payload response for bridge motion compared to trolley motion because the surface

area of the payload perpendicular to the direction of travel is much greater for bridge

motions. The simulations were repeated with the damping parameters shown in Table

4.1. Figure 4.8 also shows the residual amplitude resulting from bridge movements

with the modeled damping forces. Compared to the undamped model, the damped

simulation curves have a much better resemblance to the experimental data.

For a heavier payload mass of 70 kg, Figure 4.9 shows the experimental, undamped

simulation, and damped simulation peak-to-peak residual amplitude curves resulting

from point-to-point bridge moves. The damped simulation curves, obtained using

the same damping parameters from Table 4.1, are very similar to the experimental

curves. The peaks from the experimental curves are still less than those from the

undamped simulation. However, the undamped simulation and experimental curves

have better agreement than those from the 7 kg payload. This is because the inertia

of the system increases with a larger payload mass while the damping forces remain

nearly unchanged. Therefore, the damping forces have a greater effect on the response

of lighter payloads.

4.1.3 L-Shaped Bridge and Trolley Motions

This section investigates the dynamics for combined trolley and bridge motions. The

parameters from Table 1.2 were used for the simulations. The crane first completed

a trolley move, and then after a 0.5 s delay, executed a bridge move. After the bridge

stopped moving, the residual peak-to-peak amplitude was calculated for both the

bridge (x) and trolley (y) directions. Then, the total residual amplitude (RA) is:

RAtotal =
√

[RAx]2 + [RAy]2 (4.1)

Each L-shaped motion was simulated for 60 s. For a 7 kg triangular payload,

Figure 4.10 shows the total residual amplitude for L-shaped moves consisting of 0.4 m
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Figure 4.10: Residual Amplitude for L-Shaped Moves (7 kg Payload Mass)

to 1.2 m trolley moves followed by 0.4 m to 2.0 m bridge moves. The mean ± standard

deviation of the total residual amplitude for hook 1 and hook 2 is 0.49 m ± 0.13 m

and 0.55 m ± 0.15 m, respectively. There are peaks and troughs corresponding with

maximum and minimum levels of residual oscillation. However, most combinations

of bridge and trolley moves result in considerable levels of residual oscillation.

Input shapers were designed to suppress the oscillation resulting from both bridge
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and trolley motions. For trolley movements, a ZV shaper was designed to suppress

the single 0.41 Hz mode:

 A

t(ms)

 =

 0.5 0.5

0 1220

 (4.2)

Bridge motion excites the swing (0.38 Hz), twist (0.45 Hz), and roll (0.79 Hz) modes.

A three-mode SI shaper was designed with zero-vibration constraints at 0.38 Hz, 0.45

Hz, and 0.79 Hz:

 A

t(ms)

 =

 0.178 0.120 0.202 0.211 0.112 0.177

0 934 994 1769 1855 2773

 (4.3)

The L-shaped moves were repeated using the input shapers in (4.2) and (4.3) to shape

the trolley and bridge movements, respectively. The residual amplitude resulting from

these input-shaped movements are also shown in Figure 4.10. Input shaping reduced

the residual amplitude to near-zero for every L-shaped move.

4.2 Analysis of Modal Coupling

This section uses simulations to investigate the level of coupling between the swing,

twist, and roll modes that are induced by bridge motion. The frequency identification

process from Section 3.3.1 was used to find the oscillation frequencies for each system

configuration. Then, a process similar to the amplitude identification process from

Section 3.3.2 was used to design input shapers to excite only a single mode. This

input shaper was used to perform a bridge move, and the initial conditions required

to excite only that single mode were determined from the time responses of φ1, φ2,

θ1, θ2, β, γ, and ψ. Finally, these initial conditions were specified in the simulation

model, and a new simulation was performed where the payload response was simulated

for 300 s after the payload was released. The level of coupling between the modes
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Figure 4.11: Modes Induced From Bridge Motion – Equal Cable Lengths

was investigated by plotting φ1 and φ2 and visually determining if there was energy

exchange between the excited mode and the modes that were not initially excited.

The parameters listed in Table 1.2 were used for the first modal coupling analysis.

The hook cable lengths, L1 and L2, were equal at 1.5 m. The trolley separation
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distance and payload length were both 2.3 m. No damping was used. The initial

conditions were specified to excite only one mode after the payload was released and

allowed to oscillate. Figure 4.11 shows the hook responses for the swing, twist, and

roll modes. The responses are shown from 0-10 s and 290-300 s in order to investigate

if energy is transferred to the other modes over time. No modal coupling is evident

from the time response plots of the swing, twist, and roll modes.

Next, modal coupling was investigated for unequal cable lengths. The parameters

were the same as the previous analysis, except L2 was changed to 1.0 m. The initial

conditions were specified to excite only one mode after the payload was released and

allowed to oscillate. Figure 4.12 shows the hook responses for the swing, twist, and

roll modes. No modal coupling is evident.

4.3 Characterization of the Modes Induced by Bridge Mo-
tion

The Input-Shaped System Identification method described in Chapter 3 was used to

determine how the dual-hoist crane system’s modes change as a function of the tri-

angular payload mass and geometry using simulations. As described in the frequency

identification process from Section 3.3.1, input-shaped bridge moves were used to

increase the signal-to-noise ratio of φ1 and φ2 for determining the modal frequen-

cies. After the modal frequencies were characterized as a function of the system

parameter, SMA-shaped bridge motions were used to determine the relative peak-to-

peak hook-displacement amplitude of each mode that results from a single impulse.

This amplitude identification process was described in Section 3.3.2. The reference

command for the amplitude identification process was the first two impulses of the

trapezoidal shaper. So, the residual vibration amplitudes were calculated while the

crane was coasting with a velocity of vmax = 0.33 m/s. The crane acceleration was a

constant a = 1 m/s2. The nominal parameters used for the simulations were shown

in Table 1.2.

49



-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 2 4 6 8 10

φ1
φ2

A
ng

le
 (d

eg
)

Time (s)

(a) Swing Mode – 0-10 s

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

290 292 294 296 298 300

φ1
φ2

A
ng

le
 (d

eg
)

Time (s)

(b) Swing Mode – 290-300 s

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

φ1
φ2

A
ng

le
 (d

eg
)

Time (s)

(c) Twist Mode – 0-10 s

-1.5

-1

-0.5

0

0.5

1

1.5

290 292 294 296 298 300

φ1
φ2

A
ng

le
 (d

eg
)

Time (s)

(d) Twist Mode – 290-300 s

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 2 4 6 8 10

φ1
φ2

A
ng

le
 (d

eg
)

Time (s)

(e) Roll Mode – 0-10 s

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

290 292 294 296 298 300

φ1
φ2

A
ng

le
 (d

eg
)

Time (s)

(f) Roll Mode – 290-300 s

Figure 4.12: Modes Induced From Bridge Motion – Unequal Cable Lengths

4.3.1 Triangular Payload Mass

First, the modes were characterized for variations in the payload mass. In simulations,

the crane was moved in the bridge direction with different triangular payload masses
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Figure 4.14: Mode Residual Amplitude vs. Frequency (Payload Mass)

while the dimensions remained constant. Figure 4.13 shows the system’s oscillation

frequencies as a function of the payload mass. The lowest-frequency “swing” mode

corresponds to the payload swinging like a pendulum from the trolley hoists. The

middle-frequency “twist” mode corresponds to the twisting motion that was shown

in Figure 1.5b. The highest-frequency “roll” mode corresponds to the rolling motion

that was shown in Figure 1.5c.

Figure 4.14 shows the hook-displacement amplitude versus frequency of hook 1 and

hook 2 for payload masses ranging from 5 kg to 100 kg. The red arrows indicate the

direction of increasing payload mass. For both hooks, the pendulum swing mode is the

largest component of the total response, and the frequency decreases as the payload

mass is increased. The twist and roll mode frequencies increase with increasing mass.
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Figure 4.15: Mode Shapes for 7 kg Payload

The mode amplitude decreases as the frequency increases for all but the swing mode

of Hook 2.

In the amplitude identification process, SMA shapers are used to take energy out

of all the modes except for one, which results in a one-mode response. Given such

simplified responses, the mode shapes can be determined from two or more angles or
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Figure 4.16: Twist Mode (γ)

points on the system. The φ1 and φ2 hook rotation angles were used to identify the

mode shapes. The swing, twist, and roll mode shapes are shown in Figure 4.15 for a

7 kg payload.

Each mode affects φ1 and φ2 differently because of the geometry and rotational

inertia of the triangular payload. Figure 4.16 illustrates why φ1 has a larger amplitude

than φ2 for the twist mode. The green, vertical plane is parallel to the yz-plane and

coincident with the payload’s center of mass. When φ1 = φ2 = 0, then γ = 0. The

pivot point for the twisting motion is the center of mass of the oscillating system,

which consists of MH1, MH2, and the payload mass. Hook 1 is further away from the

center of mass than hook 2, so hook 1 moves a greater distance for the same rotation

angle.

For the roll mode, φ2 has a larger residual amplitude than φ1. This can be

explained in terms of the mass distribution of the payload between the two hooks.

During the rolling motion, the payload’s center of mass moves in the x-direction, as

indicated in Figure 4.16. The hooks move in the opposite direction to compensate.

However, a greater percentage of the payload mass is concentrated under hook 2, so
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Figure 4.17: Sketch of the Triangular Payload Configuration

hook 2 has to move a greater distance.

4.3.2 Triangular Payload Width

To study the effect of the payload width (W), it was incremented from 0.1 m to 4

m, while maintaining a constant payload mass. A sketch of the triangular payload

configuration is shown in Figure 4.17. Figure 4.18 shows the effect of the payload

width on the three mode frequencies for constant payload masses of 7 kg and 70 kg. As

the width increases, both the swing and roll frequencies decrease because the payload’s

center of mass moves closer to the ground, which increases the effective pendulum

length for both modes. The twist frequency remains approximately constant when

the width is changed, but increases as the payload mass becomes greater.

Figure 4.19 shows the hook-displacement amplitude versus frequency of hook 1

and hook 2 when the payload width is incremented from 0.1 m to 4.0 m for payload

masses of 7 kg and 70 kg. The red arrows indicate the direction of increasing payload

width. For hook 1, the swing and twist modes contribute significantly to the overall

amplitude. As the width is increased, the swing amplitude decreases while the twist

amplitude increases. In fact, the twist mode becomes more significant than the swing

mode for the 7 kg payload mass as the width is increased. For hook 2, swing and

roll are significant to the total response. With increasing width, the swing amplitude
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Figure 4.18: Oscillation Frequency vs. Payload Width
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Figure 4.19: Mode Residual Amplitude vs. Frequency (Payload Width)

decreases and the roll amplitude increases. For both hooks, the mode amplitudes

shift more for the lighter payload.
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Figure 4.20: Right-Trapezoidal Payload

4.3.3 Right-Trapezoidal Payload Width Ratio

Next, the dynamics were investigated for the right-trapezoidal payload configuration

shown in Figure 4.20. The right-trapezoidal payload is created by adding a second

width dimension, W1, below hook 1. The width dimension beneath hook 2 is W2.

With a constant W2 = 1.2 m, the mode frequencies and maximum residual amplitudes

were investigated with W1 ranging from 0 m to 4 m. The payload width ratio, RW ,

is:

RW = W1/W2 (4.4)

All other parameters are specified in Table 1.2. The mode frequencies versus RW

are shown in Figure 4.21 for payload masses of 7 kg and 70 kg. The swing and roll

frequencies decrease as RW increases because the effective pendulum length of both

modes increases. As the payload mass increases, the twist and roll frequencies shift

upwards while the swing frequency shifts slightly downwards.

Figure 4.22 shows the hook-displacement amplitude versus frequency of hook 1 and

hook 2 when the payload width ratio is incremented from 0 to 3.3 for payload masses

of 7 kg and 70 kg. The red arrows indicate the direction of increasing width ratio.
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Figure 4.21: Oscillation Frequency vs. RW for Bridge Motion
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Figure 4.22: Mode Residual Amplitude vs. Frequency (RW )
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The red points are plotted when RW = 1, which represents a rectangular payload

when W1 and W2 are equal. The twist amplitude is zero for both hooks when RW

is unity because the center of mass is equidistant between the two hooks and no

moment is induced during bridge motions. However, the twist mode could be excited

if an external force is applied to the payload, such as in a collision. The amplitude

increases as RW moves in either direction away from unity. The swing amplitude for

hook 1 first increases with RW , then has a maximum value when RW = 1, and finally

decreases as RW > 1. Also, the roll amplitude for hook 1 increases with RW as the

center of mass moves closer to hook 1. For hook 2, the swing amplitude decreases as

RW increases, and the roll amplitude is the least significant contributor to the total

response except when RW is close to unity.

This chapter investigated the dynamic response of a dual-hoist bridge crane mov-

ing distributed payloads using simulations and experiments. Trolley motion caused

the payload to oscillate with a single frequency, and a ZV shaper was effective for

reducing this type of payload oscillation. Bridge motion induced a three-mode re-

sponse. The three modes were characterized for variations in the payload mass and

geometry. An input shaper designed for all three modes, such as a three-mode SI

shaper, was shown to be effective at reducing payload oscillation induced by bridge

motions. Finally, separate input shapers designed for trolley and bridge motions were

shown to be effective at reducing payload oscillation induced by L-shaped trolley and

bridge motions. Insights from the dynamic analysis were used to design input shapers

for Chapter 5, where human operator studies were completed to determine the effect

input shaping has on human operator performance when driving a triangular payload

through an obstacle course with a dual-hoist bridge crane.
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CHAPTER V

OPERATOR STUDIES

Operator studies were conducted to investigate how people control dual-hoist cranes

carrying distributed payloads. Insights from the dynamic analysis in Chapter 4 were

used to design input shapers for a given crane configuration to reduce payload oscil-

lation caused by bridge and trolley motions. Trials were completed both with and

without input shaping to determine the effect input shaping has on task completion

time and operator effort.

5.1 Operator Test Protocol

5.1.1 Physical Setup

Figure 5.1 is an annotated photograph of the crane with the cable lengths and payload

dimensions used for the operator studies. The cable lengths were set to 1.5 m. The

payload has a length of 2.4 m and a width of 1.2 m. The trolley separation distance

was 2.4 m.

Figure 5.2 is an overhead sketch that illustrates the obstacle course setup and

the nominal path for completing the task. The required task is to move the payload

from the starting point to the target area as fast as possible without colliding with

the obstacles. Operators were not allowed to change the suspension cable lengths, so

operators needed to transport the payload between the two obstacles. The separation

distance between the two obstacles is SDobs.

Figure 5.3 and Figure 5.4 show that each end of the payload was equipped with

laser pointers. The lasers place markers on the ground to clearly show the position

of the payload with respect to the ground.
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Figure 5.2: Obstacle Course Setup

5.1.2 Procedure

Each test subject practiced driving the crane for approximately two minutes with

input shaping and two minutes without input shaping to become familiarized with

the control of the crane prior to the actual experiment. Figure 5.3 shows the view of
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Figure 5.3: Camera Field of View

Figure 5.4: Dual-Hoist Bridge Crane Components

the video camera for recording each test. The course completion time was measured

from initial crane motion to when the two laser markers entered and remained within

the rectangular target boundary on the ground by using a stopwatch to manually

measure the time. Each test run was recorded on video so that each test could be
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verified to ensure accuracy.

Three different operator studies were completed. The first study used bridge and

trolley move distances that resulted in large residual amplitudes from point-to-point

moves. The second study increased the range of bridge move distances to include

both large and small residual amplitudes resulting from point-to-point moves. The

third study used three different triangular payload masses and had bridge and trolley

move distances that corresponded to maximum, intermediate, and minimum levels of

residual oscillation resulting from point-to-point moves.

In each study, bridge and trolley move distances were chosen based on the amount

of residual oscillation that ensues from point-to-point moves. Figure 5.5 shows the

experimentally determined residual oscillation curve for point-to-point bridge moves.

The residual amplitudes are the peak-to-peak displacement amplitudes of hook 1 and

hook 2. This curve was determined using the crane configuration used for the operator

studies that was shown in Figure 5.1, with a 7 kg triangular payload.
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Crane applications usually require altering the cable lengths during operation. A

ZV shaper is not very robust to variation in frequency (i.e. cable length changes).

Therefore, a more robust shaper, such as an Extra-Insensitive (EI) shaper [20] or a

Specified-Insensitivity (SI) shaper [21], should be implemented in applications with

significant hoisting to provide adequate robustness.

5.2 Maximum Bridge Oscillation Study

The first study, called the Maximum Bridge Oscillation (MBO) study, used bridge

move distances that resulted in maximum levels of residual oscillation from point-to-

point moves. So, if the operator issued a command (by pressing a directional button

on the HMI) that moved the bridge a distance that was within the selected move

distance range, then the hook oscillation amplitudes would be near the peak of the

residual oscillation curve, such as those shown in Figure 5.5. However, if the operator

used multiple button pushes to move the crane the same distance, then the oscillation

amplitude could be greater or smaller than the peak oscillation curve amount.

The bridge direction (Lx) move distance range varied between 1.1 m to 1.4 m in

0.1 m increments. This move distance range was chosen because it resulted in large

residual oscillation amplitudes for both hook 1 and hook 2, as shown in Figure 5.5.

The trolley move distance was selected to result in large residual oscillation from a

point-to-point move and was held constant. As shown in Figure 5.2, obstacles were

placed in the course to increase the difficulty of the task. The two obstacles were

spaced 3.5 m apart.

Starting from an Lx of 1.1 m, each of the seven test subjects completed a test

run using unshaped control and then using input-shaped control. This was repeated

for bridge move distances of 1.2 m, 1.3 m, and 1.4 m, for a total of 8 test runs per

operator.

The payload response was different for trolley and bridge motions because of the
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inertia properties of the payload. Therefore, one input shaper was utilized for trolley

motion, and another input shaper was utilized for bridge motion.

A Zero Vibration (ZV) input shaper [8] was used for trolley 1 and trolley 2 motion

along the bridge. The ZV input shaper, designed to cancel 0.43 Hz (ζ = 0), has

impulse values of:

 t(ms)

A

 =

 0 1163

0.5 0.5

 (5.1)

For bridge motion, a two-mode convolved ZV shaper [18] was used to cancel 0.39

Hz (ζ = 0) and 0.755 Hz (ζ= 0). These two frequency values were determined from

experimental data. This shaper is:

 t(ms)

A

 =

 0 662 1282 1944

0.25 0.25 0.25 0.25

 (5.2)

The following data were collected for each test run:

• Test number

• Bridge move distance

• Controller setting (e.g., shaped or unshaped)

• Course completion Time, tc

• Number of obstacle collisions

5.2.1 Maximum Bridge Oscillation Study Results

For the MBO study, the task completion times of operators 1-7 for each Lx distance are

plotted in Figure 5.6. Faster completion times resulted when input shaping was used

with the exception of subject 5 at Lx = 1.1 m and 1.4 m. This could be because subject

5 used a control technique that was different from the other operators, where rapid

button pushes were used to move the crane. On average, the operators completed the

course 47% faster with the aid of input shaping.
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(a) Lx = 1.1m (b) Lx = 1.2m

(c) Lx = 1.3m (d) Lx = 1.4m

Figure 5.6: Operator Completion Times for MBO Study

Figure 5.7 shows a box plot of the shaped and unshaped completion times. A

one-way ANOVA was performed to determine if differences between the means were

statistically significant. Input shaping had a significant effect on completion time at

the p < 0.001 level for the two conditions tested [F (1, 54) = 27.73, p = 2.48 × 10−6].

The average completion time was calculated for all runs that used input shaping

and for all runs that used standard control, respectively. Then, the completion time

residuals for the shaped test condition were determined by subtracting the average

shaped completion time from each individual shaped completion time. This was also

done for the unshaped data. The results are plotted in Figure 5.8. If the data points

fall on a line, then the data represents a normal distribution. From the graph, it is

apparent that the data resembles a normal distribution except at the extremes.
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Figure 5.8: MBO Study Completion Time Residuals

5.3 Complete Bridge Oscillation Study

The second study, called the Complete Bridge Ocillation (CBO) study, increased

the range of bridge move distances to include both high and low levels of residual

oscillation resulting from point-to-point moves. The same trolley move distance from

the MBO study was used. The trolley move distance was selected to result in large
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residual oscillation from a point-to-point move and was held constant.

The bridge move distance range was increased to 1-2 m with 0.1 m increments.

This range was chosen because it resulted in both maximum and minimum levels of

residual oscillation, which is evident from the residual oscillation curve in Figure 5.5.

It was not feasible to have each operator complete tests at each value of Lx, so each

operator completed only four randomly determined bridge move distances both with

and without input shaping, for a total of eight tests per operator. The order of the

eight tests was randomized.

The ZV shaper in (5.1) from the MBO study was used for trolley motion. A two-

mode Specified Insensitivity (SI) shaper [20, 10] was utilized for bridge motion. The

two-mode SI shaper was designed to suppress frequency ranges of 0.39 Hz (ζ = 0.065)

and 0.75-0.76 Hz (ζ = 0.03) to 5% of the unshaped level. The damping ratios were

determined experimentally using the Logarithmic Decrement method. The shaper is:

 t(ms)

A

 =

 0 845 1695

0.361 0.361 0.278

 (5.3)

The operator moves the crane by pressing directional buttons on the HMI. The

operator effort can be quantified by measuring the number of interface button pushes

used to complete the obstacle course. The state of each button changes from zero

(OFF) to one (ON) when the button is pressed. The directional button states were

recorded by the PLC for each test run. From this data, the number of button pushes

was determined to provide a quantifiable measure of the operator effort.

The following data were collected for each test run:

• Test number

• Bridge move distance

• Controller setting (e.g., shaped or unshaped)

• Course completion Time, tc

• Number of obstacle collisions
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Figure 5.9: Average Completion Time for Each Bridge Move Distance

• Number of button pushes

5.3.1 Complete Bridge Oscillation Study Results

The results of the CBO study for the 15 test subjects are represented in Figure 5.9,

where average course completion time is shown for each bridge move distance. The

overall average completion time for the unshaped control mode is 35 seconds compared

to only 18 seconds with input shaping. This amounts to an average time savings of

51% with input shaping.

The average number of button pushes are shown for each bridge move distance in

Figure 5.10. Less button pushes were required on average to complete the course with

the aid of input shaping, indicating that input-shaping control required less operator

effort.

Figure 5.11 shows a box plot of the shaped and unshaped completion times

from the CBO phase. A one-way ANOVA was performed to determine if differ-

ences between the means were statistically significant. Input shaping had a signifi-

cant effect on completion time at the p < 0.001 level for the two conditions tested

[F (1, 118) = 173, p = 6.49 × 10−25].
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Figure 5.10: Average Number of Button Pushes

10

20

30

40

50

60

Unshaped Shaped

Co
m

pl
et

io
n 

Ti
m

e 
(s

ec
)

 

ANOVA
p = 6.49 x 10-25 
F(1,118) = 173

Figure 5.11: Box Plot of CBO Study Completion Times

The completion time residuals were calculated for the input-shaped and unshaped

data. The results are plotted in Figure 5.12. If the data points fall on a line, then

the data represents a normal distribution. From the graph, it is apparent that the

data closely represents a normal distribution except for one outlier from the shaped

group.
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Figure 5.12: CBO Study Completion Time Residuals

5.4 Payload Mass, Bridge, and Trolley Study

The analysis from Chapter 4 revealed that the payload dynamics change as the pay-

load mass is increased, so the Payload Mass, Bridge, and Trolley (PMBT) study

varied the payload masses in order to investigate its effects. Three move distances

were selected for both the bridge and trolley axes which resulted in maximum, inter-

mediate, and minimum residual amplitudes from point-to-point moves, respectively.

Table 5.1 shows the PMBT study parameters.

Three payload masses were used: 7 kg, 35 kg, and 63 kg. The 7 kg payload was

a single piece of triangular plywood, as was shown in Figure 5.1. The 35 kg and

63 kg payloads were created by attaching five and nine triangular plywood pieces,

respectively, to the hooks. Twelve subjects participated in the PMBT study. The

PMBT study plan in Figure 5.13 lists the bridge and trolley move distances and the

payload mass for each participant. Each subject was assigned two bridge and two
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Table 5.1: PMBT Study Parameters

Parameter Value
Payload Mass, M 7 kg, 35 kg, 63 kg

Payload Length , L 2.4 m
Payload Base, B 1.2 m

Cable Lengths, L1 and L2 1.5 m
Trolley Separation
Distance, SDtrolley

2.4 m

Trolley Move Distances,
Ly,max, Ly,med, Ly,min

1.15 m, 0.95 m, 0.80 m

Bridge Move Distances,
Lx,max, Lx,med, Lx,min

1.35 m, 1.10 m, 0.90 m

Obstacle Separation
Distance, SDobs

2.9 m

1.35 1.10 0.90 1.15 0.95 0.80
1 * * * *
2 * * * *
3 * * * *
4 * * * *
5 * * * *
6 * * * *
7 * * * *
8 * * * *
9 * * * *

10 * * * *
11 * * * *
12 * * * *

7 & 63

Bridge Move 
Distance (m)

Trolley Move
 Distance (m)

7

35

63

Payload 
Mass 
(kg)

Test 
Subject

Figure 5.13: PMBT Study Plan

trolley move distances, and completed all move combinations with and without input

shaping for a total of eight test runs per subject. The test run order was randomized.

Test subjects 10-12 completed the study twice using the 7 kg and 63 kg payloads to

test for an interaction effect between the payload mass and controller type.
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Table 5.2: Three-Mode SI Shaper Parameters for Bridge Motion in PMBT Study

Mode Frequency
(Hz)

Damping
Ratio

Vibration
Limit (%)

Swing 0.36 - 0.38 0.03 5
Twist 0.45 - 0.62 0.03 15
Roll 0.75 - 1.20 0.02 15

Because there were no obstacle collisions in the previous two studies, the obstacle

separation distance was decreased from 3.5 m to 2.4 m in order to increase the task

difficulty. A separation distance of 2.9 m was chosen because it is the sum of the

payload length (2.4 m) and the maximum residual oscillation amplitude (0.5 m)

induced by point-to-point trolley moves.

For trolley motion, the same ZV shaper in (5.1) was used to suppress the 0.43

Hz mode. For bridge motion, the payload mass affects the oscillation frequencies of

the excited modes, as was shown in Figure 4.13. Therefore, a three-mode SI shaper

was designed to suppress the swing, twist, and roll modes for payload masses ranging

from 7 kg to 70 kg. Table 5.2 shows the parameters used for the SI shaper design.

The bridge motion shaper is:

 t(ms)

A

 =

 0 584 1157 1728 2298

0.196 0.216 0.237 0.198 0.153

 (5.4)

The following data were collected for each test run:

• Test number

• Bridge move distance

• Trolley move distance

• Controller setting (e.g., shaped or unshaped)

• Course completion Time, tc

• Number of obstacle collisions

• Number of button pushes
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Figure 5.14: Average Completion Time Vs. Payload Mass

The data required to compute the number of button pushes were not recorded for

test subjects 4 and 5.

5.4.1 Payload Mass, Bridge, and Trolley Study Results

Figure 5.14 shows the average course completion time for each of the three payload

masses. For both the input-shaped and unshaped conditions, the average course

completion time increases with the payload mass. The largest contributor to the

total oscillation response is from the lowest-frequency “swing” mode. The “swing”

mode damping ratio decreases as the payload mass is increased. Because most test

runs must wait for the residual payload oscillation to decay so that the payload

remains within the target area, this decrease in the “swing” mode damping ratio

results in a longer average course completion time. Using a two-way ANOVA, there

was a statistically significant interaction between the selected controller (unshaped

vs. shaped) and the payload mass [F (2, 114) = 8.33, p = 0.0004].

Figure 5.15 shows the average unshaped and input-shaped completion times for

the 12 operators in the PMBT study. Input shaping decreased completion times by
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Figure 5.15: Average Completion Times for Operators in PMBT Study
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Figure 5.16: Box Plot of PMBT Study Completion Times

an average of 69%. A box plot of the completion times for all PMBT test runs is

shown in Figure 5.16. The mean and standard deviation for the shaped and unshaped

data is 14 ± 4 s and 47 ± 18 s, respectively.

A one-way ANOVA was performed to determine if differences between the input-

shaped and unshaped means were statistically significant. Input shaping had a signif-

icant effect on completion time at the p < 0.0001 level for the two conditions tested

[F (1, 118) = 193, p = 1.28 × 10−26].
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Figure 5.17: PMBT Study Completion Time Residuals

The completion time residuals were computed for both the unshaped and input-

shaped data. The results are plotted in Figure 5.17. If the data points fall on a line,

then the data represents a normal distribution. From the graph, it is apparent that

the shaped data closely represents a normal distribution except for those points with

the highest residuals. However, the unshaped data diverges from the fitted line for

the points with the highest and lowest residuals. This indicates that the unshaped

completion time residuals, when analyzed together with the shaped completion time

residuals, are not best described as a normally distributed data set.

There are two reasons that may explain why the unshaped data diverges from the

normal distribution. The first reason is the decreased separation distance between the

two obstacles. This significantly increased the difficulty for navigating the payload

between the two obstacles, especially with the large payload swing that can occur

without the aid of input shaping. In some situations, the operators waited for large

payload oscillations that were the result of trolley motions to decay before attempting
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to move the payload between the obstacles. In other situations, the payload oscilla-

tions were small enough that the payload could be immediately moved between the

two obstacles. In fact, there were 20 instances where the payload collided with one of

the obstacles during the PMBT study when the standard crane controller was being

used. However, the operators could immediately begin moving the payload between

the obstacles when input shaping was used to suppress the payload oscillations. No

collisions occurred when input shaping was enabled.

The second reason that could have contributed to the data diverging from a normal

distribution is the different payload masses used in the PMBT study. The “swing”

mode damping ratio decreases as the payload mass is increased, which results in larger

residual oscillation amplitudes and smaller oscillation decay rates. If the payload had

a large residual amplitude after the operator centered the payload within the target

area, then the operator had to wait for the oscillations to decay and remain within

the boundary before time was called. However, different payload masses were used in

the PMBT study, so this waiting time was affected by the particular payload mass

that was used. Also, a certain sequence of commands may have resulted in perfect

cancellation of the modes after the payload was moved in the target area that resulted

in an abnormally fast completion time.

The average number of button pushes to complete the obstacle course for each

operator is shown in Figure 5.18. As mentioned before, the number of button pushes

was not recorded for subjects 4 and 5. The average number of button pushes used

for unshaped test runs was significantly higher for Subject 8 in comparison to the

other participants. Most subjects moved the crane such that the oscillating payload

was centered inside the target area and then waited for oscillations to naturally decay

within the target area boundary. The increase in unshaped button pushes could

be because Subject 8 was attempting to dampen out payload oscillations by using

additional crane movements instead of waiting for the oscillations to naturally decay.
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Figure 5.18: Average Number of Button Pushes

Excluding operators 4, 5, and 8, input shaping resulted in a 52% reduction in operator

effort as indicated by the number of button pushes required to complete the obstacle

course. Including the button-push data from operator 8, the percent reduction in

operator effort increases slightly to 54%.

Multiple cranes are often used to maneuver large, distributed payloads. The

payload geometry and rigging configuration may result in a multi-mode response

that increases the complexity of the move. An input shaper can be designed to

suppress the modes that cause unacceptable levels of oscillation. Studies of human

operators driving a 2-ton industrial dual-hoist bridge crane carrying a triangular

payload demonstrated that input shaping significantly improves task completion time.

Furthermore, input-shaping control greatly decreased operator effort, as measured by

the number of interface button pushes needed to complete a task. These results

clearly demonstrate the benefit of input-shaping control on dual-hoist bridge cranes.
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CHAPTER VI

CONCLUSIONS

Crane motion induces payload oscillation that makes accurate positioning of the pay-

load a challenging task. Excessive payload sway can result in collisions that damage

equipment or injure people. A large payload that swings outward from the base of a

crane can also greatly increase the tipping moment and lead to catastrophic collapse

of the crane. As the payload size increases, it may be necessary to utilize multiple

cranes for better control of the payload orientation and position. However, simul-

taneously maneuvering multiple cranes to transport a single payload increases the

complexity and danger of the operation.

This thesis investigated the dynamics and control of dual-hoist bridge cranes trans-

porting distributed payloads and introduced a new Input-Shaped System Identifica-

tion method to aid in the dynamics investigation. A new kind of input shaper, called

a Selective Mode Amplification (SMA) shaper, was developed in Chapter 2 to sup-

press all but one mode to a low level. In this regard, the SMA shaper is a type

of band-pass filter where the passed frequencies are amplified as much as possible,

rather than passed with a unity gain. The SMA shaper can also be used to bring a

small-amplitude mode to light by modifying one of the vibration constraints. This

feature was demonstrated in simulation by using SMA shapers to amplify one of the

three modes induced from moving a dual-hoist bridge crane in the bridge direction.

In Chapter 3, a new system identification method, called Input-Shaped System

Identification, was developed that utilizes input shaping for determining the frequen-

cies and amplitudes of the individual modes of a multi-mode system. The system

identification method consists of a frequency identification process and an amplitude
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identification process.

The frequency identification process uses a FFT of the measured response to

determine the modal frequencies after the system has been moved with it’s own

actuators. Then, input shapers are designed to suppress the discovered modes in order

to increase the signal-to-noise ratio of the measured response for the identification of

additional modes.

The amplitude identification process uses SMA shapers designed to suppress all

but one mode so that the measured response is primarily composed of the single mode

of interest. Then, the amplitude of the remaining mode can be easily determined from

the time response. This technique can be used to characterize the modal frequen-

cies and amplitudes for various system configurations, which can be used to design

input shapers that will be robust to expected system configurations and parameter

variations.

In Chapter 4, a dynamic model of a dual-hoist bridge crane was used to investigate

the hook and payload oscillations originating from trolley and bridge motions. The

modes excited from bridge and trolley motions were identified, and simulations were

completed to determine how the frequency and amplitude of the three modes induced

by bridge motion change in response to variations in the payload mass and geometry.

Insights from this dynamic analysis were used to design input shapers that reduce

payload oscillation originating from bridge and trolley motions.

Most cranes are driven by human operators. For this reason, it is important to

understand how input shaping affects human performance when completing practical

crane tasks if input shaping is to be used in multi-crane scenarios where humans are

generating the commands. In Chapter 5, human operators drove an industrial 2-

ton dual-hoist bridge crane carrying a triangular payload through an obstacle course

in order to investigate the effect input shaping has on task performance. Three

studies were completed requiring operators to transport the payload between two
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locations for various trolley and bridge move distances and payload masses. In each

study, input-shaping significantly improved the task completion time. Furthermore,

input-shaping control greatly decreased operator effort, as measured by the number

of button pushes needed to complete a task. These results clearly demonstrate the

benefit of input-shaping control on dual-hoist bridge cranes.

6.1 Future Work

This thesis used Input-Shaped System Identification to characterize the modes of a

dual-hoist bridge crane for variations in the mass and width of a triangular payload

and for variations in the width ratio of a right-trapezoidal payload. However, there

are other system parameters that could be investigated, such as the suspension ca-

ble lengths and trolley separation distance, using these two payloads. Other kinds

of distributed payloads could be investigated. For example, only flat plates were

considered. The effect of the payload thickness could also be researched.

The dual-hoist bridge crane can also be used to transport an active payload, such

as a painting robot. A painting robot located in the Boeing Lab has an arm that

can be controlled to move a painting mechanism attached to an end effector. In this

scenario, both the robotic arm and the crane can be moved to reposition the end

effector. If the robotic arm is used to move the end effector, then the payload’s center

of mass changes and causes a small disturbance. Investigations could be completed

to analyze the dynamic effects that can originate from this type of active payload.

This thesis used input shaping to reduce motion-induced payload oscillations.

However, external disturbances can also cause payload oscillations. For example,

payload oscillations can occur if the crane and payload configuration is not initially in

static equilibrium immediately after lifting the payload from the ground. A feedback

controller could be developed for dual-hoist bridge cranes to aid operators in dealing

with disturbances.
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Physical systems are subject to damping forces. It was evident that the simulation

results, which neglected damping, were significantly different than the experimental

data for light triangular payloads that were moved in the bridge direction. Damping

parameters were added to the dual-hoist bridge crane model, and simulations using

this simple damping model provided results that were much closer to the experimen-

tal results. However, more sophisticated damping models could be investigated to

improve the simulation accuracy.
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APPENDIX A

DUAL-HOIST BRIDGE CRANE MODEL

The software package MotionGenesis [1] was used to create a numerical model for

performing simulations of the dual-hoist bridge crane. The code was initially created

by Maleki [12] for his dissertation. First, an equilibrium model was used to solve for

the initial conditions of the system for the selected crane and payload configuration.

Then, a dynamic model was used to generate the equations of motion for the dual-

hoist bridge crane. The output for each of these MotionGenesis files was a code for

performing dynamic simulations in MATLAB.

A.1 Equilibrium Model

SetAutoZee(ON)

%% Frames and Bodies

NewtonianFrame N % Newtonian reference frame

RigidFrame Cable1, Cable2 % Rigid, inflexible cables

RigidBody Link % Rigid payload between cables

% Two ends of rigid link, for convenience - also allows adding hook mass to sim

Point T1(Cable1), T2(Cable2) % Trolleys

Particle P1, P2 % two ends of rigid link

% Variables and constants

Variable theta_1’’, theta_2’’,beta’’% cables angles for trolley motion

Variable phi_1’’,phi_2’’,gamma’’% cable angles for bridge motion

Variable psi’’% payload rotation angle

Variable y1’’, y2’’% Trolley pos, vel, accel

Variable x1’’, x2’’% Bridge pos, vel, accel (same for both trolleys)

Constant LE+, LW+, LC+, g+ % cable lengths and gravity (limit to positive)

Constant MC+, ME+, MW+ % Masses (limit to positive)

Specified a_trol1, a_trol2, a_bridge % accel of trolleys & bridge is input

Constant B_cable1, B_cable2 % cable damping

Constant Ixx, Iyy, Izz, Ixy, Iyz, Izx % moments and products of inertia of payload

Constant LCx, LCy, LCz % distances to COM of payload

% Set derivatives of trolley motion

setDt( y1’’ = a_trol1)
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setDt( y2’’ = a_trol2)

setDt( x1’’ = a_bridge)

setDt( x2’’ = a_bridge)

% Variables that are going to be in equations of motion

SetGeneralizedSpeed(theta_1’,theta_2’,beta’,phi_1’,phi_2’,gamma’, psi’)

%----- Set intertial properties

% Payload mass and inertia

Link.SetMass(MC)

Link.SetInertia( LinkCM, Ixx, Iyy, Izz, Ixy, Iyz, Izx )

% Hook masses

P1.SetMass(ME)

P2.SetMass(MW)

%----- Kinematics and motion description

% Movement of the two trolleys

T1.Translate(No, x1*Nx> + y1*Ny>) % trolley 1

T2.Translate(No, x2*Nx> + y2*Ny>) % trolley 2

% Rotation of two cables

Cable1.Rotate(N, BodyXYZ, theta_1, phi_1, 0) % Cable 1 (E)

Cable2.Rotate(N, BodyXYZ, theta_2, phi_2, 0) % Cable 2 (W)

% Movement of hook/cable-link connections

P1.Translate(No,p_No_T1> - LE*Cable1z>) % hook 1

P2.Translate(No,p_No_T2> - LW*Cable2z>) % hook 2

Link.Rotate( N, BodyXYZ, beta, psi, gamma ) % payload

LinkCM.Translate( No, (p_No_P1> + LCx*Linkx> + LCy*Linky> + LCz*Linkz>) )

% Save hooks/cable-link connection for plotting/checking of Eq of Motion

P1_x = Dot( p_No_P1>, Nx> )

P1_y = Dot( p_No_P1>, Ny> )

P1_z = Dot( p_No_P1>, Nz> )

P2_x = Dot( p_No_P2>, Nx> )

P2_y = Dot( p_No_P2>, Ny> )

P2_z = Dot( p_No_P2>, Nz> )

% External Forces

System.AddForceGravity( -g*Nz> ) % gravity force

% Rotary damping between the trolleys and cable links

Cable1.AddTorque( -B_cable1 * Cable1.GetAngularVelocity(N) )

Cable2.AddTorque( -B_cable2 * Cable2.GetAngularVelocity(N) )

%------ Equations of motion

% Set up 4-bar linkage constraints in X, Y, Z directions.

% The velocity in each direction = 0

Dependent[1] = Dot( Dt(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, N), Nx>)

Dependent[2] = Dot( Dt(p_No_T1> - LE*Cable1z> + LC*Linky>
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+ LW*Cable2z> - p_No_T2>, N), Ny>)

Dependent[3] = Dot( Dt(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, N), Nz>)

% Implement constraint equations (basically 4-bar with moving connections)

Constrain(Dependent[theta_2’, beta’, gamma’])

% Kane’s method dynamics - gives equations of motion

Dynamics = System.GetDynamicsKane()

Solve( Dynamics, theta_1’’, phi_1’’, phi_2’’, psi’’)

% Get equilibrium conditions

eq[1] = Dot(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, Nx>)

eq[2] = Dot(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, Ny>)

eq[3] = Dot(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, Nz>)

% Expression for the torque generated about P1 in the YZ plane (about the x axis)

eq[4] = 0.5*g*LE*(2*ME*sin(theta_1)+2*MW*sin(theta_2)*cos(beta-theta_1)/cos(beta-

theta_2)+MC*(2*sin(theta_1)-cos(beta)*sin(theta_1-theta_2)/cos(beta-theta_2)))

% Constant values - constraints for the linkages.

Input LE = 2 m, LW = 2 m, LC = 3 m, MC = 10 kg, ME = 10 kg, MW = 10 kg

Input x1 = 0 m, x2 = 0 m, x1’ = 0 m/s, x2’ = 0 m/s

Input y1 = 0 m, y2 = 3 m, y1’ = 0 m/s, y2’ = 0 m/s

Input g = 9.81 m/s^2

Input B_cable1 = 0.0, B_cable2 = 0.0

% Initial conditions

Input theta_1 = 15 deg, theta_2 = 15 deg, beta = 0 deg, phi_1 = 0 deg

Input phi_2 = 0 deg, gamma = 0 deg, psi = 0 deg % These are used as initial guesses.

% Generate MATLAB code

CODE Nonlinear(eq, theta_1, theta_2, beta, gamma) two_crane_planar_equil_3d.m

A.2 Dynamic Model

SetAutoZee(ON)

%% Frames and Bodies

NewtonianFrame N % Newtonian reference frame

RigidFrame Cable1, Cable2 % Rigid, inflexible cables

RigidBody Link % Rigid payload between cables

% Two ends of rigid link, for convenience - also allows adding hook mass to sim

Point T1(Cable1), T2(Cable2) % Trolleys

Particle P1, P2 % two ends of rigid link
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% Variables and constants

Variable theta_1’’, theta_2’’,beta’’% cables angles for trolley motion

Variable phi_1’’,phi_2’’,gamma’’% cable angles for bridge motion

Variable psi’’% payload rotation angle

Variable y1’’, y2’’% Trolley pos, vel, accel

Variable x1’’, x2’’% Bridge pos, vel, accel (same for both trolleys)

Constant LE+, LW+, LC+, g+ % cable lengths and gravity (limit to positive)

Constant MC+, ME+, MW+ % Masses (limit to positive)

Specified a_trol1, a_trol2, a_bridge % accel of trolleys & bridge is input

Constant B_cable1, B_cable2 % cable damping

Constant B_payload % payload damping due to wind

Constant Ixx, Iyy, Izz, Ixy, Iyz, Izx % moments and products of inertia of payload

Constant LCx, LCy, LCz % distances to COM of payload

% Set derivatives of trolley motion

setDt( y1’’ = a_trol1)

setDt( y2’’ = a_trol2)

setDt( x1’’ = a_bridge)

setDt( x2’’ = a_bridge)

% Variables that are going to be in equations of motion

SetGeneralizedSpeed(theta_1’,theta_2’,beta’,phi_1’,phi_2’,gamma’, psi’)

%----- Set intertial properties

% Payload mass and inertia

Link.SetMass(MC)

Link.SetInertia( LinkCM, Ixx, Iyy, Izz, Ixy, Iyz, Izx )

% Hook masses

P1.SetMass(ME)

P2.SetMass(MW)

%----- Kinematics and motion description

% Movement of the two trolleys

T1.Translate(No, x1*Nx> + y1*Ny>) % trolley 1

T2.Translate(No, x2*Nx> + y2*Ny>) % trolley 2

% Rotation of two cables

Cable1.Rotate(N, BodyXYZ, theta_1, phi_1, 0) % Cable 1 (E)

Cable2.Rotate(N, BodyXYZ, theta_2, phi_2, 0) % Cable 2 (W)

% Movement of hook/cable-link connections

P1.Translate(No,p_No_T1> - LE*Cable1z>) % hook 1

P2.Translate(No,p_No_T2> - LW*Cable2z>) % hook 2

Link.Rotate( N, BodyXYZ, beta, psi, gamma ) % payload

LinkCM.Translate( No, (p_No_P1> + LCx*Linkx> + LCy*Linky> + LCz*Linkz>) )

% Save hooks/cable-link connection for plotting/checking of Eq of Motion

P1_x = Dot( p_No_P1>, Nx> )

P1_y = Dot( p_No_P1>, Ny> )

P1_z = Dot( p_No_P1>, Nz> )

P2_x = Dot( p_No_P2>, Nx> )
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P2_y = Dot( p_No_P2>, Ny> )

P2_z = Dot( p_No_P2>, Nz> )

% External Forces

System.AddForceGravity( -g*Nz> ) % gravity force

% Rotary damping between the trolleys and cable links

Cable1.AddTorque( -B_cable1 * Cable1.GetAngularVelocity(N) )

Cable2.AddTorque( -B_cable2 * Cable2.GetAngularVelocity(N) )

% Viscous damping due to wind resistance against payload

LinkCM.addForce( -B_payload * Dot( LinkCM.getVelocity(N), Linkx>) * Linkx>)

%------ Equations of motion

% Set up 4-bar linkage constraints in X, Y, Z directions.

% The velocity in each direction = 0

Dependent[1] = Dot( Dt(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, N), Nx>)

Dependent[2] = Dot( Dt(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, N), Ny>)

Dependent[3] = Dot( Dt(p_No_T1> - LE*Cable1z> + LC*Linky>

+ LW*Cable2z> - p_No_T2>, N), Nz>)

% Implement constraint equations (basically 4-bar with moving connections)

Constrain(Dependent[theta_2’, beta’, gamma’])

% Kane’s method dynamics - gives equations of motion

Dynamics = System.GetDynamicsKane()

Solve( Dynamics, theta_1’’, phi_1’’, phi_2’’, psi’’)

%----- Setup parameters to pass to Matlab Code

% Integration parameters

Input tFinal=10, integStp=0.02, absError=1.0E-07, relError=1.0E-07

% Constant values

Input LE = 2 m, LW = 2 m, LC = 3 m, MC = 10 kg, ME = 10 kg, MW = 10 kg

Input x1 = 0 m, x2 = 0 m, x1’ = 0 m/s, x2’ = 0 m/s

Input y1 = 0 m, y2 = 3 m, y1’ = 0 m/s, y2’ = 0 m/s

Input g = 9.81 m/s^2

Input B_cable1 = 0.0, B_cable2 = 0.0

% Initial conditions

Input theta_1 = 0 deg, theta_2 = 0 deg, theta_1’ = 0 deg/sec

Input theta_2’ = 0 deg/sec, beta = 0 deg

Input phi_1 = 0 deg, phi_2 = 0 deg, phi_1’ = 0 deg/sec

Input phi_2’ = 0 deg/sec, gamma = 0 deg

Input psi = 0 deg, psi’ = 0 deg/sec

% Quantities to output

Output t, x1 m, x2 m, y1 m, y2 m, P1_x m, P1_y m, P2_x m, P2_y m, theta_1 deg

Output theta_2 deg, beta deg, theta_1’ deg/sec, theta_2’ deg/sec, beta’ deg/sec

Output phi_1 deg, phi_2 deg, gamma deg, phi_1’ deg/sec, phi_2’ deg/sec

Output gamma’ deg/sec, psi deg, psi’ deg/sec
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% Create MATLAB code

ODE() two_crane_planar_3d_PayloadDamping.m

% Save MotionGenesis Output

save two_crane_planar_3d.all
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