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Abstract

One mechanism that is expected to play a large role in the enhanced, and sometimes

novel, mechanical properties of nanocomposites is the probabilistic formation of per-

colated or connected microstructures. The majority of the models used to describe

mechanical percolation have the functional form of a power law and depend on prior

knowledge of a percolation threshold or critical volume fraction. While these models

have been fairly accurate predictors of electrical conductivity in composites, they do

not take any microstructural mechanisms, other than connectivity, into consideration.

Classic mean-field micromechanics models, however, do not capture the variability in

effective properties due to a random microstructure. In this work, aspects of both

modeling approaches, i.e. probabilistic events and micromechanics, are adopted. A

computational unit cell model is used to calculate the effective composite properties

of random microstructures based on principles of micromechanics. The influence of

the spatial randomness is incorporated using Monte Carlo techniques to simulate mi-

crostructural realizations. In this way, the modeling paradigm is reversed. Instead

of using a percolation threshold to predict mechanical properties, mechanical prop-

erties are used to demonstrate the location of apparent percolation thresholds. By

observing the distributions and variations of the predicted effective properties, the

evolution of microstructural events can be tracked.

Microstructures were simulated for a model material system consisting of metallic

particles in a polymer matrix. Effects of a matrix-particle interface, interfacial thick-

ness and interfacial stiffness, were also considered. The influence of particle aspect

ratio on the apparent percolation threshold was also explored.
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Chapter 1

Introduction

One mechanism that is expected to play a large role in the enhanced mechanical

properties of nanocomposites is the formation of percolated microstructures. These

connected structures form as a result of randomness in the spatial arrangement of

the included composite phase and are defined in terms of the probability that they

will form at a given volume fraction. The majority of the models used to describe

percolation have the functional form of a power law and depend on prior knowledge

of the volume fraction where the connected structure is most likely to form; this

is referred to as a percolation threshold or critical volume fraction. These models

have been fairly accurate predictors of electrical conductivity in composites. Because

effects which resemble the trends for percolation of electrical conductivity have also

been observed for mechanical properties and are commonly referred to as ‘mechanical

percolation’, the same power-law models have been used in modeling. Power-law

models, however, do not take any microstructural mechanisms other than connectivity

into consideration.

In theory, composite electrical conductivity, with respect to volume fraction, is

relatively binary; below a threshold volume fraction the composite is not conductive,

or has some base-line conductivity, and at some point, at or above the threshold, its

conductivity is greatly enhanced. Mechanical percolation, however, necessarily occurs

in tandem with other microstructural mechanisms and is perhaps better described as

a continuous process. This is the challenge in modeling the effects of mechanical per-

colation. Certainly a connected microstructure will enhance mechanical properties,
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and it would be expected that the difference between a connected matrix phase and

a connected particle phase would be dramatic. But there are additional mechanisms,

beyond connectivity, at play. In contrast to conductivity, composite mechanical re-

sponse is dominated by the volume fraction of the included phase so that, even prior to

the formation of a connected phase, composite properties are affected by the amount

of filler. In addition, if a less stiff matrix is confined between stiffer, closely packed,

although not connected, regions of an included phase, the ability of the matrix to

deform may be reduced, making it effectively stiffer. Thus, while percolation thresh-

olds are still critical to characterizing these materials, the mechanical response may

depend on a combination of mechanisms.

In the case of polymer nanocomposites, interest in mechanical percolation has

perhaps become greater due to the anticipated significant effect of a matrix-filler in-

terface region [1, 2]. This interface region is due to a perturbation of the matrix

material resulting from the presence of the particles; e.g. the result of bonding be-

tween the phases, confinement of the matrix between stiffer regions, or interference

in the mobility of the long flexible chains of the polymer, which result in a localized

increase in matrix stiffness. This local effect is present in all composite materials, but

because of the high surface area to volume ratio for nanoscale inclusions, the interface

region in nanocomposites can constitute a significant third phase of the composite.

As an example, an interface with a thickness of 15 nanometers surrounding a 100 mi-

crometer diameter particle will have little influence on effective composite properties;

this same thickness surrounding a 30 nanometer diameter particle may represent a

volume fraction equal to or greater than that of the particles.

With respect to mechanical percolation, the presence of an interfacial region sug-

gests that two levels of percolation may develop. For the first level the interface

region may assist in the formation a connected structure (particles and interface)

prior to, i.e. at a much lower volume fraction, than the second level, where the par-
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ticles alone percolate. In [3], investigators included interface regions in an extension

of the excluded volume model, [4]. Tighter and lower bounds were developed for the

critical volume fraction of random, high aspect ratio nano-fiber composites. These

bounds captured the effect of pseudo-percolation, defined as where the interface and

particles combine to form a connected microstructural phase. The narrower bounds

corresponded well to experimental observation.

In the second range, at high volume fractions, regions with matrix properties

are completely replaced by regions with interface properties. Within what is now

a two-phase composite, interface and particles, more classic percolation is expect to

occur.

In this work, rather than attempting to estimate critical volume fractions a priori,

effective elastic composite properties were used to track the effects of the evolution

of a mechanically percolating microstructure. This was done through simulations of

the effective properties for multiple realizations of a random microstructure. Simula-

tions were performed for both a macro-scale and nano-scale discontinuously reinforced

composite. The two are distinguished by the inclusion of an appropriately scaled in-

terface region in the nanocomposite model. Representative volume elements (RVEs),

describing random arrangements of geometrically isotropic particles (the included

phase is modeled as cubes) in a more compliant matrix were simulated over a range

of volume fractions. These RVEs were used as the repeating unit cell (RUC) in the

periodic unit cell micromechanics model, known as the Generalized Method of Cells

(GMC). GMC was then used to predict the effective elastic composite properties for

each microstructural realization. Minimum, average, and maximum values of the

distribution of effective properties, for each volume fraction, are used to characterize

trends.

In Chapter 2, a review of literature in pertinent research is presented. In Chap-

ter 3, the computational models used in this work are described. This includes a
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brief description of GMC, with the underlying assumptions required in using it to

model random microstructures, and its use in combination with Monte Carlo Meth-

ods. Chapter 4 presents data and analysis from simulations of a two-phase composite;

particles and matrix. These model results are based on the same framework as the

lattice-grid models used in classic percolation theory. These results are compared to

a mean field micromechanics model in order to illustrate the differences between this

approach and standard predictions of mechanical response. Chapter 5 presents re-

sults and analysis for a three-phase material, representing a nanocomposite; particles,

interface, and matrix, again in a lattice-grid framework. In Chapter 6, results and

analysis regarding the effects of the composite interface elastic stiffness and thickness

are presented. Chapter 7 discusses the extension of the method from a lattice grid

model to a more continuum model of percolation, where particles can overlap what

were originally lattice sites. Chapter 8 offers analysis and results of higher aspect ratio

particles in a two- and three-phase composite, in the continuum framework. Chapter

9 draws some conclusions and discusses the significance of this work andChapter 10

suggests future work.
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Chapter 2

Background and Review of the Literature

Classic percolation is framed on a discrete lattice grid; sites on the lattice can be

occupied or unoccupied. The probability of a site being filled is p; the probability of

it being unfilled is (1−p). The problem asks, for each number of occupied sites, what

is the probability that a random filling of the lattice results in a connected series of

grid points, i.e. a percolated network. The dual problem frames connectivity with

respect to bonds, or connections between sites, on a grid. A critical threshold, or

fraction, of occupied sites/bonds can be identified below which the system will seldom

percolate, but above which it almost always does. Site/bond percolation is referred

to as discrete percolation, as only site locations can be occupied. In physics and

engineering, percolation theory has been extensively applied to modeling electrical

conductivity in composites. In many cases these applications are more accurately

described by continuum percolation, where off-lattice sites can be occupied. For

composites, the percolation threshold is characterized by the volume fraction of an

included phase.

For electrical conductivity, the percolation concept is intuitive. As an increasing

volume of an electrically conductive filler is dispersed in an insulating matrix, the

composite material will, at a critical volume fraction, φc, exhibit a sharp increase

in conductivity. This critical value corresponds to the point where the probability

is high that the included particles transform from well dispersed filler to spanning

clusters that form a connected electrical pathway. The conductivity, as the volume
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Figure 2.1: Distinctive shape of ideal percolation curve; log of effective properties,M∗,
versus volume fraction. Sharp increase in properties at the critical volume fraction
φc.

fraction reaches and exceeds this value, is often modeled by a power-law,

σ = σ0 (φ− φc)b , (2.1)

where σ is the conductivity of the composite, φ and φc are volume fraction and critical

volume fraction respectively, σ0 is the conductivity of the filler and b is the critical

exponent [5, 6].

The majority of the research into connected or percolated microstructures has fo-

cused on establishing this critical volume fraction, or percolation threshold. Thresh-

olds have been experimentally determined through observations of the location of a

jump in the composite conductivity. This effect is characterized on semi-log plots of

conductivity versus volume fraction by the distinct shape of a power-law curve, see

fig.2.1.

The mathematics of percolation has also included simulations of two- and three-

dimensional random arrangements of discrete particle shapes coupled with computa-

tional evaluations of connectivity, [7]-[11], as well as studies into the statistical and
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mathematical basis [12]-[15] of both discrete and continuum percolation models. The

critical exponents are generally universal constants, as they are independent of the

lattice structure and microscopic details. They vary only for the dimensionality of

the system. This universality appears to hold for both discrete and continuum per-

colation, although the scaling factors (e.g., σ0) do depend on the system and are

not universal, [16, 17]. When effective elastic properties are considered, the critical

exponent appears to no longer be universal. This is likely due to the higher tensorial

order of the elastic problem. The elastic stiffness tensor is a 4th order tensor, the

electrical conductivity tensor is a 2nd order tensor, [15].

The percolation threshold, φc, can take on any value between zero and one for

systems with dimension d ≥ 2. It is a non-universal value that depends on dimension

d, lattice structure and other microscopic details such as interactions [15]. Exact

values can be determined for only a few two-dimensional lattices. In general, estimates

are derived through numerical approximation and simulation. Continuum models can

include overlap and penetration effects which introduce additional variables, [15].

In the early 80’s Balberg et al. [7, 12, 13] extended the study of percolation

thresholds from point-based lattice models to anisotropically shaped objects, e.g.,

rods. They simulated percolation of high aspect ratio ‘sticks’ considering a distribu-

tion of lengths and various angle orientations, in two and three dimensions, therefore

making the estimates more relevant to the mechanics of composite materials. In par-

ticular, they extended the work of Scher and Zallen [14] on the fractional area and

volume of the included phase associated with the onset of percolation, and derived

expressions for average total excluded area and total excluded volume, resulting in

bounds on critical volume fractions.

Similar sharp increases in mechanical properties with volume fraction have also

been experimentally observed and linked to the formation of connected microstruc-

tures. In particular, mechanical percolation has been notable in composites contain-
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ing high aspect ratio fillers, as well as frequently observed in nanocomposites, see for

example [18]-[21].

Estimates of φc used in modeling mechanical percolation have, in general, derived

from the same theory and simulations developed for conductivity models. Often

electrical and mechanical properties are studied in the same material, e.g., [22, 23],

where measurements of conductivity are used to establish threshold values, which

are then used in models that predict mechanical properties. These micromechanical

models are often based on a scaled version of the power law model, with the elastic

modulus replacing the conductivity term, eqn.2.2

σ (p) ∼ (p− pc)t , (2.2)

where t is the critical exponent of conductivity. Studies have estimated values of t

ranging from 1.1 to 1.38 [24]-[26]. Watson and Leath [24] used table-top experiments

while Straley [25] and Yuge and Onizuka [26] reported on square and simple cubic

lattice by means of an over-relaxation procedure [27].

One version of a classic percolation model for elastic moduli, which models the

effective composite modulus, E∗, over the full range of volume fractions, is

E∗(v) =


Em(φc − v)−a if v ≤ φc

Ep(v − φc)f if φc < v,

where Em, Ep are the moduli of the matrix and particle phases and v is the volume

fraction of the filler. Suggested magnitudes for the exponents vary in the literature. A

model that captures the continuum, non-decreasing stiffness in the initial, low volume

fraction regime requires that the first formula have a negative exponent a, as shown

in eq. (2.3). This differs from the form suggested in the literature.

Other models use the power law form to estimate an intermediate parameter

which can then be embedded in models of effective properties. For example, the
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phenomenological series/parallel model, [18, 19] for composite elastic modulus, E∗,

valid for v ≥ φc, is given by

E∗(v) = (1− 2φ+ φv)EpEm + (1− v)φE2
m

(1− v)Ep + (v − φ)Em
, (2.3)

where φ approximates the volume fraction of the filler actually responsible for the

rigidity of the composite as

φ = v

[
v − φc)
1− φc

]b
, for v > φc, (2.4)

and b is again a percolation exponent.

Possibly the dominant model in the literature is the General Effective Media

(GEM) Model developed by McLachlan [28, 29]. This model was originally developed

for electrical composites and represents an interpolation between the Bruggerman

symmetric model based on electric dipoles and classic percolation. GEM is defined

by

(1− f) σ1/t
m − σ1/t

c

σ
1/t
m + Aσ

1/t
c

+ f
σ1/t
p − σ1/t

c

σ
1/t
p + Aσ

1/t
c

= 0, (2.5)

where f is the volume fraction; σm, σp, and σc are the conductivities of the matrix,

particle, and composite, respectively; and A is a constant,

A = 1− φc
φc

. (2.6)

What all of these models have in common is the requirement that the perco-

lation threshold be known before properties can be estimated. Since a connected

microstructure is the dominant mechanism for electrical conductivity, percolation

thresholds estimated on these grounds are appropriate. For mechanical percolation,

the theoretical bounds do not correspond well to observed experimental results and

so often the models are used empirically, fitting the curve to the data.
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Chapter 3

Computational Modeling

The computational model in this work is based on two numerical techniques. First,

the effective elastic properties of a composite were calculated using the computa-

tional micromechanics model known as the Generalized Method of Cells. The ge-

ometry of this micromechanics models can be compared to mathematical percolation

frameworks. Second, the range of properties associated with a spatially random

microstructure were characterized by the results of Monte Carlo simulations of mi-

crostructures.

3.1 Micromechanics

To predict the effective elastic properties of the composite, the three-dimensional

micromechanics model, known as the Generalized Method of Cells (GMC) [30], was

used. GMC is a periodic unit cell model that uses a rectangular repeating unit cell

(RUC), composed of multiple subcells, as the representative volume element (RVE)

for a periodic microstructure, see fig.3.1. The arbitrary number of subcells, each

assigned properties of one of the composite phases, provides a significant amount of

microstructural detail. The homogenization process in GMC connects the material

microstructure, through periodic boundary conditions, to an equivalent homogeneous

material with a set of continuum level equations; resulting in a prediction of the

effective properties. Specific boundary conditions enforce continuity of displacements

and tractions across subcell boundaries and between RUCs. As these conditions

are satisfied in an average sense, integrating over the boundaries, the effect of the
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rectangular geometry, i.e. sharp corners, is minimal in the prediction of effective

properties.

GMC’s predictions of the effective elastic properties compare well to the classic

Mori-Tanaka model (MT), [31, 32] for two-phase composites [33], in the low volume

fraction range where MT is assumed most valid. GMC’s advantage, in particular for

modeling an interface region, is that it includes a description of the relative spatial

position of the included phase, i.e., an interface region surrounding a particle. These

effects result in more pronounced differences between the two models at higher volume

fractions. A comparison of differences between GMC and MT resulting from this more

detailed spatial description, in a deterministic setting, is presented in [34]. A more

efficient implementation of GMC, [35], has significantly reduced computation time for

complex microstructures. GMC has also been used effectively to characterize random

microstructures using a moving window analysis, e.g., [36]-[39].

The GMC model begins with a repeating unit cell. The unit cell is divided into

(Nα ×Nβ ×Nγ) rectangular subcells, where the number of subcells is determined by

the detail needed to describe the microstructure. Each subcell is homogeneous and

contains one of the constituent components of the heterogeneous material. A subcell

is denoted by the ordered triple (α, β, γ) that identifies its x1 position, from bottom

to top, its x2 position, left to right, and its x3 position, as shown in fig. 3.1. Each

subcell volume is given by dα × hβ × lγ.

GMC establishes a relationship between the average global strain in the composite

and the local subcell strains. This relationship is known as a concentration tensor

that can be used to predict the effective properties of the composite. Once the subcell

strains are known, the average subcell stresses can be calculated using known subcell

constitutive laws. Global stresses and strains are volume averages of subcell values.

In each subcell (α, β, γ) the average stress is defined as

σ̄(αβγ) = C(αβγ)
[
ε̄(αβγ) − ε̄I(αβγ) − α(αβγ)4T

]
. (3.1)
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Figure 3.1: GMC’s Repeating Unit Cell with white matrix subcells and black particle
subcells.

Here, C(αβγ) is the elastic stiffness tensor for the material in subcell (α, β, γ), ε̄(αβγ)

is the average subcell strain vector, ε̄I(αβγ) is the average subcell inelastic vector, and

α(αβγ)4T is the subcell thermal strain vector,ε̄T (αβγ). Average strains in the composite

are given by

ε̄ = 1
dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγ ε̄
(αβγ) (3.2)

The average stress in the composite can be defined by

σ̄ = 1
dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγσ̄
(αβγ) (3.3)
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where d, h, and l are the dimensions of the total repeating unit cell, and dα, hβ, and

lγ are the dimensions of subcell (α, β, γ).

The relationship between the global and subcell strains is defined by a system

of equations that is constructed by requiring that displacements and tractions are

continuous across unit cell and subcell boundaries. The displacement components ui

at the interfaces within the unit cell and between unit cells must be continuous so

that for α = 1, . . . Nα; β = 1, . . . Nβ; γ = 1, . . . Nγ,

u
(αβγ)
i |

x̄
(α)
1 =dα/2

= u
(α̂βγ)
i |

x̄
(α̂)
1 =dα̂/2

u
(αβγ)
i |

x̄
(β)
2 =hβ/2

= u
(αβ̂γ)
i |

x̄
(β̂)
2 =hβ̂/2

u
(αβγ)
i |

x̄
(γ)
3 =lγ/2

= u
(αβγ̂)
i |

x̄
(γ̂)
3 =lγ̂/2

(3.4)

enforcing the periodic boundary conditions assumed in the model, as

α̂ =


α + 1 whenα < Nα

1 whenα = Nα

; β̂ =


β + 1 when β < Nβ

1 when β = Nβ

; γ̂ =


γ + 1 when γ < Nγ

1 when γ = Nγ

(3.5)

These condtions can be written in matrix form as

AGεs = Jε̄ (3.6)

where ε̄ = (ε̄11, ε̄22, ε̄33, 2ε̄23, 2ε̄13, 2ε̄12) and εs =
[
ε̄(111), . . . , ε̄(NαNβNγ)

]
.

Continuity of tractions requires

σ̄
(αβγ)
1i = σ̄

(α̂βγ)
1i

σ̄
(αβγ)
2i = σ̄

(αβ̂γ)
2i

σ̄
(αβγ)
3i = σ̄

(αβγ̂)
3i (3.7)

13



Using the constitutive law, Equation (3.1), these equations can be written in matrix

form as

AM

(
εs − εIs − εTs

)
= 0 (3.8)

where AM contains the elastic properties C(αβγ) of the subcell material,

εIs =
[
ε̄I(111), . . . , ε̄I(NαNβNγ)

]
and εTs =

[
ε̄T (111), . . . , ε̄T(NαNβNγ)

]
.

Combining (3.8) and (3.6) gives

Ãεs − D̃
(
εIs + εTs

)
= Kε̄ (3.9)

where

Ã =

 AM

AG

 , D̃ =

 AM

0

 , K =

 0

J

 (3.10)

For the elastic case considered here, Equation (3.9) becomes

Ãεs = Kε̄ (3.11)

Solving for the subcell strains εs in terms of the global strains gives

εs = Aε̄ (3.12)

where A = Ã−1K. The mechanical concentration tensor A can be divided into

submatrices as

A =


A(111)

...

A(NαNβNγ)

 (3.13)

Finally, we establish the effective elastic mechanical law of the composite

σ̄ = B∗ (ε̄) (3.14)
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where the effective elastic stiffness tensor, B∗, for the composite is given by

B∗ = 1
dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγC
(αβγ)A(αβγ) (3.15)

3.2 Percolation Models

The GMC unit cell, divided into cubic subcells, is a classic representation of a cellu-

lar material generated by a Voronoi tessellation. Tessellations are formal methods of

subdividing a d−dimensional space into polyhedral cells. They can be built around

a random or, in the case of GMC, a regular lattice. Lines are drawn from one site to

all surrounding sites and the boundaries of the polyhedra (cubes) are formed by lines

perpendicular to the site-site lines. GMC’s unit cell with random cells designated as

matrix or particle is also known as a random checkerboard, which is a simple version

of a two-phase symmetric cell. It is symmetric because the material’s morphology

when phase one has a volume fraction of φ1 is statistically identical to the morphology

of phase two when the volume fraction of phase one is (1 − φ1), [15]. The random

checkerboard is also potentially of a class of bi-continuous materials. These are ma-

terials that can simultaneously percolate in two phases. The random checkerboard

can be used to model discrete percolation, where shared edges define connectivity

or continuum percolation, where a potentially more complex nearest neighbor rule

defines connectivity.

When an interface region is included in the model, GMC’s cellular structure is

closer to that of the interpenetrating particle model, or the permeable sphere model

used in [40] or potentially the penetrable concentric shell, cherry pit model in [41].

Comparisons of percolation thresholds produced in this work with those developed

analytically in these two models are difficult because in this work the interface volume

fraction is kept separate from the particle volume fraction, whereas in the cited work

the penetrable phase is considered part of the particle volume fraction.
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3.3 Monte Carlo Simulations

The repeating unit cell in GMC functions as an exact RVE for a material with a

triply-periodic microstructure. In order to simulate random microstructures using

GMC, this work assumes that GMC’s RUC can approximate the RVE for a random

composite. Although it is not possible to completely remove the influence of the

periodic boundary conditions, if the RUC represents a large enough sample of the

material microstructure, the periodic effects are minimized and a random microstruc-

ture is approximated. The characterization of the size of the RVE is based on the

definition proposed in [42], as a sample of the material where the scale ratio L/δ →∞,

where L is a characteristic dimension of the representative volume element, and δ is

a characteristic dimension of the microstructure. For this three-dimensional model,

the characteristic dimensions, L and δ, were taken to be the volumes of the RUC

and a single particle, respectively. The three-phase GMC unit cell was constructed

of 48 × 48 × 48 square subcells. Each particle was modeled by a 2 × 2 × 2 block

of subcells. The interface was assumed to be half the width of the particle, or a

surrounding layer one subcell in thickness. For the two-phase model (particle and

matrix), the unit cell measured 24 × 24 × 24 with particles 1 × 1 × 1. This resulted

in equivalent scale ratios, L/δ = (483/23) = (243/13) = 13, 824 for each model.

The major focus of this work is the model’s ability to capture a sharp increase in

mechanical properties associated with the mechanisms of percolation. The dimensions

for the three-phase model (particle, interface, and matrix) were chosen as those for

which the next larger size resulted in no significant differences in graphs of the average

properties based on the same number of simulation runs. This same size ratio was

then used for the two-phase model. A similar criteria was used to choose the number

of simulations.

Particle positions were assigned with a uniform random distribution and 300 mi-

crostructural realizations were performed for each volume fraction. Elastic stiffness
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tensors were calculated for each microstructure. In general, the simulated compos-

ites would be expected to be statistically isotropic however, where microstructural

arrangements play a significant role, it was at the expense of isotropy. To aid in

distinguishing these effects, results are presented in terms of elastic constants and el-

ements of the elastic stiffness tensor for an orthotropic composite; E11 designated as

the longitudinal modulus, and E22 and E33, as axial moduli, are used in the graphical

discussion. The normal; C11, C22, C33; off-diagonal, C12, C13, C23; and shear compo-

nents, C44, C55, C55; of the elastic stiffness matrix, C, relating stress σ to elastic strain

ε, through

σ = Cε, (3.16)

are used to distinguish the effects of microstructure on effective composite properties.

In common with other micromechanics models, for example, the well-known Mori-

Tanaka method, [31, 32], GMC includes no shear normal coupling and therefore

the greatest degree of anisotropy it can capture is that of an orthotropic material.

Differences between degrees of anisotropy were often difficult to assess, therefore, in

this work, when the material could be characterized by three constants, it was labeled

isotropic, but additional increases in anisotropy were only specified by the number of

distinct constants in the stiffness tensor.
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Chapter 4

Mechanical Percolation in Two-Phase

Composite; Cubic Particles

The model composite consists of metallic nanocubes with an aspect ratio, α = 1. The

properties and geometry of this included phase were suggested by the gold nanocubes

made by Murphy et al. [43, 44]. The potential exists for the cubes, initially grown

while suspended in water, to be either dispersed in a liquid polymer and cured in

place, or applied to a surface and spin-coated with a polymer thin film. Recent

work by Niklaus and Shea [23] investigated electrical and mechanical percolation of

metal-ion implantation in just this type of material system.

In this work, the metallic cubes and polymeric matrix were assigned isotropic

elastic properties. The metal particles were assigned a stiffness on the order of 1010

Pa, and a Poisson’s ratio of 0.33. The polymer was assigned a stiffness of ∼ 104

Pa and a Poisson’s ratio of 0.45. This composite would be similar to composites

using PDMS (polydimethylsiloxane) [23], suggested as a good candidate for thin

film, flexible sensing devices, [23, 45].

Random microstructures for the two-phase, matrix and particle, composite were

simulated at volume fractions from 0 to 1 in steps of 0.05; 300 microstructural re-

alizations were generated for each volume fraction. GMC was used to approximate

the effective elastic properties associated with each microstructure. Figure 4.1 plots

the normalized minimum, average, and maximum values of the axial elastic stiffness,

E11/Ematrix, at each volume fraction.
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Figure 4.1: Effective elastic axial stiffnesses for the simulated two-phase composite;
normalized minimum, average, and maximum values. Simulations based on random
microstructure are compared to the Mori-Tanaka micromechanics model.

Plots of the remaining two axial moduli are similar to fig. 4.1; neither the shear

moduli nor the Poisson’s ratios showed any variation. The simulated values are also

compared to predictions from the Mori-Tanaka (MT) mean-field model for a com-

posite with a random arrangement of spheres. The differences between the simulated

results and the MT predictions, at the lower volume fractions, are similar to those

reported in [34] for high aspect ratio rods. They are largely due to the assumed

geometry (cubes versus spheres) and underlying assumptions of each model (unit cell

versus mean-field). Since Mori-Tanaka does not incorporate a specific microstructural

arrangement, its predictions show no variability.

Figure 4.1 suggests that the first volume fraction where microstructural effects

can make a contribution is 0.60, where the maximum value curve takes its largest

jump. Figure 4.2 shows distributions of the axial modulus for volume fractions of 0.6

through 0.85. The mean values change with volume fraction, in order to compare
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distributions, zero mean fields, f(v), were constructed,

f(v) = E∗

Ematrix
− 1 (4.1)

and plotted.

The distributions of moduli at both 0.60 and 0.65 are essentially binary. In each

case, the simulation produced one microstructure with a relative modulus E11/Em

' 103; the remaining 299 are tightly clustered around a single, essentially modal

value, see figs. 4.2a, 4.2b. At volume fractions of 0.7 and 0.75, the mean value

curve takes its largest jump. The distributions of moduli are still relatively disjoint.

The majority of microstructures have moduli corresponding to a mean/modal value.

As volume fraction increases, a greater number of microstructures produce distinct

higher and lower moduli, figs. 4.2c, 4.2d. Between 0.80 and 0.85, the minimum value

curve takes its largest jump. The distribution of moduli for 0.8 are more balanced

about the mean, but still occur at widely spaced intervals, fig. 4.2e. At 0.85, in

contrast to the lower volume fractions, the distributions are more continuous, fig.

4.2f.

In general, the simulated microstructures should be statistically isotropic, with the

ratio of the longitudinal to transverse modulus, E11/E22 = 1; this is not consistently

true for the simulated values between 0.60 - 0.85. Neither is the isotropic relationship

between the three elastic constants, E = 2G(1 + ν) true, on average, except at the

very low and high volume fractions.

Three elements define the effective stiffness of the composite; the deterministically

controlled volume fraction, the contrast ratio between the phases and the microstruc-

ture. Globally, at volume fractions ≤ 0.55, there is little variation in the predicted

properties suggesting that microstructural effects are minimal. Particles in this range

are widely spaced and the likelihood of particle interaction or clustering is low. The

matrix forms a fully connected phase.
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Figure 4.2: Distributions of axial moduli in the two-phase composite at various vol-
ume fractions: a) 0.60 b) 0.65 c) 0.70 d) 0.75 e) 0.80 f) 0.85.

Above a volume fraction of 0.55, microstructural effects are increasingly signif-

icant. Stiffness tensors for the minimum valued microstructures are fairly consis-

tently isotropic. Maximum valued microstructures, however, tend to be transversely

isotropic, up to 0.75, and require 5-7 constants for higher volume fractions. The loss

of isotropy is initially due to emerging distinctions between the normal components,

i.e., C11 6= C22, 6= C33, but eventually includes the off-diagonal elements, C12 6= C13

6= C23. The shear components showed little variation, generally C44 = C55 = C66 .

This type of shift in symmetries, associated with changes in the axial stiffnesses,

suggests a change in the effective aspect ratio of the particles, i.e the formation of par-

ticle stacks. An analysis of axial sections of sample RUCs established that there was

one continuous fiber stack, from top to bottom, in the longintudinal direction, of the

RUC in each of the maximum moduli microstructures at 0.60 and 0.65, no continuous

stack was present in representative average and minimum valued microstructures at

these volume fractions. In a periodic construction, this constitutes the reinforcement

of a continuous fiber. For volume fractions of 0.70 and 0.75, the same effects ap-

pear to be in play, however for each of these volume fractions, more than one ’large’

21



axial modulus microstructure was produced. The RUCs for 0.75 showed that the

sample microstructures with the two largest moduli had 3 continuous particle stacks,

the sample microstructure with the next largest contained 2 continuous stacks and

the microstructure with the third largest, one stack. Thus, there is a clear corre-

spondence between the number of stacks and the magnitude of the axial modulus.

Additional geometric effects., e.g. transverse clustering resulting in ’wider’ stacks,

and the production of longer, but perhaps not continuous, particle stacks are likely

to cause additional fluctuations in the moduli, and result in cases where the same

number of continuous stacks produce different moduli.

At the lower volume fractions, where the composite still has a significant volume

of a compliant matrix, the presence of a continuous particle stack, in the axial di-

rection, has a significant effect on the overall axial modulus. As the volume fraction

increases, the probability of connected microstructural elements also increases. How-

ever, this mechanism of continuous reinforcement also becomes more equally likely

in all three coordinate directions. Combined with the additional composite stiffening

due to the increase in particle volume fraction, the overall microstructural effect is

less dramatic. As the volume fraction reaches 0.9 and higher, the particle phase is

continuous and variations in the positions of isolated regions of the compliant matrix

do not significantly affect composite properties.

Based on the simulations, predictions of an apparent percolation threshold, visible

as the first volume fraction where the particle phase forms a connected, edge to edge,

microstructure, is 0.60; the probability of this occurring, based on the simulations, is

relatively low. Using a percolation threshold value of φc = 0.60, the two percolation

models, one based on eqn. (2.3), using a = 0.65, f = 3.75, and φc = 0.60, and the

second on eqns. (2.3, 2.4) with b = 6.0 were fit to the data and are shown in fig.4.3.

The first model, the power law, captures early trends in the mean values, but is less

accurate at the higher volume fractions; the second model, the series parallel model,
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which is only defined for v ≥ φc, fits the higher volume fractions well with a large

percolation exponent.

Figure 4.3: Comparison of simulated effective elastic axial stiffness for two-phase
composite; normalized minimum, average, and maximum values, to classic percolation
model based on eqn.(2.3), with φc = 0.60, a = 0.65, and f = 3.75; and series parallel
model based on eqn.(2.3, 2.4), with b = 6.0

The true percolation threshold, the volume fraction beyond which all of the simu-

lated microstructures contain a connected microstructure, is closer to 0.80. This can

be seen in fig. 4.4, as the percent of simulated microstructures, out of 300, where a

continuous stack occurs.

It is important to remember that the model assumes perfect bonding between

the phases. This is a hopeful expectation between particle and matrix, but probably

not a realistic one between particle and particle. This means that, unlike electrical

conductivity where contact produces the percolation effect, it can really only be

assumed that the modulus in compression would be enhanced by a continuous stack.

If the particles stacks were additionally constrained from separating, perhaps by
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the matrix microstructure, then assumptions about an enhanced modulus in tension

would be more valid.

Figure 4.4: Percent of simulated microstructures in the two-phase composite that
have continuous stacks.
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Chapter 5

Mechanical Percolation in Three-Phase

Composite; Cubic Particles

A second composite model was also studied. In this case, the composite was modeled

as a three-phase nanocomposite consisting of particles, interface, and matrix. The

nanoscale is introduced into the nanocomposite model by linking the interface thick-

ness to the dimension of the particle. The properties of the particles and matrix were

the same as the two-phase composite. The interface region was assigned a stiffness

equal to the geometric mean of the polymer and particles,
√
EmEp, and a Poisson’s

ratio of 0.45.

Figure 5.1 shows the normalized minimum, average, and maximum effective ax-

ial stiffnesses for the three-phase composite; 300 microstructural realizations were

generated for each volume fraction from 0 to 1 in steps of 0.05. Two regions show

variability; regime 1, between 0.05 and 0.40, and regime 2, between 0.60 and 0.90.

In regime 2, the three-phase, composite has only two remaining phases, interface

and particles, so its effective contrast ratio is γ =
√
EpEIF = 103, the same as for the

two-phase material; the trends and underlying mechanisms are the same.

More interesting is the variability in the low volume fraction range of regime 1.

In generating the random microstructures, the interface was simulated as an effect of

particle placement, rather than as a distinct third phase. Particle subcell positions

were established first and then interface subcells were inserted to replace any matrix

subcells surrounding the particle. As a result, if two particles were placed in adjacent
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Figure 5.1: Simulated effective elastic stiffness for three-phase composite; normalized
minimum, average, and maximum values.

subcells, no interface was inserted between them.

When the particles are widely dispersed, each 2 × 2 × 2 block of subcells, one

particle, can be surrounded by fifty-six interface subcells. If good dispersion is main-

tained, then all of the matrix subcells will have been replaced by interface subcells at

a volume fraction of 0.125. Random placement, resulting in particle clustering, delays

this effect. Figure 5.2 compares a theoretical, or ideal dispersion, to simulated aver-

age, matrix and interface volume fractions. It shows that matrix subcells, on average,

persist to a volume fraction of 0.40; in the minimum valued microstructures, matrix

material may be present up to 0.60. At a volume fraction of ∼ 0.10, the simulated

matrix and interface volume fractions are equal; at ∼ 0.20, simulated matrix volume

fraction equals particle volume fraction. A maximum volume fraction of interface

subcells occurs at ∼ 0.25; subsequent particles replace more interface subcells than

they produce.

There is also variability in the shear modulus, fig. 5.3. This is localized in the
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Figure 5.2: Matrix and interface volume fraction versus particle volume fraction;
simulation values and ideal predictions.

region where the matrix volume fraction first vanishes in the maximum valued mi-

crostructures, ∼ 0.40, and continues until the final remaining matrix subcells in the

minimum valued microstructure, ∼ 0.60, are gone. This effect was not present in

predictions based on the two-phase model.

In contrast to the two-phase model, the three-phase composite simulations show

two regions where random variations in the microstructure affect the elastic proper-

ties. Variability in the high range of volume fractions, > 0.55, is well described by

the mechanisms of two-phase percolation. Contrast ratio affects the magnitudes of

the predicted moduli, but not the onset of percolation.

In regime 1 of the three-phase composite, material symmetries are difficult to es-

tablish. In many cases, estimations of distinctly different elements become subjective

when the magnitudes of the differences are not large. Minimum valued microstruc-

tures were isotropic at 0.05, and essentially transversely isotropic for volume fractions

from 0.10 to 0.40; the plane of isotropy varying with microstructure. At volume frac-
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Figure 5.3: Distributions of shear moduli in the three-phase composite. In compari-
son, there is no variation in the shear modulus in the two-phase composite.

tions of 0.10, 0.15, and 0.20, the maximum valued microstructures had 4 distinct

constants, between 0.25 and 0.40, 6 or 7 constants were required.

Continuous particle stacks do not occur until volume fractions above 0.6; similar

to the two-phase composite. Edge-to-edge stacks composed of both particles and in-

terface, with no separating matrix material, first occur at 0.10, and are the defining

microstructural difference between minimum and maximum moduli up to 0.20. From

0.25 to 0.40, the number of stacks were similar in minimum, average, and maximum

valued microstructures. Above 0.40, where matrix material has largely been elimi-

nated, particle-interface assemblies represent the bulk of the microstructure. Stack

composition, ∼ 25% particles per stack, did not change significantly through the

range 0.10 to 0.25.

Variation in the lower range of volume fractions is the result of a number of

competing mechanisms; the simple increase in the volume fraction of the particles, the

‘replacement’ of matrix material by the stiffer interface material, and the formation
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of a pseudo-percolated microstructure consisting of particle-interface stacks. Based

on the volume fraction curves, an apparent percolation threshold for the three-phase

material can be defined at the first occurrence of an edge-to-edge, particle-interface

stack, at about 0.10. This offers a better representation of experimentally observed

values for nanocomposites, than the two-phase model. The two empirical percolation

models were not good fits to the pseudo-percolation in this range, the simulated curves

were consistently too flat for the power-law based models. Changes in the stiffness of

the interface region, and its assumed thickness, would be expected to affect the early

steepness of the curve and the apparent percolation threshold.

In the three-phase model, the assumptions about perfect bonding are less of a

problem because none of the effects depend solely on particle particle bonds. It

is again assumed that the interface, since it was originally matrix material, has a

good bond to the particles. However, a more accurate conclusion, based on the

model results, would be that the compressive modulus would be enhanced by the

microstructure.
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Chapter 6

Effect of Interfacial Stiffness and Thickness

Three groups of simulations were completed varying the interface region elastic stiff-

ness. Each group used the same particle and matrix properties and structure as the

three-phase composite in Chapter 5. The interface region for each simulation group

also had a Poisson’s ratio of 0.45 ; 300 microstructural realizations were again gener-

ated for each volume fraction from 0 to 1 in steps of 0.05. All graphical data in this

chapter has been normalized by the matrix stiffness.

In the first group, the interface region was assigned a stiffness on the order of

106 Pa, creating a material region more compliant than in the original three-phase

simulations. This group will be denoted as having a ‘compliant’ interface. The second

group was assigned a stiffness for the interface equal to the geometric mean of the

polymer and particles, exactly the same as the three-phase composite, previously

discussed, with a magnitude on the order of 107 Pa. This group will be referred to

as having an ‘original stiffness’. Finally, the third group had an interface stiffness on

the order of 109 Pa, creating a stiffer material than the original group. Following the

pattern, this group will be referred to as having a ‘stiff’ interface.

Three variations of the interface thickness surrounding each particle were inves-

tigated for each simulation group; compliant, original stiffness, and stiff. The first

variation used an interface thickness equal to 1/3 the particle diameter, creating an

interface region thinner than the original composite. This will be referred to as the

‘thin’ interface. The second variation used the original dimensional thickness, sim-

ilar to the three-phase composite, where the interface is equal to 1/2 the particle
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diameter. This will be denoted the ‘original thickness’. Finally, the third variation in

each group used an interface thickness equal to the particle diameter, thus creating

a region thicker than that in the original composite. This will be referred to as the

‘thick’ interface.

6.1 Stiffness Variations

First, graphs are presented of the three variations of each of the three groups, for a

total of nine cases, which show the effect of thickness on compliant, original, and stiff

interfaces. Figure 5.1 shows the results from Chapter 5 and will be used as a baseline

for the results in this chapter. This three-phase composite has an original interface

stiffness and an original interface thickness and is designated as [original stiffness,

original thickness].

The first group of simulations illustrate the effect of thickness on the a compliant

interface. In fig. 6.1 top, the normalized minimum, average, and maximum effective

elastic axial stiffnesses for the [Compliant, Thin] composite are shown; in fig. 6.1

middle, [Compliant, Original Thickness]; and in fig. 6.1 bottom, [Compliant, Thick].

The second group of simulations illustrate the effect of thickness on the original

stiffness interface. In fig. 6.2 top, the normailzed minimum, average, and maximum

effective elastic axial stiffnesses for the [Original Stiffness, Thin] composite are shown;

in fig. 6.2 middle, [Original Stiffness, Original Thickness]; and in fig. 6.2 bottom,

[Original Stiffness, Thick].

The third group of simulations illustrate the effect of thickness on a stiff interface.

In fig. 6.3 top, the normalized minimum, average, and maximum effective elastic

axial stiffnesses for the [Stiff, Thin] composite are shown; in fig. 6.3 middle, [Stiff,

Original Thickness]; and in fig. 6.3 bottom, [Stiff, Thick].
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Figure 6.1: Simulated effective elastic axial stiffness (normalized minimum, average, and
maximum values) for top: [Compliant, Thin]; middle: [Compliant, Original Thickness]; and
bottom: [Compliant, Thick]
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Figure 6.2: Simulated effective elastic axial stiffness (normalized minimum, average, and
maximum values) for top: [Original Stiffness, Thin]; middle: [Original Stiffness, Original
Thickness]; and bottom: [Original Stiffness, Thick]
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Figure 6.3: Simulated effective elastic axial stiffness (normalized minimum, average, and
maximum values) for top: [Stiff, Thin]; middle: [Stiff, Original Thickness]; and bottom:
[Stiff, Thick]
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6.2 Thickness Variations

The following results reorganize the previously presented data. Instead of graphing

by groups of stiffness with variations in thickness, these following graphs will group

thickness with variations in stiffness. Three groups of simulations were completed

varying the interface region thickness. First, graphs are presented each containing

three variations of the three groups, for a total of nine cases, which show the effect

of stiffness on the thin, original, and thick interfaces.

The first group of simulations are those with a thin interface, and varying stiff-

nesses. In fig. 6.4 top, the normalized minimum, average, and maximum effective

elastic axial stiffnesses for the [Thin, Compliant] composite are shown; in fig. 6.4

middle, [Thin, Original Stiffness]; and in fig. 6.4 bottom, [Thin, Stiff].

The second group of simulations are those with the original interface thickness and

varying stiffnesses. In fig. 6.5 top, the normalized minimum, average, and maximum

effective elastic axial stiffnesses for the [Original Thickness, Compliant] composite

are shown; in fig. 6.5 middle, [Original Thickness, Original Stiffness]; and in fig. 6.5

bottom, [Original Thickness, Stiff].

The third group of simulations are those with a thick interface, and varying stiff-

ness. In fig. 6.6 top, the normalized minimum, average, and maximum effective

elastic axial stiffnesses for the [Thick, Compliant] composite are shown; in fig. 6.6

middle, [Thick, Original Stiffness]; and in fig. 6.6 bottom, [Thick, Stiff].

35



Figure 6.4: Simulated effective elastic axial stiffness (normalized minimum, average, and
maximum values) for top: [Thin, Compliant]; middle: [Thin, Original Stiffness]; and bot-
tom: [Thin, Stiff]
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Figure 6.5: Simulated effective elastic axial stiffness (normalized minimum, average, and
maximum values) for top: [Original Thickness, Compliant]; middle: [Original Thickness,
Original Stiffness]; and bottom: [Original Thickness, Stiff]
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Figure 6.6: Simulated effective elastic axial stiffness (normalized minimum, average, and
maximum values) for top: [Thick, Compliant]; middle: [Thick, Original Stiffness]; and
bottom: [Thick, Stiff]
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Figure 6.7: Simulated effective elastic axial stiffness (normalized minimum, average, and
maximum) for five-phase composite with a gradient interface.

6.3 Functionally Graded Interface

To further investigate the effect of the interface on mechanical behaviors in nanocom-

posites, a functionally graded (FG) interface was created using three interface layers.

A 2 × 2 × 2 particle was first surrounded by one layer of a stiff interface material

with a thickness equal to half the particle diameter. The particle and first interface

layer were then surrounded by another layer of the original stiffness interface, again

half the particle diameter thick. Finally, the particle and two layer interface were

surrounded by a third layer of compliant interface with the same thickness as the

other layers. The stiffness values for each layer of interface are the same as presented

earlier in this chapter. The minimum, average, and maximum axial elastic stiffness

values for 300 microstructural realizations at each volume fraction from 0 to 1 in 0.05

steps are shown in fig. 6.7.

To observe the effect of a functionally graded interface, fig. 6.8 compares the
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Figure 6.8: Simulated effective elastic axial stiffness for five-phase composite with a gradi-
ent interface; three-phase composite with a thick, original stiffness interface; and three-phase
compsite with a thin, stiff interface.

average from the FG interface to the average curve of the [thick, original stiffness]

interface composite and the [thin, stiff interface] composite from the previous sections.

6.4 Summary and Conclusions

Distinct to the compliant interface is the lack of low volume fraction percolation effect

and the delayed effect of the apparent percolation at the high volume fraction with

increasing thickness. Figure 6.9 top shows the average effective elastic axial stiffnesses

of the three variations in the compliant group. As the compliant interface region

increases in thickness, the first possible volume fraction where random microstructural

effects contribute, also increases, 0.55, 0.60, and 0.65, respectively.

With a stiff interface, the apparent percolation effect is only visible in the low

volume fraction regime. Figure 6.9 bottom shows the average effective elastic axial

stiffnesses of the three variations in the stiff group. In contrast to the compliant inter-
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Figure 6.9: Simulated average effective elastic axial stiffnesses for three-phase composite
in top: compliant group; middle: original stiffness group; and top: stiff group.

41



face, as the interface region increases in thickness, the apparent percolation threshold

decreases, 0.20, 0.10, and 0.05, for thin, original, and thick, respectively.

When the interface stiffness lies between these two extremes, original stiffness, no

high volume fraction percolation behavior is observed for a thick or a thin interface,

but apparent percolation thresholds in the low volume fraction regime decrease with

increasing thickness; 0.20, 0.10, and 0.05; for thin, original, and thick, respectively.

Figure 6.9 middle shows the average effective elastic axial stiffnesses of the three

variations in the original stiffness group.

When the interface region is ‘too’ compliant, the formation of particle-interface

stacks does not constitute a connected microstructure that is significantly different

from particle widely dispersed in the matrix. However, as this compliant interface is

made thicker it contributes a more significant volume fraction of a third phase and

increases the overall composite stiffness at earlier volume fractions.

Figure 6.10 shows the average effective elastic axial stiffnesses of the variations in

thickness with changing stiffness. The early appearance of the apparent percolation

threshold at the high volume fractions with a thin interface may be a result of the

persistence of the matrix material to a relatively high volume fraction, so that what

appears to be the high volume fraction percolation (particle stacks) may be delayed

formation of particle-interface stacks within the matrix materia, as shown in fig. 6.10

topl. The thick interface shows an apparent percolation threshold that is the same

as the composite with an original stiffness interface, see fig. 6.10 bottom; the matrix

material is completely gone by this point and the effect is due to particle stacks.

The mechanisms behind the original thickness, compliant interface is more difficult

to assess. It may be that because the interface stiffness is relatively close to that of

the matrix that the effect is again that this represents a delay in the formation of

composite particle stacks, rather than particle stacks.

When the interface region is ‘too’ stiff, the particle-interface stacks that form at
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Figure 6.10: Simulated average effective elastic axial stiffnesses for three-phase composite
in top: thin variation; middle: original thickness variation; and top: thick variation.
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the lower volume fractions produce a significantly higher jump in stiffness than a less

stiff interface which lessens the effect of the particle stacks that form at the higher

volume fractions. In this case, the effect of increasing the thickness is to facilitate the

formation of particle-interface stacks earlier.

Interface effects are of most interest with respect to the low volume fraction regime,

where these effects have been experimentally observed. In this region, interface thick-

ness is almost purely geometry. More interface per particle implies overall stiffness

is increased at lower particle volume fractions and connected particle-interface stacks

occur at lower volume fractions. Increasing interface stiffness has more of a composite

mechanics effect, i.e., the contribution of a stiffer third phase and little effect on the

apparent percolation threshold.
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Chapter 7

Two- and Three-Phase Continuum Model

The geometry of the model used to generate the previous results closely parallels clas-

sic site-lattice work in percolation. Within the random checkerboard model, particles

were assigned spatial positions similar to grid points on a cubic lattice. A major draw-

back to this implementation is its inability to model the microstructural response of

stacked or aligned particles with any degree of overlap. Figure 7.1 illustrates a cubic

particle with a side length of two spatial locations can have an overlap spacing of

one spacial location in all directions. Extending the model to include this overlap is

a step beyond the discrete lattice grid models, moving toward a percolation model

with more of a continuum, off lattice site, perspective.

To allow for this possible overlap of particle stacks and alignment, the simulation

code that placed random particles was modified. As a result of this style of placement,

with a uniform particle size and no shifting of particle placement, it is not possible

to simulate volume fractions over the full range. For the 2 × 2 × 2 particle in a

48 × 48 × 48 RUC, the simulation code could only generate volume fractions up to

0.65. As an initial comparison, the overlap results, referred to here as the Continuum

Model results, are compared to the original lattice based model, referred to as the

Lattice Model.
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Figure 7.1: Examples of possible overlap scenarios within the RUC

7.1 Continuum versus Lattice

Two-Phase Composite

Random microstructures for the two-phase (matrix and particle) composite were sim-

ulated for volume fractions from 0 to 0.65 in steps of 0.05; 300 microstructural real-

izations were generated for each volume fraction using the continuum model. GMC

was used to approximate the effective elastic properties associated with each mi-

crostructure. Figure 7.2 compares the minimum, average, and maximum values of

the effective elastic axial stiffness, E11/Ematrix, for the continuum and lattice models.

The continuum model appears to show a delay in the apparent percolation thresh-

46



Figure 7.2: Two-phase 2 × 2 × 2 particle composite: Continuum and Lattice model com-
parison.

old and lower maximum moduli for the values beyond percolation. This is consistent

with our understanding that mechanically, in GMC, a continuous stack where particle

centers are not all aligned, i.e., partial overlapping, provides less reinforcement than

the fully aligned stacks.

Three-Phase Composite

Random microstructures for the three-phase (matrix, particle, and interface) compos-

ite were simulated at volume fractions from 0 to 0.65 in steps of 0.05; 300 microstruc-

tural realizations were generated for each volume fraction using the continuum model.

GMC was used to approximate the effective elastic properties associated with each

microstructure. Figure 7.3 compares the three-phase minimum, average, and maxi-

mum effective elastic axial stiffnesses of the continuum model and the lattice model.

There are no significant differences between the two. This is likely because the particle

volume fractions are so low that percolation effects are due to interface-particle rather
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Figure 7.3: Three-phase 2 × 2 × 2 particle composite: Continuum and Lattice model
comparison.

than particle-particle connections and so the probability of particles even partially

overlapping is low.

In a subsequent chapter, the Continuum Model is used to investigate higher aspect

ratio particles. The overlap construction allows the longer rods to line up overlapping

longitudinally as well as transversely adjacent, but off-set, to one another.
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Chapter 8

High Aspect Ratio Particles

The modeling approach taken in this work offers a significant advantage over classic

percolation models in that it can be used to model micromechanical effects beyond the

formation of a connected particle microstructure. One important micromechanical

effect is the influence of the aspect ratio of the included phase. Classic micromechanics

predicts that the stiffness of a composite containing aligned high aspect ratio particles,

aligned in the long direction, is greatest in the direction of the alignment [46].

8.1 Two-Phase Composite with Varying Aspect Ratios

Random microstructures for a two-phase composite containing rods with aspect ratios

of 6:1, 8:1, and 12:1, respectively, were simulated in steps of 0.05; 300 microstructural

realizations were generated for each volume fraction using the continuum model. Par-

ticle subcell dimensions made overlap possible along both longitudinal and transverse

axes. The long axis of these rods runs parallel to the 1-direction. GMC was used

to approximate the effective elastic properties associated with each microstructure.

Figures 8.1 - 8.3 plot the normalized minimum, average, and maximum values of the

longitudinal elastic stiffness, E11/Ematrix, versus volume fraction for each aspect ratio.

For the two-phase composite, the formation of continuous particle stacks results

in change in composite stiffnesses of several orders of magnitude. As a result, it is

possible to calculate the percentage of the 300 simulations that exhibit this jump and

relate these values to the percolation threshold. In other words, define the percolation

threshold as the volume fraction, beyond which, all of the microstructures display this
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connectivity. Figure 8.4 plots the probability of finding a percolated, continuous stack

microstructure in the population of simulated microstructures. In each of the cases

above, it was possible for the higher aspect ratio particles to fit "evenly" in the RUC.

In other words, 6, 8, and 12 all divide 48 with no remainder. As a result, percolated

microstructures, in the form of continuous stacks, could form. Figure 8.4 highlights

the expected trend that percolation thresholds decrease with increasing aspect ratio.

Random microstructures for two-phase composite containing rods with aspect

ratio of 5:1, 7:1, and 10:1 were also simulated in steps of 0.05; 300 microstructural

realizations were generated for each volume fraction using the continuum model.

Particle subcell dimensions again allowed for possible overlap along both longitudinal

and transverse axes. The long axis of these rods runs parallel to the 1-direction.

GMC was used to approximate the effective elastic properties associated with each

microstructure. Figure 8.5 plot the normalized minimum, average, and maximum

values of the longitudinal elastic stiffness, E11/Ematrix, at each volume fraction for

top: 5:1, middle: 7:1, and bottom: 10:1 aspect ratios.

For these aspect ratios, the rod dimensions do not divide the RUC evenly and so,

given the assumptions and limitations of the model, a percolated microstructure in the

form of a continuous stack, is not possible. Overlap and the ability to stack particles

into stacks that almost span the RUC resulted in higher composite stiffnesses with

increasing aspect ratio. This effect is what would be expected from classic mean-field

micromechanics theory.

8.2 Three-Phase Composite, Influence of Aspect Ratio

Random microstructures for a three-phase (matrix, particle, and interface) composite

with aspect ratio of 5:1, were simulated in steps of 0.05; 300 microstructural realiza-

tions were generated for each volume fraction using the continuum model. GMC was

used to approximate the effective elastic properties associated with each microstruc-
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Figure 8.1: Simulated effective elastic axial stiffness for two-phase composite with 6:1
aspect ratio particles, longitudinal and transverse overlap.

Figure 8.2: Simulated effective elastic axial stiffness for two-phase composite with 8:1
aspect ratio particles, longitudinal and transverse overlap.
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Figure 8.3: Simulated effective elastic axial stiffness for two-phase composite with 12:1
aspect ratio particles, longitudinal and transverse overlap.

Figure 8.4: Probability of percolated microstructures for two-phase composite with parti-
cles of various aspect ratio.
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Figure 8.5: Simulated effective elastic axial stiffness for two-phase composite containing
particles with top: 5:1 aspect ratio; middle: 7:1 aspect ratio; and bottom: 10:1 aspect ratio.
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Figure 8.6: Simulated effective elastic axial stiffness for three-phase composite with 3:1
aspect ratio particles, longitudinal and transverse overlap.

ture. Figure 8.7 plots the minimum, average, and maximum values of the normalized

effective elastic axial stiffnesses, E11/Ematrix, E22/Ematrix, and E33/Ematrix at each

volume fraction. Figure 8.8 compares the three axial moduli for the 5:1 aspect ratio

particles. As expected, the average composite stiffness is greatest in the direction of

alignment.

Further increasing the aspect ratio to 8:1 results in curves with a similar shape

but slightly lower apparent percolation threshold to the composite with 5:1 aspect

ratio particles. Minimum, average, and maximum normalized curves are shown in fig.

8.9. With the longer particles, but similarly thick interface regions, this reflects the

greater ease of forming composite particle-interface stacks with longer particles. The

two average curves for the three-phase 8:1 and 5:1 aspect ratio particles are compared

in fig. 8.10. The results show an increase in overall stiffness with the higher aspect

ratio.

The effect of higher aspect ratio aligned particles is consistent with the underlying
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Figure 8.7: Simulated effective elastic axial stiffness for three-phase composite with 5:1
aspect ratio particles, longitudinal and transverse overlap.

Figure 8.8: Simulated effective elastic axial stiffness averages for three-phase composite
with 5:1 aspect ratio particles, longitudinal and transverse overlap.
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Figure 8.9: Simulated effective elastic axial stiffness for three-phase composite with 8:1
aspect ratio particles, longitudinal and transverse overlap.

Figure 8.10: Simulated effective elastic axial stiffness averages for three-phase com-
posite with 3:1, 5:1, and 8:1 aspect ratio particles, longitudinal and transverse overlap.
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micromechanics theory that predicts greater axial composite stiffness in the long

direction of the included phase. The effect of aspect ratio on the apparent percolation

threshold in the low volume fraction regime is an earlier percolation threshold in

addition to the increased composite stiffness.
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Chapter 9

Summary and Discussion

Experimental work shows evidence of percolation-like effects for mechanical proper-

ties in polymer nanocomposites. Models of percolation phenomena, often power-laws,

have been extensively developed for electrical conductivity in composite materials

and, as a result, are commonly applied to these mechanical effects as well. A weak-

ness of these models is that they contain very little mechanics other than an esti-

mate of the volume fraction where percolated, or connected, microstructures develop.

These estimates, in the form of a percolation threshold parameter in the models,

are either established independent of the material systems or used as an empirical

parameter for a curve fit. This limits the value of the model as a predictive tool that

can take micromechanical effects into consideration. The use of classic mean-field

micromechanics models to capture the mechanics of these systems, however, does not

offer a method to describe percolation or the mechanical effects of randomness in the

composite microstructure.

In this work, rather than attempting to estimate critical volume fractions a pri-

ori to use in predicting mechanical properties, the modeling paradigm was reversed.

Simulated effective elastic composite properties were used to track the effects of the

evolution of a mechanically percolating microstructure and indicate the presence of

percolation effects. This was done in a Monte Carlo framework, where the effective

properties were calculated using a computational micromechanics model for multiple

random microstructural realizations. The Generalized Method of Cells micromechan-

ics model was used to approximate the effective elastic properties. Simulations were
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performed for both a macro-scale (two-phase) and nano-scale (three-phase) discon-

tinuously reinforced composite consisting of cubic metallic particle embedded in a

polymeric matrix.

Apparent percolation effects were clearly visible in the simulation of the two-

phase composite. A percolation threshold could be identified as the volume fraction,

of approximately 0.80, beyond which all of the simulated microstructures displayed

percolation microstructures. Connected microstructures took the form of continu-

ous particle stacks, which in the context of the repeating unit cell model, produced

the effect of a continuous fiber composite. The two-phase material did not, how-

ever, capture the low volume fraction percolation effects that have been observed for

nanocomposite materials.

When the simulations were modified to include a third phase, an interface region

which reflects one of the effects of scale in nanocomposites, the simulations showed

evidence of a second region of percolation-like effects at a significantly lower perco-

lation threshold. These apparent percolation effects appear due to the formation of

microstructural stacks made of both particles and interface material that assemble

within the compliant matrix. This has been referred to as a pseudo-percolation ef-

fect, connections via particles and interface, but still results in significant mechanical

reinforcement to the composite material. Because the effects of pseudo-percolation

occur as the volume fractions of the three phases are also changing: increasing par-

ticle and interface, and decreasing matrix volume fraction, its role as a dominant

effect is limited to a small range and small values of volume fraction. However, these

results do suggest a mechanism that might contribute to the experimentally observed

significant enhancement of properties at low volume fractions in nanocomposites.

In addition to the significant result of designing a modeling framework that can

duplicate the observed experimental effects using probabilistic and micromechani-

cal analysis, the advantage of this approach is that other micromechanical and mi-
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crostructural effects can be included, in a consistent manner, in the model.

The effect of interface stiffness and thickness was investigated for the three-phase

composite. By adjusting the thickness of the interface, the apparent low volume

fraction percolation threshold could be adjusted; thicker interfacial regions lowered

the threshold values. However, in addition to a lower percolation threshold, thicker

interface regions affect the fundamental of the composite, replacing the matrix ma-

terial with a stiffer third phase at a lower volume fraction and increasing the overall

stiffness.

When the stiffness of the interface was varied, the apparent percolation threshold

was not affected; however, the overall effective stiffness of the composite was changed

depending on the interface stiffness. With a sufficiently stiff interface, the compos-

ite stiffness reached very high levels at relatively low volume fractions and so the

secondary percolation effects, due to the formation of particle stacks, had very lit-

tle additional influence on the properties. For a sufficiently compliant interface, the

particle-interface stacks provided little additional reinforcement.

A second microstructural mechanism that can be studied using this modeling

framework is the influence of aspect ratio of the included phase. In both the two- and

three-phase composite models apparent (three-phase) and measurable (two-phase)

percolation thresholds were shifted to lower volume fractions with higher aspect ra-

tios of the included particles. This is consistent with micromechanical theory and

experiments on aligned high aspect ratio fibers; both the increase in stiffness and the

lower threshold values.

These results highlight the usefulness of this modeling framework and approach as

a predictive tool to study these materials. As a micromechanics approach, it is novel

in its inclusion of scale effects, i.e. scaling the size of the interface to the size of the

particle. Classic micromechanics models are, in general, scale invariant because they

depend on volume fraction, a dimensionless parameter. As a probabilistic approach
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or an extension to percolation theory, this approach includes adjustable physical

and material parameters that can be realistically used to match experimental data,

suggests mechanisms that might be linked to specific effects, and could help suggest

additional experimental work.
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Chapter 10

Future Work

In this research, a modeling framework was designed that combined a micromechanics

model with a Monte Carlo simulation approach to describe the evolution of mechanical

percolation effects in nanocomposites with random microstructures. This model used

a three-dimensional repeating unit cell (RUC) model to calculate effective elastic

properties. By applying periodic boundary conditions to these RUCs, an infinite

material response is simulated. In this first stage of the work, a nanocomposite

was modeled by including an interface region, which is thought to contribute to the

enhanced properties in nanocomposites. Scale was included in the model by linking

interface thickness particle dimension. The significance of the modeling framework

is that it can be used to include microstructural effects beyond that of the simple

connectivity that characterizes percolation theory.

There are a number of clear extensions to, and applications of, the model that can

be suggested.

• Future work for this research should include additional validation through com-

parison to experimental data. In particular, the cases where investigators, or

theory, suggest additional details of the microstructure, e.g. interface geometry

and properties.

• While the focus of this work was on allowing mechanical properties to predict

the onset of percolation effects, it would be interesting to follow through with

more specific geometric analysis of the microstructures. This could include more
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complex connectivity and two-point spatial correlation characterization.

• In this work, three-dimensional microstructures were simulated. Since percola-

tion theory has been developed for both two- and three-dimensional materials,

it would be useful to apply this approach to modeling two-dimensional mate-

rials. This will allow further connections of the model to existing techniques

of simulation and theory for random materials. Simulating a two-dimensional

material system will extend the model to continuous fiber composites.

• Similar to the anticipated two-dimensional analysis, adapting the model to

simulate and capture finite size effects will also provide valuable feedback for

nanocomposites. When the one dimension of the sample material approaches

the size of the particle, the critical volume fraction is affected. This has been

reported experimentally and a computational model capable of simulating such

affects will provide more information with regards to particle size. This ap-

plication will provide insight to the benefits, effects, and manufacture of thin

films.

• The model developed in this research characterized particles with varying aspect

ratios. Using the model to explore the effects of a distribution of aspect ratios

might provide a more realistic material response. Additionally, while GMC is

limited with respect to short fiber orientations, it would be interesting to model

particles at ± 90◦ orientations.

In conclusion, comparing experimental data to the predictions from the model pro-

posed here, as well as exploring the mechanics based effects that are possible using this

model, will help provide validation and verification of the consistency and usefulness

of this model.
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Appendix A

Matlab Simulation Analysis Code

filenum=4;

printlevel=1;

if filenum==4

inputfile='EG_3P_HC_Mean_Inter.mac';

casestr='High Contrast with Mean Interface';

interface=0; AA=5; BB=1; GG=1; a=24; b=24; g=1; runs=300;

else

return;

end

clear E11S N12S E22S N23S E33S G23S G13S G12S NUM inputfilelist

count=0;

VOLFRACS=[0:0.05:1];

volfracs=length(VOLFRACS);

for ii=1:runs

for i=1:volfracs;

if (printlevel>=0)

disp(' ');

disp(['ITERATION NUMBER: ' num2str(i) ' of run ' num2str(ii) ' of ' ...

num2str(runs) ' runs, ' num2str(count+1) ' of ' num2str(runs*volfracs)]);

disp(' ');

end
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%% INPUT FILE CONSTRUCTION

% This section reads the template file, scans each line to check if a

% string matches, then "Fixes" the line in question to some value that

% depends on what iteration you are on.

newinputfile=[ 'inputrandom' num2str(count) '.mac'];

% Make file name based on variable i value

inputfilelist{count+1}=newinputfile;

count=count+1;

perc=VOLFRACS(i)

num=floor(perc*(a*b*g)/(AA*BB*GG)); % exact number of particles

P(i,1)=num*(AA*BB*GG)/(a*b*g); % New percentage

NUM(i,1)=num;

M=makematrix4(num,a,b,g,AA,BB,GG,interface);

MM{i}=M;

if (printlevel>=0)

disp(['Expected number of particles: ' num2str(a*b*g*perc/(AA*BB*GG),'%5f') ])

disp(['Actual number of particles: ' num2str(sum(sum(sum(M==1)))/(AA*BB*GG),'%5f') ])

end

fid1=fopen(inputfile,'r');

fid2=fopen(newinputfile,'w+');

j=0;

while 1 && (j<14)

j=j+1;

tline = fgetl(fid1); % Get a line

if ~ischar(tline), break, end

fprintf(fid2,tline); % Write a line to new input file

fprintf(fid2,'\r\n');

end

fprintf(fid2,[' NA=' num2str(a) ' NB=' num2str(b) ' NG=' num2str(g)]);
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fprintf(fid2,'\r\n');

str=['1'];

for cc=2:a

str=[str ',1'];

end

fprintf(fid2,[' D=' str]);

fprintf(fid2,'\r\n');

str=['1'];

for cc=2:b

str=[str ',1'];

end

fprintf(fid2,[' H=' str]);

fprintf(fid2,'\r\n');

str=['1'];

for cc=2:g

str=[str ',1'];

end

fprintf(fid2,[' L=' str]);

fprintf(fid2,'\r\n');

for k3=1:g

for k1=1:a

tline=' SM=';

for k2=1:b

if M(k1,k2,k3)==1

tline=[tline '1' ','];

elseif M(k1,k2,k3)==2

tline=[tline '2' ','];

elseif M(k1,k2,k3)==3

tline=[tline '3' ','];
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else

disp('num2str hardcoded, odd integer used in M')

return;

end

end

tline(end)=' ';

fprintf(fid2,tline);

fprintf(fid2,'\r\n');

end

if k3<a

tline=['# gamma = ' num2str(k3+1) ];

fprintf(fid2,tline); % Write a line to new input file

end

fprintf(fid2,'\r\n');

end

tline='*PRINT'; fprintf(fid2,tline); fprintf(fid2,'\r\n');

tline=' NPL=−1 '; fprintf(fid2,tline); fprintf(fid2,'\r\n');

tline='*END'; fprintf(fid2,tline); fprintf(fid2,'\r\n');

fclose(fid1); % Close template file

fclose(fid2); % close new input file

end

end

%% Run code section

%

% This section constructs a command line string that you would execute

% normally. Using the system command allows the executable to be

% called witht he correct file name (which changes based on iteration
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% nuber)

% First, write condor submit file

fid3=fopen('macsubmitfile','w+');

fprintf(fid3,'universe = vanilla\n');

fprintf(fid3,'requirements = (Arch == "X86_64") \n');

fprintf(fid3,'executable = mac4.exe \n');

fprintf(fid3,'input = inputrandom$(Process).mac\n');

fprintf(fid3,'arguments = inputrandom$(Process)\n');

fprintf(fid3,'output = inputrandstdout$(Process).out\n');

fprintf(fid3,'error = inputrandom$(Process).err\n');

fprintf(fid3,'log = inputrandom$(Process).log\n');

fprintf(fid3,['queue ' num2str(runs*volfracs) ' \n']);

fclose(fid3); % close new input file

str=['C:\HPC\condor\bin\condor_submit.exe macsubmitfile '];

system(['erase inputrandom*.out']); % erase out file before condor starts

if (printlevel>=0)

disp(' ');

disp(' Running condor, command is:')

disp([ ' ' str])

end

tic

[status,result]=system(str);

result

% check to see if the output files are all done. Could just check

% inputrandom.out and see if it is complete...

d=dir('inputrandom*.out');

running=1;

while running

pause(1);
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disp([' Checking to see if CONDOR is done...' num2str(length(d)) ...

' output files finished of ' num2str((runs*volfracs)) ]);

d=dir('inputrandom*.out');

if (length(d)==(runs*volfracs))

running=0;

end

if (length(d)>0)

for ddd=1:length(d)

if d(ddd).bytes<1000

running=1;

end

end

end

end

if (printlevel>=0)

disp([' Finished running executable, time: ' num2str(toc) ' seconds'])

disp(' ');

end

%% Read output section

%

% This section reads throught the output file and looks for a specific

% string. When that is found, it read the numeric value and puts the

% value into an array.

count=0;

for ii=1:runs

for i=1:volfracs;

if (printlevel>=0)

disp(' ');

disp(['ITERATION NUMBER: ' num2str(i) ' of run ' num2str(ii) ' of ' ...

num2str(runs) ' runs, ' num2str(count+1) ' of ' num2str(runs*volfracs)]);
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disp(' ');

end

newinputfile=[ 'inputrandom' num2str(count) '.out']

outfile=[newinputfile(1:end−4) '.out'];

count=count+1;

if length(dir(outfile))>0

fid3=fopen(outfile,'r');

tic;

while fid3<0

disp('Attempting to open output file again!')

fid3=fopen(outfile,'r');

pause(1)

if toc>40

return

end

end %end try to open file

fseek(fid3,−2000,'eof');

if (printlevel>=0) disp('Searching output file for strings');end

while 1

tline = fgetl(fid3); % Get a line

if ~ischar(tline), break, end

if length(tline)>10

if strcmp(' E11S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end
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E11S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

if strcmp(' N12S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

N12S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

if strcmp(' E22S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

E22S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

if strcmp(' N23S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

N23S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

if strcmp(' E33S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

E33S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

if strcmp(' G23S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');
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disp(tline);

end

G23S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

if strcmp(' G13S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

G13S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

if strcmp(' G12S=',tline(1:10))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

G12S(i,ii)=str2num(tline(11:end)); % Store desired value in array

end

end

if length(tline)>43

if strcmp(' MATERIAL NO.= 1 VOLUME RATIO=',tline(1:43))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

M1VF(i,ii)=str2num(tline(44:end)); % Store desired value in array

end

if strcmp(' MATERIAL NO.= 2 VOLUME RATIO=',tline(1:43))

if (printlevel>=1)

disp('Found output string:');

disp(tline);
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end

M2VF(i,ii)=str2num(tline(44:end)); % Store desired value in array

end

if strcmp(' MATERIAL NO.= 3 VOLUME RATIO=',tline(1:43))

if (printlevel>=1)

disp('Found output string:');

disp(tline);

end

M3VF(i,ii)=str2num(tline(44:end)); % Store desired value in array

end

end %end tline>43

end %end while loop

fclose(fid3);

else %if output file is not there

vars={'E11S' 'N12S' 'E22S' 'N23S' 'E33S' 'G23S' 'G13S'

'G12S' 'M1VF' 'M2VF' 'M3VF'};

E11S(i,ii)=−1;

N12S(i,ii)=−1;

E22S(i,ii)=−1;

N23S(i,ii)=−1;

E33S(i,ii)=−1;

G23S(i,ii)=−1;

G13S(i,ii)=−1;

G12S(i,ii)=−1;

M1VF(i,ii)=−1;

M2VF(i,ii)=−1;

M3VF(i,ii)=−1;

end %end checking if file is there

end

end
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Appendix B

Matlab RUC Generation Code

function out=makematrix4(num,a,b,g,AA,BB,GG,LL)

%A is alpha, b is beta, G is gamma

fix =1;

num=round(num);

if num<0

num=0;

end

if num>(a*b*g/(AA*BB*GG))

num=a*b*g/(AA*BB*GG);

end

perc=num/(a*b*g/(AA*BB*GG));

M=rand(a/AA,b/BB,g/GG);% probability that it will have a particle

if fix % Fix the system so the number of particles is very close to expected value

notfixed=1;

while notfixed

if sum(sum(sum(M)))<num

M(ceil(rand*a/AA),ceil(rand*b/BB),ceil(rand*g/GG))=1;

elseif sum(sum(sum(M)))>num

M(ceil(rand*a/AA),ceil(rand*b/BB),ceil(rand*g/GG))=0;

else

notfixed=0;
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end

end

end

MM=zeros(a,b,g);

for i=1:a/AA

for j=1:b/BB

for k=1:g/GG

if M(i,j,k)

MM((i−1)*AA+1:i*AA,(j−1)*BB+1:j*BB,(k−1)*GG+1:k*GG)=ones(AA,BB,GG);

end

end

end

end

MM;

M=MM;

for iL=1:LL % For each interface layer (l looks like 1)

for i=1:a % for x direction

for j=1:b % for y direction

for k=1:g % for z direction

U=i+1;

D=i−1;

L=j+1;

R=j−1;

F=k+1;

B=k−1;

if U<1 %fix values that wrap beyond 0 or N

U=a;

elseif U>a

U=1;

end

if D<1

D=a;
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elseif D>a

D=1;

end

if L<1

L=b;

elseif L>b

L=1;

end

if R<1

R=b;

elseif R>b

R=1;

end

if F<1

F=g;

elseif F>g

F=1;

end

if B<1

B=g;

elseif B>g

B=1;

end

if (M(i,j,k)==0)&&( ...

(M(U,j,k)==iL) || ... % six sides

(M(D,j,k)==iL) || ...

(M(i,L,k)==iL) || ...

(M(i,R,k)==iL) || ...

(M(i,j,F)==iL) || ...

(M(i,j,B)==iL) || ...

(M(U,L,F)==iL) || ... % Eight corners

(M(U,L,B)==iL) || ...
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(M(U,R,F)==iL) || ... % Eight corners

(M(U,R,B)==iL) || ...

(M(D,L,F)==iL) || ... % Eight corners

(M(D,L,B)==iL) || ...

(M(D,R,F)==iL) || ... % Eight corners

(M(D,R,B)==iL) || ...

(M(U,L,k)==iL) || ... % 12 edges, 4 top pLane

(M(U,R,k)==iL) || ...

(M(U,j,F)==iL) || ...

(M(U,j,B)==iL) || ...

(M(D,L,k)==iL) || ... % 12 edges, 4 bottom

(M(D,R,k)==iL) || ...

(M(D,j,F)==iL) || ...

(M(D,j,B)==iL) || ...

(M(i,L,F)==iL) || ... % 12 edges middle

(M(i,L,B)==iL) || ...

(M(i,R,F)==iL) || ...

(M(i,R,B)==iL) )

M(i,j,k)=1+iL;

end

end

end

end

end

M;

MM=2*(M==0)+1*(M==1);

for i=1:LL

MM=MM+(i+2)*(M==(i+1));

end

M=MM;

out=M;
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Appendix C

Example GMC Input Code

MAC/GMC 4.0 G: 3 PHASE HIGH CONTRAST MEAN INTERPHASE

*CONSTITUENTS

NMATS=3

# −− Gold nanorod units are Pascals −

M=1 CMOD=6 MATID=U MATDB=1 &

EL=78.E9,78.E9,0.35,0.35,28.8E9,−0.68E−6,9.74E−6

# −− Polymer Matrix

M=2 CMOD=6 MATID=U MATDB=1 &

EL=78.E3,78.E3,0.45,0.45,26.9E3,−0.68E−6,9.74E−6

# −− Interface Layer with geometric mean properties

M=3 CMOD=6 MATID=U MATDB=1 &

EL=78E6,78E6,0.45,0.45,26.9E6,−0.68E−6,9.74E−6

*RUC

MOD=3 ARCHID=99

NA=8 NB=8 NG=4

D=1,1,1,1,1,1,1,1

H=1,1,1,1,1,1,1,1

L=1,1,1,1

# gamma = 1

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2
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SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,1,2,2

# gamma = 2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,1,2,2,2

SM=2,2,2,2,2,1,2,2

SM=2,1,2,2,2,2,2,2

SM=2,2,2,2,2,1,2,2

SM=2,2,2,2,2,2,1,1

SM=2,2,2,2,2,2,2,2

# gamma = 3

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,1,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=1,2,2,2,2,2,1,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

# gamma = 4

SM=2,2,2,1,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

SM=2,2,2,2,2,2,2,2

*PRINT

NPL=−1

*END
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