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SUMMARY 

 

This thesis has been motivated by the growing needs for multi-degree of freedom 

(M-DOF) electromagnetic actuators capable of smooth and accurate multi-dimensional 

driving motions.  Because high coercive rare-earth permanent-magnets (PMs) are widely 

available at low cost, their uses for developing compact, energy-efficient M-DOF 

actuators have been widely researched. To facilitate design analysis and optimization, 

this thesis research seeks to develop a general method based on distributed source models 

to characterize M-DOF PM-based actuators and optimize their designs to achieve high 

torque-to-weight performance with compact structures. 

 To achieve the above stated objective, a new method that is referred to here as 

distributed multi-level current (DMC) utilizes geometrically defined point sources has 

been developed to model electromagnetic components and phenomena, which include 

PMs, electromagnets (EMs), iron paths and induced eddy current. Unlike existing 

numerical methods (such as FEM, FDM, or MLM) which solve for the magnetic fields 

from Maxwell’s equations and boundary conditions, the DMC-based method develops 

closed-form solutions to the magnetic field and force problems on the basis of 

electromagnetic point currents in a multi-level structure while allowing trade-off between 

computational speed and accuracy.  Since the multi-level currents can be directly defined 

at the geometrically decomposed volumes and surfaces of the components (such as 

electric conductors and magnetic materials) that make up of the electromagnetic system, 

the DMC model has been effectively incorporated in topology optimization to maximize 

the torque-to-weight ratio of an electromechanical actuator. To demonstrate the above 



 xix 

advantages, the DMC optimization has been employed to optimize the several designs 

ranging from conventional single-axis actuators, 2-DOF linear-rotary motors to 3-DOF 

spherical motors.   

The DMC modeling method has been experimentally validated and compared 

against published data. While the DMC model offers an efficient means for the design 

analysis and optimization of electromechanical systems with improved computational 

accuracy and speed, it can be extended to a broad spectrum of emerging and creative 

applications involving electromagnetic systems. 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND AND MOTIVATION 

 

 Electromagnetic actuators are electrically powered devices (that convert magnetic 

energy into mechanical energy) and are widely used for various applications ranging 

from industrial machine drives, robotics, to household appliances. In recent years, the 

growing needs for precision multi-degree of freedom (M-DOF) actuators capable of 

dexterous smooth motions have attracted the attention of many researchers. Based upon 

new topologies (such as planar, rotary-linear and ball-joint-like spherical mechanisms), 

M-DOF actuators are often designed to take advantages of the high coerciveness of rare-

earth permanent magnets (PMs), which are widely available at low cost.  However, the 

modeling and analysis of M-DOF motion in three dimensional (3D) space is often 

difficult because it involves complex geometry, and improving the design through 

optimization processes is also challenging. The modeling and analysis of a single-DOF 

actuators system often rely on either formulated as a lumped-parameter magnetic circuit 

for solving it in closed form or numerically using a commercially  available software. 

The magnetic circuit analysis which yields only first-order accuracy is inadequate for 

analyzing sophisticate system like M-DOF actuators. Also, the magnetic solutions 

computed by numerical methods are often quasi-static in nature, and require relatively 

high computational cost for characterizing material boundary and enclosed space; it is 

inefficient for analyzing the rotor motion which changes in 3D space. 
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 In this research, a distributed multi-level current (DMC) model is developed as an 

alternative method for analyzing M-DOF actuators to improve design efficiency, 

particularly for design optimization. The DMC model, which enables fast computation by 

relocating effective sources, inherits many advantages from the distributed multi-pole 

(DMP) model [1]. As its previous counterpart, the DMC offers intuitive force/torque 

solutions in closed-form. Additionally the current-based description describes the 

electromagnetic source effects (including magnetic material and eddy current) from the 

quantitative definition of Maxwell’s equations. As will be shown, the main drawback of 

such point-wise description (which may lead to erroneous results around their nearby 

points) can be fixed with a fine division of the local sources to guaranty desired accuracy 

of the model. Also, the local source division improves optimization efficiencies with an 

additional accuracy control over the resolution of the domain decomposition. 

 This thesis research has been motivated by an existing electromagnetic spherical 

motor [2] developed at Georgia Tech, which operates the 3-DOF motion in a single ball-

joint-like joint. To overcome difficulties on modeling electromagnetic effects, the DMP 

method has been applied to orientation sensing and control [3] of a spherical motor. 

Although the parametric effects in terms of the pole (stator and rotor) number were 

simulated during initial design, little efforts have been directed towards the design 

optimization of the spherical motor in terms of the overall torque-to-weight ratio. For this 

reason, this thesis research aims at developing a DMC-based topological optimization 

method for maximizing the overall torque-to-weight ratio of electromagnetic actuators 

including a spherical motor. While optimizing with compromising performance 
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specifications, the numbers and rotor/stator pole shapes will be further investigated to 

simplify design complexity and control efforts of the M-DOF actuator.  

 

1.2 REVIEW OF PRIOR AND RELATED WORKS 

 

 Electromagnetic field analyses rely on the classical electromagnetism theory 

represented by Maxwell’s equations. Existing analysis techniques can be categorized into 

analytic and general numerical methods, magnetic circuit, and electromagnetic source 

models; each begins with a review of these methods followed by surveys on 

electromagnetic system, M-DOF actuators and related research topics. 

 

1.2.1 Analytic and magnetic circuit methods 

 Analytic methods solve the governing equations as a boundary value problem to 

obtain solutions in analytical form so that the designed systems can be easily simulated 

and realized with a simple control model. Most analytic methods assume idealized shapes 

to simplify the steps of complex derivation and forms of solutions [4]; the solutions, 

however, generally include a series of space harmonics of non-elementary functions [5] 

to be numerically computed. Also non-ideal fields such as fringing effect and/or flux 

leakage are often necessary to be corrected by additional models [6].  

 The concept of magnetic circuits utilizes ferromagnetic materials analogous to 

electric circuits to form closed flux paths, and models the system with lumped parameter 

elements. In many industrial applications, the magnetic circuit offers simple models 

enabling fast computation for solving the solutions to analyze the system problems. 
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However, its closed flux path, confined by the iron structure, and first-order accuracy are 

inadequate to achieve optimized M-DOF design. 

 

1.2.2 Numerical methods for electromagnetic actuators 

 Numerical methods are commonly utilized to solve electromagnetic fields from 

simple static to dynamic problems using digital computers with high computational 

power. As a general partial differential equation (PDE) solver, these methods solve for 

the magnetic fields from Maxwell’s equations with an appropriate set of boundary 

conditions. Finite element method (FEM) [7] [8] [9] is one of the most general methods 

offering standard analysis routines for solving various engineering problems. While FEM 

is necessary to solve the field of overall design and enclosing space, boundary element 

method (BEM) [10] [11] discretizes only boundaries of source domains. BEM could 

reduce computational loads for some applications, but it becomes inefficient when the 

surface-to-volume ratio ( as coomonly encountered in magnetic actuators) becomes large. 

Finite difference method (FDM) [12] is another method that discretizes and solves the 

governing equations in a straight forward way, but it is difficult to apply boundary 

conditions with complex geometry. Recently adaptive meshes for FEM [13] [14] have 

been applied for improving solution accuracy in the neighborhoods of air-gaps and the 

material boundary where magnetic fields drastically change. Also, meshless methods 

(MLM) [15] [16] similar to FEM but requiring no mesh offer an alternative method for 

accurately controlling the distribution of kernel sources. However, these general PDE 

solvers demand much effort on solving material boundary and enclosing space. Also, 

these methods only yield the field solutions of a specific design assembly at static rotor 
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position, which demands additional computations costs when the effects of small changes 

in a design parameter or rotor position must be analyzed during the process of design 

optimization. 

 

1.2.3 Electromagnetic Source based Magnetic Field Model 

 In classical electromagnetisms, the actuator magnetic field is generated either by 

electric current flow due to the voltage difference or material magnetization. The latter, 

which can be interpreted as electrons circulating around a nucleus, can be modeled by 

means of fictitious magnetic charges (or equivalent current) such as a magnetic dipole 

moment of a small current loop [17]. 

 Craik [18] discussed the pole and dipole (doublet) models based on magnetic 

charges for calculating the magnetic field of simple cylinder shaped magnets. With 

compact and intuitive formulation, these models have been used for analyzing the effects 

of PM on actuators [19] [20]. Kabashima et al. [21] and Henneberger et al. [22] 

illustrated the equivalent magnetizing current (EMC) for modeling the boundary effects 

of magnetic materials and calculate forces. Quantitative definition of EMC has offered a 

unified current description of electromagnetic sources, and is often applied to analyze 

electromagnetic systems involving ferromagnetic materials [23]. 

 Rokhlin and Greengard [24] [25] have developed a fast multi-pole method 

(FMM) to solve large scaled electromagnetic phenomena (like radiation and scattering 

problems). While FMM models an electromagnetic system with clustering electric and 

magnetic poles described by Green’s function and multi-pole expansion, hierarchical 

refinement of meshes and multi-level approximation [26] could dramatically reduce the 
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computational complexity depending on the particle distances. Although it is hard to 

expect high efficiency on a small scaled system (like a magnetic actuator), the clustered 

source description and hierarchical multi-level approximation can be adopted on 

improving the DMC model on this research. 

 At Georgia Tech, Lee and Son [1] introduced a DMP method for deriving a 

magnetic field solution of PM and EM in closed-form. Distributed dipoles, a pair of 

source and sink separated by a distance, are optimally located in PM and EM, and 

efficiently analyze the 3D magnetic field of a spherical motor for its design and control 

problems [3]. The closed-form force equation using DMP models have been developed 

by Lee et al. [27] followed by an image method on the characterization of iron boundary 

[28]. This method can intuitively explain the component-wise effects of magnetic 

actuators with a set of point sources, but its usage to topology optimization is limited 

when shape and magnetic field data of the components are not available. Also, it shows 

several problems on design analyses (such as large errors inside magnetic sources, hard to 

handle general material shape and current induction). This research will extend and 

generalize the DMP model by introducing multi-level approximation of point current 

sources, and apply it to design optimization and analysis of M-DOF actuators. 

 

1.2.4 M-DOF Actuators and Spherical Motors 

 Many industrial and research applications (such as industrial machining tools, 

mobile robots, haptic device, wheel and propeller driving) require M-DOF actuators to 

achieve dexterous and precise motion with a compact size. Many MDOF actuators have 

been designed for extremely fine motion with piezoelectric technology since 3-DOF 
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micro-motion in-parallel mechanism using piezoelectric elements have been presented by 

Lee and Arjunan [70]. 3-axis micro positioners have developed by Erlandsson and Olsson 

[29] using frictional drive of piezoelectric elements and Chang et al. [30] with the aid of 

mechanical motion amplifier. Also, Toyoma et al. [31] and Amano et al. [32] have 

researched on ultrasonic spherical motors, and followed by Mashimo et al. [33] [34] and 

Bo et al. [35]. Although piezoelectric elements allows the advantage of fine motion 

resolution in small size, it has several disadvantages such as low speed output, wear and 

high cost which limit its effectiveness on M-DOF designs.  

 Electromagnetics offers an alternative method to achieve M-DOF design with low 

cost, high speed and reliability. A levitated planar motor with short-stroke moving PM 

was developed by Trumper, Kim and Lang [36] [37] and Compter [38] suggested the 

long stroke type with moving EM. Jansen et al.[39] discussed design and optimization of 

the 6-DOF levitated planar actuator that is capable of large horizontal moving and small 

rotation. Also rotary-linear motor that combines spinning and translational motion along 

a same axis have designed by Krebs et al. [40] and Bolognesi et al. [41]. Many of these 

actuators are simply designed by combinations of actuator designs along each motional 

direction; researches are focused on improving levitation performance of the moving part 

rather than optimizing actuator designs.  

 Spherical motor motivated by realizing 3-DOF motion in a ball-joint-like actuator 

have attracted many researchers. Williams et al. [42] proposed a single–axis induction 

motor with a spherical rotor to allow for speed control by mechanically orienting the axis 

of the rotor with respect to the stator. Three decades later, various forms including 

induction [43] [44], direct current (DC) [45] and stepper [46] motors are developed. 
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Since the work of Lee and Kwan [47] on spherical steppers and the subsequent extension 

to variable reluctance spherical motor (VRSM) which achieves high-resolution motion 

with relative small number of magnets, several different versions of spherical motors 

have been developed.  Among them, Wang et al. [48] [49] developed a similar actuator 

with simple rare-earth PM and coil-arrangement. More recently, Lee et al. [2] have 

developed a spherical wheel motor (SWM) to achieve continuous spinning motion with 

inclination regulation, and a similar design was investigated by Yan et al. [50] [4]. 

Although the main objective of spherical motors that operate 3-DOF motion in a single 

joint has been realized in recent designs, several difficulties still exist such as relatively 

low output performance with large and complex designs.  

  

1.2.5 Optimization of Electromagnetic Actuators 

 The designs of M-DOF actuators have often been accomplished by designers’ 

intuition or motivated by applications. Based on an initial concept and existing design, 

several key geometric or input parameters are optimized to improve performance. These 

optimization processes are usually referred to as shape or parameter optimization, which 

have been widely used to improve specific design features with various objectives such 

as the rotor PM shape [51] and stator iron tooth shape [52] optimization over efficiency 

and cogging force reduction [53]. However, the range of the feasible solution is limited 

since it only handles small numbers of optimization parameters with the designer’s 

intuition and simple geometries.  

 Recently, topology optimization has gained attention in the design of magnetic 

actuators since it can be applied for initial design steps and often makes optimized result 
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beyond designer’s expectation. Topology optimization is originated from structure 

engineering researches. Optimized material distribution (OMD) based on FEM has been 

widely used for designing actuators since Dyck et al. [54] [55] described the ideas based 

on sensitivity analysis and material penalization. Later Labbe and Dehez [56] [57] have 

combined OMD scheme with convexity mapping to improve global convergence of iron 

stator. Some researchers have adopted a level set method to represent clear and flexible 

boundary in topology optimization while minimizing gradual change of material 

mixtures. Okamoto et al. [58] [59] suggested simple on/off method and applied it to 3D 

optimization later. Park et al. [60] and Lim et al. [61] applied a level set-based method to 

optimize the shapes of iron yoke.  

 Generally, topology optimization employs FEM for analyses in most of 

engineering problems. However, material boundary discontinuity tends to yield large 

errors on the design of magnetic actuators while improving accuracy with fine-resolution 

meshes or adaptive meshing in whole design domain will increase computational effort. 

Instead of FEM, the use of DMC models in topology optimization can improve 

computational efficiency in designs since fixed material volume and boundaries are 

represented by point sources. Additionally their field accuracy can be regulated by local 

source division during the optimization process.  

 In this research, DMC based optimization of a spherical motor is investigated to 

improve an existing spherical orientation stage [27] and newly design linear-rotary motor. 

Also, disk-shaped synchronous motor, as a kind of flat electric motors (or axial-flux 

motor), is optimized to achieve higher torque-to-weight ratio and lower vibration [67] 

[68] comparing with a conventional radial-flux PM motor. 
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1.3 PHILOSOPHY OF DISTRIBUTED MULTI-LEVEL CURRENT 

 

Distributed multi-level current 

 On the analysis of actuators, dipoles and magnetizing currents explain material 

boundary conditions with fictitious magnetic charges and current respectively. 

Comparing with general numerical methods (such as FEM), magnetic field can be 

intuitively explained by integrating effects of magnetic sources only along material 

boundary. Instead of using numerical integration along continuous domain, the concept 

of  point electric and magnetizing current sources which can significantly reduce 

computation speed when characterizingof the  magnetic fields and forces using a unified 

current notation.  

 

     (a) CAD model of a linear motor  (b) point sources on decomposed geometry 

Figure 1-1 Schematic illustration of electromagnetic point sources 

 

A general 3D geometry of an electromagnetic actuator (containing PM, EM, and 

iron) can be decomposed into small volumes, and then point currents can be located on 

the geometric center of each volume or surface as shown in Figure 1-1. Since the 

magnetic fields from point sources can be described by multiplying the point source 
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strength to the scalar kernel function, the magnetic field and force equations can be 

written in closed forms. As a simple illustration of computing magnetic field and force, 

the point sources defined by the decomposed volumes (Ωi, Ωj, and Ωk on the rectangular 

PM, iron stator frame and EM) are highlighted in Figure 1-1(b). The magnetic field 

formed on 
kΩ by 

iΩ  and jΩ  becomes ik jkB B ; and the thrust force 
kf  can be simply 

evaluated by multiplication of ( ik jkB B ) and the point current 
kj  located on 

kΩ  using 

the Lorentz force equation.  

The main drawback of using point sources is that their representations of 

electromagnetic material geometry are inaccurate around the region near the source 

position where the magnetic field error becomes large. To minimize such errors, DMP 

models relocate the dipoles inside the material geometry; but it needs an additional 

optimization  using accurate magnetic field distribution determined by another methods. 

To avoid such identification steps, multi-level structured point currents (referred to as 

DMC local sources here), control computational accuracy and speed of the magnetic 

fields with respect to a distance. The local source concepts is illustrated by 4 point 

currents located on decomposed geometries in Figure 1-2; and dotted circles denote the 

boundary where magnetic field error becomes intolerable. To evaluate the magnetic field 

on a far-away space point r, Figure 1-2(a) only uses 4 initial point currents for better 

computational speed. For nearby r in Figure 1-2(b), closely located sources are replaced 

with a set of local sources defined by recursively decomposed source geometry, and 

improve the field accuracy with minimal additional computational efforts. With unlimited 

local source division, the magnetic field can converge to a true solution. However, as 

computational efficiency is important in practical implementation, the number of source 
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decomposition is limited, and scalar function nearby point sources is modified to 

effectively represent field cancellation inside the material geometry. In Chapter 2, the 

magnetic field and force equations of point currents are derived in closed form, and local 

source and its field approximation are  developed to improve computational efficiency. 

 

 

(a)  far away space                    (b) nearby space 

Figure 1-2 DMC local sources for magnetic field computation 

 

Layout optimization by DMC 

 The initial design of a PM-based electromagnetic actuator begins with a specified 

number and shape of EM and PM, which meets a given size specification. This is a 

critical step since it outlines an overall output characteristics of actuator performance. 

However, many designs are based on modifying magnets from existing designs or 

comparing several combinations of magnets. The main reason why initial designs only 

handle limited design cases is mainly related to high computation cost on analyzing 

electromagnetic effects. For the design of a M-DOF actuator, such computational load 

can be significantly increased by multi-dimentional motions.  
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  As shown in Figure 1-3, the DMC model can linearly represent magnetic field and 

force in terms of electromagnetic sources such as electric current or material 

magnetization.  It can be utilized to systematically convert the initial design step into an 

efficient optimization problem. The design problems are simplified with reasonable 

conditions, followed by  formulating a set of linear topology optimization problems for 

various combinations of repetitive PMs and EMs. Then, the net force and/or torque are 

evaluated for each of the linearly optimized designs; and the best combination of PM and 

EM is chosen by an optimized design layout. Here, this optimization strategy is refered to 

as a layout optimization which can be an efficient tool for initial designs of actuators. 

Detailed concept and formulation of the Layout Optimization will be described in 

Chapter 3. 

 

 

Figure 1-3 Linear force in terms of electromagnetic sources 
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1.4 RESEARCH OBJECTIVE 

 

 This research aims at developing a modeling method for design and analyses of a 

3D electromagnetic actuator capable of M-DOF motions in a single joint.  This thesis 

research comprises of three objectives: 

 

 The first is the development of a modeling method to characterize the magnetic 

field and force of an electromagnetic system for the design of electromechanical 

actuators. 

 

 The multi-level source model, referred to here as a DMC model, represents the 

decomposed geometry of electromagnetic materials with a set of point currents in a 

multi-level structure. This method formulates the magnetic field and force of the 

electromagnetic elements  which may be a PM, an EM, iron and/or eddy current. This 

model offers an efficient way to analyze electromagnetic actuators  and an effective basis 

for developing a design optimization model.  

 

 The second is to develop a topology optimization model to maximize the torque-

to-weight ratio of M-DOF electromagnetic actuators based on the geometry-based  

modeling approach of the DMC.  

 

 The DMC model defined at the geometrically decomposed volumes and surfaces 

is used to represenset decomposed rotor design space with PM material density variables, 
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and efficiently incorporated in topology optimization of an electromagnetic actuator to 

maximize torque-to-weight ratio. To avoid expected problems caused by nonlinear 

force/torque equations and constraints, a general topology optimization is converted into 

a number of the linear topology optimizations, and then the optimalities of the linearly 

optimized designs are evaluated by output torque and design compactness during a 

integer programming step. The Layout Optimization covers a broader range of design 

cases combined with geometry-based DMC model, and its efficient computational 

approach facilitates design optimization of a M-DOF actuators. To demonstrate this 

optimization approach, several designs including a spherical motor and a linear-rotary 

motor are illustrated; the layouts of each moving direction are separately optimized, and 

then the combined 3D layouts are optimized to maximize desired output performances.  

 

  The final objective is to experimentally investigate the effectiveness of DMC 

models for electromagnetic actuator related applications, and validate simulated results 

against known solutions or experimental data. 

 

 To validate the DMC model against experimental data, a DMC-based optimized 

motor that has been fabricated and an existing M-DOF actuator are analyzed. To analyze 

these actuators consisting of many similar sized EM, PM and iron, each of these 

components is modeled, and  reassembled in 3D space, the magnetic field and output 

performance of which can be efficiently simulated for different orientations. Several 

researches related electromagnetic systems are used to demonstrate and validate the 

effectiveness of the DMC models. 
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1.5 OUTLINE AND ORGANIZATION OF THESIS 

 

 The remainder of the dissertation is outlined as follows. 

 Chapter 2 starts with a brief review of general electromagnetic equations in the 

view of electromagnetic current sources, upon which the DMC model is developed. The 

DMC model that represents the decomposed geometry of electromagnetic material as 

point current sources is derived for describing the magnetic field and force in closed form. 

Also, local source approximations are described using multi-level structure and local field 

correction, which improve the accuracy around point sources. For magnetic material and 

eddy current, a detailed formulation is described in terms of DMC model. Finally, several 

examples modeled by the DMC are illustrated, and validated against available analytic 

solution or published experimental data. 

 Chapter 3 develops the design optimization of electromagnetic actuators based on 

DMC models, referred to here layout optimization. To avoid non-linearity and local 

convergence during design optimization, this chapter starts with schematic illustration of 

the layout optimization consisting of linear topology and integer programming. To 

formulate linear optimization problems for each combination of EM and PM poles, 

desired current inputs of an EM is described, and then DMC model is used to 

topologically optimize design space with PMs. In the last part of this chapter, two 

examples are presented to illustrate the DMC model for optimizing 1-DOF rotary motor 

and 2-DOF orientation stage, the results of which are subsequently used to optimize 3-

DOF spherical motor design in the following chapters.  
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 Chapter 4 illustrates the DMC optimization applications  for designing three 

electromagnetic actuators; spherical, linear-rotary and disk-shaped synchronous motors. 

On the spherical motor design, a ball-joint-like 3-DOF motor is optimized based on an 

existing design to improve the output torque and  design compactness. To optimize 

tubular-shaped linear-rotary motor, 2D designs for linear and spinning motions are 

separately optimized, and then the design layouts are further optimized in 3D. Finally, 

single-axis disk-shaped synchronous motors are optimized for small and large sizes using 

3-phase electric current inputs.  

 In the Chapter 5, simulated results of the DMC models for a fabricated DSSM, 

spherical motor, magnet-car and iron PMLSM are validated against experimental results. 

As an experimental investigation of the DMC model, one of optimized DSSM designs is 

fabricated for validating the optimized design. To validate the DMC model for analyzing 

of the M-DOF actuators, analytical results of an existing 3-DOF spherical orientation 

stage are compared against experimental data. Finally, the DMC model is used to analyze 

a magnet car moving on bridge iron and identify design parameters of ironless PMLSM, 

which are validated against available experimental data.  

 Finally, Chapter 6 presents the conclusions and contributions of this thesis and 

offers recommendations of future researches on DMC model and its applications. 



 18 

CHAPTER 2 

DISTRIBUTED CURRENT-BASED MAGNETIC FIELD MODEL 

 

 Motivated by the needs to develop efficient methods for designing general 

electromagnetic actuators consisting of PMs, EMs and ferromagnetic materials, DMC 

model is developed to facilitate magnetic field analysis and improve design optimization. 

This chapter begins with a brief review of general equations from the perspective of 

electromagnetic current sources to provide the subsequent derivation of the closed-form 

magnetic field/force equations which are formulated on the basis of point current sources 

representing decomposed electromagnetic materials. To improve the accuracy around the 

point sources, the methods of local source approximation and field correction based on 

multi-level structure are described next. Finally, electromagnetic components that include 

PM, EM, iron and eddy current commonly used in actuators are characterized using 

DMC models as illustrative examples, which have been validated by comparing against 

known solutions or published experimental data. 

 

2.1 ELECTROMAGNETIC EQUATIONS FOR ACTUATORS 

 

The following assumptions are made in developing the electromagnetic field model: 

(1) The electromagnetic materials are isotropic and homogeneous. This assumption 

enables the macroscopic continuum approximation of electromagnetic field described 

by following continuity equations: 
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0

0 and 



   B E     (2.1 a,b) 

where B is magnetic flux density (or magnetic field); E is the electric field; 
0 is the 

permittivity of free space; and  is the electric charge density. 

(2) The magnetic material is soft or operates within a linear region with negligible 

hysteresis effects. This assumption implies that the relation between magnetic flux 

density B and magnetic field intensity H of the magnetic material is linear with a 

constant  permeability  : 

B H      (2.2) 

(3) The electric conductors obey Ohm’s law: 

J E      (2.3) 

where J is the electric current density; E is the electric field; and   is the bulk 

electrical conductivity. 

(4) The operating frequencies are low enough and/or actuator size is relatively small 

to satisfy magneto quasi-static (MQS) conditions, which enables to neglect the effects 

of displacement current D. Haus and Melcher [62] have described a valid condition 

for MQS approximation by 82 1/ 3 10fL     in terms of operating frequency 

f, actuator characteristic length L, material permittivity  , and permeability  . 

Considering an actuator (L=0.01m) as an example, the electromagnetic field analysis 

can be simplified by the MQS approximation for operating up to 610f Hz  (since it 

satisfies the condition
4 82 10 3 10   . 

In short, the electromagnetic actuator analysis will be based on linear electric and 

magnetic material properties and MQS condition.  
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2.1.1 Electromagnetic Sources 

 An electromagnetic field is generated in space due to the electric current flowing 

into  a conductor and/or due to the boundary effect of magnetic material.  For the purpose 

of analyzing an actuator, these electric current and boundary effect are referred to here as 

electromagnetic sources which are broadly categorized into four types as illustrated in Fig. 

2-1 where the displacement current effect is excluded because of the MQS 

approximation: 

 free electric current, Jc  

 eddy (or induced) current, Je  

 equivalent magnetizing current on PM, Kp  

 equivalent magnetic material current, Km 

    

(a) Electric and eddy current              (b) PM                          (c) Magnetic material 

Figure 2-1 Electromagnetic sources 

 

 As shown above, the surface current density K represents a conceptual 

magnetizing current for explaining the boundary effect of a magnetic material, whereas 

the volume current density J denotes an actual flowing electric current through a 
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conductor.  An input electric current that flows along an EM coil winding can be directly 

converted into Jc.  Similarly, Kp of a PM is determined from the cross-product of the 

surface normal vector n and constant magnetization Mp with respect to air magnetization 

Mair=0:  

( )p air p  K n M M      (2.4) 

or  

p p  K n M      (2.5) 

Unlike an EM or a PM, the material magnetizing current Km and the eddy current Je 

depend on an existing and a time-varying electromagnetic field respectively The 

boundary condition of the magnetic material (described in APPENDIX A), which defines 

Km, is given by  

( ) ( ) ( )e

m i i i i i i      K r B r t n t    (2.6) 

where n and t are unit surface normal vector n and tangent vector t; 

0

2
i

 


  
 

 

 
  

 
for two different magnetic permeability  and ; and ( )e

iB r  denotes 

an external flux density on the boundary surface ir . Also, Faraday’s law (detailed 

descriptions are in following section) describes Je in terms of the vector potential A: 

e
t




 


A
J      (2.7) 

B A      (2.8) 

Once all the electromagnetic sources are represented in the form of current 

density, the magnetic field and force can be directly formulated by the Biot-Savart law 
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and the Lorentz force equation. The governing equations using the above defined sources 

are described on the next sections based on Maxwell’s equations.   

 

2.1.2 Governing Equations of Electromagnetic Field 

 In classical electromagnetism, Maxwell’s equations describe the magnetic flux 

density B, magnetic field intensity H, and electric field E in terms of electric magnetic 

material effects including electric current density J, material magnetization M, and 

electric displacements D: 

t


  



D
H J       (2.9) 

0 where ( )
t




    


B
E B H M     (2.10a,b) 

To find an explicit representation for the eddy current Je, equations (2.3) and (2.8), along 

with Coulomb gauge 0 A , are substituted into (2.10a), which becomes  

 where  and .ec e c
t

  


     


JJ J
A

J J  (2.11) 

 From (2.8b), 
0( )   B H M  where  H J  since the 2nd term on 

the RHS of (2.9) is neglected for the MQS condition and  n M K  on the material 

boundary, the magnetic flux density can be expressed in terms of a volume current 

density source and a surface current density source, J= Jc+ Je and K= Kp+Km, 

respectively: 

0 B J ,  
0 n B K      (2.12a,b) 

Using the two fundamental formulations of magneto-statics that specify the divergence 

and the curl of B in (2.1a) and (2.12) respectively, the effects of the sources can be 

formulated in terms of the vector magnetic potential A in (2.8), the solution to which can 

be shown to have the integral form: 
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0 ( ') ( ')
( )

4
dV dS

R R



  

 
  

 
 

J r K r
A r     (2.13) 

where   denotes electric conductor;   is the boundary surface of magnetic material; 'r  

and r represent electromagnetic source position and evaluation point; and 'R  r r . 

Using (2.8) and (2.13), the flux density B can be derived leading to the Biot-Savart Law: 

0

3 3

( ') ( ') ( ') ( ')
( )

4
dV dS

R R



  

    
  

 
 

J r r r K r r r
B r    (2.14) 

 

2.1.3 Magnetic Force and Torque Equation 

 For the electromagnetic sources (J and K), the MQS magnetic force can be 

directly computed by the Lorentz force equation:  

( ) ( ) ( ) ( )m m m mdV dS
 

    F J r B r K r B r     (2.15) 

where 
mr  denotes the source position in moving parts; B is flux density formed by  

stationary parts. Also for a rotational center 
0r , torque can be computed in a similar way: 

( ) ( ) ( ) ( ) ( ) ( )m o m m m o m mdV dS
 

        T r r J r B r r r K r B r   (2.16) 

 

 
2.2 DISTRIBUTED MULTI-LEVEL CURRENT MODEL 

 

Consider an elemental current source (volume Vi and boundary surface Si) with 

constant volume current density Ji  and surface current density Ki, where the subscript “i” 

denotes the ith element in the source domain as shown in Figure 2-2.  In the following 

formulation, the space point r being evaluated is assumed to be far from the geometric 

center 
ir  and the source point 

ir of the ith element; i i i r r r r  where ,  and i ir r r are 

the position vectors illustrated in Fig. 2-2. 
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Figure 2-2 Schematic of a source element i 

For uniform Ji and Ki, the integrands of (2.13) becomes of 1/ ir r  which can be treated 

as a function of ir ; it can be approximated by a Tailor series expansion about ir  with 

higher order terms neglected: 

2

( )1 1 i i i

i i iR R

 
 



e r r

r r
     (2.17) 

where 
i iR  r r and ( ) /i i iR e r r .  Since the integration of the 2nd term on the RHS 

of (2.17) approaches zero as assumed earlier, the vector potential (2.13) is simplified to 

0( ) ( ) where ( )
4

i i a i a i

i

f R f R
R




 A r j     (2.18a,b) 

and substituting (2.18a) into (2.8) gives magnetic field of a point source i: 

0

2

1
( ) ( ) where ( ) ( )

4
i i i b i b i a i

i i

f R f R f R
R R




   B r j e    (2.19a,b) 

where 
i i i i iV S j J K ; fb and fa are the scalar kernel functions of the vector potential and 

magnetic field of a point source. The magnetic field of a source element can be intuitively 

characterized by the product of the current density (Ji or Ki at the geometric center 
ir ) 

and element size (Vi or Si) using (2-18a) and (2-19a), but they tend to be erroneous 

around the source element (as illustrated in Figure 2-3 where the magnetic field is 

compared to analytical solutions for a point source) because of the following two facts.  
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1)  A point source fails to accurately represent the actual geometry in nearby space.  

2)  The magnetic field inside the geometry element linearly decreases as the evaluation 

point approaches the geometric center where the magnetic field tends to be cancelled 

out as opposed to rapidly increasing modeled by (2.19a). 

 

 

Figure 2-3 Magnetic field errors around the ith source element  

 

2.2.1 Multi-level local source approximation 

To improve the accuracy of the point source model, the above problems are 

handled with the method of recursive local source divisions over the element geometry 

and modification of the scalar kernel functions, (2.18b) and (2.19b), inside the element. 

 

Recursive local source divisions 

The source domain is recursively divided into a number of local point sources to 

reduce i ir r ; in other words, the source geometry can be more accurately represented in 

its nearby space when i i i r r r r  remains valid. As schematically illustrated in 

Figure 2-4, the local sources have multi-level structures, which can be effectively 

represented by octree (or quadtree) data structure.  
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Figure 2-4 Recursively defined local sources and its octree representation 

 

The domain shape can be stored in various ways like a bounding box in certain 

local coordinates. In this description, a bounding sphere that encloses the element domain 

with the minimum radius bi is used. When the distance to the evaluating point is less than 

a dividing radius di, the element domain is equally split into ki volumes (or surfaces) until 

a division Level l reaches the maximum division Level li. During the source division 

process, di and bi of the divided domain decrease as its size shrinks, the values of which 

are determined by the geometric sequences: 

( , , ) ( 1, , )

( , , ) ( 1, , )

/ 2,

/ 2   for 1, , ; 1, ,

p p

p p

l k k l k

i i

l k k l k

i i i i

d d

b b k k l l







  
   (2.20) 

where the superscript (l,kp,k) denotes (division level, parent index at Level l-1, local 

source index in that level); the “” symbol in the superscript means a parent index, i.e. 

k=1,···,ki; ki represents the element division number for each level (such as 8 for volume 

and 4 for surface element in Figure 2-4); and k is a divided element of kp (the parent 

element in the previous level being divided).  Also, if all ji at the lth Level can be 
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determined by the current inputs to EMs, a PM design configuration, or specified iron 

boundary conditions, ji at other levels are determined by following geometric sequences:  

( 1, , ) ( , , )

1

( , , ) ( 1, , )

(Upward)            for 1, ,1

(Downward)   /    for 1, , .

i

p p

p p

k
l k l k k

i i

k

l k k l k

i i i i

l l

k l l l







  

  

j j

j j

   (2.21) 

When the lth source division level reaches its maximum level li, the space point r being 

evaluated can be located inside of the bounding radius bi.  

 

Modification of scalar kernel functions  

To improve the accuracy of point sources inside an element, the kernel functions 

fb and fa in (2.19b) and (2.18b) are modified using linear and quadratic polynomials based 

on the analytical flux density pattern in Figure 2-3. With the following two conditions, 

the kernel functions are respectively modified into fB and fA in equations (2.22) and 

(2.23): 

1) Bi
(*)(Ri

(*)) and Ai
(*)(Ri

(*)) are continuous at Ri
(*)= bi

(*) where the superscript (*) 

substitutes (l,kp,k) for simplicity and that 

  

2) the magnetic field at the source point is zero, Bi
(*) (0)=0,  

 

( ) ( ) ( )

(*) 0 ( ) 2 ( ) 2
( ) ( )

( ) 3

1/ if  

3( ) ( )
4 if  

2( )

i i i

A i i
i i

i

R b R

f b R
b R

b





  

 
 



 


  


    (2.22) 

( ) 2 ( ) ( )

(*) 0

( ) ( ) 3 ( ) ( )

1/ ( )  
 

4 / ( )  

i i i

B

i i i i

R if b R
f

R b if b R





  

   

 
 


    (2.23) 
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The vector potential and magnetic field of a local point source can then be represented in 

terms of the modified kernel functions as shown in Figure 2-5, by 

(*) (*) (*)( )i A ifA r j      (2.24) 

(*) (*) (*) (*)( )i i i Bf B r j e      (2.25) 

where (*) (*) (*)( ) /i i iR e r r  is a unit direction vector from the local source. 

 

Figure 2-5 Modified scalar kernel functions at l=li 

 

Finding active local sources  

In order to characterize magnetic field efficiently, a different subset Gi of the local 

sources are chosen by a distance to the evaluating point r and the dividing radius di
(*).  

One of the simply ways to determine an active subset Gi is to utilize a recursive function 

subsetG with three arguments (the evaluating point r, local source data structure node, 

and active subset information G) to find the minimal number of local sources based on 

the multi-level data structure.  In Figure 2.6, the node is a structured data related to the 

local source (such as ri
(*), ji

(*), di
(*), bi

(*), l(*), li and ki) being evaluated. The process is 

illustrated as shown in Figure 2-6: 

 The initial subsetG begins with desired space point r, node at Level l =0, and empty 

G.   
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 At each execution, the function subsetG first checks for the conditions whether the 

distance to r is larger than division radius di
(*) (| r- ri

(*)| > di
(*)) or reaches to the final 

division level (Level l(*) == li).  

 If it is true, then the subroutine add(G, node) add the node to G.  

 If not, the subroutine nextnode(node, k) for 1, , ik k  searches for the linked 

local source (denoted as childnode) using the data structure in Figure 2-4, and 

then recursively calls subsetG to keep adding the active local sources to the next 

level, Level l(*)+1.  

 

Figure 2-6 Recursive function to find active local sources 

 

Using the local point source equations (2.24) and (2.25), the evaluation of Bi and Ai 

becomes a simple summation of (*)

iB and (*)

iA of local sources that belong to the active 

subset Gi: 
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         (*) (*) (*)

(*) (*)

( ) ( )
i i

i i A i

G G

f
 

  A r A r j     (2.26) 

          (*) (*) (*) (*)

(*) (*)

( ) ( )
i i

i i i i B

G G

f
 

   B r B r j e     (2.27) 

With the point sources defined by the downward relation in (2.21), the equations of Bi 

and Ai can be written in matrix forms with only ji at Level 0: 

(*) (*)

(*)

( ) A ( )  where A ( )
i

i i i i A i

G

f s


  A r r j r      (2.26) 

          (*) (*) (*)

(*)

( ) [ ( )]  where ( )
i

i i i i i B i

G

f s



   B r B r j B r e   (2.27) 

where  
3 2

3 1

2 1

0

0

0

a a

skew a a

a a

 
 


 
  

a  for 1 2 3[   ]Ta a aa ; and (*)

is  is scalar  source strength 

defined by the relative ratio of source volumes or areas: 

( , , ) ( 1, , ) (0,1,1)/  for 1, , ,  1 p pl k k l k

i i i i is s k l l s


     (2.28) 

 

The general steps to characterize magnetic field of electro-magnetic components 

using the DMC are as follows. 

Step 1: Decompose an electromagnetic component Ωa into a volume (EM) or a surface 

(PM, iron) element. 

 

Step 2:  Determine the DMC model for all decomposed elements. For the ith element, the 

detailed procedures are given by  

 1) choose li and ki,  

 2) choose or find the DMC geometric values (bi, di, ir ) from (2.20), and  

 3) find the DMC source ji at Level l, and other level values from (2.21). 
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Step 3:  Evaluate the vector potential A or magnetic field B for the evaluation point r by 

the sum of the iA and iB of all elements in Ωa: 

( ) ( )
a

i

i

A r A r      (2.29) 

( ) ( )
a

i

i

B r B r      (2.30) 

 

2.2.2 DMC force and torque equations 

The MQS electromagnetic force Fj and torque Tj acting on the jth element of the 

DMC model can be written by the Lorentz force law: 

( )j j j F j B r       (2.33) 

0( )j j j  T r r F       (2.34) 

where B is external magnetic field; jj and jr  are the DMC source and the position of jth 

element at Level 0; and 
0r  denotes the rotational center of the system. The net force F 

and torque T acting on the electromagnetic component Ωb is the sum of distributed forces 

and torques: 

( ) ,  ( )
b b

j j

j j 

  F r F T r T                            (2.35 a,b)  

 

2.3 DMC MODEL FOR MAGNETIC MATERIALS 

 

 A DMC iron model is formulated for characterizing the effects caused by the 

magnetic material boundary on the electromagnetic field. Based on the decomposed 

surface on the material boundary, a DMC iron model can be formulated to solve for 
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unknown iron sources. After separating external magnetic field ( )e

iB r  into the effects 

caused by other iron elements ( )j iB r  and external sources e

irB  as shown in Fig 2-7, the 

boundary conditions (A.12) and (A.13) can be represented in the DMC form:  

0i i n j      (2.36) 

  * *

1
[ ( )]T T e

i i i i i j i j j i i

ji iS 


  rT n T j T B r T j TB     (2.37) 

where Si i ij K  from the DMC definition; coordinate transform  1 2 
T

i i iT t t  is used for 

*i i ij T j . For n chosen iron elements, 2n linear equations can be formulated using (2.37)  

in matrix form: 

  * e D S j b      (2.38) 

where  1

1 1( , , ) ,  ( ) ,  ( , , ),T

n i i i i nDiag S Diag 


  D T d d T d n T T T  

1 1 * 1* *,  ,  ,  [ ( )] , ,[ ( )] ,  , , ,
T T

T T T T T

n i i n i n 
          S T s s T s B r B r j j j  

   1 , , ,
T

T T
e e

e n
 
  r rb T B B  and ( )Diag  represents a block diagonal matrix. 

 

 

Figure 2-7 Magnetic material effects explained by DMC surface elements 
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  With the DMC formulation for a magnetic material boundary, the overall 

computational load is much reduced by an order of (2N)2 where N is the number of 

decomposed surface on the boundary. After solving (2.38) for j*, the DMC iron model in 

global coordinates is determined by *

T

i i ij T j . In order to improve accuracy, modifying 

the resolution of geometric decomposition for every system configuration can be a 

tedious job. Alternatively, an element can be replaced with local sources at Level l using  

multi-level hierarchy. Since iron magnetization is highly dependent to external sources, 

one of the simple rules can be applied to choose a proper level l in terms of division 

radius di to the closest external source point re for geometric center of the iron element
ir : 

2min:  log
| |

i

l
e i

d
l 

r r
    (2.39) 

In some application involving small or thin iron components, the effects caused 

by iron saturation need to be included in the model. Generally, the permeability of a 

ferromagnetic material is described by a nonlinear B-H curve (or hysteresis loop). To 

minimize computational load, the ferromagnetic material is assumed mainly operating 

near the linear region (with constant µi). In the case of a thin ferromagnetic material, 

iterative steps are conducted during analysis while treating nonlinear regions as saturated 

state (µsati=0) which can be represented by: 

 max max max  if   i i i i i ij j j j j j     (2.40) 

where max maxi i ij S B  from (A.11); 
maxB is upper bound of magnetic field strength in the 

linear region; ji denotes the magnitude of ji. During the iteration, whenever new 

saturation points are found, the effective strength ji of the points is set as the maximum 

value (2.38), and then solved for other sources again. 
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2.4 DMC MODEL FOR EDDY CURRENT FORMULATION 

 

The characterization of eddy current or current induction effects is often essential 

when designing electric generators, induction motors, or evaluating energy efficiency on 

electromagnetic actuators. Based on (2.7), a DMC model for eddy current is formulated 

using DMC volume elements, where the unknown eddy current can be accounted for by 

the decomposed volumes of the electric conductor. For an electric conductor decomposed 

into N volume segments, consider the ith volume segment as shown on Figure 2-8 where 

the magnetic vector potentials of the known electromagnetic sources and the unknown 

eddy current on the jth volume on the geometric center 
ir  is separately represented by 

( )ext iA r  and ( )j iA r ; then, (2.7) can be written as  

1

( ) ( )
N

Ei i i ext i j i

j

V
t




 
   

  
j A r A r      (2.41) 

where 
i  and 

iV  are the electrical conductivity and volume of the ith segment. 

 

Figure 2-8 Eddy current formulation using DMC volume elements 
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Since the magnetic vector potential is parallel to the direction of current sources, 

(2.41) can be separately written by decoupled equations for orthonormal vectors. Also, 

using (2.28), it can be further explicitly represented by 

1 1

A ( ) ( )
A ( )

N N
Ej d j iEi d ext i d

j i Ej d

j ji it V t t 

       
             

 
j e rj e A r e

r j e   (2.42) 

which has 3N unknown eddy current elements and 3N ODEs for 1, ,i N and ed=ex, ey, 

or ez. For unknown eddy currents along ed, (2.42) can be written in matrix form: 

ext   AJ PJ AJ A       (2.43) 

where 1[ ,  , ]T

E d EN d  J j e j e ; 
1[A , ,A ]NA  and 

1A [A ( ), ,A ( )]T

j j j N r r ; 

 
1

1 1, , N Ndiag V V 


P ;
1[ ( ) , , ( ) ]T

ext ext d ext N d  A A r e A r e ; ( )diag v  represents a 

diagonal matrix formed by vector v. The matrix A defined by the geometric relation 

between decomposed volumes of electric conductors is invertible and symmetric; 

A and
extA depend on the relative motion of the conductors and other sources. Generally, 

on the eddy current analysis of an actuator, the motion equations of a moving part can be 

additionally involved, which should be simultaneously solved with (2.43).  

 

2.5 ILLUSTRATIVE EXAMPLES AND VALIDATION 

 

For illustration, the DMC models are derived for the following four examples: 

1) DMC volume and surface elements 

2) Cylindrical PM and EM 

3) Iron plate magnetized by a cylindrical PM 

4) Eddy current induced by EMs 



 36 

For all the cases, the error E evaluated at n different positions is defined by 

1 1

| | / | |
n n

i i i

i i

E b a a
 

     (2.44) 

where ib  is the data evaluated by the DMC model; and ia  represents a known value (that 

could be an exact solution or data obtained experimentally) as a basis for comparison. 

Also, the time required for computing the results using a PC (with Quad Core 2.80GHz 

CPU and 4G RAM) is compared against several known methods. Detailed test setups and 

results are discussed in each of following subsection. 

 

2.5.1 Volume and surface elements 

 The DMC volume and surface element of a cubic volume source and a square 

surface source as shown in Figure 2-9 are simulated to illustrate trade-off between 

computational speed and accuracy using the local source division method,, where ey 

denotes y-directional unit vector; J and K represent the magnitude of volume and surface 

current density; and j, b and d are the DMC data at Level 0. 

                                                        

,  = 3 / 2, 2 , 1V b L d b L mm  j J  ,  = 2 / 2, 3 , 1S b L d b L mm  j K  

(a) Volume element                (b) Surface element 

Figure 2-9 Geometry and parameters of volume and surface sources 
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Figure 2-10 compares the effects of the maximum division level li on the 

magnetic field Bx and the vector potential Ay  of the DMC model against the exact 

solution using (2.14) and (2.13) over the defined 3D geometry of source domains. For 

each case, the magnetic field and vector potential Bx and Ay are evaluated at 41 data 

points on the z-axis where other directional components become zero; the error and 

computation time are compared in Table 2-1.  

 

   

   (a)  Bx (volume)                                        (b) Ay (volume) 

   

   (c) Bx (surface)                                           (d) Ay (surface) 

Figure 2-10 Comparison computed results by different li and exact solution  

 

 



 38 

Table 2-1 Computation time and error for the volume and surface elements 

 
Maximum  

division level (li) 

Error (%) Computation Time* (sec) 

Bx Ay Bx Ay 

Volume 

Element 

 

0 38.58 12.96 0.0081 0.0054 

2 1.585 0.4096 0.0138 0.0108 

4 0.2289 0.0399 0.0210 0.0171 

Exact solution as basis for comparison: 2005.0 58.22 

Surface 

element 

 

0 57.691 13.818 0.0077 0.0128 

3 3.745 0.921 0.0139 0.0184 

5 1.239 0.635 0.0153 0.0197 

Exact solution as basis for comparison: 6.9793 1.3943 

* Average computation time for 200 repetitive simulations 

 

As the closed-form DMC field and potential equations support fast point-wise 

summation for all the cases as opposed to the exact solutions which are volume or surface 

integrals that require tedious computation. In contrast to the case without local source 

division (li=0) where Bx and Ay exhibit large errors within the source domains, and it 

clearly weakens the magnetic field inside large bounding radius using the modified kernel 

functions (2-23) and (2-22), the DMC-computed Bx and Ay closely match the exact 

solutions as the maximum division level li increases from 2 to 5; and within 1.25% 

difference with li=4 and 5. The maximum division level is a trade-off between desired 

computational accuracy and speed.  In this research, the different maximum division 

levels, 2,3,4il  for DMC volume and 3,4,5il   for DMC surface, will be chosen. 

 

2.5.2 Cylindrical PM and EM 

For validation, the DMC models are derived for cylindrical PM and EM 

(commonly used in designing electromagnetic actuators).  The simulated magnetic field 

and force using the DMC models are compared against with the results computed from 
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known solutions. 

The geometrical properties of the PM and EM used in the simulation are shown in 

Figure 2-11 where l and a are the length and outer radius respectively; and c is core 

radius of the EM. In local cylindrical coordinates (with the origin assigned at their 

respective geometric center), the magnetization vector of PM and current density of EM 

are defined by 
0 zMM e  and 

0J J e  where e  and 
ze  represent unit vector along   

and z direction; M0 is PM magnetization;  0 0 /J NI l a c     is the electric current 

density defined by number of turns N and input current 
0I .  

 

        

(a) Cylindrical PM   (b) Cylindrical EM 

Figure 2-11 Geometry of cylindrical PM and EM 

 

The DMC modeling starts with decomposing the geometry of PM and EM into 

source elements. We prefer to approximate the source domain with hexahedron volume 

and quadrilateral surface elements. For a constant z-magnetization, the surface current 

only exists on the side wall of the PM where rectangular surfaces can be used; and the 

EM is directly decomposed with hexahedron volumes as shown in Figure 2-12. 
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(a) Surface sources in a cylindrical PM (b) Volume source in a cylindrical EM 

Figure 2-12 Decomposed geometries of cylindrical PM and EM 

 

After decomposing source domain into a number of elements, the DMC sources of each 

element are determined by (2.45) and (2.46) and the center of hexahedron volume and 

quadrilateral surface can be calculated using the tetrahedron and triangle decomposition: 

0(PM) ( )   i i i i i iS M S     j n M M e    (2.45) 

0(EM) i iJ V j e    (2.46) 

First, the magnetic fields of the DMC PM and EM models are validated of against those 

computed using DMP model and the exact solution (2.14). The parametric values used in 

this simulation are summarized in Table 2-2 where nc and np denote the number of DMC 

at Level 0 and dipoles. For each model, Bx and Bz are evaluated at 102 data points above 

the top (y=0, z=l/2+ε) and side surfaces (x=a+ε, y=0). Figure 2-13 and 2-14 compare the 

computed Bx and Bz, and Table 2-3 compares the error against the solution and the 

required computational time for each model.   

For all the cases, the DMC-based magnetic fields agree well with the solutions. 

Due to the modified dipole distance, some errors around side surface were found in the 

DMP model.  Both the DMC and DMP models support fast computation with the field 
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equations in closed form; but the DMC model takes a bit more computation time than the 

DMP model due to the addition of local sources.  

 

Table 2-2 Simulation parameters for the magnetic field validation 

 
Geometry (mm) DMC DMP 

l(mm) 2a/l c/a ε(mm) nc li di/ bi np n K 

PM 12.77 1 0 0.5 100 4 3 19 6 3 

EM 9.53 1 0.5 0.5 112 3 2 73 12 6 

* µ0M0=1T, 221 turns with 1A Current 
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   (c) Bx above side surface   (d) Bz above side surface 

Figure 2-13 Computed magnetic fields nearby the cylindrical PM 
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   (c) Bx above side surface   (d) Bz above side surface 

Figure 2-14 Computed magnetic fields nearby the cylindrical EM 

 

Table 2-3 Computation time and error for the PM and EM 

 
Error (%) Computation Time* 

(sec) Bx Bz 

PM DMC 2.653 5.842 0.0492 

DMP 15.61 28.93 0.0186 

Solution 0 0 5.9045 

EM DMC 2.044 4.402 0.0465 

DMP 18.65 26.16 0.0165 

Solution 0 0 6.6275 

* Average computation time for 100 simulations of DMC and DMP model 
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Next, the electromagnetic force between the cylindrical PM and EM is validated 

numerically by comparing against results computed using DMP models and published 

experimental data [63]. Two test setups (denoted by Large and Small) are shown in 

Figure 2-15, and the simulation parameters for DMC and DMP model are summarized in 

Table 2-4. For each setup, the computed axial forces are compared against experimental 

forces in Figure 2-16. Also for each method, the error (relative to the experimental force) 

and required time to compute 52 data points are compared in Table 2-5. 

 

 

 Size (mm) Large Small 

EM 

l1 

2a1 

2c1 

1.524 

3.962 

3.048 

1.524 

3.175 

1.524 

PM 
l2 

2a2 

1.6 

2.998 

0.813 

1.6 

EM coil: 280 turns of #47 wire, I=0.05A, 

Samarium Cobalt PM: µ0M0=1.02T 

Figure 2-15 Experimental setup and parameters [63] 

 

Table 2-4 Simulation parameters for the force validation 

 
DMC DMP [27] 

nc li di/ bi np N K 

Large 
PM 114 4 3 13 6 2 

EM 72 3 2 97 12 8 

Small 
PM 117 4 3 13 6 2 

EM 80 3 2 25 8 3 

 

As shown in Figure 2-16, the DMC force computation agrees well with large 

experimental setup while the DMP shows better accuracy for the small test case. The 

DMC force is always larger than DMP force, and closely agrees with the computation 
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results by other numerical method in [1]. Comparing with the DMP model, the DMC 

model requires a bit more computational effort. 
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   (c) tangential force (S)    (d) axial force (S) 

Figure 2-16 Computed force and experimental data of cylindrical EM and PM 

 

Table 2-5 Computation time and error for the force validation 

 
Error (%) Computation Time* 

(sec) Tangential Axial 

Large 
DMC 7.65 3.30 1.989 

DMP 15.94 4.38 0.2904 

Small 
DMC 14.79 17.59 2.381 

DMP 7.39 4.94 0.1404 

* Average computation time for 20 simulations of DMC and DMP model 
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2.5.3 Iron plate and cylindrical PM 

 The DMC iron model is applied to analyze an iron plate magnetized by a 

cylindrical PM, and validated against known data. Figure 2-17 shows two test setups 

(with different gaps and thicknesses) along with parametric valued used for validating the  

DMC iron model magnetized by a cylindrical PM.  

 The gap setup compares the attraction force to test the magnetization effects (without 

saturation) for different z distances between the PM and thick steel plate. 

 The thickness setup compares the adhesion force to investigate the magnetization 

effects (with saturation) on steel-plate thickness.  

Figure 2-18 compares the simulated forces of the DMC models to published experimental 

data [65], FEA, and results obtained using an image method with DMP [28]. A time 

comparison for different numerical methods is given in Table 2-6.  

 

 

 gap 
thick-

ness 

DMC 

(nc, li, di/ bi) 

PM (mm) l =12.7, a=6.35 100,4, 3 

steel (mm) 
w=100, h=100 

1152*,4, 3 
d=25.4 z=0 

NdFeB PM: µ0M0=1.32T,  

1006/1008 steel: µr= 2500 and Bmax=1.2T 

*numbers of DMC iron elements to solve (2.38) 

Figure 2-17 Iron test setup and parameters 

 

For each case, the force computed by the DMC iron model very closely agrees 

with FEA and experimental data. The image method accurately analyzes the large and 
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thick steel plate in the gap setup with idealized boundary model but fails to explain 

saturation for the thin steel plates.  As shown in Table 2-6, the DMC iron model 

significantly reduces the computational effort as compared to FEA. The DMP-image 

method [28], which exhibit the best computational speed, is only limited to the simple 

and idealized iron shapes such as plain or circular surfaces. The results of the thickness 

test setup in Figure 2-18(b) shows that saturation occurs only for thin iron. The effect 

caused by iron saturation will not be considered in the subsequent chapters for irons with 

sufficiently large thickness. 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

z (mm)

F
o

rc
e

 (
N

)

 

 

DMC

image

FEM

Exp

 
0.5 1 1.5 2 2.5 3

10

20

30

40

50

60

70

d (mm)

F
o

rc
e

 (
N

)

 

 

DMC

image

FEM

Exp

 

   (a) gap test    (b) thickness test 

Figure 2-18 Force comparison between cylindrical PM and iron plate 

 

Table 2-6 Computation time for the iron plate and cylindrical PM 

Method DMC FEM Image 

Computation Time 24.95s 1h 32m 16s 0.47s 

 

2.5.4 Eddy current induced by EMs 

The DMC eddy current model is applied to analyze the levitation of a cylindrical 

aluminum plate by two concentrically located cylindrical EMs.  With oppositely-directed 

sinusoidal current inputs, the eddy current appears on the aluminum plate, and forms a 
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levitation force with the magnetic fields of the EMs.  The schematics in Figure 2-19 

illustrated the design and parameters involved. To validate the effects of the DMC model 

on the eddy current analysis, the simulated transient responses of this coupled 

electromechanical system are compared against measured experimental result [64]. 

  

 

 Size  

(mm) 

DMC 

(nc, li, di/ bi) 

EM1 l, a1, c1 52 

55, 27 

144, 3, 2 

EM2 a2, c2 95, 80 72, 3, 2 

Aluminum lA, aA 3, 65 108, 3, 2 

EM1 and 2 coils:  960 and 576 turns,  

I(t)=I0sin(2πf0t), I0=20A, f0=50Hz 

Aluminum: m=0.107kg,σ=3.55×107(1/Ωm) 

d(t=0)=3.8mm 

Figure 2-19 Eddy current test setup and parameters [64] 

 

After modeling the EMs and aluminum plate with DMC elements, the eddy 

current equations formulated by (2.43) are used to solve equations of motion of the 

aluminum plate along z-axis: 

zmd f mg   (2.47) 

where fz denotes a levitation force computed by (2.29); g is the acceleration of gravity 

(9.8m/s2). In this analysis, we do not consider eddy current on current controlled EMs; 

decomposed volumes of the electric conductor have no relative motion since the 

aluminum plate is single rigid body, which makes  0A  in (2.43). While this simulation 

can be further simplified with axis-symmetric geometry, a 3D analysis is performed to 

validate the general eddy current formulation. 
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The transient response was solved using a stiff ODE solver which took 27 

minutes and 37 seconds for the first 1.5s computation. Figure 2.20 shows the simulation 

result by DMC well matches with the published experimental response, and DMC model 

for eddy current offers efficient ways to analyze time dependent response of an 

electromagnetic actuator.  
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Figure 2-20 Simulated levitation height and measured data 

 

2.6 SUMMARY 

 

 A general DMC modeling method based on multi-level current sources has been 

presented for characterizing electric current and magnetic material for design analysis of 

an electromagnetic actuator. This method, which extends the existing DMP method for 

analyzing general magnetic material effects, provides a direct means to model 

electromagnetic components with electric and magnetizing currents on decomposed 

geometries. Along with closed-form magnetic field and force equations (represented by 

an active multi-level local sources), DMC models has been applied to characterize the 

effects of PM, EM, iron, and eddy current, and verified by comparing other simulated 

results against DMP, FEA, exact solutions or published experimental data. On the 
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development of DMC models for iron, constitutive equations are formulated in terms of 

local point sources that improve the accuracy of solution without geometry refinement.  

 This simple and fast multi-level modeling method, which directly converts the 

geometry and sources of an electromagnetic component into spatial distribution of point 

currents, will be utilized to characterize various electromagnetic actuators in Chapter 5 

including 3-DOF spherical motor. Furthermore, the DMC defined by decomposed 

geometries can offer an efficient way to topologically optimize initial designs of 

electromagnetic actuators; its detail will be given in next chapter.  
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CHAPTER 3 

DMC BASED ACTUATOR LAYOUT OPTIMIZATION 

 

 This Chapter offers an effective optimization method (referred to here as Layout 

Optimization) based on the DMC model to determine the “best or most preferred” design 

of a rotary actuator.  The remainder of this Chapter begins with an overview of Layout 

Optimization. Next, a linear topology is formulated for optimizing the PM layout.  

Finally, the Layout Optimization is illustrated with two 2D examples; 1-DOF rotary 

motor and 2-DOF orientation stage. While the Chapter illustrates the method in the 

context of a rotary actuator, it can be readily extended to other general PM-based 

actuators such as output force optimization of a linear motor. 

  

3.1 OVERVIEW OF LAYOUT OPTIMIZATION 

 

The objective of Layout Optimization is to maximize the torque output of a PM-

based rotary actuator with a predefined EM layout for an optimized PM shapes. Layout 

Optimization offers an efficient way to find the best shape and repetitive patterns of EM 

and PM.  Without loss of generality, the design optimization is simplified with the 

following conditions for clarity of illustrating the concept: 

1) PMs and EMs are equally spaced in repetitive patterns. For a rotary actuator, the 

symmetric properties of the PM/EM arrangement about its rotational center are often 

used to cancel out undesired radial forces that tend to increase friction.   



 51 

2) The axes of the EM cores are radially directed towards the rotor center; in other 

words, they are always perpendicular to the rotor rotation so that the strongest 

magnetic field around the core is utilized. 

3) Eddy current is not considered in optimization. To support this condition, electric 

current inputs (instead of voltage inputs) are used. 

4) Only the rotor PM configurations are topologically optimized for the predefined 

stator EMs (with air-cored windings or slotted non-magnetic core). While the 

optimization is illustrated with designing the rotor PM, it can be easily extended to 

optimizing a stator EM design for a defined rotor PM design. 

 

3.1.1 Topology optimization of a PM actuator 

An objective of topology optimization is to find the best material distribution of a 

design space such that maximizes (or minimizes) objective quantity for specified non-

design space conditions and constraints.  

 

Formulation of topology optimization 

To optimize a rotor PM configuration, the PM magnetizations M of rotor 3D 

design space (decomposed by VN  volumes) are defined by a volume density vector: 

maxMM ρ        (3.1) 

where (1) ( ) ( )[ ]
V

T T T T

i Nρ ρ ρ ρ ; the material density vector of the (i)th PM volume 

( )iρ is defined in (B.2); and maxM  is the maximum magnetization of the rotor PM. For a 

PM actuator with the stator EM in non-design space, a distribution of the rotor PM in the 
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design space is topologically optimized to maximize the weighted sum of the 

electromagnetic torque p  over a specified range of its rotor position pr : 

( )  subjected to | | 1maximize 
T

p i

p


ρ

c τ ρ      (3.2) 

where [   ]T

x y zw w wc ; xw , yw  and zw  denote weight factors for x, y and z directional 

torques respectively; ( )iρ  is subjected to a nonlinear constraint ( )| | 1i ρ . With SN  surface 

elements belonging to the boundary of VN  PM design volumes, the (k)th PM surface 

source ( )kj  can be described by M  (or ρ ) using (2.5), and the torque pτ in (3.2) can be 

represented by the sum of the torque on the ( )kj located at ( )kr : 

( ) ( ) ( )

1

( ) ( )
sN

p k k p k

k

J p


     τ r j B r       (3.3a) 

or a linear matrix form in terms of ( )kj : 

( ) ( ) ( )

1

( ) ( ( ))
sN

p p k p k k

k

J skew skew


 τ r B r j      (3.3b) 

where pB  is the magnetic field formed by a stator EM with an unit current input density; 

and ( )J p  is the EM current input at rotor position pr . Due to the discontinuity in the 1st 

order derivative caused by the absolute value operation, it is difficult to solve (3.2) 

directly for an optimal solution. To remove the absolute value operator, the EM current 

input [ (1) ( ) ( )]T

EM J J p J PJ  is treated as an additional optimization variable: 

( )
,

maximize   subjected to | | 1
EM

T

p i

p


ρ J

c τ ρ      (3.4) 
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But, now (3.4) requires many iterations, and easily converges to local maximums due to 

the nonlinearity caused by the multiplication of ( )kj (depending onρ ) and ( )J p . While 

( )kj depends on the PM density vector ρ , unknown ( )J p depending the rotor position and 

nonlinear constraint ( )| | 1i ρ  mainly exhibit nonlinearity or convergence issue.  

 

3.1.2 Linearization of topology optimization 

To resolve described nonlinearity or local convergence problems, the topology 

optimization will be converted into linear programming using electric current 

specification and alternative linear constraint. Details descriptions are as follows. 

 

Electric input current specification  

Once an electric input current can be predefined before solving an optimization 

problem, then the objective function in (3-4) can be expressed by a linear function over 

the material density vector ρ  using DMC model (described in Chapter 3.2). The 

magnitude of the EM input current becomes the maximum EM input current maxJ  to 

maximize the objective function, and it defines the EM current input in a square wave 

form. The sign of EM input current max( ) /J p J  depends on the relative position p  and 

polarities of the nearby PMs.  

For the electric input current specification, the shapes of the PM and EM are not 

necessary, but the center position of each PM polarity, referred to PM pole position, 

should be known to change the sign of the input current. Figure 3-1 illustrates how the 

electric input current can be specified to increase the x-directional output force xf  for the 
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given cylindrical EMs and PMs. For different EM positions, the EM inputs that increase 

xf  becomes the square wave changing its sign by the polarities of the nearby PMs.  

 

 

Figure 3-1 EM input currents defined by PM pole patterns 

 

Assuming that PM poles are equally spaced in repetitive patterns (as described in 

the beginning of this chapter), different number of PM poles polen  or distance between 

PM poles polel  is used to define a number of PM pole positions; it generates linear 

optimization cases with many different electric input current specifications. polen  and polel  

are effective to define PM pole positions for close and open ended design space 

respectively. In this thesis, the closed and opened ends in the rotor design space are 

defined as follows: 

- Closed design space is axis-symmetric about its rotational axis. Most of 

continuous spinning motors are designed by the closed rotor.  In the closed rotor 

design space, the PM poles are equally spaced by 2 / polen  for 

different 2,3,polen  . 
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- Opened design space is for the design of many kinds of actuators having a limited 

range of motion such as a linear motor or orientation stage. PM poles can be 

equally spaced by different polel  starting from the base position like a geometric 

center or default position of the rotor design space.  

 

In Chapter 3.4, detailed description of the electric input current specification will 

be presented for optimizations of 1-DOF rotary motor and 2-DOF orientation stage to 

respectively define PM pole positions by polen and polel .  

 

Linear constraints on a design variable 

In the view of the material mixture of PMs magnetized along x, y, and z axis, the 

PM material density variable defined by 6 positive density variables in (B.1) requires 

following 12 lower and upper boundary constraints: 

( )0 1i ρ         (3.5) 

, and the material density vector ( ) ( )i iρ I ρ  in (B.2) gives a nonlinear constraint to limit 

its magnitude by  

( ) ( ) 1.T

i i ρ ρ         (3.6) 

The feasible domain of (3.6) becomes the inner space of a unit sphere; it can represent 

any directions of ( )iM . Considering difficulties on fabricating continuously changing PM 

magnetization (and also far from preferred practical actuator designs), the nonlinear 

constraint can be alternatively described by a following linear constraint to limit the sum 

of the positive density variables: 
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( ) 1|| || 1 i ρ         (3.7) 

 

or  

( ) 1T

i u ρ         (3.8) 

where [1 1 1 1 1 1]T

 u  sums 6 positive density variables. The linear constraint (3.7) 

softly penalizes the maximum magnitude of PM mixtures by less than one, and softly 

forces ( )iρ  to converge one of PMs magnetized along the local coordinate during the 

optimization. Figure 3-2 compares the feasible solution set of (3.6) and (3.7) for a 2D 

case. While the nonlinear solution set (denoted by dotted circle) fully supports unit 

magnitude of ( )iρ  for any direction, diamond-shaped linear solution set only allows along 

x or y axis.  

 

Figure 3-2 Solution set with nonlinear and linear constraints  

 

The local coordinates for each design volume can be assigned by many different 

ways depending on the specifications of the actuator design. In this thesis, the local 
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coordinate is defined by parallel and perpendicular directions of desired actuator motions 

to effectively represent Halbach PM configuration.  

 

3.1.3 Layout Optimization 

 Linearized topology optimization offers an efficient design method, referred here 

as Layout Optimization, to find an optimized EM and PM shapes, and its respective pole 

positions in the stator and rotor space. The flowchart in Figure 3-3 illustrates the Layout 

Optimization process consisting of predefining steps for 1) EM layout and 2) PM poles, 

two optimization steps: 3) linear optimization and 4) integer programming, and post 

processing for 5) optimized EM and PM layouts. Detailed description of each step is as 

followings: 

  

 

Figure 3-3 Flow chart of Layout Optimization 

 



 58 

1, 2) EM layout and PM pole specification 

 EMn  possible EM layouts and PMn  PM pole patterns are configured leading to 

EM PMn n cases of linearized design problems to be optimized by the Layout optimization. 

While varying the number polen  or length polel  of the rotor PM pole, the PM pole patterns 

are defined to predefine an electric input current for the range of rotor positions. 

Assuming that a non-design space stator is fully filled with same sized EMs, EM 

positions can be specified by different numbers of the EMs EMN ; and its respective EM 

size is also defined by /stator EMS N  where statorS  denotes the stator size along the moving 

direction to be optimized.  

3) Linear topology optimization 

 For each case of the EM PMn n  specifications, linear topology optimization 

determines the best rotor PM design to maximize torque average. While solving the linear 

optimization by a SIMPLEX method, the signs of the electric input current of an EM 

along the rotor orientations clearly shape a PM configuration with the predefined PM 

pole pattern in the way to increase the output torque; and it prevents the solution 

converging to undesired checker board patterns.  

4) Integer programming 

 By exploiting fast computational speed of the DMC model, the net output torques 

of the eN  EMs for linearly optimized rotor PM designs are evaluated to determine an 

optimized design; and various design objectives can be imposed on this integer 

programming step. In this research, the criteria to evaluate a design optimality is set to 

maximize minimum torque considering design compactness such as the number of EMs 
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or PMs; and the best or preferred PM and EM layouts are determined by the evaluated 

design optimality. 

5) Optimized EM and PM layouts 

 To fabricate an optimized actuator design with commercially available products 

like standard sized PMs, optimized EM and PM layouts are polished into a simpler 

design. Starting from the optimized EM and PM layouts, optional optimization steps can 

be applied to further optimize the shape of the rotor PM while investigating the effects of 

different rotor weight or weight factors for moving directions on net output torque.  

 

3.2 LINEAR TOPOLOGY OPTIMIZATION 

 

 As a part of layout optimization, a linear optimization of the rotor PM can be 

formulated for predefined EM shape and PM poles. Consider the rotor design space 

decomposed by VN  PM design volumes and its SN  surface elements. After describing   

the DMC torque with a 6 1VN  rotor PM design variable ( ) ( ) ( )[ , , , , ]
V

T T T T

i i Nρ ρ ρ ρ  

where ( )iρ is defined by 6 positive material density variables in APPENDIX B, the linear 

topology optimization will be expressed in the canonical form to maximizing weighted 

average of the torque evaluated at P different rotor orientations: 

 
( ) 1 ( )maximize   subjected to | || 1 , 1T T

PM i i 
ρ

w T ρ ρ u ρ     (3.9) 
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where 3 6 VP N  torque matrix 1[ ]T T T T

PM p PT T T T  computes the torque 

1[ ]T T T T

p Pτ τ τ τ  at all rotor orientation using the PM volume density variable ρ ; 

[1 1 1 1 1 1]T

 u ; and the linear constraints are described in (3.5) and (3.8). 

 In (3.9), 3 1P  normalized weight vector 
1

/P Pw w w  do a weight sum of the 

torque τ , and it gives a scalar value to be maximized during the linear optimization. The 

weight vector 1[ , , , ]T T T T

P d p d P dw w ww w w w  is defined by weight factor pw  at 

actuator orientation p and weight factors [   ]T

d x y zw w ww   for three moving directions. 

For example, 0x yw w   and 1zw   is used for designing a rotary motor spinning for z-

axis; 1pw   for 1, ,p P  if all rotor orientations have same significance. 

 In following subsection, the formulation of PMT  and PMJ  by the DMC model is 

presented for the rotor PM design variable ρ  including a rotor iron boundary; and  

PMF 3 3 SP N  force matrix 
PMF  is additionally presented to solve a force-based  design 

optimization: 

( ) 1 ( )maximize   subjected to | || 1 , 1T T

PM i i 
ρ

w F ρ ρ u ρ     (3.10) 

 

3.2.1 Surface current equations 

Consider a (k)th PM surface (with surface area ( )kS  and unit normal vector ( )p kn ) 

exists between the (i)th and (j)th PM volumes as shown in Figure 3-4(a); and it gives DMC 

surface current ( )p kj at an orientation p using (2.5): 

( ) ( ) ( ) ( ) ( )( )p k k p k p j p iS  j n M M      (3.11) 
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Using (B.5), ( )kj is also defined by a design variable ( )iρ :   

( ) max ( ) ( ) ( ) ( ) ( ) ( )( )( )p k k p k p j j p i iM S skew   j n G I ρ G I ρ      (3.12) 

where ( )p jG  is a transformation matrix from the local coordinate to the global coordinate 

at  the orientation p; and ( )p jM  (or ( )p jG ) is set to zero when (k)th PM surface contacted 

to the (j)th  volume in a non-design space (such as air or rotor iron). With 3 3 VN  matrix 

( ) 3 3 ( ) 3 3 ( ) 3 3          p k p j p i
   G O O G O O G O O  to describe a geometric relation 

between (i)th and (j)th PM volumes and its (k)th PM surface leading to the  relationship 

(3.13) between ρ and ( )p kj :  

( ) ( )p k p kj J ρ        (3.13) 

where ( ) max ( ) ( ) ( )( )p k k p k p kM S skew J n G I ; 
3O  is 3 3  zero matrix; and 

3 6V VN N







 
 

  
 
 

I O

I

O I

. Then, combining (3.13) for all surface 

currents 1, , Sk N , gives the linear relation between pj and ρ  by: 

p pj J ρ        (3.14) 

where (1) ( )[ , , ]
S

T T T

p p p Nj j j  and (1) ( )[ , , ]
S

T T T

p p p NJ J J . 
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(a) PM volumes and its surface  (b) force and torque on a rotor PM surface 

Figure 3-4 Force and torque on a rotor PM surface at the orientation p  

 

3.2.2 Force and torque equations 

Considering an EM and PM design volumes assembled by a relative orientation 

p  as shown in Figure 3-4(b), the force ( )p kf and torque ( )p kτ acting on the surface 

current ( ) kj  located at ( )kr  can be written by DMC force and torque equations in (2-31) 

and (2-32): 

( ) ( ) ( )( )p k p k p kskew f B j , ( ) ( ) ( )( )p k p k p kskewτ r f     (3.15a, b) 

where ( ) ( )( )p k p p kJ B b is defined by the flux density of the EM with a unit current input 

at ( )kr  multiplied by a predefined EM electric input current ( )pJ   at the orientation p . 

Combining all surface currents 1, , Sk N , the summation of the force and torque, 

pf and pτ , at the orientation p can be defined by  

p pf F ρ , p pτ T ρ       (3.16a, b) 

where p p pF CB J and p p p pT CP B J ; 3 3[ , , ]C I I  is 3 3 SN summation matrix; 
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(1) ( ) ( )( ), ( ), , ( )
Sp p p k p Nblkdiag skew skew skew    B B B B ;  

(1) ( ) ( )( ), , ( ), , ( )
Sp p p k p Nblkdiag skew skew skew   P r r r ; and pJ  is in (3.14). Finally, 

1[ ]T T T T

PM p PF F F F and 1[ ]T T T T

PM p PT T T T  in the objective function of (3.10) 

and (3.9) can be respectively determined by combining (3.16a) and (3.16b) for all 

orientations 1, ,p P .  

 

 

3.2.3 Rotor iron equation 

 During the linear optimization, iron (or magnetic material) can be involved in a 

rotor design. Assuming that design space is only consisting of PMs, such iron is attached 

to the rotor PM design space as a predefined non-design space. To account for the force 

and torque caused by the rotor iron boundary, DMC iron magnetized by each PM design 

variable is solved, and the sum of the force and torque by the rotor iron is included in the 

objective functions (3.10) and (3.9).  

Consider the rotor iron decomposed by MN  surface elements. Figure 3-5 shows 

the iron boundary modeled by DMC iron (1) ( ) ( )
ˆ ˆ ˆ ˆ[ ]

M

T T T T

p p p q p Nj j j j  magnetized by a 

surface current ( ) p kj  in (3.13). With the flux density ( , ) ( , ) ( ) p k q p k q p kB B j  formed by ( ) p kj  

on the location of ( )
ˆ

p qj , DMC iron ˆ
pj  with respect to ( ) kj  is solved by the DMC model 

for magnetic materials in (2.38): 

( ) ( ) ( )
ˆ = p k p k p kj Λ j       (3.17) 
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where 3 3M SN N  matrix 1

( ) ( )( )T

p k p k

 Λ T D S TB ; (1) ( ) ( )( , , , );
Mq NblkdiagT T T T . 

( ) ( )1 ( )2[  ]T

q q qT t t for the orthonormal surface tangent vectors )1qt and ( )2qt of the (q) th iron 

surface; and ( ) ( ,1) ( , )[ , , ]
M

T T T

p k p k p k NB B B . Combining (3.17) for 1, , Sk N  gives the 

linear relation between pj and ˆ
pj  at an orientation p: 

ˆ =p p pj Λ j        (3.17) 

where ( )

1

SN

p p k

k

Λ Λ , and (3.14) gives  a relationship between ˆ
pj  and ρ  :  

ˆ ˆ
p pj J ρ        (3.18) 

where ˆ
p p pJ Λ J ;  and pΛ  is same for all rotor orientations since the rotor iron is fixed 

to the rotor PM space. Using (3.18), (3.16a) and (3.16b) for the iron boundary leading to:  

ˆ ˆ
p pf F ρ , ˆˆ

p pτ T ρ       (3.19a, b) 

where ˆˆ ˆ ˆ
p p p pF CB Λ J and ˆ ˆ ˆ

p p p p pT CP B Λ J ; 3 3
ˆ [ , , ]C I I  is 3 3 MN summation matrix 

; (1) ( ) ( )
ˆ ˆ ˆ ˆ( ), , ( ), , ( )

Mp p p q p Nblkdiag skew skew skew  
 

B B B B ;  

(1) ( ) ( )
ˆ ˆ ˆ ˆ( ), , ( ), , ( )

Mp p p q p Nblkdiag skew skew skew   P r r r ;  ( )
ˆ

p qB  is the flux density of 

the EM with the input ( )pJ   at the orientation p ; and ( )
ˆ

p qr  is a position of the (q) th iron 

surface element. Finally, redefining 1 1
ˆ ˆ ˆ[( ) , , ( ), , ( )]T T T T T T

PM p p P P   F F F F F F F  and 

1 1
ˆ ˆ ˆ[( ) , , ( ) , , ( ) ]T T T T

PM p p P P   T T T T T T T can account for rotor PM and iron  

force/torques together in the respective objective functions (3.10) and (3.9).  
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Figure 3-5 Iron boundary magnetized by a PM surface current 

 

 
3.3 ILLUSTRATIVE EXAMPLES 

  

The Layout Optimization model has been formulated by the DMC modeling 

method. The optimization is illustrated with a 1-DOF rotary motor and a 2-DOF 

rotational stage which can be regarded as 2D design problems for a spherical motor 

capable of spinning and inclinational motion in a single joint.  Figure 3-6 shows how the 

2D examples are extracted from horizontal and vertical cross sections of an existing 

spherical motor. With the optimized results, the preferred design layouts will be chosen 

on the basis of output performance while taking into account the effects of rotor iron and 

the number of EMs and PMs.  

For the 2D design problems, following four design configurations (DCs) for a 

rotor design space are considered:  

DC1: , ,  and rM M M  without a rotor iron 

DC2: , ,  and rM M M   with a rotor iron 

DC3: Only 
rM without a rotor iron 
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DC4: Only 
rM with a rotor iron 

where , ,  and rM M M   denote PM magnetizations in the spherical coordinate system. 

DC1 and DC2 newly optimize the rotor design space with PMs magnetized 

by , ,  and r    directions, and compares conventional motor designs optimized by only 

radially magnetized PMs in DC3 and DC4. Also, separately optimize rotor designs with 

and without iron boundary compare the effects of the rotor iron on improving output 

performances. With the optimized results, all DCs are compared with its design 

complexity and performance.  

 

 
Figure 3-6 Flowchart of 3-DOF spherical motor optimization 

 

3.3.1 Electric input current specification 

 Electric input currents for the design optimization of 1-DOF rotary motor and 2-

DOF orientation stage are specified by either of the number of PM poles polen or distance 

between PM poles polel . The assembly of an EM and external rotor design space of 1-DOF 
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rotary motor and 2-DOF orientation stage are shown in Figure 3-7 (a) and (b) 

respectively where  and    denote relative orientation between the EM and rotor design 

space; and the rotor design space of 1-DOF rotary motor is closed ends while the 2-DOF 

orientation stage has an opened design space sized by stator . The specification of the 

electric input current for each example is described as follows.  

       

      (a) 1-DOF rotary motor                  (b) 2-DOF orientation stage 

Figure 3-7 EM input current specifications of 2D design examples 

 

1-DOF rotary motor with an external rotor (closed design space) 

 The 1-DOF rotary motor being optimized has closed rotor as shown in Figure 3-

7(a). First, the number of PM poles is set to any positive even 2,4,6, , / 2pole PMn n  to 

make a fair of north and south PM poles.  For the relative angular position of an EM  , 

the electric input current ( )J   is defined to have a square-wave form: 

max( ) / ( 1) , 
2 / Pole

J J
n

 
 



 
    

 
      (3.20) 
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where 
maxJ  is the maximum current density in the EM;  and x   is the floor function to 

find the maximum integer less than x .  

 

2-DOF orientation stage (opened design space) 

 Figure 3-7(b) shows the axisymmetric 2-DOF orientation stage having the opened 

rotor sized by
rotor . To define PM pole position, the pole distance polel  is used to support 

various PM shapes near the ends of the rotor. For specifying PM pole positions, two 

different configurations, denoted by even and odd pole, are considered by:  

- Even pole having even number of polen  distributes PM poles with anti-symmetric 

polarity patterns about y-axis.  

- Odd pole with odd number of polen  have symmetric polarity patterns about y-axis; 

and one of the PM pole should be located on the y-axis.  

The square-wave formed input currents, ( )EJ  and ( )OJ  for even and odd poles are 

respectively defined by 

max

/ 2
( ) / ( 1)   where E

b pole

E E

pole

l
J J

l




 
 

    
  

     (3.21) 

max( ) / ( 1) sign( )  where O b
O O

pole

J J
l

 
  

 
    

  
     (3.22) 

where min(| |, / 2)b rotor    prevents the polarity changing outside of the rotor space. 

With ( )PM On  and ( )PM En  respective cases of the odd and even pole patterns, 

( ) ( )PM PM O PM En n n  cases of PM pole patterns are used in the optimization.  
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3.3.2 1-DOF rotary motor 

 1-DOF rotary motor shown in Figure 3-8(a) will be optimized by Layout 

Optimization. Figure 3-8(b) shows the rotor PM design space with the inner radius 
or and 

outer radius
1r , and the rotor iron with the inner radius 

1r and outer radius
2r  to check the 

effects of iron boundary on the optimization results. The predefined stator with the inner 

radius 
ia and outer radius

oa  shown in Figure 3-8(c) has 
EMN of stator EM coils fully 

occupying the stator space; and the angular size of an EM 
EM  is defined by 

2 /EM EMN        (3.23) 

where the core of an EM core is located on the center angle of the EM, but its actual 

volume is zero; electric current flowing along +z or –z direction alters its direction across 

the core. The z axial thickness of the rotor and stator space is 
zl . Rotor iron and design 

space are decomposed by 180VN   volume, 900SN  and 2160MN   surface elements, 

and
0 max 1M T  . 

 

(a) Horizontal view       (b) Rotor PM and iron          (c) Stator EM  

Figure 3-8 Optimization parameters for the 1-DOF rotary motor 

 

 Once rotors are designed by linear topology optimization for every combinations 

of polen and
EMN , integer programming will be applied to maximize achievable minimum 
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spinning torque
0zT  with the maximum electric current input

maxJ . On the integer 

programming, 1-phase and 2-phase EM inputs are separately applied for computing 

output torque.   

- 1-phase input denotes each EM has independent input channel; / 1EM inpN N   

where inpN  denotes the number of the input channels. 

- 2-phase inputs shares input channels of opposing two EMs, and reduces inpN by 

half (
EMN / inpN =2).  2-phase inputs has two wiring choices of connecting EMs; 

and 2-phase ( ) and ( ) respectively shown in Figure 3-12(a) and (b). 2-phase 

( ) is effective to odd polen rotor designs, and 2-phase ( ) is for even polen . If (+) 

and ( ) are inversely applied to even and odd poles, a pair of EMs cancels output 

torque at all orientations. 

  

 

 (a) 2-phase ( )         (b) 2-phase ( ) 

Figure 3-9 Two cases of 2-phase inputs for the 1-DOF rotary motor 

 

Linear topology optimization 

3,4, ,16EMN   and its respective 2,3, 3pole EMn N  are considered to avoid 

too complex motor designs, and later optimized results will show that performance is not 

that improved by large
EMN  or polen . Along with the EM input current (3.20) and 

7 2

max 10 ( / )J A m ,  torques are evaluated at every 0.5  of EM angles leading to  the 
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number of evaluating orientation 720P  . As continuous spinning motor about z-axis is 

optimized, weight factors are set to 0, 0, 1x y zw w w   , and 1 for 1, ,pw p P  . 

 

Integer programming 

 The minimum spinning torque 
0zT  is evaluated for the combinations of 

polen and
EMN  for each DC, and results are shown in Figure 3-10 where asterisk (*) and 

square (□) represent 
0zT  of the optimized design with 1-phase and 2-phase inputs 

respectively. Following the results, 
0zT  of 2-phase inputs is similar to 1-phase input in 

even 
EMN cases, and relatively better than to odd 

EMN  cases. Also, the results show that 

increasing 
EMN  does not necessarily improve outputs. In the view of DCs, iron boundary 

mostly improves the output, but improving rate much differs from different
EMN . 

Moreover, DC1 and DC2 being optimized by Halbach PM array give much better outputs 

than DC3 and DC4. Considering design complexity and requiring inpN , the 

10 and 8EMN   designs (marked by an orange box) makes the best and second best 

performance for both of DC1 and DC2; the designs with 8 EMs and 10 EMs are chosen 

as optimized ones.  

For 10 and 8 EM designs, 
0zT  as a function of polen  is plotted in Figure 3-13(a) 

and (b) respectively; and it clearly shows that iron boundary makes large improvement on 

output torque, but sometimes its effects are tiny or negative. When polen  becomes the 

multiple of
EMN , 

0zT  should be dropped to zero, but finitely decomposed design space 

leads to non-zero values. (
EMN , polen ) = (10, 18) for DC1 and (

EMN , polen ) = (10, 14) for 
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DC2 can be optimal designs for 1-DOF rotary motor. For spherical motor optimization in 

Chapter 4, we consider more design results (marked by orange box in Figure 3-11):  

(
EMN , polen ) = (10,12), (10,14), (10,16), (10,18), (8,10), (8,12), and (8,14).  

 

 

Figure 3-10 
0zT of linearly optimized designs for the 1-DOF rotary motor 

 

Optimized rotor designs are depicted in Figure 3-12 where red arrows in enlarged 

view represent magnetizing direction of PMs leading to following conclusions: (1) DC1 

and 2 are optimized to Halbach array while DC3 and 4 become conventional PM array, 

(2) mostly tangentially magnetized PMs are longer than radially magnetized ones, and 

their ratios are different from each design, (3) optimized designs of DC1 for each (
EMN , 

pn ) are same or almost similar as DC2 results. 
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(a) 10 EMs           (b) 8 EMs  

Figure 3-11 Integer programming for 8 and 10 EMs 

 

(a) DC1,2 (10,14)             (b) DC1,2 (8,12)            (c) DC3,4(8,12) 

Figure 3-12 Optimized rotor PM designs for the 1-DOF rotary motor 

 

3.3.3 2-DOF orientation stage 

 Axis-symmetric 2-DOF orientation stage being optimized by Layout Optmization 

is shown in Figure 3-13(a). The rotor PM design space with the inner radius 
or and outer 

radius
1r  is shown in Figure 3-13(b) where the rotor iron has the inner radius 

1r and outer 

radius
2r ; and the angular size of the rotor space; stator EM coils fully occupying the 

stator space is shown in Figure 3-13(c). The rotor and stator space are respectively sized 
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by angles 
rotor and 

stator  in the inclinational direction, and thickness 
zl  along x axis. The 

stator EM coils fully occupying the stator space is defined by
EMN : 

/EM stator EMN        (3.24) 

where EM input current flowing along +x or –x direction changes its direction across the 

core located on the center of the EM. For odd and even 
EMN , the locations of EM cores 

are respectively defined in (3.25) and (3.26). 

1
0,  ,  ,  for odd 

2

EM
loc EM EM EM

N
N  

 
    

 
     (3.25) 

11
,  ,    for even 

2 2

EM
loc EM EM EM

N
N  

 
    

 
     (3.26) 

The optimization uses rotor iron and design decomposed by 60VN   volume, 

301SN  and 736MN   surface elements; 
0 max 1M T   and 

7 2

max 10 ( / )J A m .  

 

    

            (a) Vertical view                 (b) Rotor PM and iron          (c) Stator EM  

Figure 3-13 Optimization parameters for the 2-DOF orientation stage 
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Linear topology optimization 

The optimization of the 2-DOF inclinational stage considers EMs 

with 1,2,3,4,5EMN  , and its respective PM pole length 0 [1,2, ] pole d dl     where 

0 5d    denotes the minimum angular position of the PM pole to prevent having too 

many polen ; and 0.5d    is the incremental angle of polel . 

While rotor PM is linearly optimized to maximize torque average by an EM, the 

range of the orientation angle p  of the EM is extended by the maximum angular 

position of the EMs, max( )loc : 

max maxmax( ) max( )loc p loc              (3.27) 

where 
max 22.5    is the maximum inclinational motion of the rotor. The contribution of 

each EM for the extended angular motion in (3.27) differs from its core position; it is 

explained by different weight factors pw in (3.9): 

max max

1

( ) ( ( )) ( ( ))
EMN

p p p i p i

i

w u u      


            (3.28) 

where u denotes a unit step function; 
i is ith EM position in (3-25) or (3-26). With these 

optimization parameters, normalized weight factors 
1

/p Pw w  for different number of 

EMs are plotted in Figure 3-14; it shows that weight factor is symmetric about y-axis due 

to symmetric EM positions, and torques on small angles are more stressed than torques at 

large angles. The linear optimization evaluates torques at 181P   different orientations; 

and the weight factors for moving directions are 1, 0,  and 0x y zw w w    to only 

optimize the inclinational motion. 

 



 76 

 

Figure 3-14 Weight factors for the linear optimization 

 

Integer programming 

 The integer programming evaluates inclinational torques of linearly optimized 

designs to maximize minimum torque 
0xT  using 1-phase input (

EMN / inpN =1). From the 

evaluated 
0xT for each DCs as shown in Figure 3-15, 3 and 2EMN   designs (marked by 

orange box) are chosen to the best and second best designs in the view of 
0xT over inpN .  

 

Figure 3-15 
0xT of optimized designs for the 2-DOF orientation stage  
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Detailed 
0xT of those designs as a function of polel  is shown in Figure 3-16 where 

the current inputs for odd (O) and even (E) poles are respectively denoted by asterisk (*) 

and square (□). The result shows 3EM design with the odd input gives the best torque 

output, but its design is relatively complex (3 PM poles with 5~7 PMs). In both case, the 

even input gives reasonable torque output with simpler rotor designs (2 PM poles with 

3~5 PMs). Optimized rotor designs for DC2 and DC4 are shown in Figure 3-17 where 

red arrow denotes magnetizing directions of PMs. Similar to the result from 1-DOF 

rotary motor, the rotor designs are optimized to Halbach array, and tangentially 

magnetized connecting PMs are longer than radial ones. Also, optimized designs for each 

(
EMN , polel ) become almost same for DC1 and DC2, but has small difference around the 

ends of the rotor are observed due to the rotor iron. In the spherical motor optimization in 

Chapter 4, stator EM layout with
EMN  2 and 3 will be included, but the rotor designs 

will not use the optimized polel , but it will be newly optimized in 3D design space.  

 

 

(a) 2 EMs      (b) 3 EMs  

Figure 3-16 Integer programming for the design with 2 and 3 EMs 
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(a) DC2 (O) for 3 EMs 

and 17.5polel    

 

(b) DC2 (E) for 2 EMs 

and 15polel    

 

   (c) DC4 (O) for 3 EMs 

and 16polel    

Figure 3-17 Optimized rotor designs for the 2-DOF orientation stage 

 

3.4 SUMMARY 

 

 The DMC optimization model based on linear force and torque equations is 

presented to determine simple and effective initial designs of electromagnetic actuators. 

To overcome nonlinearity and local convergence of electromagnetic system, we 

described the layout optimization through two sequential optimization steps: linear 

optimization and integer programming. To formulate linear topology optimization 

problem, the design problems are divided into a number cases of EM and PM pole 

combinations, and desired EM current inputs are defined with respective to PM pole 

positions. With linearly optimized designs with or without iron boundary, performances 

over design complexity are evaluated during integer programming, and desired actuator 

layout including the number and positions of EM and PM is determined. 
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 Two illustrative examples are presented to optimize horizontal and vertical layout 

of spherical motor which can be regarded as 1-DOF rotary motor and 2-DOF orientation 

stage. Following the layout optimization steps, several optimized designs are determined, 

and these results will be applied on optimizing 3-DOF spherical motor design in Chapter 

4.2. Also, as illustrative applications, the optimization of 2-DOF linear-rotary actuator 

and 1-DOF disk-shaped motor will be followed in Chapter 4.3 and 4.4.  
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CHAPTER 4 

ILLUSTRATIVE DESIGN OPTIMIZATION APPLICATIONS 

  

 This chapter illustrates three applications of design optimization based on DMC 

models as shown in Figure 4-1. The first application demonstrates the DMC-based 

Layout Optimization method to minimize the rotor weight of an existing ball-joint-like 

spherical motor. The optimization focuses on its output torque while taking into account 

its manufacturing cost in terms of the number of input channels and PMs. With optimized 

designs, the torque characteristics and rotor weight reduction are discussed for a given 

external loading condition.  

 The second application is to determine the best combination of EM and PM 

layouts of a 2-DOF tubular-shaped linear-rotary (LR) motor using the Layout 

Optimization method. Two of 2D designs, 1-DOF rotary motor with an internal rotor and 

1-DOF linear motor, are optimized to determine the best EM and PM layout for 3D 

designs. With optimized 3D designs, the torque outputs subject to varying external force 

conditions are discussed. 

 The third application is the optimization of a Disk-shaped synchronous motor 

(DSSM) which has been fabricated to serve as a basis for experimental validation of the 

Layout Optimization method.  In this study, the DSSM is operated with a 3-phase current 

input considering the compactness of its design; with this in mind, the torque output of 

the DSSM is maximized.  The experimental validation of the Layout Optimization based 

on the optimized DSSM motor will be discussed in Chapter 5. 
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(a) Spherical motor             (b) Linear-rotary motor 

 

                 (c) Disk-shaped synchronous motor 

Figure 4-1 Illustrative applications for the design optimization 

 

4.1 SPHERICAL MOTOR 

 

 The existing spherical motor shown in Figure 4-1(a) is optimized by the DMC-

based Layout Optimization. From the optimized results for 1-DOF rotary motor (spinning 

motion) and 2-DOF orientation stage (inclinational motion), selected EM and PM layouts 

for 3D design optimization are shown in Table 4-1 where the predefined stator layouts 

are denoted by the number of EM-layers SLN and SPN  EMs per layer; and the PM layouts 

to be optimized are denoted by the number of PM-layers RLN  and RPN  PMs per layer.   
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Table 4-1 Stator and rotor design space for spherical motor (Coil thickness =9.525mm) 

Design A B C D 

Stator  

8,  3SP SLN N    8,  2SP SLN N   10,  3SP SLN N   10,  2SP SLN N   

    

    

Rotor 

( RPN ) 

A0 A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3 D4 

12 10 12 14 10 12 14 12 14 16 18 12 14 16 18 

 

Design A represents the existing stator; and Designs B, C, and D are the newly 

designed stators from the 2D results. The optimization considers two different numbers 

of PM layers; RLN =2 and 3. The number of optimization variables can be reduced using 

1/ RPN  sized design space considering the alternating property of the rotor PM 

magnetization along the spinning direction: 

 ( 2 / ) ( )R RP RN    M M     (4.1) 

where R  is the spin angle. Combining with the stator layout and rotor RPN , 15 different 

cases for the integer-linear programming are considered:  

 4 cases for each of Design A, C, and D  

 3 cases for Design B 
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To compare the torque output with subsequent newly optimized designs, the rotor design 

space in Design A0 has been optimized by radially magnetized PMs for the existing 

stator.  

 

4.1.1 Optimization parameters and formulations 

 For the linear topology optimization, the EM input current with respect to the 

spinning and inclination motions of the EM or rotor design space is predefined. After 

describing the optimization parameters including weight factors, the torque output of the 

spherical motor is evaluated in the integer programming step.  

 

EM input current specification 

 The spinning and inclinational motions of the rotor can be described in terms of 

Euler angles. Instead of the 3-DOF rotational motions, the linear optimization only uses 

simplified 2-DOF motions; the inclination of an EM constrained to yz plane, and the 

spinning of the rotor about the z axis. Figure 4-2(a) shows an EM and design space 

initially aligned to the y axis which allows to rotate about the x and z axes by the angles, 

s  and r , respectively. Using these angle definitions, the EM input current for the 

spinning torque zT and inclinational torque xT  is separately defined for linear optimization. 

For the 1/ RPN  rotor design space, two different PM layers ( RLN =2 and 3) are compared 

in Figure 4-2(b) and (c) respectively where the PM poles are positioned on the side of the 

design space at /r RLN   ; and RLN =2 and 3 are denoted by even (E) and odd (O) PM 

poles.  
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      (a) EM and rotor design space           (b) (E) RLN =2         (c) (O) RLN =3 

Figure 4-2 Angle definition of EM and design space with two different PM layers  

 

      (a) PM pole positions        (b) input sign for zT        (c) input sign for xT  

Figure 4-3 EM current input for even poles ( RLN =2) 

 

      (a) PM pole positions        (b) input sign for zT        (c) input sign for xT  

Figure 4-4 EM current input for odd poles ( RLN =3) 
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For each RLN , the layout of the (E) and (O) PM poles are depicted on Figure 4-

3(a) and Figure 4-4(a) respectively in r - s  plane. From the given PM pole layout, the 

sign of the spinning torque zT  and inclinational torque xT  are defined as follows: 

 The sign for zT  is independent of r , which changes at 0s   for Case (E),  and at 

/ 2s p   for Case (O) as shown in Figure 4-3(b) and 4-4(b). 

 The sign for xT  reverses at 0r  , and also changes at the PM layer pole positions; 

for (E) s p   , and for (O) 0,  and s p   . 

 The EM input current can be predefined by max ( )z zJ J sign T  for spinning and 

max ( )x xJ J sign T  for inclinational motion. 

 

 

Optimization parameters 

 The rotor design spaces with respective optimization parameters are listed in 

Table 4-2. Each design space is decomposed by VN  volume elements and SN  surface 

elements, where the DMC for the rotor PMs are placed. For The linear optimization 

evaluates torques at P different orientations (for P  spinning and P  inclinational 

orientations), and maximizes the average torques to determine rotor PM design for each 

of EM and PM pole layouts. With the condition in (4.1) that the PM magnetization 

alternatingly changes along the spinning direction, the design variable ρ  for the full rotor 

design space is replaced by the rotor PM design variable symρ  for the 1/ RPN  design 

space: 

symρ Sρ      (4.2) 
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where the  N RP NV N V  matrix [ , , , , ]
N N N N

T

V V V V  S I I I I replicates the PM 

magnetization of each volume , and also other DMC parameters such as surface geometry 

and source positions can be simply obtained by z-axis transformation.   

The linear optimization only maximizes xT and zT  leading to 1, 0, 1x y zw w w   . 

The weight factors for the relative rotor orientations are similarly defined by the 2D 

optimization cases using the predefined stator EM layouts.  

 

Table 4-2 Optimization parameters for rotor design spaces 

RPN  10 12 14 16 18 

design space 

     

VN , SN  540, 2208 420,1724 360,1482 360,1482 300,1240 

,P P   

P P P    

80, 100 

8000 

62, 100 

6200 

52, 100 

5200 

46, 100 

4600 

40, 100 

4000 

 

Torque evaluation for the integer programming 

 Once the rotor PMs are linearly optimized, the torque output actuated by all the 

stator EMs are evaluated by using the DMC model. The torque sτ  by a pair of EMs with 

input sJ  can be linearly represented by 

s s sJ k τ      (4.3) 

where sk is the current-torque relation of the sth pair of EMs at a rotor orientation. 

Combining (4.3) over inpN  results in the net torque [ , , ]T

x y zT T TT  which can be 
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expressed as a matrix product of the EM inputs
1[ , , , , ]

inp

T

s NJ J Ju and the current-

torque matrix 1[ , , , , ]
inps NK k k k : 

Ku T      (4.4) 

At a certain orientation, the redundant current inputs can be determined by solving a 

simple linear optimization problem that maximizes the torques with a weight 

factor [ , , ]T

x y zc c cc : 

max max
,

maximize   subjected to ,  
m

T

sJ J J   
u τ

c T Ku T   (4.5) 

where the T  components can be either a specified constant or a variable to be 

maximized; and maxJ is the maximum input current. Using (4-5), the integer programming 

evaluates the maximum inclinational torque xT  with [1,0,0]Tc  and [ ,0,0]T

xTT , and 

the maximum spinning torque zT  with [0,0,1]Tc  and [0,0, ]T

zTT  with other torques 

constrained to zero.  Then the performance of each linearly optimized design is measured 

by 

0 0 0min( , )x zT T T     (4.6) 

where 0 min( )x xT T  and 0 min( )z zT T  for the range of the rotor spin angle  and that of  

the inclinational angle . For the preferred designs, the inclinational and spinning torque 

characteristics will be discussed with the following measurements: 

 0( ) min ( )x xT   ,  0( ) min ( )z zT     (4.7 a,b) 

where 0 ( )x   and 0 ( )z  denote the minimum torque at a certain inclinational angle  . 

For all torque computation, 
7 2

max 2.8343 10 ( / )J A m   (equivalent to 3A EM input 
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current for existing spherical motor); and the rotor design space is optimized by PM with 

residual flux density  0 max 1.0µ M T .  

 

4.1.2 Layout Optimization results 

For each of the design layouts in Table 4-1, the rotor PM design is optimized for 

different PM pole position, s . The evaluated 0xT and 0zT  are shown in Figure 4-5 where 

even (E) and odd (O) PM pole configurations are plotted with red and blue lines 

respectively. For all cases, odd PM designs are resulted in drastic changes for s  while 

even PM designs show small variations. Following 0T in (4.6), the best design is chosen 

for each of design cases as marked (orange-square) in Figure 4-5. As a special case, the 

best designs for each of even and odd PMs are included for further investigation of newly 

optimized rotor designs with the existing stator. 

Figure 4-6 shows the 1/ RPN  rotors of the chosen designs along with (even or 

odd) PM pole type and its layer position s . The rotor designs depict the magnetizing 

directions of PM volumes in spherical coordinate system ( , , )r   ; rM (red), rM (blue), 

M (teal), M (violet), M (yellow), and M (green). Except for design A0 

(intentionally optimized only with the radial PMs), all optimized designs are resulted into 

Halbach PM array: radially magnetized PMs are surrounded by connecting PMs 

magnetized along  and  directions. As the rotor designs are seen from the outside of 

the rotor, the flux densities of the rotor PMs are weakened by the opposing PM polarities 

of all connecting PMs with respect to nearby radially magnetized PM while intensifying 

the airgap flux densities at the other side.  The number of the PM layer is resulted into 3 
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for even and 5 for odd PM configurations.  The large torque variations for the odd pole 

designs were found to be mainly caused by the small design space for locating 5 layers of 

PMs.  

 

   

(a) Design A1      (b) Design A2      (c) Design A3 

   

(d) Design B1      (e) Design B2      (f) Design B3 

       

(g) Design C1      (h) Design C2      (i) Design C3 
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(j) Design C4      (k) Design D1      (l) Design D2 

  

(m) Design D3     (n) Design D4 

Figure 4-5 0x and 0z  of linearly optimization designs for different p  

 

    

(a) A0 ( ) 15pE     (b) A2 ( ) 17pE     (c) A2 ( ) 17pO       (d) A1 ( ) 23pE     
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(e) A3 ( ) 15pO     (f) B1 ( ) 25pO     (g) B2 ( ) 23pE     (h) B3 ( ) 23pE     

    

(i) C1 ( ) 21pE     (j) C2 ( ) 15pO     (k) C3 ( ) 17pO     (l) C4 ( ) 21pO     

    

(m) D1 ( ) 15pO     (n) D2 ( ) 21pE     (o) D3 ( ) 25pE     (p) D4 ( ) 11pE     

Figure 4-6 Chosen rotor designs of each design case 

 

Torque characteristics for varying inclinational angle   are evaluated by (4.7) for 

the chosen rotor designs in Figure 4-6, and compared for each group of stator Design A, 

B, C, and D in Figure 4-7. Design A0 is included in each group of the stator design to 
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compare torques of newly optimized designs against the existing spherical motor. Also, 

the required numbers of the EMs and PMs for each design are tabulated in Table 4-3 

where ( , )x x   and ( , )z z   denotes the orientations where 0xT  and 0zT  occurs 

respectively. With the evaluated torque characteristics, three optimized designs are 

determined subject to the following considerations:  

a) The best design regardless of complexity: 

Consideration a) leads to Design D2 where an optimized design is chosen because of 

its largest output performance 0T  defined in (4.6). 

b) A good design considering the number of EM input channels  

Consideration b) results in Design B2 among the simple designs (A1, B2, and C1), 

which shows reasonably a good output performance with only 60PMs and 16EMs (8 

independent channel input) 

c) A good design which needs minimum modification from the existing design. 

For consideration c), all types of Design A optimized with the existing stator are 

considered. While Design A2(O) gives the largest 0T , it demands relatively complex 

rotor designs with 96 PMs. Comparing with A2(O), A2(E) shows  8.4% lower 0xT , 

but  24.2% larger 0zT  with 60 PMs. A2(E) is chosen as an optimal design when 

considering the existing stator for performance improvement requiring minimal 

changes.  

All selected optimal designs are written by bold red characters in Table 4-3, and 

full rotor designs are depicted in Figure 4-8. 
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(a) Design A 

 

(b) Design B 

 

(c) Design C 

 

(d) Design D 

Figure 4-7 Evaluated torque characteristics of each design case 
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Table 4-3 Torque comparison of optimized designs 

 ( )x   ( )x   0 ( )xT Nm  ( )z   ( )z   0 ( )zT Nm  EM PM 

A0 11.7 18 3.50 15 0 6.25 24 24 

A1 1.1 17.8 3.74 18 22.5 9.42 24 50 

A2(E) 11.9 18.2 4.81 0 0 8.62 24 60 

A2(O) 10 22.5 5.25 5.6 19.3 6.94 24 96 

A3 0 0 4.33 11.3 22.5 4.49 24 70 

B1 7.5 16.7 3.50 0 8.2 4.30 16 80 

B2 12.9 5 5.24 3.1 22.5 7.26 16 60 

B3 0 9.2 3.77 8.8 22.5 6.98 16 70 

C1 0 16.5 4.28 12 22.5 9.89 16 60 

C2 10.5 0 6.10 0 16.9 6.38 30 112 

C3 10.0 22.1 5.37 11.3 22.5 6.75 16 128 

C4 8.7 0 4.96 10 22.1 5.38 16 144 

D1 0 5.0 3.36 8.9 22.5 6.53 20 96 

D2 6.3 5.8 6.26 2.5 22.5 7.08 20 70 

D3 0 6.2 5.48 11.2 22.5 6.87 20 80 

D4 0 9.0 3.73 10.0 22.5 6.85 20 90 

 

   

              (a) D2   (b) B2         (c) A2(E) 

Figure 4-8 Optimized full rotor designs 

 

4.1.3 Iron boundary and external loads 

The optimized designs, D2, B2, and A2(E), are further analyzed with the presence 

of rotor iron boundary and external loads. Using the dimensions of iron boundary in 

Figure 3-8(b) and 3-13(b), the evaluated torques 0xT  and 0zT  including the rotor iron are 
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listed in Table 4-4 where Design A2(E) is shortly denoted by A2; and the torque 

improvement by the rotor iron is evaluated by  

0 0
0

0

ˆ
100

ˆ
x x

x

x

T T
T

T


    , 0 0

0

0

ˆ
100

ˆ
z z

z

z

T T
T

T


     (4-8a, b) 

where 0
ˆ
xT  and 0

ˆ
zT  denote evaluated torques without the rotor iron. For all cases, the rotor 

iron much improves both of spinning and inclinational torques; and it is more effective to 

improve spinning torque due to the closed rotor design space. The Halbach PM array in 

Design D2, B2, and A2 experience a larger improvement in the output as compared with 

the conventional PM configuration in Design A0. 

 

Table 4-4 Torque comparison of the optimized designs with an iron boundary 

 A0 A2 B2 D2 

0 ( )xT Nm  3.74 5.30 6.09 7.32 

0 ( )xT Nm  7.28 10.95 9.40 8.92 

0 (%)xT  6.86 10.19 16.22 16.93 

0 (%)zT  16.48 27.03 29.48 25.99 

 

External loads 

Figure 4-9 shows the external force acting on the rotor center caused by the 

additionally mounted mass mload  which causes an external torque varying with rotor 

inclinational angle . Assuming that the center of gravity g coincides with the rotation 

center O, the loading torque Tload  are given by 

T sin( )load z load dh m gf     (4.9) 
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where the length of torque arm 64.8zh mm ; and a design factor 2df   assuming 50% 

torque loss for further design steps or real implementation. 

 

 

Figure 4-9 External loads on the spherical motor 

 

 The torque characteristics of the optimized designs with/without the rotor iron are 

shown in Figure 4-10 where the external torque caused by the mass (from 8 to 22kg) is 

denoted by green dotted lines on the right side of Figure 4-10(a); but the external force 

acting on the rotor center is not related to the spinning torque shown in Figure 4-10(b). 

As discussed in the results of Layout Optimization, Design D2 and B2 give superior 

performances for in both spinning and inclinational directions. Beside large 0xT  and 0zT , 

these designs could yield relatively high inclinational torque at a large   supporting more 

than 16kg (only PM rotor) and 18kg (PM rotor with iron) external loads. Furthermore, at 

a small , larger spinning torque supported by Design D2 and B2 is highly desired torque 

characteristic for the high speed continuous spinning M-DOF motors like a vehicle wheel. 

Additionally, using N42 grade PMs with residual flux density  0 max 1.3µ M T  instead 
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of initially assumed  0 max 1µ M T  can improve the performance by 30% from the 

simulated results without changing simulated torque patterns. 

 

 

 (a) 0x           (b) 0z  

Figure 4-10 Performance of optimized designs subjected to an external loading 

 

4.1.4 Weight efficiency 

Design D2 and Design A0 (to compare the result with existing rotor design) are 

optimized again to improve the ratio of output-torque to (rotor PM) weight. For the linear 

optimization, an additional volume constraint (equivalent to weight constraint) is defined 

in terms of the density variable ρ  and desired rotor volume rv : 

T

v rvc ρ      (4.10) 

where (1) ( )[ , , ]
V

T

v NV V c c c ; [1 1 1 1 1 1] c ; ( )iV  denotes the volume of (i)th element; 

and ( ) ( )

T

i iV c ρ  gives the volume of the (i)th element used by the design variable. Dividing 

(4.10) with the volume of an entire design space 0V , the volume constraint (4.10) can be 

expressed by a desired rotor volume ratio rV : 

T

V rVc ρ      (4.11) 
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where 0/V v Vc c ; 0/r rV v V  and 0 1rV  . 

The optimized EM and PM layouts of the Design D2 and A0 are linearly 

optimized with the additional volume constraint in (4.11) while changing rV  between 0.2 

and 1. On the integer programming step, the torque output ( 0xT  and 0zT ) and volume 

efficiency ( 0 /x rT V  and 0 /z rT V ) are evaluated. The results are shown in Figure 4-11 

where left and right y-axes denote the torque output and volume efficiency respectively. 

Figure 4-11(a) and Figure 4-11(b) show the evaluated torque and its volume efficiency of 

the Design D2 for inclinational and spinning torques respectively, and Figure 4-11(c) and 

Figure 4-11(d) shows the evaluated results of the Design A0. From the results, an 

optimized design over the volume efficiency is chosen as follows: 

- The spinning torque efficiency 0 /z rT V  of Design D2 monotonically decreases 

with Vr.  The inclinational torque efficiency 0 /x rT V  has a highest value for 

0.3rV  , but the overall output torque will be significantly reduced by low .rV  To 

minimize the loss of torque, the local peak  of the volume efficiency at 

0.9rV  marked by green circles in Figure 4-11(a) is chosen as an optimized 

efficiency point. The newly optimized design with 10% volume reduction 

( 0.9rV  ) gives 0 6.016xT   and 0 6.847zT   leading to 3.9% and 3.3% torque 

reductions with respect to the original design ( 1.0rV  ).  

- The inclination torque efficiency 0 /x rT V of Design A0 monotonically decreases 

with Vr.  The spinning torque efficiency 0 /z rT V  exhibits a global peak at 

0.56rV   leading to a new design with 44% volume reduction ( 0.56rV  ). The 
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reduction of 0 2.751xT   and 0 5.058zT   for the newly optimized design is 21.4%, 

19.1% comparing with the original design ( 1.0rV  ). 

 

   

(a) Design D2: inclinational torque  (b) Design D2: spinning torque  

   

(c) Design A0: inclinational torque  (d) Design A0: spinning torque  

Figure 4-11 Torque output and volume efficiency 

 

Figure 4-12(a) and (b) show the newly optimized designs of Design D2 and A0 

respectively considering the torque-to-weight efficiency. As seen in the PM Halbach 

array of Design D2 ( 0.9rV  ), the rotor design space at the junction of the connecting 
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PMs is less effective that other space; thus, the optimized PMs can be fabricated by block 

shaped PMs. For the Design A0 ( 0.56rV  ) optimized by radially magnetized PMs, the 

optimization with the volume constraint empties the rotor design space where PMs are 

contacting each other. The newly optimized Design A0 for existing stator is much similar 

to existing rotor design.  

 

   

(a) Design D2 ( 0.9rV  )   (b) Design A0 ( 0.56rV  ) 

Figure 4-12 Optimized designs over the weight efficiency  

 

4.2 LINEAR-ROTARY MOTOR 

  

A new linear-rotary (LR) motor for 2-DOF motion is optimized by the Layout 

Optimization. A 3D CAD of a LR motor shown in Figure 4-13(a) is capable of both 

spinning and translational motion along the z-axis. Using similar designing steps for the 

spherical motor, the LR motor is separately optimized by 1-DOF rotary motor with an 

internal rotor and another 1-DOF linear motor as shown in Figure 4-13 (b); and 2D 

results are used to optimize the 3D LR motor. The design objective of the LR motor is to 
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maximize output torque and force for diameter 25.4mm (1inch) and z-axial length 

152.4mm (6inch) while supporting 25.4mm (1inch) linear motion. 

 

 

    (a) 3D CAD of a LR motor      (b) Rotary and linear motor 

Figure 4-13 Design optimizations for a 2-DOF linear-rotary motor  

 

4.2.1 1-DOF rotary and linear motors 

 

Geometry parameters (mm) 

0 16.16,  8.70,  2.54,

8.89,  11.43,  12.70

z

i o s

r r l

a a a

  

  
 

Optimization parameters 

7 2

0 max max

180,  900,  

1 , 10 ( / ),

720,  0.5

V S

d

N N

M T J A m

P





 

 

  

 

Figure 4-14 Optimization parameters for the 1-DOF rotary motor  
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Geometry parameters (mm) 

0 16.16,  8.70,  5.08,

8.90,  11.43,  12.70,
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Figure 4-15 Optimization parameters for the 1-DOF linear motor  

 

Figure 4-14 and 4-15 show the geometry and parameters for design optimization 

of a 1-DOF rotary and a 1-DOF linear motor. The objective is to find the preferred EM 

and PM layouts for the two moving directions of the LR motor. For both cases, the 

external stator in the non-design space has a number of EMs mounted on a stator iron, 

and the internal rotor PMs in design space are the target for to be optimized.  

 

1-DOF rotary motor with an internal rotor (closed design space) 

 The 1-DOF rotary motor being optimized has a closed rotor, and its optimization 

is almost the same as the rotary motor with an external rotor case in Section 3.3. The 

electric current input in (3.20) can be used for linear optimization, and the angular size of 

an EM is defined by (3.23) for [4,6,8,10,12,14,16]EMN  . The opposing located EMs are 

paired to reduce inpN  by means of 2-phase EM input. The optimization considers the 
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number of PM poles for 1,2, 2pole EMn N  , and weight factors are set to 

0, 0, 1x y zw w w   , and 1 for 1, ,pw p P  .  Figure 4-14 includes detailed 

parameters for the optimization.  

 

1-DOF linear motor (open design space) 

 The optimization for the open rotor (or forcer) of the linear motor is similar to that 

in Section 3.3. The electric current inputs for even and odd poles are defined in (3.21) 

and (3.22) with   and 
rotor  replaced by z  and 

rotorl respectively. The optimization 

considers [3,4, ,10]EMN   with the z-axial size /EM stator EMl l N , and its respective PM 

pole length 0 [1,2, ]pole d dl l l    for pole rotorl l . The EM position 
locz is defined by 

(3.25) or (3.26) with 
EM  replaced by 

EMl . The linear optimization uses 0xw  , 0yw  , 

and 1zw  , and equal positional weight factors 1 for 1, ,pw p P  . The detailed 

parameters for the optimization are included in Figure 4-15. 

 

Optimization result of the 1-DOF rotary motor 

 The minimum spinning torque 
0zT  of each ( polen and

EMN ) combination is 

evaluated for the linearly optimized designs.  The evaluation results are plotted as a 

function of  polen  for each 
EMN  in Figure 4-16 where notably good designs are marked by 

an orange box including ( , )EM poleN n =(10,14),(10,12),(8,10),(6,10), and (6,8); and the 

best rotor designs for each of 
EMN =6,8, and 10 are shown in Figure 4-17 where all rotors 

are optimized by a Halbach PM array; and internal rotors has longer radially magnetized 
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PMs than tangentially magnetized ones. Considering design compactness, 6EMN   and 

8polen   is chosen as an optimal layout being applied to a 3D LR motor optimization. 

 

Figure 4-16 
0zT of linearly optimized designs for the 1-DOF rotary motor 

 

(a) 6, 8EM poleN n          (b) 8, 10EM poleN n        (c) 10, 14EM poleN n   

Figure 4-17 Optimized rotor PM designs of the 1-DOF rotary motor 

 

Optimization result of the linear motor 

 The minimum z-axial force 
0zF  of the linearly optimized designs is evaluated for 

every combinations of polel and
EMN . The best 

0zF  for each 
EMN  is plotted in Figure 4-18 

where 
EMN =8 and 10 cases (marked by orange boxes) show outstanding torque outputs. 
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The detailed 
0zF  of 

EMN =8 and 10 designs as a functions of  polel  is plotted for odd (O) 

and even (E) PM poles in Figure 4-19 where the best combinations of EM and (O) PM 

poles, ( , )EM poleN l =(8, 11.0mm) and (10, 9.0mm)  are denoted by orange boxes; optimized 

rotor designs with the magnetization of PMs (denoted by red arrow) are also depicted in 

Figure 4-20 where the 
EMN =8 design requires a smaller number of PMs than 

EMN =10 

ones. Since both designs shows similar output force
0zF , considering the design 

compactness, 8EMN  and ( )11.0polel O mm  is chosen as an optimal layout for a 3D LR 

motor optimization. 

 

Figure 4-18 
0xF of optimized designs for the linear motor  

   

       (a) 8 EMs                 (b) 10 EMs  

Figure 4-19 Integer programming for the design with 8 and 10 EMs  
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(a) Rotor design for 8 and ( )11.00EM poleN l O mm   

 

(b) Rotor design for 10 and ( )9.00EM poleN l O mm   

Figure 4-20 Optimized rotor designs for the linear motor 

 

 

4.2.2 Linear-rotary motor 

 A linear-rotary motor is optimized by the Layout Optimization in 3D space. 

While changing weight factors for each of spinning and linear motions, the rotor design 

space is linearly optimized; and the maximum spinning torques of the rotor designs are 

compared for different external axial forces. From the 2D EM and PM layouts optimized 

for 1-DOF rotary motor and 1-DOF linear motor, the 3D stator design and rotor design 

spaces being optimized are defined in Figure 4-21(a) where the rotor PM design space is 

a hollow cylinder with 
1 0( )r r  radial thickness and 

rotorl  length; and the non-design 

space stator is designed by the rectangular-cored 48 EMs and stator iron. The cross 

sectional view of the stator in Figure 4-21(b) shows the circular layout of the EMs along 

with the thicknesses of the EM and iron; and also the shape and size of the stator EM is 

shown in Figure 4-21(c). Most of the geometries are defined based on the geometric 

parameters of 2D optimizations in Figure 4-14 and 4-15.  
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2.03 ,    9.65 ,
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l mm l mm
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(a) Stator and rotor design space (b) Stator layout (c) Stator EM 

Figure 4-21 Stator and rotor design space for the linear-rotary motor optimization 

 

Optimization parameters 

 Taking advantages of the alternating magnetization (4.1) of the rotor PM along 

spinning direction, only 1/ 8  of the rotor PM design space is needed. The reduced rotor 

design space is decomposed into 648VN   volume and 2658SN   surface elements; 

which is then linearly optimized to maximize the weighted sum of the torque and force 

average evaluated at 31P   spinning orientations and 161zP   linear positions (or 

4991P  ) . The rotor PM is optimized by N42 grade PM with  0 max 1.3µ M T , and 

7 2

max 10 ( / )J A m  is used for all the torque and force computations. 

 

Electric input current and torque evaluation 

 This optimization considers PM poles 8polen   and layers 9layersn   for circular 

and longitude directions respectively. The PM pole layouts of the 1/ 8  sized rotor is 
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shown in Figure 4-22(a), which defines the sign of an EM input current for spinning 

torque 
zT  and linear force 

zF  as follows: 

- The sign for 
zT changes between PM layers, (2 1) / 2pz n z    for 1, ,4n  , 

and also at PM pole positions 0 and p  . The sign for 
zT is shown in Figure 4-

22(b), which defines the EM current input for the evaluation of spinning torque 

with max ( )zJ J sign T  .  

- The sign for 
zF changes at every PM layer position 0,  and pz nz   for 

1, ,4n  , and also between PM pole position / 2p  . The predefined sign for 

the evaluation of linear force
zF is shown in 4-22(c); and it defines EM input 

current by max ( )z zJ J sign F  

 

(a) rotor PM pole layout 

  

(b) EM input sign for 
zT   (c) EM input sign for 

zF  

Figure 4-22 EM current input for the linear-rotary motor optimization 
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 For a linearly optimized design, the net output torque and force [ , ]T

z zT Ff  

actuated by all stator EMs (with inpN  input channels) can be expressed by the 

multiplication of EM input 
1[ , , , , ]

inp

T

s NJ J Ju  and current-torque/force matrix K : 

Ku f      (4.12) 

where 1[ , , , , ]
inps NK k k k ; and sk is an input current to z-axial torque and force 

relation by sth pair of EMs . As the stator has 24inpN   for 48 EMs, the redundant current 

inputs are determined by solving a linear optimization problem at each rotor orientation: 

max maxmaximize   subjected to ,  T

sJ J J   
u,f

c f Ku f  (4.13) 

where maxJ is the maximum input current; and the components of f  can be either 

specified constant or variable to maximize. To compare the maximum zT  over an external 

force z extf f , (4.13) is evaluated with [1,0]Tc  and [ , ]T

z extT ff ; and the performances 

are compared with the minimum spinning torque, 0 min( )z zT T  for all range of the rotor 

motion while changing extf .  

. 

Optimization result of the linear-rotary motor 

 The rotor design space is linearly optimized for several combinations of force and 

torque weight factors ( , )zw w  , and it defines a directional weight factor [  0 ]T

d zw ww . 

On the linear optimization, the design with the weight factor (1,0) only maximizes the z-

axial force while the weight factor (0,1) only optimizes the spinning torque. Since the 
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scale of the torque is much smaller than that of the axial force due to the small torque arm 

of the rotor, a larger w  is used for the design optimized by a mixture of weight factors.  

Figure 4-23 shows the evaluated minimum torque output 0zT  for different external 

loadings extf . The results show that the linearly optimized design with ( , )zw w =(1,12.5) is 

the best, and optimized design with only z-axial force, ( , )zw w =(1,0) also gives very 

close performance. However, the optimization only for the spinning torque 

( , )zw w =(1,0) gives a relatively less effective design. Three rotor designs optimized with 

( , )zw w  = (1,12.5), (1,0), and (0,1) are compared in Figure 4-24 where small design 

differences are detected near the end of the rotor. Originally, it is expected that the 

composition of connecting PMs will be notably changed with a directional weight factor, 

but small differences on the optimized designs are observed. 

As a results, the design optimized with ( , )zw w =(1,12.5) is chosen as the optimal 

design, and its torque output is shown in Figure 4-25 for extf =0, 1, 2(N). The optimized 

design gives small output force and torque caused by a low maximum current 

input
7 2

max 10 ( / )J A m , and higher performance can be achieved by using small EM 

wire and large input current. For example, 34AWG wire (0.160mm diameter) with 3A 

current gives 14.9 times larger current inputs, 
7 2

max 14.9 10 ( / )J A m  ; and the 

optimized LR motor can make 0.621(Nm) at all range of the rotor orientation while 

supporting external load extf =29.8(N). 
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Figure 4-23 Evaluated minimum torque for different axial loads 

 

(a) ( , )zw w =(1,12.5) 

 

(b) ( , )zw w =(1,0) 

 

(c) ( , )zw w =(0,1) 

Figure 4-24 Optimized rotor designs for the linear-rotary motor 
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(a) 0 ( )extf N     (b) 1 ( )extf N  

 

(c) 2 ( )extf N  

Figure 4-25 Torque output of the optimized designs for axial loadings ( 1, 12.5)zw w   

 

4.3 DISK-SHAPED SYNCHRONOUS MOTOR 

 

The rotor PMs and stator EMs of the disk-shaped synchronous motor (DSSM) are 

located circumferentially on two disks separated by a small air gap. Unlike a cylinder 

shaped conventional rotary motor; flat and thin shaped DSSM offers following 

advantages: 

1) Extended work space to mount other materials 

2) Hollowed inner space to easily assemble bearing or additional parts 
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3) Improved performance with increased torque arm 

4) High torque with stacking up the motors along rotational axis 

However, the main drawback of the DSSM is the increase in rotor inertia and bearing 

friction caused by the bulky rotor size limiting its usages for high-speed applications.  

 Two different DSSM motor designs, denoted as Large Design (LD) and Small 

Design (SD), consist of 48 rectangular EMs and 6 cylindrical EMs as shown in Figure 4-

26(a, c) and Figure 4-26(b, d) respectively.  The rotor PM design space in Figure 4-26(e) 

is optimized to find a set of preferred rotor PM designs for each of the predefined stator 

designs.  

 

   

(a) stator layout of LD   (b) stator layout of SD  

   

(c) EM geometry of LD (d) EM geometry of SD (e) rotor design space 

Figure 4-26 Design layouts for DSSM optimization 
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The design parameters for optimization are shown in Table 4-5 where dg is air 

gap; Jmax is the maximum input current for an EM; VN  and SN  are the number of 

decomposed volume and surface of the design space; Di, Do, and Lz are the size of each 

design space; and nc, li, di, and bi are DMC modeling parameters for EMs.  

 

Table 4-5 Optimization parameters for DSSM 

 LD SD 

EM 

Geometry 

(mm) 
xil , yil , xol , yol , zl , scR  

10, 30, 30, 50, 10, 265 

id , od , zl , scR  

9.78, 31.37, 9.53, 53.34 

nc , li ,di/ bi 752, 3, 2 576, 3, 2 

Rotor 

Geometry 

(mm) 

iD , oD , zL   

490, 570, 6  

iD , oD , zL  

81.3, 132.1, 6.35 

VN , SN  11520, 47520 8640, 35280 

Optimization parameters Jmax=107(A/m2), µ0Mmax= 1(T), dg =1(mm) 

 

The closed rotor design spaces of DSSM are linearly optimized with EM inputs in 

(3.20). For LD and SD, the torques are evaluated at 1440P   and 720P  orientations 

respectively with 0.25  and 0.5  intervals. LD covers more number of poles for 

2,4, ,96polen   due to relatively large 48EMN  , and SD is optimized 

for 2,4, ,48polen  . 

 When performing integer programming, the output performances are evaluated 

with 3-phase sinusoidal inputs in (4.14) and square wave inputs in (4.15) and compared 

among the linearly optimized designs: 

max sin ( )
2

p

s s

N
i i  

 
  

 
    (4.14) 
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max
ˆ sign( )s si i i     (4.15) 

where , ,s a b c denote each of 3-phase inputs; 0 00,  ,  and 2a b s c s        are phase 

difference defined by EM angle separation 0 2 /s EMN  ; and 48 and 6EMN  for LD 

and SD respectively.  Since EMN of the stator are multiple of 6, two types of 3-phase EM 

wiring; types P and N as shown in Figure 4-27 are considered for the torque evaluation 

with 3-phase EM inputs. The optimized designs are chosen based on the net output torque 

and its ripple over the required number of PMs; and the CAD models of optimized 

designs are presented to simulate actual performance including iron rotor. 

 

Figure 4-27 Two types of 3-phase EM inputs 

 

4.3.1 Layout Optimization 

 For linearly optimized results, output performances are evaluated for minimum 

torque min  and torque ripple max min( )r     with sinusoidal 3-phase inputs, and min̂  

and ˆ
r  with square wave 3-phase inputs. Notably effective designs of LD and SD are 

respectively listed in Table 4-6 and 4-7. All results commonly show that the square wave 

input always makes larger minimum torque, but also has larger torque ripples. The 

sinusoidal input offers much small torque ripple with reasonable torque magnitude, and 

its torque characteristics are highly desired as a rotary motor. Integer programming is 

performed to further narrow the choice of optimized LD and SD designs. 
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Optimization of LD  

 Table 4-6 shows four effective designs; two for type P, and two for type N 

connections. Comparing with other designs, Designs B and D show superior 

performances among all types of torque. The optimized rotor designs of B and D are 

shown in Figure 4-28 where either of PM polarities or magnetizing direction is depicted 

from the view of stator. Cleary, Halbach PM arrays on the optimized rotor design 

reinforces air gap flux, and it improves overall output torque. While the size of PMs are 

different for both cases, the optimized rotor designs are quite similar to each other; and it 

can be easily designed by commercially available bar shaped-PMs due to the large radius 

of the design space. Also, simulated torques of Design B and D are also compared in 

Figure 4-29 for different spinning angle ; and it shows Design B makes slightly better 

output, but both designs can be regarded to have similar toque performances. Considering 

less number of the PMs in Design B, its CAD model will be developed to simulate the 

performance loss during the actual motor design. 

 

Table 4-6 Output torques of optimized LD 

Design A B C D 

Input type P P N N 

polen ( PMN ) 32(64) 64(128) 16(32) 80(160) 

min̂  82.65 122.58 38.81 120.35 

ˆ
r  27.31 20.66 58.87 19.97 

min  68.82 105.43 32.85 103.84 

r  2.51 1.86 24.96 0.98 
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(a) Design B     (b) Design D 

Figure 4-28 Optimized rotor designs for optimized LD 

 

 

Figure 4-29 Simulated torque for optimized LD 

 

Optimization of SD 

 Table 4-7 shows eight effective designs: four for type P, and four for type N 

connection. In view of torque output, Designs C, E, and F show similar performance but 

have a better efficiency than the others. The detailed optimized rotor designs are shown 

in Figure 4-30 where the small radius of the design space causes significant distortion of 



 118 

the optimized PM shapes for small number of PMs. Figure 4-31 compares the simulated 

torques of the optimized designs for different spinning angle ; and all designs show 

similar performance, but design F gives about 4% larger torque than Designs B and E. 

Design C is chosen as an optimized design since it shows reasonably good performance, 

and its optimized rotor PMs can be effectively fabricated using commercially available 

bar-shaped PMs. A CAD model of Design C, being experimentally implemented in 

Chapter 5, is developed and analyzed in following section. 

 

Table 4-7 Output torques of optimized SD 

Design A B C D E F G H 

Input type P P P P N N N N 

polen ( PMN ) 4(8) 8(16) 16(32) 20(40) 10(20) 14(28) 22(44) 26(52) 

min̂  0.831 1.334 1.462 1.221 1.459 1.521 1.030 0.661 

ˆ
r  0.806 0.316 0.242 0.185 0.258 0.257 0.204 0.190 

min  0.717 1.153 1.262 1.503 1.259 1.313 0.882 0.572 

r  0.292 0.002 0.016 0.001 0.007 0.018 0.044 0.065 

 

 

(a) Design C   (b) Design E   (c) Design F 

Figure 4-30 Optimized rotor designs for optimized SD 
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Figure 4-31 Simulated torque for optimized SD 

 

4.3.2 Torque simulation of CAD model  

The CAD model for Design B of LD and Design C of SD are developed by same 

sized bar-shaped PMs. The geometry of pole and connecting PMs are shown in Figure 4-

32 where red and blue volumes denote north and south poles of the PMs. The LD and SD 

uses PMs respectively sized by Lx×Ly×Lz=10.16×39.88×6 and 6.35×25.4×6.35(mm3). 

The developed CAD models of the large and small rotors are respectively shown in 

Figure 4-33(a) and (b) where the rotor volumes are almost fully filled by 128 PMs and 32 

PMs respectively to minimize the performance loss from unused rotor space. On the 

torque analysis of CAD models, rotor irons with thickness 3mm for LD and 0.125in for 

SD designed by 1018 steel with relative permeability µr=925 is considered.  Also, the 

same electromagnetic properties, Jmax=107(A/m2) and µ0MPM= 1(T) are applied to 

compare and discuss performance loss caused by designing actual rotors. Simulated 

parameters for the DMC model of PM and rotor iron are summarized in Table 4-8. 
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(a) Pole PM    (b) Connecting PM 

Figure 4-32 Bar-shaped PMs to design DSSM rotors 

 

   

(a) Rotor of LD   (b) Rotor of SD 

Figure 4-33 CAD model of optimized DSSM rotor 

 

Table 4-8 DMC parameters to simulate the CAD of DSSM 

 
PM Iron 

nc li di/ bi nc li di/ bi 

LD 20 4 3 2048 5 3 

SD 36 4 3 1536 5 3 

 

The CAD model of a large DSSM is simulated by DMC to evaluate torque output 

for square wave and sinusoidal inputs. Figure 4-34 shows simulated net output torque, 

and each of 3-phase torques A,B, and C. The minimum net torque and its ripple are also 

tabulated in Table 4-9. The simulated results show that simplifying the optimized design 
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with the bar-shaped PMs causes 23.3% and 19.9% torque reduction while the rotor iron 

contributes to improve 34.7% and 33.1% of min̂ and min . Torque ripple of the CAD with 

sinusoidal inputs is twice of the optimized rotor, but still stays in small value comparing 

with torque output. For square wave input, torque ripple is reduced as net torque 

decreases.  

 

 

(a) Square wave input    (b) Sinusoidal input 

Figure 4-34 Torque response of CAD model of LD 

Table 4-9 Output torques of CAD model of LD 

Rotor min̂  ˆ
r  min  r  

PM 98.21 12.07 81.15 3.9086     

PM with iron 130.72 16.77 109.32 3.8966 

 

For the CAD model of SD, output torques with square wave and sinusoidal inputs 

are also simulated by DMC. Figure 4-35 shows the torque for each of 3-phase and its net 

output; and the minimum net torque and its ripple is listed in Table 4-10. With the 

simplified rotor design with bar-shaped PMs, the output min̂ and min  are decreased by 

34.4% and 34.9% since the CAD model for the small rotor contains more unused space. 

Unlike the large design, the performance of this CAD model is merely improved by the 
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iron rotor; but it shows relatively small torque ripple. As overall torque outputs are 

decreases, torque ripples are also notably suppressed; and sinusoidal input gives 

negligibly small torque ripple, and it enables very smooth continuous spinning. 

 

 

               (a) Square wave input     (b) Sinusoidal input 

Figure 4-35 Torque response of CAD model of SD 

Table 4-10 Output torques of CAD model of SD 

Rotor min̂  ˆ
r  min  r  

PM 0.9518 0.1510 0.8273 0.0045 

PM with iron 0.9587 0.1516 0.8330 0.0046 

 

 The CAD model is developed for each of optimized rotor designs, and its 

performance loss caused by simplifying optimized rotor design is discussed. Also, it has 

been shown that performance improved by using rotor iron can be drastically changed by 

the choice of PM and EM layouts. While the designs are simulated with µ0MPM = 1, 

output torque of the actual motor can be improved by 45% with N52 grade PM, µ0MPM= 

1.45(T).  
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4.4 SUMMARY 

 

 This chapter has illustrated the DMC-based design optimization for three types of 

actuators; spherical, linear-rotary and disk-shaped synchronous motor. With layout 

optimization described in Chapter 3, a number of layout combinations of PM and EM are 

optimized, and chosen by critical design objectives such as output performance and 

design compactness. The CAD models of optimized designs are developed to evaluate 

performance changes during actual design implementation including iron boundary. On 

the optimization of the 3-DOF spherical motor, layouts of stator EMs and rotor PM poles 

are selected by on 2D optimization results in Chapter 3, optimized to improve torque 

characteristics under external loadings. Also, 2-DOF linear-rotary motor has been 

optimized to develop high torque rotary motor that can also support linear motion in the 

existence of linear external loading. Finally, DSSM have been optimized to develop high 

torque rotary motor for predefined stators of LD and SD. In Chapter 5.2, CAD model of 

optimized SD will be fabricated to experimentally validate optimized designs with 

measured air gap flux density and 3-phase torque output. 
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CHAPTER 5 

EXPERIMENTAL VALIDATION 

 

 This chapter presents the experimental results and validation for four different 

applications using the DMC models. The first examines the flux density and torque of a 

small disk-shaped synchronous motor (DSSM) optimized in Chapter 4; the custom-

designed DSSM has been fabricated to demonstrate design optimization of a real actuator 

from the DMC models and for validating the computed results against measurements. 

The second is an analysis of an existing 3-DOF PM spherical-motor (PMSM) orientation 

stage [27, 66], where experimental data are available for comparison. The third analyzes 

the restoring magnetic torque between the magnetic wheels of a flexible mobile node 

(FMN) [69] and the iron bridge surface on which the FMN moves and turns around a 

tight corner. Finally, a PM linear synchronous motor (PM-LSynM) is analyzed using the 

DMC modeling method. 

 

5.1 DISK-SHAPED SYCHRONOUS MOTOR 

 

A DSSM consisting of a moving rotor with a Halbach array of 32 PMs (block-

shaped, N52-grade), a stationary stator that houses 6 EMs (cylindrical, each with 800 

turns), and a mechanical bearing, has been designed using the optimization results in 

Section 4.4 as shown in Figure 5-1(a).  To help visualize the components making up the 

DSSM, an exploded view along the (spin) Z-axis and a sectional view are shown in 

Figure 5-1(b) and (c). The rotor PMs ( 0 1.45PMM T  ) are tight-fitted in acrylic slots and 
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held in position by a thin iron rotor plate that eases the rotor assembly but is expected to 

have little effects on the output performance because of the Halbach PM arrangement. 

Six stator EMs are mounted on an aluminum plate which can be adjusted vertically by 

means of bolts/nuts for setting a specified air-gap gd between the EMs and PMs. The 

rotor shaft is mechanically supported on the stator by means of a roller bearing and a steel 

sphere against gravity with little contact area to reduce friction. 

 

   

          (a) Isotropic view                 (b) Exploded view 

             

(c) Section view 

Figure 5-1 CAD experimental setup of DSSM 
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 Along with additional mechanical devices designed for measuring its air-gap flux 

density and 3-phase output torque, the DSSM experimental setup has been fabricated as 

shown in Figure 5-2(a). The rotor PM array and stator EMs are shown in Figures 5-2(b) 

and 5-2(c). The PMs are marked by N/S for PM poles and air-gap field direction for 

connecting PMs. The EMs grouped by A, B and C, and each group is serially connected 

to actuate the motor with 3-phase input.  

 

 

       (a) Motor assembly           (b) Rotor PM array        (c) Stator EMs 

Figure 5-2 Experimental setup of DSSM 

 

5.1.1 Experimental setup for measurement 

 Two different experimental setups are designed to measure torque and air gap flux 

density for validating the simulated results of the DMC models. During the experiment, 

the precision rotational stage (BR82-1 HWHR Instruments) attached to bottom of the 

stator, as shown in Figure 5-3, is used to specify the stator orientation. While the stator 

orientation is manipulated, the rotor orientation is constrained mechanically by a rotor 

arm assembly.  
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Figure 5-3 Precision rotational stage for DSSM experiment 

 

 The air-gap flux density due to the rotor PMs in the z direction was measured 

using 4 single-axis Hall-effect magnetic sensors (Asahi HG-362A), which were located 

5.3zh mm vertically from the PM surface and 49.2rh mm  radially from the rotational 

center.  While the end of the rotor arm is secured to specify the rotor position relative to 

the stator, the flux densities were measured by means of a data acquisition (DAQ) 

module (NI USB-6008) for a revolution at 1 degree interval.  For each increment, 1-

second data taken at 5ms sampling rate was averaged.  

 A mechanical assembly has been designed to measure torque of the DSSM, where 

the rotor and its linked arm are constrained by two compression springs as shown in 

Figure 5-4 such that any displacement caused by an external torque or force can be 

measured using a micrometer. Figure 5-5 shows a CAD plane view for a closer look at 

the torque measurement setup and its parameters. For the electromagnetic torque 
zT  and 

external force wf , which are caused by the current input flowing through the EMs and 

the external weight respectively, the spring force sf  restores the rotor assembly moves to 

a new equilibrium state.  With a stiff spring which only allows a small displacement md , 

the micrometer-measured 
md  gives the equations, (5.1), (5.2) and (5.3), for solving the 
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angular displacement 
r of the rotor, the spring force

sf  (that depends only on 
r ), and 

the torque zT  (that depends on both the angular displacement of the rotor 
r and stator  ) 

from the moment equilibrium equation: 

/r m md R       (5.1) 

( ) /s r s m s mf k d R R      (5.2) 

( ) ( ) 0s s r z r w wR f T R f         (5.3) 

 In (5.2), the equivalent spring constant sk  (of the two springs) is calibrated using 

external weights on the rotor arm as shown in Figure 5-6.  During calibration, a linear 

least-square fit for zT =0 in Figure 5-7 is sought to establish a relationship between 

md and sf : 4530.5 10.847s mf d  . With (5-2), the calibrated sk =4530.5 N/m of the 

combined two springs is slightly larger than twice the manufacturer specified spring 

constant of 4378.2 N/m (or 3.5% difference). With zero external force 0wf   , zT can be 

evaluated from (5.3) for a given stator orientation  , where
r  and 

sf  are computed from 

(5.1) and (5.2) respectively with measured md  and calibrated sk . This torque was 

measured with air-gap 1.905gd mm  and 1A current applied to each phase of EMs by a 

power supply (KEPCO BOP 50-2M). 
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Figure 5-4 CAD mechanical assembly to measure DSSM torque 

 

Figure 5-5 CAD torque measurement setup and its parameters 

 

Figure 5-6 Spring calibration with external weights 
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Figure 5-7 Spring calibration by a linear least-square fit  

 

5.1.2 Model validation with experimental results 

To validate DMC model, we compare simulated results with measured data 

obtained experimentally using the above described setups with the same DMC 

parameters in Table 4-5 and Table 4-8 for modeling PM, EM and iron. The current-

density to current-magnitude ratio is 
6 2/ 7.49 10 ( )J i m   for the 800-turn EM. 

Simulated flux densities and torques are compared with measured flux density in Figure 

5-8 and Figure 5-9 respectively.  

 

Air gap flux density 

The computed and measured flux densities along the z-axis are compared in 

Figure 5-8 for all four sensors. Since the rotor is designed by same sized 32 PMs in 

Halbach array, periodic flux density has 16 peaks and 16 zero points under the center of 

pole and connecting PMs. Around peak points, measured field becomes little smaller than 

computed field. While such small errors can be caused by either sensor position error or 
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weaker PM magnetization, computed flux density clearly matches with measured data for 

most of orientations. 

 

EM Torque 

 For each phase of EMs, simulated z-axial torques are compared against 

experimentally measured torques in Figure 5-9. While the result shows some phase 

differences which can be caused by hand manipulation of the rotational stage and shape 

errors of EMs, computed and measured torques of all phases well agrees with each other.  

 

 

       (a) Sensor 1         (b) Sensor 2   

 

       (c) Sensor 3         (d) Sensor 4   

Figure 5-8 Comparison of DSSM flux density 
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Figure 5-9 Comparison of DSSM torque 

 

5.2 PM SPHERICAL-MOTOR (PMSM) ORIENTATION STAGE  

 

The DMC model for an existing 3-DOF PMSM orientation stage was analyzed 

and validated against published experimental data [66].  Figure 5-10(a) shows a CAD 

model of the PMSM orientation stage, where two (top and bottom) rings of repulsive 

circular PMs forming a weight compensating regulator (WCR) are added to an existing 

spherical motor (that has 3 layers of 8 cylindrical EMs and 2 layers of 12 cylindrical 

PMs) to compensate for the gravitational effects on the orientation control. As shown in 

Figure 5-10(b), the WCR was supplementary to improve system stability with repulsive 

force, where the restoration torque increases as the inclinational angle   increases and 

thus tending to stabilize the spherical motor control.  To decouple the magnetic fields for 

orientation control of weight compensation, three shielding irons are added to the WCR; 

two iron rings separated by 0.25mm in top part, and one iron ring in bottom part. 
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(a) CAD model            (b) WCR 

Figure 5-10 CAD model of existing PMSM orientation stage 

 

5.2.1 Analysis of PMSM orientation stage 

Given the geometries and electromagnetic properties of the PMSM orientation 

stage, three DMC models derived for its PM, EM and iron are listed in Table 5-21. While 

most of the mechanical structure of the spherical motor is non-magnetic, the WCR PMs 

are attached to a pair of shielding irons (the top shield was made up of two ring-like 

circular irons separated by 0.25mm; and the bottom shield is an iron ring.  On the top and 

bottom of WCR, each with 24 PMs are located along the circles with radii of 73.66mm 

and 49.53mm, and WCR PMs are separated by 26.67mm at stable orientation 0  .  

In this simulation, the residual flux density of all PMs (N42 grade) is set to 

µ0M0=1.32T. Also, the rotor orientation is transformed by the rotation matrix 

( ) ( )y z R R R  where zR  and yR are rotation matrix about z and y axes;  and denote 

spinning and inclinational angles. 
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Table 5-1 Simulation parameters for PMSM orientation stage 

 

Geometry DMC 

l(mm) 2a/l c/a nc li di/ bi 

Spherical 

motor 

PM 6.35 5 0 20 4 3 

EM 9.53 3.33 0.3 56 3 2 

WCR 

top 

ring 

PM 9.53 1 0 48 4 3 

iron1 1 175.26 0.768 144 5 3 

iron2 0.5 350.52 0.768 144 5 3 

bottom 

ring 

PM 12.7 0.75 0 60 4 3 

iron 1 121.92 0.688 144 5 3 

 

5.2.2 Magnetic field of rotor PMs 

 The radial components of the flux density measured by three hall-effects sensors 

located on the stator [66] are used to examine the validity of the simulated magnetic 

fields.  Figure 5-11 depicts the sensor positions on the sectional view of the stator. Two 

sensors on the cores of EMs are located on 0( , ) ( , )s s tb sr s   where sr  and
s  are radial 

and angular positions of sensors; 
0s denotes EM angles at top layers. Another sensor 

attached to stator frame is position on ( , ) ( ,0)s s mr s  .  

 

0 26

55.25

53.09

s

tb

m

s mm

s mm

  





 

Figure 5-11 Hall-effect sensors to measure magnetic field of the rotor PMs 
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The radial magnetic field components of the rotor PMs that are housed in the non-

magnetic structure of the spherical motor are simulated by the DMC model and compared 

with experimental data. In this simulation, the effects of the PMs and irons of the WCR 

were neglected since the top part of the WCR is sufficiently far from the sensors and 

rotor PMs. Figure 5-12 compares the flux density between the DMC model and 

experimental data and their differences for different spin   and inclination   angles. To 

more clearly represent the amplitude difference, the line plots of the flux density 
rB  at 

three inclinations,  = 0 º and 20.16º are shown in Figure 5-13. As compared in Figures 

5-12 and 5-13, the DMC computed 
rB  seems to agree well with 

rB  data experimentally 

measured at Sensors 1 and 2 particularly at the stable equilibrium position of  =0 where 

the difference in 
rB  is smallest.  Some small phase differences occur in other positions 

could be caused by orientation/position errors of the sensors or rotor eccentricity. Unlike 

Sensors 1 and 2, a large difference between the computed and measured 
rB  was found by 

Sensor 3. The amplitude of experimental field registered by Sensor 3 is nearly double the 

theoretical field computed by the DMC model implying that Sensor 3 could be much 

closer to the rotor than the originally designed position. Although the flux density 

measured by Sensor 3 shows a large error, Sensors 1 and 2 cover the measured field of 

Sensor 3; it is reasonable to conclude that the experimentally measured fields agree well 

with the DMC simulation.  
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(a) 
rB  at sensor 1    (b) 

rB  at sensor 2 

 

(c) 
rB  at sensor 3 

Figure 5-12 Flux density comparison of rotor PMs 

 

(a) 
rB  at sensor 1    (b) 

rB  at sensor 2   

 

         (c) rB  at sensor 3       

Figure 5-13 Flux density comparison of the rotor PMs at  = 0 º and 20.16º 
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5.2.3 WCR and EM torques 

The WCR restoring and the PMSM actuating torque of the orientation stage are 

separately simulated using the DMC model and compared with published experimental 

results. Since the WCR involves no EM, the effects of PMs and irons are only a function 

of PM positions, the restoring torques are fully analyzed in terms of the rotor inclination 

angle  . As compared in Figure 5-14, the DMC simulated torque well agrees to 

experimentally measured torque. Some errors at large inclinational angles can be caused 

by idealized material model overestimating the magnetization of the WCR iron. Also, 

during the experiment, undesired rotor motion can be occurred with high torque cases at 

large angles.   

 

 

Figure 5-14 Torque comparison of WCR 

 

 For validating the PMSM actuating torque due to EMs, the DMC simulated 

torque is compared against experimental data in Figure 5-15(a) for the case where the 

current is applied to EM1 and EM13 in Figure 5-15(b). For the 800-turn EM, the current 

density 2( / )J A m  is given by
70.7558 10J i  . Since it was hard to overcome the 



 138 

restoring torque of the WCR only with a pair of EMs for large angle experimentally, 

DMC torques have been simulated for available experimental range of the inclinational 

angles: 9.4618 8.4143      where the EM pair moves inside the rotor volume at large 

negative angle, and moves out from the rotor at large positive angle. As compared in 

Figure 5-15(a), the results agree well each other, and also show that the torque at the 

negative angles is slightly larger than that of the positive angles since the EM pair is 

placed inside the rotor volume.  

 

      

         (a) EM torque      (b) EM current input 

Figure 5-15 EM torque comparison of spherical motor 
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5.3 MAGNETIC WHEELS OF A FLEXIBLE MOBILE NODE (FMN) 

  

The embedded PMs magnetically attract the wheels to the iron surfaces on which 

the FMN moves; the attraction could change drastically as the FMN navigates its 

orientation around various environmental iron geometries, and may subject to undesired 

vibration or hard to overcome sharp geometrical changes like iron corner. One way to 

handle these problems is to control the moving speed and actuating torque of the wheel 

motors. The interest here is to analyze the stabilizing torque at the contact point between 

the magnetic wheels and iron surface, and compares the simulation results with 

experimentally measured data.  

 

5.3.1 Magnetic wheel design and torque experiment 

Figure 5-16(a) shows the CAD model of an existing magnetic wheel located on an 

iron bridge surface. The application involves two magnet wheels connected by a flexible 

beam.  In this thesis, the torque measurements of the front or rear wheels are separately 

studied. The detailed geometry and magnetic properties related to the wheel PM and iron 

are shown in Figure 5-16(b), where the residue flux density of the (N42 grade) arc-

shaped-PM is 0 1.32M T  ; and yL is its length along the y-axis. The experimental setup 

to measure the stabilizing torque at the iron corner is shown in Figure 5-17. Using 

hanging weights, the magnetic wheel orientation and spring deformation at the 

equilibrium point are measured; and the torques between the wheel and iron surface can 

then be estimated from the 2D static force/moment equations: the x and z force equations 

and the y-axis momentum equation. With different weights, the corresponding torques, 
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positions and orientations of the magnet wheel are measured for several environmental 

encounters; plain surface, iron corner, and single iron-corner with one-side of the corner 

is non-magnetic. 
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(a) CAD model of the magnetic wheel (b)Wheel geometry and magnetic properties 

Figure 5-16 Design of the magnetic wheel 

  

 

Figure 5-17 Torque measuring setup for magnetic wheel [69] 

 

5.3.2 Torque simulation and validation 

 The DMC models are separately derived for the magnetic components of the 

magnetic wheel.  The number of DMC cn  of the wheel PM and iron are set to 174 and 

96; and the iron plate and corner are set to 990 and 1654. The DMC il and /i id b  are set to 



 141 

4 and 3 for all components. To allow enough size to magnetic field propagation, the size 

of the iron bridge surface is set larger than 76.2 76.2mm mm  with a 1.27mm  thickness. 

The simulated torque of 1 wheel was doubled before comparing against experiment 

results with 2-wheeled magnet car.   

In the analysis, the magnetizations of the wheel and bridge irons by the PM flux 

density must be solved simultaneously for a series of magnet car orientation.  A large 

amount of computation would be needed depending on the number of simulating position 

and orientation of the magnet car. Instead of such a full analysis, the following steps are 

used in the analysis to avoid repetitive computations: 

1) Arc shaped wheel PM is modeled with the DMC method 

2) The DMC models of the wheel iron caused by the PM are solved  

3) The bridge DMC model caused by PMs is solved for the wheel orientations 

4) Calculate stabilizing torque for the wheel orientations 

Since the wheel and bridge irons are separated by some distance at any orientations, the 

propagation of the magnetic fields between these irons are neglected enabling the 

independent analyses of the iron model in Steps 2) and 3). When analyzing the magnet 

car at many orientations, matrices (2.36) are built so that they can be repetitively used for 

all the orientations of interest.  To enable this, the DMC locations of the PM for several 

orientations are applied when formulating the DMC iron matrices (2.36) and (2.37). Then, 

Step 3) is repeated under the condition that only specifying the external field of the 

moving arc PM. Figure 5-18 shows wheel positions used for iron matrices in the view of 

DMC assemblies. After solving for the irons, the restoring torques at the contact points 

can be simulated by (2.14).  
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             (a) Iron plane                       (b) Iron-iron corner  (c) Iron-wood corner  

Figure 5-18 DMC assemblies for various wheel orientations  

 

The DMC simulated stabilizing torques for the front and rear wheels are 

compared with experiment data in Figure 5-19(a); both well matches each other.  The 

restoring torque of the magnet wheels on the iron plane grows as   increases as the PM 

tends to restore its stable point 0    but starts to decrease around 25    when the 

separation between the PM and iron surface becomes large.  

The measured and simulated torques around the iron-iron corner and iron-wood 

corner are compared in Figures 5-19(b) and (c) respectively; the overall trend agrees well 

with each other. Some discrepancies can be observed around 0    where the torque 

experiences a sharp change, and between 40  and 50    where the highly unstable 

magnetic system presents a challenge to measure the magnetic restoring experimentally 

by open-loop control of the magnetic wheel and is the primary cause of measurement 

errors as reported in [69].  For example, the theoretical torque at 45    for the case of 

the iron-iron corner should be zero due to the symmetry of the arc-shaped PM. Also, the 

rounded corner of the iron plate can caused the discrepancies of torque patterns between 
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70    and 90   . The DMC models offer an effective means to simulate the torques 

for regions where accurate experimental measurements are difficult.  

  

  

  (a) Iron plane                (b) Iron-iron corner   

 

          (c) Iron-wood corner  

Figure 5-19 Torque comparison of the magnet wheel on an iron bridge 
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5.4 PM LINEAR SYNCHRONOUS MOTOR (PM-LSynM) 

 

 Figure 5-20(a) shows a CAD model of a commercial PM-LSynM with two layers 

of PMs (top and bottom, each with 26 PMs, or PMn =52) and an ironless armature, where 

the thrust forces are generated on the current-carrying EMs in the presence of stator 

PM/iron magnetic fields. In the PM-LSynM, the stator has rectangular PMs mounted on 

the U-shape iron yoke; and the rotor (or forcer) consists of 3-phase ironless EM coil 

windings as shown in Figure 5-20(b).  The DMC modeling method is applied to analyze 

the PM-LSynM, and identify the PM magnetization and coil positions using the measured 

air gap flux densities and experimentally obtained force data.  

 

 

(a) CAD PM-LSynM 

 

(b) 3-phase EM coil 

Figure 5-20 CAD PM-LSynM 
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5.4.1 Identification of PM magnetization 

 Figure 5-21(a) and (b) shows a CAD model of a PM-LSynM stator with the 

dimensions of two layers of PMs, and also illustrates the sensor positions ( )( , , )e k ex y z  to 

measure z-directional air-gap flux densities ( )e kB  and ( )e kB   where 1, ,7k   denotes 7 

sensor positions on y-axis. The sensor positions and PM geometric parameters are list in 

Table 5-2. 

The PM magnetization is identified by (4)eB   and (4)eB  which are measured 

nearby the center of PMs. Other measured data is used to evaluate the accuracy of the 

identified result with a mean square error (MSE): 

2

( )

1

1
MSE

senN

k i

isen

E
N 

       (5.4) 

where the error is defined by ( ) ( ) ( ) ( )( ) ( )k i DMC k i e k k iE B B r r ; ( )k ir denotes measured ith 

position of a kth sensor position measured at 4637senN  positions; and DMCB  is a flux 

density simulated by a DMC model with the identified result. Figure 5-21(c) and (d) 

respectively shows (4)eB  and (4)eB   with a threshold value 0.34peakB T  to extract the 

magnetic field around the peak, eB  and eB  . Since phase differences caused any PM or 

sensor position error can cause erroneous fitting result, the extracted magnetic fields 

( eB  and eB  , each with 830 positions, or senn = 1660) are used during the PM 

identification: 

e 1 /2 /2 1( ) [ ( ), , ( ), ( ), , ( )]
sen sen sen

T

e e e n e n e nB B B B    b r r r r r   (5.5) 

where 1[ , , ]
sen

T

e nr r r  denotes the measuring positions of eB  and eB  . 
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       (a) Front view of the stator               (b) Section view of the stator 

 

  (c) (4)eB   and ˆ
eB                          (d) (4)eB   and ˆ

eB   

Figure 5-21 Air gap flux density measurement 

Table 5-2 PM Geometry and sensor positions measuring air gap flux density 

PM Geometry (mm) sensor positions (mm) 

25.4,  29.97,

5.84,  30.48

x y

z pole

L L

L l

 

 
 

( )

(1) (2) (3) (4)

(5) (6) (7)

2.32,   for sensor index 1, ,7

2.56,  6.41, 10.27,  14.12,  

17.98,  21.83,  25.69

e e k

e e e e

e e e

z y k

y y y y

y y y

 

   


  

 

 

A least-square fit of measured air-gap flux density is used to determine unknown 

PM magnetization 0 1[ , , , , ]
PM

T

k nM M M m . When ( )k iB r  denotes the z-directional 

DMC flux density of kth PM with 0 1kM T  on a measuring point ir , the z-directional 

DMC flux density matrix for  PMn  PMs and  senn  measuring point can be defined by 
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1[ , , , , ]
PMPM k nB b b b     (5.6) 

where 1[ ( ), , ( ) , ( )]
sen

T

k k k i k nB B Bb r r r . Using (5.5), eb  (5.6) gives a linear 

relationship between measured data eb  and unknown m : 

0( )PM e B m b     (5.7) 

From (5.7), a linear least-square to determine m  can be solved by a Pseudo-inverse: 

1

0 e( )T T

PM PM PM m B B B b     (5.8) 

As a comparison model for the distributed magnetization 0 m , a linear least-square with 

an averaged magnetization 0 avgm  (in single variable) is determined by (5.9) using 

1

PMn

PM k

k

b b : 

1

0 e( )T T

avg PM PM PMm  b b b b     (5.9) 

 The fitted result of m  for top and bottom layers is respectively shown in Figure 

5-22(a) and (b) where the values of m  is distributed around the fitting result with single 

variable avgm .. Using these fitted magnetizations, the flux densities are computed again 

by the DMC modeling method, and compared in Figure 5-23(a) and (b) with experiment 

data respective (4)eB   measured at (4)( , , )e ex y z  along x-axis; and the error (4)iE  with 

respect to the measured data is plotted in Figure 5-23(c) and (d). While repetitive errors 

caused by small phase difference exist, the results in Figure 5-23 shows the flux density 

computed by m and avgm well matches each other.  For all sensor data 1, ,7k  , flux 

densities are simulated by the identified PM magnetizations m and avgm , and tabulated 

MSE in Table 5-3 gives following results. 
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- MSE is kept in small values from sensor 2 to sensor 6, although the PM 

magnetizations are identified by measured data with sensor 4.  

- The air-gap flux density of sensor 1 and 7 (respectively located around the sides 

of PMs) shows some errors; it can be caused by simplified shape (such as 

neglecting thin slots around PMs) of the iron yoke. Also, the geometry related 

errors (such as PM position error or bending of top and bottom iron frames by 

large attraction forces) can be additional reasons of the error.  

 

 

               (a) Top layer                  (b) Bottom layer 

Figure 5-22 Identified magnetizations of PMs 

 

 (a) 4( , , )z e eB x y z     (b) 4( , , )z e eB x y z   
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 (c) 4( , , )z e eB x y z  error   (d) 4( , , )z e eB x y z  error 

Figure 5-23 Flux density comparison with measured data  

 

Table 5-3 MSE on the flux density of identified PMs  

 z  
Sensor index k 

1 2 3 4 5 6 7 

MSE 

m  
ez  8.3396 2.9332 2.7339 2.5055 3.0254 2.9546 6.2452 

ez  6.0148 3.3945 3.2287 2.8175 3.6150 3.7204 8.7206 

avgm  
ez  9.0000 3.3321 3.1044 2.8368 3.4208 3.3537 6.8225 

ez  6.1325 3.5264 3.4086 2.9754 3.8345 3.9408 9.0304 

 

 

5.4.2 Identification of EM coil positions 

 Relatively large force ripple on force experiment data has been observed while 

ideal rotor design by other simulation gives smooth force output. Such unexpected force 

ripple can be caused by coil distortion around the end of the rotor where some empty 

space exists. To investigate the influence of the coil distortion on the force output, actual 

coil positions are identified by minimizing the error E  between the experimentally 

measured forces EF  and the DMC-based computed forces F : 
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2

1

minimize | ( , ) ( ) |
F

c

N

i c E i

i

E F x F x


 
x

x    (5.10) 

where EF  is measured at ix  for NF  rotor positions 1, , Fi N ; and cx  represents the 

effective coil positions that will be identified by a least square optimization. To prevent 

the coil from overlapping each other, the following physical constraints on the variable 

cx  are imposed: 

x ( 1) x ( )  for 1 1c c x ci i l i N          (5.11) 

where  xc i  denotes ith variable of cx ; cN  is the number of coil windings to be 

identified; and xl  is the width of the coil winding along x-axis; and F  can be directly 

evaluated by 3-phase input current with respect to ix .  

To identify the coil positions, Nc =24, NF=7001 and thrust force actuated by 1A 

current input are used. Figure 5-24 compares identified coil positions with ideal design; it 

shows coils have been distorted to empty space around the end of moving part. The 

computed forces using the identified coil positions closely agree with experiment data as 

shown in Figure 5-25(a) confirming that the force patterns are much different from the 

computed forces for an ideal design. The force errors of ideal and identified coils are 

compared in Figure 5-25(b), and respective MSEs are evaluated by 0.4857 and 0.0438. 

From the results in Figure 5-25, the force ripple of experimental data is successfully 

repeated by identified coils.   
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Figure 5-24 Identified coil positions 

 

 

(a) force          (b) error 

Figure 5-25 Force comparison of the PM-LSynM 

 

5.5 SUMMARY 

 

 This chapter has validated the effects of DMC model on the analysis of various 

practical applications. As a continual research of the DSSM design, one of optimized 

designs is fabricated to demonstrate the effect of DMC based optimization. Also, existing 

PMSM orientation stage was analyzed to illustrate the effects of DMC model on 

analyzing M-DOF motors. For DSSM and spherical orientation stage, simulated results 

by DMC were validated against experimentally measured flux density and torque. 
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Besides analyzing electromagnetic actuators, DMC model was used to 

characterizing stabilizing torque of the magnetic wheel moving on unbounded iron 

surface. As each of electromagnetic components is modeled separately by DMC, such 

component-wise system could be effectively analyzed. Since simulated data well agreed 

with experimentally measured torque, DMC model can help reduce experimental steps on 

formulating system dynamic. Moreover, unknown system or design parameters could be 

identified by DMC model based on experimental data. The PM magnetizations and coil 

positions of PM-LSynM were identified by the minimizing the error between 

experimental data and DMC simulation. With identified parameters, DMC could offer the 

accurate model that well represents actual system response of the PM-LSynM. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

 

6.1 CONCLUSIONS 

 

 In this thesis, a point-wise electromagnetic source model based on multi-level 

structured geometry has been presented to offer an efficient means for design analysis 

and optimization of PM electromechanical actuators from conventional single-axis 

actuators to M-DOF systems. The following contributions have been made in this thesis 

research: 

1) Magnetic field and force equations in closed form to analyze electromagnetic 

components and phenomena of electromagnetic actuators consisting of PMs, EMs, 

iron paths and eddy current. 

 The DMC model has provided a direct mean to model electromagnetic 

components with electric and magnetizing currents on decomposed geometries. Along 

with closed-form magnetic field and force equations, the DMC models that are 

represented by a group of local sources have been applied to characterize the effects of 

PM, EM, iron and eddy current. Its fast and accurate analysis efficiently can facilitate 3D 

design and analysis of electromagnetic systems. 

 The advantage of the DMC model controlling computational accuracy and speed 

of the magnetic field and force has been fully explored for analyzing electromagnetic 

components and phenomena. The DMC model is validated by published experimental 

data and analytical solutions for various illustrative applications. For the analysis of 



 154 

electromagnetic actuators in general 3D designs, the DMC model offers fast 

computational speed with reasonable accuracy comparing with FEM. Comparing with 

DMP, the DMC model can improve accuracy with slightly more computational effert. 

Since the DMC source can be directly determined by the electromagnetic material 

geometries and properties, computational efficienct DMC model has been effectively 

utilized on formulating topology optimization of M-DOF electromagnetic actuators.   

2) Layout Optimization to determine the best shapes and repetitive patterns of of EM 

and PM to maximize the torque-to-weight ratio of  M-DOF electromagnetic 

actuators. 

 Layout Optimization has been developed to determine optimal designs of 

electromagnetic actuators. Nonlinearity and local convergence problems during 

optimization of electromagnetic system are avoided by two sequential optimization steps 

: linear and integer programmings. Linear representations of magnetic field and force 

equations with respect to DMC volumes and surfuaces are used to formulate linear 

topology optimization. This optimization has been successfully applied for the design of 

various actuators from conventional single-axis system to M-DOF actuators such as 

spherical motor and linear-rotary motor. The main contributions of the Layout 

Optimization can be summarized as follows: 

 The Layout Optimization can be easily applied for the design of various 

applications without knowing the rotor orientation where maxmimum 

force/torque occurs. While existing topology optimization by FEM maximizes net 

flux density at specific rotor orientation to reduce computational cost, the 



 155 

component-wise modeling method directly maximizes net force/torque average 

evaluated at various orientations.  

 The Layout Optimization offers an efficient mean to determine the optimized 

design among optimized designs for a number of combinations of EM and PM 

poles. Rather than solving optimization with rigorous mathematical formulation 

(often resulted in too complex or unrealizable design), the Layout Optimization 

focuses on finding practical designs to maximize output performance in a 

compact design. Overall design cycle of the electromagnetic actuator can be 

shortend with the simple and systematic Layout Optimization and 

computationally efficient DMC model.  

3) Experimentally investigating of the effects of DMC model for electromagnetic 

actuator related applications 

 Optimized small DSSM has been fabricated to experimentally investigate the 

effects of DMC model and its optimization on the torque to weight performance. 

Simulated results of the DMC based model well represented the optimized rotor design 

with a Halbach array, which are validated against the measured magnetic field and 3-

phase torque output. Also, optimized large DSSM can be fabricated to achieve much 

higher torque with a thin and flat shape.  

 An existing 3-DOF PMSM orientation stage which has many PMs and EMs in a 

3D space has been modeled by the DMC method. Simulated results were validated by 

comparing against available experimental data. While the DMC has analyzed the 

orientation stage as an illustration of M-DOF actuator, general 3D designs of 

electromagnetic actuators can be effectively analyzed by the DMC model.  
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 Furthermore, component-wise modeling using the DMC method has been used to 

efficiently simulate the restoring torques of a magnetic wheel moving on unbounded iron 

surface. The simulated torque around an iron corner was validated against experimentally 

measured torque. Finally, the DMC model has been applied for identifying unknown 

design (PM magnetization) or geometry (coil position) parameters using experimental 

data demonstrating  its potentials   in many other applications.  

 

6.2 FUTURE WORKS 

 

 This research has developed a DMC model in order to provide contributions 

described above. Further research directions and related a few key research topics are 

summarized as follows:  

1) Design optimization of various electromagnetic actuators 

 While the DMC model has been developed for general 3D electromagnetic 

driving systems, it is mainly applied for improving existing designs. Using its 3D 

geometric formulation in closed-form, the DMC model can efficiently help improve 

performance of many other electromagnetic actuators ranging from conventional single-

axis to newly introduced M-DOF designs. Beside such actuator designs, as described on 

magnet car analysis, component-wise modeling approach can be used to design a part of 

creative applications such as magnetic levitation bearing for M-DOF actuators and 

flapping mechanism for flying robot. 

2) Harmonic formulation for current induction 
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 The DMC model to simulate transient effects of current induction (or eddy 

current) can be extended to account for frequency response of electromagnetic actuators. 

Due to the main research interests on analyzing DC or synchronous motors, this research 

only formulated induction effects in time-domain to show the potential of time varying 

DMC model. With harmonic formulation for analyzing current induction, energy loss of 

continuous spinning motor caused by eddy current can be analyzed. Also, induction 

motor, one of the most popular types, can be efficiently modeled by DMC.  

3) EM and Iron optimization 

 Once the layout of EM and PM is optimized by DMC, iron and EM shapes can be 

topologically optimized to further improve the output performance while minimizing 

energy loss and weight increases. Since either of moving or stationary part should be 

non-design space during topology optimization, iterative optimization process is 

recommended to optimize PM and EM shapes. After optimizing the PM and EM, a 

nonlinear topology optimization for iron can be formulated by nonlinear constitutive 

equations of the DMC iron. During the nonlinear optimization, local convergence can be 

easily occurred by concave property of material permeability i  in (A-11);  i  can be 

linearized by 1    , and then 0 2( )i      . 

4) Parameter identification 

 Similar to parameter identification of ironless PMLSM, various inverse problems 

can be effectively solved by the DMC model; it can be used to calibrate actual magnet 

and sensor positions or identify unknown system parameters to develop a control or 

sensing model. Moreover, using error minimization between modeled result and 

experimental data, topology optimization can be formulated to reconstruct unknown 
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geometry of electromagnetic components. This will be also effective to other applications 

related to electromagnetic systems such as brain activity visualization.  
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APPENDIX A: BC’S OF MAGNETIC MATERIALS 

 

 Figure 2-1(c) shows a material boundary formed by two different materials with 

magnetic permeability  and  . The continuity condition (2-1a) gives following 

boundary conditions for magnetic material: 

 n nB B        (A.1) 

t tB B

 
 

 

       (A.2) 

where tangential continuity of magnetic field intensity is written by flux density using 

linear magnetic property in (2-2); n tB B   B n t  are net flux density on each side of 

boundary; n and t are unit surface normal vector n and tangent vector t respectively. In 

the case external magnetic field e e e

n tB B B n t  exists on the material boundary, 

discontinuity of magnetic field intensity can be explained by surface current mK that only 

modifies tangential flux density by: 

e

m tBB t       (A.3) 

Substituting tangential net flux density e e

t t tB B B   into (A.2) gives the flux density 

caused by the surface current: 

  e e

t tB B
 

 
 

 

 
  

 
     (A.4) 

and then, tB   also can be represented by 

2
 

( )

e

t tB B


 









     (A.5) 

or  
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2

( )

e

n tB B


 


 



 


B n t      (A.6) 

 

Using linear magnetic property in (2-2), M can be expressed by H: 

0

0

 




 


M H      (A.7) 

or 

 0

0

 

 


 




M B      (A.8) 

, and applying (A.6) into (A.8) gives a binormal component: 

0

0

2
( )( )e 

  







   


n M B t n t     (A.9) 

Since surface current also can be defined by difference between magnetizations of the 

materials: 

( ) m    K n M M      (A.10) 

After combining (A.9) and (A.10), surface current flowing at ir  is described by as a 

function of tangential component of external field and material permeability  

 e

i i i i i  rK B t b     (A.11) 

where ( )i m iK K r  and ( )e e

i irB B r ;
0

2
i

 


  
 

 

 
  

 
 and i i i b n t  are defined by 

each value or vector at boundary point ir . (A.11) implies surface normal component of 

iK   become zero: 

0i i n K     (A.12) 
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, its tangential components can be formulated in a matrix form by using coordinate 

transformation  1 2 
T

i i iT t t  with orthonormal surface tangential vectors 1it  and 2it : 

  *

T

i i i i i i i



r

T n T K TB    (A.13) 

where *i i iK TK  reduces unknowns components of surface current into 2.  
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APPENDIX B: PM DESIGN VARIABLE 

 

 The PM magnetization of (i)th  volume in the decomposed rotor design spaces can 

be parameterized by ( )  iM  using its material density vector ( )iρ . For the formulation of 

the linear constraints later, design variable ( )iρ  is defined by 6 positive material density 

variables in the local xyz coordinate system: 

( )

( )

( )

i

i

i





 
  
  

ρ
ρ

ρ
       (B.1) 

where ( ) ( ) ( ) ( )

T

i i x i y i z     
   ρ and ( ) ( ) ( )0 , , 1i x i y i z      . Then, its material 

density vector ( )iρ  is given by  

( ) ( )i iρ I ρ        (B.2) 

where using 3 3  identity matrix 3I , 3 6 matrix  3 3,  I I I  converts 6 density 

variables into 3 components vector. The PM magnetization vector ( )iM  in the xyz local 

coordinate is described by the maximum magnetization of the rotor maxM  and density 

vector ( )iρ : 

( ) max ( ) =i iMM ρ       (B.3) 

or design variable ( )iρ  in (B.2): 

( ) max ( ) = .i iM M I ρ       (B.4) 
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At an orientation p of the PM volume, Figure B-1 shows the coordinate transform of the 

( )iM  in the local xyz coordinate into ( )p iM in the global XYZ coordinate system at an 

orientation p of the PM volume by transformation matrix ( ) ( ) ( ) ( )p i p i x p i y p i z
   G e e e ; a 

matrix representation of ( )p iM  in terms of the ( )iρ  is given by 

( ) max ( ) ( ).p i i iM M G I ρ       (B.5) 

 

 

 

Figure B-1 Definition of a PM design variable 
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