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1. INTRODUCTION 

1.1. Problem Definition 

In the midst of growing concern over climate change and recent changes to energy policy 

in the United States, many vendors of advanced nuclear reactors have boosted their licensing 

efforts over the past several years with the intent of commercial deployment. The Department of 

Energy (DOE) has provided considerable financial support for the development of small modular 

reactor (SMR) designs, which promise enhanced safety performance due to integral reactor 

vessel design and passive safety systems. However, such designs have come under criticism with 

respect to various uncertainties; one factor which has seemed to particularly decelerate public 

reception of SMRs is uncertainty regarding the economic competitiveness of these untested, 

first-of-a-kind designs. The concept of the Integral Inherently Safe Light Water Reactor, or I2S-

LWR, was born from the objective of applying safety-promoting design features found in SMRs 

to a large pressurized water reactor (PWR) of 1000 MWe, thereby providing an option for a 

passively safe LWR to markets which would find greater economic benefit in a large reactor. 

Pushing the compact core of an integral reactor to a thermal power of 3000 MW 

necessitates novel design features to allow achievement of a power density that is considerably 

higher than that of traditional PWRs (16). Several design innovations impact the neutronic 

behavior of the I2S-LWR core, chief among them a 19x19 fuel lattice with uranium silicide 

(U3Si2) fuel. Such design features demand a thorough investigation of reactivity control options, 

including control rods and integral burnable absorbers (BAs). The goal of the present research is 

therefore to develop feasible I2S-LWR fuel assembly design options with optimized or near-

optimized reactivity control by exploring combinations of various rod cluster control assembly 

(RCCA) layouts, control rod absorber materials, BA types, BA concentrations, and BA layouts. 



2 
 

Viable fuel assembly designs must provide satisfactory reactivity hold-down, power peaking, 

and cycle length while meeting constraints on core safety (i.e. moderator temperature coefficient, 

or MTC) and fuel performance (i.e. fuel rod internal pressure, or RIP). Key characteristics of 

common multi-objective optimization algorithms shall be followed at a high level in order to 

guide the progression of design iterations in a logical and organized manner, and lattice physics 

calculations shall be carried out to assess of the quality of each design iteration. Optimized fuel 

assembly designs which are produced in this process may then later be used for core loading 

pattern (LP) design. 

The design space for this problem is summarized in Table 1-1. RCCA configuration 

options will be considered for 24, 28, and 32 control rod guide tubes per assembly so that an 

anticipated increase in the required control rod reactivity worth (due to under-moderation of the 

unique I2S-LWR fuel assembly base design) may be adequately assessed. The geometry of these 

layouts will be developed so as to maintain octant symmetry within the fuel assembly and to 

provide optimal rod worth and shutdown margin. The control rod absorber materials to be 

considered are silver-indium-cadmium (AIC), boron carbide (B4C), and hafnium (Hf); 

operational experience is available for each of these. The BA design options are gadolinia 

(Gd2O3) and Westinghouse’s Integral Fuel Burnable Absorber (IFBA). Both of these BA types 

may be implemented with varying amounts of the primary absorbing isotopes to allow for local 

control of the neutron absorption rate. The concentration and placement of the BAs in an 

assembly may be chosen to yield a desired reactivity offset and intra-assembly power shape, so 

that several locally-optimized fuel assembly designs with differing reactivity characteristics can 

be developed to provide sufficient flexibility in fresh fuel options for the core LP design task. 
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Table 1-1. Design Space 

Design Variable Options 

Enrichment 4.95 w/o 235U 

RCCA layout 24, 28, 32 guide tubes per assembly 

Control rod absorber material AIC, B4C, Hf 

BA type Gd2O3, IFBA 

BA concentration 
Gd2O3: 4 and 8 w/o; 

IFBA: 2.5 mg/in 10B 

BA layout 
Gd2O3: 8 and 16 poisoned rods per assembly; 

IFBA: 80 and 160 poisoned rods per assembly 

 

The constraints for the fuel assembly design problem are summarized in Table 1-2. For 

the RCCA design task, the reactivity worth of each RCCA configuration shall be compared to a 

reference case which consists of a standard 17x17 UO2-fuelled assembly with 24 AIC control 

rods, thus approximating existing Westinghouse-type PWR assembly designs currently in 

operation. The RCCA design should provide reactivity worth that is at least equal to that of this 

reference case. Although multiple fuel assembly designs with various reactivity characteristics 

will be developed, reactivity hold-down is included as a constraint because the BA loading of 

any practical design must allow a sufficiently low soluble boron concentration to keep the core 

MTC negative. Previous fuel cycle analyses carried out by Westinghouse have indicated 

economically feasible cycle lengths of 12 and 18 months (8); RCCA and BA designs should 

therefore yield fuel assembly design options with cycle lengths of at least 12 months, but designs 

with at least 18-month lifetimes must be realized as well. The cycle length achievable with a 

given fuel assembly design is heavily dependent on how completely the BAs are depleted. 

Incomplete BA depletion yields a residual reactivity penalty later in the cycle, thereby reducing 

cycle length. This reactivity penalty will therefore be assessed for each design iteration. Finally, 

the RIP limit guards against clad ballooning and other modes of fuel failure, which can obstruct 

coolant flow and challenge thermal safety margins. This limit may be challenged if excessive 
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helium is released by 10B(n,α)7Li reactions in IFBA-poisoned lattices. A detailed analysis of the 

determination of this RIP limit and its implications is given in Appendix D. 

Table 1-2. Constraints 

Variable Requirements 

Control rod worth 
Greater than or equal to that of reference 

case 

Reactivity hold-down Sufficiently negative MTC 

Cycle length 
At least 12 months; 

18 months must be achievable as well 

RIP < 36.2 MPa 

 

Assessment of the fuel assembly neutronic performance is carried out using the T-NEWT 

and T-DEPL sequences in the SCALE code suite. For each design iteration, two-dimensional 

models of the I2S-LWR fuel assembly in 1/4th geometry are built with reflective boundary 

conditions imposed on all edges, thereby approximating an infinite lattice in all three spatial 

dimensions; a layout of a sample fuel assembly model is given in Figure 1-1. Following the 

transport and depletion calculations for each assembly design, relevant performance parameters 

are extracted from the SCALE output and passed into a post-processing code. The static control 

rod reactivity worth is used as the key metric for RCCA design assessment; BA design 

evaluation requires several metrics, including reactivity hold-down, power peaking, poison 

depletion, cycle length, soluble boron reactivity worth, and MTC. The methodology employed 

throughout the RCCA and BA design process is discussed in greater detail in Chapter 3. 
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Figure 1-1. Sample Fuel Assembly Model 

1.2. Overview of the I2S-LWR 

The I2S-LWR design development effort is a DOE Nuclear Energy University Programs 

(NEUP) Integrated Research Project (IRP) led by Georgia Tech, in collaboration with the 

University of Michigan, Virginia Tech, the University of Tennessee, the University of Idaho, 

Florida Tech, Morehouse College, Brigham Young University, Idaho National Laboratory, 

Southern Nuclear, Westinghouse, the University of Zagreb, the University of Cambridge, and 

Politecnico di Milano. Realization of the core design goal of high power density presents several 

design challenges that require innovative solutions. 

A two-dimensional view of the I2S-LWR core and primary circuit components is 

reproduced from (18) in Figure 1-2. The core consists of 121 fuel assemblies with an active 

height of 12 ft, which is the same as the active height of many other Westinghouse-type PWRs. 

The space between the core barrel and the inner vessel wall is occupied by several primary heat 

exchanger and decay heat exchanger units. The primary heat exchanger design chosen is a 

micro-channel heat exchanger which enables a high volumetric heat transfer rate from the 
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primary side to the secondary side. The fuel assemblies themselves take on a 19x19 square lattice 

with reduced fuel rod dimensions (relative to a standard 17x17 Westinghouse-type fuel 

assembly), thereby providing increased heat transfer surface area to remain well within thermal 

safety margins (16). 

 

Figure 1-2. I2S-LWR Vessel Layout (18) 

The choice of fuel form and cladding for the I2S-LWR has not yet been finalized. Studies 

have indicated that traditional uranium oxide (UO2) fuel with Zircaloy cladding performs 

satisfactorily in the high power density core (8). These findings, in conjunction with the wide 

operational experience basis and current ubiquitous use of UO2 fuel, make oxide fuel an 

attractive option for the initial deployment of the I2S-LWR. However, it is envisioned that once 

the performance and safety of the I2S-LWR can be demonstrated in operation, the fuel form 

should be changed to U3Si2. Silicide fuel presents a significant improvement in thermal 

conductivity compared to oxide fuel. In addition to having a higher conductivity at room 

temperature, silicide fuel becomes more conductive with increasing temperature, while oxide 

fuel becomes less conductive with increasing temperature until a minimum around 2000 K (5). 

The unirradiated thermal conductivity trends with temperature for oxide and silicide fuel forms 

are given in Figure 1-3. In addition to improving thermal conductivity, silicide fuel also has a 

greater heavy metal density than oxide fuel, thus allowing significant improvements in cycle 
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length and potential reduction in fuel cycle cost. A drawback to silicide fuel is uncertainty 

regarding its irradiation swelling behavior. There is some variation in results of U3Si2 irradiation 

experiments, but generally it appears that silicide fuel exhibits greater volumetric swelling than 

oxide fuel (5). Additional investigation into the swelling of silicide fuel is necessary and should 

be carried out under conditions comparable to those that would be found in the operation of the 

I2S-LWR. 

 

Figure 1-3. Termperature-Dependent Thermal Conductivity of UO2 and U3Si2 

Some key design parameters of the I2S-LWR are compared with those of other typical 

PWRs in Table 1-3 below. 

Table 1-3. Key I2S-LWR Design Parameters 

 I2S 
Traditional 

PWR 

Core power density (MW/m3) ~120 ~100 

Fuel assembly 19x19 17x17 

Fuel material U3Si2 UO2 

Fuel thermal conductivity at 500 oC (W/m K) 15 3.6 

Fuel total density (g/cm3) 12.2 10.97 

Fuel heavy metal density (g/cm3) 11.29 9.67 

Clad material 
Ferritic steel 

(FeCrAl) 

Zircaloy-4 or 

ZIRLO© 
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1.3. Organization 

In Chapter 2, some background is provided on the reactivity control requirements set by 

the Nuclear Regulatory Commission (NRC), and an overview of key characteristics of and 

operational experience with various control rod and BA designs is presented. Popular 

optimization methods used in core and fuel assembly design processes are discussed as well. 

Chapter 3 details the methodology employed for the design problems to be explored. The 

SCALE code suite and its use in developing fuel assembly models for neutronics calculations is 

discussed. The fuel assembly models themselves used for RCCA and BA design are detailed as 

well, and the modeling nuances specific to each problem are highlighted. 

In Chapter 4, the results of the RCCA and BA design calculations are presented; these 

results are used to select optimal and/or near-optimal designs as detailed in Chapter 5. 

Finally, Chapter 6 concludes the thesis and suggests design recommendations based on 

the calculations and analysis given in Chapters 4 and 5. 
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2. BACKGROUND 

2.1. Licensing Requirements 

In Appendix A of 10 Code of Federal Regulations 50 (10 CFR 50), the NRC outlines 

high-level design requirements, referred to as General Design Criteria (GDCs), which must be 

met in order for a nuclear reactor design to be licensed in the United States. Those GDCs that are 

most directly relevant to reactivity control are as follows (7): 

 GDC 11 requires the design to be able to offset reactivity insertion events with “prompt 

nuclear feedback.” 

 GDC 26 specifies that two independent reactivity control schemes must be used, one of 

which must use control rods. The control rods must ensure that reactivity changes 

throughout normal operation do not cause violation of specified acceptable fuel design 

limits (SAFDLs) within sufficient margin (i.e. accounting for the highest worth control 

rod being stuck). The second scheme must control reactivity due to normal changes in 

power during operation such that SAFDLs are not violated. Further, one of these 

reactivity control schemes alone must be able to maintain the core in a subcritical state 

under cold conditions. 

 GDC 27 requires that the combination of reactivity control systems ensures that the core 

can be cooled within sufficient margin under postulated accident conditions. 

 GDC 28 requires sufficient reactivity control to prevent damage to the reactor coolant 

pressure boundary and the vessel internals that would compromise the ability to cool the 

core during reactivity insertion events. 
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Of the GDCs listed above, only GDC 26 does not apply to transient scenarios. As the 

present research does not delve into transient analysis, it must be determined in a separate study 

whether or not the RCCA and BA designs developed here will satisfy the remaining GDCs. 

GDC 26 specifies that two independent reactivity control schemes must be used, but 

operating PWRs generally use a total of three schemes. Control rods are primarily used to adjust 

the core thermal power during operation and shut down the reactor when necessary. BAs offset 

initial excess reactivity at the beginning of a cycle (BOC) and are used to shape the core power 

and flux distributions with the goal of uniformity to maximize fuel utilization. The third method 

of reactivity control involves addition of boric acid to the coolant, yielding a negative impact on 

reactivity due to thermal neutron absorption by 10B. As changing the boron concentration in the 

coolant is a slow process, this method of reactivity control is appropriate for controlling long-

term changes in core reactivity due to depletion. For practical purposes, all three reactivity 

control schemes must be accounted for in considering satisfaction of GDC 26. 

The soluble boron concentration has a heavy impact on MTC. In a PWR core with 

poisoned coolant, an increase in coolant temperature yields two competing reactivity effects. 

With an increase in temperature, the coolant density decreases, thereby reducing neutron 

moderation and hardening the neutron energy spectrum, which yields a negative impact on 

reactivity. The decrease in coolant density also decreases the boron density, which reduces the 

rate of neutron absorption by the poison; this can yield a net positive impact on reactivity if the 

boron concentration is sufficiently high. In order to maintain a negative MTC, the soluble boron 

concentration must therefore be limited. Achieving this requirement necessitates providing 

sufficient reactivity control without soluble boron; furthermore, as PWRs generally operate at 

full power with control rods completely withdrawn, this reactivity control must be provided 
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entirely by BAs. If the BA loading provides sufficient reactivity control to limit the critical boron 

concentration (CBC) to a level at which the MTC is negative, a reactivity insertion event can be 

countered by the reactor’s inherent feedback to prevent unacceptable increases in fuel 

temperature. As SAFDLs are typically given with respect to a peak fuel temperature, it can 

therefore be assumed that SAFDLs will not be violated and GDC 26 is satisfied if a fuel 

assembly design at a given iteration provides a reactivity offset sufficient to allow a critical 

boron concentration (CBC) that does not yield a positive MTC. This provides justification of the 

reactivity control criterion given in Table 1-2. 

2.2. Control Rod Design 

From the standpoint of reactivity control, control rods must be designed to provide both 

fine control of the core thermal power and the ability to scram the reactor, thereby setting the 

requirement of high absorption cross section for the absorber material. However, a control rod 

with a high concentration of strongly absorbing material may cause large local depressions in the 

core flux profile when it is inserted into the core, which can yield undesirable local reactivity 

perturbations. The absorptive species in such a control rod can also be depleted quickly, reducing 

its effectiveness as it is used. The control rod design optimization task therefore requires 

consideration of both black and gray absorber materials; the black absorber yields a large 

negative reactivity worth, and the gray materials are added to prevent rapid depletion and large 

local flux depressions when the rod is inserted (11). Other phenomena, such as irradiation-

induced swelling of the absorber and mechanical considerations, set additional requirements for 

control rod design that are beyond the scope of the present work. 

The candidate control rod absorber materials for the I2S-LWR include AIC, B4C, and Hf. 

AIC control rods are quite popular in PWRs of Western design. The composition of the AIC 
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absorber is an alloy of 80 percent silver, 15 percent indium, and 5 percent cadmium by weight. 

AIC control rods are effective due to the thermal absorption cross section of 20600 barns of 

113Cd, and inclusion of silver and indium in the absorber material slows the loss of effectiveness 

due to cadmium depletion and reduces the flux depression upon insertion. Fabrication of AIC 

control rods is simple as well. B4C ceramic control rods are also very common in Western 

reactor designs, and some reactor vendors have developed RCCA designs which use both AIC 

and B4C. B4C rods also benefit from the large absorption cross section of 10B across a wide range 

of energies, which reduces local flux depression upon insertion, but they must be designed to 

account for the pressure buildup from helium accumulation due to the 10B(n,α)7Li reaction. The 

operational experience base for Hf control rods is minimal, as thus far they have primarily been 

used in German reactors for submarine propulsion. Hf control rods have desirable neutronic and 

mechanical properties. Hf absorbs neutrons in both the thermal and epithermal energy ranges, 

thereby reducing local flux depression upon insertion and granting a great deal of longevity 

without losing absorption effectiveness. However, fabrication of Hf control rods is challenging 

and expensive (11). Other absorber materials that are being researched for commercial use 

include dysprosium titanate, hafnium diboride, gadolinia, and europia (19). 

The reactivity worth of any of these designs may be varied via enrichment with the 

primary absorbing isotopes, but additional analyses are necessary to assess the impact of such a 

design change on the depletion of the rod as well as the magnitude of the local flux depression 

upon insertion. Table 2-1 below gives the primary absorptive isotopes for each control rod 

material discussed above, and Figures 2-1 to 2-4 show the energy-dependent reaction cross 

sections of each of these isotopes. These cross sections are taken from the ENDF/B-VII library 

(12). 
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Table 2-1. Control Rod Absorber Primary Absorptive Isotopes 

Material Primary Absorptive Isotopes 

AIC 113Cd 

B4C 10B 

Hf 
174Hf 
177Hf 

 

 

Figure 2-1. 113Cd Cross Sections (12) 
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Figure 2-2. 10B Cross Sections (12) 

 

Figure 2-3. 174Hf Cross Sections (12) 
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Figure 2-4. 177Hf Cross Sections (12) 

Control rod design evaluation requires three-dimensional full-core model analyses, as the 

reactivity characteristics of a control rod depend very strongly on its location in the core. The 

RCCAs in a core design are typically grouped into two or more “banks” based on their reactivity 

characteristics and the symmetry of the core (3). All rods in a particular bank move together. The 

bank with the largest negative reactivity worth, often referred to as the safety bank, is reserved 

for scramming the reactor and remains fully withdrawn during normal operation. The other 

banks, called regulating banks, are used for adjusting the core power production and may be 

inserted and withdrawn as needed during normal operation and startup. The control rods used to 

bring the core to full power operation from cold shutdown are called shim rods. Positioning the 

RCCAs in the core is typically done in a checkerboard-like pattern to maximize control for a 

limited amount of space available in the upper portion of the reactor vessel for control rod drive 

mechanisms (CRDMs); this space is especially limited in integral reactor designs such as the I2S-
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LWR. Figure 2-5 shows a sample RCCA arrangement in a small PWR core. Each cell in the 

figure represents a fuel assembly, and those that are shaded represent RCCA locations. 

        

         

          

           

          

         

        

 

Figure 2-5. Sample RCCA Layout in a Small PWR Core 

2.3. Burnable Absorber Design 

As mentioned in Section 2.1, BAs are particularly useful for achieving a desired core 

power shape. In an uncontrolled fuel lattice of uniform enrichment at BOC, the flux distribution 

tends to peak in the center of the lattice, yielding a greater depletion rate in this region relative to 

the rest of the lattice. As fuel is depleted more quickly in the center of the lattice, the local 

reactivity is diminished, which then causes the flux distribution to become more uniform 

throughout the cycle. BAs are placed so as to reduce the large BOC flux peaking and ideally 

achieve a uniform depletion rate over the entire core throughout the cycle. Additionally, the 

reactivity control provided by BAs reduces the burden on soluble boron and therefore reduces 

the likelihood of a positive MTC. For heavily poisoned assemblies, as the BA in a poisoned 

assembly is depleted, the assembly reactivity will initially increase from its BOC value as the 

poison available for neutron absorption is reduced. The assembly reactivity reaches a peak 

approximately one third of the way through the cycle, at which point the reactivity reduction due 

to fuel depletion offsets the increase in reactivity due to poison depletion. After this point the 
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reactivity decreases in an approximately linear fashion for the remainder of the cycle. Figure 2-5 

below shows a comparison of a representative reactivity trend of poisoned and unpoisoned 

assemblies throughout a cycle. 

 

Figure 2-5. Reactivity of Poisoned and Unpoisoned Assemblies 

Early BAs were discrete in design and were placed in guide tubes in fuel assemblies 

without control rods so that they were entirely separated from the fuel material itself. These 

designs included Pyrex, a borosilicate glass, and the burnable poison rod assembly (BPRA), a 

mixture of alumina and boron carbide. Westinghouse also developed a discrete BA known as the 

Wet Annular Burnable Absorber (WABA) rod. This design consists of an annular rod of a 

mixture of alumina and boron carbide with Zircaloy inner and outer cladding. The central region 

is filled with water to allow for internal moderation and more complete absorber depletion (23). 

In the 1970’s, core designs began to utilize integral BAs in the form of gadolinia (Gd2O3) 

mixed uniformly with the fuel material. The advent of integral BAs provided significant core 

design improvements with respect to power peaking and cycle length, as the constraints 

associated with the fuel management task were greatly relaxed with the allowance of loading 

poisoned fuel assemblies into RCCA locations (24). Gadolinia was chosen for the thermal 

absorption cross section of 61100 barns for 155Gd and 259000 barns for 157Gd. Erbia (Er2O3) has 
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also been considered as an integral BA due to its resonance absorption characteristics (which 

improve MTC), and it has been employed in Combustion Engineering core designs. In the 

1980’s, Westinghouse developed the Integral Fuel Burnable Absorber, a thin coating of ZrB2 

around the fuel pellet in select locations within a fuel assembly (23). 

The primary absorptive isotopes of each of these BA designs are given in Table 2-2 

below. The cross sections of the primary gadolinium and erbium absorptive species are given in 

Figures 2-6 to 2-8 as well; these are again taken from the ENDF/B-VII library (12) (the 10B cross 

sections were presented in Section 2.2). 

Table 2-2. BA Primary Absorptive Isotopes 

Burnable Absorber Absorptive Isotopes 

Pyrex 10B 

BPRA 10B 

Gd2O3 
155Gd 
157Gd 

Er2O3 167Er 

IFBA (ZrB2) 10B 

 

 

Figure 2-6. 155Gd Cross Sections (12) 
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Figure 2-7. 157Gd Cross Sections (12) 

 

Figure 2-8. 167Er Cross Sections (12) 

The candidate burnable absorber designs for the I2S-LWR are gadolinia and IFBA; these 

designs yield very different reactivity effects when used in a fuel assembly. Gadolinia is mixed 

uniformly in the fuel material and therefore displaces fuel, imposing a reduction in cycle length. 
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Additionally, gadolinia is not completely depleted during a cycle, yielding a residual reactivity 

penalty at the end of a cycle (EOC) that further challenges cycle length. As IFBA is applied as a 

coating on the fuel pellet outer surface, no fuel is displaced, and it is virtually completely 

depleted during a cycle; therefore no penalty to cycle length is incurred with IFBA. Both BA 

designs absorb neutrons of thermal energies and therefore tend to harden the core neutron energy 

spectrum. The hardened spectrum then promotes increased breeding of 239Pu in a uranium-

fuelled core, thereby increasing reactivity and cycle length. However, in gadolinia-poisoned 

assemblies, this effect is offset by the residual reactivity penalty. Therefore, in comparing an 

uncontrolled assembly with assemblies poisoned with IFBA and gadolinia, the EOC reactivity of 

the IFBA assembly is greatest of the three, and that of the gadolinia assembly is the least of the 

three (22). 

Selection of the fuel rods to be poisoned in an assembly should be carried out to 

minimize intra-assembly power peaking. Poisoned rods therefore appear in symmetric locations 

in a fuel assembly. Additionally, IFBA-poisoned rods must be chosen so that cooling channels 

are not obstructed if He buildup causes clad ballooning in several neighboring fuel rods. The 

reactivity offset of the applied BAs can be varied by adjusting the amount of poison used; 

specifically, the weight percentage of gadolinia in a fuel rod, the thickness of the IFBA coating, 

and the number of poisoned fuel rods can be chosen to achieve a desired reactivity offset. 

Gadolinia concentrations are typically found up to a maximum of 8 w/o, while IFBA 

concentrations (which are usually specified in terms of 10B mass per axial inch along the fuel 

rod) are typically found at 1.57 mg/in and 2.355 mg/in. Fuel assemblies with up to 32 gadolinia-

poisoned rods and up to 156 IFBA-poisoned rods have been used in 17x17 Westinghouse-type 
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designs. Figures 2-9 to 2-12, reproduced from (22), show the locations of poisoned fuel rods in 

some sample 17x17 assemblies. 

 

Figure 2-9. Sample 17x17 Fuel Assembly with 80 IFBA Rods (22) 
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Figure 2-10. Sample 17x17 Fuel Assembly with 156 IFBA Rods (22) 

 

Figure 2-11. Sample 17x17 Fuel Assembly with 4 Gadolinia Rods (22) 
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Figure 2-12. Sample 17x17 Fuel Assembly with 20 Gadolinia Rods (22) 

2.4. Optimization 

The nuclear design optimization task is a difficult and complicated one involving both 

continuous and discrete variables. In industry, optimization is most commonly considered with 

respect to core LP design, where after each cycle the design engineer must select which fuel 

assemblies to discharge, how to shuffle remaining fuel assemblies, where to load fresh fuel 

assemblies, and what the enrichment of those fresh assemblies should be. An exhaustive 

deterministic search for the globally-optimized LP at any refueling outage is not at all feasible 

considering the size of the search space; in the I2S-LWR, for example, with 121 fuel assembly 

locations, there are 121! = 8.09x10200 possible shuffle operations without even considering 

discharge and loading of fresh fuel. Stochastic optimization methods which handle subsets of the 

solution space are very popular in nuclear design optimization for this reason. 



24 
 

Optimization problems can generally be defined as the minimization of a function (or an 

equivalent maximization) subject to specified constraints. The function to be minimized is 

referred to as the objective function, and its definition must account for all parameters which 

need to be simultaneously optimized. In the fuel assembly design task, these parameters can 

include enrichment, poison concentration, intra-assembly power peaking, reactivity, and cycle 

length. Specifically, the goal is to maximize the cycle length while minimizing enrichment, 

poison concentration, power peaking, and reactivity; a fuel assembly design with these optimized 

parameters would theoretically attain the best possible fuel cycle cost with the most efficient use 

of the fuel and poison materials. In this application, the objective function must therefore be 

constructed such that its extrema correspond to an ideal set of parameters, i.e. a completely flat 

power distribution, longest possible cycle length, and so on. 

Deterministic optimization methods use specific rules to proceed in a well-defined 

manner in a search of a solution space. Examples include gradient-based methods (such as the 

method of steepest descent/ascent) and bracketing methods (such as the bisection method of root 

solving). In such methods, an initial guess of the solution is taken as a starting point, and the 

value of the objective function is calculated at this point. Rules are then applied to select the next 

solution point for evaluation; for example, in the method of steepest descent/ascent, the gradient 

of the objective function is estimated, and the next iteration is taken at a point a specified path 

length along the direction of the gradient. The value of the objective function is then calculated 

at this new point, and the process is repeated until no further improvements to the objective 

function are realized and an optimum is found (14). 

While deterministic optimization methods are useful for reliably obtaining optima from 

well-behaved objective functions, they are impractical for use with complicated objective 
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functions with dependence on the design variables that is not readily quantifiable (such is the 

case with fuel assembly design, where determining the dependence of reactivity and power 

peaking on BA placement requires a great deal of computational effort). Stochastic optimization 

methods take the approach of choosing a population of potential solutions as a starting point, 

calculating the corresponding values of the objective function, and applying a stochastic process 

to choose the subsequent solutions for evaluation. Selection criteria are applied to determine 

suitable solutions to propagate into further iterations. Solutions with the best objective function 

values in each population are retained, and the process is repeated until a stop criterion is met. 

Examples of stochastic optimization methods include genetic algorithms (GAs) and simulated 

annealing (SA) (14). As an example of the stochastic process of populating later iterations, in a 

GA, the best solutions (those with the best objective function values) from one population are 

used as a basis to produce “genetically” similar solutions for the subsequent population; i.e. these 

new solutions have similar characteristics to the best solutions in the previous population. In the 

fuel assembly design task, genetically similar fuel assemblies may have only slight differences in 

BA layouts. 

Methods such as those listed above have been used extensively in industry and research. 

Espinosa-Paredes and Guzman (2011) developed a simple deterministic process for optimizing 

the BA loading for the Laguna Verde reactor core by iterating between assembly enrichment and 

BA content (4). Yilmaz et al (2006) applied a GA with multiple fitness functions to accelerate 

convergence of BA optimization in a fixed LP (26). Haibach and Feltus (1997) used a GA-based 

code for core LP optimization using deterministically-developed poisoned fuel assembly designs 

(10). Application of such processes is beyond the scope of the present study; however, their 

characteristics shall be qualitatively mimicked at a high level so as to guide judgment in each 
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step of the fuel assembly design process. In this work, fuel assembly designs are constructed 

heuristically at each iteration, and their evolution as iterations progress is guided by a GA-like 

approach wherein the previous population of designs informs construction of subsequent designs. 
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3. METHODOLOGY 

The reactivity control characteristics of the I2S-LWR fuel assembly designs to be 

developed are assessed using the SCALE code package for transport and depletion calculations. 

RCCA designs are characterized by the static reactivity worth of control rod insertion, to be 

determined by calculating the difference in the fuel assembly reactivity when the control rods are 

inserted and withdrawn. The BA design process is a more involved high-level optimization 

exercise requiring depletion calculations for each fuel assembly design. These fuel assembly 

designs will span several iterations, and relevant performance parameters are calculated at each 

step to assess each design. 

The SCALE suite consists of a number of control modules for reactor simulation and 

analysis; those pertinent to the present research are included in the T-NEWT and T-DEPL 

sequences of TRITON (Transport Rigor Implemented with Time-Dependent Operation for 

Neutronic Depletion). The major modules used in these sequences are CENTRM (Continuous 

Energy Transport Module) and PMC (Produce Multigroup Cross Sections) for cross section 

calculations, NEWT (New ESC-Based Weighting Transport Code) for discrete ordinates 

transport calculations, and COUPLE and ORIGEN (Oak Ridge Isotope Generation Code) for 

isotopic depletion. Control rod evaluation is carried out using a fresh assembly model, and 

therefore only the T-NEWT sequence is necessary for cross section generation and transport 

calculations. Depletion calculations are necessary for BA evaluation, and thus the T-DEPL 

sequence is used. The T-DEPL sequence employs a predictor-corrector method of depletion by 

processing cross sections at the beginning of a depletion step, using these cross sections to 

deplete to the middle of the depletion step, recalculating cross sections at this point in the 
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depletion step, and then using the updated cross sections to calculate the entire depletion step. 

This process is repeated for all depletion intervals. 

3.1. Control Rod Reactivity Worth 

Estimation of the static control rod reactivity worth is made as the key metric for RCCA 

design assessment. Reactivity worth calculations are performed using two-dimensional models 

of a single quarter assembly and four adjacent quarter assemblies. Reflective boundary 

conditions are imposed on all boundaries, thereby approximating an infinite lattice. The T-

NEWT sequence of SCALE is used to calculate the fuel assembly reactivity for rodded and 

unrodded cases in both geometries. As infinite lattices have been approximated due to imposing 

reflective boundary conditions, rod insertion in the single quarter assembly cases effectively 

implies that control rods are inserted in all assemblies in the core. However, this is not an 

accurate representation of the true core design; RCCA locations are expected to take on a 

checkerboard-like pattern in the final core design. Therefore, in the four quarter assembly cases, 

control rods are inserted in only two of the four assemblies diagonally across from each other to 

better represent the true RCCA layout. 

Control rod worth is determined as: 

 𝑊𝑜𝑟𝑡ℎ (𝑝𝑐𝑚) = 105
𝑘𝑜𝑢𝑡 − 𝑘𝑖𝑛

𝑘𝑜𝑢𝑡
 (1) 

where kout is the neutron multiplication eigenvalue of the unrodded core and kin is that of the 

rodded core. An alternative worth definition that has been used in industry is: 

 𝑊𝑜𝑟𝑡ℎ (𝑝𝑐𝑚) = 105 ln
𝑘𝑜𝑢𝑡

𝑘𝑖𝑛
 (2) 

These worth calculations are performed for assemblies with and without soluble boron so as to 

assess the loss in control rod worth due to competition with additional absorbers. Since BAs are 
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not included in these fuel assembly models, the boron concentration is set at the critical boron 

concentration (CBC) so as to yield a neutron energy spectrum which approximates that of a real 

operating PWR core. The CBC is determined by running T-NEWT transport calculations for 

each fuel assembly configuration to obtain the reactivity over a range of soluble boron 

concentrations with control rods withdrawn; the CBC is then interpolated from these results. 

3.1.1. Case Matrix 

Models of the 19x19 uranium silicide fuel assembly are constructed in configurations of 

24, 28, and 32 control rod guide tubes per assembly. The RCCA configurations are constructed 

such that octant symmetry is maintained within the assembly with reasonable spacing between 

guide tubes so as to avoid asymmetric flux tilts and large flux depressions upon control rod 

insertion. Additionally, a reference case consisting of a 17x17 uranium oxide fuel assembly with 

24 guide tubes is constructed for comparison; the design of this reference assembly is selected to 

match a typical traditional Westinghouse-type PWR, thus providing a realistic baseline for 

comparing control rod reactivity worth. One central instrumentation tube is included in each 

case. These models in single quarter assembly and four quarter assembly geometry are shown in 

Figures 3-1 to 3-8 below. The circles present in the four-quarter models indicate those 

assemblies in which control rods are inserted for these cases estimating reactivity worth with two 

of four assemblies rodded. 
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Figure 3-1. Single Quarter 19x19 Assembly with 24 Control Rods 

 

Figure 3-2. Four Quarter 19x19 Assemblies with 24 Control Rods 
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Figure 3-3. Single Quarter 19x19 Assembly with 28 Control Rods 

 

Figure 3-4. Four Quarter 19x19 Assemblies with 28 Control Rods 
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Figure 3-5. Single Quarter 19x19 Assembly with 32 Control Rods 

 

Figure 3-6. Four Quarter 19x19 Assemblies with 32 Control Rods 
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Figure 3-7. Single Quarter 17x17 Assembly with 24 Control Rods 

 

Figure 3-8. Four Quarter 17x17 Assemblies with 24 Control Rods 

To determine CBC, transport calculations are performed for each of the above unrodded 

models with boron concentrations of 0, 2000, 3000, 4000, 5000, 6000, 7000, and 8000 ppm to 

determine the dependence of the neutron multiplication eigenvalue on boron concentration (the 

SCALE default natural boron composition is used – see Appendix A). This information is then 
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used to interpolate the CBC for each assembly configuration. Rodded models are then 

constructed with AIC, B4C, and Hf control rods with no boron and at the CBC (the SCALE 

default natural isotopics are assumed for all elements in these absorbers; these are given in 

Appendix A as well). Transport calculations are carried out for each case to obtain rodded 

neutron multiplication eigenvalues, which are then compared with the corresponding unrodded 

cases; the control rod reactivity worth is then calculated using Equation 1. For the sake of clarity, 

the progression of calculations to be performed is shown in Table 3-1. 

Table 3-1. Control Rod Design Case Matrix 

Calculation Core Rods Geometry Boron 

CBC 

19x19 silicide 

assembly with 

24 control 

rods 

Out 

Quarter 

assembly and 

four quarter 

assemblies 

0-8000 ppm 

boron 

19x19 silicide 

assembly with 

28 control 

rods 

Out 

Quarter 

assembly and 

four quarter 

assemblies 

0-8000 ppm 

boron 

19x19 silicide 

assembly with 

32 control 

rods 

Out 

Quarter 

assembly and 

four quarter 

assemblies 

0-8000 ppm 

boron 

17x17 oxide 

assembly with 

24 control 

rods 

Out 

Quarter 

assembly and 

four quarter 

assemblies 

0-8000 ppm 

boron 

Rod worth 

19x19 silicide 

assembly with 

24 control 

rods 

AIC, B4C, Hf 

inserted and 

withdrawn 

Quarter 

assembly and 

four quarter 

assemblies 

No boron and 

CBC 

19x19 silicide 

assembly with 

28 control 

rods 

AIC, B4C, Hf 

inserted and 

withdrawn 

Quarter 

assembly and 

four quarter 

assemblies 

No boron and 

CBC 

19x19 silicide 

assembly with 

32 control 

rods 

AIC, B4C, Hf 

inserted and 

withdrawn 

Quarter 

assembly and 

four quarter 

assemblies 

No boron and 

CBC 

17x17 oxide 

assembly with 

24 control 

rods 

AIC, B4C, Hf 

inserted and 

withdrawn 

Quarter 

assembly and 

four quarter 

assemblies 

No boron and 

CBC 
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3.1.2. Limitations 

Some limitations of the preceding methodology are immediately apparent. First, transport 

calculations are carried out in two dimensions; three-dimensional phenomena (which are of 

utmost significance in control rod design assessment) are therefore lost. Additionally, by 

approximating an infinite lattice, effects due to RCCA placement are lost and can only be 

approximated by inserting rods in two diagonally opposite assemblies in cases with four quarter 

assembly geometry. This also means that shutdown margin cannot be accurately estimated, and 

therefore the reactivity worth is taken as the key parameter by which to judge the design quality. 

It is unknown how much accuracy is lost under these simplifications, but the exercise still 

provides valuable insight into the neutronics of the I2S-LWR uranium silicide fuel assembly. 

3.2. Burnable Absorber Optimization 

Burnable absorber layouts are assessed using two-dimensional fuel assembly models as 

well; models are built in quarter assembly geometry only, and reflective boundary conditions are 

again imposed on all edges. Each fuel assembly model is depleted using the T-DEPL sequence in 

SCALE, and key design performance indicators are tracked throughout the cycle. As mentioned 

previously, BA design evaluation is based on reactivity hold-down, power peaking, poison 

depletion, cycle length, soluble boron reactivity worth, and MTC. The SCALE output explicitly 

reports neutron multiplication, power peaking, and poison inventory data, but additional 

calculations are necessary to estimate the poison reactivity worth, cycle length, boron worth, and 

MTC. The reactivity worth ρ of the BAs may be calculated from the reported neutron 

multiplication as: 

 𝜌 (𝑝𝑐𝑚) = 105
𝑘 − 𝑘0

𝑘0
 (3) 
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where k is the poisoned lattice neutron multiplication and k0 is the uncontrolled lattice neutron 

multiplication. 

The cycle length may be estimated by calculating the assembly discharge burnup; this is 

taken as the burnup at which the assembly neutron multiplication eigenvalue (k∞) is equal to 

1.03, with the implicit assumption of a 3 percent loss in reactivity due to leakage which is not 

accounted for in the infinite assembly models. This burnup may be interpolated from the T-

DEPL output. The cycle length t may then be calculated as: 

 𝑡 =
4 ∗ 121 ∗ 𝐵𝑈𝑑(𝑀/𝐿)𝐻

𝑃𝑡ℎ
 (4) 

where BUd is the discharge burnup, M/L is the system mass per unit length given in the SCALE 

output, H is the active core height, and Pth is the core thermal power (assumed to be a constant 

3000 MW). The factor of 4 expands the quarter assembly model to a full assembly, and the 

factor of 121 accounts for all fuel assemblies in the core. Thus the cycle length is calculated 

under the approximation that all fuel assemblies are of the same type; while this is not the case in 

the true core design, this calculation provides a reasonable measure of how the BA loading 

impacts the cycle length. 

A rigorous calculation of MTC would require a full-core analysis, but the limited models 

employed in this study may be used to obtain a proxy MTC estimate to glean some 

understanding of how the fuel assembly BA loading impacts reactivity feedback. To do so, first 

the CBC is calculated in a manner similar to that used in the control rod study described 

previously. The assembly neutron energy spectrum at the CBC should approximate that of the 

full core. Again, T-NEWT calculations are run for several boron concentrations so that the CBC 

may be interpolated. In order to reduce the size of the case matrix, only 10B is modeled in the 

moderator (rather than the natural boron composition) at concentrations of 0, 1000, and 2000 
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ppm; these 10B concentrations may then be converted to a corresponding total B concentration by 

accounting for the SCALE default natural B composition: 18.43 w/o 10B, 81.57 w/o 11B. Thus 

the total B concentrations corresponding to the model 10B concentrations of 1000 and 2000 ppm 

are 5426 and 10852 ppm respectively. This simplification carries the assumption that the 11B 

does not interact neutronically. This data may then be used to estimate the soluble boron worth 

WB of each design: 

 𝑊𝐵(𝑝𝑐𝑚/𝑝𝑝𝑚) =
105

𝑘

∆𝑘

∆𝐵
 (5) 

where k is the neutron multiplication eigenvalue and B is the soluble (total – that is, both 10B and 

11B) boron concentration in ppm. The differences may be taken between concentrations of 0 and 

1000 ppm, 1000 and 2000 ppm, or 0 and 2000 ppm 10B. It is anticipated that the boron worth is 

different for each of these intervals; they would only be identical if the reactivity response to the 

boron concentration, 𝜕𝑘/𝜕𝐵, is linear and independent of the boron concentration. This is likely 

not the case with integral BAs present, which compete with the soluble boron for neutron 

absorption. 

Models are then constructed with the CBC imposed, and T-NEWT calculations are run 

for three different water densities; these are selected by perturbing the moderator temperature 

+20 oC from nominal. Appendix A provides greater detail on the material input. These results are 

used to quantify the change in neutron multiplication with moderator density. MTC is then 

estimated as: 

 𝑀𝑇𝐶 (𝑝𝑐𝑚/𝐾) =
105

𝑘0

∆𝑘

∆𝜌𝑤

∆𝜌𝑤

∆𝑇
 (6) 

where k0 is the neutron multiplication eigenvalue at the CBC, ρw is the moderator density, and T 

is the moderator temperature. The change in moderator density with temperature is approximated 
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as a constant -0.002435 g/cm3 K  in the vicinity of the I2S-LWR operating conditions based on 

data from (15). Similar to the boron worth calculations, the differences may be taken between 

densities corresponding to T0 and T0 + 20 oC, T0 and T0 – 20 oC, or T0 – 20 oC and T0 + 20 oC 

(where T0 is the nominal moderator temperature) to yield a forward, backward, or center 

difference approximation, respectively. Each of these calculations may not necessarily yield 

identical values of the MTC due to nonlinear response of reactivity to the moderator density. 

This response is similar to the reactivity response to the boron concentration, but with the 

additional component of varying moderating power with the water density. This moderating 

component actually counteracts the boron component; an increase in moderator density improves 

moderation and increases reactivity, but the effective soluble boron concentration increases as 

well, thereby increasing neutron absorption and decreasing reactivity. 

3.2.1. Case Matrix 

To develop an initial “population” of BA layouts, depletion of an uncontrolled assembly 

model is carried out first, and the results are processed to track the criticality and power peaking 

trends. Based on these results, BAs are then located within the assembly in a heuristic manner 

with the intent of suppressing the power peaking which naturally occurs in the vicinity of water-

filled control rod guide tubes, where the thermal neutron population is greater as a result of 

increased local moderation. BA layouts are developed for fuel assemblies with 8 and 16 Gd-

bearing rods per assembly with concentrations of 4 and 8 percent by weight, and with 80 and 160 

IFBA rods per assembly with a concentration of 2.5 mg/in 10B in the axial dimension. This case 

matrix is presented in Table 3-2 for the sake of clarity. These designs form the first iteration of 

the BA optimization process. 
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Table 3-2. Burnable Absorber Design Case Matrix 

Poison 

Poisoned 

Rods per 

Assembly 

BA 

Concentration 

Soluble 10B 

Concentration 

Moderator 

Temperature 

Gd2O3 8 4 w/o 0-2000 ppm T0, T0 + 20 oC 

Gd2O3 8 8 w/o 0-2000 ppm T0, T0 + 20 oC 

Gd2O3 16 4 w/o 0-2000 ppm T0, T0 + 20 oC 

Gd2O3 16 8 w/o 0-2000 ppm T0, T0 + 20 oC 

IFBA 80 2.5 mg/in 10B 0-2000 ppm T0, T0 + 20 oC 

IFBA 160 2.5 mg/in 10B 0-2000 ppm T0, T0 + 20 oC 

 

In order to develop subsequent design populations, the results from the previous iteration 

are used to inform development of the BA layouts for the following iteration. This is done using 

a heuristic GA-like approach; specifically, BA locations which yield regions of relatively flat 

power distributions are considered “genetically fit” (that is, these locations are desirable for BA 

placement), and the remaining BA locations are adjusted to suppress remaining peaking. In this 

way, the designs of the previous iteration act as the “parents” of the designs of the next iteration, 

which retain the desirable characteristics of previous designs. The process is repeated to build a 

pool of assembly designs from which some high-level rules relating design decisions to the 

relevant performance metrics may be identified. 

3.1.2. Limitations 

Some of the factors which inhibit the accuracy of the RCCA design process impact the 

BA optimization task as well. For example, models are again constructed in two dimensions, 

thereby eliminating information about three-dimensional phenomena which impact the fuel 

assembly performance (such as axial power peaking). Such issues must be addressed in separate 

endeavors through axial zoning of the BAs and proper selection of the blanket enrichment. 

Additionally, these models have been constructed so as to balance high fidelity with 

computational efficiency. This is achieved by limiting modeling parameters such as the number 

of radial regions employed in representing Gd-bearing pins, the size of the spatial mesh for 
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transport calculations, and the energy group structure for calculation of group constants. 

Incorporation of greater detail in such parameters comes at the cost of greater computational 

effort, which can have a severe impact on the calculation speed in some cases. Selection of these 

model settings and their impact on the computation time and solution accuracy is discussed in 

the next section. 

3.3. Modeling Requirements 

It is necessary to address the computational models representing the fuel assembly 

designs under investigation and the accuracy of the solutions they yield. Fuel assemblies 

containing gadolinia-poisoned fuel rods require particular attention; due to the very large thermal 

absorption cross sections of 155Gd and 157Gd, the neutron flux in a fresh gadolinia-bearing fuel 

pin exhibits a significant drop in the radially inward direction. Computationally, this 

phenomenon must be accounted for so as to capture the change in the neutron spectrum across 

these pins and yield accurate cross sections. This is done by modeling the fuel region of 

gadolinia-poisoned rods with multiple radial regions. In addition to the precise number of radial 

regions employed in modeling these poisoned pins, other calculation parameters used in SCALE 

which can impact the model fidelity and computation time include the size of the geometric 

mesh, the PN scattering order used for various materials, the SN quadrature order, the energy 

group structure, and the number of nuclides explicitly tracked. Each of these parameters shall be 

investigated so as to select the optimal calculation settings that yield acceptable computation 

time and fidelity for larger calculations in the future. 

The remainder of this section contains analyses carried out with a dated fuel assembly 

model. While these studies were being performed, the I2S-LWR fuel rods were assumed to be 
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annular in design. This was later changed in favor of solid fuel. This is the only section which 

uses models of this fuel design. 

3.3.1. Modeling Study Methodology 

In order to reduce the complexity and computational effort of the numerous calculations 

to follow, a simplified fuel assembly model is employed. One quarter of a 5x5 fuel assembly 

with a single central gadolinia-bearing pin and no guide tubes is constructed as shown in Figure 

3-9 below. The pin dimensions (including pitch) and specific power used in the model are 

identical to that of the I2S-LWR. The concentration of gadolinia in the poisoned pin is selected 

arbitrarily as 6 percent by weight. This model was selected so as to approximate the ratio of the 

number of poisoned pins to the total number of fuel pins that may be expected to be found in a 

final fuel assembly design for the I2S-LWR. Specifically, this simplified model contains one 

poisoned pin out of 25; thus 4 percent of the pins are poisoned. In the 19x19 fuel assembly of the 

I2S-LWR, with 25 guide tubes, a loading of 12 poisoned pins out of 336 fuel pins corresponds to 

3.57 percent of the fuel pins being poisoned (such a loading may be considered typical based on 

experience with other PWRs that use gadolinia). Reflective boundary conditions are imposed on 

all edges so as to approximate an infinite lattice. 
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Figure 3-9. Simplified Fuel Assembly Model 

Depletion calculations are to be carried out with this fuel assembly model using the T-

DEPL sequence in SCALE. The assembly models are depleted to approximately 60 GWd/MT 

with a fine temporal mesh at the beginning of life, where reactivity is expected to vary most 

rapidly. Each of the calculation parameters discussed above shall be varied, and the resulting 

criticality and power peaking trends shall be compared across cases to determine where accuracy 

may be acceptably sacrificed in favor of improvements in computational effort. The case matrix 

is summarized in Table 3-3 below, followed by a more detailed description of each parameter. 

Table 3-3. Modeling Study Case Matrix 

Parameter Values 

Radial Regions in Gd Pin 5, 10, 15 

Single Whole Fuel Pin Mesh 4x4, 6x6, 20x20 

Quarter Gd Pin Mesh 6x6, 8x8, 10x10 

PN Scattering Order 0, 1, 2 for fuel, as well as “recommended” case 

SN Quadrature Order 12, 16 

Energy Groups 44, 49, 238 

Nuclides Explicitly Tracked 15, 94, 230, 388 

 

 

 



43 
 

3.3.1.1. Radial Regions in the Poisoned Pin 

Including a greater number of radial regions in the gadolinia-bearing fuel pin model 

allows the variation in the neutron flux and energy spectrum across the fuel region to be more 

accurately represented, thereby yielding more accurate cross sections. Various calculations 

involving gadolinia as an IBA found in the literature use between 6 and 10 radial regions 

(References 2, 3, and 7). The calculations in this study shall consider models with 5, 10, and 15 

radial regions. 

3.3.1.2. Single Whole Fuel Pin Mesh 

The geometric mesh shown in Figure 3-9 above is a 20x20 structure in a single whole 

fuel pin (the mesh is therefore 10x10 in the quarter pin, and 10x20 or 20x10 in half pins). This 

shall be compared to cases with much coarser 4x4 and 6x6 structures in a single whole fuel pin. 

The mesh in the poisoned pin shall be kept constant at 10x10. 

3.3.1.3. Poisoned Pin Mesh 

The effect of the mesh in the poisoned pin shall be isolated to determine the extent of the 

impact of the resolution of the radial regions on the depletion results. For these cases, the mesh 

of the whole fuel pins shall be fixed at 4x4, and the original 10x10 mesh of the quarter poisoned 

pin shall be compared to structures of 6x6 and 8x8. 

3.3.1.4. PN Scattering Order 

In the SCALE input file, PN scattering order must be specified for all materials present in 

the model. For maximum fidelity, the scattering order shall initially be fixed at 3 for the light 

materials (water and helium) and 1 for the clad while that of the fuel is varied from 0 to 2. An 

additional case shall use the settings recommended in Reference 1; specifically, this consists of 

scattering orders of 1 for fuel, 0 for helium, 1 for clad, and 2 for water. 
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3.3.1.5. SN Quadrature Order 

The NEWT module uses a two-dimensional discrete ordinates method for transport 

calculations, and the SCALE input allows specification of the number of angular directions. 

Calculations performed in this study shall compare results of cases with S12 and S16 quadrature 

structure. 

3.3.1.6. Energy Groups 

The SCALE system includes a number of cross section libraries available for various 

depletion sequences. Those that are compatible with the T-DEPL sequence include the ENDF/B-

V 238-group library, the ENDF/B-V 44-group library that is collapsed from its 238-group 

counterpart, the ENDF/B-VI 238-group library, and the ENDF/B-VII 238-group library. 

Differences between the ENDF releases shall be neglected, and these calculations shall consider 

the ENDF/B-V 44-group library and the ENDF/B-VII 238-group library. An additional option in 

the SCALE input (the “weight” parameter) activates a 238-group steady state calculation, the 

spectrum of which is used to generate a problem-specific 49-group library. This option shall be 

explored as well. 

3.3.1.7. Explicit Nuclide Tracking 

The SCALE input allows users to specify how many nuclides should be explicitly tracked 

during a depletion calculation through the “addnux” parameter. Accounting for a greater number 

of nuclides, many of which are present only in trace quantities, yields a more accurate estimate 

of reactivity at the expense of computational effort. Cases shall be compared with 15, 94, 230, 

and 388 additional nuclides explicitly tracked. 
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3.3.2. Results 

3.3.2.1. Radial Regions in the Poisoned Pin 

As previously discussed, cases with 5, 10, and 15 radial regions in the poisoned fuel pin 

are explored. These regions are constructed so that they have equal area. The other calculation 

settings for these cases are kept constant and are listed in Table 3-4. These settings are largely 

arbitrary, but they are expected to be sufficiently rigorous to yield accurate results with a high 

degree of confidence. The fuel assembly models are visually identical to Figure 3-9 except for 

the poisoned pin; closer views of the poisoned pin are therefore given in Figures 3-10, 3-11, and 

3-12 for each respective case. In these Figures, the two outermost layers represent the clad and 

gap, while the innermost layer represents the inner fuel pellet void; the remaining layers are the 

poisoned fuel. 

Table 3-4. Calculation Settings for Varying Radial Regions Cases 

Parameter Value 

Single Whole Fuel Pin Mesh 20x20 

Quarter Poisoned Pin Mesh 10x10 

PN Scattering Order 

Fuel: 0 

Helium: 3 

Clad: 1 

Water: 3 

SN Quadrature Order 16 

Energy Groups 238 

Nuclides Explicitly Tracked 388 

 

 

Figure 3-10. Poisoned Pin with 5 Radial Regions 
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Figure 3-11. Poisoned Pin with 10 Radial Regions 

 

Figure 3-12. Poisoned Pin with 15 Radial Regions 

The kinf trend for these cases is given in Figure 3-13, and Figure 3-14 gives the deviation 

of kinf in pcm of the 5- and 10-region cases from the 15-region case. Additionally, Table 3-5 

gives the computation time used by each of these cases. These results indicate that the 5-region 

case does not deviate from the 15-region case by more than 60 pcm in kinf; indeed, the maximum 

discrepancy between the 5- and 15-region cases is about 54 pcm in kinf, and nearly 14 hours of 

computation time are saved. As the difference in the kinf trend between the 5- and 15-region 

cases is relatively small, the power peaking trend shall be compared only between these two 

cases. Figure 3-15 gives the deviation in relative pin power between the 5- and 15-region cases at 

the time where this difference is the largest. The difference in relative pin power is no greater 

than 0.8 percent. This maximum difference occurs in the poisoned pin, indicating that the 

number of radial regions employed has the largest impact on the calculation of its own power. 
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Figure 3-13. Depletion of Varying Radial Regions Cases 

 

Figure 3-14. Deviation in kinf among Varying Radial Regions Cases 

Table 3-5. Computation Time for Varying Radial Regions Cases 

Case Time (hours) 

5 Regions 230.66 

10 Regions 243.48 

15 Regions 244.04 
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Figure 3-15. Largest Deviation in Relative Pin Power between 5- and 15-Region Cases 

3.3.2.2. Single Whole Fuel Pin Mesh 

The geometric mesh of a single whole fuel pin is now chosen as 4x4 and 6x6 for 

comparison against the original 20x20 case. The mesh of the quarter poisoned pin is not varied in 

these cases, but run time is reduced by performing an S12 transport calculation. The calculation 

settings for these cases are summarized in Table 3-6. Visual representations of the 4x4 and 6x6 

cases are given in Figures 3-16 and 3-17, respectively, while that of the 20x20 case is identical to 

Figure 3-9. 

Table 3-6. Calculation Settings for Varying Single Whole Fuel Pin Mesh Cases 

Parameter Value 

Radial Regions in Poisoned Pin 5 

Quarter Poisoned Pin Mesh 10x10 

PN Scattering Order 

Fuel: 0 

Helium: 3 

Clad: 1 

Water: 3 

SN Quadrature Order 12 

Energy Groups 238 

Nuclides Explicitly Tracked 388 
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Figure 3-16. Fuel Assembly Model for the 4x4 Single Whole Fuel Pin Mesh Case 

 

Figure 3-17. Fuel Assembly Model for the 6x6 Single Whole Fuel Pin Mesh Case 

Figure 13-18 below shows the kinf trend for each of these cases, and Figure 3-19 gives 

the deviation of kinf in pcm of the 4x4 and 6x6 cases from the 20x20 case. Table 3-7 gives the 

computation time used by each case. These results indicate significant reduction in computation 
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time by using a coarser mesh without prohibitive loss in accuracy. As the 6x6 case deviates less 

from the 20x20 case in kinf, the power peaking shall be compared between these two cases. 

Figure 3-20 gives the fractional difference in relative pin power between the 6x6 and 20x20 

cases at the time where this difference is the largest. This difference is well under 0.4 percent, 

and again occurs in the poisoned pin. 

 

Figure 3-18. Depletion of Varying Single Whole Fuel Pin Mesh Cases 

 

Figure 3-19. Deviation in kinf among Varying Single Whole Fuel Pin Mesh Cases 
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Table 3-7. Computation Time for Varying Single Whole Fuel Pin Mesh Cases 

Case Time (hours) 

4x4 28.29 

6x6 36.92 

20x20 150.72 

 

 

Figure 3-20. Largest Deviation in Relative Pin Power between 6x6 and 20x20 Single Whole Fuel Pin Mesh Cases 

3.3.2.3. Poisoned Pin Mesh 

To determine how the resolution of the radial regions in the poisoned pin under different 

mesh structures affects depletion results, only the mesh of the poisoned pin is varied. Structures 

in the quarter poisoned pin are chosen as 6x6 and 8x8 for comparison against the original 10x10 

case, while the mesh of the remaining pins is held constant at 4x4 for the sake of computation 

time. The calculation settings for these cases are summarized in Table 3-8. Visual 

representations of the poisoned pin are given in Figures 3-21 and 3-22 for the 6x6 and 8x8 cases 

respectively. The poisoned pin for the 10x10 case is identical to Figure 3-10 above. 
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Table 3-8. Calculation Settings for Varying Poisoned Pin Mesh Cases 

Parameter Value 

Radial Regions in Poisoned Pin 5 

Single Whole Fuel Pin Mesh 4x4 

PN Scattering Order 

Fuel: 0 

Helium: 3 

Clad: 1 

Water: 3 

SN Quadrature Order 12 

Energy Groups 238 

Nuclides Explicitly Tracked 388 

 

 

Figure 3-21. Quarter Poisoned Pin with 6x6 Mesh 

 

Figure 3-22. Quarter Poisoned Pin with 8x8 Mesh 

Figure 3-23 below gives the kinf trend for each case, and Figure 3-24 shows the deviation 

of kinf of the 6x6 and 8x8 cases from the 10x10 case. Table 3-9 gives the computation time for 

each case. The deviations in kinf are very small; the 6x6 case differs from the 10x10 case by no 

more than 12 pcm. The savings in computational effort, while certainly not insignificant, are 

relatively small as well. The difference in power peaking is compared between the 6x6 and 
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10x10 cases. The largest difference in relative pin power between these two cases is shown in 

Figure 3-25 below. This maximum difference is no more than 0.2 percent. 

 

Figure 3-23. Depletion of Varying Poisoned Pin Mesh Cases 

 

Figure 3-24. Deviation in kinf among Varying Poisoned Pin Mesh Cases 

Table 3-9. Computation Time for Varying Poisoned Pin Mesh Cases 

Case Time (hours) 

6x6 22.89 

8x8 23.38 

10x10 28.29 
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Figure 3-25. Largest Deviation in Relative Pin Power between 6x6 and 10x10 Poisoned Pin Mesh Cases 

3.3.2.4. PN Scattering Order 

The scattering order of the fuel material (including the poisoned fuel) is now chosen as 0, 

1, and 2, while that of the remaining materials are kept constant as discussed in Section IID. The 

“recommended” scattering order settings are tested as well (i.e., scattering order 1 for fuel, 0 for 

helium, 1 for clad, and 2 for water). The remaining calculation settings for these cases are 

summarized in Table 3-10 and are based on minimizing computation time while maintaining 

acceptable fidelity based on the results of cases studied up to this point. It should be emphasized 

that the data for the P0 case is based on a model with a 10x10 mesh in the quarter poisoned pin; 

this data was available from previously run cases and is not expected to differ from a case with a 

6x6 mesh by more than 12 pcm (based on the results presented in Section IIIC). The fuel 

assembly model for the P0 case is identical to Figure 3-17 above, while the quarter poisoned pins 

for the remaining cases are identical to Figure 3-21. 
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Table 8. Calculation Settings for Varying Scattering Order Cases 

Parameter Value 

Radial Regions in Poisoned Pin 5 

Single Whole Fuel Pin Mesh 6x6 

Quarter Poisoned Pin Mesh 6x6 (10x10 in P0 case) 

SN Quadrature Order 12 

Energy Groups 238 

Nuclides Explicitly Tracked 388 

 

Figure 3-26 below gives the kinf trend for each case, and Figure 3-27 gives the deviation 

of kinf from the P2 case, which is expected to be the most accurate. Table 3-11 gives the 

computation time for each case. These results indicate that the recommended settings provide a 

high degree of accuracy with minimal computation time (although the reduction in time from the 

highest fidelity case is relatively minor). The power peaking shall therefore be compared 

between the P2 and recommended cases. The largest difference in relative pin power between 

these two cases is given in Figure 3-28, and it is seen to be no greater than 0.2 percent. 

 

Figure 3-26. Depletion of Varying Scattering Order Cases 
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Figure 3-27. Deviation in kinf among Varying Scattering Order Cases 

Table 3-11. Computation Time for Varying Scattering Order Cases 

Case Time (hours) 

P0 36.92 

P1 29.2 

P2 29.63 

Recommended 28.52 

 

 

Figure 3-28. Largest Deviation in Relative Pin Power between Recommended and P2 Scattering Order Cases 
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3.3.2.5. SN Quadrature Order 

Cases previously run with S12 transport calculations have demonstrated relatively short 

computation time; therefore, any loss in accuracy relative to the S16 setting should be quantified. 

The remaining calculation parameters are given in Table 3-12. The fuel assembly models used in 

these cases are visually identical to that given in Figure 3-9. 

Table 3-12. Calculation Settings for Varying Quadrature Order Cases 

Parameter Value 

Radial Regions in Poisoned Pin 5 

Single Whole Fuel Pin Mesh 20x20 

Quarter Poisoned Pin Mesh 10x10 

PN Scattering Order 

Fuel: 0 

Helium: 3 

Clad: 1 

Water: 3 

Energy Groups 238 

Nuclides Explicitly Tracked 388 

 

Figure 3-29 below gives the depletion trend in kinf for both cases, and Figure 3-30 gives 

the deviation in kinf of the S12 case from the S16 case. Table 3-13 gives the computation time used 

for these cases. The difference in kinf is minimal, and significant savings in computation time are 

realized as well. Figure 3-31 shows the largest difference in relative pin power between the two 

cases. This maximum difference is well under 0.3 percent. 

 

Figure 3-29. Depletion of Varying Quadrature Order Cases 
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Figure 3-30. Deviation in kinf of S12 Case from S16 Case 

Table 3-13. Computation Time for Varying Quadrature Order Cases 

Case Time (hours) 

S12 150.72 

S16 230.66 

 

 

Figure 3-31. Largest Deviation in Relative Pin Power between S12 and S16 Cases 
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3.3.2.6. Energy Groups 

The impact of the cross section library on depletion results is now explored. As discussed 

previously, cross section libraries of 44, 49, and 238 groups shall be considered. The remaining 

calculation parameters are given in Table 3-14 below. In these cases, comparison is made against 

a 238-group case with a 10x10 mesh in the quarter poisoned pin while the remaining cases have 

a 6x6 mesh; again, this data was already available from previous calculations and is not expected 

to deviate from a corresponding 6x6 structure by greater than 12 pcm. The fuel assembly model 

for the 238-group case is identical to Figure 3-17, while the remaining cases have quarter 

poisoned pins identical to Figure 3-21. 

Table 3-14. Calculation Settings for Varying Energy Groups Cases 

Parameter Value 

Radial Regions in Poisoned Pin 5 

Single Whole Fuel Pin Mesh 6x6 

Quarter Poisoned Pin Mesh 6x6 (10x10 in 238-group case) 

PN Scattering Order 

Fuel: 0 

Helium: 3 

Clad: 1 

Water: 3 

SN Quadrature Order 12 

Nuclides Explicitly Tracked 388 

 

Figure 3-32 gives the kinf trend for each case, and Figure 3-33 gives the deviation in kinf 

of each case relative to the 238-group case. Table 3-15 gives the computation time used for each 

case. A significant reduction in computation time is realized in the 49-group case with acceptable 

accuracy in kinf. The relative pin power for this case shall therefore be compared with that of the 

238-group case. The largest deviation in relative pin power between these two cases is given in 

Figure 3-34. This maximum discrepancy is within 2 percent, which is noticeably larger than the 

discrepancies found in previous cases. 
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Figure 3-32. Depletion of Varying Energy Groups Cases 

 

Figure 3-33. Deviation in kinf among Varying Energy Groups Cases 

Table 3-15. Computation Time for Varying Energy Groups Cases 

Case Time (hours) 

44 groups 13.62 

49 groups 6.65 

238 groups 36.92 
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Figure 3-34. Largest Deviation in Relative Pin Power between 49- and 238-Group Cases 

3.3.2.7. Explicit Nuclide Tracking 

The “addnux” parameter in the SCALE input file is now varied to determine the impact 

of the number of nuclides explicitly tracked on depletion results. Cases will be run with 15, 94, 

230, and 388 nuclides tracked. Again, the fuel assembly model for the 388-nuclide case is 

identical to Figure 3-17, while those of the other cases have quarter poisoned pins identical to 

Figure 3-21 (the results for the 388-nuclide case were again available from previous studies and 

should not significantly differ from cases with a 6x6 mesh in the quarter poisoned pin). The 

calculation settings for these cases are summarized in Table 3-16. 

Table 3-16. Calculation Settings for Varying Nuclide Tracking Cases 

Parameter Value 

Radial Regions in Poisoned Pin 5 

Single Whole Fuel Pin Mesh 6x6 

Quarter Poisoned Pin Mesh 6x6 (10x10 in 388-nuclide case) 

PN Scattering Order 

Fuel: 0 

Helium: 3 

Clad: 1 

Water: 3 

SN Quadrature Order 12 

Energy Groups 238 
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The kinf trend for these cases is given in Figure 3-35, and the deviation in kinf relative to 

the 388-nuclide case is given in Figure 3-36. Figure 3-37 gives a clearer view of the deviation of 

the 94- and 230-nuclide cases. Table 3-17 gives the computation time used for each case as well. 

These results indicate only a minor reduction in computation time with introduction of 

significant error by reducing the number of nuclides tracked. Thus there is no need to examine 

the power peaking for these cases. 

 

Figure 3-35. Depletion of Varying Nuclide Tracking Cases 

 

Figure 3-36. Deviation in kinf among Varying Nuclide Tracking Cases 



63 
 

 

Figure 3-37. Deviation in kinf of 94- and 230-Nuclide Cases from 388-Nuclide Case 

Table 3-17. Computation Time for Varying Nuclide Tracking Cases 

Case Time (hours) 

15 nuclides 20.43 

94 nuclides 22.78 

230 nuclides 25.33 

388 nuclides 36.92 

 

3.3.3. Recommendations 

Based on the results presented above, the variables which have the largest impact on 

computation time are the single whole fuel pin mesh, the SN quadrature order, and the cross 

section library. By far the greatest reduction in computation time was achieved using the 49-

group problem-specific cross section library. It is therefore worthwhile to employ this setting to 

optimize computation time and alter the remaining variables to recover losses in accuracy in kinf 

and relative pin power. 

The results of the previous section indicate a relatively strong dependence of relative pin 

power on the number of radial regions in the poisoned pin. Therefore, in order to maintain 

reasonable accuracy, 10 radial regions shall be used in future models. Significant savings in 

computation time are realized by coarsening the mesh, but nontrivial error is introduced as well. 

This trade-off shall be reconciled by employing a 12x12 mesh in a single whole fuel pin, and a 
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6x6 mesh in the quarter poisoned pin (thus yielding a constant mesh size throughout the model). 

The PN scattering order settings shall be chosen to match the “recommended” case, as these 

settings yield the best computation time with only a small loss in accuracy. The quadrature order 

shall be set at S12, as again this setting yields significant reduction in computation time with a 

small loss in accuracy. Finally, the nuclide tracking should remain at 388 nuclides, as any 

reduction introduces large error with only a small reduction in computation time. These 

recommended settings are summarized in Table 3-18. 

Table 3-18. Recommended Calculation Settings 

Parameter Value 

Radial Regions in Poisoned Pin 10 

Single Whole Fuel Pin Mesh 12x12 

Quarter Poisoned Pin Mesh 6x6 

PN Scattering Order 

Fuel: 1 

Helium: 0 

Clad: 1 

Water: 2 

SN Quadrature Order 12 

Energy Groups 49 

Nuclides Explicitly Tracked 388 

 

These settings are tested in a final run for comparison against the 15-region case from 

Section 3.3.2.1 above, which is expected to be the most accurate of the cases tested in this study. 

The deviation in kinf from the 15-region case throughout the depletion is shown in Figure 3-38 

below. This calculation ran in approximately 12 hours, and the maximum difference in kinf from 

the 15-region case is no greater than 140 pcm. It was verified by hand that the maximum 

difference in pin power peaking was less than 0.6 percent. These settings shall therefore be 

considered appropriate for use with larger assembly models in future calculations. 
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Figure 3-38. Deviation in kinf of Final Settings Case from Highest Fidelity Case 
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4. RESULTS 

In this chapter, the results of the control rod and BA design calculations are presented 

separately. Section 4.1 gives the control rod CBC and reactivity worth results, and Section 4.2 

gives the BA optimization results. 

4.1. Control Rods 

As discussed in Chapter 3, the CBC for each design is first calculated to feed into 

subsequent control rod worth calculations. The rodded and unrodded reactivity of each case is 

then calculated so that worth may be determined from Equations 1 and 2. 

4.1.1. CBC 

It is expected that the following CBC values will be unrealistically high, as they 

approximately represent the combined spectral effect of soluble boron and BAs and bring the 

multiplication eigenvalue to unity. Figures 4-1 to 4-4 below plot the neutron multiplication 

eigenvalue against boron concentration for each assembly configuration considered (24, 28, and 

32 guide tubes per assembly as well as the reference case) in four quarter assembly geometry 

only. This data is given explicitly in Tables 4-1 to 4-4. Finally, Table 4-5 gives the critical boron 

concentration for each case, determined from linear interpolation of the preceding data. This 

interpolation is appropriately accurate, as the kinf vs. boron curves appear to exhibit linear 

behavior. Only the results for the four quarter assembly geometry are presented here, as the 

single quarter cases are essentially identical to the four quarter assembly cases with all control 

rods withdrawn and reflective boundary conditions imposed on all boundaries. 
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Table 4-1. Neutron Multiplication vs. Boron for 19x19 Silicide Assembly with 24 Control Rods Withdrawn 

Boron (ppm) 
Four Unrodded Quarter 

Assemblies kinf 

0 1.33075 

2000 1.19612 

3000 1.14069 

4000 1.09141 

5000 1.04730 

6000 1.00758 

7000 0.97161 

8000 0.93889 

 

 

Figure 4-1. Neutron Multiplication vs. Boron for 19x19 Silicide Assembly with 24 Control Rods Withdrawn 

Table 4-2. Neutron Multiplication vs. Boron for 19x19 Silicide Assembly with 28 Control Rods Withdrawn 

Boron (ppm) 
Four Unrodded Quarter 

Assemblies kinf 

0 1.33321 

2000 1.19570 

3000 1.13926 

4000 1.08918 

5000 1.04443 

6000 1.00420 

7000 0.96781 

8000 0.93475 
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Figure 4-2. Neutron Multiplication vs. Boron for 19x19 Silicide Assembly with 28 Control Rods Withdrawn 

Table 4-3. Neutron Multiplication vs. Boron for 19x19 Silicide Assembly with 32 Control Rods Withdrawn 

Boron (ppm) 
Four Unrodded Quarter 

Assemblies kinf 

0 1.33554 

2000 1.19502 

3000 1.13757 

4000 1.08669 

5000 1.04130 

6000 1.00055 

7000 0.96375 

8000 0.93035 

 

 

Figure 4-3. Neutron Multiplication vs. Boron for 19x19 Silicide Assembly with 32 Control Rods Withdrawn 
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Table 4-4. Neutron Multiplication vs. Boron for 17x17 Oxide Assembly with 24 Control Rods Withdrawn 

Boron (ppm) 
Four Unrodded Quarter 

Assemblies kinf 

0 1.39876 

2000 1.21779 

3000 1.14655 

4000 1.08472 

5000 1.03054 

6000 0.98268 

7000 0.94007 

8000 0.90189 

 

 

Figure 4-4. Neutron Multiplication vs. Boron for 17x17 Oxide Assembly with 24 Control Rods Withdrawn 

Table 4-5. Critical Boron Concentrations 

Case 
Four Unrodded Quarter 

Assemblies CBC (ppm) 

19x19 Silicide Assembly 

with 24 Control Rods 
6211 

19x19 Silicide Assembly 

with 28 Control Rods 
6115 

19x19 Silicide Assembly 

with 32 Control Rods 
6015 

17x17 Oxide Assembly 

with 24 Control Rods 
5638 

 

4.1.2. Reactivity Worth 

Tables 4-6 to 4-11 below give the neutron multiplication eigenvalues for each control rod 

material and core configuration with the critical soluble boron (taken from Table 4-5) and 

without soluble boron. 
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Table 4-6. Neutron Multiplication Eigenvalues with AIC Control Rods – Single Quarter Assembly Rodded 

Case No Boron kout No Boron kin CBC kout CBC kin 

19x19 Silicide Assembly 

with 24 Control Rods 
1.33073 1.07501 0.99971 0.86095 

19x19 Silicide Assembly 

with 28 Control Rods 
1.33321 1.04184 0.99981 0.84056 

19x19 Silicide Assembly 

with 32 Control Rods 
1.33553 1.01060 0.99997 0.82116 

17x17 Oxide Assembly with 

24 Control Rods 
1.39943 1.04443 0.99934 0.81674 

 

Table 4-7. Neutron Multiplication Eigenvalues with AIC Control Rods – 2 of 4 Quarter Assemblies Rodded 

Case No Boron kout No Boron kin CBC kout CBC kin 

19x19 Silicide Assembly with 

24 Control Rods 
1.33075 1.20712 0.99971 0.93238 

19x19 Silicide Assembly with 

28 Control Rods 
1.33321 1.19366 0.99981 0.92312 

19x19 Silicide Assembly with 

32 Control Rods 
1.33554 1.18110 0.99997 0.91442 

17x17 Oxide Assembly with 

24 Control Rods 
1.39876 1.22681 0.99934 0.91046 

 

Table 4-8. Neutron Multiplication Eigenvalues with B4C Control Rods – Single Quarter Assembly Rodded 

Case No Boron kout No Boron kin CBC kout CBC kin 

19x19 Silicide Assembly with 

24 Control Rods 
1.33073 0.97212 0.99971 0.78437 

19x19 Silicide Assembly with 

28 Control Rods 
1.33321 0.92935 0.99981 0.75591 

19x19 Silicide Assembly with 

32 Control Rods 
1.33553 0.88933 0.99997 0.72905 

17x17 Oxide Assembly with 

24 Control Rods 
1.39943 0.92495 0.99934 0.72928 

 

Table 4-9. Neutron Multiplication Eigenvalues with B4C Control Rods – 2 of 4 Quarter Assemblies Rodded 

Case No Boron kout No Boron kin CBC kout CBC kin 

19x19 Silicide Assembly with 

24 Control Rods 
1.33075 1.15833 0.99971 0.89587 

19x19 Silicide Assembly with 

28 Control Rods 
1.33321 1.14126 0.99981 0.88337 

19x19 Silicide Assembly with 

32 Control Rods 
1.33554 1.12536 0.99997 0.87166 

17x17 Oxide Assembly with 

24 Control Rods 
1.39876 1.16937 0.99934 0.86834 
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Table 4-10. Neutron Multiplication Eigenvalues with Hf Control Rods – Single Quarter Assembly Rodded 

Case No Boron kout No Boron kin CBC kout CBC kin 

19x19 Silicide Assembly with 

24 Control Rods 
1.33073 1.07746 0.99971 0.85977 

19x19 Silicide Assembly with 

28 Control Rods 
1.33321 1.04439 0.99981 0.83924 

19x19 Silicide Assembly with 

32 Control Rods 
1.33553 1.01301 0.99997 0.81961 

17x17 Oxide Assembly with 

24 Control Rods 
1.39943 1.04922 0.99934 0.81629 

 

Table 4-11. Neutron Multiplication Eigenvalues with Hf Control Rods – 2 of 4 Quarter Assemblies Rodded 

Case No Boron kout No Boron kin CBC kout CBC kin 

19x19 Silicide Assembly 

with 24 Control Rods 
1.33075 1.20842 0.99971 0.93189 

19x19 Silicide Assembly 

with 28 Control Rods 
1.33321 1.19503 0.99981 0.92260 

19x19 Silicide Assembly 

with 32 Control Rods 
1.33554 1.18243 0.99997 0.91383 

17x17 Oxide Assembly with 

24 Control Rods 
1.39876 1.22928 0.99934 0.91035 

 

The data presented above are then used to calculate the reactivity worth for each control 

rod material in each assembly configuration with and without boron. The percentage of control 

rod worth lost due to the presence of soluble boron is calculated as well. These results are given 

in Tables 4-12 to 4-17 below and are plotted for visual comparison in Figures 4-5 to 4-10. Tables 

4-12 to 4-17 give the worth calculated from both Equations 1 and 2, but Figures 4-5 to 4-10 only 

plot the results obtained using Equation 1. 

Table 4-12. AIC Control Rod Worth – Single Quarter Assembly Rodded 

Case 

Equation 1 

Worth 

(pcm) – No 

Boron 

Equation 1 

Worth 

(pcm) – 

CBC 

Equation 2 

Worth 

(pcm) – No 

Boron 

Equation 2 

Worth 

(pcm) – 

CBC 

% Equation 

1 Worth 

Lost due to 

Boron 

% Equation 

2 Worth 

Lost due to 

Boron 

19x19 Silicide Assembly 

with 24 Control Rods 
19217 13880 21340 14943 27.77 29.98 

19x19 Silicide Assembly 

with 28 Control Rods 
21854 15929 24660 17350 27.12 29.64 

19x19 Silicide Assembly 

with 32 Control Rods 
24330 17881 27879 19701 26.50 29.33 

17x17 Oxide Assembly 

with 24 Control Rods 
25367 18273 29259 20178 27.97 31.04 
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Figure 4-5. AIC Control Rod Worth – Single Quarter Assembly Rodded 

Table 4-13. AIC Control Rod Worth – 2 of 4 Quarter Assemblies Rodded 

Case 

Equation 1 

Worth 

(pcm) – No 

Boron 

Equation 1 

Worth 

(pcm) – 

CBC 

Equation 2 

Worth 

(pcm) – No 

Boron 

Equation 2 

Worth 

(pcm) – 

CBC 

% Equation 

1 Worth 

Lost due to 

Boron 

% Equation 

2 Worth 

Lost due to 

Boron 

19x19 Silicide Assembly 

with 24 Control Rods 
9290 6735 9750 6973 27.50 28.49 

19x19 Silicide Assembly 

with 28 Control Rods 
10467 7671 11056 7981 26.71 27.82 

19x19 Silicide Assembly 

with 32 Control Rods 
11564 8556 12289 8944 26.01 27.22 

17x17 Oxide Assembly 

with 24 Control Rods 
12293 8893 13117 9314 27.66 28.99 

 

 

Figure 4-6. AIC Control Rod Worth – 2 of 4 Quarter Assemblies Rodded 

 



73 
 

Table 4-14. B4C Control Rod Worth – Single Quarter Assembly Rodded 

Case 

Equation 1 

Worth 

(pcm) – No 

Boron 

Equation 1 

Worth 

(pcm) – 

CBC 

Equation 2 

Worth 

(pcm) – No 

Boron 

Equation 2 

Worth 

(pcm) – 

CBC 

% Equation 

1 Worth 

Lost due to 

Boron 

% Equation 

2 Worth 

Lost due to 

Boron 

19x19 Silicide Assembly 

with 24 Control Rods 
26948 21540 31401 24258 20.07 22.75 

19x19 Silicide Assembly 

with 28 Control Rods 
30292 24395 36086 27965 19.47 22.50 

19x19 Silicide Assembly 

with 32 Control Rods 
33410 27093 40661 31598 18.91 22.29 

17x17 Oxide Assembly 

with 24 Control Rods 
33905 27024 41408 31504 20.30 23.92 

 

 

Figure 4-7. B4C Control Rod Worth – Single Quarter Assembly Rodded 

Table 4-15. B4C Control Rod Worth – 2 of 4 Quarter Assemblies Rodded 

Case 

Equation 1 

Worth 

(pcm) – No 

Boron 

Equation 1 

Worth 

(pcm) – 

CBC 

Equation 2 

Worth 

(pcm) – No 

Boron 

Equation 2 

Worth 

(pcm) – 

CBC 

% Equation 

1 Worth 

Lost due to 

Boron 

% Equation 

2 Worth 

Lost due to 

Boron 

19x19 Silicide Assembly 

with 24 Control Rods 
12957 10387 13876 10967 19.84 20.97 

19x19 Silicide Assembly 

with 28 Control Rods 
14398 11647 15546 12383 19.11 20.35 

19x19 Silicide Assembly 

with 32 Control Rods 
15737 12832 17123 13733 18.46 19.80 

17x17 Oxide Assembly 

with 24 Control Rods 
16400 13108 17912 14051 20.07 21.56 
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Figure 4-8. B4C Control Rod Worth – 2 of 4 Quarter Assemblies Rodded 

Table 4-17. Hf Control Rod Worth – Single Quarter Assembly Rodded 

Case 

Equation 1 

Worth 

(pcm) – No 

Boron 

Equation 1 

Worth 

(pcm) – 

CBC 

Equation 2 

Worth 

(pcm) – No 

Boron 

Equation 2 

Worth 

(pcm) – 

CBC 

% Equation 

1 Worth 

Lost due to 

Boron 

% Equation 

2 Worth 

Lost due to 

Boron 

19x19 Silicide Assembly 

with 24 Control Rods 
19033 13998 21113 15079 26.46 28.58 

19x19 Silicide Assembly 

with 28 Control Rods 
21663 16061 24415 17508 25.86 28.29 

19x19 Silicide Assembly 

with 32 Control Rods 
24149 18036 27640 19889 25.31 28.04 

17x17 Oxide Assembly 

with 24 Control Rods 
25025 18317 28802 20233 26.80 29.75 

 

 

Figure 4-9. Hf Control Rod Worth – Single Quarter Assembly Rodded 
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Table 4-17. Hf Control Rod Worth – 2 of 4 Quarter Assemblies Rodded 

Case 

Equation 1 

Worth 

(pcm) – No 

Boron 

Equation 1 

Worth 

(pcm) – 

CBC 

Equation 2 

Worth 

(pcm) – No 

Boron 

Equation 2 

Worth 

(pcm) – 

CBC 

% Equation 

1 Worth 

Lost due to 

Boron 

% Equation 

2 Worth 

Lost due to 

Boron 

19x19 Silicide Assembly 

with 24 Control Rods 
9193 6784 9643 7025 26.21 27.15 

19x19 Silicide Assembly 

with 28 Control Rods 
10365 7723 10942 8037 25.49 26.55 

19x19 Silicide Assembly 

with 32 Control Rods 
11464 8615 12176 9009 24.85 26.01 

17x17 Oxide Assembly 

with 24 Control Rods 
12116 8905 12916 9327 26.50 27.79 

 

 

Figure 4-10. Hf Control Rod Worth – 2 of 4 Quarter Assemblies Rodded 

4.2. Burnable Absorbers 

Eight iterations of BA design populations have been accumulated for each case. The 

depletion characteristics of each case are addressed first before examining specifically the BOC 

reactivity characteristics. 

4.2.1. Depletion Results 

The key depletion performance metrics for each iteration of each case, including the 

uncontrolled lattice, are given in Tables 4-18 to 4-24 below. In order to provide a quantifiable 

measure of the BA arrangement in each case, the average poison position is reported for each 

iteration as well. This value gives the midpoint of all the poisoned pin positions in a single fuel 
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assembly quadrant, where (0,0) corresponds to the center of the lattice and (9,9) corresponds to 

the outer corner. Only one coordinate is reported, as the midpoint will always lie on the line y=x 

due to the symmetry of the assembly. The exact BA arrangements are shown for each iteration in 

Appendix B. The metrics given are the BOC neutron multiplication eigenvalue, BA reactivity 

worth relative to the uncontrolled lattice, maximum and minimum power peaking, burnup at 

which these maxima and minima occur, discharge burnup, and the cycle length. 

Table 4-18. Depletion Performance Metrics – Uncontrolled 

Iteration 

Avg 

Poison 

Position 

BOC 

k 

BA 

Worth 

(pcm) 

Max 

Power 

Peaking 

BU of Max 

Peaking 

(GWd/MT) 

Min 

Power 

Peaking 

BU of Min 

Peaking 

(GWd/MT) 

Discharge 

BU 

(GWd/MT) 

Cycle 

Length 

(days) 

NA NA 1.3320 NA 1.0637 0.109 0.9435 0 30.70 851 

 

Table 4-19. Depletion Performance Metrics – 8 Gd Pins, 4 w/o 

Iteration 

Avg 

Poison 

Position 

BOC 

k 

BA 

Worth 

(pcm) 

Max 

Power 

Peaking 

BU of Max 

Peaking 

(GWd/MT) 

Min 

Power 

Peaking 

BU of Min 

Peaking 

(GWd/MT) 

Discharge 

BU 

(GWd/MT) 

Cycle 

Length 

(days) 

1 2.333 1.2796 -3934 1.0806 0 0.3590 0 30.35 841 

2 2.500 1.2819 -3761 1.0701 0 0.3534 0 30.35 841 

3 3.500 1.2801 -3896 1.0797 0 0.3585 0 30.35 841 

4 4.000 1.2803 -3881 1.0999 0 0.3587 0 30.35 841 

5 3.500 1.2816 -3784 1.0892 0 0.3554 0 30.35 841 

6 3.000 1.2809 -3836 1.0724 0.328 0.3559 0 30.35 841 

7 3.000 1.2828 -3694 1.0838 0 0.3523 0 30.35 841 

8 2.500 1.2819 -3761 1.0701 0 0.3534 0 30.35 841 

 

Table 4-20. Depletion Performance Metrics – 8 Gd Pins, 8 w/o 

Iteration 

Avg 

Poison 

Position 

BOC 

k 

BA 

Worth 

(pcm) 

Max 

Power 

Peaking 

BU of Max 

Peaking 

(GWd/MT) 

Min 

Power 

Peaking 

BU of Min 

Peaking 

(GWd/MT) 

Discharge 

BU 

(GWd/MT) 

Cycle 

Length 

(days) 

1 2.333 1.2710 -4580 1.0863 0 0.2435 0 30.11 833 

2 2.500 1.2737 -4377 1.0743 0 0.2398 0 30.13 834 

3 3.500 1.2715 -4542 1.0854 0 0.2431 0 30.13 834 

4 4.000 1.2716 -4535 1.1054 0 0.2440 0 30.13 834 

5 3.500 1.2730 -4429 1.0924 0 0.2421 0 30.13 834 

6 3.000 1.2725 -4467 1.0760 0 0.2417 0 30.13 834 

7 3.000 1.2745 -4317 1.0860 0 0.2390 0 30.13 834 

8 2.500 1.2737 -4377 1.0743 0 0.2398 0 30.13 834 
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Table 4-21. Depletion Performance Metrics – 16 Gd Pins, 4 w/o 

Iteration 

Avg 

Poison 

Position 

BOC 

k 

BA 

Worth 

(pcm) 

Max 

Power 

Peaking 

BU of Max 

Peaking 

(GWd/MT) 

Min 

Power 

Peaking 

BU of Min 

Peaking 

(GWd/MT) 

Discharge 

BU 

(GWd/MT) 

Cycle 

Length 

(days) 

1 3.750 1.2303 -7635 1.0911 0 0.3713 0 30.02 831 

2 3.750 1.2288 -7748 1.0895 0 0.3669 0 30.01 830 

3 4.500 1.2283 -7785 1.1080 0 0.3707 0 30.01 830 

4 4.250 1.2288 -7748 1.0986 0 0.3686 0 30.01 830 

5 4.000 1.2311 -7575 1.0928 0 0.3662 0 30.02 831 

6 4.000 1.2275 -7845 1.0896 0 0.3730 0 30.01 830 

7 3.250 1.2283 -7785 1.1049 0 0.3703 0 30.01 830 

8 3.750 1.2274 -7853 1.1107 0 0.3731 0 30.01 830 

 

Table 4-22. Depletion Performance Metrics – 16 Gd Pins, 8 w/o 

Iteration 

Avg 

Poison 

Position 

BOC 

k 

BA 

Worth 

(pcm) 

Max 

Power 

Peaking 

BU of Max 

Peaking 

(GWd/MT) 

Min 

Power 

Peaking 

BU of Min 

Peaking 

(GWd/MT) 

Discharge 

BU 

(GWd/MT) 

Cycle 

Length 

(days) 

1 3.750 1.2136 -8889 1.0998 0 0.2537 0 29.58 817 

2 3.750 1.2121 -9002 1.0946 0 0.2505 0 29.57 816 

3 4.500 1.2112 -9069 1.1198 0 0.2550 0 29.57 816 

4 4.250 1.2119 -9017 1.1058 0 0.2519 0 29.57 816 

5 4.000 1.2144 -8829 1.1020 0 0.2499 0 29.58 817 

6 4.000 1.2105 -9122 1.0933 0.328 0.2559 0 29.57 816 

7 3.250 1.2119 -9017 1.1155 0 0.2520 0 29.57 816 

8 3.750 1.2107 -9107 1.1225 0 0.2543 0 29.55 816 

 

Table 4-23. Depletion Performance Metrics – 80 IFBA Pins, 2.5 mg/in 

Iteration 

Avg 

Poison 

Position 

BOC 

k 

BA 

Worth 

(pcm) 

Max 

Power 

Peaking 

BU of Max 

Peaking 

(GWd/MT) 

Min 

Power 

Peaking 

BU of Min 

Peaking 

(GWd/MT) 

Discharge 

BU 

(GWd/MT) 

Cycle 

Length 

(days) 

1 3.955 1.2297 -7680 1.0759 0 0.9170 0 30.73 853 

2 3.739 1.2278 -7823 1.0712 0 0.9026 0 30.74 853 

3 3.870 1.2277 -7830 1.0600 0 0.9212 0 30.74 853 

4 4.043 1.2282 -7793 1.0673 0 0.9107 0 30.73 853 

5 4.000 1.2276 -7838 1.0686 0 0.9184 0 30.74 853 

6 4.000 1.2272 -7868 1.0558 0 0.9196 0 30.74 853 

7 4.043 1.2282 -7793 1.0548 21.6 0.9224 0 30.73 853 

8 3.870 1.2278 -7823 1.0588 0 0.9286 0 30.74 853 
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Table 4-24. Depletion Performance Metrics – 160 IFBA Pins, 2.5 mg/in 

Iteration 

Avg 

Poison 

Position 

BOC 

k 

BA 

Worth 

(pcm) 

Max 

Power 

Peaking 

BU of Max 

Peaking 

(GWd/MT) 

Min 

Power 

Peaking 

BU of Min 

Peaking 

(GWd/MT) 

Discharge 

BU 

(GWd/MT) 

Cycle 

Length 

(days) 

1 4.044 1.1353 -14767 1.0729 0 0.9280 0 30.76 853 

2 4.087 1.1387 -14512 1.0543 23.1 0.9332 0 30.76 853 

3 4.196 1.1383 -14542 1.0543 23.1 0.9354 0 30.76 853 

4 4.261 1.1382 -14550 1.0548 18.6 0.9407 0 30.76 853 

5 4.326 1.1380 -14565 1.0549 18.6 0.9380 0 30.76 853 

6 4.174 1.1384 -14535 1.0546 18.6 0.9360 0 30.76 853 

7 4.239 1.1383 -14542 1.0548 18.6 0.9460 0 30.76 853 

8 4.283 1.1380 -14565 1.0548 18.6 0.9457 0 30.76 853 

 

4.2.1.1. Neutron Multiplication 

The depletion trends for each iteration of each case follow extremely similar trends; the 

reactivity differences among iterations of BA placement are most readily apparent at BOC only. 

The trends in neutron multiplication with burnup are given in Figures 4-11 through 4-17 below 

for only the uncontrolled case as well as the first round of iterations. The remaining iterations 

exhibit trends essentially indistinguishable from the first iterations, except for variations near 

BOC. This data is tabulated in Appendix E.  

 

Figure 4-11. Depletion: Uncontrolled 
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Figure 4-12. Depletion: 8 Gd Pins, 4 w/o, First Iteration 

 

Figure 4-13. Depletion: 8 Gd Pins, 8 w/o, First Iteration 
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Figure 4-14. Depletion: 16 Gd Pins, 4 w/o, First Iteration 

 

Figure 4-15. Depletion: 16 Gd Pins, 8 w/o, First Iteration 
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Figure 4-16. Depletion: 80 IFBA Pins, 2.5 mg/in, First Iteration 

 

Figure 4-17. Depletion: 160 IFBA Pins, 2.5 mg/in, First Iteration 

4.2.1.2. Poison Inventory 

Depletion of the poison in each gadolinia case can be tracked as well, as SCALE 

automatically reports the concentrations of a number of default isotopes with the OPUS module. 



82 
 

One of these isotopes is 155Gd, which will be assumed to provide a representative measure of the 

remaining initial poison even though other Gd isotopes are not reported. SCALE does not track 

10B as a default isotope either, so the poison inventory of the IFBA cases is not tracked. 

However, operational experience provides reasonable confidence that 10B is essentially 

completely depleted during operation (22). It is known that the initial Gd does not generally 

deplete completely, and therefore its inventory these cases is of primary interest. The 10B content 

in the IFBA cases, as well as other Gd isotopes in the Gd cases, may be requested explicitly for 

closer investigation in a future study. Several other neutron poisons which build up as fission 

products are reported by OPUS by default as well: 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, and 153Eu. 

As these species play an important role in the assembly reactivity, they are also included in this 

section for both Gd and IFBA cases. Figures 4-18 through 4-23 give the concentrations of all of 

these isotopes for each case for the first iteration only (again, these trends are extremely similar 

across iterations). Although the IFBA cases have no initial Gd loading, they exhibit a buildup of 

155Gd as a fission product. 

 

Figure 4-18. Neutron Poison Concentration: 8 Gd Pins, 4 w/o, First Iteration 
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Figure 4-19. Neutron Poison Concentration: 8 Gd Pins, 8 w/o, First Iteration 

 

Figure 4-20. Neutron Poison Concentration: 16 Gd Pins, 4 w/o, First Iteration 
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Figure 4-21. Neutron Poison Concentration: 16 Gd Pins, 8 w/o, First Iteration 

 

Figure 4-22. Neutron Poison Concentration: 80 IFBA Pins, 2.5 mg/in, First Iteration 
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Figure 4-23. Neutron Poison Concentration: 160 IFBA Pins, 2.5 mg/in, First Iteration 

4.2.1.3. Power Peaking 

Figures 4-24 through 4-29 plot the maximum power peaking at each depletion step for a 

single iteration of each case. The iteration selected for each case is that which yielded the flattest 

BOC power profile. It is observed from these data that the BOC power peaking is not necessarily 

the greatest in the cycle – some cases exhibit an increase in power peaking after poisons have 

been depleted, as these initially poisoned lattice locations experience a sudden spike in thermal 

neutron flux which is no longer depressed by the poison. 

 

Figure 4-24. Max Power Peaking Depletion Trend for Flattest BOC Power: 8 Gd Pins, 4 w/o (Second Iteration) 



86 
 

 

Figure 4-25. Max Power Peaking Depletion Trend for Flattest BOC Power: 8 Gd Pins, 8 w/o (Second Iteration) 

 

Figure 4-26. Max Power Peaking Depletion Trend for Flattest BOC Power: 16 Gd Pins, 4 w/o (Second Iteration) 

 

Figure 4-27. Max Power Peaking Depletion Trend for Flattest BOC Power: 16 Gd Pins, 8 w/o (Sixth Iteration) 
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Figure 4-28. Max Power Peaking Depletion Trend for BOC Power: 80 IFBA Pins (Seventh Iteration) 

 

Figure 4-29. Max Power Peaking Depletion Trend for BOC Power: 160 IFBA Pins (Third Iteration) 

4.2.2. BOC Reactivity Characteristics 

The fuel assembly state at BOC is of particular interest because it is generally the point at 

which both reactivity and power peaking are greatest. However, an exception is identified in 

Section 4.2.1.1: cases with 160 IFBA pins are heavily poisoned and exhibit an increase in 

reactivity as poison is depleted early in the cycle. For the sake of consistency, all cases are 

analyzed at BOC; however, future studies should investigate this peak reactivity state for such 

heavily poisoned assemblies. 
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4.2.2.1. Power Peaking 

Figures 4-30 through 4-35 give the BOC power peaking for each case again for only the 

iterations which yielded the flattest power peaking profiles, corresponding to the BOC state of 

the cases presented in Section 4.2.1.3 above. The corresponding BA layouts are given explicitly 

in Appendix B, and the BOC power peaking for the remaining iterations is given in Appendix C. 

 

Figure 4-30. Flattest Power Peaking: 8 Gd Pins, 4 w/o (Second Iteration) 
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Figure 4-31. Flattest Power Peaking: 8 Gd Pins, 8 w/o (Second Iteration) 

 

Figure 4-32. Flattest Power Peaking: 16 Gd Pins, 4 w/o (Second Iteration) 
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Figure 4-33. Flattest Power Peaking: 16 Gd Pins, 8 w/o (Sixth Iteration) 

 

Figure 4-34. Flattest Power Peaking: 80 IFBA Pins, 2.5 mg/in (Seventh Iteration) 
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Figure 4-35. Flattest Power Peaking: 160 IFBA Pins, 2.5 mg/in (Third Iteration) 

4.2.2.2. CBC and Boron Worth 

Tables 4-25 through 4-30 present the BOC neutron multiplication for each soluble boron 

concentration considered, as well as the interpolated CBC. The boron reactivity worth is 

presented as well for each of three ranges of the boron concentration. For the sake of 

comparison, CBC data for the uncontrolled case may be taken from the RCCA calculations of 

Section 4.1.1; this CBC is 6211 ppm. Calculating the boron worth of the uncontrolled case may 

be done using Equation 5 at the 0 ppm and CBC states for a coarse estimate of -4.005 pcm/ppm. 

Note that all of the following boron concentrations are reported as total ppm rather that ppm 10B 

only. 
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Table 4-25. Boron Calculations: 8 Gd Pins, 4 w/o 

Iteration 
k (0 

ppm) 

k 

(5426 

ppm) 

k 

(10852) 

CBC 

(ppm) 

Boron 

Worth, 

pcm/ppm 

(0-5426 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-10852 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-10852 

ppm) 

1 1.2796 1.0052 0.8472 5605 -3.952 -2.896 -3.114 

2 1.2819 1.0062 0.8478 5638 -3.964 -2.902 -3.121 

3 1.2801 1.0054 0.8473 5610 -3.955 -2.898 -3.115 

4 1.2803 1.0055 0.8473 5610 -3.956 -2.899 -3.116 

5 1.2816 1.0060 0.8476 5632 -3.964 -2.902 -3.121 

6 1.2809 1.0057 0.8475 5621 -3.959 -2.900 -3.118 

7 1.2828 1.0065 0.8479 5648 -3.969 -2.905 -3.124 

8 1.2794 1.0051 0.8472 5600 -3.952 -2.896 -3.113 

 

Table 4-26. Boron Calculations: 8 Gd Pins, 8 w/o 

Iteration 
k (0 

ppm) 

k 

(5426 

ppm) 

k 

(10852) 

CBC 

(ppm) 

Boron 

Worth, 

pcm/ppm 

(0-5426 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

1 1.2710 0.9990 0.8423 5404 -3.944 -2.892 -3.108 

2 1.2737 1.0002 0.8429 5431 -3.957 -2.898 -3.117 

3 1.2715 0.9992 0.8423 5410 -3.948 -2.893 -3.111 

4 1.2716 0.9992 0.8423 5410 -3.948 -2.894 -3.111 

5 1.2730 0.9997 0.8426 5421 -3.956 -2.898 -3.116 

6 1.2725 0.9996 0.8425 5415 -3.953 -2.896 -3.114 

7 1.2745 1.0005 0.8430 5442 -3.962 -2.901 -3.120 

8 1.2707 0.9988 0.8421 5404 -3.944 -2.891 -3.108 

 

Table 4-27. Boron Calculations: 16 Gd Pins, 4 w/o 

Iteration 
k (0 

ppm) 

k 

(5426 

ppm) 

k 

(10852) 

CBC 

(ppm) 

Boron 

Worth, 

pcm/ppm 

(0-5426 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

1 1.2303 0.9763 0.8274 4921 -3.806 -2.810 -3.018 

2 1.2288 0.9757 0.8272 4905 -3.795 -2.805 -3.011 

3 1.2283 0.9753 0.8270 4900 -3.796 -2.804 -3.011 

4 1.2288 0.9757 0.8272 4905 -3.796 -2.805 -3.012 

5 1.2311 0.9766 0.8276 4927 -3.810 -2.812 -3.020 

6 1.2275 0.9751 0.8269 4889 -3.790 -2.801 -3.008 

7 1.2283 0.9755 0.8271 4900 -3.793 -2.803 -3.010 

8 1.2274 0.9751 0.8269 4889 -3.788 -2.801 -3.007 

 

Table 4-28. Boron Calculations: 16 Gd Pins, 8 w/o 
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Iteration 
k (0 

ppm) 

k 

(5426 

ppm) 

k 

(10852) 

CBC 

(ppm) 

Boron 

Worth, 

pcm/ppm 

(0-5426 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

1 1.2136 0.9640 0.8175 4645 -3.790 -2.800 -3.007 

2 1.2121 0.9635 0.8174 4628 -3.780 -2.795 -3.001 

3 1.2112 0.9629 0.8169 4617 -3.778 -2.794 -3.000 

4 1.2119 0.9634 0.8173 4628 -3.779 -2.795 -3.001 

5 1.2144 0.9644 0.8178 4655 -3.794 -2.803 -3.010 

6 1.2105 0.9627 0.8169 4607 -3.773 -2.791 -2.996 

7 1.2119 0.9634 0.8174 4628 -3.778 -2.794 -3.000 

8 1.2107 0.9629 0.8171 4612 -3.772 -2.791 -2.996 

 

Table 4-29. Boron Calculations: 80 IFBA Pins, 2.5 mg/in 

Iteration 
k (0 

ppm) 

k 

(5426 

ppm) 

k 

(10852) 

CBC 

(ppm) 

Boron 

Worth, 

pcm/ppm 

(0-5426 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

1 1.2297 0.9760 0.8283 4916 -3.802 -2.791 -3.008 

2 1.2278 0.9753 0.8280 4894 -3.790 -2.784 -3.001 

3 1.2277 0.9752 0.8279 4894 -3.790 -2.785 -3.001 

4 1.2282 0.9753 0.8278 4894 -3.795 -2.787 -3.004 

5 1.2276 0.9751 0.8278 4889 -3.791 -2.784 -3.001 

6 1.2272 0.9750 0.8278 4889 -3.788 -2.783 -2.999 

7 1.2282 0.9753 0.8279 4894 -3.794 -2.787 -3.004 

8 1.2278 0.9753 0.8279 4894 -3.791 -2.785 -3.001 

 

Table 4-30. Boron Calculations: 160 IFBA Pins, 2.5 mg/in 

Iteration 
k (0 

ppm) 

k 

(5426 

ppm) 

k 

(10852) 

CBC 

(ppm) 

Boron 

Worth, 

pcm/ppm 

(0-5426 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

Boron 

Worth, 

pcm/ppm 

(5426-

10852 

ppm) 

1 1.1392 0.9220 0.7918 3478 -3.514 -2.602 -2.810 

2 1.1387 0.9281 0.7918 3467 -3.510 -2.600 -2.808 

3 1.1383 0.9216 0.7916 3462 -3.509 -2.600 -2.807 

4 1.1382 0.9215 0.7915 3462 -3.509 -2.599 -2.807 

5 1.1380 0.9214 0.7915 3456 -3.508 -2.598 -2.806 

6 1.1384 0.9216 0.7916 3462 -3.510 -2.600 -2.807 

7 1.1383 0.9216 0.7916 3462 -3.509 -2.599 -2.807 

8 1.1380 0.9214 0.7915 3456 -3.508 -2.598 -2.806 
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4.2.2.3. MTC 

Tables 4-31 through 4-36 give the BOC neutron multiplication for each of three 

moderator densities as well as the MTC calculated using forward, backward, and center 

differences for each iteration of each case with the CBC imposed. The CBC is repeated in these 

results as well for the sake of easy reference. It is noteworthy that the CBC neutron 

multiplication results given here deviate quite significantly from unity in some cases, 

highlighting the limitation of the CBC calculation by linear interpolation. These results confirm 

that the reactivity as a function of boron concentration is highly nonlinear. It is initially 

concerning that the MTC estimate is positive in all cases, but the true MTC must be assessed 

using a full core model. Additional core design factors not accounted for in this study will likely 

yield a negative MTC. 

Table 4-31. MTC Calculations: 8 Gd Pins, 4 w/o 

Iteration 
CBC 

(ppm) 

k (T0 – 

20 oC) 
k (T0) 

k (T0 + 

20 oC) 

Forward 

MTC 

(pcm/K) 

Backward 

MTC 

(pcm/K) 

Center 

MTC 

(pcm/K) 

1 1033 1.0056 1.0134 1.0214 39.55 43.11 41.23 

2 1039 0.9907 0.9984 1.0064 39.94 43.38 41.56 

3 1034 0.9910 0.9986 1.0065 39.66 43.11 41.28 

4 1034 0.9910 0.9986 1.0065 39.72 43.17 41.34 

5 1038 0.9908 0.9985 1.0064 39.89 43.34 41.51 

6 1036 0.9909 0.9985 1.0065 39.79 43.23 41.40 

7 1041 0.9906 0.9983 1.0063 40.12 43.56 41.74 

8 1032 0.9911 0.9987 1.0066 39.56 43.01 41.18 

 

Table 4-32. MTC Calculations: 8 Gd Pins, 8 w/o 

Iteration 
CBC 

(ppm) 

k (T0 – 

20 oC) 
k (T0) 

k (T0 + 

20 oC) 

Forward 

MTC 

(pcm/K) 

Backward 

MTC 

(pcm/K) 

Center 

MTC 

(pcm/K) 

1 996 0.9927 0.9997 1.0070 36.25 39.87 37.95 

2 1001 0.9928 0.9999 1.0072 36.50 40.12 38.20 

3 997 0.9927 0.9998 1.0070 36.26 39.89 37.97 

4 997 0.9927 0.9998 1.0070 36.30 39.94 38.01 

5 999 0.9928 0.9999 1.0072 36.42 40.05 38.13 

6 998 0.9928 0.9999 1.0072 36.35 39.98 38.06 

7 1003 0.9927 0.9999 1.0072 36.67 40.31 38.39 

8 996 0.9926 0.9997 1.0069 36.18 39.82 37.89 
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Table 4-33. MTC Calculations: 16 Gd Pins, 4 w/o 

Iteration 
CBC 

(ppm) 

k (T0 – 

20 oC) 
k (T0) 

k (T0 + 

20 oC) 

Forward 

MTC 

(pcm/K) 

Backward 

MTC 

(pcm/K) 

Center 

MTC 

(pcm/K) 

1 907 0.9880 0.9942 1.0005 31.69 35.22 33.35 

2 904 0.9879 0.9941 1.0004 31.60 35.13 33.26 

3 903 0.9879 0.9941 1.0003 31.58 35.12 33.24 

4 904 0.9879 0.9941 1.0004 31.66 35.20 33.32 

5 908 0.9881 0.9943 1.0006 31.84 35.39 33.51 

6 901 0.9878 0.9940 1.0003 31.42 34.95 33.08 

7 903 0.9879 0.9941 1.0004 31.57 35.06 33.21 

8 901 0.9878 0.9940 1.0003 31.52 35.03 33.17 

 

Table 4-34. MTC Calculations: 16 Gd Pins, 8 w/o 

Iteration 
CBC 

(ppm) 

k (T0 – 

20 oC) 
k (T0) 

k (T0 + 

20 oC) 

Forward 

MTC 

(pcm/K) 

Backward 

MTC 

(pcm/K) 

Center 

MTC 

(pcm/K) 

1 856 0.9864 0.9917 0.9969 26.27 30.06 28.05 

2 853 0.9864 0.9916 0.9968 26.16 29.94 27.94 

3 851 0.9862 0.9915 0.9967 26.09 29.88 27.87 

4 853 0.9863 0.9916 0.9968 26.20 30.00 27.99 

5 858 0.9864 0.9918 0.9970 26.44 30.26 28.24 

6 849 0.9862 0.9915 0.9966 25.91 29.69 27.68 

7 853 0.9863 0.9916 0.9968 26.16 29.90 27.92 

8 850 0.9863 0.9915 0.9967 26.06 29.82 27.83 

 

Table 4-35. MTC Calculations: 80 IFBA Pins, 2.5 mg/in 

Iteration 
CBC 

(ppm) 

k (T0 – 

20 oC) 
k (T0) 

k (T0 + 

20 oC) 

Forward 

MTC 

(pcm/K) 

Backward 

MTC 

(pcm/K) 

Center 

MTC 

(pcm/K) 

1 906 0.9882 0.9941 1.0000 29.62 33.42 31.41 

2 902 0.9881 0.9939 0.9998 29.43 33.22 31.21 

3 902 0.9881 0.9939 0.9998 29.40 33.20 31.19 

4 902 0.9980 0.9939 0.9998 29.48 33.28 31.26 

5 901 0.9880 0.9939 0.9997 29.41 33.21 31.19 

6 901 0.9880 0.9939 0.9997 29.36 33.16 31.15 

7 902 0.9881 0.9939 0.9998 29.46 33.27 31.25 

8 902 0.9881 0.9939 0.9998 29.42 33.21 31.20 
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Table 4-36. MTC Calculations: 160 IFBA Pins, 2.5 mg/in 

Iteration 
CBC 

(ppm) 

k (T0 – 

20 oC) 
k (T0) 

k (T0 + 

20 oC) 

Forward 

MTC 

(pcm/K) 

Backward 

MTC 

(pcm/K) 

Center 

MTC 

(pcm/K) 

1 641 0.9832 0.9859 0.9881 11.28 15.26 13.15 

2 639 0.9832 0.9859 0.9881 11.21 15.19 13.08 

3 638 0.9832 0.9859 0.9881 11.19 15.18 13.07 

4 638 0.9832 0.9859 0.9881 11.18 15.16 13.05 

5 637 0.9832 0.9859 0.9881 11.15 15.13 13.02 

6 638 0.9832 0.9859 0.9881 11.19 15.16 13.05 

7 638 0.9832 0.9859 0.9881 11.17 15.15 13.04 

8 637 0.9832 0.9859 0.9881 11.14 15.12 13.01 
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5. ANALYSIS 

The results presented in the previous chapter shall now be used to address the original 

problems posed. RCCA designs are assessed in Section 5.1, and BA designs are assessed in 

Section 5.2. 

5.1. Control Rods 

5.1.1. Control Rod Effectiveness 

In the previous section, control rod reactivity worth calculations were presented for both 

single quarter assembly and four quarter assembly geometries, where control rods were inserted 

in half of the assemblies in the latter case. It is of interest to examine the change in control rod 

effectiveness in switching from all assemblies rodded (the single quarter assembly case) to half 

of the assemblies rodded (the four quarter assembly case); if no effectiveness is lost, the control 

rod worth for the four quarter assembly cases should be exactly one half of that of the 

corresponding single quarter assembly cases. Tables 5-1 and 5-2 below give the ratio of the four 

quarter assembly worth to the single quarter assembly worth for each case with no boron and at 

critical boron respectively. 
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Table 5-1. Comparison of Control Rod Worth between Geometries – No Boron 

Case 
Worth (pcm) – Single 

Quarter Assembly Rodded 

Worth (pcm) – 2 of 4 

Quarter Assemblies Rodded 

Ratio (Four Quarters/Single 

Quarter) 

19x19 Silicide Assembly 

with 24 AIC Control Rods 
19217 9290 0.4834 

19x19 Silicide Assembly 

with 28 AIC Control Rods 
21854 10467 0.4790 

19x19 Silicide Assembly 

with 32 AIC Control Rods 
24330 11564 0.4753 

17x17 Oxide Assembly 

with 24 AIC Control Rods 
25367 12293 0.4846 

19x19 Silicide Assembly 

with 24 B4C Control Rods 
26948 12957 0.4808 

19x19 Silicide Assembly 

with 28 B4C Control Rods 
30292 14398 0.4753 

19x19 Silicide Assembly 

with 32 B4C Control Rods 
33410 15737 0.4710 

17x17 Oxide Assembly 

with 24 B4C Control Rods 
33905 16400 0.4837 

19x19 Silicide Assembly 

with 24 Hf Control Rods 
19033 9193 0.4830 

19x19 Silicide Assembly 

with 28 Hf Control Rods 
21663 10365 0.4785 

19x19 Silicide Assembly 

with 32 Hf Control Rods 
24149 11464 0.4747 

17x17 Oxide Assembly 

with 24 Hf Control Rods 
25025 12116 0.4842 

 

Table 5-2. Comparison of Control Rod Worth between Geometries – CBC 

Case 
Worth (pcm) – Single 

Quarter Assembly Rodded 

Worth (pcm) – 2 of 4 

Quarter Assemblies Rodded 

Ratio (Four Quarters/Single 

Quarter) 

19x19 Silicide Assembly 

with 24 AIC Control Rods 
13880 6735 0.4852 

19x19 Silicide Assembly 

with 28 AIC Control Rods 
15929 7671 0.4816 

19x19 Silicide Assembly 

with 32 AIC Control Rods 
17881 8556 0.4785 

17x17 Oxide Assembly 

with 24 AIC Control Rods 
18273 8893 0.4867 

19x19 Silicide Assembly 

with 24 B4C Control Rods 
21540 10387 0.4822 

19x19 Silicide Assembly 

with 28 B4C Control Rods 
24395 11647 0.4774 

19x19 Silicide Assembly 

with 32 B4C Control Rods 
27093 12832 0.4736 

17x17 Oxide Assembly 

with 24 B4C Control Rods 
27024 13108 0.4851 

19x19 Silicide Assembly 

with 24 Hf Control Rods 
13998 6784 0.4846 

19x19 Silicide Assembly 

with 28 Hf Control Rods 
16061 7723 0.4809 

19x19 Silicide Assembly 

with 32 Hf Control Rods 
18036 8615 0.4777 

17x17 Oxide Assembly 

with 24 Hf Control Rods 
18317 8905 0.4862 
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The loss in control rod effectiveness in each case is slightly lower when the assembly is 

critical than it is when no boron or other absorbers are used. Additionally, the worth ratio is very 

close to exactly one half in each case, indicating only a slight loss in control rod effectiveness 

when accounting for assemblies which will not be in RCCA locations in the final core. 

5.1.2. Reactivity Worth Comparisons 

In order to properly assess the feasibility of the control rod configurations considered, the 

results given in Chapter 4 should be compared with the reference fuel assembly – the 17x17 

oxide assembly with 24 AIC control rods. It is desired to achieve control rod worth comparable 

to or better than that of this case. Therefore, the results presented in Chapter 4 are reorganized 

for direct comparison with the reference case in Tables 5-3 to 5-8 and Figures 5-1 to 5-6 below. 

Only the worth data calculated using Equation 1 are presented. 

 

Table 5-3. AIC Rod Worth Comparison with Reference Core – Single Quarter Assembly Rodded 

Case 
Worth (pcm) – 

No Boron 

Worth (pcm) – 

CBC 

Reference 25367 18273 

19x19 Silicide Assembly 

with 24 Control Rods 
19217 13880 

19x19 Silicide Assembly 

with 28 Control Rods 
21854 15929 

19x19 Silicide Assembly 

with 32 Control Rods 
24330 17881 
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Figure 5-1. AIC Rod Worth Comparison with Reference Core – Single Quarter Assembly Rodded 

Table 5-4. AIC Rod Worth Comparison with Reference Core – 2 of 4 Quarter Assemblies Rodded 

Case 
Worth (pcm) – 

No Boron 

Worth (pcm) – 

CBC 

Reference 12293 8893 

19x19 Silicide Assembly 

with 24 Control Rods 
9290 6735 

19x19 Silicide Assembly 

with 28 Control Rods 
10467 7671 

19x19 Silicide Assembly 

with 32 Control Rods 
11564 8556 

 

 

Figure 5-2. AIC Rod Worth Comparison with Reference Core – 2 of 4 Quarter Assemblies Rodded 
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Table 5-5. B4C Rod Worth Comparison with Reference Core – Single Quarter Assembly Rodded 

Case 
Worth (pcm) – 

No Boron 

Worth (pcm) – 

CBC 

Reference 25367 18273 

19x19 Silicide Assembly with 24 

Control Rods 
26948 21540 

19x19 Silicide Assembly with 28 

Control Rods 
30292 24395 

19x19 Silicide Assembly with 32 

Control Rods 
33409 27092 

 

 

Figure 5-3. B4C Rod Worth Comparison with Reference Core – Single Quarter Assembly Rodded 

Table 5-6. B4C Rod Worth Comparison with Reference Core – 2 of 4 Quarter Assemblies Rodded 

Case 
Worth (pcm) – 

No Boron 

Worth (pcm) – 

CBC 

Reference 12293 8893 

19x19 Silicide Assembly with 

24 Control Rods 
12957 10387 

19x19 Silicide Assembly with 

28 Control Rods 
14398 11647 

19x19 Silicide Assembly with 

32 Control Rods 
15737 12832 
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Figure 5-4. B4C Rod Worth Comparison with Reference Core – 2 of 4 Quarter Assemblies Rodded 

Table 5-7. Hf Rod Worth Comparison with Reference Core – Single Quarter Assembly Rodded 

Case 
Worth (pcm) – 

No Boron 

Worth (pcm) – 

CBC 

Reference 25367 18273 

19x19 Silicide Assembly with 

24 Control Rods 
19033 13998 

19x19 Silicide Assembly with 

28 Control Rods 
21663 16061 

19x19 Silicide Assembly with 

32 Control Rods 
24149 18036 

 

 

 

Figure 5-5. Hf Rod Worth Comparison with Reference Core – Single Quarter Assembly Rodded 
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Table 5-8. Hf Rod Worth Comparison with Reference Core – 2 of 4 Quarter Assemblies Rodded 

Case 
Worth (pcm) – 

No Boron 

Worth (pcm) – 

CBC 

Reference 12293 8893 

19x19 Silicide Assembly 

with 24 Control Rods 
9193 6784 

19x19 Silicide Assembly 

with 28 Control Rods 
10365 7723 

19x19 Silicide Assembly 

with 32 Control Rods 
11464 8615 

 

 

Figure 5-6. Hf Rod Worth Comparison with Reference Core – 2 of 4 Quarter Assemblies Rodded 

From examination of the above comparisons, it is apparent that the control rod worth of 

the reference assembly can only be exceeded by employing B4C control rods; indeed, even the 

minimum of 24 B4C rods will exceed the reactivity worth of the reference case, making this 

material a promising option. While the maximum of 32 AIC or Hf rods cannot match the 

reactivity worth of the reference case, these cases do come relatively close to achieving the 

reference reactivity worth. As there is an appreciable basis of PWR operating experience with 

AIC control rods, it may be acceptable to sacrifice some margin in control rod worth to employ 

32 AIC control rods. 

Because of this possibility, it is worthwhile to explore the impact of choosing a larger 

number of control rods on the assembly cycle length. Replacing fuel pins with extra control rod 
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guide tubes removes reactivity from the core, but this loss in cycle length may be offset 

somewhat by the additional neutron moderation allowed for by the extra water-filled guide tubes. 

To evaluate this effect, SCALE inputs were built for a 19x19 silicide assembly with 24, 28, and 

32 control rods in single quarter assembly geometry with all rods withdrawn for a depletion 

calculation. The depletion is carried out to a burnup of 60 GWd/MT. The results are presented as 

the neutron multiplication eigenvalue plotted against burnup for each case in Figure 5-7 below. 

Additionally, Figure 5-8 plots the difference in the neutron multiplication eigenvalue in pcm for 

the 28- and 32-rod cases relative to the 24-rod case as a function of the assembly burnup.  

 

Figure 5-7. Depletion of 19x19 Silicide Assembly with 24, 28, and 32 Control Rods 
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Figure 5-8. Difference in Neutron Multiplication Relative to 24 Control Rod Case 

The trend in Figure 5-8 is best explained by considering the neutron energy spectrum in 

each fuel assembly case. The cases with 28 and 32 control rods have a larger amount of 

moderator and therefore a softer spectrum than the 24-rod case. Thus the reactivity of the 28- and 

32-rod assemblies is initially higher than that of the 24-rod assembly; however, the 24-rod 

assembly experiences a greater rate of plutonium breeding due to its harder spectrum. For this 

reason, the reactivity of the 24-rod case will exceed that of the 28- and 32-rod cases towards the 

end of the cycle. 

Cycle length assessment is done in a manner similar to that of the BA design evaluations. 

The core discharge burnup is again selected as that for which the neutron multiplication 

eigenvalue is equal to 1.03. The discharge burnup for each case is determined from linear 

interpolation, and the core initial heavy metal loading is obtained from the SCALE output. This 

information is then used to determine the cycle length of each case, given in Table 5-9. 
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Table 5-9. Cycle Length of 19x19 Silicide Assembly with 24, 28, and 32 Control Rods 

 24 Rods 28 Rods 32 Rods 

Initial heavy 

metal loading 

(kg) 

81177 80210 79245 

Discharge 

burnup 

(GWd/MT) 

30.326 30.611 30.802 

Cycle length 

(days) 
818.96 816.81 812.02 

 

Approximately one week is lost from the cycle length by increasing the number of 

control rods per assembly from 24 to 32. Thus only a minimal penalty in cycle length would be 

incurred if it is found desirable to recover control rod reactivity worth by increasing the number 

of control rods per assembly. 

Although the rigor of the fuel assembly models used for the preceding analysis is 

admittedly limited, the exercise highlights some key reactor physics details of the I2S-LWR core. 

It is challenging for the control rods of the 19x19 silicide assembly to achieve the reactivity 

worth of the 17x17 oxide assembly due to under-moderation to the 19x19 assembly. The 19x19 

assembly design was constructed by reducing the fuel rod dimensions relative to a traditional 

17x17 assembly to allow for packing of a larger number of fuel rods into limited space. Thus the 

fuel-to-moderator ratio is noticeably increased, yielding a harder neutron energy spectrum and 

therefore reduced control rod effectiveness. However, the control rod reactivity worth calculated 

in the preceding manner cannot be considered the decisive factor in determining the appropriate 

control rod design for the I2S-LWR. Full-core three-dimensional analyses are necessary to 

sufficiently capture the control rod absorption physics and appropriately evaluate shutdown 

margin; such analyses are left to separate endeavors. 

5.1.3. Comparison with Industry Data 

Control rod worth data for the I2S-LWR core has also been calculated by Westinghouse 

in (21). It is worthwhile to compare these results to those presented in this work so as to consider 
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the validity of the methodology employed in this study. Figure 5-9 below is reproduced from 

(21); it gives the reactivity worth in pcm of each control rod bank in the I2S-LWR core. A 

consistent comparison of these results may be made on the basis of reactivity worth per fraction 

of assemblies rodded. This figure essentially provides a rough estimate of the reactivity worth 

with all assemblies rodded based on the results of a case in which only some assemblies are 

rodded; that is, it “converts” a partially rodded case to a fully rodded case for consistent 

comparison. Reactivity worth is estimated from Figure 5-9 for comparison with the 24 AIC 

results of this study; this information is used to calculate the reactivity worth per fraction of 

assemblies rodded for each case in Table 5-10. As reactivity worth was calculated for an 

equilibrium cycle in (21), the AIC worth data at CBC shall be used in an attempt to match 

spectra across cases. 

 

Figure 5-9. I2S-LWR Control Rod Bank Reactivity Worth (21) 
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Table 5-10. Reactivity Worth per Fraction of Assemblies Rodded 

Case 

Reactivity 

Worth Estimate 

(pcm) 

Fraction of 

Assemblies 

Rodded 

Worth per 

Fraction of 

Assemblies 

Rodded (pcm) 

Bank A 1150 8/121 17394 

Bank B 700 4/121 21175 

Bank C 790 5/121 19118 

Bank D 790 4/121 23898 

Bank SA 1450 8/121 21931 

Bank SB 450 4/121 13613 

Bank SC 650 4/121 19663 

Bank SD 1450 8/121 21931 

Single Quarter 24 AIC 13880 1 13880 

Four Quarter 24 AIC 6735 1/2 13470 

 

The normalized worth of the cases calculated in this study appears to indicate that the 2D 

infinite fuel assembly models yield an underestimate of reactivity worth. The discrepancy likely 

arises due to RCCA self-shielding in the 2D models, wherein a significantly larger fraction of the 

assemblies are rodded than in the Westinghouse cases, which model the true RCCA placement in 

the core. Even with these discrepancies in estimated control rod worth, the results produced in 

this study are at least of a magnitude comparable to those of the equilibrium cycle analysis, 

thereby justifying some confidence in the methodology employed here. The differences are 

likely due primarily to the modeling simplifications. 

5.2. Burnable Absorbers 

First, some remarks on the distinguishing characteristics of Gd-poisoned assemblies and 

IFBA-poisoned assemblies are in order. Naturally, greater poison loading yields a greater 

reactivity hold-down; cases with 8 Gd pins of 4 w/o provided the lowest magnitude of reactivity 

offset with a case average BA worth of -3818 pcm, while the 160 IFBA pin cases provided the 

greatest with a case average BA worth of -14572 pcm. Cases with 80 IFBA pins provided a 

similar reactivity offset to cases with 16 Gd pins of 4 w/o, with case average BA worth of 7806 

and 7747 pcm respectively; however, other metrics differ significantly. Power peaking was 
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addressed far more easily with IFBA than with Gd, due to the very large absorption cross 

sections of several Gd isotopes yielding significant depressions in flux and power which must be 

compensated for elsewhere in the assembly. The case average maximum and minimum power 

peaking is calculated for all cases and summarized in Table 5-11 below. 

Table 5-11. Case Average Maximum and Minimum Power Peaking 

Case 

Average 

Maximum 

Power Peaking 

Average 

Minimum 

Power Peaking 

8 Gd 4 w/o 1.0807 0.3558 

8 Gd 8 w/o 1.0850 0.2416 

16 Gd 4 w/o 1.0982 0.3281 

16 Gd 8 w/o 1.1065 0.2242 

80 IFBA 1.0641 0.9176 

160 IFBA 1.0569 0.9379 

 

As was anticipated, cycle length is more desirable in IFBA cases than in Gd cases as 

well. The neutron poison inventory analysis confirms the presence of residual Gd in Gd cases in 

quantities greater than would be built up by fission events only; the 155Gd concentration in Gd 

cases is on the order of 10-8 at/b-cm when the discharge burnup is reached as opposed to 10-9 

at/b-cm in IFBA cases. The Gd cases with the lowest poison loading (8 Gd pins of 4 w/o) had a 

cycle length estimate 10 days less than that of the uncontrolled case. The IFBA cases actually 

achieve a cycle length greater than that of the uncontrolled assembly due to greater 239Pu 

breeding resulting from a harder neutron energy spectrum. This gain in 239Pu inventory can be 

observed in the OPUS module output as well, as 239Pu is a default tracked nuclide. This 

information is extracted for the uncontrolled case and the first round of each of the IFBA cases 

and used to generate Figure 5-10 below, which plots the ratio of the 239Pu concentration in the 

IFBA cases to that of the uncontrolled case at each depletion step. It is a relatively small gain 

sufficient to extend the cycle length estimate by two days. 
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Figure 5-10. Ratio of 80 IFBA Case Pu to Uncontrolled Case Pu 

While the estimated MTC was found to be positive for all cases, these values are not 

necessarily indicative of the true core MTC. The MTC is naturally greatest for cases with the 

lowest magnitude of the BA reactivity worth; these require a greater CBC to achieve criticality 

and therefore exhibit the greatest reduction in parasitic neutron absorption when an increase in 

moderator temperature yields a decrease in density and effective boron concentration. It is 

noteworthy that although the reactivity hold-down and CBC of the cases with 16 Gd pins of 4 

w/o and cases with 80 IFBA pins are similar, the IFBA cases yield a slightly less positive MTC: 

33.27 pcm/K case average center MTC for Gd versus 31.23 pcm/K case average center MTC for 

IFBA. This arises from the fact that all absorbers in the IFBA cases are the same species. The 10B 

in IFBA absorbs neutrons at the same energies that the 10B in the moderator absorbs, thereby 

altering the neutron energy spectrum in the moderator in such a way as to reduce the population 

of neutrons with energies that are conducive to absorption. The soluble boron is therefore not as 

effective in the IFBA cases as it is in the Gd cases, and thus a decrease in the effective boron 

concentration due to an increase in moderator temperature does not impact parasitic absorption 

in IFBA cases as heavily as it does in Gd cases. This observation is corroborated by the boron 
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worth results as well, which are slightly lower in magnitude on average in the IFBA cases than in 

the Gd cases. All of the cases observed exhibited boron worth smaller in magnitude than that of 

the uncontrolled case, which is indicative of improvements to MTC as a result of competing 

absorbers. 

Within cases, the BA arrangement changes between iterations do not yield appreciable 

changes in cycle length, boron worth, or MTC; these metrics are driven primarily by the type and 

concentration of poison rather than the detailed BA layout. Consideration of these metrics points 

to IFBA as the most promising absorber candidate, as the increase in cycle length is not achieved 

with Gd as a poison with equivalent reactivity worth. The spectral impact of IFBA is friendly to 

MTC as well. The BA layout itself has the largest impact on power peaking, with a secondary 

impact on the BA worth (which is also driven primarily by the poison type and concentration, 

but finer tuning can be accomplished by adjusting the layout). With respect to power peaking, 

IFBA is once again found to be superior to Gd, whose large absorption cross section yields 

regions of highly localized parasitic absorption in the fuel assembly. 

In an attempt to characterize the impact of the BA layout on the BA worth, the BA worth 

for each iteration of each case is plotted against the average poison pin position reported in 

Section 4.2.1 in Figures 5-11 through 5-16 below. The same is done for the maximum power 

peaking in Figures 5-17 through 5-22. It was hoped that some trends might be visually identified 

through this exercise, but this is not the case. The only case that could reasonably be argued to 

exhibit a trend is the 160 IFBA case, which seems to indicate an increase in the magnitude of the 

BA worth as the average poison pin position moves farther from the center of the assembly. It is 

therefore concluded that the average poison pin position is not a reliable predictor of the 
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assembly reactivity or power peaking, but some other position-based variables may be tested in 

future endeavors. 

 

Figure 5-11. Impact of Average Poison Pin Position on BA worth: 8 Gd Pins, 4 w/o 

 

Figure 5-12. Impact of Average Poison Pin Position on BA Worth: 8 Gd Pins, 8 w/o 
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Figure 5-13. Impact of Average Poison Pin Position on BA Worth: 16 Gd Pins, 4 w/o 

 

Figure 5-14. Impact of Average Poison Pin Position on BA Worth: 16 Gd Pins, 8 w/o 

 

Figure 5-15. Impact of Average Poison Pin Position on BA Worth: 80 IFBA Pins, 2.5 mg/in 
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Figure 5-16. Impact of Average Poison Pin Position on BA Worth: 160 IFBA Pins, 2.5 mg/in 

 

Figure 5-17. Impact of Average Poison Pin Position on Power Peaking: 8 Gd Pins, 4 w/o 

 

Figure 5-18. Impact of Average Poison Pin Position on Power Peaking: 8 Gd Pins, 8 w/o 
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Figure 5-19. Impact of Average Poison Pin Position on Power Peaking: 16 Gd Pins, 4 w/o 

 

Figure 5-20. Impact of Average Poison Pin Position on Power Peaking: 16 Gd Pins, 8 w/o 

 

Figure 5-21. Impact of Average Poison Pin Position on Power Peaking: 80 IFBA Pins, 2.5 mg/in 
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Figure 5-22. Impact of Average Poison Pin Position on Power Peaking: 160 IFBA Pins, 2.5 mg/in 
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6. CONCLUSION 

The analyses presented in this work have provided insight into the reactor physics 

phenomena of the I2S-LWR U3Si2 fuel assembly and their implications with respect to reactivity 

control. Simple two-dimensional transport models of the fuel assembly are investigated with the 

SCALE code system to predict the neutronic behavior associated with the various reactivity 

control schemes explored. Although these models are limited in rigor, key relationships between 

the fuel assembly design parameters and the neutronic performance indicators have been 

identified so as to provide a basis upon which more detailed studies may be constructed. Some 

engineering judgment has been developed as well that may provide some initial guidelines in 

making high-level design decisions. 

6.1. RCCA Design Recommendations 

Previous analyses indicate confidence that an RCCA design with 24 AIC control rods per 

assembly provides sufficient reactivity control for the I2S-LWR U3Si2 core in terms of the 

essential control rod performance metrics such as shutdown margin (8). However, the 

exploration of other RCCA design options reveals some important reactor physics traits of the 

unique I2S-LWR fuel assembly design. The static reactivity worth of the 24-rod AIC RCCA in 

the 19x19 silicide assembly is less than that in a traditional 17x17 oxide assembly due to the 

increase in the fuel-to-moderator ratio realized when switching from a 17x17 lattice to the 19x19 

design. The RCCA worth may be improved by employing more rods per assembly or by using a 

stronger absorber, but such a design change necessitates additional studies to investigate other 

reactor physics characteristics including impact on cycle length, control rod absorber depletion, 

and shim. Furthermore, these analyses must be carried out using full-core models to 

appropriately capture all the relevant physics. 
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Considering the other RCCA designs explored, those with B4C as the absorbing material 

proved most effective in improving RCCA reactivity worth due to the neutron absorption 

properties of 10B. Even using just 24 B4C rods per assembly provides a significant gain in 

reactivity worth over the AIC design that could not be realized by increasing the number of AIC 

or Hf rods. However, the reactivity worth alone is not a sufficient acceptance criterion in 

selecting the RCCA design; as such, separate studies have provided justification for retaining the 

24-rod AIC RCCA for use in the I2S-LWR silicide core (8). This is a desirable course of action 

due to the significant basis of industrial operating experience with AIC control rods in PWRs. 

6.2. BA Design Recommendations 

Several different performance metrics have been reported for the BA cases; while 

generally full-core analyses are necessary for accurate predictions of these metrics, the 

estimations made in this study provide high-level insight into how BA design impacts the I2S-

LWR core physics. Additionally, these estimations confirm confidence in using IFBA, as has 

been decided based on prior work (8). When employed in sufficient quantities, Gd is a highly 

effective neutron absorber which can provide a great deal of negative reactivity worth. However, 

the preceding analyses have highlighted several issues associated with use of Gd as a BA. 

Incomplete Gd depletion yields a reactivity penalty late in the depletion cycle which reduces the 

cycle length. Power peaking in the assembly is a challenge with Gd as well; due to its large 

absorption cross section, significant local flux depressions are observed in Gd-poisoned lattice 

locations, which yield significant peaking and non-uniform assembly burnup. Thus Gd-poisoned 

assemblies are useful in core designs which need particular suppression of flux and power, but 

there are considerable penalties to the fuel economics with respect to the cycle length and 

uniformity of burnup on a rod-to-rod basis. 
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The IFBA-poisoned assembly presents several advantages over the use of Gd. Fuel 

economics are improved by an increase in the cycle length relative to an uncontrolled assembly, 

as well as a more uniform assembly burnup afforded by improved power peaking. Core safety is 

benefited, as the use of the 10B-based absorber as an integral absorber has a desirable impact on 

MTC estimates. IFBA must be employed heavily to achieve reactivity control on par with Gd, 

but the reactor physics benefits are considerable. 

6.3. Future Work 

While the fuel assembly calculations performed in this work provide valuable insight into 

the neutronics of the I2S-LWR silicide fuel assembly, full-core analyses are necessary to 

determine if the reactivity control schemes explored are acceptable. In addition to investigating 

axial and radial phenomena not captured by the 2D infinite models used here, such analyses are 

necessary for accurate calculation of safety parameters such as MTC and shutdown margin. A 

particular set of additional studies that can be performed using the 2D infinite models might 

involve an attempt to parameterize the performance indicators of the BA designs. The attempt 

was made in this study to use the average poison rod location as the independent variable for 

such parameterization, but no meaningful relationships were observed. Other candidates for 

independent variables might be tested to determine if any correlations can be identified and 

captured. Such information may be useful even later for the development of an optimization 

algorithm based on those discussed in Chapter 2. These algorithms are relevant to the goals of 

this work, but their application was not considered here. The scope of this study was identified so 

that the analysis considers fuel assembly neutronics phenomena at a high level, and gives a 

foundation which can feed into more detailed core analyses and design decisions. 
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APPENDIX A. MATERIAL DATA 

The input required for the models developed in this study demands careful attention to 

definition of material compositions. The applied material data are summarized here on a case-by-

case basis. In cases where elemental isotopics are not given, the SCALE default is used.  

Material Data for RCCA Cases 

Material Purpose Density (g/cm3) 
Density 

Multiplier 

Temperature 

(K) 
Isotopics (w/o) 

U3Si2 Fuel 12.2 0.955 891.5 

Si: 

SCALE default 

U: 

0.54% 234U 

4.95% 235U 

95.04% 238U 

He Gap 1 1 700.05 SCALE default 

AMPT Clad 7.25 1 612.45 

3% Mo 

21% Cr 

5% Al 

71% Fe 

Water Moderator 0.7 1 582.75 SCALE default 

Boron Chemical shim 0.7 

(depends on 

desired 

concentration) 

582.75 SCALE default 

AIC Control rod 10.2 1 582.75 

80% Ag 

15% In 

5% Cd 

B4C Control rod 2.52 1 582.75 SCALE default 

Hf Control rod 13.31 1 582.75 SCALE default 

SS304 Guide tube 7.94 1 582.75 SCALE default 
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Material Data for 4 w/o Gd BA Cases 

Material Purpose Density (g/cm3) 
Density 

Multiplier 

Temperature 

(K) 
Isotopics (w/o) 

U3Si2 Fuel 12.2 0.96 900 

Si: 

SCALE default 

U: 

0.54% 234U 

4.95% 235U 

95.04% 238U 

He Gap 0.00194 1 700 SCALE default 

AMPT Clad 7.25 1 612 

3% Mo 

21% Cr 

5% Al 

71% Fe 

Water Moderator 0.7 1 582 SCALE default 

Boron Chemical shim 0.7 

(depends on 

desired 

concentration) 

582 SCALE default 

Gd2O3 Poison 11.515 0.04 900 SCALE default 

U3Si2 Poisoned fuel 11.515 0.96 900 

Si: 

SCALE default 

U: 

0.04% 234U 

3.95% 235U 

96.01% 238U 

 

Material Data for 8 w/o Gd BA Cases 

Material Purpose Density (g/cm3) 
Density 

Multiplier 

Temperature 

(K) 
Isotopics (w/o) 

U3Si2 Fuel 12.2 0.96 900 

Si: 

SCALE default 

U: 

0.54% 234U 

4.95% 235U 

95.04% 238U 

He Gap 0.00194 1 700 SCALE default 

AMPT Clad 7.25 1 612 

3% Mo 

21% Cr 

5% Al 

71% Fe 

Water Moderator 0.7 1 582 SCALE default 

Boron Chemical shim 0.7 

(depends on 

desired 

concentration) 

582 SCALE default 

Gd2O3 Poison 11.318 0.08 900 SCALE default 

U3Si2 Poisoned fuel 11.318 0.92 900 

Si: 

SCALE default 

U: 

0.04% 234U 

2.95% 235U 

97.01% 238U 
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Material Data for IFBA Cases 

Material Purpose Density (g/cm3) 
Density 

Multiplier 

Temperature 

(K) 
Isotopics (w/o) 

U3Si2 Fuel 12.2 0.96 900 

Si: 

SCALE default 

U: 

0.54% 234U 

4.95% 235U 

95.04% 238U 

He Gap 0.00194 1 700 SCALE default 

AMPT Clad 7.25 1 612 

3% Mo 

21% Cr 

5% Al 

71% Fe 

Water Moderator 0.7 1 582 SCALE default 

Boron Chemical shim 0.7 

(depends on 

desired 

concentration) 

582 SCALE default 

10B Poison 0.21573 1 800 100% 10B 

U3Si2 Poisoned fuel 12.2 0.96 900 

Si: 

SCALE default 

U: 

0.04% 234U 

4.95% 235U 

95.01% 238U 
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APPENDIX B. BA ARRANGEMENTS 

Presented here are depictions of the fuel assembly models to show explicitly the BA 

placement for every case. Shaded cells indicate poison positions, and an “X” indicates a guid 

tube position. 
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Iteration 1: 16 Gd Pins 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O O O O 

O O O O O O X O O O 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O X O O 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O X O O 

 

 

 

 

 

 

 



125 
 

Iteration 1: 80 IFBA Pins 
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Iteration 2: 8 Gd Pins 
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Iteration 2: 16 Gd Pins 
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Iteration 3: 8 Gd Pins 
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Iteration 3: 16 Gd Pins 
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Iteration 3: 160 IFBA Pins 
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Iteration 4: 8 Gd Pins 
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Iteration 4: 80 IFBA Pins 
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Iteration 5: 8 Gd Pins 
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Iteration 5: 16 Gd Pins 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O O O O 

O O O O O O X O O O 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O X O O 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O X O O 

 

Iteration 5: 80 IFBA Pins 
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Iteration 6: 8 Gd Pins 
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Iteration 6: 16 Gd Pins 
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Iteration 6: 160 IFBA Pins 
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Iteration 7: 8 Gd Pins 
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Iteration 7: 80 IFBA Pins 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O O O O 

O O O O O O X O O O 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O X O O 

O O O O O O O O O O 

O O O O O O O O O O 

X O O X O O O X O O 
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Iteration 8: 8 Gd Pins 
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Iteration 8: 16 Gd Pins 
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Iteration 8: 160 IFBA Pins 
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APPENDIX C. COMPLETE POWER PEAKING DATA 

The BOC power peaking profiles for all iterations of all cases are given here. 

Iteration 1: 8 Gd Pins, 4 w/o 

 

Iteration 1: 8 Gd Pins, 8 w/o 
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Iteration 1: 16 Gd Pins, 4 w/o 

 

Iteration 1: 16 Gd Pins, 8 w/o 
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Iteration 1: 80 IFBA Pins 

 

Iteration 1: 160 IFBA Pins 
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Iteration 2: 8 Gd Pins, 4 w/o 

 

Iteration 2: 8 Gd Pins, 8 w/o 
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Iteration 2: 16 Gd Pins, 4 w/o 

 

Iteration 2: 16 Gd Pins, 8 w/o 
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Iteration 2: 80 IFBA Pins 

 

Iteration 2: 160 IFBA Pins 
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Iteration 3: 8 Gd Pins, 4 w/o 

 

Iteration 3: 8 Gd Pins, 8 w/o 
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Iteration 3: 16 Gd Pins, 4 w/o 

 

Iteration 3: 16 Gd Pins, 8 w/o 
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Iteration 3: 80 IFBA Pins 

 

Iteration 3: 160 IFBA Pins 
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Iteration 4: 8 Gd Pins, 4 w/o 

 

Iteration 4: 8 Gd Pins, 8 w/o 
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Iteration 4: 16 Gd Pins, 4 w/o 

 

Iteration 4: 16 Gd Pins, 8 w/o 
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Iteration 4: 80 IFBA Pins 

 

Iteration 4: 160 IFBA Pins 
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Iteration 5: 8 Gd Pins, 4 w/o 

 

Iteration 5: 8 Gd Pins, 8 w/o 
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Iteration 5: 16 Gd Pins, 4 2/o 
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Iteration 5: 80 IFBA Pins 

 

Iteration 5: 160 IFBA Pins 

 

 

 

 

 

 

 

 



150 
 

Iteration 6: 8 Gd Pins, 4 w/o 

 

Iteration 6: 8 Gd Pins, 8 w/o 
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Iteration 6: 16 Gd Pins, 4 w/o 

 

Iteration 6: 16 Gd Pins, 8 w/o 
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Iteration 6: 80 IFBA Pins 

 

Iteration 6: 160 IFBA Pins 
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Iteration 7: 8 Gd Pins, 4 w/o 
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Iteration 7: 16 Gd Pins, 4 w/o 
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Iteration 7: 80 IFBA Pins 

 

Iteration 7: 160 IFBA Pins 
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Iteration 8: 8 Gd Pins, 4 w/o 

 

Iteration 8: 8 Gd Pins, 8 w/o 
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Iteration 8: 16 Gd Pins, 4 w/o 
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Iteration 8: 80 IFBA Pins 

 

Iteration 8: 160 IFBA Pins 
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APPENDIX D. ROD INTERNAL PRESSURE 

Introduction 

Use of IFBA raises concerns regarding the fuel rod internal gas pressure, as helium builds 

up in the fuel rod free volume due to (n,α) reactions of thermal neutrons with 10B. Excessive rod 

internal pressure (RIP) would present several reactor safety concerns, including coolant flow 

restriction due to hypothetical ballooning of the clad and radionuclide release due to clad rupture. 

These concerns necessitate an investigation involving estimation of the internal fuel rod pressure 

of the I2S-LWR and evaluation against performance and safety requirements. 

Throughout the course of this study, the I2S-LWR has undergone design changes. For the 

sake of comparison, the following analyses shall be applied to both the original and the latest 

updated designs. The original fuel rod design utilized annular fuel pellets. The design has since 

been updated to employ solid fuel pellets with an increased plenum length and reduced fuel-clad 

gap size, thereby improving the fuel cycle length while maintaining sufficient volume for gases 

contributing to RIP. 

Methodology 

This calculation of RIP shall account for three pressure contributions: the BOC helium 

fill gas pressure (pre-pressurization), additional helium generation from IFBA consumption, and 

fission gas release (FGR). A wide range of values of initial fill gas pressure can be found in the 

literature, but most are within the range of approximately 300-400 psi at cold temperatures (293 

K). As the initial fill gas pressure for the I2S-LWR has not yet been decided, calculations will be 

performed for initial fill gas pressures of 330, 360, and 380 psi; each of these pressure values 

was rounded from initial pressure data found in (3) and (5). Fuel rods containing IFBA will 
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likely be filled to a lower pressure, so an additional case with an initial pressure of 100 psi will 

also be analyzed. 

The pressure contributions of the helium (from the fill gas and from IFBA consumption) 

and fission gases are calculated under the assumption that all species behave as ideal gases. 

Specifically, it is assumed that the ideal gas law holds at all times in the fuel rod free volume: 

 𝑝𝑉 = 𝑛𝑅𝑇 (1) 

where p is the gas pressure, V is the fuel rod free volume, n is the total number of moles of all 

gas species (initial He, He from IFBA, and fission gas), R is the universal gas constant, and T is 

an average gas temperature. Determination of these variables is discussed under Methodology. 

With all gas species assumed to exhibit ideal behavior, the RIP may be estimated as: 

 𝑝2 =
𝑝1𝑉1𝑛2𝑇2

𝑛1𝑇1𝑉2
 (2) 

where the subscript 1 refers to variables under cold conditions and the subscript 2 refers to 

variables under operating conditions at the maximum rod burnup, at which point it is assumed 

that all IFBA has been depleted and the maximum amount of fission gas has been released. 

Helium release from IFBA consumption is determined by assuming that all 10B initially 

present is completely consumed from (n,α) reactions, so that the number of moles of helium 

released is equal to the initial number of moles of 10B. 10B concentrations in IFBA are typically 

given in terms of mass per unit axial length, so that the moles of 10B (and therefore the total 

moles of He released) may be determined as: 

 𝑛 =
𝑥𝐿

𝑀
 (3) 

where n is the moles of gas released per fuel pin, x is the linear mass concentration of 10B in 

IFBA (kg/m), L is the length of the fuel rod along which IFBA is applied (m), and M is the 

atomic mass of 10B (kg/mol). 
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Estimation of FGR is a more complicated matter; as the uranium silicide fuel expected to 

be used in the I2S-LWR has yet to be employed in commercial reactors, no data is available 

regarding its FGR. However, experimental data and simple correlations are available for FGR of 

uranium oxide fuel. Todreas and Kazimi (8) suggest one such correlation: 

 𝑓 = 0.05 𝑇 < 1400𝑜𝐶 

(4) 

 𝑓 = 0.10 1400𝑜𝐶 < 𝑇 < 1500𝑜𝐶 

 𝑓 = 0.20 1500𝑜𝐶 < 𝑇 < 1600𝑜𝐶 

 𝑓 = 0.40 1600𝑜𝐶 < 𝑇 < 1700𝑜𝐶 

 𝑓 = 0.60 1700𝑜𝐶 < 𝑇 < 1800𝑜𝐶 

 𝑓 = 0.80 1800𝑜𝐶 < 𝑇 < 2000𝑜𝐶 

 𝑓 = 0.98 𝑇 > 2000𝑜𝐶 

where f is the fractional FGR (atoms of fission gas released per atom of fission gas produced) 

and T is the average fuel operating temperature. For this study, since the FGR of uranium silicide 

is unknown, calculations are carried out with assumed FGR values of 0, 15, and 30 percent. 

Depending on the application of this analysis, different (and potentially more stringent) 

assumptions regarding FGR may be necessary; however, it is hoped that this range will be 

sufficiently bounding for the time being. 

Fission gas production can be determined from yields of xenon and krypton isotopes 

from thermal fission of 235U available in various databases. The values used in this study are 

taken from the Berkeley National Laboratory database (2) and are listed in Table 1 below. The 

yields of short-lived (t1/2 < 30 minutes) krypton and xenon isotopes are neglected under the 

assumption that they decay before escaping from the fuel pellet. These Kr and Xe isotopes 

(included those neglected in this calculation) decay into Rb (Kr β- decay) and Cs (Xe β- decay) 
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species; thus the decay products do not contribute to RIP. In calculating fission gas production, 

the fuel is assumed to be fabricated with 96 percent of its theoretical density. 

Table 1. Fission Yields for Long-Lived Xe and Kr Isotopes 

Isotope 
Thermal Fission Yield from 235U 

(%) 
83mKr 0.536 
85mKr 1.29 
85Kr 0.283 
87Kr 2.56 
88Kr 3.55 

131mXe 0.0405 
132Xe 4.31 

133mXe 0.189 
133Xe 6.70 
135Xe 6.54 

 

The RIP calculation shall be carried out for a single fuel rod with IFBA concentrations of 

1.57 and 2.5 mg/in of 10B, assumed to be applied along the entire active fuel rod length. These 

concentrations are assumed to cover the range of interest for the I2S-LWR. In Westinghouse 

PWRs, as well as in the I2S-LWR core configurations considered thus far, the IFBA coating is 

generally not applied along the entire fuel rod length; a few inches of fuel are left uncoated at the 

top and bottom. Thus, the assumption is conservative, but not prohibitively so. As an aside, it is 

worth noting that if the same amount of boron present in the assumed cases of IFBA applied 

along the entire active length is only applied along the usual 120 in, the linear concentrations of 

the low and high IFBA concentrations would be 1.88 and 3.00 mg 10B/in respectively. 

Fuel rod geometric dimensions and other relevant thermal data and operating conditions 

are available from the plant parameters list. The fuel rod of interest is taken as that of the 

maximum burnup of 64 GWd/MTU (also taken from the plant parameters list). This burnup 

value yields a conservative estimate for fission gas production, as more recent analyses indicate a 

discharge burnup of 50 GWd/MTU (P. Ferroni, personal communication, May 4, 2014), which 

implies less fission gas production than that used in the following calculations. These values are 
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axial averages of the fuel rod burnup, which are assumed to be suitable for calculating fission gas 

production. Additional verification of the validity and potential loss of conservatism of this 

assumption is necessary, as it implies linear dependence of FGR on burnup. 

Assumptions 

Several assumptions are made to simplify calculations and impose conservatism. As 

previously mentioned, the gas mixture in the fuel rod is assumed to obey the ideal gas law. 

Additionally, assuming that IFBA is applied along the entire active length of the fuel rod yields a 

conservative value for He release. In both design cases (annular and solid fuel pellet), the pellet-

clad gap is assumed to be completely closed due to fuel swelling by the end of the cycle. Free 

volume within the fuel rod at the end of the cycle is therefore assumed to be comprised of the 

fuel pellet inner void and the plenum in the annular fuel pellet case (under the assumption that 

the fuel does not swell radially inward), and the plenum only in the solid fuel pellet case. No 

credit is taken for the potentially available volume of the pellet dish and chamfer. The 

temperature of the gas within the fuel rod is taken as the axial average of the inner fuel pellet 

surface temperature in the annular pellet case. This is the hottest radial location in the fuel rod, 

thereby yielding a conservative estimate of pressure. However, due to the high thermal 

conductivity of U3Si2 fuel, the temperature profile across the radius of the fuel pellet is relatively 

flat (much more so than for UO2 fuel), with a temperature change on the order of 100-200 oC 

from the pellet edge; therefore this assumed gas temperature is not excessively conservative. 

This temperature is applied to the solid pellet case as well. The operating conditions and fuel rod 

geometry pertinent to the study are specified in Table 2 below. These conditions are then used to 

determine the fuel rod free volumes given in Table 3. 
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Table 2. Relevant I2S-LWR Geometry and Operating Conditions 

 Annular Fuel Pellet Design Solid Fuel Pellet Design 

Active Height 365.76 cm 365.76 cm 

Plenum Length 19.5 cm 45.7 cm 

Fuel Pellet Inner Diameter 0.254 cm 0 cm 

Fuel Pellet Outer Diameter 0.803 cm 0.810 cm 

Clad Inner Diameter 0.833 cm 0.833 cm 

Clad Outer Diameter 0.914 cm 0.914 cm 

Coolant Pressure 15.5 MPa 15.5 MPa 

Fuel Pellet Average Inner Surface Temperature 728.2 oC 728.2 oC 

 

Table 3. Fuel Rod Free Volumes 

 Annular Fuel Pellet Design Solid Fuel Pellet Design 

Fuel Pellet Inner Free Volume 18.5 cm3 0 cm3 

Fuel-Clad Gap Free Volume 14.1 cm3 10.8 cm3 

Plenum Free Volume 10.6 cm3 24.9 cm3 

Total Assumed Fuel Rod Free Volume (does not 

include pellet-clad gap) 
29.2 cm3 

24.9 cm3 

 

It should be noted that though the fuel-clad gap volume was listed, it is only used when 

calculating the initial fill gas content, as it is assumed that the gap is closed by the end of the 

cycle due to irradiation swelling. Additionally, the volume occupied by the hold-down spring 

within the plenum is assumed to be negligible. This assumption is more than compensated by 

neglecting the dish and chamfer volumes. 

RIP Limit 

RIP has a significant impact on many interacting criteria which must be satisfied by a 

given fuel rod design. In the AP1000 fuel rod design, Westinghouse limits RIP so that the 

cladding yield strength is not exceeded and the gap between the fuel pellet and clad does not 

grow (9). As calculation of fuel pellet swelling rates is beyond the scope of the present work, the 

clad material yield strength shall be used to determine an appropriate upper limit on RIP. 

However, such a simplification neglects other factors leading to various modes of fuel failure 

related to RIP. The results of this scoping study should therefore be considered only to lay the 

groundwork for more detailed analyses later. Specifically, calculations with fuel performance 
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codes such as FRAPCON can account for much more phenomena taking place within the fuel 

rod. 

The specific clad material to be employed in the I2S-LWR has not yet been selected, but 

the candidate materials are ferritic steels of FeCrAl type. Some temperature-dependent yield 

strength measurements for such materials are documented in (1); based on this information and 

I2S-LWR fuel rod temperature data, a clad yield strength of 500 MPa shall be assumed. The RIP 

limit is then determined as that which results in a hoop stress on the clad equal to the assumed 

yield strength. Approximating the clad as a thin-walled cylindrical pressure vessel, the hoop 

stress is calculated as: 

 𝜎𝜃 =
𝑝𝑟

𝑡
 (5) 

where σθ is the hoop stress, p is the internal gauge pressure (equal to the difference between the 

absolute RIP and the coolant pressure), r is the clad inner radius, and t is the clad wall thickness. 

For the following calculations, it is implicitly assumed that the clad wall is perfectly cylindrical 

with no variation in thickness. Using the geometry and assumed yield strength given previously, 

Equation 5 gives an RIP limit of 64.1 MPa, or approximately 9300 psi, under operating 

conditions. This unexpectedly high limit indicates significant gains in safety margins due to use 

of ferritic steel cladding, which improves in yield strength over Zircaloy by nearly 20 percent 

(1). It should also be noted that neutron irradiation tends to increase the clad yield strength. 

It should be noted that if this limit is achieved during the cycle and then the reactor is 

shut down and opened for refueling, the RIP falls to 25.8 MPa under cold atmospheric 

conditions. This pressure yields a clad hoop stress of 914 MPa, which significantly exceeds the 

room-temperature clad yield strength found in (1). Thus, some capability for venting the 

accumulated gas from the plenum volume at reactor shutdown should be provided to avoid clad 

rupture under cold conditions. 
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While the above calculation evaluates the cladding material integrity, it is anticipated that 

the welded areas of the fuel rod are more susceptible to failure and would therefore yield a more 

limiting bound on RIP. It is assumed that the weld can withstand a pressure difference of 3000 

psi (20.7 MPa) between the interior of the fuel rod and the surrounding coolant (B. Petrovic, 

personal communication, May 26, 2015). Using this criterion yields a more conservative RIP 

limit of 36.2 MPa. This limit shall be applied to the following analyses. 

Results 

The previously listed volumes and operating conditions are used to determine the RIP for 

initial fill gas pressures of 100, 330, 360, and 380 psi (0.689, 2.28, 2.48, and 2.62 MPa) for 

fission gas releases of 0, 15, and 30 percent and for IFBA loadings of 1.57 and 2.5 mg 10B/in. He 

release is determined from Equation 3, and RIP is calculated using Equation 2. These results are 

given Tables 4 and 5 below for the annular and solid fuel pellet designs, respectively. 
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Table 4. RIP Results – Annular Fuel Pellets 

Cold Initial 

Fill Gas 

Pressure 

(MPa) 

Initial He 

Content 

(mol) 

IFBA 10B 

Concentration 

(mg/in) 

Additional He 

Content (mol) 
FGR (%) 

Additional 

Fission Gas 

Content (mol) 

Final RIP 

(MPa) 

0.689 0.0122 

1.57 0.0226 

0 0 9.95 

15 0.0155 15.7 

30 0.0310 21.5 

2.5 0.0360 

0 0 13.8 

15 0.0155 19.5 

30 0.0310 25.3 

2.28 0.0404 

1.57 0.0226 

0 0 18.0 

15 0.0155 23.8 

30 0.0310 29.5 

2.5 0.0360 

0 0 21.8 

15 0.0155 27.6 

30 0.0310 33.4 

2.48 0.0441 

1.57 0.0226 

0 0 19.0 

15 0.0155 24.8 

30 0.0310 30.6 

2.5 0.0360 

0 0 22.9 

15 0.0155 28.6 

30 0.0310 34.4 

2.62 0.0465 

1.57 0.0226 

0 0 19.7 

15 0.0155 25.5 

30 0.0310 31.3 

2.5 0.0360 

0 0 23.5 

15 0.0155 29.3 

30 0.0310 35.1 
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Table 5. RIP Results – Solid Fuel Pellets 

Cold Initial 

Fill Gas 

Pressure 

(MPa) 

Initial He 

Content 

(mol) 

IFBA 10B 

Concentration 

(mg/in) 

Additional He 

Content (mol) 
FGR (%) 

Additional 

Fission Gas 

Content (mol) 

Final RIP 

(MPa) 

0.689 0.0101 

1.57 0.0226 

0 0 10.9 

15 0.0175 18.6 

30 0.0351 26.2 

2.5 0.0360 

0 0 15.4 

15 0.0175 23.0 

30 0.0351 30.7 

2.28 0.0334 

1.57 0.0226 

0 0 18.7 

15 0.0175 26.3 

30 0.0351 34.0 

2.5 0.0360 

0 0 23.2 

15 0.0175 30.8 

30 0.0351 38.4 

2.48 0.0364 

1.57 0.0226 

0 0 19.7 

15 0.0175 27.3 

30 0.0351 35.0 

2.5 0.0360 

0 0 24.2 

15 0.0175 31.8 

30 0.0351 39.5 

2.62 0.0384 

1.57 0.0226 

0 0 20.4 

15 0.0175 28.0 

30 0.0351 35.7 

2.5 0.0360 

0 0 24.8 

15 0.0175 32.5 

30 0.0351 40.1 

 

Only under the most extreme conditions considered does the RIP exceed the allowable 

limit set by the weld. It is therefore apparent that the initial pressurization of IFBA-bearing fuel 

rods should be limited. Some additional studies are carried out to explore fuel rod design space 

in light of these results, as there appear to be some safety margins in the current design. The 

assumptions discussed previously are applied to each of these studies. 

Initial Pressure 

The first study performed keeps the plenum length constant at the value given earlier for 

each design, and the maximum initial fill gas pressure necessary for remaining below the RIP 

limit is then solved for over a range of fission gas release values (extending up to 100 percent 

FGR) by manipulating Equation 2. These results for the both the nominal IFBA content and high 
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IFBA content are presented in Figures 1 and 2 below for the annular and solid fuel pellet cases 

respectively. 

 

Figure 1. Maximum Initial Fill Gas Pressure – Annular Fuel Pellets 

 

 

Figure 2. Maximum Initial Fill Gas Pressure – Solid Fuel Pellets 

In the case with annular fuel pellets, the fuel pellet inner void provides a substantial 

volume to accommodate gas buildup, thereby easily containing RIP and allowing some 

flexibility in selecting initial pressurization. This inner fuel pellet volume is removed in the solid 
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fuel pellet design, and the RIP limit is reached at lower values of FGR. Even so, it is apparent 

that the latest I2S-LWR plenum length can accommodate gas buildup under nominal operating 

conditions if the initial pressurization is prudently selected. 

The curves presented in Figures 3-1 and 3-2 above may be used to inform the selection of 

the initial fill gas pressure. In addition to accounting for FGR and He release by IFBA 

consumption, the initial fill gas pressure is typically chosen to delay pellet-clad mechanical 

interaction (PCMI) and clad flattening (9). PCMI occurs due to the combination of fuel swelling 

and radially inward clad creep (if the coolant pressure exceeds RIP). If more accurate values of 

FGR and volumetric swelling of uranium silicide fuel can be determined, the above curves may 

be used to select an initial fill gas pressure which adequately delays PCMI without exceeding the 

RIP limit. 

Initial Pressure 

Next, to assess the magnitude of the impact of the plenum length on RIP, the FGR is 

varied for several initial fill gas pressures to solve for the minimum plenum length required to 

keep the RIP below the assumed limit by manipulating Equation 2. Figures 3 and 4 below give 

the minimum plenum length for the annular fuel pellet case for nominal and high IFBA content, 

respectively, while Figures 5 and 6 present the same for the solid fuel pellet case. It should be 

noted that varying the FGR is equivalent to holding the FGR fixed and varying burnup, as 

burnup directly determines the fission gas production. The results below may therefore be used 

to gain some insight to the impact of the fuel rod burnup on RIP as well, as burnup will generally 

not be uniform across all pins in the I2S-LWR core. The negative plenum lengths would of 

course be replaced by zero, but they are left here to indicate the amount of margin. 
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Figure 3. Minimum Plenum Length vs. FGR for Nominal IFBA – Annular Fuel Pellets 

 

 

Figure 4. Minimum Plenum Length vs. FGR for High IFBA – Annular Fuel Pellets 
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Figure 5. Minimum Plenum Length vs. FGR for Nominal IFBA – Solid Fuel Pellets 

 

 

Figure 6. Minimum Plenum Length vs. FGR for High IFBA – Solid Fuel Pellets 

Again, the volume provided by the inner fuel pellet void in the annular pellet case 

significantly reduces the burden on the plenum for withstanding RIP. RIP is still sufficiently 

contained in the current solid pellet design for nominal operating conditions, but it is challenged 

at larger values of FGR. 
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Plenum Length vs. Initial Pressure 

The initial fill gas pressure is now varied for the selected FGR values of interest, and the 

minimum required plenum length is calculated to yield a direct relationship between the plenum 

length and initial fill gas pressure by manipulating Equation 2 with the final pressure equal to the 

assumed limit. These results are given for the annular pellet case in Figures 7 and 8 below for the 

nominal and high IFBA content, respectively, and for the solid pellet case in Figures 9 and 10. 

 

 

Figure 7. Plenum Length vs. Initial Fill Gas Pressure for Nominal IFBA – Annular Fuel 

Pellet 
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Figure 8. Plenum Length vs. Initial Fill Gas Pressure for High IFBA – Annular Fuel 

Pellet 

 

 

Figure 9. Plenum Length vs. Initial Fill Gas Pressure for Nominal IFBA – Solid Fuel 

Pellet 
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Figure 10. Plenum Length vs. Initial Fill Gas Pressure for High IFBA – Solid Fuel Pellet 

Again, the negative plenum length requirements indicate that the fuel pellet inner void in 

the annular pellet design provides sufficient volume for fission gases and He from IFBA 

consumption without violating the RIP limit over much the range of initial fill gas pressures and 

FGR values considered, even with high IFBA content. The plenum length requirements are more 

stringent in the solid pellet design, but the current plenum length appears to be acceptable over 

the range of FGR values considered as long as the initial pressurization is kept sufficiently low. 

Temperature Sensitivity 

The effect of the gas temperature on RIP is now examined by keeping the plenum length 

constant at the nominal value in each case and determining the maximum allowable initial fill 

gas pressures for the selected FGR values over a range of gas temperatures by manipulating 

Equation 2. The gas temperature used in the studies above was chosen as a conservative average 

value, but realistically, the temperature of the gas inside a fuel rod during the operation of the 

I2S-LWR will vary significantly with position in the fuel rod. These results are given for the 

annular pellet case in Figures 11 and 12 for the nominal and high IFBA content, respectively, 

and again for the solid pellet case in Figures 13 and 14. 
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Figure 11. Maximum Initial Fill Gas Pressure vs. Gas Temperature for Nominal IFBA – 

Annular Fuel Pellet 

 

 

Figure 12. Maximum Initial Fill Gas Pressure vs. Gas Temperature for High IFBA – 

Annular Fuel Pellet 
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Figure 13. Maximum Initial Fill Gas Pressure vs. Gas Temperature for Nominal IFBA – 

Solid Fuel Pellet 

 

 

Figure 14. Maximum Initial Fill Gas Pressure vs. Gas Temperature for High IFBA – 

Solid Fuel Pellet 

 

The above results are promising, as they suggest that the conservative selection of the gas 

temperature used in previous studies yielded a relatively tight constraint on RIP. It is expected 

that the actual average gas temperature during operation of the I2S-LWR will be significantly 
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lower than the inner fuel pellet surface temperature in the annular pellet case, thereby allowing 

greater FGR and IFBA consumption without violating the RIP limit. Moreover, the solid pellet 

cases (with smaller margin) will in reality have most of the gas in the plenum volume at a low 

temperature (similar to coolant). 

Comparison with AP1000 

In order to assess the validity of the preceding analysis, the same methodology is applied 

to a licensed reactor design to determine its RIP characteristics. The design chosen is the 

Westinghouse AP1000, for which many design specifications are readily available. The relevant 

geometry and operating conditions are listed in Table 3-3 below; these values were obtained 

from (9) and (10), except for the gas temperature, which is assumed to be the same as that used 

in the preceding analysis. 

Table 3-3. Relevant AP1000 Geometry and Operating Conditions 

Active Height 426.72 cm 

Plenum Length 30.8 cm 

Fuel Pellet Diameter 0.819 cm 

Clad Inner Diameter 0.836 cm 

Clad Outer Diameter 0.950 cm 

Coolant Pressure 15.5 MPa 

Gas Temperature 728.2 oC 

 

The above geometry gives the free volumes listed in Table 6 below; as the AP1000 

employs solid fuel pellets, there is no inner void available for gas release. 

Table 6. AP1000 Fuel Rod Free Volumes 

Fuel-Clad Gap Free Volume 9.16 cm3 

Plenum Free Volume 16.9 cm3 

Total Fuel Rod Free Volume (including pellet-clad 

gap) 
26.1 cm3 

 

For estimation of FGR, the same fission yield data as that listed in Table 1 is used. The 

peak fuel rod burnup is taken from (10) as 62 GWd/MTU. The IFBA content is specified in (10) 

as well; 0.772 mg 10B/cm is applied along 152 in of the fuel rod. To determine the RIP limit, the 
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yield strength of the ZIRLO clad is assumed to be comparable to that of Zircaloy; this is taken 

from (11) as 200 MPa. Applying Equation 5 then yields an RIP limit of 42.8 MPa. It is notable 

how much margin in this hoop stress limit is lost when using a Zr-based clad as opposed to steel. 

At operating conditions, the yield strength of the Zr clad is about 40 percent of that of the steel 

clad, and thus the steel clad can withstand RIP that is about 21 MPa (over 3000 psi) greater than 

what the Zr clad can withstand. 

Regardless, this value is still less limiting than the weld limit assumed previously; 

therefore, the RIP limit of 36.2 MPa from the previous analyses shall be retained. This 

information is used to calculate the maximum allowable initial fill gas pressure over a range of 

FGR; the results are given in Figure 15. 

 

Figure 15. Maximum Initial Pressurization for the AP1000 

The initial pressurization for the AP1000 fuel rods varies between 200 and 750 psi (10); 

the above figure therefore suggests that the methodology followed in this study confirms the 

design margins of the licensed AP1000 design.  
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Conclusions 

As has already been mentioned, future work must include improved estimates of the 

fission gas release by uranium silicide fuel. This may take the form of either direct experimental 

measurements or a more thorough investigation of the physical processes involved in fission gas 

release and characterization of the fuel microstructure. Additionally, significant uncertainty 

exists with respect to the pressure limits calculated and assumed in this study. Many assumptions 

have been made without accounting for various physics phenomena which can impact clad 

integrity; more detailed analyses may therefore be needed. It may also be necessary to carry out 

some thermal analyses of the maximum burnup fuel rod, as this may allow some relaxation of 

the conservative assumptions previously discussed. Transient scenarios must be examined as 

well; such conditions are likely to necessitate assumptions (regarding temperatures, FGR, etc.) 

that are significantly more limiting than those employed in this study. The appropriate design 

basis and acceptable assumptions may then be determined from such considerations. Based on 

the results only of this scoping study, the inner fuel pellet void of the original design allowed for 

significant flexibility in the fuel rod design, especially with respect to the plenum length. This 

justified the design change of switching to the solid fuel pellet, as significant gains in the cycle 

length were realized with a manageable penalty to RIP alongside a significant increase in the 

plenum length. However, a review of the methodology employed in this study should be carried 

out to determine if the results presented are reasonable and sufficiently conservative, and more 

thorough analyses using industry-standard fuel performance codes may be used to assess the 

validity of these results. 
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APPENDIX E. TABULATED DEPLETION DATA 

Presented in this section is the tabulated version of the depletion data presented in 4.2.1.1. 

Burnup 

(GWd/MT) 

k: 

Uncontrolled 

k: 8 Gd 

Pins, 4 w/o 

k: 8 Gd 

Pins, 8 w/o 

k: 16 Gd 

Pins, 4 w/o 

k: 16 Gd 

Pins, 8 w/o 

k: 80 IFBA 

Pins 

k:160 IFBA 

Pins 

0.000 1.3320 1.2796 1.2710 1.2303 1.2136 1.2297 1.1392 

0.109 1.2932 1.2440 1.2356 1.1978 1.1814 1.1981 1.1136 

0.328 1.2876 1.2394 1.2308 1.1942 1.1774 1.1957 1.1137 

0.546 1.2834 1.2362 1.2274 1.1919 1.1747 1.1944 1.1149 

0.765 1.2801 1.2338 1.2248 1.1904 1.1728 1.1937 1.1165 

1.07 1.2762 1.2311 1.2218 1.1888 1.1707 1.1933 1.1191 

1.48 1.2717 1.2282 1.2185 1.1873 1.1685 1.1932 1.1225 

1.88 1.2674 1.2254 1.2153 1.1861 1.1664 1.1929 1.1257 

2.28 1.2632 1.2227 1.2121 1.1848 1.1643 1.1925 1.1286 

2.88 1.2566 1.2183 1.2072 1.1825 1.1609 1.1914 1.1322 

3.68 1.2478 1.2125 1.2005 1.1794 1.1563 1.1893 1.1358 

4.48 1.2391 1.2067 1.1939 1.1763 1.1517 1.1865 1.1384 

5.28 1.2303 1.2009 1.1873 1.1733 1.1471 1.1833 1.1399 

6.44 1.2180 1.1926 1.1779 1.1686 1.1404 1.1780 1.1408 

7.96 1.2026 1.1823 1.1662 1.1628 1.1322 1.1703 1.1401 

9.48 1.1879 1.1726 1.1552 1.1577 1.1246 1.1619 1.1376 

11.0 1.1738 1.1633 1.1448 1.1526 1.1176 1.1531 1.1336 

12.5 1.1604 1.1537 1.1350 1.1466 1.1110 1.1440 1.1284 

14.0 1.1473 1.1431 1.1253 1.1385 1.1045 1.1345 1.1221 

15.5 1.1350 1.1320 1.1164 1.1288 1.0986 1.1249 1.1152 

17.1 1.1231 1.1206 1.1079 1.1180 1.0930 1.1153 1.1078 

18.6 1.1116 1.1093 1.0997 1.1070 1.0877 1.1057 1.0999 

20.1 1.1005 1.0982 1.0916 1.0960 1.0824 1.0960 1.0917 

21.6 1.0897 1.0874 1.0833 1.0852 1.0765 1.0864 1.0832 

23.1 1.0791 1.0769 1.0743 1.0747 1.0693 1.0768 1.0745 

25.2 1.0653 1.0632 1.0614 1.0610 1.0575 1.0640 1.0627 

27.8 1.0486 1.0464 1.0450 1.0443 1.0414 1.0481 1.0476 

30.3 1.0324 1.0303 1.0288 1.0282 1.0254 1.0325 1.0326 

32.9 1.0167 1.0147 1.0132 1.0126 1.0098 1.0173 1.0178 

35.5 1.0016 0.9996 0.9982 0.9976 0.9948 1.0024 1.0032 

38.1 0.9870 0.9850 0.9836 0.9830 0.9803 0.9880 0.9890 

40.7 0.9729 0.9710 0.9696 0.9690 0.9663 0.9740 0.9751 

43.2 0.9593 0.9574 0.9560 0.9555 0.9528 0.9605 0.9616 

45.8 0.9462 0.9443 0.9430 0.9424 0.9398 0.9474 0.9486 

48.4 0.9336 0.9317 0.9304 0.9298 0.9272 0.9348 0.9360 

51.0 0.9214 0.9196 0.9183 0.9177 0.9152 0.9226 0.9238 

53.6 0.9098 0.9080 0.9067 0.9062 0.9037 0.9110 0.9122 

56.1 0.8987 0.8969 0.8956 0.8951 0.8927 0.8999 0.9011 

58.7 0.8880 0.8863 0.8851 0.8846 0.8821 0.8892 0.8904 
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