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SUMMARY 

 

 

The continued miniaturization and proliferation of electronics is met with significant thermal 

management challenges. Decreased size, increased power densities, and diverse operating 

environments challenge the limitations of conventional thermal management schemes and 

materials. Thermal interface materials (TIMs) that are used to enhance heat conduction and 

provide stress relief between adjacent layers in an electronic package must be improved. Forests 

comprised of nominally vertically aligned carbon nanotubes (CNTs), having outstanding thermal 

and mechanical properties, are excellent candidates for next-generation thermal interface 

materials (TIMs). However, despite nearly a decade of research, TIMs based on vertically aligned 

CNT forests have yet to harness effectively the high thermal conductivity of individual CNTs. 

One of the key obstacles that has limited the performance of CNT TIMs is the presence of high 

thermal contact resistances between the CNT free ends and the surfaces comprising the interface. 

A related limitation is that accurate measurement of theses resistances is challenging. The aim of 

this research is to better understand the mechanisms by which the thermal contact resistance of 

CNT forest thermal interfaces can be reduced through combined synthesis and measurement, and 

to use this understanding towards the design of effective TIMs and scalable processing methods. 

Contact area and weak bonding between the CNT tips and opposing surface are identified 

as factors that contribute significantly to the thermal contact resistance. Three strategies are 

explored that utilize these mechanisms as instruments for reducing the contact resistance; i) liquid 

softening, ii) bonding with surface modifiers, and iii) bonding with nanoscale polymer coatings. 

All three strategies are found, using detailed custom thermal metrology, to reduce the thermal 

contact resistance at the CNT forest tips to below 1 mm
2
-K/W, a value to where it is no longer the 

factor limiting heat conduction in CNT forest TIMs. These strategies are also relatively low-cost 
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and amenable to scaling for production when compared to existing metal-based bonding 

strategies. 

Liquid softening of CNT forests is demonstrated as a method to enhance the contact area 

at the CNT forest tip interface by as much as ~80%. In the process the CNT forest is infiltrated 

with a liquid, compressed in the interface, and allowed to dry. Infiltrating the CNT forest with a 

liquid diminishes inter-CNT van der Waals (vdW) interactions within the forest, effectively 

reducing its stiffness. By then compressing the forest in the wet state the CNT forest more readily 

deforms leading to increased contact area between the free tips and opposing surface. The contact 

area enhancement achieved with this approach is found to reduce the total thermal resistance of 

the interface by as much as ~80% and to facilitate excellent dry shear adhesion of CNT forests, as 

high as 24 N/cm
2
, at unprecedentedly low compressive pressures, 35 kPa. 

Surface modifiers are demonstrated as a highly controlled effective approach for 

replacing the weak vdW interactions between the CNT tips and a surface. Using a pyrenylpropyl 

phosphonic acid surface modifier the vdW interactions between the CNT tips and a metal oxide 

surface are replaced with stronger covalent and π-π stacking interactions. In doing so the thermal 

and electrical contact resistance at the CNT forest tips is reduced by 9-fold. 

Nanoscale polymer coatings are deposited onto CNT forests using a spray coating 

procedure. The spray coating procedure restricts the polymer deposition to the outer surfaces of 

the CNT forest, thereby preserving the internal microstructure (vertical alignment). Rewetting 

and bonding CNT forests with coatings of the polymers - polystyrene and poly(3-hexylthiophene) 

- is observed to decrease the total thermal resistance of CNT forests to levels comparable to 

conventional solder TIMs. The polymer coatings reduce the thermal resistance by locally 

increasing the contact area at individual CNT tip contacts. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation 

The continual miniaturization and proliferation of electronics is met with significant thermal 

management challenges [1-6]. Insufficient heat removal from devices can lead to reduced 

performance, accelerated degradation, and even premature device failure. Despite tremendous 

technological advancements in electronic devices and the advent of several of promising thermal 

management concepts, most practical thermal management schemes have changed little over the 

past several decades. Limitations on size, cost, and available power have necessitated that the vast 

majority of applications remain air-cooled. In most conventional packaging architectures, heat is 

dissipated from the device through several layers of packaging to an eventual heat sink or heat 

spreader where it is dumped to the ambient via forced convection, as in the case of servers and 

desktop computers, or by natural convection in handheld devices. Figure 1.1 shows a typical flip-

chip packaging architecture for a processor in a desktop computer or server. There are two 

primary impediments to heat transfer from the processor device, or die, to the ambient in such 

packaging schemes: i) the thermal resistance of the heat spreader/sink, and ii) the thermal 

resistance of the multiple interfaces along the path of heat transfer [7]. Because heat-sink 

technology is relatively mature, most emerging thermal management strategies, including 

microchannel heat sinks, thermoelectric coolers, and flat heat pipes [8],  replace heat sinks within 

the package.  In emerging and especially in conventional thermal management schemes reducing 

the thermal resistance at the interfaces presents a significant opportunity for improving heat 

dissipation from the package.  The aim of thermal interface materials (TIMs) is to enhance heat 

transfer across the interfaces, and mitigate this bottleneck to effective heat dissipation. Carbon 

nanotube forests are promising candidates for high-performance TIMs that could both enhance 



2 
 

heat dissipation and improve thermomechanical reliability, enabling the continued advancement 

of electronics.  

 

 
Figure 1.1: Heat dissipation in typical flip-chip architecture [9]. 

 

1.2 Thermal Interface Materials 

Figure 1.2(a) shows a close-up view of an interface to illustrate the micro- or nanoscale surface 

features of the two solids comprising the interface. The root-mean-square roughness and peak-to-

valley asperity heights for polished heat sink or heat spreader surfaces in contact with a die 

typically range from ~ 0.1 to 10 μm [10], depending on the surface preparation technique. Both 

roughness parameters for polished Si dies are on the scale of one to tens of nanometers [11] and 

can in many cases be neglected compared to the roughness of the heat-dissipating device. 

However, roughness between a heat spreader and heat sink in a multi-interface stack can be of the 

same order. Because of surface roughness, the real contact area at the interfaces is usually less 

than 1% of the apparent area [12]. Heat transfer across the interface is generally dominated by 

heat conduction between contacting surface asperities since the thermal conductivity of the air 

filled gaps is only ~0.02 W/m-K [13]. Heat transfer by radiation could be significant in 

applications at very high temperatures. A number of excellent summaries on the mechanics of 

contact and thermal resistance at solid-solid interfaces are available [12, 14, 15]. A TIM is added  
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Figure 1.2: Close-up view of a solid-solid interface illustrating (a) heat conduction across 

contacting surface asperities, and (b) a thermal interface material. (c) Temperature profile across 

the TIM [9]. 

 

to the interface to reduce the thermal contact resistance, as shown in Figure 1.2(b). TIMs reduce 

the thermal contact resistance by filling the interstitial air gaps with a thermally conductive 

material. Approximating the heat transfer across the TIM as one-dimensional it can be modeled 

using a thermal resistance network, analogous to an electrical circuit, and is shown in Figure 

1.2(c). In this model, the total thermal resistance of the interface, RTot is given as the sum of the 

component resistances 

𝑅𝑇𝑜𝑡 = 𝑅𝑐1 + 𝐿 𝑘𝑇𝐼𝑀 +⁄ 𝑅𝑐2,                                                        (1.1)  

where Rc1 and Rc2 are the thermal contact resistances at each side of the TIM [mm
2
-K/W], L is the 

thickness of the TIM [μm], typically referred to as the bond-line thickness, and kTIM is the thermal 

conductivity of the TIM [W/m-K]. Depending on the physical characteristics of the TIM and 

adjacent packaging materials, one or all the component resistances can significantly contribute to 

the total resistance. A detailed summary of the mechanisms contributing to thermal contact 

resistance is provided in section 2.2.  

Although the primary function of a TIM is to enhance thermal transport across the 

interfaces in a package, other factors relating to the TIMs installation and long-term reliability are 

also important. It is typically necessary for a TIM to be mechanically compliant in order to 
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alleviate stresses arising from differences in the coefficient of thermal expansion (CTE) of 

adjacent packaging components. Semiconductors, i.e. electronic devices, typically have linear 

CTEs from 1-5 μm/m-K, whereas metals, i.e. solders, heat spreaders, and heat sinks generally 

have CTEs an order of magnitude larger, 10-25 μm/m-K. A significant bond-line thickness is 

usually required to accommodate thermal expansion of the substrates without degrading the TIM. 

This thickness scales proportionally to the modulus of the TIM [16] – thus metallic TIMs usually 

require much thicker bond lines than polymers, gels, or grease. Additional requirements that are 

also commonly placed on TIMs include, but are not limited to; chemical stability at high 

temperatures, electrical isolation of the device from packaging, the mechanical joining of 

packaging components, ability to be reworked, and low cost. Ultimately, the properties required 

of a TIM depend on the application. The desired attributes for TIMs in assorted applications can 

be found in references [9, 17]. A survey of these applications shows that there is especially a need 

for mechanically compliant TIMs with very low thermal resistance (< 10 mm
2
-K/W), and 

chemical stability at elevated temperatures (> 130 °C). 

1.3 Carbon Nanotube Forest TIMs 

Forests comprised of nominally vertically aligned carbon nanotubes have several attributes that 

are attractive for advanced TIMs. Most notably, carbon nanotubes have been theorized to possess 

the highest thermal conductivity of any known material [18, 19]. Theoretical and experimental 

studies have reported single tube thermal conductivities from ~200 W/m-K for highly defective 

multiwall CNTs to as high as 6600 W/m-K for single-wall CNTs [20-24]. Despite having a high 

modulus of elasticity, nearing 1 TPa [25], an order of magnitude larger than that of steel, 

individual CNTs can be grown to aspect ratios in excess of 10
6
 making them exceptionally 

flexible and candidates for accommodating large differences in substrate CTE. Furthermore, well-

graphitized CNTs can be chemically stable up to approximately 700 °C in air, suitable for high-

temperature or harsh environment applications [26]. TIMs based on forests of nominally 
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vertically aligned CNTs attempt to exploit these attractive properties and the preferential 

alignment of individual CNTs within the forest. 

It wasn’t until the mid 2000’s that chemical vapor deposition (CVD) methods had been 

sufficiently developed to produce dense vertically aligned CNT forests with heights on the order 

of micrometers, enabling the first studies of CNT forest TIMs [27-29]. In 2006 Xu and Fisher 

[30] measured the thermal resistance of multi-wall CNT forests 10-15 μm in height on Si 

substrates using a 1D reference bar apparatus. They reported total thermal resistances as low as 

19.8 mm
2
-K/W at 445 kPa of applied pressure. While their measurement technique didn’t permit 

resolution of the contact and layer resistances, calculations of the layer resistance based on 

current data for CNT forest thermal conductivities suggested that the total thermal resistance was 

dominated by the resistance of the contacts. Shortly thereafter, Hu et al. [31] measured the 

thermal conductivity and thermal contact resistance of CNT forests in dry contact with a SiN 

passivation layer using the three omega method. The thermal contact resistance between the CNT 

tips and the passivation layer was found to be prohibitively high, ~15 mm
2
-K/W at an applied 

pressure of 100 kPa. Subsequent studies by Tong et al. [32] and Cola et al. [11] using phase 

sensitive thermoreflectance and photoacoustic measurement techniques respectively confirmed 

that the thermal resistance of CNT forest TIMs of modest height (< 50μm) is dominated by the 

thermal contact resistance between the CNT tips and the opposing substrate.  

Accordingly, the majority of research on CNT forest TIMs has since focused on 

developing methods for bonding the free ends of the CNTs to the interface to mitigate the contact 

resistance [32-35]. The majority of these efforts have utilized metal films to join the CNT tips to 

the opposing surface under high pressure and temperature. A few of the more successful bonding 

methods that were developed prior to the onset of this research, though 2010, are summarized in 

Table 1.1, alongside several conventional TIMs for comparison. An updated table, including the 

methods developed as part of this research, is given in Chapter 8. While many of the methods  
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Table 1.1 Thermal resistance of bonded CNT forest TIMs (2010 and prior) compared to 

conventional TIMs 

 

[a] NA: Data not available  [b] The reported area specific thermal resistances were recalculated 

using the total area of the interface (4 mm
2
) instead of only the patterned CNT area (1.13 mm

2
) to 

reflect the effective thermal resistance, as would be experienced by a real device 

 

 

have produced TIMs with thermal resistances that are comparable to conventional metallic solder 

TIMs (5 mm
2
-K/W) [36], they are generally challenging to implement consistently, or require 

cumbersome processing. Specifically, Tong et al. [32] using indium to weld multiwall CNT 

(MWCNT) tips to glass noted that while thermal resistances on the order of 1 mm
2
-K/W were 

measured, the thermal resistance across the entire area of the sample varied significantly, a result 

they attributed to inconsistent bonding at the interface. Several authors [34, 35, 37] have coated 

both MWCNT tips and the surface of the interface with films of Au and diffusion bonded the 

MWCNT tips under high temperature and pressure to produce resistances as low as ~ 4 mm
2
-

K/W. However, unlike bonding with In or other solders, Au does not melt and reflow during the 

bonding process and is instead restricted to diffusing between contacting surface asperities, 

Interface 
CNT Forest 

Height [μm] 

Measurement 

Pressure [kPa] 

Thermal 

Resistance 

[mm
2
-K/W] 

Implementation Process 

Bonded CNT 

Forests: 
  

Bonded/Dry 

Contact: 
 

Si-MWCNT-In-

SiO2[32] 
10 0 

RCNT tips ≈Rtotal: 

~1/11 

Metal Evaporation, Bonding 

(Pressure NA
[a]

, 180 °C) 

Si-MWCNT-Au-

Ag[34] 
30 0 Rtotal: 4.5/NA

[a]
 

Metal Evaporation, Bonding 

(Pressure NA
[a]

, 220 °C) 

Si-Au-Patterned 

MWCNT-Au-Si[35] 
~60 63 Rtotal: 62/336

[b]
  

Metal Evaporation, Bonding  

(63 kPa, 150 °C) 

Cu-MWCNT-Si[33] NA 0 Rtotal: 10/50 

Spin Coating,  

Microwave Bonding  

(6.425 GHz, 750 kPa, 160 °C) 

Conventional 

Materials [17]: 
    

Greases   20-100  

Gels   40-80  

Pads   100-300  

Phase Change   30-70  

Solder   5  
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limiting the contact area and making it difficult to achieve adequate bonding. As stated by 

Wasniewski et al. [37], Au diffusion bonding “results proved very difficult to replicate; 

challenges with achieving strong, uniform diffusion bonds… precluded positive test results.” The 

remaining approaches summarized in Table 1.1 similarly produced either relatively high thermal 

resistances (over 5 mm
2
-K/W), and/or required processing that could not be scaled in a practical 

manner. The method developed by Lin et al. [33] to chemically modify and anchor MWCNTs to 

Si substrates includes spin coating followed by a two-stage microwave bonding process lasting 

1.5 hours with a peak temperature and pressure of 160 °C and 750 kPa respectively. As such, 

there remains a significant need for a method of bonding CNT free ends that can repeatedly 

produce low thermal contact resistances uniformly over device areas, 1-4 cm
2
, with minimally 

harsh and scalable processing.  

Despite the development of multiple bonding methods, their effect on the transport 

physics is rarely discussed and is overall not well understood. Thermal transport at interfaces in 

general is a complex problem. Phonon transmission for the simplified case of planar interfaces is 

dependent on many parameters including the phonon density of states of the materials and the 

nature of the chemical bonding at the interface. For the case of CNT forests the sheer number, 

nanometer scale, and variability of the free tip contacts greatly complicates the problem. While 

simplified analytical [38-40] and computational [41-43] models have been developed to describe 

thermal transport at individual CNT contacts, and are reviewed in 2.3, physical interpretation of 

contact resistance data at the scale of an entire CNT forest interface has been met with limited 

success [44-46]. This is especially true for the case of bonded CNT forest TIMs since it is often 

unknown how the bonding affects the, the final interface chemistry, transport physics, CNT tip 

morphology, and contact area. To develop effective methods for reducing the thermal contact 

resistance of CNT forest TIMs the physical mechanisms by which bonding methods enhance 

thermal transport and their capacity for doing so must be better understood. 
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1.4 Objectives and Overview 

In this research I explore alternative methods of bonding CNT forests as TIMs with three 

objectives in mind; 1) understanding the physical mechanisms by which the bonding methods 

reduce the thermal contact resistance, 2) identifying the merits and limitations of each method, 

and 3) identifying methods that are effective over device sized areas and amenable to scaling for 

commercial production. A graphical overview of the specific bonding methods evaluated in this 

research is given in Table 1.2 below. The findings of this work are anticipated to have 

implications for electrical applications of CNTs, CNT forest gecko-mimetic adhesives, and other 

applications of nanoscale filamentary materials. 

The contents of this dissertation are organized as follows: 

Chapter 2: provides relevant background information on conventional thermal interface 

materials, the physical mechanisms contributing to thermal contact resistance at interfaces and 

theoretical frameworks used to describe it, and a discussion of thermal transport at CNT forest 

contacts. 

 `Chapter 3: reviews the experimental methods utilized in this research, including; the 

CNT forest synthesis procedure and methods used to measure the thermal resistance of CNT 

forest TIMs. 

 Chapter 4: investigates infiltrating CNT forests with liquid as a mechanism to enhance 

contact area at the free tips. Specifically, this chapter examines the interplay between inter-CNT 

van der Waals interactions, the bulk stiffness of the forest, and the contact area at the free tip 

interface. The possibility of capillary driven contact area enhancements resulting from the 

evaporation of the liquid is also studied. 
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 Chapter 5: explores surface modifiers as a method for enhancing bond strength at CNT 

forest contacts. The effect of the surface modifiers on the thermal contact resistance, normal 

adhesion, and electrical resistance of CNT forests is experimentally studied. 

 Chapter 6: examines the use of nanoscale polymer coatings as a material for bonding 

CNT forests in a scalable and low-cost manner. The influence of polymer chemistry and quantity 

on thermal resistance is examined for CNT forests of assorted heights. 

 Chapter 7: time-domain thermoreflectance is utilized to determine the specific 

contribution of the CNT forest tip interface to the total thermal resistance. The capabilities and 

limitations of the method for characterizing bonded or pressed contacts are established. 

 Chapter 8: concludes the dissertation by examining the broader implications of this 

research for CNT TIMs. 
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Table 1.2 Overview of the dissertation. 

Topic Methods Major Results Chapter 

Liquid softening 
● Photoacoustic 

● Die Shear 

 Contact area explicitly 

identified as a major contributor 

to the thermal resistance of 

CNT forest contacts 

 By compressing CNT forests in 

the wet state the contact area at 

the free tips can be increased by 

~80% 

 Wet compression facilitates 

record approaching shear 

adhesion,  10-24 N/cm
2
, at an 

order of magnitude lower 

preload, 35-105 kPa 

4 

Enhancing bond 

strength with surface 

modifiers 

● Photoacoustic 

● 2-probe electrical 

 Bond strength explicitly 

identified as a major contributor 

to the thermal resistance of 

CNT forest contacts 

 Replacing van der Waals 

interactions at CNT contacts 

with covalent and π-π bonds 

can reduce the thermal contact 

resistance ( and electrical) by > 

80% repeatedly over device-

sized areas 

5 

Bonding with 

nanoscale polymer 

coatings 

● Photoacoustic 

 Spray coating demonstrated as 

a method for applying 

nanoscale coatings of soluble 

materials to the surfaces of 

CNT forests, while preserving 

the internal microstructure of 

the forest 

 Bonding of CNT forests with 

polymers at room temperature 

and low pressure (140 kPa) 

reduced the thermal resistance 

of the CNT forest tip interface 

by as much as ~75%, although 

the process had 

control/repeatability issues 

6 

Resolving the 

resistance of CNT 

forest contacts 

● Time-domain          

thermoreflectance 

 Free tip contact resistance of 

CNT forests bonded with 

PyprPA modifier, polymer 

coatings, and wet compressed  

< 1mm
2
-K/W. No longer 

dominates total resistance 

7 
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CHAPTER 2 

BACKGROUND 

 

 

This chapter aims to provide useful background information for understanding and interpreting 

this research. It begins with a review of conventional commercial TIMs and highlights their 

merits and weaknesses. It then transitions to a discussion of the physical mechanisms governing 

thermal transport at interfaces and the current theoretical frameworks used to describe it. The 

chapter concludes with a discussion of the transport physics and theory specific to CNT forest tip 

contacts. 

2.1 Existing and Emerging TIMs 

2.1.1 Conventional TIMs 

Conventional TIMs include metallic solders, greases, adhesives, phase change materials (PCMs), 

gels, and pads. A brief description of each TIM class and their merits and weaknesses [17, 47, 48] 

is given below. Figure 2.1 summarizes conventional TIMs based on thermal resistance and Figure 

2.2 displays a few conventional TIMs.  

 

 
Figure 2.1: Thermal resistance of conventional TIMs [9]. 

0

50

100

150

200

250

300

Solder Thermal
Grease

Adhesive PCM Gel Thermal
Pad

T
h

e
rm

a
l 
R

e
s

is
ta

n
c
e

 [
m

m
2
-K

/W
] 



12 
 

 

Solder: Solder joints are comprised of low melting point metals such as In or Sn in either 

pure form, or as a component of an alloy. For implementation, solder is placed into the interface 

under pressure, heated above its melting point, and cooled. In the molten state, solder is readily 

able to conform to asperities in the interface. Voiding is a concern for reliability. Also, the 

relative high cost and complexity of implementation typically restricts use to applications 

requiring low resistance. 

 Greases: Thermal greases, commonly referred to as pastes and compounds, consist of a 

low-cost spreadable polymer for maximizing contact area. Greases are typically silicone based 

and may contain metal, ceramic, or carbon fillers to enhance thermal conductivity. They  

can also be messy and challenging to apply uniformly. Long-term concerns include pump-out and 

dry-out. 

 

 
Figure 2.2: (a) roll of solder film [49] (b) thermal grease [50] (c) application of thermal grease to 

a heat spreader [51]. 

 

 

 Adhesives: Thermal adhesives come in both solid and liquid forms. In solid form the 

adhesive is essentially a double-sided tape. In liquid form thermal adhesives are generally epoxy 

resins and require curing. They may also contain metal, ceramic, or carbon fillers to enhance 

thermal conductivity. An advantage of adhesives is that they do not require a clamp or alternate 

form of applied pressure. Thermally induced fatigue and delamination due to CTE mismatch is a 

concern. 
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 Phase change materials (PCMs): Phase change materials generally consist of paraffin or 

an alternative polymer matrix embedded with high conductivity metal, ceramic, or carbon 

particles.  The melting point of the matrix is typically low, ~50 °C for paraffin, above which it 

behaves like a grease. A clamp or alternate source of applied pressure is required. 

 Gels: Gels are similar to greases in that they are typically silicone based and often 

contain metallic, ceramic, or carbon particles to enhance conductivity. However, unlike greases, 

gels are cured after application and behave like a low modulus polymer. Cured gels are generally 

adhesive, but can be susceptible to delamination. 

 Pads: Thermal pads consist of an elastomeric material, typically filled with high 

conductivity metal, ceramic or carbon particles. Pads require a clamp or application of an 

adhesive. Some advantages of pads include the ability to cut to shape, absorption of vibration, and 

accommodation of variations in assemblies. 

 

 

Figure 2.3: (a) double-sided thermal adhesive [52] (b) thermal pad [50]. 

 

2.1.2 Emerging Nanostructured TIMs 

In response to the pressing need for improved TIMs an entire branch of research dedicated to the 

subject matter has emerged. The vast majority of efforts in this area look to nanostructuring to 

enable the development of materials with unprecedented properties or combinations thereof, and 

can be lumped  into five main categories; i) dispersed nanocomposites ii) aligned 

nanocomposites, iii) aligned nanostructure arrays (including polymer and metal), iv) aligned 
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graphite laminates, and v) sintered nanoparticle beds. I lead a recent comprehensive review of 

these emerging nanostructured TIMs that can be found in reference [9]. Although many of these 

emerging nanostructured TIMs have demonstrated significant advancements over the past several 

years, none hold the combined potential for extraordinary thermal conductivity, mechanical 

compliance, and chemical stability as do vertically aligned CNT forests. 

2.1.3 Evaluating TIM Performance 

TIMs must ultimately be tested in their application to conclude their merits [53, 54]. During 

earlier stages of development, however, several standard tests are usually employed to evaluate 

key TIM performance metrics (introduced in section 1.2). These include assessments of thermal 

resistance (of a bonded TIM or as function of applied pressure), mechanical attachment strength, 

and thermal and environmental chemical stability, and reliability. Table 2.1 below illustrates 

these facets of TIM development. The thermal resistance of TIMs can be measured using 

numerous methods [9], although standardized methods, including the ASTM D5470 [55] are 

typically used in industry. The mechanical attachment strength of TIMs is typically measured 

through a shear failure mode using a die shear apparatus, although other tensile and flexure-based 

methods exist. The thermal stability of TIMs is typically evaluated by baking at high temperature 

for extended periods of time, as shown in Table 2.1. The thermal resistance of the TIM before and 

after the high temperature exposure is usually measured to assess any degradation in 

performance. The reliability of TIMs is generally concerned with the long-term chemical and 

mechanical stability of the TIM within package due to extended use. Therefore, reliability is 

usually assessed by cycling the entire package from low to high temperatures many times to 

simulate the lifetime of a device. Examples of unreliable TIM performance include 

cracking/delamination of the TIM from the package, voiding as in the case of solders, or 

thermally driven flows that excrete the TIM from the interface (referred to as pump-out). An 

equally important aspect of TIM performance is referred to as the rework-ability of the TIM, i.e. 

the ease with which the TIM can be implemented, removed, and reinstalled in the package. This 
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aspect of TIM performance is assessed qualitatively, although it can typically be related to 

quantitative metrics such as the time or cost required to rework the TIM. 

 

 

Table 2.1 Aspects of TIM development 

 

 

2.2 Thermal Transport at Contacts and Interfaces 

This section provides a more detailed description of the fundamental factors contributing to 

thermal contact resistance. It is these physical mechanisms that necessitate the use of a TIM and 

should be used to guide their design. We begin by discussing thermal transport between 

dissimilar materials in the ideal case of a planar interface with perfect contact. We then add the 

complexity of surface roughness and imperfect contact area and finish by discussing additional 

impediments to thermal transport that occur when the contact sizes approach nanoscale 

dimensions. The emphasis throughout this discussion will remain on analytical developments, 

although, because of advancements in computational resources, molecular dynamics and other 

simulation methods are becoming increasingly useful tools for studying interfacial thermal 

transport. 

2.2.1 Thermal Transport between Dissimilar Materials  

To begin we consider the case of perfect contact area between dissimilar materials. A scenario 

that closely approximates solid-liquid interfaces, like those observed in cryogenics, as well as 

T 

t 

T 
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solid-solid interfaces, such as those between an evaporated metal film and its substrate. For 

simplicity and generality we first discuss the case of a planar atomically perfect interface between 

two semi-infinite materials. Furthermore, we will restrict the scope of the discussion to only 

consider phonon transport, i.e. the case when at least one of the two materials is an insulator, 

although similar mechanisms are of consideration for materials where electrons contribute 

significantly to interfacial thermal transport. For this ideal case, and for situations in which 

surface roughness effects are limited, the thermal resistance of an interface is typically referred to 

as thermal boundary resistance (TBR), or in the case of solid-liquid interfaces the Kapitza 

resistance [56]. Phonons incident on this ideal interface will “scatter” due to the differences in the 

vibrational properties (mass, atomic structure, the phonon density of states, etc.) between the two 

materials, and can either be transmitted through the interface or reflected. Only a fraction of the 

incident phonons will transmit through the interface amounting to a thermal boundary resistance. 

The probability of a phonon transmitting from side 1 to side 2 is designated as the transmission 

coefficient 𝜏1→2. In general, the transmission coefficient is dependent on the phonon mode, wave 

vector, frequency, and temperature. Neglecting the temperature dependence of the transmission 

coefficient and considering the materials on either side of the interface to be isotropic the heat 

flux emanating from side 1 into side 2 is given by 

𝑞1→2 =
1

4𝜋
∑ ∫ ∫ ∫ τ1→2(𝜔, 𝜃, 𝑗)𝐷1,𝑗(𝜔, 𝑇1)ℏ𝜐1,𝑗

𝜔1𝑚𝑎𝑥

0

𝜋
2

0

cos 𝜃 sin 𝜃 𝑑𝜔𝑑𝜃𝑑𝜑
2𝜋

0𝑗

,           (2.1) 

here j is an index for the phonon mode, ω is the phonon frequency, D1,j   is the product of the 

phonon density of states and the Bose-Einstein distribution, υ is velocity, θ is the zenith angle 

(between the interface normal and the direction of phonon propagation), and φ is the azimuthal 

angle [57]. The net heat flux across the interface is given by the difference between q1→2 and q2→1 

and the thermal boundary resistance, Rbd, by 
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𝑅𝑏𝑑 = (𝑇1 − 𝑇2) (𝑞1→2 − 𝑞2→1)⁄ ,                                                  (2.2) 

where T1 and T2 are the temperatures of incoming phonons on the respective sides of the 

interface. In reality, appropriate definition of these temperatures in nontrivial, but will not be 

considered here [57-59]. Determination of the transmission coefficients and boundary resistance 

is a complex problem and in most cases to date is intractable. And we are still considering an 

idealized and simplified interface! However, with additional simplifying assumptions the 

transmission coefficients can be obtained. Two such reductions that have proved to be very useful 

are the acoustic mismatch model (AMM) [58, 60] and the diffuse mismatch model (DMM) [57]. 

While these two models do not accurately represent most real interfaces, they are often useful for 

comparison with data. In the subsequent formulations of the AMM and DMM we follow the 

constructions of references [57, 61]. 

The Acoustic Mismatch Model: The AMM was originally developed by Khalatnikov in 

1952 for solid-liquid interfaces [60] and extended to solid-solid interfaces by Little in 1959 [58]. 

In the acoustic mismatch model it is assumed that phonon transport within the two materials is 

governed by continuum acoustics. By invoking this assumption phonons are represented by plane 

waves in semi-infinite continua joined by a planar interface. With these assumptions the discrete 

nature of the lattice is neglected and phonon reflection at the interface is perfectly specular and 

elastic (frequency is conserved), although mode conversion is permitted. The angle of phonon 

reflection or transmission and the transmission coefficients are governed by the acoustic analogs 

of Snell’s Law and the Fresnel Equations respectively. Even with these simplifications 

calculation of the transmission coefficients is challenging due to the dependence on the incident 

angle and the fact that there are three modes. Consequently, the materials are typically assumed to 

be isotropic and density of states is represented using the Debye approximation. The Debye 

approximation implies that for frequencies below the Debye frequency 
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𝐷1,𝑗(𝜔, 𝑇)𝑑𝜔 =
𝜔2𝑑𝜔

2𝜋2𝜐1,𝑗
3 [exp(ℏ𝜔 𝜅𝐵𝑇⁄ ) − 1]

,                                         (2.3) 

where ħ is the Planck constant divided by 2π and 𝜅𝐵  is the Boltzmann constant. In this case the 

transmission coefficient for a longitudinal phonon mode incident from side 1 without mode 

conversion is 

𝜏1→2 =
4𝜌1𝜌2𝜐𝑙1

2 cos 𝜃1 cos 𝜃2

(𝜌1𝜐𝑙1 cos 𝜃2 + 𝜌2𝜐𝑙2 cos 𝜃1)2 ,                                               (2.4) 

     

where ρ is density and the subscript l denotes a longitudinal mode. The polar angles θ1 and θ2 are 

related to the velocities by (Snell’s Law): 𝜐𝑙2 sin 𝜃1 = 𝜐𝑙1 sin 𝜃2. All phonons incident at angles 

greater than the critical angle, θc, on the side of the interface with lower phonon velocity will be 

reflected. For the case of 𝜐𝑙1 > 𝜐𝑙2 the critical angle is given by 𝜃𝑐 = sin−1(𝜐𝑙2 𝜐𝑙1⁄ ). To further 

simplify expressions for the net heat flux across the interface and the TBR, the transmission 

coefficients are frequently integrated over all incoming angles and expressed as a hemispherical 

transmissivity 

Γ1,𝑗 =
1

𝜋
∫ ∫ 𝜏1→2(𝜃, 𝑗) cos 𝜃1 sin 𝜃1 𝑑𝜃1𝑑𝜑

𝜋
2

0

2𝜋

0

= 2 ∫ 𝜏1→2 (𝜃, 𝑗)cos 𝜃1 sin 𝜃1 𝑑𝜃1

𝜃𝑐

0

,       (2.5) 

Recasting Equation 2 the net heat flux according to the AMM for an isotropic Debye solid is 

given by 

(𝑞1→2 − 𝑞2→1) =
1

4
∑

Γ1,𝑗

𝜐1,𝑗
2

𝜅𝐵
4

8𝜋2ℏ3 (𝑇1
4 ∫

𝑥3𝑑𝑥

𝑒𝑥 − 1

𝑥1

0

− 𝑇2
4 ∫

𝑥3𝑑𝑥

𝑒𝑥 − 1

𝑥2

0

)

𝑗

,                  (2.6) 

where 𝑥𝑖 = ℏ𝜔 𝜅𝐵𝑇𝑖⁄ . Recall that the AMM assumes the interface to be planar and the materials 

on either side of the interface to be semi-infinite continua. These assumptions are best satisfied 

when the phonon wavelength is much larger than both the interfacial roughness and the average 
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interatomic spacing. Therefore, the AMM is typically most accurate for very smooth surfaces at 

low temperatures. Taking the low temperature limit of Equation 2.6 and assuming the 

temperature difference across the interface to be small the TBR can be expressed as 

lim
𝑇→0

(𝑅𝑏𝑑,𝐴𝑀𝑀) =
30ℏ3𝑇−3

𝜋2𝜅𝐵
4 ∑ Γ1,𝑗𝜐1,𝑗

−2
𝑗

,                                                     (2.7) 

The Diffuse Mismatch Model: For interfaces that are not atomically smooth and/or at 

temperatures above a few mK the specular behavior of the interface described by the AMM 

becomes inaccurate as scattering becomes increased. In an effort to incorporate scattering effects 

into a model for TBR Swartz and Pohl introduced the DMM in 1989 [62]. In contrast with the 

AMM, where phonon behavior at the interface is perfectly specular, the DMM assumes perfectly 

diffuse scattering. Swartz and Pohl defined a diffuse scattering event as one in which the wave 

vector and mode of a scattered phonon are entirely independent of its wave vector and mode upon 

incidence. The only property correlated to the initial state in a diffuse scattering event is the 

energy, that is to say that only elastic scattering is considered. Under these assumptions the 

transmission coefficients are determined by the mismatch in the phonon density of states of the 

two materials and the principal of detailed balance. Since a diffusely scattered phonon carries 

with it no recollection of its previous state (with the exception of energy) it is impossible to 

determine whether it was reflected or transmitted. Therefore, it follows that the probability of it 

being reflected and the probability of transmitted to its current state must be equal: 1 − 𝜏1→2 =

𝜏2→1 and vice versa. The principle of detailed balance dictates that the number of phonons of 

frequency ω per unit area per unit time leaving side i is equal to the number of phonons at 

frequency ω per unit area per unit time leaving the opposite side (3-i): 

∑ 𝜐𝑖,𝑗𝐷𝑖,𝑗(𝜔, 𝑇)𝜏𝑖→3−𝑖(𝜔) = ∑ 𝜐3−𝑖,𝑗𝐷3−𝑖,𝑗

𝑗𝑗

(𝜔, 𝑇)[1 − 𝜏𝑖→3−𝑖(𝜔)],                 (2.8) 
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where the index i can take on the value 1 or 2 and has been adopted for generality. Equation 2.8 

can then be rearranged to solve for the transmission coefficients, 

𝜏𝑖→3−𝑖(𝜔) =
∑ 𝜐3−𝑖,𝑗𝐷3−𝑖,𝑗(𝜔, 𝑇)𝑗

∑ 𝜐𝑖,𝑗𝐷𝑖,𝑗(𝜔, 𝑇) + ∑ 𝜐3−𝑖,𝑗𝐷3−𝑖,𝑗(𝜔, 𝑇)𝑗𝑗
.                             (2.9) 

Invoking the Debye approximation, Equation 2.6 for the net heat flux can again be used; 

however, in this case the hemispherical transmissivities are obtained through integration of 

Equation 2.9. In the limit of low temperature the TBR for the DMM can be expressed as 

lim
𝑇→0

(𝑅𝑏𝑑,𝐷𝑀𝑀) =
60ℏ3𝑇−3

𝜋2𝜅𝐵
4

∑ 𝜐𝑖,𝑗
−2

𝑖,𝑗

∑ 𝜐𝑖,𝑗
−2

𝑗 ∑ 𝜐3−𝑖,𝑗
−2

𝑗
.                                       (2.10) 

Due to the extreme descriptions of scattering in the AMM and DMM and the assumptions 

implicit to their derivation they seldom predict the TBR of real interfaces [57, 63]. This is 

especially true for rough interfaces and at temperatures above a few K, where the possibility for 

multiple scattering events and inelastic scattering is increased. As a result, many attempts have 

been made to adapt these models to account for certain deficiencies and improve their accuracy. 

A number of studies have examined using more realistic representations of the density of states 

[64-66], models that account for both specular and diffuse scattering [67], and incorporating 

surface roughness [68], which has been experimentally observed to increase the boundary 

resistance by as much as 15% [69]. However, these approaches are often cumbersome to 

implement and remain limited in applicability to low temperatures as they still fail to adequately 

account for more than a single scattering event. In an effort to incorporate near interface 

scattering and model TBR at noncryogenic temperatures Prasher et al. [70] developed a modified 

version of the AMM. The model can be used to predict the TBR based on ineleastic scattering 

processes using material properties as an input. Nonetheless, it still typically underpredicts 

experimental data, due to the presence of additional non-accounted for scattering processes 

resulting from the non-ideal structure of real interfaces. When the model is fit to experimental 
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data by adjusting the scattering parameter good agreement can be obtained. In an effort to account 

for interfacial mixing and multiple scatterings events Beechem et al. [71] modified the DMM to 

include an additional “virtual” layer of material at the interface, where the virtual layer represents 

the mixed region. The boundary resistance of the real interface is then taken as the sum of the 

boundary resistances between each material and the virtual layer. To calculate the TBR between 

each material and the virtual layer, the Debye approximation is invoked and the virtual layer is 

assigned phonon velocities based on the rule-of-mixtures. By using the rule-of-mixtures the 

extent of mixing can be varied continuously. The transmission coefficients are then calculated 

using the reduced version of Equation 2.9. To account for the thickness of the virtual layer, and 

the probability of multiple scattering events within it, the boundary resistances between the 

materials and the virtual layer are scaled by a dimensionless depth parameter, ψ. The depth 

parameter represents the ratio of the thickness of the virtual layer to an estimate of the phonon 

mean free path within the layer. The TBR of the interface is then given by 

𝑅𝐷𝑀𝑀,𝑇𝑜𝑡 = ∑ 𝜓𝑗𝑅𝐷𝑀𝑀,1→𝑉𝐿,𝑗

𝑗

+ ∑ 𝜓𝑗𝑅𝐷𝑀𝑀,𝑉𝐿→2,𝑗

𝑗

,                                    (2.11) 

where the boundary resistances at the virtual interfaces are expressed for a single phonon mode to 

permit different phonon mode velocities in calculation of the depth parameter. This model was 

found to be within 18% agreement with experimental data for Cr/Si interfaces at room 

temperature. Unfortunately, the use of the model relies on knowledge of the extent and 

composition of mixing at the interface.  

2.2.2 Thermal Transport between Contacting Surfaces; the Effect of Surface Roughness 

Real surfaces are almost never atomically smooth. Therefore, when two surfaces are brought into 

contact, as is often the situation for nanostructured TIMs, the surfaces typically only contact at 

discrete points, as is shown in Figure 1.2. The cumulative contact area between the points, i.e. the 

real contact area, is often well below 2% of the nominal area [72]. As a result, the flow of heat 
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between the bodies is severely constricted at the contact points. This constriction of heat flow at a 

microscale contact amounts to a thermal resistance, classically referred to as a constriction, or 

spreading resistance. The combination of the limited real contact area and the thermal constriction 

resistance at the contacts manifests macroscopically as thermal contact resistance. Developing 

theories for thermal contact resistance is a complex problem, as it requires a detailed 

understanding of the surface topologies, contact mechanics, and heat transfer [12]. To illustrate 

the interplay between these contributing factors, Yovanovich introduced the concept of the 

Thermal Contact Resistance Triad, shown in Figure 2.4 [15]. Since the emphasis of this section is 

on the physical mechanisms contributing to the thermal transport at interfaces, we will limit the 

scope to a general discussion of the thermal constriction-spreading resistance at a single contact 

and the extension to the case of multiple contacts for the thermal contact resistance of entire 

interfaces [14]. The details of the contact mechanics problem, and mechanical-thermal 

considerations are not discussed, although they are of significance in the design of TIMs. 

Furthermore, only heat conduction is considered, radiation and convection is ignored. 

 

 
Figure 2.4: Thermal Contact Resistance Triad illustrating the relationship between factors 

contributing to thermal contact resistance. 
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Figure 2.5: (a) Constriction of heat flow from a half-space to a circular contact of radius a (b) 

top view showing multiple contacts and flux tubes [9]. 

 

Thermal Constriction-Spreading Resistance: When a one-dimensional flow of heat is 

disrupted by a change in the cross-sectional area the effect of the convergence, or divergence, of 

the heat flow in the vicinity of the area change can be captured as a thermal resistance, referred to 

as the constriction or spreading resistance. Constriction-spreading resistances are encountered in a 

vast number of engineering applications, including thermal contact resistance, and have been 

studied extensively since the 1950s. Expressions for the constriction-spreading resistance have 

been formulated for a vast assortment of geometries using analytical, numerical, and experimental 

methods [14, 72]. For the rather generic case of a circular contact the flow of heat through the 

contact can be approximated as converging from a larger diameter cylinder, referred to as a flux 

tube, shown  for a single contact in Figure 2.5(a) and for multiple contacts in Figure 2.5(b). 

Analytical solutions for the heat diffusion in this case are complicated but they have been 

obtained [73]. The constriction-spreading resistance, Rc-s, between the flux tube to the circular 

contact is given by 

𝑅𝑐−𝑠 =
𝐹(𝑎 𝑏⁄ )

4𝑘𝑎
,                                                                 (2.12) 
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where F  is the constriction alleviation factor, and a and b are radii of the contact and flux tube 

respectively. The constriction alleviation factor is a function of only the two radii and in the form 

of an infinite series. Tabulated values for F are available in reference [14]. For contact between 

two materials the constriction-spreading resistance from sides 1 and 2 can be added in series to 

give the total constriction-spreading resistance of the contact as 

 𝑅𝑐−𝑠 = 𝐹 [4𝑎𝑘1]⁄ + 𝐹 [4𝑎𝑘2] ⁄ = 𝐹 [4𝑎𝑘𝑚]⁄ ,                               (2.13) 

where 𝑘𝑚 = 2𝑘1𝑘2/[𝑘1 + 𝑘2]. The constriction-spreading resistance for n contacts at an interface 

is then simply the sum of the resistances of the single contacts. If an average contact radius, 𝑎𝑚, 

is assumed the total constriction-spreading resistance of the entire interface, 𝑅𝑐−𝑠,𝑖𝑛𝑡 , is 

𝑅𝑐−𝑠,𝑖𝑛𝑡 = 𝐹 [2𝑛𝑎𝑚𝑘𝑚]⁄ .                                                         (2.14) 

Equation 2.14 is coupled to the contact mechanics problem through the parameters n and 𝑎𝑚, and 

therefore it must be solved before the contact resistance can be calculated. Numerous iterations of 

the contact mechanics problem for pure elastic, pure plastic, and elastoplastic contacts have been 

developed and are available in the literature, many of which are featured in the review by 

Yovanovich [15]. 

 Historically, when solutions to the thermal constriction-spreading resistance have been 

obtained analytically the effect of thermal boundary resistance was neglected. To illustrate the 

validity of this assumption, consider the constriction-spreading resistance for a 1μm diameter 

contact area in a material with a thermal conductivity of 100 W/m-K. Equation 2.12 gives a 

constriction resistance of approximately 500 to 2000 mm
2
-K/W for a/b values of 0.6 and 0.1 

respectively. On the other hand, thermal boundary resistance values for assorted metal-dielectric 

interfaces are on the order of 0.01 mm
2
-K/W [74]. As such, the thermal boundary resistance is not 

a significant factor for contacting rough surfaces. 
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2.2.3 Additional Impediments to Interfacial Thermal Transport 

The structure and strength of the chemical bonding at the interface can also influence thermal 

transport. The notion that strength of bonding affects transport is longstanding, yet only in the 

past few years has it been directly studied [75-79]. Losego et al. [79] completed the first 

systematic experimental study on the relationship between interface bond strength and the 

thermal boundary resistance in 2012. The terminal group of a self-assembled monolayer (SAM) 

was varied to create bonding interactions with an Au film that varied from weak van der Waals 

type interactions to strong covalent bonding. The thermal boundary resistance was observed to 

decrease ~50% from van der Waals to covalent bonding. The previously presented theories for 

the AMM and DMM presumed perfect bonding at the interface. In the AMM, perfect bonding 

was implied through the boundary conditions placed on the interface – continuity in stress and 

displacement. In an effort to remove this restriction and to incorporate non-ideal bonding, Prasher 

[78] considered the interface between the two materials to be mediated by a spring, as is often 

done in non-destructive interface assessment [80]. The transmission coefficient for the modified 

model is given by 

𝜏1→2 =
4𝜌1𝜌2𝜈1𝜐2 cos 𝜃1 cos 𝜃2

(𝜌1𝜐1 cos 𝜃1 + 𝜌2𝜐2 cos 𝜃2)2 + (
𝜔
𝐾

)
2

(𝜌1𝜌2𝜈1𝜐2 cos 𝜃1 cos 𝜃2)2
,                  (2.15) 

where spring constant, K, can be assigned from an interatomic potential or experimentally 

observed values. In the limit of a perfectly stiff spring, K→∞, the unmodified AMM is recovered. 

 For interfaces where the characteristic dimensions of the surface features conducting heat 

approach the nanoscale additional factors can significantly influence thermal transport. 

Specifically, simulations of thermal transport at abrupt junctions, such as those between a one or 

two-dimensional nanostructure and a bulk surface, suggests that phonon coupling to surface 

modes impedes transport comparably to the  mismatch in vibrational characteristics. The result is 

an additional source of thermal resistance that is present even at junctions between identical 
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materials [81]. Furthermore, for thermal transport at contacts where the dimension of the contact 

area is of comparable length scale to the phonon mean free path the transport transitions from 

being diffusive to ballistic in nature. Prasher [38] developed a simple expression from the DMM 

to quantify the thermal resistance due to ballistic transport. Assuming the phonon velocities are 

frequency independent and identical for each mode the thermal resistance due to ballistic effects 

is  

𝑅𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 =
4(𝐶𝑙,1𝜐1 + 𝐶𝑙,2𝜐2)

𝐶𝑙,1𝜐1𝐶𝑙,2𝜐2
,                                                   (2.16) 

 where 𝐶𝑙 is the lattice heat capacity per unit volume. The total thermal resistance of a contact is 

given by the sum of the constriction-spreading resistance and the ballistic resistance. The relative 

contributions of each can be indicated by the dimensionless Knudsen number (Kn), given by 

𝐾𝑛 = 𝜆 𝑎,                                                                     (2.17)⁄  

where λ is the phonon mean free path, and a is the characteristic radius of the contact area. When 

Kn >>1 the ballistic resistance will dominate the total resistance, whereas when Kn<<1 the 

constriction-spreading resistance will dominate transport. In the intermediate regime, Kn~1, both 

the ballistic and constriction-spreading resistance will contribute to the total thermal resistance of 

the contact. 

 Unfortunately, a unifying theory for thermal transport at interfaces that accounts for all of 

the aforementioned mechanisms does not exist. For the case of CNT forest interfaces the sheer 

number, nanometer scale, and variable orientation of the free tip contacts further complicates the 

problem. Nonetheless, several insightful analytical frameworks for thermal transport at CNT 

forest contacts have been developed and are reviewed in the following section. 
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2.3 Thermal Transport at Carbon Nanotube Forest Contacts 

To describe thermal transport at the CNT forest free-tip interface the contact mechanics problem 

and heat transfer problem must be addressed at both the scale of an individual CNT contact and at 

the scale of a CNT forest. Here, overviews of the relevant analytical frameworks for these 

problems at both scales are presented. These frameworks are revisited in subsequent chapters to 

analyze several of the processing methods developed. 

2.3.1 Thermal Transport at Individual CNT Contacts 

The increased horizontal orientation of the CNT tips in the distal crust layer [82, 83], and their 

propensity to bend under loading [44] causes the majority of CNT tips to lay parallel to the 

opposing surface, contacting it with their side-walls, as is shown in Figure 2.6. Considering the 

ideal case of no surface roughness, the contacts can be viewed as cylinder-plane contacts, 

depicted in Figure 2.7. In this contact-mode the graphite layers comprising the CNT side-wall are 

oriented parallel to the contact plane, i.e. the surface normal is aligned with the c-axis, across the 

entire contact area. For this reason, CNT contacts are frequently analyzed as graphite contacts. 

The CNT forests utilized in this research are grown via a base-growth mechanism and feature 

closed tips. Therefore, even in the event that a CNT tip should contact the opposing surface 

perpendicularly or at an intermediate angle, the contact still features graphite planes oriented 

parallel to the contact plane. Cases where open-ended CNTs are in perpendicular contact the 

surface, such as the growth substrate have also been analyzed [40, 44], but are not reviewed here 

since this research is focused on CNT forest free tip interfaces. Due to the abrupt change in area 

and the nano dimension of CNT contacts constriction-spreading (section 2.2.2) and ballistic 

effects (section 2.2.3) can significantly influence thermal transport. 

 As in the generic treatment of interfacial thermal transport, covered in section 2.2, to 

describe the heat transfer at a CNT contact it is essential to determine the contact area.  
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Figure 2.6: SEM images illustrating the bending of CNT tips to form cylinder-plane contacts 

with opposing surfaces [44]. 

 

 

Figure 2.7: Cylinder-plane contact formed between a CNT tip and opposing substrate. Over the 

contact area the graphitic planes of the CNT sidewall are oriented parallel to the surface. 

 

Considering van der Waals interactions, elastic contact, and the idealized cylinder-plane contact 

configuration of Figure 2.7, a CNT of diameter d will form a contact width, 2r, given by 

 

 

 

d 

2r 

  

c-axis 
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2𝑟 = (
16𝑓𝑣𝑑𝑊𝐸𝑚𝑑

𝜋
)

1/2

,                                                        (2.18) 

where fvdW is the net contact force per unit length due to vdW interactions and Em is the effective 

modulus of elasticity [40, 84].  Multiwall CNTs typically have diameters between 5-50 nm, 

which using the parameters in reference [40] correspond to contact widths of ~0.75-2.5 nm 

respectively. Thermal transport within CNTs and at CNT contacts, even those with a metal, is 

dominated by phonons [20, 40]. The mean free path of phonons in crystalline solids is typically 

on the order of several hundred nanometers, although it can be as short as 4 nm [85] in defective 

muti-wall CNTs and in excess of 1 μm for both crystalline Si [86] and well graphitized CNTs 

[22]. Accordingly, the Knudsen number (Equation 2.17) for CNT contacts is typically ~1 or 

greater, confirming that ballistic effects significantly influence thermal transport and must be 

considered. The expression for the ballistic resistance given in Equation 2.16 is appropriate for 

CNT contacts.  

The expressions for the constriction-spreading resistance of CNT contacts differ from 

those given in Equations 2.12-2.14, due to the difference in the contact geometry. Expressions for 

the constriction-spreading resistance of a cylinder-plane contact have been developed by McGee 

et al. [87] and applied to nanotube/nanowire contacts in several studies [38, 44, 84]. As in the 

generic case of a circular contact an expression for the constriction-spreading resistance based on 

the flux tube geometry on either side of the interface are developed separately and then added to 

represent the effective constriction resistance of the junction. The constriction-spreading 

resistance from the cylinder to the contact width 2r is 

𝑅𝑐−𝑠,𝑐𝑦𝑙 =
2𝑟

𝜋𝑘𝑐𝑦𝑙
ln (

2𝑑

𝑟
) −

𝑟

𝑘𝑐𝑦𝑙
.                                                  (2.19) 

Defined in similar fashion, the constriction-spreading resistance for the substrate side of the 

interface is given by 
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𝑅𝑐−𝑠,𝑠𝑢𝑏 =
2𝑟

𝜋𝑘𝑠𝑢𝑏
ln (

𝑑

𝜋𝑟
).                                                        (2.20) 

Cola et al. calculated the constriction and ballistic resistances for CNTs in contact with a variety 

of metals using the thermal properties of graphite and found that the ballistic resistance, ~10
-3

 

mm
2
-K/W, was typically two orders of magnitude larger than the constriction resistance, ~10

-5
 

mm
2
-K/W [44]. As was the case for theories describing transport at plane interfaces the 

assumption of perfect bonding generally causes the models describing transport at CNT contacts 

to under predict of the actual resistance. Estimates of the contact resistance of individual CNTs 

interacting with surfaces through vdW interactions from experiments and simulations are 

generally an order  of magnitude larger, on the order of 0.02 mm
2
-K/W [20, 41].  

2.3.2 Contact Mechanics and Thermal Transport at the Scale of CNT Forests 

Extending the analysis at individual CNT contacts to a CNT forest requires solving the contact 

mechanics problem to determine the contact area. The sheer number of CNTs in a forest and the 

inherent variability in their arrangement makes the extension of atomistic scale models, such as 

molecular dynamics [41] or atomistic greens function [88], of individual CNT segments to entire 

CNT forests computationally intractable. Micro-scale models using techniques such as coarse-

graining have had some success capturing the microstructure dependent mechanical and thermal 

behavior of CNT forests and sheets (bucky papers), however simulations are typically restricted 

to around 100 CNTs five micrometers or less in length [89, 90]. Here, a semi-empirical model 

developed by Cola et al. is reviewed [44]. The model uses wool fiber compression theory, load-

displacement data from real CNT forests, and classical contact mechanics to predict the contact 

area at the CNT tip interface.  

 In the 1940s van Wyk derived a theoretical model to describe the compressive behavior 

of entangled wool fibers for the textile industry [91]. Using fiber bending mechanics, a statistical 

description of the orientation of individual fibers, and inter-fiber mechanical interactions van 

Wyk was able to theoretically capture the experimentally observed compressive behavior of  
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wool fiber masses. Specifically, van Wyk was able to describe the inverse proportionality 

between the volume of a fiber mass and the cube root of the pressure applied to the mass using 

simple parameters like the volume fraction of the fibers in the uncompressed mass. A half-

century later Cola et al. [44] noticed that CNT forests exhibited similar VαP
-1/3

 compressive 

behavior and adapted an extension of van Wyks model [92] to describe the compressive behavior 

of CNT forests. In the model the height, or thickness t, of the CNT forest is related to the applied 

compressive pressure by the expression 

𝑡 = 𝑡′ + (𝑡0 − 𝑡′) ∙ (
𝑃𝑓

𝜎𝑅
+ 1)

−
1
3

,                                                   (2.21) 

where t’ is the incompressible thickness, t0 is the thickness under no compressive load, Pf is a 

contact area corrected pressure, and σR is a parameter describing the forests resistance to 

compression. Pf is expressed in terms of CNT forests characteristics through the expression 

𝑃𝑓 =
𝑃

(Φ
2𝑟
𝑑

)
,                                                                      (2.22) 

where P is the compressive pressure applied to the forest, Ф is the volume fraction of CNTs in the 

forest, r is the contact half-width (Figure 2.7) formed by a CNT of average diameter d in the 

forest. The CNT forests resistance to compression is given by 

𝜎𝑅 = 𝑐1 ∙ 𝐸𝑏 ∙ Φ3,                                                                (2.23) 

where c1 is a fitting parameter to account for variations in CNT characteristics and Eb is the 

average bending modulus of a CNT in the forest. Cola et al. validated the model by successfully 

fitting it to multiple sets of published CNT forest load-displacement data, and noting that fit 

values for t0 closely matched the height of uncompressed CNT forests as measured by SEM. 
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 To determine the contact area at the CNT free tip interface the pressure-thickness relation 

of Equation 2.21 is used to derive an analytical expression for the bulk compressive modulus of a 

CNT forest. Specifically, the thermodynamic definition of bulk compressive modulus is used 

𝐵 = −𝑡(𝑑𝑃 𝑑𝑡).                                                                (2.24)⁄  

Finally, this bulk compressive modulus is used as an input in classical contact theory [12, 14] to 

predict the contact at the CNT forest tip interface using the relation 

𝐴𝐶𝑁𝑇 𝑡𝑖𝑝𝑠

𝐴𝑡𝑜𝑡𝑎𝑙
=

2𝑃

𝐵
.                                                                 (2.25) 

The contact area is related to the thermal resistance by the expression 

(ROS-CNT/RCNT tip) = (ACNT tips /Atotal),                                            (2.26) 

where the subscript OS-CNT is used to denote the effective thermal resistance between the CNT 

forest and an opposing substrate. Experimental results or thermal models like those reviewed in 

section 2.2.2 or elsewhere for individual CNT contacts can be used for RCNT tip  in Equation 2.26 to 

calculate the thermal resistance of the entire CNT free tip interface.  
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CHAPTER 3 

EXPERIMENTAL METHODS 

 

 

This chapter describes the methods by which CNT forest TIMs were fabricated and characterized 

in this research. Specifically, it describes the CNT forest synthesis procedure and the thermal 

characterization methods; photoacoustic, and time-domain thermoreflectance. The processes 

developed for mitigating the contact resistance at the CNT forest tip interface are discussed in 

their respective chapters. 

3.1 Carbon Nanotube Forest Synthesis 

For the majority of experiments nominally vertically aligned forests of CNTs were grown on 1x1 

cm
2
 single-crystal Si substrates. Ti, Al, Fe films in thicknesses of 30, 10, 3 nm were 

consecutively evaporated onto the Si as support and catalyst layers for CNT growth. CNT forests 

were grown using a low pressure chemical vapor deposition (LPCVD) process at 850 °C and 10 

mbar in an Aixtron Black Magic© reactor (maintained by the Georgia Tech Institute for 

Electronics and Nanotechnology) with acetylene (C2H2) as the carbon source gas. The growth 

time was varied from 30 s to 15 min to grow forests of multiwall CNTs ranging from 5 to 150 μm 

in height with an average CNT diameter of 8 nm and an average of 7 walls. To minimize 

variability in the CNT growth the Si substrates were sequentially rinsed in acetone, methanol, and 

isopropyl alcohol before the catalyst deposition and a 5 min O2 plasma clean recipe was executed 

prior to each growth. A representative scanning electron microscope (SEM) image of a CNT 

forest and a transmission electron microscope (TEM) image of an individual CNT, are shown in 

Figure 3.1. Raman spectroscopy was used to interrogate the chemical structure and “quality” of 

the CNTs. Figure 3.2 shows the Raman spectra for a CNT forest with the characteristic D 

(disordered/defective carbon), ~1350 cm
-1

,  and G (graphitic carbon) , ~1590 cm
-1

, band peaks 

[93]. An intensity ratio IG/ID of  ~1.1 was typical. 
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For the majority of applications it is not feasible to synthesize CNT forests directly on the 

surfaces of components comprising the interface. Therefore, CNT forests were also grown on 

both sides of 10 μm thick Al foil (Alfa Aesar 41798) to create a thermal interposer, similar to that  

 

 
Figure 3.1: SEM image of a CNT forest (left) and TEM image of an individual CNT (right), 

characteristic of those used in this research. 

 

 
Figure 3.2: Raman spectra of a CNT forest, representative of those used in this research, with the 

with characteristic G and D band peaks used to infer CNT quality.  

 

 

shown in Figure 3.3, for demonstrations of how the methods developed in this research might be 

implemented in industry. An identical growth process was employed except that 100 nm of Ni 
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was added to the bottom of the catalyst stack as a diffusion barrier and the temperature of the 

growth stage was lowered to 750 °C (a pyrometer measured the actual sample temperature to be 

approximately 630 °C, which is less than the melting temperature of Al). 

 

 
Figure 3.3: CNT Forest grown on both sides of a metal foil to create a thermal interposer [94]. 

 

 

3.2 Thermal Metrology 

The efficacy of the methods developed in this research for mitigating the contact resistance in 

CNT forest TIMs are evaluated by experimental measurement of thermal resistance. Two steady 

periodic photothermal techniques, photoacoustic and time-domain thermoreflectance are used. 

Both of these techniques use modulated lasers to induce steady periodic surface heating in CNT 

structures. The spatial dimension profiled by these structures can be approximated by the thermal 

penetration depth, tp, is given by  

𝑡𝑝 = (2𝛼 𝜔⁄ )1/2,                                                                (3.1) 

 

where α is the thermal diffusivity of the material being heated and ω is the angular frequency of 

heating, equal to the laser modulation frequency [95]. The techniques used in this research use 

vastly different heating frequencies to profile the thermal resistance of CNT forest TIMs at 

different length scales. 
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3.2.1 Photoacoustic 

Photoacoustic (PA) is a steady periodic technique photothermal technique for measuring the 

thermal properties of thin films, interfaces, and buried layers [11, 96, 97]. In PA a continuous 

wave laser (1100 nm wavelength) is square-wave modulated using an acousto-optic modulator 

before irradiating the sample of interest. The laser energy is absorbed in the sample and 

conducted as heat both downward into the sample, as well as upward into a sealed transparent gas 

filled chamber. The periodic nature of the heating causes periodic pressure fluctuations in the gas 

that are detected using a microphone embedded in the chamber wall. Lock-in amplification is 

used to extract the phase and amplitude of the microphone response at the modulation frequency 

and constitutes the measurement signal. A schematic of a PA experimental setup is shown in 

Figure 3.4.  

 

 

Figure 3.4: Schematic of the PA system used to measure the total resistance of CNT forest TIMs. 

 

 In a PA measurement the microphone response to a range of modulation frequencies, 

typically tens to several thousand Hz, is used to thermally profile the sample. By varying the 

modulation frequency, i.e. the frequency of heating, the thermal penetration depth (Equation 3.1) 
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is altered. In the PA experiments conducted for this research a frequency range of 300-4000 Hz 

was used to effectively profile entire CNT forest TIMs and their contact interfaces. The phase 

shift vs. frequency data is used in a theoretical model describing one-dimensional heat transfer 

through the sample layer(s) and the thermodynamics in the gas chamber, to extract unknown 

thermal properties [96]. Depending on the sample configuration and knowledge of the sample 

properties, the measurement can be used to extract thickness, thermal diffusivity, and thermal 

conductivity of the sample layer(s), in addition to thermal contact resistances between layers.  

To evaluate the CNT TIMs developed in this research the free-tips of CNT forests on 

their Si growth substrates were contacted, or bonded, to a metal foil to simulate an interface, 

illustrated in Figure 3.4. The metal foil, typically 25 μm thick silver (Alfa Aesar 11498), is chosen 

as the top substrate because of its high thermal conductivity. As such, it has minimal thermal 

resistance and thereby maximizes the measurement sensitivity to the CNT underlayer. 

Uncertainty in the measurement primarily stems from uncertainty in the measured phase shift, 

typically ± 1 deg. or less. For vertical CNT TIMs uncertainties in thermal resistance values as low 

as 0.4 mm
2
-K/W have been reported [11]. A feature of PA that can be useful for studying CNT 

TIMs is the ability to precisely control the pressure applied to the sample during the 

measurement. The measurement pressure, above the few kPa required to seal the chamber against 

the sample, is set via the base pressure of the He gas in the acoustic chamber. Pressures ranging 

from approximately 5-200 kPa are feasible.  

 The sample configuration used to characterize CNT forest TIMs with PA contains several 

unknown or difficult to determine parameters, including the thermal conductivity, heat capacity, 

and thickness of the CNT forest, in addition to the contact resistances of the Ti-Ag, Ag-CNT, and 

CNT-Si interfaces. The influence each of these parameters has on the PA signal is described by 

the sensitivity. In a PA experiment the sensitivity to a parameter, p, denoted as Sp, is given by 

𝑆𝑝 = (𝜕𝜑 𝜕𝑝⁄ )𝑝,                                                                (3.2) 
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where φ is the measured phase shift [97]. Figure 3.5 shows the sensitivity of the PA experiment to 

the aforementioned parameters for a 15 μm tall CNT forest with generic properties and Ag-CNT 

and CNT-Si interface resistances of 2 mm
2
-K/W. As is shown in Figure 3.5, the PA signal 

depends on all of the parameters, with the exception of the CNT forest thermal diffusivity. For 

this reason all of these parameters were treated as unknowns during data fitting. Data fitting was 

conducted using a Levenberg-Marquardt non-linear least squares algorithm [98]. To ensure that 

the algorithm converged to a global minimum each fitting parameter was separately varied by 5, 

20, 500, and 2,000% to create four additional sets of guess values. Since there were typically six 

fitting parameters in this research the data was usually fit using 24 additional sets of guess values. 

Due to the large number of fitting parameters, the specific sample structures, and the upper limit 

on heating frequencies ( 6-8 kHz) that can be tested with PA the confidence interval was too large 

to meaningfully resolve parameters on an individual basis. To illustrate this an experimental data 

set for a CNT forest is shown in Figure 3.6 with two theoretical fits. The two fits are 

indistinguishable and yield the same value for the total resistance; however, the component 

resistances for the two fits differ considerably. As a result, a unique solution could only be 

obtained for the total resistance of CNT forest TIMs with PA.  

 

 
Figure 3.5: (a) CNT forest properties used to plot (b) the sensitivity of the PA measurement to 

unknown parameters. 
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Figure 3.6: Two theoretical fits to PA data collected on a 10 μm tall CNT forest in dry contact 

with Ag foil. The total resistance was identifiable with PA, however the component resistances 

were not. 

 

 

3.2.2 Time-Domain Thermoreflectance 

Time-Domain thermoreflectance (TDTR) is a steady periodic photothermal technique for 

measuring the thermal properties of bulk materials, thin-films, and interfaces. TDTR is a subset 

of a broader class of photothermal spectroscopies referred to as pump-probe thermoreflectance 

methods, which include nanosecond thermoreflectance [45] and frequency-domain 

thermoreflectance (FDTR) [99]. In all pump-probe thermoreflectance techniques two laser beams 

are required. The frequency modulated pump beam is irradiated onto a metal film, typically 100 

nm in thickness, coated onto the sample surface to induce a heat flux. The probe beam incident at 

the same location on the sample measures indirectly the surface temperature change through 

changes in the reflectivity of the metal film. Metal films with a high temperature coefficient of 

reflectivity at the wavelength of the probe beam (predominantly Al at 800 nm) are used to 

maximize measurement signal [100].  
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Figure 3.7: Schematic of the two-color TDTR system used in the NEST lab to characterize CNT 

forest TIMs. 

 

 

A schematic of a TDTR system in the NEST lab at Georgia Tech is displayed in Figure 3.7. In 

TDTR a Ti-sapphire ultrafast laser oscillator that emits 800 nm wavelength light pulses ~100 fs in 

duration at a frequency of 80 MHz is used. The emission from the oscillator is split using a 

polarizing beam-splitter to form the pump and probe beams. The pump beam is frequency 

modulated using an electro-optic modulator at a frequency that is an order of magnitude or two 

lower than the frequency of the oscillator to facilitate lock-in detection of the probe response. The 

modulated pump beam is then frequency doubled to 400 nm using a BiBO crystal. This enables 

the pump and probe beams to be configured co-linearly as they approach the sample, but 

separable through the use of spectral filters. The path length traversed by the probe beam is 

adjusted using a linear stage to control its arrival at the sample surface relative to the pump beam. 

The reflected probe beam is captured with a photodetector and lock-in amplification is used to 

extract the component at the modulation frequency of the pump beam. By measuring the changes 

in the reflected probe energy at time delays from zero to several nanoseconds the transient 

temperature response of the sample surface is recorded. The reflectance data, typically the ratio of 

the in-phase and out-of-phase components, is used in a theoretical heat transfer model [101-103] 
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to extract unknown parameters by fitting the model to the data. In general TDTR can be used to 

measure in-plane and cross-plane thermal conductivity, heat capacity, and contact resistance. 

Owing to the high modulation and pulse frequencies used in TDTR experiments the spatial-

temporal scales profiled (Equation 3.1) are typically on the scale of picoseconds and nanometers, 

and are favorable for interrogating thermal transport at interfaces. In particular, TDTR is well-

suited to characterize the interface between the metal transducer layer and the sample [69, 79, 

104, 105]. Uncertainties in the thermal resistance of the transducer-sample interface on the order 

of ± 0.1 mm
2
-K/W have been reported [79] for these configurations.  

Nanosecond thermoreflectance and FDTR have been previously used to study the thermal 

properties of CNT forests [45, 46, 106]. In these experiments the metal transducer film was 

deposited directly onto the free tips of the CNT forest, resulting in a conformal coating across the 

entire surface of the CNT forest. To study the processes developed in this research it is essential 

that CNT forests contact the free surface of a pre-existing transducer to accurately capture the 

mechanics and CNT tip morphology of bonded or pressed contacts. In 2008 Schmidt et al. 

adapted the TDTR technique for measuring the thermal conductivity of liquids [103]. In the 

experiment, illustrated in Figure 3.8 a small amount of liquid is pressed between two glass 

microscope slides, one of which has the Al transducer film deposited on the inner surface. The 

pump and probe beams pass through the transparent glass slide and are incident on the transducer 

film. Heat generated in the transducer is conducted both into the sample layer and back into the 

glass cover slide. As such the measurement becomes sensitive to not only the thermal properties 

of the sample layer, but also those of the glass slide. Schmidt modified the original TDTR theory 

to account for the bidirectional flow of heat and validated its use by measuring the thermal 

conductivity of several liquids. Here, the bidirectional heat flow model is used to characterize 

CNT forests bonded to Al transducer films deposited on glass microscope slides [107]. 

Specifically, it is used to measure the interface resistance between the CNT forest tips and the Al 

transducer to assess the efficacy of the processes developed in this research. To control the 
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pressure applied to the CNT forest-Al transducer interface a compact linear-compression cell with 

a load capacity of 445 N was constructed and is illustrated schematically in Figure 3.9. 

 

 
Figure 3.8: TDTR sample configuration with a transparent top substrate and bi-directional heat 

flow a) originally used to measure the thermal conductivity of liquids, b) adapted in this research 

to characterize bonded/pressed CNT forest contacts. 

 

 

 
Figure 3.9: Side-view schematic of the linear-compression cell used to apply pressure to CNT 

forest contacts during TDTR measurements. 
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In TDTR a number of system parameters can be tuned to influence the measurement. 

Most notably, the pump-beam modulation frequency can be adjusted to alter the thermal 

penetration depth, Equation 3.1. The measurement signal in TDTR experiments is typically on the 

order of microvolts, and can be challenging to isolate from background noise. A resonant filter is 

often used to increase the signal to noise ratio. Based on commonly available inductor sizes for 

constructing the resonant filter, modulation frequencies of 9.8, 6.3, 3.6, and 1.2 MHz are feasible. 

The TDTR system in the NEST lab has been verified at each of these frequencies using known 

materials. In this research, multiple modulation frequencies are often utilized to facilitate 

identification of multiple unknown parameters. For example, the measurement signal at 1.2 MHz 

might be more sensitive to unknown parameter “A” and much less sensitive to parameter “B”, but 

at a modulation frequency of 6.3 MHz more sensitive to parameter B than A. By performing 

TDTR at both of 1.2 and 6.3 MHz the ability to separately resolve both parameters A and B is 

improved [108, 109]. Factors that can also influence a TDTR measurement are the pump and 

probe beam diameters and powers. These parameters generally impact the magnitude of the 

measurement signal, the steady state temperature rise, and radial transport [102, 110]. In this 

research the pump-beam diameter was set to 70 μm and the probe beam diameter to 28 μm. A 

pump beam power of 20-30 mW and a probe beam power of ~5 mW were used to minimize the 

steady state temperature rise in the sample, while maintaining a sufficient signal/noise ratio. 

Radial transport is not expected to play a significant role under these conditions and given the 

highly anisotropic nature of CNT forests. Nonetheless, it is accounted for in the theory used to 

model the data [103]. 
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CHAPTER 4 

ENHANCING CONTACT AREA: LIQUID SOFTENING  

 

 

4.1 Introduction 

A strikingly simple and straight-forward approach for improving contact to CNT forests is 

developed. The approach involves wetting the CNT forest with a liquid, pressing it into contact 

with the surface, and then allowing it to dry under pressure. It was discovered through a control 

experiment for the research presented in Chapter 5. The approach has ramifications for not only 

CNT forest TIMs, but also gecko-mimetic CNT forest adhesives where the contact area directly 

impacts the achievable adhesion. 

 

 

 
Figure 4.1: Illustration of inter-CNT vdW interactions being attenuated by liquid, decreasing the 

stiffness of the CNT forest, and increasing the contact area (b), over the dry state (a). 

 

 

4.1.1 Hypothesis 

There are two plausible mechanisms by which the infiltration, compression, and subsequent 

evaporation of liquid from CNT forests against a surface might increase the contact area. The first 
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is related to the attenuation of inter-CNT vdW interactions. It is well established that vdW 

interactions at CNT-CNT contacts contribute to the mechanical behavior of CNT forests [111-

114]. Only recently has it been shown that by infiltrating the CNT forest with a liquid the vdW 

interactions within the forest can be diminished leading to a significant reduction in the 

mechanical stiffness [115-117]. Decreasing the mechanical stiffness of the forest enables it to 

deform more readily under a compressive load and may ultimately increase the contact area at the 

CNT tip and opposing surface interface [12, 44], as illustrated in Figure 4.1. 

 

 

Figure 4.2: Capillary induced deformation of CNT forests into cellular structures [118]. 

 

 The second potential mechanism is attributed to capillary forces that arise during the 

evaporation process. The capacity for capillary forces to deform CNT forests has been widely 

demonstrated and has even been tailored for densification and the formation of complex 

microstructures [118-121], an example is shown in Figure 4.2. It is conceivable that while liquid 

evaporates from a CNT forest capillary stresses pull near-surface CNT segments into contact with 

the surface and increase the contact area, illustrated in Figure 4.3. The capacity for both of these 

mechanisms to enhance contact between a CNT forest and a free surface is investigated. 
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4.2 Methods 

The CNT forests used in this research were fabricated on 1 cm
2
 Si tabs, as described in section 

3.1. The growth time was tuned to produce CNT forests 5-10 μm (short) and 60 μm (tall) in 

height. 

 

 
Figure 4.3: Illustration of capillary forces during evaporation of liquid from a CNT forest pulling 

a CNT tip into contact with the opposing substrate. 

 

 

4.2.1 The Wet-Compress-Dry (WCD) Process 

To understand the influence of liquid infiltration and drying on CNT tip contact two sample 

configurations were studied. For the first configuration the as-grown CNT forests were 

compressed against opposing substrates for subsequent thermal or mechanical characterization. In 

the second configuration, the as-grown CNT forests were wet with liquid from a pipette, 

compressed against the opposing substrate, and allowed to dry under pressure. The wetting, 

compressing, and drying procedure is illustrated in Figure 4.4. These sample configurations are 

referred to as dry, and wet-compressed-dried (WCD) hereafter. 

Opposing substrate 

Capillary force drawing CNT into 
contact with opposing substrate  

Liquid 
CNT 



47 
 

 
Figure 4.4: Illustration of the WCD process 1) CNT forest is wet with a liquid, 2) the wet CNT 

forest is compressed against the opposing substrate, 3) the liquid evaporates from the compressed 

CNT forest, and 4) the dry structure undergoes thermal or mechanical testing. 

 

4.2.2 Photoacoustic  

The photoacoustic method, implemented as described in section 3.2.1, was used to measure the 

total thermal resistance of dry and WCD CNT forests. The CNT forests were compressed against 

the opposing Ag substrates for at least five hours prior to execution of the experiment. This was 

done to ensure that the liquid fully evaporated from the WCD samples. The compressive load was 

provided by the helium gas in the acoustic chamber (Figure 3.4) and remained applied to the 

sample during the measurement. To understand any influence the compression pressure might 

have on the results PA experiments were conducted at pressures of 35, 70, 105, and 140 kPa. 

Additionally, PA experiments were conducted on CNT forests wet with liquid and allowed to dry 

before being placed in contact with the Ag foil. For this sample configuration only capillary 

forces can influence the contact area. 
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4.2.3 Shear Adhesion 

The adhesion of dry and WCD CNT forests was assessed through a shear failure mode using a 

Dage 4000 commercial die shear apparatus. For the shear tests the CNT forests were compressed 

against glass substrates. During the test the glass substrates were held fixed, while a lateral force 

was applied to the Si growth substrate to shear the CNT forest from the glass substrate. As in the 

PA experiments the CNT forests were compressed against the opposing glass substrates for at 

least five hours prior to execution of the experiment to ensure that the liquid fully evaporated 

from the WCD samples. For the adhesion measurement the compressive load was applied via 

weights placed upon the sample, and was removed after the five hour drying period. No 

compressive pressure was applied to the sample during shear tests. To understand any influence 

the compression pressure might have on the results die shear experiments were conducted at 

pressures of 0, 35, 70, 105, and 140 kPa.  

4.2.4 Capillary Forces 

The CNT forests used in thermal measurements were wet with either water or hexane with the 

intent to modulate the magnitude of the capillary forces present during the drying process. Water 

is a highly polar solvent with a dipole moment of ~1.85 D and a surface tension in air of ~72 

mN/m. In contrast, hexane is a virtually non-polar solvent with a dipole moment of ~0 D and a 

surface tension in air of only ~18mN/m [122]. The contact angle of both water and hexane on 

CNT forests and on the Ag opposing substrates used in PA measurements were measured using a 

goniometer (Rame-hart 250). Water had an average contact angle of 90° on Ag (Figure 4.5(a)) 

and 115° on CNT forests, before slowly infiltrating the forest. Contact angle measurements were 

not feasible for hexane, as it wet nearly perfectly to both surfaces and evaporated rapidly. Since 

the component of the capillary force normal to a surface scales with the product of the surface 

tension and the sine of the contact angle (Figure 4.5(b)), the magnitude of the capillary forces are 

expected to be significantly stronger for water than hexane. WCD samples for shear adhesion 

tests were prepared exclusively with hexane. 
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Figure 4.5: (a) Contact angle of 90° formed by water on Ag, and (b) illustration of surface forces 

acting on a droplet on a surface. The force normal to the surface is proportional to the liquid-

vapor surface tension and the sine of the contact angle. 

 

4.2.5 Coarse-Grain Mechanics Simulations 

To further investigate the extent to which relaxing inter CNT vdW interactions within the forest 

improves tip contact a coarse-grain model of short CNT forests [89, 90] was employed by 

collaborators Mr. Sridhar Sadasivam and Professor Timothy S. Fisher at Purdue University. The 

model uses an energy minimization routine to predict the microstructure, and thereby the contact 

area, of CNT forests compressed against a flat smooth surface. The total energy of the system in 

the coarse-grain model is given by 

𝑈 = 𝑈𝑠𝑡𝑟 + 𝑈𝑏𝑛𝑑 + 𝑈𝑣𝑑𝑤 = ∑
1

2
𝑘𝑟(𝑟 − 𝑟0)2 + ∑

1

2
𝑘𝑏(𝜃 − 𝜃0)2

𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝑝𝑎𝑖𝑟𝑠

+ ∑ 𝐿𝐽(𝑟), (4.1)

𝑝𝑎𝑖𝑟𝑠

 

where Ustr, Ubnd and Uvdw denote the energies due to axial stretching, bending and vdW interaction 

among CNTs respectively. kT, kb can be related to the Young's modulus and bending stiffness of 

an individual CNT respectively [90]. In the present work, the Young's modulus of the mulit-wall 

CNT is assumed to be same as that of graphite and the bending stiffness is fitted to the 

experimentally measured Young's modulus from nanoindentation experiments. The strength of 

the Lennard-Jones potential is chosen to match the strength of vdW interaction in a fully 

atomistic model [90]. We perform coarse-grain simulations of a 5µm tall CNT array with nominal 
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vdW interaction (to simulate the compression of dry CNT arrays) and with artificially reduced 

vdW interactions (to simulate the compression of CNT arrays infiltrated with a liquid).  All other 

simulation parameters are consistent in both simulations. The CNT array microstructures are 

obtained for a series of applied pressures and the microstructures are then analyzed to determine 

the CNT-substrate contact area. 

4.3 Results 

4.3.1 Photoacoustic Results 

The average total thermal resistance of seven short (5-10 μm) dry CNT forests compressed under 

140 kPa was measured to be 10 ± 2 mm
2
-K/W. Three of those forests were subsequently wet with 

water, four with hexane, and compressed again under 140 kPa. The total thermal resistance for 

these short WCD samples was measured to be 2.5 ± 1.0 and 3.0 ± 1.0 mm
2
-K/W for water and 

hexane respectively, Figure 4.6(a). As such, the WCD process enabled an approximately 70% 

reduction in the total resistance for both liquids. We attribute the entire reduction in thermal 

resistance to a change in contact area at the CNT tip interface, i.e. a reduction in RAg-CNT. It is 

unlikely that the total resistance is reduced from changes to RCNT-Si since the vast majority of 

CNTs are attached to Si substrate via the metal catalyst particles. Likewise, it is unlikely that the 

reduction in Rtotal stems from a reduction in RCNT since the WCD process doesn’t affect the CNT 

quality and since it is expected to be less than 3 mm
2
-K/W for the short CNT forests used in this 

work [11, 123]. Similar reductions in total resistance were observed for WCD samples 

compressed with pressures as low as 35 kPa, shown in Figure 4.6(b). None of the short CNT 

forests tested exhibited noticeable adhesion to the Ag foil. 

 For many applications a TIM with a thickness, typically referred to as bond-line thickness 

(Figure 1.2), greater than 10 μm is necessary. Therefore, the thermal resistance of tall CNT 

forests, ~60 μm, was also measured and is shown in Figure 4.6(c). The total resistance of tall 

CNT forests was reduced from 32 ± 2 to 17 ± 1 and 54 ± 6 to 34 ± 2 mm
2
-K/W by the WCD  
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Figure 4.6: (a) Total thermal resistance of short CNT forests is reduced by ~70 after the WCD 

process with water or hexane, (b) the total thermal resistance of short CNT forests prepared under 

compressive pressures of 35, 70, 105, and 140 kPa are comparable after the WCD process, (c) the 

total thermal resistance of tall CNT forests was reduced by 30-40%  from the WCD process and 

was unaffected by a thermal bake at 140 ˚C for two hours, and (d) shear adhesion of CNT forests 

to glass at unprecedentedly low  pressures is enabled by the WCD process. 

 

 

process. The percent reduction in total resistance for tall CNT forests, approximately 50% and 

40%, is less than that of short CNT forests, ~70%, likely due to the decreased contribution of RAg-

CNT  to Rtotal. Although, improving the number of CNTs in contact with the opposing surface could 

also increase the effective thermal conductivity of the forest [106]. After an initial PA 

measurement these tall CNT forests were baked at 140 °C in atmospheric for two hours with the 

intent of removing any residual adsorbed liquid from the interface. The total resistance remained 

unchanged after the bake, Figure 4.6(c), indicating that the total resistance is not reduced by a 

change in interface chemistry resulting from an adsorbed layer of liquid [124].  An additional tall 
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CNT forest was wet with hexane and allowed to dry while not in contact with the Ag foil. The 

thermal resistance before and after wetting was relatively unchanged, 39 ± 2 and 43 ± 3 mm
2
-

K/W respectively. The uncertainty in the reported thermal resistance measurements have 

contributions from data fitting, the resolution of the PA experiment, and for the short CNT forests 

compressed at 140 kPa variability across multiple samples. The uncertainty is taken as the square 

root of the sum of the contributions squared. 

4.3.2 Shear Adhesion Results 

The shear adhesion of dry and WCD CNT forests as a function of compressive pressure are 

displayed in Figure 4.6(d). Only short CNT forests (5-10 μm) were used in adhesion tests, much 

shorter than the 150 μm tall forests used in the landmark shear adhesion study [125]. Dry CNT 

forests generally exhibited no shear adhesion for compressive preloads from 35-140 kPa. This is 

not surprising since preloads in excess of 1 MPa are typically required to achieve adhesion with 

CNT forests [125, 126]. Nevertheless, WCD samples exhibited shear adhesion for all samples 

where a compressive preload was applied. The shear failure load for samples that failed at the 

CNT tip interface varied from roughly 10 to 24 N/cm
2
, comparable to the best performing CNT 

forest adhesives [125, 127]. However, with no apparent dependence on the compressive pressure 

the WCD process enables excellent shear adhesion at preloads one to two orders of magnitude 

lower than previously required. For compressive preloads of 140 kPa samples of both types failed 

at the growth substrate interface, preventing measurement of the tip adhesion. The failure load for 

these samples was possibly reduced in-part by buckling-driven delamination of the growth 

substrate interface [128]. The uncertainty in the shear failure load is less than 2% and is 

dominated by the uncertainty in the sample area, 0.01 cm
2
. Error bars are absent from Figure 

4.6(d) for clarity.  
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Figure 4.7: Coarse-grain mechanics simulations of CNT forests with reduced inter-CNT van der 

Waals interactions due to liquid infiltration exhibit enhanced contact area over dry forests. 

 

 

4.3.3 Simulation Results 

The coarse-grain mechanics simulations also revealed an increase in tip contact for CNT forests 

compressed in a wet state, i.e. CNT forests in which the inter-CNT vdW interactions were 

diminished, and are shown in Figure 4.7. As expected the contact area is identical for both dry 

and wet CNT forests under no applied load. As the compressive load increases the CNT tip 

contact area is observed to increase for both cases, more rapidly for the case with reduced vdW 

interactions. At compressive loads of 35, 70, 105, and 140 kPa the tip contact area increased by 

approximately 35, 60, 75, and 40% for wet CNT forests. In contrast with the experimental results, 

the simulated CNT forests exhibit pressure dependent tip contact. This inconsistency is possibly 

related to capillary induced effects associated with subsequent drying process, or to slight 

discrepancies between the stress-strain behavior of the actual and simulated CNT forests. 

Although the simulations do not perfectly replicate the experimental results, they support the 

notion that softening of CNT forests via liquid infiltration can lead to significant enhancements in 

tip contact. 
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4.4 Discussion 

4.4.1 Attenuation of Inter-CNT van der Waals Interactions 

The fact that water and hexane decreased the total resistance equally does not provide an 

indication as to whether or not the attenuation of vdW interactions in the wet state is responsible 

for increasing the contact area, or to what extent. Indentation tests on CNT forests, similar to the 

ones used in this study, wet with isopropanol, acetonitrile, or toluene revealed that the reduction 

in stiffness was not dependent on the dielectric characteristics of the liquid, indicating that all of 

the liquids tested relaxed the vdW interactions within the CNT forest to a similar extent [116]. 

To gain insight into the capacity for attenuated vdW interactions to reduce the thermal 

contact resistance a semi-empirical model developed by Cola et al. [44] for predicting contact 

area and thermal resistance of CNT interfaces is used. The model is reviewed in detail in 2.3.2. In 

the model the ratio of the actual contact area between the CNT tips and the opposing substrate to 

the total apparent area of the interface, (ACNT tips /Atotal) is given by Equation 2.25. Infiltration of 

CNT forests, similar to the ones used in this study, with toluene was found to reduce the stiffness 

by roughly 80% over the dry state [116]. Since stiffness is directly proportional to compressive 

modulus for these geometries the model predicts a 5-fold increase in (ACNT tips /Atotal) for WCD 

forests. RAg-CNT is related to the contact area ratio by Equation 2.26, repeated here 

(RAg-CNT/RCNT tip) = (ACNT tips /Atotal),          (4.2) 

where RCNT tip is the thermal resistance of an individual CNT contact [mm
2
-K/W]. Assuming RCNT 

tip to remain constant throughout the soaking and drying process, the model predicts that 

diminishing the inter-CNT vdW forces will reduce RAg-CNT by 80%. This is in agreement with the 

experimentally observed reduction, within the uncertainty, for short CNT forests where RAg-CNT is 

the dominant component and suggests that the attenuation of vdW interactions could be 

responsible for the entire reduction in the thermal resistance. Likewise, the coarse-grain 
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mechanics simulations suggest that softening can significantly increase the contact area, 75% at 

105 kPa. 

4.4.2 Capillary Forces 

The difference in the thermal resistance of WCD samples that were wet with water and hexane is 

within the uncertainty, suggesting that the tip contact area does not depend on the magnitude of 

the capillary forces. This notion is consistent with the recent findings of Tawfick et al.  [129] 

where it was observed that liquids of differing surface tensions and contact angles, like the water 

and hexane used in this research, did not affect the extent of capillary driven CNT pillar 

densification. It was concluded that, regardless of the fluid used, the capillary stress exceeded the 

stress required to laterally compress CNT forests until extreme strains, ~0.8, approaching the 

compressible limit of the forest. These observations indicate that the wetting characteristics of the 

liquid cannot be used as a mechanism for tuning the contact area. They do not preclude, however, 

significant capillary induced increases in contact area. 

WCD samples prepared under no compressive load represent the limiting case where 

contact enhancement due to the attenuation of van der Waals interactions is minimized. Thermal 

characterization of CNT forests under no applied pressure is not feasible with the PA method 

since light pressure is required to seal the sample surface against the acoustic chamber. However, 

WCD samples for die shear can be readily prepared under the weight of the sample alone.  Both 

dry and WCD samples prepared under this condition demonstrated no adhesion, suggesting that 

capillary stresses alone do not produce an appreciable increase in contact area. However, it is 

possible that the effect of capillary forces only comes into play when sufficient contact has 

already been established in the interfaces, but this could not be tested.  

 



56 
 

  
Figure 4.8: Top view SEM images of (a) short CNT forests, and (b) tall CNT forests, before and 

after the WCD process. The morphology of the short CNT forests remains unchanged, while the 

tall CNT forest exhibits lateral clumping due to capillary forces during drying. Insets display 

higher magnification images. 

 

 

SEM images of short and tall CNT forests that underwent the WCD process in contact 

with the Ag foil for PA measurements are shown in Figure 4.8. For the short CNT forests the 

WCD process had no noticeable effect on the forest morphology. Conversely, tall CNT forests 

that underwent the WCD process exhibited lateral clumping, similar to that observed in previous 

studies [118]. When compressed between the growth and opposing substrates the liquid 

evaporates from the CNT forest along its periphery, as depicted in Figure 4.4 step 3. In this 

configuration capillary stress at the liquid-vapor-CNT boundary competes with the stiffness of the 

CNT forest to deform it in synchronization with the receding liquid volume. Since the liquid-

vapor interface rests overwhelmingly between adjacent vertical CNTs in this configuration, the 

capillary stress acts predominantly in the lateral, in-plane direction, as shown in Figure 4.9, and 

likely overrides any contact enhancements due to stresses normal to the contact plane, as shown 

in Figure 4.3. In the case of the short CNT forests the pinning of individual CNTs to the growth 

substrate, CNT tip-opposing substrate contacts, and the increased effect of entanglement of the 

crust layer, which comprises a large portion of the short forest height, provide sufficient stiffness 

to prevent noticeable capillary induced deformations [120, 129]. For the tall CNT forests, the 

entangled crust layer accounts for only the top most fraction of the forest and the net capillary 
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force is increased proportionally to the increase in forest height, i.e. the length of the liquid-

vapor-CNT boundary, leading to the formation of cellular structures [118, 130].  

 

 
Figure 4.9: Capillary forces arising during evaporation act predominantly in the lateral direction. 

 

 

Compressing the CNT forest in the wet state, where the stiffness is reduced, will 

undoubtedly increase the contact area at the CNT tip interface over the dry state, provided that the 

maximal contact area is not yet achieved. Contact saturation for dry CNT forests typically occurs 

at compressive pressures on the order of a MPa [44] an order of magnitude higher than those used 

in this work. Experimental measurement of the total thermal resistance of WCD CNT forests, the 

contact mechanics model of Cola et al., and coarse-grain simulations of CNT forests suggest that 

softening of the CNT forest in the wet state could increase the tip contact area between 75 and 

80%. Moreover, the lack of dependence on compressive pressure for the WCD samples suggests 

that the contact area saturation may be achieved. Following compression in the wet state, the 

liquid evaporates from the CNT forest, during which time capillary stresses contend to deform the 

CNT forest. At this time there is no clear evidence that these capillary stresses act to further 

increase or decrease the contact area. In the case of short CNT forests, the stiffness of the forest 

prevents noticeable deformations altogether. For tall CNT forests the capillary forces are 

sufficient to laterally deform CNTs, however, it is not clear how or if these deformations affect 

the contact area at this time. Based on the geometry of the samples and the evaporation profile, 

the capillary forces will act predominantly in the lateral direction, which may not permit CNT 

deformation normal to the contact plane that would increase the contact area. 



58 
 

 

4.5 Summary 

Infiltrating a CNT forest with a liquid prior to pressing it into contact with a surface has 

been demonstrated as a method for dramatically improving contact to the CNT tips. The method 

reduced the thermal resistance of CNT forests by as much as 80% over those compressed in a dry 

state. Likewise, the method enabled CNT forest shear adhesion to glass as high as 10-24 N/cm
2
, 

with a compressive preload of only 35 kPa, one to two orders of magnitude lower than that 

required in previous studies utilizing dry CNT forests. The combination of experiments, coarse-

grain mechanics simulations, and theory suggest that softening of the CNT forest in the wet state, 

due the attenuation of van der Waals interactions at inter-CNT contacts, can increase the contact 

area between 75 and 80%. No evidence was found to support the hypothesis that capillary 

induced deformations during drying will also increase contact. The approach can be implemented 

with any liquid, so long as it can infiltrate the CNT forest. High vapor pressure liquids can be 

used to reduce drying time. These findings have implications for a broad range of applications 

relying on contact to filamentary nanoscale materials. 
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CHAPTER 5 

ENHANCING BOND STRENGTH: SURFACE MODIFIERS 

 

 

5.1 Introduction 

It is well established that weak interfacial bonding, like the vdW interactions at dry CNT 

contacts, significantly attenuates phonon transport at interfaces (reviewed in Chapter 2). Here it is 

shown that a simple organic surface modifier, a pyrenylpropyl phosphonic acid (PyprPA), can be 

synthesized and applied in a straightforward approach to improve bonding and consistently 

reduce the thermal resistance of mutli-wall CNT contacts by approximately 9-fold. The 

bifunctional interface modifier was designed such that it was terminated at one end with a pyrene 

moiety that is known to associate with CNT sidewalls through π-π stacking interactions [131, 

132]. The opposite end of the molecule is terminated with a phosphonic acid functionality, which 

has been shown to form robust covalent bonds to native metal oxide surfaces [133-137] that are 

commonplace in electronic device architectures. This research was conducted in collaboration 

with Professor Seth R. Marder and Dr. O’Neil L. Smith of the Chemical and Biomolecular 

Engineering Department at Georgia Tech, who synthesized the PyprPA modifier and 

independently verified its attachment to both CNTs and metal oxides. The conclusion of the 

chapter highlights exploratory research examining alternative modifiers and attachment strategies. 

5.2 Pyrenylpropyl Phosphonic Acid 

The phosphonic acid was synthesized as illustrated in Figure 5.1 in two steps from 1-(3-

iodopropyl)pyrene 1, which was obtained using the method of Gastaldi and Stien [138]. Iodide 1 

was then converted to phosphonate 2 and, with subsequent hydrolysis, to phosphonic acid 3. The 

ability of the phosphonic acid to successfully modify both the CNTs and Cu oxide surfaces was 

verified independently using UV–visible (UV–vis) and X-ray photoelectron spectroscopy (XPS), 

respectively. CNTs were modified with the PyprPA using a protocol similar to that outlined by  



60 
 

 

Figure 5.1: Synthesis of pyrenylpropyl phosphonic acid. 1 iodide precursor, 2 phosphonate, and 

3 phosphonic acid. 

 

Simmons et al. [139]. The Cu surfaces were functionalized with the PyprPA using a protocol 

analogous to that reported elsewhere for the modification of indium tin oxide with phosphonic 

acids [137]. The complete synthetic and verification of modification details can be found in 

Appendix A. UV–vis spectra demonstrating the successful modification of CNTs are shown in 

Figure 5.2. Here the spectrum of the modified CNTs appears to be a superposition of the 

absorbance of the pristine phosphonic acid onto the CNT background. Calibration curves for both 

the pristine CNTs and the phosphonic acid were generated and used to estimate the amount of 

associated PyprPA per microgram of CNT (1.2x10
-4

 mol/μg; Figure A.2). In a similar manner, 

XPS was used to confirm the modification of the Cu oxide substrate with the phosphonic acid and 

evaluate the thickness of the overlayer. Specifically, the survey spectra (Figure 5.2(b)) show an 

increase in the C 1s signal upon modification of the Cu oxide film with the PyprPA and the high 

resolution P (2p) scan shown in the inset of Figure 5.2(b) confirms the presence of phosphorus on 

the surface. An approach previously discussed by Wallart [140], was used to assess the surface 

coverage of the modifier on the Cu oxide surface. Here the thickness of the PyprPA film was 

approximated to be 10.4 ± 0.3 Å which is less than the 13.6 Å calculated for a Hartree-Fock 

optimized geometry of a molecule that is oriented perpendicular to the surface (Figure A.5). This 

suggests that we did not form multilayers on the Cu oxide surface after sonication in a solution of 

ethanol:chloroform (1:1) for 5 min to remove excess PyprPA. 
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Figure 5.2: Modification of CNTs and copper oxide with phosphonic acid. a) Comparison of the 

UV-Vis spectra of the CNTs, phosphonic acid moiety, and the modified CNTs. b) XPS survey 

spectra of the modified and unmodified copper substrate. 

 

 

5.3 Interface Modification and Coupling Procedure 

Before modification took place the as-evaporated Cu films were exposed to an O2 plasma at 200 

mTorr pressure for 2 min to facilitate formation of a consistent surface oxide layer. Upon removal 

from the plasma chamber the Cu films were immediately placed in a 1.5 mM solution of the 

PyprPA modifier in ethanol:chloroform (1:1). The Cu films were soaked for at least 1 day, during 

which time the modification took place. The minimum soak time required to form a monolayer 

was not explored. For coupling the CNT forests, the PyprPA-modified Cu oxide film 

(PyprPA:CuO) was removed from the PyprPA solution and sonicated in a solution of 

ethanol:chloroform (1:1) for 5 min to remove excess PyprPA with the intent of leaving only a 

monolayer covalently bonded to the Cu oxide surface. The top of the CNT forest was then wet 

with a few droplets of ethanol:chloroform (1:1) to achieve maximum contact area (Chapter 4) and 

the PyprPA:CuO film was placed onto the wet forest. 300 kPa of pressure was applied to the still 

wet interface and it was allowed to dry for at least 5 hours at room temperature. 
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Figure 5.3: Sample and photoacoustic measurement configuration. (a) Representative SEM 

image of a CNT forest used for PyprPA interface coupling. (b) Photoacoustic measurement 

configuration (left) used to measure the thermal resistance of CNT forests coupled to oxidized Cu 

surfaces with the PyprPA modifier (right).  

 

 

5.4 Total Thermal Resistance of PyprPA Coupled CNT Forests 

For thermal characterization the PyprPA modifier was used to couple the free tips of vertical 

multi-wall CNT forests, roughly 15 μm in height, synthesized as described in section 3.1 and 

shown in Figure 5.3(a), to 300 nm thick Cu films evaporated on 25 μm Ag foil substrates. A 

surface oxide layer was established on the Cu films as described in the experimental section to 

facilitate experimental control, although the native oxide layer may be sufficient for the coupling 

process. The final sample configuration for thermal measurements can be seen in Figure 5.3(b). 

The thermal resistance of both CNT forests coupled with the PyprPA and those in dry contact 

with oxidized Cu films was measured using the PA technique, as described in section 3.2.1. PA 

tests were conducted at cell pressures of 7 kPa, a slight positive pressure to ensure that the 

chamber was filled with helium, and 140 kPa, to apply modest pressure to the interface. Five 

samples treated with the PyprPA modifier were prepared and PA tests were conducted at 3–4 

different locations on each sample, providing 16 total measurements. Similarly, four dry contact 

samples were prepared and measurements were taken at 2–3 different locations on each sample, 

providing 11 total measurements. The beam diameter at the sample surface was approximately 1  
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Figure 5.4: Photoacoustic characterization of CNT forests in dry contact and PyprPA coupled 

configurations. (a) Coupling the CNT tip interface with the PyprPA modifier reduces the thermal 

resistance of the interface material by 85–75% on average and alleviates the pressure dependence. 

Error bars include measurement uncertainty and variations in thermal resistance from multiple 

measured samples. (b) A representative photoacoustic measurement data set for a PyprPA 

coupled CNT forest, including theoretical curve fits to the data and to data sets shifted by the 

measurement uncertainty of ±1 degrees (solid lines). 

 

 

mm and the surface area of each sample was 1 cm
2
. By testing 2–4 different locations on the 

surface of each sample the efficacy of the coupling procedure over device-sized areas was 

examined. The total thermal resistance, comprised of the sum of the contact resistance at the CNT 

tip-Cu interface, the resistance of the CNT forest, and the contact resistance at the CNT-Si growth 

substrate interface, for both sample configurations and both PA chamber pressures is displayed in 

Figure 5.4(a). The error in the measurement has contributions from both the resolution of the 

experimental setup and variations in thermal resistance from sample to sample. The total thermal 

resistance of the dry contact samples was measured to be 40 ± 20 and 20 ± 6 mm
2
-K/W at 

pressures of 7 and 140 kPa, respectively. Analogous trends have been observed in previous 

studies [11, 35] and were analyzed theoretically by Cola et al. [44]. In essence, increasing the 

pressure applied to the interface compresses the CNT forest and brings additional CNTs into 

contact with the Cu surface in addition to increasing the contact length of CNTs already in 

contact with the surface. The net effect is an increase in the contact area, or the area available for 
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heat conduction, resulting in a decrease in the thermal contact resistance. The total thermal 

resistance of the samples coupled with a monolayer of the PyprPA modifier using the procedure 

outlined above was measured to be 4.6 ± 0.5 and 4.9 ± 0.5 mm
2
-K/W at pressures of 7 and 140 

kPa respectively. The PyprPA modification and coupling procedure reduced the thermal 

resistance of the CNT forest by 88%-76% on average. The fact that the thermal resistance of the 

coupled samples did not exhibit a significant dependence on pressure, over the range considered, 

suggests that the contact area is constant and that the interface is well bonded. Moreover, the low 

thermal resistances achieved by coupling were consistent across the entire area of the sample (1 

cm
2
) demonstrating the strong uniform bonding over device-sized areas. Two additional PyprPA-

coupled samples were fabricated in which the PyprPA:CuO was not sonicated prior to coupling 

this surface to the CNT forest. This was done to assess whether steps to attempt to create only a 

monolayer of PyprPA at the interface were required. The thermal resistance of the samples 

without sonication prior to CNT coupling were measured to be 9 ± 6 and 7 ± 3 mm
2
-K/W at PA 

chamber pressures of 7 and 140 kPa respectively, which is an approximately 45% increase in the 

thermal resistance over CNT forests coupled to sonicated PyprPA:CuO substrates at 7 kPa. This 

increase in resistance can be attributed to the disorder and weak bonding associated with multiple 

layers of PyprPA not removed by the sonication step before coupling the surface to MWCNTs. 

For all of the aforementioned CNT-PyprPA:CuO samples the CNT forest was wet with a few 

drops of solvent (ethanol:chloroform (1:1)) and subsequently dried during the coupling process to 

maximize the contact area, as described in Chapter 4. To isolate the role of the PyprPA modifier 

two additional sample types were fabricated. For the first type (PyprPA-only) the sample was 

fabricated following the same PyprPA:CuO-sonication-CNT coupling procedure except no 

solvent was dripped onto the top of the CNT forest to wet the interface beforehand. For the 

second type (solvent-only) the CuO film was not modified with PyprPA prior to the coupling 

process. The thermal resistance of two PyprPA-only samples was measured to be 9 ± 4 and 8 ± 2  
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Figure 5.5: Effect of solvent on thermal resistance at 7 kPa. Coupling the interface with solvent 

and a monolayer of PyprPA increases the contact area and enables the formation of additional π-π 

bonds with the PyprPA:CuO. Results shown for the Solvent-Only configuration were collected 

before delamination occurred. 

 

mm
2
-K/W at 7 and 140 kPa, respectively (Figure 5.5). Likewise, two solvent-only samples were 

prepared and the thermal resistance was measured to be 7 ± 2 mm
2
-K/W at 7 kPa and 7 ± 1 mm

2
-

K/W at 140 kPa the first time each sample was characterized using PA. However, the CNT-CuO 

interface was observed to be very weakly adhered. As such, when the solvent-only samples were 

removed and reinserted into the PA setup to measure the thermal resistance at a different location 

on the sample the CNT-CuO interface delaminated and the thermal resistance was measured to 

increase. After full delamination of the CNT-CuO interface the thermal resistance was measured 

to be approximately 19 ± 1 and 11 ± 1 mm
2
-K/W at 7 and 140 kPa respectively. The exact 

contributions of the PypPA modifier and solvent cannot be resolved from these results; yet it is 

clear that both the solvent and PyprPA modifier play significant and different roles in decreasing 

the thermal resistance of the interface. For the PyprPA-only samples the thermal resistance was 

roughly ~75% reduced from the dry contact samples at 7 kPa. This demonstrates a significant 

benefit to having stronger covalent interactions between the phosphonic acid and the Cu oxide 

and π−π stacking interactions between the pyrenyl group and the CNT forest mediated by the 

PyprPA modifier, as compared to only having vdW interactions in the dry contact arrangement. 

The notion that interfacial heat transfer can be enhanced by improving the strength of bonding at 

the interface is well accepted [75, 78], although it has only recently been observed for surface 



66 
 

modifiers experimentally [79]. It should however be noted that without direct knowledge of the 

contact area at the interface it remains unclear if the reduction in thermal resistance of the 

PyprPA-only samples can be entirely attributed to enhanced bond strength as a result of the 

modifier. For the solvent-only interfaces the thermal resistance was ~80% less than dry contact 

samples at 7 kPa before delamination occurred. As was demonstrated in Chapter 4 compressing 

the CNT forest in the wet state, where inter-CNT vdW interactions are attenuated, increases the 

contact are at the CNT free tip interface. The fact that the reduction in total resistance was 

significantly less for solvent-only samples than it was for samples coupled with solvent and a 

monolayer of PyprPA, suggests that wetting the forest with solvent (the WCD process of Chapter 

4) increases the contact area and enables additional π-π bonds to be formed between the 

PyprPA:CuO and CNTs, leading to a further reduction in thermal resistance. After routine 

handling the vdW bonded CNT-CuO interface of the solvent-only samples delaminated causing 

the thermal resistance of the samples to increase, whereas all samples coupled with the PyprPA 

remained adhered further demonstrating the benefit of the stronger covalent and π−π bonding 

present with the modifier. 

5.5 Thermal Stability, Attachment Strength, and Electrical Characterization 

To further assess the utility of the CNT-PyprPA:CuO system for thermal and electrical 

applications the thermal stability of the PyprPA molecule, and the attachment strength and 

current-voltage characteristics of CNT-PyprPA:CuO interfaces were examined. The thermal 

stability of the CNT-PyprPA:CuO interface was studied via thermogravimetric analysis (TGA) of 

PyprPA modified loose CNTs, shown in Figure 5.6(a). Approximately a 22 wt% loss that 

commenced at around 200 °C, well above the typical operating temperatures of electronic 

devices. The attachment strength of the PyprPA coupled samples used in PA tests (3 total) was 

measured through a tension failure mode, as shown in Figure 5.6(b), to be 340 ± 50 kPa, which is 

of similar order to the strength of Au-Au diffusion bonded CNT forest interfaces [34]. All 

samples failed at the PyprPA:CuO interface and no appreciable differences in attachment strength  
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Figure 5.6: a) TGA of PyprPA modified and unmodified loose CNTs showing a 22% mass loss 

that commenced at 200 °C. b) Normal attachment strength of PyprPA coupled interfaces was 

measured through a tensile failure mode to be 340 ± 50 kPa. 

 

were observed between all three PyprPA coupled interface configurations (i.e., solvent, with and 

without sonication, and dry coupled interfaces).  

Samples for current-voltage scans were fabricated by growing CNTs on electrically 

conductive Cu substrates (Alfa Aesar 13382) and coupling them to PyprPA:CuO films on glass. 

The CNTs synthesis procedure was identical to that described in section 3.1 except 100 nm of Ni 

was added to the bottom of the catalyst stack as a diffusion barrier. Current-voltage scans were 

conducted using a 2-probe technique by contacting the Cu growth substrate and modified Cu 

surface, as illustrated in Figure 5.6(a). As such the measurement includes contributions from the 

oxidized Cu film, CNT forest, Cu growth substrate and all intermediate interfaces; hence, it is not 

meaningful to extract the resistance from this data. Furthermore, the measurement is sensitive to 

the separation distance between the probes and the pressure applied to them. Care was taken to 

place the probes as consistently as possible; however, it was not precisely controlled. Coupling 

the CNT tip interface with a monolayer of PyprPA reduced the total electrical resistance by 

approximately 90% over dry contact, shown in Figure 5.6(b). The reduction in electrical 

resistance was approximately 85% for samples that were not sonicated to facilitate the presence 

of a monolayer of PyprPA in the interface. All PyprPA coupled interfaces displayed a linear 
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relationship, suggestive of ohmic behavior, over the scan range from –0.45 to + 0.45 V and 

therefore might be useful for CNT interconnects. 

 

 

 

Figure 5.7: (a) Sample configuration for 2-probe electrical characterization of CNT-

PyprPA:CuO coupled interfaces. (b) Current-voltage scan illustrating a ~90% reduction in 

electrical resistance for PyprPA coupled interfaces over dry contact interfaces.  

 

 

5.6 Exploration of Additional Modifiers 

Coupling of CNTs to metal oxide surfaces with several additional modifiers was explored and is 

summarized in detail in Appendix B. For these studies the CNT forests were conformally coated 

with a few nm of Al2O3 using atomic layer deposition (ALD) to facilitate covalent bonding at 

both ends of the modifier with phosphonic acids. Coating the CNT forests with Al2O3 also 

increases the effective electrical resistivity of the forest, which is attractive for applications where 

an electrically insulating TIM is required.  

Two different approaches were considered for covalently linking oxide coated CNTs to 

metal-oxide surfaces. The first, Strategy 1, centered on using linear carbon molecules terminated 

at each end with a phosphonic acid functionality, which we refer to as a Bisphosphonic acid 

(BisPA). From the plethora of possible BisPA molecules a (1,4-

phenylenebis(methylene))diphosphonic acid (Benzene-BisPA) and a 1,8-Octanediphosphonic 
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acid (Octane-BisPA) were selected for testing and are illustrated in Figure 5.8(a) and (b). The 

selection of these two molecules was motivated by the differences in the length of their carbon 

backbones. The second strategy, Strategy 2, involved using two different phosphonic acid 

terminated molecules to separately modify the oxide coated CNTs and the metal oxide surface, 

and to then join them via a reaction between the opposing terminations of the two modifiers 

(Figure 5.8(c)). Specifically, an acrylate-phosphonic acid (Acrylate-PA), CH2=CH-

C(O)O(CH2)11PO3H2, and 3-aminopropylphosphonic acid (Amino-PA), NH2(CH2)3PO3H2, were 

used to separately modify the oxide coated metal and CNTs, respectively. The two modified 

surfaces are then brought into contact and joined through Michael-addition between terminal 

amine and acrylate functionalities [141]. 

Despite trying a number of modification and bonding procedures the BisPA modifiers 

(Strategy 1) failed to produce noticeable coupling between Al2O3 coated CNT forests and Al2O3 

coated Ag foil. It was found that both BisPA moieties bound to the same surface and failed to 

bridge the interface. On the other hand, the modification and reaction procedure utilizing acrylate 

and amino molecules containing phosphonic acid functional groups (Strategy 2) was found to 

successfully bond the interface. In doing so, the procedure reduced the total thermal resistance 

from roughly 50 to 10 mm
2
-K/W, suggesting that the strategy might be used to produce low 

thermal resistance electrically insulating TIMs, a niche for which there currently aren’t any 

commercial products available. Future research should continue to examine different modifiers 

and coupling strategies with a focus on gaining a detailed scientific understanding of the chemical 

linking and the thermal transport across such junctions. Additional studies should also be 

undertaken to understand the reliability of surface modifier coupled TIMs. 



70 
 

 

Figure 5.8: (a) Benzene-BisPA, (b) Octane-BisPA modifiers used in Strategy 1; (c) Strategy 2 

 

 

5.7 Summary 

A pyrenypropyl phosphonic acid modifier was created for coupling CNTs to metal oxide surfaces 

in a simple and scalable manner to reduce the thermal contact resistance. When used to couple 

vertical CNT forests to oxidized Cu surfaces the PyprPA modifier reduced the thermal contact 

resistance by approximately 9-fold over CNT forests in non-bonded dry contact. As a thermal 

interface material PyprPA coupled CNT forests had a thermal resistance of 4.6 ± 0.5 mm
2
-K/W, 

which is on par with the resistance of conventional thin-film metallic solders [47]. Electrical 

characterization of PyprPA coupled and dry contact CNT interfaces indicate that the modifier 

may reduce the electrical contact resistance by a similar magnitude. The results of this work 

highlight the important role of bond strength in thermal transport at CNT contacts. Furthermore, it 

demonstrates that surface modifiers, such as the one synthesized here, could be used with 

relatively simple and repeatable processing steps to significantly reduce contact resistances in 

CNT based architectures for thermal and electrical transport. 
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CHAPTER 6 

BONDING WITH NANOSCALE POLYMER COATINGS 

 

 

6.1 Introduction 

Previous efforts to bond CNT forests to interfaces and mitigate the contact resistance have 

focused on using metallic films [32, 34, 35] as a bonding agent (see section 1.3). While these 

approaches have in some cases produced CNT TIMs with thermal resistances approaching those 

of conventional TIMs, they often require expensive materials, such as Au or In, and processing, 

including metal thin film deposition and high temperature and high pressure bonding, that are not 

favorable for large-scale commercial production. In contrast with metals, polymers are, in most 

cases, a low-energy and low-cost material to manufacture. Polymers are amenable to both 

solution-based processing and melt processing at reduced temperatures. This research explores a 

potentially scalable and low cost process that utilizes spray coating to deposit thin polymer 

coatings onto the tips of CNT forests for bonding at room temperature. 

Although polymers are advantageous for facile processing, bulk polymers, unlike metals, 

are considered to be thermal insulators with thermal conductivities typically on the order of 0.1 

W/m-K. To effectively overcome the contact resistance at the CNT forest tip interface as thin a 

layer of polymer as possible should be used. Spray coating was examined because of the ability to 

precisely control the amount of polymer deposited onto the CNTs, the ease with which the 

process can be scaled, and because it was expected to minimally alter/damage the morphology of 

the CNT forest. Two polymer systems were studied: the first, polystyrene (PS) was chosen since 

it is a low cost widely used aromatic polymer that is chemically stable at device operating 

temperatures [142]; the second, poly(3-hexylthiophene) (P3HT) was chosen because it has been 

shown to interact strongly with CNTs through π–π bonding and by preferentially wrapping 

around the nanotube axis [143-145]. Additionally, due to its conjugated back bone, P3HT is 
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chemically stable at higher temperatures as compared to PS [146]. The height of the CNT forest 

and the quantity of polymer sprayed were varied individually in an effort to understand their 

influence on the thermal resistance of the interface. To demonstrate how the spray coating 

process might be scaled for commercial production, CNT forests were grown on both sides of Al 

foil to create a thermal interposer, as described in section 3.1, similar to that created by Cola et al. 

[94]. The CNT coated foil interposer eliminates the necessity to grow or transfer print CNTs 

directly onto the back of the chip or packaging. The CNT growth and spray coating process can 

instead take place separately on the metal foil, before being incorporated into the electronic 

package. 

 

Figure 6.1: Airbrush used to deposit nanoscale polymer coatings onto CNT forests. 

 

6.2 Polymer Coating and Bonding of CNT Forests 

6.2.1 Coating and Bonding Procedure 

For spray coating polymer solutions, 0.5 mg/mL of P3HT (regioregular, Sigma Aldrich 445703) 

or PS (MW 35000, Sigma Aldrich 331651) were prepared by sonicating or stirring for five 

minutes into CHCl3. The solutions were sprayed in one mL increments onto the CNT tips using 

an airbrush (Iwata Eclipse HP-CS Gravity Feed) with 280 kPa N2 as the carrier gas. The airbrush 
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was positioned 10 cm above the CNT forest so that the conical spray profile of the airbrush 

deposited polymer over an area slightly larger than the area of the CNT forest sample, and is 

shown in Figure 6.1. It is difficult to quantify the amount of polymer deposited onto the CNT 

forest for each 1 mL spray; therefore we refer to the quantity of polymer applied to each CNT 

forest in terms of the number of 1 mL sprays. The number of sprays was altered among 1, 2, and 

5 in order to examine the effects of the quantity of polymer on the resultant thermal resistance of 

the bonded CNTs. Spray coated CNTs on Si substrates were bonded to 1 cm
2
 pieces of 25 μm 

thick Ag foil for thermal characterization with photoacoustic. To bond the polymer coated CNT 

forests to the Ag foil, the CNT forests were first wet with a few droplets of CHCl3 to reflow the 

polymer, and then promptly placed into contact with the Ag foil under 140 kPa of pressure. The 

interface was allowed to dry for at least 5 hours under ambient conditions before the load was 

removed. The entire spray coating and bonding process is shown schematically in Figure 6.2. In a 

process similar to that described above, both sides of the CNT coated foil interposer structures 

were bonded between quartz substrates and Ag foil. However, the bonding pressure was 

increased to 580 kPa to observe the maximum potential of the structure. In addition to bonded 

interfaces, two other sample configurations were studied in an effort to better understand the 

effects of the polymer on the interface resistance: i) dry contact: as grown bare CNT forests in dry 

contact with the Ag foil; and ii) polymer coated dry contact: CNT forests spray coated with 

varying quantities of polymer that were allowed to dry before being placed into dry contact with 

the Ag foil. 

6.2.2 Characteristics of Coated CNT Forests 

 

As is shown in Figure 6.3, the spray coating process restricts the deposition of polymer to the 

CNT tips and limits clumping due to capillary forces associated with the drying of the solvent. An 

SEM (Hitachi 4700 FE) was used to observe the extent of CNT clumping due to capillary 

interactions for forests both dip coated and spray coated with polymer. Figure 6.4 shows that 

spray coating restricted clumping to only the tips of the CNTs, whereas dip coated caused  
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Figure 6.2: Illustration of the polymer spray coating and bonding process. (1) Spray deposition of 

polymer onto the top of the CNT forest. (2) The polymer coating dries, causing clumping of the 

CNT tips. (3) Solvent (CHCl3) is applied to the top of the CNT forest to wet and reflow the 

polymer coating. (4) Still wet polymer coating is brought into contact with Ag foil and placed 

under 140 kPa of pressure for 5 h while the interface dries. 

 

 

 
Figure 6.3: SEM images of bare and polymer spray coated CNT forests. The spray coating 

process deposits nanoscale coatings of polymer to the tips and sides of the CNT forest. The 

amount of polymer visible on the CNT forests increases with the number of sprays. No 

morphological differences were observable between PS and P3HT. (c) and (e) were spray coated 

with P3HT, and (d) and (f) were spray coated with PS. 
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Figure 6.4: SEM images of a polymer (a) dip coated, and (b) spray coated CNT forest showing 

that spray coating reduces capillary driven clumping of CNTs. Clumping due to capillary forces 

in dip coated samples leads to CNT tear out at the growth substrate. 

 

clumping along the entire height of the forest and even resulted in sections of CNTs being torn 

from the growth substrate. TEM analysis (JEOL 4000EX) was conducted on several polymer 

bonded samples after undergoing PA characterization to observe the CNT-polymer interaction. 

Samples were prepared by peeling away the Ag foil to expose the CNT forest, and then scraping 

the exposed forest off the Si substrate and into dimethylformamide (DMF). Neither PS nor P3HT 

were observed to be soluble in DMF. The solutions were sonicated for roughly one hour to 

disperse the CNTs before being dropcast onto a carbon TEM grid and allowed to dry. For CNT 

forests that had been bonded with P3HT polymer chains were observed to wrap around the CNT, 

shown in Figure 6.5, demonstrating that spray coating and bonding process supported the 

formation π-π interactions between the P3HT and CNTs. This coincides with prior observations 

of strong affinity between CNTs and P3HT [143-145].  
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Figure 6.5: TEM image showing a P3HT chain wrapped around a CNT. 

 

6.3 Results 

6.3.1 Thermal Resistance of Polymer Coated and Bonded CNT Forests 

The total thermal resistance for all three sample configurations (dry contact, polymer coated dry 

contact, and polymer bonded) is shown in Figure 6.6. Each of these total resistances is the sum of 

the contact resistance at the CNT tips, the intrinsic thermal resistance of the CNT forest, and the 

contact resistance at the CNT growth substrate. Measurements for all three sample configurations 

were conducted at PA cell pressures of both 7 and 140 kPa. All results for the dry contact sample 

configurations shown in Figure 6.6 are those collected at a cell pressure of 140 kPa. Data 

collected on dry contact and polymer coated dry contact samples at 7 kPa were inconsistent, 

likely due to inconsistent and/or poor contact conditions at the interface under this light load. The 

data collected on bonded samples did not exhibit significant changes with the pressure in the PA 

cell, indicative of a well-bonded interface, and are shown at 7 kPa in Figures 6.6(b) and (c). All of 

the data from Figure 6.6(a) for samples less than 125 μm in height are shown in Figures 6.6(b) 

and (c) for comparison. These data are labeled as ‘Dry Contact’, although the set includes both 

the dry contact and the polymer coated dry contact data. The thermal resistance increases with 

CNT height for all sample configurations. The thermal resistance of polymer coated dry contact 

samples was higher than those of all but one of the bare CNT dry contact samples. Because the 

nanoscale polymer coating has relatively negligible thermal resistance, the difference in 



77 
 

performance likely stems from the fact that adding the dried coating of polymer to the interface 

stiffens the top of the forest, effectively reducing the extent to which it conforms to the Ag foil. 

This reduces the contact area and increases the thermal contact resistance.  

Bonding with both P3HT and PS reduced the thermal resistance of the interface, with the 

largest reductions occurring at the tallest forest heights. For example, a 58% reduction was 

observed for PS bonding of forests 115 μm in height. The polymer bonded samples exhibited a 

weak trend of increased thermal resistance with the number of sprays. However, the trend is 

considered to be of low significance because it is violated for several samples, and because the  

  

 
Figure 6.6: (a) Thermal resistance of polymer coated and bare CNT arrays in dry contact. (b) 

Thermal resistance of PS bonded interfaces (PA cell pressure = 7 kPa) compared to the dry 

contact interfaces (PA cell pressure = 140 kPa). (c) Thermal resistance of P3HT bonded 

interfaces (PA cell pressure = 7 kPa) compared to dry contact interfaces (PA cell pressure = 140 

kPa). (d) Thermal resistance of polymer bonded samples before and after being baked at 130 °C 

for 110 h. 



78 
 

 

magnitude of the differences in resistance with number of sprays is of similar order to the 

distribution of the data. Overall, bonding with both P3HT and PS was observed to decrease the 

resistance of CNT forests comparably, ruling out any contributions from polymer structure or 

differences in the nature of the polymer–CNT interactions. The lowest measured resistances for 

P3HT bonded, PS bonded, and bare CNT dry contact samples were 4.9 ± 0.3 mm
2
-K/W (10 μm 

tall forest with two sprays), 8.5 ± 0.5 mm
2
-K/W (10 μm tall forest with one spray), 20 ± 6 mm

2
-

K/W (15 μm tall forest), respectively. The reported PA measurement uncertainties have 

contributions from both the resolution of the experimental setup, estimated to be ± 1° in the 

measured phase shift, and the repeatability, i.e. variations in the thermal resistance at different 

measurement locations on a sample. The error bars include contributions from both sources for 

the dry contact and polymer coated dry contact data. The error bars represent only the resolution 

of the measurement technique for bonded samples and are too small to be seen for the majority of 

the data points. The uncertainty associated with repeatability is captured by the distribution of the 

data for bonded samples.  

6.3.2 Thermal Stability of Polymer Coated and Bonded CNT Forests 

Thermal degradation, due to chemical stability of the polymers at elevated temperatures, is also a 

significant concern for polymer based TIMs [147]. Hence, four of the samples, two P3HT bonded 

and two PS bonded, were subsequently thermally baked at 130 °C and 680 mbar for 110 hours in 

a vacuum oven to mimic high temperature operating conditions. There was no statistically 

significant change in the thermal resistance of the samples between before and after baking 

(Figure 6.6(d)) for three of the four sample types tested. There was a slight increase in the thermal 

resistance of the two-spray P3HT sample after thermal baking. Both PS and P3HT have been 

demonstrated to be chemically stable at temperatures above 130 °C [142, 146], so the increase in 

resistance observed for the two-spray P3HT samples is likely due to other factors such as local 

spot-to-spot variation in the CNT forest morphology or local delamination of the interface bond 
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during sample handling. The overall results from thermal baking suggest that the polymer 

coatings used here are stable over the temperature range studied and that the process may be 

suitable for integration with high power density devices.  

6.3.3 Polymer Coated and Bonded Thermal Interposers 

The thermal resistances of bare CNT coated foil interposers in a dry contact arrangement were 

measured to be 21 ± 4 mm
2
-K/W. The thermal resistances of interposers spray coated and bonded 

with one spray of P3HT were measured to be 9 ± 2 mm
2
-K/W; this is an approximate two-fold 

decrease in resistance. Three samples of each configuration were produced and the uncertainty in 

the thermal resistance was dominated by the variability between samples.  

6.3.4 Shear Adhesion 

To measure the attachment strength CNT forests were spray coated and bonded with 2 sprays of 

P3HT to glass slides coated with 300nm of Ag for consistency with the PA experiments. The 

shear attachment strength was measured using a die shear apparatus (Nordson DAGE 4000), as 

illustrated in Figure 6.7. All samples failed at the polymer interface and the average shear 

attachment strength was measured to be 29 N/cm
2
. 

 
Figure 6.7: Schematic of the die shear apparatus and sample configuration used to measure the 

shear attachment strength of polymer spray coated and bonded interfaces. 

 

6.4 Analysis 

6.4.1 Effect of CNT Forest Height 

The thermal resistance increased with increasing CNT forest height for each of the sample 

configurations studied. One cause for the observed trend is apparent: increasing the height of the  
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Figure 6.8: SEM images comparing the surface roughness of short and tall CNT forests. (a) Top 

view of a 5 μm tall forest, and (b) top view of a 70 μm tall forest. 

 

 

CNT forest increases the amount of material through which the heat must travel, hence increasing 

the resistance of the CNT layer itself. A second cause is more subtle and is specific to the CNT 

growth process. During CNT growth, certain regions of the forest grow at greater or lesser rates 

compared to the average growth rate due to slight discrepancies in the condition of the catalyst 

particles and their access to the carbon gas source. As the forest grows, the difference in height 

between the different growth-rate regions is increased, resulting in decreased height uniformity 

with growth time. The decreased uniformity of the CNT forest is equivalent to an increase in the 

surface roughness of the CNT forest. This increase in surface roughness can be observed in 

Figure 6.8, and may lead to a decrease in the contact area at the interface. Additional factors 

related to growth process, such as CNT pullout at the growth substrate and changes in 

morphology with growth time, may also contribute to increases in the thermal resistance with 

increasing forest height [82]. Since the polymer spray coating process was only observed to apply 

polymer to the CNT tips, it is reasonable to assume that the bonding process only leads to 

significant changes in the thermal contact resistance at the CNT tips, and that the thermal 

resistance of the CNT forest and the thermal contact resistance at the growth substrate are not 

affected significantly.  
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6.4.2 Thermal Transport at Polymer Coated CNT Contacts 

To better understand the source of the reduction in the thermal resistance, we consider how the 

polymer might affect the heat transfer between a single CNT in side contact with the Ag foil [44], 

as shown in Figure 6.9(c). To observe the structure of bonded interfaces, spray coated CNT 

forests were bonded to Si substrates, to which the adhesion was negligible, then disassembled and 

examined using SEM (Figure 6.9(a) and (b)). On the basis of the SEM images, the configuration 

of a polymer bonded CNT, shown in Figure 6.9(d), was assumed for the subsequent theoretical 

heat transfer analysis. Heat transfer for the case without any polymer has been analyzed by 

several investigators and was reviewed in Chapter 2 section 3. It was shown that due to the nm 

dimensions of the CNT contacts ballistic effects must be considered [38, 44]. The ballistic 

resistance describes the flow of phonons through the contact as free molecular flow through an 

orifice with a transmission coefficient derived from diffuse mismatch assumptions and Chen’s 

gray medium approach [148]. The contact area normalized ballistic resistance, Rb, is given by 

Equation 2.16. Taking vg,CNT = 1000 m/s as the through basal plane velocity for graphite [40], 

Cl,CNT = 1582 kJ/m
3
-K, vg,Ag = 1640 m/s, and Cl,Ag = 2362 kJ/m3-K [149, 150], the resistance for a 

single Ag–CNT contact is Rb,Ag–CNT = 3.6x10
-3

 mm
2
-K/W. When polymer is added as is shown in 

Figure 6.9(d), the resistance of the interface can be approximated by the sum of the ballistic 

resistance between the Ag and the polymer, the ballistic resistance between the polymer and the 

CNT, and the resistance of the polymer layer itself. The contact area normalized resistance of the 

polymer layer is given by the classical expression Rpoly=l/kpoly, where l is the thickness of the 

polymer layer and kpoly is the polymer thermal conductivity. Assuming l = 10 nm which is 

reasonable on the basis of the polymer accumulation observed at CNT tips in Figures 6.9(a) and 

(b), and taking PS as the polymer since its properties are widely known, kPS = 0.25 W/m-K, the 

contact area normalized resistance for a polymer coated CNT becomes RAg–PS–CNT = 4.6x10
-2

 mm
2
-

K/W. This result indicates that under the prescribed assumptions the polymer actually increases  
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Figure 6.9: (a) SEM image of the top of a CNT forest after one spray of P3HT and bonding. (b) 

SEM image of the top of a CNT forest after five sprays of P3HT and bonding. (c) and (d) 

Illustrations of CNT dry contact and polymer bonded contact  configurations respectively and the 

associated thermal resistance network. 

 

 

the contact area normalized thermal resistance by an order of magnitude. The resistance of the 

polymer layer, Rpoly, causes most of this increase because of its low thermal conductivity. 

Therefore, adding the polymer must increase the contact area by greater than an order of 

magnitude as compared to CNT dry contact to reduce the total resistance of the interface. This 

requires a contact area enhancement greater than the 70-80% achieved by wet compression in 

Chapter 4. Assuming a vdW interaction and elastic contact, a CNT with a diameter of 8 nm will 

only have a contact width of approximately 1 nm with the Ag foil (detailed in section 2.3.1) [40, 

84]. Should the polymer fill the interstitial space between the CNT and the foil to the extent of the 

CNT diameter, it would increase the contact area by an additional factor of 8. 

 Measurements of the shear attachment strength of CNT forests that were polymer bonded 

to glass slides coated with Ag revealed an average attachment strength of 290 kPa (29 N/cm
2
). 

This is a more than threefold increase over reported values for shear attachment strength of CNTs 
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in dry contact with glass slides [126]. The increase in attachment strength from polymer bonding 

corresponds to an increase in area that is similar in magnitude to the increase in area that would 

be achieved from filling the space between the CNT and Ag with polymer (Figure 6.8). This 

suggests that adding the polymer might increase the contact area in this manner. Furthermore, 

Cola et al estimated that the real contact area in CNT forest TIMs is only ~1% of the apparent 

area [44]. Similarly, Panzer et al. estimated that only 0.35% of the volume fraction of CNT 

forests effectively participate in heat transfer in CNT forest TIMs [45]. Therefore, the polymer 

might also increase the contact area by engaging additional CNTs near to, but not in contact with 

the Ag foil. As was pointed out in Chapter 2, in the above calculations the ballistic resistance 

assumes that the interface is bonded perfectly. This assumption is clearly not valid for the weak 

vdW interactions present at both the dry contact and polymer bonded interfaces. As a result, the 

above calculations for the CNT–Ag, CNT–polymer, and Ag–polymer contacts underpredict the 

thermal resistance significantly. The actual resistances of the contacts might be one to two orders 

of magnitude higher than the estimates based on perfect bonding, because phonon transmission is 

attenuated by weak interfacial bonding [78, 79]. As a result, the resistance of the polymer layer, 

Rpoly, at a thickness of 10 nm would be on par with or an order of magnitude less than the thermal 

resistances of vdW contacts. The higher end of the expected surface resistance considering vdW 

bonding would allow the polymer layer to be as thick as several 100 nm without dominating the 

total resistance at CNT–polymer–Ag contacts; the polymer layer could be even thicker if its bulk 

thermal conductivity was enhanced by nanostructuring [151-153]. While it is difficult to 

accurately calculate or measure the thermal resistance of a CNT tip in both dry contact and 

polymer bonded arrangements, the simple analysis presented here has shown that adding polymer 

does not reduce the area normalized thermal resistance of CNT contacts; it instead extends the 

area available for heat transfer at the contacts to CNT tips. 
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6.5 Summary and Recommendations 

Polymer spray coating and bonding was demonstrated as an effective means for increasing the 

contact area and reducing the thermal resistance of CNT forest thermal interfaces. In addition to 

the contact area enhancements from wet-compression (Chapter 4) the bonding process added 

nanoscale coatings of polymer around individual CNT contacts to locally increase contact area, 

and potentially penetrated into the forest to engage additional CNTs close to the interface to 

further increase the contact area. Spray coating with polystyrene and poly(3-hexylthiophene) 

produced CNT TIMs with thermal resistances of 8.5 ± 0.5 and 4.9 ± 0.3 mm
2
-K/W respectively, 

comparable to conventional solder TIMs. The thermal resistances did not change significantly 

after baking at 130 °C for 110 hours. The thermal resistances of dry and polymer bonded CNT 

interfaces were found by PA measurement to increase with CNT forest height because of the 

increased surface roughness of taller forests. The relatively low cost of polystyrene in addition to 

favorable bonding conditions, i.e. room temperature and low pressure (140 kPa), make the spray 

coating and bonding process attractive for large-scale implementation. As a demonstration of how 

the process might be scaled, CNT forests were grown on both sides of Al foil to create an 

interposer material with a thermal resistance of 9 ± 2 mm
2
-K/W when bonded.  

 While these results demonstrate that the polymer spray coating and bonding process can 

be a viable method for reducing the thermal resistance of CNT forest contacts, the results were 

challenging to reproduce with rigid opposing substrates. Specifically, it was difficult to achieve 

strong uniform bonding between CNT forests coated with polymer and rigid metal surfaces for 

thermal characterization with an ASTM D5470 [55]. Future research should focus on improving 

the robustness of this approach through process optimization, improved process control, and the 

identification of soluble polymers with excellent adhesion to a variety of metal and 

semiconductor surfaces. 
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CHAPTER 7 

RESOLVING THE CNT FOREST TIP INTERFACE RESISTANCE WITH TIME-

DOMAIN THERMOREFLECTANCE 

 

 

7.1 Introduction 

Up to this point PA has been used to measure the total thermal resistance of CNT forests – that is, 

the sum of the contact resistances at the growth substrate and free tip interfaces, plus the 

resistance of the CNT layer. The heating frequencies suitable for the PA technique correspond to 

thermal penetration depths (Equation 3.1) that profile the entire CNT forest TIM structure, shown 

again for convenience in Figure 7.1(a). Consequently, the PA measurement signal depends on the 

thermal properties of the Ti absorption layer, Ag foil, and CNT forest as well as the thermal 

resistance between those layers and at the Si growth substrate interface. Many of these properties 

are unknown or difficult to measure. In the PA measurements of this research the Ti-Ag, Ag-

CNT, and CNT-Si interface resistances, and the thermal conductivity, heat capacity, and 

thickness (height) of the CNT forest layer were all treated as unknowns when fitting the 

theoretical model to the data. Since the PA method is sensitive to each of these parameters they 

could not be identified on an individual basis. Instead a unique solution could only be obtained 

for the total resistance, a lumped parameter (shown in section 3.2.1).  

 To measure the thermal resistance at the CNT tip interface exclusively, and more 

rigorously assess the merits of the strategies developed in this work, TDTR is used. The 

modulation frequencies applicable for TDTR, typically 1-10 MHz, correspond to thermal 

penetration depths on the order of 0.1-10 μm, and are favorable for interrogating thermal 

transport at interfaces. In particular, TDTR is well-suited to characterize the interface between the 

metal transducer layer and the sample [69, 79, 104, 105].  Here it is used to characterize the 

interface between CNT forests and an Al transducer layer, as shown in Figure 7.1(b).  
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Figure 7.1: Sample configuration for (a) PA and (b) TDTR of CNT forests. 

 

 

Specifically, it is used to resolve the thermal contact resistance of CNT forest-Al interfaces that 

have been processed using the methods developed in Chapters 4, 5, and 6. 

7.2 TDTR of CNT Forest Contacts 

7.2.1 Samples 

A total of four CNT forest sample types were evaluated with TDTR; i) dry contact, ii) WCD 

(Chapter 4), iii) PyprPA monolayer coupled (Chapter 5), and iv) P3HT spray coated and bonded 

(Chapter 6). These samples were assembled from 30 μm tall CNT forests grown on 1 cm
2
 Si 

substrates using the recipe described in section 3.1, and the sample configuration described in 

3.2.2 and shown in Figure 7.1(b) above. The dry contact CNT forests were characterized at 

compressive pressures of 90-220 kPa. One of the dry CNT forests were then wet with hexane, 

while remaining compressed at 220 kPa and allowed to dry for over 5 hours to be characterized as 

a WCD sample. PyprPA samples were fabricated using the procedure outlined in Chapter 5 for 

samples coupled with a monolayer of PyprPA and solvent. The only differences being that the 

modification was executed on the Al-glass transducer substrates, without plasma pretreatment, 
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and at a bonding pressure of 300 kPa. The P3HT bonded samples were prepared using the 

procedure detailed in Chapter 6 with two sprays of P3HT and bonding at 300 kPa. 

7.2.2 Measurement Strategy 

To reduce the number of fitting parameters in the measurement of CNT forest contacts TDTR 

was first carried out on the Al coated glass slides to determine the thermal conductivity and heat 

capacity of the glass in addition to the thermal interface resistance between the Al and glass. 

Measurements of Al coated glass were conducted at two modulation frequencies, 1.2 and 3.6 

MHz with the intent of identifying both the thermal conductivity and heat capacity of the glass 

[108, 109]. In total over 25 TDTR scans were performed across multiple Al-glass samples and 

multiple locations on each sample. Once the properties of the Al-glass structure were determined 

TDTR scans were conducted on CNT forest samples WCD with hexane and bonded with PyprPA 

and P3HT at modulation frequencies of 1.2, 3.6, and 6.3 MHz to measure the interface resistance 

between the CNT forest and Al, as well as the CNT forest thermal conductivity and heat capacity.  

 In addition to the thermal properties of the glass and CNT forest layers and their 

interfaces TDTR measurements are also sensitive to thickness of the Al transducer layer. In fact, 

measurements are typically most sensitive to this parameter [154]. All of the Al transducers used 

in this work were deposited using electron beam evaporation during the same deposition to 

minimize variations in the film thickness and properties. An Al film thickness of 150 nm was 

targeted to ensure the formation a continuous opaque film. The film thicknesses were measured 

using a stylus profilometer (KLA-Tencor P-15) with a resolution of less than 0.1 nm. 55 step-edge 

measurements of the Al film revealed an average thickness of 150 nm with a standard deviation 

of 10 nm. Determination of the Al thickness using picosecond acoustics was attempted, however, 

no acoustic echo was observed, likely due to the low acoustic impedance mismatch between glass 

and Al [155]. 
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7.2.3 Data Fitting 

Data fitting was conducted using a Levenberg-Marquardt non-linear least squares method [98]. 

For the glass-Al samples the fitting parameters were the thermal conductivity and heat capacity of 

the glass and the thermal interface resistance between the Al and glass layers. The initial values 

and bounds used to fit for those parameters are given in Table 7.1. All other parameters were 

considered known and held constant throughout data fitting. The uncertainty in the thickness of 

the Al layer was propagated into the uncertainty in the unknown fitting parameters after data 

fitting. A layer of air with properties at 300 K and 100 kPa was included in the model on the 

backside of the Al layer to account for the possibility of heat leakage into the ambient, although it 

has been shown previously that the Al-air interface can be modeled as an adiabatic boundary 

without a loss in accuracy [103].  

 

Table 7.1: Initial guess values and bounds for data fitting. 

Glass-Aluminum-Air 

Parameter Initial Lower Bound Upper Bound 

kGlass [W/m-K] 1.2 0.8 1.5 

CGlass [kJ/m
3
-K] 1650 1100 1980 

RGlass-Al [mm
2
-K/W] .01 .002 0.2 

Glass-Aluminum-CNT Forest 

kCNT [W/m-K] 3.5 0.1 10 

CCNT [kJ/m
3
-K] 21 .03 60 

RAl-CNT [mm
2
-K/W] 1 0.1 100 

 

For the glass-Al-CNT samples the fitting parameters were the thermal conductivity and 

heat capacity of the CNT layer and the thermal interface resistance between the CNT forest and 

Al layers. The initial values and bounds used to fit for those parameters are also given in Table 

7.1. The initial guess value for the CNT forest thermal conductivity was taken from recent 

measurements of CNT forests similar to those used in this work [123, 156]. The initial guess 

value for the heat capacity was set as the product of the specific heat of graphite [157] and the 

mass density of CNT forests similar to those used in this work [158]. The bounds for these 
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parameters were set to encompass the full range of reported CNT properties [18]. As with the 

glass-Al samples all other parameters in the model were considered to be known.  

7.3 Measurement Sensitivity and Uncertainty 

With the relatively large number of fitting parameters and the varying sensitivity of the 

measurement to those parameters, understanding the uncertainty in the measurement is essential. 

The impact a parameter has on the measurement signal is described the sensitivity. The sensitivity 

to a parameter represents the percentage change in the measurement signal per percentage change 

in the parameter. If the sensitivity to a parameter is comparatively small, it will have less 

influence on the signal than other parameters in the system. In an ideal experiment the parameter 

with the highest sensitivity is the unknown parameter of interest.  Formally, the sensitivity for a 

parameter p, denoted as Sp, in a TDTR experiment is calculated as 

𝑆𝑝 =
𝜕 ln(𝑉𝑖𝑛/𝑉𝑜𝑢𝑡)

𝜕 ln(𝑝)
,                                                               (7.1) 

   

where Vin/Vout is the ratio of the in-phase and out-of-phase signal [102, 110].  

There are typically two sources of uncertainty in a TDTR experiment; i) uncertainty in 

the Vin/Vout signal, and ii) the propagation of uncertainty from other parameters in the model 

[108, 154], which includes uncertainties related to measurement precision and data fitting 

sensitivities. In a TDTR measurement the absolute value of the signal phase is set by adjusting 

the reference phase of the lock-in amplifier until the out-of-phase voltage, Vout, is constant across 

zero delay time [101]. The uncertainty in the phase of the signal is taken as the RMS noise in the 

out-of-phase signal from delay times of -20 to +20 ps normalized by the jump in the in-phase 

signal at the zero crossing 

𝛿𝜑 =
𝛿𝑉𝑜𝑢𝑡

𝑉𝑖𝑛(0 +) − 𝑉𝑖𝑛(0−)
,                                                       (7.2) 
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where 𝛿𝜑 is the uncertainty in the signal phase, 𝛿𝑉𝑜𝑢𝑡
 is the noise in the out-of-phase signal, and 

Vin is the in-phase signal [154]. The uncertainty in a parameter p due to the propagation of 

uncertainty from another parameter y is calculated using sensitivities and is given by 

𝛿𝑝

𝑝
=

𝑆𝑦

𝑆𝑝

𝛿𝑦

𝑦
.                                                                    (7.2) 

The net uncertainty is taken as the square root of the sum of these two sources squared - that is 

the net uncertainty in a fit parameter p, denoted as δp, is given by 

(
𝛿𝑝

𝑝
)

2

= ((𝑉𝑖𝑜 𝑉𝑜𝑢𝑡⁄ )
𝛿𝜑

𝑆𝑝
)

2

+ ∑ (
𝑆𝑦

𝑆𝑝
∙

𝛿𝑦

𝑦
)

𝑏

2

,                                      (7.3) 

 

where the first term represents the contribution from the uncertainty in the measurement signal 

and the second term represents the contribution propagated from uncertainty in other parameters, 

such as the thickness of the Al transducer [154]. The uncertainty in a parameter is calculated for 

each modulation frequency using sensitivities averaged over the entire delay time range of a scan, 

300-7000 ps. When data at multiple modulation frequencies are simultaneously fit the frequency 

with the highest sensitivity to each parameter inherently has the largest influence in determining 

that parameter. Therefore, the total uncertainty for a parameter in a multi-frequency data set is 

taken as the sensitivity weighted average of the uncertainties at each modulation frequency. 

At each delay time data is collected over a time span of 1-2 seconds. This provides an 

average and standard deviation in the signal at each time step. The standard deviation in the 

signal is useful for estimating the resolution of the measurement with respect to different 

parameters in the model. To estimate the resolution of the measurement the standard deviation in 

the Vin/Vout signal is compared to the difference between a theoretical Vin/Vout response, i.e. a 

solution, and experimental data via the expression 
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Δ = ∑(𝑉𝑖𝑜,𝑠𝑡𝑑.𝑑𝑒𝑣. − |𝑉𝑖𝑜,𝑒𝑥𝑝. − 𝑉𝑖𝑜,𝑡ℎ𝑒𝑜.|),                                        (7.4) 

where 𝑉𝑖𝑜,𝑠𝑡𝑑.𝑑𝑒𝑣.  is the standard deviation in the experimental signal (Vin/Vout), 𝑉𝑖𝑜,𝑒𝑥𝑝. and  

𝑉𝑖𝑜,𝑡ℎ𝑒𝑜. are the experimental and theoretical signals respectively, and Δ is the difference summed 

across all delay times. If Δ is positive for two theoretical solutions then the solutions are 

considered to be indistinguishable, as they fall within the experimental error. The resolution of 

the measurement can be estimated by determining the range for a parameter over which Δ is 

positive. 

Similarly, Equation 7.4 can also be used as an alternative method for calculating the 

uncertainty in a fitting parameter due to the uncertainty in the measurement signal, i.e. the 

resolution of the measurement. In this case the unknown parameter of interest, p, is held fixed 

while a solution is obtained by fitting for all other unknown parameters. The process is repeated 

using different initial values for p until the range that fits the data is established. In essence, if an 

initial value for p is chosen that doesn’t fit the data, p cannot be that value. Throughout this 

process the range of allowable values for the other unknown fitting parameters should be 

restricted to physically plausible values [159]. 

7.4 Results 

7.4.1 Glass-Al Interface Results 

The best-fit solutions for the thermal conductivity and heat capacity of the glass layer and the 

interface resistance between the glass and Al layers ranged from 1.04-1.14 W/m-K, 1.4-1.6 

MJ/m
3
-K, and 0.02-0.04 mm

2
-K/W (26-56 MW/m

2
-K) respectively, within the anticipated range 

for glass [160]. A typical fit to experimental data is displayed in Figure 7.2, and the 

corresponding sensitivity plots for the best fit solution in Figure 7.3. The measurement is 

relatively insensitive to the glass-Al interface resistance, hence the wide range in best-fit solutions 

for this parameter, and is equally sensitive to thermal conductivity and heat capacity of the glass 

layer at both 1.2 and 3.6 MHz. This is because the measurement is actually sensitive to the glass 
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thermal diffusivity, α=k/C, at both modulation frequencies. The standard deviation of the best-fit 

solutions to the glass thermal diffusivity was only ~1%, signifying that the thermal diffusivity of 

the glass is precisely identified.  

 
Figure 7.2: Representative TDTR data and best-fit solution for a Glass-Al sample. 

 

 

 

 
Figure 7.3: Sensitivity plots for Glass-Al at (a) 3.6 MHz, and (b) 1.2 MHz, showing equal 

sensitivity to thermal conductivity and heat capacity and relatively low sensitivity to the Glass-Al 

interface resistance. 

 

 

The uncertainty calculated using Equation 7.3 ranged from 10-30% for the thermal 

conductivity and heat capacity and was frequently in excess of 100% for the glass-Al interface 

resistance. The uncertainty is dominated by the propagation of uncertainty from the Al layer 
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thickness. The contributions due to error in the Vin/Vout signal were usually less than 5% for the 

thermal conductivity and heat capacity. Since the same vendor and model of glass microscope 

slides were used throughout this research the thermal conductivity and heat capacity are expected 

to remain constant. Therefore, the average of the best-fit solutions for the thermal conductivity 

and heat capacity, 1.08 W/m-K and 1.49 MJ/m
3
-K, were used and considered known in the 

subsequent measurement of CNT forest properties. Likewise, the average of best-fit solutions for 

the glass-Al interface resistance, 2.7x10
-2

 mm
2
-K/W, was also used. Although the measurement is 

relatively insensitive to this parameter it likely varies between samples and across the surface of a 

single sample due to variations in the cleanliness of the glass surface prior to the Al deposition. 

To account for such variations an uncertainty of ± 43%, equivalent to the standard deviation of 

the best-fit solutions, was carried into in the subsequent analysis of CNT forest contacts. 

 

 

Figure 7.4: TDTR data at (a) 3.6 and (b) 1.2 MHz for Glass-Al and Glass-Al-Dry Contact CNTs 

are indistinguishable within the measurement error, indicating that the differences in interface 

resistance for these sample types cannot be resolved with TDTR at the modulation frequencies 

used. 

 

 

 

a) b) 
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7.4.2 Glass-Al-CNT Forest Interface Results 

TDTR scans of CNT forests in dry contact with the Al coated glass at pressures ranging from 90 

to 220 kPa were indistinguishable from scans on Al coated glass without CNTs, i.e. those with air 

as the backing, shown for a modulation frequency of 3.6 and 1.2 MHz in Figure 7.4. Due to the 

high interface resistance between the CNT forest tips and the Al (estimated ≥ 20 mm
2
-K/W from 

Figure 5.4(a)) the majority of the heat deposited by the laser is directed into the glass slide. For 

this reason the measurement is insensitive to the thermal properties of dry contact CNT forests 

and thereby could not be measured with TDTR at the modulation frequencies (1.2, 3.6, and 6.3 

MHz) and compressive pressures tested.  

  

 

Figure 7.5: Actual Glass-Al-Dry Contact CNT data compared to theoretical Glass-Al-CNT data 

at 3.6 MHz with varying Al-CNT interface resistances illustrating the resolution of TDTR for 

characterizing dry contact CNT forests. 

 

 

To gain insight into the maximum CNT tip interface resistance that can be resolved with 

TDTR theoretical Vin/Vout responses were generated for glass-Al-CNT forest samples with 

 

0.6 



95 
 

assorted Al-CNT interface resistance values and compared to the experimental data for dry 

contact CNT forests (Figure 7.5). To calculate the theoretical responses the CNT forest properties 

were set to the initial guess parameters from Table 7.1 and the glass properties to the measured 

averages. Equation 7.4 was found to change sign for a contact resistance of ~3 mm
2
-K/W 

indicating that resistances above this value cannot be resolved for the CNT forest properties and 

modulation frequencies considered here.  

 

 
Figure 7.6: (a) Representative Dry and WCD CNT data at 3.6 MHz illustrating the shift in the 

signal associated with the WCD process. (b) TDTR data at 3.6 MHz for bonded CNT interfaces is 

indistinguishable, indicating that the differences in interface resistance for these sample types 

cannot be resolved with TDTR at the modulation frequencies used. 

 

 

As a result of the WCD process the TDTR signal increased definitively at all of the 

modulation frequencies tested. An example of the change in the measurement signal at 3.6 MHz 

is shown in Figure 7.6(a). Bonding of CNT forests with a monolayer of the surface modifier 

PyprPA(with solvent) and the polymer P3HT had Vin/Vout responses comparable to the WCD 

CNT forest, shown at 3.6 MHz in Figure 7.6(b). A typical three frequency fit for P3HT bonded 

CNTs is shown in Figure 7.7. The best-fit solutions for the thermal diffusivity of bonded and 

WCD CNT forests ranged from 4.6x10
-5

 to 5.9x10
-4

 m
2
/s, in agreement with previously reported 

a) b) 
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values [11, 161], and had uncertainties as calculated by Equation 7.3 typically on the order of 

50%. The uncertainty primarily stemmed from the uncertainty in the Al layer thickness. The 

contribution due to the uncertainty in the Vin/Vout signal was below 3% for all samples.  

 

 
Figure 7.7: Representative three frequency data fit for P3HT bonded CNTs. 

 

 

 

The uncertainty in the best-fit solutions for the thermal resistance of the bonded and 

WCD CNT forest interfaces ranged from ~130 to 560%, indicating that the thermal contact 

resistance could not be accurately resolved. In general, it was found that the measurement is 

unable to resolve the Al-CNT forest interface resistance below a certain threshold. To better 

understand this threshold the data was fit by adjusting the CNT forest thermal conductivity and 

heat capacity, while keeping the Al-CNT interface resistance fixed. The data was fit using 

progressively larger Al-CNT interface resistance values until the solution failed to fit the data 

within the standard deviation. The process is illustrated in Figure 7.8 for a PyprPA bonded CNT 

forest at 6.3 MHz. The bounds for the CNT forest thermal conductivity and heat capacity listed in 

Table 7.1 were used to restrict the solution space, although the parameters never approached these 

bounds. Equation 7.4 was used to establish a criterion for determining whether or not a solution  
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Figure 7.8: TDTR Data for Glass-Al-PyprPA bonded CNTs and theoretical fits with fixed Al-

CNT interface resistances at 6.3 MHz used to determine the measurement resolution for 

characterizing bonded CNT forests. 

 

 

“fit” the experimental data. The solution was considered to no longer fit the data when Δ became 

negative for one or more of the modulation frequencies. The Al-CNT forest interface resistance at 

which Δ changed signs represents a minimum resolution for characterizing the bonded CNT 

forests with TDTR. It also represents a range of possible values for the Al-CNT forest interface 

resistance, while only considering the standard deviation in the measurement signal as a source of 

uncertainty. 

 The upper bound for the Al-CNT interface resistances of bonded and WCD CNT forests 

calculated using the best-fit values and uncertainty calculated from Equation 7.3 are compared to 

the range estimated using Equation 7.4, in Table 7.2 below. The best-fit CNT forest thermal 

conductivity, heat capacity, and thermal diffusivity are also included in Table 7.2 for reference. 

PyprPA bonded samples could not be fit simultaneously fit to frequency pairings including 3.6 

MHz. Since data at 1.2 and 6.3 MHz could be fit simultaneously those solutions are reported. The 

range of solutions for the Al-CNT forest interface resistance as calculated using Equation 7.4 was 

found to span from < 0.3 to < 0.6 mm
2
-K/W for all samples. Similarly, the range of best-fit  
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Table 7.2: CNT forest thermal properties. See Appendix D for a more rigorous treatment of the 

uncertainty in these results using a preliminary Monte Carlo method and additional discussion. 

Sample 
Frequency 

[MHz] 

Best-Fit (Eqn. 7.3) (Eqn. 7.4) 

RAl-CNT 

[mm
2
-K/W] 

kCNT 
[W/m-K] 

CCNT 
[kJ/m

3
-K] 

αCNT 

[m
2
/s]∙10

-4
 

RAl-CNT 

[mm
2
-K/W] 

PyprPA 

1.2, 6.3 < 0.5 9 ± 7 19 ± 6 4.9 ± 3.7 < 0.6 

1.2, 6.3 < 0.4 7 ± 3 6 ± 2 1.2 ± 0.7 < 0.3 

1.2, 6.3 < 0.3 9 ± 4 22 ± 6 4.2 ± 2.2 < 0.4 

P3HT 

1.2, 3.6, 6.3 < 1 4 ± 3 30 ± 2 1.3 ± 1.1 < 0.6 

1.2, 3.6, 6.3 < 0.2 7 ± 3 23 ± 8 3.3 ± 1.8 < 0.5 

1.2, 3.6, 6.3 < 0.4 3 ± 2 50 ± 30 0.6 ± 0.5 < 0.3 

WCD 1.2, 3.6, 6.3 < 0.5 3 ± 2 60 ± 35 0.5 ± 0.4 < 0.3 

 

 

solutions for the Al-CNT forest interface resistance calculated using Equation 7.3 ranged from < 

0.2 to < 1 mm
2
-K/W. The uncertainty in these values had contributions from the uncertainty in 

the Al film thickness and the uncertainty in the measurement signal. Equation 7.3 and Equation 

7.4 lead to comparable ranges for the Al-CNT forest interface resistance. Equation 7.3 seems to 

represent a more lenient consideration of the uncertainty in the measurement signal, whereas 

Equation 7.4 is known to be conservative estimate since the criterion, a phase shift difference 

equal to one standard deviation of the signal, can be resolved. The magnitude of these findings for 

the Al-CNT interface resistance are comparable to those of a recent study by Kaur et al. [107] 

where the identical sample structure was used to characterize CNT forests bonded with two 

different surface modifiers. The method used by Kaur et al. to calculate the uncertainty in the 

measurement was not disclosed, however, the uncertainty in their reported values is likely under-

predicted based on the findings of this study.  

Overall, none of processing methods definitively reduced the contact resistance at the 

CNT tip interface more extensively than the others. All of the methods produced CNT forest 

contact resistances < 0.4 mm
2
-K/W for at least one measurement location. This suggests that 

thermal transport at individual CNT contacts could be similar for all cases, although without 

exact knowledge of the contact resistance and contact area it remains unclear. If a contact 
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resistance of 0.02 mm
2
-K/W [20, 41] is assumed for an individual CNT vdW contact, a CNT 

forest free tip contact resistance of 0.4 mm
2
-K/W would correspond to 5% contact area. This 

value is significantly higher than theoretical predictions for the maximum contact area at CNT 

forest interfaces (~1%) [44].  However, it is physically conceivable; especially for the polymer 

bonded CNT contacts where the polymer coating is expected to significantly extend the contact 

area at individual CNT tips (Chapter 6). Moreover, contact areas less than 5% would be feasible 

for bonded CNT contacts, such as those bonded with PyprPA or other surface modifiers, where 

the stronger bonding is expected to decrease the resistance of individual CNT contacts 

significantly [78].  

Considering the lowest total resistances for the bonded and WCD CNT TIMs measured 

in this research ranged 3-5 mm
2
-K/W, the CNT free tip interface after processing contributes < 

13% to the total resistance (assuming a free tip resistance of 0.4 mm
2
-K/W). This contribution 

will only be further diminished for taller CNT forests, as the layer resistance and potentially the 

growth substrate resistance increase [106]. Additionally, for all of the bonded and WCD 

interfaces the Al-CNT contact resistance never exceeded 1 mm
2
-W, indicating the efficacy of the 

methods across the entire area of interface, i.e. across device-sized areas.  

7.5 Limitations of the Bi-Directional Sample Configuration 

The upper limit on the Al-CNT forest contact resistance that can be resolved with the bi-

directional sample configuration in TDTR is dictated by the relative flow of heat into the 

materials on either side of the interface, and by the penetration depth of the thermal waves 

(Equation 3.1). For the dry contact glass-Al-CNT forest interfaces in this research the high Al-

CNT contact resistance causes the majority of the heat to preferentially flow along the lower 

resistance pathway, i.e. into the glass layer. As a result, the Vin/Vout response of glass-Al-CNT 

forest dry contact interfaces was observed to be equivalent to that of a glass-Al-air sample. The 

upper limit on Al-CNT forest that can be resolved with TDTR could be improved by decreasing 

the thermal conductivity of the backing to direct more of the heat into the CNT forest and by 
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decreasing the modulation frequency to increase the thermal penetration depth. In the ideal 

sample the glass backing (k ≈ 1) would be replaced with air (k ≈ 0.02). This is representative of 

the conventional TDTR sample configuration, where the Al transducer is deposited directly on 

the sample of interest. 

 For the bonded glass-Al-CNT forest samples, where the Al-CNT interface resistances are 

significantly lower (< 1 mm
2
-K/W) the resolution of the measurement is plagued by low 

sensitivity to the CNT layer properties and interface resistance. In this scenario the sensitivity to 

the properties of the CNT forest is determined by the relative thermal effusivities of the glass and 

CNT forest. The thermal effusivity, commonly referred to as thermal inertia, is defined as 

𝑒 = (𝑘𝐶)1/2.                                                                    (7.5) 

This dependence is illustrated in a plot showing the sensitivity of the measurement at 3.6 MHz 

and a delay time of 1000 ps to generic CNT forest properties for a variety of backing substrate 

diffusivities in Figure 7.9. Most of these materials are not feasible as actual baking substrates for 

TDTR because they are not transparent to the pump and probe beam wavelengths (400 and 800 

nm respectively), or do not support the high vacuum deposition of the transducer. Nonetheless, 

they illustrate the full range of possibility for a bi-directional sample configuration. As shown in 

Figure 7.9 the thermal effusivity of the CNT forest is comparatively low leading to low 

sensitivities for backing substrates of common solids. Air again represents the best-choice as a 

backing for maximizing the resolution of the measurement for CNT forests. However, doing so 

does not guarantee that CNT forest contacts can be resolved. For CNT forests with the transducer 

evaporated directly onto the free tips Gao et al. [106] was yet unable to resolve the transducer-

CNT forest interface below 0.5 mm
2
-K/W using both nanosecond thermoreflectance and FDTR.  
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Figure 7.9: TDTR measurement sensitivity to CNT properties as a function of the effusivity of 

the backing substrate.  

 

 

7.6 Summary and Recommendations 

7.6.1 Summary 

Time-domain thermoreflectance was used to resolve the thermal resistance of the CNT forest free 

tip interface and to evaluate the approaches developed in this research. PyprPA and polymer 

(P3HT) bonded and WCD interfaces were all measured to have thermal contact resistances < 1 

mm
2
-K/W. As such, for all the approaches developed in this research the CNT free tip interface 

no longer dominates the total resistance of the CNT TIM. The resolution of the measurement for 

examining dry and bonded CNT forest contacts is limited by the relatively high thermal 

conductivity and thermal effusivity of the transparent glass backing substrate. 

7.6.2 Recommendations 

To improve the capabilities of the measurement for studying both dry and bonded CNT forest 

contacts is it recommended that the backing substrate be replaced with air at the location of the 

measurement. Since studying bonded or pressed CNT forest contacts requires that the transducer 

be deposited on a mechanically rigid substrate the backing substrate cannot be altogether 
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eliminated. Instead it is recommended that a process is developed to fabricate small holes, ~100 

μm in dimension (large enough for the pump and probe beams to pass through), in the backing 

substrate without damaging the Al transducer film. Furthermore, a comprehensive Monte Carlo 

treatment of the uncertainty (Appendix D) should be carried out to better understand the 

limitations of the measurement.  
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CHAPTER 8 

SUMMARY AND RECOMMENDATIONS 

 

 

Several methods for integrating CNT forests as TIMs in electronics packaging with low thermal 

contact resistance have been developed. These approaches require low temperatures and pressures 

compared to existing methods that rely on metal as a bonding material, and generally utilize low-

cost materials and processes. As such, these approaches represent a significant step towards both 

practical and effective CNT forest TIMs that are amenable to adoption at commercial scales. 

8.1 Summary and Major Findings 

This research specifically concentrated on the problem of contact resistance at the interfaces 

between the free tips of CNT forests and surfaces in electronics packaging. The contact 

resistances for dry CNT forests at these interfaces are known to be prohibitively high, and were 

estimated through measurement of the total resistance with photoacoustic to be 10-20 mm
2
-K/W 

or greater for the CNT forests examined in this research. Low contact area and weak bonding 

were identified as the foremost factors contributing to the contact resistance and targeted as 

mechanisms for reducing it. Three separate strategies were developed with low-cost and scaling 

in mind; i) liquid softening, ii) surface modifiers, and iii) nanoscale polymer coatings. For CNT 

forests around 10 μm in height all of the strategies developed were measured with photoacoustic 

to reduce the total resistance by 70-90% to ~5 mm
2
-K/W. The contact resistance at the CNT tip 

interface was resolved from the total resistance using time-domain thermoreflectance. All three of 

the strategies produced CNT forest contact resistances < 1 mm
2
-K/W. 

 Consequently, the total thermal resistance of CNT forest TIMs is no longer dominated by 

the contact resistance at the free tips. To illustrate this point the ratio of the free tip contact 

resistance to the total resistance is plotted as a function of CNT forest height for a range of CNT 

forest thermal conductivities in Figure 8.1. The free tip interface resistance is set to 0.5 mm
2
-
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K/W, based on the findings of this research and other studies discussed in section 8.2. The other 

side of the CNT forest is modeled as a growth-substrate interface and the interface resistance is 

set to 1 mm
2
-K/W [11]. As shown in Figure 8.1 the contribution of the CNT tip interface is at 

most 1/3 of the total resistance for the prescribed conditions. For a 10 μm tall CNT forest, the 

lower end of bond-line-thickness anticipated for applications, with a thermal conductivity of 10 

W/m-K the contact resistance at the free tip interface only contributes 20% of the total resistance. 

A number of recent studies have reported CNT forest thermal conductivities below 10 W/m-K 

[106, 123, 162] and growth substrate interface resistances increasing with CNT forest height to 

values as high as 80 mm
2
-K/W [106]. The contribution of the free tip contact resistance would be 

even further diminished for CNT forests with these characteristics. 

 

 
Figure 8.1: Ratio of the CNT free tip contact resistance to the total resistance after processing 

with the methods developed in this research illustrating the diminished role of the contact 

resistance. The CNT free tip resistance is set to 0.5 mm
2
-K/W and the growth substrate resistance 

to 1 mm
2
-K/W. 

 

 In addition to effectively mitigating the contact resistance at the CNT forest free tip 

interface a number of other technical and scientific developments resulted from this research. A 
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brief summary of each of the strategies is given in the sections below, alongside a list of the most 

significant findings. 

8.1.1 Chapter 4: Liquid Softening 

A strikingly simple and straight-forward approach for enhancing the contact area at the CNT 

forest tip interface was demonstrated. The approach relies on infiltrating the CNT forest with a 

liquid before compressing it against a surface and allowing it to dry. Infiltrating the CNT forest 

with the liquid attenuates the van der Waals interactions at inter-CNT contact points within the 

forest and thereby reduces its mechanical stiffness. When compressed against a surface in the wet 

state the CNT forest more readily deforms leading to increased contact between the CNT forest 

and the surface. The contact area was found to increase by as much as ~80%, corresponding to an 

equivalent reduction in thermal contact resistance and enhancements in adhesion to glass 

surfaces. Specific novel findings from this work include: 

 Contact area explicitly identified as a major contributor to the thermal resistance of CNT 

forest contacts 

 Demonstration that through wet compression the contact area can be enhanced to 

dramatically reduce contact resistance, by as much as ~80% 

 Contact area saturation with CNT forests at unprecedentedly low compressive pressure, 

35 kPa, possibly lower 

 Record approaching dry CNT forest shear adhesion to glass at an order of magnitude 

lower compressive preload: 10-24 N/cm
2
 for wet compression at 35-105 kPa 

  Evidence was not found to support the hypothesis that capillary induced deformations 

during drying of a CNT forest while compressed in an interface significantly alter the 

contact area or thermal resistance 
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8.1.2 Chapter 5: Pyrenylpropyl Phosphonic Acid Surface Modifier 

A pyreneypropyl phosphonic acid (PyprPA) surface modifier was created for coupling CNTs to 

metal oxide surfaces in a simple and scalable manner to reduce the thermal contact resistance. 

When used to couple vertical CNT forests to oxidized Cu surfaces the PyprPA modifier reduced 

the thermal contact resistance by approximately 9-fold over CNT forests in non-bonded dry 

contact. As a thermal interface material PyprPA coupled CNT forests had a total thermal 

resistance of 4.6 ± 0.5 mm
2
-K/W. Electrical characterization of PyprPA coupled and dry contact 

CNT interfaces indicate that the modifier may reduce the electrical contact resistance by a similar 

magnitude. The results of this work highlight the important role of bond strength in thermal 

transport at CNT contacts. Furthermore, it demonstrates that surface modifiers, such as the one 

synthesized here, could be used with relatively simple and repeatable processing steps to 

significantly reduce contact resistances in CNT-based materials for thermal and electrical 

transport. 

Specific novel findings from this work include: 

 Bond strength explicitly identified as a major contributor to the thermal resistance of 

CNT forest contacts 

 Identification of surface modifiers as a viable strategy for improving bond strength and 

reducing the thermal resistance of CNT forests contacts uniformly over device-sized 

areas, by as much > 80% with PyprPA 

 Demonstration of surface modifiers as a method for mechanically attaching CNT forests 

to surfaces. A normal adhesion of 340 ± 50 kPa was achieved with PyprPA 

 Identification of surface modifiers as an instrument to reduce electrical resistance of CNT 

forest contacts. A > 80% reduction was demonstrated with PyprPA 

 Identification of PyprPA as a potential surface modifier for forming ohmic CNT contacts 

 Identification of additional surface modification and bonding strategies 
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8.1.3 Chapter 6: Polymer Spray Coating and Bonding 

A spray coating process was developed for depositing nanoscale coatings of polymer onto CNT 

forests, as a bonding agent.  The coatings mitigate the thermal resistance by enhancing the area 

contact area locally around individual CNT tips. Two polymers were tried; polystyrene and 

poly(3-hexylthiophene), and no dependence on polymer type was observed. Total thermal 

resistances as low as 4.9 ± 0.3 mm
2
-K/W were achieved.  

Significant novel findings from this work include: 

 Spray coating demonstrated as a method for applying nanoscale coatings of soluble 

materials to the surfaces of CNT forests, while preserving the internal 

morphology/microstructure of the forest 

 Polymers, generally thermal insulators, were demonstrated as effective materials for 

reducing the thermal resistance of CNT forest contacts when applied as nanoscale 

coatings 

 Spray coating and bonding of CNT forests with polymers at room temperature and low 

pressure (140 kPa) reduced the thermal resistance of the CNT forest tip interface by as 

much as ~75%, although the process had control/repeatability issues 

 Locally increasing the contact area at individual CNT tips by the addition of coatings 

identified as potential method for reducing thermal resistance. 

 Polymers coatings demonstrated as a method for mechanically attaching CNT forests to 

surfaces. An average shear attachment strength of 29 N/cm
2
 was achieved. 

8.2 Comparison with Existing Bonding Approaches  

The thermal resistances of CNT TIMs fabricated via these approaches and the relevant processing 

parameters are compared to existing methods in Table 8.1. The processes developed in this 

research focused on scalable and effective methods for reducing the contact resistance at the CNT 

tips, therefore, a comparison at the scale of total resistance like most of the entries in Table 8.1, is  
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Table 8.1 Thermal resistances of bonded CNT forest TIMs compared to conventional TIMs. 

Interface 
CNT Forest 

Height [μm] 

Measurement 

Pressure [kPa] 

Thermal 

Resistance 

[mm
2
-K/W] 

Implementation Process 

Bonded CNT 

Forests: 
  

Bonded/Dry 

Contact: 
 

Si-MWCNT-In-

SiO2[32] 
10 0 

RCNT tips ≈Rtotal: 

~1/11 

Metal Evaporation, Bonding 

(Pressure NA
[a]

, 180 °C) 

Si-MWCNT-Au-

Ag[34] 
30 0 Rtotal: 4.5/NA

[a]
 

Metal Evaporation, Bonding 

(Pressure NA
[a]

, 220 °C) 

Si-Au-Patterned 

MWCNT-Au-Si[35] 
~60 63 Rtotal: 62/336

[b]
  

Metal Evaporation, Bonding  

(63 kPa, 150 °C) 

Cu-MWCNT-Si[33] NA 0 Rtotal: 10/50 

Spin Coating,  

Microwave Bonding  

(6.425 GHz, 750 kPa, 160 °C) 

Si-MWCNT-Pd-

Ag[163] 
20 34 Rtotal: 11/22 

Drop Casting, Bonding  

(273 kPa, 250°C) 

Si-MWCNT-Al/Ni-

SiO2[162] 
500 50-500 

RCNT tips:  

27-41/~1000 

Metal Evaporation, Bonding 

(250 kPa) 

Si-MWCNT-In-

SiO2[162] 
500 100-600 

RCNT tips: 

30-47/~1000 

Metal Evaporation, Bonding 

(250 kPa, 180 °C) 

Si-MWCNT-APS-

Al-SiO2[107] 
70-100 0 RCNT tips: 0.6/3.5 

O2 Plasma, Solution 

Modification, Bonding  

(120 °C, 50 kPa) 

Si-MWCNT-Cyst-

Au-SiO2[107] 
70-100 0 RCNT tips: 0.8/3.5 

O2 Plasma, Solution 

Modification, Bonding  

(120 °C, 50 kPa) 

This Research:     

Si-MWCNT-Ag 5 7 
Rtotal:3/11 

RCNT tips: < 0.5 

Wetting, Compression 

(35 kPa, RT
[c]

) 

Si-MWCNT-

PyprPA-Cu-Ag 
15 7 

Rtotal:5/40 

RCNT tips: < 0.6 

Solution Modification, 

Bonding (300 kPa, RT
[c]

) 

Si-MWCNT-

Polymer-Ag 
10-115 7 

Rtotal:5-44/20-80 

RCNT tips:  < 1 

Spray Coating, Bonding 

(140 kPa, RT
[c]

) 

Conventional 

Materials [17]: 
    

Greases   20-100  

Gels   40-80  

Pads   100-300  

Phase Change   30-70  

Solder   5  

[a] NA: Data not available  [b] The reported area specific thermal resistances were recalculated 

using the total area of the interface (4 mm
2
) instead of only the patterned CNT area (1.13 mm

2
) to 

reflect the effective thermal resistance, as would be experienced by a real device. [c] RT: room 

temperature 
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not a true evaluation of methods developed in this research. However, due to the challenging 

nature of resolving the CNT forest tip interface resistance this is usually the only comparison that 

can be made. 

There are a few instances where direct comparisons of the contact resistance at the CNT 

can be used to evaluate the merits of the approaches developed in this research. In 2007 Tong et 

al. [32] using 1 μm of In to bond CNTs to glass was able to reduce the contact resistance from 

~11 to < 1 mm
2
-K/W, a greater than 90% reduction. Although, the contact resistance achieved is 

similar those obtained in this research, Tong noted that the bonding was inconsistent across the 

surface of the sample resulting in areas of increased contact resistance. Furthermore, this 

approach utilized bonding at 180 °C, which is not feasible for many devices and packaging 

schemes. In a similar approach Barako et al. [162] used 25 μm of In to bond metal coated CNTs 

to metal coated target substrates. The bonding process reduced the contact resistance at the CNT 

tips from ~1000 mm
2
-K/W to between 30 and 47 mm

2
-K/W, a > 95% reduction. Yet, the bonded 

contact resistances are at least an order of magnitude larger than those achieved in this research. 

Moreover, the approach utilized metal evaporation on both the CNT forest and target substrate to 

facilitate wetting of the indium and high temperature and pressure bonding (180 °C and 250 kPa). 

In the same study Barako et al. [162] also examined bonding using a commercially-available 

reactive metal film (NanoFoil®, Indium Corp). Given a small activation energy in the form of an 

electrical current, optical pulse, or heat pulse the reactive film undergoes an exothermic reaction 

to melt and join the interface. This removes the necessity to apply heat from an external source, 

however, 250 kPa of pressure and metal evaporation on the CNT forest tips and target substrate 

were still used to facilitate bonding. The contact resistance of CNT forests tips bonded using the 

reactive film were also 27-41 mm
2
-K/W, at least an order of magnitude higher than the contact 

resistances achieved in this research.  

Kaur et al. [107] used the commercially-available surface modifiers aminopropyl 

triethoxysilane and cysteamine to join CNT forests to Al and Au surfaces respectively. The 
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modifiers reduced the contact resistance from 3.5 ± 0.5 to 0.6 ± 0.2 and 0.8 ± 0.2 mm
2
-K/W for 

the modified Al and Au interfaces respectively. As such, both modification strategies produce 

bonded contact resistances similar to those achieved by this research. The modification and 

bonding procedures employed by these strategies were nearly identical to that developed for the 

PyprPA modifier (Chapter 5) with the exceptions that the CNT forests were treated with oxygen 

plasma, and that bonding was conducted at 120 °C. Aside from these processing differences the 

scalability and effectiveness of the strategies are comparable that of the PyprPA. The polymer 

spray coating and bonding (Chapter 6) and wet compression (WCD) process (Chapter 4) 

represent potentially more scalable processes that achieve similar contact resistances.  

8.3 Recommendations 

There remains a significant and growing need for mechanically compliant, i.e. reliable, TIMs 

with low thermal resistance (< 10 mm
2
-K/W) that are chemically stable at elevated temperatures 

(> 130 °C) (see Chapter 1) [5, 9, 17]. Utilizing the methods developed in this research, and 

elsewhere, for mitigating the contact resistance at the free tip interface, even CNT forests with 

relatively low thermal conductivity (< 10 W/m-K) could potentially meet these requirements and 

fill a major technological gap. Future research should therefore continue to focus on improving 

CNT forests with regard to these aspects. Perhaps foremost, the reliability of CNT TIMs should 

be investigated. Several recent studies have reported on the favorable low in-plane modulus of 

CNT forests [164], however, there have yet to be any studies published that critically examine the 

reliability of bonded CNT forest TIMs. Future research should also continue efforts to reduce the 

thermal resistance of CNT TIMs. Although, the emphasis should now be shifted from free tip 

interface resistance to the thermal conductivity of the CNT forest [106, 123, 162], and possibly 

the growth substrate resistance [106]. Pursuing CNT growth strategies for higher number density 

of CNTs in the array [165] could help address this issue since the most arrays currently only have 

about 1 to 10% CNT material [18].  The mechanisms that affect the chemical stability of CNTs 
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are well understood and the majority of CNTs are stable at sufficiently high temperatures. 

Accordingly, this aspect should not be a point of emphasis.  

 The thermal properties of CNT forests and their application as TIMs have been an active 

topic of academic research for nearly a decade. Although our understanding of these materials has 

advanced dramatically during that time there remains more to be learned. Unfortunately, basic 

science funding and the general excitement of the scientific community toward these materials 

has and will continue to fade. If research on CNT forest TIMs is to continue and a commercially 

viable CNT TIM is to be realized it will be essential that researchers studying these materials take 

their knowledge and research programs to industrial partners or transition the technology from 

academia to industry themselves. 
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APPENDIX A 

MODIFICATION OF CNTS AND COPPER OXIDE WITH PYRENYLPROPYL 

PHOSPHONIC ACID 

 

 

This research was carried out by collaborators Dr. O’Neil L. Smith and Professor Seth R. Marder 

of the Georgia Tech School of Chemical and Biomolecular Engineering in support of the research 

reported in Chapter 5 of this dissertation. 

A.1 Verification of CNT Modification with PyprPA 

CNTs (10 mg) were added to 50 mL of DI water and sonicated for 4 hours before a PyprPA 

solution (1.5 mM, in methanol) was added and the mixture stirred overnight. Several 

centrifugation/wash cycles in DI water was undertaken to remove the excess PyprPA, after which 

the modified tubes were dried in a vacuum oven at 80 °C. Prior to annealing in the oven, the 

degree of removal of the excess acid was assessed by monitoring the UV-vis spectra of the 

PyprPA in the DI water supernatant (Figure A.1(a)). It was observed that after the nine washes, 

very little acid was removed in subsequent cycles which suggest that the majority of the 

remaining molecules were directly associated with the CNT.  In order to approximate the amount 

of the acid that was bound to the CNTs, calibration curves for both the CNTs and the pyrene 

modifier were generated using the absorptions at 254 and 344 nm, respectively (Figure A.2) in 

1% sodium dodecyl sulfate. Based on the difference spectrum between the UV-vis of the 

modified CNTs and the pristine nanotube (Figure A.1(b)) the amount of PyprPA per microgram 

of CNT was found to be 1.2 × 10
-4

 mol/µg. A CNT spectrum was chosen such that the absorption 

within the 600 – 800 nm region closely approximates that of the modified CNT as have been 

demonstrated elsewhere [166]. Raman spectroscopy was performed on the CNT-PyprPA hybrid. 

The Raman spectra (Figure A.3) of the pristine and modified CNTs showed the characteristic  
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Figure A.1: Modification of CNTs with pyrenylpropyl phosphonic acid. (a) Monitoring 

the supernatant after modification to assess the removal of excess modifier from the 

CNTs. (b) UV-Vis spectra used to approximate the amount of the modifier per micro 

gram of CNT. 

 

 
Figure A.2: Calibration curves. (a) UV-vis of various concentration of pyrene-based 

phosphonic acid. (b) calibration curve, of pyrene moiety. (c) UV-vis of various 

concentration of CNTs. (d) calibration curve, of CNTs. 
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Figure A.3: Raman spectra of modified and unmodified CNT. 

 

bands [93] but no clear shift in the band positions between the modified and unmodified CNTs 

was observed as reported elsewhere [131, 132]. 

A.2 Verification of Copper Oxide Film Modification with PyprPA 

Prior to modification, the copper substrates were cleaned by sonicating them consecutively in 

dilute triton X, DI water and ethanol for 10 min each. The oxide films were then dried under a 

stream of nitrogen and oxygen plasma etched for 2 min (Plasma Etch-50) before they were 

immersed in a 1.5 mM solution of the PyprPA solution (ethanol:chloroform; 1:1) for 24 hours.  

After modification, the films were sonicated for 30 min in the aforementioned solvent system to 

remove any physisorbed molecules before they were examined by XPS. All XPS measurements 

were carried out on a Kratos Axis Ultra spectrometer using a monochromatic Al(Kα) source. All 

the measurements were acquired at normal take-off angle of 0º relative to the surface normal at 

pass energies of 160 eV and 20 eV for surveys and high resolution data, respectively. The high 

resolution spectra of Cu 2p region is shown in Figure A.4(a) for both the modified and 

unmodified copper oxide films; peak assignments were consistent with that shown by 

Barr [167]. The surface coverage was approximated by evaluating the degree attenuation  
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Figure A.4: Assessment of coverage. (a) High resolution spectra of the Cu 2p region 

which shows the attenuation of the signal upon modification with the phosphonic acid. 

(b) optimized geometry (Hartree-Fock, basis set 6-31 G) in which the molecular length is 

estimated to be 13.62 Å. 

 

of the Cu 2p photoelectrons by the organic overlayer. The attenuation of the Cu 2p signal 

(ACu) is represented by 

ACu = SCu
ML

/SCu = exp[-d/λML sin θ],                                  (A.1) 

where SCu
ML 

is the signal from the modified surface, SCu is the signal from the bare Cu 

substrate, d is the thickness of the monolayer, λML is the attenuation length of the copper 

photoelectrons in the organic layer and θ is the take-off angle between the sample and the 

detector. The attenuation length was approximated from the inelastic mean free path 

(IMFP) using the Cumpson method [168]. In this approach the IMFP is determined based 

on the connectivity and electronic environment of the molecule using a quantitative 

structure-property relationship model. Subsequently, elastic scattering is assumed to be 

negligible therefore IMFP ~ λML. Using this approach, the thickness of the monolayer 

was found to be 10.35 ± 0.34 Å. Theoretical calculations on the Hartree-Fock optimized 
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molecular structure (basis set 6-31 G) suggest that for a monolayer coverage the 

maximum thickness should be about 13.62 Å (Figure A.4(b)).  
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APPENDIX B 

EXPLORATION OF ADDITIONAL PHOSPHONIC ACID SURFACE MODIFIERS 

 

 

Here we explore the bridging of oxide-coated CNT forests with metal and metal oxide surfaces 

using phosphonic acid based surface modifiers. These modifiers form covalent bonds to both 

sides of the interface. The intent is to address the technical need for a thermally conductive, 

mechanically compliant, and electrically insulating TIM architecture. This research was 

conducted in collaboration with Dr. Virendra Singh and Ms. Cristal J. Vasquez of the George W. 

Woodruff School of Mechanical Engineering at Georgia Tech and Dr. Stephen Barlow, Dr. Tim 

Parker, and Professor Seth R. Marder of the Georgia Tech School of Chemical and Biomolecular 

Engineering. It was partially supported by the Georgia Tech X-Materials Program. 

B.1 Methods 

B.1.1 Sample Configuration 

To examine different linker molecules in a configuration representative of an application and to 

simultaneously facilitate measurements of thermal resistance, oxide coated CNT forests were 

contacted by 25 μm Ag foils coated with 30 nm of Al, as is shown in Figure B.1.  In this 

configuration the Al2O3 coated CNT free tips and the native oxide on aluminum surface can be 

modified and bonded using phosphonic acid surface modifiers. 

 

 

Figure B.1: Sample configuration for evaluating surface modifiers and processing strategies. 
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B.1.2 Oxide Coated Carbon Nanotube Forest Synthesis 

Nominally vertically aligned multi-wall CNT forests were grown on crystalline Si substrates 1x1 

cm in area in size using the synthesis procedure described in section 3.1. The growth time was 

varied from 1-10 min to achieve forest heights ranging from 10-50 μm, as measured by SEM. A 

Cambridge NanoTech ALD system was used for plasma enhanced atomic layer deposition 

(PALD), where Al2O3 coatings were deposited on individual CNTs in forests. This process was 

facilitated by an O2 plasma pretreatment to functionalize the surfaces of the CNTs to nucleate 

oxide growth [156]. The precursors for Al2O3 are trimethylaluminium (TMA) for Al and H2O for 

O2. Al2O3 is deposited thermally at 250 °C with a deposition rate of 1.0 Å – 1.1 Å per cycle and 

30 s exposure times. For this work 0.5-10 nm thick coatings were used. An image of a CNT forest 

coated with 8 nm of Al2O3 is shown Figure B.2. 

 

 
Figure B.2: SEM image of a ~10 μm tall CNTs coated with 8 nm of Al2O3. The right image is a 

magnification of the red box outlined in the left image. 

 

B.1.3 Modification and Bonding Strategies 

Two different approaches were considered for covalently linking oxide coated CNTs to metal-

oxide surfaces. The first, Strategy 1, centered on using linear carbon molecules terminated at each 

end with a phosphonic acid functionality, which we refer to as a bisphosphonic acid (BisPA). 
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From the plethora of possible BisPA molecules a (1,4-phenylenebis(methylene))diphosphonic 

acid (Benzene-BisPA) and a 1,8-Octanediphosphonic acid (Octane-BisPA) were selected for 

testing and are illustrated in Figure B.3. The selection of these two molecules was motivated by 

the differences in the length of their carbon backbones. The second strategy, Strategy 2, involved 

using two different phosphonic acid terminated molecules to separately modify the oxide coated 

CNTs and the metal oxide surface, and then join them via a reaction between the opposing 

terminations of the two modifiers (Figure B.3(c)). Specifically, an acrylate-phosphonic acid 

(Acrylate-PA), CH2=CH-C(O)O(CH2)11PO3H2, and 3-aminopropylphosphonic acid (Amino-PA), 

NH2(CH2)3PO3H2, were used to separately modify the oxide coated metal and CNTs, 

respectively. The two modified surfaces are then brought into contact and joined through 

Michael-addition between terminal amine and acrylate functionalities [141]. 

 

 
Figure B.3: (a) Benzene-BisPA and (b) Octane-BisPA modifiers used in Strategy 1; (c) Strategy 

2. 

 

 For the modification of all surfaces in this work the modifiers were dissolved in ethanol, 

at varying concentrations, Table B.1. All modification processes took place at room temperature. 

Since Strategy 1 relies on using a single molecule terminated with identical phosphonic acid 

moieties to join both surfaces it is possible that during the modification process both phosphonic 

acid groups bond to the same surface. In effort to identify a modification procedure that 

maximized the number of surface modifiers that bridge the interface to join the two surfaces, two  
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Table B.1: Concentration of modifier solutions. 

Molecular Linker Concentration 

Benzene-BisPA 1.0 mM 

Octane-BisPA 5.0 mM 

Acrylate-PA 0.5 mg/mL 

Amino-PA 0.5 mg/mL 

 

 

processes were explored. The first consisted of a stepwise modification procedure, where either 

the oxide coated CNT forest or the Ag foil was first modified by soaking it in solution and 

subsequently brought into contact with the other surface and bonded. The second process 

involved placing the foil into dry contact with the oxide coated CNT forest and then infiltrating 

the assembled structure with the solution containing the BisPA modifiers. In this case the 

modifiers may be able to bond to one or both surfaces while the solution evaporated over the 

course of several hours. For Strategy 2 the oxide coated CNTs were arbitrarily modified in the 

Acrylate-PA solution and the Ag foils in the Amino-PA solution. 

B.1.4 Thermal Characterization 

The photoacoustic method was used to measure the total thermal resistance of dry contact and 

modifier bonded CNT forests at an applied pressure of 140 kPa, as described in section 3.2.1. 

B.2 Results 

B.2.1Modification and Bonding  

Strategy 1: Several CNT forest samples coated with oxide thicknesses of 0.5, 5, and 10 nm were 

modified and bonded using two processes outlined in the methods section of this appendix. For 

the samples prepared by the stepwise modification procedure no noticeable adhesion between the 

Al coated foil and CNT forest was achieved for either the Benzene-BisPA or Octane-BisPA 

modifiers. This indicates that the stepwise procedure failed to chemically link the two surfaces. 

Since phosphonic modification of oxide surfaces is a robust process [124, 135-137] it is likely 

that both phosphonic acid moieties of individual modifiers bonded to the same surface and failed 
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to join the interface. For samples that were assembled in a dry state and then infiltrated with 

BisPA solutions, qualitatively weak adhesion was observed, suggesting that relatively few of the 

modifiers linked the interface. It is likely that the majority of the modifiers again bonded to a 

single surface. 

 Strategy 2: Several CNT forests, coated with oxide thicknesses of 5 or 10 nm, and foil 

sets were modified and bonded using the Acrylate-PA and Amino-PA solutions respectively. 

Modification of the aluminum coated foil with the Amino-PA was verified via contact angle 

measurements. The contact angle of the unmodified foil was moderately hydrophobic at ~100°, 

and became hydrophilic, ~25°, after modification with the Amino-PA modifier, indicative of 

successful modification. It is possible that the modifier coverage could be improved by increasing 

the coverage of the oxide layer on the unmodified aluminum coated foil. This could be done by a 

simple O2 plasma treatment of the surface. Nonetheless, all of samples prepared exhibited 

excellent adhesion, regardless of the oxide coating thickness.  

B.2.2 Total Thermal Resistance  

The total thermal resistance of interfaces that failed to bond or had delaminated ranged from ~60-

100 mm
2
-K/W, consistent with previous observations [156]. The thermal resistance of samples 

that exhibited appreciable adhesion, as well as those that did not (None/Non-bonded) is displayed 

in Table B.2. The best performing samples were those prepared using the Amino-PA and 

Acrylate-PA of Strategy 2. Effective bonding of these samples reduced the total thermal 

resistance from roughly 50 to 10 mm
2
-K/W, an ~80% reduction. An electrically insulating TIM 

with a thermal resistance of only 10 mm
2
-K/W is not available commercially. As such, the TIM 

structure and bonding strategy developed in this work could potentially fill a major technological 

gap in electronics packaging. 

We have previously measured the thermal conductivity of oxide coated CNT forests at 

~3.5 W/m-K [123, 156], and the growth substrate interface resistance at ≤ 1 mm
2
-K/W [11].  
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Table B.2: Total thermal resistance of CNT forests. 

Molecular Linker CNT Forest Height 

[μm] 

Oxide Thickness 

[nm] 

Total Resistance 

[mm
2
-K/W] 

None/Non-bonded 15-40 0.5-10 60-100 

Benzene-BisPA 20 0.5 21 ± 2 

Acrylate/Amino-PA 30 10 11 ± 1 

 

 

Using these values, the CNT forest height of 30 μm, and assuming that they remained unchanged 

during the modification and bonding process, the thermal resistance of the CNT tip interface was 

reduced from roughly 40 to ≲ 1 mm
2
-K/W. This calculation suggests that phosphonic acid 

linking of the CNT tip interface can reduce the thermal resistance of the interface to a level where 

it no longer dominates the total resistance. Instead, the intrinsic thermal resistance of the CNT 

forest itself becomes the dominant component. 

B.3 Conclusion 

We explored using phosphonic-acid based surface modifiers to covalently bridge oxide coated 

CNT forest-metal oxide interfaces for thermal interface material applications. Surface modifiers 

comprised of bisphosphonic acids were found to be ineffective, as both phosphonic acid moieties 

typically bonded to the same surface and failed to bridge the interface. However, modification 

and reaction procedure utilizing acrylate and amino molecules containing phosphonic acid 

functional groups was found to successfully bond the interface. In doing so, the procedure 

reduced the total thermal resistance from roughly 50 to 10 mm
2
-K/W. An electrically insulating 

TIM with a thermal resistance of only 10 mm
2
-K/W is not currently commercially available. As 

such, the TIM structure and bonding strategy developed in this work could potentially fill a major 

technological gap in electronics packaging. 
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APPENDIX C 

PATTERNED CNT FOREST-SOLDER TIMS 

 

 

This research was carried out in collaboration with Dr. Anuradha Bulusu of the George W. 

Woodruff School of Mechanical Engineering at Georgia Tech and Mr. David H. Altman, Mr. 

Isaac S.G. Lee, Mr. Todd R. Gattuso, Mr. Anurag Gupta, and other staff members of the 

Raytheon Corporation. 

C.1 Introduction and Motivation 

Metal solders and films of sintered silver nanoparticles are currently being tested for use as 

thermal interface materials (TIMs) in high-temperature power electronics packaging. However, 

these materials have yet to produce the combination of low thermal resistance (< 5 mm
2
K/W) and 

thermomechanical reliability that is required for future packaging technologies. These 

performance characteristics are difficult to achieve with metals due to competing effects. 

Specifically, the high elastic modulus of most solders (~10 GPa) necessitates the use of increased 

bond-line-thicknesses to alleviate stresses between packaging components with different CTEs. 

Concomitantly, the thermal resistance of a solder film increases proportionally with the bond-

line-thickness [16]. Vertically-aligned CNT (VACNT) forests, comprised of individual CNTs 

with an axial thermal conductivity on the order of 200-3000 W/m-K [18] and an effective in-

plane elastic modulus of only 8-300 MPa [164] are promising TIMs that could meet these 

demands. Yet their practical use has been limited by poor bonding strength, high thermal contact 

resistances, and relatively low effective thermal conductivity of the forests (because of the low 

volume fraction of CNTs in the forests). We propose to overcome these limits by fabricating CNT 

forest-solder composite TIMs to access a combination of thermal and mechanical properties that  
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Figure C.1: Thermally conductive and mechanically compliant patterned CNT forest-solder 

TIM. 

 

are unavailable with existing TIMs. CNT forests are synthesized in patterned configurations and 

pressed into a molten solder film to create a composite material with discrete regions of CNTs 

and solder, as shown in Figure C.1. The addition of the CNT forest regions will reduce the 

effective mechanical modulus of the composite enabling thinner bond lines and decreased thermal 

resistance, while the solder regions will provide mechanical attachment and the primary electrical 

and thermal transport pathway. The intermittent CNT forest regions will also improve the 

reliability of the package by serving as act as crack arrest zones that terminate crack propagation 

and prevent delamination. By tuning the volume ratio of CNT forest to solder the thermal 

conductivity, mechanical compliance, attachment strength, and CTE of the composite can be 

optimized to achieve reliable TIMs with thermal resistances less ≤ 5 mm
2
-K/W. Here we 

demonstrate the synthesis of patterned CNT forest-solder composites and characterize their 

thermal resistance. Additional research is required to evaluate the reliability of these TIMs. 

C.2 Methods 

C.2.1 Synthesis of Patterned CNT forest-Al Foil Interposers 

The catalyst for CNT growth was patterned onto both sides of 10 μm Al foil using a shadow mask 

and electron beam evaporation. The shadow mask patterns the catalyst into a grid of 100 μm 

diameter circles with a 250 μm center-center spacing. The catalyst stack and CNT forest growth 

recipe detailed in section 3.1 was used to grow CNT forest pillars from the patterned catalyst to 
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heights of 15 to 80 μm. A representative patterned CNT forest-Al foil interposer is shown in 

Figure C.2. 

 

 
Figure C.2: Patterned CNT forests grown on both sides of 10 μm Al foil. 

 

 

C.2.3 Fabrication and Bonding of Patterned CNT Forest-Solder TIMs 

To facilitate wetting of the solder to the CNT forest pillars and Al foil 60 nm of Ti followed by 

250 nm of Au was evaporated onto the surface of the CNT forest pillars and foil. The TIM was 

then bonded between two CuMo meter bars, also coated with 60 nm of Ti and 250 nm of Au, for 

thermal testing using two 12.7 to 25.4 μm thick Au/Sn solder foils under 200 kPa at 250 °C for 30 

min. The excess solder was pressed out of the interface during bonding. After the TIMs were 

thermally tested the interfaces were broken apart and examined using SEM and energy dispersive 

X-ray spectroscopy (EDS). From the EDS it was revealed that for the majority of the TIM area 

the solder completely bridges the interface. Figure C.3 shows a SEM image of a separated TIM 

after thermal testing. 

C.2.2 Thermal Characterization 

The total thermal resistance (Equation 1.1) of the patterned CNT forest-solder TIMs was 

measured using a modified version [37] of the ASTM D5470 [55], shown schematically in Figure 

C.4. In this setup the TIM is solder bonded between two CuMo meter bars, as described above.  
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Figure C.3: SEM image of the CNT forest-composite TIM remnants left on the bottom meter bar 

after separating the interface. EDS of both meter bars suggest that the solder completely fills the 

interstitial space. 

 

The end of one of the metal bars is maintained at a constant temperature Thot and the end of the 

opposite bar at a constant temperature Tcold. This temperature difference creates a steady heat 

flow across the TIM, Q. Using thermocouples the temperature drop across the TIM, ∆T, is 

measured and the total thermal resistance of the TIM is extracted using the relation 

𝑅 =
∆𝑇 ∙ 𝐴

𝑄
,                                                                    (C. 1) 

where A is the cross sectional area of the TIM. 

 

 
Figure C.4: Schematic of the modified ASTM D5470 setup used to measure the total resistance 

of CNT forest-solder TIMs. 
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C.3 Results 

The total thermal resistance of 18 patterned CNT forest-solder TIMs was measured at an applied 

pressure of 135 kPa and is displayed in Figure C.5. The thermal resistances ranged from ~0.5 to 

11 mm
2
-K/W, comparable to solder only interfaces. No obvious dependence on the CNT forest 

pillar height was observed. These results suggest that the solder completely fills the interstitial 

space between the foil, meter bars, and adjacent CNT forest pillars, as was indicated by the EDS 

analysis. It also suggests that adding the patterned regions of CNT forests, ~13% of the cross 

sectional area, does not significantly degrade the thermal resistance of the composite structure. 

The thermal resistance of the TIMs was also measure under applied pressures of 270 and 405 kPa 

and observed to remain constant, indicating that the interfaces are well bonded. 

 

 

Figure C.5: Total thermal resistance of CNT forest-solder TIMs. 

 

C.4 Conclusions and Recommendations 

A methodology for fabricating patterned CNT forest-solder TIMs was demonstrated. The TIMs 

had thermal resistances ranging from ~0.5-11 mm
2
-K/W, comparable to solder-only TIMs. As 

such, these results represent a promising first-step towards thermally conductive and reliable 
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TIMs. Future research should focus on optimizing the CNT/solder ratio to maximize the 

reliability of these TIMs. 
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APPENDIX D 

MONTE CARLO TREATMENT OF UNCERTAINTY IN TDTR OF CNT FOREST TIMS 

 

 

These uncertainty calculations were carried out in extensive collaboration with Mr. Thomas L. 

Bougher of the George W. Woodrfuff School of Mechanical Engineering. 

D.1 Introduction 

In Chapter 7 the uncertainty in the TDTR measurement of CNT forest TIMs was calculated using 

the method of Koh et al. [154], given by Equation 7.3. Due to low sensitivity (Equation 7.1) to 

and relatively large uncertainty in the Al transducer layer thickness (± 10 nm) the uncertainty in 

the Al-CNT forest interface resistance and CNT forest properties exceeded 100% and implied 

that parameters could be negative which is non-physical. For example, the Al-CNT forest 

interface resistance for bonded CNT forests ranged from ~100-600%. To better understand the 

true uncertainty in the measurement a Monte Carlo (MC) simulation was conducted. The MC 

simulation includes uncertainties due to background noise, error in setting the phase shift of the 

lock-in amplifier, noise in the measurement signal, and uncertainty in other fixed parameters, 

such as the thickness of the Al transducer layer. In the MC simulation values for each of these 

uncertain parameters are randomly sampled from a normal distribution to create a set of initial 

guess values and experimental data for fitting. 500 randomly generated sets are fit to create a 

distribution of probable values for the Al-CNT interface conductance, CNT forest thermal 

conductivity, and CNT forest specific heat.  

 

 

D.2 Methods  
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MC simulations were carried out for TDTR scans of P3HT bonded, PyprPA bonded, and WCD 

samples (sample configuration described in Chapter 7) at a modulation frequency of 6.3 MHz. In 

these simulations the Al-CNT forest interface resistance, CNT forest thermal conductivity, and 

CNT forest specific heat are the unknown fitting parameters. Uncertainties due to background 

noise, error in setting the phase shift of the lock-in amplifier, and noise in the measurement signal 

are extracted from data collected during the experiment, whereas the uncertainties in parameters 

held constant during data fitting are prescribed. Table D.1 shows the uncertainties prescribed to 

sample parameters held constant during data fitting. An uncertainty of 3% and 7% were also 

prescribed for the pump and probe beam radii respectively. The uncertainty in the Al transducer 

film thickness and glass-Al transducer interface were taken from the TDTR and profilometry 

experiments described in Chapter 7. The remaining uncertainties were prescribed based on 

experience with TDTR measurements. The initial guess values given in Table 7.1 were used. The 

MC simulations were conducted for 500 iterations, over which all three fitting parameters 

achieved reasonable convergence. The convergence of the 10
th

, 50
th
, and 90

th
 percentiles for the 

P3HT bonded Al-CNT forest interface resistance are shown in Figure D.1. 

 

   Table D.1: Uncertainty prescribed to fixed fitting parameters in MC simulations 

% Uncertainty in Sample Parameters 

Layer k [W/m-K] C [J/kg-K] ρ [kg/m
3
] L [nm] R [mm

2
-K/W] 

Al 0.05 - 0.02 0.067 
0.43 

Glass 0.07  0.01 - - 
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Figure D.1: Convergence of Al-CNT forest interface resistance over 500 iterations. 

 

D.3 Results and Discussion 

The MC simulation results for each of the unknown fitting parameters are displayed in Table D.2. 

Figure D.2 shows the parameter distributions for the P3HT bonded CNT forest, which are also 

representative of those for the PyprPA bonded and WCD CNT forests. The distributions for the 

CNT forest thermal conductivity and specific heat resemble slightly skewed normal distributions. 

The best-fit values for those parameters were taken as the 50
th

 percentile of the distribution and 

the ± uncertainties were taken as the 5
th

 and 95
th
 percentiles to represent a 90% confidence 

interval. The distributions for the Al-CNT interface resistance are comparatively more skewed, as 

shown in Figure D.2a, with peaks shifted towards a resistance value of zero. The upper bound for 

the Al-CNT forest interface resistance is taken as the 90
th

 percentile to also represent a 90% 

confidence interval. In contrast with the conventional uncertainty estimates of Chapter 7, the MC 

simulations do not predict negative values for any of the fitting parameters and represent a more 

rigorous treatment of uncertainty.  

 No difference, within the uncertainty, was observed in the best-fit values for the Al-CNT 

forest interface resistance, CNT forest thermal conductivity, and specific heat for the three 
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Table D.2: MC simulation results for bonded CNT forests.  

Sample 
Parameter 

k [W/m-K] C [J/kg-K] R [mm
2
-K/W] 

P3HT 6 +5/-3 1260 +980/-670 0.18 +0.41/-0.13 

PyprPA 6 +4/-3 1280 +850/-630 0.11 +0.43/-0.09 

WCD 5 +4/-4 950 +1050/-490 0.15 +0.79/-0.12 

 

 

 

 
Figure D.2: MC simulation distributions for a P3HT bonded CNT forest. 

 

 

sample types. Although, only a single modulation frequency, 6.3 MHz, was considered we do not 

expect significant changes in the best-fit values if other modulation frequencies are included. 

However, conducting multi-frequency MC simulations should reduce the uncertainty in the fitting 

parameters significantly. A challenge associated with the MC treatment of uncertainty is the 

computational expense required to complete the simulations. The single modulation frequency 
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data sets considered here required 10-15 hours each to complete on a standard desktop computer. 

However, utilization of a high performance computer and further optimization of the algorithm 

would lead to significant reductions in computation time. Additionally, the MC simulations do 

not provide explicit information on the contributions of individual sources of uncertainty to the 

total uncertainty. 

D.4 Conclusions and Recommendations 

MC methods were used to evaluate the true uncertainty in TDTR measurements of CNT forest 

interfaces. In contrast with the method of Koh et al. [154], used in the Chapter 7, the MC 

simulations do not predict negative values for fitting parameters, which are non-physical. No 

difference was observed in the Al-CNT forest interface resistance for P3HT bonded, PyprPA 

bonded, and WCD CNT forests. Future efforts should extend the MC simulations to multi-

frequency data sets to understand the extent to which multiple modulations frequencies can 

reduce the uncertainty in the measurement.  



134 
 

REFERENCES 

 

 

[1] A. Bar-Cohen, "DAPRA-BAA-11-09: Near Junction Thermal Transport," ed. 
https://www.fbo.gov/: United States of America, 2010. 

[2] A. Bar-Cohen, "DARPA-BAA-12-50: Intrachip/Interchip Enhanced Cooling Fundamentals 
(ICECool Fundamentals)," ed. https://www.fbo.gov/: United States of America, 2012. 

[3] T. Kenny, "DARPA-BAA-09-44: Active Cooling Modules (ACM)," ed. 
https://www.fbo.gov/: United States of America, 2009. 

[4] T. Kenny, "DARPA BAA 08-15: Microtechnologies for Air-Cooled Exchangers (MACE)," ed. 
https://www.fbo.gov/: United States of America, 2008. 

[5] T. Kenny, "DARPA-BAA-08-42: NanoThermal Interfaces (NTI)," ed. 
https://www.fbo.gov/: United States of America, 2008. 

[6] T. Kenny, "DARPA BAA 07-36: Thermal Ground Plane (TGP) ", ed. https://www.fbo.gov/: 
United States of America, 2007. 

[7] "International Technology Roadmap for Semiconductors," 
www.ITRS.net/home.html2012. 

[8] S. V. Garimella, "Advances in mesoscale thermal management technologies for 
microelectronics," Microelectronics Journal, vol. 37, pp. 1165-1185, Nov 2006. 

[9] J. H. Taphouse and B. A. Cola, "Nanostructured Thermal Interfaces," in Annual Review of 
Heat Transfer. vol. 18, ed: Begell House, in press. 

[10] E. G. Wolff and D. A. Schneider, "Prediction of thermal contact resistance between 
polished surfaces," International Journal of Heat and Mass Transfer, vol. 41, pp. 3469-
3482, 1998. 

[11] B. A. Cola, J. Xu, C. R. Cheng, X. F. Xu, T. S. Fisher, and H. P. Hu, "Photoacoustic 
characterization of carbon nanotube array thermal interfaces," Journal of Applied 
Physics, vol. 101, Mar 2007. 

[12] B. B. Mikic, "Thermal Contact Conductance - Theoretical Considerations," International 
Journal of Heat and Mass Transfer, vol. 17, pp. 205-214, 1974. 

[13] F. P. Incropera and F. P. Incropera, Fundamentals of heat and mass transfer, 6th ed. 
Hoboken, NJ: John Wiley, 2007. 

[14] C. V. Madhusudana, Thermal contact conductance. New York: Springer-Verlag, 1996. 
[15] M. M. Yovanovich, "Four decades of research on thermal contact, gap, and joint 

resistance in microelectronics," Ieee Transactions on Components and Packaging 
Technologies, vol. 28, pp. 182-206, Jun 2005. 

[16] W. T. Chen and C. W. Nelson, "Thermal Stress in Bonded Joints," IBM Journal of 
Research and Development, vol. 23, pp. 179-188, 1979. 

[17] K. C. Otiaba, N. N. Ekere, R. S. Bhatti, S. Mallik, M. O. Alam, and E. H. Amalu, "Thermal 
interface materials for automotive electronic control unit: Trends, technology and R&D 
challenges," Microelectronics Reliability, vol. 51, pp. 2031-2043, Dec 2011. 

[18] A. M. Marconnet, M. A. Panzer, and K. E. Goodson, "Thermal conduction phenomena in 
carbon nanotubes and related nanostructured materials," Reviews of Modern Physics, 
vol. 85, pp. 1295-1326, 2013. 

[19] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon nanotubes : synthesis, 
structure, properties, and applications. Berlin ; New York: Springer, 2001. 

http://www.fbo.gov/:
http://www.fbo.gov/:
http://www.fbo.gov/:
http://www.fbo.gov/:
http://www.fbo.gov/:
http://www.fbo.gov/:
http://www.itrs.net/home.html2012


135 
 

[20] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, "Thermal transport measurements of 
individual multiwalled nanotubes," Physical Review Letters, vol. 87, Nov 2001. 

[21] E. Pop, D. Mann, Q. Wang, K. E. Goodson, and H. J. Dai, "Thermal conductance of an 
individual single-wall carbon nanotube above room temperature," Nano Letters, vol. 6, 
pp. 96-100, Jan 2006. 

[22] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, "Thermal conductivity of single-walled 
carbon nanotubes," Physical Review B, vol. 59, pp. R2514-R2516, Jan 1999. 

[23] J. K. Yang, Y. Yang, S. W. Waltermire, T. Gutu, A. A. Zinn, T. T. Xu, Y. F. Chen, and D. Y. Li, 
"Measurement of the Intrinsic Thermal Conductivity of a Multiwalled Carbon Nanotube 
and Its Contact Thermal Resistance with the Substrate," Small, vol. 7, pp. 2334-2340, 
Aug 2011. 

[24] S. Berber, Y. K. Kwon, and D. Tomanek, "Unusually high thermal conductivity of carbon 
nanotubes," Physical Review Letters, vol. 84, pp. 4613-4616, May 2000. 

[25] B. Peng, M. Locascio, P. Zapol, S. Y. Li, S. L. Mielke, G. C. Schatz, and H. D. Espinosa, 
"Measurements of near-ultimate strength for multiwalled carbon nanotubes and 
irradiation-induced crosslinking improvements," Nature Nanotechnology, vol. 3, pp. 
626-631, Oct 2008. 

[26] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. L. Chen, M. S. Meier, and J. P. Selegue, 
"Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: 
Evidence for the role of defect sites in carbon nanotube chemistry," Nano Letters, vol. 2, 
pp. 615-619, Jun 2002. 

[27] J. Xu and T. S. Fisher, "Enhanced thermal contact conductance using carbon nanotube 
arrays," in Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. 
ITHERM '04. The Ninth Intersociety Conference on, 2004, pp. 549-555 Vol.2. 

[28] X. J. Hu, M. Panzer, and K. E. Goodson, "Thermal characterization of two opposing 
carbon nanotube arrays using diffraction-limited infrared microscopy," in Proceedings of 
the Asme Heat Transfer Division 2005, Vol 2. vol. 376-2, ed New York: Amer Soc 
Mechanical Engineers, 2005, pp. 835-839. 

[29] T. Tong, Y. Zhao, L. Delzeit, A. Kashani, A. Majumdar, and M. Meyyappan, "Vertically 
aligned multi-walled carbon nanotube arrays as thermal interface materials and 
measurement technique," in Proceedings of the ASME Heat Transfer Division 2005. vol. 
376-2, ed New York: Amer Soc Mechanical Engineers, 2005, pp. 777-783. 

[30] J. Xu and T. S. Fisher, "Enhanced thermal contact conductance using carbon nanotube 
array interfaces," Ieee Transactions on Components and Packaging Technologies, vol. 29, 
pp. 261-267, Jun 2006. 

[31] X. J. Hu, A. A. Padilla, J. Xu, T. S. Fisher, and K. E. Goodson, "3-omega measurements of 
vertically oriented carbon nanotubes on silicon," Journal of Heat Transfer-Transactions 
of the Asme, vol. 128, pp. 1109-1113, Nov 2006. 

[32] T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, "Dense, 
vertically aligned multiwalled carbon nanotube arrays as thermal interface materials," 
Ieee Transactions on Components and Packaging Technologies, vol. 30, pp. 92-100, Mar 
2007. 

[33] W. Lin, R. W. Zhang, K. S. Moon, and C. P. Wong, "Molecular phonon couplers at carbon 
nanotube/substrate interface to enhance interfacial thermal transport," Carbon, vol. 48, 
pp. 107-113, Jan 2010. 

[34] R. Cross, B. A. Cola, T. Fisher, X. F. Xu, K. Gall, and S. Graham, "A metallization and 
bonding approach for high performance carbon nanotube thermal interface materials," 
Nanotechnology, vol. 21, Nov 2010. 



136 
 

[35] A. Hamdan, J. Cho, R. Johnson, J. Jiao, D. Bahr, R. Richards, and C. Richards, "Evaluation 
of a thermal interface material fabricated using thermocompression bonding of carbon 
nanotube turf," Nanotechnology, vol. 21, Jan 2010. 

[36] D. D. L. Chung, "Materials for thermal conduction," Applied Thermal Engineering, vol. 
21, pp. 1593-1605, Nov 2001. 

[37] J. R. Wasniewski, D. H. Altman, S. L. Hodson, T. S. Fisher, A. Bulusu, S. Graham, and B. A. 
Cola, "Characterization of Metallically Bonded Carbon Nanotube-Based Thermal 
Interface Materials Using a High Accuracy 1D Steady-State Technique," Journal of 
Electronic Packaging, vol. 134, Jun 2012. 

[38] R. Prasher, "Predicting the thermal resistance of nanosized constrictions," Nano Letters, 
vol. 5, pp. 2155-2159, Nov 2005. 

[39] R. Prasher, "Thermal conductance of single-walled carbon nanotube embedded in an 
elastic half-space," Applied Physics Letters, vol. 90, Apr 2007. 

[40] R. Prasher, "Thermal boundary resistance and thermal conductivity of multiwalled 
carbon nanotubes," Physical Review B, vol. 77, Feb 2008. 

[41] Z. Y. Ong and E. Pop, "Molecular dynamics simulation of thermal boundary conductance 
between carbon nanotubes and SiO2," Physical Review B, vol. 81, Apr 2010. 

[42] J. Hirotani, T. Ikuta, T. Nishiyama, and K. Takahashi, "Thermal boundary resistance 
between the end of an individual carbon nanotube and a Au surface," Nanotechnology, 
vol. 22, Aug 2011. 

[43] S. Shenogin, J. Gengler, A. Roy, A. A. Voevodin, and C. Muratore, "Molecular dynamics 
studies of thermal boundary resistance at carbon-metal interfaces," Scripta Materialia, 
vol. 69, pp. 100-103, Jul 2013. 

[44] B. A. Cola, J. Xu, and T. S. Fisher, "Contact mechanics and thermal conductance of 
carbon nanotube array interfaces," International Journal of Heat and Mass Transfer, vol. 
52, pp. 3490-3503, Jul 2009. 

[45] M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K. E. Goodson, "Thermal 
properties of metal-coated vertically aligned single-wall nanotube arrays," Journal of 
Heat Transfer-Transactions of the Asme, vol. 130, May 2008. 

[46] M. A. Panzer, H. M. Duong, J. Okawa, J. Shiomi, B. L. Wardle, S. Maruyama, and K. E. 
Goodson, "Temperature-Dependent Phonon Conduction and Nanotube Engagement in 
Metalized Single Wall Carbon Nanotube Films," Nano Letters, vol. 10, pp. 2395-2400, Jul 
2010. 

[47] D. D. L. Chung, "Thermal interface materials," Journal of Materials Engineering and 
Performance, vol. 10, pp. 56-59, Feb 2001. 

[48] D. L. Saums, "Advances in Thermal Interface Materials for Power LED Applications," in 
Thermal Management for LED Applications. vol. 2, C. J. M. Lasance and A. Poppe, Eds., 
ed: Springer New York, 2014, pp. 299-346. 

[49] I. Corporation. (November 29). Available: http://www.indium.com/thermal-interface-
materials/ribbon-and-foil/ 

[50] (November 29). Available: http://www.arcticsilver.com/as5.htm 
[51] A. Castle. (2010, November 29). How-To: Properly Apply Thermal Paste and Install a 

CPU. Available: 
http://www.maximumpc.com/article/howtos/howto_install_cpu_and_apply_thermal_p
aste 

[52] T. Bahman. (2005, November 29). Choosing a heat-sink attachment system. Available: 
http://www.electronicproducts.com/Passive_Components/Choosing_a_heat-sink-
attachment_system.aspx 

http://www.indium.com/thermal-interface-materials/ribbon-and-foil/
http://www.indium.com/thermal-interface-materials/ribbon-and-foil/
http://www.arcticsilver.com/as5.htm
http://www.maximumpc.com/article/howtos/howto_install_cpu_and_apply_thermal_paste
http://www.maximumpc.com/article/howtos/howto_install_cpu_and_apply_thermal_paste
http://www.electronicproducts.com/Passive_Components/Choosing_a_heat-sink-attachment_system.aspx
http://www.electronicproducts.com/Passive_Components/Choosing_a_heat-sink-attachment_system.aspx


137 
 

[53] J. P. Gwinn and R. L. Webb, "Performance and testing of thermal interface materials," 
Microelectronics Journal, vol. 34, pp. 215-222, 2003. 

[54] C. J. M. Lasance, C. T. Murray, D. L. Saums, and M. Rencz, "Challenges in thermal 
interface material testing," in Semiconductor Thermal Measurement and Management 
Symposium, 2006 IEEE Twenty-Second Annual IEEE, 2006, pp. 42-49. 

[55] ASTM, "Standard Test Method for Thermal Transmission Properties of Thermally 
Conductive Electrical Insulating Materials," in D5470, ed. West Conshohocken, 
Pennsylvania: ASTM International, 2006. 

[56] P. L. Kapitza, "Heat transfer and superfluidity of helium II," Physical Review, vol. 60, pp. 
354-355, Aug 1941. 

[57] E. T. Swartz and R. O. Pohl, "Thermal boundary resistance," Reviews of Modern Physics, 
vol. 61, pp. 605-668, 1989. 

[58] W. A. Little, "The Transport of Heat between Dissimilar Solids at Low Temperatures," 
Canadian Journal of Physics, vol. 37, pp. 334-349, 1959. 

[59] G. Chen, Nanoscale energy transport and conversion : a parallel treatment of electrons, 
molecules, phonons, and photons. Oxford ; New York: Oxford University Press, 2005. 

[60] I. M. Khalatnikov, Journal of Experimental and Theoretical Physics (USSR), vol. 22, pp. 
687-704, 1952. 

[61] Z. M. Zhang, Nano/microscale heat transfer. New York, NY: McGraw-Hill, 2007. 
[62] E. T. Swartz and R. O. Pohl, "Thermal-Boundary Resistance," Reviews of Modern Physics, 

vol. 61, pp. 605-668, Jul 1989. 
[63] J. R. Olson and R. O. Pohl, "Kapitza Resistance between Silicon and He-4," Journal of Low 

Temperature Physics, vol. 94, pp. 539-550, Mar 1994. 
[64] P. E. Phelan, "Application of diffuse mismatch theory to the prediction of thermal 

boundary resistance in thin-film high-T-c superconductors," Journal of Heat Transfer-
Transactions of the Asme, vol. 120, pp. 37-43, Feb 1998. 

[65] P. Reddy, K. Castelino, and A. Majumdar, "Diffuse mismatch model of thermal boundary 
conductance using exact phonon dispersion," Applied Physics Letters, vol. 87, Nov 2005. 

[66] J. C. Duda, T. E. Beechem, J. L. Smoyer, P. M. Norris, and P. E. Hopkins, "Role of 
dispersion on phononic thermal boundary conductance," Journal of Applied Physics, vol. 
108, Oct 2010. 

[67] L. De Bellis, P. E. Phelan, and R. S. Prasher, "Variations of acoustic and diffuse mismatch 
models in predicting thermal-boundary resistance," Journal of Thermophysics and Heat 
Transfer, vol. 14, pp. 144-150, Apr-Jun 2000. 

[68] A. Majumdar, "Effect of Interfacial Roughness on Phonon Radiative Heat-Conduction," 
Journal of Heat Transfer-Transactions of the Asme, vol. 113, pp. 797-805, Nov 1991. 

[69] P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, "Effects of surface 
roughness and oxide layer on the thermal boundary conductance at aluminum/silicon 
interfaces," Physical Review B, vol. 82, 2010. 

[70] R. S. Prasher and P. E. Phelan, "A scattering-mediated acoustic mismatch model for the 
prediction of thermal boundary resistance (vol 123, pg 105, 2001)," Journal of Heat 
Transfer-Transactions of the Asme, vol. 123, pp. 1194-1194, Dec 2001. 

[71] T. Beechem, S. Graham, P. Hopkins, and P. Norris, "Role of interface disorder on thermal 
boundary conductance using a virtual crystal approach," Applied Physics Letters, vol. 90, 
p. 054104, 2007. 

[72] M. M. Yovanovich and E. E. Marotta, "Thermal Spreading and Contact Resistances," in 
Heat Transfer Handbook, A. Bejan and A. D. Kraus, Eds., ed New York: Wiley, 2003, pp. 
261-393. 



138 
 

[73] M. G. Cooper, B. B. Mikic, and Yovanovi.Mm, "Thermal Contact Conductance," 
International Journal of Heat and Mass Transfer, vol. 12, pp. 279-&, 1969. 

[74] R. J. Stoner and H. J. Maris, "Kapitza Conductance and Heat-Flow between Solids at 
Temperatures from 50 to 300 K," Physical Review B, vol. 48, pp. 16373-16387, Dec 1993. 

[75] L. Hu, L. F. Zhang, M. Hu, J. S. Wang, B. W. Li, and P. Keblinski, "Phonon interference at 
self-assembled monolayer interfaces: Molecular dynamics simulations," Physical Review 
B, vol. 81, Jun 2010. 

[76] N. Shenogina, R. Godawat, P. Keblinski, and S. Garde, "How Wetting and Adhesion Affect 
Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces," 
Physical Review Letters, vol. 102, Apr 2009. 

[77] M. Hu, P. Keblinski, and P. K. Schelling, "Kapitza conductance of silicon-amorphous 
polyethylene interfaces by molecular dynamics simulations," Physical Review B, vol. 79, 
Mar 2009. 

[78] R. Prasher, "Acoustic mismatch model for thermal contact resistance of van der Waals 
contacts," Applied Physics Letters, vol. 94, Jan 2009. 

[79] M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, "Effects of chemical 
bonding on heat transport across interfaces," Nature Materials, vol. 11, pp. 502-506, Jun 
2012. 

[80] M. Schoenberg, "Elastic Wave Behavior across Linear Slip Interfaces," Journal of the 
Acoustical Society of America, vol. 68, pp. 1516-1521, 1980. 

[81] M. A. Panzer and K. E. Goodson, "Thermal resistance between low-dimensional 
nanostructures and semi-infinite media," Journal of Applied Physics, vol. 103, p. 094301, 
2008. 

[82] M. Bedewy, E. R. Meshot, H. C. Guo, E. A. Verploegen, W. Lu, and A. J. Hart, "Collective 
Mechanism for the Evolution and Self-Termination of Vertically Aligned Carbon 
Nanotube Growth," Journal of Physical Chemistry C, vol. 113, pp. 20576-20582, Dec 
2009. 

[83] L. Zhang, Z. R. Li, Y. Q. Tan, G. Lolli, N. Sakulchaicharoen, F. G. Requejo, B. S. Mun, and D. 
E. Resasco, "Influence of a top crust of entangled nanotubes on the structure of 
vertically aligned forests of single-walled carbon nanotubes," Chemistry of Materials, 
vol. 18, pp. 5624-5629, Nov 2006. 

[84] V. Bahadur, J. Xu, Y. Liu, and T. S. Fisher, "Thermal resistance of nanowire-plane 
interfaces," Journal of Heat Transfer-Transactions of the Asme, vol. 127, pp. 664-668, 
Jun 2005. 

[85] M. T. Pettes and L. Shi, "Thermal and Structural Characterizations of Individual Single-, 
Double-, and Multi-Walled Carbon Nanotubes," Advanced Functional Materials, vol. 19, 
pp. 3918-3925, 2009. 

[86] K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. McGaughey, and J. A. Malen, 
"Broadband phonon mean free path contributions to thermal conductivity measured 
using frequency domain thermoreflectance," Nat Commun, vol. 4, p. 1640, 2013. 

[87] G. R. McGee, M. H. Schankula, and M. M. Yovanovich, "Thermal-Resistance of Cylinder-
Flat Contacts - Theoretical-Analysis and Experimental-Verification of a Line-Contact 
Model," Nuclear Engineering and Design, vol. 86, pp. 369-381, 1985 1985. 

[88] S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, and T. S. Fisher, "The atomistic 
Green’s function method for interfacial phonon transport," Ann. Rev. Heat Transfer, vol. 
17, pp. 89-145, 2014. 



139 
 

[89] I. Srivastava, S. Sadasivam, K. C. Smith, and T. S. Fisher, "Combined Microstructure and 
Heat Conduction Modeling of Heterogeneous Interfaces and Materials," Journal of Heat 
Transfer-Transactions of the Asme, vol. 135, Jun 2013. 

[90] M. J. Buehler, "Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, 
self-folding, and fracture," Journal of Materials Research, vol. 21, pp. 2855-2869, 2011. 

[91] C. Van Wyk, "20—NOTE ON THE COMPRESSIBILITY OF WOOL," Journal of the Textile 
Institute Transactions, vol. 37, pp. T285-T292, 1946. 

[92] S. De Jong, J. Snaith, and N. Michie, "A mechanical model for the lateral compression of 
woven fabrics," Textile Research Journal, vol. 56, pp. 759-767, 1986. 

[93] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman spectroscopy of carbon 
nanotubes," Physics Reports-Review Section of Physics Letters, vol. 409, pp. 47-99, Mar 
2005. 

[94] B. A. Cola, X. F. Xu, and T. S. Fisher, "Increased real contact in thermal interfaces: A 
carbon nanotube/foil material," Applied Physics Letters, vol. 90, Feb 2007. 

[95] T. L. Bergman and F. P. Incropera, Fundamentals of heat and mass transfer, 7th ed. 
Hoboken, NJ: Wiley, 2011. 

[96] H. P. Hu, X. W. Wang, and X. F. Xu, "Generalized theory of the photoacoustic effect in a 
multilayer material," Journal of Applied Physics, vol. 86, pp. 3953-3958, Oct 1999. 

[97] X. Wang, B. A. Cola, T. L. Bougher, S. L. Hodson, T. S. Fisher, and X. Xu, "Photoacoustic 
Technique for Thermal Conductivity and Thermal Interface Measurements," in Annual 
Review of Heat Transfer. vol. 16, ed, 2013, pp. 135-157. 

[98] W. H. Press, Numerical recipes : the art of scientific computing, 3rd ed. Cambridge, UK ; 
New York: Cambridge University Press, 2007. 

[99] A. J. Schmidt, R. Cheaito, and M. Chiesa, "A frequency-domain thermoreflectance 
method for the characterization of thermal properties," Review of Scientific Instruments, 
vol. 80, Sep 2009. 

[100] Y. X. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, "Thermoreflectance of metal 
transducers for time-domain thermoreflectance," Journal of Applied Physics, vol. 108, 
Aug 2010. 

[101] D. G. Cahill, "Analysis of heat flow in layered structures for time-domain 
thermoreflectance," Review of Scientific Instruments, vol. 75, pp. 5119-5122, Dec 2004. 

[102] A. J. Schmidt, X. Y. Chen, and G. Chen, "Pulse accumulation, radial heat conduction, and 
anisotropic thermal conductivity in pump-probe transient thermoreflectance," Review 
of Scientific Instruments, vol. 79, Nov 2008. 

[103] A. Schmidt, M. Chiesa, X. Y. Chen, and G. Chen, "An optical pump-probe technique for 
measuring the thermal conductivity of liquids," Review of Scientific Instruments, vol. 79, 
Jun 2008. 

[104] B. C. Gundrum, D. G. Cahill, and R. S. Averback, "Thermal conductance of metal-metal 
interfaces," Physical Review B, vol. 72, Dec 2005. 

[105] A. J. Schmidt, K. C. Collins, A. J. Minnich, and G. Chen, "Thermal conductance and 
phonon transmissivity of metal-graphite interfaces," Journal of Applied Physics, vol. 107, 
May 2010. 

[106] Y. Gao, A. M. Marconnet, R. Xiang, S. Maruyama, and K. E. Goodson, "Heat Capacity, 
Thermal Conductivity, and Interface Resistance Extraction for Single-Walled Carbon 
Nanotube Films Using Frequency-Domain Thermoreflectance," Components, Packaging 
and Manufacturing Technology, IEEE Transactions on, vol. PP, pp. 1-1, 2013. 



140 
 

[107] S. Kaur, N. Raravikar, B. A. Helms, R. Prasher, and D. F. Ogletree, "Enhanced thermal 
transport at covalently functionalized carbon nanotube array interfaces," Nat Commun, 
vol. 5, p. 3082, 2014. 

[108] C. Wei, X. Zheng, D. G. Cahill, and J. C. Zhao, "Invited article: micron resolution spatially 
resolved measurement of heat capacity using dual-frequency time-domain 
thermoreflectance," Rev Sci Instrum, vol. 84, p. 071301, Jul 2013. 

[109] J. Liu, J. Zhu, M. Tian, X. Gu, A. Schmidt, and R. Yang, "Simultaneous measurement of 
thermal conductivity and heat capacity of bulk and thin film materials using frequency-
dependent transient thermoreflectance method," Rev Sci Instrum, vol. 84, p. 034902, 
Mar 2013. 

[110] P. E. Hopkins, J. R. Serrano, L. M. Phinney, S. P. Kearney, T. W. Grasser, and C. T. Harris, 
"Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems 
During Modulated Laser Heating," Journal of Heat Transfer, vol. 132, p. 081302, 2010. 

[111] A. Y. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, and P. M. Ajayan, "Super-
compressible foamlike carbon nanotube films," Science, vol. 310, pp. 1307-1310, Nov 
2005. 

[112] S. D. Mesarovic, C. M. McCarter, D. F. Bahr, H. Radhakrishnan, R. F. Richards, C. D. 
Richards, D. McClain, and J. Jiao, "Mechanical behavior of a carbon nanotube turf," 
Scripta Materialia, vol. 56, pp. 157-160, Jan 2007. 

[113] M. R. Maschmann, Q. H. Zhang, F. Du, L. M. Dai, and J. Baur, "Length dependent foam-
like mechanical response of axially indented vertically oriented carbon nanotube 
arrays," Carbon, vol. 49, pp. 386-397, Feb 2011. 

[114] P. Pour Shahid Saeed Abadi, S. B. Hutchens, J. R. Greer, B. A. Cola, and S. Graham, 
"Effects of morphology on the micro-compression response of carbon nanotube 
forests," Nanoscale, vol. 4, pp. 3373-3380, 2012. 

[115] X. C. Gui, Z. P. Zeng, A. Y. Cao, Z. Q. Lin, H. Q. Zeng, R. Xiang, T. Z. Wu, Y. Zhu, and Z. K. 
Tang, "Elastic shape recovery of carbon nanotube sponges in liquid oil," Journal of 
Materials Chemistry, vol. 22, pp. 18300-18305, 2012. 

[116] P. P. Abadi, M. R. Maschmann, S. M. Mortuza, S. Banerjee, J. W. Baur, S. Graham, and B. 
A. Cola, "Reversible Tailoring of Mechanical Properties of Carbon Nanotube Forests by 
Immersing in Solvents," Carbon (accepted), 2013. 

[117] A. Misra, P. Kumar, J. R. Raney, A. Singhal, L. Lattanzi, and C. Daraio, "Effect of fluid 
medium on mechanical behavior of carbon nanotube foam," Applied Physics Letters, vol. 
104, p. 221910, 2014. 

[118] N. Chakrapani, B. Q. Wei, A. Carrillo, P. M. Ajayan, and R. S. Kane, "Capillarity-driven 
assembly of two-dimensional cellular carbon nanotube foams," Proceedings of the 
National Academy of Sciences of the United States of America, vol. 101, pp. 4009-4012, 
Mar 2004. 

[119] S. Kaur, S. Sahoo, P. Ajayan, and R. S. Kane, "Capillarity-driven assembly of carbon 
nanotubes on substrates into dense vertically aligned arrays," Advanced Materials, vol. 
19, pp. 2984-+, Oct 2007. 

[120] Z. Liu, N. Bajwa, L. Ci, S. H. Lee, S. Kar, P. M. Ajayan, and J. Q. Lu, "Densification of carbon 
nanotube bundles for interconnect application," in Proceedings of the IEEE 2007 
International Interconnect Technology Conference, ed, 2007, pp. 201-203. 

[121] S. Tawfick, M. De Volder, and A. J. Hart, "Structurally Programmed Capillary Folding of 
Carbon Nanotube Assemblies," Langmuir, vol. 27, pp. 6389-6394, May 2011. 

[122] J. A. Dean and N. A. Lange, "Lange's handbook of chemistry," ed. New York: McGraw-
Hill, 1973, p. v. 



141 
 

[123] T. L. Bougher, C. J. Vasquez, and B. A. Cola, "Thermal Conductivity Measurement of Bare 
Carbon Nanotube Films Using the Photoacoustic Technique," in 15th International Heat 
Transfer Conference, Kyoto Japan, 2014. 

[124] J. H. Taphouse, O. N. L. Smith, S. R. Marder, and B. A. Cola, "A Pyrenylpropyl Phosphonic 
Acid Surface Modifier for Mitigating the Thermal Resistance of Carbon Nanotube 
Contacts," Advanced Functional Materials, vol. 24, pp. 465-471, 2014. 

[125] L. T. Qu, L. M. Dai, M. Stone, Z. H. Xia, and Z. L. Wang, "Carbon nanotube arrays with 
strong shear binding-on and easy normal lifting-off," Science, vol. 322, pp. 238-242, Oct 
2008. 

[126] Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, "Interfacial 
energy and strength of multiwalled-carbon-nanotube-based dry adhesive," Journal of 
Vacuum Science & Technology B, vol. 24, pp. 331-335, Jan-Feb 2006. 

[127] L. Qu and L. Dai, "Gecko-foot-mimetic aligned single-walled carbon nanotube dry 
adhesives with unique electrical and thermal properties," Advanced Materials, vol. 19, 
pp. 3844-+, Nov 2007. 

[128] P. Pour Shahid Saeed Abadi, S. B. Hutchens, J. R. Greer, B. A. Cola, and S. Graham, 
"Buckling-driven delamination of carbon nanotube forests," Applied Physics Letters, vol. 
102, p. 223103, 2013. 

[129] S. Tawfick, Z. Z. Zhao, M. Maschmann, A. Brieland-Shoultz, M. De Volder, J. W. Baur, W. 
Lu, and A. J. Hart, "Mechanics of Capillary Forming of Aligned Carbon Nanotube 
Assemblies," Langmuir, vol. 29, pp. 5190-5198, Apr 2013. 

[130] M. F. L. De Volder, S. J. Park, S. H. Tawfick, D. O. Vidaud, and A. J. Hart, "Fabrication and 
electrical integration of robust carbon nanotube micropillars by self-directed 
elastocapillary densification," Journal of Micromechanics and Microengineering, vol. 21, 
p. 045033, 2011. 

[131] S. G. Stepanian, V. A. Karachevtsev, A. Y. Glamazda, U. Dettlaff-Weglikowska, and L. 
Adamowicz, "Combined Raman scattering and ab initio investigation of the interaction 
between pyrene and carbon SWNT," Molecular Physics, vol. 101, pp. 2609-2614, Aug 
2003. 

[132] Q. Yang, L. Shuai, J. Zhou, F. C. Lu, and X. J. Pan, "Functionalization of Multiwalled 
Carbon Nanotubes by Pyrene-Labeled Hydroxypropyl Cellulose," Journal of Physical 
Chemistry B, vol. 112, pp. 12934-12939, Oct 2008. 

[133] P. H. Mutin, G. Guerrero, and A. Vioux, "Organic-inorganic hybrid materials based on 
organophosphorus coupling molecules: from metal phosphonates to surface 
modification of oxides," Comptes Rendus Chimie, vol. 6, pp. 1153-1164, Aug-Oct 2003. 

[134] P. H. Mutin, G. Guerrero, and A. Vioux, "Hybrid materials from organophosphorus 
coupling molecules," Journal of Materials Chemistry, vol. 15, pp. 3761-3768, 2005. 

[135] P. Kim, N. M. Doss, J. P. Tillotson, P. J. Hotchkiss, M. J. Pan, S. R. Marder, J. Y. Li, J. P. 
Calame, and J. W. Perry, "High Energy Density Nanocomposites Based on Surface-
Modified BaTiO3 and a Ferroelectric Polymer," Acs Nano, vol. 3, pp. 2581-2592, Sep 
2009. 

[136] P. J. Hotchkiss, M. Malicki, A. J. Giordano, N. R. Armstrong, and S. R. Marder, 
"Characterization of phosphonic acid binding to zinc oxide," Journal of Materials 
Chemistry, vol. 21, pp. 3107-3112, 2011. 

[137] S. A. Paniagua, P. J. Hotchkiss, S. C. Jones, S. R. Marder, A. Mudalige, F. S. Marrikar, J. E. 
Pemberton, and N. R. Armstrong, "Phosphonic acid modification of indium-tin oxide 
electrodes: Combined XPS/UPS/contact angle studies," Journal of Physical Chemistry C, 
vol. 112, pp. 7809-7817, May 2008. 



142 
 

[138] S. Gastaldi and D. Stien, "PAH-supported tin hydride: a new tin reagent easily removable 
from reaction mixtures," Tetrahedron Letters, vol. 43, pp. 4309-4311, Jun 2002. 

[139] T. J. Simmons, J. Bult, D. P. Hashim, R. J. Linhardt, and P. M. Ajayan, "Noncovalent 
Functionalization as an Alternative to Oxidative Acid Treatment of Single Wall Carbon 
Nanotubes With Applications for Polymer Composites," Acs Nano, vol. 3, pp. 865-870, 
Apr 2009. 

[140] X. Wallart, C. H. de Villeneuve, and P. Allongue, "Truly quantitative XPS characterization 
of organic monolayers on silicon: Study of alkyl and alkoxy monolayers on H-Si(111)," 
Journal of the American Chemical Society, vol. 127, pp. 7871-7878, Jun 2005. 

[141] M. R. Weatherspoon, S. M. Allan, E. Hunt, Y. Cai, and K. H. Sandhage, "Sol-gel synthesis 
on self-replicating single-cell scaffolds: applying complex chemistries to nature's 3-D 
nanostructured templates," Chemical Communications, pp. 651-653, 2005. 

[142] T. Muraki, M. Ueta, E. Ihara, and K. Inoue, "Enhancement of thermal stability of 
polystyrene and poly(methyl methacrylate) by cyclotriphosphazene derivatives," 
Polymer Degradation and Stability, vol. 84, pp. 87-93, Apr 2004. 

[143] M. Giulianini, E. R. Waclawik, J. M. Bell, M. De Crescenzi, P. Castrucci, M. Scarselli, M. 
Diociauti, S. Casciardi, and N. Motta, "Evidence of Multiwall Carbon Nanotube 
Deformation Caused by Poly(3-hexylthiophene) Adhesion," Journal of Physical Chemistry 
C, vol. 115, pp. 6324-6330, Apr 2011. 

[144] V. Saini, Z. R. Li, S. Bourdo, E. Dervishi, Y. Xu, X. D. Ma, V. P. Kunets, G. J. Salamo, T. 
Viswanathan, A. R. Biris, D. Saini, and A. S. Biris, "Electrical, Optical, and Morphological 
Properties of P3HT-MWNT Nanocomposites Prepared by in Situ Polymerization," Journal 
of Physical Chemistry C, vol. 113, pp. 8023-8029, May 2009. 

[145] C. Caddeo, C. Melis, L. Colombo, and A. Mattoni, "Understanding the Helical Wrapping 
of Poly(3-hexylthiophene) on Carbon Nanotubes," Journal of Physical Chemistry C, vol. 
114, pp. 21109-21113, Dec 2010. 

[146] S. Hugger, R. Thomann, T. Heinzel, and T. Thurn-Albrecht, "Semicrystalline morphology 
in thin films of poly(3-hexylthiophene)," Colloid and Polymer Science, vol. 282, pp. 932-
938, Jun 2004. 

[147] R. Prasher, "Thermal interface materials: Historical perspective, status, and future 
directions," Proceedings of the Ieee, vol. 94, pp. 1571-1586, Aug 2006. 

[148] G. Chen, "Size and interface effects on thermal conductivity of superlattices and periodic 
thin-film structures," Journal of Heat Transfer-Transactions of the Asme, vol. 119, pp. 
220-229, May 1997. 

[149] N. W. Ashcroft and N. D. Mermin, Solid state physics. New York,: Holt, 1976. 
[150] R. E. Bolz and G. L. Tuve, CRC handbook of tables for applied engineering science, 2d ed. 

Cleveland, Ohio,: CRC Press, 1973. 
[151] V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, 

D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, 
"High thermal conductivity of chain-oriented amorphous polythiophene," Nat Nano, vol. 
advance online publication, 2014. 

[152] X. Wang, V. Ho, R. A. Segalman, and D. G. Cahill, "Thermal Conductivity of High-Modulus 
Polymer Fibers," Macromolecules, vol. 46, pp. 4937-4943, 2013. 

[153] S. Shen, A. Henry, J. Tong, R. T. Zheng, and G. Chen, "Polyethylene nanofibres with very 
high thermal conductivities," Nature Nanotechnology, vol. 5, pp. 251-255, Apr 2010. 

[154] Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. 
Gossard, "Comparison of the 3ω method and time-domain thermoreflectance for 



143 
 

measurements of the cross-plane thermal conductivity of epitaxial semiconductors," 
Journal of Applied Physics, vol. 105, p. 054303, 2009. 

[155] K. E. O’Hara, X. Hu, and D. G. Cahill, "Characterization of nanostructured metal films by 
picosecond acoustics and interferometry," Journal of Applied Physics, vol. 90, p. 4852, 
2001. 

[156] C. J. Vasquez, "Oxide-Coated Vertically Aligned Carbon Nanotube Forests as Thermal 
Interface Materials," Master of Science, Mechanical Engineering, Georgia Institute of 
Technology, 2014. 

[157] C. Masarapu, L. L. Henry, and B. Wei, "Specific heat of aligned multiwalled carbon 
nanotubes," Nanotechnology, vol. 16, pp. 1490-1494, 2005. 

[158] P. P. S. S. Abadi, "Mechanical Behavior of Carbon Nanotube Forests Under Compressive 
Loading," Ph.D. Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia 
Institute of Technology, 2013. 

[159] J. V. Beck and K. J. Arnold, Parameter estimation in engineering and science. New York: 
Wiley, 1977. 

[160] N. P. Bansal and R. H. Doremus, Handbook of glass properties. Orlando: Academic Press, 
1986. 

[161] W. Lin, J. Shang, W. Gu, and C. P. Wong, "Parametric study of intrinsic thermal transport 
in vertically aligned multi-walled carbon nanotubes using a laser flash technique," 
Carbon, vol. 50, pp. 1591-1603, 2012. 

[162] M. T. Barako, Y. Gao, Y. Won, A. M. Marconnet, M. Asheghi, and K. E. Goodson, 
"Reactive Metal Bonding of Carbon Nanotube Arrays for Thermal Interface 
Applications." 

[163] S. L. Hodson, T. Bhuvana, B. A. Cola, X. F. Xu, G. U. Kulkarni, and T. S. Fisher, "Palladium 
Thiolate Bonding of Carbon Nanotube Thermal Interfaces," Journal of Electronic 
Packaging, vol. 133, Jun 2011. 

[164] Y. Won, Y. Gao, M. A. Panzer, S. Dogbe, L. Pan, T. W. Kenny, and K. E. Goodson, 
"Mechanical characterization of aligned multi-walled carbon nanotube films using 
microfabricated resonators," Carbon, vol. 50, pp. 347-355, Feb 2012. 

[165] G. Zhong, J. H. Warner, M. Fouquet, A. W. Robertson, B. Chen, and J. Robertson, 
"Growth of ultrahigh density single-walled carbon nanotube forests by improved 
catalyst design," Acs Nano, vol. 6, pp. 2893-2903, 2012. 

[166] J. Liu, O. Bibari, P. Mailley, J. Dijon, E. Rouviere, F. Sauter-Starace, P. Caillat, F. Vinet, and 
G. Marchand, "Stable non-covalent functionalisation of multi-walled carbon nanotubes 
by pyrene-polyethylene glycol through pi-pi stacking," New Journal of Chemistry, vol. 33, 
pp. 1017-1024, 2009. 

[167] T. L. Barr, "Esca Study of Termination of Passivation of Elemental Metals," Journal of 
Physical Chemistry, vol. 82, pp. 1801-1810, 1978. 

[168] P. J. Cumpson, "Estimation of inelastic mean free paths for polymers and other organic 
materials: use of quantitative structure-property relationships," Surface and Interface 
Analysis, vol. 31, pp. 23-34, Jan 2001. 

 

 


