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SUMMARY

Detection and localization of sound sources in an ocean environment can be

achieved with a distributed array of passive acoustic sensors. Utilizing an array of

autonomous littoral gliders, which offer long–term and quiet operation, and vector

sensors, which measure both acoustic pressure and particle velocity, the array’s lo-

calization performance can be improved. However, vector sensors are susceptible to

errors induced by acoustic noise, and autonomous gliders as a sensor platform intro-

duce positional errors. Through both simulations and at–sea data, the localization

performance of four processing methods are evaluated under various noisy conditions.

In both simulated and at–sea data results, a new cross–coherent method outperforms

traditional methods by mitigating the effects of acoustic noise, provided sufficient

positional accuracy of the array elements.
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CHAPTER I

INTRODUCTION

Environmental and defense agencies are often interested in locating and tracking

underwater objects. In the case of marine life, one is often interested in tracking

objects such as whales or dolphins. In the case of a defense agency, one is more

concerned with detecting foreign threats in an area. Either problem usually simplifies

to detecting an acoustic source and then tracking, or localizing, the source.

Array signal processing, also known as beamforming, is a method of combining data

from an array of sensors to detect and locate acoustic sources. Traditional arrays

are comprised of hydrophones, which measure only acoustic pressure. Vector sen-

sors, which measure both acoustic pressure and particle velocity, can improve array

performance as they can infer the direction of acoustic intensity, which is typically

parallel to the direction of propagation. Compared to a hydrophone array, vector

sensor arrays offer improved signal detection, higher directionality for localization,

and less ambiguity. As vector sensors have become smaller and cheaper to produce,

they are finding their way into more array processing applications.

One application of vector sensor arrays is to mount the sensors on a mobile platform

such as a littoral glider. Littoral gliders are autonomous underwater vehicles capable

of long–term deployment in shallow coastal regions. The gliders move by changing

buoyancy and gliding forward while either sinking or rising. This method of movement

is much more silent than actively driven propulsion. Having a quiet, mobile platform

capable of passively monitoring an area offers many benefits over a stationary or fixed
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array; however, much of the current literature concerning vector sensor beamforming

assumes a fixed array.

The objective of this work is to investigate the feasibility of extending the current vec-

tor sensor array processing formulations to a mobile array. It also aims to compare the

performance of the array using different beamforming techniques. The proposed ap-

proach will be demonstrated using both simulated data and two at–sea datasets.
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CHAPTER II

BACKGROUND

2.1 Vector Sensor Beamforming

Array signal processing is a field that concerns the processing of a spatially distributed

array of sensors. Beamforming refers to the process of spatially filtering array data

to obtain propagation direction information. The first uses of beamforming in acous-

tics focused primarily on source direction in narrowband hydrophone (scalar) arrays

(Van Trees, 2004, Ch. 1-4). The field has since seen advances in many areas, such

as broadband processing, optimal detection and adaptive methods (Van Trees, 2004,

Ch. 7).

Vector sensor beamforming followed a similar progression, beginning with simple

extensions of the corresponding hyrdrophone array methods. The first developments

introduced an intensity–based approach, which identified the angle of arrival of a plane

wave by estimating the product of pressure and velocity, resulting in the direction

of energy propagation (Nehorai and Paldi, 1994). A second method, which followed

more closely the concepts of hydrophone array processing, utilizes an array steering

vector, or weight vector, to spatially filter the array data (Hawkes and Nehorai,

1998). As in the scalar array case, the weight vector takes on a form that mimics

the propagation characteristics experienced by the array when sound arrives at a

particular angle.

A notable difference in the array steering vector for vector sensors, however, is that

they use both the relative delay information induced by propagation delay between

3



sensors as well as the directional response of the sensor to an impinging wave. Hav-

ing both the propagation delay and directional information allows the weight vector

to distinguish the direction of arrival (DOA) of a source more accurately than an

identical hydrophone array (Hawkes and Nehorai, 1998). An additional benefit of

vector sensors is the increased number of measurements due to the added velocity

components (DSpain et al., 2006). This effectively increases the signal to noise ratio

(SNR) by measuring the ”signal” more times. Lastly, a vector sensor array also de-

creases ambiguities experienced by a corresponding hydrophone array (Cox and Lai,

2009). For example, a linear hydrophone array would exhibit a ”cone of ambiguity”,

where any source located on the surface of a certain cone could have generated the

array data in question. An otherwise identical array with vector sensors, however,

would leverage the directionality of the sensors to pinpoint the exact direction of the

source. Hydrophone arrays can also exhibit grating lobes: false peaks that result from

aliasing in the wavenumber domain by not spacing array elements more closely than

half–wavelengths (Cox and Lai, 2009). Vector sensors on the other hand, can dimin-

ish the effect of a grating lobe simply because sound coming from that direction will

not have the correct velocity components seen by the true source direction (Chen and

Zhao, 2004). Therefore, a vector sensor array offers many theoretical improvements

over a hydrophone array.

In more realistic scenarios, however, vector sensors experience a wide variety of noise–

induced problems. Many sensors do not measure particle velocity directly, but rather

acceleration, which can be noisy to integrate to obtain velocity (Nehorai and Paldi,

1994). Vector sensors are also very sensitive to flow noise, caused by any movement

of the sensor through water or currents flowing around the sensor (Lauchle et al.,

2002). D’Spain et al. have developed an optimal weight vector which accounts for

the increased amount of noise experienced by the velocity elements. Other adaptive

methods exist, which attempt to leverage the knowledge of the noise field to improve

4



array performance (Hawkes and Nehorai, 2003; DSpain et al., 2006). One area of

vector sensor processing which has not been fully developed yet pertains to adaptive

weighting of the covariance matrix itself.

Another area of vector sensor processing which has not been fully explored is the addi-

tion of positional inaccuracies of the sensors within the array. Much of the literature

on vector sensor arrays assumes perfect knowledge of the array position, orienta-

tion, and individual sensor location. This is most common, since many arrays are

designed and constructed to specification. Some literature exists on calibrating the

array to obtain precise sensor position information, but relies on a calibration pro-

cedure before its use (Rockah and Schultheiss, 1987a,b). The most relevant research

on positional inaccuracies so far only relates to the performance of scalar arrays with

random positional errors added to sensor position (Schultheiss, 1980). If the vector

sensors in an array are to be mounted to an autonomous mobile platform, the exact

position and orientation of each sensor will not be determinate, and the effects on

array performance should be understood.

2.2 Littoral Glider Array Platform

An attractive platform for an autonomous array of vector sensors is the littoral glider

(see Figure 1). The main benefits of a glider network include array mobility, long–term

autonomous deployment, and quiet operation. A littoral glider is designed to operate

in shallower coastal waters, using buoyancy as its means of propulsion, making it

both silent and energy efficient. When surfaced, the glider is positively buoyant and

is capable of obtaining a GPS fix. To move forward, the glider pulls in a piston whose

outer face is in contact with the surrounding water to become negatively buoyant and

thus start sinking. While sinking, wings on the glider help propel it forward. The

glider changes its heading by rolling and pitching, which is achieved by moving its
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center of mass relative to the center of buoyancy. When reaching its maximum depth,

the glider pushes out its piston to become positively buoyant, gliding forward again

on the ascent (Imlach and Mahr, 2012).

Figure 1: An autonomous littoral glider by Alaska Native Technologies (ANT–LLC),

fitted with a vector sensor mounted inside a cage approximately one meter off the

nose.

Despite having control over its orientation and buoyancy, the glider’s exact position

underwater is not always known. It can only be inferred by knowing the descent rate,

pitch angle and heading history, which is integrated to estimate the current position.

This method of positioning, called ”dead reckoning”, suffers from compounded error

during integration, and lack of current/drift information, and thus is not very accurate

or reliable. On the surface, however, the glider is able to obtain its position from GPS

satellites quite accurately. Acoustically, the surface is not an ideal place for a vector

sensor array since the sea–surface is quite noisy and a floating glider will tend to

oscillate through the waves. Wave–generated surface noise and the flow of water past

a vector sensor induce large amounts of noise, which can diminish a vector sensor

array’s performance, even below that of a single hydrophone if not accounted for in
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processing (DSpain et al., 2006). The last concern of gliders as an array platform is the

noise generated when the glider moves its internal mass (e.g. batteries). Though still

quieter than an active propulsion system, the noise generated can drown out nearly

all signals of interest. With these drawbacks carefully managed, a glider has the

potential to perform well as a platform for an autonomous vector sensor array.

2.3 Problem Formulation

Given an array of gliders, each with positional inaccuracies and subjected to noisy

environments, the main goal is to identify and track the location of a source of in-

terest (see Figure 2). The purpose of this work is, firstly, to determine whether the

proposed problem can be feasibly solved in a real ocean environment. Secondly, the

localization performance of different beamforming methods will be compared, using

both simulated and at–sea data.
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Vector Sensor
#1

Vector Sensor
#2

Vector Sensor
#3

Source / Target

Source Path

Figure 2: Schematic of the localization problem. Gliders (blue circles) are situated

around a source (red square), which is following an unknown path (dashed arrow).

The gliders, having positional errors (grey ellipses), attempt to locate the source’s

position with as little error as possible (red ellipse).
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CHAPTER III

THEORY

3.1 Coordinate Systems and Conventions

The coordinate system used in the subsequent sections is a geodetic East-North-Up

(ENU) system1, where the local tangent plane to the Earth’s surface represents the

XY –plane. The positive X–axis points East, the positive Y –axis points North, and

the positive Z–axis points up (see Figure 3). The Earth’s magnetic field locally points

nearly northward, but with declination (variation from true North), and inclination

(variation from parallel to the local tangent plane). The gravity vector is assumed to

always point downward, perpendicular to the local tangent plane.

1The coordinate system more common to avionics and underwater vehicles is NED, and will be
used in future publications.
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Figure 3: Geodetic coordinate system with angles used to determine glider orientation.

Angles defining the local magnetic field direction (declination and inclination) are also

shown.

Any glider within this local geodetic coordinate system can use the gravity and mag-

netic field vectors to determine its orientation. The orientation is specified by yaw

(heading), pitch and roll angles, which are defined by positive right–hand intrinsic

rotations about the z–, y– and x–axes (see Figure 3). The glider coordinate system is

then such that the positive x–axis points towards the nose of the glider, collinear with

its cylindrical axis. The positive y–axis lies in the plane of the gliding wings, pointing

toward the port (i.e. left) side of the glider. The positive z–axis is perpendicular to

both x– and y–axes, forming a right–hand coordinate system.
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The vector sensor coordinate system is specific to the VS–301 used in experimental

data, where the positive zs–axis is collinear with the glider x–axis. The exact orien-

tation of the xs– and ys–axes is variable, but forms an angle β between the sensor

xs–axis and the glider -z–axis (see Figure 4).

Figure 4: Vector sensor coordinate system with respect to the glider coordinate sys-

tem. The viewpoint is looking from the front of the glider down its axis.

Lastly, the angle convention used for vectors within the geodetic coordinate system

assumes an azimuth angle (θ ∈ [0, 2π)) which is defined positive counter–clockwise

from the positive x–axis; the elevation angle (φ ∈ [−π/2, π/2]) is defined as positive

towards the positive z–axis (see Figure 5).
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x y

z

Figure 5: Angle convention used for vectors within a coordinate system. The azimuth

is given by θ and the elevation by φ.

3.2 Vector Sensor Processing using Covariance Matrix Weight-
ing

Considering N distributed vector sensors, the time–domain data vector obtained from

the array is defined as

d(t) =

[
p1(t), v1x(t), v1y(t), v1z(t), . . . , pN(t), vNx(t), vNy(t), vNz(t)

]T
(1)

which includes the pressure, pi(t), and three components of velocity, vix(t), viy(t), and

viz(t), from the i-th sensor (i = 1, ..., N). Here, we assume all desired preprocessing

has been performed (see Appendix B). In the frequency–domain, the data vector is

defined as

d̃(ω) =

[
p1(ω), v1x(ω), v1y(ω), v1z(ω), . . . , pN(ω), vNx(ω), vNy(ω), vNz(ω)

]T
. (2)

Pairwise correlation of the array element data yields an estimate of the data covariance

matrix (DSpain et al., 2006)

R = d̃d̃H =


C11 C12 . . .

C21 C22 . . .

...
...

. . .

 (3)

where the superscript H denotes conjugate transposition and the explicit dependence

on frequency is omitted for clarity. In Equation (3), the 4x4 sub–matrices, Cij (i, j =

12



1, ..., N), are the cross–covariance matrices of data from vector sensors i and j and

are defined by

Cij =



pip
∗
j piv

∗
jx piv

∗
jy piv

∗
jz

vixp
∗
j vixv

∗
jx vixv

∗
jy vixv

∗
jz

viyp
∗
j viyv

∗
jx viyv

∗
jy viyv

∗
jz

vizp
∗
j vizv

∗
jx vizv

∗
jy vizv

∗
jz


(4)

where the superscript ∗ denotes complex conjugation. Diagonal matrices Cii are

termed the incoherent covariance matrices, as they correspond to correlations amongst

pressure and velocity channels of the same vector sensor. Off–diagonal matrices, Cij

where i 6= j, are termed coherent covariance matrices as they correspond to correla-

tions across pressure and velocity channels of different vector sensors. The different

weighting methods for the covariance matrix can be described by which elements

of the covariance matrix are preserved in processing. This selection is achieved by

element–wise weighting of the covariance matrix in Equation 3 and is given by

Rw = W �R (5)

where Rw is the weighted covariance matrix, W is the weight matrix, and the element–

wise (Hadamard) product is denoted by the � operator.

The traditional incoherent processing method keeps only the diagonal correlation

matrices Cii by using a block–diagonal matrix given by

W =


14 04 . . .

04 14 . . .

...
...

. . .

 (6)

where 1n denotes a n × n matrix of ones and 0n indicates a n × n matrix of zeros.

Incoherent processing effectively treats each sensor individually, maintaining only

correlations among pressure and velocity channels of the same sensor. As a result,
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local uncorrelated noise strongly affects the incoherent method’s weighted covariance

matrix.

Second, the coherent processing method uses all information contained within the

covariance matrix, and thus the weight matrix is given by the unity matrix

W = 14n. (7)

The coherent method is still affected by local correlated noise at each sensor through

the incoherent covariance sub–matrices Cii, but also includes the coherent covariance

sub–matrices Cij (i 6= j) corresponding to cross–sensor correlations.

Third, a cross–coherent processing method is introduced to attempt to reject the

effects of uncorrelated noise between array elements by keeping only the off–diagonal

correlation sub–matrices Cij (i 6= j) using a weight matrix given by

W =


04 14 . . .

14 04 . . .

...
...

. . .

 . (8)

Note that the phase of the off–diagonal matrices in Cij (i 6= j) relates to the relative

propagation delay between sensors. Hence, provided sufficient accuracy in the sensor

positions, localization is possible using the relative propagation delays from a source.

For widely distributed sensors, it is expected that the local sea–surface generated

noise is nearly uncorrelated amongst sensors, and thus the off–diagonal covariance

matrices Cij (i 6= j) are less affected than the diagonal matrices Cii (Hawkes and

Nehorai, 2001).

Lastly, a zero–diagonal coherent processing method is introduced to attempt to re-

ject only noise from same sensor elements by zeroing only correlations between like

elements. The weight matrix for this method is given by

W = 14n − I4n (9)
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where In denotes a n × n identity matrix. This method is almost identical to the

coherent method, however all autocorrelations (which reside on the diagonal of the

covariance matrix) are neglected. In the presence of electronic noise, only the autocor-

relations will be largely affected, assuming the noise is nearly uncorrelated amongst

sensor elements.

3.3 Vector Sensor Beamforming

Here, a simple free space, time–delay beamformer is implemented to locate a sin-

gle source of interest. After element–wise weighting with the method of choice, the

weighted covariance matrix (Equation 5) is used to form the classical Bartlett beam-

former output given by

B̃(ω, r̂s) = wH(ω, r̂s)Rw(ω)w(ω, r̂s) (10)

where B̃(ω, r̂s) is the beamformer output power for a given frequency ω and estimated

source location r̂s (DSpain et al., 2006; Hawkes and Nehorai, 1998). The weight vec-

tor, w(ω, r̂s), is also known as the array steering vector and is formed using knowledge

of the phase delay and direction of arriving plane waves at each sensor (Hawkes and

Nehorai, 1998). The relative time delay τi of a plane wave arriving at sensor i is

given by the distance between the source and sensor, divided by the constant sound

speed c0. The direction of propagation is along the vector from the source to the i–th

sensor, which has an azimuthal bearing θi and elevational bearing φi (see Figure 6).

The weight vector is then given by

w(ω, r̂s) = [eωτ1 , eωτ1 cos θ1 cosφ1, eωτ1 sin θ1 cosφ1, eωτ1 sinφ1,

. . . , eωτn , eωτn cos θn cosφn, eωτn sin θn cosφn, eωτn sinφn]T .

(11)

Note that the weight vector used here only slightly differs from that in D’Spain et al.,

where all sensors are assumed to receive the plane wave from the same direction. In
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the mobile array case, this is not a valid assumption, as the gliders may be positioned

arbitrarily around the source.

Figure 6: Schematic of propagation of a plane wave from the source to the i–th

glider. The direction of propagation is given by ui, which forms an azimuth angle θi

and elevation angle φi.

To estimate the likelihood a source resides at a given location r̂s, the time–domain

beamformer output, obtained as the inverse Fourier Transform of Equation (10), is

windowed and root square–summed to yield an ambiguity surface

Π(r̂s) =

√∑
t

[f(t)B(t, r̂s)]
2, (12)

where f(t) is a time–window with width inversely proportional to the signal band-

width centered around t = 0 to select only the main peak of the time–domain beam-

former output. A sample ambiguity surface shown in Figure 7 shows values of the

ambiguity surface normalized between 0 and 1 as colors where darker colors denote

higher likelihood of a source being present.
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Figure 7: A sample ambiguity surface, where the evaluated points are shown as grey

dots. Colors between are interpolated from the vertices, and scaled between 0 and 1,

where the maximum value becomes 1. The estimated source position is shown as a

red cross, and the associated error shown by a red arrow.

The estimated source location, r̂pk, is assumed to reside at the peak of the ambiguity

surface, which represents the most likely location for the source. The accuracy of the

location estimate

εa = |̂rpk − rs| (13)

is defined as the distance between the estimated source location, r̂pk, and the true
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source location, rs. The precision of the ambiguity surface is quantified by the loga-

rithm of the ratio of the peak value to the average non–peak value (i.e. sidelobe). It

gives a measure of the confidence in the estimated location and is defined by

εp = 10 log10

(
Π(r̂pk)

1
P−1

∑
r̂s 6=r̂pk

Π(r̂s)

)
(14)

where P is the total number of discretized search points in the ambiguity surface. To-

gether, the accuracy and precision metrics define the localization performance of the

vector sensor array using conventional time–delay beamforming. Accuracy quantifies

the ability of the array to locate a source reliably. Precision quantifies the ability of

the array to detect whether a source is present in the first place, and also how well

the array will distinguish two nearby sources. Both are important if one is concerned

with detecting an object and then having reliable knowledge of its position.
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CHAPTER IV

SIMULATION MODEL

Simulation of arbitrary source and glider configurations were carried out to compare

different beamforming methods. For a littoral ocean environment, the depth of gliders

and sources relative to the distance between them is assumed to be negligible, and

thus all simulations were carried out on the sea–surface (see Figure 8).

Figure 8: Schematic of simulation parameters. The source (red square), emits the

signal s(t), which is assumed to propagate across distance di(t) to each glider (blue

circles), arriving as plane waves with direction ui(t)
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The surface vessel is treated as a random radiator, broadcasting a signal s(t) defined

as Gaussian white noise with amplitude variance arbitrarily set to unity. Assuming

homogeneous free–space and unattenuated propagation in the presence of isotropic

uncorrelated white noise, the received pressure at the i-th glider is then given by

pi(t) = s

(
t− di(t)

c0

)
+ (SNRp)

− 1
2nip(t) (15)

where di(t) is the distance from the glider to the source at time t, c0 is the speed of

sound, and nip(t) is additive white Gaussian noise with unit variance which is assumed

to be uncorrelated to the random signal s(t) or any other receiver noise njp(t) (j 6= i).

The amplitude of the noise term nip(t) is scaled such that the ratio of pressure signal

power to noise power is given by the pressure signal–to–noise ratio SNRp. Similarly,

assuming a plane wave arrival at the i–th glider (see Figure 8), the received velocity

vector is given by

vi(t) =
ui(t)

ρ0c0
s

(
t− di(t)

c0

)
+ (3SNRv)

− 1
2 niv(t) (16)

where ui(t) is the unit vector pointing from glider i to the source at time t, and ρ0

is the ambient density of the medium. Each component of the additive noise niv(t)

is white Gaussian with zero mean and unit variance and is uncorrelated to any other

component; its amplitude is scaled such that the ratio of velocity magnitude signal

power to noise power is given by the velocity signal–to–noise ratio SNRv (DSpain

et al., 2006).

To implement Equations 15 – 16 numerically, all trajectories are linearly interpolated

to the timebase of the trajectory with the most samples. The distances di(t) and

vectors ui(t) are evaluated at each discrete point in time. Also note that the vector

ui(t) is not evaluated at t − τi where τi is the propagation time from the source to

the i–th glider. It is assumed that ui(t − τi) ≈ ui(t) (i.e. the change in source and

glider positions is negligible during the propagation time).
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After simulating acoustic data, the source and glider trajectories are further dis-

cretized into windows of length Tb, each starting at the k–th snapshot time tk (see

Figure 9). This window acts as a snapshot of the current source and glider locations

and allows localization to be performed over a smaller time–window. Combining the

localization results across snapshots provides an estimated source trajectory.

To discretize the source and glider trajectories into windows of length Tb, the assumed

location of an object along its trajectory is taken as the mean location over the

duration of the window. This ”frozen realization” assumption ensures the weight

vector (see Equation 11) remains constant over the time window, allowing for simple

application in the frequency domain. For most of the following analyses, Tb = 10

seconds, and the maximum speed of a source is within 5 m/s. Thus, during one

snapshot, the source may move approximately 50 meters, which even at a short

distance of 500 meters would be a maximum heading change of 6 degrees.

The final simulation step involves adding positional error to the gliders to simulate

measurement errors and uncertainties. While surfaced, the gliders obtain a GPS fix

and should have known measurement uncertainty (Grimes, 2008). While submerged,

it is unclear what the exact location uncertainty will be, as it depends on many vari-

ables involved in the dead reckoning. For simplicity, it is assumed the glider’s depth

is determinate, although there is likely some error in the pressure sensor reading and

assumption of water density involved. Furthermore, the glider’s uncertainty in the

horizontal plane is assumed to be independent of the glider’s direction of travel with

equal variance in any direction. Although a simplification of the otherwise compli-

cated positional uncertainty, it is possible to model a worst–case scenario by choosing

the largest possible variance experienced by the gliders when submerged.

As both the surfaced and submerged models of positional uncertainty are assumed

to be identical, having no variance in the geodetic Z–axis and identical variance
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in the geodetic X– and Y –axes, a 2D white Gaussian random variable ei which is

independent, identically distributed (IID) is added to each glider’s location in the

horizontal plane. The error vector for the k–th snapshot, ei(tk), is independent from

all other error vectors ei(tj) (j 6= k). The standard deviation of the positional noise

is denoted E (see Figure 9).
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Figure 9: Snapshot simulation schematic. The source position is discretized from

its continuous path rs(t), with the assumed position at each discrete time tk being

the mean position during the interval. Each glider is discretized from its continuous

path rgi(t), and at each discrete point in time, a random vector ei(tk) with standard

deviation E is added. All simulation parameters (distance, propagation direction)

are determined from the discretized locations of the source and glider.
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CHAPTER V

METHODS I: SIMULATIONS

Simulated data were generated for 10 second long snapshots with a sampling frequency

of 5512.5 Hz and filtered in the band 100 – 800 Hz (to match experimental parameters

used in Chapter 6). The assumed sound speed and density were 1494 m/s and 992

kg/m3, respectively. The ambiguity surface was discretized on a 21×21 grid centered

on the source location. Lastly, data was preprocessed identically to the at–sea data

(see Chapter 6) for consistency, where it was filtered/whitened, clipped and then

filtered (see Appendix B).

The remaining parameters, SNRp, SNRv and E were varied between trials to com-

pare the performance of the methods described in Equations 6–9. The trials performed

are outlined in Table 1.

Table 1: Simulation configurations and the corresponding glider positions, SNR’s and

positional error (E) used for each trial.

Trial Configuration SNRp SNRv E

1 2G-1 20 dB 20 dB varied

2 3G-1 20 dB 20 dB varied

3 5G-1 20 dB 20 dB varied

4 5G-1 -5 dB -10 dB varied

5 5G-1 varied varied 10 m

The configurations used were arbitrarily selected, with the only goal being to separate
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the gliders from each other and the source. Having closely spaced sensors is not ideal,

as it becomes increasingly difficult to obtain an accurate range estimate (Chen et al.,

2002). The configuration names are formatted as NG-i, where N is the number of

gliders and i is the instance of that configuration. Configurations 2G-1 and 3G-1 have

gliders separated by approximately 2 km from the source and all located to one side

(see Figures 10–11). A third glider was added to the 2G-1 configuration to obtain the

3G-1 configuration. The 5G-1 configuration is completely different, with the source

centrally located and the five gliders spread evenly around it between 1 and 1.5 km

away (see Figure 12).
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Figure 10: Configuration 2G-1, with two gliders (red and blue dots) towards the south

side of the source (yellow dot). The distance (D) and angle (A) to each glider from

the source is shown by the arrows with text.
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the south side of the source (green dot). The distance (D) and angle (A) to each glider

from the source is shown by the arrows with text.
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each glider from the source is shown by the arrows with text.

For each trial, simulations were repeated 50 times to obtain averages of the localization

performance. The resulting accuracy (Equation 13) and precision (Equation 14)

were averaged across all 50 realizations and plotted against the standard deviation of

positional error E (see Figures 13–20).
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Figure 13: Average localization error plotted versus standard deviation of positional

error for the incoherent (blue), coherent (green), cross–coherent (red) and zero–

diagonal (cyan) weighting methods. Simulation configuration used was 2G-1, with

SNRp and SNRv = 20 dB.
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Figure 14: Average localization precision plotted versus standard deviation of po-

sitional error for the incoherent (blue), coherent (green), cross–coherent (red) and

zero–diagonal (cyan) weighting methods. Simulation configuration used was 2G-1,

with SNRp and SNRv = 20 dB.

The results from Trial 1 show that under low acoustic noise, the incoherent method

(Equation 6) actually outperforms all the coherent methods in terms of accuracy. The

coherent and its variants (Equations 7–9) all performed similarly, and appear to only

have better accuracy for small positional errors. This is in fact due to an error in

the preprocessing steps which caused the velocity channels to be very slightly skewed,

and the later trials correctly show the incoherent error tending to zero as positional

error decreases to zero.

The precision of the cross–coherent method (Equation 8) was drastically higher than

all other methods at 19 dB, followed by the zero diagonal at 8 dB, the coherent at 6

dB, and the incoherent at nearly 0 dB. The incoherent method utilizes the cardioid
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beampattern of each sensor to locate the source (DSpain et al., 2006), and as such

the sidelobes are much larger. The larger sidelobes generate large regions around the

source with large ambiguity surface values, leading to poor precision. Under low noise,

however, the incoherent method proves to be most accurate, as it is not perturbed

by positional errors as strongly as coherent methods. The coherent methods rely

more strongly on inter–element time delays which are directly affected by errors in

positioning.

Trial 2, which added a third glider to the 2G-1 configuration, was tested using a

smaller ambiguity surface having only 121 points (11×11). This test aimed to confirm

that the results seen with two gliders would be nearly the same with three gliders,

and that the glider configuration would require a more drastic change to see different

results with more gliders.
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Figure 15: Average localization error plotted versus standard deviation of positional

error for the incoherent (blue), coherent (green), cross–coherent (red) and zero–

diagonal (cyan) weighting methods. Simulation configuration used was 3G-1, with

SNRp and SNRv = 20 dB.
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Figure 16: Average localization precision plotted versus standard deviation of po-

sitional error for the incoherent (blue), coherent (green), cross–coherent (red) and

zero–diagonal (cyan) weighting methods. Simulation configuration used was 3G-1,

with SNRp and SNRv = 20 dB.

The results from Trial 2 are nearly identical to those seen in Trial 1, however the

accuracy values quickly hit their limit 60 meters, since the ambiguity surface region

only extended 50 meters away from the source. Likewise, some of the precision values

increased for large positional errors due to the estimated source location falling on or

near the ambiguity surface boundary. Otherwise, the results indicate that the addition

of a third glider in roughly the same configuration will not affect the performance of

the array under low noise conditions. The third trial, using five gliders, should confirm

the performance of the array is roughly unchanged under the low noise case.
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Figure 17: Average localization error plotted versus standard deviation of positional

error for the incoherent (blue), coherent (green), cross–coherent (red) and zero–

diagonal (cyan) weighting methods. Simulation configuration used was 5G-1, with

SNRp and SNRv = 20 dB.
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Figure 18: Average localization precision plotted versus standard deviation of po-

sitional error for the incoherent (blue), coherent (green), cross–coherent (red) and

zero–diagonal (cyan) weighting methods. Simulation configuration used was 5G-1,

with SNRp and SNRv = 20 dB.

Trial 3 again shows similar results to Trials 1 and 2, where the only noticeable dif-

ference is slightly better accuracy obtained from the cross–coherent method. This is

due to the addition of many more gliders each with a widely differing vantage point

of the source. The iso–delay hyperbolas corresponding to the differential time delay

between any two gliders intersect in a more reliable fashion than with two or three

gliders. Since the cross–coherent method is effectively using this method to locate

the source, a notable improvement in accuracy results.

The precision with five gliders shows slightly different behavior than with two or three

gliders, where the coherent methods have a clear transition from higher precision to

lower precision. This is, again, likely due to the intersections of iso–delay hyperbolas
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becoming more spread out around the source as each glider is perturbed from its

nominal location.

The fourth trial was conducted under high acoustic noise, with SNRp = -5 dB and

SNRv = -10 dB. The velocity noise was increased relative to the pressure noise

since it is common for the velocity channels to experience higher amounts of noise

(see Chapter 2.1). All other parameters were identical to Trial 3 in order to draw

comparisons between the low and high noise cases.
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Figure 19: Average localization error plotted versus standard deviation of positional

error for the incoherent (blue), coherent (green), cross–coherent (red) and zero–

diagonal (cyan) weighting methods. Simulation configuration used was 5G-1, with

SNRp = -5 dB and SNRv = -10 dB.

35



10
0

10
1

10
2

0

5

10

15

20

25

30

Standard Deviation in Position (m)

L
o
c
a
liz

a
ti
o
n
 P

re
c
is

io
n
 (

d
B

)

Average Localization Precision vs. Positional Error

 

 

Incoherent

Coherent

CrossCoherent

ZeroDiagonal

Figure 20: Average localization precision plotted versus standard deviation of po-

sitional error for the incoherent (blue), coherent (green), cross–coherent (red) and

zero–diagonal (cyan) weighting methods. Simulation configuration used was 5G-1,

with SNRp = -5 dB and SNRv = -10 dB.

The accuracy results show that the performance of the incoherent method is dramat-

ically affected by acoustic noise. Regardless of positional error (up to a point), the

incoherent method accuracy is nearly a constant 60 meters. The acoustic noise is

likely the only contributing factor in the error until positional error becomes incredi-

bly large. The coherent methods show very little decrease in accuracy from the low

noise case in Trial 3. The cross–coherent and zero diagonal methods both weight the

covariance matrix such that the effects of high acoustic noise are mitigated, and this

is clearly seen in the accuracy results of this trial.

As for the precision, similar results are seen as those in Trial 3. All coherent methods

saw an overall decrease in precision, as the effective ”noise floor” of the ambiguity
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surface was increased with added acoustic noise. The area of transition from higher

precision to lower precision also appears to have moved left, indicating the iso–delay

hyperbola intersection breaks down at lower positional errors with higher acoustic

noise present.

Trials 3 and 4 show the endpoints of the acoustic noise spectrum, where in low

noise cases the incoherent method offers high accuracy but low precision, and in the

high noise cases the cross–coherent method offers the best accuracy and precision.

To further investigate the transition, Trial 5 aims to demonstrate how the same

localization performance parameters are affected by changing SNR. The positional

error here was fixed to 10 meters, which is higher than the stated 3.9 meter GPS

accuracy (Grimes, 2008), but takes into account the possibility the gliders are more

inaccurate when submerged.
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Figure 21: Average localization error plotted versus SNRp for the incoherent (blue),

coherent (green), cross–coherent (red) and zero–diagonal (cyan) weighting methods.

Differing amounts of SNRv are shown with darkened colors, and the standard devi-

ation of positional error was fixed at 10 meters.

The results from Trials 3 and 4 are seen again here, where the incoherent method

outperforms the coherent methods, but only when the SNR is greater than 0 dB and

the velocity channel noise is not much higher than the pressure channel noise. The

coherent methods have nearly constant error for low noise, since the driving factor

is the positional noise. As the amount of acoustic noise increases, the accuracy only

slightly decreases.
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Figure 22: Average localization precision plotted versus SNRp for the incoherent

(blue), coherent (green), cross–coherent (red) and zero–diagonal (cyan) weighting

methods. Differing amounts of SNRv are shown with darkened colors, and the stan-

dard deviation of positional error was fixed at 10 meters.

The precision of each method shows a similar trend to that seen in Trials 3 and 4,

where the added acoustic noise decreases the precision of all methods. In general,

increasing the velocity channel noise marginally decreases the overall precision, ex-

cept for the zero diagonal case, where it appears the added velocity channel noise

increased precision. The exact cause of this behavior is still unknown, but as the zero

diagonal method has yet to show any benefit over any other method, it is seemingly

inconsequential.

The results from Trials 1–5 indicate that in high SNR cases, the incoherent method
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is ideal, even if the resulting source location estimate is not very precise. However,

in a more realistic passive vector sensor array where acoustic noise is expected to

be much higher, the cross–coherent method appears to offer the best accuracy and

precision. The only stipulation is that the gliders are separated enough from each

other to obtain reliable range estimates.
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CHAPTER VI

METHODS II: EXPERIMENTAL DATA

6.1 August 2012 Dataset

The first set of experimental data was collected in Monterey Bay, California using

two Alaska Native Technologies (ANT-LLC) littoral gliders. Each glider was equipped

with one Wilcoxon VS–301 vector sensor mounted on a pole approximately one meter

off the nose to reduce acoustic interference and scattering from the glider body (see

inset of Figure 23). The research vessel John H. Martin (R/V John H. Martin Speci-

fications), operated by Moss Landing Marine Laboratories, acted as a noise source of

opportunity. GPS data for both the vessel and gliders were obtained throughout the

mission, the former sampled at 0.1 Hz and the latter sampled at approximately 1 Hz.

The gliders were positioned on the surface with wings level, pitched nose down about

50 degrees and spaced about 80 meters apart. The gliders drifted in this configura-

tion while the vessel followed a planned set of maneuvers at 10 knots. The glider and

source configuration is shown in Figure 23.
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Figure 23: Schematic of the August 2012 dataset. The gliders (red and blue paths)

were drifting on the surface approximately 80 meters apart (shown in inset), while

the R/V John Martin (green path) was moving northwest at 10 knots. The evaluated

ambiguity surface boundary is shown by the solid black area.

The selected subset of data was chosen because the source followed a straight line

which spanned many different bearings to the gliders. The subset when the gliders

were surfaced was also chosen for multiple reasons. Firstly, the positional accuracy

obtained at the surface is drastically improved with a GPS fix. Secondly, the gliders

were completely silent as they did not need to be maneuvering. Lastly, the synchro-

nization of data between gliders was best known during this time period.
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The synchronization step required for accurate coherent beamforming was done using

the research vessel when it was positioned on the line connecting the gliders. Knowing

the gliders’ locations from GPS data and the sound speed, the propagation time

delay between gliders is known. Correlating the pressure channels on each gliders’

vector sensor should yield a peak at the propagation delay, however with an unknown

synchronization offset. This synchronization offset was then subtracted from the

NPS glider’s time. Other methods of synchronization were attempted, such as using

a reference source in close proximity to the gliders, but were not successful or reliable

enough to use.

After synchronizing the acoustic records, the data was discretized into 10 second

snapshots (see Chapter 4) and then preprocessed (see Appendix B). All acoustic

data was downsampled by a factor of 8 from 44.1 kHz to 5512.5 Hz. Following

downsampling, the data was filtered and whitened within the 100–800 Hz band, as

this is where the majority of the research vessel noise was evident (see Appendix

A). Filtering was accomplished in the frequency domain using a Tukey window with

r=0.1, where r represents the fraction of the window width that is tapered (i.e.

10% of the window width is comprised of cosine–tapered ends). The whitening step

normalizes the spectra so each frequency in the band has unit amplitude.

After filtering and whitening, the data were clipped to reduce the effects of sharp

transient events. Any values further than 3σ from zero were replaced with ±3σ,

where σ is the standard deviation of the data during the 10 second snapshot. Lastly,

since the clipping process in nonlinear, a final filtering step is employed which simply

uses the same filter from the filter/whiten step but without whitening.

With the data properly aligned and preprocessed, the source position was estimated

for each 10 second snapshot using each of the weighting methods for the data co-

variance matrix given by Equations 6–9 and the beamforming approach defined by
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Equations 10–12. All other data processing parameters were identical to the ones

used in the previous chapter (e.g. sample rate, snapshot length, bandwidth, window-

ing function, etc.). For each snapshot, the estimated source position can be plotted

with its size proportional to its accuracy, and color proportional to its precision (see

Figures 24–27).
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Figure 24: Localization results for the incoherent method. The position of the esti-

mated source for each snapshot is plotted as a circle, whose size indicates the accuracy

of the estimate (larger being more accurate). The color of the circle corresponds to

the estimate precision (see colorbar for scale).
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Figure 25: Localization results for the coherent method. The position of the estimated

source for each snapshot is plotted as a circle, whose size indicates the accuracy of

the estimate (larger being more accurate). The color of the circle corresponds to the

estimate precision (see colorbar for scale).
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Figure 26: Localization results for the cross–coherent method. The position of the

estimated source for each snapshot is plotted as a circle, whose size indicates the accu-

racy of the estimate (larger being more accurate). The color of the circle corresponds

to the estimate precision (see colorbar for scale).
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Figure 27: Localization results for the zero–diagonal method. The position of the esti-

mated source for each snapshot is plotted as a circle, whose size indicates the accuracy

of the estimate (larger being more accurate). The color of the circle corresponds to

the estimate precision (see colorbar for scale).

Both the incoherent and coherent methods show an obvious failure in locating the

source, as the estimated source location was always near the North corner of the

ambiguity surface. The cross–coherent and zero diagonal methods did manage to

locate the source, however, the estimated source location perpendicular to the source

trajectory was never very accurate. This is because the glider locations were far

from ideal, being so closely spaced. As such, obtaining an accurate range estimate
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to a source is very difficult without having different bearings from each sensor to

the source; however obtaining an accurate bearing estimate is still possible given

the gliders’ configuration (Chen et al., 2002). For this reason, the data error metric

was redefined as the difference between the estimated and true bearing, rather than

that given in Equation 13 in terms of absolute position. Then, the corresponding

localization accuracy (with the new definition based on bearing) and precision can

be plotted versus the snapshot time for each of the weighting methods (see Figure

28).
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Figure 28: Localization results for the incoherent (purple), coherent (pink), cross–

coherent (blue), and zero–diagonal (gold) weighting methods versus snapshot time.

Here, it becomes more clear that the cross–coherent method outperformed all other

methods, and that the incoherent and coherent methods failed to locate the source at
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all. The cross–coherent method shows the highest precision, as was seen in simulations

(see Chapter 5). Despite performing well at the beginning and end of the dataset, the

cross–coherent method exhibits a large degree of error around 09:24. This is caused

by sudden jumps which occur in the GPS data; when one glider suddenly ”jumps”

ahead of the other, the estimated source bearing is skewed.

The glider’s GPS data, although sampled at 0.1 Hz, only appears to update occasion-

ally, likely when a new GPS fix is obtained. During the interval between readings,

the glider appears to report its location based on the last known GPS location. The

result is a ”stair step” graph where each sudden drop corresponds to a new GPS

reading (see Figure 29). To remedy this issue, the redundant positional information

is removed, allowing the position between updates to be linearly interpolated from

adjacent GPS readings.

Figure 29: Raw GPS data from the gliders (dashed lines) is smoothed within the win-

dow of interest by removing repeated data points to produce a linearly–interpolated

position (solid lines).

49



With smoothed GPS data, the beamforming methods were re–evaluated using the

bearing accuracy and precision versus snapshot time (see Figure 30).
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Figure 30: Localization results with GPS smoothing for the incoherent (purple),

coherent (pink), cross–coherent (blue), and zero–diagonal (gold) weighting methods

versus snapshot time.

The results for the incoherent and coherent method were not affected, and the zero–

diagonal method appears to favor the same corner of the ambiguity surface now. The

cross–coherent method does improve though, and no longer deviates as far from the

true source. There are still a few sections of increased error, where the estimated

bearing is off by as much as 50◦. Inspecting the correlation plot between pressure

channels on the gliders and overlaying the relative propagation delay which would

be experienced by the estimated source shows that the culprit is likely multi–path
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propagation (see Figure 31).

Figure 31: Correlation of 1 second of pressure channel data versus snapshot time,

shown in 10 log10 dB scale. The propagation time–delay which would be experienced

if the source was following the cross–coherent estimated source trajectory is shown in

black.

The side peaks of the correlation plot appear to be strong enough at times to yield the

highest beamformer output. To remedy the side peaks having such a strong effect,

the correlations formed during the beamforming process (Equation 3) are Gaussian

windowed, where the mean is the correlation lag time of the last known source posi-

tion, and the standard deviation is 0.01 seconds. No windowing is performed on the

first snapshot, as there is no known previous source position. Assuming the source is
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correctly located initially, the next snapshot will window out the multi–path correla-

tion peaks, while still allowing for the main peak to move slightly. Having introduced

this form of iterative smoothing, all weighting methods were re–evaluated, still using

smoothed GPS positions (see Figure 32).
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Figure 32: Localization results with GPS smoothing and iterative correlation smooth-

ing for the incoherent (purple), coherent (pink), cross–coherent (blue), and zero–

diagonal (gold) weighting methods versus snapshot time.

With both GPS smoothing and iterative correlation smoothing, the cross–coherent

method finally tracks the source very well. The other methods still fail for the most

part, other than the zero diagonal which did track the source for a few snapshots

early on. Looking more closely at the cross–coherent performance (see Figure 33), it

displays accuracy within 5◦ for most of the trajectory.
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Figure 33: Localization results with GPS smoothing and iterative correlation smooth-

ing for only the cross–coherent weighting method versus snapshot time.

The results of the August 2012 dataset indicate that it is certainly possible to locate

a source using a distributed vector sensor array mounted on gliders. Even when

surfaced and in the presence of flow noise, wave noise and other surface effects, the

cross–coherent weighting method is able to determine the bearing towards the source.

As in simulations, it obtained the highest accuracy as well as precision. Comparing

other methods to simulations was not possible though, as the local noise overwhelmed

the incoherent covariance matrices, causing all methods which relied on them to

fail.
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6.2 March 2014 Dataset

The second set of experimental data were also collected in Monterey Bay, California

using the same glider and sensor setup as in the August 2012 experiment. The research

vessel used instead was the R/V Fulmar,(R/V Fulmar Specifications), operated by

the Monterey Bay National Marine Sanctuary. The gliders were deployed on the

surface with wings level, pitched nose down about 50 degrees and positioned about

10 meters apart. They were then instructed to dive in a northeast direction towards

a waypoint while the research vessel drove quickly away from the gliders (see Figure

34).
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Figure 34: Schematic of the March 2014 dataset. The gliders (red and blue paths)

were diving from an initial separation of 10 meters (see inset), while the R/V Ful-

mar (green path) was following a path southeast. The evaluated ambiguity surface

boundary is shown by the solid black area.

This dataset, as was the August 2012 dataset, was one of opportunity and thus not

ideal for localizing a source, since the gliders were very closely spaced and the vessel

was traveling radially outward. However, one benefit to this dataset was the addition

of an electronic synchronization chirp pulse applied simultaneously to the acoustic

records. The first set of two pulses was applied one hour prior to deployment, and

the second set of two pulses applied immediately before deployment. It was intended
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to apply a third set of pulses at the end of the record, however an error in the glider

operation reset the acoustic data collection during the mission. Correlating the syn-

chronization pulses allowed for more accurate synchronization between gliders, but it

is unclear whether this synchronization was held for the majority of the mission.

The acoustic data obtained in this test was sampled at 39.0625 kHz and downsampled

by a factor of 8 to 4882.8 Hz. The processing band used was changed to 100–1500 Hz

to capture the majority of noise seen in the acoustic spectra (see Appendix A). All

other parameters (snapshot length, bandwidth, sample rate, density, speed of sound,

preprocessing steps, etc.) used were identical to the August 2012 experiment and

simulations. As was done in later iterations of the August 2012 dataset, iterative

correlation windowing was applied. GPS smoothing was not necessary though, since

the glider’s reported positions were based on dead reckoning while diving, and were

updated every second. All four weighting methods were then evaluated at each snap-

shot and the estimated source position was plotted with a circle whose size indicates

the estimate accuracy, and whose color indicates the estimate precision (see Figures

35-38).
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Figure 35: Localization results for the incoherent method. The position of the esti-

mated source for each snapshot is plotted as a circle, whose size indicates the accuracy

of the estimate (larger being more accurate). The color of the circle corresponds to

the estimate precision (see colorbar for scale).
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Figure 36: Localization results for the coherent method. The position of the estimated

source for each snapshot is plotted as a circle, whose size indicates the accuracy of

the estimate (larger being more accurate). The color of the circle corresponds to the

estimate precision (see colorbar for scale).
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Figure 37: Localization results for the cross–coherent method. The position of the

estimated source for each snapshot is plotted as a circle, whose size indicates the accu-

racy of the estimate (larger being more accurate). The color of the circle corresponds

to the estimate precision (see colorbar for scale).
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Figure 38: Localization results for the zero–diagonal method. The position of the esti-

mated source for each snapshot is plotted as a circle, whose size indicates the accuracy

of the estimate (larger being more accurate). The color of the circle corresponds to

the estimate precision (see colorbar for scale).

As was seen in the August 2012 dataset, the coherent and incoherent methods appear

to favor the edges of the ambiguity surface. When the estimated source bearing was

roughly accurate, the estimated range was always much too small. This problem

of glider separation and obtaining an accurate range estimate again lends itself to

defining a bearing error metric for accuracy, where the difference in the source bearing

and estimated source bearing is the localization accuracy. With the updated definition

of accuracy, the localization accuracy and precision is plotted versus the snapshot time
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(see Figure 39).
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Figure 39: Localization results with GPS smoothing and iterative correlation smooth-

ing for the incoherent (purple), coherent (pink), cross–coherent (blue), and zero–

diagonal (gold) weighting methods versus snapshot time.

A noticeable difference in the incoherent and coherent methods’ estimates is now visi-

ble, whereas in the August 2012 dataset, they mostly followed each other throughout.

There still exists sections where the incoherent and coherent estimates were on the

edge of the ambiguity surface and pointing in the wrong direction, however the occa-

sional point around 16:17 seemed to be pointing in the right direction at least. The

cross–coherent and zero diagonal methods performed slightly better, having fewer

snapshots with drastically high error. The zero diagonal method appears to switch

to following the same pattern as the incoherent and coherent methods after 16:18,
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which might indicate an event which overwhelmed the incoherent covariance matri-

ces with noise. The cross–coherent method is again the highest performing method,

yet its precision is dramatically lower than seen in simulations or past experimen-

tal results. Having only two gliders means the cross–coherent method produces large

outputs along the iso–delay hyperbola defined by the propagation delay between glid-

ers. Since there is only one such hyperbola and its asymptote is pointed along the

source path, a large number of points in the ambiguity surface have large values, thus

decreasing the precision. Another potential issue with the cross–coherent method

is the large errors seen at the beginning and middle of the dataset. This is likely

explained by the behavior of the research vessel, where it had yet to start moving at

the beginning, and it faded out for two periods of time around 16:16. A correlation

plot across pressure channels shows the source peak does in fact take some time to

appear, then disappears again for two periods around 16:16, finally reappearing and

fading out as the source is too far away and enters port (see Figure 40).
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Figure 40: Correlation of 5 seconds of pressure channel data versus snapshot time,

shown in 10 log10 dB scale. The propagation time–delay which would be experienced

if the source was following the cross–coherent estimated source trajectory is shown in

black

The cross–coherent estimated source delay shown in black on Figure 40 indicates it

was able to track the source peaks, when present. Thus, the only explanation for

bearing errors seen by the cross–coherent method is an error in positioning. If the

relative position and orientation of the gliders is inaccurate, even if the propagation

delay is known, the corresponding iso–delay hyperbola will not intersect with the true

source. Figure 37 indicates the gliders favored an eastward bearing, which was likely

introduced by positional uncertainties.
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6.3 Comparison to Simulations

To attempt to verify the validity of the simulations, the August 2012 cross–coherent

results were compared to simulations done with the same source and glider locations.

Simulations used the same parameters used in experiments (snapshot length, band-

width, sample frequency, etc.), although the values for positional error and acoustic

noise were not measured in experimental data. The standard deviation of positional

error was assumed to be 3.9 meters, which is common for commercial GPS devices

(Grimes, 2008).

To determine the acoustic noise power, many methods were attempted, but the most

reliable method used a five minute section of quiet data to establish a noise reference.

Assuming the noise power was unchanged, the SNR was computed across each 10

second snapshot and plotted versus time. This process was repeated for two different

selections of quiet data (see Figures 41-42)
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Figure 41: Estimated experimental SNRp (red) and SNRv (black) for 10 second

snapshots versus snapshot time.

65



Figure 42: Estimated experimental SNRp (red) and SNRv (black) for 10 second

snapshots versus snapshot time.

From the two noise references, it was assumed the acoustic SNR was about 10 dB.

The relative difficulty of estimating the actual SNR accurately did not warrant using

the variable SNR in simulations, but rather just using a constant value throughout.

Performing localization with the cross–coherent weighting method and using iterative

correlation windowing on 50 different realizations of positional noise and acoustic noise

yields a set of localization accuracy and precision. As the accuracy tended to average

to zero degrees, the standard deviation of all 50 errors was computed, σb. To compare

to experimental data, 68%, 95%, and 99.7% confidence intervals are defined by ±nσb

where n = {1, 2, 3}, respectively. These confidence intervals are plotted against time

and indicate the variability which would be expected in the experimental data (see

66



Figure 43).

Figure 43: Experimental bearing error from the August 2012 cross–coherent estimate

(black line) compared to the confidence intervals defined by the standard deviation

of the simulated bearing error using the same method and glider configuration.

Overall, the estimated experimental bearing error across the boat trajectory falls

within the 99.7% confidence interval. It also most often lies within the 68% confidence

interval, which indicates that the simulation methodology presented in Chapter 5 is

at least roughly applicable to real data, although the specific noise mechanism which

caused the incoherent and coherent methods to fail was not explicitly included in

the simulations. Possible improvements could be made to account for environmental

variability and multipath effects in simulation as well as in the replica vector of

Equation 10. Furthermore, localization performance could be improved through the
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use of an adaptive matched–field processing approach. Lastly, experimental data

could yield better localization results with more gliders, and also more ideal placement

of the gliders.
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CHAPTER VII

CONCLUSION

The results of this work demonstrated that a spatially distributed array of gliders

equipped with vector sensors can be used to track a source of opportunity such as

a surface vessel. Simulations indicate that in the presence of acoustic noise, the

cross–coherent weighting method is more accurate and precise than the traditional

incoherent or coherent methods. In experimental data, the cross–coherent method

also outperformed all other methods, matching well with simulations when possible to

compare. The localization performance of each method under different scenarios, both

real and simulated, can help guide future development of autonomous vector sensor

arrays and possibly improve the traditional methods of vector sensor beamforming

used for source localization.
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APPENDIX A

DATA SPECTRA

This appendix provides spectrograms and spectra of signals acquired in at–sea exper-

iments.

A.1 August 2012 Dataset

The representative spectra of boat noise for both pressure and velocity channels are

shown in Figures 44 and 45.
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Figure 44: Power spectral density of one minute of pressure channel data taken from

the August 2012 dataset.
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Figure 45: Power spectral density of one minute of velocity channel data taken from

the August 2012 dataset.

Spectrograms of pressure and velocity channels are shown below in Figures 46 and

47.
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Figure 46: Spectrogram of August 2012 pressure channel data using 10 second win-

dows.
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Figure 47: Spectrogram of August 2012 velocity channel data using 10 second win-

dows.
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A.2 March 2014 Dataset
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Figure 48: Power spectral density of one minute of pressure channel data taken from

the March 2014 dataset.
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Figure 49: Power spectral density of one minute of velocity channel data taken from

the March 2014 dataset.
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Spectrograms of pressure and velocity channels are shown below in Figures 50 and

51.
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Figure 50: Spectrogram of March 2014 pressure channel data using 10 second win-

dows.
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Figure 51: Spectrogram of March 2014 velocity channel data using 10 second windows.
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APPENDIX B

DATA PREPROCESSING

This appendix describes the data processing steps that are implemented before beam-

forming and localization.

B.1 Downsampling

Raw data were sampled at a rate fs but the band of interest lies at frequencies much

lower. The data is downsampled by a factor of q = 8 using the built-in MATLAB

function ”resample”. This function first lowpass filters the data using an 8th order

Chebyshev Type I IIR filter with a cutoff frequency of 0.8fs/q and passband ripple

of 0.05 dB to avoid aliasing, followed by selecting every q–th point in the data.

B.2 Rotations

The vector sensor data are rotated from their individual sensor frames into a common

reference frame. Since the telemetry data is typically sampled more slowly than the

acoustic record and tends to change slowly, the nearest telemetry data point to any

acoustic sample is used for the rotation (i.e. nearest–neighbor interpolation).

Telemetry data can come from the glider’s internal measurements of yaw, pitch and

roll angles or from the vector-sensor’s gravity and heading vectors. It was determined

that the vector sensor telemetry was not reliable for either at–sea experiment, and

that the glider’s internal measurements were more accurate.
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Rotation itself is performed by multiplying the acoustic velocity vector at each acous-

tic sample time by a rotation matrix which rotates the vector from the local sensor

coordinate system into the geodetic ENU coordinate system. This involves knowledge

of the sensor roll angle β (see Figure 4); the glider’s yaw, pitch, and roll; and the

magnetic declination (see Figure 3).

B.3 Whitening

Whitening the data channels normalizes the magnitude of a signal’s spectra within

a band of interest. Taking the FFT of the data, the complex amplitude at each

frequency is divided by its magnitude (plus machine epsilon to avoid division by

zero). The result is also windowed in frequency with a Tukey window (r=0.1) which

is essentially rectangular but with slightly rounded edges.

Velocity channels whitened in this way exhibit constant amplitudes relative to each

other, which is undesirable in incoherent processing where the relative amplitudes

of the velocity is what helps determine the direction of a source. Thus, for veloc-

ity channels, the method of whitening normalizes the velocity components by the

same normalization factor, rather than performing whitening independently on each

channel. The normalization factor, V (ω), is given by

V (ω) =
√
vx(ω)v∗x(ω) + vy(ω)v∗y(ω) + vz(ω)v∗z(ω) (17)

where the frequency components of the velocity vector are vx(ω), vy(ω), vz(ω), and

the superscript ∗ denotes complex conjugation. The normalization factor is used to

determine the whitened spectrum for the i–th velocity channel, ṽi(ω), given by
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ṽi(ω) =
vi(ω)

V (ω) + ε
(18)

where ε ≈ 2× 10−16.

B.4 Clipping

Clipping takes any data further than a specified value from the mean and replaces

the data point with the appropriate positive or negative value from the mean.

The clipping process used in experiments takes the standard deviation of the data

within a snapshot and clips any values beyond three times the standard devia-

tion.

B.5 Filtering

Filtering without whitening is done after clipping to remove high-frequency peaks

introduced by the clipping process.

The filtering is identical to the filtering with whitening, however no amplitude nor-

malization is performed. The signal is merely windowed in the frequency domain by

a Tukey window with r = 0.1, then returned to the time domain. To remove any

possible filter transients, the time–domain signal is windowed in time with another

Tukey window, this time with r = 0.01.
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APPENDIX C

PROCESSING FLOW

This appendix describes the interaction of functions and code within the repository

to a basic extent. Shown below is a legend for the blocks used in the following

flowcharts.
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All functions pertaining to data loading and beamforming use some basic functionality

provided by the Resource Manager (see below). The Resource Manager is responsible

for maintaining information on entities (an abstract class), such as their name, display

color and location. Both the boat and glider object are entities, however the glider

adds pressure and three channels of velocity data as well as a structure for user–

specific data. The locations of an entity are managed by the location class, which
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stores the entity’s reference location (x0, y0, z0), which in this case was the latitude,

longitude and altitude of the reference coordinate system. The position of the entity

over time is stored in channels x, y, z; the orientation of the entity (if required) is

stored in yaw, pitch and roll. All channels mentioned so far are a separate class

called ”channel”, which stores a descriptive name of the data contained within, as

well as two arrays, one for time values and the other for the data values. All of these

lower–level classes are used to store and manage the data of the gliders and boat, and

allows the beamforming methods to operate on a consistent object.

To fill the data contained within an entity, there exist specialized classes which extend

the abstract class ”resource”. The resource class stores a resource’s name, its start

time, and its end time. Each individual resource class is able to take a range of

times as input and return the correct data from a resource file. The ”resource mult.”

class is a resource itself, and contains a list of resources. When asked for data for a

particular time window, the multiple resource class is able to concatenate data from

any relevant sub–resources. Lastly, a class called a data record maintains a list of all

resources within a data record (for example, all glider telemetry files). For a given

time period, it is able to return the correct resource for which data exists during that

time period.
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Functionality from the Resource Manager is used in the Data Loader (see below),

which is responsible for creating the glider and boat objects with all their data loaded.

From a resource definition filename (defsfilename), the function ”loadResources”
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maps filenames in certain folders to their proper resource type, packaging them into

the acoustic data records, non–acoustic vector sensor data records, glider teleme-

try records, and research vessel records. Along with any definitions specific to the

dataset, the data records are put into a resource structure called ”R”. At this point,

all data pertaining to a specific dataset is contained within the resource variable ”R”.

To then load data from a given dataset, its resource variable ”R” along with a start

time, end time, type of data to load, indices of gliders to load and an optional method

of rotation are passed to ”loadData”, which returns an array of glider objects (g) and

source objects (s). The resulting source and glider objects can be passed to plotting

functions or the beamforming functions for processing, as their data is already been

loaded and stored for the times requested.
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For any given snapshot, the glider and source data can be loaded using the Data

Loader. To perform processing, the gliders can first be optionally passed to a pre-

processing step to condition their data. Afterward, the gliders are passed to the
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correlation function, which generates a covariance matrix for all frequencies (C). The

covariance matrix is then passed to a weighting function which performs its weighting

to the elements, and returns the updated covariance matrix. This matrix, along with

a vector of the ambiguity surface points to evaluate, the glider array, the speed of

sound, and the processing bandlimits are passed to the beamforming function, which

returns time–domain beamformer outputs for each point in the ambiguity surface.

The estimation function then performs time–windowing and summation to yield a

scalar quantity for each point in the ambiguity surface (e). This ambiguity surface

is then passed to the search function, which estimates the position of the source and

returns it in ”p”. Given the estimated source position and the true source position,

metrics of accuracy (acc) are returned. From the ambiguity surface (e), the precision

can be found as well.
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