University of South Carolina
Scholar Commons

Theses and Dissertations

8-9-2014

ULTRASONICS TRANSDUCTION IN
METALLIC AND COMPOSITE
STRUCTURES FOR STRUCTURAL HEALTH
MONITORING USING EXTENSIONAL AND
SHEAR HORIZONTAL PIEZOELECTRIC
WAFER ACTIVE SENSORS

Ayman Kamal Abdelrahman
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Recommended Citation

Abdelrahman, A. K.(2014). ULTRASONICS TRANSDUCTION IN METALLIC AND COMPOSITE STRUCTURES FOR
STRUCTURAL HEALTH MONITORING USING EXTENSIONAL AND SHEAR HORIZONTAL PIEZOELECTRIC WAFER
ACTIVE SENSORS. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/etd/2787

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and

Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.


http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F2787&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2787&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2787&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/2787?utm_source=scholarcommons.sc.edu%2Fetd%2F2787&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

ULTRASONICS TRANSDUCTION IN METALLIC AND COMPOSITE STRUCTURES
FOR STRUCTURAL HEALTH MONITORING USING EXTENSIONAL AND SHEAR
HORIZONTAL PIEZOELECTRIC WAFER ACTIVE SENSORS

by
Ayman Kamal Abdelrahman

Bachelor of Science
Ain Shams University, 2008

Master of Engineering
University of South Carolina, 2014

Submitted in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy in
Mechanical Engineering
College of Engineering & Computing
University of South Carolina
2014
Accepted by:

Victor Giurgiutiu, Major Professor
Yuh Chao, Committee Member
Lingyu Yu, Committee Member
Bin Lin, Committee Member
Matthieu Gresil, Committee Member
Paul Ziehl, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies



© Copyright by Ayman Kamal Abdelrahman, 2014
All Rights Reserved



DEDICATION
| would like to dedicate this work to my family and thank my father, Mohammed Kamal,
my mother, Bahira Mohammed, and my sister, Eman Kamal, for their support, praying,
and their valuable advice both in my life and my research. | would like to dedicate this

dissertation to my wife, Nour Habib, for her love and support and to our families.



ACKNOWLEDGEMENTS

| would like to thank my advisor Dr. Victor Giurgiutiu for his great support, giving me
the opportunity to join the Laboratory of Active Materials and Smart Structures
(LAMSS), and his support of advising me throughout my course work and research. |
would like also to thank Dr. Yuh Chao, Dr. Paul Ziehl, Dr. Lingyu Yu, Dr. Bin Lin, and
Dr. Matthieu Gresil for being part of my Dissertation Committee. | would like to thank
Dr. Lingyu Yu for working in her lab and using laser vibrometer equipment, Zhenhua
Tian for his help with the experiments, Dr Bin Lin for his great tips in MATLAB and
writing nice papers, Dr. Jingjing Bao for all his programming advice, and Dr Mohammed
Elkholy for his help producing efficient MATLAB programs.

I would like to thank all my smart colleagues working in LAMSS for their
friendship and support. Last but not least thanks to Dr. Mike Lowe from Imperial College
of London, Dr. Ivan Bartoli from Drexel University, and Dr. Alessandro Marzani from
The University of Bologna for their help in providing some dispersion curves simulations
using computer packages they developed. Thanks to Dr. Stanislav Rokhlin, Dr. Evgeny
Glushkov, and Dr Natalia Glushkova for their invaluable comments. | would like to thank
Ashley Valovcin, Nour Habib and Dr. Victor Giurgiutiu for proof reading my dissertation.

Funding supports from Dr Giurgiutiu’s research assistantship, the National
Science Foundation # CMS-0925466; Office of Naval Research # N00014-11-1-0271, Dr.
Ignacio Perez, Program manager; Air Force Office of Scientific Research #FA9550-11-1-

0133, Dr. David Stargel, Program Manager are thankfully acknowledged.

iv



ABSTRACT
Structural health monitoring (SHM) is crucial for monitoring structures performance,
detecting the initiation of flaws and damages, and predicting structural life span. The
dissertation emphasizes on developing analytical and numerical models for ultrasonics
transduction between piezoelectric wafer active sensors (PWAS), and metallic and
composite structures.

The first objective of this research is studying the power and energy transduction
between PWAS and structure for the aim of optimizing guided waves mode tuning and
PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical
models for power and energy were developed based on exact Lamb wave solution with
application on multimodal Lamb wave situations that exist at high excitation frequencies
and/or relatively thick structures. Experimental validation was conducted using Scanning
Laser Doppler Vibrometer. The second objective of this work focuses on shear horizontal
(SH) PWAS which are poled in the thickness-shear direction (dss mode). Analytical and
finite element predictive models of the E/M impedance of the free and bonded SH-PWAS
were developed. Next, the wave propagation method has been considered for isotropic
materials. Finally, the power and energy of SH waves were analytically modeled and a
MATLAB graphical user interface (GUI) was developed for determining the phase and

group velocities, modeshapes, and the energy of SH waves.



The third objective focuses on guided wave propagation in composites. The
transfer matrix method (TMM) has been used to calculate dispersion curves of guided
waves in composites. TMM suffers numerical instability at high frequency-thickness
values, especially in multilayered composites. A method of using stiffness matrix method
was investigated to overcome instability. A procedure of using combined stiffness
transfer matrix method (STMM) was presented and coded in MATLAB. This was
followed by a comparative study between commonly used methods for the calculation of
ultrasonic guided waves in composites, e.g. global matrix method (GMM), semi—
analytical finite element (SAFE).

The last part of this dissertation addresses three SHM applications: (1) using the
SH-PWAS for case studies on composites, (2) testing of SHM industrial system for
damage detection in an aluminum aerospace-like structure panel, and (3) measuring

dispersion wave propagation speeds in a variable stiffness CFRP plate.
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CHAPTER 1: BACKGROUND AND RESEARCH OBJECTIVES

Structural health monitoring (SHM) is a fast-growing field that is extending into many
industries. SHM uses a set of sensing elements permanently attached to or embedded in
the structure in order to effectively monitor its structural integrity, detect, and quantify
damage that develops during the entirety of its life. Effective SHM will not only increase
the safety of structures, it will also limit the amount of manual error prone inspections
that currently dominate the field. Over the past several decades, much work has been

done in developing SHM methods.

1.1. BACKGROUND

1.1.1. Wave Propagation Theory

Lamb waves are elastic waves, propagating in solid plates, whose particle motion
lies in the plane that contains the direction of wave propagation and the direction
perpendicular to the plate. In 1917, Sir Horace Lamb published his classic analysis and
description of acoustic waves of this type; these waves were therefore called Lamb waves.
An infinite medium supports two wave modes traveling at unique velocities, pressure and
shear waves, whereas plates support two infinite sets of Lamb waves modes whose
properties depend on various parameters such as plate elastic properties, thickness, and

frequency, etc.



A comprehensive mathematical description of the problem of Lamb waves
propagation in solids can be found in various textbooks, such as: Viktorov (1967); Graff
(1991); Rose (1999); Giurgiutiu (2008). Lamb waves can exist in two basic types:
symmetric and antisymmetric, and for each of these types, various modes appear as
solutions of the Rayleigh-Lamb equations.

The speeds at which Rayleigh-Lamb waves propagate are referred to as dispersion
wave speeds. The term “dispersion” in wave propagation context means that the wave
packet stretches out as it travels through the medium; dispersion happens because the
frequency components of the wave travel at different wave speeds. Lamb waves are
dispersive by nature. This can be exemplified as shown in Figure 1.1. A structure was
excited by 20-volt amplitude, 3.5-count tone burst signal using a transducer. The received
signal was picked up at a point farther on the structure by another transducer. The
received signal would contain SO and A0 Lamb-type waves. SO is the fundamental
symmetric mode; as shown in Figure 1.1, SO is almost non-dispersive: it resembles the
excitation signal (at this particular excitation frequency). However, AQ, the fundamental
antisymmetric mode is dispersive: it has spread from 3.5 to almost 5-count tone burst
signal; this is what the “dispersion” word refers to. AO wave in this illustration is referred
to as a wave packet that contains different wave components (or individual waves at each
frequency.)

This dispersion nature allows the wave propagation to be characterized by two
wave velocities: (1) phase velocity: which is the velocity at which every frequency
component travels, and (2) group velocity: the velocity with which the whole packet

travels.
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Figure 1.1. (a) Excitation signal, (b) Sensing after traveling through the plate: dispersion Lamb
wave signals SO: symmetric Lamb wave, AO: antisymmetric Lamb wave.
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Figure 1.2. Dispersion curves for an aluminum plate, (a) phase velocities, (b) group velocities

The phase and group velocities of Lamb waves propagating in aluminum plates
are shown in Figure 1.2. We can see the strong dependence of the wave speeds on the
frequency. The zero order modes: SO, AO are present at all the frequencies, while higher
modes appear at certain “cut-off” frequencies. Lamb waves by definition have the
particle motion in the plane containing: (a) wave propagation direction and (b) the out-of-
plane direction, which is perpendicular to the plate’s plane. Hence, the SO and A0 mode,
especially at low frequencies, are sometimes called axial (pressure P-wave) and flexural
wave respectively. At relatively low frequencies, SO mode shape resembles axial
vibrations, and A0 mode shape resembles flexural vibrations. As the frequency increases,

the mode shapes form complex shapes and lose their simple linear approximation of axial
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and flexural modes (Figure 1.3). At very high frequencies, both modes SO and A0
approach the speed of each other, and the structure vibrates with Rayleigh waves, where
the waves travel near the structure surface, and the particle motion decreases rapidly with
the depth.

Particle motion could be in the third direction, inplane but perpendicular to the
wave propagation direction, these waves are called SH-waves or shear horizontal waves.
They are complementary to Lamb wave modes. Figure 1.2 also shows phase and group
velocities of SH waves, e.g. SHO, SH1, SH2... In isotropic materials, guided waves are
decoupled into (1) symmetric and antisymmetric Lamb waves, in addition to (2) shear
horizontal (SH) waves. However, in anisotropic materials, e.g., composites, the three
modes of particle motion are coupled, and they have to be solved together. Lamb and SH
waves are particularly advantageous because they can propagate at large distances as
guided waves in plates and shells. This qualifies Lamb and SH waves to be used in the

SHM applications.
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Figure 1.3. Mode shapes of Lamb waves at different excitation frequencies (Pavlakovic and
Lowe, 2003)



1.1.2. Piezoelectric Wafer Active Sensor (PWAS)

PWAS transducers utilize the piezoelectric principle to convert electric energy to
mechanical energy or mechanical energy back to electrical energy. PWAS transducers are
a type of ultrasonic transducers. PWAS are bonded to the structure and can be left on the
structure for its remaining life. These transducers have been used under various names for

embedded ultrasonic testing for structural health monitoring.

Olympus-ims

(a) (b) (©

Figure 1.4. (a) Conventional ultrasonic transducers, (b) Rectangular and circular PWAS, (c) SH-
PWAS

These transducers have certain advantages: (1) they are less expensive than
conventional ultrasonic transducers, (2) their ability to act as passive sensors, i.e. without
interacting with the structure, and/or (3) active sensors, where they interact with the
structure to detect the presence and intensity of damage. PWAS transducers are good
candidates for exciting guided waves for structural health monitoring (SHM) techniques,
like pitch-catch, pulse-echo, and phased array (Figure 1.7). PWAS transducers operate
on the piezoelectric principle coupling between electrical and mechanical variables. The

piezoelectric constitutive equations are



S = SinEkITkI +d B, (1.1)
D, =d T, +&,E (1.2)

Equations (1.1) and (1.2) define how the mechanical strain S, , stress T,,, the electrical

ij ?
field E,, and electric displacement D, relate, where sijEk, is the mechanical compliance
of the material at zero electrical field (E =0), e}k is the dielectric constant at zero stress
(T=0), and d, is the induced strain coefficient (mechanical strain per unit electric

field). In order to create in-plane strain from a transverse electric field or vice versa, the

d,, property is utilized by the PWAS.
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Figure 1.5. Schematic of the PWAS shows the coupling of the in-plane shear stress (Giurgiutiu,
2008)

Depending on the poling direction (Figure 1.6) of the PWAS transducer, Egs. (1.1), (1.2)

can be further expanded as follows:
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Figure 1.6. Different PWAS poling directions



Case A, where the poling is along 3-direction, the strain equation becomes
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In the inplane mode of case A, applying an electric field in the thickness direction E,

causes the transducer’s lateral dimensions to increase or decrease, a longitudinal strain



will occur ¢ =d,E,, where dis the piezoelectric coupling coefficient measured in

[m/V]. Thickness mode is a mode that occurs simultaneously with extension mode, but
dominates at higher frequencies in MHz, in which strain in the thickness direction will
occur & =d,,E,, where d,, is the piezoelectric coupling coefficient in thickness
direction. A different mode of oscillation can be achieved when the applied electric field

is applied perpendicular to the poling direction; and it is referred to as shear mode. This

shear mode can occur for all the three cases of Figure 1.6. The corresponding

piezoelectric coupling coefficients for shear mode are d,, or d,, for case A; d,, or d,, for

case B; and d,, or d,, for case C. The constitutive equations for case C are
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The transducer shown in Figure 1.4c is called SH-PWAS that is shear-horizontally

coupled PWAS. SH-PWAS has electrodes on the top and bottom surfaces; it utilizes the

d,s coupling coefficient in which electric current is applied across thickness (i.e. in the

X, direction) and the poling is in the X direction.



1.1.2.1. PWAS for quided wave propagation and wave tuning

Figure 1.7 shows various ways to use PWAS in SHM. There are two methods of
using the PWAS as an active sensor. The first is through the use of wave propagation,
and is capable of sensing far-field damage. The second method is through standing waves
and uses high-frequency electro-mechanical impedance to find damage in the near-field
damage (Giurgiutiu, 2008). PWAS can be used as a passive sensor, e.g. acoustic emission.

Propagating Lamb waves Standing Lamb waves
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Figure 1.7. The various ways in which PWAS are used for structural sensing includes (a)
propagating Lamb waves, (b) standing Lamb waves and (c) phased arrays. The
propagating waves methods include: pitch-catch; pulse-echo; thickness mode; and
passive detection of impacts and acoustic emission (Giurgiutiu, 2008).

In recent years, an increasing number of investigators are using PZT transducers
for ultrasonic waves generation and sensing (Lee and Staszewski, 2003; Giurgiutiu, 2005;
Banerjee et al., 2008; Chang, 1998; Giurgiutiu and Santoni, 2011). The central concept of
these studies is the characterization of stress waves induced by PWAS transducers inside
the plate during their operating modes. It was shown that various Lamb wave modes, i.e.
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S0, AO can be excited by tuning the frequency such that the amplitude of one mode is
greater or smaller than the other modes amplitudes, also a situation where one mode is
totally “rejected” can be attained. This process is called wave tuning (Giurgiutiu, 2005).
The function linking wave amplitude with frequency presents some maxima and minima

respectively corresponding to the following two conditions

A(F)

2
20 (1.9)

2

| =(2n-1)

a

I, =(2n)

where |, is the PWAS dimension (the length for a rectangular or square PWAS, and the

diameter for a circular one), A is the wavelength of the wave, and n =1,2,3... .Figure 1.8
shows that Lamb waves tuning can be achieved by controlling the frequency. PWAS
excites SO and A0, and the amplitudes of received signals are different at different
frequencies. If it is desired to excite only AQ; then, a good frequency to use is ~200 kHz.
When PWAS excites SO and A0 modes, it causes the structure particles to oscillate in

typical mode shapes (Figure 1.3).
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Figure 1.8. Lamb wave experimental tuning curves for 1-mm aluminum plate using 7 mm x 7
mm x 0.2 mm PWAS
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1.1.2.2. Electromechanical (E/M) Impedance method for PWAS

The electromechanical (E/M) impedance method is a technique that can be used
to detect damage in structures. For a given structure, the ratio between the resultant
particle velocity and applied force is the mechanical impedance. The E/M impedance
method is based on the electro-mechanical coupling between the active PWAS transducer
and the structure. The measured electrical impedance is a direct reflection of the
structural impedance and is an assessment method for the local structural dynamics. A
good comprehensive study of the analytical modeling and characterization of E/M
impedance with PWAS can be found in Giurgiutiu and Zagrai (2000). PWAS transducers
can be used to excite mechanical vibrations in a structure. The measured E/M impedance
response is primarily a function of the dynamics of the structure. During a frequency
sweep, the measured real part of the E/M impedance follows the up and down variation
as the structural impedance as it goes through the peaks and valleys of structural

resonances and anti-resonances.
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Figure 1.9. Electromechanical admittance of a free 7 mm x 7 mm x 0.2 mm PWAS
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Figure 1.9 shows the admittance (the inverse of the impedance) of a free 7 mm x
7 mm x 0.2 mm STEMINC PWAS. The method itself is usually called E/M impedance
spectroscopy (EMIS), but the admittance quantity represents the resonance situations.
Free PWAS EMIS is needed to identify the transducer resonant frequencies. Whereas the
E/M impedance of the bonded PWAS to the structure is the method used for SHM
applications. E/M impedance of the bonded PWAS infers the structural resonances at low
frequencies (Figure 1.10). High-frequency E/M impedance method can detect localized
small damages that is undetectable with conventional vibration methods (Giurgiutiu,

2008).
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Figure 1.10. Low frequency E/M impedance of bonded 7 mm x 7 mm x 0.2 mm PWAS on 1-mm
thick aluminum beam
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1.1.3. Composite Materials

The term “composite” can be used to describe any material that is comprised of a
homogeneous matrix reinforced by material with higher strength and stiffness properties.
When designing a structure for an application, material selection is an essential process.
The properties of materials are analyzed, often with a metric to assist in the process, and a
material is selected based on trade-offs between its desirable and undesirable properties.
Because simple mechanical properties like stiffness and strength are not the only traits
that need to be taken into account, the process of material selection can be complicated.

For aerospace, automotive, and naval applications, materials with a high strength
to weight ratio offer desirable performance. Composite materials offer such properties
along with other desirable properties, thus placing composite material use at the leading
edge of material selection for many types of structures. A composite material can have a
strength-to-weight ratio in certain directions around 5 times that of aluminum or steel.
This is especially useful in the aerospace industry, where weight is at a premium. Another
unique and beneficial trait of composite materials is the ability to customize their
properties in different directions, creating an anisotropic material; however, composite
material can be very costly compared to metals and hard to predict in terms of behavior
due to their complex structure.

One of the most important definitions that will be used frequently when we treat
the composite materials is the anisotropy and the level of anisotropy, so it will be covered
here briefly.

The isotropic material is the one that has the same material properties in every

direction at a point in the body (Jones, 1999). Anisotropic material is the opposite and
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there are levels of anisotropy. If there is not any plane of material symmetry that exists,

then the material experiences the most general case of anisotropy (also called triclinic),

and the material stiffness coefficients are 21 independent constants, i.e.,

[C]=

Cll ClZ ClS
C22 C23
C33

(Sym)

iy
S

w
=

0000

(1.10)

Note that the matrix in Eq. (1.10) is symmetric because stiffness and compliance

matrices are symmetric; hence we have only 21 independent constants. If the material has

one plane of material symmetry, it is called monoclinic and [C] will be

[C]=

Cll ClZ C13
C22 C23
C33

(Sym)

(1.11)

For the monoclinic case, there are 13 independent material constants. If the

material has three planes of material symmetry, then the case of anisotropy is called

orthotropic. Usually any composite lamina or layer with fibers along 0 or 90 degrees is

considered orthotropic, i.e.,
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C, C, C; O 0 0
c, C, O 0 0
C,; O 0 0
[C]= c o o (1.12)
44
(Sym) Cs O
L C55 i

The orthotropic material has only 9 independent material constants.

Further, we have a transversely isotropic case, where three planes of material
symmetry exist and, in addition, material properties are the same in two directions (e.g. 2
and 3); hence directions 2 and 3 are interchangeable. In this case we have only 5

independent material constants, i.e.,

Cc, C, C, 0 0 O
C, C, O 0 o0
C, O 0 o0
[C]= Cu-Cp 0 0 (1.13)
2
(Sym) C, O
L C55 _

A good illustration about the differences between anisotropic, orthotropic and

isotropic is shown in Figure 1.11.
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Figure 1.11. Differences in the deformation of isotropic, orthotropic and anisotropic materials
subjected to uniaxial tension and pure shear stresses, (Jones, 1999)

Finally, in the isotropic case, we have three planes of material symmetry and the
material properties are the same in all the three directions; this is typically for metallic

structures. In this case, we have

_Cll ClZ C12 O 0 O ]
cC, C, 0 0 0
c]- C, 0 0 0
C., 0 O (1.14)
(Sym) Cu O
L Cua ]

Cu= (Cn _Clz) 12
We have 2 independent material constants, because the three shear moduli are all

the same and are related to the Young’s Modulus and Poisson ratio by G=E/(2(1+v)).
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1.1.4. Guided Waves in Polymer Composite Materials

The benefits of using composites come at the cost of a more complicated
mechanical response to the applied loads, static or dynamic. The anisotropic nature of the
composite material introduces many interesting wave phenomena that are not observed in
isotropic bodies; for example, the directional dependence of wave speeds. An
understanding of the nature of waves in anisotropic materials is required if we want to
use these materials effectively in structural design, or if we want to inspect them using
ultrasonic methods, which is one of the goals of our present work.

The type of waves we investigate within the scope of this study are guided elastic
waves in free-anisotropic plates, i.e. plates with traction-free surfaces, where the waves
are confined within plate surfaces.

State of the art textbooks that treat ultrasonic wave propagation in anisotropic
composites are several, they include: Auld (1990); Nayfeh (1995); Rose (1999); and
Rokhlin et al. (2011). Some useful tips for obtaining dispersion wave propagation curves
can be found in Lowe (1995); Glushkov et al. (2011); Su et al. (2006). There are different
methods to calculate dispersion curves in multilayered composite materials (a) transfer
matrix method (TMM); (b) global matrix method (GMM); (c) semi-analytical finite
element method (SAFE); (d) local interaction simulation approach (LISA); and (e)
equivalent matrix method (EMM). Mathematical formulations of these techniques are
presented, along with highlighting key features. GMM was studied comprehensively by
Lowe (1995), and there is a commercial software that has been developed based on

GMM, which is called DISPERSE (Pavlakovic and Lowe, 2003).
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1.2. MOTIVATION

A previous study by Lin and Giurgiutiu (2012) had considered the axial and
flexural approximation of SO and A0 Lamb waves to develop power and energy
transduction between PWAS and metallic structure. But, this model is only applicable at
low frequencies. Figure 1.12 shows that the axial wave speed is constant along the
frequency variations. It only approximates SO mode at relatively low frequencies, same
for flexural mode, only approximating A0 mode only at relatively low frequencies. Hence
it was important to consider modeling power and energy transduction between PWAS

and host structure based on exact Lamb wave modes.

6.000 ~
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4.000 A

3.000 +

Velocity (km/s)

2.000 4

Lamb wave A0 mode

1.000 -

0.000

0 1000 2000 3000 4000 5000
Fregency (kHz)

Figure 1.12. Axial and flexural approximation of SO and A0 Lamb wave modes for aluminum
plate
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Figure 1.13. Mode shapes across 1-mm thick aluminum beam, (a) SO at 200 kHz, (b) A0 at 200
kHz, (c) SO at 2000 kHz, (d) AO at 2000 kHz

If we look at mode shapes at 200 and 2000 kHz (Figure 1.13), we can see that SO

and A0 modes at 2000 kHz can no longer be represented by the simple constant and

linearu, across thickness, i.e., axial and flexural respectively. Cases of thick structures
(e.g. 1"-thick steel plates) are often considered in ultrasonics, even up to 500 kHz (a

relatively small frequency in ultrasonics). This requires models of power and energy
based on exact “multi” modal Lamb waves; therefore, this study considers the case of
thick structures too.

To consider power and energy models in anisotropic multilayered composites;
first dispersion curves of wave propagation speeds in composites need to be well

established and understood. Second, we need to consider shear horizontal waves, because

in composite materials, SH and Lamb waves are coupled and exist in most cases.
To be able to get dispersion curves, we conducted a literature review of
commercially available software codes that have been developed in the past few years.

Some provide the dispersion curves as figures without actually providing the data; others
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frequently miss one of the modes we wanted to predict their speed (namely SHO). Hence,
for more flexibility and to integrate dispersion wave speeds in composites with power
and energy models, we considered developing a predictive tool based on transfer matrix
method (TMM). TMM was described in details in Nayfeh (1995). A software, “LAMSS
Guided Waves in Composites” based on TMM has been developed in our group (Santoni,
2010). Two key issues need to be highlighted, (1) Nayfeh approach leads to a singular
situation if the material is isotropic or quasi-isotropic, and (2) TMM suffers instability at
higher frequencies, or as layers of the composite laminate increase. Our study tries to
eliminate these issues by combining Nayfeh approach (TMM) with the stiffness matrix
method (SMM) by Rokhlin et al. (2011). A combined stiffness transfer matrix method
(STMM) is proposed to obtain correct and stable results over the entire domain of interest.
STMM procedure is coded in a MATLAB graphical user interface that also allows
displaying modeshapes at any selected root of interest.

To experimentally validate our SH waves prediction in metallic and composite
materials, we needed to understand, to model, and to characterize SH-PWAS. It is shown
in Chapter-3 that SH waves are good candidates for SHM, e.g., capturing delaminatons in
composites; and inferring the shear stiffness of bonding layers, which is a vital role for
adhesive bonded layers. For these reasons, it was very promising and worthwhile to work
on predictive models of SH-PWAS behavior, including free SH-PWAS predictive models
for admittance and impedance, in addition to the bonded SH-PWAS case, which

contributes to the advancement of knowledge beyond the state of the art.
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1.3. RESEARCH GOAL, SCOPE, AND OBJECTIVES

The goals of this research are (1) to understand, model, and predict the power and
energy transduction mechanism between piezoelectric wafer active sensor (PWAS) and
the host structure and (2) to characterize and model shear horizontal-coupled
piezoelectric wafer active sensor and to study the impedance spectroscopy and wave
propagation methods associated with this transducer.

In terms of materials, the scope of this study is to develop analytical and finite
element predictive models for (1) isotropic metallic structures and (2) anisotropic
polymer composites. In terms of type and number of guided waves excited in the
structure, the study covers: (1) single symmetric and antisymmetric Lamb wave modes,
which typically exist in thin structures; (2) multimodal Lamb waves that typically exist in
thick structures and at high excitation frequencies; and (3) coupled shear horizontal and
Lamb waves in anisotropic composite laminates.

The objectives of this research are defined as follows:

1. To develop analytical equations for power and energy transduction between the
PWAS and hosted structure based on exact Lamb wave modes and normal mode
expansion (NME) method and to identify model assumptions, limitations, and the
range of applicability.

2. To characterize SH-PWAS, including the impedance, wave propagation, and
power and energy of SH waves.

3. To develop analytically the electromechanical impedance and admittance of the

constrained SH-PWAS (which is bonded to a host structure) based on normal
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1.3.1.

mode expansion method and elasticity solution of the structural displacement
response.

To develop a graphical user interface by MATLAB for SH-waves analysis in the
common isotropic materials. This will complement existing developed software in
our group for Lamb waves, e.g. WAVESCOPE and MODESHAPE.

To solve dispersion wave propagation speeds in multilayered composites based on
the transfer matrix method (TMM) and to develop stable and robust predictive
tool for predicting dispersion curves and modeshapes in composite materials.

To demonstrate experiments of SH waves propagation in composites and, in
general, the coupled guided waves in composites. In addition, to demonstrate
FEM predictions of wave propagation and impedance spectroscopy methods in
composites.

To perform application studies on complex aerospace-like structures and
composite plates and to identify challenges of SHM of complex metallic and

composite structures.

Dissertation Layout and Research Topics

To accomplish the objectives set forth in the preceding section, the dissertation is

organized in six chapters divided into two parts.

In part I, we address theoretical developments and validation experiments.

Chapter-2 presents power and energy studies, and these cover the following topics:
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Topic-1  Exact Lamb waves’ power and energy, based on the normal mode expansion
theory (NME) and harmonic waves.

Topic-2  Multimodal Lamb waves case in thick structures.

Topic -3  Power partitioning based on constant voltage.

Topic -4 Experiments using laser vibrometer for measuring actual amplitudes and
validating analytical tuning curves based on (a) signal amplitude values and
(b) signal energy content.

Topic-5 Experiments and FEM of impedance spectroscopy.

Chapter-3 presents the SH-PWAS, as a candidate for SHM compared to other

state-of-the-art transducers. Characterization of the SH-PWAS includes the analytical

development of the free transducer (in d,, mode). We developed the E/M impedance and

admittance of the free transducer based on the constant electric field assumption and
based on the constant electric displacement assumption. Analytical models were
compared with experiments and FEM results. Furthermore, we extended the analytical
development to find closed-form expressions for the E/M impedance and admittance of
the constrained (bonded) SH-PWAS. We studied the power and energy of multimodal
SH-waves based on NME, and we developed a MATLAB graphical user interface (GUI)
for calculating SH waves dispersion phase and group velocities, mode shapes, and wave

energies. The research topics of this chapter are summarized as:

Topic -1  Analytical modeling of the E/M impedance and admittance of the free SH-

PWAS, as well as experimental and FEM validations.
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Topic-2 Analytical modeling of the E/M impedance and admittance for the bonded
SH-PWAS, based on NME and structural elasticity solution.

Topic -3 Performed experiments of the bonded SH-PWAS on structures at low
frequencies to capture structural resonances.

Topic -4 Performed wave propagation experiments between different combinations of
PWAS and SH-PWAS to study the generation and reception of SH waves by
SH-PWAS and to study the effect of SH-PWAS poling.

Topic -5 Development of the power and energy models of SH waves analytically.

Topic -6  Building a GUI on MATLAB for SH waves’ analysis.

Chapter-4 presents guided wave propagation in composites. We developed
analytically the equations of TMM, based on Nayfeh (1995) and the equations of SMM,
based on Rokhlin, et al. (2011). Then, we integrated TMM and SMM as a combined
stable stiffness transfer matrix method (STMM). We presented in detail the procedure
needed to code this method in a way to avoid numerical instability and to be applicable
on an isotropic plate; a multi-layered isotropic plate; a unidirectional fiber composite
lamina with fibers along 0 or 90 degrees w.r.t. wave propagation direction; a
unidirectional fiber composite lamina with arbitrary fiber angles; multilayered
unidirectional composite with fibers along 0 direction; and cross-ply composites. For
each of the preceding cases, we obtained phase velocities, group velocities, and
wavenumber-frequency domain solutions. Afterwards, a comparable study was

established between the STMM results and results from commercially available software,
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e.g. DISPERSE based on GMM, and GUIGUW based on SAFE. This is followed by

experimental and FEM studies. The research topics of this chapter are:

Topic -1a Understanding TMM and SMM, identifying instability and singularity issues

Topic -1b Obtaining stable results based on the stable combined stiffness transfer
matrix method (STMM): () &— f (b)c, (¢) c,.

Topic -2 Analyzing a multilayered isotropic case (a) & f (b)c,,(c) c,.

Topic -3 Analyzing a unidirectional composite case with fibers angle along 0 or 90
degree directions w.r.t wave propagation direction: (a) £—f (b)c,, (c)c,.

Topic -4  Analyzing a unidirectional composite case with arbitrary fibers angle, e.g.
30, 45, 60: (@) &—f (b)c,, (c) c,.

Topic -5 Developing cross ply solutions based on equivalent matrix method:

(@ &-f(b)c, () c,.

Topic -6 Developing multilayered unidirectional and cross ply solutions based on
STMM: (a) &—f (b)c,, (c) c,.

Topic -7 Comparative study between different methods, GMM, STMM, and SAFE for
(a) unidirectional, (b) cross ply, and (c) quasi- isotropic laminates.

Topic -8 Experimental validation.

Topic-9 Performing FEM on a cross-ply situation and showing the directional

dependence of wave propagation on composites.
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Part Il addresses some SHM applications and related issues
In Chapter 5, we performed a case study of using SH-PWAS on composites, we
exemplified the case studies by a 1-mm thick woven GFRP and a 2-mm thick
[0/45/45/0]s CFRP plate with woven prepreg layers. We studied impedance spectroscopy
and wave propagation methods on both materials. Then, we built predictive finite element
models and addressed the challenges and limitations. The research topics of this chapter
are:
Topic-1 Experimental and FEM studies of E/M impedance and admittance for the
SH-PWAS bonded on GFRP and CFRP plates.
Topic-2  Combination of pitch catch experiments between PWAS and SH-PWAS on
both GFRP and CFRP plates.
Topic -3 Finite element models for 2-D wave propagation for the following cases
(@) The SH-PWAS is the transmitter transducer (both GFRP, CFRP).

(b) The regular PWAS is the transmitter in GFRP case.

In Chapter 6, we studied a commercial SHM system for damage detection in

aerospace-like structure. The research topics of this chapter are:

Topic-1  Sensors installation and the equipment setup (contribution: this task was
done by Dr. Bin Lin, research PostDoc, USC.)

Topic-2  Performing experiments on pristine complex structure.

Topic-3  Inducing different damage cases and testing the system for damage

detection.
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Topic-4  Modeling includes (1) building CAD files for such plates, (2) meshing by

ANSY'S, meshing was done by Dr. Bin Lin, and (3) input of the mesh to the

software.

In Chapter 7, we studied wave propagation in a variable stiffness CFRP plate that
was designed as a buckling resistance plate. We performed pitch catch experiments
between PWAS transducers at different angles and at different locations of the plate. We
addressed the possible data analysis procedures to measure dispersion group velocities.

The research topics of this chapter are:

Topic -1 Design of experiment for installation locations of PWAS transducers.
Topic -2 Performing pitch catch experiments.
Topic-3 Analyzing the results using time of flight (TOF) method by using (1)

Hilbert envelop method and (2) short time Fourier transform (STFT).
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PART I THEORETICAL DEVELOPMENTS & VALIDATION
EXPERIMENTS
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CHAPTER 2: POWER AND ENERGY
This chapter presents an analytical model for the power and energy transfer between the
excited piezoelectric wafer active sensors (PWAS) and a host structure. This model is
based on exact multi-modal Lamb waves, normal mode expansion technique, and the
orthogonality of Lamb waves. Modal participation factors were presented to show the
contribution of every mode to the total energy transfer. The model assumptions included:
(@) waves are of straight-crested multimodal harmonic type; (b) evanescent (non-
propagating) waves were ignored; and (c) ideal bonding (pin-force) connection between
the PWAS and structure. The admittance of the constrained PWAS (bonded PWAS to the
structure) was reviewed. Electrical active power; mechanical converted power; and Lamb
waves kinetic and potential energies were derived in closed form formulae. Numerical
simulations were performed for both the symmetric and antisymmetric excitation of thin
aluminum structures. The simulation results were compared with the axial and flexural
approximation for the case of low frequency Lamb waves. In addition, a thick steel
structure example was considered to illustrate the case of multimodal guided waves. A
parametric study for different excitation frequencies and different transducer sizes was
performed to show the best match of the PWAS size and the excitation frequency to
achieve maximum energy transfer into the excited structure. Finally, experimental study
was performed to validate Lamb wave tuning (using a scanning laser vibrometer) and to
validate the PWAS E/M impedance (using an impedance analyzer). This chapter is based

on the 2014 Article: J. Int. Mat. Syst. Struct 25, 4 Sage: doi:10.1177/1045389X13498310
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NOMENCLATURE

An = amplitude of nth antisymmetric mode

A0, A1, A2 = antisymmetric Lamb-wave modes

a = half-length of the piezoelectric-wafer transducer, m
an(x) = modal-participation factor

Bn = amplitude of nth symmetric mode

b = width, m

C = mode contribution factor

Co = capacitance, F

c = wave speed, m/s

Cp = pressure (longitudinal) wave speed m/s

Cs = shear(transverse) wave speed m/s

d = plate half thickness, m

dss = piezoelectric coupling coefficient in 31, m/V

E = Young’s modulus, GPa

(e,) = time-averaged total Lamb wave energy

F = force vector

Fo(w) = pin-force at PWAS ends

f = frequency, Hz

On = coefficient to simplify modal participation factor
h = plate thickness = 2d, m

| = electric current, Ampere

[ = V-1
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Im = imaginary part of a complex quantity

Ke = kinetic energy

(k, ) = time-averaged kinetic energy

Kpwas = PWAS stiffness, N/m

Kstr = dynamic stiffness, N/m

K31 = electromechanical cross-coupling coefficient
Lla = PWAS length = 2a

Pmn = power factor. Measure of average power flow
p = power, W

(p) = time-averaged power

R = eigen coefficients

r(w) = dynamic stiffness ratio

Re = real part of a complex quantity

Sij = mechanical strains

S0, S1, S2 = symmetric Lamb-wave modes

s = mechanical compliance under constant electric field, m*N
T = period time, s

Tij = stress in tensor notation

Th = stress tensor for nth guided-wave mode, Pa
t = time, s

ta = PWAS thickness, m

tx(X) = traction in x direction

U = displacement amplitudes, m. Also orthogonal modes
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u = displacement, m

Uisa = induced strain actuation PWAS displacement

\Y = voltage

Vv = velocity

% = velocity vector

Ve = potential energy

(v,) = time-averaged potential energy

W = parameter to simplify normalized modes formula, unit; m™

X,Y,Z = global coordinates, m

X1,X2,X3 = material polarization directions

Y = admittance (simens)

Y] = absolute of admittance

Y, = imaginary part of admittance

Yr = real part of admittance

o B = wave numbers, m™

0 = kronecker delta

i = dielectric permittivity measured at zero mechanical stress, T =0

yl = Lame constant, Pa

U = Material shear modulus,quivalent to the engineering constant G),
Pa

% = poisson ratio

g = wave numbers, m*

p = material density kg/m®
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T, Ta

P ()

Subscripts

Superscripts

shear stress at PWAS tipx = a

Lamb-wave longitudinal potential function
dynamic
Lamb-wave shear potential function

domain

angular frequency, rad/s

antisymmetric modes

indices =1,2,3

different normal modes

nth guided wave mode
symmetric modes

global coordinates, m

solution due to source excitation

solution due to homogeneous solution (free mode shapes)

antisymmetric modes

different normal modes
symmetric modes

solution due to source excitation

solution due to homogeneous solution (free mode shapes)
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conjugate of a
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amplitude of a

2.1. LITERATURE REVIEW

Ultrasonic Lamb waves are used to find damage and flaws in plates, pipes, rails,
thin-wall structures, multi-layered structures, and composite materials. The advantage of
Lamb waves over other common ultrasonic techniques is that they travel large distances
along the structure. Lamb waves can be ‘tuned’ to excite certain modes; some modes are
more sensitive to certain types of defects.

Chinthalapudi and Hassan (2005) showed that energy loss of guided waves may
be due to multiple reasons, such as existing flaws in the structure. Impedance mismatch is
considered as an “energy-stealing” agent that results from flaws like delamination, splits,
and cavities. In practice, the sensitivity to most simple defects, such as notches and
cracks, is adequate and of similar magnitude due to the fairly uniform distribution of
energy through the thickness of the plate. The sensitivity considerations become much
more important in anisotropic materials. Wilcox, et al. (2001) showed an example of
delamination detection in composites where certain modes were found to be blind to
delamination at certain depths. Other studies (Alleyne and Cawley, 1992; Koh et al.,
2002) gave more insights on how different defects interact with Lamb waves, and how
the severity of impact damages can be predicted from the transmitted power. Generally,
the failure theories based on energy methods are more robust in predicting failure. Hence,
it is very important to model Lamb wave power and energy transduction between PWAS

and host structures. Other applications that have attracted more interest recently are
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energy harvesting applications. The need of optimizing energy transfer (Park et al., 2007,
Kural et al., 2011) requires accurate models for Lamb waves energy, rather than
simplified axial and flexural approximation that is only at low frequencies.

Excitation at frequencies beyond the cut off frequency of Al, S1 modes will
generate multimodal Lamb waves. This phenomenon appears also for relatively thick
structures. In these cases, every mode shares parts of the supplied power and energy. Our
analytical model was developed based on the “normal modes.” Normal modes represent
the possible vibration characteristics of the structure and are independent of the loading
scheme (Rose, 1999). The method of normal mode expansion (NME) is described in this
study. It is worth mentioning that there are other methods that can be used to solve the
forced loading of a structure, e.g. the integral transform techniques (ITT). Some of the
most popular transforms are Laplace, Fourier, Hankel and Mellin. Various integral
transforms are used to transform a given function into another. These transformations are
done via integration (over some domain) of the original function multiplied by a known
kernel function. This is followed by either solving for the exact solution, e.g. with residue
theorem, or by numerically evaluating the integral in the case of complicated problems.

The solution of Lamb waves propagation in a plate that is excited with surface
PWAS was done by Giurgiutiu (2008) with the integral transform technique of the exact
solution. The NME method determines the expanded amplitudes. NME can be used for
isotropic or generally anisotropic layers. The difference between isotropic or anisotropic
cases is in evaluating the quantities appearing in the solution. Therefore, the NME
method can be considered more general because the physical nature of the excitation

process is clear and independent of the material. The ITT method does have extensive
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algebra and Viktorov (1967) discussed it in details. It was also shown by Viktorov (1967)
how the solution is different between isotropic and generally anisotropic layers.

A previous study was done by Lin and Giurgiutiu (2012), where they investigated
the power and energy transduction in pitch catch PWAS configuration, but that study was
based on axial and flexural wave approximation of SO and A0 Lamb waves. Frequency
response functions were developed for voltage, current, complex power, and active
power. It was shown (Figure 2.1) that increasing the transmitter PWAS size and
frequency of excitation requires the input of more electrical power; however, this may not

increase the power transducted to waves, as shown in Figure 2.1b.

Constant 10-V voltage Input Constant 10-V voltage Input

15000

mf)
a
b

Power Rating (
o =]
[=] [=]
[=] [=]
o o
Wave Power{mVV)
oo

(=Y )

200 . T ®
400 15

10

5
frequency (kHz) 600 0 Transmitter size (mm) frequency (kHz) 600 ¢ Transmitter size (mm)

(a) (b)

Figure 2.1. PWAS transmitter under constant voltage excitation (a) power rating, (b) wave power
(Lin and Giurgiutiu, 2012)

Other similar studies were performed by Glushkov et al. (2006) and Glushkov et
al. (2007) where the energy supplied to the waveguide versus the transducer size was
addressed (Figure 2.2). The first study (Glushkov et al., 2006) was based on the Green
matrix and the study showed that flexural approximation of A0 mode is only valid at low

frequencies. In the second study, Glushkov et al. (2007) have studied the multimodal case
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and energy partitioning, along with a comparison between integral equation based
modeling and FEM.

In our work, we show the analytical development based on the NME method.
This method is straight forward when needed for anisotropic composite material cases,
which involve studying the energy transduction between the PWAS and hosted

anisotropic layers.
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Figure 2.2. Energy supplied to the waveguide versus the patch size (Glushkov et al., 2006)
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2.2. ANALYTICAL DEVELOPMENT

2.2.1. Lamb Waves Normal Mode Expansion

The normal mode expansion method is used to (a) directly find the amplitudes of
a given mode in terms of loading parameters and (b) evaluate the contribution factor of
every mode to the total wave power and energy. Normal modes of the guided waves in
the structure serve as the eigenfunctions. The method assumes that the desired solution
can be written in the form of a series of known functions, each with unknown amplitudes.
Then, those amplitudes are to be determined either numerically or by finding a general
expression that is valid for all modes.

Normal modes (eigenfunctions) of the analyzed structure are assumed ‘complete,’
meaning that any function can be represented exactly in terms of a finite or infinite
number of functions in the set of ‘normal modes.” The second condition for the NME
method is the orthogonality of the base functions (Rose, 1999). The NME of the

displacement can be written as a summation of mode functions:
u(x, y,t) = > C,U;(x, y)e (2.1)
j=1

where C;is the contribution factor for each mode and U ; is mode shape. This solution is

assumed for the particular case of time harmonic with angular frequency @ .
Lamb waves (guided plate waves) are fully analyzed in a number of textbooks:
Graff (1991); Rose (1999); Giurgiutiu (2008). Here, we reproduce the essentials for

power and energy models. The wave equations are:
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where ¢ , v are two potential functions, c, =«/(/1+2,u)/p and C, :Wz/p are the
pressure (longitudinal) and shear (transverse) wavespeeds; A and & are the Lame
constants; and o is the mass density. The time dependence is assumed harmonic, the

displacement solution for symmetric and antisymmetric wave propagation (Figure 2.3),

and can be obtained as:

u Xyt =_Bn n COS g, _Rn n COS [q, e—i(‘;‘s,,xfwt)
{ DO . Y~ Fonfl €08 ) (Symmetric) (2.3)

Uy (X’ y’t) - iBn (aSn sin g,y + RSné:Sn sin ﬁSn Y)efi(gs“xf‘”t)

u, (x,y,t) =— sina,,y—R sin g i(Emx-at)
{ x( y ) A\(gAn Any AnﬂAn ﬂAny) (Antisymmetric) (24)

u, (X, y,t) = —IiA, (aAn cosa,, Y+ R, &, COS IBAny)e—i(éAnx—wt)
where subscript n denotes the values for each mode; B, , A, are the amplitudes to be

determined using normal mode expansion method, &, , &,,are wave numbers evaluated

using the relation §=Q,Where c is wave speed;  and [ are functions given by
C

2 2
o’ :Z’_Z_gz and 32 :f—z—fz; Ry, Ry, are the symmetric and antisymmetric eigen-
p S

coefficients calculated from the solution of the Rayleigh-Lamb equation for symmetric

and antisymmetric modes:

(2.5)

tanad (52—52)2 N
tangd | 4E%ap
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For free wave motion, the homogeneous solution is derived by applying the
stress-free boundary conditions at the upper and lower surfaces (Y =£d, where d is the

plate half thickness)

R, = (532 _ﬂsz)cosasd R, = (GCA2 _ﬂAz.)SinaAd (2.6)
285 s cos p.d 255, 8in f,d

Power flow normalization is used to determine a closed form for expanded

amplitudes B, , A, . This method is based on the complex reciprocity relation and

orthogonal modes (Auld, 1990; Santoni, 2010).

Symmetric motion Y| Antisymmetric motion

Uy Uy

N [N

UX uX

g8
j/% UX uX

Uy

Figure 2.3. Symmetric and antisymmetric particle motion across the plate thickness.

2.2.2. Reciprocity Relation for Lamb waves

Reciprocity relation is essentially an extension of Newton’s third law of motion,
where action and reaction are equivalent. Assume u,, is the displacement of point P, due
to force F,, and u,, is the displacement of point P, due to force F . In its most

elementary form, the mechanics reciprocity principle states that (Santoni, 2010): the

work done at point P, by force F, upon the displacement induced by force F, is the
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same as the work done at point P, by force F, upon the displacement induced by force
F.,ie, F-u,=F-u,

For Lamb waves, we have real reciprocity and complex reciprocity; we focus on
complex reciprocity following Auld (1990).

Considering a generic body 2, and two sources F, and F, applied at points P,
and P, (Figure 2.4); the two force sources produce two wave fields with velocity and

stress v,, T, and v,, T, . Using equation of motion and applying the two different sources

(1) and (2) and adding the two field equations together, we can prove the complex
reciprocity form that relates the velocity responses, tractions and applied sources for

harmonic excitation, i.e.,

V(¥ T +v, T,)==(7,-F +v,-F,) 2.7)

For Lamb waves, a similar relation has been derived in Santoni (2010), with the
assumption of time harmonic solution. One important assumption considered throughout
the analysis is that Lamb waves fields are z-invariant. Hence, the only surviving stresses

are normal stresses, T T, and shear stressT

.+ velocity fields arev, , v, ; superscript 12

XX !

indicate fields due to sources 2.

W

Figure 2.4. Reciprocity relation, (Santoni, 2010)
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The complex reciprocity relation for Lamb waves takes the form:

xxx X XX y ' xy X ' xy

8( T+ 0T + VTS VT2 )+ 0 — (VT + VT, VT VT )
X oy (2.8)
~2 1 152 ~2r1 12
=V K -vF -VF, -v F
This reciprocity relation is the basic formula used to derive orthogonality condition; in

addition, the source influence (PWAS excitation) determines modal-contribution factors

for each mode.

2.2.3.  Orthogonality of Lamb waves

The definition of orthogonal functions U over given domain [a,b] can be defined as
b
IUmUndy =0 for m=n (2.9)

Recalling the complex reciprocity relation of Eq. (2.7), with the source forcesF,, F, =0

and assuming 1 and 2 are two solutions for time-harmonic-propagating Lamb waves, we

get
v, (X, y,2,t) = (v (Y)X+vy (y)y) g X giot
(2.10)
\~/2(X, y;Z,t) (V (y)X+V (y)y) I‘};m —iwt
Toy) Tp(y) 0
TG,z =[Thy) TM(y) 0 [e=e
0 0 T
i o (2.11)
Te(y) Thy) o |
TZ (X, Y, Z,t) -I:T( ) ~yr; (y) 0 eiémxefiwt
0 0 TV

Substituting Egs. (2.10) and (2.11) in the reciprocity Eq. (2.7) with F,, F, =0 and

integrating over plate thickness, we get
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—i(& -&) [ (v Ty (1) +97 (0T (¥) + Vi (TE () + 07 ()T (v) )y = o1
—d 2.12

(V) DTy () + 07 (T, (9) +V (T () + 7 (V)T (y))\fd

Using the assumption of traction free boundary condition, T, =T =0, at the top and

bottom surfaces, Eq. (2.12) yields
d
-i(&, =& ) [ (VOITy () + 97 (0T () + v (DTE () + 97 (T (y))dy =0(2.13)
—d

Alternatively, in short form:
I(é:n _é:m)4pmn =0 (214)

where

P = —% [ (v T () + 97 (T () + v (TR () + T (NTA(Y))dy  (2.15)

—d

Recall our assumption of considering only propagating waves (evanescent waves, which

die out away from the source, are ignored); consequently, & , & are real, and égm =&

Since Re(a-b)=Re(a-b), the orthogonality condition can be further simplified to

0 ifm=n

P.,= d 2.16
" ReH [T+ 80Ty | ifm=n @10

—d

P is a measure of average power flow through the plate, and is used to determine Lamb

mn

waves amplitudes, through normalization.
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2.2.4.  Normalization of Wave Amplitudes
To apply orthogonality of Lamb waves of Eq. (2.16), velocity fieldsvy, v; and

stresses T."

w1 T arerequired. In addition, stresses are needed to evaluate potential energy
and wave power. From elasticity equations, stresses are related to strains by Lame

constants as

T, =(A+2u)S,, +4S,,
T, =AS, +(A+2u)S,, (2.17)
T, =2usS,,

where S, , S, and S, are normal and shear strains; they can be derived by
differentiating Egs. (2.3), (2.4)
For symmetric waves (superscript S)

Sy =1B, &, (&, Cosag,y — Ry, Bs, €OS s, Y) o i(Gx-at)
Sjy =IB, (aszn COS &g, Y + Ry, &5 Bsn €OS S, y)e_i(fsnx_wt) (2.18)

2sty =B, (2§Sn ag, Sinag, y + Ry, (fszn - ﬂszn )Sin Bsn y)eii(ésn)(iwt)

Substituting the strains in Hooke’s law, EQ. (2.17) becomes

T. =1B, [((’1 +2u)EL + Aad, ) oS,y — 2uRg, &, B, €OS s, y} g (Gonx-t)
T, =iB, [(ﬂiszn +(A+2u)al, )cos ag Y+ 2uRg & By, €0S S, y:|e—i(§snx—(ut) (2.19)

T’; = 1B, [2(’85"0[3” sin A, Y + RSn (gszn - ﬁszn )Sin ﬁSn Y] efi(gs”xf("t)
Equations (2.19) can be rearranged using the relations

(A+2u)& + Aa® = u(&* + p* - 22°)

(2.20)
28+ (A+2u)a® =—u(& - B*)

The stresses for symmetric case become
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T, =iuB, [(cf;n + B2 —2al, )cos ag, Y — 2Ry & By, COS B, Y ] i(£gpx-0t)
Ty =iuB, [ (& - B )cosag,y + 2Ry &, B, €08 B,y e (2.21)
TX&;, = IUBn [2§Sna5n sin aSny + RSn (é:Sn ﬂSn )s|n IHSn :| i(E5nx—at)

Similarly for antisymmetric waves, (superscript A) for the sake of completeness

=IiA, (§An sina,, Y — Ru, Ena Ban SIN B Y ) i(Eanx—ct)
IA1 (aA” sin Ap Y + RAnéAnﬂAn SInﬂAr‘l ) _I (St (222)
23@ =—A (2§AnaAn COS Y + Ry (E2, — B2,)COS B ¥ ) i(Epr-at)

The stresses for antisymmetric case are

Tx/: = I/JA1 |:(§,§n + ﬁin - Zain )Sln aAn y — ZRAﬂéAnﬂAn S|n ﬁAn :Ie—i(fAnX—(ut)
=iuA [ ~(E2 — B2)sinap Y + 2R, Enn By SIN By Y &) (2.23)
To = 1A [ 28,000, 008ty + Ry (£2, — B2, ) 008 5,y e 6

Velocity fields are evaluated by taking time derivative of displacements in Egs. (2.3) and

(2.4)
S aus i(&sx—ot)
V= =—iwB (& cosagy — R S cos By )e
ous (2.24)
v —i——a)B(a sinagy +R.& sin B )e‘i(fsx“"t)
y ot - s sY $5s s Y
A aUA i(Eax—at)
= =—iwA(&,sina,y - BuR,sin B,y)e "
(2.25)

v :E—a)A(aAcosaijthR cos B,y)e

Substituting Egs. (2.21),(2.23),(2.24) and (2.25) in Eg. (2.16) and performing the

integration yields

Pnn = a)y an
2

nn

2
W,  (Symmetric) p =4 ZA‘ W, (Antisymmetric) (2.26)
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where

sin S.d cos g.d
&d(RE+1)(&8 + 52 - Ré& (&8 -34%) ﬂsﬂ 2
S
W, =| 48, (82 + 2 - aa2) 2 sd 0550 (2.27)
s

+4Rya; s sin a;d cos B, d — 2R, (32 + ;%) cos ey d sin S d

i sin S,d cos 3,d

50 (R +1)(¢1 4 1) - Rig, (6 -9 AR

A

W, = - +§A(§§+ﬂf\—4ai)smaAdcosaAd (2.28)

29%

+4R,a, B, cosa,dsin B,d — 2R, (3&2 + B2 )sin a,d cos S,d

The symmetric mode coefficient B, and the antisymmetric mode coefficient A, can be

resolved as

Bn — Zi (Symmetric) Ah = Zi (antisymmetric) (229)
oW, \f W,

For normal modes, we may assume P,. =1; hence,

2 . 2 . i
B, = (symmetric) A = g (antisymmetric)  (2.30)
a):u\NSn a):uWAn

2.2.5. Modal Contribution Factors and PWAS Excitation

Basic assumptions used in this study are: (1) straight crested Lamb waves, i.e., z-
invariant, and (2) ideal bonding (pin-force) connection between PWAS and structure
(Figure 2.5). After consideration of the orthogonality of Lamb wave modes and after the

normalization of modes amplitudes with respect to the power, modal-participation factor
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for each mode needs to be evaluated (i.e. how much a particular mode contributes to the
total wave power and energy). This uses the reciprocity relation with consideration of

excitation forces from the source (e.g. a PWAS on the excited structure).

y=+d “X
h=2d .
_g v R
@ Y | a ™ +a
r,a
> X
(0) ra r=r,a0(x—a)-o(x+a)]

Figure 2.5. Pin force model for structurally- bonded PWAS, reproduced from Giurgiutiu (2008);
(a) PWAS pin forces at the ends on the upper surface; (b) shear stresses developed.

Recalling the complex reciprocity Eq. (2.7), multiplying by -1, and upon expansion of the

del operator, we get

—(-% T-v, - T,) 9+ —(-%,-T,-v,-T,)- k= ,F +V,F, (2.31)

where F is a volume source; T -y are traction forces and v are velocity sources.
A solution denoted by ‘1’ such as T, indicates traction due to source excitation (e.g. by

PWAS) while a solution denoted by 2’ is representing normal modes, ie. a
homogeneous solution of eigenfunctions of the free mode shapes of the structure —

without considering excitation from the source. Fields due to the excitation source can be
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represented as normal modes summation over all possible modes (Rose, 1999; Santoni,

2010), i.e.

Vl = Vl(X' y) = Zam (X)Vm (y)

(2.32)
Tl = -I-:I.(X’ y) = zam (X)Tm (y)
where a_ (x)are the modal-participation factors that must be determined.
Homogeneous solution ‘2’ can be represented as
Vv, (X y) =V, (y)e '
(% y) =V, (y) (2.33)

T,(xy) =T, (y)e™"

Integrate Eq. (2.31) with respect to the plate thickness y from (y = —d to y =+d ) to get

d d
(—\72-T1—v1-T2)-yfd +I§(—\72-'I'1—vl-'f2)-kdy= [wRdy  (234)
—d —d

Substitution of Egs. (2.32) and (2.33) ,and rearrangement yields

(-0, T~ v, T, ) 9] e

ol . d ) o (2.35)
+&{e'§“x > a, (90 [ (-9, T, -V, (0 T,()- Rdy} e [, (y)F dy
m —d —d
Recall the orthogonality relation in its general form
d
16/ ~ .
P =5 [ (B0 ) T + v, () T, () el (2.36)
—d
In the absence of a volume force source termF,, Eq. (2.35) yields
0,-T,—v,-T,) 9] e% +Les S 4a (9P, =0 237
(_Vn' 17 Ve “).y,de +&e ; am(x) mn ( . )
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Since the modes are orthogonal, the summation in (2.37) has only one nonzero term
corresponding to the propagating mode n (&, real) for which P, #0. Hence, Eq. (2.37)

becomes

(2.38)

d
—d

0 .z N ~\ o~
4I:)nn [&"‘Ié:njan(x):(vn 'T1+V1'Tn)'y

This is a general ordinary differential equation, which needs to be solved to get the modal

participation factor a_(x).

T is the traction force; it must satisfy the traction free boundary condition for Lamb

n
waves, T,

; =0and Ty';

= 0. T, is the excitation shear. We have T ‘ =t (x) atthe
d X ld X

+ +

upper surface, and T,

,=0on the lower surface, since PWAS excitation is only on the

upper surface (Figure 2.5).

For Lamb waves, Eq. (2.38) takes the form

o .- VT () + 0 (TL (y)
4Pnn _+I§n an(X): ~ (239)
(@‘ j [+Vi(y)Tx”y(y)+\7x“(y)Tfy(y)J

—d
Applying traction free conditions and PWAS excitation, then solving the ODE, yields

R A (o) ST SRR, g
an(x)_{F j "t (X)dx }e for x> a (2.40)

nn a

It should be noted that this formula is only for the forward wave solution and outside the

excitation region, i.e.for x >a.
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The total particle velocity using NME can be written as
v(x,y) =2 a,()v,(y) (2.41)
where v, (y) is the velocity modeshape of the n" mode, i.e., v, (y) :{Vﬁéy;}. v, (Y)
vy (y
can be derived using the combination of the symmetric particle velocity in Eq. (2.24)
with the symmetric normalization coefficient of Eq. (2.30) and the antisymmetric particle

velocity Eq. (2.25) and antisymmetric normalization coefficient of Eq. (2.30).

We exemplify the NME method for velocity fields with two examples: (a) 1-mm
thick aluminum plate, up to 2000 kHz where only SO, A0 modes exist; (b) 2.6-mm thick
steel plate, with excitation up to 500 kHz. Figure 2.6 shows the particle velocity at the
plate’s surface in the x-axis and y-axis for the two plates. Note that the values of NME
velocities are not multiplied yet by PWAS excitation. The displayed results are only for
the first symmetric SO and antisymmetric AO modes; the multi-modes demonstration will

be shown in a later section.
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Figure 2.6. Normal mode expansion for particle velocity fields (a) aluminum SO, (b) aluminum
AQ, (c) steel SO, and (d) steel AO mode.

Considering the ideal bonding assumption (pin-force model), the load transfer takes place

over an infinitesimal region at the ends of the PWAS. Assuming a PWAS with a center at

X, =0 and lengthl, = 2a, the traction on the plate surface can be written as
t (X)=ar,[0(x—a) —o(x+a)] = F,(o)[o(x—a) —o(x +a)] (2.42)
Here F, is the pin- force per unit width. Substitution of Eq. (2.42) into Eq. (2.40) gives

the mode participation factor under PWAS excitation as
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\7:: d i£a —iE @ a—iE X —i&x
a;" (x) = 4I£ )Fo(a))[e"&" —e e = g,F(w),e ™ (2.43)

nn

Ve (d) _
where g, is the coefficient g, :L[e'%a —e4R]

nn

The Lamb wave NME of the particle displacement under PWAS excitation is
1 —i&,x
utx.y) = > 9uFo(@)e v, (y) (2.44)

The displacement in x-direction at the PWAS end (x=a, y=d) is

u(a,d) = %Z%d)v? (d)[e™" —e "], (w)e ™ (2.45)

2.26. PWAS - Structure Interaction
Consider a PWAS of length | = 2a, width b and thicknesst, ; the relation between

the PWAS pin-force applied to the structure and the particle displacement is through the
structural dynamic stiffness. The structures as well as the PWAS stiffness are now
analyzed. When the PWAS transmitter is excited by an oscillatory voltage, its volume
expands in phase with the voltage in accordance with the piezoelectric effect, (Figure
2.7). Expansion of the PWAS mounted on the surface of the structure induces a surface
reaction from the structure in the form of a force at the PWAS end. The PWAS end

displacement is constrained by the plate and is equal to the plate displacement at X =a.

The reaction force along the PWAS edge, F, ()b, depends on the PWAS displacement,

Upwas » @nd on the frequency-dependent dynamic stiffness, k, (), presented by the

str

structure to the PWAS.

F (@)b=kg (o)u,(a,d) (2.46)
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The two stiffness elements on the right and the left of PWAS are selected to be

2k, ; hence the overall structure stiffness is kg, (Figure 2.7). Under harmonic excitation,

str ?

the dynamic stiffness k, (@) is obtained by dividing the force by the displacement given

by Eq. (2.44), i.e.

= ia)b{z g6V, (d)} (2.47)

Define the static stiffness ks Of a free PWAS as

t.b

Kowas = % (2.48)
The dynamic stiffness ratio is defined as the ratio between k. (@) and Ky, i.€.,
Ky (@
r(ew)= « () (2.49)

k

PWAS
The relation between pin-force force per unit width and the static stiffness of the PWAS

is
1
F (a))b = Kouns (ux (a,d) _EUISAJ (2.50)
where U,g, is the “induced strain actuation” displacement (Giurgiutiu, 2008), defined as,

uISA=Id31\7/ta and the quantity u (a,d)—%us, represents the total x-direction

displacement at the right tip of the PWAS (because of symmetry, only the forward

propagating wave needs to be considered.)
Substitute u, (a,d)from Eq. (2.45) into Eq. (2.50) and solve for F, using kg, from Eq.

(2.47) to get
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Fo(a)):l( r() )JkPWASUISA 251)

The excitation pin-force Fo(a)) can now be used to determine the NME fields
(displacements — strains — velocities), the modal participation factors a™** (x)and the

coefficients g, ; then the power and energy can be analyzed.

X3
l | Electric field, E;

X1
W£) =V sin(ar) %\/\ﬁ T piezoelectric wafer active sensor _VAVAEp

T 2Ker | Length I; thickness t; width b 2Kere

i(6) =Isin(axt + )

Figure 2.7. PWAS constrained by an overall structural stiffness Kg.

2.2.7. Power Transduction between PWAS and Structure

The power and energy transduction flow chart for a PWAS transmitter on a
structure is shown in Figure 2.8 (Lin et al., 2012). The electrical energy due to the input
voltage applied at the PWAS terminals is converted, through piezoelectric transduction,
into mechanical energy that activates the expansion-contraction motion of the PWAS
transducer. This motion is transmitted to the underlying structure through the shear stress
in the adhesive layer at the PWAS-structure interface. As a result, ultrasonic guided
waves are excited into the underlying structure. The mechanical power at the interface
becomes the acoustic wave power and the generated Lamb waves propagate in the

structure.
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Transmitter Piezoelectric Shear-stress Ultrasonic guided
| Input ¥, transduction: excitation ’ PWAS-structure waves from
' Elec.— Mech. of structure Interaction transmitter PWAS

vV \/\ﬂ, Transmitter PWAS
——— (Wave Exciter)

VNV NN Lamb waves \VAVAVA

Figure 2.8. PWAS transmitter power flow (Lin et al., 2012)

2.2.8. PWAS Admittance and Electrical Active Power

To calculate the transmitter electrical power and energy, we need to calculate the
input electrical power by using input admittance of the PWAS when attached to the
structure. Because of the electromechanical coupling, the impedance is strongly
influenced by the dynamic behavior of the structure and is substantially different from the
free-PWAS impedance.

Under harmonic excitation, the time-averaged power is the average amount of
energy converted per unit time under continuous harmonic excitation. The time-averaged
product of the two harmonic variables is one half the product of one variable times the
conjugate of the other. When a harmonic voltage is applied to the transmitter PWAS, the

current is

A

I =YV (2.52)
The constrained PWAS admittance can be expressed (Giurgiutiu, 2008) using the

frequency dependent stiffness ratio of equation(2.49), i.e.,

. ) 1
Y (w) =iwC, {1— k2 (1— TS ¢(w)ﬂ (2.53)
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where ¢(w) = £(w)a. A simplified form of Eq. (2.53) can be obtained under the quasi-
static assumption in which the PWAS dynamics are assumed to happen at much higher

frequencies than the Lamb-wave propagation (¢(w) — 0, ¢(w) cot p(w) — 1), i.e.,

Y (@) =iaC, {1— K2 1;&?’;)} (2.54)

This simplified model of admittance was used in Lin and Giurgiutiu (2012); it

was used for axial and flexural wave propagation at low frequency excitation. Here we
use a new definition of I (®)in Eq. (2.49) and kg, (@)in Eq. (2.47) based on NME for

multi-modal Lamb waves propagation.
The power rating, time-averaged active power, and reactive power are

P ZEYR\P P :%Y,\i2 (2.55)

active 2 reactive

P

rating

:%|Y|\72 = P2, +P?

active reactive

where Y, is the real part of admittance and Y, is the imaginary part of admittance.

The active power is the power that is converted to the mechanical power at the interface.
The reactive power is the imaginary part of the complex power that is not consumed and
is recirculated to the power supply. The power rating is the power requirement of the
power supply without distortion. In induced-strain transmitter applications, the reactive
power is the dominant factor, since the transmitter impedance is dominated by its
capacitive behavior (Lin et al., 2012). Managing high reactive power requirements is one

of the challenges of using piezoelectric induced-strain actuators.

56



2.2.9. Mechanical Power

Due to the electro-mechanical transduction in the PWAS, the electrical active
power is converted into the mechanical power; through shear effects in the adhesive layer
between the PWAS and the structure. The mechanical power transfers into the structure
and excites the guided wave. Santoni (2010) studied shear lag solution for the case of
multiple Lamb wave modes. This solution can be simplified by considering that the shear
stress transfer is concentrated over some infinitesimal distances at the ends of the PWAS
actuator (Figure 2.5). The concept of ideal bonding (also known as the pin-force model)
assumed that all the load transfer takes place over an infinitesimal region at the PWAS
ends; the generated mechanical power is the multplication of this load times the structure

particle velocity at the PWAS tip. The time-averaged power is defined as
L 2.56
(=2 p(t)ct (2.56)

The time-averaged product of two harmonic variables is one half the product of one
variable times the conjugate of the other. The time-averaged mechanical power at

PWAS-structure interface is
<p0> =3 F (@)Y, (@) (2.57)

Mechanical power excites both forward and backward propagating waves initiating from
the two end tips at x=a and X =-a. Due to symmetry, we only need to consider the
forward wave, which will contain only half of the mechanical power converted from the

electrical active power.
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2.2.10. Lamb waves Power and Energy

The mechanically converted power is in turn transferred into the power of the
propagating forward wave. It is important to mention that evanescent (non-propagating)

waves are not considered in this study. The time averaged wave power is:
1¢/n .
(p)= -3 [(Tov, +Tyv, JdA (2.58)
A

where v denotes particle velocity either in x or y directions, T denotes stress, T is the
conjugate. These values are determined from Egs. (2.17), (2.24) ,and (2.25). Figure 2.9
shows all associated stresses and velocities.

The time-averaged wave power can be determined for a given section x by

integration over the cross section area. Under the z-invariant assumption, the width b is

taken outside the integration; Eq. (2.58) can be further simplified as

(p)=

d

_gj{((,uzy)éxx +28,, v, +(248,, v, L dy (2.59)

arbitrary section at x

Figure 2.9. Representation of the stresses and velocities at an arbitrary section of the structure.
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Orthogonality of Lamb waves can be used during the expansion of Eq. (2.59);
because all the quantities are defined as summation of the symmetric solution plus the

antisymmetric solution, e.g. v, is the summation of v, parts of Egs. (2.24) and (2.25) .

The same is true for strains.

When evaluating the multiplication of §xxtimes v, , and integrating the quantities

generated from multiplying the symmetric part times the antisymmetric part, it ended up
as integration of sine times cosine terms and the integration vanished due to
orthogonality of Lamb waves. On the other hand, ‘cos?’ and ‘sin®’ terms are retained. The

time-averaged wave power takes the closed form:

(p)=2(pn)+ 2(p7) (2.60)

n n

where <pn5> and <pr’f> are the time-averaged wave powers for the symmetric mode S,

and antisymmetric mode A, respectively.

(ﬂ, + 2 )a)é j‘ {gszn COSZ aSn y + RSZnIBSZn COSZ ﬂSn y}dy
) “o | 2Rs, B, S, COS cxg, Y €OS S Y
b 2 ‘ gznazn COSZ U, y-—- Rznﬁznézn COSZ ﬂ n y
(ps)=-[9:B,F(@)] | -2(w/&) {7 s 7 Ly
2 +RSnﬂSn§Sn (gsn _aSn)CosaSnycosﬂSny

—d
g {2@”0@“ sin? ag, y + R2 &, (&2, — B2 )sin® B, y} N

_#a) 2 2 - -
+Re, %, (382, — 2, )sin ag, ysin B,y

—d

(2.61)
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_(l + 2,u)a)§ j {é:in Sin2 aAny + Rinﬁin Sin2 ﬂAn y} dy
An—d —2Rp Banan SIN G, YSIN B Y

ﬂ(a)/f ) j‘ éﬁnain Sinz aAny_ Rinﬂinéﬁn SinzﬂSny dy
m —d +RAnﬁAn§An (é:,in _ain)SinaAn ySinﬂAny
¢ {zé:Anain COSZ aAny + Riné:An (ff\n _ﬂ/-z\n )COSZ ﬂAn y}
- a)j dy

+RAnaAn (Bé:in - ﬂin )COS A, y COs ﬂAn y

(p)=-2[arAF@] |-

—d

(2.62)
The terms g™ and g/ represent the coefficients in Eq. (2.43) for symmetric and

antisymmetric modes.

Kinetic energy for Lamb waves is defined as
_ 1 2 2
K, (x,t) = Epj;(vx +v2)dA (2.63)
The time-averaged kinetic energy associated with velocity components can be calculated
as half the velocity times the conjugate of itself.

:—p'[ v, +Vv,.9, A (2.64)

The kinetic energy contains both symmetric and antisymmetric wave energy. Upon

rearrangement, the time-averaged kinetic energy takes the form
(k) =2 (k) + 3 (k) (2.65)
where <kf> and <ke”“> are the time-average kinetic energies for the symmetric mode

S, and antisymmetric mode A, . Upon multiplication and then integration over thickness,

kinetic energy can be expressed in closed form as
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d

A PO’ I {§§n cos® ag, Y + RE, B2 €0S° B, Y — 2Ry, fen sy COS g, Y COS S, y} dy
2
() -Slarer@]| )
+p’ j {aszn sin® ag, y + R E2 sin? By + 2Ry, &, ag, Sinag, ysin B, y} dy
—d

(2.66)
d
pa)Z I {ézin Sinz aAny + Rinﬂ/ﬁn Sinz IBAny - 2RAHIBAI’1§AH SinaAn ySinﬂAn y} dy

(K)=2lerAF@T|

4 2 2 2 2 2 2
+pw _[{aAn C0S” @ Y + Ry EriCOS” By + 2Ry €y @y COS @, Y COS B, Y | Ay
Zd

(2.67)

Equations (2.66), (2.67) can be further simplified as

d
(k&) =2[ 03B F@)] oo [[(&0 csary — Ry By 008 B, Y)Y + (et SNty + Ry, &y 8in i y)’ |y
—d

4
(2.68)

b f . :
<keA7 > = Z|:g?1 AwF(w):'z pwz J. |:(5An SInaAny_ RAnﬂAn SIr]ﬁAn y)2 +(aAn COSCZAny + RAngAn COSﬁAn y)2i|dy
—d

(2.69)
Potential energy of the wave can be evaluated by the double inner (double dot) product

between stress and strain

V() == [T:S dA 2.70)
2A
Txx Txy sz S XX S Xy Xz
1
ve(x,t)zaj T, T, T,1:S,. S, S,|dA (2.71)
A sz sz Tzz Szx Szy Szz

T,and S, are ignored due to the z-invariant assumption. Also T =T, ,T,=T,,

xy ' X Xz

T, =T, due to symmetry of both stress and strain tensors; Eq. (2.71) yields
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ve(x,t)=%_[(T Sy +T,S,, +2T,S,, +2T,S, +2T,S,)dA (2.72)

XX~ xx xz > xz yz¥yz
A

The stresses and strains associated with Lamb waves are T, , T T, and S, ,S S, : then

XX ¥ Txy ! XX ¥ Sxy !

Lamb wave potential energy reduces to

ve(x,t)=%j(T Su +T,S,, +2T,8, )dA (2.73)

. XX T XX
The time-averaged potential energy is

<Ve>:%_[{(/1+2,u)8 S +248,,S,, +(A+21)8,, S, +2(248,,)S,, |dA (2.74)

XX XX
A

Similar to the kinetic energy, the time-averaged potential energy is the summation of the

potential energy of all modes, i.e.
(ve) =D (ve )+ Do (w) (2.75)

where (v5" ) and (v/*) are the time-averaged potential energy for symmetric mode S,

and antisymmetric mode A, respectively, i.e.,

d

(ﬁ' + Zﬂ)é:szn J. (é:Sn cosag, Y — Ry, Bs, €OS fg, y)2 dy +

—d
)J‘{é:SnaSn COS aSny R ﬁSné:Sn Cos IBSny"'}dy_'_

RSn ﬁSn é:Sn (§Sn aSn ) Cos aSn y cos ﬂSn

()= 2B, ] 2.76)

2
(ﬂ“ + 21”) J. (aszn COSO(Sny-i- RSnﬂSné:Sn COSﬂSn y) dy+
—-d

d

1 [ (28a sinag,y + Ry, (€2~ B2,)sin B,y dy

—d

62



d

(/1 + Zﬂ)fin J. (§An Sina Y — Ry B SIN By, y)2 dy +

Zd
‘ {finain Sin2 aAny - Rf\nﬁingin Sinz ﬁAny +} dy n

o [ -
<VA“ > = E[QA‘ AF (a))J2 "o (RanBanban (S — ) SiN e, ysin B,y
e 4 n 0 d

: ) 2
(A+2u) J- (aﬁz\n SINa,, Y + Ry BanSan SIN By, y) dy +

—d

2.77)

d

M I (2§AnaAn COS Y + Ry, (§A2\n - ﬂin ) €os Sy, y)z dy

-d

The total energy for Lamb waves per unit length is the summation of the kinetic and
potential energy. The total time-averaged Lamb wave energy at the plate cross section

corresponding to the PWAS end is

<ee> :<ke>+<ve> (2.78)

2.3. SIMULATION RESULTS

This section gives results of the simulation of power and energy transduction
between the PWAS and structure using the exact Lamb waves model. Comparison was
performed between the exact Lamb waves model results were presented here, and the
simplified axial and flexural waves model results of Lin and Giurgiutiu (2012). This was
followed by a parametric study to show how wave power and energy were changed with
different PWAS-sizes and excitation frequencies. The last part of this section shows the
applicability of our model for the case of multi-modal Lamb waves, which happens either
at higher frequency or in thicker structures. We examplify with the simulation of two

plates: (a) 1-mm aluminum up to 2000 kHz, and (b) 12.7-mm ( % in) steel up to 500 kHz
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frequency. Figure 2.10a,b shows dispersion curves for the two plates. Figure 2.10a also
shows how the simplified axial and flexural waves compare with SO and AO Lamb waves
at low frequencies.

For the 1-mm aluminum plate, harmonic excitation of 10-volts was applied on a
7- mm PWAS with a frequency sweep from 1-2000 kHz such that only SO and A0 Lamb
waves exist. However, the 12.7-mm steel plate (Figure 2.10b) was excited up to 500 kHz,
such that three symmetric modes (S0, S1, S2) and three antisymmetric modes (A0, Al,

A2) exist. Complete simulation parameters are given in Table 2.1 and Table 2.2.

2.3.1. Thin Plate Structure (One Symmetric and one Antisymmetric mode)

The simulation results for the 1-mm aluminum structure are given in Figure 2.11.
As expected, the reactive electrical power required for PWAS excitation was orders of
magnitude larger than the active electrical power. Hence, the power rating of the PWAS
transmitter was dominated by the reactive power, i.e., by the capacitive behavior of the
PWAS. We noted that the transmitter reactive power was directly proportional to the
transmitter admittance (Y =i@C ), whereas the transmitter active power was the power
converted into the ultrasonic acoustic waves generated into the structure from the
transmitter. A remarkable variation of active power with frequency is shown in Figure
2.11a: we noticed that the active power (i.e., the power converted into the ultrasonic
waves) was not monotonic with frequency, but manifested peaks and valleys. As a result,
the ratio between the reactive and active powers was not constant, but presented the
peaks and valleys. The increase and decrease of active power with frequency corresponds

to the PWAS tuning in and out of various ultrasonic waves traveling into the structure.
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The maximum active power seemed to be ~ 8 mWatt at 340 kHz. At ~1460 kHz, the

PWAS was not transmitting any power; hence no power was delivered into a wave power

at this frequency. This is because the rejection of Lamb waves at this particular frequency

for both SO and A0. Figure 2.6a,b, show that v, and v, vanish for both S1 and Al at ~

1460 kHz. Since the electrical active power is equally divided into forward and backward

waves, the Lamb wave power plot of Figure 2.11c is the half of the electrical active

power plot of Figure 2.11a. Figure 2.11d shows the simulation results for Lamb waves

Kinetic energies, Egs. (2.68), (2.69), and potential energies, Egs. (2.76), (2.77).

Lamb wave dispersion curve
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Figure 2.10. Dispersion curves (a) aluminum 1 mm, (b) steel 12.7 mm (1/2 in).
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Table 2.1. Structure simulation parameters.

symbol 2024 AL alloy steel-AlSI-4340
Length L 0 o0
thickness h 1 mm 12.7mm (% in)
Width b 7 mm 7mm
Young’s Modulus E 72.4 GPa 200 GPa
Poisson ratio 14 0.33 0.29
density P 2780 7850
Harmonic input voltage amplitude vV v v
Frequency f sweep 1-2000 kHz 1-500 kHz

Table 2.2. Transmitter PWAS (PZT850) properties

(as from the company website www.americanpiezo.com).

symbol PZT850
Length I 5-25 mm
thickness t, 0.2 mm
Width b 7mm
Young’s Modulus E 63 GPa
Elastic compliance s 15.8e-12 m*/N
Relative dielectric constant el & 1750
Coupling coefficient ka1 0.353
Piezoelectric coefficient ds; -175e-12 m/\V
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Figure 2.11. Simulation results for 1-mm aluminum plate, (a) electrical active power, (b) reactive
power, (c) Lamb wave power, (d) Lamb wave kinetic and potential energy.

2.3.2.  Comparison with Low Frequency (Axial and Flexural) Approximation

Figure 2.10a shows that an axial wave can be approximate to SO mode up to ~
700 kHz for this particular case of excited 1-mm aluminum plate. A flexural wave can
approximate AO for up to ~100 kHz. The axial and flexural model of Lin and Giurgiutiu
(2012) compared with our exact Lamb wave model shows good agreement at relatively

low frequencies excitation (Figure 2.12). At higher frequencies, i.e., beyond 700 kHz for
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S0 and 100 kHz for AOQ, the differences between exact and approximate models are very

significant.
Axial vs SO wave power Flexural vs A0 wave power
7 7r
6 6
5 5 Flexural
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E? EY
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o o
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Figure 2.12. Comparison between axial and flexural wave powers and SO/AO Lamb wave powers.

2.3.3. Parametric Study

Figure 2.13 presents the results of a parametric study for various PWAS sizes (5-
25 mm) and frequencies (1-1000 kHz). The resulting parametric plots are presented as 3D
mesh plots. It indicates that active power generated from the PWAS to the structure
contains the tuning effect of transmitter size and excitation frequency. A larger PWAS
does not necessarily produce more wave power at a given frequency. The maximum
active power in the simulation is ~ 8.3 mW. This can be achieved by different
combinations of PWAS and excitation frequencies, e.g. (5mm PWAS size and 610 kHz,
9-mm PWAS and 890 kHz, 20-mm PWAS and 680 kHz, or 23-mm PWAS and 820 kHz).
These combinations provide guidelines for the design of transmitter size and excitation

frequency in order to obtain maximum wave power into the SHM structure. Similarly, the
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total Lamb wave energy shows the same tuning trend in relation to the PWAS size and

excitation frequency as shown in Figure 2.14.

2.4. EXPANDING TO MULTIMODE LAMB WAVE

2.4.1. Thick Plate Structure (multi-mode Lamb waves)

A multi-modal Lamb waves simulation was performed on a 12.7-mm thick steel
plate for up to 500 kHz excitation frequency and 10V harmonic voltage applied to PWAS.
All structural simulation parameters are listed in Table 2.1 and PWAS parameters are
listed in Table 2.2.

The objective is to evaluate electrical active power, reactive power and show how
the active power part is converted to Lamb wave power in the presence of multi-modal
Lamb waves. Dispersion curves plots in Figure 2.10b show that the S1 mode starts ~
215 kHz, S2 starts at ~ 370 kHz, while Al starts at ~ 170 kHz, and A2 starts at 390 kHz.
Due to the sudden appearance of Lamb wave modes at cut-off frequencies, the normal
mode expansion solution encounters sudden jumps. This is due to the appearance of new
components caused by the new modes. For that reason, a smoothing function is applied as

described in the next section.
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Figure 2.13. Parametric study for Active power for 1-mm aluminum simulation.
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Figure 2.14. Parametric study for total Lamb wave energy for 1-mm aluminum simulation.
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Smoothing function

The smoothing function is a smoothed step function, (Sohoni, 1995) as shown in

Figure 2.15. The mathematical formula is

h, X< X,
f(x)=<f(x, X,,h,X,,h) X <x<X, (2.79)
h, x> X,

f(x) =h +[Ah/ AX]* (x = X,) —[Ah/ 27]*sin{(27 | AX)*(x—X,)}  (2.80)

This is implemented in our NME solution by setting X; to the cut-off frequency of
the selected mode and h; to zero; hence the mode is forced to start from zero, and
consequently its contribution to the NME summation is smoothed. Ah =1; Axis arbitrary;
we selected Ax =150 kHz, for symmetric modes, and Ax =120kHz for antisymmetric

modes.

Function value
A

h,

hy

Xl X2 g
Independent variable

Figure 2.15. ADAMS step function.
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Figure 2.16. Normal mode expansion for particle velocity fields for 12.7 mm steel plate with 3
symmetric modes and 3 antisymmetric modes (smoothed). (Kamal,et al., 2013)

Normal mode expansion for velocity fields after applying smoothing are shown in

Figure 2.16.

For the sake of clarity, it needs to be mentioned that the plots in Figure 2.16 are

the absolute values of NME velocities after applying normalized amplitudes as well as

modal participation factors. Note that the summation value in some areas was less than

the individual values because the individual values were plotted as absolute values,

whereas the summation was done algebraically, which allows for some cancelations.
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Complex values of NME velocities are due to phase differences. Figure 2.17 shows the

summary of the velocity fields; it displays the summation for the three symmetric modes

as well as antisymmetric modes.

§ NME antisymmetric modes steel

. x10° NME symmetric modes steel 5 x 10
—v, ol —V,
4+ " Yy . vy
w I ad J
£ EY E.l
= 3f H * z
8 : K e
) r " ) 4
3 2+ . "- Pt ;
E : .'.‘.. as § 3F :
5 ; 5 :
o 5 a 2 aun? LT :
2 -.‘ = ‘.o‘ + x
0 a8 "".u.. 3 . . . 0 "“ L L L \ "':
0 100 200 300 400 500 0 100 200 300 400 500
frequency [kHz] (b) frequency [kHz]

Figure 2.17. Summation of normal mode expanded velocities in x and y directions with applied
modal participation factors (a) symmetric, (b) antisymmetric modes.

Figure 2.18 shows the reactive and active electrical power the PWAS utilizes to

excite desired Lamb wave modes. It can be seen from Figure 2.18, that the reactive

power was three orders of magnitude larger than the active power (active power is the

power that is further converted to propagating wave power). The maximum active power

attained in this simulation was ~ 0.9 mWatt at 500 kHz. However, if the simulation was
evaluated for a larger frequency sweep, active power experiences higher maximum, but

careful consideration is needed as the fourth symmetric and antisymmetric modes will

come into account.
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2.18. Simulation results for 12.7-mm steel plate, (a) electrical active power, (b) reactive

power.

Multi-modal Lamb wave simulations for power are shown in Figure 2.19. It can

be seen that maximum value for Lamb wave power was ~ 0.45 mWatt at 500 kHz and

the plot in Figure 2.19a is identical to the half of active electrical power of Figure 2.18a.
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2.4.2. Power Partitioning

The case of the %"- thick steel beam was used to show how mode contribution
factors distribute the power consumed by every mode. For this thick steel structure, with
a 7-mm square PWAS attached, Lamb waves tuning were shown in Figure 2.16. The
fundamental symmetric mode SO mode had its rejection points ~ 175 and 400 kHz, A0
mode had a rejection point ~ 400 kHz. The simulated frequency range was up to 500

kHz, where there are three symmetric and three antisymmetric modes.
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Figure 2.20. Power partitioning between modes of Lamb wave propagation in %"-thick steel
beam.

The results for power partitioning (under 10V input voltage amplitude) are shown
in Figure 2.20, and they are representing the ratios of power between modes. At 175
kHz, SO was rejected and A0 consumed all the power. However, at 200 kHz, A0 actually
consumed more power (than at 175 kHz), but the shown amount is the ratio with SO

mode.
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2.5. EXPERIMENTAL AND FEM STUuDY

This section includes: (1) comparing Lamb waves tuning predicted analytically
with experimental measurements using Polytec Scanning Laser Doppler Vibrometer
(SLDV) system, and (2) comparing the electromechanical impedance of the bonded
PWAS predicted analytically with Multiphysics FEM results as well as experimental
measurements with the impedance analyzer. We started by a brief introduction of the
measuring equipment, following with results and ending with concluding remarks.

The SLDV provides non-contact measurements of particle vibration on the
structure surface. The laser vibrometry method is based on the Doppler effect, which is
able to sense the frequency shift of back-scattered laser light from a moving surface. The
main advantage of a laser vibrometer compared to other alternative methods is the fact
that this technology allows the accurate measurement of vibrations without contact at
frequencies up to 1.2 GHz. Scanning laser vibrometers have been used extensively in the
last years for characterizing small and large amplitude ultrasonic vibrations in solid
surfaces. In this study, we used the laser vibrometer system PSV-400-M2 from Polytec as

shown in Figure 2.21.

Figure 2.21. Scanning laser vibrometer PSV-400-M2, source: Polytec.com
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The experimental setup included: (1) receiving AO and SO signals by a receiver
PWAS, which is located at 160 mm from the transmitter PWAS, and capturing the
received signals voltage by the oscilloscope, and (2) non-contact measurements of out-of-
plane oscillation along an array of points using a laser vibrometer. A three-count tone
burst voltage was used to excite the transmitter PWAS with 20V peak-to-peak and center

frequency varying up to 600 kHz. The complete setup is shown in Figure 2.22.
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Figure 2.22. Experimental setup of function generator, laser vibrometer, and oscilloscope for
measuring Lamb wave tuning.

Figure 2.23 shows a sample of received signals by receiver PWAS as well as
laser measurements. As we can see, the A0 mode is dominant in laser measurements. The
symmetric mode SO could not be detected easily with a laser vibrometer, because the

PSV-400-M2 laser system is a 1-D measuring system, i.e. it is capable of detecting the
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out-of-plane vibration. Hence, we used it to validate the tuning of the antisymmetric AO
mode. The analytical predictions of our model were compared with received voltage by
the receiver PWAS for both A0 and SO modes. The comparison is shown by Figure 2.24,

Figure 2.25 and Figure 2.25, Figure 2.26.
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Figure 2.23. Sample of received signals by PWAS and laser measurements at 120 kHz
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Figure 2.24. Experimental received signals by the receiver PWAS at 160 mm distance
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By comparing the received electric signals by receiver PWAS (Figure 2.24) with
analytical prediction of particle motion (Figure 2.25), it is concluded that there was a
correlation between (a) the out-of-plane structural oscillation at the receiving PWAS, and
(b) the in-plane strain captured by the receiver PWAS which is associated with the
received voltage through the piezoelectric effects. The comparison between the analytical
prediction of out-of-plane particle velocity of AO mode from Figure 2.25 with the laser
measurements at point #2 (Figure 2.26) have shown good agreement. It is important to
mention that the analytical model does not account for the attenuation or damping; this
implies that the results of Figure 2.25 are the same at different points between the
transmitter and the receiver.

In order to compare energy and power gquantities, we needed first to compare our
analytical predictions of bonded PWAS E/M impedance with experimental and finite
element model results. “Impedance spectroscopy” is commonly called for the E/M
impedance or the admittance of the transducer. To calculate the transmitter PWAS
electrical power, we needed to calculate the PWAS admittance when attached to the
structure. An HP 4194 A impedance analyzer was used for measuring the transducer E/M
impedance in complex form; then the admittance was calculated. The experiments were
performed on multiple beams and plates to show the constrained PWAS resonances.
Figure 2.27 shows the experimental setup for 8-mm width and 1-mm thick aluminum
beam. Also, the test was performed for constrained PWAS on the square aluminum plate
that was used in the laser vibrometer test (Figure 2.22). The frequency sweep was up to

2000 kHz.
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The finite element mesh along with displacement mode shapes at resonance
frequencies are shown in Figure 2.28. The FEM was performed using coupled field
physics, where the PWAS is excited by voltage and the piezoelectric coupling introduces
induced strains. Damping was defined using complex compliance and complex electric
permittivity with imaginary coefficients of 0.04. Results of analytical prediction, FEM

prediction, and experimental measurements are shown in Figure 2.29.

Figure 2.27. Experimental setup for E/M impedance test, (a) HP4194A impedance analyzer, (b)
test specimen with bonded PWAS.

[ R

R ———

1432 kHz

1750 kHz

Figure 2.28. FEM mesh and mode shapes at resonances of bonded PWAS
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The predicted first resonance was 340 kHz by the analytical model and FEM;
which both do not account for the width dimension. The experimental result for the first
resonance of the beam case was 250 kHz, while it was 400 kHz for the plate. The
analytical model overestimated the admittance amplitude of the first resonance with
respect to other resonances. The second resonance observed by FEM was 1130 kHz,
(1200 kHz analytically and it was ~1000-1100 kHz experimentally). The third resonance
was 1432 kHz by FEM predictions and it was missed by the analytical model,
experimental results were ~ 1330-1370 kHz. The antiresonance ~ 1500 kHz can be
explained by the rejection of both SO and AO in tuning curves. The fourth and the last
documented resonance was 1750 kHz by FEM, 1700 analytically, and ~1625-1650 kHz
experimentally (Figure 2.29b).

The imaginary component of the admittance is used to determine the reactive
electrical power; that is the part of electrical power which is not converted to mechanical
wave propagation. This study mainly focused on the real part (or the active power) that is

transferable to mechanical wave power.
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Figure 2.29. E/M admittance of a bonded PWAS on 1-mm aluminum structure: (a) analytical
prediction, (b) experimental and FEM results

82



After determining the tuning of Lamb wave modes and the E/M admittance of the
bonded PWAS, we could calculate power and energy quantities. However, due to the
dispersion of wave packets (Figure 2.30). It was necessarily to perform the analysis in
terms of wave packet total energy instead of maximum amplitude. To determine the wave

packet energy, the time integral was performed for the squared signal value
7] )

Eocj|s(t)\ dt
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volts
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Figure 2.30. Dispersion of received wave packets

Electromechanical admittance components at every frequency were multiplied by
the corresponding energy content of the received signals to get electrical power (Figure
2.31Db). Similar analysis was done for the kinetic energy of particle velocity measured by

the laser vibrometer (Figure 2.32b).
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Figure 2.31. (a) Wave power predicted analytically, (b) received signals power experimentally
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Figure 2.32. (a) A0 wave K.E predicted analytically. (b) A0 wave K.E. of point #2 on structure
surface based on the laser vibrometer measurements.

It is clear from the comparison between analytical predictions and experimental
measurements of power that the A0 mode had a rejection point at ~200 kHz. SO wave
power predicted analytically had a good agreement with the received signal of the SO
mode by the oscilloscope. The difference in amplitudes may be attributed to the
difference between analytically predicted and experimentally measured admittances.
Besides, our analytical model is based on the harmonic wave assumption, whereas the
experimental signals are based on 3-count tone burst signals. A similar conclusion is

drawn for AO kinetic energy (K.E), which is shown in Figure 2.32.

2.6. SUMMARY AND CONCLUSIONS

The ability to excite certain Lamb wave modes is important in structural health
monitoring (SHM) because the different defects respond differently to various Lamb
wave modes. Detection of through thickness cracks with the pulse-echo method is much
better with the SO mode, whereas antisymmetric modes are better for the detection of
delaminations and disbonds with pitch-catch techniques. Different researchers studied the

scattering of wave energy at defects e.g. cracks; hence, it became important to develop an

84



analytical model for the multimodal Lamb wave power and wave energy. This chapter
has analyzed the power and energy transformation from electrical to mechanical by
piezoelectric wafer active sensors (PWAS) bonded to host structures. The analysis was
started by a literature review to show the motivation of modeling power and energy for
Lamb waves for SHM applications. This was followed by a short discussions on the
basics of Rayleigh-Lamb equation and the solution of the symmetric and antisymmetric
Lamb wave fields, i.e. displacements, strains and velocities. The power flow analysis is
based on complex reciprocity and orthogonality of Lamb waves modes; and through
normalization of power flow, Lamb waves displacement amplitudes were determined.
The analysis for multimodal waves was based on the Normal Modal Expansion (NME)
technique; which was used to determine modal participation factors, i.e. how much each
mode contributes to the final power. In order to calculate the transmitter electrical power
and energy, we have calculated the input electrical power by using the input admittance
of the PWAS when attached to the structure. Because of the electromechanical coupling,
the impedance is strongly influenced by the dynamic behavior of the substructure and is
substantially different from the free-PWAS impedance. A remarkable variation of active
power with frequency was noticed. The active power (i.e., the power converted into the
ultrasonic waves) is not monotonic with frequency, but manifests in peaks and valleys.
As a result, the increase and decrease of active power with frequency corresponds to the
PWAS tuning in and out of various ultrasonic waves traveling into the structure. For
instance, for single symmetric and single antisymmetric excitation simulation example,
there were certain frequencies at which there was almost no energy transfer for waves to

propagate. Electrical active power was further divided and converted to forward
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propagating wave power and backward wave propagating power; our simulations were
performed for only the forward wave and showed that the wave power was half of
electrical active power.

The developed model for Lamb waves case was compared with the axial and
flexural waves, that approximate Lamb waves at relatively low frequencies and the two
simulations showed good agreement. This was followed by a parametric study to
optimize the transducer size with excitation frequency to guarantee maximum energy
transfer between the source and the examined structure. In this study, it was shown that
the maximum wave power can be achieved with different combinations of PWAS-size
and excitation frequencies. Multi-modal waves simulations were presented, multi-modal
waves typically exist in practical applications for most on-site thick structures at which
not only SO and A0 modes exist when excited by the PWAS. An experimental study was
performed using the scanning laser vibrometer to compare the out-of-plane structural
oscillation at the receiver PWAS with analytical predictions, as well as the received
voltage through the piezoelectric effects. The results have shown good agreement.
Afterwards, admittance of bonded PWAS was evaluated experimentally and was
compared with FEM and analytical predictions. Finally, the received signals by the
oscilloscope and the laser-detected out-of-plane particle velocities were used to determine

the wave electric power and kinetic energy respectively.
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CHAPTER 3: SHEAR HORIZONTAL COUPLED PWAS

This chapter discusses a shear horizontal coupled piezoelectric wafer active sensor (SH-
PWAS). The chapter starts with a review of the state-of-the-art for the applications of SH
transducers and their importance in non-destructive evaluation (NDE) and structural
health monitoring (SHM). This is followed by the basic piezoelectric sensing and

actuation equations with the electro- mechanical coupling coefficientd,,. The electro-

mechanical (E/M) impedance of the SH-PWAS was studied analytically under a constant
electric field assumption as well as under a constant electric displacement assumption.
We also extended the analytical development to constrained SH-PWAS bonded to
structures in the form of beams. The model is based on the normal mode expansion
(NME) technique. The interaction between the SH-PWAS and the structure was studied.
The structure frequency response functions were presented. We developed a closed-form
equation of structure dynamic stiffness by coupling the mechanical response solution of
the SH-PWAS to the structure elasticity solution. The analytical model was compared
with experimental results and finite element analysis.

The chapter is later devoted to the discussion of shear horizontal (SH) guided-
waves that can be excited with the SH-PWAS. Analytical prediction of SH wave speeds
was performed. A wave propagation experimental study was conducted between different

combinations of SH-PWAS and regular inplane PWAS transducers.
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Experimental results were compared with analytical predictions for aluminum
plates, and showed good agreement. 2-D wave propagation effects were studied by
Multiphysics FEM. In part 1l of the dissertation: Applications, we apply the study on
GFRP and CFRP composite structures.

The amplitudes of shear horizontal wave modes were normalized with respect to
the wave power; the normal mode expansion (NME) method was used to account for
superposition of multimodal SH waves. Modal participation factors were presented to
show the contribution of every mode. Model assumptions included: (a) straight crested
guided wave propagation; (b) ignoring evanescent waves; and (c) ideal bonding between
the PWAS and structure with shear load transfer concentrated at PWAS tips. The power
and energy transfer between the PWAS and structure were analyzed in order to optimize
the sensor size and excitation frequency; for maximum wave energy production for a
given source.

Finally, we presented simulations of our developed wave power and energy
analytical models along with a MATLAB graphical user interface (GUI) for the analysis

of SH-waves including dispersion phase and group velocities, mode shapes, and wave

energy.

NOMENCLATURE

D, = electric displacement vector [C/m?]

dy = piezoelectric strain constants [m/V] or [C/N]

Oy = piezoelectric strain constant for shear mode [m/V] or [C/N]
E, or E, = electric field [V/m]
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piezoelectric stress constant for shear mode [N/Vm]

piezoelectric voltage constants [m%/C] or [Vm/N] or [(V/m)/Pa]

piezoelectric voltage constant for shear mode [m%C] or [Vm/N] or

[(V/m)/Pa]

strain tensor

mechanical compliance tensor at zero electric displacement, D=0
[M2/N]

mechanical shear compliance at zero electric displacement, D=0
[M?/N]

stress tensor [N/m?]

wave number [1/m]

dielectric permittivity matrix at zero mechanical stress, T=0 [F/m]
dielectric permittivity in 33 direction measured at zero mechanical
strain, S=0

dielectric permittivity in 33 direction measured at zero mechanical
stress, T=0

electromechanical coupling factor

shear modulus [Pa]

angular frequency [rad/s]
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3.1. LITERATURE REVIEW

A Conventional piezoelectric wafer active sensor (PWAS) is a thin rectangular or
circular wafer that is poled in the thickness direction with electrodes on the top and

bottom surfaces; those types of PWAS are either used in the inplane or thickness mode.

In the inplane mode, applying an electric field in the thickness direction E,causes the

transducer’s lateral dimensions to increase or decrease, a longitudinal strain will occur

g =0d,E; , where d, is the piezoelectric coupling coefficient measured in [m/V].

Thickness mode is a mode that occurs simultaneously with extension mode, but

dominates at higher frequencies in MHz, in which strain in the thickness direction will

occur & =d,E,, where d,, is the piezoelectric coupling coefficient in thickness

direction. A different mode of oscillation can be achieved when the applied electric field
is applied perpendicular to the poling direction; and it is referred to as shear mode.

(Figure 3.1). The common piezoelectric coupling coefficient known for this mode is

defined as d,., however, this coupling coefficient is only when the electric current is
applied in E, direction and the poling is across thickness direction. The shear coupled
PWAS presented in this study is associated with the d, coupling coefficient in which

electric current is applied across thickness (i.e. in x;direction) and the poling is in x,
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direction; a few studies considered this d,,-mode, such as: Zhou et al. (2013); Kamal et

al. (2013); Baillargeon (2003).

- -1
-~
=
- =
Lengthening effect ds; effect
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-~ -~
-
~ -

Shearing effect dys effect

Figure 3.1. Different modes of piezoelectric actuation (Heeg, 1993)

For most piezoelectric materials, the coupling coefficients associated with shear
mode have the largest value of all coefficients (Glazounov and Zhang, 1998; APC
International Ltd; Ferroperm Piezoceramics). The higher values of shear coupling
coefficients make SH-PWAS superior in actuation and sensing (Baillargeon, 2003). SH
waves are also preferable because first symmetric mode is non-dispersive, i.e. wave
speed is constant at different frequencies. On the other hand, one of the important
disadvantages of SH-PWAS is that thicker transducers are needed to sustain and generate
the shear actuation. Also due to the high density of piezoceramic materials (~ 7600
kg/m*® for APC850 piezoceramic Navy Il type), using of shear mode piezoelectric

elements increases the mass of the system considerably.
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Shear mode piezoelectric transducers were used as an actuator element in a
cantilever beam setup (Sun and Zhang, 1995). The stresses distribution across thickness
and length under mechanical and electrical loading were investigated. A similar study on

using shear-type piezoelectric as a shear bender was studied by Benjeddou et al. (1997).
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Figure 3.2. (a) Adaptive sandwich beam and (b) surface mounted actuation beam (Sun and Zhang,
1995)

A Piezoelectric device was also used for designing torsional actuators generating
angular displacement (Glazounov and Zhang, 1998), as shown in Figure 3.3a, where the
torsional element consists of different segments, the neighboring ones being of opposite
poling.

The application of a torsional actuator was applied on a later study by Centolanza

et al. (2002), to control rotor blade trailing edge flaps (Figure 3.3b).
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Figure 3.3. (a) Proposed torsional actuator by Glazounov and Zhang (1998), (b) proposed
actuator-flap system (Centolanza et al., 2002)

For SHM and NDE applications, shear horizontal (SH) ultrasonic waves showed
high potential for quantitatively detecting defects in structures (Fortunko et al., 1982;
Rose et al., 2000; Su et al., 2007). Su (2007) showed that SH wave mode conversion
occurred at the damage from fundamental incident SO, and it was shown that SHO can be
used to quantitatively identify delamination in composite beams. However, the type of
the PZT that detected the induced SHO waves was not provided. The experimental setup

is shown in Figure 3.4.
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Figure 3.4. PZT actuator model for generation of Lamb mode SO (Su et al., 2007)

In another application, SH polarized ultrasonic waves were used for evaluating
the quality of bonding between the transducer and the structure (Le Crom and Castaings,

2010). SH waves are also associated with AT-cut quartz resonators. AT-cut quartz
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resonators were studied, and SH modes were obtained using anisotropic elasticity
equations (Zhu et al., 2013). Thickness shear vibrations of quartz crystal plates were
studied using Mindlin plate equations in Du et al. (2013). Shear horizontal ultrasonic
waves are usually associated also with electromagnetic acoustic transducers or EMAT
(Figure 3.5). Lee et al. (2009) used SH waves to detect weld defects. SH waves have
shown superiority over conventional shear vertical (SV) and longitudinal waves (Gao et
al., 2010). Gao et al. (2010) suggested that the piezoelectric based transducers generating
SH show better acoustic generation than EMAT. Also, one point to consider is that
EMAT needs conductive structures, while PWAS can be used for conductive metallic
structures and non-conductive composites (e.g. glass fiber reinforced polymers). SH-
PWAS transducers are much more cost efficient, but in terms of effectiveness, EMAT
always showed reliability for detecting damages. Recently, magnetostrictive MsS®,

which was developed by Southwest Research institute (http://www.swri.org) also showed

reliability in damage detection.

Recently, a study by Zhou et al. (2013) has been performed on generation, sensing
and damage detection in metallic plates using a shear (d,,- mode) Lead Magnesium
Niobium Titanate piezoelectric wafer. It was shown that SHO waves are capable of

detecting the damage along their propagation paths.
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Figure-of-eight
coil

(b)

Figure 3.5. (a) Various magnetostrictive transducers used to generate SH waves (Lee et
al., 2009),(b) MsS magnetostrictive sensor system, (c) MsS for pipe inspection
(www.swri.org)

Nevertheless, fiber optics were also used for detecting SH waves. Li et al. (2009)
used fiber optic sensors for detection of SHO wave type generated from mode conversion
from excited Lamb waves, and this was used for detecting delamination in CFRP
composites.

This study focuses on piezoelectric wafer-type shear transducer, we call it SH-
PWAS. The study is structured into three main parts. In the first part, an analytical model
for SH-PWAS electrical admittance was developed and compared with FEM and
experimental results. Analytical, FEM and experiments for the bonded SH-PWAS were

covered next. The second part presents an experimental study for different possible pitch
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catch configurations between SH-PWAS and regular inplane ones. Moreover, wave
speeds were compared with analytical values. Finally, the power and energy of SH waves

were analytically developed.

3.2. THEORETICAL MODELS OF SH-PWAS IMPEDANCE SPECTROSCOPY

Impedance spectroscopy has been used for decades to infer the health status of the
structure. Shear-mode acoustic wave resonators and electromechanical (E/M) coupling
were studied by Mueller and Zhang (1998); Cheng et al. (2007); Milyutin et al. (2008);
Milyutin and Muralt (2011); Yanagitani (2011). The effects of electrodes were
investigated in Ji and Shen (2005) and showed that the stiffness of electrodes materials
affects the resonance frequency. In this section, a predictive model of impedance and
admittance were developed for SH-PWAS analytically, by finite element modeling, and

experimentally.
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Figure 3.6. (a) Schematic for SH-PWAS, shaded areas are the electrodes (Giurgiutiu, 2008),
(b) transducer schematic from manufacturer, source: APC piezoceramic Int Ltd
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3.2.1. SH-PWAS Sensing and Actuation Constitutive Relations
Most literature mentioned earlier deal with the shear dielectric coupling
coefficient d ., however, this is only applicable if the electric field (E,) is applied in the

in-plane direction and the piezoelectric poling is in thickness direction. In our model and

FEM simulations we use d,,. The SH-PWAS transducer we used (APC International
Ltd) has its electrodes on the top and bottom; hence electric field is applied along X,

direction and the poling is applied along X, direction (Refer to Figure 3.6a). Recall the

constitutive equations of piezoelectricity in contracted Voigt notations,

S, Si S, S T [dy |
S, 52E1 SzEz szEs B dy,
S| _|s5 s T.| | da -
S, - s, T, " 5, 3.1)
3 £ |In dy |
Se) | SeEs_ Ts) L dys |
T
D, d, d, dj 12 & E,
D, = Ay Tj + & ] E, (3.2)
D, dys T, &3 | B
Ts

. E . . . .
where S, are the strain components, S; is the compliance matrix under constant electric

field condition, T, are the stress components, dkj are the piezoelectric coupling
coefficients, E, represents the electric field vector, D, is the electric displacement vector,

and ¢, are the electric permittivity constants of the PWAS material. Equation (3.1) is

considered the piezoelectric converse effect, where the applied electric field will result in
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induced strain. Equation (3.2) is the direct piezoelectric effect, where applied stresses will

result in electrical displacement. For the SH-PWAS transducer of Figure 3.6a, we have

the electric field in the X, direction and the poling in the X, direction. Equations. (3.1),

(3.2) reduce to
Sg = ul’ = S5E5T5 + dss E, (3.3)

D; =dgT5 + 5;3 E, (3.4)

3.2.2.  Free SH-PWAS Electro-mechanical Impedance and Admittance

3.2.2.1. Analytical modeling based on constant electric field E3

As shown in Figure 3.6a, X, is the thickness direction and X, is the piezoelectric
poling direction. When the SH-PWAS is bonded to a structure, the direction x, is the

wave propagation direction. For a free SH-PWAS, the stress-free boundary condition is

applied at x, =%1%, which correspond to the SH-PWAS transducer’s top and bottom

surfaces.

Tl =T, =0 Ts+dTsh
/ 7 X3 7>
i S
< x5
Ta1)n :Ts|_£ =0
Figure 3.7. Free SH-PWAS free body diagram
Assume time-harmonic electric excitation
E, = E,(x)e" (3.5)
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where @ is the circular frequency in rad/sec.

Considering the Newton law of motion applied to the element in Figure 3.7, we have

F +dT, T = pliydxg (3.6)

upon simplification, Eg. (3.6) becomes,
T, = pl, (3.7)
where p is piezoelectric material type density, G, is the second derivative of u,
displacement with respect to time. Differentiating Eq. (3.3) with respect to x, and

assuming constant electric field E, across thickness yields
S, =s&T, (3.8)

v 0()

where ( ) = and T, is the shear stress in 13 direction. Recall strain displacement
3

relation for shear deformation, i.e.,

S, = %+% =u, (3.9)
0%, X,

where 4 =1/sk is the shear modulus for piezoelectric material. Substitution of Eq. (3.9)
into Eq. (3.8) yields

T, = uu, (3.10)
Differentiation of the Eq. (3.10) with respect to X; and substitution into Eq. (3.7) yields,

= pi, (3.11)

Assuming time harmonic solution u, =4,e"* reduces Eq. (3.11) to
10" + pa’l, =0 (3.12)
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Then, the space solution of the differential Eq. (3.11) is
G, =C;sinyx, +C, cos yx, (3.13)
Define speed of SH-wave in the piezoelectric material as ¢ , and the corresponding wave

number as y

o [E (3.14)

Mechanical response:

Imposing stress free boundary condition T,| , =0in Eq. (3.3) yields

h
2

= dE, (3.15)

Using the strain — displacement relation Eqg. (3.9) and the derivative of Eq. (3.13) into Eqg.

(3.15) yields

I\

G; » = 7(C,cos2yh+C,siniyh)=d,E,
2

e (3.16)
Gj],n = 7(C,cos2 yh—-C,sinyh)=d,E,
2
Solving the two equations in (3.16) yields
dy,E
C, :Lf C,=0 (3.17)
ycosiyh
Substitution of Eq. (3.17) into Eqg. (3.13) yields the space domain solution
6. (x) = dE, sinyx, (3.18)
By cosiyh '
Differentiation of Eq. (3.18) yields the strain
~ ol ~  COSyX
S, =—t=d,.E, —£=8 3.19
° ox, 2 % cosiyh (3.19)
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Define induced strain actuation (ISA) which is the PWAS strain in the absence of

mechanical loading, i.e.,
(SS)ISA = d35 é3 (3.20)

Corresponding induced displacement is defined as

ISA (S )ISAh dSSE h (321)
Equation (3.18) and Eq. (3.19) can be rearranged in the form
5 _lug, sinyx, 3.22
B0 =5 700 Gosian (3.22)
2 2 COS ¥ X
S, (%) = (S4) n ﬁ (3.23)
Electrical response
Eliminating the stress T, between Egs. (3.3), (3.4), and using Eq. (3.9) yields
D, - d—f[ul’ ~dyf, |+ 2LE, (3.24)
S55
Upon rearrangement, Eq. (3.24) becomes
2[q U
D, _533E 1-K5 (3.25)
35E3
where the electromechanical coupling factor K, is defined as
d2
Ky =22 3.26
3BT 85558;3 ( )

Integrating the electrical displacement in Eq. (3.25) over the electrodes area yields the

electric charge
b

j D, (x,)dx,dx, (3.27)

0

N‘-'—-J-

Q%) = | Dy(x,)dx,dx, =
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Equation (3.27) indicates that electric charge varies across the thickness. We define

equivalent average charge across thickness as

R

Qu = | QU)dx, (3.28)
Substituting D, from Eq. (3.25) into Eq. (3.28) and performing the integration yields

h
2

0, (%)|’,

Qeq _ SuEsbl (1_ K325)h+K325 i (3.29)
3573
Defining PWAS capacitance as
C= g;% (3.30)
Substituting 4, (x,) from Eq. (3.22); the electric field is related to voltage by E, :% ; and
recalling u,, from Eq. (3.21); then Eq. (3.29) can be simplified to
~ ~ 1
3, =cv|1-Kz[1-@nzrh (3.31)
z7h

The electric current I is defined as the time derivative of electric charge, i.e. | =Q =iaQ,

hence | =iwQ and Eq. (3.31) simplifies to

1
—iwC|1-KZ, (1—“‘[‘—2”‘] (3.32)
zvh

Y =

<| —

And the free SH-PWAS electrical impedance is

A -1
v 1 tan i yh
7=Y - = |1-k2|1-22 |

I ia)C{ 35[ 1yh H (3.33)
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Result in Eq. (3.32) is slightly different from that of Milyutin et al. (2008), where the

stress-charge piezoelectric equations were used and the model was for d,. - mode, where

the transducer electrodes were on the sides not on the top and bottom surfaces like in our

case.

3.2.2.2. Analytical modeling based on constant electric displacement D3

The constant electric field assumption is usually more appropriate in piezoelectric
stacks with internal electrodes, where flow of charge exists (i.e. closed circuit) and the
corresponding electric displacement forms a half wave distribution at the resonator
(Sherrit et al., 2013). However, in most other cases of single resonators, such as thickness
shear mode, no current flows through the resonator, which makes the constant electric
displacement assumption (i.e. zero current or open circuit) more realistic. Bar
piezoelectric ceramic transformers were studied under constant electric displacement
condition (Erhart et al., 2013), where impedance was modeled for the longitudinal mode

(d,;). In this section, we derive analytically the E/M impedance and admittance based on

constant electric displacement D3, The predicted models are compared with experimental

measurements to investigate which assumption best fits our SH-PWAS transducer.
For the electric field restricted in X, direction, the T, stress shown in Figure 3.6a,

takes the following form in Voigt notations,

1 A
T, =S, -3 p, (3.34)
S55 555

The electric field in the case of constant electric displacement is derived starting from Eqg.

(3.4)
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D, =d. T, +&,E, (3.35)

Rearranging Eq.(3.35), and eliminating stress T, using Eq.(3.34) yields

d 1 4 1 A 1 4
E, = _iTs +—=Dy= _935( S _9_305 D3J+ D, (3.36)

; -5 "
€33 €33 Sss Sss €33

Upon rearrangement, Eq.(3.36) becomes

=95 . 1p (3.37)
555 33
where
05, 1] 1
Ss5 &35 Ea3

Mechanical Response

Substitute the stress free boundary condition (T5|X _.n=0) into Eq.(3.34) to get
5
S5l.n = 0D (3.39)

Using S, =u,’ = % and replacing u, by U, that represents the amplitude value with
X

3

ignoring time harmonic exponential

A

| n =7(C,cos$yh+C,siniyh)=g,D,
? X (3.40)
u; 5= 7(C1 COS%}/h_Cz Sin%Vh) = 03D,
2
Solving the two equations in (3.40) yields
D
C=—J=% ¢ -0 (3.41)

' ycosiyh

Substitution of Eq. (3.41) into Eq. (3.13) yields the space domain solution
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A

U505 sinyx,

G,(x,) = 3.42
L) =22 (342)
Differentiation of Eq. (3.42) yields the strain as
e 4 COSyX,
= —-q.D, —/% 3.43
® ox, 2% cosiyh (3.43)
Electrical response
Using EQ.(3.37) and substituting strain (§5) from Eq.(3.43) yields,
, A
E - g35DD3 cosi/x3 +is [33
S Coszrh &g (3.44)
:z 1- U553 COS(7%) :z 1_K2 cos (7x;)
£ s> cosiyh | & ® cosiyh
where the electromechanical coupling factor K, is defined as
2 D s\ D 2 .8
k2 =S5 _| U385 | S _ O3s% (3.45)
® 8383 35% 5383 552

Integrating the electrical displacement over electrodes area, results in the electric charge

'-—;NT_

b
Q = [ Bydxdx, = [ [ Dydx,dx, =bID, (3.46)
A 0

=

As before, the electric current | is calculated from the time derivative of electric charge

A

I =Q=iwQ =iwblD, (3.47)

Electric voltage is related to electric field by
V = [ E,dx, (3.48)

Substitution of Eq. (3.44) into Eq. (3.48) yields
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s, % cos!yh
éh e sm()fxs)i gh{l— , 2sinyh 549
5 ® yheosiyh | &5 * yhcos? yh
As before, defining PWAS capacitance as
C=c2 (3.50)

The impedance is defined as Z =—and using Egs. (3.47), (3.49); the electromechanical

—)l <)

impedance is

z=Y. s.h {1— 5T L - }:_1 {1—K§5%} (3.51)
| egiabl 1vhcotiyh | ieC 1yhcot]yh

Defining ¢ =1yh, the electromechanical impedance can further be written as

1 1
Z=—"+|1-Ki—— 3.52
iwC { ® ¢cot¢} (3:52)
And the electromechanical admittance is
] 1 T

3.2.3. Bonded SH-PWAS Analytical Model

SH-PWAS bonded on a plate structure is shown in Figure 3.8. When the SH-

PWAS is bonded to the structure, the direction X, (global x-direction) is the SH wave

propagation direction. Depending on which plane is considered for analysis, the SH-
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PWAS response can be classified into: (a) axial and flexural response, in 1-3 or z-y plane,
(b) SH response, in 2-3 or x-y plane. We start with axial-flexural response in 1-3 plane
(Figure 3.9a).

When the SH-PWAS is bonded to a structure, the displacement of the lower tip of
the PWAS can be set equal to U;" which can be determined from the elasticity solution

of the bonded structure of thickness 2d and then structure dynamic stiffness associated

with the transducer can be determined from the relation

Fowas = T|_g A= Kgnear U1|—2 (3.54)

P_oling 7 SHwave
direction propagation
direction

Figure 3.8. Constrained SH-PWAS model

3.2.3.1. Axial and flexural response solution

Given the boundary conditions and structural properties, the dynamic structure

stiffnress kg (w) can be evaluated. The applied loads are axial load
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f (z,t) = f (2)e"* oc Fpyas Which is acting through structure midplane in addition to the
bending moment generated m, (z,t) = M, (z)e'* oc Foyasd . Where d is the half plate
thickness. When incorporating K, (@) into consideration, a “constrained PWAS”

solution can be developed as follows: (1) The displacement of the lower tip of the SH-

PWAS can be set equal tou,™, which can be determined from the elasticity solution of the

structure of thickness 2d. Then, (2) structure stiffness can be determined from Eq.(3.54).

3 f3|‘+£=Ts+L_:=O
y A =
h / SH-PWAS
y > —> —p 1
X A : it ! il
z | F=Foypge” Lu, =Ue
3 . _|_|:>._I ..........
2d | £ |
Me | e | Structure
v :
| !
! !
Poling direction | |~
g 1 I e = Fpas
£l T
T !
i im=F,, .d
m, i |
i |
0 iza | Zy+l,
(@) (b) i :

Figure 3.9. (a) Constrained SH-PWAS model for axial-flexural response, (b) Interaction between
SH-PWAS with the structure, axial and flexural load transfer

The model assumptions are (i) stress free boundary condition for the top side of

the SH-PWAS, (ii) perfect bonding with the structure, (iii) constant electric field E,, (iv)

SH-PWAS deforms uniformly with only shear deformation (Figure 3.9b), and (v) axial
and moment loads about centroid axis are linear ramp functions within SH-PWAS

dimension (Figure 3.9b). The structure displacement is
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uz (X, Z,t) — chu J (Z)e—i(}’xx_a)t)
j=1
Axial wave equation in z-direction can be written as

U jreia)t _ f(z)eiwt

-ma’ Y CU e ~EAY C,
j=1 =1

-me’ Y .C,U, ~EAY.CU" = f(2)
p=1 p=1

Multiplying by mode U and integrate over beam length L
o0 L o0 L L R
-0*Y.C,[UUdz->"C,[EAUIU dz = [ f(2)U dz, q=12.3
=l 0 =l 0 0

Then using Orthogonality property

L
ImUpquz:O if p=q
0

From wave equation ¢*0"+ @l =0 and using mode U |
EA

m
EAU] +mawiU; =0

" 2,

Multiply by mode U, and integrating over beam length L
L L
[EAUU dz = -} [mU U dz
0 0
L
[EAUU dz=0 if p=q
0
Defining the quantities:
L L L R
m, :jmuf(z)dz .k, =—j EAU!(2)U;(2)dz , f, =jf(z)uj(z)dz
0 0 0
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(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)



Substitute Eq.(3.62) in Eq.(3.58) using p=q=j
2 f—
2 2 fj 2 kj
Ci(-o"+wj)=— where w; =— (3.64)
m; m;
But due to orthonormality, that is orthogonality in addition to normalization to get

constant C; in U; =C; siny;l substituting in orthogonality relation for p=q

L
m; = j mU%(z)dz =1 (3.65)
0

Then normalization factor is C; = /il and Eq.(3.64) is written as
m

2, 2
Ci(-0" +w)=f, (3.66)

f.
Define modal participation factors: ﬁ then normal mode expansion (NME)

—0" + )

solution can be evaluated by substituting in Eq.(3.55)

f .
u,(x,z,t)=Y —-3 U (z)e" N (3.67)
’ ]Z;‘ (-0’ + a)JZ) .

where normalization factor is included in U;(z) such that U;(z) = /il siny;l
m

For more realistic modeling, damping to be introduced as { and Eq.(3.67) is written as

(oo}

f. )
u,(x,z,t) = ! U, (z)e 0rxd 3.68
:( ) ]Z:;‘(—a)2+2i§’a)a)j +a)j2) J( ) (368)

For SH-PWAS bonded on structure exerting certain force pattern, NME can be further

simplified. As loads exerted by SH-PWAS can be separated to axial normal force f, and
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bending moment m,, where both are defined as linearly increasing functions from zero at
one PWAS end to maxima at the other end,

fe|max = Fowas: me|maX = Fowasd (3.69)
Space wise, the axial force and bending moment can be represented by Heaviside

function, H(z—-z,), and linear function of z as shown in Figure 3.9b, hence
fe (Zrt) = I:PWAS {[(Z - Za) H (Z - Za)]_[(z _(Za + Ia)) H (Z _(Za + Ia))]} eiwt (370)
me(z1t) = I:PWASd {[(Z - Za) -H (Z - Za)]_[(z - (Za + Ia))' H (Z - (Za + Ia))]}eiwt (371)

Axial part

The forced vibration governing equation for axial responses
pAU(z,t)-EAU"(z,t) = f)(z,t) (3.72)
Substituting axial force space distributed Heaviside function into equation of motion
pAli(z,t) —EAU"(z,t) = %[H (z-2,)—H(z—(z,+1,))]e"” (3.73)
where | in the denominator was added to balance equation dimensions to force per unit

length. Applying Eq.(3.55), and following the same procedure of free response yields,

C.(~o +af) = % (3.74)

R S (3.75)
(—a)2 + a),f)mn

L
where fn=If(Z)Un(Z)dZ and can be calculated by multiplying by U, (z) and
0

integrating over beam length
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F

fo =[5 [H(z-2,)-H(z—(z, +1,))]U, (2)dz (3.76)

)
o'—.l—

f = FPWAS [ j U, (2)dz — j U (z)dz} (3.77)

Z,+l,

The factor C,, can be evaluated as

1 PWAS _
S Catral) pAl [ju (2)dz ZL U (z)dz] (3.78)

And finally the axial displacement can be written as:

Z,+,

j U, (z)dz

u,(x,z,t)= Fowas Za U, (z)e ' w* e (3.79)
PpAl & (0 + 2i¢wn, + o)

Flexural part

Equation of motion is
PAV(z,t)+ Elw"'(z,t) =—m.(z,t) (3.80)
Using Eq.(3.71) in Eq.(3.80), considering that the second derivative of linear z function

will yield a Dirac function
. e FPWASd iwt
PAW(Z,t)+EIW""(z,t) = f[—é(z ~2,)+0(z-(z, +1,))]e (3.81)
Applying modal expansion model:
W(x,2,1) = 3 C W, (2)e 0 (3.82)
n=1

With similar procedure like Egs. (3.74) - (3.77) ,we get the C,, as

- 1 Fouas _ _
S eal) pAl J[ 5(2-2,)+ 52 - (2 +1, )W, (2)dz (3.83)
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Using the property of Dirac function when multiplied by a function and then integrated.
This integration equals to the evaluation of the function at the shifted value of Dirac
function; Eq.(3.83) reduces to

C, = (_w21+ ) szfld [-W, (22) +W, (2, +1,)] (3.84)

Then the final normal mode expanded displacement can be evaluated

[W (z,) +W, (z, +1,)]

T (0 + 2w, + o)

w(X, z,t) = Foussd W (z)e™ 0nx) 3.85
p (3.85)

Noting that w displacement is the flexural displacement that is in y-direction in our global
co-ordinates. The total axial displacement consists of the part from the axial solution as

well as the effect of the slope of the flexural solution.

u, =uxwd (3.86)

p
Ignoring the x and t terms in Egs. (3.79) and (3.85) , and considering the effective

displacement along SH-PWAS length as

1k
str _ str
( )effectlve B E-! (Z)dz (3'87)
Z,+l,
[ Ju (z)dzJ
Ipwas =15 Feuss Z: w* 2I§aa)a) +a) ) (3.88)

[W, (z +1,)-W (za)]

~ (—o° +2i¢ 0w, +a) )

+dz

And then we can define dynamic stiffness of the structure kg, (@) as
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Z,+l, 2
[ j U (z)dz}

F
kstr(a))_ —PWAS pstrAstr str Zzl —0° +2|é/aa)0) +a)) (3.89)

PWAS
+d? Z

W(z +1,) W(z)]

~ (—~0? +2ig, 0w, + o’ )

For actual evaluating the dynamic stiffness of the structure, vibration modes need to be
determined, and the modes depend on boundary condition, for instance for free-free

structural beam bonded with the SH-PWAS, we have (Giurgiutiu and Zagrai, 2000)

2 E
un(z)=aacos(ynaz),&a=«/ﬁ,yna=”1”, @, =7, Cp = =" =12, (3.90)

str
The speed of the SH-wave in the piezoelectric material c is different from the axial wave
speed in the structure, hence the latter is denoted by ¢

str

For flexural modal solution,
W, (2)=A, [cosh Va,21C0SY, Z-0, (sinh Vo 24siny, z)} (3.91)

El

|
@ =72 Qs Ao = p;t; , A1W:1/1”0anw(z)dz (3.92)
str” str

where the numerical values for o, | ly,, can be found from Giurgiutiu (2008), pg. 89.

3.2.3.2. Shear horizontal response solution

Shear horizontal response can be determined with a similar procedure to the one
of the axial-flexural response, but taking into consideration the plane of the analysis

containing SH wave propagation direction, i.e. plane 2-3 in Figure 3.10a.
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The corresponding interaction between SH-PWAS and the structure involving SH

response is shown in Figure 3.10b

u,(x,2,t) =Y .CU,(z)e”"*~ Y (3.93)
j=1
Equation (3.88) reduces to
Z,+l, 2
j U, (2)dz
ug\l;'VAS = Cews Z (3.94)

pstr'%tr str — +2'§aww +a) )

where the corresponding eigenvalues will be associated with SH standing waves, i.e

/ 2 G
U,(2) = A, cos(y, 2), A, = T = n,cizr \ @, =, Co e = |28 =1,2,(3.95)

str

y 3l =T,=0
A 88 ® Poling & stress
SH-PWAS | direction
Z h| b - .. . . _.
y ® ® ® ® 2

= ™ SH-particle
ul - |€ P
dlsplacement in

S |._1 directinn . _

2d I I
I | Structure

v .
[ [

1 Vv : I V F,“Lus
Poling direction T | i

| 0 I Za I Za+|a

(@) (b)

Figure 3.10 (a) Constrained SH-PWAS model for shear horizontal response, (b) Interaction
between SH-PWAS and structure, SH response solution

Given the boundary conditions and structural properties, the dynamic structure stiffness

Kgear (@) can be found and used in the PWAS solution to model it as "constrained PWAS"
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3.2.3.3. SH-PWAS tip displacement solution and connection to elasticity solution

Recall SH-PWAS equation of motion

B~ |
u, (%, t) =U, (x)e"* (3.97)
U, i 2| aict
_ela) =—ow U eIa) 398
:u axg p 1 ( )
Define the shear wave speed inside the SH-PWAS
c=ulp (3.99)
we get
c’ oy, +0’U, =0 (3.100)
-1 = .
X’
" 0)2
U+ U, =0 (3.101)
Define the shear wave number
y=wlc (3.102)
we get
U, =C,sinyx, +C, cos yx, (3.103)
ou, .
ra yC,cosyx, —yC,sinyx, (3.104)
3
ou, L, )
O =77 (C15|n7X3+C2 C037X3):_7 U, (3.109)
3
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Defining Kpyas :%Where A=Iband using the stress free boundary condition at the

top electrode

=0, g nA=F=k,U|n (3.106)
2 2

Substituting Egs.(3.106) into SH-PWAS constitutive Eq. (3.3), yields the boundary
conditions in terms of strain. The boundary condition at the top side is

U/|, =s5.0+dyE, (3.107)

whereas the condition at SH-PWAS interface with the structure is

' k .
U, h :ssEs-%Ung +dyE, (3.108)
' 1 kg, .
Uil =5 Ath l|_2+d35E3 (3.109)
S

or Eqg.(3.108) can be re-written in the form

' r A
U, h :HU1|_D +d35E3 (3.110)
- 2
where
k
r=—" (3.111)
kPWAS

is defined as the dynamic stiffness ratio

Using the displacement general solution Eq.(3.103) into Eq.(3.107) and Eq.(3.110)

y/(Cl cosy—zh—Czsin %h):dsslg (3.112)

117



y[Cl cos7/—2h +C, sin 7_2hj = L(—Cl sin y_zh +C, cosy—zhj +0yE, (3.113)

solving Eq. (3.112) and Eqg. (3.113),

Cl(;/cos%h)+cz [—ysin 7—2hj=d35|§3 (3.114)
yh r . yh . yh r yh) A
C.| ycosf—+—sin‘— |+C sin‘———cos‘— |=d..E 3.115
1(7 > +h > j+ 2(7/ > 1 > 3553 ( )

solving Eqgs.(3.114), (3.115)

vh vh  2yh . vh A
Cz(ycos?(cot7—7 —ysm7 =d.E;, >

c - d, E,hr
2 2[pcosg(r cotp—4g) —grsing]

(3.116)

Then multiplying Eq.(3.114) times (1—r) and subtract Eq. (3.114) from Eqg. (3.115)

h 2yh _ dysEsh(r cot g — 4¢)
Cl:cz(COt%_%j > Cl_2[¢)cos¢(rcot¢ﬁ—4¢§)—qﬁrsin¢5]

(3.117)

The final equation of displacement using the two constants will be

d,. E,h(r cot ¢ — 4¢) . d,E,hr
U, = ——sinyX; + ———COS X,
2[¢cosg(r cotp—4g)—grsing| 2[¢cosg(rcotp—4¢)—grsing|

(3.118)

when r—0 C, =0, i.e free PWAS case; Eq. (3.118) reduced to free SH-PWAS case:

U1 — d35 és (_4¢)
—8¢cos ¢

_1dgEhsinyx,  Lug, sinyx,

2 lyh cosy 2 ¢ cos¢

sin yX,
(3.119)
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Checking Eq.(3.119) for bottom surface ,i.e. r#0 and X, =—h/2;

_ dyE;h[rcosg —(r cotg—4g)sin ¢]
* " 2[pcosg(rcotg—ag)—grsing] (3.120)
2(1-cos2¢)d, E;h
2r cos2¢ —4¢sin 2¢

For calculating the bonded SH-PWAS impedance and admittance, we substitute U, from

Eq.(3.120) with the same procedure in the electrical displacement Eqg. (3.24)

d A A
D, =S—3ES|:(285)—d35E3:|+833E3 (3.121)
55
2
D, = d_:ésull - d_sés és + gaséa (3.122)
Sss 55
A u’
D3 = 833E3 1- K§5 1-—4 (3.123)
d35 E3

Where we define the electromechanical coupling factor K, as

2
dgs

E
Se5€33

Ky = (3.124)

Integrating the electrical displacement over electrodes area, results in the electric charge

+p
Q(Xs) = I D3dX1dX2 = I D3dX1dX2 (3.125)
A -10
Substituting D, from Eq.(3.123)
Q(x,) = e, E bl [1-K2 [1- 1 (3.126)
dSSES

Then, equivalent charge across thickness can be determined by integrating over thickness
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N

(jeq = % Q(XS)dXS

(3.127)
Substituting Eq.(3.126) into Eq.(3.127) and integrating over the thickness, yields
. : 6,06)",
Q= —g“ﬁsb' [(1- KZ)h+KE ——t L ] (3.128)
3573

Substituting U, (x;) from EQq.(3.118) , and defining SH-PWAS capacitance C =g;3E, the

electric field is related to voltage by E, =

:'|<)

and recalling u,, from Eq.(3.21) ; then
Eq.(3.128) can be simplified to

6. —cv {1_ < [1 (r cotp—4g)sin ¢ ﬂ

_¢cos¢(rcot¢—4¢)_¢rsin¢ (3.129)

The electric current | is defined as the time derivative of electric charge, i.e. | =Q =iaQ,

hence Eq.(3.129) simplifies to

Y:lziwcP—K;{l— (rcotg-4g)sing H
\Y @ Cos@(rcotgp—4¢p) —grsing

And the constrained SH-PWAS electrical impedance is

(3.130)

_—{1—K§5(1— (reotg—4g)sing ﬂ_l (3.131)
iwC @ CoS@(rcotp—4¢) —grsing
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3.3. FINITE ELEMENT MODELING OF SH-PWAS IMPEDANCE RESPONSE

3.3.1. Free SH-PWAS Models

A multiphysics finite element model (FEM) was constructed for free SH-PWAS
to compute the shear deformation modeshapes. The transducer is modeled with
COMSOL multiphysics using coupled-physics finite element. The maximum element
size is selected as 0.5 mm. The coordinate system is defined such that the poling of SH-
PWAS is defined along the x; direction. Harmonic voltage is applied to the top electrode
and the mechanical response is recorded. The free SH-PWAS dimensions are 15 mm X
15mm x 1 mm. The SH-PWAS material is APC850, detailed properties can be found on

the APC website ( APC International Ltd.). From the provided information, the

transducer capacitance C = &5,(bl/h) is found as 3.48+20% nF. A frequency sweep from

10 kHz to 2000 kHz is performed with the frequency domain solver of the FEM software.
The deformation modeshapes are captures and the electromechanical (E/M) impedance is
calculated. Figure 3.11 shows the modeshapes of vibration at (a) 200 kHz to show the
shear deformation of the transducer, (b) first resonance frequency of the transducer at 900

kHz, where nonlinear effects start to appear at SH-PWAS ends.

3.3.2. Constrained SH-PWAS Models

Finite element models were constructed for bonded SH-PWAS on 1-mm thick
aluminum beams as well as 3-mm thick steel beams. In both cases, three models are
constructed: (i) a 2-D model for the case where poling of the SH-PWAS is along beam
length, (ii) a 3-D model for the same case of having poling direction parallel to beam

length (Figure 3.9a), and (iii) a 3-D model for the case of transducer poling
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perpendicular to the beam length (Figure 3.10a). E/M impedance is calculated for
different models for comparison with bonded SH-PWAS analytical models, and

experimental results.
2 900 kHz

X, 200 kHz X
b\
"/
X A X
X
.

_—

k
VK.;

.

T e— PN

o —
(a) (b)

Figure 3.11. Modeshapes of vibrations for free SH-PWAS using finite element analysis, (a) mode
shape at 200 kHz, (b) modeshape at resonance frequency 900 kHz

Two beams types are considered. Aluminum beam with 1-mm thickness and steel
beam with 3-mm thickness. The rest of the dimensions are the same 100 mm x 10 mm.
The complete listing of model dimensions and material properties are listed in Table 3.1.
Steel beams configurations are used to enhance structure — to — transducer mass ratio, as
will be discussed in the experimental section. Figure 3.12 shows finite element models
for the bonded SH-PWAS on the aluminum beam. SH-PWAS bonded on aluminum
beams has the dimensions of 10 mm x 10 mm x 1 mm. We refer to this configuration of
the SH-PWAS orientation as (PWAS orientation-1). For PWAS orientation-1, 2-D FEM

(Figure 3.12a) and 3-D FEM (Figure 3.12b) were constructed. PWAS orientation-2
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refers to the situation where the SH-PWAS is rotated 90° before bonding on the
aluminum beam, hence, the poling direction in Figure 3.12b is parallel to beam width. In
such a situation, our analytical model suggests the excitation of shear horizontal standing

waves along the beam.

Ground  Applied voltage

SH-PWAS Poling
Element
Illffﬂ?::‘::..::....‘....‘....::‘ILLLT?IffTI'.
1-mm thickT < 10 mm >
alumljrym 100 mm /r
(@
Figure 3.12. FEM for bonded SH-PWAS on 1-mm thick aluminum beams (a) 2-D model, (b) 3-D
model

Table 3.1. Dimensions and material properties for FEM of SH-PWAS bonded on aluminum

and steel
Aluminum steel beam SH-PWAS
beam
Dimensions [mm] 100x 10 x1 100x 15x 3 1éoxxléoxxllo?1nsgle|
Density p [kg/m’] 2700 7750 7600
Modulus [GPa] E=70 E = 200 G=246
Relative dielectric constant &3,/ &, - - 1750
Piezoelectric coeff. dzs [m/V] - - 590E-12
Hysteresis damping ¢ 0.05% 0.5% -
Compliance damping factor 7 - - 4%
Permittivity damping ¢ - - 4%

The frequency sweep performed in the FEM is from 1kHz to 160 kHz. For 1-mm
thick aluminum beams, the mesh size is 0.5 mm for the transducer element, for the 2-D
model the transducer was meshed by finer mesh up to 4 elements per the 1-mm thickness.
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The 3-D models are meshed with 0.5 mm element size and up to 4 elements per the 1-mm
transducer thickness. The 1-mm aluminum beam domain is meshed with similar mesh
like the transducer. Modeshapes are recorded and the bonded transducer E/M impedance

is calculated. The same was done for 3-mm thick steel beams models.

PWAS orientation-1

Poling
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Figure 3.13. FEM for bonded SH-PWAS on 3-mm thick steel beams: SH-PWAS orientation-1:
(a) 2-D model, (b) 3-D model. (c) SH-PWAS orientation-2, 3-D model

Steel beams configurations are used to enhance structure — to — transducer mass
ratio, as will be discussed in experimental section. Figure 3.13 shows the two different
configurations of SH-PWAS bonded on 3-mm steel beams, 2-D and 3-D models. The
frequency sweep performed is 1kHz to 160 kHz. The maximum element size used is 0.5
mm in the 2-D model. For the 3-D models, the transducer is meshed with 1-mm elements
and 4-elements per the 1-mm thickness. The steel beam is meshed with 1-mm elements

as well and 0.75 mm element size through thickness.
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3.4. EXPERIMENTAL SETUP

The free SH-PWAS capacitance was measured experimentally and found to be
2.76£0.05 nF. SH-PWAS transducers E/M impedance is measured using an HP 4194A
impedance analyzer. E/M impedance spectroscopy refers to the antiresonances of the free
transducer. A sweep of frequency up to 2000 kHz was performed and the impedance
spectrum is compared to FEM and analytical model predictions. SH-PWAS transducers
are then bonded on multiple aluminum beams in both orientations. And the E/M
impedance is measured. The E/M impedance peaks refer to beam structure antiresonances
under (a) axial-flexural excitation, (b) shear horizontal excitation (Figure 3.14). Because
the impedance spectroscopy in the bonded transducer case refers to the beam vibration
modes, a frequency sweep is performed up to 160 kHz.

The mass ratio of bonded SH-PWAS to the host aluminum beams is ~30%. This
is because of the considerable higher density of PZT material compared to aluminum
density (Table 3.1). This extra mass and stiffness added by the transducer is not
considered in our analytical model. Another set of experiments are performed on 3-mm
thick steel beams. The beam thickness and steel material was selected such that the
transducer — to — beam mass ratio is 4%. The experimental setup for the steel beams case

is shown in Figure 3.15.
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Figure 3.14. Experimental setup for SH-PWAS bonded on 1-mm aluminum beams (a)
orientation-1, (b) orientation-2, (the black arrow indicates poling direction)
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e
3-mm thick steel beams 100 mm x 15 mm .

SH-PWAS-1 | SH-PWAS-2
(a) 15x15x1 mm ’ (b) 15x15x1 mm

Figure 3.15. Experimental setup for SH-PWAS bonded on 3-mm steel beams (a) orientation-1, (b)
orientation-2, (the black arrow indicates poling direction)

3.5. RESULTS AND DISCUSSIONS OF IMPEDANCE SPECTROSCOPY

In this section, comparisons between experimental and simulation results are
reported. First, experimental results of E/M impedance for a free SH-PWAS are
compared with FEM results and both analytical models (a) with constant electric field

assumption, (b) constant electric displacement assumption.

3.5.1. Free SH-PWAS

Figure 3.16 shows that the first impedance peak reported experimentally = 1060
kHz (=1 MHz). From Figure 3.16b, it is shown that the analytical model with constant
electric displacement assumption over predicts the first impedance peak (= 1330 kHz
analytically). This draws the conclusion that the analytical model with constant electric
displacement through the thickness (peak = 1220 kHz analytically) is more appropriate
for this transducer modeling. Figure 3.16¢ shows the comparison between admittance
predictions and the experimental measurements, indicating first resonance at ~ 900 kHz
The IQR shown in Figure 3.16 corresponds to the interquartile range, a.k.a. the range

that ignores the lower 25% and upper 25% spread of our measured data (10 transducers).

126



Impedance of free SH-PWAS 15x15x1 mm APC 850

1000

Impedance of free SH-PWAS 15x15x1 mm APC 850
const D analytical model

1200 - | 1000 :
freq 1060kHz _>';' experimenta fl’eq 1060KkHz _’ul%l?)\?)AO o experimental
IQR(1080-1060)| ca — —FEM IQR(1080-1060)| .. - = FEM
Avg 1066+11 ol Avg 1066+11 A

3 analytical d ——analytical

.Emo const E _100 s I const D
£ E
S, S
) g
bl ™ Bl N
2 g
=10 - 10 | .
N\
~ N .
1 T T T 1 T T T |
0 500 1000 1500 2000 0 500 1000 1500 2000
(a) frequency [kHz] (b) frequency [kHz]

Admittance of free SH-PWAS 15x15x1 mm APC 850

0.1

Analytical: 900

o experimental

A - = FEM

e
=)
=

= analytical const D or
const B

real(Y)[S]

@
o
=]
=

0.0001

0.00001

0 500

(©)

1000 1500 2000

frequency [kHz]

Figure 3.16. Results comparison for the free SH-PWAS (APC 850): (a) impedance, constant E
analytical model, (b) impedance, constant D analytical model, (c) admittance

3.5.2.

Bonded SH-PWAS on 3-mm Thick Steel Beams

For the axial-flexural response, comparison between experimental, 3-D finite

element simulations, and analytical predictions showed good agreement, as shown in

Figure 3.17. The first fundamental mode impedance peak is measured experimentally as

49.3+0.6 kHz, which agrees with 3-D and 2-D FEM. The second peak is 97+1.75 kHz,

with perfect agreement with FEM, analytical prediction is 100 kHz. The third peak needs

some investigation. The experimental measurement is 136+1.8 kHz, which matches with
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3-D FEM. However the analytical model (152 kHz) shows more agreement with (2-D

FEM ~146 kHz).

Impedance of bonded 15x15x1 mm SH-PWAS on 3-mm thick Steel beams [1]

o experimental
1000 - gnalytical
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Figure 3.17. Comparison between experimental results, analytical predictions and finite element
simulations for E/M impedance of SH-PWAS bonded on 3-mm thick steel beam
(orientation-1)

Referring to 3-D FEM modeshapes at these frequencies (Figure 3.18), it is
noticed that the modeshape of vibration at 137 kHz (which is captured experimentally
and by 3-D FEM) involves coupled vibration in the beam length and width. This is not
considered in the analytical model, which is a 1-D model (beam length and thickness).
The analytical model prediction of 152 kHz is more representative of the mode shown in

Figure 3.18c (145 kHz by 3-D FEM)
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Total displacement simulations

(@)

Figure 3.18 Modeshapes of vibrations of 3-mm thick steel beams with bonded SH-PWAS in
orientation-1 (axial-flexural orientation), at excitation frequency: (a) 48 kHz, (b) 137
kHz, (c)145 kHz

When the SH-PWAS is installed in orientation-2 to generate SH standing waves across
beam length, the predicted 3-D FEM modeshapes show the SH motion patterns (Figure

3.19).

SH displacement in z-direction

Zvyx

(€)

Figure 3.19. Modeshapes of vibrations of 3-mm thick steel beam with bonded SH-PWAS in
orientation-2 (SH orientation) at excitation frequency: (a) 30 kHz, (b) 60 kHz, (c)90
kHz, (d)123 kHz, (e)146 kHz
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Impedance of bonded 15x15x1 mm SH-PWAS on 3-mm thick Steel beams (SH response) [2]
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Figure 3.20. Comparison between experimental results, analytical predictions and finite element
simulations for E/M impedance of SH-PWAS bonded on 3-mm thick steel beam

(orientation-2)

Comparison between experimental results, analytical predictions, and finite
element simulations (Figure 3.20) shows good agreement for SH-PWAS orientation-2
that generates SH deformation in the structure. It is noticed that the impedance peaks are
multiples of ~30 kHz. The third peak of 95 kHz shows the best match between
experiments and simulations. Also, the experimental measurement at 145 kHz shows
agreement with 3-D FEM, however this peak is not captured by the analytical prediction.
Referring to modeshapes (Figure 3.19), it is noticed that the 5" mode of vibration is a
local mode and it drives the beam into some torsional vibration. The 4™ mode starts not to

be a uniform SH deformation; it may contain coupled modes of vibration.
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3.5.3. Bonded SH-PWAS on 1-mm Thick Aluminum Beams

We compare the E/M impedance measurements of bonded SH-PWAS on 1-mm
aluminum beams with 2-D and 3-D finite element simulations. Analytical model
predictions are reported, but are not valid, because the analytical model does not account
for added mass and stiffness by the transducer.

When the SH-PWAS is bonded in orientation-1, where the excited response is an
axial and flexural response, the experimental and 3-D FEM had good agreement with the
first three resonant frequencies 42, 90, and 136 kHz. 2-D FEM shows a similar trend but
with higher values (Figure 3.21). When the SH-PWAS is bonded in a 90° direction, such
that the poling direction is perpendicular to the beam length, in this case the shear
horizontal (SH) vibrating modes are captured at 22, 47, 77, 107, and 136 kHz (Figure

3.22). A good agreement is achieved between experiments and finite element simulations.
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Figure 3.21 Comparison between experimental results and finite element simulations for E/M
impedance of SH-PWAS bonded on 1-mm thick aluminum beam (orientation-1)
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Figure 3.22 Comparison between experimental results and finite element simulations for E/M
impedance of SH-PWAS bonded on 1-mm thick aluminum beam (orientation-2)

One observation for both (a) axial-flexural response, and (b) SH response, that the second,

third... harmonics are almost multiples of the fundamental vibrating mode.

3.6. GuIDED WAVE EXCITATION BY SH-PWAS

3.6.1. Analytical Model

Consider SH-PWAS bonded to the structure shown in Figure 3.8a. The structure
half thickness is d, and 4 is the shear modulus of the structure. SH PWAS dimensions are:
length I, width b and thickness h. Shear horizontal waves have a shear—type particle
motion contained in the horizontal plane. Cartesian co-ordinates are defined such that the
x-axis is placed along the wave propagation direction, whereas the z-axis is the direction
of particle motion, and y is along plate thickness. The poling direction of the piezoelectric
transducer is in the x direction (coinciding with the global z-axis coordinate of the
structure). An approximated 1-D analytical model with the z-invariant assumption is well
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developed in many previous studies, such as: Auld (1990); Graff (1991); Rose (1999).
The analytical model only predicts SH wave motion of particle oscillation along z
direction and propagating in x direction. We use the analytical model to predict
dispersion wave speeds of SH waves. The displacement is assumed to be harmonic

u,(x, y,t)=U,(y)e & (3.132)
where ¢ is the wave number in x direction. Guided SH waves in plates (similar to guided

Lamb waves) are multimodal in nature; as the frequency of excitation increases, new
modes are excited in the plate. The frequencies at which new modes appear are called

cut-off frequencies. The cut-off frequency can be determined by solving the characteristic

equation sin(;7°d) cos(r”d) =0 for nd values, and substitute in

lc
=—=(nd 3.133
cut—off 272_ d (77 ) ( )

where 7is defined from ,° = @?/c? — &%, and c,is the shear wave speed. We define cut-

off frequency in units of Hz, or normalized frequency. The n™" symmetric mode

displacement is
ur (X, y,t) = B, cos(i7’y)e e (3.134)
The n™ antisymmetric mode displacement is
u(x, y,t) = A sin(py)e el (3.135)
The total displacement is
u (x,y,t) = [Ah sin(ny)e 5% + B_cos(i7Sy)e & X}e“”t (3.136)
The amplitudes A , B, are normalized with respect to power flow and found to be

(Santoni, 2010)
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Solving the characteristic equation sin(;7°d)cos(7”d) =0 results in finding wave speeds

and group velocities.

Analytical evaluation for shear horizontal wave speeds and group velocities is
presented in Figure 3.23 for a 1-mm thick aluminum plate. Wave speeds are normalized
with respect to shear (transverse) wave speed, which equals 3129 m/s for our case study

aluminum 2024-T3 alloy. The predicted SH wave modes were three modes in the 4000

kHz frequency window (corresponds to fd /¢, =0.64). The first SH mode is SHO, it is a

symmetric mode of vibration and has a constant propagation speed at any excitation
frequency. The second SH mode is SH1, it is an antisymmetric mode with cut-off
frequency ~ 0.25 (=1565 kHz) . The third mode in our simulation results is SH3, it is
symmetric like SHO, however it is dispersive, i.e. does not have a constant propagation

speed. The cut-off frequency of SH3 is~ 0.5 (=3130 kHz).
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Figure 3.23. Shear horizontal wave speeds for aluminum (a) phase velocities, (b) group velocities
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3.6.2. Experimental Studies

3.6.2.1. Proof of concept

Three sets of experiments are performed; the first set of experiments was a proof
of concept that was performed on 3.4-mm thick aluminum 7075 T6 alloy plate (Figure
3.24). The SH-PWAS was 15 mm x 15 mm x 1 mm and its material was APC850. SH-
PWAS poling direction was along z-direction (Figure 3.24c). The distance between the
two SH-PWAS was 150 mm, the excitation was 3-count tone burst signal with 10 V
amplitude. The excitation frequencies used were 30, 45, 60, 75, and 90 kHz as shown in
the waveforms (Figure 3.25). It was noticed that the received signals in Figure 3.25 were
non-dispersive, (i.e. they have shown the same shape as excitation signal, ~3 count tone
burst), especially at frequencies 60, 75 and 90 kHz. This implies that the wave packet
speed does not change with frequency and this is the intrinsic property of SHO (the first
shear horizontal guided wave in isotropic materials). In addition, it was observed that no
waves propagate along (path 2) in Figure 3.24c. The actuation mechanism of SH-PWAS,
that is shown from free transducer mode shapes (Figure 3.11) implies that the SH-PWAS
resonates in z-direction and the generated waves propagate along x-direction. The

comparison between analytical and experimental results is shown in Figure 3.26.
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Figure 3.24 Pitch catch experiment to excite SH waves and catch it with another SH-PWAS
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Figure 3.25. Waveforms associated with pitch catch SH waves experiment on 3.4-mm thick
aluminum
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Figure 3.26. Experimental vs. analytical wave group velocity curves (SH-PWAS experiment on
3.4-mm thick aluminum plate)

3.6.2.2. Pitch catch experiments between combinations of SH-PWAS and inplane

PWAS transducers

The second set of experiments were a rigorous combination of pitch catch
experiments between (a) SH-PWAS transducers with different orientations (to study
effect of poling direction), and (b) pitch catch experiments between SH-PWAS
transducers and regular PWAS. The SH-PWAS materials was APC850 and dimensions
were 15 mm x 15 mm x 1mm. The regular PWAS material was APC850 and a circular
PWAS of diameter 15 mm and 0.2 mm thickness was used. A detailed set up is shown in
Figure 3.27b. The aim behind those combinations of experiments was to have a better

understanding of the following cases:

1. Does the SH-PWAS transmit only SH waves to another SH-PWAS?

2. Can regular PWAS receive SH waves transmitted by SH-PWAS?
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3. How does SH-PWAS behave when excited by waves coming from regular PWAS?
(The opposite situation of question-2)
4. How does SH-PWAS behave if oriented 90 degrees? Does it transmit SH waves in

this case? Does it receive SH waves?

Seven experiments were performed on a 1-mm thick aluminum 2024-T3 square
plate 1220x1220 mm with a frequency sweep up to 300 kHz. Table 3.2 summarizes the

experiments and captured waves in each case.

The experiment between two SH-PWAS transducers showed the generation of
shear horizontal waves, providing that both transducers are installed such that their

polarization vectors are parallel to each other (experiment #1), (Figure 3.28a).

However, for two SH-PWAS transducers installed such that their polarization directions
are perpendicular to each other, the signals that SH-PWAS4 received from SH-PWAS6

had the speeds of SO the first symmetric Lamb wave modes, (experiment #4). (Figure

3.28¢)
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Figure 3.27. Numbering and directions of pitch catch experiments on aluminum plate, (a)
directivity experiment, (b) separated experiments for combination of SH-PWAS-
regular PWAS pitch catch configurations.

Table 3.2. Description of experiments showing excitation and receiver PWAS transducers
for each experiment and the possible paths of wave propagation

Experiment No. and description of pitch catch configuration Captured waves

Experiment (#1) SH5 =» SH6 SHO, A0
Experiment (#2) SH5 =»PWAS2 SHO, A0
Experiment (#3) PWAS2 = SH5 SHO, A0
Experiment (#4) SH4 =» SH6 SO
Experiment (#6) SH6 =» SH4 SO
Experiment (#7) PWAS1 = SH4 A0, SO
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Experiment #6 (the reverse situation of experiment #4), showed identical results

to experiment #4. This was done to verify reciprocity and lack of nonlinear effects. The
exciter SH-PWAS6 was oriented in the correct direction to send SH waves towards the
receiver SH-PWAS4. SH-PWAS4 was the one oriented with 90. In such a situation we
expected that transmitter SH-PWAS6 was sending out SH waves; however, receiver SH-
PWAS4 neither responded nor picked SH waves; but rather picked SO waves (Figure
3.28c). This suggests that the transmitter excites an SO wave in the measured direction.
This observation is further explained in the discussion section of guided wave
propagation results.

Another feature was observed, when SH-PWASS excites SH waves, the regular
extensional mode PWAS2 picked up two types of guided waves: Lamb wave

antisymmetric A0 mode, as well as SHO wave (experiment #2) (Figure 3.28b). It was not

expected that inplane type PWAS transducers resonate in shear mode and convert shear-
mode waves to output voltage. This observation is further discussed in the discussion of
guided wave propagation results section.

Finally, regular PWAS2 was excited and the signal was caught by SH-PWAS5

(experiment #3). Similarly, PWAS2 was excited and the signal was caught by SH-

PWAS4 (experiment #7).

Experiment #3 was identical to experiment #2, where the SH-PWAS5 picked up

SH waves (exactly like Figure 3.28b). In experiment #7, where PWAS2 was excited and
the signal was caught by SH-PWAS4, the received waveforms were corresponding to

guided Lamb waves only (Figure 3.28d).
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3.6.2.3. Directivity of SH-PWAS

The third set of experiments involves a similar setup of set #2, but with added
transducers at 30° and 60° degree angles. The complete setup is shown in Figure 3.27a.
Experiment #1 (SH-PWAS5->SH-PWASG) indicates the zero angle direction pitch catch,

experiment #1(30) indicates the 30° pitch catch, and experiment #1(60) indicates the 60°

pitch catch.

Receiver SH-PWAS6 transducers in experiment #1(30) and (60) no longer have a

parallel poling direction to transmitter SH-PWASS5.

Similarly, experiments #2 and #4 are performed at different angles, 0°, 30°, and 60°.

Figure 3.29 shows the directivity patterns for received wave amplitudes at different
experiments.

Figure 3.29a shows SH wave amplitudes for a pitch catch experiment between
two SH-PWAS transducers. Starting from parallel poling directions (at 0°), the SH wave
amplitude is the maximum (e.g. at 60 kHz). At 30°, the SH wave amplitude decreases,
and then it further decreases at 60°. This is not observed with all the frequencies. On the
other hand, A0 wave amplitudes received at SH-PWAS for the same experiment show an
increase in amplitude as the angle increases from 0° to 30° to 60°. This agrees with the
previous results of exciting axial-flexural response along the poling direction. As the

angle of the pitch catch experiment changes towards 60°, a stronger A0 mode is obtained.
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Figure 3.28. Dispersion group velocity curves for received wave signals (SH-PWAS experiment
on aluminum)
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Experiment #2 (SH-PWAS5-> regular PWAS2) showed similar patterns to

experiment #1. However, the received signals at 60° were noisy. Figure 3.29c shows
amplitudes of SH waves received by PWAS2 and generated by SH-PWASS5, for

experiment #2, 2(30), and 2(60). Figure 3.29d shows amplitudes of received AO waves.

Experiments #3 are the opposites of experiments #2. Those are not performed in this

study.

Experiment #4 (SH-PWAS4 - SH-PWASG6) involves the pitch catch experiments
between two SH-PWAS transducers having poling directions perpendicular to each other
(for 0° case). Figure 3.29%,f are for the same received SO wave amplitudes, but at
different frequencies. They are plotted on two polar plots, because of considerable change
in amplitude values in [mV] between 45,75 kHz and 255,300 kHz. It is observed that the
SO amplitudes are much less at lower frequencies. Also, it is observed that the

perpendicular poling directions — experiment #4(0) — cause the least SO wave amplitudes.

S0 wave amplitudes are much higher at 30° and 60° angles between poling directions of

the two transducers.

3.6.3. Finite Element Simulations

The models in section 2.3 predict SH-PWAS effects at 0° and 90° separately. Also,
it is hard to combine (axial-flexural) and (shear horizontal) separate responses of Figure
3.9b into 2-D analytical model. Hence 2-D multiphysics FEM simulations are constructed
to better understand the possible excited waves by SH-PWAS, and to verify directivity
experiments. Shear horizontal SHO, symmetric SO and antisymmetric A0 Lamb waves

were picked by FEM simulations.
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Finite element model was constructed for the bonded SH-PWAS to the structure.
The SH-PWAS dimensions were 15 mm x 15 mm x 1 mm while inplane PWAS
dimensions were 7 mm X 7 mm X 0.2 mm. The mesh size of SH-PWAS elements was 0.5
mm, and 4 elements per the 1-mm thickness. A 1-mm aluminum 2024 alloy plate was
used in our simulations. The plate was a 450 mm square plate. The structure maximum
element size was set to 4 mm and 2 elements through the 1-mm thick aluminum plate.
The plate was modelled with free BC and the SH-PWAS was perfectly bonded from the
bottom surface and free from the upper surface.

Excitation signal was 3-count tone burst with canter frequency 60 kHz and

voltage amplitude of 10V. The time step selected was 0.5 xS and simulation time was 200

us . Figure 3.30 shows the results of the simulations.

(@) (®)

Figure 3.30. FEM simulations for waves excited at 60 kHz by (a) SH-PWAS, (b) inplane PWAS.
Variable plotted in (a) is z displacement, variable plotted in (b) is y displacement
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Figure 3.30a shows the displacement field in the z-direction, i.e. the direction of
shear horizontal particle oscillation. SHO waves had a strong oscillation in the z-direction,
and propagated in the x-direction between the transmitter and receiver SH PWAS
transducers. Antisymmetric A0 and symmetric SO modes were observed propagating in z-
direction. For comparison, the waves excited by inplane PWAS (Figure 3.30b) are
reported, only AO and SO existed. The simulations in Figure 3.30 are both captured at
simulation time equals 77 us. The displayed parameter in Figure 3.30b is eZ the out of
plane strain; it was selected instead of the displacement fields to be able to show SO and

A0 modes together.

Figure 3.31. FEM simulation for the case of 90 degree orientation difference between two SH-
PWAS

When FEM simulation was repeated between the two SH-PWAS transducers, but
with the transmitter SH-PWAS oriented by 90 degrees (Figure 3.31), the waves

propagated towards the receiver SH-PWAS were SO and a noisy AO. This was in good
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agreement with the observed results from experiment #4 (Figure 3.27b and Figure

3.28¢).

Figure 3.31 shows the displacement fields in x-direction at 40 us . Particle motion

in the x-direction was selected; because for such configuration, SH waves had a particle
oscillation in the x-direction and propagated in the z-direction. Besides, SO Lamb wave

was propagating in the x-direction — with dominant particle motion in the x-direction.

3.6.4. Discussion of Guided Wave Propagation Results

The FEM simulations of SH wave propagation between two SH-PWAS
transducers (Figure 3.30a) validate the transducer actuation mechanism of exciting SH
waves in the direction perpendicular to the poling direction. SH wave amplitude
decreases as the direction of measured response changes from 0° towards 90°. This agrees
with Figure 3.29a at excitation frequency 60 kHz. Recalling experiment #6 in the pitch
catch experiments, i.e. the opposite of experiment #4 (Figure 3.27b). The receiving of the
S0 waves seem to contradict with the results of Figure 3.28a, where SHO and A0 were
only captured along the direction perpendicular to the poling direction of transmitter SH-
PWAS. Referring to Figure 3.30a, a very weak SO mode appears along 45 degrees from
the x-direction (almost vanishes along the x-direction). Hence, one can conclude that the
SH-PWAS actually excites SO waves in the same direction of exciting SH waves, and this
is due to 2-D effects and the fact that structure particle vibrations at one side of the
transducer definitely affect vibrating particles at the other sides. The considerably

reduced SO wave amplitudes are proven from Figure 3.29¢,f along the 0° direction.
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The feature observed in experiment #2 in section 3.6.2.2 was that the regular
inplane PWAS was able to pick up SH waves. This means that it resonates in its
extensional-contraction mechanism when shear wave front hits the transducer. Two
dimensional effects can be the reason; that is, SH waves excited by SH-PWAS (with
structure particles vibrations in the z-direction) arrive at regular PWAS with the z-
direction vibrations, and due to 2-D effects, z-direction oscillations are actually
considered extension-contraction oscillations (if viewed from another diameter of the
receiver PWAS). In addition to the 2-D effects, SH waves can be mode converted at the
receiver PWAS; because the transducer itself is considered an inhomogeneity in the wave
field. A similar observation in Su et al. (2007) suggested that SO wave mode converts to
SHO. SHO can be mode converted (at the time of flight of receiving SHO) to a mode that a

regular PWAS interacts with.

3.7. POWER AND ENERGY TRANSDUCTION WITH SH-PWAS

The study of power and energy transduction between the PWAS and structure has
been presented in chapter-2 where we studied exact guided Lamb waves power and
energy. Energy transfers from electrical to mechanical in the transducer, then the
mechanical energy causes the wave to propagate. This study presents an analytical model
for SH waves power and energy based on the normal mode expansion (NME) technique.
The solution assumes straight crested harmonic waves and no evanescent (i.e. non
propagating) waves exist. Mode amplitudes are normalized with respect to power flow;
and the actual amplitudes can be determined from Eqg. (3.137).

Considering that only SH waves are propagating; the surviving strains are
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s =M g N (3.138)
OX

Strains and stresses can be evaluated given the total displacement, Eq. (3.136); however,
as we will show in the next page the symmetric and the antisymmetric displacements can
be in separate solutions; because the orthogonality condition cancels the terms involving
multiplications between cosine and sine terms from symmetric and antisymmetric modes.
Hence, we can proceed with separate analysis. This can be useful to separate wave energy
and power and quantify the partition of symmetric modes as well as the antisymmetric
ones. Following the method presented in Santoni (2010) , modal participation factors are

found to be

~N b/2
Y4 (d)e*‘énx f 't (X)dx for &<x
4'F)nn —-b/2

a'(x)= Y. (d) g I et (X)dx for —2<x<% (3.139)
4'F)nn -b/2

0 for x<-%

Noting that this is valid for forward propagating mode only, b is the width of SH-PWAS

and it is the transducer dimension along x direction in our study, d is half the plate
thickness, P, is power flow factor V.'(.) is the conjugate of velocity field in z direction
for the mode n, t, is the PWAS traction or shear stress. We denote a, (x)by a + sign to

show that it is for the forward propagating mode. Modal participation factor is an extra

term to be multiplied by the wave amplitudes. It is a function of the distance x and also

accounts for the transducer dimension b. We define a° the modal participation factor for
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the n™ symmetric mode, similarly a? for the n™ antisymmetric mode. Egs.(3.136),

(3.139) yield the strains and stresses as

_ A Ay n—iERx S i asS va—iEox | qiot
Syz _|:A177n Cosnn ye - Bn77n Slnnn ye :|e
.. =—i[ A& sinn;ye 5 + B,& cosns ye v e
(3.140)
_ A Ay a—iElx S wim oSy a—iEx | Liot
Ty, —u[Aﬂn cosz, ye =" =B, sinn,ye }e

T, = —iu| A& sinnye "+ B,£3 cosysye e

The total strain response (due to symmetric and antisymmetric waves) and the conjugate

values of the strain are

5. =80 (1) A, (& sy )e " 458 (1), (£ cosnty)e
S, =ar(i)A, (&' sinply)e'™ 9 +a2 (i)B, (&5 cosply)e ™
S, =arA, (77? coS n,fy)e‘i(‘s"AX‘”‘) ~a’B, (Uf sin 77nsy)e—i(§nsx—(ot)

& _ A A A i(EPx-t) s S eip S i(&5x-at)
Syz =4a, A1(77n cosm, y)el o —a, Bn (nn sinn, y)eI o

(3.141)

It needs to be mentioned that strain quantities in Eq. (3.141) are summation for one single
symmetric mode and one single antisymmetric mode, taking into account the modal
participation factors.

From the total displacement equation, Eq. (3.136), we obtain the velocity and the

conjugate velocity as

v, =a (im) A (sinpy)e @ +a} (iw)B, (cosrsy e

e s (3.142)
v =at (—ia)) A (sin n:y)en(f:n o0 4 g (—ia)) B, (cosnf y)eu(45n x-at)
The time averaged power is
(p)=—7[(Tv )dA:—ETﬂ{S_ v, Jdy (3.143)
2 \ X2z 2 B xz*'z
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Substituting Egs. (3.141), (3.142) in Eq. (3.143) and simplifying yields the time averaged

power as,

] | S 2 S i 2 > |
[a‘n B,J’ (s, )f {cos sy dy [a°B,] (—ﬂwgn)ﬂ S'”n +dj}
__b b "
- -8 |
[a AT (-uwd; )j {sin®nlyldy [afﬁ]z(—uwéf){[d— sin2 J}
- 17 an
(3.144)

First: terms with multiplied sine and cosine functions from the symmetric mode and the
antisymmetric mode are cancelled; for the characteristic equations of the symmetric and
the antisymmetric modes, either sine or cosine terms will be zero at a time. Hence, there

is no dependency between symmetric and antisymmetric modes. Second: terms with

sin(2n,d) appearing with the analysis of single type of waves are also crossed out
because sin(27,d) = 2sin(r,d)cos(r,d) and for our characteristic equations for symmetric

and antisymmetric, either sine or cosine terms will be zero at a time. The final result for

wave power takes the from
(p)=">"bd {Z[aﬁ B,I'¢, +Z[aM]2§n’*} (3.145)

The time-averaged power varies at different x values, as the x dependency comes from
the modal participation factors. All the following numerical illustrations are shown at the

top surface of the structure (y=d) and at the edge of the transducer, where (x=b/2).
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Figure 3.32. Guided SH waves power for three SH modes: two symmetric modes: SHO,SH2, and
one antisymmetric mode: SH1, (a) individual wave power for SHO, SH2, (b) SH1
wave power, (c) total symmetric waves power, (d) total antisymmetric waves power.

With similar analysis, define time-averaged kinetic energy
1 (1
k.)==p|=V,V,dA 3.146
(k)=5p]5V% (3.146)

And the final analytical form will be

2

d
(k)= [ (v, 7. Jdy = 22ba {Z[as B, +Z[amr} (3.147)
—d n n
Time averaged potential energy is defined as

(v, ) :—I{(y)SXZSXZ +()S,,S,, } dA (3.148)
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Figure 3.33. Guided SH waves energy (kinetic and potential energies) in [J]

With similar analysis like the one we followed in power and kinetic energy; then

(3.149)

Using the relation * = »®/c? — &2, then we can prove that time-averaged potential energy
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Numerical simulations for developed analytical models are shown in Figure 3.32 and
Figure 3.33. The SHO power flow oscillates as a function of frequency with constant
amplitude (because of having constant dispersion wave speed). However, the peaks and
valley responses are due to the SH-PWAS finite dimension effect (what is commonly
referred to as tuning of the transducer). SH1 (antisymmetric shear horizontal mode)
kicked off at 1560 kHz Figure 3.32b,d). SH2 (symmetric mode) started at 3150 kHz
(Figure 3.32a,c). Both SH1 and SH2 are dispersive modes with variable power
consumption at different frequencies (because their wave speeds are not constant along
the frequency spectrum). Similar conclusions are drawn from simulated results of wave

energies (Figure 3.33).
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3.8. SH-MATLAB GRAPHICAL USER INTERFACE

A graphical user interface has been developed to compliment the other two -
Lamb wave related software developed previously in LAMSS, namely WAVESOPE, and
MODESHAPE. The interface is shown in Figure 3.34. It can simulate SH analysis for
different aluminum, steel alloys, titanium...etc. It allows changing the thickness of the
plate under investigation and the maximum excited frequency. Phase and group velocities
can be obtained; it allows getting the velocities in actual units, i.e. m/s or normalized
velocities with respect to material shear wave speed. It can also display normalized and/

or non-normalized mode shapes.

u <5tudent Version> :SH_GUI_speed_mods_energir_:lu
GUlto calculate and plot Shear Horizontal wave
speeds, mode shapes, and wave energy ® 2012 LAMSS
nput 4 T T T
1 clcs ' N
Aluminum-2024... ¥ | = ° - Antisymmode 0 ||
. ' — - — - AntiSym mode 1 |
plate half thickness [mm] [ T P . AntiSym mode 2 [--- ==~
1 — - — - AntiSymmeode 3 | |
max frequency [kHz] 1500 | — - — . AntiSym mode 4 .\
¢S [mis] 3129.0026 b AntiSymmode 5 [ oL -
| Sym mode 0 \
: ‘\ Sym mode 1 ~
Button Group————————————— 1 B Sym mode 2 :T_;_'T:—
() Plot mode shapes cele Sym mode 3
- » Sym mode 4
{No normalization} Sym mode 5
() with Normalization UU "1 2' 3
show both mode types | fdics
Panel
’7. *) caleulate wave energy @ show cicS vs. fdlieS (0 Group velocity
() show c/cS vs. fd (©) Group velocity
() show cws. f ) Group velocity

Figure 3.34. SH GUI, developed in LAMSS (www.me.sc.edu/Research/lamss/)

It can be used to plot only symmetric SH waves (e.g. SHO, SH2,...), or antisymmetric

waves only, or both (Figure 3.35)
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Figure 3.35. Example of plotting phase velocities of antisymmetric modes only

Figure 3.36 shows an example of plotting group velocities of both symmetric and

antsymmetric modes that exist up to the specified frequency. Figure 3.37 shows mode

shapes.
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Figure 3.36. Group velocities for both symmetric and antisymmetric modes
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Figure 3.37.

3.9.

The

impedance of shear horizontal (SH) coupled piezoelectric wafer active sensor (PWAS)
transducers.
analytical model with the constant electric field assumption is more representative of the
experimental case and FEM. The first resonance frequency of the free transducer is 900
kHz. Experiments and FEM of bonded PWAS on structures showed the local resonance
effects of the PWAS at frequencies greater than 100 kHz. Discrepancies exist in the

analytical model of SH-PWAS bonded on a structure such that the mass ratio of the

normalized and non-normalized mode shapes

SUMMARY AND CONCLUSIONS

chapter presented predictive analytical models for electromechanical

Investigation of E/M impedance of free SH-PWAS indicated that the
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transducer — to — beam structure is greater than 5%. This case was exemplified by SH-
PWAS bonded on 1-mm aluminum beams (mass ratio was 30%). The second case
studied was SH-PWAS bonded on 3-mm steel beams. In this case, the analytical model
showed good agreement with FEM simulations and experimental results. It was shown
that the SH-PWAS has directivity effects, where an axial-flexural response is obtained
when the transducer poling direction is parallel to the beam length. When the transducer
poling direction is perpendicular to the beam length, the SH response is obtained.

The study then discussed the excitation and reception of SH waves using the SH-
PWAS. Excitation of SH waves was analyzed by finite element simulations and
experiments. SHO non-dispersive waves were captured in aluminum plates. Multiple
experiments were performed to show the SH waves excitation and receiving capabilities
of both SH-PWAS and regular inplane PWAS transducers. It was shown that positioning
and orientation of SH-PWAS affects the generation of SH waves: (1) SH-PWAS excites
SH waves in the direction perpendicular to its poling direction, (2) Regular inplane
PWAS can sense SH waves. Additionally, (3) SH-PWAS transducers can sense A0 and
SO Lamb waves. Directivity analysis showed that excited SH wave amplitude gradually
decreases as the measuring direction deviates from the maximum received amplitude
direction.

A predictive model for guided SH wave’s power and energy was analytically
developed based on the normal mode expansion technique. The model assumed that (a)
waves are of straight crested harmonic type, (b) evanescent non-propagating waves are
ignored, and (c) the modes are of orthogonal functions. The amplitudes of each mode

were normalized with respect to the power flow and modal participation factors were
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determined. Modal participation factors are functions of transducer dimension. The wave
power, Kinetic energy, and potential energy were modelled and numerical results were
presented. As expected, the Kinetic energy equals the potential energy in total and for
separate modes as well, due to the fact that modes are orthogonal. SHO mode wave power
and wave energy oscillate with frequency, but have constant amplitude due to the
constant wave propagation speed of SHO in isotropic materials. SH1 and SH2 modes are
dispersive shear horizontal modes.

Investigation of SH waves excitation in composite materials, predictive finite
element models for SH-PWAS electromechanical impedance for the bonded transducer

on composites are covered in a following chapter.
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CHAPTER 4: GUIDED WAVES PROPAGATION IN COMPOSITES

The first objective of this chapter is to review the different predictive models for
evaluating dispersion curves of ultrasonic guided waves in composites. The second
objective is to develop a stable robust code for predicting dispersion curves in composites,
apply it to case studies, and compare the results with commercial software.

In order to fully extend power and energy models of Chapter 2 to anisotropic
multilayered composite materials, dispersion wave propagation speeds needs to be
determined,; that is the focus of this chapter.

The algorithms which we review for the wave propagation analysis in layered
composite plates are: (a) transfer matrix method (TMM), (b) global matrix method
(GMM), (c) semi-analytical finite element method (SAFE), (d) local interaction
simulation approach (LISA), and (e) equivalent matrix method (EMM). Description of
each technique was covered. Then, the advantages and distinct features of those
techniques were presented. Case studies for unidirectional, cross ply, and general quasi
isotropic laminates were presented. Finally, experimental and finite element simulation
studies were performed on glass fiber reinforced polymer composites (GFRP).
Simulations and applications on carbon fiber reinforced polymer composites (CFRP) are

presented later in Chapters 5 and 7.
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NOMENCLATURE

Ax = transfer matrix for kth layer in the TM method

Aus = component of the TM relates displacements with stresses

A0 = fundamental antisymmetric Lamb wave mode

Bi = amplitudes of partial aves in GM method

Cij = stiffness matrix components in layer local coordinates, i, j =
1,2,...,6 Pa

C = stiffness in tensor notation

¥ = stiffness matrix in global coordinates

[D] = the matrix relates amplitudes of partial waves to displacement and

stress fields

diq = values relate amplitudes of partial waves to stress fields for the gth
eigenvalue, i =1,2,3

f = frequency, Hz

f) = element force vector

i = square root of (-1)

K! = layer stiffness matrix and element stiffness matrix in FEM
k = layer index in a composite layup

L = element size in FEM

M = element mass matrix in FEM

N = number of nodes per wavelength in FEM

N(X1, X2) = FEM interpolation functions

p = force vector in FEM
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Q = eigenvector or mode shapes in FEM

SO = fundamental symmetric Lamb wave mode

SHO = fundamental shear horizontal guided wave mode

S = strains tensor

T = transformation matrix between local and global coordinates

T = transpose of transformation matrix

Ti = stress components, i =1, 2...6, Pa

t = time, s

t = traction vector

U, U U3 = displacement amplitudes, m

Uy = displacement amplitudes of the partial waves for the qth
eigenvalue

UJ(xs) = nodal displacement vector of element j

u = displacements vector

u* = displacements at the top (-) and bottom (+) of a layer

Vg, Wy = ratios of amplitudes of partial waves

v = velocity

w = displacement in LISA, m

W = displacement second derivative with respect to time, i.e.

acceleration,

X1, X2, X3 = global coordinates, m
a = ratio between the wave numbers in the x3 and x; directions
oM = mass proportional damping coefficient, rad/s
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Pk = stiffness proportional damping coefficient, s/rad

r = boundary

€ = strain tensor

0 = waver propagation angle with respect to fiber direction
A = wave length, m

é = wave number, 1/m

p = material density, kg/m®

gjj = stress components, i, j = 1,2,3, Pa

o = stresses at the top (-) and bottom(+) of a layer
oij* = normalized stress components with i&

o = stress tensor

) = angular frequency rad/s

= double dot product of tensors

4.1. LITERATURE REVIEW

The use of composite materials is currently implemented in many structural
components, including automotive parts, civil infrastructures, compensatory devices and
aerospace structures. Composite materials combine the properties of two or more
constituent materials, for example, carbon-fiber reinforced polymer composites (CFRP)
combine the specific stiffness and strength of carbon fibers with the properties of epoxy
matrix. Composite materials can be generally manufactured with metallic, polymeric, or
ceramic matrix; however, in this study the focus is on polymer matrix composites for
their wide application in the aerospace industry. Many parts of recent air and spacecraft

are manufactured from CFRP and glass-fiber reinforced polymers (GFRP) as well.
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Because of the challenge of constructing high strength structural parts with constrained
light weights; polymer composites are more favorable than metallic alloys. Also, polymer
composites can be manufactured into complex shaped components and their properties
can be tailored by changing the stacking sequence of layup, i.e. layers or individual
lamina. Detection of damages and flaws as well as structural integrity of polymer
composites is receiving as much attention as the advantages and applications of these
materials. Ultrasonic Lamb waves, or guided plate waves, have long been acknowledged
for damage detection in composites (Rose, 1999; Su et al., 2006; Giurgiutiu and Santoni,
2011). For any study of guided wave propagation in structures, wave propagation speeds
are essential for further analysis, e.g. impact source localization, reflection, transmission
and mode conversion at damages. In many cases, robust predictive models of wave
speeds are needed before conducting experimental studies. Therefore; in this study, our
goal is comparing different methods of calculating ultrasonic guided wave speeds in
composite materials.

Lamb wave theory is well documented in many references, such as: Rose (1999);
Graff (1991); Viktorov (1967); Giurgiutiu (2008). For isotropic materials, the wave
equation can be expressed by two potential functions, and the pressure and shear wave
velocities. The shear horizontal (SH) wave propagation in this case is decoupled from
symmetric and antisymmetric Lamb waves propagation. Lamb waves are symmetric and
antisymmetric and they are dispersive by nature, i.e. (are having different speeds at
different frequencies). The characteristic equation (Rayleigh-Lamb equation) is obtained
by solving wave equation and applying stress free boundary conditions at upper and

lower surfaces of the plate.
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In the case of fiber reinforced polymer (FRP) composites, where the material is
generally anisotropic, the three types of guided waves (P, SV, and SH) are coupled and it
is not possible to find closed form solution of the dispersion curves. Several textbooks
have documented guided wave propagation in composites: Nayfeh (1995); Rose (1999);
Rokhlin et al. (2011). There are different methods to calculate dispersion curves in
multilayered composite materials (a) transfer matrix method (TMM); (b) global matrix
method (GMM); (c) semi-analytical finite element method (SAFE); (d) local interaction
simulation approach (LISA); and (e) equivalent matrix method (EMM). Mathematical

formulations of those techniques are presented, along with highlighting key features.

4.1.1. Transfer Matrix Method (TMM)

Transfer matrix method (Thomson, 1950; Haskell, 1953) is a technique for wave
propagation analysis in layered media; its advantage is that it condenses the multi-layered
system into few equations (four in the case of decoupled SH waves or six in the case of
coupled SH waves) relating the boundary conditions at the first and the last interface. It
eliminates all other intermediate interfaces; this saves a lot of computational time and
complexity. Hence, TMM is favorable. One drawback TMM suffers is the numerical
instability of the solution at large frequency-thickness product values (Lowe, 1995). We

followed the formulation in Nayfeh (1995) and Santoni (2010). Considering the

composite plate layer is in X , X, plane with wave propagation along X, direction

(Figure 4.1). The angle of fibers with respect to direction of wave propagation is 6.
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Figure 4.1. Composite layers notation and coordinates
The layer stiffness matrix in global coordinates is
[c]=[T1"[c][T]" (4.1)

where Tis the transformation matrix and can be found from many composites textbooks,
e.g., Jones (1999); for completeness, we include it here

2 2

m n 0 0 O 2mn
n m> 0 0 0 -2mn
0 0 1 0 O 0
_ 4.2
] 0 0 0 m —-n 0 (42)
0 0 0 n m 0
-mn - mn 0 0 0 m’-n?]

Denoting m=cosé@, n=sin@ ; the conversions between local coordinates X; to global

coordinates X, can be done using

[s1=[TTS'IT]

(4.3)
[cl=[TTCITT

where capital C’, S"are the layer stiffness and compliance matrices respectively in local

coordinates, and C is the layer stiffness matrix in global coordinates. The maximum

166



anisotropy we are considering is orthotropic layer (in local coordinates); once the layer is

rotated by angled, it becomes monoclinic anisotropy (in global coordinates).

_Cl’I C1'2 Cl,S O 0 0 ] _Cll C12 C13 0 O ClS ]
C:L,2 C2’2 C;S O 0 O ClZ C22 C23 0 0 C26
Cr — C1’3 Cé3 C?:3 O’ 0 0 c= C13 C23 C33 0 O C36 ( 4. 4)
o o0 o0 c, 0 O o 0 0 ¢, cg O
0o 0 0 0 C, O 0 0 0 ¢ C O
10 0 0 0 0 Cg] [Cs Cx Cp 0 0 Cy
Equation of motion is
o°u
V(c:VUu)=p—
(c:V.u)=p—3 (4.5)
Vu=S

where p is the density, S is the strains tensor, y is the displacements vector. The
displacement vector is decomposed in the three axes components as

(U, Uy, Uy ) = (Uy,U,, U, gt (4.6)
where ¢is the wave number in the X, direction, v=w/&is the phase velocity, «is the
angular frequency, «a is the ratio between wave number in the thickness direction X, and
X, direction, and U, is the displacement amplitude. Substituting Eq. (4.6) into equation of
motion, Eq. (4.5) and cancelling the exponential terms yields

(€ +Coe® = pV? JU, +(Cyp +Cpe2® JU, +(Cy +Cy5 ) @U, =0
(Cog +Cis® U, +(Cop +Cppr® = V2 )U,, +(Cys +Cy ) U, =0 (4.7)
(Cpg+Cog ) U, +(Cye +Cy ) AU, +(Co5 +Cgyr”® — pv* U, =0
For a given value of v, this is an eigenvalue problem, and the determinant of Eq. (4.7)
can be expressed as
a®+Ba’+B,a®+B,=0 (4.8)
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where B, values are found in Nayfeh (1995) with slight corrections as

Bl = [C11C33C44 o C123044 + 2C13CSGC45 o 2C13C44Css + 2013055 - 2C16C33C45 + C33Cs5Ce6 — C§6C55
~(Ca5Caq + CoaCos +CasCss —Cys) PV 1/ A
Bz = [C11C33C66 - CllC§6 - 2C11036C45 +Cp3CCo5 — C11C§5 - Clzscee + 2C13C16C36 + 2C13C16C45 - 2013055(:66
_C126033 + 2C16036055
_(C11033 +CCy — C123 - 2C13C55 - 2C16C45 +C33Ce6 — C326 - 2C36C45 +CyqCos — st + C55C66)pV2
+(Cy3 +Cyy + 055)p2V4] 1A
B; = [C1;Cs5Ce6 — 0126055 —(Cy1Cs5 +Cy1Ce5 — Clze + CSSC%)pVZ +(Cpy +Cs5 + Ces)p2V4 - pSVG] 1A
A = CyyCyyCss — C33C§5
(4.9

By solving Eq. (4.8) symbolically, it can be shown that the eigenvalues ¢; are found in
pairs, i.e.

o, =—0,, 0, =05, Qg=—0 (4.10)
Each pair of eigenvalues represents a pair of similar partial waves propagating in
opposite X, directions, one downward, and the other upward. Using any two equations in

Eqg. (4.7), we find the displacements ratios (i.e. eigenvectors). However, careful selection
of the two equations is important. If this algorithm is used for isotropic metallic layer or a

composite layer that is almost isotropic, the displacements ratio W, =U,, /U, suffers a

singularity situation. Therefore, the ratios documented in Nayfeh (1995) and Santoni

(2010) were exchanged by (Rokhlin et al., 2011)

2 2 2
v Uy, (c11 +Caslg — PV )(045 +Cy ) 2 —(c16 +Cy502, )(013 +Cg5 )

q 2 2 2
Uy (C13 +C55)aq (Cse +Cpg — pV )_(Clﬁ +Cusy )(C45 +C'36)aq

(4.11)

2
2 2 2 2 2
o Un (o cuad = v ey ouct —pv*) (6 + 0l

! Uy (C16 +C450(qz)(c45 +Cae)% —(Cx +C55)aq (Cee +C44a§ _pvz)
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where = 1,...6 represents the partial wave number. By doing this, a more general robust

algorithm is attained. The displacements in Eq. (4.6) can be written as

6 .
(Up Uy Ug ) = D (LV, W, U e (4.12)

g=1

The stresses are

Cy+a, c13Wq + chVq

Cp + 0 CW, +CyV,

Cpy + 0, CogW,, +CyeV, i

- cf(x1+a x3—vt)

=g Ugee ™ (4.13)
2 0ChqVy +Cys (0 + W, ) [~

,CieVy +Css (g + W)

a4 4 4 4 4.4

Cyg + 1 CogW, +CqV,

The stresses that are of interest are o,;,0,,,0,,. Stress free boundary condition is applied

on them; we define

6 .
(630:00:0%) = (T3 T T ) = D (U g g U0 ™ (4.14)

gq=1

where ¢ =0o/i&, and d,,,d,,. d,, are terms extracted from Eq. (4.13)

d, Cp5 + & CeW, +C5V,
o | =] @CasVy +Cos (g +W, ) (4.15)

Gag || @€V +Cus (2 +W,)

q

q

Combining the displacement and stress relations yields the state vector in a layer

U 1 1 1 1 1 1 1 Ulleigozlx3 7]
u, \A \A Vv, V, V, V. ||u 12e7i§a1x3
{{“}}: Uy || Vo MW W W W U
{0} T d; dy dy dy  dg  dg [[UeTEe .
O3 dy, -d,, dy —dy dy —dy]|l U.e“ss
0| | Oy Oy dy  —dy  dg  —dy ||Ue |
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The idea of the TMM is relating the layer properties and the boundary conditions at the

top and bottom surfaces with those of the other layers. This is done by applying

continuity of displacements and equilibrium of stresses. The layer transfer matrix A

relates the displacements and stresses of the top of the layer to those of the bottom of the

layer
(4.17)

Call A the 4 x 4 hyper matrix of Eq. (4.17), X the 6 x 6 matrix of Eq. (4.16), U the
vector of U, elements, and H the diagonal matrix of elements €“**; hence,

A =X HX* (4.18)
The total TM is calculated by multiplying the transfer matrix of individual layers
consecutively. And to satisfy stress free boundary condition for the whole laminate; o

and o in Eq. (4.17) are set to zero, hence the characteristic equation to find dispersion

phase velocities versus wavenumbers is

A,|=0 (4.19)
Usually Eq. (4.19) is solved numerically to find dispersion phase velocities versus

wavenumbers or frequencies.

4.1.2. Instability of Transfer Matrix Method

Rokhlin et al. (2011) showed that, due to refraction within one or more layers of

the laminate, some of the plane waves can be internally reflected, meaning that their
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partial waves will be evanescent within the layer, i.e. the propagating constant will be
imaginary in the exponential " resulting in real exponential e . Depending on the

layer thickness and the frequency, the real term e can be very large or very small. The
TM formulation in itself has no deficiency. But numerical computation of this real
exponential that rises and falls quickly suffers frequent instabilities. As shown in Figure
4.2a,b, the instability for a 1-mm aluminum plate starts around wavenumber-thickness
product equals 40 and frequency of 20 MHz. Whereas, for a layer of unidirectional CFRP,
the instability starts at a considerably lower frequency and wavenumber-thickness value.
As shown from Figure 4.2c,d, the instability starts at wavenumber-thickness ~3 and over

all the frequency range.

10000F
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6000} |

¢ [mfs]

4000}

2000}

() % 20 40 60 80 (b) 0 1 2 3 4 5
& h wavenumber thickness freq. h [kHz.mm] w10
2500 15000
2000 [ !
E 10000+
E 1500
i
= E
£ [
- 1000
£ 5000}
500
0 A ;
0 500 1000 1500 2000 2500
(C) = h wavenumber.thickness (d) freq. h [kHz.mm]

Figure 4.2. Instability of TMM at high frequency-thickness products, (a),(b) 1-mm aluminum
layer, (c),(d) 1-mm unidirectional CFRP lamina with 45 fibers
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4.1.3. Global Matrix Method (GMM)

Global matrix method (GMM) was first developed by Knopoff (1964). It
combines stresses and displacements at the boundaries of each layer with the overall
boundary conditions and assembles them in one single matrix. Compared to Thomson-
Haskell TMM, the GMM has the advantage that it remains stable at high frequency-
thickness products. The disadvantage is that the global matrix end to be a large matrix for
laminates with large numbers of layers. Following is a brief description of the method
(Pavlakovic and Lowe, 2003).

In the GMM, one matrix represents the overall system, and the general size of the

matrix is 6(n—1) equations, where n is the number of layers including the two semi-

infinite media, as illustrated in Figure 4.3 for a three-layer composite. The corresponding
GM is also shown in Figure 4.3. If the waves are decoupled, then the number of

equations reduces to 4(n—1) . The assembled equations are

Bl

_[D{b] [_th] [[
[Da]  [~Du] [
[
il

2

(4.20)

B
B
[Dsb] [_DAt] Bj
B

(D] [Ds]]

| — I—l
Il
o

5

where [D]is a 4x4 matrix that relates the amplitudes of the partial waves to the
displacement and stress fields in a layer; [Bi] is a vector containing the amplitudes of the

partial waves in layer i; t ,b refer to top and bottom of each layer; +,— refer to the waves

going downwards or upwards (Figure 4.3).
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Figure 4.3. GMM formulation (Pavlakovic and Lowe, 2003).

4.1.4. Semi Analytical Finite Element Method (SAFE)

SAFE is becoming popular for analyzing guided wave propagation in composites
(Bartoli et al., 2006). SAFE is basically a finite element method discretizing the structure
cross section allowing different cross sections to be analyzed. In the same time it solves
analytically in the direction of wave propagation. This makes it more efficient in terms of
computational time and memory than a complete FEM (Gavric, 1995; Sorohan et al.,
2011). The advantage of discretizing the cross section is that it allows the modeling of
any arbitrary cross sections, e.g. track rails (Hayashi et al., 2003; Bartoli et al., 2006).
The material is defined in FEM by stiffness matrix; this makes SAFE method very

straight forward for application of anisotropic materials. SAFE solutions are obtained in a
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stable manner through an algebraic eigenvalue problem, and thus do not require the root-
searching algorithms used in the TMM and GMM approaches. A brief description of the
SAFE method is presented following Hayashi et al. (2003). The virtual work principle

states,

j Su™tdl = j su” (pt)dV + j S¢'e dV (4.21)
r \ \
where " is the transpose; p is the density; j ()dI"and j (.)dV are the surface and the
r \

volume integrations of the element, respectively. I&uTtdF denotes the work done by the
r

external traction t. The two terms on the right hand side of Eq. (4.21) are the kinetic
energy and the potential energy. The wave solution along the wave propagation direction
is represented by exponential orthogonal functionsexp(i& x,) . The next step is similar to
FEM discretization, where we define the displacement vector at an arbitrary point
u=N(x, X,)U’ (x;) exp(—iwt) (4.22)
where N(Xx, y) is the interpolation function, and U!(z) is the nodal displacement vector of
the element j. Strains are determined from the displacements and the derivatives of the
interpolation functions with respect to X, X,. Similar formulation is used for the traction
vector t in terms of the nodal external traction vector. The stress vector is ¢ =cg in
which material stiffness matrix ¢ is incorporated. Substituting displacements, tractions,
strains, and stresses in Eq. (4.21) yields
= (K{ +iK} +£°K}) U’ —o'M' U (4.23)
where f/is the element force vector; K/, i =1,2,3, and M’ are the integrals determined

by numerical integration techniques and they are functions of geometry; & is the wave
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number; @is the angular frequency. U’ is the element nodal displacement vector. Results
at common nodes are overlapped and the total system’s governing equations are
determined. It is easy to introduce damping by considering complex form of the K

matrices. The final governing equation (Hayashi et al., 2003; Bartoli et al., 2006),
(A-¢B)Q=p
A= Kl—oa)ZM Kli_KajM} ! B:[Kl_owZM -Igj ’ Q{iﬂ’ p:m
(4.24)

When the force vector p equals to zero, the eigenvalues & of the system can be

determined and the phase velocity is given by ¢, =@/ &, . Consequently; nodal solutions

and the mode shapes can be determined.

4.1.5. Local Interaction Simulation Approach (LISA)

LISA discretizes the system into a lattice like in the finite difference method and
its formulation is based on elastodynamic equations. The advantage of LISA appears
when discontinuities or changes needed to be applied to the material properties; those
changes are treated by modifying the properties of the lattice at the corresponding
locations. LISA was studied by Delsanto et al. (1997) for 3-D case, starting from the
elastodynamic wave equation

aI (SklmnWm,n) = ka (k1 I ,mn=1 3) (425)
where S is the stiffness tensor, p is the material density, w is the displacement. Time is

discretized; the propagation medium is discretized into a lattice with special steps

(Ruzzene et al., 2005). Finite difference (FD) formulation is used in recursive equations
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to represent the second order space derivatives of the neighboring points of a generic
point O in the lattice.
The finite difference formalism is used with the elastodynamic equation of motion

to generate three iterative equations which allow computation of displacements u  at time

t+1as a linear combination of displacement components at time t and t—1. A well-
organized formulation was reported in Nadella and Cesnik (2012) with experimental
validations of LISA for both isotropic and anisotropic media. Another study (Ruzzene et
al., 2005) compared LISA approach with experimental results using laser vibrometer

measurements on elastic plates.
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4, /T
6 I 1 l 6
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5
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Figure 4.4. Generic point O and its 18 neighboring points in the lattice (Delsanto et al., 1997)

4.1.6. Equivalent Matrix Method (EMM)

Equivalent matrix method (EMM) is a quick and robust approach to analyze cross
ply laminates. It uses the fact that the transformation matrix between 0 and 90 degrees is
straight forward and can be done manually. EMM can be applied for generally orientated
layers as well. This method was used in Monnier (2006). The code developed in this

study was only for cross ply laminates. The procedure is as follows
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[Suni] = [Cltmi]_1 (4.26)
[so]=[TT[snllT]
where s is the compliance matrix, and c is the stiffness matrix, T is the transformation

matrix. Fill direction is the unidirectional fiber orientation, and warp is the perpendicular

direction. The corresponding warp stiffness is calculated and the average is determined as

[CW] = [SW]_l

[Ceq] = (Cuni +Cw) /12 (4'27)

The example used in this study is T300/914 CFRP and the corresponding unidirectional

lamina’s stiffness coefficients and the EM are

1438 6.2 62 O 0 0 785 6.2 635 0 0 0
6.2 133 65 0 0 0 6.2 785 6.5 0 0 0
62 65 133 O 0 0 635 65 133 O 0 0
Ci = GPa,c,, =
0 0 0 36 O 0 d 0 0 0O 465 O 0
0 0 0 0 57 0 0 0 0 0O 465 O
0 0 0 0 0 5.7 0 0 0 0 0 57
(4.28)

4.2. DETAILS OF TMM AND STIFFNESS MATRIX DERIVATIONS

Numerous commercial software have been developed in the past few years for
calculating of dispersion curves of wave propagation speeds in composites, e.g.
DISPERSE (Pavlakovic and Lowe, 2003) based on GMM; and GUIGUW (Bocchini et al.,
2011) based on SAFE method. However, we did not find a commercial code based on
TMM. Hence, we programmed our own code continuing the effort started by Santoni
(2010). Our TMM code has been used to calculate guided waves dispersion curves. As
mentioned earlier, TMM has the advantage of speed, but suffers from numerical

instability at high frequency-thickness values especially in multilayered composites. In
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this section, we present the framework that has been followed by many researchers, e.g.,
Schmidt and Jensen (1985); Wang and Rokhlin (2001); Glushkov et al. (2011) to
overcome this instability problem using the stiffness matrix method (SMM). Detailed
formulation of the approach is presented for the following cases: isotropic; orthotropic
unidirectional fibers along wave propagation direction or perpendicular to it; and
generally anisotropic layers. In the next section, we integrate SMM and TMM into an
integrated approach called the stiffness transfer matrix method (STMM) and we study the

following cases: isotropic layer, anisotropic layer, and anisotropic multilayer composite.

4.2.1. Transfer Matrix Method Details

In this part we added extra steps for the analytical development that was covered
in Nayfeh (1995) and Santoni (2010), we highlighted some typos that were identified in
the original text and which are relevant for coding these equations in a computer program
to obtain the dispersion curves. This is followed by detailed derivation of the roots of Eq.
(4.8) for two cases: (a) an isotropic layer, and (b) orthotropic composite layer with fibers
along 0 or 90 directions. In both cases, guided waves are decoupled into (1) symmetric
and antisymmetric Lamb waves, (2) shear horizontal (SH) waves.

Starting from the equation of motion, Eq. (4.5)

_ _
V'(C.VSU)—,OW (429)

Vu=S

we expand the double dot product between stiffness tensor ¢ and the gradient operator V,
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where V is order one vector (rank = 1) and is multiplied by (c:V.u), which is a 4" rank
tensor of stiffness multiplied by inner product with (V ,u= second order). The result of

c:V.u is second order. Hence ('V order one) inner product with (second order) yields an

. . .o .
order one quantity that is the acceleration ra vector. Details as follows,

Cll C12 Cl3 O 0 C16 Sll Cll C12 ClS 0 O ClG S1 Tll
ClZ C22 CZ3 O 0 C26 S22 C12 C22 C23 0 O C26 SZ T22
C13 C23 C33 O 0 C36 . 833 — C13 C23 C33 0 O C36 S3 — T33
0 0 0 ¢, ¢, 0/]]S, 0 0 0 ¢, C OS] |Ts
0 0 0 ¢ C O] [Sg, 0 0 0 ¢, C O] |S| [T,
_ClG C26 C36 O 0 C66 _ SlZ _C16 C26 CSG 0 O C66 SG T12
(4.30)
ou, r .
| |5 0 o
1 axl
ou, au,
_ _ o 0 =2 0
Cll C12 C13 0 0 C16 a 2 aXZ Tll Tl
¢, C, C3 0O 0 ¢ Uy 0 T T
12 G o 26 o 0 o s 2 2 T T T
ClS C23 C33 0 0 C36 3 a)(3 T33 T3
: or = = =T, T, T
0 0 0 ¢, ¢ O ou, Uy o M du | |Tsl [T, 62
—z = T, T, T
0 0 0 cg G Of [\ X X X | (Tl [Tl S 4P
1Cs Cx  Cs 0 0 Ces | % +% % 0 % Ty T
T yommoon bu forcoreet e |\ O 0% )| | O g
o au )| | S
ox, X, [ OX, 0% ]
(4.31)

The result is 6 x 1 array (T; T,...T5) that is equivalent to 3 x 3 tensor (T11 T12 Ti3... T33).

This 3 x 3 tensor is to be multiplied by V:{ﬁ 0 2}as inner product as in the

8x582

following rule
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b(22)+c¢(23) (4.32)

The stress tensor in Eq. (4.31) becomes

o QU u | ou A O, | U AU, dUg
Cll axl C16 6X2 C16 axl 66 axz 16 axl 26 axz 55 8X3 45 axs 55 aXl
¢, 2o M we My Mo o, s
OX, OX, 0%, 0%, 0X,
ou, ou, ou, ou, ou, ou, ou, ou, OUy
Co— FCu— tCs = |[Cs s TCun—~tCo—| Cis—+tCu—~+Cuw 2
{ ) } 0%, X, 0X, OX, 0%, X, X, 0%, X | o
' TP
ox oy oz e ou, e, ouy i<, au, e, ouy ey ou, ot
OX, OX, OX, 4
ou, au, ou, ou, ou, ou, ou, au, ou,
Cie — +Cps—=+Coe—| Cpg—+C,—= — —
55 a)(g 45 a : 55 aX1 45 axs 44 6X3 44 axz Cl3 axl 23 axz 33 axs
ou, ou, ou, ou,
TCps —— TCps —— +Cg G —~
axz aXl 2 axl i

(4.33)

That was the preceding step before equations (10.9), (10.18), and (10.19) in Santoni
(2010) pp. 300.

Applying inner product results in the complete monoclinic equations of motion,

i.e. relations between stiffness coefficients, and second derivatives of displacements and

accelerations, we get

0 0 0 62u1
&(11)+5(12)+§(13) e
0 0 0 82u2
0 0 0 o’u,
&(31) +5(32) +5(33) e

This yields

180



o%u o°u o°u o°u o%u o°u o%u
11 8 21 66 a 21 55 21 2C16 L 16 22 + (ClZ + C66 ) 2 + C26 22
X, X5 OX3 OX,0X, OX, OX,0X, OX;
2 2 Zu aZu
+Cys 322 + (Cl3 C55) P 33 +( 36 ) 8X28:(3 =p 8t21
o°u o°u o%u o%u o°u o°u o°u
C16 21 + (ClZ C66 ) L 26 21 45 21 66 22 + C22 22 + C44 22
0 0X%,0X, 0X, 0X, OX; 0X, ()
(4.35)
2 o°u, “u, o’u,
+2C26 , +(C23 44) axza , +(C45 36)8 axg - 8t2
oy, oy, o’u, ou, o°u,
C.+Cp)—2+(Cr+Cp )——+(C. +C,. )—2+(C,. +C +c
( 13 55) axlaxs ( 36 45) axzaxs ( 36 45) 6X16X3 ( 23 44) 8X28X3 55 axlz
o%u o°u o%u o%u
+C446_23+C33_23+2C45 = p—°
X5 OX3 OX,0X, ot

Equation (4.35) proves equation (10.9) of Santoni (2010) pp. 298.

Substituting the wave displacements solution, Eq. (4.6), in Eq. (4.35) and cancelling the
exponential terms after derivations yields

Cu (—E2U,) +Ce5 (&7 °U,) + € (—EU,) + €y (—E°a®U,) +(Cyg + G5 ) (—E2aU ) = p(=E2V2U,)

Cie (_ézul) +Cys (_gzazul) + Ceg (_fzuz) +Cyy (_‘fzazuz) + (C45 + Gy ) (—fzaU3) = p(_fzvzuz)
(C13 + Css)(_fzaul) + (Cse +Css ) (=&%aU,) +Cog(-EU,) +Cyy (-&7a"U,) = p(—£*V7U,)

(4.36)
After re-arranging
(Cy+Cse® = pVv? U, +(C +Cpe® JU, +(Cyy +Cog ) U, =0
(C16 +C45052)U1 +(C66 +c,a’ —,ovz)U2 +(C45 +C36)aU3 =0 (4.37)

(Cpg+Cos ) U, +(Cgg + €y ) AU, + (g5 + Cgy® — pv? U, =0
If the material coordinate and the global coordinate systems coincide (0° orientation), the

stiffness coefficients c,Cy,Cy,C, are equal to zero. However, we keep this equation as

is, since those coefficients are used for oriented layers at angles other than 0°, So even for
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orthotropic lamina at e.g. 30° the transformation will be monoclinic and c,C,g,Cy,Cys

will appear in the analysis.

4.2.1.1. lIsotropic layers and decoupled case of orthotropic layers (0/90 fiber orientations)

For the case of isotropic material, and for orthotropic layer with fiber orientation along or

perpendicular to wave propagation direction, equations (4.37) reduce to

(Coy +Cssr® = pV? U, +(Cyg +Co5 ) @U, =0
(Co +Chyer® — pv?)U, =0 (4.38)

(Cpg +Cg ) U, +(Cog + Cp® — pV? U, =0
The first and the third equations of Eqg. (4.38) give Lamb waves with displacements

U,,U,. The eigenvalues are found by using the characteristic equation

det ((:11"'(:550‘2 _pvz) (C13+C55)a -0 (4.39)

(C13 + 055)05 (Css + C33a2 _pVZ)

Detailed steps of solving Eq. (4.39)are as follows,
[(cll —pV?)+ 055042][(055 — V2 )+ Cyye? J —(C+Cy) @* =0 (4.40)

(¢ —ov?)(cys — pV?) +[c33 (Coy— pV?) +Cog (Co5 — V2 ) —(Cpq + 055)2}052 +CCpa’ =0 (4.41)

Ac' +Ba*+C=0 (4.42)
where
A=CyCyy
B= [Css (Cll - sz ) +Css (Css - pV2 ) - (Cls +Css )1
, , ) (4.43)
:|:(C11 —pV )Csa +(055 —pVv )Css _(C13 +C55) :|
C= (Cll _pvz)(css _PVZ)
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This is the corrected version of Nayfeh (1995) equation (5.30) page 79. Now we prove

the solution that was claimed to be:

v

2
I T ! (4.44)
p

(@]

The roots of Eq. (4.42) are

[r2
azz—Bi B°—-4AC (4.45)

2A

Upon substitution from Eq. (4.43), we get

(C13 + Css )4 + [Cn (Cn -pv° ) +Cs5 (Css - pv? )T
Ci3 +Css = Ci (011 - pvz) +Css (Css - pvz) * _2(013 +Cs5 )2 Cuy (Cu - pV2 ) +Css (055 - PVZ)
( )
2 —4C.,Cy, (Cu - pv° )(055 - pv? )

2C55Cyy
(4.46)

Note: c11 = C3350 we kept all terms as function of cy; (only for isotropic materials). Other
useful relations include
Cos =Cos =4, Cyu=A+2u, Cy=A4, Cu+Cy=~A+u

oM o _At2u (4.47)
s ’ p

Upon substitution in Eq. (4.46), we get

(A+u)  (A+2u)(A+2u—pv®) + p(u— pv®)
2(A+21)u 2(A+2u)u

al = \/(/1+u)4+[(/1+2y)(/1+2y—pv2)+,u(y—pv2)T
+

“2(2+p) [(A+2p)(A+ 20— pv*) + = pv°) | = 4( A+ 20— pv* ) (= pv* ) (A + 21)
2(A+2u)u

(4.48)
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A2 44004511

A+3u

A2+ > — (A +2Au+ 22 +

2 2 2
Ap” + )= pv (A +2u+ 1))

2(A+2u)p

2444281452242
+42° 1416 2% 12 +20 A8
+522 42 420 A48 +25 1%

A4 4428 4522 4%
+22% 14822 1% 110 4°
+22 12 +4 205 45 *

I+

——
(2% 442U+ 62717 + A48 + it )+ (A2 +4Au+5u7) + p™* (A+3u) —2pV3 (A +3u)(A% + 4Au +5u)
227+ 22+ 1 JIA? + AAu + 517 = pv (A+3u)] = du(u— pv* )| A7 + AAu + 4p” = pv* (A +2p1) |

Upon simplification, we get,

2(A+2u)p

2 2 —
o (2Ap=4u) + pv*(A+3p) | Junder sgrt = UnSq

2(A+2p)p

where

UnSq =

[[—2+2 —8-6+4+6+4

(A +42°u+62° 1% +420° + ")+ (A" +82°u+ 2

2(A+2p)p

1 +25,u4)

+ 42,/13 +5/14)—4/12 (2,2 +4/1y+4y2)

[—2(A+3u)(A% +4Au+51) )
'
2(A% 422+ 12 ) (A+3p) + u(A* + B+ 4uP) + 4P (A+2p) o

[ (A+3u) —aua+ 2y)}p2v4

—10-24+2+12+16+4 -30+6+16+8 ]

UnSq=1| +42°u+

—22% —82%u—10Au% —61% 11— 24005
(+22° + 427+ 2242

10 +1648° +4A0° +81°

/

2

ol

+[(/1 + 3/1)2 —Adu(A+ Zy)}pzvd'

A2 42 A+ p4?

Finally, the roots reduce to

all cancel

2 2 2.4
o2 = ZeH(A+2u)+ pv(A+3u) | J(A+p)*p*v

2(A+2u)p  2(A+2u)u
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(4.50)

}all cancel

(4.51)

(4.52)

(4.53)



_ —2u(A+2u) + pv* (A+3p) — (A+u)pV*

ol =
first 2(1 + 2/1)/1
2_
— 2ulpv” = (A+24)] (4.54)
' 2u(A+2p)
2 2 2
=4_r\/pv —u =J_r\/pv S L
Cu Cyy Cp
and
g2 = T2HAH2u)+ pvi(A+3u)+ (A p)pV
second 2(1 + 2#)/1
2_ 2_
— 200+ 2u)[pv" —p] _, [PV —p (4.55)
’ 2p(A+2p) U
=+

2 2 2
Lok S VA W LS |
C55 C55 CS

Also we had proved earlier in Eq. (4.10) that the eigenvalues ¢; exist in pairs. So for

Lamb-type waves we have 4 roots, i.e., 4 values for ¢; . The mode shapes associated with

Lamb waves can be determined from the first and third equations of Eq. (4.38), i.e.,

U U
W, =—% (for Lamb waves), V,=—2% (forSH:not defined in this case) (4.56)
q Ulq q Ulq

qg=12.3, ...6, but as discussed before, the roots exist in pairs, hence for Lamb wave
solution, we have subscripts g=3 and 5. The subscript g=1 is for SH solution, which is not

considered here. Expanding Wj, for the cases of q = 3, and q =5 yields

2 2 2
Uy CyHCa —pv 2_ PV —Cy
W, =—*=— oy =——=

U, (C13 +Css ) Qs Cu
%/—/
PV2:011+°11U‘32
2 2 2 2
_PV =G =G G+ —Cyy —Ces (4.57)
(C13 +Css ) a3 (C13 +Css ) a;

_ Ciy —Css a. = A+2u—pu a —-a
Ca+Cs ) © A+ ¢
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and

2 2
Gy G’ = pv
(ClS +Css ) Qs
2 2 2 2
_ PV Gy —Cs | pt HAy —Cy — O

(613+C55)055 (C13+C55)0£3
_( p=c, ]_[ﬂ—ﬂ—Zﬂji_—_l
(Cs +Co5)ts At+u Qs Oy

Recall the values d,,d,,,d;, extracted from Eq. (4.13), i.e.

19 Y'2q?

W5 :ﬁ:
U15

dy, =Cp3 + @ CV, +CqV,
Oyq = @,CieVy +Cos (g +W, )

Oaq = gCuVy +Cs (g +W, )

(4.58)

(4.59)

Recall that c,; =0, c,, =0; hence, the quantities in Eq. (4.59) associated with Lamb-type

waves are

as

dyy =Cpp + ,Cs W3 = A+ a2 (A +24)

2_
:m%wzmmz-(mzﬂ) (4.60)
11

2
= pv* —2u =u(pvﬂ—_ﬂ—lj=ﬂ(%2 -1)

dis = Cpy + Loy = (1) + a5 (A + 2) [__

1} _ 2,
Q,

5
Ay = Cgs (3 + W, ) = 20,
o’ -1

s

Oys = Ces (5 +Ws ) =

Recalling Eq. (4.16), and cancelling SH-related terms yields
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U] [ 1 L[ T T T T || Uget ]
5 \‘,1 : \/3 \_/3 \/5 \./5 l |12e—i§0‘1>‘3
] W W)W W W W U e iélu-v) (4.62)
o d, d,| d, dy dg dg || Ye’™ :
0';3 dy -t dyp —dy dy —dy Ulsei§a5x3

_6.;_3_ L d, -3 dy -dy dg —d35_ | J, e 5" |

Upon simplification, the displacements and the stresses for Lamb-type wave solution are
given by

U, 1 1 1 1 J[uges

U, W3 _Ws W5 _Ws U14e_i§0{3X3

L= I (4.63)
O33 d, d; dg dy || Uge“®®
d

* —iéO(X
Oy3 ;s Oy dy —dy Uge =™

We define our layer thickness as h, and take x, =0at the top “j-1”, X, =—h at the bottom

“3”. To follow Rokhlin et al. (2011), we call the displacements and stress vector in the left
hand side of Eq. (4.63) Py, and we call the 4x4 matrix X. The right hand side vector can

be decomposed into a diagonal matrix Hyx multiplied by the amplitudes vector Uy

u, 1 1 1 1 || el 0 0 0 ||Ug,
Ui _ W3 _W3 W5 _W5 0 e7i§a3X3 I;(:Z) X 0 U14 eif(xl_\’t) (464)
O33 d, d; dg dg 0 0 s 0 Uss
Oi3 dy; —d,; dyy —dy 0 0 0 e 5 || Uy,

Equation (4.64) is written with H functions as

u, 1 1 1 1 Hl(X3) 0 0 0 U,
u3 — W3 _W3 W5 _W5 0 H2 (X3) O 0 Ul4 (4 65)
O33 d, dy dy djg 0 0 H, () 0 Uss
O3 dy, —Oy dy —dy 0 0 0 H, (%) || Uss
i.e. in compact notations and ignoring g tu)
P(x,) =X H(x,) U (4.66)
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At the top surface “j-1”, where x, =0, the H diagonal matrix becomes unit matrix,

H(0) =1, and Eq. (4.65) becomes

1 1 1 U,
u3j B _ W3 _W3 Ws _Ws U 14 ( 4. 67)
0';37 ' d; dy dg dg ||Us;
ol dy —dy; dys —dy || Ug

At the bottom surface “j”, where x, =—h, we substitute in gleas by éx, =—¢h, and we

call the quantities Hy,..Hs

ulj Hl H2 HS H4 Ul3
usj_ _ W;H, -W;H, WH, -WH, U, (4.68)
(7313 d13H1 d13H2 d15H3 d15H4 U
o dyeH, —d,H, dyH, —dyH, |[Ug
Equations (4.67), (4.68) can be written as
PP =X H U, =X U, , HI" =1
oo k kj k k™ k k (4.69)
P =X HMU,
Pk for the top and the bottom of a layer can be combined together as
pk(BOt)J' — Akpk(TOp)ifl (4.70)
where the transfer matrix (TM) is defined as
A =XHX* or A =X HX, (4.71)
where x, = X,* . The TM can be multiplied by each other for multilayers
A=AA LA (4.72)

MATLAB consumes considerable time and computation for calculating inverse of

matrices. We found that providing MATLAB with the matrix’s inverse as elements will
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allow us to input them as array of values. This is considered for the efforts to increase the

speed of our code. We report here the explicit form for both matrix ‘X’ and matrix ‘X’

X = = as o (4.73)

d d d
d d d d 13 13 15 15
23 23 25 25 _d ” d ” d25 d -
(O d 1 W] [d dy 1 Ve |
a b a b a b a b
—Os  —dys 1 W —d,; Oy 1 Yo,
w—| @ b a b _| a b a b
Oy Oy -1 W, Oy Oy -1 o
a b a b a b a b (4.74)
G Oy -1 Wy | dy dy -1 -0
| a b a b | | a b b |

5

-1
a=2(dy-dg) ,b= 2(W3d25 _Wsdzs) = 2(“3(125 _(a_szs]

The idea of calculating the matrix inverse before programming is applied also for SH 2x2
matrix; coupled 6x6 matrix; and stiffness matrix method. For a single-layer problem, the

procedure can be further simplified. The amplitudes vector U is evaluated from Eq. (4.66)
U={X H(@) " P™={H(0)} " X*P™ (4.75)
The state vector P for the bottom surface is
PEem — X H(~h){H(0)} ' X *P™ (4.76)
The transfer matrix for a single layer is defined as
A=X H(-h){H(©)} X .77

The TM can be expanded as before in Eq. (4.17) as
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Sl e

Imposing stress free boundary conditions on Eq. (4.78) yields

uBottom [Auu] [Auo] uTop
{{ 0 }}{[AUU] [AUG]H{ 0 }} (4.79)

Equation (4.79) can be expanded as

uBottom — AuuuTop (480)
A U*=0 (4.81)
Equation (4.81) is an eigenvalue problem that yields to eigenvalues (cfh)j ,J=1,2,...using

a search of the root of the determinant |A, |=0. For each eigenvalue &h we can find the

associate eigenvector U;* . For each u™, we use Eq. (4.66) to find P™, i.e.

Top uTop
P =", (4.82)

Equation (4.82) is substituted into Eq. (4.75) to obtain U, i.e.
U={H(@) " X*P™ (4.83)
The partial amplitudes vector U is now used in Eq. (4.66) to get the state vector at each

location within the thickness. As a final check, P is to evaluated at x, =0to find P**" as

Bottom

peoton { y }: X H(=hy U (4.84)

O_Bottom — O

This value of P®"" should be the same as the value obtained from Eq. (4.80).

Repeating the same steps for SH-solution, i.e., roots of «; where g=1 and 2; the
equation to be solved is the middle equation of the system (4.38), i.e.
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(Ceg +Cyx® —pVv?) =0 (4.85)

for the orthotropic case, the roots of o are

2 J—
o, =+ ’% (4.86)
44

For the isotropic case, Eq. (4.86) further simplifies as follows

Coo =M » Cyu=A+2u
4.87
¢l = I cr= A+ou (4.87)
P P
U+ po® = pv? (4.88)
V2 — v? v
al,ZZin P 'u:i\/ﬁcz -1=4= C—Z—l:a&e (489)
Equation (4.62) reduces to
U5 _ V1 V1 Ulle_ifalxi eig(xl—vt) (490)
O d;, —d; ||Upe s

: : _ U
The mode shape ratio V cannot be determined from the relationV, = —29- hence V; =1,
1q

and Eq. (4.59) gives
d31 =a,Cy (4.91)

The layer transfer matrix can be formulated as

e S P A R e B
O_zjs d31 _d31 0 H, dSl _d31 Uzjs_l .

Matrix X and matrix ‘X’ can be defined as
1 1 1/2 1/(2d
X = , X = (2dy,) (4.93)
d;, —dy 1/2 -1/(2d)
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4.2.1.2. General orthotropic case (arbitrary fiber orientation angle) (monotonic)

Starting from Eq. (4.62), we can expand the exponentials in a diagonal matrix

w11 1 111 ek 1.1
U, [ A A A gida U,
Uy |_ Woo W Wy AW W W gléart U, i
0;3 dy dy, dy dy dy dyg gidests U,
on| [0y -dy 4y -dy dy -y s 0,
_0;3 L d31 _d31 d33 _d33 d35 —d35_ | gl | _Um_

(4.94)

For top surface “j-1” where x, =0, the H diagonal matrix becomes unit matrix H(0) =1

] o
t 1 1 1 1 1 1 ][Uy
T Y A A A VA VAN I
U3J - _ W, W, W, W, W, -W;|lUj, (4.95)
G;:lail dll d11 d13 d13 d15 d15 Uy,
G;; dy -0, dp —dy dy -y ||Ug
ot L dy —dy  dyy  —dy  dy _d35j [Uss |
L~23 |

For the bottom “j” we substitute X, =—h in e'* <% to get &Ex,=-¢h

j _ O -
t H1 Hz H3 H4 H5 H6

U
u; VH, VH, VH, V,H, VH. VH, [|[U
u WH, -WH, WH, -WH, WH, -WH, ||U
U
u
U

Cl= B (4.96)
O3 dllHl dnHz d13H3 d13H4 d15H5 d15He 14

o d,H, -dyH, dyH; -dgH, dyH, —d,H, 15

13

O_*J L dSlHl _d31H2 d33H3 _d33H4 d35H5 _d35H6__ 16 |

23

Although we usually separate the terms H;...Hg in the diagonal matrix, but we include
them with X matrix as one matrix, because this form will be needed to derive the stiffness

matrices.
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X matrix is the 6x6 matrix in Eq. (4.95), while the inverse x, = X, * is

i dlSVS — d13V5 d13 — d15 d35d23 — d33d25 Vs _Vs d33W5 — d35W3 d25W3 — d23W5 1
2a 2a 2b 2a 2b 2b
d15\/3 — d13V5 d13 — d15 _ d35d23 - d33d25 V5 _Vs _ d33W5 — d35W3 _ dzswa - d23W5
2a 2a 2b 2a 2b 2b
_ d15V1 — d11V5 _ dll — d15 _ d35d21 — d31d 25 _V5 _Vl _ d31W5 — d35W1 _ d25W1 — d21W5
X = 2a 2a 2b 2a 2b 2b
_ d15V1 — d11V5 _ d11 — d15 d35d21 — d31d25 _V5 _Vl d31W5 — d35W1 d25W1 — d21W5
2a 2a 2b 2a 2b 2b
_ d11V3 — d13V1 . d13 — d11 _ d31d23 — d33d21 _V1 _Vs _ d33W1 — d31W3 _ d21W3 — d23W1
2a 2a 2b 2a 2b 2b
_ d11V3 — d13V1 _ d13 — d11 d31d23 — d33d21 _V1 _Vs d33W1 — d31W3 d21W3 — d23W1
L 2a 2a 2b 2a 2b 2b ]

a= (d13 - d15 )V1 + (d15 - d11)V3 + (d11 - dlS)VS
b = (505 — da3y5 )W, + (dgy0 5 — dggdy )W + (dgydy, — 0o )Wy
(4.97)

4.2.2.  Stiffness Matrix Method and the Recursive Algorithm for Multi-Layer
Composite

We follow the method of Rokhlin et al. (2011) for constructing the stiffness
matrix (SM) instead of TM; this is done by re-arranging terms of the TM such that the
displacements at both the top and the bottom of the j layer are in a single column matrix.

Similarly, the tractions at both the top and the bottom of the j layer are combined in one

single column matrix. The transfer function between them will be the stiffness matrix K!

Tia | _ i U,
o ¥l (4.98)

This is in contrast to the transfer matrix in which the displacements and tractions for each
boundary are combined in the one single column vector, Eq. (4.78). The recursive
approach to find the “total” stiffness matrix of all layers is documented in Rokhlin et al.

(2011). That approach is not as straight forward as the one applied for finding the total
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TM. For the total TM, we simply multiply transfer matrix of all individual layers. But the

combined SM for two layers A and B as shown by Rokhlin et al. (2011) is

-1 -1
|:GO:| Klli + K1A2 (KlBl - KzAz) KzAi —KS (KlBl - KzAz) Kle {UO

B B (1B AV oA B B (1B A8 :| (4.99)
K21 ( K11 - Kzz) K21 K22 - K21 ( K11 - Kzz) K12

O, u,

where o, is the stress vector at the top surface and o, is the stress vector at the bottom

surface. For complete understanding of the SMM and the recursive approach, we show
how to implement SMM in Nayfeh formulation (Nayfeh, 1995). Recall the X matrix of
Eq.(4.63), where for simplicity, we consider the case of Lamb waves only (SH waves are
decoupled); the X matrix is reduced to 4 x 4. Recalling Egs. (4.67) and (4.68), i.e. the
displacements and stress equations at the top and the bottom of a layer. The stiffness
matrix is then constructed by combining all stresses terms in one vector and displacement

terms in another,

j-1
O33 d, d, ds ds

i-1 _ —
O |_ dy dy dys dys

U
‘ Ui (4.100)
O3 d,H, d,H, dgH, dgH, |[Ug,
U

Gljs dsH, —dyH, dxH; -d,H,

u™ 1 1 1 1 Uy
U;il _ W3 W3 W5 _WS Ul4 (4 101)
ull H1 H 2 H 3 H 4 U15
usl W3H1 _Wst W5H3 _W5H4 UlG

Define the 4x4 matrix in Eq. (4.100) as Y, and the 4x4 matrix of Eq. (4.101) as Y,; The

G, _ u, _
( 30J=YY2‘1£ 3°J (4.102)
(‘an:hJ ux3:hj
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where SM =Y Yz_l. Then, the total SM as reported in Rokhlin et al. (2011) and Eq. (4.99)

is achieved by the recursive algorithm. For the sake of implementation into Nayfeh (1995)
formulation, we constructed a flow chart of Rokhlin algorithm in (Figure 4.5) that can be
used along with Eqgs. (4.100) and (4.101) as a recursive algorithm in the coding of SM in

a computer program.

TSM(1:2,1:2)=TSM(1:2,1:2)+ TSM(1:2,3:4) [SM(1:2,1:2)-
TSM(3:4,3:4)]™" x TSM(3:4,1:2) 4
TSM(1:2,3:4)= -TSM(1:2,3:4) x [SMz(1:2,1:2)-TSM(3:4,3:4)]™* x Input# layers
SMz(1:2,3:4) “mat”
TSM(3:4,1:2)= SMz(3:4,1:2) x [SMz(1:2,1:2)-TSM(3:4,3:4)] * x ¢
TSM(3:4,1:2) Z=1 (1" layer)
TSM(3:4,3:4)= SMz(3:4,3:4) - SMz(3:4,1:2) X[SM(1:2,1:2)- ‘

1 find SM;,
TSM(3:4,3:4)] " x SMz(1:2,3:4) TSM=SM,

®—NO_ SM,

\ 4
Ye
“To

S

tput TSM
tal SM”
{ G kA(KE-KA) KD KA (KE-KL)KE ]H

KI(KE-K3) K3 KB-KL(KD-K3) KD

12

TSM(1:2,1:2)

Figure 4.5. Flow chart of total SM recursive algorithm.

We include the intermediate steps of the proof of Eq. (4.99), as it was not reported in

Rokhlin et al. (2011). The stiffness matrices for individual layers A and B are defined as

O, K2A1 K?z U o, KZBl Kzaz U,
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The notation of displacements and stresses are shown in Figure 4.6; expanding system of

equations in (4.103), yields

o, = K/ju, + Kju, (4.104)
o, = Kju, + KU, (4.105)
o, = Kju, + Kju, (4.106)
o, = Kou, +KJu, (4.107)
i1’ _jd Yo %
| LayerA | A U o
171
z
! u,o B
b U, o,

Figure 4.6. Notation of subscripts for displacements and stresses at top and bottom of each layer.

Rearranging Eq. (4.106) and substituting o, from Eq. (4.105) yields

Klu, = o, — Kou, = Khu, + Kou, — Kou, (4.108)
(KlBl - KZAé)ul = K2A1UO - Klguz (4.109)

-1 -1
u =(K3-K3) Kau,—(KE -K3 ) Kiu, (4.110)

Substituting the displacement u, from Eq. (4.110) into Eq. (4.104), we get
o = Kfu, + KA (KE—KA) " KAy, —KA (KE-KA) Kiu (4.111)
0 110 12 11 22 2170 12 11 22 122 '
o —[KA+KA(KB ~KA)" KA}U —[KA(KB ~KA)" KB}U (4.112)
0~ 11 12 11 22 21 0 12 11 22 12 2 :

We get the stress at the bottom o, by substituting Eq. (4.110) into Eq. (4.107) as

-1 -1
0, = KE(KE-KE) KA || KE-KE(KE-KE)KE |u,  (4113)
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Combining Egs. (4.112) ,(4.113) will result in the form reported by Rokhlin et al. (2011)

-1 -1
|:O'o} _ Kﬁ + KS (KlBl - KzAz) K2A1 _Kll-Z\ (KlBl - KzAz) Klsz [UO

} (4.114)
o B(wbB AL oA B B (1B I
2 K21 ( Kll - Kzz) K21 Kzz - K21 ( K11 - Kzz ) K12

U,

For getting the guided waves roots for dispersion curves, we impose stress-free boundary

conditions at the top and the bottom of the overall system, i.e.

% |_|© 4.115
s |7 lo (4.115)

The problem can be solved either by setting |SM|=0, or by solving the homogeneous

system of equations. For the 6x6 matrices form (where SH waves are coupled with
Lamb-type waves), the following flow chart can be used for coding the algorithm to

determine the total SM for multi-layer case.

TSM(1:3,1:3)=TSM(1:3,1:3)+ TSM(1:3,4:6) X [SMz(1:3,1:3)-
TSM(4:6,4:6)]™ x TSM(4:6,1:3) <

TSM(1:3,4:6) = -TSM(1:3,4:6) X
[SMz(1:3,1:3)-TSM(4:6,4:6)] " x SM(1:3,4:6)

Input# layers
“mat”

TSM(4:6,1:3) = SM»(4:6,1:3) x !
[SMy(1:3,1:3) -TSM(4:6,4:6)] " x TSM(4:6,1:3) 7=1 (1* layer)
TSM(4:6,4:6) = SM(4:6,4:6) - SM(4:6,1:3) X _ y
[SM(1:3,1:3) -TSM(4:6,4:6)] ™ x SM(1:3,4:6) find SMy,
TSM=SM;
SM
v
7=7+1

Output TSM
“Total SM”

Figure. 4.5(2). Flow chart of total SM recursive algorithm for 6x6 matrix case with three types of
waves Symmetric, antisymmetric Lamb waves and shear horizontal waves
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4.3. STIFFNESS MATRIX METHOD (SMM) AND STABLE FORMULATION
The Transfer matrices developed earlier had the issue of having exponentials (the
exponents’ function of the coordinate X, ) either on one column or the diagonal, recalling

the abstract form by Rokhlin et al. (2011)
G sl gl
o DH D' j DH D' L%
where P represent the coefficients associated with displacements, i.e. 1 values and W3, Ws
of Eq. (4.63), while D are the d;3,d1s...d2s associated with stresses.
The way the equations are rearranged in the SM needs to consider removing H sub

matrices from these critical locations (at one column or the diagonal)

o] [ D0 DHI[ P PHT U (4.117)
o] [DH D" ||PH P ]|y '

Our objective here is to formulate the equations in the form of 4x4 matrix and in the next
section as 6x6 matrix in the form which Rokhlin recommended; so it is easy to be coded,
instead of writing the matrices in compact forms. In the following pages, we make the
analytical development needed to get the 4x4 SM form and show that H matrices are no
longer on diagonal or single column.

The way this is done is by factoring out other exponentials that are going to be
merged with the displacement amplitudes of the partial waves, i.e.U1q. By doing that, we
eliminate the growing nature of the exponentials as the number of layers increase, or as

the wavenumber-thickness increases.
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4.3.1. Stable STMM Algorithm for cases of Decoupled Lamb /SH waves in Single,
Multi Isotropic Layers and Orthotropic Layers (0/90 fiber orientations)

The deficiency in the numerical evaluation of the TMM (Rokhlin et al., 2011) can
be eliminated if the H matrices are removed from both diagonal and at single column.

We expand the system of Eq. (4.64) as

U, = U, + U675 +U, "% +U, o'«

Uy = WU €% —WU,,e 75" +WU,.e"%" —WU, e 5"

* ifagx —ifasX iEorg —ifagx (4118)
Oy = iU +d, Uy 0% +d, U ™" +dy U e ™"
o-fa = dzaulseié%x3 - d23U14(':‘7i§0!3x3 + d25U158i§a5X3 — dZEUlﬁefi‘fo‘sx3
Re-arranging yields,
u1 _ (Uneiiang )eifﬁlS(Xs—Zj—l) + (Ul4e—i§a3zj )e—i§a3(x3—zj) +
iSagz;_. i§a5(><3—z~,l) —iasz; —i.fas(xg—z-)
(U e (VA I ,
u, = (Ul3ei§a321-1 )W3ei§a3(xrzj4) _ (Ul4e—i§a3zj )W3e—i§a3(x3—zj) 4
ifasz; i€as (X -2j1) ~iéasz; —igos(X3-7; )
(Ulse o 1)Wse : —(Ume o )Wse :
(4.119)

*o_ ifasz; i§0‘3(><3—2>1) —ifasz; —i§a3(x3—z~)
O3 = (Ulse . 1)dlge ‘ +(Ul4e ¥ )dlse 74
iSasz;_ i?f’ls(xsfz;l) —iéasz; —ifas(xrz-)
(Ulse I 1)d15e : +(U16e I )dlse :
* ifasz; i§a3(x3—z-,1) —iéayz; —iday(x5-2;)
O3~ (U13e o 1)dz3e J _(U14e 3] )d23€ U

iagz; . i§a5(x3—z-,1) —iéasz; —iafas(xg—z-)
(Ulse Sll)dzse : —(Ume “)dzse :

Now we rearrange the displacements and stresses of Eq. (4.119) in a matrix form. Note

that z; , —z; =h, . For the top surface “j-1" of the layer, i.e. x, =z, , (Figure 4.1)

u1H i 1 pidesh; 1 piéash; ] _UlS eig%zj,ﬂ
j-1 ilash; ifash; —iéaz;
s | _ W, -We=" W, -We ™" |U,e ™" (4.120)
O_j—l d d ei§a3hj d d eicfashj U ei§a5zj_1 !
33 13 13 15 15 15
-1 iEaah: oy itz
Oz | | dyy —0,,8"" dy —d,e™*" || U e |
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For the bottom surface

[13%2]

J7 1.8 X, =27

B eig%hj 1 eifashj 1 "Ulseigagzj,j
- - .
We W, W W (U e
- d igah; d d igash; d U io5zi .y (4121)
13e 13 15e 15 lSe
O™ —dyy A€y [ U™

The right hand side array of the partial wave amplitudes is always the same and will be

eliminated later. Equations (4.120) and (4.121) are rearranged such that we keep

exponentials containing the layer thickness at one side of the matrix. This is done by

rearranging the elements of the partial wave amplitudes array, without changing the rows

sequence of left hand side arrays, Eq. (4.120) will be rearranged as

_ ) 1 ei§a3hj eigashj ] ‘Ulseig%z,-,q
igazh, igagh; ilasz;
_ W, W, -We™™" -We~™" [|U,.e™" 4122
- d d d..e'eh d.emh ||y, e (4.122)
13 15 13 15 14
iash; ifash —iasz
_d23 dzs _dzse o _dzse ) J_ _U16e ) JJ

Call the modified array of the partial wave amplitudes{U}.We kept the elements of {U}

array to show how they are rearranged. Equation (4.121) will be rearranged in the same

way as follows

u1j B ei§a3hj eigashj 1

Usj Wsei§a3hj Wseigashj W,
0-;3 ) dlaeiéaghj d15ei§0%hj d13
0'1j3 dzseig%hj dzsei%hj _dzs

1
W,

d15
—~d

{U} (4.123)

25 |

So far, the instability sources still exist by having H sub matrices, i.e., elements with

exponentials containing layer thickness h; in complete columns; however, when we
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formulate the SM by collecting all the stresses in one array and all the displacements in

another array, we get

. B igash; icash; ]
03]9: ' d13 d15 dla(:"lm3 J dlselgas J
. icah: icach:
6113 ' . dzs d25 _dzseléa3 : _dzse@5 J
j - iEah: ifach.
0-31_3 d13e|§a3 J dlselgm5 J d13 d15
J . .
O, ifazh; ifagh;
3 _dzse j dzse ] _d23 _dzs (4 124)
r iash; icsh, 1o '
1 1 e ) e ! u ]_1
1
icagh: icagh, i
W, W, Wee e et ||y
ei§a3hj eiéashj 1 1 ulj
. , Ly j
W, W Wy W, | L%

The product of the two 4x4 matrices is the SM, and to compare the system with Rokhlin

et al. (2011) formulation, we condense the system as

o] [ D0 DH[ P PHTu, (4.125)
o | [DH D" [[[PH P ][y '

The key point is that H matrices are no longer in the main diagonal nor in a single column.
This prevents getting singularity cases when diagonally-placed exponentials containing

h; approach very small numbers, so neither the left 4x4 matrix will be singular nor the

right inverse of 4x4 matrix will be undefined.

The above formulation was coded and applied to an isotropic layer of aluminum;
this case solved with TMM was shown before in Figure 4.2a,b with instability starting at
20 MHz. The new results obtained with SMM and STMM are shown in Figure 4.7. The
SMM solely is robust and stable at high frequency-thickness values; but it does not find
the roots “accurately” in low frequency range. Hence, applying the combined TMM and

SMM, (or stable combined STMM), is the best way to get the desired results.
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Figure 4.7. Stable STMM for aluminum layer: (a) unstable TMM results in wavenumber-
frequency domain; (b) unstable TMM results in frequency-speed domain; (c) stable
SMM results in Eh-freq domain; (d) stable SMM results in freg-c domain; (e) stable
robust STMM in &h-freq domain; (f) stable robust STMM in freg-c domain. The
frames indicate the regions of numerical instability.
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The decoupled SH waves solution is

{uz}{w Vl} s (4.126)
O3 dy, —dj Ulzeikf%x3

By following the same procedure, expanding the equations of the system (4.126),

_ &y X —ioy
u, =U,e~*= +U, e ===

* iy x —iéey X (4127)
Oy =3 U, 7% —dy U, e

(U lffaljl) l§a1(><3 1) (Ulze igoyz; )e—ifal(xrz,-)

i T P I

Now we rearrange displacement and stress in matrix form for the upper surface “j-1” of

[13%2)

the layer, i.e. x, =z, ; and for the bottom surface “j”, where x, =z,

- ifah: o
uzj 1 ~ 1 e'ﬁfal i Ulle'f%ZH
-1 |~ icah, —icanz.
_0213 d31 _dslelgal J Ulze )

_uzj ) eiffalhj 1 Ulleiéozlzj,1
_0-213 dslelgal _dSl Ulzeilgalzj

For these simple matrices, we can just develop the SM as

i icah; 2 e
oht] | b —dne” 1 e fuf? (4.130)
ol d. eiah; | Licah, j '

23 € —d, e 1 U,

The product of the two 2x2 matrices is the SM, and it is matching the system of Rokhlin

(4.129)

et al. (2011) formulation, the H matrices are no longer on the main diagonal nor in a
single column. This prevents getting singularity cases when the exponentials containing

Eayh; approach very small numbers, or big ones; so neither the left 2x2 matrix will be

singular nor the inverse of 2x2 matrix will be undefined.
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4.3.2. Coupled Guided Waves Case for Orthotropic Layer with Arbitrary Fiber
Orientation Angles (Monoclinic)

Expanding the system of equations in (4.94), we can write

U =U, 657 +ULe™ +U %%  +U,e™ +U 5% +U e "
_ oy X —iéay X i&agX, —iéasx iSasX: —iasx
u, =U,V,e=*= +U, Ve == +U V.e*"* +U Ve =" +U V. e +U Ve ="
Uy = U, W™ —U W,e ™% + U W65 —U W,e % +U, W' —U, W,e =
O'; = Undnewlx3 +U12dneii§0qx3 +U13d13ei§a3x3 +U14d13)@4{;%)(3 +U15dl5eim5X3 JFLJ1<5(2115‘34{;D£5X3
* iy —igoy iEasX —igagx ifasX —idagX:
O3 = U11d21e o _U12d21e o +Ulsdzse o _U14d23e o +Ulsdzse e _U16d25e o

O-ZS = Ulld?,leigotlx3 _UlZdSZLeiiéwlx3 +lJ13d33ei50l3X3 _LJ14d3Seii§063X3 +U15d35ei§asxs _Ulﬁd35e7i§0@(3

(4.131)

Rearranging yields,

R T S N W R
R Tt SN M
(Ulle|§a1z]1)ve|§a1(x3 o, (Ulze iz, )Velfal(xa ), (Ulge.gasz”)v AT
Uy g ) (U et el (U e e e el
T (U L (U T (VA L
~(Ue e e el i) 4 (U e ) (oo e el )
oy = (U o) (U g ) (U, gl
(U e ) (U5 )y ) (U0 ) e
(Ulle|§a1 ,1) g, gt ) (Ulze iz, ) g, ¢ <o) +(Ulge|§agz ) g, loa
(U146—|§a32 ) e i) | (Ulselafasz”) dzselgas(x3 ) (Ulee e, ) d,e (-2,
(U g ) (U Y ) (U g g gt

(UMe_'g"S )d33e I§a3(xzizj)+(Ulsei§a52j4)daseigaS(xr K (Ulee e )d35e igas(x5-2))

(4.132)
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Rearranging the displacements and stresses of Eq. (4.132) in a matrix form, we obtain:

For the top surface “J-17 of the layer, i.e., x, =z, ,,

ulj—l 1 eigalhj 1 ei§a3hj 1 eigozf,hj ] _Ulleigozlzj,1 ]
u ijl V1 Vlei;alhj V3 Vsei§a3hj V5 Vseigozshj Ulzefigalz i
utl W —W, g W, W, W, ~W e | U, et
6;;1 dll dllelga1hj d13 dli’,eléashj d15 dlse"faf:hj U14e7I§OZ3Zj
N icah: icash; icagh: ifagz;
613]‘ 1 d21 _leeI@(1 : d23 _dZGelga3 ' d25 _dZSelga5 : UlSel.fO[SZk1
e icauh: iash: iach; —i :
_02;1_ L d31 _dslelgw1 l d33 _daaelm3 J dss _dsseléas ] i _UlGe e i
(4.133)
For the bottom surface “j”, i.e., x, = z.,
J 3 j
i ulj T r eugalhj 1 eigaghj 1 eigaf,hj 1 7 ‘Unei;%zj,1 7
; i iEash; iEagh, —icoyz;
ul || Vet V, Ve V, Ve V, || U,en
i i iEazh; iEagh; iEay7;
ul | WES W W W W W (U e
i | igonh; igash; i¢agh; —icayz;
O33 d11e : d11 d13e j d13 dlse : d15 U14e :
* igagh. igah: iZagh. iz
O3 dZIe o _d21 dzse N _dzs dzse e _dzs UlSe i
* ioyh; ifagh; icagh; —iasz;
_023_ _d31e o _d31 d33e > _d33 dsse > _das i _U16e > i
(4.134)

The right hand side array of the partial wave amplitudes is always the same and will be
eliminated later. Equations (4.133), (4.134) are rearranged such that we keep
exponentials containing the layer thickness at one side of the matrix. This is done by
rearranging the elements of the partial wave amplitudes array without changing the rows

sequence of left hand side arrays, Eq. (4.133) will be rearranged as
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< e

iy
w

o O o
N
)

icogh;

1 e
V, Vel
W, W
d15 dlleiga1hj
dzs _dne@lhj
d35 _d3lei§a1hj

iSash;
Vsei§a3hj
_Vv3ei.r§0¢3hJ
igash;
d.e”"
_d23ei§a3hj

igash;
_d33e i

icash;
Vseifashj

_Wsei§a5hj
dlseigashj

_dzsei%hj

icash;
—dye

T _Ullei§alzj,1 7]

U13ei‘§ot32171
Uy
Ulze_iéalzj
Ulﬂ,e_imSZj

—ifasz;
U,e !

(4.135)

Call the modified array of partial wave amplitudes {U}. We kept the elements of {U}

array to show how they are rearranged. Equation (4.134) will be rearranged in the same

was as follows

e

igayh;

ioh;
Ve

iganh;
We=""

igayh;
d,e"

ioyh;
d,e"’

iayh;
| dem

eiio@hJ

Ve
Wgeigaghj
dlseifashj
dzgeig%hj

igash;
d,e”"

picash; 1
VRS V,
We ™ W,
d15ei§0(5hj dy,
dzseiéa5hj _d21
dsseié%hj —dy

{U} (4.136)

So far, the instability sources still exist by having H sub matrices, i.e., elements with

exponentials containing layer thickness h, in complete columns; however, when we

formulate the SM by collecting all the stresses in one array and all the displacements in

another array, we get
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i r i icazh; ifagh,
O3 dy dy dis dnelsal ] dlselga3 ] dlSeI§a5 J
*i-1 igayh; icazh icash;
13 d21 dzs dzs d21 ] _dzse J _dzs j
*j-1 icayh; icazh; icagh;
Oa | _ d, dy, dys dye™"  —dgpe™  —d,e™"
G*j d eiéalhj d eifaahj d ei§a5hj d d d
33 1 13 15 1 13 15
13 21 23 25 21 23 25
wi igah, iéah; iéagh;
62; dalelga1 : dsaeléaa : daseléas : _d31 _d33 _d35
- - ~(4.137)
[ 1 1 picahy R RERY I i
1
igagh; igagh; iagh; .
V, V, V, VS Vet et
W W W, We' Wl et i
1 3 5 - V3 s Us
ei§a1hj ei§a3hj ei§a5hj 1 1 1 ull
Vel ey el v, v, v, u;
igagh, icash icah u,
WS W W et “W, W, -w, | LT

The product of the two 6x6 matrices is the SM. Comparing the system with Rokhlin et al.
(2011) formulation, the system condenses to

o] [ o0 DHI[ P PHT (4.138)
o, | |[IDH D LPH Py '

]

4.4, FRAMEWORK OF STMM AND SEPARATING MODES BY MODE TRACING

Root solving methods are mostly numerical and iterative; it was reported in Lowe
(1995); Pavlakovic and Lowe (2003) that roots can be determined in a robust way by
varying the phase velocity at fixed frequency or vice versa. An initial guess is needed and
root tracing is achieved by linear extrapolation of two roots. Afterwards, when sufficient
number of roots is determined, a quadratic extrapolation is used. We used this approach
on our roots to get initial separation for individual modes; later on, mode shapes can be

used to identify similar wave types, e.g. symmetric Lamb waves, antisymmetric Lamb
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waves, and SH waves, which in turn are symmetric and antisymmetric. We show in

Figure 4.8 how to separate modes based on their modeshapes solution, once the roots of

dispersion wavenumber-frequency are obtained; the displacement fields (e.g., u, ) for the

top surface and the bottom surface can be evaluated. The displacements U ,U; represent

the x-displacements of the top and the bottom respectively.

Loading solution
of dispersion
CUrves, in g
wavenumber-
frequency is the
favorable way

zZi=
save to Sol save to Sol .
_ _ 1:length(&d
sym(s,1) = antisym(t,1) = > ength(cd)
Sol(zi,freq) Sol(zi,freq)

oad solutio
Sol(zi,freq)

No
Calculate Ut normalized
mode shape at top surface,
and Ug at bottom surface

Figure 4.8. The technique for separating modes based on mode shapes

We exemplify the procedure of separating modes by the cubic splines
extrapolation for a unidirectional T300/914 CFRP layer with the material properties in Eq.
(4.28). We used just one single unidirectional layer and obtained the plots in Figure 4.9a
for £h<7. Because the fibers are orthotropic with fiber orientation angle zero with
respect to wave propagation direction; the SH-wave solution is decoupled from Lamb-
type waves (Figure 4.9). The instability of TMM solution for high &£h values is shown in
Figure 4.11a. However, the TMM gives a good and accurate solution in the region with
&h less than ~ 7. An exponential function was used to separate the frequency-
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wavenumber domain into two regions. The separation function used was y = 6.2(e*** —1),
where y is the frequency axis, and x is the wavenumber axis. The SMM solution alone
showed a stable solution in the region £h > 7. However, it did not give a correct solution
pattern at the low wavenumber region (Figure 4.10). Hence, a combined solution by
TMM and SMM is used to obtain a stable and correct solution over the entire solving
domain. We call this combined method the stiffness transfer matrix method (STMM).
Figure 4.11b shows the complete frequency - wavenumber solution using STMM.

Figure 4.11c,d show phase velocity and group velocity solutions, respectively.

2600

2000 -

m

]

=
T

freq. h [kHz.mm]

freq. h [kHz.mm]

s §

N

o 1 2 3 4 5 5 7
(@) & h wavenumber thickness (b) ¢ hwavenumber thickness

Figure 4.9. The TMM wavenumber-frequency dispersion plots for a unidirectional CFRP layer:
(a) the raw data or roots; (b) separation of modes based on cubic extrapolation
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Figure 4.10. SMM solution over the whole domain for a unidirectional CFRP layer.
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Figure 4.11. Dispersion plots of a unidirectional CFRP layer: (a) instability of TMM and mode
tracking between TMM solution, then SMM solution; (b) complete solution using
STMM; (c) complete phase velocity solution using STMM; (d) complete group
velocity solution using STMM. —— Lamb wave solution, - - - Shear horizontal
wave solution

Similar analysis was performed for unidirectional CFRP lamina with fibers at 45°
angle from wave propagation direction. Figure 4.12a shows the instability of TMM and
the STMM combined solution using TMM to the left of the separation line and SMM to
the right of the separation line. Figure 4.12b shows the complete STMM frequency -
wavenumber solution. Figure 4.12c,d show the phase velocity solution of TMM and the
STMM, respectively. Figure 4.12e,f show the group velocity solution of TMM and

STMM, respectively.
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Figure 4.12. Dispersion plots of a unidirectional CFRP layer with 45° fibers: (a) instability of
TMM and mode tracking between TMM solution, then SMM solution; (b) complete
solution using STMM; (c) phase velocity using only the stable region of the TMM
solution (d) complete phase velocity solution using STMM; (e) group velocity using
only the stable region of the TMM solution; (f) complete group velocity solution
using STMM. — Lamb wave solution, - - - Shear horizontal wave solution

The last case study is applying STMM to anisotropic multilayer composite laminate.
211



We used cross-ply CFRP composite laminate [0/90] to show the STMM solution
in the £h—freqdomain. The phase and group velocities are shown in the comparative
study section. The layer of Q° fibers has the same stiffness coefficients of previous
unidirectional CFRP. The layer of the 90° fibers has stiffness coefficients that can be

calculated by transformation matrix. Figure 4.13a shows the £h—freqroots of the final

solution. Figure 4.13b shows the separated modes in the £h —freq domain.

2500 2500

2000} 2000
E 5
n 1500¢ £ 1500
= N A rd =
g 1000 , s o so¢,&’ i- 1000
= p Discrete £ (STMM)

500 & 7 roots ] 500 after mode
Ly finding tracking
0 2 4 6 8 % 2 4 6 8
@ ¢ h wavenumber thickness (b) & h wavenumber.thickness

Figure 4.13. Dispersion plots of cross ply fiber composite laminate [0/90]: (a) root finding; (b)
complete wavenumber-frequency solution using STMM. —— Lamb wave solution,
- - - Shear horizontal wave solution

45, STMM MATLAB GRAPHICAL USER INTERFACE

A MATLAB graphical user interface (GUI) has been developed and the STMM
procedure was coded for quicker and easier analysis (Figure 4.14). First, the unstable
TMM solution can be loaded either in wavenumber-frequency domain or frequency-
phase velocity domain. The software aims at providing displacement and stress mode
shapes at any given root of dispersion plots. STMM button is used to provide the
complete stable dispersion curves in frequency-phase velocity domain, as shown in

Figure 4.15. Finally, after selecting a point on the dispersion curves, Calc. button is used
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to display displacements and stresses modeshapes. It is noticed that stresses o,,0,;, 05,

vanish at the plate surfaces. This agrees with stress-free boundary condition.
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4.6.

ULTRASONIC GUIDED WAVES IN COMPOSITES

COMPARATIVE STUDY BETWEEN SEVERAL METHODS FOR CALCULATING

In this section, results are shown for dispersion curves (phase velocities, and

group velocity curves). The material used as a case study is T300/914 CFRP used in
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DISPERSE software manual (Pavlakovic and Lowe, 2003) and other studies (Bartoli et

al., 2006; Santoni, 2010). The unidirectional layer stiffness matrix values are the values
of ¢, in Eq.(4.28), the density is p=1560 kg/m®. These material properties are used for

unidirectional case studies as well as cross ply cases. DISPERSE software is used for
GMM (with both phase and group velocity curves). GUIGUW computer package, which
was used in (Bartoli, et al., 2006) and is available online, was used for SAFE method; the
core GUIGUW code was used with help from the developers instead of the online
interface. Both TMM and STMM are developed in our group. Finally results reported for
LISA are reported from literature (Nadella & Cesnik, 2012) as we did not find yet a turn

key code based on LISA.

4.6.1. Unidirectional Fiber Laminated Composites along Different Angles

This section presents predicted dispersion curves of a one layer unidirectional
CFRP composite with fiber angle cases of 0°, 30°, 45°, 60°, and 90° with respect to wave
propagation direction. SAFE and GMM dispersion curves of Table 4.1 are exactly
reported in Pavlakovic and Lowe (2003) ppl55 and Bartoli et al. (2006) pp698. Both
GMM and SAFE are matching very well. Our developed TMM and STMM matched
exactly with GMM and SAFE. SO mode has the initial speed around 9500 m/s. SHO mode
has the speed of 2000 m/s. DISPERSE automatic tracing misses SHO. As the angle
between wave propagation direction and the fiber increases; e.g. =30 in Table 4.2; the
material becomes more compliant. We can see the phase velocity of SO mode (at near
zero frequency) drops from 9000m/s to 8000 m/s; also group velocity drops from ~9500
m/s to ~8200 m/s.

214



Table 4.1. T300/914 unidirectional fiber laminate with fiber along wave propagation direction U0

(0=07)

Phase velocity
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Table 4.2. T300/914 unidirectional fiber laminate U30 (8 =30")

Phase velocity Group velocity
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Table 4.3. T300/914 unidirectional fiber laminate U45 (8 = 45")

Phase velocity Group velocity

GMM (DISPERSE) GMM (DISPERSE)

1.0 100
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=
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As fiber angle increases to 45°, the phase and group velocities further reduce to ~7000

m/s. SHO tends to be more dispersive and not having the constant speed with frequency.
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Table 4.4. T300/914 unidirectional fiber laminate U60 (& =60")

Phase velocity

Group velocity
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SHO at fiber orientation 60° degrees is also tends to be more and more dispersive, the

phase and group velocities of SO at near zero frequency further reduce to 5000 m/s.

DISPERSE misses SO.
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Table 4.5.T300/914 unidirectional fiber laminate U90 (6 =90")
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As the fiber orientation becomes exactly perpendicular to wave propagation
direction; SHO returns to non-dispersive nature, i.e., SH waves are decoupled from the
other guided waves in the solution.

DISPERSE misses SO mode in the @=90case. In this case, the speeds are the
smallest compared to other angles, because for the fibers along 90 degrees the material is
in the most compliant situation along wave propagation direction.

A comparison between LISA method, and DISPERSE (i.e., GMM) is reported in
Nadella and Cesnik (2012). The material used is unidirectional IM7 Cycom 977-3
multilayer unidirectional laminate with 1.5 mm thick. The authors compared Ao mode

using group velocity dispersion curves (Figure 4.16).

Disperse
+— LISA,

2000

Group Velodty, mis
3 &
-._\\

8

(=]

0 50 100 150 200 250 300
Frequency, kHz

Figure 4.16.LISA vs. GMM for 1.5-mm thick unidirectional IM7 Cycom 977-3 composite
(Nadella and Cesnik, 2012)

4.6.2. Cross Ply Laminated Composites

In this subsection, we study two cases: 2-layer [0/90] laminate with each layer
0.5-mm thick and 4-layer [0/90]s with each layer 0.25-mm thick. The material is again
T300/914. Beside GMM and SAFE, The equivalent matrix method (EMM) was also used
for comparison.

220



Table 4.6. Two layer 1-mm T300/914 cross ply fiber laminate [0/90]
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Table 4.7. Four-layer 1-mm T300/914 cross ply fiber laminate [0/90]s

Phase velocity

Group velocity
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The case of cross ply of [0/90]s, i.e. 0/90/90/0 (Table 4.7) shows slight different results

than the simple 0/90 case (Table 4.6). On the other hand, the EMM predicts the exact

same result for both cases (Figure 4.17) because it just averages the properties of the 0-
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direction fibers and 90-direction fibers; the EMM does not account the difference
between the 2-layer 0/90 and the 4-layer [0/90]s cases. Figure 4.17 shows EMM result
for [0/90] CFRP. Although EMM predicts the starting points of SO and SHO fairly close,
it is obviously different from the actual predictions of a system of 2-layers reported in

Table 4.6.

12000+
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8000+

¢ [mfs]

6000+

4000+

2000

0 500 1000 1500 2000 2500
freq. h [kHz.mm]

Figure 4.17. Equivalent Matrix method for [0/90] T300/914 CFRP laminate

4.6.3. Quasi Isotropic Composite Laminate

The material used for this case study is T800/924 CFRP following the example in
Pavlakovic and Lowe (2003) pp. 158. The laminate stack orientation is defined as [+45/-

45/0/90]s. The layer material properties are

E;; =161 GPa, E33 =9.25 GPa, G3=6 GPa, v3=0.34, v,; =041, p=1500 kg/m3
The corresponding stiffness coefficients are

C,,=47 GPa , C,, =33 GPa , Ces=Coes =6 GPa

223



The results are presented in Table 4.8. DISPERSE and SAFE results match well

noticed also that SHO is dispersive for such complicated structure.

Table 4.8. T800/924 Quasi isotropic composite laminate [+45/-45/0/90]s
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4.7. EXPERIMENTAL VS. PREDICTIVE FINITE ELEMENT CASE STUDY

The objective of this part is to measure the experimental group velocities of
guided waves propagating in a composite laminate and compare them with results from
predictive tools, (DISPERSE, STMM, and FEM) with the aim of simulating guided

waves and the propagating scheme for non-isotropic materials.

4.7.1. Experimental Study

The structure investigated is a woven GFRP plate in an epoxy resin. The plate
dimensions were 910 x 620 mm and 1-mm thickness. It has 6 plies of glass fiber woven
fabric. The material density is 1960 kg/m®. The layer stiffness matrix [C] provided

(Pollock et al., 2012) is

GPa (4.139)

O O O o o

0 0 0 41

The stiffness matrix is for the woven system directly, i.e. the stiffness coefficients
are already considering the fibers in 0 and 90 directions. As we can see C1;=C»,=28.7
GPa. Because of that, we don’t need to use EMM to find equivalent system of the 0/90
system, instead, we can input stiffness matrix directly in a unidirectional code with
(6=0).

Two PWAS transducers were bonded on the structure; we used 7 mm x 7mm x0.2
mm PWAS as the transmitting transducer. The receiver was 15 mm x 15 mm x 1 mm SH-

PWAS poled in thickness shear direction (for more details, please see Chapter 3: SH-
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Coupled PWAS). We used SH-PWAS to be able to detect the SH waves that may be
generated through mode conversion in the composite material. The experimental setup is
shown in Figure 4.18.

As an application for predictive tools of guided wave propagation in composites,
we show in Figure 4.19 the comparison between DISPERSE and our STMM for
calculating group velocities up to 2000 kHz. However, our experimental work was done
up to 300 kHz, where we could distinguish the three fundamental modes, SO, A0 and SHO.
The transmitter PWAS was excited using 3-count tone burst signals with center

frequency from 1 kHz to 300 kHz.

Receiver Transmitter
PWAS Exp #3 PWAS

L)
»
[/
»
»

_0’0'0'.’9'0’.’0 "0 0.0

Figure 4.18. Experimental setup for guided wave propagation between in-plane PWAS and SH-
PWAS in 1-mm thick GFRP plate
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Figure 4.19. Group velocities in 1-mm woven GFRP plate, (a) DISPERSE, (b) LAMSS STMM

The distance between the two PWAS transducers is 120 mm, and the

experimental group velocity was calculated by dividing the distance by the time of flight

measured between the excitation signal and the received signals. The results are shown in

Figure 4.20. This study was done for only one direction (along O direction). To see the

wave propagation pattern, we constructed an FEM model.
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Figure 4.20. Experimental group velocities of guided waves in 1-mm thick woven GFRP plate,
analytical predictions ___, experimental ooo
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4.7.2.  Finite Element Model for Guided Wave Propagation in GFRP

The finite element model plate dimensions were 450 mm x 450 mm x 1-mm. The
material was GFRP. Two PWAS transducers were bonded in the middle as shown in
Figure 4.21. We used COMSOL Multiphysics coupled-field element for piezoelectric
transducers; this allowed us to apply excitation voltage as the input excitation and receive
the signal at the SH-receiver PWAS as voltage (rather than input a mechanical wave
excitation or force excitation). The excitation signal was 3-count tone burst with 10 V
signal amplitude and center frequency of 48 kHz. The reason for selecting this relatively
low frequency is to satisfy convergence and accuracy requirements with the available

computational resources. The model was run for 200 ps with 0.5 ps time step. The

structure domain was divided into 9 domains as shown in Figure 4.21 such that the
meshing of the domain in the middle was done by free mesh and then extruded by two
elements through the thickness (i.e. 0.5-mm mesh size through thickness). The meshing
of the other external domains was done by structural mesh and was extruded as two
elements through thickness. The mesh size that was used in this study was 3-mm for
GFRP material. Coupled field elements for the PWAS transducers were meshed by 1-mm
mesh size and 4 elements through the thickness of each PWAS (i.e. 0.25-mm mesh size
through the thickness of 1-mm thick SH-PWAS, and 0.05-mm mesh size through the

thickness of the 0.2-mm PWASL.)
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Figure 4.21. FEM for guided wave propagation between PWAS1 and SH-PWAS7 on GFRP

For getting accurate results, it is required that for each mode, the number of
elements per wavelength is 210. recalling Figure 4.20, and for 48 kHz excitation, the
speeds for SO, SHO, and AO are ~3800m/s, 1500m/s, and 1000 m/s respectively; this
correspond to wavelengths ~80, 31, and 21 mm respectively. The critical mode is A0,
which enforces the 2-mm mesh size requirement. But we used 3-mm mesh size because
of the available computational resources. We would expect that the results for 2-D

solution for A0 mode would not look very smooth, as shown in Figure 4.22. For

convergence, the required time step should be <(1/30f,) which in our 48 kHz case

should be 0.7 ps ; we used 0.5 ps time step and 200 ps total simulation time. The
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simulation was done on dual 2.8 GHz XEON 2ML2 processor, and used up to 96 GB of

RAM:; the simulation took 9 hours.
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Figure 4.22. 2-D simulation results for wave propagation in1-mm thick woven GFRP plate at, (a)
particle displacement inplane Y direction, (b) inplane X direction, (c) out of plane Z
direction, (d) out of plane strain tensor
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Figure 4.23. FEM vs. experimental results for guided wave propagation in 1-mm thick woven
GFRP
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The 2-D simulations allowed us to see the wave propagation patterns. Figure
4.22a,b show the symmetric SO and antisymmetric AO modes very clearly. AO mode is
the mode with the smaller wavelength because of its lower wave speed. The fact that both
SO and A0 have inplane components of particle motion allowed the simulation to capture
both SO and AO for inplane displacement plots. Whereas the out of plane (the Z
component) of the symmetric SO mode is very weak, as we can see from Figure 4.22c in
which SO mode almost did not exist.

Figure 4.22c¢ shows the A0 mode out of plane displacement very clearly at 100

ps. A small excitation can be seen around the receiver SH-PWAS, while it is just a

receiver PWAS and was not used as excitation source; this can be explained by the
active/passive behavior of the PWAS transducer. While A0 mode excited by PWAS1 did
not yet arrive at SH-PWAS, the other faster modes (e.g. SO and SHO) had already arrived
and interacted with the transducer, mode converted as AO, and the SH-PWAS appeared
as if it was exciting A0 mode towards PWASI.

Figure 4.22d shows the out of plane component of the strain tensor; we selected
this variable as it was found to be the best one showing most of the interesting modes and
mode conversion phenomenon. Finally, the fact that the GFRP plate was woven showed
that the propagating waves were not propagating in circles, but rather in diamond-shaped
pattern. This is because the material stiffness properties are identical in 0° and 90°
directions, but the material is less stiff in the 45 directions.

Figure 4.23 shows the experimental and FEM-predicted signals. The SO, SHO and

A0 modes were identified in the signal. The A0 mode had good agreement with
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experimental results; the SO mode predicted by FEM and measured experimentally were
fairly close; but the SHO at this particular frequency was not very clear experimentally.

A final observation can be concluded from Santoni (2010). Figure 4.24 shows that all the
guided wave beyond 500 kHz are extremely damped out in such woven GFRP composite;
this indicates the practical range that we can use for predicting wave propagation speeds

and SHM applications.

18 18 -
16 4 16 4 ..29
L ]
14 + 0° 14 1 (7; 09000020205
124 O 12 4 $45° %5 e
104 % 7 22° 10 A
; 8 ‘DDEE o 8
g gl B/, 45° 61
N = .0 0°
= 4 TmgEE .-. =OmE !HH 4
2= IlDEED““”“” Hﬂﬂﬂﬂnuuag 2
. DDEDEEDDDDD LT ;
0 100 200 300 48 so0  eoc o 100 200 300 400 500 600
a) f (kHz) b) f (kHz)

Figure 4.24. Tuning experimental data for wave propagation in GFRP composite, ooo A0 mode,
000 SO mode; A A A SHO mode (Santoni, 2010).

4.8. SUMMARY AND CONCLUSIONS

Different algorithms can be used for calculating dispersion wave speeds in
composites. This study has briefly covered the mathematical formulation of each method.
This work focused on the transfer matrix method (TMM) and the efforts for generating a
stable robust algorithm. TMM is a convenient technique for wave propagation analysis in
layered media; its advantage is that it condenses the multi-layered system into four

equations (for the case of decoupled SH waves) or six equations relating the boundary
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conditions at the first and the last interfaces. It eliminates all other intermediate interfaces;
this saves a lot in terms of computation and complexity. One drawback TMM suffers is
the numerical instability of the solution at large frequency-thickness product values.
There have been many publications proposing reformulation of TM equations to avoid
this problem. One method is based on using stiffness matrix (SM) instead of TM; this is
done by rearranging terms of the TM such that displacements at both the top and the
bottom of the layer are in a single column matrix, and similarly the stresses.

Global matrix method (GMM) combines stresses and displacements at the
boundaries of each layer with the overall system boundary conditions and assembles
them in one single matrix. GMM has the advantage that it remains stable at high
frequency-thickness products. The disadvantage is that the GM turns out to be a large
matrix for laminates with large numbers of layers. Semi Analytical Finite Element (SAFE)
discretizes the structure cross section allowing different cross sections to be analyzed
because of the finite element discretizing in cross section. In the same time it solves
analytically in the wave propagation direction; this makes SAFE more efficient in terms
of computational time and memory than a complete FEM. In general, the material is
defined in FEM by stiffness matrix; this makes SAFE method a very straight forward for
application for anisotropic materials. SAFE is becoming popular for analyzing guided
wave propagation in composites. Local Interaction Simulation Approach (LISA)
discretizes the system into a lattice like the finite difference method; its formulation is
based on the elastodynamic equations. The advantage of LISA appears when
discontinuities or changes need to be applied to the material properties; those changes are

treated by modifying the properties of the lattice at the corresponding locations.
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Equivalent matrix method (EMM) is a quick approach for analyzing cross ply laminates
due to the fact that transformation matrix between 0 and 90 degrees is straight forward
and can be done manually. However it does not catch the differences between different
layup sequences of 0 and 90 fiber layers, such as 0/90/0/90 and 0/90/90/0.

The instability of TMM was discussed in details, and the mathematical
formulation of stiffness matrix method (SMM) was presented. It was shown that SMM
gives a stable solution at the high frequency- thickness products. But SMM does not give
correct roots pattern at low wavenumber and low frequency domain. Hence, a combined
stiffness transfer matrix method (STMM) was proposed and used to obtain correct and
stable results over the entire domain of interest.

The study presented case studies for unidirectional composites with wave
propagation along different angles. GMM and SAFE methods had very good agreement
with our STMM in terms of cut off frequencies and speeds values (both phase and group
velocities). Next, we presented case studies on cross-ply laminates; in this case, results
were compared with EMM method as well. EMM predicted both [0/90] and [0/90/90/0]
in the same way, although their dispersion curves are actually different. This highlights
one drawback of EMM: it gives generally a good approximation but not accurate
predictions. The chapter also presented comparisons on quasi-isotropic laminates and it
showed good agreement between GMM and SAFE methods.

Finally, experimental and finite element studies on a GFRP woven composite
specimen were discussed. PWAS transducers were used for pitch catch experiments using
tone burst excitation signals. Experimental dispersion group velocities showed good

agreement with the theory. COMSOL Multiphysics finite element model was constructed
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using coupled-field elements for the PWAS; this allowed simulation of the input
excitation and output response in voltage directly. FEM showed the propagation pattern
of guided waves in composites. For the specific case of a woven GFRP composite, the
wave propagation along 0 and 90 degrees was similar, but was different along 45 degrees,
which resulted in diamond pattern instead of the conventional propagation in circles
obtained for isotropic materials. New methods need to be designed for even complex

sandwich composites with complex filling structures (e.g. honeycomb).
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CHAPTER 5: SHEAR HORIZONTAL PWAS FOR COMPOSITES SHM

In this chapter, we apply the material studied in Chapter 3 (SH waves and SH-PWAS)
and Chapter 4 (guided wave propagation in composites) on two case studies: (a) a woven
GFRP plate with installed SH-PWAS network; (b) quasi-isotropic [0/45/45/0]s CFRP
with each layer as woven ply. The goal of this study is to establish the experimental and
predictive modeling procedures for testing and modeling the SH-PWAS impedance
spectroscopy and guided wave propagation in composites. The ultimate goal is to discuss
the challenges and applicability of using the SH-PWAS for SHM of polymer composite
materials in structural components. Both electromechanical impedance spectroscopy
(EMIS) technique and guided wave propagation methods are good candidates for SHM
systems. The first part of this study is the modeling of EMIS with finite element analysis
tools; then comparing FEM results with experimental measurements. The second part
covers SH wave propagation between different transducers: SH-coupled PWAS and
regular extensional-mode PWAS transducers, followed by FEM case studies to show 2-D
wave propagation. A similar FEM studies were performed on aluminum (Zhou et al.,

2013) and SH piezoelectric transducers were used for excitation.

5.1. MATERIALS

The first material under investigation is 1-mm thick woven GFRP plate with

dimensions 910 mm x 620 mm. It has 6 plies of woven fabric. The material density is
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p=1960 kg/m*.The provided stiffness matrix [C] (Pollock et al., 2012) is

[28.7 5.7
57 287
3 3
0 0
0 0
0 0

3
3
12.6

0

0
0
0
49
0

o O O O

4.9
0

GPa

o O O O o

4.1

For modeling purpose, we use Rayleigh damping with the mass proportional coefficient

a,, is 0.2 rad/s and the stiffness proportional coefficient /3, is 107°s/rad.

The 2-mm thick CFRP plate consists of woven prepreg carbon fabrics in epoxy

resin. There are 8 layers with orientation [0/45/45/0]s. The material density is

p=1605 kg/m®. The material properties for the O-direction ply was provided by Hexcel

manufacturer as

E11 E2 Ess N1z Ni3 N3 G2 Gis Gas
65 GP, | 67 GP, | 8.6 GPa | 0.09 0.09 0.3 5GPa | 5GPa | 5GPa
The corresponding stiffness [C] is

(656 55 1 0 0 O
55 582 27 0 0 O
1 27 87 0 0 O

C= GPa

0 0 0 500
0 0 050
| 0 0 0 0 5

However a previous study by Gresil and Giurgiutiu (2013) showed that the manufacturer

properties may be overestimated and the updated material properties are
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(3757 436 135 0 0 O]
436 4043 323 0 0 O
135 323 1028 0 0 O
C= GPa
0 0 0 500
0 0 0 0 50
| 0 0 0 0 0 5]

Rayleigh damping for CFRP was considered ¢,, =0 rad/s, B, =10°s/rad. The PWAS

transducers used in this study are (a) regular in-plane extensional-mode PWAS
transducers with dimensions 7 mm x7 mm x 0.2 mm from STEMINC (www.steminc.com)
and (b) SH-PWAS with dimensions 15 mm x15 mm x1 mm and manufactured by APC
International Ltd. (www.americanpiezo.com). For standardized modeling, we use the

same piezoelectric material properties for both as APC850 Navy Il-type piezo with

density p =7600kg/m?and material properties

[97 49 49
97 44
84 .
C= 24 GPa, complex damping coeff. =4%
22
(. 22_
947 -8.02 -8.02 1831
[gr]= 605 , [e]= 12.84 |C/m?
947 12.84

When modeling PWAS in FEM using COMSOL Multiphysics, the poling direction is
defined. By default, the poling is in X, direction which is the thickness direction. For
modeling SH-PWAS, we define an auxiliary coordinate system with X; in the direction of

inplane poling direction. So the two PWAS transducers were defined with the same
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material properties; the SH-PWAS is only different by rotating the material properties

such that the local x; coincides with the global y direction (Figure 5.1).

5.2. ELECTROMECHANICAL IMPEDANCE SPECTROSCOPY AND ADMITTANCE

Electromechanical (E/M) impedance of the SH-PWAS was measured using HP
4194A impedance analyzer. Recalling the free SH-PWAS from Chapter3, i.e., not bonded

to any structure, the impedance first peak was shown experimentally to be ~1.060 MHz.

5.2.1. EMIS for woven GFRP Plate

The experimental measurements were performed as a sweep up to 5 MHz. The
real and the imaginary components of E/M impedance (Z) were recorded. Experimental
results are shown in Figure 5.2. We display the measured real(Z) and the corresponding
real(Y), where Y is the E/M admittance. The admittance is more representing parameter
for the resonance of the structure, where the structure vibrates more when the admittance
reaches a peak value; while the impedance is the resistance or the anti-resonance situation.

Beside the experimental study, a FEM was constructed in COMSOL Multiphysics
software using the coupled field element for the piezoelectric material. The plate model
had the dimensions 150 mm x150 mm x1 mm. The excitation signal amplitude was 10 V
and the solver was the frequency domain analysis solver, where a frequency sweep is

performed and the output response is calculated.
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Figure 5.1. FEM mesh of the SH-PWAS bonded to GFRP plate

PWAS in-plane mesh size was 0.5 mm whereas 4 elements were used per the 1-
mm thickness; the plate was meshed with 2-mm mesh size whereas 2 elements were used
per the 1-mm thickness. The meshing of composite materials is one of the challenges for
modeling multilayered composites by finite element analysis tools. For this woven GFRP
plate consisting of 6 identical layers of woven fabric, we could mesh the whole thickness
by one element, or the number of elements required in accordance with minimum
simulated wavelength. However, if the layers are of different properties, like the second
case study of CFRP with 8 layers, we have to mesh the thickness by 8 elements at least.
For our case of having the second peak of interest around 3.2 MHz (experimentally) and
the shear wave speed of SHO =1500 m/s (Figure 4.20), the corresponding wavelength is
0.5 mm. This required the mesh size to be within 1/10 of 0.5 mm (one tenth of 0.5 mm, or
0.05 mm). However, the PWAS mesh we used was 0.5 mm and the plate mesh was 2
mm. This is one of the limitations of our model, i.e., the maximum frequency at which
we can trust the FEM results is 75 kHz. If we did not consider the 1/10 rule, the
maximum trusted frequency would be 750 kHz. The simulation time was 25 hours on 3.4
GHz intel i7 processor with 8-core 16 GB RAM PC. Comparing the FEM results with

experimental results in Figure 5.2, we still can see that the FEM and the experimental
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results had good agreement with only little frequency shifts being observed, e.g. the free
PWAS experimental antiresonance of 1090 kHz is matching well with FEM predictions.
However, there are two extra experimental peaks associated with bonded PWAS on the
structure, 300 kHz and 800 kHz. In addition, we notice that the FEM over predicted the
300 kHz as 430 kHz, and missed the 800 kHz.

Admittance results had better agreement, especially, at 420 kHz and 870 kHz.
Having such agreement without satisfying the wavelength minimum mesh size rules can

be explained by getting the desired convergence without the need of such small mesh.

Z SH GFRP composites
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)
©
g
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Figure 5.2. E/M response of SH-PWAS bonded on woven GFRP: (a) impedance, (b) admittance
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The EMIS method is a good candidate for SHM systems to detect small damages
in the vicinity of the transducer. This statement can be reasoned by looking to the
simulated response at an arbitrary frequency of 400 kHz. Figure 5.3 shows that the
effects on the plate associated with exciting the SH-PWAS at 400 kHz are local effects.
Hence the PWAS can capture the changes if they are within this localized area. By
contrast, exciting the PWAS at relatively smaller frequencies would resonate the whole

structure, and simulations results at 20 kHz and 50 kHz are shown in Figure 5.4.

i

Figure 5.3. COMSOL simulation of 400 kHz response of the SH-PWAS bonded to GFRP plate

freq (2) =20000 surface: Total disp (m) freq (5) =50000 surface: Total disp (m)

Figure 5.4. COMSOL simulation of GFRP plate resonance modes under excitation of SH-PWAS:
(a) at 20 kHz, (b) at 50 kHz.
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5.2.2. EMIS of quasi-isotropic CFRP plate

Similar experimental EMIS measurements were performed on the 2-mm thick
CFRP plate; the frequency sweep was done up to 4 MHz. For the FEM, the CFRP plate
consists of 8 layers each of thickness 0.25 mm (total plate thickness is 2 mm). The
material properties of the plies #2, 3, 6, 7 are transformed by a 45-degree rotation from
the original material properties. The mesh size used here was a rough one, the plate mesh
size was 5-mm with 8 elements per thickness (i.e. 1 element per layer). The PWAS mesh
size was 0.5 mm as before and 4 elements per the 1-mm thickness. The solution time was

~9 days on the same 3.4 GHz i7 intel processor with 8-core PC and 16 GB RAM.
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Figure 5.5. E/M response of SH-PWAS bonded on [0/45/45/0]s CFRP: (a) impedance, (b)
admittance.
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The comparison between experimental and FEM results is shown in Figure 5.5.
For the mesh size 5 mm and SH wave propagation speed in the laminate ~2200m/s (the
next section discusses the SH wave propagation speed), the maximum frequency that we
can trust in the FEM model results is 44 kHz. However running the model on the same
machine used for the GFRP case yielded comparable results between experiments and
FEM, especially in admittance results (Figure 5.5). It can be noticed that the first
resonance detected by FEM is 260 kHz; this resonance is present in the experimental
results but very damped. The second peak ~640 kHz had a good agreement; finally, the

free PWAS resonance frequency is shown at~890 kHz.

5.3. GUIDED SH WAVE PROPAGATION IN COMPOSITES

A set of experiments were conducted for testing the excitation and reception of
SH waves in polymer composites. The idea is very similar to the experimental setup
discussed in Chapter 3 (SH - Coupled PWAS); however, these experiments were not
complete combinations of pitch catch experiments between SH-PWAS and regular
extensional-type PWAS transducers due to the limited availability of transducers and
materials. We compared experimental group velocities of guided waves with results from
predictive tools, such as DISPERSE and our developed STMM. Finally we constructed a
FEM models for simulating the wave propagation in 2-D in polymer composite materials.
The predicted wave group velocities of guided wave propagation only in GFRP plate
were covered in Chapter 4. The case of CFRP was not covered. For completeness, we

recall in Figure 5.6 the plots of Figure 4.19.
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Figure 5.6. Group velocities of ultrasonic guided waves in 1-mm woven GFRP plate, (a)
DISPERSE, (b) STMM.

Figure 5.6 shows the comparison between DISPERSE and our STMM predictive
tool for calculated group velocities up to 2000 kHz. However, the experimental studies
were done up to 300 kHz. Moreover, at this moment, we only predict wave propagation
group velocities on CFRP plate by DISPERSE, because our STMM tool is under

development. The predictions of both materials are shown in Figure 5.7.
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Figure 5.7. Group velocity dispersion curves for (a) 1-mm woven GFRP, (b) 2-mm [0/45/45/0];
CFRP

Now we discuss the experimental setup for each case and compare the

experimental results with the predicted data, especially for our focus, SH waves.
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5.3.1. Experimental Study for GFRP

The schematic setup (Figure 5.8) shows two installed SH-PWAS (#7 and #8) and
two regular PWAS (#1 and #2). The distance between PWAS transducers is 120 mm.
Pitch catch experiments were conducted by exciting PWAS transducers in turns with 3-
count tone burst signals with 10V amplitude and sweep the center frequency up to 300
kHz.

Experiment-1 was done between the two SH-PWAS transducers, #7 and #8, by
exciting SH-PWAS7 and receiving at SH-PWASS; three types of waves were picked at
the receiver SH-PWASS, symmetric SO, antisymmetric A0 and SHO (Figure 5.10a).

In experiment-2, the excitation was done by SH-PWAS7 and reception by
PWASL1; we can see from Figure 5.10c that PWAS1 picked up SHO waves as well as the
expected SO and AO. This interesting feature was also observed in isotropic aluminum
plate. In experiment-3, the excitation was done by the regular PWAS1; the receiver SH-
PWAS?7 picked up SH waves. PWASL1 is supposed to excite only Lamb-type waves;

however, SHO waves were picked up by SH-PWAS?7. Experiment-3 was exactly identical

to experiment-2 (Figure 5.10c).
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Figure 5.8. Schematic of transducers positions for SH-PWAS experiments on woven GFRP plate

Figure 5.9. Experiments numbering and directions of pitch catch experiments between various
SH-PWAS and PWAS on GFRP
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Finally, experiment-4, where SH-PWAS8 was excited and the received signals
were picked up by regular PWAS2. In this case, only SO and AO waves were picked up.
This observation leads to the conclusion that SH-PWAS only excites SH waves
perpendicular to its poling direction. This observation is analogous to the case performed
on aluminum plate (Figure 3.28c) in which we showed that SH waves cannot be excited
if the poling directions of two SH-PWAS were perpendicular to each other. Experiment-5

(the reverse situation of experiment-4) showed identical results (Figure 5.10D).
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5.3.2. Experimental Study for CFRP
Similar setup was established for experimental study of SH waves on 2-mm thick

CFRP composite plate; a schematic is shown in Figure 5.11. And set of five experiments

were performed.
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Figure 5.11. Schematic of transducers positions for SH-PWAS experiments on 8-ply CFRP plate

Figure 5.12. Experiments numbering and directions of pitch catch experiments between various
SH-PWAS and PWAS on CFRP
The summary of experiments numbering is shown in Figure 5.12. The results are
reported in Figure 5.13. An observation was noticed in experiment-1 of exciting the SH-
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PWAS9 and receiving the signals by SH-PWAS10: it was noticed that the two wave
packets captured by SH-PWAS10 had speeds that looked shifted compared to analytical
predictions (Figure 5.13a). Recalling the material property updating we used earlier at
the beginning of the chapter; we run the analytical predictions based on the manufacturer
given properties; the new comparison of results is plotted in Figure 5.13b. This can be
the reason of the shifted experimental results. However this will affect other experiments.

We keep at this moment the reduced material properties that Gresil and Giurgiutiu (2013)

suggested.
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Figure 5.13. Group velocity curves for CFRP experiments: (a) SH->SH, (b) modified SH—>SH,
(c) SH9>PWAS], (d) SH1I0=>PWAS2.
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Experiment-2 (where SH-PWAS9 was excited and the receiver was PWAS1)
showed similar results obtained on GFRP plate by capturing the three waves SO, A0 and

SHO. Experimental-3 (the reverse situation of experiment-2) showed identical results

(Figure 5.13c)

In experiment-4, we excite the SH-PWAS10 which is installed such that poling
direction is parallel to the line connecting SH-PWAS10 and receiver PWAS2; in this
situation, PWAS2 did not capture SH waves, but only received A0 and SO modes.

Experiment-5 was identical to experiment-4 (Figure 5.13d).

5.3.3.  FEM Case Studies for GFRP

The dimensions of the plate used for FEM for wave propagation were 450 mm x
450 mm and 1-mm thick GFRP, the actual material consists of 6 identical woven layers.
We modeled the whole 1-mm thickness as one woven layer. The setup for simulating

experiment-2 and 3 was shown in Figure 4.21. Here, we show the FEM mesh and

geometry for experiment-1 setup (Figure 5.14), where wave propagation between two
SH-PWAS transducers was studied. The two SH-PWAS were modeled by coupled field
elements; this allowed us to apply excitation voltage as input for the model, and receive

the signal at the receiver SH-PWAS as actual voltage.
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Figure 5.14. FEM schematic for guided wave propagation between SH-PWAS7 and SH-PWAS8

The excitation signal was 3-count tone burst with 10V signal amplitude and center
frequency 60 kHz. The reason for selecting this relatively low frequency was to satisfy

accuracy and convergence requirements, beside the available computational resources.
For convergence, the required time step should be< (1/30f_). For our 60 kHz situation,
the maximum possible time step is 0.55us . We used 0.5 xS time step and total simulation
time 500 us . This case study was the first model we ran, as a proof of concept, so we

used rough mesh size and did not satisfy wavelength requirements. In this case study,
more concern was towards SH waves. Referring to dispersion group velocity curves
(Figure 5.7a), the speed of SHO was 1500 m/s. For 60 kHz excitation signal, the

corresponding wavelength is 25 mm.
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Figure 5.15. 2-D simulation results for wave propagation in 1-mm thick woven GFRP plate,
particle displacement inplane Y direction: (a) at 50 xS ,(b) at 70 xS . Out of plane Z
particle displacement: (c) at 50 xS ,(d) at 70 1S .

Mesh size used was 5 mm for the plate with 2 elements per thickness (i.e. 0.5
mm). Piezoelectric element mesh size was 1 mm with 2 elements per thickness (i.e. 0.5
mm). The simulation was done on 3.4 GHz intel i7 processor with 8-core PC with 16 GB
RAM; the simulation took ~ 2 hours.

Referring to the coordinate system shown in Figure 5.15, the SH waves are the
waves associated with particle oscillation in y-direction which is parallel to SH-PWAS
poling direction. While, the wave propagation direction of SH waves is x direction.

Figure 5.15a,b show the y-displacement of the particle oscillation. SHO can be noticed
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having a speed between SO and A0. Only those mode patterns appear on y-displacement
solution. When plotting the out of plane z-displacement of particle oscillation, we can see
only A0 mode because of its dominant energy is in the out of plane direction (Figure
5.15¢,d). We report in Figure 5.16 the comparison between the voltage signal picked by
the receiver SH-PWASS and the calculated output signal from FEM.

As we can see from Figure 5.16, the FEM predicted SHO and A0 modes. AO
mode from FEM is comparable to experimental results. The SO mode was observed

experimentally, but the FEM did not pick it up.
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Figure 5.16. FEM vs. experimental results for guided wave propagation in 1-mm thick woven
GFRP (SH-PWAS to SH-PWAS).

The second case study was exciting the regular extensional-mode PWAS with the
received signal being picked up by SH-PWAS. As discussed in the experimental section,
we did not expect that regular extensional-mode PWAS could excite SH waves.
Observing SH waves when the regular PWAS was used for excitation could be reasoned
by finite dimensional differences between the two transducers: the regular PWAS and the
SH-PWAS. For completeness, we report the results for the FEM that simulates wave

propagation between PWAS and SH-PWAST.
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For getting accurate results, it is required for each mode that the number of
elements per wavelength is 210. Recalling Figure 4.20, the speeds for SO, SHO, and A0
at 48 kHz excitation are ~3800m/s, 1500m/s, and 1000 m/s respectively; this corresponds
to wavelengths ~ 80, 31, and 21 mm respectively. The critical mode is A0, which
enforces the 2-mm mesh size requirement. But we used 3-mm mesh size because of
computational resources available, and we would expect that the results for 2-D solution
for A0 mode will not look very smooth, as shown in Figure 5.17. For convergence, the

required time step should be < (1/30f_) which in our 48 kHz case should be 0.7 us ; we

used 0.5pus time step and 200 ps total simulation time.
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Figure 5.17. 2-D simulation results for wave propagation in1-mm thick woven GFRP plate at, (a)
particle displacement inplane Y direction, (b) inplane X direction, (c) out of plane Z
direction, (d) out of plane strain tensor
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The simulation was done on dual 2.8 GHz XEON 2ML2 processor, and used up
to 96 GB of RAM,; the simulation took 9 hours. The 2-D simulations allowed us to see
the wave propagation patterns; Figure 5.17a,b show the symmetric SO and antisymmetric
A0 modes very clearly (A0 mode is the mode with lower wavelength because of its lower
wave propagation speed.) The fact that both SO and AO have inplane components,
allowed the simulation to capture both SO and AO for inplane displacement plots.
However, the out of plane (the Z component) of the symmetric SO mode is very weak, as
we can see from Figure 5.17c, where SO mode almost does not exist.

Figure 5.17c¢ shows the A0 mode out of plane displacement very clearly at 100

4S. And a small excitation can be seen around the receiver SH-PWAS, which is just a

receiver PWAS and not used as excitation source; this can be explained by the
active/passive behavior of PWAS transducers. While A0 mode excited by PWAS1 did
not yet arrive at SH-PWAS, the other faster modes (e.g. SO and SHO) had already arrived
and interacted with the transducer, mode converted as AO, and the SH-PWAS appeared
as if it was exciting A0 mode towards PWASI.

Figure 5.17d shows the out of plane component of the strain tensor; we selected
this variable for discussion; because it was found the best one showing most of the
interesting modes and mode conversion phenomenon. Finally, the fact that the GFRP
plate was woven showed that the waves are not propagating in circles, but rather in
diamond-shaped, because the material stiffness properties are identical in 0° and 90°

directions, but the material is less stiff in 45° directions.
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Figure 5.18. FEM vs. experimental results for guided wave propagation in 1-mm thick woven
GFRP

As we can see from Figure 5.18, the FEM predicted SO, SHO and A0 modes. A0
mode had good agreement with experimental results, SO mode predicted by FEM and
measured experimentally were fairly close; while SHO at this particular frequency was

not very clear experimentally.

5.3.4. FEM Case Study for CFRP

The dimensions of the plate used for FEM for wave propagation in CFRP were
originally 450 mm x 450 mm and 2-mm thick. That was modified a little to save in
computation resources and time. As shown in Figure 5.19, the geometry of the plate was
no longer a square of length 450 mm, but was reconstructed to 570 mm x 450 mm; such
that the distance between the two SH-PWAS is still 120 mm; afterwards the geometry
was sliced in two; imposing symmetry conditions; simulations were done only on half the
model. In the post processing stage in COMSOL Multiphysics, it is possible to request

doubling the solved domain for the case of symmetry in the solution.
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Figure 5.19. FEM geometry for guided wave propagation between SH-PWAS9 and SH-PWAS10
on CFRP plate

The CFRP plate is 2-mm thick 8 layer laminate; we used 8 elements per the
thickness to get one element per layer. The excitation signal was 3-count tone burst with

10V signal amplitude and center frequency 48 kHz. Time step was 0.5us and the total
simulation time was 200 pus . The used mesh size was 5-mm for the plate lateral

dimensions and 1 element per layer (i.e. mesh size of 0.25 mm); the PWAS was meshed
by 2-mm in-plane squares with 2 elements per the 1-mm thickness. The simulations
wavelength requirements were not satisfied. We expected not a very accurate solution.
The simulation time was ~6 hours.

The results shown in Figure 5.20 describes the SH wave propagation with two
simulation time captures (Figure 5.20a, b). Also shown is the out of plane A0 mode that
the SH-PWAS excites along with SH waves.

Figure 5.20c shows that before A0 mode reached the right and the left SH-PWAS
transducers, a small excitation can be seen around the two receiver SH-PWAS, which are

just receiver PWAS transducers and not used as excitation sources. This can be explained
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by the active/passive behavior of PWAS transducers. While A0 mode (excited by the
middle SH-PWAS) did not yet arrive at the two SH-PWAS transducers, the other faster
modes (e.g. SO and SHO) had already arrived and interacted with both transducers, mode
converted as A0, and the two SH-PWAS transducers appeared as if they were exciting

A0 mode towards the middle PWAS.
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Figure 5.20. 2-D simulation results for wave propagation in 2-mm thick CFRP plate, particle
displacement inplane Y direction: (a) at 45 uS ,(b) at 70 uS .(c) Out of plane Z
particle displacement at 70 S .

260



1.5 B T T T T T T
Excitation { - received at f=48kHz

f\ FEM AO\ |
_ p \]L \ f \ WM’WW?MWWWW
-1r \ Exp SHO i

_1-5 r r r r r r r r r
o] 20 40 60 80 100 120 140 160 180 200

Time (usec)

signal voltage [nomalized)]
o
[4)] o
T i>

Exp AO very weak

Figure 5.21. FEM vs. experimental results for guided wave propagation in 2-mm thick CFRP

As we can see from Figure 5.21, the FEM predicted SHO and had good
agreement with experimental results. The FEM also predicted AO as a strong received

signal, while the experimental result was very weak and noisy.

5.4, SUMMARY AND CONCLUSIONS

SH-PWAS was studied for E/M impedance method and wave propagation of SH
waves in two composite plates, one was a cross ply GFRP laminate and the other was a
quasi-isotropic CFRP laminate. It was shown that the impedance analysis is suitable for
capturing local effects at the plates at frequencies ~400 kHz. To capture the whole plate
resonances, relatively smaller frequencies of excitation need to be used. Experimental
admittance results were comparable to FEM results obtained using coupled field
piezoelectric elements bonded to composite layers.

Wave propagation method showed that the SH-PWAS can excite SH waves as
well as SO, A0, providing that the receiver PWAS is in a position such that the wave

propagation direction between SH-PWAS and the receiver PWAS is perpendicular to
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SH-PWAS poling direction. If we excite SH-PWAS and receive the signal along a
direction parallel to the poling direction, only A0 and SO waves were captured. These
phenomena were observed in both GFRP cross ply laminate and CFRP quasi-isotropic
laminate.

2-D FEM wave propagation simulation showed the wave propagation patterns of
SH waves. The mesh size used was not satisfying the accuracy conditions of wavelength
and mesh size because of our limited computational resources; nevertheless, the overall
wave propagation showed consistent results with our expectations. The received signals
predicted by FEM were compared with experimentally measured voltage signals. For the
experiment between two SH-PWAS in GFRP, there was a little shift between received
SHO waves, but a good match for AO mode. Predictive models of transmitted waves from
a regular PWAS showed three waves: A0, SO and SHO; however the experimental results
did not show a strong SHO signal.

Moreover, for CFRP simulations, there was a good match between SHO mode
predicted by FEM and measured experimentally. On the other hand, A0 was captured by
FEM, but it was not detected experimentally.

SH-PWAS is a good transducer for generating SH waves in composite materials,
and it is way less expensive than EMAT transducers; this makes it a potential candidate

for composites SHM.
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CHAPTER 6: GUIDED WAVE DAMAGE DETECTION IN AN AEROSPACE
PANEL
The objective of this chapter is to test and to apply the basic theory that was covered in
previous chapters on a realistic complex structure for detecting simulated damages. Of
course, this will require more advanced system with some damage detection algorithms.
We used a realistic aging aircraft specimen that was fabricated at Sandia National Lab
with simulated aging-like induced damage. We presented the SHM system we used; it

was developed by Metis Design (www.metisdesign.com). Brief description of sensors

installation and system operation was addressed. Finally we proposed the tests that we

will perform.

6.1. MATERIALS

The aging aircraft specimen was fabricated at Sandia National Lab with simulated
aging-like induced damage (cracks and corrosion). It is made of 1-mm (0.040") 2024-T3
Al-clad sheets assembled with 4.2-mm (0.166" ) diameter countersunk rivets, with a U-

shaped (BAC 1498-152 stringer), as shown in Figure 6.1.
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Figure 6.1. Image of the 2024-T3 Al plate under test
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This plate was used before for testing certain simulated damages that were
included in the blue print (Figure 6.2) developed at Sandia National Laboratory. The

detailed experimental setup and results were reported in Giurgiutiu et al. (2002).
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Figure 6.2. Blue print of the experimental panel developed at Sandia National Lab.

6.2. EXPERIMENTAL SET UP FOR MD7 ANALOG SENSOR-ASSEMBLE SYSTEM

The hardware is developed by Metis Design (www.metisdesign.com) and it
includes (1) piezoelectric-based damage localization sensors (MD7 VectorLocator™), (2)

distributed digitization hardware (MD7 IntelliConnector™), and (3) a data accumulation
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hub (MD7 HubTouch™). These items are shown in Figure 6.3, Figure 6.4, and

described briefly here after.

Intelli-Conn

CROSSHAIR TICK MARKS; CENTERED ON PIEZOS

(@) (b)

Figure 6.3. (a) MD7 VectorLocator™, (b) MD7 IntelliConnector™, Source: Metis Design

Figure 6.4. MD7 Data Accumulator hub, HubTouch™, source: Metis Design manual

As we can see from Figure 6.3(a), the VectorLocator™ consists of a central

actuating disk with multiple sensing disks. The actuating and the sensing component
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consist of seven piezoelectric wafers that are integrated into a custom flex-circuit
assembly that connects to the IntelliConnectors™ shown in Figure 6.3(b).

For the bonding of the flex-circuit to the aluminum plate, we used Vishay Micro-
Measurements AE-10 adhesive; dead weights of 10 N were used, and the adhesive was

left to cure for 24 hours in 25 C room.

Figure 6.5. Sensors node VectorLocator™ after bonding. Connectors are used to connect
different sensors node together or to the data accumulator hub.

The IntelliConnector™ is a digital sensor infrastructure; a direct replacement of
traditional instrumentation such as oscilloscopes and function generators. This device
greatly reduces unnecessary cable weight by allowing data to be carried over a serial
sensor-bus and increases signal fidelity by digitizing at the point-of-measurement to
eliminate EMI. The IntelliConnectors™ excite analog sensors mated through micro-
connectors and digitize their response (Kessler et al., 2011). The complete setup is shown

in Figure 6.6.
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Figure 6.6. Complete setup of the MD7 SHM system

6.3. OPERATION OF MD7 SYSTEM

After the experimental setup, and powering up the system, the data accumulator
hub will automatically detect the number of sensor nodes connected to the system. A
“profile” needs to be loaded to the data accumulator hub; this profile contains the
required parameters to perform the pitch catch, the example profile we used is shown in

Figure 6.7. The main parameters of concern are:

e excitation waveform type: tone burst, # number of Hanning cycles
e Actuator start frequency kHz
e Frequency step size (kHz)

e Actuation amplitude Vpp
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Filename: PCOOL.GW

profile version: 4.5

AR
AININININININININN

This file is used to set the run-time parameters for the MD7 Hub Touch system.

Do not modify the format or the spacing - Parameter values only.

Parameter Description

5.5 waveform type, #of cycles of hanning window

50 Actuator start frequency (kHz)

30 Number of frequency steps

10 Frequency step size (kHz)

20 Actuator amplitude (vpp)

] Number of sensor channels to aquire on

200 pata collection time (us)

50 pPulse-echo gain. sain for act., listening for echo
50 pitch-catch gain. Gain for sensor only, ?ﬁsteming
64 Number of averages.

0 Pause Time between averaged actuations (ms)

nNumber of complete tests.
Pause time between complete test sets (minutes)
Flag to allow warmup

valid values

3.5-5.5 in increments of 0.5.

rRange 30-100 kHz in 1 kHz steps, 100-500 kHz in 5kHz steps
0 ="No stepp'ing, one freg. only. Max = 100

1 kHz (30-100 kHz) & 5 kHz (100-500 kHz)

1.25 - 20V in 1.25V increments

0-6. 0 is actuator only. 1-6 are act+sensor

100-999 us,

1-500 (real gain)

1-500 (real gain)

1 (no averages), 2-1024 (in powers of 2)

0-300 ms (in addition to 20 ms default)

1-999

0.10 - 1440.0

0: No warmup, will write 5D; 1: Allow warmup, no SD write

Figure 6.7. Profile of a measurement, to be

6.4. ANALYZING EXPERIMENTAL

SOFTWARE

6.4.1. CAD Modeling

For pursuing analysis on the part, a CAD model needs to be created and meshed
in the regular FEM manner. Besides, the plate layout file needs to be created, which
defines plate limits, i.e. length and width. One point to consider here, that the CAD file
needs to be created in inches, however the layout in meters and there is a conversion file

to be supplied in the working directory, inside mesh folder. Figure 6.8 shows the CAD

model.

uploaded to the memory card before test

MEASUREMENTS BY METIS DESIGN SHM

Figure 6.8. CAD Model on COMSOL for possible separate FEM later.
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6.4.2. FEM Meshing

The CAD file is then imported into a finite element modeling software package
for automatic meshing, typically ANSYS is the software that the Metis Design uses with
the help of ANSYS script to perform meshing directly.

Typical exported mesh files are (1) the nodes list which specifies the node number and its
coordinates, (2) the elements list, which specifies the element number and its connectivity

with nodes (Figure 6.9).

A B C D B F G H |
1
2 E move.txt - Notepad - O
3 _Node_ _ Node_ _ Node_ |I'fic dit Format View Help
4  MNode _ x  _y 2 |r.0t=[g,g,g];
5 | _number_ position position position mov=[8,8,8];
|0 —im_ —m_ _m,__ | e i
7 1 17 15 0 ?
8 2 16 15 o]
2 3 17 15 0 EH Element_list.csy
10 4 17 14 0
A B C D E

11 5 16 15 0 2
12 6 16 15 o] 2
13 7 17 15 0 3 Element_ Element_ Element_ Element_
14 8 17 15 0 4 Element__ node_ _ node_ _ node_ _ node_
15 [s] 17 14 0 5 | number___ 1 2 3 4
16 10 16 15 0 6 | () () () )
17 11 17 14 0 7 1 28 12 54 26

8 2 37 58 54 53
18 12 16 15 0 9 3 58 51 55 36
19 13 17 15 0 ||10 a 37 54 58 36
20 14 17 15 0 11 5 26 59 2 54
21 15 16 15 0 12 6 60 53 54 1

Figure 6.9. Exported mesh files and move.txt file for relative position, rotation and unit
conversion

Once the mesh files are generated, it is ready to use the Metis Design software

package for SHM, the starting windows is shown in Figure 6.10.
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5) Module Launcher = =

Metis Design Guided-Wave SHM Modules

: DAQ Optimization and Modeling

Optimal Sensor Placement

Damage Detection & Visualization

Figure 6.10. Module launcher for Metis Design software package

Our main focus here is not about DAQ optimization and modeling, neither the

optimal sensor placement. But in general, the purpose of the DAQ optimization module is

to import preliminary data from small set of sensors and the measured pitch-catch data
for example; for the goal of optimizing the full scale testing. Also it aims to estimate
statistical model parameters for sensors, e.g. the frequency at which the signals are
having the maximum average, the global maxima, and the global standard deviations.
This is used to calculate the frequency at which the signal to noise ratio (SNR) is the

maximum.

Optimal sensor placement module:

The purpose of this module is to determine the optimal arrangement of specified
number of sensors, given the statistical signal model parameters from previous module.
This module exports to the layout file that is needed for the damage detection module.

However at this stage, we designed our layout ourselves.
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6.4.3. Damage Detection and Visualization

We installed two nodes of sensors, node 3 and node 4, the layout file provided is

" o o u c r a n ' 3 n . wi " U -
1D _Ix ¥ orient mirrored Transducer Functionality Side

3 0.6604 0.254 0 0 1 1 o 1 o 1 1 1 1 -3.14159 3.141593
4 0.254 0.254 180 o 1 1 1 1 1 1 1 1 1 -3.14159 3.141593

Figure 6.11. Layout of the sensor nodes

The working directory contains the following files

= Mesh
= Node list.csv — Structure mesh node list
=  Element_list.csv — Structures mesh element list
=  movetxt— Settings fo move and scale mesh after import (optional)
= Pror_probability.csv — Nodal prior probabilities of damage (optional)
= Data
= Dataset 1 — User defined name
* Run001 — Contains acquired data from structure
+ Run(02
* Run(03
»  Dataset 2
- e
o layout csv — Defines the sensor node layout on the structure (may be generated using
Optimal Sensor Placement Module)

Figure 6.12. Required files in the working directory of the software.

The file we meshed and imported in the damage detection and visualization

module is shown in Figure 6.13.
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& Damage Ocsecton & Vinsakzation Mode -oEs

Figure 6.13. Damage detection and visualization module, after importing our test structure.

6.5. PROPOSED WORK

The SHM system developed by Metis Design is based on the baseline
measurements concept. This means that when we installed the sensors nodes and run the
pitch catch experiments between basically the 12 sensors within the two nodes, we have a
baseline measurement Run001. Whatever damages that were induced in the plate (e.g.
corrosion, slit cracks), this is the baseline measurement. We propose inducing some
simulated damages, either by using the strong magnet attached to the plate with two
magnets from both sides of the plate, or cover a part of the plate by clay as a wave
absorption domain. After that we run another measurement run and save it as Run002. As
shown in Figure 6.13, it is required to load reference measurement, then another
measurement that is after inducing damage. As an illustration for the method, we
installed a chunk of clay as shown in Figure 6.6, and the resulted output analysis is

shown in Figure 6.14.
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Figure 6.14. Preliminary result based on a baseline measurement and a measurement after
inducing the clay on the plate at 80 kHz

6.6. SUMMARY AND CONCLUSIONS

The MD7 guided-wave SHM system developed by Metis Design was studied and
tested, the steps included, sensor installation, operation and performing pitch catch
measurements, CAD modeling, FEM meshing, exporting mesh to the software, and
analysis in the damage detection and visualization module.

We conclude that the system is applicable on the plate under test, and further experiments
to be conducted by inducing other forms of damages and test the system if it can detect
these damages. Careful selection of frequency of excitation is an important parameter to

be considered.
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CHAPTER 7: SHM OF VARIABLE STIFFNESS CFRP PLATE

In this Chapter, we study the wave propagation in a CFRP plate with variable fiber
orientations along plate width and length at every layer. This type of structure was
studied by Tatting and Gurdal (2003); Blom (2010). The objectives here are: (1) to find
experimentally the dispersion wave propagation speeds and (2) to discuss the challenges
for getting accurate results. The methods involved for finding wave propagation speeds in
this study are time of flight (TOF) with using Hilbert envelops over the signals, and short
time Fourier transform (STFT). We installed eight PWAS transducers on the plate and
performed pitch catch experiments between different transducers to investigate wave
propagation along different fiber orientation angles, (keeping in mind that the fiber
orientation is not homogenous at every x and y position.) This fiber orientation pattern
leads to varying the plate stiffness as function of x, and y dimensions. Hence we refer to

this plate as variable stiffness (VS) plate.

7.1. MATERIALS

The plate we used is a 140x 390 mm CFRP plate with a variable thickness that is
ranging from 2.9 mm at edges to 3.4 mm in the middle. This plate was fabricated and

studied by Tatting and Gurdal (2003). Figure 7.1 shows the plate during fabrication stage.
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Figure 7.2. The part provided for performing wave propagation tests on

The final fabricated plate with PWAS transducers installed on it is shown in Figure 7.3.
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U0 in the middle

. ) -
Figure 7.3. The VS CFRP plate with PWAS transducers installed and clay around boundaries

7.2. WAVE PROPAGATION EXPERIMENTS

The PWAS transducers were installed such that wave propagation along different
angles can be studied, U0, U30, U45, U60, and U90. Also another test was performed
between two PWAS transducers at the middle of the plate, and two PWAS with wave
propagation along negative 45 deg. direction. All pitch catch experiments were
performed between transducers 80 mm apart. The excitation used was 3-count tone
burst with 10 V amplitude and frequency sweep up to 300 kHz. The challenge on this
plate is that it is relatively small, and lots of reflections existed, hence we used the clay to
damp these reflections as much as possible. The results of wave propagation are shown in

the next few figures, in Figure 7.4.
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Figure 7.4. Experimental results of dispersion wave propagation group velocities for CFRP VS

plate

As we can see from Figure 7.4a, the wave propagation along the same direction

U0 but at two different locations of the plate are not the same; A0 is almost a constant

and is having a speed around 1500 m/s, while SO showed some differences. Figure 7.4b,c

show that the wave propagation speeds along 45 deg. and -45 deg. directions were the

maximum, probably because of the maximum stiffness at this part was along the 45 deg.

directions.
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7.3. SHORT TIME FOURIER TRANSFORM

The method we followed for analyzing pitch catch experiments was the time of
flight (TOF) between the excitation signal and received signals; Hilbert envelops were
used for better estimating the received modes. Another method that can give an overall
picture is the short time Fourier transform (STFT), at which fast Fourier transform (FFT)
is applied on intervals of time; when stacking these results together, it will lead to a time-
frequency domain plot in which we can see the maxima and the minima of a signal.
Figure 7.5 shows an example signal for wave propagation along UO direction at 66 kHz

excitation. And Figure 7.6 shows the resulting STFT.
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Figure 7.5. Time domain signal at excitation signal of 66 kHz along U0 direction
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Figure 7.7. Black and White version of Figure 7.6 for printing purposes

The analysis was performed for all the received signals along UO, at frequency
sweep from 12kHz to 300 kHz. The overlapped STFT results are shown in Figure 7.8,
Figure 7.9.
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Figure 7.8. STFT of all the received signals from 12 kHz to 300 kHz
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7.4. SUMMARY AND CONCLUSIONS

Wave propagation experiments were performed on a VS CFRP plate. Beside the
scattering due to experimental errors, etc., the results showed that AO mode is the mode
preferred to be used in SHM analysis, as its speed is almost constant with frequencies and
different locations of the plate. We conclude that solely experimental results for wave
propagation are not enough to find wave propagation speeds for SHM applications.

Predictive tools in terms of analytical or FEM are needed to better analyze such complex

structures.
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK

This dissertation has addressed analytical and numerical predictive models for ultrasonics
transduction in metallic and composite structures using piezoelectric wafer active sensors
(PWAS) for structural health monitoring (SHM). The key themes for this dissertation are
power and energy; ultrasonic shear horizontal waves; wave propagation in composites.

The dissertation started with a background of ultrasonic guided waves in plates,
PWAS as an active/passive transducer, and various ways in which PWAS are used for
SHM applications. A predictive model of power and energy transduction between PWAS
and the structure has been developed based on exact Lamb wave solution. The aim was
optimizing guided wave mode tuning, PWAS electromechanical (E/M) impedance, and
PWAS size for having power-efficient SHM systems. The power and energy models
were applicable on multimodal Lamb wave situations that exist at high frequency
ultrasonics and/or relatively thick structures. Experimental validation was conducted
using scanning laser Doppler vibrometer (SLDV).

The dissertation continued with investigating the excitation and reception of shear
horizontal (SH) guided waves in plates. A special type of PWAS was used, which is

poled in the thickness-shear direction (d,; mode), we called it SH-PWAS. The E/M

impedance of the free and the bonded SH-PWAS transducer have been developed

analytically and by finite element modeling (FEM). The predictive models of the E/M
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impedance have been validated experimentally. Next, wave propagation experimental
and FEM studies were conducted between different combinations of SH-PWAS and
regular inplane PWAS transducers. The excitability of SH waves and the directivity of
the SH-PWAS were investigated. Finally, we presented simulations of our developed
analytical models of SH waves’ power and energy, along with a MATLAB graphical user
interface (GUI) for the analysis of SH-waves including: dispersion phase and group
velocities, mode shapes, and wave energy.

In order to investigate SH waves excitation and reception in composites; we
needed a stable robust method for determining dispersion curves in composites. The
transfer matrix method (TMM) has been used to calculate dispersion curves of guided
waves in composites. TMM suffers numerical instability at high frequency-thickness
values, especially in multilayered composites. A method of using stiffness matrix method
(SMM) was investigated to overcome instability. A combined stiffness transfer matrix
method (STMM) was proposed to obtain correct and stable results over the entire domain
of interest. STMM procedure was coded in a MATLAB graphical user interface that also
allows displaying modeshapes at any selected root of interest. This was followed by a
comparative study between commonly used methods for the calculation of ultrasonic
guided waves in composites, e.g. global matrix method (GMM), semi—analytical finite
element (SAFE).

Furthermore, the dissertation presented three SHM applications: (1) using the SH-
PWAS for case studies on composites, (2) testing of SHM industrial system for damage
detection in an aluminum aerospace-like structure panel, and (3) measuring dispersion

wave propagation speeds in a variable stiffness CFRP plate.
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8.1. RESEARCH CONCLUSIONS

8.1.1. Power and Energy

Exact Lamb wave theory was used to model the power and energy transduction
between PWAS transducer and hosted structures. The model was developed based on the
normal mode expansion (NME) theory and straight-crested harmonic waves. The pin-
force model was used to simulate perfect bonding between the PWAS and the structure.
The model is applicable on multi-modal situations, for example, a half-inch thick steel
plate, where three symmetric and three antisymmetric modes exist within the 500 kHz
excitation window. Modal participation factors were developed to predict how much each
mode contributes to the final power.

It was noticed that the transmitter reactive power (i.e., the power that depends on
the capacitive behavior of the PWAS) was directly proportional to the transmitter
admittance. The power transducted by the PWAS has an extra component, which is the
transmitter active power, i.e., the power converted into the ultrasonic waves. A
remarkable variation of active power with frequency was observed, and we noticed that
the active power was not monotonic with frequency, but manifested peaks and valleys.
As a result, the ratio between the reactive and active powers was not constant, but
presented the peaks and valleys. The increase and decrease of active power with
frequency corresponds to the PWAS tuning of various ultrasonic waves traveling into the
structure. The developed model for Lamb waves case was compared with the axial and
flexural waves, that approximate Lamb waves at relatively low frequencies and the two
simulations showed good agreement. Next, a parametric study was performed to optimize

the transducer size and excitation frequency to guarantee maximum energy transfer
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between the source and the examined structure. Finally, an experimental study was
performed using the scanning laser vibrometer to compare the out-of-plane structural
oscillation at receiver PWAS transducers bonded on aluminum plates with analytical
predictions, as well as the received voltage through the piezoelectric effects. The results

have shown good agreement.

8.1.2.  Shear Horizontal Coupled PWAS

The shear-horizontal piezoelectric wafer active sensor (SH-PWAS) was presented

as a candidate for SHM compared to other-state-of-the-art transducers. Characterization

of the SH-PWAS includes the analytical development of the free transducer (in d,

mode). We developed the E/M impedance and admittance of the free transducer based on
the constant electric field assumption and based on the constant electric displacement
assumption. The analytical model with the constant electric field assumption is more
representative of the experimental case and FEM. The first resonance frequency of the free
transducer is 900 kHz. We also extended the analytical development to the constrained
SH-PWAS case, where the transducer is bonded to structures in the form of beams. The
interaction between the SH-PWAS and the structure was studied. The analytical model
was compared with experimental results and finite element analysis. It was shown that
the analytical model predicts well the finite element and experimental results in the
situation where the transducer — to — structure mass ratio is < 5%. It was also shown that
the SH-PWAS has directivity effects, where an axial-flexural response is obtained when
the transducer poling direction is parallel to the beam length. When the transducer poling

direction is perpendicular to the beam length, the SH response is obtained.
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The study then discussed the excitation and reception of SH waves using the SH-
PWAS. Excitation of SH waves was analyzed by finite element simulations and
experiments. SHO non-dispersive waves were captured in aluminum plates. Multiple
experiments were performed to show the SH waves excitation and receiving capabilities
of both SH-PWAS and regular inplane PWAS transducers. It was shown that positioning
and orientation of the SH-PWAS affects the generation of SH waves: (1) SH-PWAS
excites SH waves in the direction perpendicular to its poling direction; (2) Regular
inplane PWAS can sense SH waves; (3) SH-PWAS transducers can sense A0 and SO
Lamb waves. Directivity analysis showed that excited SH wave amplitude gradually
decreases as the measuring direction deviates from the maximum received amplitude
direction. Finally, we presented simulations of our developed wave power and energy
analytical models along with a MATLAB graphical user interface (GUI) for the analysis
of SH-waves including dispersion phase and group velocities, mode shapes, and wave

energy.

8.1.3.  Guided Wave Propagation in Composites

Different algorithms for calculating dispersion wave speeds in composites were
reviewed. This work focused on the transfer matrix method (TMM) and the efforts for
generating a stable robust algorithm. A combined stiffness transfer matrix method
(STMM) was proposed to obtain correct and stable results over the entire domain of
interest. STMM procedure was coded in a MATLAB graphical user interface that also
allows displaying modeshapes at any selected root of interest. This was followed by a

comparative study between commonly used methods for the calculation of ultrasonic
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guided waves in composites, e.g. global matrix method (GMM), semi-analytical finite
element (SAFE). Case studies were presented for an isotropic plate; a unidirectional fiber
composite layer with fibers along 0° or 90° degrees w.r.t wave propagation direction; a
unidirectional fiber composite layer with arbitrary fiber angles; multilayered
unidirectional composite with fibers along 0° direction; and cross-ply composites. For
each of the preceding cases, we obtained phase velocities, group velocities, and
wavenumber-frequency domain solutions. Some observations we noticed include: as
fibers angle increase from 0° towards 90° with respect to wave propagation direction, the
phase and group velocities reduce; because for the fibers along 90° the material is in the
most compliant case along wave propagation direction. Another observation regarding
the equivalent matrix method (EMM) is that: the case of cross ply of [0/90]s, i.e.
0/90/90/0 shows slight different results than the simple 0/90 case. The EMM predicted
the exact same result for both cases because it just averages the properties of the O-
direction fibers and 90-direction fibers; hence the EMM does not account the difference
between the 2-layer 0/90 and the 4-layer [0/90]s cases.

Afterwards, a comparable study was established between the STMM results and
results from commercially available software, e.g. DISPERSE software based on GMM,
and GUIGUW software based on SAFE. This was followed by experimental and FEM
studies on a glass fiber reinforced polymer (GFRP) woven composite. PWAS transducers
were used for pitch catch experiments using tone burst excitation signals. Experimental
dispersion group velocities showed good agreement with the theory. COMSOL
Multiphysics finite element model was constructed using coupled-field elements for the

PWAS; this allowed simulation of the input excitation and output response in voltage
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directly. FEM showed the propagation pattern of guided waves in composites. For the
specific case of a woven GFRP composite, the wave propagation along 0 and 90 degrees
was similar, but was different along 45 degrees, which resulted in diamond pattern

instead of the conventional propagation in circles obtained for isotropic materials.

8.1.4. SH-PWAS for Exciting SH Waves in Composites

SH-PWAS was studied for the E/M impedance method and wave propagation of
SH waves in two composite plates, one was cross ply GFRP woven composite and the
other was quasi-isotropic [0/45/45/0] carbon fiber reinforced polymer (CFRP) composite
with woven prepreg. Admittance experimental results were comparable to FEM built
using coupled field piezoelectric elements bonded to composite layers. Wave propagation
method showed that the SH-PWAS can excite SH waves as well as SO, A0, providing
that the receiver PWAS is in a position such that the wave propagation direction between
SH-PWAS and the receiver PWAS is perpendicular to SH-PWAS poling direction. If we
excite SH-PWAS and receive the signal along a direction parallel to the poling direction,
only A0 and SO waves were captured. FEM models showed well the wave propagation
pattern in woven GFRP plate and quasi-isotropic CFRP composite plate, however, lack of

accuracy existed in the received signals due to limited computational resources.
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8.1.5. Guided Wave Damage Detection in an Aerospace-Like

The MD7 guided-wave SHM system developed by Metis Design was studied and
tested. It is concluded that the system is applicable on the plate under test. Careful

selection of frequency of excitation is an important parameter to be considered.

8.1.6. SHM of Variable Stiffness CFRP Plate

Wave propagation experiments were performed on a VS CFRP plate. Besides the
scattering due to experimental errors, the experimentally-measured wave speeds of the SO
mode were more scattered than A0 mode. We concluded that A0 mode is the more
preferred mode to be used in SHM analysis; its speed was almost constant with
frequencies and different locations of the plate. A general conclusion is that solely
experimental results for wave propagation are not enough to find wave propagation
speeds for SHM applications. Predictive tools in terms of analytical or FEM are needed

to better analyze such complex structures.

8.2. MAJOR CONTRIBUTIONS

The dissertation has contributed to the fundamental studies of using ultrasonics in
SHM. The list of the major contributions includes
1. Development of the analytical models of ultrasonic waves power and energy
based on the exact Lamb wave modes.
2. Predicting the power partitioning between multimodal Lamb waves (three

symmetric and three antisymmetric modes) for a thick structure application.
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. Characterization of the SH-PWAS as a candidate for exciting SH waves in SHM

applications, including:

a) Modeling the E/M impedance of a bonded SH-PWAS to the structure
analytically for the first time.

b) Performing a comprehensive experimental and FEM studies to investigate
excitation and reception of SH waves and the directivity of the SH-PWAS.

. The development of a MATLAB-based graphical user interface (GUI) for SH

waves analysis, including: dispersion curves, modeshapes and wave energy.

. A novel approach (STMM) was proposed for obtaining a stable and correct

solution of dispersion curves in composites over the entire solving domain.

The development a MATLAB-based GUI for a quicker and easier analysis of the

dispersion curves in composites, including:

a) Loading the unstable results of the transfer matrix method (TMM).

b) Displaying the complete stable stiffness transfer matrix method (STMM).

c) Calculating displacements and stresses modeshapes at any given root on the
dispersion curves.

Performing comprehensive pitch catch experiments and FEM between SH-PWAS

and regular in-plane PWAS for investigating SH wave excitation and reception in

composites.
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8.3.

RECOMMENDATION FOR FUTURE WORK

The dissertation has addressed analytical and numerical models to advance

fundamental understanding of using ultrasonics for SHM of metallic and composite

materials. The recommended future work includes:

1.

Extending power and energy transduction models for situations of bonded PWAS
on composite materials.

Performing more experimental studies to validate power and energy models;
power need to be a parameter in the measurements.

Performing scanning laser vibrometer measurements to capture the shear
horizontal response of the SH-PWAS.

Continue developing the stiffness transfer matrix method (STMM) and predict
dispersion curves for more complex composite layups.

Performing more experiments of the wave propagation in composites and

investigating types of damages, SH-PWAS is capable to detect.
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