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ABSTRACT 

Structural health monitoring (SHM) is crucial for monitoring structures performance, 

detecting the initiation of flaws and damages, and predicting structural life span. The 

dissertation emphasizes on developing analytical and numerical models for ultrasonics 

transduction between piezoelectric wafer active sensors (PWAS), and metallic and 

composite structures.  

The first objective of this research is studying the power and energy transduction 

between PWAS and structure for the aim of optimizing guided waves mode tuning and 

PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical 

models for power and energy were developed based on exact Lamb wave solution with 

application on multimodal Lamb wave situations that exist at high excitation frequencies 

and/or relatively thick structures. Experimental validation was conducted using Scanning 

Laser Doppler Vibrometer. The second objective of this work focuses on shear horizontal 

(SH) PWAS which are poled in the thickness-shear direction (d35 mode). Analytical and 

finite element predictive models of the E/M impedance of the free and bonded SH-PWAS 

were developed. Next, the wave propagation method has been considered for isotropic 

materials. Finally, the power and energy of SH waves were analytically modeled and a 

MATLAB graphical user interface (GUI) was developed for determining the phase and 

group velocities, modeshapes, and the energy of SH waves. 
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The third objective focuses on guided wave propagation in composites. The 

transfer matrix method (TMM) has been used to calculate dispersion curves of guided 

waves in composites. TMM suffers numerical instability at high frequency-thickness 

values, especially in multilayered composites. A method of using stiffness matrix method 

was investigated to overcome instability. A procedure of using combined stiffness 

transfer matrix method (STMM) was presented and coded in MATLAB. This was 

followed by a comparative study between commonly used methods for the calculation of 

ultrasonic guided waves in composites, e.g. global matrix method (GMM), semi–

analytical finite element (SAFE). 

The last part of this dissertation addresses three SHM applications: (1) using the 

SH-PWAS for case studies on composites, (2) testing of SHM industrial system for 

damage detection in an aluminum aerospace-like structure panel, and (3) measuring 

dispersion wave propagation speeds in a variable stiffness CFRP plate.  
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CHAPTER 1:  BACKGROUND AND RESEARCH OBJECTIVES 

 

Structural health monitoring (SHM) is a fast-growing field that is extending into many 

industries. SHM uses a set of sensing elements permanently attached to or embedded in 

the structure in order to effectively monitor its structural integrity, detect, and quantify 

damage that develops during the entirety of its life. Effective SHM will not only increase 

the safety of structures, it will also limit the amount of manual error prone inspections 

that currently dominate the field. Over the past several decades, much work has been 

done in developing SHM methods. 

 

1.1. BACKGROUND 

 Wave Propagation Theory  1.1.1.

Lamb waves are elastic waves, propagating in solid plates, whose particle motion 

lies in the plane that contains the direction of wave propagation and the direction 

perpendicular to the plate. In 1917, Sir Horace Lamb published his classic analysis and 

description of acoustic waves of this type; these waves were therefore called Lamb waves. 

An infinite medium supports two wave modes traveling at unique velocities, pressure and 

shear waves, whereas plates support two infinite sets of Lamb waves modes whose 

properties depend on various parameters such as plate elastic properties, thickness, and 

frequency, etc. 
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A comprehensive mathematical description of the problem of Lamb waves 

propagation in solids can be found in various textbooks, such as: Viktorov (1967); Graff 

(1991); Rose (1999); Giurgiutiu (2008). Lamb waves can exist in two basic types: 

symmetric and antisymmetric, and for each of these types, various modes appear as 

solutions of the Rayleigh-Lamb equations. 

The speeds at which Rayleigh-Lamb waves propagate are referred to as dispersion 

wave speeds. The term “dispersion” in wave propagation context means that the wave 

packet stretches out as it travels through the medium; dispersion happens because the 

frequency components of the wave travel at different wave speeds. Lamb waves are 

dispersive by nature. This can be exemplified as shown in Figure 1.1. A structure was 

excited by 20-volt amplitude, 3.5-count tone burst signal using a transducer. The received 

signal was picked up at a point farther on the structure by another transducer. The 

received signal would contain S0 and A0 Lamb-type waves. S0 is the fundamental 

symmetric mode; as shown in Figure 1.1, S0 is almost non-dispersive: it resembles the 

excitation signal (at this particular excitation frequency). However, A0, the fundamental 

antisymmetric mode is dispersive: it has spread from 3.5 to almost 5-count tone burst 

signal; this is what the “dispersion” word refers to. A0 wave in this illustration is referred 

to as a wave packet that contains different wave components (or individual waves at each 

frequency.)  

This dispersion nature allows the wave propagation to be characterized by two 

wave velocities: (1) phase velocity: which is the velocity at which every frequency 

component travels, and (2) group velocity: the velocity with which the whole packet 

travels.  
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Figure 1.1. (a) Excitation signal, (b) Sensing after traveling through the plate: dispersion Lamb 

wave signals S0: symmetric Lamb wave, A0: antisymmetric Lamb wave. 

 

 

Figure 1.2. Dispersion curves for an aluminum plate, (a) phase velocities, (b) group velocities 

 

The phase and group velocities of Lamb waves propagating in aluminum plates 

are shown in Figure 1.2. We can see the strong dependence of the wave speeds on the 

frequency. The zero order modes: S0, A0 are present at all the frequencies, while higher 

modes appear at certain “cut-off” frequencies. Lamb waves by definition have the 

particle motion in the plane containing: (a) wave propagation direction and (b) the out-of-

plane direction, which is perpendicular to the plate’s plane. Hence, the S0 and A0 mode, 

especially at low frequencies, are sometimes called axial (pressure P-wave) and flexural 

wave respectively. At relatively low frequencies, S0 mode shape resembles axial 

vibrations, and A0 mode shape resembles flexural vibrations. As the frequency increases, 

the mode shapes form complex shapes and lose their simple linear approximation of axial 
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and flexural modes (Figure 1.3). At very high frequencies, both modes S0 and A0 

approach the speed of each other, and the structure vibrates with Rayleigh waves, where 

the waves travel near the structure surface, and the particle motion decreases rapidly with 

the depth. 

Particle motion could be in the third direction, inplane but perpendicular to the 

wave propagation direction, these waves are called SH-waves or shear horizontal waves. 

They are complementary to Lamb wave modes. Figure 1.2 also shows phase and group 

velocities of SH waves, e.g. SH0, SH1, SH2… In isotropic materials, guided waves are 

decoupled into (1) symmetric and antisymmetric Lamb waves, in addition to (2) shear 

horizontal (SH) waves. However, in anisotropic materials, e.g., composites, the three 

modes of particle motion are coupled, and they have to be solved together. Lamb and SH 

waves are particularly advantageous because they can propagate at large distances as 

guided waves in plates and shells. This qualifies Lamb and SH waves to be used in the 

SHM applications. 

 

Figure 1.3. Mode shapes of Lamb waves at different excitation frequencies (Pavlakovic and 

Lowe, 2003)  
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 Piezoelectric Wafer Active Sensor (PWAS) 1.1.2.

PWAS transducers utilize the piezoelectric principle to convert electric energy to 

mechanical energy or mechanical energy back to electrical energy. PWAS transducers are 

a type of ultrasonic transducers. PWAS are bonded to the structure and can be left on the 

structure for its remaining life. These transducers have been used under various names for 

embedded ultrasonic testing for structural health monitoring. 

 

 

Figure 1.4. (a) Conventional ultrasonic transducers, (b) Rectangular and circular PWAS, (c) SH-

PWAS 

 

These transducers have certain advantages: (1) they are less expensive than 

conventional ultrasonic transducers, (2) their ability to act as passive sensors, i.e. without 

interacting with the structure, and/or (3) active sensors, where they interact with the 

structure to detect the presence and intensity of damage. PWAS transducers are good 

candidates for exciting guided waves for structural health monitoring (SHM) techniques, 

like pitch-catch, pulse-echo, and phased array (Figure 1.7). PWAS transducers operate 

on the piezoelectric principle coupling between electrical and mechanical variables. The 

piezoelectric constitutive equations are  

(a) (b) (c)  
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E

ij ijkl kl kij kS s T d E   (1.1) 

 
T

j jkl kl jk kD d T E   (1.2) 

Equations (1.1) and (1.2) define how the mechanical strain 
ijS , stress klT , the electrical 

field kE , and electric displacement 
jD , relate, where 

E

ijkls  is the mechanical compliance 

of the material at zero electrical field ( 0)E  , 
T

jk  is the dielectric constant at zero stress 

( 0)T  , and 
jkld  is the induced strain coefficient (mechanical strain per unit electric 

field). In order to create in-plane strain from a transverse electric field or vice versa, the 

31d  property is utilized by the PWAS. 

 

 

Figure 1.5. Schematic of the PWAS shows the coupling of the in-plane shear stress (Giurgiutiu, 

2008) 

 

Depending on the poling direction (Figure 1.6) of the PWAS transducer, Eqs. (1.1), (1.2) 

can be further expanded as follows: 

 

Figure 1.6. Different PWAS poling directions 
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Case A, where the poling is along 3-direction, the strain equation becomes 
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And the electric displacement becomes 

 

1

2

1 15 11 1

3

2 24 22 2

4

3 31 32 33 33 3

5

6

T

T

T

T

T
D d E

T
D d E

T
D d d d E

T

T







 
 
        
         

        
              

 
  

 (1.4) 

Case B: the constitutive equations become 
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 (1.6) 

In the inplane mode of case A, applying an electric field in the thickness direction 3E

causes the transducer’s lateral dimensions to increase or decrease, a longitudinal strain 
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will occur 1 31 3d E  , where 13d is the piezoelectric coupling coefficient measured in 

[m/V]. Thickness mode is a mode that occurs simultaneously with extension mode, but 

dominates at higher frequencies in MHz, in which strain in the thickness direction will 

occur 3 33 3d E  , where 33d  is the piezoelectric coupling coefficient in thickness 

direction. A different mode of oscillation can be achieved when the applied electric field 

is applied perpendicular to the poling direction; and it is referred to as shear mode. This 

shear mode can occur for all the three cases of Figure 1.6. The corresponding 

piezoelectric coupling coefficients for shear mode are 24 15 or d d for case A; 34 16 or d d for 

case B; and 35 26 or d d  for case C. The constitutive equations for case C are 
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 (1.7) 
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 (1.8) 

The transducer shown in Figure 1.4c is called SH-PWAS that is shear-horizontally 

coupled PWAS. SH-PWAS has electrodes on the top and bottom surfaces; it utilizes the 

35d  coupling coefficient in which electric current is applied across thickness (i.e. in the 

3x  direction) and the poling is in the 1x direction.  
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1.1.2.1. PWAS for guided wave propagation and wave tuning 

Figure 1.7 shows various ways to use PWAS in SHM. There are two methods of 

using the PWAS as an active sensor. The first is through the use of wave propagation, 

and is capable of sensing far-field damage. The second method is through standing waves 

and uses high-frequency electro-mechanical impedance to find damage in the near-field 

damage (Giurgiutiu, 2008). PWAS can be used as a passive sensor, e.g. acoustic emission. 

 

Figure 1.7. The various ways in which PWAS are used for structural sensing includes (a) 

propagating Lamb waves, (b) standing Lamb waves and (c) phased arrays. The 

propagating waves methods include: pitch-catch; pulse-echo; thickness mode; and 

passive detection of impacts and acoustic emission (Giurgiutiu, 2008). 

 

In recent years, an increasing number of investigators are using PZT transducers 

for ultrasonic waves generation and sensing (Lee and Staszewski, 2003; Giurgiutiu, 2005; 

Banerjee et al., 2008; Chang, 1998; Giurgiutiu and Santoni, 2011). The central concept of 

these studies is the characterization of stress waves induced by PWAS transducers inside 

the plate during their operating modes. It was shown that various Lamb wave modes, i.e. 

(a) 

(b) 

(c) 
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S0, A0 can be excited by tuning the frequency such that the amplitude of one mode is 

greater or smaller than the other modes amplitudes, also a situation where one mode is 

totally “rejected” can be attained. This process is called wave tuning (Giurgiutiu, 2005). 

The function linking wave amplitude with frequency presents some maxima and minima 

respectively corresponding to the following two conditions 

 

( )
(2 1)

2

( )
(2 )

2

a

a

f
l n

f
l n






 


 


 (1.9) 

where al is the PWAS dimension (the length for a rectangular or square PWAS, and the 

diameter for a circular one),  is the wavelength of the wave, and n =1,2,3… .Figure 1.8 

shows that Lamb waves tuning can be achieved by controlling the frequency. PWAS 

excites S0 and A0, and the amplitudes of received signals are different at different 

frequencies. If it is desired to excite only A0; then, a good frequency to use is 200 kHz. 

When PWAS excites S0 and A0 modes, it causes the structure particles to oscillate in 

typical mode shapes (Figure 1.3).  

 

Figure 1.8. Lamb wave experimental tuning curves for 1-mm aluminum plate using 7 mm x 7 

mm x 0.2 mm PWAS 

  

S0 

A0 
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1.1.2.2. Electromechanical (E/M) Impedance method for PWAS 

The electromechanical (E/M) impedance method is a technique that can be used 

to detect damage in structures. For a given structure, the ratio between the resultant 

particle velocity and applied force is the mechanical impedance. The E/M impedance 

method is based on the electro-mechanical coupling between the active PWAS transducer 

and the structure. The measured electrical impedance is a direct reflection of the 

structural impedance and is an assessment method for the local structural dynamics. A 

good comprehensive study of the analytical modeling and characterization of E/M 

impedance with PWAS can be found in Giurgiutiu and Zagrai (2000). PWAS transducers 

can be used to excite mechanical vibrations in a structure. The measured E/M impedance 

response is primarily a function of the dynamics of the structure. During a frequency 

sweep, the measured real part of the E/M impedance follows the up and down variation 

as the structural impedance as it goes through the peaks and valleys of structural 

resonances and anti-resonances.  

 

Figure 1.9. Electromechanical admittance of a free 7 mm x 7 mm x 0.2 mm PWAS 
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Figure 1.9 shows the admittance (the inverse of the impedance) of a free 7 mm x 

7 mm x 0.2 mm STEMiNC PWAS. The method itself is usually called E/M impedance 

spectroscopy (EMIS), but the admittance quantity represents the resonance situations. 

Free PWAS EMIS is needed to identify the transducer resonant frequencies. Whereas the 

E/M impedance of the bonded PWAS to the structure is the method used for SHM 

applications. E/M impedance of the bonded PWAS infers the structural resonances at low 

frequencies (Figure 1.10). High-frequency E/M impedance method can detect localized 

small damages that is undetectable with conventional vibration methods (Giurgiutiu, 

2008). 

 

Figure 1.10. Low frequency E/M impedance of bonded 7 mm x 7 mm x 0.2 mm PWAS on 1-mm 

thick aluminum beam 
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 Composite Materials  1.1.3.

The term “composite” can be used to describe any material that is comprised of a 

homogeneous matrix reinforced by material with higher strength and stiffness properties. 

When designing a structure for an application, material selection is an essential process. 

The properties of materials are analyzed, often with a metric to assist in the process, and a 

material is selected based on trade-offs between its desirable and undesirable properties. 

Because simple mechanical properties like stiffness and strength are not the only traits 

that need to be taken into account, the process of material selection can be complicated. 

For aerospace, automotive, and naval applications, materials with a high strength 

to weight ratio offer desirable performance. Composite materials offer such properties 

along with other desirable properties, thus placing composite material use at the leading 

edge of material selection for many types of structures. A composite material can have a 

strength-to-weight ratio in certain directions around 5 times that of aluminum or steel. 

This is especially useful in the aerospace industry, where weight is at a premium. Another 

unique and beneficial trait of composite materials is the ability to customize their 

properties in different directions, creating an anisotropic material; however, composite 

material can be very costly compared to metals and hard to predict in terms of behavior 

due to their complex structure. 

One of the most important definitions that will be used frequently when we treat 

the composite materials is the anisotropy and the level of anisotropy, so it will be covered 

here briefly. 

The isotropic material is the one that has the same material properties in every 

direction at a point in the body (Jones, 1999). Anisotropic material is the opposite and 
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there are levels of anisotropy. If there is not any plane of material symmetry that exists, 

then the material experiences the most general case of anisotropy (also called triclinic), 

and the material stiffness coefficients are 21 independent constants, i.e., 
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Note that the matrix in Eq. (1.10) is symmetric because stiffness and compliance 

matrices are symmetric; hence we have only 21 independent constants. If the material has 

one plane of material symmetry, it is called monoclinic and [C] will be 
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 (1.11) 

 

For the monoclinic case, there are 13 independent material constants. If the 

material has three planes of material symmetry, then the case of anisotropy is called 

orthotropic. Usually any composite lamina or layer with fibers along 0 or 90 degrees is 

considered orthotropic, i.e., 
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The orthotropic material has only 9 independent material constants. 

Further, we have a transversely isotropic case, where three planes of material 

symmetry exist and, in addition, material properties are the same in two directions (e.g. 2 

and 3); hence directions 2 and 3 are interchangeable. In this case we have only 5 

independent material constants, i.e., 
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A good illustration about the differences between anisotropic, orthotropic and 

isotropic is shown in Figure 1.11.  
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Figure 1.11. Differences in the deformation of isotropic, orthotropic and anisotropic materials 

subjected to uniaxial tension and pure shear stresses, (Jones, 1999) 

 

Finally, in the isotropic case, we have three planes of material symmetry and the 

material properties are the same in all the three directions; this is typically for metallic 

structures. In this case, we have 
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We have 2 independent material constants, because the three shear moduli are all 

the same and are related to the Young’s Modulus and Poisson ratio by / (2(1 ))G E   .  
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 Guided Waves in Polymer Composite Materials 1.1.4.

The benefits of using composites come at the cost of a more complicated 

mechanical response to the applied loads, static or dynamic. The anisotropic nature of the 

composite material introduces many interesting wave phenomena that are not observed in 

isotropic bodies; for example, the directional dependence of wave speeds. An 

understanding of the nature of waves in anisotropic materials is required if we want to 

use these materials effectively in structural design, or if we want to inspect them using 

ultrasonic methods, which is one of the goals of our present work.  

The type of waves we investigate within the scope of this study are guided elastic 

waves in free-anisotropic plates, i.e. plates with traction-free surfaces, where the waves 

are confined within plate surfaces. 

State of the art textbooks that treat ultrasonic wave propagation in anisotropic 

composites are several, they include: Auld (1990); Nayfeh (1995); Rose (1999); and 

Rokhlin et al. (2011). Some useful tips for obtaining dispersion wave propagation curves 

can be found in Lowe (1995); Glushkov et al. (2011); Su et al. (2006). There are different 

methods to calculate dispersion curves in multilayered composite materials (a) transfer 

matrix method (TMM); (b) global matrix method (GMM); (c) semi-analytical finite 

element method (SAFE); (d) local interaction simulation approach (LISA); and (e) 

equivalent matrix method (EMM). Mathematical formulations of these techniques are 

presented, along with highlighting key features. GMM was studied comprehensively by 

Lowe (1995), and there is a commercial software that has been developed based on 

GMM, which is called DISPERSE (Pavlakovic and Lowe, 2003).  
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1.2. MOTIVATION 

A previous study by Lin and Giurgiutiu (2012) had considered the axial and 

flexural approximation of S0 and A0 Lamb waves to develop power and energy 

transduction between PWAS and metallic structure. But, this model is only applicable at 

low frequencies. Figure 1.12 shows that the axial wave speed is constant along the 

frequency variations. It only approximates S0 mode at relatively low frequencies, same 

for flexural mode, only approximating A0 mode only at relatively low frequencies. Hence 

it was important to consider modeling power and energy transduction between PWAS 

and host structure based on exact Lamb wave modes.  
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Figure 1.12. Axial and flexural approximation of S0 and A0 Lamb wave modes for aluminum 

plate 
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Figure 1.13. Mode shapes across 1-mm thick aluminum beam, (a) S0 at 200 kHz, (b) A0 at 200 

kHz, (c) S0 at 2000 kHz, (d) A0 at 2000 kHz 

 

If we look at mode shapes at 200 and 2000 kHz (Figure 1.13), we can see that S0 

and A0 modes at 2000 kHz can no longer be represented by the simple constant and 

linear xu across thickness, i.e., axial and flexural respectively. Cases of thick structures 

(e.g. 1
2
"-thick steel plates) are often considered in ultrasonics, even up to 500 kHz (a 

relatively small frequency in ultrasonics). This requires models of power and energy 

based on exact “multi” modal Lamb waves; therefore, this study considers the case of 

thick structures too.  

To consider power and energy models in anisotropic multilayered composites; 

first dispersion curves of wave propagation speeds in composites need to be well 

established and understood. Second, we need to consider shear horizontal waves, because 

in composite materials, SH and Lamb waves are coupled and exist in most cases.  

To be able to get dispersion curves, we conducted a literature review of 

commercially available software codes that have been developed in the past few years. 

Some provide the dispersion curves as figures without actually providing the data; others 

(a) (b) (c) (d) 
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frequently miss one of the modes we wanted to predict their speed (namely SH0). Hence, 

for more flexibility and to integrate dispersion wave speeds in composites with power 

and energy models, we considered developing a predictive tool based on transfer matrix 

method (TMM). TMM was described in details in Nayfeh (1995). A software, “LAMSS 

Guided Waves in Composites” based on TMM has been developed in our group (Santoni, 

2010). Two key issues need to be highlighted, (1) Nayfeh approach leads to a singular 

situation if the material is isotropic or quasi-isotropic, and (2) TMM suffers instability at 

higher frequencies, or as layers of the composite laminate increase. Our study tries to 

eliminate these issues by combining Nayfeh approach (TMM) with the stiffness matrix 

method (SMM) by Rokhlin et al. (2011). A combined stiffness transfer matrix method 

(STMM) is proposed to obtain correct and stable results over the entire domain of interest. 

STMM procedure is coded in a MATLAB graphical user interface that also allows 

displaying modeshapes at any selected root of interest. 

To experimentally validate our SH waves prediction in metallic and composite 

materials, we needed to understand, to model, and to characterize SH-PWAS. It is shown 

in Chapter-3 that SH waves are good candidates for SHM, e.g., capturing delaminatons in 

composites; and inferring the shear stiffness of bonding layers, which is a vital role for 

adhesive bonded layers. For these reasons, it was very promising and worthwhile to work 

on predictive models of SH-PWAS behavior, including free SH-PWAS predictive models 

for admittance and impedance, in addition to the bonded SH-PWAS case, which 

contributes to the advancement of knowledge beyond the state of the art. 
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1.3. RESEARCH GOAL, SCOPE, AND OBJECTIVES 

The goals of this research are (1) to understand, model, and predict the power and 

energy transduction mechanism between piezoelectric wafer active sensor (PWAS) and 

the host structure and (2) to characterize and model shear horizontal-coupled 

piezoelectric wafer active sensor and to study the impedance spectroscopy and wave 

propagation methods associated with this transducer.  

In terms of materials, the scope of this study is to develop analytical and finite 

element predictive models for (1) isotropic metallic structures and (2) anisotropic 

polymer composites. In terms of type and number of guided waves excited in the 

structure, the study covers: (1) single symmetric and antisymmetric Lamb wave modes, 

which typically exist in thin structures; (2) multimodal Lamb waves that typically exist in 

thick structures and at high excitation frequencies; and (3) coupled shear horizontal and 

Lamb waves in anisotropic composite laminates. 

The objectives of this research are defined as follows: 

1. To develop analytical equations for power and energy transduction between the 

PWAS and hosted structure based on exact Lamb wave modes and normal mode 

expansion (NME) method and to identify model assumptions, limitations, and the 

range of applicability. 

2. To characterize SH-PWAS, including the impedance, wave propagation, and 

power and energy of SH waves. 

3. To develop analytically the electromechanical impedance and admittance of the 

constrained SH-PWAS (which is bonded to a host structure) based on normal 
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mode expansion method and elasticity solution of the structural displacement 

response. 

4. To develop a graphical user interface by MATLAB for SH-waves analysis in the 

common isotropic materials. This will complement existing developed software in 

our group for Lamb waves, e.g. WAVESCOPE and MODESHAPE. 

5. To solve dispersion wave propagation speeds in multilayered composites based on 

the transfer matrix method (TMM) and to develop stable and robust predictive 

tool for predicting dispersion curves and modeshapes in composite materials.  

6. To demonstrate experiments of SH waves propagation in composites and, in 

general, the coupled guided waves in composites. In addition, to demonstrate 

FEM predictions of wave propagation and impedance spectroscopy methods in 

composites. 

7. To perform application studies on complex aerospace-like structures and 

composite plates and to identify challenges of SHM of complex metallic and 

composite structures. 

 

 Dissertation Layout and Research Topics 1.3.1.

To accomplish the objectives set forth in the preceding section, the dissertation is 

organized in six chapters divided into two parts.  

In part I, we address theoretical developments and validation experiments.  

Chapter-2 presents power and energy studies, and these cover the following topics: 
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Topic-1 Exact Lamb waves’ power and energy, based on the normal mode expansion 

theory (NME) and harmonic waves. 

Topic-2 Multimodal Lamb waves case in thick structures. 

Topic -3 Power partitioning based on constant voltage. 

Topic -4 Experiments using laser vibrometer for measuring actual amplitudes and 

validating analytical tuning curves based on (a) signal amplitude values and 

(b) signal energy content. 

Topic -5 Experiments and FEM of impedance spectroscopy. 

 

Chapter-3 presents the SH-PWAS, as a candidate for SHM compared to other 

state-of-the-art transducers. Characterization of the SH-PWAS includes the analytical 

development of the free transducer (in 35d mode). We developed the E/M impedance and 

admittance of the free transducer based on the constant electric field assumption and 

based on the constant electric displacement assumption. Analytical models were 

compared with experiments and FEM results. Furthermore, we extended the analytical 

development to find closed-form expressions for the E/M impedance and admittance of 

the constrained (bonded) SH-PWAS. We studied the power and energy of multimodal 

SH-waves based on NME, and we developed a MATLAB graphical user interface (GUI) 

for calculating SH waves dispersion phase and group velocities, mode shapes, and wave 

energies. The research topics of this chapter are summarized as: 

 

Topic -1 Analytical modeling of the E/M impedance and admittance of the free SH-

PWAS, as well as experimental and FEM validations. 
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Topic -2 Analytical modeling of the E/M impedance and admittance for the bonded 

SH-PWAS, based on NME and structural elasticity solution. 

Topic -3 Performed experiments of the bonded SH-PWAS on structures at low 

frequencies to capture structural resonances. 

Topic -4 Performed wave propagation experiments between different combinations of 

PWAS and SH-PWAS to study the generation and reception of SH waves by 

SH-PWAS and to study the effect of SH-PWAS poling. 

Topic -5 Development of the power and energy models of SH waves analytically. 

Topic -6 Building a GUI on MATLAB for SH waves’ analysis. 

 

Chapter-4 presents guided wave propagation in composites. We developed 

analytically the equations of TMM, based on Nayfeh (1995) and the equations of SMM, 

based on Rokhlin, et al. (2011). Then, we integrated TMM and SMM as a combined 

stable stiffness transfer matrix method (STMM). We presented in detail the procedure 

needed to code this method in a way to avoid numerical instability and to be applicable 

on an isotropic plate; a multi-layered isotropic plate; a unidirectional fiber composite 

lamina with fibers along 0 or 90 degrees w.r.t. wave propagation direction; a 

unidirectional fiber composite lamina with arbitrary fiber angles; multilayered 

unidirectional composite with fibers along 0 direction; and cross-ply composites. For 

each of the preceding cases, we obtained phase velocities, group velocities, and 

wavenumber-frequency domain solutions. Afterwards, a comparable study was 

established between the STMM results and results from commercially available software, 
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e.g. DISPERSE based on GMM, and GUIGUW based on SAFE. This is followed by 

experimental and FEM studies. The research topics of this chapter are: 

 

Topic -1a Understanding TMM and SMM, identifying instability and singularity issues 

Topic -1b Obtaining stable results based on the stable combined stiffness transfer 

matrix method (STMM): (a) f  (b)
phc (c) 

gc . 

Topic -2 Analyzing a multilayered isotropic case     (a) f  (b)
phc (c) 

gc . 

Topic -3 Analyzing a unidirectional composite case with fibers angle along 0 or 90 

degree directions w.r.t wave propagation direction: (a) f   (b)
phc  (c)

gc . 

Topic -4 Analyzing a unidirectional composite case with arbitrary fibers angle, e.g. 

30, 45, 60: (a) f  (b)
phc (c) 

gc . 

Topic -5 Developing cross ply solutions based on equivalent matrix method: 

(a) f  (b)
phc (c) 

gc . 

Topic -6 Developing multilayered unidirectional and cross ply solutions based on 

STMM: (a) f  (b)
phc (c) 

gc . 

Topic -7 Comparative study between different methods, GMM, STMM, and SAFE for 

(a) unidirectional, (b) cross ply, and (c) quasi- isotropic laminates. 

Topic -8 Experimental validation. 

Topic-9 Performing FEM on a cross-ply situation and showing the directional 

dependence of wave propagation on composites. 
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Part II addresses some SHM applications and related issues  

In Chapter 5, we performed a case study of using SH-PWAS on composites, we 

exemplified the case studies by a 1-mm thick woven GFRP and a 2-mm thick 

[0/45/45/0]s CFRP plate with woven prepreg layers. We studied impedance spectroscopy 

and wave propagation methods on both materials. Then, we built predictive finite element 

models and addressed the challenges and limitations. The research topics of this chapter 

are: 

Topic-1 Experimental and FEM studies of E/M impedance and admittance for the 

SH-PWAS bonded on GFRP and CFRP plates. 

Topic -2 Combination of pitch catch experiments between PWAS and SH-PWAS on 

both GFRP and CFRP plates. 

Topic -3 Finite element models for 2-D wave propagation for the following cases  

(a) The SH-PWAS is the transmitter transducer (both GFRP, CFRP). 

(b) The regular PWAS is the transmitter in GFRP case. 

 

In Chapter 6, we studied a commercial SHM system for damage detection in 

aerospace-like structure. The research topics of this chapter are: 

 

Topic -1 Sensors installation and the equipment setup (contribution: this task was 

done by Dr. Bin Lin, research PostDoc, USC.) 

Topic -2 Performing experiments on pristine complex structure. 

Topic -3 Inducing different damage cases and testing the system for damage 

detection. 
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Topic -4 Modeling includes (1) building CAD files for such plates, (2) meshing by 

ANSYS, meshing was done by Dr. Bin Lin, and (3) input of the mesh to the 

software. 

 

In Chapter 7, we studied wave propagation in a variable stiffness CFRP plate that 

was designed as a buckling resistance plate. We performed pitch catch experiments 

between PWAS transducers at different angles and at different locations of the plate. We 

addressed the possible data analysis procedures to measure dispersion group velocities. 

The research topics of this chapter are:  

 

Topic -1 Design of experiment for installation locations of PWAS transducers.  

Topic -2 Performing pitch catch experiments.  

Topic -3 Analyzing the results using time of flight (TOF) method by using (1) 

Hilbert envelop method and (2) short time Fourier transform (STFT). 
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PART I  THEORETICAL DEVELOPMENTS & VALIDATION 

EXPERIMENTS 
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CHAPTER 2:  POWER AND ENERGY 

This chapter presents an analytical model for the power and energy transfer between the 

excited piezoelectric wafer active sensors (PWAS) and a host structure. This model is 

based on exact multi-modal Lamb waves, normal mode expansion technique, and the 

orthogonality of Lamb waves. Modal participation factors were presented to show the 

contribution of every mode to the total energy transfer. The model assumptions included: 

(a) waves are of straight-crested multimodal harmonic type; (b) evanescent (non-

propagating) waves were ignored; and (c) ideal bonding (pin-force) connection between 

the PWAS and structure. The admittance of the constrained PWAS (bonded PWAS to the 

structure) was reviewed. Electrical active power; mechanical converted power; and Lamb 

waves kinetic and potential energies were derived in closed form formulae. Numerical 

simulations were performed for both the symmetric and antisymmetric excitation of thin 

aluminum structures. The simulation results were compared with the axial and flexural 

approximation for the case of low frequency Lamb waves. In addition, a thick steel 

structure example was considered to illustrate the case of multimodal guided waves. A 

parametric study for different excitation frequencies and different transducer sizes was 

performed to show the best match of the PWAS size and the excitation frequency to 

achieve maximum energy transfer into the excited structure. Finally, experimental study 

was performed to validate Lamb wave tuning (using a scanning laser vibrometer) and to 

validate the PWAS E/M impedance (using an impedance analyzer). This chapter is based 

on the 2014 Article: J. Int. Mat. Syst. Struct 25, 4 Sage: doi:10.1177/1045389X13498310 
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NOMENCLATURE 

An   = amplitude of nth antisymmetric mode 

A0, A1, A2 = antisymmetric Lamb-wave modes 

a   = half-length of the piezoelectric-wafer transducer, m 

an(x)  = modal-participation factor 

Bn   = amplitude of nth symmetric mode 

b   = width, m 

C   = mode contribution factor 

C0   = capacitance, F 

c   = wave speed, m/s 

cp   = pressure (longitudinal) wave speed m/s 

cs   = shear(transverse) wave speed m/s 

d   = plate half thickness, m 

d31   = piezoelectric coupling coefficient in 31, m/V 

E   = Young’s modulus, GPa 

ee   = time-averaged total Lamb wave energy 

F   = force vector 

F0(ω)  = pin-force at PWAS ends 

f   = frequency, Hz 

gn   = coefficient to simplify modal participation factor 

h   = plate thickness = 2d, m 

I   = electric current, Ampere 

i   = 1  
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Im   = imaginary part of a complex quantity 

ke   = kinetic energy 

ek   = time-averaged kinetic energy 

kPWAS  = PWAS stiffness, N/m 

kstr   = dynamic stiffness, N/m 

k31   = electromechanical cross-coupling coefficient 

l,la   = PWAS length = 2a 

Pmn   =  power factor. Measure of average power flow 

p   = power, W 

p   = time-averaged power 

R   = eigen coefficients 

r(ω)  = dynamic stiffness ratio 

Re   = real part of a complex quantity 

Sij   = mechanical strains 

S0, S1, S2 = symmetric Lamb-wave modes 

11

Es    = mechanical compliance under constant electric field, m
2
/N  

T   = period time, s 

Tij   = stress in tensor notation 

Tn   = stress tensor for nth guided-wave mode, Pa 

t   = time, s 

ta   = PWAS thickness, m 

tx(x)  = traction in x direction 

U   = displacement amplitudes, m. Also orthogonal modes 
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u   = displacement, m 

uISA  = induced strain actuation PWAS displacement 

V   = voltage 

v   = velocity 

v   = velocity vector 

ve   = potential energy 

ev   = time-averaged potential energy 

W   = parameter to simplify normalized modes formula, unit: m
-2

   

x,y,z  = global coordinates, m 

x1,x2,x3  = material polarization directions 

Y   = admittance (simens) 

Y    = absolute of admittance 

YI   = imaginary part of admittance 

YR   = real part of admittance 

α, β  = wave numbers, m
-1

 

δ   = kronecker delta  

T

jk    = dielectric permittivity measured at zero mechanical stress, T = 0 

λ   = Lame constant, Pa 

μ = Material shear modulus,quivalent to the engineering constant G),     

Pa 

ν   = poisson ratio 

ξ   = wave numbers, m
-1

 

ρ   = material density kg/m
3
 



33 

 

τ, τa   = shear stress at PWAS tip x = a 

    = Lamb-wave longitudinal potential function  

( )    = dynamic 

    = Lamb-wave shear potential function 

Ω   = domain 

ω   = angular frequency, rad/s 

 

Subscripts 

A   = antisymmetric modes 

i, j   = indices = 1,2,3 

m, n  = different normal modes 

n   = nth guided wave mode 

S   = symmetric modes 

x, y, z  = global coordinates, m 

1   = solution due to source excitation 

2   = solution due to homogeneous solution (free mode shapes) 

 

Superscripts 

A   = antisymmetric modes 

m, n  = different normal modes 

S   = symmetric modes 

1   = solution due to source excitation 

2   = solution due to homogeneous solution (free mode shapes) 



34 

 

a    = conjugate of a 

â    = amplitude of a 

 

2.1. LITERATURE REVIEW 

Ultrasonic Lamb waves are used to find damage and flaws in plates, pipes, rails, 

thin-wall structures, multi-layered structures, and composite materials. The advantage of 

Lamb waves over other common ultrasonic techniques is that they travel large distances 

along the structure. Lamb waves can be ‘tuned’ to excite certain modes; some modes are 

more sensitive to certain types of defects.  

Chinthalapudi and Hassan (2005)  showed that energy loss of guided waves may 

be due to multiple reasons, such as existing flaws in the structure. Impedance mismatch is 

considered as an “energy-stealing” agent that results from flaws like delamination, splits, 

and cavities. In practice, the sensitivity to most simple defects, such as notches and 

cracks, is adequate and of similar magnitude due to the fairly uniform distribution of 

energy through the thickness of the plate. The sensitivity considerations become much 

more important in anisotropic materials. Wilcox, et al. (2001) showed an example of 

delamination detection in composites where certain modes were found to be blind to 

delamination at certain depths. Other studies (Alleyne and Cawley, 1992; Koh et al., 

2002)  gave more insights on how different defects interact with Lamb waves, and how 

the severity of impact damages can be predicted from the transmitted power. Generally, 

the failure theories based on energy methods are more robust in predicting failure. Hence, 

it is very important to model Lamb wave power and energy transduction between PWAS 

and host structures. Other applications that have attracted more interest recently are 
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energy harvesting applications. The need of optimizing energy transfer (Park et al., 2007; 

Kural et al., 2011) requires accurate models for Lamb waves energy, rather than 

simplified axial and flexural approximation that is only at low frequencies.  

Excitation at frequencies beyond the cut off frequency of A1, S1 modes will 

generate multimodal Lamb waves. This phenomenon appears also for relatively thick 

structures. In these cases, every mode shares parts of the supplied power and energy. Our 

analytical model was developed based on the “normal modes.” Normal modes represent 

the possible vibration characteristics of the structure and are independent of the loading 

scheme (Rose, 1999). The method of normal mode expansion (NME) is described in this 

study. It is worth mentioning that there are other methods that can be used to solve the 

forced loading of a structure, e.g. the integral transform techniques (ITT). Some of the 

most popular transforms are Laplace, Fourier, Hankel and Mellin. Various integral 

transforms are used to transform a given function into another. These transformations are 

done via integration (over some domain) of the original function multiplied by a known 

kernel function. This is followed by either solving for the exact solution, e.g. with residue 

theorem, or by numerically evaluating the integral in the case of complicated problems. 

The solution of Lamb waves propagation in a plate that is excited with surface 

PWAS was done by Giurgiutiu (2008) with the integral transform technique of the exact 

solution. The NME method determines the expanded amplitudes. NME can be used for 

isotropic or generally anisotropic layers. The difference between isotropic or anisotropic 

cases is in evaluating the quantities appearing in the solution. Therefore, the NME 

method can be considered more general because the physical nature of the excitation 

process is clear and independent of the material. The ITT method does have extensive 
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algebra and Viktorov (1967) discussed it in details. It was also shown by Viktorov (1967) 

how the solution is different between isotropic and generally anisotropic layers.     

A previous study was done by Lin and Giurgiutiu (2012), where they investigated 

the power and energy transduction in pitch catch PWAS configuration, but that study was 

based on axial and flexural wave approximation of S0 and A0 Lamb waves. Frequency 

response functions were developed for voltage, current, complex power, and active 

power. It was shown (Figure 2.1) that increasing the transmitter PWAS size and 

frequency of excitation requires the input of more electrical power; however, this may not 

increase the power transducted to waves, as shown in Figure 2.1b. 

 

 

Figure 2.1. PWAS transmitter under constant voltage excitation (a) power rating, (b) wave power 

(Lin and Giurgiutiu, 2012) 

 

Other similar studies were performed by Glushkov et al. (2006) and Glushkov et 

al. (2007) where the energy supplied to the waveguide versus the transducer size was 

addressed (Figure 2.2). The first study (Glushkov et al., 2006) was based on the Green 

matrix and the study showed that flexural approximation of A0 mode is only valid at low 

frequencies. In the second study, Glushkov et al. (2007) have studied the multimodal case 

(a) (b) 
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and energy partitioning, along with a comparison between integral equation based 

modeling and FEM. 

In our work, we show the analytical development based on the NME method. 

This method is straight forward when needed for anisotropic composite material cases, 

which involve studying the energy transduction between the PWAS and hosted 

anisotropic layers. 

 

 

Figure 2.2. Energy supplied to the waveguide versus the patch size (Glushkov et al., 2006) 
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2.2. ANALYTICAL DEVELOPMENT 

 Lamb Waves Normal Mode Expansion 2.2.1.

The normal mode expansion method is used to (a) directly find the amplitudes of 

a given mode in terms of loading parameters and (b) evaluate the contribution factor of 

every mode to the total wave power and energy. Normal modes of the guided waves in 

the structure serve as the eigenfunctions. The method assumes that the desired solution 

can be written in the form of a series of known functions, each with unknown amplitudes. 

Then, those amplitudes are to be determined either numerically or by finding a general 

expression that is valid for all modes. 

Normal modes (eigenfunctions) of the analyzed structure are assumed ‘complete,’ 

meaning that any function can be represented exactly in terms of a finite or infinite 

number of functions in the set of ‘normal modes.’ The second condition for the NME 

method is the orthogonality of the base functions (Rose, 1999). The NME of the 

displacement can be written as a summation of mode functions: 

 
1

( , , ) ( , ) i t

j j

j

u x y t C U x y e 




  (2.1) 

where 
jC is the contribution factor for each mode and 

jU is mode shape. This solution is 

assumed for the particular case of time harmonic with angular frequency .  

Lamb waves (guided plate waves) are fully analyzed in a number of textbooks: 

Graff (1991); Rose (1999); Giurgiutiu (2008). Here, we reproduce the essentials for 

power and energy models. The wave equations are: 
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2 2 2

2 2 2

2 2 2

2 2 2

0

0

P

S

x y c

x y c

  


  


 
  

 

 
  

 

 (2.2) 

where  ,  are two potential functions,   ( 2 ) /pc     and /sc  

 

are the 

pressure (longitudinal) and shear (transverse) wavespeeds;  and   are the Lame 

constants; and   is the mass density. The time dependence is assumed harmonic, the 

displacement solution for symmetric and antisymmetric wave propagation (Figure 2.3), 

and can be obtained as: 

 
   

   
 
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              Symmetric

( , , ) sin sin
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y n Sn Sn Sn Sn Sn
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 

 

   

   

 

 

   


 

 (2.3) 
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i x t

x n An An An An An

i x t
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u x y t A y R y e

u x y t iA y R y e

 

 

   

   

 

 

   


  

 (2.4) 

where subscript n denotes the values for each mode; nB , nA are the amplitudes to be 

determined using normal mode expansion method, Sn , An are wave numbers evaluated 

using the relation 
c


  ,where c is wave speed;   and   are functions given by

2
2 2

2

pc


    and

2
2 2

2

sc


   ; SnR , AnR are the symmetric and antisymmetric eigen-

coefficients calculated from the solution of the Rayleigh-Lamb equation for symmetric 

and antisymmetric modes: 

 
 

1
2

2 2

2

tan

tan 4

d

d

 

  



 
  
  

 (2.5) 
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For free wave motion, the homogeneous solution is derived by applying the 

stress-free boundary conditions at the upper and lower surfaces ( ,y d   where d is the 

plate half thickness) 

 
   2 2 2 2cos sin

             
2 cos 2 sin

S S S A A A

S A

S S S A A A

d d
R R

d d

     

     

 
   (2.6) 

Power flow normalization is used to determine a closed form for expanded 

amplitudes nB , nA . This method is based on the complex reciprocity relation and 

orthogonal modes (Auld, 1990; Santoni, 2010). 

 

Figure 2.3. Symmetric and antisymmetric particle motion across the plate thickness. 

 

 Reciprocity Relation for Lamb waves 2.2.2.

Reciprocity relation is essentially an extension of Newton’s third law of motion, 

where action and reaction are equivalent. Assume 12u  is the displacement of point 1P  due 

to force 2F , and 21u  is the displacement of point 2P  due to force 1F . In its most 

elementary form, the mechanics reciprocity principle states that (Santoni, 2010): the 

work done at point 1P  by force 1F  upon the displacement induced by force 2F is the 

 

uy 

ux 

uy 

ux 

uy 

ux 

uy 

ux 
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same as the work done at point 2P  by force 2F  upon the displacement induced by force 

1F , i.e., 1 12 2 21  F u F u  

For Lamb waves, we have real reciprocity and complex reciprocity; we focus on 

complex reciprocity following Auld (1990). 

Considering a generic body , and two sources 1F  and 2F  applied at points 1P  

and 2P  (Figure 2.4); the two force sources produce two wave fields with velocity and 

stress 1 1,v T  and 2 2,v T . Using equation of motion and applying the two different sources 

(1) and (2) and adding the two field equations together, we can prove the complex 

reciprocity form that relates the velocity responses, tractions and applied sources for 

harmonic excitation, i.e., 

    2 1 1 2 2 1 1 2        v T v T v F v F  (2.7) 

For Lamb waves, a similar relation has been derived in Santoni (2010), with the 

assumption of time harmonic solution. One important assumption considered throughout 

the analysis is that Lamb waves fields are z-invariant. Hence, the only surviving stresses 

are normal stresses, xxT ,
yyT and shear stress

xyT ; velocity fields are xv ,
yv ; superscript 

1
,
2 

indicate fields due to sources 
1
,
2
. 

 

Figure 2.4. Reciprocity relation, (Santoni, 2010) 

 

  

 
  

 

1 

2   
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The complex reciprocity relation for Lamb waves takes the form: 

 
   2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2

2 1 1 2 2 1 1 2

x xx y xy x xx y xy x xy y yy x xy y yy

x x x x y y y y

v T v T v T v T v T v T v T v T
x y

v F v F v F v F

 
      

 

    

 (2.8) 

This reciprocity relation is the basic formula used to derive orthogonality condition; in 

addition, the source influence (PWAS excitation) determines modal-contribution factors 

for each mode. 

 Orthogonality of Lamb waves 2.2.3.

The definition of orthogonal functions U over given domain [a,b] can be defined as 

 0     for  

b

m n

a

U U dy m n   (2.9) 

Recalling the complex reciprocity relation of Eq. (2.7), with the source forces xF , 0yF   

and assuming 1 and 2 are two solutions for time-harmonic-propagating Lamb waves, we 

get 
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 

1

2

ˆ ˆ( , , , ) ( ) ( )

ˆ ˆ( , , , ) ( ) ( )

n
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x y z t v y v y e e

 
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



 

 

v x y

v x y
 (2.10) 
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m
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n
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m m
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yx yy

m
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x y z t T y T y e e

T y

T y T y

x y z t T y T y e e

T y

 
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



 
 

  
 
 

 
 
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 
 

T

T

 (2.11) 

Substituting Eqs. (2.10) and (2.11) in the reciprocity Eq. (2.7) with xF , 0yF  and 

integrating over plate thickness, we get 
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   

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d

n m m n n m m n

n m y xy y xy x xx x xx

d

d
n m m n n m m n

y yy y yy x xy x xy
d

i v y T y v y T y v y T y v y T y dy

v y T y v y T y v y T y v y T y

 




     

   


 (2.12) 

Using the assumption of traction free boundary condition,
 

0xy yyT T   , at the top and 

bottom surfaces, Eq. (2.12) yields  

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

d

n m m n n m m n

n m y xy y xy x xx x xx

d

i v y T y v y T y v y T y v y T y dy 


      (2.13) 

Alternatively, in short form:  

  4 0n m mni P    (2.14) 

where 

  
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

d

n m m n n m m n

nm y xy y xy x xx x xx

d

P v y T y v y T y v y T y v y T y dy


      (2.15) 

Recall our assumption of considering only propagating waves (evanescent waves, which 

die out away from the source, are ignored); consequently, ,m n   are real, and m m  . 

Since    Re Rea b a b   , the orthogonality condition can be further simplified to 

 
 

0                                                              if 

    1
Re ( ) ( ) ( ) ( )  if 

2

d
mn n n n n

x xx y xy

d

m n

P
v y T y v y T y dy m n






  
   
 


 (2.16) 

mnP  is a measure of average power flow through the plate, and is used to determine Lamb 

waves amplitudes, through normalization. 
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 Normalization of Wave Amplitudes 2.2.4.

To apply orthogonality of Lamb waves of Eq. (2.16), velocity fields n

xv , 
n

yv  and 

stresses n

xxT , 
n

xyT  are required. In addition, stresses are needed to evaluate potential energy 

and wave power. From elasticity equations, stresses are related to strains by Lame 

constants as  

 

 
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2

2

2

xx xx yy

yy xx yy

xy xy
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T S

  
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

 (2.17) 

where xxS ,
yyS and 

xyS are normal and shear strains; they can be derived by 

differentiating Eqs. (2.3), (2.4) 

For symmetric waves (superscript S) 
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Substituting the strains in Hooke’s law, Eq. (2.17) becomes 
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Equations (2.19) can be rearranged using the relations  
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 (2.20) 

The stresses for symmetric case become 
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 (2.21) 

Similarly for antisymmetric waves, (superscript A) for the sake of completeness  
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The stresses for antisymmetric case are 
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 (2.23) 

Velocity fields are evaluated by taking time derivative of displacements in Eqs. (2.3) and 

(2.4) 
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Substituting Eqs. (2.21),(2.23),(2.24) and (2.25) in Eq. (2.16) and performing the 

integration yields 
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where  
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The symmetric mode coefficient nB  and the antisymmetric mode coefficient nA can be 

resolved as 
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For normal modes, we may assume 1nnP  ; hence, 
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Sn An

B A
W W 

   (2.30) 

 

 Modal Contribution Factors and PWAS Excitation 2.2.5.

Basic assumptions used in this study are: (1) straight crested Lamb waves, i.e., z-

invariant, and (2) ideal bonding (pin-force) connection between PWAS and structure 

(Figure 2.5). After consideration of the orthogonality of Lamb wave modes and after the 

normalization of modes amplitudes with respect to the power, modal-participation factor 
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for each mode needs to be evaluated (i.e. how much a particular mode contributes to the 

total wave power and energy). This uses the reciprocity relation with consideration of 

excitation forces from the source (e.g. a PWAS on the excited structure).  

 

Figure 2.5. Pin force model for structurally- bonded PWAS, reproduced from Giurgiutiu (2008); 

(a) PWAS pin forces at the ends on the upper surface; (b) shear stresses developed. 

 

Recalling the complex reciprocity Eq. (2.7), multiplying by -1, and upon expansion of the 

del operator, we get  

    2 1 1 2 2 1 1 2 2 1 1 2
ˆ ˆ

y x

 
            

 
v T v T y v T v T x v F v F  (2.31) 

where F is a volume source; ˆT y are traction forces and v are velocity sources. 

A solution denoted by ‘1’ such as 1T
 
indicates traction due to source excitation (e.g. by 

PWAS) while a solution denoted by ‘2’ is representing normal modes, i.e. a 

homogeneous solution of eigenfunctions of the free mode shapes of the structure – 

without considering excitation from the source. Fields due to the excitation source can be 

F0 F0 

y 

x 

y=+d 

y=-d 

h=2d 

 

y 

x 

-a +a 

 

 

(a) 

(b) 
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represented as normal modes summation over all possible modes (Rose, 1999; Santoni, 

2010), i.e. 

 

1 1

1 1

( , ) ( ) ( )

( , ) ( ) ( )

m m

m

m m

m

x y a x y

x y a x y

 

 





v v v

T T T
 (2.32) 

where ( )ma x are the modal-participation factors that must be determined. 

Homogeneous solution ‘2’ can be represented as 

 
2

2

( , ) ( )

( , ) ( )

n

n

i x

n

i x

n

x y y e

x y y e













v v

T T
 (2.33) 

Integrate Eq. (2.31) with respect to the plate thickness y from ( y d  to y d  ) to get 

    2 1 1 2 2 1 1 2 2 1
ˆ ˆ

d d
d

d
d d

dy dy
x

 


           

 v T v T y v T v T x v F  (2.34) 

Substitution of Eqs. (2.32) and (2.33) ,and rearrangement yields 

 

 

 

1 1

1

ˆ( ) ( )

ˆ( ) ( ) ( ) ( ) ( ) ( )

n

n n

d
i x

n n
d
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i x i x
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m d d

y y e

e a x y y y y dy e y dy
x



 



 

    

 
       
  

  

v T v T y

v T v T x v F

(2.35) 

Recall the orthogonality relation in its general form 

  
1

ˆ( ) ( ) ( ) ( )
4

d

mn m n n m

d

P y y y y dy


      v T v T x  (2.36) 

In the absence of a volume force source term 1F , Eq. (2.35) yields  

  1 1
ˆ 4 ( ) 0n n

d
i x i x

n n m mn
d

m

e e a x P
x

 




      


v T v T y  (2.37) 
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Since the modes are orthogonal, the summation in (2.37) has only one nonzero term 

corresponding to the propagating mode n ( n  real) for which 0nnP  . Hence, Eq. (2.37) 

becomes 

  1 1
ˆ4 ( )

d

nn n n n n
d

P i a x
x




 
      

 
v T v T y  (2.38) 

This is a general ordinary differential equation, which needs to be solved to get the modal 

participation factor ( )na x . 

nT  is the traction force; it must satisfy the traction free boundary condition for Lamb 

waves, 0n

xy d
T


 and 0n

yy d
T


 . 1T is the excitation shear. We have ( )xy xd

T t x   at the 

upper surface, and 0xy d
T


  on the lower surface, since PWAS excitation is only on the 

upper surface (Figure 2.5). 

 

For Lamb waves, Eq. (2.38) takes the form 

 

1 1

1 1

( ) ( ) ( ) ( )
4 ( )

( ) ( ) ( ) ( )

d
n n

y yy y yy

nn n n n n

x xy x xy d

v y T y v y T y
P i a x

x v y T y v y T y




  
   
     

 (2.39) 

Applying traction free conditions and PWAS excitation, then solving the ODE, yields  

 
( )

( ) ( )        for  
4

n n

an

i x i xx

n x

nn a

v d
a x e t x dx e x a

P

 



 
  
 

  (2.40) 

It should be noted that this formula is only for the forward wave solution and outside the 

excitation region, i.e. for  x a .  
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The total particle velocity using NME can be written as 

 ( , ) ( ) ( )n n

n

x y a x yv v  (2.41) 

where ( )n yv  is the velocity modeshape of the 
thn  mode, i.e., 

( )
( )

( )

n

x

n n

y

v y
y

v y

  
  
  

v . ( )n yv  

can be derived using the  combination of the symmetric particle velocity in Eq. (2.24) 

with the symmetric normalization coefficient of Eq. (2.30) and the antisymmetric particle 

velocity Eq. (2.25) and antisymmetric normalization coefficient of Eq. (2.30). 

 

We exemplify the NME method for velocity fields with two examples: (a) 1-mm 

thick aluminum plate, up to 2000 kHz where only S0, A0 modes exist; (b) 2.6-mm thick 

steel plate, with excitation up to 500 kHz. Figure 2.6 shows the particle velocity at the 

plate’s surface in the x-axis and y-axis for the two plates. Note that the values of NME 

velocities are not multiplied yet by PWAS excitation. The displayed results are only for 

the first symmetric S0 and antisymmetric A0 modes; the multi-modes demonstration will 

be shown in a later section. 
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Figure 2.6. Normal mode expansion for particle velocity fields (a) aluminum S0, (b) aluminum 

A0, (c) steel S0, and (d) steel A0 mode. 

 

Considering the ideal bonding assumption (pin-force model), the load transfer takes place 

over an infinitesimal region at the ends of the PWAS. Assuming a PWAS with a center at 

0 0x   and length 2al a , the traction on the plate surface can be written as  

 0 0( )= [ ( ) ( )] ( )[ ( ) ( )]xt x a x a x a F x a x a             (2.42) 

Here 0F  is the pin- force per unit width. Substitution of Eq. (2.42) into Eq. (2.40) gives 

the mode participation factor under PWAS excitation as  

(d) (c) 

(a) (b) 
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where ng is the coefficient 
 

[ ]
4

n n

n

x i a i a

n

nn

v d
g e e

P

 
   

The Lamb wave NME of the particle displacement under PWAS excitation is  

 
0

1
( , ) ( ) ( )ni x

n n

n

u x y g F e y
i





  v  (2.44) 

The displacement in x-direction at the PWAS end ( ,  x a y d  ) is  

 
 

0

1
( , ) ( )[ ] ( )

4
n n n

n

x i a i a i an

x x

n nn

v d
u a d v d e e F e

i P

  


 
   (2.45) 

 PWAS – Structure Interaction 2.2.6.

Consider a PWAS of length 2l a , width b  and thickness at ; the relation between 

the PWAS pin-force applied to the structure and the particle displacement is through the 

structural dynamic stiffness. The structures as well as the PWAS stiffness are now 

analyzed. When the PWAS transmitter is excited by an oscillatory voltage, its volume 

expands in phase with the voltage in accordance with the piezoelectric effect, (Figure 

2.7). Expansion of the PWAS mounted on the surface of the structure induces a surface 

reaction from the structure in the form of a force at the PWAS end. The PWAS end 

displacement is constrained by the plate and is equal to the plate displacement at x a . 

The reaction force along the PWAS edge,  .0F b , depends on the PWAS displacement, 

PWASu , and on the frequency-dependent dynamic stiffness,  strk  , presented by the 

structure to the PWAS.  

      0 ,str xF b k u a d   (2.46) 
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The two stiffness elements on the right and the left of PWAS are selected to be 

2 strk ; hence the overall structure stiffness is strk (Figure 2.7). Under harmonic excitation, 

the dynamic stiffness  strk   is obtained by dividing the force by the displacement given 

by Eq. (2.44), i.e. 

  
 

1

0
( )

ˆ ( , )
ni a

str n n

nx

F b
k i b g e d

u a d




 



 
   

 
 v  (2.47) 

Define the static stiffness PWASk  of a free PWAS as 

 
11

a

PWAS E

t b
k

s a
  (2.48) 

The dynamic stiffness ratio is defined as the ratio between  strk   and PWASk , i.e., 

  
 str

PWAS

k
r

k


   (2.49) 

The relation between pin-force force per unit width and the static stiffness of the PWAS 

is  

  0

1
( , )

2
PWAS x ISAF b k u a d u

 
  

 
 (2.50) 

where ISAu  is the “induced strain actuation” displacement (Giurgiutiu, 2008), defined as, 

31
ˆ /ISA au ld V t  and the quantity 1

2( , )x ISAu a d u represents the total x-direction 

displacement at the right tip of the PWAS (because of symmetry, only the forward 

propagating wave needs to be considered.) 

Substitute ( , )xu a d from Eq. (2.45) into Eq. (2.50) and solve for 0F  using strk from Eq. 

(2.47) to get  
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  
 

 0

1

1 2

PWAS ISA
r k u

F
b r






 
    

 (2.51) 

The excitation pin-force  0F  can now be used to determine the NME fields 

(displacements – strains – velocities), the modal participation factors ( )PWAS

na x and the 

coefficients ng ; then the power and energy can be analyzed. 

 

Figure 2.7. PWAS constrained by an overall structural stiffness kstr. 

 

 Power Transduction between PWAS and Structure 2.2.7.

The power and energy transduction flow chart for a PWAS transmitter on a 

structure is shown in Figure 2.8 (Lin et al., 2012). The electrical energy due to the input 

voltage applied at the PWAS terminals is converted, through piezoelectric transduction, 

into mechanical energy that activates the expansion-contraction motion of the PWAS 

transducer. This motion is transmitted to the underlying structure through the shear stress 

in the adhesive layer at the PWAS-structure interface. As a result, ultrasonic guided 

waves are excited into the underlying structure. The mechanical power at the interface 

becomes the acoustic wave power and the generated Lamb waves propagate in the 

structure.  

piezoelectric wafer active sensor 

Electric field, E3 

x3 

2kstr Length l; thickness t; width b 
2kstr 

x1 
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Figure 2.8. PWAS transmitter power flow (Lin et al., 2012) 

 

 PWAS Admittance and Electrical Active Power 2.2.8.

To calculate the transmitter electrical power and energy, we need to calculate the 

input electrical power by using input admittance of the PWAS when attached to the 

structure. Because of the electromechanical coupling, the impedance is strongly 

influenced by the dynamic behavior of the structure and is substantially different from the 

free-PWAS impedance. 

Under harmonic excitation, the time-averaged power is the average amount of 

energy converted per unit time under continuous harmonic excitation. The time-averaged 

product of the two harmonic variables is one half the product of one variable times the 

conjugate of the other. When a harmonic voltage is applied to the transmitter PWAS, the 

current is  

 ˆI YV  (2.52) 

The constrained PWAS admittance can be expressed (Giurgiutiu, 2008) using the 

frequency dependent stiffness ratio of equation(2.49), i.e., 
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 (2.53) 
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where ( ) ( )a    . A simplified form of Eq. (2.53) can be obtained under the quasi-

static assumption in which the PWAS dynamics are assumed to happen at much higher 

frequencies than the Lamb-wave propagation ( ( ) 0   , ( )cot ( ) 1     ), i.e., 

  
 

 
2

0 311
1

r
Y i C k

r


 



 
  

 
 (2.54) 

This simplified model of admittance was used in Lin and Giurgiutiu (2012); it 

was used for axial and flexural wave propagation at low frequency excitation. Here we 

use a new definition of  r  in Eq. (2.49) and  strk  in Eq. (2.47) based on NME for 

multi-modal Lamb waves propagation. 

The power rating, time-averaged active power, and reactive power are  

 2 2 2 2 21 1 1ˆ ˆ ˆ              
2 2 2

rating active reactive active R reactive IP Y V P P P Y V P Y V      (2.55) 

where RY  is the real part of admittance and IY  is the imaginary part of admittance. 

The active power is the power that is converted to the mechanical power at the interface. 

The reactive power is the imaginary part of the complex power that is not consumed and 

is recirculated to the power supply. The power rating is the power requirement of the 

power supply without distortion. In induced-strain transmitter applications, the reactive 

power is the dominant factor, since the transmitter impedance is dominated by its 

capacitive behavior (Lin et al., 2012). Managing high reactive power requirements is one 

of the challenges of using piezoelectric induced-strain actuators. 
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 Mechanical Power 2.2.9.

Due to the electro-mechanical transduction in the PWAS, the electrical active 

power is converted into the mechanical power; through shear effects in the adhesive layer 

between the PWAS and the structure. The mechanical power transfers into the structure 

and excites the guided wave. Santoni (2010) studied shear lag solution for the case of 

multiple Lamb wave modes. This solution can be simplified by considering that the shear 

stress transfer is concentrated over some infinitesimal distances at the ends of the PWAS 

actuator (Figure 2.5). The concept of ideal bonding (also known as the pin-force model) 

assumed that all the load transfer takes place over an infinitesimal region at the PWAS 

ends; the generated mechanical power is the multplication of this load times the structure 

particle velocity at the PWAS tip. The time-averaged power is defined as  

  
0

1 T

p p t dt
T

   (2.56) 

The time-averaged product of two harmonic variables is one half the product of one 

variable times the conjugate of the other. The time-averaged mechanical power at 

PWAS-structure interface is  

    0 0 0

1
ˆ

2
p F v    (2.57) 

Mechanical power excites both forward and backward propagating waves initiating from 

the two end tips at x a  and x a  . Due to symmetry, we only need to consider the 

forward wave, which will contain only half of the mechanical power converted from the 

electrical active power. 
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 Lamb waves Power and Energy 2.2.10.

The mechanically converted power is in turn transferred into the power of the 

propagating forward wave. It is important to mention that evanescent (non-propagating) 

waves are not considered in this study. The time averaged wave power is:   

  
1

2
xx x xy y

A

p T v T v dA    (2.58) 

where v  denotes particle velocity either in x or y directions, T denotes stress, T is the 

conjugate. These values are determined from Eqs. (2.17), (2.24) ,and (2.25). Figure 2.9 

shows all associated stresses and velocities. 

The time-averaged wave power can be determined for a given section x by 

integration over the cross section area. Under the z-invariant assumption, the width b is 

taken outside the integration; Eq. (2.58) can be further simplified as 

      2 2
2

d

xx yy x xy y

d

b
p S S v S v dy   



      (2.59) 

 

Figure 2.9. Representation of the stresses and velocities at an arbitrary section of the structure. 
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Orthogonality of Lamb waves can be used during the expansion of Eq. (2.59); 

because all the quantities are defined as summation of the symmetric solution plus the 

antisymmetric solution, e.g. xv is the summation of xv parts of Eqs. (2.24) and (2.25) . 

The same is true for strains. 

When evaluating the multiplication of xxS times xv , and integrating the quantities 

generated from multiplying the symmetric part times the antisymmetric part, it ended up 

as integration of  sine times cosine terms and the integration vanished due to 

orthogonality of Lamb waves. On the other hand,‘cos
2
’ and ‘sin

2
’ terms are retained. The 

time-averaged wave power takes the closed form: 

 
S A

n n

n n

p p p    (2.60) 

where 
S

np  and 
A

np  are the time-averaged wave powers for the symmetric mode nS  

and antisymmetric mode nA respectively. 
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  (2.61) 
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  (2.62) 

The terms nS

ng and nA

ng represent the coefficients in Eq. (2.43) for symmetric and 

antisymmetric modes. 

Kinetic energy for Lamb waves is defined as 

  2 21
( , )

2
e x y

A

k x t v v dA   (2.63) 

The time-averaged kinetic energy associated with velocity components can be calculated 

as half the velocity times the conjugate of itself. 

  
1

. .
4

e x x y y

A

k v v v v dA   (2.64) 

The kinetic energy contains both symmetric and antisymmetric wave energy. Upon 

rearrangement, the time-averaged kinetic energy takes the form 

 n nS A

e e e

n n

k k k    (2.65) 

where nS

ek  and  nA

ek  are the time-average kinetic energies for the symmetric mode 

nS  and  antisymmetric mode nA . Upon multiplication and then integration over thickness, 

kinetic energy can be expressed in closed form as 
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Equations (2.66), (2.67) can be further simplified as 
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Potential energy of the wave can be evaluated by the double inner (double dot) product 

between stress and strain 

 
1

( , ) :  
2

e

A

v x t dA T S  (2.70) 

 
1

( , ) :  
2

xx xy xz xx xy xz

e yx yy yz yx yy yz

A

zx zy zz zx zy zz

T T T S S S

v x t T T T S S S dA

T T T S S S

   
   

    
   
   

  (2.71) 

zzT and zzS are ignored due to the z-invariant assumption. Also 
yx xyT T , zx xzT T ,

zy yzT T due to symmetry of both stress and strain tensors; Eq. (2.71) yields 
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  
1

( , ) 2 2 2
2

e xx xx yy yy xy xy xz xz yz yz

A

v x t T S T S T S T S T S dA      (2.72) 

The stresses and strains associated with Lamb waves are xxT ,
xyT ,

yyT and xxS ,
xyS ,

yyS ; then 

Lamb wave potential energy reduces to 

  
1

( , ) 2
2

e xx xx yy yy xy xy

A

v x t T S T S T S dA    (2.73) 

The time-averaged potential energy is 
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Similar to the kinetic energy, the time-averaged potential energy is the summation of the 

potential energy of all modes, i.e. 

 n nS A

e e e

n n

v v v    (2.75) 

where nS

ev  and nA

ev  are the time-averaged potential energy for symmetric mode nS  

and  antisymmetric mode nA
 
respectively,  i.e., 
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The total energy for Lamb waves per unit length is the summation of the kinetic and 

potential energy. The total time-averaged Lamb wave energy at the plate cross section 

corresponding to the PWAS end is   

 e e ee k v   (2.78) 

 

2.3. SIMULATION RESULTS 

This section gives results of the simulation of power and energy transduction 

between the PWAS and structure using the exact Lamb waves model. Comparison was 

performed between the exact Lamb waves model results were presented here, and the 

simplified axial and flexural waves model results of Lin and Giurgiutiu (2012). This was 

followed by a parametric study to show how wave power and energy were changed with 

different PWAS-sizes and excitation frequencies. The last part of this section shows the 

applicability of our model for the case of multi-modal Lamb waves, which happens either 

at higher frequency or in thicker structures. We examplify with the simulation of two 

plates: (a) 1-mm aluminum up to 2000 kHz, and (b) 12.7-mm ( 1
2 in) steel up to 500 kHz 
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frequency. Figure 2.10a,b shows dispersion curves for the two plates. Figure 2.10a also 

shows how the simplified axial and flexural waves compare with S0 and A0 Lamb waves 

at low frequencies.  

For the 1-mm aluminum plate, harmonic excitation of 10-volts was applied on a 

7- mm PWAS with a frequency sweep from 1-2000 kHz such that only S0 and A0 Lamb 

waves exist. However, the 12.7-mm steel plate (Figure 2.10b) was excited up to 500 kHz, 

such that three symmetric modes (S0, S1, S2) and three antisymmetric modes (A0, A1, 

A2) exist. Complete simulation parameters are given in Table 2.1 and Table 2.2. 

 

 Thin Plate Structure (One Symmetric and one Antisymmetric mode) 2.3.1.

The simulation results for the 1-mm aluminum structure are given in Figure 2.11. 

As expected, the reactive electrical power required for PWAS excitation was orders of 

magnitude larger than the active electrical power. Hence, the power rating of the PWAS 

transmitter was dominated by the reactive power, i.e., by the capacitive behavior of the 

PWAS. We noted that the transmitter reactive power was directly proportional to the 

transmitter admittance (Y i C ), whereas the transmitter active power was the power 

converted into the ultrasonic acoustic waves generated into the structure from the 

transmitter. A remarkable variation of active power with frequency is shown in Figure 

2.11a: we noticed that the active power (i.e., the power converted into the ultrasonic 

waves) was not monotonic with frequency, but manifested peaks and valleys. As a result, 

the ratio between the reactive and active powers was not constant, but presented the 

peaks and valleys. The increase and decrease of active power with frequency corresponds 

to the PWAS tuning in and out of various ultrasonic waves traveling into the structure. 
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The maximum active power seemed to be ~  8 mWatt at 340 kHz. At ~ 1460 kHz, the 

PWAS was not transmitting any power; hence no power was delivered into a wave power 

at this frequency. This is because the rejection of Lamb waves at this particular frequency 

for both S0 and A0. Figure 2.6a,b, show that xv and yv vanish for both S1 and A1  at ~

1460 kHz. Since the electrical active power is equally divided into forward and backward 

waves, the Lamb wave power plot of Figure 2.11c is the half of the electrical active 

power plot of Figure 2.11a. Figure 2.11d shows the simulation results for Lamb waves 

kinetic energies, Eqs. (2.68), (2.69), and potential energies, Eqs. (2.76), (2.77).  

 

 

Figure 2.10. Dispersion curves (a) aluminum 1 mm, (b) steel 12.7 mm (1/2 in). 
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Table 2.1. Structure simulation parameters. 

 symbol 2024 AL alloy steel-AISI-4340 

Length  L ∞ ∞ 

thickness  h 1 mm 12.7 mm ( 1
2 in) 

Width  b 7 mm 7mm 

Young’s Modulus  E 72.4 GPa 200 GPa 

Poisson ratio   0.33 0.29 

density   2780 7850 

Harmonic input voltage amplitude V̂  10 V 10 V 

Frequency f  sweep 1-2000 kHz 1-500 kHz 

 

Table 2.2. Transmitter PWAS (PZT850) properties  

  (as from the company website www.americanpiezo.com). 

 symbol PZT850 

Length  l 5-25 mm 

thickness  ta 0.2 mm 

Width  b 7 mm 

Young’s Modulus  E 63 GPa 

Elastic compliance 
11

Es  15.8e-12 m
2
/N 

Relative dielectric constant 
33 0/T   1750 

Coupling coefficient k31 0.353 

Piezoelectric coefficient d31 -175e-12 m/V 

 

http://www.americanpiezo.com/
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Figure 2.11. Simulation results for 1-mm aluminum plate, (a) electrical active power, (b) reactive 

power, (c) Lamb wave power, (d) Lamb wave kinetic and potential energy. 
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S0 and 100 kHz for A0, the differences between exact and approximate models are very 

significant. 

 

Figure 2.12. Comparison between axial and flexural wave powers and S0/A0 Lamb wave powers. 
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total Lamb wave energy shows the same tuning trend in relation to the PWAS size and 

excitation frequency as shown in Figure 2.14. 

 

2.4. EXPANDING TO MULTIMODE LAMB WAVE   

 Thick Plate Structure (multi-mode Lamb waves) 2.4.1.

A multi-modal Lamb waves simulation was performed on a 12.7-mm thick steel 

plate for up to 500 kHz excitation frequency and 10V harmonic voltage applied to PWAS. 

All structural simulation parameters are listed in Table 2.1 and PWAS parameters are 

listed in Table 2.2. 

The objective is to evaluate electrical active power, reactive power and show how 

the active power part is converted to Lamb wave power in the presence of multi-modal 

Lamb waves. Dispersion curves plots in Figure 2.10b show that the S1 mode starts ~

215 kHz, S2 starts at ~ 370 kHz, while A1 starts at ~ 170 kHz, and A2 starts at 390 kHz. 

Due to the sudden appearance of Lamb wave modes at cut-off frequencies, the normal 

mode expansion solution encounters sudden jumps. This is due to the appearance of new 

components caused by the new modes. For that reason, a smoothing function is applied as 

described in the next section.  
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Figure 2.13. Parametric study for Active power for 1-mm aluminum simulation.  

 

 

Figure 2.14. Parametric study for total Lamb wave energy for 1-mm aluminum simulation.  
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Smoothing function  

The smoothing function is a smoothed step function, (Sohoni, 1995) as shown in 

Figure 2.15. The mathematical formula is  

 

1 1

1 1 2 2 1 2

2 2

                                  

( ) ( , , , , )   

                                  

h x X

f x f x X h X h X x X

h x X




  
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 (2.79) 

 1 1 1( ) [ / ]*( ) [ / 2 ]*sin{(2 / )*( )}f x h h x x X h x x X           (2.80) 

 

This is implemented in our NME solution by setting X1 to the cut-off frequency of 

the selected mode and h1 to zero; hence the mode is forced to start from zero, and 

consequently its contribution to the NME summation is smoothed. 1h  ; x is arbitrary; 

we selected 150x   kHz, for symmetric modes, and 120x  kHz for antisymmetric 

modes. 

 

Figure 2.15. ADAMS step function. 
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Figure 2.16. Normal mode expansion for particle velocity fields for 12.7 mm steel plate with 3 

symmetric modes and 3 antisymmetric modes (smoothed). (Kamal,et al., 2013) 

 

Normal mode expansion for velocity fields after applying smoothing are shown in 

Figure 2.16. 

For the sake of clarity, it needs to be mentioned that the plots in Figure 2.16 are 

the absolute values of NME velocities after applying normalized amplitudes as well as 

modal participation factors. Note that the summation value in some areas was less than 

the individual values because the individual values were plotted as absolute values, 

whereas the summation was done algebraically, which allows for some cancelations. 
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Complex values of NME velocities are due to phase differences. Figure 2.17 shows the 

summary of the velocity fields; it displays the summation for the three symmetric modes 

as well as antisymmetric modes. 

 

Figure 2.17. Summation of normal mode expanded velocities in x and y directions with applied 

modal participation factors (a) symmetric, (b) antisymmetric modes.  

 

Figure 2.18 shows the reactive and active electrical power the PWAS utilizes to 

excite desired Lamb wave modes. It can be seen from Figure 2.18, that the reactive 

power was three orders of magnitude larger than the active power (active power is the 

power that is further converted to propagating wave power). The maximum active power 

attained in this simulation was ~ 0.9 mWatt at 500 kHz. However, if the simulation was 

evaluated for a larger frequency sweep, active power experiences higher maximum, but 

careful consideration is needed as the fourth symmetric and antisymmetric modes will 

come into account.  

(a) (b) 
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Figure 2.18. Simulation results for 12.7-mm steel plate, (a) electrical active power, (b) reactive 

power. 

 

Multi-modal Lamb wave simulations for power are shown in Figure 2.19. It can 

be seen that maximum value for Lamb wave power was ~ 0.45 mWatt at 500 kHz and 

the plot in Figure 2.19a is identical to the half of active electrical power of Figure 2.18a. 

 

 

Figure 2.19. (a) Lamb wave power, (b) Lamb wave power separated as symmetric modes and 

antisymmetric modes.  
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 Power Partitioning 2.4.2.

The case of the ½"- thick steel beam was used to show how mode contribution 

factors distribute the power consumed by every mode. For this thick steel structure, with 

a 7-mm square PWAS attached, Lamb waves tuning were shown in Figure 2.16. The 

fundamental symmetric mode S0 mode had its rejection points 175 and 400 kHz, A0 

mode had a rejection point 400 kHz. The simulated frequency range was up to 500 

kHz, where there are three symmetric and three antisymmetric modes. 

 

Figure 2.20. Power partitioning between modes of Lamb wave propagation in ½"-thick steel 

beam. 

 

The results for power partitioning (under 10V input voltage amplitude) are shown 

in Figure 2.20, and they are representing the ratios of power between modes. At 175 

kHz, S0 was rejected and A0 consumed all the power. However, at 200 kHz, A0 actually 

consumed more power (than at 175 kHz), but the shown amount is the ratio with S0 

mode.  
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2.5. EXPERIMENTAL AND FEM STUDY 

This section includes: (1) comparing Lamb waves tuning predicted analytically 

with experimental measurements using Polytec Scanning Laser Doppler Vibrometer 

(SLDV) system, and (2) comparing the electromechanical impedance of the bonded 

PWAS predicted analytically with Multiphysics FEM results as well as experimental 

measurements with the impedance analyzer. We started by a brief introduction of the 

measuring equipment, following with results and ending with concluding remarks. 

The SLDV provides non-contact measurements of particle vibration on the 

structure surface. The laser vibrometry method is based on the Doppler effect, which is 

able to sense the frequency shift of back-scattered laser light from a moving surface. The 

main advantage of a laser vibrometer compared to other alternative methods is the fact 

that this technology allows the accurate measurement of vibrations without contact at 

frequencies up to 1.2 GHz. Scanning laser vibrometers have been used extensively in the 

last years for characterizing small and large amplitude ultrasonic vibrations in solid 

surfaces. In this study, we used the laser vibrometer system PSV-400-M2 from Polytec as 

shown in Figure 2.21. 

 

Figure 2.21. Scanning laser vibrometer PSV-400-M2, source: Polytec.com 
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The experimental setup included: (1) receiving A0 and S0 signals by a receiver 

PWAS, which is located at 160 mm from the transmitter PWAS, and capturing the 

received signals voltage by the oscilloscope, and (2) non-contact measurements of out-of-

plane oscillation along an array of points using a laser vibrometer. A three-count tone 

burst voltage was used to excite the transmitter PWAS with 20V peak-to-peak and center 

frequency varying up to 600 kHz. The complete setup is shown in Figure 2.22. 

 

 

Figure 2.22. Experimental setup of function generator, laser vibrometer, and oscilloscope for 

measuring Lamb wave tuning. 

 

Figure 2.23 shows a sample of received signals by receiver PWAS as well as 
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out-of-plane vibration. Hence, we used it to validate the tuning of the antisymmetric A0 

mode. The analytical predictions of our model were compared with received voltage by 

the receiver PWAS for both A0 and S0 modes. The comparison is shown by Figure 2.24, 

Figure 2.25 and Figure 2.25, Figure 2.26. 

 

Figure 2.23. Sample of received signals by PWAS and laser measurements at 120 kHz  
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Figure 2.24. Experimental received signals by the receiver PWAS at 160 mm distance 

 

Figure 2.25. Analytical tuning curves, vx is the inplane particle velocity, vy: the out of plane. 

 

Figure 2.26. Comparison between analytical prediction and laser measurements of vy of A0  
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By comparing the received electric signals by receiver PWAS (Figure 2.24) with 

analytical prediction of particle motion (Figure 2.25), it is concluded that there was a 

correlation between (a) the out-of-plane structural oscillation at the receiving PWAS, and 

(b) the in-plane strain captured by the receiver PWAS which is associated with the 

received voltage through the piezoelectric effects. The comparison between the analytical 

prediction of out-of-plane particle velocity of A0 mode from Figure 2.25 with the laser 

measurements at point #2 (Figure 2.26) have shown good agreement. It is important to 

mention that the analytical model does not account for the attenuation or damping; this 

implies that the results of Figure 2.25 are the same at different points between the 

transmitter and the receiver.  

In order to compare energy and power quantities, we needed first to compare our 

analytical predictions of bonded PWAS E/M impedance with experimental and finite 

element model results. “Impedance spectroscopy” is commonly called for the E/M 

impedance or the admittance of the transducer. To calculate the transmitter PWAS 

electrical power, we needed to calculate the PWAS admittance when attached to the 

structure. An HP 4194 A impedance analyzer was used for measuring the transducer E/M 

impedance in complex form; then the admittance was calculated. The experiments were 

performed on multiple beams and plates to show the constrained PWAS resonances. 

Figure 2.27 shows the experimental setup for 8-mm width and 1-mm thick aluminum 

beam. Also, the test was performed for constrained PWAS on the square aluminum plate 

that was used in the laser vibrometer test (Figure 2.22). The frequency sweep was up to 

2000 kHz. 
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The finite element mesh along with displacement mode shapes at resonance 

frequencies are shown in Figure 2.28. The FEM was performed using coupled field 

physics, where the PWAS is excited by voltage and the piezoelectric coupling introduces 

induced strains. Damping was defined using complex compliance and complex electric 

permittivity with imaginary coefficients of 0.04. Results of analytical prediction, FEM 

prediction, and experimental measurements are shown in Figure 2.29. 

 

Figure 2.27. Experimental setup for E/M impedance test, (a) HP4194A impedance analyzer, (b) 

test specimen with bonded PWAS. 

 

 

Figure 2.28. FEM mesh and mode shapes at resonances of bonded PWAS  

1 mm thick AL beam  

8 mm width, 1070 mm 

length 

  

APC 850 PWAS 

 7 mm x7 mm x 

0.2  mm 

(a) (b) 

340 kHz 

1130 kHz 

1432 kHz 

1750 kHz 



82 

 

The predicted first resonance was 340 kHz by the analytical model and FEM; 

which both do not account for the width dimension. The experimental result for the first 

resonance of the beam case was 250 kHz, while it was 400 kHz for the plate. The 

analytical model overestimated the admittance amplitude of the first resonance with 

respect to other resonances. The second resonance observed by FEM was 1130 kHz, 

(1200 kHz analytically and it was 1000-1100 kHz experimentally). The third resonance 

was 1432 kHz by FEM predictions and it was missed by the analytical model; 

experimental results were  1330-1370 kHz. The antiresonance  1500 kHz can be 

explained by the rejection of both S0 and A0 in tuning curves. The fourth and the last 

documented resonance was 1750 kHz by FEM, 1700 analytically, and 1625-1650 kHz 

experimentally (Figure 2.29b). 

The imaginary component of the admittance is used to determine the reactive 

electrical power; that is the part of electrical power which is not converted to mechanical 

wave propagation. This study mainly focused on the real part (or the active power) that is 

transferable to mechanical wave power.  

 

Figure 2.29. E/M admittance of a bonded PWAS on 1-mm aluminum structure: (a) analytical 

prediction, (b) experimental and FEM results 
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After determining the tuning of Lamb wave modes and the E/M admittance of the 

bonded PWAS, we could calculate power and energy quantities. However, due to the 

dispersion of wave packets (Figure 2.30). It was necessarily to perform the analysis in 

terms of wave packet total energy instead of maximum amplitude. To determine the wave 

packet energy, the time integral was performed for the squared signal value 

1

0

2

( )

t

t

E s t dt   

 
Figure 2.30. Dispersion of received wave packets 

 

Electromechanical admittance components at every frequency were multiplied by 

the corresponding energy content of the received signals to get electrical power (Figure 

2.31b). Similar analysis was done for the kinetic energy of particle velocity measured by 

the laser vibrometer (Figure 2.32b).  

 

Figure 2.31. (a) Wave power predicted analytically, (b) received signals power experimentally 

(a) (b) 
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Figure 2.32. (a) A0 wave K.E predicted analytically. (b) A0 wave K.E. of point #2 on structure 

surface based on the laser vibrometer measurements. 
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Besides, our analytical model is based on the harmonic wave assumption, whereas the 

experimental signals are based on 3-count tone burst signals. A similar conclusion is 

drawn for A0 kinetic energy (K.E), which is shown in Figure 2.32. 

2.6. SUMMARY AND CONCLUSIONS  

The ability to excite certain Lamb wave modes is important in structural health 

monitoring (SHM) because the different defects respond differently to various Lamb 

wave modes. Detection of through thickness cracks with the pulse-echo method is much 

better with the S0 mode, whereas antisymmetric modes are better for the detection of 
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analytical model for the multimodal Lamb wave power and wave energy. This chapter 

has analyzed the power and energy transformation from electrical to mechanical by 

piezoelectric wafer active sensors (PWAS) bonded to host structures. The analysis was 

started by a literature review to show the motivation of modeling power and energy for 

Lamb waves for SHM applications. This was followed by a short discussions on the 

basics of Rayleigh-Lamb equation and the solution of the symmetric and antisymmetric 

Lamb wave fields, i.e. displacements, strains and velocities. The power flow analysis is 

based on complex reciprocity and orthogonality of Lamb waves modes; and through 

normalization of power flow, Lamb waves displacement amplitudes were determined. 

The analysis for multimodal waves was based on the Normal Modal Expansion (NME) 

technique; which was used to determine modal participation factors, i.e. how much each 

mode contributes to the final power. In order to calculate the transmitter electrical power 

and energy, we have calculated the input electrical power by using the input admittance 

of the PWAS when attached to the structure. Because of the electromechanical coupling, 

the impedance is strongly influenced by the dynamic behavior of the substructure and is 

substantially different from the free-PWAS impedance. A remarkable variation of active 

power with frequency was noticed. The active power (i.e., the power converted into the 

ultrasonic waves) is not monotonic with frequency, but manifests in peaks and valleys. 

As a result, the increase and decrease of active power with frequency corresponds to the 

PWAS tuning in and out of various ultrasonic waves traveling into the structure. For 

instance, for single symmetric and single antisymmetric excitation simulation example, 

there were certain frequencies at which there was almost no energy transfer for waves to 

propagate. Electrical active power was further divided and converted to forward 
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propagating wave power and backward wave propagating power; our simulations were 

performed for only the forward wave and showed that the wave power was half of 

electrical active power.  

The developed model for Lamb waves case was compared with the axial and 

flexural waves, that approximate Lamb waves at relatively low frequencies and the two 

simulations showed good agreement. This was followed by a parametric study to 

optimize the transducer size with excitation frequency to guarantee maximum energy 

transfer between the source and the examined structure. In this study, it was shown that 

the maximum wave power can be achieved with different combinations of PWAS-size 

and excitation frequencies. Multi-modal waves simulations were presented, multi-modal 

waves typically exist in practical applications for most on-site thick structures at which 

not only S0 and A0 modes exist when excited by the PWAS. An experimental study was 

performed using the scanning laser vibrometer to compare the out-of-plane structural 

oscillation at the receiver PWAS with analytical predictions, as well as the received 

voltage through the piezoelectric effects. The results have shown good agreement. 

Afterwards, admittance of bonded PWAS was evaluated experimentally and was 

compared with FEM and analytical predictions. Finally, the received signals by the 

oscilloscope and the laser-detected out-of-plane particle velocities were used to determine 

the wave electric power and kinetic energy respectively. 
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CHAPTER 3:  SHEAR HORIZONTAL COUPLED PWAS 

 

This chapter discusses a shear horizontal coupled piezoelectric wafer active sensor (SH-

PWAS). The chapter starts with a review of the state-of-the-art for the applications of SH 

transducers and their importance in non-destructive evaluation (NDE) and structural 

health monitoring (SHM). This is followed by the basic piezoelectric sensing and 

actuation equations with the electro- mechanical coupling coefficient 35d . The electro-

mechanical (E/M) impedance of the SH-PWAS was studied analytically under a constant 

electric field assumption as well as under a constant electric displacement assumption. 

We also extended the analytical development to constrained SH-PWAS bonded to 

structures in the form of beams. The model is based on the normal mode expansion 

(NME) technique. The interaction between the SH-PWAS and the structure was studied. 

The structure frequency response functions were presented. We developed a closed-form 

equation of structure dynamic stiffness by coupling the mechanical response solution of 

the SH-PWAS to the structure elasticity solution. The analytical model was compared 

with experimental results and finite element analysis.  

The chapter is later devoted to the discussion of shear horizontal (SH) guided-

waves that can be excited with the SH-PWAS. Analytical prediction of SH wave speeds 

was performed. A wave propagation experimental study was conducted between different 

combinations of SH-PWAS and regular inplane PWAS transducers. 

. 
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Experimental results were compared with analytical predictions for aluminum 

plates, and showed good agreement. 2-D wave propagation effects were studied by 

Multiphysics FEM. In part II of the dissertation: Applications, we apply the study on 

GFRP and CFRP composite structures. 

The amplitudes of shear horizontal wave modes were normalized with respect to 

the wave power; the normal mode expansion (NME) method was used to account for 

superposition of multimodal SH waves. Modal participation factors were presented to 

show the contribution of every mode. Model assumptions included: (a) straight crested 

guided wave propagation; (b) ignoring evanescent waves; and (c) ideal bonding between 

the PWAS and structure with shear load transfer concentrated at PWAS tips. The power 

and energy transfer between the PWAS and structure were analyzed in order to optimize 

the sensor size and excitation frequency; for maximum wave energy production for a 

given source.  

Finally, we presented simulations of our developed wave power and energy 

analytical models along with a MATLAB graphical user interface (GUI) for the analysis 

of SH-waves including dispersion phase and group velocities, mode shapes, and wave 

energy. 

 

NOMENCLATURE  

kD    = electric displacement vector [C/m
2
] 

kjd     = piezoelectric strain constants [m/V] or [C/N] 

35d    = piezoelectric strain constant for shear mode [m/V] or [C/N] 

iE  or kE  = electric field [V/m] 
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35e    = piezoelectric stress constant for shear mode [N/Vm] 

ijg    = piezoelectric voltage constants [m
2
/C] or [Vm/N] or [(V/m)/Pa] 

35g                   = piezoelectric voltage constant for shear mode [m
2
/C] or [Vm/N] or 

[(V/m)/Pa] 

jS    = strain tensor 

D

ijs                   =  mechanical compliance tensor at zero electric displacement, D=0 

[m
2
/N] 

55

Ds                    =  mechanical shear compliance at zero electric displacement, D=0   

[m
2
/N] 

iT  or 
jT  = stress tensor [N/m

2
] 

    = wave number [1/m] 

T

ik     =  dielectric permittivity matrix at zero mechanical stress, T=0 [F/m] 

33

S                    = dielectric permittivity in 33 direction measured at zero mechanical 

strain, S=0  

33

T                    = dielectric permittivity in 33 direction measured at zero mechanical 

stress, T=0 

K    = electromechanical coupling factor  

     = shear modulus [Pa] 

      = angular frequency [rad/s] 
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Introducing some relations 
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3.1. LITERATURE REVIEW 

A Conventional piezoelectric wafer active sensor (PWAS) is a thin rectangular or 

circular wafer that is poled in the thickness direction with electrodes on the top and 

bottom surfaces; those types of PWAS are either used in the inplane or thickness mode. 

In the inplane mode, applying an electric field in the thickness direction 3E causes the 

transducer’s lateral dimensions to increase or decrease, a longitudinal strain will occur 

1 13 3d E  , where 13d is the piezoelectric coupling coefficient measured in [m/V]. 

Thickness mode is a mode that occurs simultaneously with extension mode, but 

dominates at higher frequencies in MHz, in which strain in the thickness direction will 

occur 3 33 3d E  , where 33d  is the piezoelectric coupling coefficient in thickness 

direction. A different mode of oscillation can be achieved when the applied electric field 

is applied perpendicular to the poling direction; and it is referred to as shear mode. 

(Figure 3.1). The common piezoelectric coupling coefficient known for this mode is 

defined as 15d , however, this coupling coefficient is only when the electric current is 

applied in 1E direction and the poling is across thickness direction. The shear coupled 

PWAS presented in this study is associated with the 35d coupling coefficient in which 

electric current is applied across thickness (i.e. in 3x direction) and the poling is in 
1x
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direction; a few studies considered this  
35d -mode, such as: Zhou et al. (2013); Kamal et 

al. (2013); Baillargeon (2003). 

 

Figure 3.1. Different modes of piezoelectric actuation (Heeg, 1993) 

 

For most piezoelectric materials, the coupling coefficients associated with shear 

mode have the largest value of all coefficients (Glazounov and Zhang, 1998; APC 

International Ltd; Ferroperm Piezoceramics). The higher values of shear coupling 

coefficients make SH-PWAS superior in actuation and sensing (Baillargeon, 2003). SH 

waves are also preferable because first symmetric mode is non-dispersive, i.e. wave 

speed is constant at different frequencies. On the other hand, one of the important 

disadvantages of SH-PWAS is that thicker transducers are needed to sustain and generate 

the shear actuation. Also due to the high density of piezoceramic materials ( 7600  

kg/m
3
 for APC850 piezoceramic Navy II type), using of shear mode piezoelectric 

elements increases the mass of the system considerably. 

Thickness effect d33 effect 

Lengthening effect d31 effect 

Shearing effect d15 effect 
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Shear mode piezoelectric transducers were used as an actuator element in a 

cantilever beam setup (Sun and Zhang, 1995). The stresses distribution across thickness 

and length under mechanical and electrical loading were investigated. A similar study on 

using shear-type piezoelectric as a shear bender was studied by Benjeddou et al. (1997). 

 

 

Figure 3.2. (a) Adaptive sandwich beam and (b) surface mounted actuation beam (Sun and Zhang, 

1995) 

 

A Piezoelectric device was also used for designing torsional actuators generating 

angular displacement (Glazounov and Zhang, 1998), as shown in Figure 3.3a, where the 

torsional element consists of different segments, the neighboring ones being of opposite 

poling. 

The application of a torsional actuator was applied on a later study by Centolanza 

et al. (2002), to control rotor blade trailing edge flaps (Figure 3.3b). 
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 Figure 3.3. (a) Proposed torsional actuator by Glazounov and Zhang (1998), (b)  proposed 

actuator-flap system (Centolanza et al., 2002) 

 

For SHM and NDE applications, shear horizontal (SH) ultrasonic waves showed 

high potential for quantitatively detecting defects in structures (Fortunko et al., 1982; 

Rose et al., 2000; Su et al., 2007). Su (2007) showed that SH wave mode conversion 

occurred at the damage from fundamental incident S0, and it was shown that SH0 can be 

used to quantitatively identify delamination in composite beams. However, the type of 

the PZT that detected the induced SH0 waves was not provided. The experimental setup 

is shown in Figure 3.4. 

 

Figure 3.4. PZT actuator model for generation of Lamb mode S0 (Su et al., 2007) 

 

In another application, SH polarized ultrasonic waves were used for evaluating 

the quality of bonding between the transducer and the structure (Le Crom and Castaings, 

2010). SH waves are also associated with AT-cut quartz resonators. AT-cut quartz 

(b) (a) 
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resonators were studied, and SH modes were obtained using anisotropic elasticity 

equations (Zhu et al., 2013). Thickness shear vibrations of quartz crystal plates were 

studied using Mindlin plate equations in Du et al. (2013). Shear horizontal ultrasonic 

waves are usually associated also with electromagnetic acoustic transducers or EMAT 

(Figure 3.5). Lee et al. (2009) used SH waves to detect weld defects. SH waves have 

shown superiority over conventional shear vertical (SV) and longitudinal waves (Gao et 

al., 2010). Gao et al. (2010) suggested that the piezoelectric based transducers generating 

SH show better acoustic generation than EMAT. Also, one point to consider is that 

EMAT needs conductive structures, while PWAS can be used for conductive metallic 

structures and non-conductive composites (e.g. glass fiber reinforced polymers). SH-

PWAS transducers are much more cost efficient, but in terms of effectiveness, EMAT 

always showed reliability for detecting damages. Recently, magnetostrictive MsS®, 

which was developed by Southwest Research institute (http://www.swri.org) also showed 

reliability in damage detection. 

Recently, a study by Zhou et al. (2013) has been performed on generation, sensing 

and damage detection in metallic plates using a shear (
36d - mode) Lead Magnesium 

Niobium Titanate  piezoelectric wafer. It was shown that SH0 waves are capable of 

detecting the damage along their propagation paths. 

 

http://www.swri.org/
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Figure 3.5. (a) Various magnetostrictive transducers used to generate SH waves (Lee et 

al., 2009),(b) MsS  magnetostrictive sensor system, (c) MsS for pipe inspection 

(www.swri.org) 

 

Nevertheless, fiber optics were also used for detecting SH waves. Li et al. (2009) 

used fiber optic sensors for detection of SH0 wave type generated from mode conversion 

from excited Lamb waves, and this was used for detecting delamination in CFRP 

composites. 

This study focuses on piezoelectric wafer-type shear transducer, we call it SH-

PWAS. The study is structured into three main parts. In the first part, an analytical model 

for SH-PWAS electrical admittance was developed and compared with FEM and 

experimental results. Analytical, FEM and experiments for the bonded SH-PWAS were 

covered next. The second part presents an experimental study for different possible pitch 

(b) 

(a) 

(c) 

http://www.swri.org/
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catch configurations between SH-PWAS and regular inplane ones. Moreover, wave 

speeds were compared with analytical values. Finally, the power and energy of SH waves 

were analytically developed. 

 

3.2. THEORETICAL MODELS OF SH-PWAS IMPEDANCE SPECTROSCOPY 

Impedance spectroscopy has been used for decades to infer the health status of the 

structure. Shear-mode acoustic wave resonators and electromechanical (E/M) coupling 

were studied by Mueller and Zhang (1998); Cheng et al. (2007); Milyutin et al. (2008); 

Milyutin and Muralt (2011); Yanagitani (2011). The effects of electrodes were 

investigated in Ji and Shen (2005) and showed that the stiffness of electrodes materials 

affects the resonance frequency. In this section, a predictive model of impedance and 

admittance were developed for SH-PWAS analytically, by finite element modeling, and 

experimentally.  

 

 

Figure 3.6. (a) Schematic for SH-PWAS, shaded areas are the electrodes (Giurgiutiu, 2008), 

 (b) transducer schematic from manufacturer, source: APC piezoceramic Int Ltd 

 

(a)
 

(b)  
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 SH-PWAS Sensing and Actuation Constitutive Relations 3.2.1.

Most literature mentioned earlier deal with the shear dielectric coupling 

coefficient 
15d ,  however, this is only applicable if the electric field ( 1E ) is applied in the 

in-plane direction and the piezoelectric poling is in thickness direction. In our model and 

FEM simulations we use 
35d . The SH-PWAS transducer we used (APC International 

Ltd) has its electrodes on the top and bottom; hence electric field is applied along 3x

direction and the poling is applied along 1x direction (Refer to Figure 3.6a). Recall the 

constitutive equations of piezoelectricity in contracted Voigt notations, 
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 (3.2) 

where 
jS  are the strain components, 

E

ijs  is the compliance matrix under constant electric 

field condition, iT are the stress components, kjd are the piezoelectric coupling 

coefficients, kE  represents the electric field vector, kD  is the electric displacement vector, 

and T

ik  are the electric permittivity constants of the PWAS material. Equation (3.1) is 

considered the piezoelectric converse effect, where the applied electric field will result in 
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induced strain. Equation (3.2) is the direct piezoelectric effect, where applied stresses will 

result in electrical displacement. For the SH-PWAS transducer of Figure 3.6a, we have 

the electric field in the 3x direction and the poling in the 1x direction. Equations. (3.1), 

(3.2)  reduce to 

 5 1 55 5 35 3

ES u s T d E    (3.3) 

 
3 35 5 33 3

TD d T E   (3.4) 

 Free SH-PWAS Electro-mechanical Impedance and Admittance 3.2.2.

3.2.2.1. Analytical modeling based on constant electric field E3 

As shown in Figure 3.6a, 3x is the thickness direction and 1x is the piezoelectric 

poling direction. When the SH-PWAS is bonded to a structure, the direction 
2x  is the 

wave propagation direction. For a free SH-PWAS, the stress-free boundary condition is 

applied at 3 2
hx   , which correspond to the SH-PWAS transducer’s top and bottom 

surfaces. 

 

Figure 3.7. Free SH-PWAS free body diagram 

 

Assume time-harmonic electric excitation 

 3 3
ˆ ( ) i tE E x e   (3.5) 

 

 

h 

 

 

dx3 

 

T5+dT5h 

T5 
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where  is the circular frequency in rad/sec. 

Considering the Newton law of motion applied to the element in Figure 3.7, we have 

 
5T 5 5dT T  1 3u dx  (3.6) 

upon simplification, Eq. (3.6) becomes, 

 5 1T u   (3.7) 

where  is piezoelectric material type density, 
1u is the second derivative of 1u

displacement with respect to time. Differentiating Eq. (3.3) with respect to 
3x and 

assuming constant electric field 
3E  across thickness yields 

 5 55 5

ES s T    (3.8) 

where  
 

3x

 


 and 
5T  is the shear stress in 13 direction. Recall strain displacement 

relation for shear deformation, i.e., 

 31
5

3 1

uu
S

x x


 
 

1u   (3.9) 

where 
551 Es  is the shear modulus for piezoelectric material. Substitution of Eq. (3.9) 

into Eq. (3.8) yields 

 5 1T u   (3.10) 

Differentiation of the Eq. (3.10) with respect to 3x  and substitution into Eq. (3.7) yields, 

 1 1u u   (3.11) 

Assuming time harmonic solution 
1 1̂

i tu u e   reduces Eq. (3.11) to 

 2

1 1
ˆ ˆ 0u u     (3.12) 
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Then, the space solution of the differential Eq. (3.11) is 

 
1 1 3 2 3
ˆ sin cosu C x C x    (3.13) 

Define speed of SH-wave in the piezoelectric material as c , and the corresponding wave 

number as  

 
2 1

     ,           ,      c c
c

  
 

  
     (3.14) 

Mechanical response: 

Imposing stress free boundary condition 
5

2

0hT

 in Eq. (3.3) yields 

 
5 35 3

2

ˆ
hS d E


  (3.15) 

Using the strain – displacement relation Eq. (3.9) and the derivative of Eq. (3.13) into Eq. 

(3.15) yields 

 

 

 

1 1
1 1 2 35 32 2

2

1 1
1 1 2 35 32 2

2

ˆˆ cos sin

ˆˆ cos sin

h

h

u C h C h d E

u C h C h d E

  

  





   

   
 (3.16) 

Solving the two equations in (3.16) yields 

 
35 3

1 21
2

ˆ
      ,      0

cos

d E
C C

h 
   (3.17) 

Substitution of Eq. (3.17) into Eq. (3.13) yields the space domain solution 

 
35 3 3

1 3 1
2

ˆ sin
ˆ ( )  

cos

d E x
u x

h



 
  (3.18) 

Differentiation of Eq. (3.18) yields the strain 

 31
5 35 3 1

3 2

ˆ cosˆ ˆ  
cos

xu
S d E

x h






 


 (3.19) 
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Define induced strain actuation (ISA) which is the PWAS strain in the absence of 

mechanical loading, i.e., 

 5 35 3
ˆ ˆ( )ISAS d E  (3.20) 

Corresponding induced displacement is defined as 

 5 35 3
ˆ ˆ( )ISA ISAu S h d E h   (3.21) 

Equation (3.18) and Eq. (3.19) can be rearranged in the form 

 3
1 3 1 1

2 2

sin1
ˆ ( )  

2 cos

ISAu x
u x

h h



 
  (3.22) 

 3
5 3 5 1

2

cosˆ ˆ( ) ( )  
cos

ISA

x
S x S

h




  (3.23) 

Electrical response 

Eliminating the stress 5T  between Eqs. (3.3), (3.4), and using Eq. (3.9) yields 

 35
3 1 35 3 33 3

55

ˆ ˆT

E

d
D u d E E

s
   

 
 (3.24) 

Upon rearrangement, Eq. (3.24) becomes 

 
2 1

3 33 3 35

35 3

ˆ 1 1
ˆ

T u
D E K

d E


  
    

    

 (3.25) 

where the electromechanical coupling factor 35K  is defined as 

 

2
2 35
35

55 33

E T

d
K

s 
  (3.26) 

Integrating the electrical displacement in Eq. (3.25) over the electrodes area yields the 

electric charge  

 
2

2

3 3 3 1 2 3 3 1 2

0

( ) ( ) ( )

l

l

b

A

Q x D x dx dx D x dx dx





     (3.27) 
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Equation (3.27) indicates that electric charge varies across the thickness. We define 

equivalent average charge across thickness as 

 
2

2

3 3

1ˆ ( )

h

h

eqQ Q x dx
h



   (3.28) 

Substituting 
3D  from Eq. (3.25) into Eq. (3.28) and performing the integration yields 

  
2

2
1 3

2 233 3
35 35

35 3

ˆ ( )ˆ
ˆ 1

ˆ

h

h

eq

u xE bl
Q K h K

h d E

 

 
   
 
 

 (3.29) 

Defining PWAS capacitance as  

 33

T bl
C

h
  (3.30) 

Substituting 
1 3
ˆ ( )u x from Eq. (3.22); the electric field is related to voltage by 

3

ˆ
ˆ V
E

h
 ; and 

recalling 
ISAu from Eq. (3.21); then Eq. (3.29) can be simplified to  

 
1

2 2
35 1

2

tanˆ ˆ 1 1eq

h
Q CV K

h





  
    

  
 (3.31) 

The electric current I is defined as the time derivative of electric charge, i.e. I Q i Q  , 

hence ˆÎ i Q and Eq. (3.31) simplifies to 

  
1

2 2
35 1

2

ˆ tan
1 1

ˆ

hI
Y i C K

hV






  
     

  
 (3.32) 

And the free SH-PWAS electrical impedance is 

 

1
1

2 2
35 1

2

ˆ tan1
1 1

ˆ

hV
Z K

i C hI



 



  
     

  
 (3.33) 
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Result in Eq. (3.32) is slightly different from that of Milyutin et al. (2008), where the 

stress-charge piezoelectric equations were used and the model was for 
15d - mode, where 

the transducer electrodes were on the sides not on the top and bottom surfaces like in our 

case.  

 

3.2.2.2. Analytical modeling based on constant electric displacement D3 

The constant electric field assumption is usually more appropriate in piezoelectric 

stacks with internal electrodes, where flow of charge exists (i.e. closed circuit) and the 

corresponding electric displacement forms a half wave distribution at the resonator 

(Sherrit et al., 2013). However, in most other cases of single resonators, such as thickness 

shear mode, no current flows through the resonator, which makes the constant electric 

displacement assumption (i.e. zero current or open circuit) more realistic. Bar 

piezoelectric ceramic transformers were studied under constant electric displacement 

condition (Erhart et al., 2013), where impedance was modeled for the longitudinal mode 

( 31d ). In this section, we derive analytically the E/M impedance and admittance based on 

constant electric displacement D3. The predicted models are compared with experimental 

measurements to investigate which assumption best fits our SH-PWAS transducer.  

For the electric field restricted in 3x direction, the 5T  stress shown in Figure 3.6a, 

takes the following form in Voigt notations,  

 35
5 5 3

55 55

1 ˆ
D D

g
T S D

s s
   (3.34) 

The electric field in the case of constant electric displacement is derived starting from Eq. 

(3.4) 
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3 35 5 33 3

TD d T E   (3.35) 

Rearranging Eq.(3.35), and eliminating stress 5T  using Eq.(3.34)  yields 

 35 35
3 5 3 35 5 3 3

33 33 55 55 33

1 1 1ˆ ˆ ˆ
T T D D T

d g
E T D g S D D

s s  

 
       

 
 (3.36) 

Upon rearrangement, Eq.(3.36) becomes 

 35
3 5 3

55 33

1 ˆ
D S

g
E S D

s 


   (3.37) 

where  

 
2

35

55 33 33

1 1
D T S

g

s  

 
  

 
 (3.38) 

Mechanical Response 

Substitute the stress free boundary condition (
3

5
2

0h
x

T


 ) into Eq.(3.34) to get 

 
5 35 3

2

ˆ
hS g D


  (3.39) 

Using 1
5 1

3

u
S u

x

 


and replacing 1 1̂ by u u that represents the amplitude value with 

ignoring time harmonic exponential 

 

 

 

1 1
1 1 2 35 32 2

2

1 1
1 1 2 35 32 2

2

ˆˆ cos sin

ˆˆ cos sin

h

h

u C h C h g D

u C h C h g D

  

  





   

   
 (3.40) 

Solving the two equations in (3.40) yields 

 
35 3

1 21
2

ˆ
      ,      0

cos

g D
C C

h 
   (3.41) 

 Substitution of Eq. (3.41) into Eq. (3.13) yields the space domain solution 
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 35 3 3
1 3 1

2

ˆ sin
ˆ ( )  

cos

g D x
u x

h



 
  (3.42) 

Differentiation of Eq. (3.42) yields the strain as 

 31
5 35 3 1

3 2

ˆ cosˆ ˆ  
cos

xu
S g D

x h






 


 (3.43) 

Electrical response 

Using Eq.(3.37) and substituting strain ( 5Ŝ ) from Eq.(3.43) yields, 

 
   

2

35 3 3
3 31

55 332

2
3 323 35 33 3

351 1
33 55 332 2

ˆ  cos 1 ˆ
cos

ˆ ˆcos cos 
1 1

cos cos

D S

S

S D S

g D x
E D

s h

x xD g D
K

s h h



 

 

   


 

   
      

   

 (3.44) 

where the electromechanical coupling factor 35K is defined as 

 

2
2 2

2 35 55 35 33 55 35 33
35

33 55 33 55

D S D S

S D S D

e s g s g
K

s s

 

 

 
   

 
 (3.45) 

Integrating the electrical displacement over electrodes area, results in the electric charge  

 
2

2

3 1 2 3 1 2 3

0

ˆ ˆ ˆ ˆ

l

l

b

A

Q D dx dx D dx dx blD





      (3.46) 

As before, the electric current I is calculated from the time derivative of electric charge 

 3
ˆ ˆˆ ˆI Q i Q i blD     (3.47) 

Electric voltage is related to electric field by  

 
2

2

3 3
ˆ ˆ

h

h

V E dx


   (3.48) 

Substitution of Eq. (3.44) into Eq. (3.48) yields 
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 

 

2

2

2

2

323
35 31

33 2

13
2 23 3 2
35 351 1

33 332 2

ˆ cosˆ 1
cos

sinˆ ˆ 2sin
1 1

cos cos

h

h

h

h

S

S S

xD
V K dx

h

x hD D
h K h K

h h h h



 

 

     





 
  

 

 
       
   



 (3.49) 

As before, defining PWAS capacitance as 

 33

S bl
C

h
  (3.50) 

The impedance is defined as 
ˆ

ˆ

V
Z

I
 and using Eqs. (3.47), (3.49); the electromechanical 

impedance is 

 
2 2

35 351 1 1 1
33 2 2 2 2

ˆ 1 1 1
1 1

ˆ cot cotS

V h
Z K K

i bl h h i C h hI       

   
       

   
 (3.51) 

Defining 1
2

h  , the electromechanical impedance can further be written as 

 
2

35

1 1
1

cot
Z K

i C  

 
  

 
 (3.52) 

And the electromechanical admittance is 

 

1

2

35

ˆ 1
1

ˆ cot

I
Y i C K

V


 



 
   

 
 (3.53) 

 

 Bonded SH-PWAS Analytical Model 3.2.3.

SH-PWAS bonded on a plate structure is shown in Figure 3.8. When the SH-

PWAS is bonded to the structure, the direction 2x  (global x-direction) is the SH wave 

propagation direction. Depending on which plane is considered for analysis, the SH-
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PWAS response can be classified into: (a) axial and flexural response, in 1-3 or z-y plane, 

(b) SH response, in 2-3 or x-y plane. We start with axial-flexural response in 1-3 plane 

(Figure 3.9a). 

When the SH-PWAS is bonded to a structure, the displacement of the lower tip of 

the PWAS can be set equal to 1
stru which can be determined from the elasticity solution 

of the bonded structure of thickness 2d and then structure dynamic stiffness associated 

with the transducer can be determined from the relation 

 
1

2 2

h hPWAS shearF A k U
 

   (3.54) 

 

Figure 3.8. Constrained SH-PWAS model  

 

3.2.3.1. Axial and flexural response solution 

Given the boundary conditions and structural properties, the dynamic structure 

stiffness ( )strk   can be evaluated. The applied loads are axial load 

2 

 SHwave 

propagation  

direction 

3 

1 

Poling  
direction 

P 

b

l 

y 

x 
z 

Uz 

Particle oscillation 
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ˆ( , ) ( ) i t
e PWASf z t f z e F   which is acting through structure midplane in addition to the 

bending moment generated ˆ( , ) ( ) i t
e e PWASm z t m z e F d  , where d is the half plate 

thickness. When incorporating ( )strk   into consideration, a “constrained PWAS” 

solution can be developed as follows: (1) The displacement of the lower tip of the SH-

PWAS can be set equal to
1
stru , which can be determined from the elasticity solution of the 

structure of thickness 2d. Then, (2) structure stiffness can be determined from Eq.(3.54).  

 

Figure 3.9. (a) Constrained SH-PWAS model for axial-flexural response, (b) Interaction between 

SH-PWAS with the structure, axial and flexural load transfer 

 

The model assumptions are (i) stress free boundary condition for the top side of 

the SH-PWAS, (ii) perfect bonding with the structure, (iii) constant electric field 
3Ê , (iv) 

SH-PWAS deforms uniformly with only shear deformation (Figure 3.9b), and (v) axial 

and moment loads about centroid axis are linear ramp functions within SH-PWAS 

dimension (Figure 3.9b). The structure displacement is 

1 

3  

h 

 

SH-PWAS 
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2d fe me 

za za+la 0 
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( )

1

( , , ) ( ) xi x t
z j j

j

u x z t C U z e
 


 



  (3.55) 

Axial wave equation in z-direction can be written as 

 
2

1 1

ˆ ( )i t i t i t
j j j j

j j

m C U e EA C U e f z e  
 

 

     (3.56) 

 
2

1 1

ˆ ( )p p p p

p p

m C U EA C U f z
 

 

     (3.57) 

Multiplying by mode 
qU and integrate over beam length L 

 
2

1 10 0 0

ˆ( ) ,   q 1,2,3

L L L

p p q p p q q

p p

C U U dz C EAU U dz f z U dz
 

 

        (3.58) 

Then using Orthogonality property 

 
0

0     if    

L

p qmU U dz p q   (3.59) 

From wave equation 
2 2ˆ ˆ 0c u u   and using mode 

jU  

 
2

2

0

0

j j j

j j j

EA
U U

m

EAU m U





  

  

 (3.60) 

Multiply by mode qU and integrating over beam length L 

 

2

0 0

0

0     if    

L L

p q p p q

L

p q

EAU U dz mU U dz

EAU U dz p q

  

  

 



 (3.61) 

Defining the quantities: 

 
2

0 0 0

ˆ( )    ,   ( ) ( )    ,   ( ) ( )

L L L

j j j j j j jm mU z dz k EAU z U z dz f f z U z dz       (3.62) 
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Substitute Eq.(3.62) in Eq.(3.58) using p=q=j 

 
2( )j j j jC m k f    (3.63) 

 
2 2 2( )       where 

j j

j j j

j j

f k
C

m m
       (3.64) 

But due to orthonormality, that is orthogonality in addition to normalization to get 

constant 
jC in sinj j jU C l substituting in orthogonality relation for p=q 

 
2

0

( ) 1

L

j jm mU z dz   (3.65) 

Then normalization factor is 
2

jC
ml

 and Eq.(3.64) is written as 

 
2 2( )  j j jC f     (3.66) 

Define modal participation factors: 2 2( )

j

j

f

  
 then normal mode expansion (NME) 

solution can be evaluated by substituting in Eq.(3.55) 

 
( )

2 2
1

( , , ) ( )  
( )

x
j i x t

z j

j j

f
u x z t U z e

 

 


 




 

  (3.67) 

where normalization factor is included in ( )jU z  such that 
2

( ) sinj jU z l
ml

  

For more realistic modeling, damping to be introduced as   and Eq.(3.67) is written as 

 
( )

2 2
1

( , , ) ( )  
( 2 )

x
j i x t

z j

j j j

f
u x z t U z e

i

 

  


 




  

  (3.68) 

For SH-PWAS bonded on structure exerting certain force pattern, NME can be further 

simplified. As loads exerted by SH-PWAS can be separated to axial normal force ef  and 
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bending moment em , where both are defined as linearly increasing functions from zero at 

one PWAS end to maxima at the other end, 

 
max max

,     e PWAS e PWASf F m F d   (3.69) 

Space wise, the axial force and bending moment can be represented by Heaviside 

function, ( )aH z z , and linear function of z as shown in Figure 3.9b, hence 

     ( , ) ( ) ( ) ( ( )) ( ( )) i t
e PWAS a a a a a af z t F z z H z z z z l H z z l e            (3.70) 

     ( , ) ( ) ( ) ( ( )) ( ( )) i t
e PWAS a a a a a am z t F d z z H z z z z l H z z l e            (3.71) 

Axial part 

The forced vibration governing equation for axial responses 

 ( , ) ( , ) ( , )eAu z t EAu z t f z t     (3.72) 

Substituting axial force space distributed Heaviside function into equation of motion 

  ( , ) ( , ) ( ) ( ( )) i tPWAS
a a a

F
Au z t EAu z t H z z H z z l e

l

        (3.73) 

where l in the denominator was added to balance equation dimensions to force per unit 

length. Applying Eq.(3.55), and following the same procedure of free response yields, 

 2 2( )  n
n n

n

f
C

m
     (3.74) 

 
2 2

 
( )

n
n

n n

f
C

m 


 
 (3.75) 

where 
0

ˆ ( ) ( )

L

n nf f z U z dz   and can be calculated by multiplying by ( )nU z  and 

integrating over beam length 
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  
0

( ) ( ( )) ( )

L
PWAS

n a a a n

F
f H z z H z z l U z dz

l
      (3.76) 

 ( ) ( )

a a a

L L
PWAS

n n n

z z l

F
f U z dz U z dz

l


 
  
  
   (3.77) 

The factor Cn can be evaluated as 

 
2 2

1
 ( ) ( )

( )
a a a

L L
PWAS

n n n

n z z l

F
C U z dz U z dz

Al  

 
  

    
   (3.78) 

And finally the axial displacement can be written as: 

 
( )

2 2
1

( )

( , , ) ( )  
( 2 )

a a

a x

z l

n

z i x tPWAS
z n

n n n
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F

u x z t U z e
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   




 


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  


  (3.79) 

Flexural part 

Equation of motion is 

 ( , ) ( , ) ( , )eAw z t EIw z t m z t      (3.80) 

Using Eq.(3.71) in Eq.(3.80), considering that the second derivative of linear z function 

will yield a Dirac function 

  ( , ) ( , ) ( ) ( ( )) i tPWAS
a a a

F d
Aw z t EIw z t z z z z l e

l

          (3.81) 

Applying modal expansion model: 

 ( )

1

( , , ) ( ) xi x t
n n

n

w x z t C W z e
 


 



  (3.82) 

With similar procedure like Eqs. (3.74) - (3.77) ,we get the Cn as 

 
2 2

0

1
 [ ( ) ( ( ))] ( )
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L
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n a a a n

n

F d
C z z z z l W z dz
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 

 
     

 
  (3.83) 
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Using the property of Dirac function when multiplied by a function and then integrated. 

This integration equals to the evaluation of the function at the shifted value of Dirac 

function; Eq.(3.83) reduces to  

  
2 2

1
 ( ) ( )

( )

PWAS
n n a n a a

n

F d
C W z W z l

Al 
   

 
 (3.84) 

Then the final normal mode expanded displacement can be evaluated 

 
  ( )

2 2
1

( ) ( )
( , , ) ( )

( 2 )

x
n a n a a i x tPWAS

n
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W z W z lF d
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 

   


 



  


  
  (3.85) 

Noting that w displacement is the flexural displacement that is in y-direction in our global 

co-ordinates. The total axial displacement consists of the part from the axial solution as 

well as the effect of the slope of the flexural solution. 

 
pu u w d   (3.86) 

Ignoring the x and t terms in Eqs. (3.79) and (3.85) , and considering the effective 

displacement along SH-PWAS length as 

  1 1
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1
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L
str str
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   (3.87) 
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 (3.88) 

And then we can define dynamic stiffness of the structure ( )strk   as 
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 (3.89) 

For actual evaluating the dynamic stiffness of the structure, vibration modes need to be 

determined, and the modes depend on boundary condition, for instance for free-free 

structural beam bonded with the SH-PWAS, we have (Giurgiutiu and Zagrai, 2000) 

( ) cos( )
a an n nU z A z ,

2
anA

ml
 ,

a

a
n

n

l


  , 

a a

str

n n c  ,
str

str

str

E
c


 ,na = 1,2, (3.90) 

The speed of the SH-wave in the piezoelectric material c is different from the  axial wave 

speed in the structure, hence the latter is denoted by strc  

For flexural modal solution, 

  ( ) cosh cos sinh sin
w w W w w w wn n n n n n nW z A z z z z        

   (3.91) 

 2

w wn n flexa  ,    
str

flex

str str

EI
a

A
 ,      2

0
1/

w

l

nw nA W z dz   (3.92) 

where the numerical values for 
wn ,

wnl can be found from Giurgiutiu (2008), pg. 89. 

 

3.2.3.2. Shear horizontal response solution 

Shear horizontal response can be determined with a similar procedure to the one 

of the axial-flexural response, but taking into consideration the plane of the analysis 

containing SH wave propagation direction, i.e. plane 2-3 in Figure 3.10a.  
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The corresponding interaction between SH-PWAS and the structure involving SH 

response is shown in Figure 3.10b 

 
( )

1

( , , ) ( ) xi x t
z j j

j

u x z t C U z e
 
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Equation (3.88) reduces to  
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where the corresponding eigenvalues will be associated with SH standing waves, i.e 

 ( ) cos( )
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l
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G
c


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Figure 3.10 (a) Constrained SH-PWAS model for shear horizontal response, (b) Interaction 

between SH-PWAS and structure, SH response solution 

 

Given the boundary conditions and structural properties, the dynamic structure stiffness 

( )sheark  can be found and used in the PWAS solution to model it as "constrained PWAS" 
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3.2.3.3. SH-PWAS tip displacement solution and connection to elasticity solution 

Recall SH-PWAS equation of motion 

 

2 2

1 1

2 2

3

u u

x t
 
 
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 

 (3.96) 

 1 3 1 3( , ) ( ) i tu x t U x e   (3.97) 
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 (3.98) 

Define the shear wave speed inside the SH-PWAS 

 
2 /c    (3.99) 

 we get 

 

2
2 21

12

3

0
U

c U
x




 


 (3.100) 

 
2

1 12
0U U

c

    (3.101) 

Define the shear wave number  

 / c   (3.102) 

we get 

 1 1 3 2 3sin cosU C x C x    (3.103) 

 1
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Defining a
PWAS

G A
k

h
 where A lb and using the stress free boundary condition at the 

top electrode 

 1
1

2 2 23
2

0        ,         h h hstr
h

U
A F k U

x
  

  




   


 (3.106) 

Substituting Eqs.(3.106) into SH-PWAS constitutive Eq. (3.3), yields the boundary 

conditions in terms of strain. The boundary condition at the top side is 

 
1 55 35 3

2

ˆ.0E

h
U s d E    (3.107) 

whereas the condition at SH-PWAS interface with the structure is 
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or Eq.(3.108) can be re-written in the form 

 1 1 35 3
2

2

ˆ
h

h

r
U U d E

h 


    (3.110) 

where  

 
str

PWAS

k
r

k
  (3.111) 

is defined as the dynamic stiffness ratio 

Using the displacement general solution Eq.(3.103) into Eq.(3.107) and Eq.(3.110) 
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solving Eq. (3.112) and Eq. (3.113), 
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solving Eqs.(3.114), (3.115)   
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Then multiplying Eq.(3.114) times (1 )r  and subtract Eq. (3.114) from Eq. (3.115)  
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The final equation of displacement using the two constants will be 

   
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when 0r   C2 = 0, i.e free PWAS case; Eq. (3.118) reduced to free SH-PWAS case: 
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Checking Eq.(3.119) for bottom surface ,i.e. 0r   and 3 / 2x h  ;  
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For calculating the bonded SH-PWAS impedance and admittance, we substitute Ua from 

Eq.(3.120) with the same procedure in the electrical displacement Eq. (3.24) 
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Where we define the electromechanical coupling factor 35K as 
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Integrating the electrical displacement over electrodes area, results in the electric charge  
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Substituting 3D from Eq.(3.123) 
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 (3.126)  

Then, equivalent charge across thickness can be determined by integrating over thickness 



120 

 

 

2

2

3 3

1ˆ ( )

h

h

eqQ Q x dx
h



   (3.127) 

Substituting Eq.(3.126) into Eq.(3.127) and integrating over the thickness, yields 
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Substituting 1 3
ˆ ( )u x from Eq.(3.118) , and defining SH-PWAS capacitance 33

T bl
C

h
 , the 

electric field is related to voltage by 
3

ˆ
ˆ V
E

h
 and recalling ISAu from Eq.(3.21) ; then 

Eq.(3.128) can be simplified to  
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The electric current I is defined as the time derivative of electric charge, i.e. I Q i Q  , 

hence Eq.(3.129) simplifies to 
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And the constrained SH-PWAS electrical impedance is 
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3.3. FINITE ELEMENT MODELING OF SH-PWAS IMPEDANCE RESPONSE 

 Free SH-PWAS Models 3.3.1.

A multiphysics finite element model (FEM) was constructed for free SH-PWAS 

to compute the shear deformation modeshapes. The transducer is modeled with 

COMSOL multiphysics using coupled-physics finite element. The maximum element 

size is selected as 0.5 mm. The coordinate system is defined such that the poling of SH-

PWAS is defined along the x1 direction. Harmonic voltage is applied to the top electrode 

and the mechanical response is recorded. The free SH-PWAS dimensions are 15 mm x 

15mm x 1 mm. The SH-PWAS material is APC850, detailed properties can be found on 

the APC website ( APC International Ltd.). From the provided information, the 

transducer capacitance 
33( / )SC bl h  is found as 3.48±20% nF. A frequency sweep from 

10 kHz to 2000 kHz is performed with the frequency domain solver of the FEM software. 

The deformation modeshapes are captures and the electromechanical (E/M) impedance is 

calculated. Figure 3.11 shows the modeshapes of vibration at (a) 200 kHz to show the 

shear deformation of the transducer, (b) first resonance frequency of the transducer at 900 

kHz, where nonlinear effects start to appear at SH-PWAS ends. 

 Constrained SH-PWAS Models 3.3.2.

Finite element models were constructed for bonded SH-PWAS on 1-mm thick 

aluminum beams as well as 3-mm thick steel beams. In both cases, three models are 

constructed: (i) a 2-D model for the case where poling of the SH-PWAS is along beam 

length, (ii) a 3-D model for the same case of having poling direction parallel to beam 

length (Figure 3.9a), and (iii) a 3-D model for the case of transducer poling 
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perpendicular to the beam length (Figure 3.10a). E/M impedance is calculated for 

different models for comparison with bonded SH-PWAS analytical models, and 

experimental results.  

 

Figure 3.11. Modeshapes of vibrations for free SH-PWAS using finite element analysis, (a) mode 

shape at 200 kHz, (b) modeshape at resonance frequency 900 kHz 

 

Two beams types are considered. Aluminum beam with 1-mm thickness and steel 

beam with 3-mm thickness. The rest of the dimensions are the same 100 mm x 10 mm. 

The complete listing of model dimensions and material properties are listed in Table 3.1. 

Steel beams configurations are used to enhance structure – to – transducer mass ratio, as 

will be discussed in the experimental section. Figure 3.12 shows finite element models 

for the bonded SH-PWAS on the aluminum beam. SH-PWAS bonded on aluminum 

beams has the dimensions of 10 mm x 10 mm x 1 mm. We refer to this configuration of 

the SH-PWAS orientation as (PWAS orientation-1). For PWAS orientation-1, 2-D FEM 

(Figure 3.12a) and 3-D FEM (Figure 3.12b) were constructed. PWAS orientation-2 
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refers to the situation where the SH-PWAS is rotated 90° before bonding on the 

aluminum beam, hence, the poling direction in Figure 3.12b is parallel to beam width. In 

such a situation, our analytical model suggests the excitation of shear horizontal standing 

waves along the beam. 

 

Figure 3.12. FEM for bonded SH-PWAS on 1-mm thick aluminum beams (a) 2-D model, (b) 3-D 

model 

 

Table 3.1. Dimensions and material properties for FEM of SH-PWAS bonded on aluminum  

  and steel 

 
Aluminum 

beam 
steel beam SH-PWAS 

Dimensions [mm] 100 x 10 x 1  100 x 15 x 3  
10 x 10 x 1 on Al 

15 x 15 x 1 on steel 

Density  [kg/m
3
] 2700 7750 7600 

Modulus [GPa] E = 70 E = 200 G = 24.6 

Relative dielectric constant 33 0/T   - - 1750 

Piezoelectric coeff. d35 [m/V] - - 590E-12 

Hysteresis damping   0.05% 0.5% - 

Compliance damping factor   - - 4% 

Permittivity damping   - - 4% 

 

The frequency sweep performed in the FEM is from 1kHz to 160 kHz. For 1-mm 

thick aluminum beams, the mesh size is 0.5 mm for the transducer element, for the 2-D 

model the transducer was meshed by finer mesh up to 4 elements per the 1-mm thickness. 

Applied voltage Ground 

SH-PWAS  

Element 
Poling 

10 mm 

100 mm 

(a) 
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aluminum 

10 mm 

100 mm 

10 mm 

Poling 

direction 

(b) 
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The 3-D models are meshed with 0.5 mm element size and up to 4 elements per the 1-mm 

transducer thickness. The 1-mm aluminum beam domain is meshed with similar mesh 

like the transducer. Modeshapes are recorded and the bonded transducer E/M impedance 

is calculated. The same was done for 3-mm thick steel beams models. 

 

Figure 3.13. FEM for bonded SH-PWAS on 3-mm thick steel beams: SH-PWAS orientation-1: 

(a) 2-D model, (b) 3-D model. (c) SH-PWAS orientation-2, 3-D model 

 

Steel beams configurations are used to enhance structure – to – transducer mass 

ratio, as will be discussed in experimental section. Figure 3.13 shows the two different 

configurations of SH-PWAS bonded on 3-mm steel beams, 2-D and 3-D models. The 

frequency sweep performed is 1kHz to 160 kHz. The maximum element size used is 0.5 

mm in the 2-D model. For the 3-D models, the transducer is meshed with 1-mm elements 

and 4-elements per the 1-mm thickness. The steel beam is meshed with 1-mm elements 

as well and 0.75 mm element size through thickness. 

Applied voltage Ground 

SH-PWAS  

Element 
Poling 

10 mm 

100 mm 

(a) 

3-mm thick 

steel 

15 mm 

100 mm 

15 mm 

Poling 

direction 

(b) 

PWAS orientation-1 

PWAS orientation-2 

3 mm 

Poling 

direction 

15 mm 

15 mm 

100 mm 

(c) 
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3.4. EXPERIMENTAL SETUP 

The free SH-PWAS capacitance was measured experimentally and found to be 

2.76±0.05 nF. SH-PWAS transducers E/M impedance is measured using an HP 4194A 

impedance analyzer. E/M impedance spectroscopy refers to the antiresonances of the free 

transducer. A sweep of frequency up to 2000 kHz was performed and the impedance 

spectrum is compared to FEM and analytical model predictions. SH-PWAS transducers 

are then bonded on multiple aluminum beams in both orientations. And the E/M 

impedance is measured. The E/M impedance peaks refer to beam structure antiresonances 

under (a) axial-flexural excitation, (b) shear horizontal excitation (Figure 3.14). Because 

the impedance spectroscopy in the bonded transducer case refers to the beam vibration 

modes, a frequency sweep is performed up to 160 kHz. 

The mass ratio of bonded SH-PWAS to the host aluminum beams is 30%. This 

is because of the considerable higher density of PZT material compared to aluminum 

density (Table 3.1). This extra mass and stiffness added by the transducer is not 

considered in our analytical model. Another set of experiments are performed on 3-mm 

thick steel beams. The beam thickness and steel material was selected such that the 

transducer – to – beam mass ratio is 4%. The experimental setup for the steel beams case 

is shown in Figure 3.15.  

 

Figure 3.14. Experimental setup for SH-PWAS bonded on 1-mm aluminum beams (a) 

orientation-1, (b) orientation-2, (the black arrow indicates poling direction) 

(a) (b) 

1-mm thick aluminum beams 100 mm x 10 mm  
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Figure 3.15. Experimental setup for SH-PWAS bonded on 3-mm steel beams (a) orientation-1, (b) 

orientation-2, (the black arrow indicates poling direction) 

 

3.5. RESULTS AND DISCUSSIONS OF IMPEDANCE SPECTROSCOPY 

In this section, comparisons between experimental and simulation results are 

reported. First, experimental results of E/M impedance for a free SH-PWAS are 

compared with FEM results and both analytical models (a) with constant electric field 

assumption, (b) constant electric displacement assumption. 

 Free SH-PWAS  3.5.1.

Figure 3.16 shows that the first impedance peak reported experimentally = 1060 

kHz (1 MHz). From Figure 3.16b, it is shown that the analytical model with constant 

electric displacement assumption over predicts the first impedance peak (= 1330 kHz 

analytically). This draws the conclusion that the analytical model with constant electric 

displacement through the thickness (peak = 1220 kHz analytically) is more appropriate 

for this transducer modeling. Figure 3.16c shows the comparison between admittance 

predictions and the experimental measurements, indicating first resonance at   900 kHz 

The IQR shown in Figure 3.16 corresponds to the interquartile range, a.k.a. the range 

that ignores the lower 25% and upper 25% spread of our measured data (10 transducers). 

3-mm thick steel beams 100 mm x 15 mm  

SH-PWAS-1 

 15x15x1 mm 

SH-PWAS-2 

 15x15x1 mm (a) (b) 
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Figure 3.16. Results comparison for the free SH-PWAS (APC 850): (a) impedance, constant E 

analytical model, (b) impedance, constant D analytical model, (c) admittance 

 

 Bonded SH-PWAS on 3-mm Thick Steel Beams 3.5.2.

For the axial-flexural response, comparison between experimental, 3-D finite 

element simulations, and analytical predictions showed good agreement, as shown in 

Figure 3.17. The first fundamental mode impedance peak is measured experimentally as 

49.3±0.6 kHz, which agrees with 3-D and 2-D FEM. The second peak is 97±1.75 kHz, 

with perfect agreement with FEM, analytical prediction is 100 kHz. The third peak needs 

some investigation. The experimental measurement is 136±1.8 kHz, which matches with 

freq 1060kHz 

IQR(1080-1060) 

Avg 1066±11 

(a) (b) 

1200 
1330 freq 1060kHz 

IQR(1080-1060) 

Avg 1066±11 

(c) 

Analytical: 900 
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3-D FEM. However the analytical model (152 kHz) shows more agreement with (2-D 

FEM 146 kHz).  

 

Figure 3.17. Comparison between experimental results, analytical predictions and finite element 

simulations for E/M impedance of SH-PWAS bonded on 3-mm thick steel beam 

(orientation-1) 

 

Referring to 3-D FEM modeshapes at these frequencies (Figure 3.18), it is 

noticed that the modeshape of vibration at 137 kHz (which is captured experimentally 

and by 3-D FEM) involves coupled vibration in the beam length and width. This is not 

considered in the analytical model, which is a 1-D model (beam length and thickness). 

The analytical model prediction of 152 kHz is more representative of the mode shown in 

Figure 3.18c (145 kHz by 3-D FEM) 
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Figure 3.18 Modeshapes of vibrations of 3-mm thick steel beams with bonded SH-PWAS in 

orientation-1 (axial-flexural orientation), at excitation frequency: (a) 48 kHz, (b) 137 

kHz, (c)145 kHz  

 

When the SH-PWAS is installed in orientation-2 to generate SH standing waves across 

beam length, the predicted 3-D FEM modeshapes show the SH motion patterns (Figure 

3.19). 

 

 

Figure 3.19. Modeshapes of vibrations of 3-mm thick steel beam with bonded SH-PWAS in 

orientation-2 (SH orientation) at excitation frequency: (a) 30 kHz, (b) 60 kHz, (c)90 

kHz, (d)123 kHz, (e)146 kHz 

(a) (b) (c) 

Total displacement simulations 

(a) (b) (c) 

(d) (e) 

z 
x y 

SH displacement in z-direction 
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Figure 3.20. Comparison between experimental results, analytical predictions and finite element 

simulations for E/M impedance of SH-PWAS bonded on 3-mm thick steel beam 

(orientation-2) 

 

Comparison between experimental results, analytical predictions, and finite 

element simulations (Figure 3.20) shows good agreement for SH-PWAS orientation-2 

that generates SH deformation in the structure. It is noticed that the impedance peaks are 

multiples of  30 kHz.  The third peak of 95 kHz shows the best match between 

experiments and simulations. Also, the experimental measurement at 145 kHz shows 

agreement with 3-D FEM, however this peak is not captured by the analytical prediction. 

Referring to modeshapes (Figure 3.19), it is noticed that the 5
th 

mode of vibration is a 

local mode and it drives the beam into some torsional vibration. The 4
th

 mode starts not to 

be a uniform SH deformation; it may contain coupled modes of vibration. 
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 Bonded SH-PWAS on 1-mm Thick Aluminum Beams 3.5.3.

We compare the E/M impedance measurements of bonded SH-PWAS on 1-mm 

aluminum beams with 2-D and 3-D finite element simulations. Analytical model 

predictions are reported, but are not valid, because the analytical model does not account 

for added mass and stiffness by the transducer. 

When the SH-PWAS is bonded in orientation-1, where the excited response is an 

axial and flexural response, the experimental and 3-D FEM had good agreement with the 

first three resonant frequencies 42, 90, and 136 kHz. 2-D FEM shows a similar trend but 

with higher values (Figure 3.21). When the SH-PWAS is bonded in a 90° direction, such 

that the poling direction is perpendicular to the beam length, in this case the shear 

horizontal (SH) vibrating modes are captured at 22, 47, 77, 107, and 136 kHz (Figure 

3.22). A good agreement is achieved between experiments and finite element simulations. 

 

 

Figure 3.21 Comparison between experimental results and finite element simulations for E/M 

impedance of SH-PWAS bonded on 1-mm thick aluminum beam (orientation-1) 
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Figure 3.22 Comparison between experimental results and finite element simulations for E/M 

impedance of SH-PWAS bonded on 1-mm thick aluminum beam (orientation-2) 

 

One observation for both (a) axial-flexural response, and (b) SH response, that the second, 

third… harmonics are almost multiples of the fundamental vibrating mode. 

 

3.6. GUIDED WAVE EXCITATION BY SH-PWAS 

 Analytical Model 3.6.1.

Consider SH-PWAS bonded to the structure shown in Figure 3.8a. The structure 

half thickness is d, and   is the shear modulus of the structure. SH PWAS dimensions are: 

length l, width b and thickness h. Shear horizontal waves have a shear–type particle 

motion contained in the horizontal plane. Cartesian co-ordinates are defined such that the 

x-axis is placed along the wave propagation direction, whereas the z-axis is the direction 

of particle motion, and y is along plate thickness. The poling direction of the piezoelectric 

transducer is in the 1x  direction (coinciding with the global z-axis coordinate of the 

structure). An approximated 1-D analytical model with the z-invariant assumption is well 



133 

 

developed in many previous studies, such as: Auld (1990); Graff (1991); Rose (1999). 

The analytical model only predicts SH wave motion of particle oscillation along z 

direction and propagating in x direction. We use the analytical model to predict 

dispersion wave speeds of SH waves. The displacement is assumed to be harmonic 

 
 

( , , ) ( )
i x t

z zu x y t U y e
  

  (3.132) 

where   is the wave number in x direction. Guided SH waves in plates (similar to guided 

Lamb waves) are multimodal in nature; as the frequency of excitation increases, new 

modes are excited in the plate. The frequencies at which new modes appear are called 

cut-off frequencies. The cut-off frequency can be determined by solving the characteristic 

equation sin( )cos( ) 0S Ad d    for d values, and substitute in 
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c
f d

d



   (3.133) 

where  is defined from 2 2 2 2

sc    , and sc is the shear wave speed. We define cut-

off frequency in units of Hz, or normalized frequency. The n
th 

symmetric mode 

displacement is 

 ( , , ) cos( )
S
ni xn S i t

z n nu x y t B y e e
  

  (3.134) 

The n
th

 antisymmetric mode displacement is  

 ( , , ) sin( )
A
ni xn A i t

z n nu x y t A y e e
  

  (3.135) 

The total displacement is  

 ( , , ) sin( ) cos( )
A S
n ni x i xA S i t

z n n n nu x y t A y e B y e e
      

 
 (3.136) 

The amplitudes nA , nB  are normalized with respect to power flow and found to be 

(Santoni, 2010) 
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Solving the characteristic equation sin( )cos( ) 0S Ad d    results in finding wave speeds 

and group velocities.  

Analytical evaluation for shear horizontal wave speeds and group velocities is 

presented in Figure 3.23 for a 1-mm thick aluminum plate. Wave speeds are normalized 

with respect to shear (transverse) wave speed, which equals 3129 m/s for our case study 

aluminum 2024-T3 alloy. The predicted SH wave modes were three modes in the 4000 

kHz frequency window (corresponds to / 0.64sfd c  ). The first SH mode is SH0, it is a 

symmetric mode of vibration and has a constant propagation speed at any excitation 

frequency. The second SH mode is SH1, it is an antisymmetric mode with cut-off 

frequency 0.25 ( 1565 kHz)  . The third mode in our simulation results is SH3, it is 

symmetric like SH0, however it is dispersive, i.e. does not have a constant propagation 

speed. The cut-off frequency of SH3 is 0.5 ( 3130 kHz)  . 

 

Figure 3.23. Shear horizontal wave speeds for aluminum (a) phase velocities, (b) group velocities 
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 Experimental Studies 3.6.2.

3.6.2.1. Proof of concept 

Three sets of experiments are performed; the first set of experiments was a proof 

of concept that was performed on 3.4-mm thick aluminum 7075 T6 alloy plate (Figure 

3.24). The SH-PWAS was 15 mm x 15 mm x 1 mm and its material was APC850. SH-

PWAS poling direction was along z-direction (Figure 3.24c). The distance between the 

two SH-PWAS was 150 mm, the excitation was 3-count tone burst signal with 10 V 

amplitude. The excitation frequencies used were 30, 45, 60, 75, and 90 kHz as shown in 

the waveforms (Figure 3.25). It was noticed that the received signals in Figure 3.25 were 

non-dispersive, (i.e. they have shown the same shape as excitation signal,  3 count tone 

burst), especially at frequencies 60, 75 and 90 kHz. This implies that the wave packet 

speed does not change with frequency and this is the intrinsic property of SH0 (the first 

shear horizontal guided wave in isotropic materials). In addition, it was observed that no 

waves propagate along (path 2) in Figure 3.24c. The actuation mechanism of SH-PWAS, 

that is shown from free transducer mode shapes (Figure 3.11) implies that the SH-PWAS 

resonates in z-direction and the generated waves propagate along x-direction. The 

comparison between analytical and experimental results is shown in Figure 3.26. 
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Figure 3.24 Pitch catch experiment to excite SH waves and catch it with another SH-PWAS 

 

 

Figure 3.25. Waveforms associated with pitch catch SH waves experiment on 3.4-mm thick 

aluminum 
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Figure 3.26.  Experimental vs. analytical wave group velocity curves (SH-PWAS experiment on 

3.4-mm thick aluminum plate) 

 

3.6.2.2. Pitch catch experiments between combinations of SH-PWAS and inplane 

PWAS transducers 

The second set of experiments were a rigorous combination of pitch catch 

experiments between (a) SH-PWAS transducers with different orientations (to study 

effect of poling direction), and (b) pitch catch experiments between SH-PWAS 

transducers and regular PWAS. The SH-PWAS materials was APC850 and dimensions 

were 15 mm x 15 mm x 1mm. The regular PWAS material was APC850 and a circular 

PWAS of diameter 15 mm and 0.2 mm thickness was used. A detailed set up is shown in 

Figure 3.27b. The aim behind those combinations of experiments was to have a better 

understanding of the following cases: 

 

1. Does the SH-PWAS transmit only SH waves to another SH-PWAS? 

2. Can regular PWAS receive SH waves transmitted by SH-PWAS? 
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3. How does SH-PWAS behave when excited by waves coming from regular PWAS? 

(The opposite situation of question-2) 

4. How does SH-PWAS behave if oriented 90 degrees? Does it transmit SH waves in 

this case? Does it receive SH waves? 

 

Seven experiments were performed on a 1-mm thick aluminum 2024-T3 square 

plate 1220x1220 mm with a frequency sweep up to 300 kHz. Table 3.2 summarizes the 

experiments and captured waves in each case.  

 

The experiment between two SH-PWAS transducers showed the generation of 

shear horizontal waves, providing that both transducers are installed such that their 

polarization vectors are parallel to each other (experiment #1), (Figure 3.28a). 

However, for two SH-PWAS transducers installed such that their polarization directions 

are perpendicular to each other, the signals that SH-PWAS4 received from SH-PWAS6 

had the speeds of S0 the first symmetric Lamb wave modes, (experiment #4). (Figure 

3.28c) 
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Figure 3.27. Numbering and directions of pitch catch experiments on aluminum plate, (a) 

directivity experiment, (b) separated experiments for combination of SH-PWAS-

regular PWAS pitch catch configurations. 

 

Table 3.2. Description of experiments showing excitation and receiver PWAS transducers 

for each experiment and the possible paths of wave propagation 

Experiment No. and description of pitch catch configuration Captured waves 

Experiment (#1) SH5  SH6 SH0, A0 

Experiment (#2)  SH5 PWAS2 SH0, A0 

Experiment (#3) PWAS2  SH5 SH0, A0 

Experiment (#4) SH4  SH6 S0 

Experiment (#6) SH6  SH4 S0 

Experiment (#7) PWAS1  SH4 A0, S0 

 

(a) (b) 
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Experiment #6 (the reverse situation of experiment #4), showed identical results 

to experiment #4. This was done to verify reciprocity and lack of nonlinear effects. The 

exciter SH-PWAS6 was oriented in the correct direction to send SH waves towards the 

receiver SH-PWAS . SH-PWAS  was the one oriented with  0 . In such a situation we 

expected that transmitter SH-PWAS6 was sending out SH waves; however, receiver SH-

PWAS4 neither responded nor picked SH waves; but rather picked S0 waves (Figure 

3.28c).  This suggests that the transmitter excites an S0 wave in the measured direction. 

This observation is further explained in the discussion section of guided wave 

propagation results. 

Another feature was observed, when SH-PWAS5 excites SH waves, the regular 

extensional mode PWAS2 picked up two types of guided waves: Lamb wave 

antisymmetric A0 mode, as well as SH0 wave (experiment #2) (Figure 3.28b). It was not 

expected that inplane type PWAS transducers resonate in shear mode and convert shear-

mode waves to output voltage. This observation is further discussed in the discussion of 

guided wave propagation results section. 

Finally, regular PWAS2 was excited and the signal was caught by SH-PWAS5 

(experiment #3). Similarly, PWAS2 was excited and the signal was caught by SH-

PWAS4 (experiment #7).  

Experiment #3 was identical to experiment #2, where the SH-PWAS5 picked up 

SH waves (exactly like Figure 3.28b). In experiment #7, where PWAS2 was excited and 

the signal was caught by SH-PWAS4, the received waveforms were corresponding to 

guided Lamb waves only (Figure 3.28d). 
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3.6.2.3. Directivity of SH-PWAS 

The third set of experiments involves a similar setup of set #2, but with added 

transducers at 30º and 60º degree angles. The complete setup is shown in Figure 3.27a. 

Experiment #1 (SH-PWAS5SH-PWAS6) indicates the zero angle direction pitch catch, 

experiment #1(30) indicates the 30º pitch catch, and experiment #1(60) indicates the 60º 

pitch catch.  

Receiver SH-PWAS6 transducers in experiment #1(30) and (60) no longer have a 

parallel poling direction to transmitter SH-PWAS5.  

Similarly, experiments #2 and #4 are performed at different angles, 0º, 30º, and 60º.  

Figure 3.29 shows the directivity patterns for received wave amplitudes at different 

experiments. 

Figure 3.29a shows SH wave amplitudes for a pitch catch experiment between 

two SH-PWAS transducers. Starting from parallel poling directions (at 0º), the SH wave 

amplitude is the maximum (e.g. at 60 kHz). At 30º, the SH wave amplitude decreases, 

and then it further decreases at 60º. This is not observed with all the frequencies. On the 

other hand, A0 wave amplitudes received at SH-PWAS for the same experiment show an 

increase in amplitude as the angle increases from 0º to 30º to 60º. This agrees with the 

previous results of exciting axial-flexural response along the poling direction. As the 

angle of the pitch catch experiment changes towards 60º, a stronger A0 mode is obtained. 
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Figure 3.28. Dispersion group velocity curves for received wave signals (SH-PWAS experiment 

on aluminum) 
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Figure 3.29 Amplitudes of different waves at different angles of pitch-catch experiments, 

associated with directivity experiment 
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Experiment #2 (SH-PWAS5 regular PWAS2) showed similar patterns to 

experiment #1. However, the received signals at 60º were noisy. Figure 3.29c shows 

amplitudes of SH waves received by PWAS2 and generated by SH-PWAS5, for 

experiment #2, 2(30), and 2(60). Figure 3.29d shows amplitudes of received A0 waves. 

Experiments #3 are the opposites of experiments #2. Those are not performed in this 

study.  

Experiment #4 (SH-PWAS4 SH-PWAS6) involves the pitch catch experiments 

between two SH-PWAS transducers having poling directions perpendicular to each other 

(for 0º case). Figure 3.29e,f are for the same received S0 wave amplitudes, but at 

different frequencies. They are plotted on two polar plots, because of considerable change 

in amplitude values in [mV] between 45,75 kHz and 255,300 kHz. It is observed that the 

S0 amplitudes are much less at lower frequencies. Also, it is observed that the 

perpendicular poling directions – experiment #4(0) – cause the least S0 wave amplitudes. 

S0 wave amplitudes are much higher at 30º and 60º angles between poling directions of 

the two transducers. 

 

 Finite Element Simulations 3.6.3.

The models in section 2.3 predict SH-PWAS effects at 0º and 90º separately. Also, 

it is hard to combine (axial-flexural) and (shear horizontal) separate responses of Figure 

3.9b into 2-D analytical model. Hence 2-D multiphysics FEM simulations are constructed 

to better understand the possible excited waves by SH-PWAS, and to verify directivity 

experiments. Shear horizontal SH0, symmetric S0 and antisymmetric A0 Lamb waves 

were picked by FEM simulations. 
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Finite element model was constructed for the bonded SH-PWAS to the structure. 

The SH-PWAS dimensions were 15 mm x 15 mm x 1 mm while inplane PWAS 

dimensions were 7 mm x 7 mm x 0.2 mm. The mesh size of SH-PWAS elements was 0.5 

mm, and 4 elements per the 1-mm thickness. A 1-mm aluminum 2024 alloy plate was 

used in our simulations. The plate was a 450 mm square plate. The structure maximum 

element size was set to 4 mm and 2 elements through the 1-mm thick aluminum plate. 

The plate was modelled with free BC and the SH-PWAS was perfectly bonded from the 

bottom surface and free from the upper surface.  

Excitation signal was 3-count tone burst with canter frequency 60 kHz and 

voltage amplitude of 10V. The time step selected was 0.5 s and simulation time was 200

μs .  Figure 3.30 shows the results of the simulations.  

 

 

Figure 3.30. FEM simulations for waves excited at 60 kHz by (a) SH-PWAS, (b) inplane PWAS. 

Variable plotted in (a) is z displacement, variable plotted in (b) is y displacement 
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Figure 3.30a shows the displacement field in the z-direction, i.e. the direction of 

shear horizontal particle oscillation. SH0 waves had a strong oscillation in the z-direction, 

and propagated in the x-direction between the transmitter and receiver SH PWAS 

transducers. Antisymmetric A0 and symmetric S0 modes were observed propagating in z-

direction. For comparison, the waves excited by inplane PWAS (Figure 3.30b) are 

reported, only A0 and S0 existed. The simulations in Figure 3.30 are both captured at 

simulation time equals 77μs . The displayed parameter in Figure 3.30b is eZ the out of 

plane strain; it was selected instead of the displacement fields to be able to show S0 and 

A0 modes together. 

 

Figure 3.31. FEM simulation for the case of 90 degree orientation difference between two SH-

PWAS 

 

When FEM simulation was repeated between the two SH-PWAS transducers, but 

with the transmitter SH-PWAS oriented by 90 degrees (Figure 3.31), the waves 

propagated towards the receiver SH-PWAS were S0 and a noisy A0. This was in good 
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agreement with the observed results from experiment #4 (Figure 3.27b and Figure 

3.28c).  

Figure 3.31 shows the displacement fields in x-direction at 40μs . Particle motion 

in the x-direction was selected; because for such configuration, SH waves had a particle 

oscillation in the x-direction and propagated in the z-direction. Besides, S0 Lamb wave 

was propagating in the x-direction – with dominant particle motion in the x-direction. 

 

 Discussion of Guided Wave Propagation Results 3.6.4.

The FEM simulations of SH wave propagation between two SH-PWAS 

transducers (Figure 3.30a) validate the transducer actuation mechanism of exciting SH 

waves in the direction perpendicular to the poling direction. SH wave amplitude 

decreases as the direction of measured response changes from 0º towards 90º. This agrees 

with Figure 3.29a at excitation frequency 60 kHz. Recalling experiment #6 in the pitch 

catch experiments, i.e. the opposite of experiment #4 (Figure 3.27b). The receiving of the 

S0 waves seem to contradict with the results of Figure 3.28a, where SH0 and A0 were 

only captured along the direction perpendicular to the poling direction of transmitter SH-

PWAS. Referring to Figure 3.30a, a very weak S0 mode appears along 45 degrees from 

the x-direction (almost vanishes along the x-direction). Hence, one can conclude that the 

SH-PWAS actually excites S0 waves in the same direction of exciting SH waves, and this 

is due to 2-D effects and the fact that structure particle vibrations at one side of the 

transducer definitely affect vibrating particles at the other sides. The considerably 

reduced S0 wave amplitudes are proven from Figure 3.29e,f along the 0º direction. 
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The feature observed in experiment #2 in section 3.6.2.2 was that the regular 

inplane PWAS was able to pick up SH waves. This means that it resonates in its 

extensional-contraction mechanism when shear wave front hits the transducer. Two 

dimensional effects can be the reason; that is, SH waves excited by SH-PWAS (with 

structure particles vibrations in the z-direction) arrive at regular PWAS with the z-

direction vibrations, and due to 2-D effects, z-direction oscillations are actually 

considered extension-contraction oscillations (if viewed from another diameter of the 

receiver PWAS). In addition to the 2-D effects, SH waves can be mode converted at the 

receiver PWAS; because the transducer itself is considered an inhomogeneity in the wave 

field. A similar observation in Su et al. (2007) suggested that S0 wave mode converts to 

SH0. SH0 can be mode converted (at the time of flight of receiving SH0) to a mode that a 

regular PWAS interacts with. 

 

3.7. POWER AND ENERGY TRANSDUCTION WITH SH-PWAS 

The study of power and energy transduction between the PWAS and structure has 

been presented in chapter-2 where we studied exact guided Lamb waves power and 

energy. Energy transfers from electrical to mechanical in the transducer, then the 

mechanical energy causes the wave to propagate. This study presents an analytical model 

for SH waves power and energy based on the normal mode expansion (NME) technique. 

The solution assumes straight crested harmonic waves and no evanescent (i.e. non 

propagating) waves exist. Mode amplitudes are normalized with respect to power flow; 

and the actual amplitudes can be determined from Eq. (3.137). 

Considering that only SH waves are propagating; the surviving strains are 
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Strains and stresses can be evaluated given the total displacement, Eq. (3.136); however, 

as we will show in the next page the symmetric and the antisymmetric displacements can 

be in separate solutions; because the orthogonality condition cancels the terms involving 

multiplications between cosine and sine terms from symmetric and antisymmetric modes. 

Hence, we can proceed with separate analysis. This can be useful to separate wave energy 

and power and quantify the partition of symmetric modes as well as the antisymmetric 

ones. Following the method presented in Santoni (2010) , modal participation factors are 

found to be 
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Noting that this is valid for forward propagating mode only, b is the width of SH-PWAS 

and it is the transducer dimension along x direction in our study, d is half the plate 

thickness, 
nnP  is power flow factor (.)n

zv  is the conjugate of velocity field in z direction 

for the mode n, 
zt  is the PWAS traction or shear stress. We denote ( )na x by a + sign to 

show that it is for the forward propagating mode. Modal participation factor is an extra 

term to be multiplied by the wave amplitudes. It is a function of the distance x and also 

accounts for the transducer dimension b. We define S

na  the modal participation factor for 



150 

 

the n
th

 symmetric mode, similarly 
A

na  for the n
th

 antisymmetric mode. Eqs.(3.136), 

(3.139) yield the strains and stresses as 
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The total strain response (due to symmetric and antisymmetric waves) and the conjugate 

values of the strain are 
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It needs to be mentioned that strain quantities in Eq. (3.141) are summation for one single 

symmetric mode and one single antisymmetric mode, taking into account the modal 

participation factors. 

From the total displacement equation, Eq. (3.136), we obtain the velocity and the 

conjugate velocity as 
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The time averaged power is 
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Substituting Eqs. (3.141), (3.142) in Eq. (3.143) and simplifying yields the time averaged 

power as, 
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  (3.144) 

First: terms with multiplied sine and cosine functions from the symmetric mode and the 

antisymmetric mode are cancelled; for the characteristic equations of the symmetric and 

the antisymmetric modes, either sine or cosine terms will be zero at a time. Hence, there 

is no dependency between symmetric and antisymmetric modes. Second: terms with 

sin(2 )nd appearing with the analysis of single type of waves are also crossed out 

because sin(2 ) 2sin( )cos( )n n nd d d   and for our characteristic equations for symmetric 

and antisymmetric, either sine or cosine terms will be zero at a time. The final result for 

wave power takes the from 
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The time-averaged power varies at different x values, as the x dependency comes from 

the modal participation factors. All the following numerical illustrations are shown at the 

top surface of the structure (y=d) and at the edge of the transducer, where (x=b/2). 
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Figure 3.32. Guided SH waves power for three SH modes: two symmetric modes: SH0,SH2, and 

one antisymmetric mode: SH1, (a) individual wave power for SH0, SH2, (b) SH1 

wave power, (c) total symmetric waves power, (d) total antisymmetric waves power. 

 

With similar analysis, define time-averaged kinetic energy 
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And the final analytical form will be 

  
2

2 2. [ ] [ ]
4 4

d

S A

e z z n n n n

n nd

b
k v v dy bd a B a A






 
   

 
   (3.147) 

Time averaged potential energy is defined as 
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Figure 3.33. Guided SH waves energy (kinetic and potential energies) in [J] 

 

With similar analysis like the one we followed in power and kinetic energy; then 

cancelling sin 2 nd  terms, results in 
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Using the relation 2 2 2 2

sc    , then we can prove that time-averaged potential energy 

equals time averaged kinetic energy 
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Numerical simulations for developed analytical models are shown in Figure 3.32 and 

Figure 3.33. The SH0 power flow oscillates as a function of frequency with constant 

amplitude (because of having constant dispersion wave speed). However, the peaks and 

valley responses are due to the SH-PWAS finite dimension effect (what is commonly 

referred to as tuning of the transducer). SH1 (antisymmetric shear horizontal mode) 

kicked off at 1560 kHz Figure 3.32b,d). SH2 (symmetric mode) started at 3150 kHz 

(Figure 3.32a,c). Both SH1 and SH2 are dispersive modes with variable power 

consumption at different frequencies (because their wave speeds are not constant along 

the frequency spectrum). Similar conclusions are drawn from simulated results of wave 

energies (Figure 3.33). 
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3.8. SH-MATLAB GRAPHICAL USER INTERFACE 

A graphical user interface has been developed to compliment the other two - 

Lamb wave related software developed previously in LAMSS, namely WAVESOPE, and 

MODESHAPE. The interface is shown in Figure 3.34. It can simulate SH analysis for 

different aluminum, steel alloys, titanium…etc. It allows changing the thickness of the 

plate under investigation and the maximum excited frequency. Phase and group velocities 

can be obtained; it allows getting the velocities in actual units, i.e. m/s or normalized 

velocities with respect to material shear wave speed. It can also display normalized and/ 

or non-normalized  mode shapes. 

 

Figure 3.34. SH GUI, developed in LAMSS (www.me.sc.edu/Research/lamss/) 

 

It can be used to plot only symmetric SH waves (e.g. SH0, SH2,…), or antisymmetric 

waves only, or both (Figure 3.35) 

http://www.me.sc.edu/Research/lamss/
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Figure 3.35. Example of plotting phase velocities of antisymmetric modes only 

 

Figure 3.36 shows an example of plotting group velocities of both symmetric and 

antsymmetric modes that exist up to the specified frequency. Figure 3.37 shows mode 

shapes. 

 

Figure 3.36. Group velocities for both symmetric and antisymmetric modes 
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Figure 3.37. normalized and non-normalized mode shapes 

 

3.9. SUMMARY AND CONCLUSIONS 

The chapter presented predictive analytical models for electromechanical 

impedance of shear horizontal (SH) coupled piezoelectric wafer active sensor (PWAS) 

transducers. Investigation of E/M impedance of free SH-PWAS indicated that the 

analytical model with the constant electric field assumption is more representative of the 

experimental case and FEM. The first resonance frequency of the free transducer is 900 

kHz. Experiments and FEM of bonded PWAS on structures showed the local resonance 

effects of the PWAS at frequencies greater than 100 kHz. Discrepancies exist in the 

analytical model of SH-PWAS bonded on a structure such that the mass ratio of the 
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transducer – to – beam structure is greater than 5%. This case was exemplified by SH-

PWAS bonded on 1-mm aluminum beams (mass ratio was 30%). The second case 

studied was SH-PWAS bonded on 3-mm steel beams. In this case, the analytical model 

showed good agreement with FEM simulations and experimental results. It was shown 

that the SH-PWAS has directivity effects, where an axial-flexural response is obtained 

when the transducer poling direction is parallel to the beam length. When the transducer 

poling direction is perpendicular to the beam length, the SH response is obtained. 

The study then discussed the excitation and reception of SH waves using the SH-

PWAS. Excitation of SH waves was analyzed by finite element simulations and 

experiments. SH0 non-dispersive waves were captured in aluminum plates. Multiple 

experiments were performed to show the SH waves excitation and receiving capabilities 

of both SH-PWAS and regular inplane PWAS transducers. It was shown that positioning 

and orientation of SH-PWAS affects the generation of SH waves: (1) SH-PWAS excites 

SH waves in the direction perpendicular to its poling direction, (2) Regular inplane 

PWAS can sense SH waves. Additionally, (3) SH-PWAS transducers can sense A0 and 

S0 Lamb waves. Directivity analysis showed that excited SH wave amplitude gradually 

decreases as the measuring direction deviates from the maximum received amplitude 

direction.   

A predictive model for guided SH wave’s power and energy was analytically 

developed based on the normal mode expansion technique. The model assumed that (a) 

waves are of straight crested harmonic type, (b) evanescent non-propagating waves are 

ignored, and (c) the modes are of orthogonal functions. The amplitudes of each mode 

were normalized with respect to the power flow and modal participation factors were 
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determined. Modal participation factors are functions of transducer dimension. The wave 

power, kinetic energy, and potential energy were modelled and numerical results were 

presented. As expected, the kinetic energy equals the potential energy in total and for 

separate modes as well, due to the fact that modes are orthogonal. SH0 mode wave power 

and wave energy oscillate with frequency, but have constant amplitude due to the 

constant wave propagation speed of SH0 in isotropic materials. SH1 and SH2 modes are 

dispersive shear horizontal modes. 

Investigation of SH waves excitation in composite materials, predictive finite 

element models for SH-PWAS electromechanical impedance for the bonded transducer 

on composites are covered in a following chapter. 
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CHAPTER 4:  GUIDED WAVES PROPAGATION IN COMPOSITES 

 

The first objective of this chapter is to review the different predictive models for 

evaluating dispersion curves of ultrasonic guided waves in composites. The second 

objective is to develop a stable robust code for predicting dispersion curves in composites, 

apply it to case studies, and compare the results with commercial software.  

In order to fully extend power and energy models of Chapter 2 to anisotropic 

multilayered composite materials, dispersion wave propagation speeds needs to be 

determined; that is the focus of this chapter. 

The algorithms which we review for the wave propagation analysis in layered 

composite plates are: (a) transfer matrix method (TMM), (b) global matrix method 

(GMM), (c) semi-analytical finite element method (SAFE), (d) local interaction 

simulation approach (LISA), and (e) equivalent matrix method (EMM). Description of 

each technique was covered. Then, the advantages and distinct features of those 

techniques were presented. Case studies for unidirectional, cross ply, and general quasi 

isotropic laminates were presented. Finally, experimental and finite element simulation 

studies were performed on glass fiber reinforced polymer composites (GFRP). 

Simulations and applications on carbon fiber reinforced polymer composites (CFRP) are 

presented later in Chapters 5 and 7. 
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NOMENCLATURE 

Ak   = transfer matrix for kth layer in the TM method 

Auσ   = component of the TM relates displacements with stresses 

A0   = fundamental antisymmetric Lamb wave mode  

Bi   = amplitudes of partial aves in GM method 

cij                     = stiffness matrix components in layer local coordinates, i, j =  

1,2,…,6 Pa 

c   = stiffness in tensor notation 

c    = stiffness matrix in global coordinates 

[ ]D                  = the matrix relates amplitudes of partial waves to displacement and 

stress fields 

diq                   = values relate amplitudes of partial waves to stress fields for the qth 

eigenvalue, i = 1,2,3  

f   = frequency, Hz 

f 
j
   = element force vector 

i   = square root of (-1) 

K
j
   = layer stiffness matrix and element stiffness matrix in FEM 

k   = layer index in a composite layup 

L   =  element size in FEM 

M
j
   = element mass matrix in FEM 

N   =  number of nodes per wavelength in FEM 

N(x1, x2) =  FEM interpolation functions 

p   = force vector in FEM 
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Q   = eigenvector or mode shapes in FEM 

S0   = fundamental symmetric Lamb wave mode  

SH0  = fundamental shear horizontal guided wave mode  

S   = strains tensor 

T   = transformation matrix between local and global coordinates 

T
t
   =  transpose of transformation matrix 

Ti   = stress components, i = 1, 2…6, Pa 

t   = time, s 

t   =  traction vector 

U1, U2, U3 = displacement amplitudes, m 

U1q                   = displacement amplitudes of the partial waves for the qth 

eigenvalue 

U 
j
(x3)  = nodal displacement vector of element j 

u   =  displacements vector 

u
±
   =  displacements at the top (-) and bottom (+) of a layer 

Vq, Wq  = ratios of amplitudes of partial waves 

v   =  velocity 

w   =  displacement in LISA, m 

ẅ                     =  displacement second derivative with respect to time, i.e. 

acceleration, 
 

x1, x2, x3  =  global coordinates, m 

α   =  ratio between the wave numbers in the x3 and x1 directions 

αM   =  mass proportional damping coefficient, rad/s 
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βK   =  stiffness proportional damping coefficient, s/rad 

Γ   =  boundary 

ε   =  strain tensor 

θ   =  waver propagation angle with respect to fiber direction 

λ   =  wave length, m 

ξ   = wave number, 1/m 

ρ   = material density, kg/m
3
 

σij   = stress components, i, j = 1,2,3, Pa 

σ±   =  stresses at the top (-) and bottom(+) of a layer 

σij*   = normalized stress components with iξ 

σ   =  stress tensor 

ω   = angular frequency rad/s 

:   = double dot product of tensors 

4.1. LITERATURE REVIEW 

The use of composite materials is currently implemented in many structural 

components, including automotive parts, civil infrastructures, compensatory devices and 

aerospace structures. Composite materials combine the properties of two or more 

constituent materials, for example, carbon-fiber reinforced polymer composites (CFRP) 

combine the specific stiffness and strength of carbon fibers with the properties of epoxy 

matrix. Composite materials can be generally manufactured with metallic, polymeric, or 

ceramic matrix; however, in this study the focus is on polymer matrix composites for 

their wide application in the aerospace industry. Many parts of recent air and spacecraft 

are manufactured from CFRP and glass-fiber reinforced polymers (GFRP) as well. 
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Because of the challenge of constructing high strength structural parts with constrained 

light weights; polymer composites are more favorable than metallic alloys. Also, polymer 

composites can be manufactured into complex shaped components and their properties 

can be tailored by changing the stacking sequence of layup, i.e. layers or individual 

lamina. Detection of damages and flaws as well as structural integrity of polymer 

composites is receiving as much attention as the advantages and applications of these 

materials. Ultrasonic Lamb waves, or guided plate waves, have long been acknowledged 

for damage detection in composites (Rose, 1999; Su et al., 2006; Giurgiutiu and Santoni, 

2011). For any study of guided wave propagation in structures, wave propagation speeds 

are essential for further analysis, e.g. impact source localization, reflection, transmission 

and mode conversion at damages. In many cases, robust predictive models of wave 

speeds are needed before conducting experimental studies. Therefore; in this study, our 

goal is comparing different methods of calculating ultrasonic guided wave speeds in 

composite materials. 

Lamb wave theory is well documented in many references, such as: Rose (1999); 

Graff (1991); Viktorov (1967); Giurgiutiu (2008). For isotropic materials, the wave 

equation can be expressed by two potential functions, and the pressure and shear wave 

velocities. The shear horizontal (SH) wave propagation in this case is decoupled from 

symmetric and antisymmetric Lamb waves propagation. Lamb waves are symmetric and 

antisymmetric and they are dispersive by nature, i.e. (are having different speeds at 

different frequencies). The characteristic equation (Rayleigh-Lamb equation) is obtained 

by solving wave equation and applying stress free boundary conditions at upper and 

lower surfaces of the plate. 
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In the case of fiber reinforced polymer (FRP) composites, where the material is 

generally anisotropic, the three types of guided waves (P, SV, and SH) are coupled and it 

is not possible to find closed form solution of the dispersion curves. Several textbooks 

have documented guided wave propagation in composites: Nayfeh (1995); Rose (1999); 

Rokhlin et al. (2011). There are different methods to calculate dispersion curves in 

multilayered composite materials (a) transfer matrix method (TMM); (b) global matrix 

method (GMM); (c) semi-analytical finite element method (SAFE); (d) local interaction 

simulation approach (LISA); and (e) equivalent matrix method (EMM). Mathematical 

formulations of those techniques are presented, along with highlighting key features.  

 

 Transfer Matrix Method (TMM) 4.1.1.

Transfer matrix method (Thomson, 1950; Haskell, 1953) is a technique for wave 

propagation analysis in layered media; its advantage is that it condenses the multi-layered 

system into few equations (four in the case of decoupled SH waves or six in the case of 

coupled SH waves) relating the boundary conditions at the first and the last interface. It 

eliminates all other intermediate interfaces; this saves a lot of computational time and 

complexity. Hence, TMM is favorable. One drawback TMM suffers is the numerical 

instability of the solution at large frequency-thickness product values (Lowe, 1995). We 

followed the formulation in Nayfeh (1995) and Santoni (2010). Considering the 

composite plate layer is in 1x , 2x  plane with wave propagation along 1x direction 

(Figure 4.1). The angle of fibers with respect to direction of wave propagation is  .  
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Figure 4.1. Composite layers notation and coordinates 

 

The layer stiffness matrix in global coordinates is 

  1[ ] [ ] [ ][ ] tc T c T   (4.1) 

where T is the transformation matrix and can be found from many composites textbooks, 

e.g., Jones (1999); for completeness, we include it here 
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 (4.2) 

Denoting cosm  , sinn  ; the conversions between local coordinates 1x to global 

coordinates 1x  can be done using 

 
1

[ ] [ ] [ ][ ]

[ ] [ ] [ ][ ]

t

t

s T S T

c T C T 




 (4.3) 

where capital ,  C S are the layer stiffness and compliance matrices respectively in local 

coordinates, and c  is the layer stiffness matrix in global coordinates. The maximum 
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anisotropy we are considering is orthotropic layer (in local coordinates); once the layer is 

rotated by angle , it becomes monoclinic anisotropy (in global coordinates).  
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 (4.4) 

Equation of motion is 
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u
c u

u S

 (4.5) 

where  is the density, S is the strains tensor, u is the displacements vector. The 

displacement vector is decomposed in the three axes components as 

      1 3

1 2 3 1 2 3, , , ,
i x x vt

u u u U U U e
  

  (4.6) 

where  is the wave number in the 1x direction, /v   is the phase velocity,  is the 

angular frequency,  is the ratio between wave number in the thickness direction 3x and 

1x direction, and iU is the displacement amplitude. Substituting Eq. (4.6) into equation of 

motion, Eq. (4.5) and cancelling the exponential terms yields  
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 (4.7) 

For a given value of v , this is an eigenvalue problem, and the determinant of Eq. (4.7) 

can be expressed as 

 6 4 2

1 2 3 0B B B       (4.8) 
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where iB values are found in Nayfeh (1995) with slight corrections as 
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By solving Eq. (4.8) symbolically, it can be shown that the eigenvalues i are found in 

pairs, i.e.  

 2 1 4 3 6 5 ,   ,              (4.10) 

Each pair of eigenvalues represents a pair of similar partial waves propagating in 

opposite 3x  directions, one downward, and the other upward. Using any two equations in 

Eq. (4.7), we find the displacements ratios (i.e. eigenvectors). However, careful selection 

of the two equations is important. If this algorithm is used for isotropic metallic layer or a 

composite layer that is almost isotropic, the displacements ratio 
3 1/q q qW U U  suffers a 

singularity situation. Therefore, the ratios documented in Nayfeh (1995) and Santoni  

(2010) were exchanged by (Rokhlin et al., 2011) 
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where q= 1,…6 represents the partial wave number. By doing this, a more general robust 

algorithm is attained. The displacements in Eq. (4.6) can be written as 

      1 3

6

1 2 3 1

1

, , 1, , qi x x vt

q q q

q

u u u V W U e
  



  (4.12) 

The stresses are 
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The stresses that are of interest are 33 13 23, ,   . Stress free boundary condition is applied 

on them; we define 
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where 
* i   , and 

1 2 3, ,q q qd d d are terms extracted from Eq. (4.13) 
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Combining the displacement and stress relations yields the state vector in a layer 
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The idea of the TMM is relating the layer properties and the boundary conditions at the 

top and bottom surfaces with those of the other layers. This is done by applying 

continuity of displacements and equilibrium of stresses. The layer transfer matrix kA   

relates the displacements and stresses of the top of the layer to those of the bottom of the 

layer 
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 (4.17) 

Call kA the 4 x 4 hyper matrix of Eq. (4.17), X the 6 x 6 matrix of Eq. (4.16), U the 

vector of 1iU elements, and H the diagonal matrix of elements 3ii x
e


; hence, 

 1

k k k kA X H X   (4.18) 

The total TM is calculated by multiplying the transfer matrix of individual layers 

consecutively. And to satisfy stress free boundary condition for the whole laminate;  

and  
in Eq. (4.17) are set to zero, hence the characteristic equation to find dispersion 

phase velocities versus wavenumbers is  

 0uA    (4.19) 

Usually Eq. (4.19) is solved numerically to find dispersion phase velocities versus 

wavenumbers or frequencies.  

 

 Instability of Transfer Matrix Method 4.1.2.

Rokhlin et al. (2011) showed that, due to refraction within one or more layers of 

the laminate, some of the plane waves can be internally reflected, meaning that their 
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partial waves will be evanescent within the layer, i.e. the propagating constant will be 

imaginary in the exponential 3i x
e


resulting in real exponential 3x

e


. Depending on the 

layer thickness and the frequency, the real term 3x
e


can be very large or very small. The 

TM formulation in itself has no deficiency. But numerical computation of this real 

exponential that rises and falls quickly suffers frequent instabilities. As shown in Figure 

4.2a,b, the instability for a 1-mm aluminum plate starts around wavenumber-thickness 

product equals 40 and frequency of 20 MHz. Whereas, for a layer of unidirectional CFRP, 

the instability starts at a considerably lower frequency and wavenumber-thickness value. 

As shown from Figure 4.2c,d, the instability starts at wavenumber-thickness 3 and over 

all the frequency range. 

 

Figure 4.2. Instability of TMM at high frequency-thickness products, (a),(b) 1-mm aluminum 

layer, (c),(d) 1-mm unidirectional CFRP lamina with 45 fibers 

(c) 

(b) (a) 

(d) 
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 Global Matrix Method (GMM) 4.1.3.

Global matrix method (GMM) was first developed by Knopoff (1964). It 

combines stresses and displacements at the boundaries of each layer with the overall 

boundary conditions and assembles them in one single matrix. Compared to Thomson-

Haskell TMM, the GMM has the advantage that it remains stable at high frequency-

thickness products. The disadvantage is that the global matrix end to be a large matrix for 

laminates with large numbers of layers. Following is a brief description of the method 

(Pavlakovic and Lowe, 2003). 

In the GMM, one matrix represents the overall system, and the general size of the 

matrix is 6( 1)n equations, where n is the number of layers including the two semi-

infinite media, as illustrated in Figure 4.3 for a three-layer composite. The corresponding 

GM is also shown in Figure 4.3. If the waves are decoupled, then the number of 

equations reduces to 4( 1)n . The assembled equations are 
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 (4.20) 

where [ ]D is a 4x4 matrix that relates the amplitudes of the partial waves to the 

displacement and stress fields in a layer;  iB  is a vector containing the amplitudes of the 

partial waves in layer i; t ,b refer to top and bottom of each layer;  ,  refer to the waves 

going downwards or upwards (Figure 4.3). 
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Figure 4.3. GMM formulation (Pavlakovic and Lowe, 2003).  

 

 Semi Analytical Finite Element Method (SAFE) 4.1.4.

SAFE is becoming popular for analyzing guided wave propagation in composites 

(Bartoli et al., 2006). SAFE is basically a finite element method discretizing the structure 

cross section allowing different cross sections to be analyzed. In the same time it solves 

analytically in the direction of wave propagation. This makes it more efficient in terms of 

computational time and memory than a complete FEM (Gavric, 1995; Sorohan et al., 

2011). The advantage of discretizing the cross section is that it allows the modeling of 

any arbitrary cross sections, e.g. track rails (Hayashi et al., 2003; Bartoli et al., 2006). 

The material is defined in FEM by stiffness matrix; this makes SAFE method very 

straight forward for application of anisotropic materials. SAFE solutions are obtained in a 
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stable manner through an algebraic eigenvalue problem, and thus do not require the root-

searching algorithms used in the TMM and GMM approaches. A brief description of the 

SAFE method is presented following Hayashi et al. (2003). The virtual work principle 

states, 

 (  T T T

V V

d dV dV   


    u t u u) ε σ  (4.21) 

where T is the transpose;  is the density; (.)d


 and (.)
V

dV are the surface and the 

volume integrations of the element, respectively. T d


 u t denotes the work done by the 

external traction t . The two terms on the right hand side of Eq. (4.21) are the kinetic 

energy and the potential energy. The wave solution along the wave propagation direction 

is represented by exponential orthogonal functions 3exp( )ii x . The next step is similar to 

FEM discretization, where we define the displacement vector at an arbitrary point 

 
1 2 3( , ) ( )exp( )jx x x i t u N U  (4.22) 

where ( , )x yN is the interpolation function, and ( )j zU is the nodal displacement vector of 

the element j. Strains are determined from the displacements and the derivatives of the 

interpolation functions with respect to 1 2,x x . Similar formulation is used for the traction 

vector t in terms of the nodal external traction vector. The stress vector is σ = cε  in 

which material stiffness matrix c is incorporated. Substituting displacements, tractions, 

strains, and stresses in Eq. (4.21) yields 

  2 2

1 2 3

j j j j j j ji     f K K K U M U  (4.23) 

where jf is the element force vector; j

iK , i = 1,2,3, and jM  are the integrals determined 

by numerical integration techniques and they are functions of geometry;  is the wave 
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number;  is the angular frequency. 
jU is the element nodal displacement vector. Results 

at common nodes are overlapped and the total system’s governing equations are 

determined. It is easy to introduce damping by considering complex form of the K

matrices. The final governing equation (Hayashi et al., 2003; Bartoli et al., 2006), 

 
22

11

2

31 2

000
   ,       ,      ,    

0 -i







 

      
         

      

A B Q p

K M UK M
A B Q p

fK UK M K

 

           (4.24) 

When the force vector p equals to zero, the eigenvalues m of the system can be 

determined and the phase velocity is given by /m mc   . Consequently; nodal solutions 

and the mode shapes can be determined. 

 

 Local Interaction Simulation Approach (LISA) 4.1.5.

LISA discretizes the system into a lattice like in the finite difference method and 

its formulation is based on elastodynamic equations. The advantage of LISA appears 

when discontinuities or changes needed to be applied to the material properties; those 

changes are treated by modifying the properties of the lattice at the corresponding 

locations. LISA was studied by Delsanto et al. (1997) for 3-D case, starting from the 

elastodynamic wave equation  

 
,( )    ( , , , 1,3)l klmn m n kS w w k l m n    (4.25) 

where S is the stiffness tensor,  is the material density, w is the displacement. Time is 

discretized; the propagation medium is discretized into a lattice with special steps 

(Ruzzene et al., 2005). Finite difference (FD) formulation is used in recursive equations 
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to represent the second order space derivatives of the neighboring points of a generic 

point O in the lattice. 

The finite difference formalism is used with the elastodynamic equation of motion 

to generate three iterative equations which allow computation of displacements 
pu at time 

1t  as a linear combination of displacement components at time t  and 1t  . A well-

organized formulation was reported in Nadella and Cesnik (2012) with experimental 

validations of LISA for both isotropic and anisotropic media. Another study (Ruzzene et 

al., 2005) compared LISA approach with experimental results using laser vibrometer 

measurements on elastic plates.  

 

Figure 4.4. Generic point O and its 18 neighboring points in the lattice (Delsanto et al., 1997) 

 

 Equivalent Matrix Method (EMM) 4.1.6.

Equivalent matrix method (EMM) is a quick and robust approach to analyze cross 

ply laminates. It uses the fact that the transformation matrix between 0 and 90 degrees is 

straight forward and can be done manually. EMM can be applied for generally orientated 

layers as well. This method was used in Monnier (2006). The code developed in this 

study was only for cross ply laminates. The procedure is as follows 
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


 (4.26) 

where s is the compliance matrix, and c is the stiffness matrix, T is the transformation 

matrix. Fill direction is the unidirectional fiber orientation, and warp is the perpendicular 

direction. The corresponding warp stiffness is calculated and the average is determined as 
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 (4.27) 

The example used in this study is T300/914 CFRP and the corresponding unidirectional 

lamina’s stiffness coefficients and the EM are  

143.8 6.2 6.2 0 0 0 78.5 6.2 6.35 0 0 0

6.2 13.3 6.5 0 0 0 6.2 78.5 6.5 0 0 0

6.2 6.5 13.3 0 0 0 6.35 6.5 13.3 0 0 0
GPa,

0 0 0 3.6 0 0 0 0 0 4.65 0 0

0 0 0 0 5.7 0 0 0 0 0 4.65 0

0 0 0 0 0 5.7 0 0 0 0 0 5.7
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  (4.28) 

4.2. DETAILS OF TMM AND STIFFNESS MATRIX DERIVATIONS 

Numerous commercial software have been developed in the past few years for 

calculating of dispersion curves of wave propagation speeds in composites, e.g. 

DISPERSE (Pavlakovic and Lowe, 2003) based on GMM; and GUIGUW (Bocchini et al., 

2011) based on SAFE method. However, we did not find a commercial code based on 

TMM. Hence, we programmed our own code continuing the effort started by Santoni 

(2010). Our TMM code has been used to calculate guided waves dispersion curves. As 

mentioned earlier, TMM has the advantage of speed, but suffers from numerical 

instability at high frequency-thickness values especially in multilayered composites. In 
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this section, we present the framework that has been followed by many researchers, e.g.,  

Schmidt and Jensen (1985); Wang and Rokhlin (2001); Glushkov et al. (2011) to 

overcome this instability problem using the stiffness matrix method (SMM). Detailed 

formulation of the approach is presented for the following cases: isotropic; orthotropic 

unidirectional fibers along wave propagation direction or perpendicular to it; and 

generally anisotropic layers. In the next section, we integrate SMM and TMM into an 

integrated approach called the stiffness transfer matrix method (STMM) and we study the 

following cases: isotropic layer, anisotropic layer, and anisotropic multilayer composite.  

 

 Transfer Matrix Method Details 4.2.1.

In this part we added extra steps for the analytical development that was covered 

in Nayfeh (1995) and Santoni (2010), we highlighted some typos that were identified in 

the original text and which are relevant for coding these equations in a computer program 

to obtain the dispersion curves. This is followed by detailed derivation of the roots of Eq. 

(4.8) for two cases: (a) an isotropic layer, and (b) orthotropic composite layer with fibers 

along 0 or 90 directions. In both cases, guided waves are decoupled into (1) symmetric 

and antisymmetric Lamb waves, (2) shear horizontal (SH) waves.  

Starting from the equation of motion, Eq. (4.5) 
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u
c u

u S

 (4.29) 

we expand the double dot product between stiffness tensor c and the gradient operator  , 
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where is order one vector (rank = 1) and is multiplied by ( : sc u ), which is a 4
th 

rank 

tensor of stiffness multiplied by inner product with ( s u = second order). The result of 

: sc u  is second order. Hence ( order one) inner product with (second order) yields an 

order one quantity that is the acceleration 
2

2t





u
vector. Details as follows, 
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  (4.30) 
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  (4.31) 

The result is 6 x 1 array (T1 T2…T6) that is equivalent to 3 x 3 tensor (T11 T12 T13… T33). 

This 3 x 3 tensor is to be multiplied by 
x y z

   
   

   
as inner product as in the 

following rule 
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The stress tensor in Eq. (4.31) becomes  
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  (4.33) 

That was the preceding step before equations (10.9), (10.18), and (10.19) in Santoni 

(2010) pp. 300. 

Applying inner product results in the complete monoclinic equations of motion, 

i.e. relations between stiffness coefficients, and second derivatives of displacements and 

accelerations, we get 
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 (4.34) 

This yields  
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Equation (4.35) proves equation (10.9) of Santoni (2010) pp. 298. 

Substituting the wave displacements solution, Eq. (4.6), in Eq. (4.35) and cancelling the 

exponential terms after derivations yields 
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After re-arranging 
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 (4.37) 

If the material coordinate and the global coordinate systems coincide (0º orientation), the 

stiffness coefficients 16 26 36 45, , ,c c c c  are equal to zero. However, we keep this equation as 

is, since those coefficients are used for oriented layers at angles other than 0º, So even for 
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orthotropic lamina at e.g. 30º, the transformation will be monoclinic and 16 26 36 45, , ,c c c c  

will appear in the analysis. 

 

4.2.1.1. Isotropic layers and decoupled case of orthotropic layers (0/90 fiber orientations) 

For the case of isotropic material, and for orthotropic layer with fiber orientation along or 

perpendicular to wave propagation direction, equations (4.37) reduce to  
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 (4.38) 

The first and the third equations of Eq. (4.38) give Lamb waves with displacements

1 3,U U . The eigenvalues are found by using the characteristic equation 
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Detailed steps of solving Eq. (4.39)are as follows, 
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This is the corrected version of Nayfeh (1995) equation (5.30) page 79. Now we prove 

the solution that was claimed to be: 
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The roots of Eq. (4.42) are 
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Upon substitution from Eq. (4.43), we get 
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Note: c11 = c33 so we kept all terms as function of c11 (only for isotropic materials). Other 

useful relations include 
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Upon substitution in Eq. (4.46), we get 
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  (4.48) 
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  (4.49) 

Upon simplification, we get, 

 
2 2

2 Under sqrt = UnSq( 2 4 ) ( 3 )
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
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   
 

 
 (4.50) 

where 
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  (4.51) 
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 (4.52) 

Finally, the roots reduce to 

 

2 2 42
2 ( + )2 ( 2 ) ( 3 )

2( 2 ) 2( 2 )

vv        


     

   
 

 
 (4.53) 
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 (4.54) 

and 

 

2 2
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 (4.55) 

Also we had proved earlier in Eq. (4.10) that the eigenvalues i  exist in pairs. So for 

Lamb-type waves we have 4 roots, i.e., 4 values for i . The mode shapes associated with 

Lamb waves can be determined from the first and third equations of Eq. (4.38), i.e.,  

 
3 2

1 1

  (for Lamb waves),      (forSH:not defined in this case)
q q

q q

q q

U U
W V

U U
   (4.56) 

q = 1,2,3, …6, but as discussed before, the roots exist in pairs, hence for Lamb wave 

solution, we have subscripts q=3 and 5. The subscript q=1 is for SH solution, which is not 

considered here. Expanding Wq for the cases of q = 3, and  q = 5 yields  
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  




   
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 (4.57) 



186 

 

and 
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 (4.58) 

Recall the values 
1 2 3, ,q q qd d d  extracted from Eq. (4.13), i.e. 

  

 
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  

 (4.59) 

Recall that 36 0c  , 45 0c  ; hence, the quantities in Eq. (4.59) associated with Lamb-type 

waves are     
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 (4.60) 
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 (4.61) 

Recalling Eq. (4.16), and cancelling SH-related terms yields 
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 (4.62) 

Upon simplification, the displacements and the stresses for Lamb-type wave solution are 

given by 
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 (4.63) 

We define our layer thickness as h, and take 3 0x  at the top “j-1”, 3x h   at the bottom 

“j”. To follow Rokhlin et al. (2011), we call the displacements and stress vector in the left 

hand side of Eq. (4.63) Pk , and we call the 4x4 matrix X. The right hand side vector can 

be decomposed into a diagonal matrix Hk multiplied by the amplitudes vector Uk  
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(4.64) 

Equation (4.64) is written with H functions as  
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 (4.65) 

i.e. in compact notations and ignoring 
 1i x vt

e
 

, 

 3 3( )  ( ) P x X H x U  (4.66) 
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At the top surface “j-1”, where 3 0x  , the H diagonal matrix becomes unit matrix,

(0) IH  , and Eq. (4.65) becomes 

 

1
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 (4.67) 

At the bottom surface “j”, where 3x h  , we substitute in 3 3i x
e
 

 by 3x h   , and we 

call the quantities H1,..H4 
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 (4.68) 

Equations (4.67), (4.68) can be written as 

  

( ) 1 1 1

( )

    ,   ITop j j j

k k k k k k

Bottom j j

k k k

P X H U X U H

P X H U

    


 (4.69) 

Pk for the top and the bottom of a layer can be combined together as 

 ( ) ( ) 1Bot j Top j

k k kP A P   (4.70) 

where the transfer matrix (TM) is defined as 

 1      or        k k k k k k k kA X H X A X H x   (4.71) 

where 1  k kx X  . The TM can be multiplied by each other for multilayers 

 1 1n nA A A A  (4.72) 

 MATLAB consumes considerable time and computation for calculating inverse of 

matrices. We found that providing MATLAB with the matrix’s inverse as elements will 
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allow us to input them as array of values. This is considered for the efforts to increase the 

speed of our code. We report here the explicit form for both matrix ‘X’ and matrix ‘x’ 
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 (4.74) 

The idea of calculating the matrix inverse before programming is applied also for SH 2x2 

matrix; coupled 6x6 matrix; and stiffness matrix method. For a single-layer problem, the 

procedure can be further simplified. The amplitudes vector U is evaluated from Eq. (4.66)  

    
1 1 1 (0) (0)Top TopU X H P H X P
     (4.75) 

The state vector P for the bottom surface is 

  
1 1 ( ) (0)Bottom TopP X H h H X P
    (4.76) 

The transfer matrix for a single layer is defined as 

  
1 1 ( ) (0)A X H h H X
    (4.77) 

The TM can be expanded as before in Eq. (4.17) as 
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 

 
   
   

 

 

Bottom Top

uu u

Bottom Top
u



 

       
    
       

u uA A

A A 
 (4.78) 

Imposing stress free boundary conditions on Eq. (4.78) yields 

 
     

   
 

0 0

Bottom Top

uu u

u



 

       
    

       

u uA A

A A
 (4.79) 

Equation (4.79) can be expanded as 

 Bottom Top

uuu A u  (4.80) 

 0Top

u A u  (4.81) 

Equation (4.81) is an eigenvalue problem that yields to eigenvalues  
j

h , j=1,2,…using 

a search of the root of the determinant 0uA   . For each eigenvalue h  we can find the 

associate eigenvector 
Top

ju . For each 
Topu , we use Eq. (4.66) to find TopP , i.e. 

 
0

Top

Top u
P

 
  
 

 (4.82) 

Equation (4.82) is substituted into Eq. (4.75) to obtain U, i.e. 

  
1 1(0) TopU H X P
   (4.83) 

The partial amplitudes vector U is now used in Eq. (4.66) to get the state vector at each 

location within the thickness. As a final check, P is to evaluated at 3 0x  to find BottomP as 

  ( ) 
0

Bottom

Bottom

Bottom

u
P X H h U



 
   

 
 (4.84) 

This value of BottomP should be the same as the value obtained from Eq. (4.80). 

Repeating the same steps for SH-solution, i.e., roots of i  where q=1 and 2; the 

equation to be solved is the middle equation of the system (4.38), i.e. 
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  2 2

66 44 0c c v     (4.85) 

for the orthotropic case, the roots of 
2 are 

 
2

66
1,2

44

v c

c





   (4.86) 

For the isotropic case, Eq. (4.86) further simplifies as follows 

 
66 11

2 2

  ,   2

2
  ,   s p

c c

c c

  

  

 

  


 

 (4.87) 

 2 2v     (4.88) 

  
2 2 2

1,2 5,62 2
1 1

s s

v v v

c c

  
 

 


          (4.89) 

Equation (4.62) reduces to  

 
 

1 3

1

1 3

2 1 1 11

*

23 31 31 12

i x
i x vt

i x

u V V U e
e

d d U e










    
     

     
 (4.90) 

The mode shape ratio Vq cannot be determined from the relation
2

1

q

q

q

U
V

U
 ; hence V1 =1, 

and Eq. (4.59) gives 

 31 1 44d c  (4.91) 

The layer transfer matrix can be formulated as 

 

1 1
12 2

1
31 31 31 31223 23

1 1 1 10

0

j j

j j

Hu u

d d d dH 

 



       
       

        
 (4.92) 

Matrix X and matrix ‘x’ can be defined as 

 
31

31 31 31

1 1 1/ 2 1/ (2 )
,         

1/ 2 1/ (2 )

d
X x

d d d

   
    

    
 (4.93) 
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4.2.1.2. General orthotropic case (arbitrary fiber orientation angle) (monotonic) 

Starting from Eq. (4.62), we can expand the exponentials in a diagonal matrix 

 

1 3

1 3

3 3

3 3

5 3

5 3

1

1 1 3 3 5 52

1 1 3 3 5 53

*
11 11 13 13 15 1533

*
21 21 23 23 25 2513

*
31 31 33 33 35 3523

1 1 1 1 1 1 i x

i x

i x

i x

i x

i x

u e

V V V V V Vu e

W W W W W Wu e

d d d d d d e

d d d d d d e

d d d d d d e

























   
   
   
     

   
   
     
   

        

 1

11

12

13

14

15

16

i x vt

U

U

U
e

U

U

U

 

  
  

   
   
   
   
   
   

    

  

  (4.94) 

For top surface “j-1” where 3 0x  , the H diagonal matrix becomes unit matrix (0) IH   

 
1

1

1

1

1
11

1

2 1 1 3 3 5 5 12

1

3 1 1 3 3 5 5 13

*
11 11 13 13 15 15 1433

* 21 21 23 23 25 25 15
13

31 31 33 33 35 35 16*

23

1 1 1 1 1 1

j

j

j

j

j

j

u
U

u V V V V V V U

u W W W W W W U

d d d d d d U

d d d d d d U

d d d d d d U



















 
   
   
   
     

    
   
     
   

       
 











 (4.95) 

For the bottom “j” we substitute 3x h   in 3i x
e
 

 to get 3x h    

 

1
1 2 3 4 5 6

2 1 1 1 2 3 3 3 4 5 5 5 6

3 1 1 1 2 3 3 3 4 5 5 5 6

*
11 1 11 2 13 3 13 4 15 5 15 633

* 21 1 21 2 23 3 23 4 25 5 25 6
13

31 1 31 2 33 3 33 4 35 5*

23

j

j

j

j

j

j

u
H H H H H H

u V H V H V H V H V H V H

u W H W H W H W H W H W H

d H d H d H d H d H d H

d H d H d H d H d H d H

d H d H d H d H d H







 
 
 
 

   
 

 
   

 
  

 

11

12

13

14

15

35 6 16

U

U

U

U

U

d H U

   
   
   
   
   
   
   
   

      

 (4.96) 

Although we usually separate the terms H1…H6 in the diagonal matrix, but we include 

them with X matrix as one matrix, because this form will be needed to derive the stiffness 

matrices. 
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X matrix is the 6x6 matrix in Eq. (4.95), while the inverse 1  k kx X  is  

15 3 13 5 13 15 35 23 33 25 5 3 33 5 35 3 25 3 23 5

15 3 13 5 13 15 35 23 33 25 5 3 33 5 35 3 25 3 23 5
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d V d V d d d d d d V V d W d W d W d W

a a b a b b

d V d V d d d d d d V V d W d W d W d W

a a b a b b

d V d V d d d d d d V V d W

a a b a
x

     

     
  

    
    



35 1 25 1 21 5

15 1 11 5 11 15 35 21 31 25 5 1 31 5 35 1 25 1 21 5

11 3 13 1 13 11 31 23 33 21 1 3 33 1 31 3 21 3 23 1

11 3 13 1 13 11 31 23

2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2

d W d W d W

b b

d V d V d d d d d d V V d W d W d W d W

a a b a b b

d V d V d d d d d d V V d W d W d W d W

a a b a b b

d V d V d d d d

a a




     
  

     
     

 
  33 21 1 3 33 1 31 3 21 3 23 1

13 15 1 15 11 3 11 13 5

35 23 33 25 1 31 25 35 21 3 33 21 31 23 5

2 2 2 2

( ) ( ) ( )     ,    

( ) ( ) ( )

d d V V d W d W d W d W

b a b b

a d d V d d V d d V

b d d d d W d d d d W d d d d W

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

 
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     

 

  (4.97) 

 Stiffness Matrix Method and the Recursive Algorithm for Multi-Layer 4.2.2.

Composite  

We follow the method of Rokhlin et al. (2011) for constructing the stiffness 

matrix (SM) instead of TM; this is done by re-arranging terms of the TM such that the 

displacements at both the top and the bottom of the j layer are in a single column matrix. 

Similarly, the tractions at both the top and the bottom of the j layer are combined in one 

single column matrix. The transfer function between them will be the stiffness matrix 
jK  

 
1 1j j

j j

u

u





    
   

   

j
K  (4.98) 

This is in contrast to the transfer matrix in which the displacements and tractions for each 

boundary are combined in the one single column vector, Eq. (4.78). The recursive 

approach to find the “total” stiffness matrix of all layers is documented in Rokhlin et al. 

(2011). That approach is not as straight forward as the one applied for finding the total 
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TM. For the total TM, we simply multiply transfer matrix of all individual layers. But the 

combined SM for two layers A and B as shown by Rokhlin et al. (2011) is 

 
   

   

1 1

11 12 11 22 21 12 11 22 120 0

1 1
2 2

21 11 22 21 22 21 11 22 12

A A B A A A B A B

B B A A B B B A B

K K K K K K K K K u

uK K K K K K K K K





 

 

                   

 (4.99) 

where 0  is the stress vector at the top surface and  2  is the stress vector at the bottom 

surface. For complete understanding of the SMM and the recursive approach, we show 

how to implement SMM in Nayfeh formulation (Nayfeh, 1995). Recall the X matrix of 

Eq.(4.63), where for simplicity, we consider the case of Lamb waves only (SH waves are 

decoupled); the X matrix is reduced to 4 x 4. Recalling Eqs. (4.67) and (4.68), i.e. the 

displacements and stress equations at the top and the bottom of a layer. The stiffness 

matrix is then constructed by combining all stresses terms in one vector and displacement 

terms in another, 
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 (4.100) 
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 (4.101) 

Define the 4x4 matrix in Eq. (4.100) as Y, and the 4x4 matrix of Eq. (4.101) as Y2; The 

layer SM is determined from 

 
3 3

3 3

0 01

2 
j j

x x

x h x h

 
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   
   

   
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σ u
Y Y

σ u
 (4.102) 
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where 
1

2 
SM = Y Y . Then, the total SM as reported in Rokhlin et al. (2011) and Eq. (4.99) 

is achieved by the recursive algorithm. For the sake of implementation into Nayfeh (1995) 

formulation, we constructed a flow chart of Rokhlin algorithm in (Figure 4.5) that can be 

used along with Eqs. (4.100) and (4.101) as a recursive algorithm in the coding of SM in 

a computer program.  

 

Figure 4.5. Flow chart of total SM recursive algorithm.  

 

We include the intermediate steps of the proof of Eq. (4.99), as it was not reported in 

Rokhlin et al. (2011). The stiffness matrices for individual layers A and B are defined as 

 
0 0 1 111 12 11 12

1 1 2 221 22 21 22

       ,         
A A B B

A A B B

u uK K K K

u uK K K K

 

 
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           

          
 (4.103) 

find  SM1, 

TSM=SM1 
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z=mat

Yes 

No SMZ 

TSM(1:2,1:2)=TSM(1:2,1:2)+ TSM(1:2,3:4)  [SMZ(1:2,1:2)-
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-1

 x TSM(3:4,1:2) 
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 x 
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TSM(3:4,3:4)]
-1

 x SMZ(1:2,3:4) 
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End 

Output TSM 
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The notation of displacements and stresses are shown in Figure 4.6; expanding system of 

equations in (4.103), yields 

 
0 11 0 12 1

A AK u K u    (4.104) 

 
1 21 0 22 1

A AK u K u    (4.105) 

 
1 11 1 12 2

B BK u K u    (4.106) 

 
2 21 1 22 2

B BK u K u    (4.107) 

 

Figure 4.6. Notation of subscripts for displacements and stresses at top and bottom of each layer. 

 

Rearranging Eq. (4.106) and substituting 1  from Eq. (4.105) yields 

 
11 1 1 12 2 21 0 22 1 12 2

B B A A BK u K u K u K u K u      (4.108) 

  11 22 1 21 0 12 2

B A A BK K u K u K u    (4.109) 

    
1 1

1 11 22 21 0 11 22 12 2

B A A B A Bu K K K u K K K u
 

     (4.110) 

Substituting the displacement 1u from Eq. (4.110) into Eq. (4.104), we get 

    
1 1

0 11 0 12 11 22 21 0 12 11 22 12 2

A A B A A A B A BK u K K K K u K K K K u
 

      (4.111) 
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        

      
 (4.112) 

We get the stress at the bottom 2  by substituting Eq. (4.110) into Eq. (4.107) as 

    
1 1

2 21 11 22 21 0 22 21 11 22 12 2

B B A A B B B A BK K K K u K K K K K u
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 (4.113) 
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Combining Eqs. (4.112) ,(4.113) will result in the form reported by Rokhlin et al. (2011) 
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 
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 (4.114) 

For getting the guided waves roots for dispersion curves, we impose stress-free boundary 

conditions at the top and the bottom of the overall system, i.e. 

 
0 0

0N





   
   
  

 (4.115) 

The problem can be solved either by setting SM 0 , or by solving the homogeneous 

system of equations. For the 6x6 matrices form (where SH waves are coupled with 

Lamb-type waves), the following flow chart can be used for coding the algorithm to 

determine the total SM for multi-layer case. 

 

Figure. 4.5(2). Flow chart of total SM recursive algorithm for 6x6 matrix case with three types of 

waves Symmetric, antisymmetric Lamb waves and shear horizontal waves 

 

  

find  SM1, 

TSM=SM1 

Start 

Input# layers 

“mat” 

Z=1 (1
st
 layer) 

Z=Z+1 

z=mat

Yes 

No 
SMZ 

TSM(1:3,1:3)=TSM(1:3,1:3)+ TSM(1:3,4:6) x [SMZ(1:3,1:3)-

TSM(4:6,4:6)]
-1

 x TSM(4:6,1:3) 

 

TSM(1:3,4:6) = -TSM(1:3,4:6) x  

[SMZ(1:3,1:3)-TSM(4:6,4:6)]
-1

 x SMZ(1:3,4:6) 

 

TSM(4:6,1:3) = SMZ(4:6,1:3) x  

[SMZ(1:3,1:3) -TSM(4:6,4:6)]
-1

 x TSM(4:6,1:3) 

 

TSM(4:6,4:6) = SMZ(4:6,4:6) - SMZ(4:6,1:3) x 

[SMZ(1:3,1:3) -TSM(4:6,4:6)]
-1

 x SMZ(1:3,4:6) 
 

End 

Output TSM 

“Total SM” 
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4.3. STIFFNESS MATRIX METHOD (SMM) AND STABLE FORMULATION 

The Transfer matrices developed earlier had the issue of having exponentials (the 

exponents’ function of the coordinate 3x ) either on one column or the diagonal, recalling 

the abstract form by Rokhlin et al. (2011) 

 

1

1

1

j j

j jj j

u uP H P P H P

D H D D H D 


     



     


      
      
      

 (4.116) 

where P represent the coefficients associated with displacements, i.e. 1 values and W3, W5 

of Eq. (4.63), while D are the d13,d15…d25 associated with stresses. 

The way the equations are rearranged in the SM needs to consider removing H sub 

matrices from these critical locations (at one column or the diagonal) 

 

1

1 1j j

j jj j

uD D H P P H

uD H D P H P






     

 

     

      
      
      

 (4.117) 

Our objective here is to formulate the equations in the form of 4x4 matrix and in the next 

section as 6x6 matrix in the form which Rokhlin recommended; so it is easy to be coded, 

instead of writing the matrices in compact forms. In the following pages, we make the 

analytical development needed to get the 4x4 SM form and show that H matrices are no 

longer on diagonal or single column. 

The way this is done is by factoring out other exponentials that are going to be 

merged with the displacement amplitudes of the partial waves, i.e.U1q. By doing that, we 

eliminate the growing nature of the exponentials as the number of layers increase, or as 

the wavenumber-thickness increases.  
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 Stable STMM Algorithm for cases of Decoupled Lamb /SH waves in Single, 4.3.1.

Multi Isotropic Layers and Orthotropic Layers (0/90 fiber orientations) 

The deficiency in the numerical evaluation of the TMM (Rokhlin et al., 2011) can 

be eliminated if the H matrices are removed from both diagonal and at single column. 

We expand the system of Eq. (4.64) as 

 

3 3 3 3 5 3 5 3

3 3 3 3 5 3 5 3

3 3 3 3 5 3 5 3

3 3 3 3

1 13 14 15 16

3 3 13 3 14 5 15 5 16

*

33 13 13 13 14 15 15 15 16

*
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i x i x i x i x

i x i x i x i x

i x i x i x i x

i x i x

u U e U e U e U e

u W U e W U e W U e W U e

d U e d U e d U e d U e

d U e d U e

   

   

   

 





 

 

 



   

   

   

   5 3 5 3

25 15 25 16

i x i x
d U e d U e

 


 (4.118) 

Re-arranging yields, 

 

       
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*
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


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  


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
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     1 5 35

16 25

jj
i x zi z

U e d e
  



 (4.119) 

Now we rearrange the displacements and stresses of Eq. (4.119) in a matrix form. Note 

that 
1j j jz z h   . For the top surface “j-1” of the layer, i.e. 

3 1jx z  (Figure 4.1)  

 

3 5 3 1

3 5 3

3 5 5 1

3 5 5

1
13

1

1
3 3 5 5 143

1

33 13 13 15 15 15
1

13
23 23 25 25 16

1 1j j j

j j j

j j j

j j j

i h i h i z
j
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j
i h i h i z

e e U eu

W W e W W e U eu

d d e d d e U e

d d e d d e U e

  

  
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  


















    
   

         
   
         







 (4.120) 
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For the bottom surface “j”, i.e. 
3 jx z   

 

3 5 3 1

3 5 3

3 5 5 1

3 5 5

13
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3 3 5 5 143

33 13 13 15 15 15

13
23 23 25 25 16

1 1j j j

j j j
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    
          

 (4.121) 

The right hand side array of the partial wave amplitudes is always the same and will be 

eliminated later. Equations (4.120) and (4.121) are rearranged such that we keep 

exponentials containing the layer thickness at one side of the matrix. This is done by 

rearranging the elements of the partial wave amplitudes array, without changing the rows 

sequence of left hand side arrays, Eq. (4.120) will be rearranged as 
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j j j
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



 (4.122) 

Call the modified array of the partial wave amplitudes{ }U .We kept the elements of { }U

array to show how they are rearranged. Equation (4.121) will be rearranged in the same 

way as follows 
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j
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


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       
  
      

U  (4.123) 

So far, the instability sources still exist by having H sub matrices, i.e., elements with 

exponentials containing layer thickness 
jh in complete columns; however, when we 
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formulate the SM by collecting all the stresses in one array and all the displacements in 

another array, we get 

 

3 5

3 5

3 5

3 5

3 5
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 (4.124) 

The product of the two 4x4 matrices is the SM, and to compare the system with Rokhlin 

et al. (2011) formulation, we condense the system as 

 

1

1 1j j

j jj j

uD D H P P H

uD H D P H P






     

 

     

      
      
      

 (4.125) 

The key point is that H matrices are no longer in the main diagonal nor in a single column. 

This prevents getting singularity cases when diagonally-placed exponentials containing 

jh approach very small numbers, so neither the left 4x4 matrix will be singular nor the 

right inverse of 4x4 matrix will be undefined.  

The above formulation was coded and applied to an isotropic layer of aluminum; 

this case solved with TMM was shown before in Figure 4.2a,b with instability starting at 

20 MHz. The new results obtained with SMM and STMM are shown in Figure 4.7. The 

SMM solely is robust and stable at high frequency-thickness values; but it does not find 

the roots “accurately” in low frequency range. Hence, applying the combined TMM and 

SMM, (or stable combined STMM), is the best way to get the desired results. 
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Figure 4.7. Stable STMM for aluminum layer: (a) unstable TMM results in wavenumber-

frequency domain; (b) unstable TMM results in frequency-speed domain; (c) stable 

SMM results in ξh-freq domain; (d) stable SMM results in freq-c domain; (e) stable 

robust STMM in ξh-freq domain; (f) stable robust STMM in freq-c domain. The 

frames indicate the regions of numerical instability. 
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The decoupled SH waves solution is 

 
1 3
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2 1 1 11
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 (4.126) 

By following the same procedure, expanding the equations of the system (4.126), 
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 (4.128) 

Now we rearrange displacement and stress in matrix form for the upper surface “j-1” of 

the layer, i.e. 
3 1jx z  and for the bottom surface “j”, where 

3 jx z  
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 (4.129) 

For these simple matrices, we can just develop the SM as 
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 (4.130) 

The product of the two 2x2 matrices is the SM, and it is matching the system of Rokhlin 

et al. (2011) formulation, the H matrices are no longer on the main diagonal nor in a 

single column. This prevents getting singularity cases when the exponentials containing 

1 jh approach very small numbers, or big ones; so neither the left 2x2 matrix will be 

singular nor the inverse of 2x2 matrix will be undefined.  
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 Coupled Guided Waves Case for Orthotropic Layer with Arbitrary Fiber 4.3.2.

Orientation Angles (Monoclinic) 

Expanding the system of equations in (4.94), we can write 
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Rearranging yields, 
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Rearranging the displacements and stresses of Eq. (4.132) in a matrix form, we obtain: 

For the top surface “j-1” of the layer, i.e., 
3 1jx z  , 
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  (4.133) 

For the bottom surface “j”, i.e., 
3 jx z ,  
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  (4.134) 

The right hand side array of the partial wave amplitudes is always the same and will be 

eliminated later. Equations (4.133), (4.134) are rearranged such that we keep 

exponentials containing the layer thickness at one side of the matrix. This is done by 

rearranging the elements of the partial wave amplitudes array without changing the rows 

sequence of left hand side arrays, Eq. (4.133) will be rearranged as 
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  (4.135) 

Call the modified array of partial wave amplitudes { }U . We kept the elements of { }U

array to show how they are rearranged. Equation (4.134) will be rearranged in the same 

was as follows 
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(4.136) 

So far, the instability sources still exist by having H sub matrices, i.e., elements with 

exponentials containing layer thickness 
jh in complete columns; however, when we 

formulate the SM by collecting all the stresses in one array and all the displacements in 

another array, we get 
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(4.137) 

The product of the two 6x6 matrices is the SM. Comparing the system with Rokhlin et al. 

(2011) formulation, the system condenses to  
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 (4.138) 

 

4.4. FRAMEWORK OF STMM AND SEPARATING MODES BY MODE TRACING 

Root solving methods are mostly numerical and iterative; it was reported in Lowe 

(1995); Pavlakovic and Lowe (2003) that roots can be determined in a robust way by 

varying the phase velocity at fixed frequency or vice versa. An initial guess is needed and 

root tracing is achieved by linear extrapolation of two roots. Afterwards, when sufficient 

number of roots is determined, a quadratic extrapolation is used. We used this approach 

on our roots to get initial separation for individual modes; later on, mode shapes can be 

used to identify similar wave types, e.g. symmetric Lamb waves, antisymmetric Lamb 
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waves, and SH waves, which in turn are symmetric and antisymmetric. We show in 

Figure 4.8 how to separate modes based on their modeshapes solution, once the roots of 

dispersion wavenumber-frequency are obtained; the displacement fields (e.g., xu ) for the 

top surface and the bottom surface can be evaluated. The displacements ,T BU U  represent 

the x-displacements of the top and the bottom respectively.  

 

Figure 4.8. The technique for separating modes based on mode shapes 

We exemplify the procedure of separating modes by the cubic splines 

extrapolation for a unidirectional T300/914 CFRP layer with the material properties in Eq. 

(4.28). We used just one single unidirectional layer and obtained the plots in Figure 4.9a 

for 7h  . Because the fibers are orthotropic with fiber orientation angle zero with 

respect to wave propagation direction; the SH-wave solution is decoupled from Lamb-

type waves (Figure 4.9). The instability of TMM solution for high h  values is shown in 

Figure 4.11a. However, the TMM gives a good and accurate solution in the region with 

h  less than  7. An exponential function was used to separate the frequency- 
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wavenumber domain into two regions. The separation function used was 1.16.2( 1)xy e  , 

where y is the frequency axis, and x is the wavenumber axis. The SMM solution alone 

showed a stable solution in the region 7h  . However, it did not give a correct solution 

pattern at the low wavenumber region (Figure 4.10). Hence, a combined solution by 

TMM and SMM is used to obtain a stable and correct solution over the entire solving 

domain. We call this combined method the stiffness transfer matrix method (STMM). 

Figure 4.11b shows the complete frequency - wavenumber solution using STMM. 

Figure 4.11c,d show phase velocity and group velocity solutions, respectively. 

 

Figure 4.9. The TMM wavenumber-frequency dispersion plots for a unidirectional CFRP layer: 

(a) the raw data or roots; (b) separation of modes based on cubic extrapolation  

 

Figure 4.10. SMM solution over the whole domain for a unidirectional CFRP layer.  
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Figure 4.11. Dispersion plots of a unidirectional CFRP layer: (a) instability of TMM and mode 

tracking between TMM solution, then SMM solution; (b) complete solution using 

STMM; (c) complete phase velocity solution using STMM; (d) complete group 

velocity solution using STMM.         Lamb wave solution, - - -  Shear horizontal 

wave solution 

 

Similar analysis was performed for unidirectional CFRP lamina with fibers at 45º 

angle from wave propagation direction. Figure 4.12a shows the instability of TMM and 

the STMM combined solution using TMM to the left of the separation line and SMM to 

the right of the separation line. Figure 4.12b shows the complete STMM frequency - 

wavenumber solution. Figure 4.12c,d show the phase velocity solution of TMM and the 

STMM,  respectively. Figure 4.12e,f show the group velocity solution of TMM and 

STMM, respectively.  
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Figure 4.12. Dispersion plots of a unidirectional CFRP layer with 45º fibers: (a) instability of 

TMM and mode tracking between TMM solution, then SMM solution; (b) complete 

solution using STMM; (c) phase velocity using only the stable region of the TMM 

solution (d) complete phase velocity solution using STMM; (e) group velocity using 

only the stable region of the TMM solution;  (f) complete group velocity solution 

using STMM.        Lamb wave solution, - - - Shear horizontal wave solution 

 

The last case study is applying STMM to anisotropic multilayer composite laminate.  
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We used cross-ply CFRP composite laminate [0/90] to show the STMM solution 

in the freqh  domain. The phase and group velocities are shown in the comparative 

study section. The layer of 0º fibers has the same stiffness coefficients of previous 

unidirectional CFRP. The layer of the 90º fibers has stiffness coefficients that can be 

calculated by transformation matrix. Figure 4.13a shows the freqh  roots of the final 

solution. Figure 4.13b shows the separated modes in the freqh  domain. 

 

Figure 4.13. Dispersion plots of cross ply fiber composite laminate [0/90]: (a) root finding; (b) 

complete wavenumber-frequency solution using STMM.          Lamb wave solution, 

- - -  Shear horizontal wave solution 

 

4.5. STMM MATLAB GRAPHICAL USER INTERFACE 

A MATLAB graphical user interface (GUI) has been developed and the STMM 

procedure was coded for quicker and easier analysis (Figure 4.14). First, the unstable 

TMM solution can be loaded either in wavenumber-frequency domain or frequency-

phase velocity domain.  The software aims at providing displacement and stress mode 

shapes at any given root of dispersion plots. STMM button is used to provide the 

complete stable dispersion curves in frequency-phase velocity domain, as shown in 
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to display displacements and stresses modeshapes. It is noticed that stresses 32 13 33, ,  

vanish at the plate surfaces. This agrees with stress-free boundary condition. 

 

Figure 4.14. LAMSS STMM graphical user interface for dispersion curves analysis in 

composites 

 

  

Figure 4.15. Modeshapes for unidirectional CFRP layer with 0º fibers: (a) SH1 mode, (b) S0 

mode. 

 

4.6. COMPARATIVE STUDY BETWEEN SEVERAL METHODS FOR CALCULATING 

ULTRASONIC GUIDED WAVES IN COMPOSITES 

In this section, results are shown for dispersion curves (phase velocities, and 

group velocity curves). The material used as a case study is T300/914 CFRP used in 

(a) (b) 
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DISPERSE software manual (Pavlakovic and Lowe, 2003) and other studies (Bartoli et 

al., 2006; Santoni, 2010). The unidirectional layer stiffness matrix values are the values 

of uniC  in Eq.(4.28), the density is 31560  kg/m  . These material properties are used for 

unidirectional case studies as well as cross ply cases. DISPERSE software is used for 

GMM (with both phase and group velocity curves). GUIGUW computer package, which 

was used in (Bartoli, et al., 2006) and is available online, was used for SAFE method; the 

core GUIGUW code was used with help from the developers instead of the online 

interface. Both TMM and STMM are developed in our group. Finally results reported for 

LISA are reported from literature (Nadella & Cesnik, 2012) as we did not find yet a turn 

key code based on LISA. 

 

 Unidirectional Fiber Laminated Composites along Different Angles 4.6.1.

This section presents predicted dispersion curves of a one layer unidirectional 

CFRP composite with fiber angle cases of 0º, 30º, 45º, 60º, and 90º with respect to wave 

propagation direction. SAFE and GMM dispersion curves of Table 4.1 are exactly 

reported in Pavlakovic and Lowe (2003) pp155 and Bartoli et al. (2006) pp698. Both 

GMM and SAFE are matching very well. Our developed TMM and STMM matched 

exactly with GMM and SAFE. S0 mode has the initial speed around 9500 m/s. SH0 mode 

has the speed of 2000 m/s. DISPERSE automatic tracing misses SH0. As the angle 

between wave propagation direction and the fiber increases; e.g. 30   in Table 4.2; the 

material becomes more compliant. We can see the phase velocity of S0 mode (at near 

zero frequency) drops from 9000m/s to 8000 m/s; also group velocity drops from 9500 

m/s to 8200 m/s.   
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Table 4.1. T300/914 unidirectional fiber laminate with fiber along wave propagation direction U0 

( 0  ) 

Phase velocity  Group velocity 

 GMM (DISPERSE) 

 

SAFE (GUIGUW) 

STMM (LAMSS) 

 

 

GMM (DISPERSE) 

 

SAFE (GUIGUW) 

 

STMM (LAMSS) 
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Table 4.2. T300/914 unidirectional fiber laminate U30  ( 30  ) 

 

  

Phase velocity  Group velocity  

GMM (DISPERSE) 

 

SAFE (GUIGUW) 

STMM (LAMSS) 

 

GMM (DISPERSE) 

 

SAFE (GUIGUW) 

 

STMM (LAMSS) 
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Table 4.3. T300/914 unidirectional fiber laminate U45 ( 45  ) 

Phase velocity Group velocity  

GMM (DISPERSE) 

 
SAFE (GUIGUW) 

STMM (LAMSS) 

 
 

GMM (DISPERSE) 

 
SAFE (GUIGUW) 

 

STMM (LAMSS) 

 

As fiber angle increases to 45º, the phase and group velocities further reduce to 7000 

m/s. SH0 tends to be more dispersive and not having the constant speed with frequency. 
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Table 4.4. T300/914 unidirectional fiber laminate U60 ( 60  ) 

Phase velocity Group velocity  

GMM (DISPERSE) 

 
SAFE (GUIGUW) 

 
STMM (LAMSS)  

 
 

GMM (DISPERSE) 

 
SAFE (GUIGUW) 

STMM (LAMSS)  

 

SH0 at fiber orientation 60º degrees is also tends to be more and more dispersive, the 

phase and group velocities of S0 at near zero frequency further reduce to 5000 m/s. 

DISPERSE misses S0.  
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Table 4.5.T300/914 unidirectional fiber laminate U90 ( 90  ) 

Phase velocity Group velocity 

GMM (DISPERSE) 

 

SAFE (GUIGUW) 

 
 

STMM (LAMSS) 

 

GMM (DISPERSE) 

 
SAFE (GUIGUW) 

 
 

STMM (LAMSS) 

 

  

 

  



220 

 

As the fiber orientation becomes exactly perpendicular to wave propagation 

direction; SH0 returns to non-dispersive nature, i.e., SH waves are decoupled from the 

other guided waves in the solution.  

DISPERSE misses S0 mode in the 90  case. In this case, the speeds are the 

smallest compared to other angles, because for the fibers along 90 degrees the material is 

in the most compliant situation along wave propagation direction. 

A comparison between LISA method, and DISPERSE (i.e., GMM) is reported in 

Nadella and Cesnik (2012). The material used is unidirectional IM7 Cycom 977-3 

multilayer unidirectional laminate with 1.5 mm thick. The authors compared A0 mode 

using group velocity dispersion curves (Figure 4.16). 

 

Figure 4.16.LISA vs. GMM for 1.5-mm thick unidirectional IM7 Cycom 977-3 composite 

(Nadella and Cesnik, 2012) 

 

 Cross Ply Laminated Composites 4.6.2.

In this subsection, we study two cases: 2-layer [0/90] laminate with each layer 

0.5-mm thick and 4-layer [0/90]s with each layer 0.25-mm thick. The material is again 

T300/914. Beside GMM and SAFE, The equivalent matrix method (EMM) was also used 

for comparison.   
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Table 4.6. Two layer 1-mm T300/914 cross ply fiber laminate [0/90] 

Phase velocity Group velocity 

GMM (DISPERSE) 

 
SAFE (GUIGUW) 

 
STMM (LAMSS) 

 

GMM (DISPERSE) 

 

SAFE (GUIGUW) 

 

STMM (LAMSS) 
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Table 4.7. Four-layer 1-mm T300/914 cross ply fiber laminate [0/90]s 

Phase velocity Group velocity 

GMM (DISPERSE)  

SAFE (GUIGUW) 

 
STMM (LAMSS) 

 

GMM (DISPERSE) 

 
SAFE (GUIGUW)  

 

STMM (LAMSS) 

 

The case of cross ply of [0/90]s, i.e. 0/90/90/0 (Table 4.7) shows slight different results 

than the simple 0/90 case (Table 4.6). On the other hand, the EMM predicts the exact 

same result for both cases (Figure 4.17) because it just averages the properties of the 0-
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direction fibers and 90-direction fibers; the EMM does not account the difference 

between the 2-layer 0/90 and the 4-layer [0/90]s cases. Figure 4.17 shows EMM result 

for [0/90] CFRP. Although EMM predicts the starting points of S0 and SH0 fairly close, 

it is obviously different from the actual predictions of a system of 2-layers reported in 

Table 4.6.  

 

Figure 4.17. Equivalent Matrix method for [0/90] T300/914 CFRP laminate 

 

 Quasi Isotropic Composite Laminate 4.6.3.

The material used for this case study is T800/924 CFRP following the example in 

Pavlakovic and Lowe (2003)  pp. 158. The laminate stack orientation is defined as [+45/-

45/0/90]s. The layer material properties are  

3
11 33 13 13 23161  GPa , 9.25  GPa , 6  GPa , 0.34 , 0.41 ,  1500 kg/mE E G        

 

The corresponding stiffness coefficients are 

11 12 13 22 33

23 44 55 66

164.7  GPa  ,   5.45  GPa  ,  11.3  GPa

4.7  GPa     ,   3.3  GPa             ,   6  GPa

C C C C C

C C C C

    

   
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The results are presented in Table 4.8. DISPERSE and SAFE results match well. It is 

noticed also that SH0 is dispersive for such complicated structure. 

 

Table 4.8. T800/924 Quasi isotropic composite laminate [+45/-45/0/90]S 

Phase velocity Group velocity 

GMM (DISPERSE) 

 
 

SAFE (GUIGUW) 

 

GMM (DISPERSE) 

 
 

SAFE (GUIGUW) 
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4.7. EXPERIMENTAL VS. PREDICTIVE FINITE ELEMENT CASE STUDY 

The objective of this part is to measure the experimental group velocities of 

guided waves propagating in a composite laminate and compare them with results from 

predictive tools, (DISPERSE, STMM, and FEM) with the aim of simulating guided 

waves and the propagating scheme for non-isotropic materials. 

 Experimental Study 4.7.1.

The structure investigated is a woven GFRP plate in an epoxy resin. The plate 

dimensions were 910 x 620 mm and 1-mm thickness. It has 6 plies of glass fiber woven 

fabric. The material density is 1960 kg/m
3
. The layer stiffness matrix [C] provided 

(Pollock et al., 2012) is 

 

28.7 5.7 3 0 0 0

5.7 28.7 3 0 0 0

3 3 12.6 0 0 0
GPa

0 0 0 4.9 0 0

0 0 0 0 4.9 0

0 0 0 0 0 4.1

C

 
 
 
 

  
 
 
 
 

 (4.139) 

The stiffness matrix is for the woven system directly, i.e. the stiffness coefficients 

are already considering the fibers in 0 and 90 directions. As we can see C11=C22=28.7 

GPa. Because of that, we don’t need to use EMM to find equivalent system of the 0/90 

system, instead, we can input stiffness matrix directly in a unidirectional code with 

( 0  ). 

Two PWAS transducers were bonded on the structure; we used 7 mm x 7mm x0.2 

mm PWAS as the transmitting transducer. The receiver was 15 mm x 15 mm x 1 mm SH-

PWAS poled in thickness shear direction (for more details, please see Chapter 3: SH-
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Coupled PWAS). We used SH-PWAS to be able to detect the SH waves that may be 

generated through mode conversion in the composite material. The experimental setup is 

shown in Figure 4.18. 

As an application for predictive tools of guided wave propagation in composites, 

we show in Figure 4.19 the comparison between DISPERSE and our STMM for 

calculating group velocities up to 2000 kHz. However, our experimental work was done 

up to 300 kHz, where we could distinguish the three fundamental modes, S0, A0 and SH0. 

The transmitter PWAS was excited using 3-count tone burst signals with center 

frequency from 1 kHz to 300 kHz. 

 

Figure 4.18. Experimental setup for guided wave propagation between in-plane PWAS and SH-

PWAS in 1-mm thick GFRP plate 
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Illustration of 
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Figure 4.19. Group velocities in 1-mm woven GFRP plate, (a) DISPERSE, (b) LAMSS STMM  

 

The distance between the two PWAS transducers is 120 mm, and the 

experimental group velocity was calculated by dividing the distance by the time of flight 

measured between the excitation signal and the received signals. The results are shown in 

Figure 4.20. This study was done for only one direction (along 0 direction). To see the 

wave propagation pattern, we constructed an FEM model. 

 

Figure 4.20. Experimental group velocities of guided waves in 1-mm thick woven GFRP plate, 

analytical predictions ___, experimental □□□ 
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 Finite Element Model for Guided Wave Propagation in GFRP 4.7.2.

The finite element model plate dimensions were 450 mm x 450 mm x 1-mm. The 

material was GFRP. Two PWAS transducers were bonded in the middle as shown in 

Figure 4.21. We used COMSOL Multiphysics coupled-field element for piezoelectric 

transducers; this allowed us to apply excitation voltage as the input excitation and receive 

the signal at the SH-receiver PWAS as voltage (rather than input a mechanical wave 

excitation or force excitation). The excitation signal was 3-count tone burst with 10 V 

signal amplitude and center frequency of 48 kHz. The reason for selecting this relatively 

low frequency is to satisfy convergence and accuracy requirements with the available 

computational resources. The model was run for 200 μs  with 0.5 μs  time step. The 

structure domain was divided into 9 domains as shown in Figure 4.21 such that the 

meshing of the domain in the middle was done by free mesh and then extruded by two 

elements through the thickness (i.e. 0.5-mm mesh size through thickness). The meshing 

of the other external domains was done by structural mesh and was extruded as two 

elements through thickness. The mesh size that was used in this study was 3-mm for 

GFRP material. Coupled field elements for the PWAS transducers were meshed by 1-mm 

mesh size and 4 elements through the thickness of each PWAS (i.e. 0.25-mm mesh size 

through the thickness of 1-mm thick SH-PWAS, and 0.05-mm mesh size through the 

thickness of the 0.2-mm PWAS1.) 
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Figure 4.21. FEM for guided wave propagation between PWAS1 and SH-PWAS7 on GFRP 

 

For getting accurate results, it is required that for each mode, the number of 

elements per wavelength is 10. recalling Figure 4.20, and for 48 kHz excitation, the 

speeds for S0, SH0, and A0 are 3800m/s, 1500m/s, and 1000 m/s respectively; this 

correspond to wavelengths 80, 31, and 21 mm respectively. The critical mode is A0, 

which enforces the 2-mm mesh size requirement. But we used 3-mm mesh size because 

of the available computational resources. We would expect that the results for 2-D 

solution for A0 mode would not look very smooth, as shown in Figure 4.22. For 

convergence, the required time step should be (1/ 30 )cf  which in our 48 kHz case 

should be 0.7 μs ; we used 0.5 μs time step and 200 μs total simulation time. The 

PWAS1 SH-PWAS7 

120 mm 
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simulation was done on dual 2.8 GHz XEON 2ML2 processor, and used up to 96 GB of 

RAM; the simulation took 9 hours. 

 

Figure 4.22. 2-D simulation results for wave propagation in1-mm thick woven GFRP plate at, (a) 

particle displacement inplane Y direction, (b) inplane X direction, (c) out of plane Z 

direction, (d) out of plane strain tensor  

 

Figure 4.23. FEM vs. experimental results for guided wave propagation in 1-mm thick woven 

GFRP  
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The 2-D simulations allowed us to see the wave propagation patterns. Figure 

4.22a,b show the symmetric S0 and antisymmetric A0 modes very clearly. A0 mode is 

the mode with the smaller wavelength because of its lower wave speed. The fact that both 

S0 and A0 have inplane components of particle motion allowed the simulation to capture 

both S0 and A0 for inplane displacement plots. Whereas the out of plane (the Z 

component) of the symmetric S0 mode is very weak, as we can see from Figure 4.22c in 

which S0 mode almost did not exist.  

Figure 4.22c shows the A0 mode out of plane displacement very clearly at 100 

μs . A small excitation can be seen around the receiver SH-PWAS, while it is just a 

receiver PWAS and was not used as excitation source; this can be explained by the 

active/passive behavior of the PWAS transducer. While A0 mode excited by PWAS1 did 

not yet arrive at SH-PWAS, the other faster modes (e.g. S0 and SH0) had already arrived 

and interacted with the transducer, mode converted as A0, and the SH-PWAS appeared 

as if it was exciting A0 mode towards PWAS1. 

Figure 4.22d shows the out of plane component of the strain tensor; we selected 

this variable as it was found to be the best one showing most of the interesting modes and 

mode conversion phenomenon. Finally, the fact that the GFRP plate was woven showed 

that the propagating waves were not propagating in circles, but rather in diamond-shaped 

pattern. This is because the material stiffness properties are identical in 0º and 90º 

directions, but the material is less stiff in the 45 directions. 

Figure 4.23 shows the experimental and FEM-predicted signals. The S0, SH0 and 

A0 modes were identified in the signal. The A0 mode had good agreement with 
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experimental results; the S0 mode predicted by FEM and measured experimentally were 

fairly close; but the SH0 at this particular frequency was not very clear experimentally.  

A final observation can be concluded from Santoni (2010). Figure 4.24 shows that all the 

guided wave beyond 500 kHz are extremely damped out in such woven GFRP composite; 

this indicates the practical range that we can use for predicting wave propagation speeds 

and SHM applications. 

 

 

Figure 4.24. Tuning experimental data for wave propagation in GFRP composite, □□□  A0 mode, 

ooo S0 mode; Δ Δ Δ SH0 mode (Santoni, 2010). 

 

4.8. SUMMARY AND CONCLUSIONS 

Different algorithms can be used for calculating dispersion wave speeds in 

composites. This study has briefly covered the mathematical formulation of each method. 

This work focused on the transfer matrix method (TMM) and the efforts for generating a 

stable robust algorithm. TMM is a convenient technique for wave propagation analysis in 

layered media; its advantage is that it condenses the multi-layered system into four 

equations (for the case of decoupled SH waves) or six equations relating the boundary 
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conditions at the first and the last interfaces. It eliminates all other intermediate interfaces; 

this saves a lot in terms of computation and complexity. One drawback TMM suffers is 

the numerical instability of the solution at large frequency-thickness product values. 

There have been many publications proposing reformulation of TM equations to avoid 

this problem. One method is based on using stiffness matrix (SM) instead of TM; this is 

done by rearranging terms of the TM such that displacements at both the top and the 

bottom of the layer are in a single column matrix, and similarly the stresses.  

Global matrix method (GMM) combines stresses and displacements at the 

boundaries of each layer with the overall system boundary conditions and assembles 

them in one single matrix. GMM has the advantage that it remains stable at high 

frequency-thickness products. The disadvantage is that the GM turns out to be a large 

matrix for laminates with large numbers of layers. Semi Analytical Finite Element (SAFE) 

discretizes the structure cross section allowing different cross sections to be analyzed 

because of the finite element discretizing in cross section. In the same time it solves 

analytically in the wave propagation direction; this makes SAFE more efficient in terms 

of computational time and memory than a complete FEM. In general, the material is 

defined in FEM by stiffness matrix; this makes SAFE method a very straight forward for 

application for anisotropic materials. SAFE is becoming popular for analyzing guided 

wave propagation in composites. Local Interaction Simulation Approach (LISA) 

discretizes the system into a lattice like the finite difference method; its formulation is 

based on the elastodynamic equations. The advantage of LISA appears when 

discontinuities or changes need to be applied to the material properties; those changes are 

treated by modifying the properties of the lattice at the corresponding locations. 



234 

 

Equivalent matrix method (EMM) is a quick approach for analyzing cross ply laminates 

due to the fact that transformation matrix between 0 and 90 degrees is straight forward 

and can be done manually. However it does not catch the differences between different 

layup sequences of 0 and 90 fiber layers, such as 0/90/0/90 and 0/90/90/0. 

The instability of TMM was discussed in details, and the mathematical 

formulation of stiffness matrix method (SMM) was presented. It was shown that SMM 

gives a stable solution at the high frequency- thickness products. But SMM does not give 

correct roots pattern at low wavenumber and low frequency domain. Hence, a combined 

stiffness transfer matrix method (STMM) was proposed and used to obtain correct and 

stable results over the entire domain of interest.   

The study presented case studies for unidirectional composites with wave 

propagation along different angles. GMM and SAFE methods had very good agreement 

with our STMM in terms of cut off frequencies and speeds values (both phase and group 

velocities). Next, we presented case studies on cross-ply laminates; in this case, results 

were compared with EMM method as well. EMM predicted both [0/90] and [0/90/90/0] 

in the same way, although their dispersion curves are actually different. This highlights 

one drawback of EMM: it gives generally a good approximation but not accurate 

predictions. The chapter also presented comparisons on quasi-isotropic laminates and it 

showed good agreement between GMM and SAFE methods.  

Finally, experimental and finite element studies on a GFRP woven composite 

specimen were discussed. PWAS transducers were used for pitch catch experiments using 

tone burst excitation signals. Experimental dispersion group velocities showed good 

agreement with the theory. COMSOL Multiphysics finite element model was constructed 
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using coupled-field elements for the PWAS; this allowed simulation of the input 

excitation and output response in voltage directly. FEM showed the propagation pattern 

of guided waves in composites. For the specific case of a woven GFRP composite, the 

wave propagation along 0 and 90 degrees was similar, but was different along 45 degrees, 

which resulted in diamond pattern instead of the conventional propagation in circles 

obtained for isotropic materials. New methods need to be designed for even complex 

sandwich composites with complex filling structures (e.g. honeycomb). 
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PART II APPLICATIONS 
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CHAPTER 5:  SHEAR HORIZONTAL PWAS FOR COMPOSITES SHM 

 

In this chapter, we apply the material studied in Chapter 3 (SH waves and SH-PWAS) 

and Chapter 4 (guided wave propagation in composites) on two case studies: (a) a woven 

GFRP plate with installed SH-PWAS network; (b) quasi-isotropic [0/45/45/0]s CFRP 

with each layer as woven ply.  The goal of this study is to establish the experimental and 

predictive modeling procedures for testing and modeling the SH-PWAS impedance 

spectroscopy and guided wave propagation in composites. The ultimate goal is to discuss 

the challenges and applicability of using the SH-PWAS for SHM of polymer composite 

materials in structural components. Both electromechanical impedance spectroscopy 

(EMIS) technique and guided wave propagation methods are good candidates for SHM 

systems. The first part of this study is the modeling of EMIS with finite element analysis 

tools; then comparing FEM results with experimental measurements. The second part 

covers SH wave propagation between different transducers: SH-coupled PWAS and 

regular extensional-mode PWAS transducers, followed by FEM case studies to show 2-D 

wave propagation. A similar FEM studies were performed on aluminum (Zhou et al., 

2013) and SH piezoelectric transducers were used for excitation. 

5.1. MATERIALS 

The first material under investigation is 1-mm thick woven GFRP plate with 

dimensions 910 mm x 620 mm. It has 6 plies of woven fabric. The material density is 
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31960  kg/m  .The provided stiffness matrix [C] (Pollock et al., 2012) is  

  

28.7 5.7 3 0 0 0

5.7 28.7 3 0 0 0

3 3 12.6 0 0 0
GPa

0 0 0 4.9 0 0

0 0 0 0 4.9 0

0 0 0 0 0 4.1

C

 
 
 
 

  
 
 
 
 

  

For modeling purpose, we use Rayleigh damping with the mass proportional coefficient 

M  is 0.2 rad/s and the stiffness proportional coefficient K is 
810
s/rad.  

The 2-mm thick CFRP plate consists of woven prepreg carbon fabrics in epoxy 

resin. There are 8 layers with orientation [0/45/45/0]s. The material density is

31605  kg/m  . The material properties for the 0-direction ply was provided by Hexcel 

manufacturer as  

E11 E22 E33 n12 n13 n23 G12 G13 G23 

65 GPa 67 GPa 8.6 GPa 0.09 0.09 0.3 5 GPa 5 GPa 5 GPa 

 

The corresponding stiffness [C] is 

65.6 5.5 1 0 0 0

5.5 58.2 2.7 0 0 0

1 2.7 8.7 0 0 0
GPa

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 5

C

 
 
 
 

  
 
 
 
 

 

However a previous study by Gresil and Giurgiutiu (2013) showed that the manufacturer 

properties may be overestimated and the updated material properties are 
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37.57 4.36 1.35 0 0 0

4.36 40.43 3.23 0 0 0

1.35 3.23 10.28 0 0 0
GPa

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 5

C

 
 
 
 

  
 
 
 
 

 

Rayleigh damping for CFRP was considered 0M   rad/s, 810K
 s/rad. The PWAS 

transducers used in this study are (a) regular in-plane extensional-mode PWAS 

transducers with dimensions 7 mm x7 mm x 0.2 mm from STEMiNC (www.steminc.com) 

and (b) SH-PWAS with dimensions 15 mm x15 mm x1 mm and manufactured by APC 

International Ltd. (www.americanpiezo.com). For standardized modeling, we use the 

same piezoelectric material properties for both as APC850 Navy II-type piezo with 

density 
27600kg/m  and material properties  

97 49 49

97 44

84
GPa,   complex damping coeff. =4%  

24

22

22

C

 
 
 
 

  
 
 
 
 

 

    2

947 8.02 8.02 18.31

 605 ,     12.84 C/m

947 12.84

r e

    
   

 
   
      

 

 

When modeling PWAS in FEM using COMSOL Multiphysics, the poling direction is 

defined. By default, the poling is in 3x direction which is the thickness direction. For 

modeling SH-PWAS, we define an auxiliary coordinate system with 3x in the direction of 

inplane poling direction. So the two PWAS transducers were defined with the same 

http://www.steminc.com/
http://www.americanpiezo.com/
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material properties; the SH-PWAS is only different by rotating the material properties 

such that the local 3x coincides with the global y direction (Figure 5.1). 

 

5.2. ELECTROMECHANICAL IMPEDANCE SPECTROSCOPY AND ADMITTANCE 

Electromechanical (E/M) impedance of the SH-PWAS was measured using HP 

4194A impedance analyzer. Recalling the free SH-PWAS from Chapter3, i.e., not bonded 

to any structure, the impedance first peak was shown experimentally to be 1.060 MHz.  

 

 EMIS for woven GFRP Plate 5.2.1.

The experimental measurements were performed as a sweep up to 5 MHz. The 

real and the imaginary components of E/M impedance (Z) were recorded. Experimental 

results are shown in Figure 5.2. We display the measured real(Z) and the corresponding 

real(Y), where Y is the E/M admittance. The admittance is more representing parameter 

for the resonance of the structure, where the structure vibrates more when the admittance 

reaches a peak value; while the impedance is the resistance or the anti-resonance situation.  

Beside the experimental study, a FEM was constructed in COMSOL Multiphysics 

software using the coupled field element for the piezoelectric material. The plate model 

had the dimensions 150 mm x150 mm x1 mm. The excitation signal amplitude was 10 V 

and the solver was the frequency domain analysis solver, where a frequency sweep is 

performed and the output response is calculated. 
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Figure 5.1. FEM mesh of the SH-PWAS bonded to GFRP plate  

 

PWAS in-plane mesh size was 0.5 mm whereas 4 elements were used per the 1-

mm thickness; the plate was meshed with 2-mm mesh size whereas 2 elements were used 

per the 1-mm thickness. The meshing of composite materials is one of the challenges for 

modeling multilayered composites by finite element analysis tools. For this woven GFRP 

plate consisting of 6 identical layers of woven fabric, we could mesh the whole thickness 

by one element, or the number of elements required in accordance with minimum 

simulated wavelength. However, if the layers are of different properties, like the second 

case study of CFRP with 8 layers, we have to mesh the thickness by 8 elements at least. 

For our case of having the second peak of interest around 3.2 MHz (experimentally) and 

the shear wave speed of SH0 =1500 m/s (Figure 4.20), the corresponding wavelength is 

0.5 mm. This required the mesh size to be within 1/10 of 0.5 mm (one tenth of 0.5 mm, or 

0.05 mm).  However, the PWAS mesh we used was 0.5 mm and the plate mesh was 2 

mm. This is one of the limitations of our model, i.e., the maximum frequency at which 

we can trust the FEM results is 75 kHz. If we did not consider the 1/10 rule, the 

maximum trusted frequency would be 750 kHz. The simulation time was 25 hours on 3.4 

GHz intel i7 processor with 8-core 16 GB RAM PC. Comparing the FEM results with 

experimental results in Figure 5.2, we still can see that the FEM and the experimental 
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results had good agreement with only little frequency shifts being observed, e.g. the free 

PWAS experimental antiresonance of 1090 kHz is matching well with FEM predictions. 

However, there are two extra experimental peaks associated with bonded PWAS on the 

structure, 300 kHz and 800 kHz. In addition, we notice that the FEM over predicted the 

300 kHz as 430 kHz, and missed the 800 kHz. 

Admittance results had better agreement, especially, at 420 kHz and 870 kHz. 

Having such agreement without satisfying the wavelength minimum mesh size rules can 

be explained by getting the desired convergence without the need of such small mesh.  

 

Figure 5.2. E/M response of SH-PWAS bonded on woven GFRP: (a) impedance, (b) admittance  

430  
800  

1090  

1320  

870  

300  
3200  
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3350  

3030  

(a)  
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The EMIS method is a good candidate for SHM systems to detect small damages 

in the vicinity of the transducer. This statement can be reasoned by looking to the 

simulated response at an arbitrary frequency of 400 kHz. Figure 5.3 shows that the 

effects on the plate associated with exciting the SH-PWAS at 400 kHz are local effects. 

Hence the PWAS can capture the changes if they are within this localized area. By 

contrast, exciting the PWAS at relatively smaller frequencies would resonate the whole 

structure, and simulations results at 20 kHz and 50 kHz are shown in Figure 5.4. 

 

 

Figure 5.3. COMSOL simulation of 400 kHz response of the SH-PWAS bonded to GFRP plate 

 

 

Figure 5.4. COMSOL simulation of GFRP plate resonance modes under excitation of SH-PWAS: 

(a) at 20 kHz, (b) at 50 kHz. 

(a) (b) 

freq (2) =20000 surface: Total disp (m) freq (5) =50000 surface: Total disp (m) 
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 EMIS of quasi-isotropic CFRP plate 5.2.2.

Similar experimental EMIS measurements were performed on the 2-mm thick 

CFRP plate; the frequency sweep was done up to 4 MHz. For the FEM, the CFRP plate 

consists of 8 layers each of thickness 0.25 mm (total plate thickness is 2 mm). The 

material properties of the plies #2, 3, 6, 7 are transformed by a 45-degree rotation from 

the original material properties.  The mesh size used here was a rough one, the plate mesh 

size was 5-mm with 8 elements per thickness (i.e. 1 element per layer). The PWAS mesh 

size was 0.5 mm as before and 4 elements per the 1-mm thickness. The solution time was 

9 days on the same 3.4 GHz i7 intel processor with 8-core PC and 16 GB RAM.  

 

Figure 5.5. E/M response of SH-PWAS bonded on [0/45/45/0]s CFRP: (a) impedance, (b) 

admittance. 
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The comparison between experimental and FEM results is shown in Figure 5.5. 

For the mesh size 5 mm and SH wave propagation speed in the laminate 2200m/s (the 

next section discusses the SH wave propagation speed), the maximum frequency that we 

can trust in the FEM model results is 44 kHz. However running the model on the same 

machine used for the GFRP case yielded comparable results between experiments and 

FEM, especially in admittance results (Figure 5.5). It can be noticed that the first 

resonance detected by FEM is 260 kHz; this resonance is present in the experimental 

results but very damped. The second peak 640 kHz had a good agreement; finally, the 

free PWAS resonance frequency is shown at 890 kHz.   

5.3. GUIDED SH WAVE PROPAGATION IN COMPOSITES 

A set of experiments were conducted for testing the excitation and reception of 

SH waves in polymer composites. The idea is very similar to the experimental setup 

discussed in Chapter 3 (SH - Coupled PWAS); however, these experiments were not 

complete combinations of pitch catch experiments between SH-PWAS and regular 

extensional-type PWAS transducers due to the limited availability of transducers and 

materials. We compared experimental group velocities of guided waves with results from 

predictive tools, such as DISPERSE and our developed STMM. Finally we constructed a 

FEM models for simulating the wave propagation in 2-D in polymer composite materials. 

The predicted wave group velocities of guided wave propagation only in GFRP plate 

were covered in Chapter 4. The case of CFRP was not covered. For completeness, we 

recall in Figure 5.6 the plots of Figure 4.19. 
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Figure 5.6. Group velocities of ultrasonic guided waves in 1-mm woven GFRP plate, (a) 

DISPERSE, (b) STMM. 

 

Figure 5.6 shows the comparison between DISPERSE and our STMM predictive 

tool for calculated group velocities up to 2000 kHz. However, the experimental studies 

were done up to 300 kHz. Moreover, at this moment, we only predict wave propagation 

group velocities on CFRP plate by DISPERSE, because our STMM tool is under 

development. The predictions of both materials are shown in Figure 5.7. 

 

Figure 5.7. Group velocity dispersion curves for (a) 1-mm woven GFRP, (b) 2-mm [0/45/45/0]s 

CFRP 

 

Now we discuss the experimental setup for each case and compare the 

experimental results with the predicted data, especially for our focus, SH waves. 
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 Experimental Study for GFRP 5.3.1.

The schematic setup (Figure 5.8) shows two installed SH-PWAS (#7 and #8) and 

two regular PWAS (#1 and #2). The distance between PWAS transducers is 120 mm. 

Pitch catch experiments were conducted by exciting PWAS transducers in turns with 3-

count tone burst signals with 10V amplitude and sweep the center frequency up to 300 

kHz.  

Experiment-1 was done between the two SH-PWAS transducers, #7 and #8, by 

exciting SH-PWAS7 and receiving at SH-PWAS8; three types of waves were picked at 

the receiver SH-PWAS8, symmetric S0, antisymmetric A0 and SH0 (Figure 5.10a).  

In experiment-2, the excitation was done by SH-PWAS7 and reception by 

PWAS1; we can see from Figure 5.10c that PWAS1 picked up SH0 waves as well as the 

expected S0 and A0. This interesting feature was also observed in isotropic aluminum 

plate. In experiment-3, the excitation was done by the regular PWAS1; the receiver SH-

PWAS7 picked up SH waves. PWAS1 is supposed to excite only Lamb-type waves; 

however, SH0 waves were picked up by SH-PWAS7. Experiment-3 was exactly identical 

to experiment-2 (Figure 5.10c). 
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Figure 5.8. Schematic of transducers positions for SH-PWAS experiments on woven GFRP plate 

 

 

Figure 5.9. Experiments numbering and directions of pitch catch experiments between various 

SH-PWAS and PWAS on GFRP 

 

Exp #2 Exp #1 

Exp #5 

Exp #3 

2 

1 

Exp #4 



249 

 

Finally, experiment-4, where SH-PWAS8 was excited and the received signals 

were picked up by regular PWAS2. In this case, only S0 and A0 waves were picked up. 

This observation leads to the conclusion that SH-PWAS only excites SH waves 

perpendicular to its poling direction. This observation is analogous to the case performed 

on aluminum plate (Figure 3.28c) in which we showed that SH waves cannot be excited 

if the poling directions of two SH-PWAS were perpendicular to each other. Experiment-5 

(the reverse situation of experiment-4) showed identical results (Figure 5.10b). 

 

 

Figure 5.10. Dispersion group velocity curves for received wave signals (SH-PWAS experiment 

on GFRP): (a) SH7SH8, (b) SH8PWAS2, (c) SH7PWAS1  

(a) (b) 

Exp (4) SH8  PWAS2 

Exp (5) PWAS2  SH8 Exp (1) SH7  SH8 

(c) 

Exp (2) SH7  PWAS1 

Exp (3) PWAS1  SH7 
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 Experimental Study for CFRP 5.3.2.

Similar setup was established for experimental study of SH waves on 2-mm thick 

CFRP composite plate; a schematic is shown in Figure 5.11. And set of five experiments 

were performed. 

 

Figure 5.11. Schematic of transducers positions for SH-PWAS experiments on 8-ply CFRP plate 

 

 

Figure 5.12. Experiments numbering and directions of pitch catch experiments between various 

SH-PWAS and PWAS on CFRP 

 

The summary of experiments numbering is shown in Figure 5.12. The results are 

reported in Figure 5.13. An observation was noticed in experiment-1 of exciting the SH- 
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PWAS9 and receiving the signals by SH-PWAS10: it was noticed that the two wave 

packets captured by SH-PWAS10 had speeds that looked shifted compared to analytical 

predictions (Figure 5.13a). Recalling the material property updating we used earlier at 

the beginning of the chapter; we run the analytical predictions based on the manufacturer 

given properties; the new comparison of results is plotted in Figure 5.13b. This can be 

the reason of the shifted experimental results. However this will affect other experiments. 

We keep at this moment the reduced material properties that Gresil and Giurgiutiu (2013) 

suggested.  

 

 

Figure 5.13. Group velocity curves for CFRP experiments: (a) SHSH, (b) modified SHSH, 

(c) SH9PWAS1, (d) SH10PWAS2. 

(c) (d) 
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Experiment-2 (where SH-PWAS9 was excited and the receiver was PWAS1) 

showed similar results obtained on GFRP plate by capturing the three waves S0, A0 and 

SH0. Experimental-3 (the reverse situation of experiment-2) showed identical results 

(Figure 5.13c) 

In experiment-4, we excite the SH-PWAS10 which is installed such that poling 

direction is parallel to the line connecting SH-PWAS10 and receiver PWAS2; in this 

situation, PWAS2 did not capture SH waves, but only received A0 and S0 modes. 

Experiment-5 was identical to experiment-4 (Figure 5.13d). 

 

 FEM Case Studies for GFRP 5.3.3.

The dimensions of the plate used for FEM for wave propagation were 450 mm x 

450 mm and 1-mm thick GFRP, the actual material consists of 6 identical woven layers. 

We modeled the whole 1-mm thickness as one woven layer. The setup for simulating 

experiment-2 and 3 was shown in Figure 4.21.  Here, we show the FEM mesh and 

geometry for experiment-1 setup (Figure 5.14), where wave propagation between two 

SH-PWAS transducers was studied. The two SH-PWAS were modeled by coupled field 

elements; this allowed us to apply excitation voltage as input for the model, and receive 

the signal at the receiver SH-PWAS as actual voltage. 
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Figure 5.14. FEM schematic for guided wave propagation between SH-PWAS7 and SH-PWAS8 

 

The excitation signal was 3-count tone burst with 10V signal amplitude and center 

frequency 60 kHz. The reason for selecting this relatively low frequency was to satisfy 

accuracy and convergence requirements, beside the available computational resources. 

For convergence, the required time step should be (1/ 30 )cf . For our 60 kHz situation, 

the maximum possible time step is 0.55μs . We used 0.5 s time step and total simulation 

time 500μs . This case study was the first model we ran, as a proof of concept, so we 

used rough mesh size and did not satisfy wavelength requirements. In this case study, 

more concern was towards SH waves. Referring to dispersion group velocity curves 

(Figure 5.7a), the speed of SH0 was 1500 m/s. For 60 kHz excitation signal, the 

corresponding wavelength is 25 mm.  

SH-PWAS7 

120 mm 
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Figure 5.15. 2-D simulation results for wave propagation in 1-mm thick woven GFRP plate, 

particle displacement inplane Y direction: (a) at 50 s ,(b) at 70 s . Out of plane Z 

particle displacement: (c) at 50 s ,(d) at 70 s . 

 

Mesh size used was 5 mm for the plate with 2 elements per thickness (i.e. 0.5 

mm). Piezoelectric element mesh size was 1 mm with 2 elements per thickness (i.e. 0.5 

mm). The simulation was done on 3.4 GHz intel i7 processor with 8-core PC with 16 GB 

RAM; the simulation took   2 hours. 

Referring to the coordinate system shown in Figure 5.15, the SH waves are the 

waves associated with particle oscillation in y-direction which is parallel to SH-PWAS 

poling direction. While, the wave propagation direction of SH waves is x direction. 

Figure 5.15a,b show the y-displacement of the particle oscillation. SH0 can be noticed 
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having a speed between S0 and A0. Only those mode patterns appear on y-displacement 

solution. When plotting the out of plane z-displacement of particle oscillation, we can see 

only A0 mode because of its dominant energy is in the out of plane direction (Figure 

5.15c,d). We report in Figure 5.16 the comparison between the voltage signal picked by 

the receiver SH-PWAS8 and the calculated output signal from FEM.  

As we can see from Figure 5.16, the FEM predicted SH0 and A0 modes. A0 

mode from FEM is comparable to experimental results. The S0 mode was observed 

experimentally, but the FEM did not pick it up. 

 

Figure 5.16. FEM vs. experimental results for guided wave propagation in 1-mm thick woven 

GFRP (SH-PWAS to SH-PWAS). 

 

The second case study was exciting the regular extensional-mode PWAS with the 

received signal being picked up by SH-PWAS. As discussed in the experimental section, 

we did not expect that regular extensional-mode PWAS could excite SH waves. 

Observing SH waves when the regular PWAS was used for excitation could be reasoned 

by finite dimensional differences between the two transducers: the regular PWAS and the 

SH-PWAS. For completeness, we report the results for the FEM that simulates wave 

propagation between PWAS and SH-PWAS7.  
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For getting accurate results, it is required for each mode that the number of 

elements per wavelength is 10. Recalling Figure 4.20, the speeds for S0, SH0, and A0 

at 48 kHz excitation are 3800m/s, 1500m/s, and 1000 m/s respectively; this corresponds 

to wavelengths  80, 31, and 21 mm respectively. The critical mode is A0, which 

enforces the 2-mm mesh size requirement. But we used 3-mm mesh size because of 

computational resources available, and we would expect that the results for 2-D solution 

for A0 mode will not look very smooth, as shown in Figure 5.17. For convergence, the 

required time step should be (1/ 30 )cf  which in our 48 kHz case should be 0.7μs ; we 

used 0.5μs  time step and 200μs total simulation time.  

 

Figure 5.17. 2-D simulation results for wave propagation in1-mm thick woven GFRP plate at, (a) 

particle displacement inplane Y direction, (b) inplane X direction, (c) out of plane Z 

direction, (d) out of plane strain tensor  
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The simulation was done on dual 2.8 GHz XEON 2ML2 processor, and used up 

to 96 GB of RAM; the simulation took 9 hours. The 2-D simulations allowed us to see 

the wave propagation patterns; Figure 5.17a,b show the symmetric S0 and antisymmetric 

A0 modes very clearly (A0 mode is the mode with lower wavelength because of its lower 

wave propagation speed.) The fact that both S0 and A0 have inplane components, 

allowed the simulation to capture both S0 and A0 for inplane displacement plots. 

However, the out of plane (the Z component) of the symmetric S0 mode is very weak, as 

we can see from Figure 5.17c, where S0 mode almost does not exist.  

Figure 5.17c shows the A0 mode out of plane displacement very clearly at 100

s . And a small excitation can be seen around the receiver SH-PWAS, which is just a 

receiver PWAS and not used as excitation source; this can be explained by the 

active/passive behavior of PWAS transducers. While A0 mode excited by PWAS1 did 

not yet arrive at SH-PWAS, the other faster modes (e.g. S0 and SH0) had already arrived 

and interacted with the transducer, mode converted as A0, and the SH-PWAS appeared 

as if it was exciting A0 mode towards PWAS1. 

Figure 5.17d shows the out of plane component of the strain tensor; we selected 

this variable for discussion; because it was found the best one showing most of the 

interesting modes and mode conversion phenomenon. Finally, the fact that the GFRP 

plate was woven showed that the waves are not propagating in circles, but rather in 

diamond-shaped, because the material stiffness properties are identical in 0º and 90º 

directions, but the material is less stiff in 45º directions. 
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Figure 5.18. FEM vs. experimental results for guided wave propagation in 1-mm thick woven 

GFRP  

As we can see from Figure 5.18, the FEM predicted S0, SH0 and A0 modes. A0 

mode had good agreement with experimental results, S0 mode predicted by FEM and 

measured experimentally were fairly close; while SH0 at this particular frequency was 

not very clear experimentally.  

 

 FEM Case Study for CFRP 5.3.4.

The dimensions of the plate used for FEM for wave propagation in CFRP were 

originally 450 mm x 450 mm and 2-mm thick. That was modified a little to save in 

computation resources and time. As shown in Figure 5.19, the geometry of the plate was 

no longer a square of length 450 mm, but was reconstructed to 570 mm x 450 mm; such 

that the distance between the two SH-PWAS is still 120 mm; afterwards the geometry 

was sliced in two; imposing symmetry conditions; simulations were done only on half the 

model. In the post processing stage in COMSOL Multiphysics, it is possible to request 

doubling the solved domain for the case of symmetry in the solution. 
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Figure 5.19. FEM geometry for guided wave propagation between SH-PWAS9 and SH-PWAS10 

on CFRP plate 

 

The CFRP plate is 2-mm thick 8 layer laminate; we used 8 elements per the 

thickness to get one element per layer. The excitation signal was 3-count tone burst with 

10V signal amplitude and center frequency 48 kHz. Time step was 0.5μs and the total 

simulation time was 200 μs . The used mesh size was 5-mm for the plate lateral 

dimensions and 1 element per layer (i.e. mesh size of 0.25 mm); the PWAS was meshed 

by 2-mm in-plane squares with 2 elements per the 1-mm thickness. The simulations 

wavelength requirements were not satisfied. We expected not a very accurate solution. 

The simulation time was 6 hours. 

The results shown in Figure 5.20 describes the SH wave propagation with two 

simulation time captures (Figure 5.20a, b). Also shown is the out of plane A0 mode that 

the SH-PWAS excites along with SH waves.  

Figure 5.20c shows that before A0 mode reached the right and the left SH-PWAS 

transducers, a small excitation can be seen around the two receiver SH-PWAS, which are 

just receiver PWAS transducers and not used as excitation sources. This can be explained 
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by the active/passive behavior of PWAS transducers. While A0 mode (excited by the 

middle SH-PWAS) did not yet arrive at the two SH-PWAS transducers, the other faster 

modes (e.g. S0 and SH0) had already arrived and interacted with both transducers, mode 

converted as A0, and the two SH-PWAS transducers appeared as if they were exciting 

A0 mode towards the middle PWAS. 

 

Figure 5.20. 2-D simulation results for wave propagation in 2-mm thick CFRP plate, particle 

displacement inplane Y direction: (a) at 45 s ,(b) at 70 s .(c) Out of plane Z 

particle displacement at 70 s . 
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Figure 5.21.  FEM vs. experimental results for guided wave propagation in 2-mm thick CFRP 

 

As we can see from Figure 5.21, the FEM predicted SH0 and had good 

agreement with experimental results. The FEM also predicted A0 as a strong received 

signal, while the experimental result was very weak and noisy. 

 

5.4. SUMMARY AND CONCLUSIONS 

SH-PWAS was studied for E/M impedance method and wave propagation of SH 

waves in two composite plates, one was a cross ply GFRP laminate and the other was a 

quasi-isotropic CFRP laminate. It was shown that the impedance analysis is suitable for 

capturing local effects at the plates at frequencies 400 kHz. To capture the whole plate 

resonances, relatively smaller frequencies of excitation need to be used. Experimental 

admittance results were comparable to FEM results obtained using coupled field 

piezoelectric elements bonded to composite layers.  

Wave propagation method showed that the SH-PWAS can excite SH waves as 

well as S0, A0, providing that the receiver PWAS is in a position such that the wave 

propagation direction between SH-PWAS and the receiver PWAS is perpendicular to 
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SH-PWAS poling direction. If we excite SH-PWAS and receive the signal along a 

direction parallel to the poling direction, only A0 and S0 waves were captured. These 

phenomena were observed in both GFRP cross ply laminate and CFRP quasi-isotropic 

laminate. 

2-D FEM wave propagation simulation showed the wave propagation patterns of 

SH waves. The mesh size used was not satisfying the accuracy conditions of wavelength 

and mesh size because of our limited computational resources; nevertheless, the overall 

wave propagation showed consistent results with our expectations. The received signals 

predicted by FEM were compared with experimentally measured voltage signals. For the 

experiment between two SH-PWAS in GFRP, there was a little shift between received 

SH0 waves, but a good match for A0 mode. Predictive models of transmitted waves from 

a regular PWAS showed three waves: A0, S0 and SH0; however the experimental results 

did not show a strong SH0 signal.  

Moreover, for CFRP simulations, there was a good match between SH0 mode 

predicted by FEM and measured experimentally. On the other hand, A0 was captured by 

FEM, but it was not detected experimentally. 

SH-PWAS is a good transducer for generating SH waves in composite materials, 

and it is way less expensive than EMAT transducers; this makes it a potential candidate 

for composites SHM.  
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CHAPTER 6:  GUIDED WAVE DAMAGE DETECTION IN AN AEROSPACE 

PANEL 

 

The objective of this chapter is to test and to apply the basic theory that was covered in 

previous chapters on a realistic complex structure for detecting simulated damages. Of 

course, this will require more advanced system with some damage detection algorithms. 

We used a realistic aging aircraft specimen that was fabricated at Sandia National Lab 

with simulated aging-like induced damage. We presented the SHM system we used; it 

was developed by Metis Design (www.metisdesign.com). Brief description of sensors 

installation and system operation was addressed. Finally we proposed the tests that we 

will perform. 

 

6.1. MATERIALS  

The aging aircraft specimen was fabricated at Sandia National Lab with simulated 

aging-like induced damage (cracks and corrosion). It is made of 1-mm ( 0.040 ) 2024-T3 

Al-clad sheets assembled with 4.2-mm ( 0.166 ) diameter countersunk rivets, with a U-

shaped (BAC 1498-152 stringer), as shown in Figure 6.1. 

http://www.metisdesign.com/
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Figure 6.1. Image of the 2024-T3 Al plate under test 

 

This plate was used before for testing certain simulated damages that were 

included in the blue print (Figure 6.2) developed at Sandia National Laboratory. The 

detailed experimental setup and results were reported in Giurgiutiu et al. (2002).  

 

Figure 6.2. Blue print of the experimental panel developed at Sandia National Lab. 

 

6.2. EXPERIMENTAL SET UP FOR MD7 ANALOG SENSOR-ASSEMBLE SYSTEM 

The hardware is developed by Metis Design (www.metisdesign.com) and it 

includes (1) piezoelectric-based damage localization sensors (MD7 VectorLocator™), (2) 

distributed digitization hardware (MD7 IntelliConnector™), and (3) a data accumulation 

http://www.metisdesign.com/
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hub (MD7 HubTouch™). These items are shown in Figure 6.3, Figure 6.4, and 

described briefly here after. 

 

Figure 6.3. (a) MD7 VectorLocator™, (b) MD7 IntelliConnector™. Source: Metis Design 

 

 

Figure 6.4. MD7 Data Accumulator hub, HubTouch™, source: Metis Design manual 

 

As we can see from Figure 6.3(a), the VectorLocator™ consists of a central 

actuating disk with multiple sensing disks. The actuating and the sensing component 
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consist of seven piezoelectric wafers that are integrated into a custom flex-circuit 

assembly that connects to the IntelliConnectors™ shown in Figure 6.3(b).  

For the bonding of the flex-circuit to the aluminum plate, we used Vishay Micro-

Measurements AE-10 adhesive; dead weights of 10 N were used, and the adhesive was 

left to cure for 24 hours in 25 C room. 

 

 

Figure 6.5. Sensors node VectorLocator™ after bonding. Connectors are used to connect 

different sensors node together or to the data accumulator hub. 

 

The IntelliConnector™ is a digital sensor infrastructure; a direct replacement of 

traditional instrumentation such as oscilloscopes and function generators. This device 

greatly reduces unnecessary cable weight by allowing data to be carried over a serial 

sensor-bus and increases signal fidelity by digitizing at the point-of-measurement to 

eliminate EMI. The IntelliConnectors™ excite analog sensors mated through micro-

connectors and digitize their response (Kessler et al., 2011). The complete setup is shown 

in Figure 6.6. 
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Figure 6.6. Complete setup of the MD7 SHM system 

 

6.3. OPERATION OF MD7 SYSTEM 

After the experimental setup, and powering up the system, the data accumulator 

hub will automatically detect the number of sensor nodes connected to the system. A 

“profile” needs to be loaded to the data accumulator hub; this profile contains the 

required parameters to perform the pitch catch, the example profile we used is shown in 

Figure 6.7. The main parameters of concern are: 

 

 excitation waveform type: tone burst, # number of Hanning cycles 

 Actuator start frequency kHz 

 Frequency step size (kHz) 

 Actuation amplitude Vpp 

 

Data accumulator hub 

Sensors node covered by IntelliConnector 

Flat flexible cable 
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Figure 6.7. Profile of a measurement, to be uploaded to the memory card before test 

 

6.4. ANALYZING EXPERIMENTAL MEASUREMENTS BY METIS DESIGN SHM 

SOFTWARE  

 CAD Modeling 6.4.1.

For pursuing analysis on the part, a CAD model needs to be created and meshed 

in the regular FEM manner. Besides, the plate layout file needs to be created, which 

defines plate limits, i.e. length and width. One point to consider here, that the CAD file 

needs to be created in inches, however the layout in meters and there is a conversion file 

to be supplied in the working directory, inside mesh folder. Figure 6.8 shows the CAD 

model. 

  
 

Figure 6.8. CAD Model on COMSOL for possible separate FEM later. 
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 FEM Meshing 6.4.2.

The CAD file is then imported into a finite element modeling software package 

for automatic meshing, typically ANSYS is the software that the Metis Design uses with 

the help of ANSYS script to perform meshing directly. 

Typical exported mesh files are (1) the nodes list which specifies the node number and its 

coordinates, (2) the elements list, which specifies the element number and its connectivity 

with nodes (Figure 6.9). 

 

Figure 6.9. Exported mesh files and move.txt file for relative position, rotation and unit 

conversion 

 

Once the mesh files are generated, it is ready to use the Metis Design software 

package for SHM, the starting windows is shown in Figure 6.10. 
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Figure 6.10. Module launcher for Metis Design software package 

 

Our main focus here is not about DAQ optimization and modeling, neither the 

optimal sensor placement. But in general, the purpose of the DAQ optimization module is 

to import preliminary data from small set of sensors and the measured pitch-catch data 

for example; for the goal of optimizing the full scale testing. Also it aims to estimate 

statistical model parameters for sensors, e.g. the frequency at which the signals are 

having the maximum average, the global maxima, and the global standard deviations. 

This is used to calculate the frequency at which the signal to noise ratio (SNR) is the 

maximum. 

 

Optimal sensor placement module: 

The purpose of this module is to determine the optimal arrangement of specified 

number of sensors, given the statistical signal model parameters from previous module. 

This module exports to the layout file that is needed for the damage detection module. 

However at this stage, we designed our layout ourselves. 
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 Damage Detection and Visualization 6.4.3.

We installed two nodes of sensors, node 3 and node 4, the layout file provided is 

 

 

Figure 6.11. Layout of the sensor nodes 

 

The working directory contains the following files 

 

Figure 6.12. Required files in the working directory of the software. 

 

The file we meshed and imported in the damage detection and visualization 

module is shown in Figure 6.13. 
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Figure 6.13. Damage detection and visualization module, after importing our test structure. 

 

6.5. PROPOSED WORK 

The SHM system developed by Metis Design is based on the baseline 

measurements concept. This means that when we installed the sensors nodes and run the 

pitch catch experiments between basically the 12 sensors within the two nodes, we have a 

baseline measurement Run001. Whatever damages that were induced in the plate (e.g. 

corrosion, slit cracks), this is the baseline measurement. We propose inducing some 

simulated damages, either by using the strong magnet attached to the plate with two 

magnets from both sides of the plate, or cover a part of the plate by clay as a wave 

absorption domain. After that we run another measurement run and save it as Run002. As 

shown in Figure 6.13, it is required to load reference measurement, then another 

measurement that is after inducing damage. As an illustration for the method, we 

installed a chunk of clay as shown in Figure 6.6, and the resulted output analysis is 

shown in Figure 6.14. 
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Figure 6.14. Preliminary result based on a baseline measurement and a measurement after 

inducing the clay on the plate at 80 kHz  

 

6.6. SUMMARY AND CONCLUSIONS 

The MD7 guided-wave SHM system developed by Metis Design was studied and 

tested, the steps included, sensor installation, operation and performing pitch catch 

measurements, CAD modeling, FEM meshing, exporting mesh to the software, and 

analysis in the damage detection and visualization module. 

We conclude that the system is applicable on the plate under test, and further experiments 

to be conducted by inducing other forms of damages and test the system if it can detect 

these damages. Careful selection of frequency of excitation is an important parameter to 

be considered. 

 

Clay location 
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CHAPTER 7:  SHM OF VARIABLE STIFFNESS CFRP PLATE 

 

In this Chapter, we study the wave propagation in a CFRP plate with variable fiber 

orientations along plate width and length at every layer. This type of structure was 

studied by Tatting and Gurdal (2003); Blom (2010). The objectives here are: (1) to find 

experimentally the dispersion wave propagation speeds and (2) to discuss the challenges 

for getting accurate results. The methods involved for finding wave propagation speeds in 

this study are time of flight (TOF) with using Hilbert envelops over the signals, and short 

time Fourier transform (STFT). We installed eight PWAS transducers on the plate and 

performed pitch catch experiments between different transducers to investigate wave 

propagation along different fiber orientation angles, (keeping in mind that the fiber 

orientation is not homogenous at every x and y position.) This fiber orientation pattern 

leads to varying the plate stiffness as function of x, and y dimensions. Hence we refer to 

this plate as variable stiffness (VS) plate. 

 

7.1. MATERIALS 

The plate we used is a 140x 390 mm CFRP plate with a variable thickness that is 

ranging from 2.9 mm at edges to 3.4 mm in the middle. This plate was fabricated and 

studied by Tatting and Gurdal (2003). Figure 7.1 shows the plate during fabrication stage.
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Figure 7.1. Fabricated CFRP panel with variable fiber orientation (Tatting and Gurdal, 2003) 

 

 

Figure 7.2. The part provided for performing wave propagation tests on 

 

The final fabricated plate with PWAS transducers installed on it is shown in Figure 7.3. 
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Figure 7.3. The VS CFRP plate with PWAS transducers installed and clay around boundaries 

 

7.2. WAVE PROPAGATION EXPERIMENTS 

The PWAS transducers were installed such that wave propagation along different 

angles can be studied, U0, U30, U45, U60, and U90. Also another test was performed 

between two PWAS transducers at the middle of the plate, and two PWAS with wave 

propagation along negative 45 deg. direction. All pitch catch experiments were 

performed between transducers   80 mm apart. The excitation used was 3-count tone 

burst with 10 V amplitude and frequency sweep up to 300 kHz. The challenge on this 

plate is that it is relatively small, and lots of reflections existed, hence we used the clay to 

damp these reflections as much as possible. The results of wave propagation are shown in 

the next few figures, in Figure 7.4. 
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Figure 7.4. Experimental results of dispersion wave propagation group velocities for CFRP VS 

plate 

 

As we can see from Figure 7.4a, the wave propagation along  the same direction 

U0 but at two different locations of the plate are not the same; A0 is almost a constant 

and is having a speed around 1500 m/s, while S0 showed some differences. Figure 7.4b,c 

show that the wave propagation speeds along 45 deg. and -45 deg. directions were the 

maximum, probably because of the maximum stiffness at this part was along the 45 deg. 

directions. 

S0 symmetric 

 

A0 antisymmetric 

 
A0 antisymmetric 

  

S0 symmetric 

S0 symmetric 

A0 antisymmetric 

  

S0 symmetric 

  

Exp (1) U0 near edge  

Exp (2) U30      Exp (3) U45 

Exp (4) U60      Exp (5) U90 

A0 antisymmetric 

  

(a) 

 

(b) 

 

(c) 

 

(d) 

 



278 

 

7.3. SHORT TIME FOURIER TRANSFORM 

The method we followed for analyzing pitch catch experiments was the time of 

flight (TOF) between the excitation signal and received signals; Hilbert envelops were 

used for better estimating the received modes. Another method that can give an overall 

picture is the short time Fourier transform (STFT), at which fast Fourier transform (FFT) 

is applied on intervals of time; when stacking these results together, it will lead to a time-

frequency domain plot in which we can see the maxima and the minima of a signal. 

Figure 7.5 shows an example signal for wave propagation along U0 direction at 66 kHz 

excitation. And Figure 7.6 shows the resulting STFT. 

          

Figure 7.5. Time domain signal at excitation signal of 66 kHz along U0 direction 

               

Figure 7.6. Short time Fourier transform of the time signal at 66 kHz along U0 
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Figure 7.7. Black and White version of Figure 7.6 for printing purposes 

 

The analysis was performed for all the received signals along U0, at frequency 

sweep from 12kHz to 300 kHz. The overlapped STFT results are shown in Figure 7.8, 

Figure 7.9. 

 

Figure 7.8. STFT of all the received signals from 12 kHz to 300 kHz 
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Figure 7.9. Black and white version of Figure 7.8 for printing purposes. 

 

7.4. SUMMARY AND CONCLUSIONS 

Wave propagation experiments were performed on a VS CFRP plate. Beside the 

scattering due to experimental errors, etc., the results showed that A0 mode is the mode 

preferred to be used in SHM analysis, as its speed is almost constant with frequencies and 

different locations of the plate. We conclude that solely experimental results for wave 

propagation are not enough to find wave propagation speeds for SHM applications. 

Predictive tools in terms of analytical or FEM are needed to better analyze such complex 

structures. 
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CHAPTER 8:  CONCLUSIONS AND FUTURE WORK 

 

This dissertation has addressed analytical and numerical predictive models for ultrasonics 

transduction in metallic and composite structures using piezoelectric wafer active sensors 

(PWAS) for structural health monitoring (SHM). The key themes for this dissertation are 

power and energy; ultrasonic shear horizontal waves; wave propagation in composites.  

The dissertation started with a background of ultrasonic guided waves in plates, 

PWAS as an active/passive transducer, and various ways in which PWAS are used for 

SHM applications. A predictive model of power and energy transduction between PWAS 

and the structure has been developed based on exact Lamb wave solution. The aim was 

optimizing guided wave mode tuning, PWAS electromechanical (E/M) impedance, and 

PWAS size for having power-efficient SHM systems. The power and energy models 

were applicable on multimodal Lamb wave situations that exist at high frequency 

ultrasonics and/or relatively thick structures. Experimental validation was conducted 

using scanning laser Doppler vibrometer (SLDV).  

The dissertation continued with investigating the excitation and reception of shear 

horizontal (SH) guided waves in plates. A special type of PWAS was used, which is 

poled in the thickness-shear direction ( 35d mode), we called it SH-PWAS. The E/M 

impedance of the free and the bonded SH-PWAS transducer have been developed 

analytically and by finite element modeling (FEM). The predictive models of the E/M
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impedance have been validated experimentally. Next, wave propagation experimental 

and FEM studies were conducted between different combinations of SH-PWAS and 

regular inplane PWAS transducers. The excitability of SH waves and the directivity of 

the SH-PWAS were investigated. Finally, we presented simulations of our developed 

analytical models of SH waves’ power and energy, along with a MATLAB graphical user 

interface (GUI) for the analysis of SH-waves including: dispersion phase and group 

velocities, mode shapes, and wave energy.  

In order to investigate SH waves excitation and reception in composites; we 

needed a stable robust method for determining dispersion curves in composites.  The 

transfer matrix method (TMM) has been used to calculate dispersion curves of guided 

waves in composites. TMM suffers numerical instability at high frequency-thickness 

values, especially in multilayered composites. A method of using stiffness matrix method 

(SMM) was investigated to overcome instability. A combined stiffness transfer matrix 

method (STMM) was proposed to obtain correct and stable results over the entire domain 

of interest. STMM procedure was coded in a MATLAB graphical user interface that also 

allows displaying modeshapes at any selected root of interest. This was followed by a 

comparative study between commonly used methods for the calculation of ultrasonic 

guided waves in composites, e.g. global matrix method (GMM), semi–analytical finite 

element (SAFE). 

Furthermore, the dissertation presented three SHM applications: (1) using the SH-

PWAS for case studies on composites, (2) testing of SHM industrial system for damage 

detection in an aluminum aerospace-like structure panel, and (3) measuring dispersion 

wave propagation speeds in a variable stiffness CFRP plate. 
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8.1. RESEARCH CONCLUSIONS 

 Power and Energy 8.1.1.

Exact Lamb wave theory was used to model the power and energy transduction 

between PWAS transducer and hosted structures. The model was developed based on the 

normal mode expansion (NME) theory and straight-crested harmonic waves. The pin-

force model was used to simulate perfect bonding between the PWAS and the structure.  

The model is applicable on multi-modal situations, for example, a half-inch thick steel 

plate, where three symmetric and three antisymmetric modes exist within the 500 kHz 

excitation window. Modal participation factors were developed to predict how much each 

mode contributes to the final power. 

It was noticed that the transmitter reactive power (i.e., the power that depends on 

the capacitive behavior of the PWAS) was directly proportional to the transmitter 

admittance. The power transducted by the PWAS has an extra component, which is the 

transmitter active power, i.e., the power converted into the ultrasonic waves. A 

remarkable variation of active power with frequency was observed, and we noticed that 

the active power was not monotonic with frequency, but manifested peaks and valleys. 

As a result, the ratio between the reactive and active powers was not constant, but 

presented the peaks and valleys. The increase and decrease of active power with 

frequency corresponds to the PWAS tuning of various ultrasonic waves traveling into the 

structure. The developed model for Lamb waves case was compared with the axial and 

flexural waves, that approximate Lamb waves at relatively low frequencies and the two 

simulations showed good agreement. Next, a parametric study was performed to optimize 

the transducer size and excitation frequency to guarantee maximum energy transfer 
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between the source and the examined structure. Finally, an experimental study was 

performed using the scanning laser vibrometer to compare the out-of-plane structural 

oscillation at receiver PWAS transducers bonded on aluminum plates with analytical 

predictions, as well as the received voltage through the piezoelectric effects. The results 

have shown good agreement. 

 

 Shear Horizontal Coupled PWAS 8.1.2.

The shear-horizontal piezoelectric wafer active sensor (SH-PWAS) was presented 

as a candidate for SHM compared to other-state-of-the-art transducers. Characterization 

of the SH-PWAS includes the analytical development of the free transducer (in 35d

mode). We developed the E/M impedance and admittance of the free transducer based on 

the constant electric field assumption and based on the constant electric displacement 

assumption. The analytical model with the constant electric field assumption is more 

representative of the experimental case and FEM. The first resonance frequency of the free 

transducer is 900 kHz. We also extended the analytical development to the constrained 

SH-PWAS case, where the transducer is bonded to structures in the form of beams. The 

interaction between the SH-PWAS and the structure was studied. The analytical model 

was compared with experimental results and finite element analysis. It was shown that 

the analytical model predicts well the finite element and experimental results in the 

situation where the transducer – to – structure mass ratio is < 5%. It was also shown that 

the SH-PWAS has directivity effects, where an axial-flexural response is obtained when 

the transducer poling direction is parallel to the beam length. When the transducer poling 

direction is perpendicular to the beam length, the SH response is obtained.  
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The study then discussed the excitation and reception of SH waves using the SH-

PWAS. Excitation of SH waves was analyzed by finite element simulations and 

experiments. SH0 non-dispersive waves were captured in aluminum plates. Multiple 

experiments were performed to show the SH waves excitation and receiving capabilities 

of both SH-PWAS and regular inplane PWAS transducers. It was shown that positioning 

and orientation of the SH-PWAS affects the generation of SH waves: (1) SH-PWAS 

excites SH waves in the direction perpendicular to its poling direction; (2) Regular 

inplane PWAS can sense SH waves; (3) SH-PWAS transducers can sense A0 and S0 

Lamb waves. Directivity analysis showed that excited SH wave amplitude gradually 

decreases as the measuring direction deviates from the maximum received amplitude 

direction. Finally, we presented simulations of our developed wave power and energy 

analytical models along with a MATLAB graphical user interface (GUI) for the analysis 

of SH-waves including dispersion phase and group velocities, mode shapes, and wave 

energy. 

 

 Guided Wave Propagation in Composites 8.1.3.

Different algorithms for calculating dispersion wave speeds in composites were 

reviewed. This work focused on the transfer matrix method (TMM) and the efforts for 

generating a stable robust algorithm. A combined stiffness transfer matrix method 

(STMM) was proposed to obtain correct and stable results over the entire domain of 

interest. STMM procedure was coded in a MATLAB graphical user interface that also 

allows displaying modeshapes at any selected root of interest. This was followed by a 

comparative study between commonly used methods for the calculation of ultrasonic 
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guided waves in composites, e.g. global matrix method (GMM), semi–analytical finite 

element (SAFE). Case studies were presented for an isotropic plate; a unidirectional fiber 

composite layer with fibers along 0º or 90º degrees w.r.t wave propagation direction; a 

unidirectional fiber composite layer with arbitrary fiber angles; multilayered 

unidirectional composite with fibers along 0º direction; and cross-ply composites. For 

each of the preceding cases, we obtained phase velocities, group velocities, and 

wavenumber-frequency domain solutions. Some observations we noticed include: as 

fibers angle increase from 0º towards 90º with respect to wave propagation direction, the 

phase and group velocities reduce; because for the fibers along 90º the material is in the 

most compliant case along wave propagation direction. Another observation regarding 

the equivalent matrix method (EMM) is that: the case of cross ply of [0/90]s, i.e. 

0/90/90/0 shows slight different results than the simple 0/90 case. The EMM predicted 

the exact same result for both cases because it just averages the properties of the 0-

direction fibers and 90-direction fibers; hence the EMM does not account the difference 

between the 2-layer 0/90 and the 4-layer [0/90]s cases. 

Afterwards, a comparable study was established between the STMM results and 

results from commercially available software, e.g. DISPERSE software based on GMM, 

and GUIGUW software based on SAFE. This was followed by experimental and FEM 

studies on a glass fiber reinforced polymer (GFRP) woven composite. PWAS transducers 

were used for pitch catch experiments using tone burst excitation signals. Experimental 

dispersion group velocities showed good agreement with the theory. COMSOL 

Multiphysics finite element model was constructed using coupled-field elements for the 

PWAS; this allowed simulation of the input excitation and output response in voltage 
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directly. FEM showed the propagation pattern of guided waves in composites. For the 

specific case of a woven GFRP composite, the wave propagation along 0 and 90 degrees 

was similar, but was different along 45 degrees, which resulted in diamond pattern 

instead of the conventional propagation in circles obtained for isotropic materials. 

 

 SH-PWAS for Exciting SH Waves in Composites 8.1.4.

SH-PWAS was studied for the E/M impedance method and wave propagation of 

SH waves in two composite plates, one was cross ply GFRP woven composite and the 

other was quasi-isotropic [0/45/45/0] carbon fiber reinforced polymer (CFRP) composite 

with woven prepreg. Admittance experimental results were comparable to FEM built 

using coupled field piezoelectric elements bonded to composite layers. Wave propagation 

method showed that the SH-PWAS can excite SH waves as well as S0, A0, providing 

that the receiver PWAS is in a position such that the wave propagation direction between 

SH-PWAS and the receiver PWAS is perpendicular to SH-PWAS poling direction. If we 

excite SH-PWAS and receive the signal along a direction parallel to the poling direction, 

only A0 and S0 waves were captured. FEM models showed well the wave propagation 

pattern in woven GFRP plate and quasi-isotropic CFRP composite plate, however, lack of 

accuracy existed in the received signals due to limited computational resources. 
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 Guided Wave Damage Detection in an Aerospace-Like 8.1.5.

The MD7 guided-wave SHM system developed by Metis Design was studied and 

tested.  It is concluded that the system is applicable on the plate under test. Careful 

selection of frequency of excitation is an important parameter to be considered. 

 

 SHM of Variable Stiffness CFRP Plate 8.1.6.

Wave propagation experiments were performed on a VS CFRP plate. Besides the 

scattering due to experimental errors, the experimentally-measured wave speeds of the S0 

mode were more scattered than A0 mode. We concluded that A0 mode is the more 

preferred mode to be used in SHM analysis; its speed was almost constant with 

frequencies and different locations of the plate. A general conclusion is that solely 

experimental results for wave propagation are not enough to find wave propagation 

speeds for SHM applications. Predictive tools in terms of analytical or FEM are needed 

to better analyze such complex structures. 

 

8.2. MAJOR CONTRIBUTIONS 

The dissertation has contributed to the fundamental studies of using ultrasonics in 

SHM. The list of the major contributions includes   

1. Development of the analytical models of ultrasonic waves power and energy 

based on the exact Lamb wave modes. 

2. Predicting the power partitioning between multimodal Lamb waves (three 

symmetric and three antisymmetric modes) for a thick structure application. 
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3. Characterization of the SH-PWAS as a candidate for exciting SH waves in SHM 

applications, including: 

a) Modeling the E/M impedance of a bonded SH-PWAS to the structure 

analytically for the first time. 

b) Performing a comprehensive experimental and FEM studies to investigate 

excitation and reception of SH waves and the directivity of the SH-PWAS. 

4. The development of a MATLAB-based graphical user interface (GUI) for SH 

waves analysis, including: dispersion curves, modeshapes and wave energy. 

5. A novel approach (STMM) was proposed for obtaining a stable and correct 

solution of dispersion curves in composites over the entire solving domain. 

6.   The development a MATLAB-based GUI for a quicker and easier analysis of the  

dispersion curves in composites, including: 

a) Loading the unstable results of the transfer matrix method (TMM). 

b)  Displaying the complete stable stiffness transfer matrix method (STMM). 

c) Calculating displacements and stresses modeshapes at any given root on the 

dispersion curves. 

7. Performing comprehensive pitch catch experiments and FEM between SH-PWAS 

and regular in-plane PWAS for investigating SH wave excitation and reception in 

composites. 
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8.3. RECOMMENDATION FOR FUTURE WORK 

The dissertation has addressed analytical and numerical models to advance 

fundamental understanding of using ultrasonics for SHM of metallic and composite 

materials. The recommended future work includes: 

1. Extending power and energy transduction models for situations of bonded PWAS 

on composite materials. 

2. Performing more experimental studies to validate power and energy models; 

power need to be a parameter in the measurements. 

3.  Performing scanning laser vibrometer measurements to capture the shear 

horizontal response of the SH-PWAS. 

4. Continue developing the stiffness transfer matrix method (STMM) and predict 

dispersion curves for more complex composite layups. 

5. Performing more experiments of the wave propagation in composites and 

investigating types of damages, SH-PWAS is capable to detect. 
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