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Summary 
 

Bloodstain pattern analysis is used in the investigation of a crime scene to infer the 

impact velocity and size of an impacting droplet and from these, the droplet’s point and 

cause of origin. The final pattern is the result of complex fluid dynamic processes 

involved in the impact and spreading of a blood drop on a surface with variable surface 

properties such as wettability and porosity. An experiment has been designed to study 

these processes and the resulting patterns for the case of a single Newtonian droplet 

impacting an inclined surface with variable roughness and wetting properties. An 

experimental apparatus, including a droplet generator, has been designed to produce 

droplets on-demand, and that impact an interchangeable surface. In addition, a blood-

simulant liquid has been developed as a replacement for performing tests with real 

blood. With this apparatus and blood simulant, fluid dynamics concepts, such as contact 

line motion and wetting behavior are examined in the context of parameters of interest to 

the forensics community. These include eccentricity, spread factor and the number of 

spines formed on impact. The effect of varying dimensionless parameters including 

Reynolds number, Weber number and Laplace number, the angle of impact and surface 

properties is examined. Correlations are developed for predicting conditions at the point 

of impact from those observed later, as would be available to a forensics examiner, and 

the accuracy of the predictions developed in this thesis are evaluated.  

 

 



1 

 

Chapter 1 - Introduction 

 

Crime scene reconstruction is the discipline of determining events surrounding a crime 

based on scientific methods, deductive reasoning, physical evidence and their 

interdependencies. Various techniques have been used for this reconstruction. Among 

the most commonly used processes are DNA evaluation, fingerprint identification, and 

the focus of this thesis, blood-spatter analysis. Blood-spatter analysis uses residual 

bloodstains left at the scene of a crime to determine the point of origin of a particular 

stain and the type of trauma that led to the bloodletting (e.g., gunshot, blunt force, sharp 

object, etc.) [1]. The determination of these factors assists crime-scene analysts in their 

efforts to establish the sequence of events that occurred during the crime. It is known 

that the size and shape of a bloodstain are caused by conditions at the point and time of 

impact [2]. Stain size is quantitatively described as the area of the stain’s elliptical shape, 

whereas shape is quantified by the stain’s eccentricity as well as the number of spines 

and satellite drops around the stain contour [2] [3] [4]. The area of a stain is measured 

by fitting an ellipse to the stain outline and measuring the major and minor diameters, 

denoted by L and W respectively in Figure 1 [5]. 
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Figure 1. Illustration of primary stain features [6]. 

 

 

Eccentricity (e) is a relationship between these diameters. 

 
L

e
W

=   (1.1) 

A spine is a disruption in the periphery of a stain whereas a satellite is a drop that has 

completely separated from the main body.  

 

Within this general framework, where stain eccentricity, size, and shape, are used to 

determine impact conditions, a multitude of specific models and tools are used [7] [1]. 

The use of specific correlations, strategies, software, etc., is dependent on the resources 

available to an examiner, which are impacted by where and for whom the examiner 

works. One very popular, long-standing technique is called stringing [2]. This method 
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uses the eccentricity of a drop to determine its direction of origin by way of equation 1.2, 

where θ is the impact angle. 

 arccos( )1/ eθ =   (1.2) 

Balthazard, Piedelivre, Desoille and DeRobert proposed this relationship in 1939, based 

on their experimental work, and it has become the predominant correlation in forensics 

analysis [2]. Using this relationship, a ray is drawn in a straight line from the stain in the 

direction of θ. A nexus, or region of convergence, is then determined, by considering 

rays from a large number of stains. The point of origin is presumed to be the point of 

intersection of many rays. Additionally under this method, the speed of the drop is 

determined by the size of the stain and the assumption that the volume of the blood drop 

was “normal” [2], where a “normal” drop is defined as one containing 0.05 mL of blood 

[2]. This technique assumes that all stains are created by drops of equal volume.  

 

Recently, more refined methods have been developed in an effort to reduce sources of 

error. Ballistics software has allowed for a more rigorous application of physics in 

determining droplet flight paths [1]. Using these tools, gravity, drag and other forces 

acting on a drop in flight may be taken into account. Correlations have also been 

developed that relate the number of spines to droplet speed at impact [3] [4]. With these 

developments, the assumption of a drop of “normal” volume is no longer required. 

Although these methods represent significant improvements over previous methods, 

they are still limited. A correlation is only valid for impacts within a certain range of 

impact conditions and for impacts on a certain material. Surface properties such as 

roughness, compliance, and porosity affect spreading behavior and can either inhibit or 
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promote spine and satellite formation [8] [9]. Thus, a more complete examination of the 

physics of droplet impacts may improve current blood stain examination techniques and 

lead to less ambiguity in the events surrounding crime-scene blood-spatter analysis.  

 

It is helpful in the discussion of droplet impact behavior to separate the droplet impact 

process into four stages: pre-impact, spreading, retraction, and progression towards a 

steady-state; Figure 2 illustrates the first three stages.  Note that all droplet impact 

images in this thesis are shown for impacts on inclined surfaces. The surface slants 

downwards from left to right in every image, resulting in greater spread in this direction. 

 

 

Figure 2. Illustration of droplet impact stages. This impact is for a 2.4mm diameter water 
drop, traveling at 3.46m/s, impacting glass at an angle of 20°.  For each group of 
images, time increases from left to right. 

 

Pre-impact is the time after droplet generation but preceding the collision of the drop with 

the surface. While the droplet is in free-fall, gravity accelerates the drop downward, the 

surrounding air exerts a drag force, and the droplet may experience oscillation due to its 
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method of origination and/or aerodynamic forces. Impact signals the end of this stage 

and the beginning of the spreading stage. Spreading begins on impact and ends when 

the wetted area of the substrate reaches a maximum. At this point in the impact process, 

retraction begins. Retraction is caused by surface tension in the liquid pulling the lamella 

back into itself. A lamella is a thin rim on the outside edge of a drop that frames it as it 

spreads, as illustrated in Figure 3. 

 

 

Figure 3. Illustration of a lamella. Notice how light is reflected differently in the layer on 
the edge of the drop. This is the lamella. 

 

 

The cohesive, intermolecular, forces within a droplet must overcome the adhesive forces 

between the droplet and the surface for this to occur. Compared with water, blood has a 

smaller surface tension.  Whereas water tends to retract, blood will remain in a small 

pool. Figure 4 shows an impact where there is noticeable retraction versus an impact 

where retraction is imperceptible.  
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Figure 4. Retraction stage illustration. The top images show an impact progression for 
water. The bottom images show an impact progression for a blood simulant liquid. 

 

The final stage exhibits a progression toward a steady-state shape. During this stage, 

ambient conditions and particular solid-surface properties play greater roles than in 

previous stages. For example, liquid can be wicked into the material being impacted, it 

may begin to flow due to its own weight and drying may inhibit flow.  

 

When studying droplet impacts in the context of forensics, the spreading stage is of the 

greatest importance. A stain is, by definition, “a discoloration produced by foreign matter 

having penetrated into or chemically reacted with a material” [10] and in the case of 

blood stains, blood residue bonds with the substrate. Blood residue left behind on a 

surface can be observed either visually or with the help of chemicals such as luminol. 

Luminol exhibits chemiluminescence when it reacts with an oxidizing agent and is the 

predominant chemical used in blood-spatter analysis [11] [12]. What luminol illuminates 

and what the eye observes in these images, is the result of the spreading stage of a 

droplet impact. The spreading stage is also the period when behavior is most affected by 

the impacting droplet properties. Retraction is minimal for blood due to its relatively low 

surface tension, and steady-state blood drops are affected by ambient conditions such 
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as temperature and humidity as much as by the droplet properties at impact. 

Additionally, wicking and drying behavior are relevant to steady-state analysis while 

these effects are much less prevalent during the spreading phase.  

 

From the perspective of fluid dynamics, droplet impacts can be studied by examining 

wetting behavior and contact line dynamics. Wetting is the ability of a liquid to adhere to 

a solid surface. Often, the wettability of a surface is quantified by the contact angle α, 

shown in Figure 5, measured through the liquid, of a liquid/vapor interface at the three-

phase line on a solid surface. As the contact angle decreases, the wettability of the 

surface is said to increase.  

 

  

Figure 5. Contact angle illustration.  

 

Wettability, contact line and contact angle can be studied in terms of  impact parameters 

such as droplet velocity  (𝑉), diameter (D) and impact angle (θ), fluid properties such as 

density (ρ), viscosity (µ) and surface tension (σ), and surface properties such as average 

roughness (ε), hardness, wettability, and porosity. Impact and fluid properties can be 

reduced in number through dimensional analysis, leading to the dimensionless Reynolds 

number Re, Weber number We, and Laplace number La, only two of which are 

independent: 
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VD

Re
ρ

µ
=   (1.3) 

 
2V D

We
ρ

σ
=   (1.4) 

 
2

2

D ReLa
We

ρσ
µ

= =   (1.5) 

  

These dimensionless parameters are important in the present problem because they 

indicate relative magnitudes of forces at play during impact.  Re represents the ratio of 

inertial to viscous forces, We is the ratio of inertial to surface-tension forces and La is a 

ratio between surface tension and momentum transport within a fluid. In order to study 

droplet impacts systematically, these parameters must be varied and the resulting stain 

patterns, including the time-dependent spreading behavior, must be observed. In 

forensics these dimensionless parameters fall into the following ranges, based on the 

properties of blood and the size and speed of droplets seen in forensics:  

100 < Re < 25,000, 5 < We < 180,000, 3,000 < La < 25,000 [13].  

 

On the subject of the fluid dynamics of blood-spatter analysis, a number of previous 

studies were important in the development of this thesis. Adam [4] experimentally 

validated relationships between droplet size and velocity and the resulting stain size and 

the number of spines. Adam used stored human blood and focused specifically on 

droplet impacts on paper. For the range of droplet sizes and speeds tested, he 

concluded that there was strong dependence of the number of spines and stain size on 
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the impact speed. The majority of his work was focused on perpendicular impacts, but 

he performed a limited amount of work on inclined surfaces. He posited a relationship 

between the number of spines, the impact angle and We of the form shown in equation 

(5). 

 
1 7
2 2sin( )N We θ=   (1.6) 

Carroll [14] also conducted droplet-impact research and it is her method of droplet 

generation that formed the starting point for the generator design outlined later. Carroll 

used a glycerin-water mixture and similarly concluded that number of spines was 

dependent on the impact velocity. She also found that eccentricity was wildly 

unpredictable when comparing results obtained for different impact angles and 

materials. These results run counter to many standard practices in the forensics 

community and bear further investigation.  

 

Finally, Hulse-Smith and Illes [3] used human blood to experiment with stain patterns on 

paper, wood and drywall for perpendicular impacts. Using their experimental results they 

developed correlations between droplet impact size D0, speed V0, and the number of 

spines produced in the corresponding stain. An additional correlation between the 

diameter of the stain, Ds, and the impact diameter was developed, since two equations 

are necessary to solve for two independent parameters. Using these two correlations, 

the incoming diameter and velocity were calculated from the number of spines and the 

stain diameter. The correlations developed in this paper neglected liquid properties, 

arguing that since liquid properties are the same for all impacts, using dimensional 

correlations was more practical. These correlations include only variables that were 
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measured and those that need to be calculated. 

 2
0146D 12.8oN V= +   (1.7) 

 3
0 0

0

13.8sD D V
D

=   (1.8) 

Although each of these sources provides invaluable insight into various aspects of 

droplet behavior, many questions remain. To this end, the purpose of the research 

presented in this thesis is to investigate the fluid dynamics of a drop impacting an 

inclined surface. The effects of surface properties and impacting conditions (drop size, 

speed, etc.) are examined. The resulting stain and the spreading behavior of a drop 

under various conditions are of particular interest. The study of this behavior will assist 

forensic examiners in their attempts to reconstruct crime-scene events. 
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Chapter 2 - Methods 

 

The work to be described in this thesis is comprised of a set of laboratory experiments, 

where single droplets are ejected onto a target surface. The spreading behavior of each 

individual droplet is then studied through use of high-speed photography. Toward this 

end, an experimental apparatus is needed that can fulfill three primary functions:  first, it 

must reliably produce droplets; second, it must be capable of varying the desired 

parameters of interest; and finally, it must permit the measurement of relevant data. The 

final experimental setup, shown in Figure 6, is composed of the droplet generator; the 

test frame; and the target assembly. The droplet generator is used to produce droplets 

on demand. The material onto which droplets fall is placed on the target assembly. This 

subsystem also allows for the measurement and variation of parameters. The lasers and 

photodiodes depicted in Figure 6 are used to measure a droplet’s speed. The generator 

is mounted on a platform that slides vertically between two rails. This allows for variation 

of the height a droplet falls. It also serves as a support structure for the entire assembly. 

Each sub system is described in greater detail in the following subsections. 
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Figure 6. Experimental setup. 
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2.1 The Droplet Generator 
 

The droplet generator is used to physically produce single droplets-on-demand of 

various sizes. The system operates on the principle that liquids are incompressible. 

Liquid is allowed to flow into a chamber; after, the chamber is filled the inlet and outlet 

are sealed off. By deflecting a membrane into the liquid supply, liquid is forced out of the 

chamber through an orifice. In order to describe droplet generation in more detail, the 

droplet generator subsystem can be further divided into three subsystems: the air 

section; the liquid section; and the control circuit. 

 

The air section is composed of a compressed air supply and a pressure regulator. Air is 

pulsed into the generator deflecting a flexible membrane. Changing the duration and 

magnitude of the pressure pulse changes the deflection profile and, ultimately, the size 

and speed of the ejected droplet. The magnitude of the pressure pulse is controlled with 

the pressure regulator and its duration with a solenoid valve. The purpose of the control 

circuit is to actuate this solenoid valve. A LabVIEW program was written to precisely 

control a relay that acts as the breaker for the solenoid valve circuit. A National 

Instruments DAQ acts as the computer-relay interface.  

 

The liquid section is composed of a liquid supply, a liquid reservoir, and the droplet 

generator. Two ball valves control the flow of liquid through the generator. Figure 7 

shows how these three subsystems interface and how information, air and liquid flow 

through the system. The droplet generator, shown without detail in Figure 7, is the key 

component of the system from a design standpoint. 
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Figure 7. System Components and their Interactions. Separate systems are identified by 
different colors. 

 

The starting point for the design of the droplet generator was one taken from the 

previous work of Carroll [7], but several important design changes were made, with the 

final design shown in Figure 8. The first significant change is the orientation of the 

generator. The direction of membrane deflection (i.e., whether downwards, sideways, 

etc.) is not important.  Thus, the membrane and air chamber were moved to the side of 

the liquid chamber, rather than above it. Additionally, a cone was fashioned into the top 

of the liquid chamber. Air bubbles travel around the side of the cylindrical chamber and 

upon reaching the cone, are funneled up through the air vent. Changing the orientation 

also allowed for the addition of a large, threaded hole to accommodate threaded orifices 

of different sizes. This was not possible in the previous model, due to lack of material in 
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the thin plastic sheet used as a liquid chamber bottom. With this addition, the orifice 

could then be used to vary the size of a drop being produced. Another important 

modification was changing the membrane mounting method. Instead of mounting a 

single membrane clamping plate to the inside of the liquid chamber, two membrane 

clamping plates secured the membrane and the entire apparatus was clamped together 

via bolts. This revised clamping design allows for much greater and more precise pre-

tensioning of the membrane and makes mounting the membrane easier. Greater 

membrane tension increased the ejection speed and decreased the incidence of satellite 

drops.  

 

Operation of the generator begins with filling the liquid chamber. To do this, the orifice 

was plugged with a rubber stopper and the inlet and outlet ball valves were opened. 

Liquid was allowed to flow until all air bubbles were evacuated from the chamber. At this 

time, the outlet ball valve was closed, followed by the inlet valve. The orifice plug was 

then removed. In the development of this system there was concern over air remaining 

in the channel between the liquid chamber and the orifice. After unplugging the orifice, a 

small amount of liquid is seen to drip from the opening, dispelling these concerns. After 

the initial dripping, the liquid is completely stagnant until a droplet-producing air pulse is 

applied.  Figure 9 roughly illustrates operation of the modified generator.  
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Figure 8. Final droplet generator design. This image includes the air and liquid cambers, 
the clamping plates and the liquid chamber bottom piece. Also shown are the bolt holes 
and the O-ring groves.  

 

 

Figure 9. Droplet generator operation. Step 1 – fill the chamber with liquid. Step 2 – 
close off the inlet and vent. Step 3 – pulse air into the air chamber to deflect the 
membrane and produce a drop.   
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In addition to producing drops of varying size, the ability to vary speed is also desired. A 

decision was made to use gravity to accelerate a drop instead of accelerating either the 

generator and/or the target toward one another. Accelerating the target toward the drop 

would also allow for large impact speeds, but aerodynamic effects due to the moving 

platform might interfere with the drop in flight, causing unpredictable behavior. To utilize 

gravitational acceleration, the droplet generator was mounted on a sliding platform 

between a pair of rails, allowing for an adjustable drop height. A drop accelerates over 

the fall distance to a desired speed with terminal velocity providing a limitation on 

velocity variability. A drop height of 2.5m was determined to be sufficient to reach a 

near-terminal speed. Prefabricated T-slot structural aluminum rails were used to 

fabricate the apparatus. Figure 10 shows how they were assembled to provide the given 

function. An additional support frame was constructed around the two main rails and is 

not shown in the graphic.   
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Figure 10. Rail system layout. The numbers in the figure show how the generator (1) 
was placed on a sliding platform between rails (2), while always being directly above the 
target (3).  

 

 

Using the generator described in the previous section, droplets can be reliably and 

predictably produced, without satellite drop formation, with diameters ranging from 2mm 

to 5mm. The use of rails allows for acceleration of these drops up to speeds of 5 m/s. To 

place this into forensics context, this would correspond to drops created via cutting or 

blunt force. Droplets resulting from a gunshot wound are typically smaller and move at 

much greater speeds. For drops in the size range described, the speeds resulting from 

gravitational acceleration represent a near-terminal speed. We can compare these 

operational parameters to work done by Carroll [14] and Adam [4]. Carroll was able to 

produce droplets between 1.5 and 4.5 mm in diameter capable of speeds between 1.7 

and 2.1 m/s. It is important to note that droplet size was the determining factor in speed. 

Since weight changes on the order of diameter cubed and drag varies on the order of 
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diameter squared (drag also changes on the order of velocity squared), smaller drops 

arrive at the target at slower speeds. The rail system described above has the 

advantage of producing drops of much greater speeds, which can be adjusted without 

changing the size of the droplet produced. Adam used dripping to produce drops of 3.28, 

4.21 and 5.15 mm in diameter. One of the great advantages of using a droplet generator 

over dripping is the ability to produce drops of smaller sizes and to vary the size of a 

drop without changing the orifice used to produce them. Dripping occurs when the 

weight of the drop overcomes the force of adhesion between itself and the orifice 

material. By using the droplet generator described in the preceding sections, this 

limitation is overcome via a pressure pulse. Additionally, the magnitude and duration of 

the pressure pulse can be used to vary a droplet’s size within a small range. This allows 

for greater flexibility when different sized droplets are desirable.  

 

2.2 The Target Assembly 
 

After a drop is produced by the generator and falls a distance that is controlled by the rail 

system, it collides with a surface mounted on a target plane. The target assembly, onto 

which targets are placed, allows for measurement of the parameters of interest and 

allows for the target to be interchangeable. In this way, impacts on different materials 

can be studied. The target assembly consists of a rotating shaft, a camera arm and a 

frame. The camera arm mounts rigidly onto the rotating shaft, which slides into bearings 

on either side of the frame. This assembly, shown in Figure 11, ensures that the camera 

is always oriented perpendicularly to the target, which is necessary when studying 

spreading behavior. An oblique viewpoint would distort measurements of drop 

characteristics. 
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Figure 11. Target assembly. 

 

Since high-speed video is employed for these experiments, one might be tempted to 

extract a droplet diameter from a video frame.  However, droplet deformation due to 

aerodynamic effects and/or persistent oscillation makes this difficult. Since the high-

speed camera is mounted in such a way that it is always perpendicular to the impact 

surface, information is only available within a single plane. This is desirable for studying 

spreading behavior, but not for studying a droplet in flight. A droplet in flight deforms in 

more directions than the single plane for which we have information. Therefore, a more 

reliable method for determining droplet size is to measure its mass. By measuring the 

mass of the target before and after a drop impact, the mass of the impacting drop is 

determined to within four ten-thousandths of a gram. A Mettler AE160 analytical balance 

was used to make these mass measurements. Mass measurements were taken within 

ten seconds of impact. Over this time period, evaporation was experimentally 

determined to be insignificant. For each material, the weight of the target and a liquid 
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drop was recorded over a minute. At the end of the minute the weight was within four 

ten-thousandths of a gram, in each case. 

 

In order to measure droplet speed, a method was designed using two laser/photodiode 

pairs. Each laser illuminates a photodiode located horizontally opposite it. Each beam 

produces a constant current from the photodiode. The two laser/photodiode pairs are 

oriented vertically and separated by a distance Δz, shown in Figure 12, so that the 

beams cross the path of a falling droplet.  As a liquid drop passes through each beam 

the current produced shows a sharp spike, shown in Figure 13, which is measurable via 

a LabVIEW data acquisition program. Using this program to determine the time, tp-p, 

between blips, given the known Δz, a speed, V, can be computed according to equation 

(2.1). 

 
p p

z
V

t −

Δ
=   (2.1) 

Figure 12 illustrates how a drop blocks each laser as it passes through the beams, and 

Figure 13 shows an example of the current vs time produced by the passage of a 

droplet. 
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Figure 12. Illustration of a drop passing through a pair of laser beams. The time 
between the current blips, created as the drop blocks each laser, is used to calculate the 
velocity, knowing the value of Δz.  

 

 

  

Figure 13. Speed calculation from the photodiode data. 

 

The other necessary parameter is the impact angle. To control this precisely, the impact 

platform was placed on a rotating shaft. The shaft passes through the target assembly, 

shown in Figure 11, and through the main rails of the rail system. In doing so, the center 

of the target assembly was always centered under the droplet generator. Also note in 

Figure 11 the two holes on one side of the mount and four holes in a rectangular pattern 

on the other. These are for integration of the laser-photodiode system described above. 

A laser is placed in each of the two holes on the right, while a photodiode is placed in the 

center, horizontally of each pair of holes on the left. The holes on the left are used for 

wiring the photodiodes to a National Instruments USB-6008 DAQ device. The L shape of 

the target assembly is necessary for mounting a camera such that the viewing direction 

is orthogonal to the target and the center of the frame is the location of impact. A 
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Phantom Miro M120 high-speed camera is used to record droplet impacts and analyze 

spreading behavior. 

 

2.3 Blood Simulant 
 

With a method in-hand to produce droplets reliably, attention turned to developing a 

blood simulant to model the properties of blood during impact conditions. For Reynolds 

numbers (1000 < Re < 6000) and droplet sizes (scaled by the length scales of blood’s 

particulate components) lying within the capabilities of this apparatus blood can be 

modeled as a Newtonian fluid. In addition, on the time scale of a droplet impact, the 

effects of drying and capillary action (i.e., “wicking”) were determined to be negligible. 

Droplet spreading occurs on the order of milliseconds, much less than the amount of 

time needed for wicking to occur, which is on the order of seconds. High-speed 

photography was used to verify this assumption. Under these conditions the physical 

properties of interest are the viscosity and surface tension. According to Adam [1], the 

kinematic viscosity of blood is 4.15 cSt and its surface tension is 62 mN/m. By matching 

both the viscosity and surface tension of actual blood, one is able to easily achieve 

dynamic similarity between blood-simulant experiments and actual practice.  

 

Since blood can be modeled as a Newtonian liquid under the test conditions applicable 

to this experiment, a simple and easy-to-use blood simulant liquid was prepared: a 

mixture of water, glycerin and alcohol. Using tap water as the base liquid (with nominal 

values of 1 cSt and 79 mN/m for viscosity and surface tension, respectively), the 

viscosity needed to be increased and the surface tension needed to be decreased for 
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the simulant liquid to have the appropriate properties. Glycerin was readily obtainable, is 

miscible with water, and has the desired effect of increasing viscosity. Adding isopropyl 

alcohol was determined to be an economic and effective means of reducing the surface 

tension. Additionally, the small quantities of alcohol used did not significantly affect the 

viscosity. At ambient conditions under which experiments were later performed, 

calibration curves were developed to determine the appropriate amounts of each liquid 

needed to hit the target physical properties. Due to the temperature-dependent nature of 

viscosity of water-glycerin mixtures, ambient conditions were carefully monitored to 

ensure that test conditions were constant, and liquid properties were invariant. Viscosity 

was measured using a Cannon-Fenske Routine viscometer and the surface tension was 

measured by the pendant drop method [15]. The simulant liquid was prepared and 

tested before each experimental run to verify that properties conformed to the 

specifications.  

 

 

Figure 14. Blood simulant calibration curves. The red line indicates the desired 
properties of blood.  

 

Several other simulant liquids were also researched. The first was the use of water with 

the addition of a surfactant. This could have been used instead of alcohol to lower 
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surface tension, but due to price, was dismissed. Second, a number of commercially 

available products were considered. Products such as TrueClot® and NoStainSim claim 

to match the properties of blood, but were dismissed, again, due to cost considerations. 

A variety of studies including that by Hulse-Smith [3] used actual human blood. Due to 

the difficulties inherent in the use of biological samples (including the approval process), 

acquiring samples, storage and sample degradation, this option, too, was discarded. 

Finally, Michielsen et al. [16] used a synthetic blood simulant based on ASTM standards. 

Although this was a viable option, confirming that the simulant properties matched those 

of real blood was only possible after purchasing the standard. Therefore, due to cost 

considerations, and an existing and functional simulant, this, too, became a secondary 

option.   
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Chapter 3 - Experimental Procedure 

 

Using the setup and simulant liquid described in the preceding sections, data were taken 

for various droplet and impact-surface properties. The properties that were directly 

adjustable include the drop diameter and speed (corresponding to changes in Re, We 

and La) the angle of impact and the material involved. In the analysis of the data 

collected, We has been excluded from the discussion due to the similar trends seen for 

both Re and We. Different results may be evident over a larger range of Re and We, but 

not for the range of these parameters tested in this experiment. 

 

Three different materials were used in order to evaluate the effects of surface roughness 

and absorptivity: glass, a glazed semi-rough ceramic tile, and construction paper. For 

the purposes of this study, roughness and absorptivity were the primary surface 

properties of interest. Table 1 lists all of the properties that were varied and the ranges 

through which they were varied. Shown are both the specific properties that were 

adjusted and the dimensionless values required for analysis. Roughness values were 

obtained using a profilometer available in the Georgia Institute of Technology School of 

Mechanical Engineering machine shop. Absorptivity values were taken by measuring the 

ratio, by volume, of water to material after it had been allowed to soak. A more detailed 

description of the method is detailed in reference [17]. It is important to note the 

anisotropic nature of the roughness of paper. The lower value is the roughness in the 

direction of flow, while the higher value is the roughness across the surface. When 

experimenting with paper, each sheet was always oriented in the same direction, with 

greater roughness in the transverse direction.    
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Table 1. Parameter ranges and materials used for these experiments. 

Property Range 

Diameter (mm) 2-5 

Velocity (m/s) 1-5 

Reynolds Number 1000-5500 

Weber Number 200-2000 

Laplace Number 4000-15000 

Impact Angle (deg.) 20-60 

Impact Surface Glass, Tile, Paper 

 

 

Table 2. Roughness and absorptivity values for the three materials used. ε refers to the 
arithmetic average of a surface profile from its centerline and absorptivity refers to the 
percent, by volume, of water to the listed material after soaking. The two values shown 
for the roughness of paper correspond to the roughness in the longitudinal and 
transverse directions respectively. 

 Glass Tile Paper 

Roughness (ε) 0.002  0.048 0.224 / 0.292 

Absorptivity (%) <<1 <1 14.8 

 

 

The procedure for collecting data was the following. First, the height of the droplet 

generator was fixed, fixing the droplet speed, and an orifice was chosen, limiting the 

range of droplet diameters capable of being produced. For each material, the angle was 

then varied between 20° and 60° in increments of 10°. Next, either the drop height or the 

orifice was varied, changing Re, We, and/or La. Four different orifices were used 

including 0.063 in, 0.1 in, 0.125 in and 0.2 in. When placing a material onto the target, 
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care was taken to ensure that each surface was as similar as possible to others used in 

similar test runs. For paper, this meant that the same orientation was used for each test 

run. For glass and tile, this involved rinsing the surface with water, drying it, and then 

using a blowtorch to fire-clean it. Fire-cleaning was implemented to remove as many 

dust and paper particles as possible. At each angle, speed, size and material, at least 

two data points were collected to validate the behavior. For each individual test a video 

was collected. Videos were taken from just prior to impact until the drop had spread out 

and retracted, typically on the order of half of a second. Information was gathered from 

these video records, including the major and minor diameters of an ellipse fit to the drop 

contour, as well as the number of spines. The major and minor diameters were 

measured from the outside edge of the droplet lamella. Figure 15 shows how an ellipse 

is fit to a droplet contour when it is not perfectly elliptical.  
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Figure 15. Illustration of an ellipse fit to non-elliptical droplets. Both images are for 
impacts on glass at an angle of 50° 

 

 

After each drop was fit with an ellipse, the number of pixels along the major and minor 

diameters was determined. A scale was also included in each image, allowing a 

conversion from the number of pixels to a distance. 

 

 

Figure 16. Droplet next to a scale. This image shows a drop impacting a tile surface at 
an angle of 30°.  
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Chapter 4 - Results 

 

The product of the experimental methods and procedures outlined previously is a study 

of three parameters of interest: eccentricity, spread factor and the number of spines. 

These properties are examined against the impact angle, Re, the impacted material and 

La.  Spread factor (SF) is the ratio between the cross-sectional area of an incoming 

droplet and the area of the resulting stain. 

 f

D

A
SF

A
=   (4.1) 

fA and DA are the area of the final shape and the cross-sectional area of the drop, 

respectively, as shown in Figure 17. 

 

 

Figure 17. Spread factor illustration 

 

For each parameter, observed trends are explained and correlations are developed. 

Once eccentricity, spread factor and the number of spines are examined individually, the 

method for using the developed correlations in forensics analysis is explained. Also, the 

conditions necessary for applying each correlation are described. 
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4.1 Eccentricity 
 

Recall that eccentricity is the ratio between the major and minor diameters of an ellipse 

fit to a blood stain. In forensics, the common practice is to obtain the impact angle from 

the measured eccentricity using the simple relationship.  

 
1

arccos( )
e

θ =   (4.2) 

One objective of this chapter is to determine the accuracy of this correlation and offer a 

more complete picture if this relationship is found to diverge from experimental results. 

This discussion begins with an examination of eccentricity versus Re, for each material 

in Figure 18, Figure 19, and Figure 20. In these plots, as well as others presented 

throughout the remainder of this thesis, the measurement uncertainty of a single data 

point is between 2% and 5% of the measured value; however, there is significant 

variation over droplets produced under similar conditions, especially for impacts on 

paper. In order to quantify this effect, a series of 15 data points was collected on each 

surface at an angle of 40° and with Re = 5300. The results are shown in Table 3. 

 

Table 3. Tabulated variability of eccentricity. 

 Glass Tile Paper 
Average Eccentricity 1.41 1.42 1.44 

Standard deviation of Eccentricity 0.03 0.03 0.09 
 

 

Table 3 illustrates that there is variability even when the droplet size and speed are kept 

constant. Paper shows significant variation, where eccentricities of 1.35 - 1.53 represent 
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one standard deviation in either direction. Glass and tile show less, but still a noteworthy 

amount of, variability. Two hypotheses for this variability are presented here. The first is 

the difference between microscopic and macroscopic roughness. This is particularly 

relevant for impacts on paper and to a lesser extent for impacts on tile. Although the 

average roughness over the distance measured by a profilometer does not change 

based on location for any of the surfaces tested, this average value is probably not 

obtained in a uniform fashion. In other words, roughness may differ over very small 

distances, but the average roughness over the entire domain can remain constant. The 

second is that an oscillating drop may impact a surface at different phases within an 

oscillation period. For a smooth surface, such as glass, droplet oscillations are the most 

likely cause of the spread seen in the data. 
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Figure 18. Eccentricity vs Re for impacts on glass. 

 

Table 4. Slopes of eccentricity vs Re for impacts on glass. 

Angle Slope 
20 2.02E-06 
30 2.22E-06 
40 -1.05E-05 
50 -2.51E-05 
60 -4.44E-05 

 

 

Based on the results presented in Figure 18 and Table 4, Re appears to have little 

effect, if any, on eccentricity until impact angles above roughly 40° are encountered. 

Visually, there is a nearly imperceptible change in eccentricity as Re is increased from 

1000 to 5500 for angles of 20°, 30°, and 40°. This is confirmed when looking at the 
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slopes. At 40° a change in Re of 5000, the entire range of experimentation, is needed for 

just an increase in eccentricity of 0.05. This is even more pronounced at smaller angles. 

On the other hand, a slight dependence is observed at higher angles. As Reynolds 

number is increased, the observed eccentricity decreases. This is somewhat 

counterintuitive. A drop moving at higher speeds should spread further when a more 

oblique force is applied. The impacting material exerts a normal force on the drop 

perpendicular to its orientation. This force decreases as the angle of inclination 

increases and it might be expected that the drop spreads further in the “downstream” 

direction under this condition; however, this is not the case.  This suggests that 

something is acting tangentially to slow spreading at higher-angled impacts. The 

discussion will be continued in more detail at the end of Section 4.1 after considering 

impacts on other materials.  
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Figure 19. Eccentricity vs Re for impacts on Tile. 

 

Table 5. Slopes of eccentricity vs Re for impacts on tile. 

Angle Slope 
20 -3.23E-06 
30 -7.98E-06 
40 -1.69E-05 
50 -1.84E-05 
60 -7.11E-05 

 

 

The pattern for eccentricity versus Re for impacts on tile seen in Figure 19 is very similar 

to what was observed for impacts on glass. Both materials are hard, non-porous and 

minimally rough, especially when compared with paper. The difference in surface 
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roughness, does not change the effect of Re, as clear stratification is seen at each angle 

with minimal change in eccentricity as Re changes, at least until large angles. Again, at 

60° a slight downward trend is observed. In examining the slopes shown in Table 5, the 

magnitude of the slope at 60° is almost four times greater than that for 50°, meaning that 

over the range of experimental Re values a meaningful change is observed in 

eccentricity. Before discussing the cause of this trend, impacts on paper shown in Figure 

20 and Table 5 are examined for behavior consistent with that observed so far. 

  

 

Figure 20. Eccentricity vs Re for impacts on paper. 
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Table 6. Slopes of eccentricity vs Re for impacts on paper. 

Angle	   Slope	  
20	   -‐4.86E-‐07	  
30	   -‐2.98E-‐05	  
40	   -‐2.92E-‐05	  
50	   -‐6.37E-‐05	  
60	   -‐2.36E-‐04	  

 

 

Although the results for impacts on paper are more varied than for those on glass and 

tile, the trends remain the same. At small angles, Re has a minimal effect on eccentricity 

while at large angles the effect of Re is much more pronounced. In fact, at 60°, for the 

first time a significant change is observed in eccentricity as Re increases, suggesting 

that roughness plays a role in reducing eccentricity. By studying the contact line motion 

during spreading, this result begins to be explained. For low-Re impacts, spreading is a 

smoother process, with the lamella remaining mostly intact throughout the process. The 

spreading is slow enough that the rate that the contact line advances matches the rate of 

spreading of the bulk liquid. At higher Re, the bulk liquid attempts to spread more quickly 

than the contact line, the motion of which is opposed by surface roughness. This 

contrast results in the ejection of satellite drops, and the formation of liquid tongues and 

cast-forward features. Examples of these features are shown in Figure 21. Greater 

surface roughness further exacerbates this effect. Glass predominantly forms a cast-

forward feature, while tile and paper often form tongues. The cast-forward feature is less 

disruptive to bulk contact line motion than tongue formation and results in a lesser effect 

on eccentricity. The greater roughness of paper compared to tile causes more abrupt 

changes in the drops forward edge and subsequently further effects eccentricity.  
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Figure 21. Illustration of tongues (right) and cast-forward (left) features. The right image 
is a high-Re, 60° impact on tile and the left image is a high-Re, 60° impact on glass. 

 

Next, the effect of La on eccentricity is evaluated. La effects are identical to those of Re. 

For ease of viewing, data for glass and tile have been condensed onto a single plot in 

Figure 22. The same trends are seen as observed with Re. Low angles still exhibit 

minimal dependence on La, while high angles begin to show some effect. When looking 

at the impact results for paper shown in Figure 23, there is a similar decrease in the 

consistency of eccentricity and again high-angle impacts show a significant variation with 

La. It is reasonable to speculate that the trends in La are caused by the same reasons 

as those observed for Re. Increases in La correspond to increases in Re. In fact, they 

increase in a proportional fashion. Both dimensionless numbers are linear functions of 

droplet diameter. Thus, when droplet diameter causes certain effects, these effects 

should be seen in both Re and La. 
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Figure 22. Eccentricity as a function of La for impacts on glass and tile. The dotted best 
fit curves are for tile and the solid lines are for glass. The gap between Laplace numbers 
of 10000 and 14000 is a result of a limited selection of orifice diameters used to produce 
droplets.  

 

 

Table 7. Slopes of eccentricity vs La for impacts on glass and tile. 

Angle Glass Tile 
20 1.56E-06 -1.84E-06 
30 1.49E-06 -2.61E-06 
40 -7.38E-06 -5.68E-06 
50 -7.28E-06 -3.51E-06 
60 -1.41E-05 -2.41E-05 
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Figure 23. Eccentricity as a function of La for impacts on paper. 

 

 

Table 8. Slopes of eccentricity vs La for impacts on paper. 

Angle Slope 
20 4.01E-07 
30 -1.01E-05 
40 -1.06E-05 
50 -2.74E-05 
60 -7.85E-05 

 

 

After considering the effects of Re and La, the effect of impact angle is investigated. 

Figure 24 shows how eccentricity changes as a function of impact angle. Since similar 
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trends were seen in each material when investigating Re and La, they are shown on the 

same plot. Additionally, data are shown without distinguishing between changes in Re. 

Although this is fine for smaller angles, it must be kept in mind that Re was shown to 

have an effect on eccentricity for angles greater than 40°. Also indicated on the figure is 

a curve representing common practice in the forensics community.  

 

 

Figure 24. Eccentricity as a function of angle for impacts on glass, tile and paper. Data 
is also compared to a common practice curve.  

 

Although the shape of the common practice curve somewhat reflects the data, it 

represents a crude approximation for high impact angles, differing by roughly 50% for 

impacts on paper at 60°. Adjustable parameters can be added to the common practice 
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equation as shown in equation (4.3), where A, B and C are unknown constants to be 

determined. By modifying these constants, the same type of regression is used, while 

shifting it to better fit the data. The data from the present experiments have been fit by 

minimizing the error in the sense of least-squares. Best-fit parameters are calculated for 

each material and are shown in Table 9. Figure 25 shows how the best-fit curves 

compare with each other.  

 
cos( )

A
C

B
ε

θ
= +

+
  (4.3) 

Table 9. Best fit values of parameters A, B and C for each material. 

 A B C 
Glass 0.9745 0.0541 0 
Tile 0.9846 0.0650 0 

Paper 0.6886 0.1902 0.3073 
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Figure 25. Eccentricity versus impact angle model comparisons. 

 

What is observed is that for small to moderate angles and for the entirety of the glass 

and tile curves, the fits are practically identical. At the point of greatest separation, the 

predicted eccentricity of glass and tile differ by just 4.5%.  At large angles the fit for 

paper diverges significantly from that of the others, but so too does the behavior, as 

discussed earlier. Neglecting high-angle impacts on paper, it is pertinent to question 

whether a single data fit has the ability to adequately predict angle based on eccentricity. 

Using all available data from impacts on glass and tile and data from impacts on paper 

up to 50°, a correlation was developed that is shown in Figure 26 along with material-

specific ones. This curve lies nearly on top of the one for impacts on glass, and is just 

4.3% different for impacts on tile at 70°, the point of maximum separation. This 
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correlation will be further evaluated in Section 4.4. Following Figure 26, the discussion 

turns to the next parameter of interest, spread factor. 

 

Table 10. Best fit values of parameters A, B and C for each material compared to the 
comprehensive curve. 

 A B C 
Glass 0.9745 0.0541 0 
Tile 0.9846 0.0650 0 

Paper 0.6886 0.1902 0.3073 
Comprehensive 0.9978 0.0499 0 

 

 

 

Figure 26. Eccentricity versus impact angle models compared to a comprehensive 
model. 
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4.2 Spread Factor 

 

Recall that spread factor is the ratio between the area of a stain and the cross-sectional 

area of an incoming drop. Similar to eccentricity, contact line behavior is crucial to 

understanding and quantitatively evaluating spread factor. In order to understand 

contact-line motion and the factors involved, spread factor can be evaluated against Re, 

and impact angle. Figure 27 shows data for impacts on glass. The scale and the best fit 

curve are identical on each plot because best fit curves were created using the entire 

data set, not individual angles. The best fit curve is of the form shown in equation (4.4), 

where A and B are fitting constants.  

 (Re )BSF A=   (4.4) 

Good agreement is evident across the data set with an R2 value of 0.895 and at each 

individual angle with the average percent error of each angle ranging from 5 - 8.5%. If 

best fit curves are generated for each angle, the percent errors are within 5 - 8%, 

suggesting that the error is caused by measurement uncertainty and not by lack of 

accuracy of the best-fit curve. This suggests that there is minimal dependence between 

spread factor and angle. If a single curve can describe behavior across a range of 

values then that value must not be affecting behavior significantly.  

 

Table 11. Fitting parameter values for spread factor against Re. 
 Glass Tile Paper 

A 0.2018 0.2568 1.707 
B 0.5841 0.5490 0.299 
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Figure 27. Spread factor as a function of Re for impacts on glass at various angles.  

 

Figure 28 shows the same information as Figure 27 for impacts on tile; however, the 

curve fit to the entire data set does not accurately model the behavior at each individual 

angle. In this case, correlations for each individual angle fit the data significantly better, 

indicating that some dependence on angle may be evident. This is examined further in 

Figure 29. 
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Figure 28. Spread factor as a function of Re for impacts on tile at various angles. 
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Figure 29. Spread factor as a function of angle for impacts on tile and increasing Re. 

 

Although there is evident stratification, illustrating a clear trend in spread factor versus 

Re, at each Re, a slight upward trend is seen. By examining the slopes of the best fit 

lines, shown in Table 12, the significance of this trend can be quantified.  

 

Table 12. Slopes of Re vs angle best fit curves on tile.  

	   	   Re	   Slope	  
1200	   0.0380	  
1900	   0.0872	  
2600	   0.1322	  
4100	   0.0963	  
5200	   0.1776	  
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At small Re the slope is such that changes would need to be on the order of the entire 

range of angles tested for a change in spread factor to be significant. In contrast, at high 

Re a change in 10° causes spread factor to change by 1.776. Thinking back to the 

investigation of eccentricity, recall that at high Re and high angles on rough surfaces, 

spreading in the direction of flow is inhibited, due to the formation of flow features such 

as tongues and cast forward. Now, evidence suggests that, at high Re, for a moderately 

rough surface, spreading is greater. The combination of these findings implies that 

spreading in the transverse direction is promoted for high-Re, high-angle impacts on 

rough surfaces. This could happen because liquid flows along the path of least 

resistance. Since spreading is inhibited in one direction, it is promoted in the other. 

Impacts on paper are presented in Figure 30 to see if this trend persists on other 

surfaces. 
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Figure 30. Spread factor as a function of Re for impacts on paper. 

 

 

For impacts on this surface, much less regularity is evident, but there does not seem to 

be dependence on angle. Correlations for individual angles do not better represent the 

data than the general curve. Greater surface roughness on paper compared with glass 

and tile results in a much higher frequency of contact line pinning. As a drop spreads, 

certain points on the contact line are caught by roughness elements of the surface, 

reducing the ability of the contact line to move. The smoother glass and tile surfaces 
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have fewer impediments to spreading, the result being a more predictable relationship 

between the stain size and the incoming velocity and droplet size. The greater 

roughness of paper is also why a transverse spreading effect is not seen as with impacts 

on tile. With each surface manifesting different behavior, modeling spread factor with a 

single correlation is impractical. The size of a stain has many nuances that must be 

accounted for and simplifying the behavior leaves out important parameters. Within the 

context of forensic analysis, this means that many of the correlations that are applied in 

the field are done so incorrectly. Very rough materials, such as the paper used in this 

test procedure, are likely to give erratic results. Moderately rough materials show some 

response to changes in angle. Only for very smooth surfaces do spread factor 

correlations appear to have general applicability.  

 

4.3 Spines and Satellites 

 

The final parameter of particular interest is the number of spines. Counting spines is 

somewhat prone to interpretation. Spine definition must be explicit and consistently 

applied. The definition adhered to in this thesis is that a spine is a disruption, where a 

clear convex outline is seen. For clarity, Figure 31 demonstrates some of the ambiguity 

in deciding what constitutes a spine.  

 



52 

 

 

Figure 31. Illustration of how spines are counted. Consistency with regard to spine 
counting is very important. Both images are impacts on glass with Re ≈ 4000. The left 
image is for an impact angle of 50°. The right is for an impact angle of 30°. 

 

Spine correlations are complicated by the fact that they are based on two independent 

parameters: angle and Reynolds number. As the Reynolds number is increased the 

lamella is increasingly unstable and the number of spines increases. However, as the 

angle of impact increases, spine formation is suppressed on a greater portion of the 

circumference, as seen in Figure 31. The result of a two-variable dependence is that 

correlations are needed that can account for both parameters of interest.  

 

An additional complication arises for spine formation on glass. Spine formation is based 

on Re as will be illustrated in the following plots, but roughness elements can also trigger 

this formation. With a smooth glass surface, there is little roughness to trigger spine 

formation and the number of spines versus Re and the impact angle is not consistent. In 

the case of low-Re impacts, a single spine or no spines was a common occurrence. 

Under these conditions, the conditions at impact can only be determined from the size of 

the stain. Figure 32 shows how the number of spines changes with Re for impacts on 

glass. Although, in general, the number of spines increases as Re increases and 
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decreases as the impact angle is increased, there is large uncertainty. Best fit curves are 

not shown in Figure 32, because with glass, the fit of these curves is poor. Typical R2 

values for these curves are 0.4-0.6. This is of concern because spine counts have 

become a crucial part of crime-scene reconstruction. On smooth surfaces, their use is 

unreliable. Figure 33 and Figure 34 show the same information for impacts on tile and 

paper. 

 

Figure 32. Plot of the number of spines as a function of Re for various impact angles on 
glass. 
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Figure 33. Plot of the number of spines as a function of Re for various impact angles on 
tile. 
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Figure 34. Plot of the number of spines as a function of Re for various impact angles on 
paper, along with best fit curves for each angle. 

 

For tile and paper, spine formation is more consistent. We see the same trend as with 

glass, namely, increasing the angle decreases the expected number of spines, while 

increasing Re increases this value. More consistent behavior can be attributed to 

surface roughness. Roughness acts as a trigger for lamellar instabilities. For impacts on 

tile and paper, predicting Re based on the number of spines and the predicted impact 

angle would appear to be feasible. Adam [4] postulated a relationship between the 
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number of spines, the impact angle and Re of the form shown in equation (4.5), where A 

and B are fitting parameters.  

 cos( )A BN Re θ=   (4.5) 

Fitting parameter values are shown in Table 13.  Figure 35, shows the best fit curves for 

tile and paper. Glass is not shown because of the erratic nature of the results.  

 

Table 13. Fitting parameter values for number of spines against Re and impact angle. 
 Glass Tile Paper 

A .3078 .4351 .3991 
B 2.3090 3.309 2.1733 

 

 

Figure 35. Best fit curves comparison between tile and paper. 
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Based on the best fit curves for tile and paper, the numbers of spines at an impact angle 

of 40° are nearly identical, but the curves differ at all other angles. At high impact angles, 

paper exhibits more spine formation while at low angles tile does. This outlines the 

competing effects of lamellar stability and the inhibition of spreading. Lamellar stability 

determines the number of spines formed along a certain length of the contact line; 

however, the length of the contact line is a factor in the total number of spines observed 

around the periphery of a drop stain. Roughness inhibits spreading, thus reducing the 

total number of spines, but also decreases the stability of the lamella, increasing the 

number of spines over small sections. At high-angle impacts, lamellar stability effects 

trump those of the reduction in spreading while at low angles the opposite occurs. The 

threshold value where one effect dominates the other appears to be at 40°.  

 

It is interesting to note that the values for the fitting parameters A and B for tile nearly 

match those found by Adam [4], 0.44 and 3.3 versus 0.5 and 3.5. Adam [4] did not 

specify roughness or porosity for the type of paper used, other than to say it was non-

porous. It is possible that the surface properties of the tile used in this experiment and 

the paper used in the study by Adam [4] are similar. This may explain the similarities. 

What is clear from this analysis is that the relationship between the number of spines, 

Re and impact angle is also affected by surface properties and any correlations 

developed between these parameters must take these into account.   
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4.4 Correlation Summary in a Forensic Context 

 

In sections 4.1 - 4.3 specific parameters were studied against individual variables. 

Equally important as understanding how surface and kinetic properties affect spreading 

behavior is understanding how different properties fit together in the context of a 

forensics investigation. At a crime scene, three parameters are measured from a blood 

stain: the major diameter, minor diameter and the number of spines. From these three 

measurements the impact parameters of interest must be determined. This is done by 

running the measured parameters through a series of correlations. The first step is to 

calculate the angle of impact using equation (4.6). 

 
0.9978
( ) 2.8611arccosθ

ε
= −   (4.6) 

This correlation, developed in section 4.1, is valid across all of the materials tested at 

low angles and continues to be valid at high angles on smooth surfaces. By choosing 

drop stains on smooth materials with eccentricities of less than two, the accuracy of 

predicted impact angles is high. Next, the number of spines and the calculated angle are 

used to determine Re based on equation (4.7). Re is then used to determine spread 

factor based on equation (4.8). 

 cos( )A BN Re θ=   (4.7) 

 ( )BSF A Re=   (4.8) 

Spread factor relates the stain area to the size of the incoming droplet. Since stain area 

is calculated with the measured major and minor diameters, the droplet size is 

determined next. Finally, using Re and the just-computed droplet size, the droplet speed 
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can be determined. Both equation (4.7) and equation (4.8) have fitting parameters that 

are based on the impacted material.  

Table 14. Fitting parameter values for number of spines against Re and impact angle. 
 Glass Tile Paper 

A 0.3078 0.4351 0.3991 
B 2.3090 3.309 2.1733 

 

Table 15. Fitting parameter values for spread factor against Re. 
 Glass Tile Paper 

A 0.2018 0.2568 1.707 
B 0.5841 0.5490 0.2990 

 

Using equations 4.6 - 4.8 particular stains can be used to determine the conditions that 

led to their creation; however, it needs to be noted that not all stains can be used in this 

way. Eccentricty and spread factor information for very rough surfaces such as paper is 

unpredictable and smooth surfaces such as glass show significant spread in the number 

of spines produced. An ideal stain for obtaining information is one that is on a hard, 

moderately rough, non-porous surface. A forensic examiner must carefully evaluate 

surface properties before using any correlation  deveolped in this thesis. 

 

In order to evaluate the accuracy of the correlations laid out in equations 4.6 – 4.8, the 

information gathered in this experiment was run through these correlations to determine 

their accuracy. Table 16 presents the average error of equations 4.6 and 4.8. on each 

surface.  
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Table 16. Average error of the correlations presented in equation 4.6 and equation 4.7. 

 Glass Tile Paper 
Average error of 

eccentricity (deg.) 1.92 1.36 3.35 

Average error of 
diameter (mm) 0.11 0.13 0.18 

 
 
 
 
Table 16 illustrates that equation 4.6 and equation 4.8 predict spreading behavior to a 

high degree of accuracy. Over all materials, equation 4.6 represents a 40% improvement 

in accuracy over the common practice curve. Greater variation is seen when predicting 

the impact angle on paper, as expected, but an average error of just 3.35° suggests that 

equation 4.6 is a useful relationship on this surface. Considering equation 4.8, the 

average error of the predicted diameter is based on already knowing Re of the impacting 

droplet. This error is only representative of the error in the spread factor correlation. 

Table 16 shows that equation 4.8 accurately predicts the size of the droplet. A forensic 

examiner would be able to determine the size of an impacting droplet to within 

approximately 0.12 mm for impacts on glass and tile. On paper the correlation is 33% 

less accurate, but remains able to predict behavior to an acceptable degree of accuracy.  

 

In reality, the Reynolds number of an impacting droplet is not known and, in theory, 

should be found using equation 4.7. The average error associated with equation 4.7 for 

impacts on tile and paper (recall that impacts on glass showed too much variability) is 

55% from the actual value. This means that a droplet with a calculated Re of 2000 would 

be expected to lie within the range of 1290 to 3100. In order to use the number of spines 

as a method for determining Re, the error associated with this measurement must be 

significantly reduced. Although an average error of 55% is better than making erroneous 

assumptions, such as using the “normal” drop volume technique, much more refinement 
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of this method is necessary. One possible method would be to correlate the wavelength 

or peridiodicity of spine formation to Re or We. It is possible that the distance between 

two spines better predicts the Re of the impacting drop than the total number of spines 

around the perimeter. 
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Chapter 5 - Conclusion 

 

Droplet impacts were broken down into four stages and the case was made that the 

spreading stage is the most important aspect for forensic purposes. Three specific 

characteristics of droplet spreading were examined: eccentricity, spread factor and spine 

formation. Eccentricity was found to be strongly dependent on the impact angle, and a 

correlation was developed that was shown to be 40% more accurate than the common 

practice curve. Reynolds number was found to affect eccentricity at high angles and for 

rough materials. When spreading occurs quickly, as in the case of high-Re impacts, the 

contact line moves more slowly than the bulk liquid due to surface roughness. When this 

happens, instabilities of the lamella result in less spreading in the direction of flow, 

resulting in a smaller eccentricity.  

 

Spread factor was found to be largely independent of impact angle, but strongly 

dependent on Re. Correlations were developed that compare spread factor to Re for 

each material. As the surface roughness of a material increases, less spreading is 

evident. Spreading on paper was more erratic than on either glass or tile. This was 

attributed to the variability in surface roughness, and perhaps to porosity, although this 

was not investigated. One interesting combination of parameters suggests that 

spreading is promoted in the transverse direction for high-Re, high-angle impacts on tile.  

 

Spines were shown to depend on Re, the angle of impact and the material substrate. An 

equation was proposed that relates these three parameters. Fitting parameters were 

calculated for each material and the best fit curves for paper and tile were compared. 
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Glass was left out of this comparison due to the poor representation of results by the 

best fit curve. This poor fit was attributed to the complete lack of surface roughness for 

glass. Spine formation is more consistent when surface roughness decreases lamella 

stability and acts as a trigger for spine formation. Glass and tile best fit curves were the 

same at an impact angle of 40°. At high-angle impacts paper shows more spine 

formation while at low-angle impacts tile shows more. This may be due to the competing 

effects of reduced lamella stability and the reduction of spreading, which are brought on 

by surface roughness. Surface roughness acts both as a trigger of spine formation and 

as an inhibitor of spreading. Spine formation increases over a portion of the lamella 

when lamella stability decreases; however, when less spreading is evident, the length of 

the contact line decreases, decreasing the number of spines. Which of these effects is 

more pronounced is dependent upon impact angle, where 40° appears to be the 

threshold at which both effects are equally important. 

 

After analyzing spreading behavior in terms of forensically relevant parameters, an 

algorithm for obtaining parameters of interest from those measured was described in 

detail.  A final set of correlations was presented, with fitting parameters for each 

material. These correlations include a corrected relationship between eccentricity and 

impact angle and the argument has been made that for an isotropic, minimally rough 

surface at small to moderate angles, this curve has wide-ranging applications. Also 

among the correlations developed are ones for spread factor versus Reynolds number 

and the number of spines versus the impact angle and Reynolds number. The best 

surfaces for examination are isotropic ones, with small to moderate roughness values. 
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These surfaces allow for predictable eccentricity and spread factor plus they trigger 

spine formation.  

 

There are a number of avenues available for building upon the work presented in this 

thesis. The first is expanding upon the range of dimensionless parameters that were 

studied. Specifically, increasing droplet velocities would a logical next-step so that 

correlations could be developed for a more robust set of forensics conditions. 

Developing a droplet generator capable of producing drops at speeds greater than 

terminal velocity would be invaluable in this pursuit. In addition, more surfaces should be 

studied. Roughness can be studied in greater detail including more materials within the 

range studied here, investigating the effects of anisotropy on spreading and investigating 

surfaces with more uniform roughness, i.e. surfaces that have uniform roughness at the 

microscopic level. Additionally, the effects of porosity could be dealt with at greater 

length. The spreading behavior observed in this experiment was attributed mostly to 

surface roughness, but it is possible that the porosity of the paper used had a greater 

effect than is hypothesized here.   
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Appendix A - Uncertainty Propagation 
 
 

To determine the error associated with each measurement, the equations shown below 

were used. This method was taken from Kline and McKlintock [18], whose method is 

based on a property being defined by its mean value (m) plus or minus the uncertainty 

(w) and the odds that the true value lies in this range is (b) to 1: 

Measurement = m + w (b to 1) 

The uncertainty of each measured property shown in the following table was based on 

odds of 20 to 1. 

 

 

Property Symbol Uncertainty Units 

Density ρ 2.16 kg/m3 

Kinematic Viscosity ν 7.58E-9 m2/s 

Surface Tension σ 0.00003 N/m 
Distance (velocity calculation) z 0.0000762 m 

Time (velocity calculation) t 0.0002 sec 
Droplet mass m 0.0004 g 

Major diameter of stain L 0.12 mm 
Minor diameter of stain W 0.12 mm 

Velocity V Calculated m/s 
Drop Diameter D Calculated m 

 
 

2 2 2 2
2

1
( ) ( ) ( ) ( ) ( )

dV dV z
Error V z t z t

dz dt t t
−
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Appendix B - Raw Data with Uncertainty 
 

The following tables have been separated into two sections in order to fit on a page. The 

first section includes dimensional parameters angle, time, distance, velocity, mass and 

diameter along with their uncertainties. The second includes dimensionless parameters 

Reynolds Number, Weber Number and Laplace Number, as well as values that were 

determined via high-speed, namely, eccentricity, spread factor and the number of 

spines.  

Data for impacts on glass 

 

Video	  
ID θ	  (°) Δθ	  (°) t Δt z Δz V ΔV m Δm D ΔD

00118 20 0.5 0.0059 2.00E-‐04 0.0235 7.62E-‐05 3.9831 1.36E-‐01 7.86E-‐06 4.00E-‐07 0.00239 4.062E-‐05
00119 20 0.5 0.0059 2.00E-‐04 0.0235 7.62E-‐05 3.9831 1.36E-‐01 1.07E-‐05 4.00E-‐07 0.00266 3.302E-‐05
00120 20 0.5 0.0061 2.00E-‐04 0.0235 7.62E-‐05 3.8525 1.27E-‐01 1.30E-‐05 4.00E-‐07 0.00283 2.903E-‐05
00121 30 0.5 0.0061 2.00E-‐04 0.0235 7.62E-‐05 3.8525 1.27E-‐01 1.36E-‐05 4.00E-‐07 0.00287 2.821E-‐05
00123 30 0.5 0.0062 2.00E-‐04 0.0235 7.62E-‐05 3.7903 1.23E-‐01 1.64E-‐05 4.00E-‐07 0.00306 2.495E-‐05
00124 40 0.5 0.0062 2.00E-‐04 0.0235 7.62E-‐05 3.7903 1.23E-‐01 1.32E-‐05 4.00E-‐07 0.00285 2.875E-‐05
00125 40 0.5 0.0061 2.00E-‐04 0.0235 7.62E-‐05 3.8525 1.27E-‐01 9.11E-‐06 4.00E-‐07 0.00251 3.683E-‐05
00126 40 0.5 0.0062 2.00E-‐04 0.0235 7.62E-‐05 3.7903 1.23E-‐01 1.69E-‐05 4.00E-‐07 0.00309 2.448E-‐05
00127 50 0.5 0.0062 2.00E-‐04 0.0235 7.62E-‐05 3.7903 1.23E-‐01 1.61E-‐05 4.00E-‐07 0.00304 2.524E-‐05
00128 50 0.5 0.0062 2.00E-‐04 0.0235 7.62E-‐05 3.7903 1.23E-‐01 1.28E-‐05 4.00E-‐07 0.00281 2.946E-‐05
00130 60 0.5 0.0061 2.00E-‐04 0.0235 7.62E-‐05 3.8525 1.27E-‐01 9.97E-‐06 4.00E-‐07 0.00259 3.468E-‐05
00131 60 0.5 0.0062 2.00E-‐04 0.0235 7.62E-‐05 3.7903 1.23E-‐01 1.44E-‐05 4.00E-‐07 0.00293 2.721E-‐05
00132 60 0.5 0.0062 2.00E-‐04 0.0235 7.62E-‐05 3.7903 1.23E-‐01 1.19E-‐05 4.00E-‐07 0.00275 3.086E-‐05
00133 20 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.40E-‐05 4.00E-‐07 0.0029 2.77E-‐05
00134 20 0.5 0.0065 2.00E-‐04 0.0235 7.62E-‐05 3.6154 1.12E-‐01 8.44E-‐06 4.00E-‐07 0.00245 3.876E-‐05
00135 20 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.46E-‐05 4.00E-‐07 0.00294 2.697E-‐05
00136 30 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.37E-‐05 4.00E-‐07 0.00288 2.808E-‐05
00137 30 0.5 0.0065 2.00E-‐04 0.0235 7.62E-‐05 3.6154 1.12E-‐01 9.88E-‐06 4.00E-‐07 0.00258 3.491E-‐05
00138 30 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.05E-‐05 4.00E-‐07 0.00264 3.342E-‐05
00139 40 0.5 0.0065 2.00E-‐04 0.0235 7.62E-‐05 3.6154 1.12E-‐01 1.61E-‐05 4.00E-‐07 0.00304 2.524E-‐05
00140 40 0.5 0.0065 2.00E-‐04 0.0235 7.62E-‐05 3.6154 1.12E-‐01 1.71E-‐05 4.00E-‐07 0.0031 2.43E-‐05
00141 40 0.5 0.0065 2.00E-‐04 0.0235 7.62E-‐05 3.6154 1.12E-‐01 1.19E-‐05 4.00E-‐07 0.00275 3.086E-‐05
00142 50 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.24E-‐05 4.00E-‐07 0.00278 3.006E-‐05
00143 50 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.47E-‐05 4.00E-‐07 0.00295 2.685E-‐05
00144 50 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 9.59E-‐06 4.00E-‐07 0.00256 3.56E-‐05
00145 60 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.45E-‐05 4.00E-‐07 0.00293 2.709E-‐05
00146 60 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.36E-‐05 4.00E-‐07 0.00287 2.821E-‐05
00147 60 0.5 0.0066 2.00E-‐04 0.0235 7.62E-‐05 3.5606 1.09E-‐01 1.51E-‐05 4.00E-‐07 0.00297 2.64E-‐05
00148 60 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.17E-‐05 4.00E-‐07 0.00273 3.12E-‐05
00149 60 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.59E-‐05 4.00E-‐07 0.00303 2.544E-‐05
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00150 60 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.58E-‐05 4.00E-‐07 0.00302 2.554E-‐05
00151 50 0.5 0.0087 2.00E-‐04 0.0235 7.62E-‐05 2.7011 6.27E-‐02 1.18E-‐05 4.00E-‐07 0.00274 3.103E-‐05
00152 50 0.5 0.0087 2.00E-‐04 0.0235 7.62E-‐05 2.7011 6.27E-‐02 1.92E-‐05 4.00E-‐07 0.00322 2.25E-‐05
00153 50 0.5 0.0087 2.00E-‐04 0.0235 7.62E-‐05 2.7011 6.27E-‐02 1.75E-‐05 4.00E-‐07 0.00312 2.394E-‐05
00154 40 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.48E-‐05 4.00E-‐07 0.00295 2.674E-‐05
00155 40 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.57E-‐05 4.00E-‐07 0.00302 2.565E-‐05
00156 40 0.5 0.0087 2.00E-‐04 0.0235 7.62E-‐05 2.7011 6.27E-‐02 1.68E-‐05 4.00E-‐07 0.00308 2.457E-‐05
00157 30 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.77E-‐05 4.00E-‐07 0.00314 2.369E-‐05
00158 30 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.34E-‐05 4.00E-‐07 0.00286 2.848E-‐05
00159 30 0.5 0.0086 2.00E-‐04 0.0235 7.62E-‐05 2.7326 6.42E-‐02 2.19E-‐05 4.00E-‐07 0.00337 2.065E-‐05
00160 20 0.5 0.0087 2.00E-‐04 0.0235 7.62E-‐05 2.7011 6.27E-‐02 1.67E-‐05 4.00E-‐07 0.00308 2.466E-‐05
00161 20 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 1.58E-‐05 4.00E-‐07 0.00302 2.554E-‐05
00162 20 0.5 0.0088 2.00E-‐04 0.0235 7.62E-‐05 2.6705 6.13E-‐02 6.71E-‐06 4.00E-‐07 0.00227 4.513E-‐05
00163 20 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 6.23E-‐06 4.00E-‐07 0.00222 4.741E-‐05
00164 20 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 6.71E-‐06 4.00E-‐07 0.00227 4.513E-‐05
00165 20 0.5 0.0091 2.00E-‐04 0.0235 7.62E-‐05 2.5824 5.74E-‐02 5.37E-‐06 4.00E-‐07 0.00211 5.236E-‐05
00166 30 0.5 0.0091 2.00E-‐04 0.0235 7.62E-‐05 2.5824 5.74E-‐02 5.47E-‐06 4.00E-‐07 0.00212 5.174E-‐05
00167 30 0.5 0.0091 2.00E-‐04 0.0235 7.62E-‐05 2.5824 5.74E-‐02 6.04E-‐06 4.00E-‐07 0.00219 4.841E-‐05
00168 30 0.5 0.0091 2.00E-‐04 0.0235 7.62E-‐05 2.5824 5.74E-‐02 5.95E-‐06 4.00E-‐07 0.00218 4.893E-‐05
00169 40 0.5 0.0091 2.00E-‐04 0.0235 7.62E-‐05 2.5824 5.74E-‐02 4.41E-‐06 4.00E-‐07 0.00197 5.969E-‐05
00170 40 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 7.29E-‐06 4.00E-‐07 0.00233 4.273E-‐05
00171 40 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 6.71E-‐06 4.00E-‐07 0.00227 4.513E-‐05
00172 50 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 6.23E-‐06 4.00E-‐07 0.00222 4.741E-‐05
00173 50 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 6.14E-‐06 4.00E-‐07 0.0022 4.79E-‐05
00174 50 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 6.62E-‐06 4.00E-‐07 0.00226 4.556E-‐05
00175 60 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 8.82E-‐06 4.00E-‐07 0.00249 3.763E-‐05
00176 60 0.5 0.0091 2.00E-‐04 0.0235 7.62E-‐05 2.5824 5.74E-‐02 3.93E-‐06 4.00E-‐07 0.0019 6.444E-‐05
00177 60 0.5 0.009 2.00E-‐04 0.0235 7.62E-‐05 2.6111 5.86E-‐02 5.75E-‐06 4.00E-‐07 0.00216 5.001E-‐05
00311 20 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.92E-‐05 4.00E-‐07 0.00469 1.1E-‐05
00312 20 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.15E-‐05 4.00E-‐07 0.00475 1.076E-‐05
00313 30 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.94E-‐05 4.00E-‐07 0.0047 1.098E-‐05
00314 30 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.18E-‐05 4.00E-‐07 0.00476 1.073E-‐05
00315 40 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.08E-‐05 4.00E-‐07 0.00473 1.083E-‐05
00316 40 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.84E-‐05 4.00E-‐07 0.00467 1.109E-‐05
00317 50 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.76E-‐05 4.00E-‐07 0.00465 1.119E-‐05
00318 50 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.91E-‐05 4.00E-‐07 0.00469 1.101E-‐05
00319 60 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.96E-‐05 4.00E-‐07 0.0047 1.096E-‐05
00320 60 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.49E-‐05 4.00E-‐07 0.00458 1.151E-‐05
00341 20 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.78E-‐05 4.00E-‐07 0.00465 1.116E-‐05
00342 20 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.94E-‐05 4.00E-‐07 0.0047 1.098E-‐05
00343 30 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.61E-‐05 4.00E-‐07 0.00461 1.136E-‐05
00344 30 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.77E-‐05 4.00E-‐07 0.00465 1.117E-‐05
00345 40 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.63E-‐05 4.00E-‐07 0.00461 1.134E-‐05
00346 40 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.91E-‐05 4.00E-‐07 0.00469 1.101E-‐05
00347 50 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.72E-‐05 4.00E-‐07 0.00464 1.123E-‐05
00348 50 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.73E-‐05 4.00E-‐07 0.00464 1.122E-‐05
00349 60 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.64E-‐05 4.00E-‐07 0.00462 1.133E-‐05
00350 60 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.58E-‐05 4.00E-‐07 0.0046 1.14E-‐05
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Data for impacts on glass (continued) 

 

Video	  
ID Re ΔRe We ΔWe La ΔLa ε Δε SF ΔSF

Num	  
Spines

00118 2297.3 86.053 728.45 49.75 7245.2 137.247 1.05159 0.024424 18.542 0.1729 14
00119 2548.9 90.982 808.23 54.52 8038.7 114.096 1.05369 0.020675 19.702 0.1785 0
00120 2630.2 89.365 806.65 52.44 8576.1 102.533 1.05667 0.020567 20.067 0.1586 9
00121 2668.3 90.332 818.34 53.16 8700.4 100.239 1.13707 0.019973 20.236 0.1795 9
00123 2793 91.959 842.78 53.72 9256.4 91.457 1.1372 0.019548 20.783 0.1637 11
00124 2600.4 86.958 784.65 50.2 8617.9 101.747 1.30717 0.023623 19.934 0.178 9
00125 2333.7 82.856 715.73 47.04 7609.4 125.58 1.34034 0.0295 18.713 0.1726 3
00126 2820 92.693 850.91 54.22 9345.8 90.2498 1.34713 0.022425 20.9 0.1715 8
00127 2776.6 91.515 837.82 53.42 9202 92.2187 1.60638 0.027727 20.712 0.1734 3
00128 2568.6 86.183 775.05 49.63 8512.6 103.757 1.52574 0.027857 19.791 0.1845 2
00130 2405.2 84.224 737.65 48.31 7842.5 119.068 2.07463 0.04589 19.046 0.1799 3
00131 2673.7 88.803 806.76 51.53 8860.8 97.4663 2.22131 0.039606 20.26 0.1969 4
00132 2509.3 84.786 757.16 48.56 8316.1 107.777 2.08571 0.037784 19.523 0.2135 3
00133 2489.1 78.298 705.55 42.44 8781.4 98.8142 1.05329 0.01931 19.431 0.1744 8
00134 2134.9 73.05 614.47 38.18 7417.7 131.477 1.03659 0.024836 17.765 0.1669 9
00135 2522.8 79.084 715.09 42.98 8900 96.8194 1.03236 0.019732 19.584 0.1597 11
00136 2471.9 77.904 700.68 42.17 8720.8 99.8753 1.14433 0.022106 19.353 0.1645 11
00137 2249.9 74.81 647.57 39.94 7817.3 119.74 1.1444 0.023225 18.318 0.1907 0
00138 2264.9 73.613 642.01 38.93 7990.5 115.276 1.13566 0.024833 18.389 0.1641 2
00139 2648.5 83.566 762.27 46.41 9202 92.2187 1.32491 0.02518 20.148 0.1536 7
00140 2700 84.882 777.1 47.28 9381 89.7876 1.37413 0.024903 20.376 0.1592 6
00141 2393.5 77.592 688.88 42.22 8316.1 107.777 1.31801 0.026644 18.991 0.1719 0
00142 2388.5 76.063 677.03 40.84 8426.4 105.476 1.63821 0.032173 18.968 0.1839 2
00143 2528.3 79.214 716.65 43.07 8919.5 96.5025 1.63786 0.032566 19.609 0.1612 2
00144 2194.1 72.398 621.93 37.86 7740.7 121.829 1.64356 0.039261 18.051 0.1653 1
00145 2517.2 78.953 713.51 42.89 8880.5 97.1406 2.11659 0.041927 19.559 0.1766 1
00146 2466.2 77.773 699.05 42.07 8700.4 100.239 2.21005 0.043973 19.326 0.1857 3
00147 2550.1 79.735 722.84 43.42 8996.6 95.2764 2.20796 0.042584 19.708 0.1816 1
00148 1758.4 44.444 373.81 17.22 8271.1 108.747 2.20745 0.051183 15.861 0.1654 1
00149 1948.5 46.97 414.22 18.85 9165.3 92.7428 2.22967 0.046359 16.841 0.1577 2
00150 1944.5 46.908 413.39 18.81 9146.9 93.0099 2.22275 0.045821 16.822 0.1601 1
00151 1783.4 45.412 383.5 17.84 8293.7 108.258 1.73636 0.037314 15.993 0.1694 3
00152 2097.1 50.136 450.96 20.65 9752.6 85.3788 1.66538 0.030754 17.58 0.1506 3
00153 2032.2 48.995 437 20.05 9450.8 88.8966 1.70281 0.032564 17.261 0.1533 3
00154 1900.3 46.24 403.99 18.43 8938.9 96.1898 1.29885 0.026424 16.597 0.1472 2
00155 1940.6 46.847 412.55 18.78 9128.3 93.2805 1.2803 0.025913 16.802 0.1419 2
00156 2005.8 48.55 431.33 19.81 9328 90.4853 1.31365 0.025612 17.129 0.1439 5
00157 2020.1 48.14 429.46 19.49 9502.4 88.2564 1.14841 0.022775 17.2 0.1334 3
00158 1840.9 45.416 391.36 17.91 8659.4 100.982 1.15415 0.025543 16.292 0.1375 5



70 

 

 

 

 

 

00159 2216.2 53.038 482.11 22.28 10188 81.1816 1.14642 0.02006 18.157 0.1392 6
00160 2002 48.487 430.5 19.78 9310.2 90.7237 1.07071 0.020916 17.11 0.1415 3
00161 1944.5 46.908 413.39 18.81 9146.9 93.0099 1.06796 0.020077 16.822 0.155 5
00162 1461.1 43.708 310.62 15.04 6873 151.38 1.07042 0.029161 14.235 0.1631 5
00163 1393.8 42.593 289.72 13.93 6705.3 158.603 1.09184 0.032018 13.848 0.1538 6
00164 1428.7 42.209 296.97 14.12 6873 151.38 1.05991 0.028478 14.05 0.1646 7
00165 1311.7 43.048 269.66 13.23 6380.3 174.378 1.07692 0.034235 13.366 0.1525 5
00166 1319.4 42.884 271.25 13.26 6418 172.414 1.17341 0.037689 13.412 0.1494 2
00167 1364.2 42.091 280.45 13.44 6635.8 161.77 1.17416 0.036643 13.676 0.1452 2
00168 1356.9 42.203 278.96 13.41 6600.5 163.42 1.18681 0.036046 13.633 0.1523 3
00169 1228.4 45.378 252.54 13.02 5975.4 197.962 1.39474 0.047265 12.864 0.164 3
00170 1468.4 41.92 305.22 14.34 7064 143.821 1.38421 0.037645 14.276 0.1573 3
00171 1428.7 42.209 296.97 14.12 6873 151.38 1.33824 0.034386 14.05 0.1786 5
00172 1393.8 42.593 289.72 13.93 6705.3 158.603 1.71895 0.053313 13.848 0.1564 3
00173 1386.6 42.689 288.23 13.9 6670.7 160.165 1.63889 0.054977 13.807 0.1407 2
00174 1421.8 42.275 295.55 14.08 6840.1 152.751 1.62733 0.048956 14.01 0.1543 2
00175 1564.9 41.763 325.29 14.97 7528.5 128.008 2.18954 0.06254 14.817 0.1496 1
00176 1182.2 47.188 243.04 12.99 5750.5 213.353 2.14286 0.084184 12.579 0.1673 1
00177 1357.1 43.144 282.1 13.76 6528.7 166.862 2.21705 0.074815 13.634 0.1601 1
00311 5238.4 210.29 1877.9 155.8 14613 71.8528 1.07843 0.011115 30.008 0.1912 19
00312 5305.7 212.97 1902 157.8 14800 72.1467 1.0694 0.011047 30.232 0.1857 17
00313 5244.3 210.53 1880 156 14629 71.8773 1.16797 0.012703 30.028 0.1759 14
00314 5314.4 213.32 1905.1 158.1 14825 72.1869 1.16635 0.012286 30.261 0.1803 13
00315 5285.4 212.16 1894.7 157.2 14744 72.0544 1.36007 0.013209 30.165 0.2113 12
00316 5214.6 209.35 1869.3 155.1 14546 71.7573 1.3219 0.013268 29.928 0.205 10
00317 5188.7 208.32 1860.1 154.4 14474 71.6587 1.57424 0.016862 29.841 0.1926 11
00318 5235.5 210.18 1876.8 155.7 14604 71.8407 1.55844 0.016613 29.998 0.1902 5
00319 5250.2 210.76 1882.1 156.2 14646 71.902 1.95148 0.023866 30.047 0.1619 6
00320 5107.7 205.1 1831 151.9 14248 71.3867 2.04167 0.022365 29.568 0.2065 5
00341 4124.3 131.88 1173.4 77.46 14496 71.6881 1.0759 0.011817 26.096 0.1756 9
00342 4162.2 133.07 1184.2 78.17 14629 71.8773 1.07692 0.012289 26.236 0.1623 19
00343 4083.2 130.58 1161.7 76.69 14352 71.5044 1.17059 0.012768 25.944 0.182 14
00344 4121.9 131.8 1172.7 77.41 14488 71.6767 1.1854 0.012931 26.087 0.1788 10
00345 4088.1 130.74 1163.1 76.78 14369 71.525 1.32773 0.014671 25.962 0.1804 13
00346 4155.1 132.85 1182.2 78.03 14604 71.8407 1.17879 0.013589 26.21 0.1611 9
00347 4109.9 131.42 1169.3 77.19 14445 71.6211 1.64626 0.018002 26.043 0.1891 4
00348 4112.3 131.5 1170 77.23 14454 71.6321 1.62812 0.017878 26.052 0.1871 10
00349 4090.5 130.81 1163.8 76.82 14377 71.5354 2.17207 0.023731 25.971 0.2082 3
00350 4075.9 130.35 1159.6 76.55 14326 71.474 2.12435 0.024283 25.917 0.1937 3
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Data for impacts on tile 

 

 

Video	  
ID θ	  (°) Δθ	  (°) t Δt z Δz V ΔV m Δm D ΔD

00251 20 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 7.60E-‐06 4.00E-‐07 0.002366 4.15626E-‐05
00252 20 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 7.90E-‐06 4.00E-‐07 0.002397 4.05059E-‐05
00253 20 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 6.20E-‐06 4.00E-‐07 0.002211 4.75937E-‐05
00254 30 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 6.70E-‐06 4.00E-‐07 0.002269 4.51989E-‐05
00255 30 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 7.30E-‐06 4.00E-‐07 0.002335 4.26914E-‐05
00256 40 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 6.00E-‐06 4.00E-‐07 0.002187 4.86441E-‐05
00257 40 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 6.80E-‐06 4.00E-‐07 0.00228 4.47554E-‐05
00258 50 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 7.60E-‐06 4.00E-‐07 0.002366 4.15626E-‐05
00259 50 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 8.60E-‐06 4.00E-‐07 0.002466 3.82823E-‐05
00260 60 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 6.00E-‐06 4.00E-‐07 0.002187 4.86441E-‐05
00261 60 0.5 0.0112 2.00E-‐04 0.0235 7.62E-‐05 2.0982 3.81E-‐02 6.80E-‐06 4.00E-‐07 0.00228 4.47554E-‐05
00262 20 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 6.40E-‐06 4.00E-‐07 0.002235 4.65983E-‐05
00263 20 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 8.00E-‐06 4.00E-‐07 0.002407 4.01685E-‐05
00264 30 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 8.30E-‐06 4.00E-‐07 0.002437 3.91969E-‐05
00265 30 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 5.20E-‐06 4.00E-‐07 0.002085 5.35075E-‐05
00266 40 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 8.30E-‐06 4.00E-‐07 0.002437 3.91969E-‐05
00267 40 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 1.04E-‐05 4.00E-‐07 0.002627 3.37408E-‐05
00268 50 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 8.80E-‐06 4.00E-‐07 0.002485 3.77017E-‐05
00269 50 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 1.22E-‐05 4.00E-‐07 0.002771 3.03495E-‐05
00270 60 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 7.20E-‐06 4.00E-‐07 0.002324 4.3085E-‐05
00271 60 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 8.90E-‐06 4.00E-‐07 0.002494 3.74195E-‐05
00272 20 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.80E-‐06 4.00E-‐07 0.002576 3.50991E-‐05
00273 20 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 8.20E-‐06 4.00E-‐07 0.002427 3.95142E-‐05
00274 30 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 8.50E-‐06 4.00E-‐07 0.002456 3.85812E-‐05
00275 30 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 8.70E-‐06 4.00E-‐07 0.002475 3.79892E-‐05
00276 40 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.20E-‐06 4.00E-‐07 0.002522 3.6604E-‐05
00277 40 0.5 0.0053 2.00E-‐04 0.0235 7.62E-‐05 4.434 1.68E-‐01 6.90E-‐06 4.00E-‐07 0.002291 4.43227E-‐05
00278 50 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.20E-‐06 4.00E-‐07 0.002522 3.6604E-‐05
00279 50 0.5 0.0053 2.00E-‐04 0.0235 7.62E-‐05 4.434 1.68E-‐01 6.40E-‐06 4.00E-‐07 0.002235 4.65983E-‐05
00280 50 0.5 0.0053 2.00E-‐04 0.0235 7.62E-‐05 4.434 1.68E-‐01 5.80E-‐06 4.00E-‐07 0.002162 4.97546E-‐05
00281 60 0.5 0.0051 2.00E-‐04 0.0235 7.62E-‐05 4.6078 1.81E-‐01 1.01E-‐05 4.00E-‐07 0.002602 3.44031E-‐05
00282 60 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.00E-‐06 4.00E-‐07 0.002503 3.71427E-‐05
00301 20 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.26E-‐05 4.00E-‐07 0.004778 1.06589E-‐05
00302 20 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.33E-‐05 4.00E-‐07 0.004796 1.05901E-‐05
00303 30 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.91E-‐05 4.00E-‐07 0.00469 1.10147E-‐05
00304 30 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.71E-‐05 4.00E-‐07 0.004636 1.12422E-‐05
00305 40 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.38E-‐05 4.00E-‐07 0.004544 1.16512E-‐05
00306 40 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.37E-‐05 4.00E-‐07 0.004541 1.16643E-‐05
00307 50 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.96E-‐05 4.00E-‐07 0.004703 1.096E-‐05
00308 50 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.94E-‐05 4.00E-‐07 0.004698 1.09818E-‐05
00309 60 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.18E-‐05 4.00E-‐07 0.00476 1.07292E-‐05
00310 60 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.19E-‐05 4.00E-‐07 0.004763 1.0719E-‐05
00331 20 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.83E-‐05 4.00E-‐07 0.004668 1.1104E-‐05
00332 20 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 6.13E-‐05 4.00E-‐07 0.004747 1.07803E-‐05
00333 30 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.66E-‐05 4.00E-‐07 0.004622 1.13013E-‐05
00334 30 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.91E-‐05 4.00E-‐07 0.00469 1.10147E-‐05
00335 40 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.78E-‐05 4.00E-‐07 0.004655 1.11609E-‐05
00336 40 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 6.15E-‐05 4.00E-‐07 0.004753 1.07597E-‐05
00337 50 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.90E-‐05 4.00E-‐07 0.004687 1.10257E-‐05
00338 50 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.94E-‐05 4.00E-‐07 0.004698 1.09818E-‐05
00339 60 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.87E-‐05 4.00E-‐07 0.004679 1.1059E-‐05
00340 60 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.80E-‐05 4.00E-‐07 0.00466 1.1138E-‐05
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Data for impacts on tile (continued) 

 

00251 1176.52 29.7904 195.089 7.79 7095.294 140.183 1.0497 0.0382 8.6223 0.11172 6
00252 1191.81 29.6322 197.622 7.84 7187.451 136.892 1.1075 0.034 12.194 0.14064 10
00253 1099.33 31.0154 182.288 7.587 6629.739 159.181 1.0683 0.0385 10.358 0.13342 6
00254 1128.12 30.4689 187.062 7.651 6803.37 151.599 1.2216 0.0399 12.101 0.14556 6
00255 1160.84 29.9796 192.487 7.741 7000.678 143.712 1.2105 0.0388 11.874 0.14095 4
00256 1087.38 31.2771 180.306 7.564 6557.671 162.52 1.415 0.0493 11.689 0.14694 2
00257 1133.7 30.3758 187.988 7.665 6837.051 150.199 1.4118 0.0473 11.623 0.14222 3
00258 1176.52 29.7904 195.089 7.79 7095.294 140.183 1.7551 0.0562 12.385 0.14702 2
00259 1226.02 29.3644 203.295 7.963 7393.76 130.017 1.7325 0.0522 12.842 0.14634 2
00260 1087.38 31.2771 180.306 7.564 6557.671 162.52 2.4286 0.0918 11.647 0.15509 1
00261 1133.7 30.3758 187.988 7.665 6837.051 150.199 2.4153 0.0868 11.828 0.15198 1
00262 1777.64 63.2236 471.622 28.67 6700.273 156.024 1.0754 0.0313 15.595 0.17367 16
00263 1914.9 63.7563 508.039 30.29 7217.65 135.844 1.0948 0.0298 15.382 0.164 17
00264 1938.55 63.9664 514.312 30.59 7306.766 132.836 1.1667 0.0319 14.951 0.1598 16
00265 1658.76 63.999 440.083 27.46 6252.211 178.062 1.2 0.0377 15.456 0.18116 11
00266 1938.55 63.9664 514.312 30.59 7306.766 132.836 1.3498 0.0347 17.128 0.17629 10
00267 2089.91 65.9241 554.47 32.59 7877.292 116.245 1.3636 0.0322 17.486 0.17081 11
00268 1976.72 64.366 524.439 31.08 7450.637 128.234 1.701 0.0418 18.96 0.18958 5
00269 2204.13 67.9378 584.773 34.17 8307.795 106.298 1.7159 0.0463 12.661 0.13424 4
00270 1848.82 63.341 490.506 29.49 6968.565 144.946 2.3544 0.0637 19.899 0.21141 3
00271 1984.17 64.4522 526.418 31.18 7478.753 127.37 2.2588 0.0575 19.188 0.1962 3
00272 2758.16 113.009 985.066 77.08 7722.796 120.319 1.0844 0.0264 16.79 0.16693 21
00273 2599.06 108.978 928.242 73.05 7277.303 133.817 1.0789 0.0274 17.412 0.17758 21
00274 2630.37 109.714 939.427 73.83 7364.99 130.937 1.1853 0.0283 19.337 0.1899 20
00275 2650.84 110.212 946.738 74.35 7422.307 129.117 1.1617 0.0276 19.145 0.18761 21
00276 2700.68 111.473 964.538 75.61 7561.857 124.88 1.3677 0.0319 19.555 0.18934 10
00277 2407.44 102.477 843.583 65.72 6870.403 148.836 1.3596 0.0349 19.514 0.20048 8
00278 2700.68 111.473 964.538 75.61 7561.857 124.88 1.6509 0.0375 21.333 0.20353 8
00279 2347.82 101.599 822.694 64.38 6700.273 156.024 1.5707 0.0419 19.473 0.20512 4
00280 2272.03 100.77 796.137 62.72 6483.983 166.057 1.6215 0.0444 19.865 0.21282 6
00281 2840.65 118.032 1034.42 82.41 7800.809 118.226 2.1846 0.049 22.443 0.21245 1
00282 2680.97 110.966 957.497 75.11 7506.659 126.523 2.095 0.0464 24.449 0.22982 4
00301 5334.48 214.115 1912.32 158.7 14880.66 72.2824 1.0769 0.0117 25.833 0.16977 35
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00302 5354.41 214.908 1919.47 159.3 14936.28 72.38 1.0631 0.0115 25.885 0.16976 42
00303 5235.45 210.175 1876.82 155.7 14604.43 71.8407 1.1809 0.013 26.192 0.17318 35
00304 5175.41 207.788 1855.3 154 14436.93 71.6101 1.1736 0.0135 24.662 0.16593 35
00305 5073.17 203.727 1818.65 150.9 14151.75 71.2886 1.3203 0.0151 26.311 0.17658 26
00306 5070.01 203.602 1817.52 150.8 14142.92 71.2802 1.3385 0.0154 25.902 0.17454 21
00307 5250.25 210.764 1882.13 156.2 14645.71 71.902 1.6405 0.0173 30.128 0.19547 8
00308 5244.34 210.529 1880.01 156 14629.22 71.8773 1.6454 0.0164 33.813 0.21452 7
00309 5314.39 213.315 1905.12 158.1 14824.63 72.1869 2.1138 0.0226 30.675 0.2004 9
00310 5317.27 213.43 1906.15 158.2 14832.66 72.2004 2.0915 0.0218 32.258 0.20839 7
00331 4136.19 132.251 1176.79 77.68 14537.89 71.7456 1.078 0.0125 23.842 0.16092 29
00332 4206.31 134.46 1196.74 78.99 14784.34 72.1201 1.0423 0.0124 21.936 0.14962 32
00333 4095.38 130.967 1165.18 76.92 14394.44 71.5564 1.1783 0.0139 23.589 0.16045 27
00334 4155.12 132.847 1182.18 78.03 14604.43 71.8407 1.1602 0.0133 24.121 0.16223 32
00335 4124.27 131.876 1173.4 77.46 14496 71.6881 1.3311 0.0153 24.629 0.16596 20
00336 4210.9 134.605 1198.05 79.08 14800.48 72.1467 1.363 0.0158 23.455 0.15841 15
00337 4152.76 132.773 1181.51 77.99 14596.14 71.8286 1.6483 0.019 25.276 0.17038 7
00338 4162.17 133.07 1184.18 78.17 14629.22 71.8773 1.6454 0.0188 25.721 0.17256 6
00339 4145.68 132.55 1179.49 77.86 14571.24 71.7927 2.1496 0.0248 27.479 0.18528 3
00340 4129.05 132.026 1174.76 77.55 14512.78 71.7109 2.1398 0.0253 26.287 0.17919 5
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Data for impacts on paper 

 

 

Video	  
ID θ	  (°) Δθ	  (°) t Δt z Δz V ΔV m Δm D ΔD

00211 20 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 4.70E-‐06 4.00E-‐07 0.002016 5.7235E-‐05
00212 20 0.5 0.0072 2.00E-‐04 0.0235 7.62E-‐05 3.2639 9.13E-‐02 3.30E-‐06 4.00E-‐07 0.001792 7.2442E-‐05
00213 30 0.5 0.0074 2.00E-‐04 0.0235 7.62E-‐05 3.1757 8.64E-‐02 2.00E-‐06 4.00E-‐07 0.001516 0.00010114
00214 30 0.5 0.0072 2.00E-‐04 0.0235 7.62E-‐05 3.2639 9.13E-‐02 2.80E-‐06 4.00E-‐07 0.001696 8.0825E-‐05
00215 40 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 7.90E-‐06 4.00E-‐07 0.002397 4.0506E-‐05
00216 40 0.5 0.007 2.00E-‐04 0.0235 7.62E-‐05 3.3571 9.65E-‐02 2.20E-‐06 4.00E-‐07 0.001565 9.4919E-‐05
00217 50 0.5 0.0073 2.00E-‐04 0.0235 7.62E-‐05 3.2192 8.88E-‐02 2.20E-‐06 4.00E-‐07 0.001565 9.4919E-‐05
00218 50 0.5 0.0072 2.00E-‐04 0.0235 7.62E-‐05 3.2639 9.13E-‐02 3.80E-‐06 4.00E-‐07 0.001878 6.5942E-‐05
00219 60 0.5 0.0072 2.00E-‐04 0.0235 7.62E-‐05 3.2639 9.13E-‐02 4.70E-‐06 4.00E-‐07 0.002016 5.7235E-‐05
00220 60 0.5 0.0071 2.00E-‐04 0.0235 7.62E-‐05 3.3099 9.39E-‐02 4.10E-‐06 4.00E-‐07 0.001926 6.2686E-‐05
00221 20 0.5 0.0056 2.00E-‐04 0.0235 7.62E-‐05 4.1964 1.50E-‐01 2.50E-‐06 4.00E-‐07 0.001633 8.7166E-‐05
00222 20 0.5 0.0058 2.00E-‐04 0.0235 7.62E-‐05 4.0517 1.40E-‐01 1.80E-‐06 4.00E-‐07 0.001464 0.0001085
00223 30 0.5 0.0056 2.00E-‐04 0.0235 7.62E-‐05 4.1964 1.50E-‐01 3.20E-‐06 4.00E-‐07 0.001774 7.3943E-‐05
00224 30 0.5 0.0058 2.00E-‐04 0.0235 7.62E-‐05 4.0517 1.40E-‐01 1.40E-‐06 4.00E-‐07 0.001346 0.00012829
00225 40 0.5 0.0055 2.00E-‐04 0.0235 7.62E-‐05 4.2727 1.56E-‐01 4.20E-‐06 4.00E-‐07 0.001942 6.1688E-‐05
00226 40 0.5 0.0056 2.00E-‐04 0.0235 7.62E-‐05 4.1964 1.50E-‐01 3.20E-‐06 4.00E-‐07 0.001774 7.3943E-‐05
00227 50 0.5 0.0056 2.00E-‐04 0.0235 7.62E-‐05 4.1964 1.50E-‐01 2.70E-‐06 4.00E-‐07 0.001676 8.2808E-‐05
00228 50 0.5 0.0056 2.00E-‐04 0.0235 7.62E-‐05 4.1964 1.50E-‐01 2.50E-‐06 4.00E-‐07 0.001633 8.7166E-‐05
00229 60 0.5 0.0057 2.00E-‐04 0.0235 7.62E-‐05 4.1228 1.45E-‐01 2.30E-‐06 4.00E-‐07 0.001589 9.2148E-‐05
00230 60 0.5 0.0055 2.00E-‐04 0.0235 7.62E-‐05 4.2727 1.56E-‐01 5.30E-‐06 4.00E-‐07 0.002098 5.2833E-‐05
00283 20 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 8.00E-‐06 4.00E-‐07 0.002407 4.0168E-‐05
00284 20 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 1.28E-‐05 4.00E-‐07 0.002815 2.9399E-‐05
00285 30 0.5 0.0051 2.00E-‐04 0.0235 7.62E-‐05 4.6078 1.81E-‐01 1.02E-‐05 4.00E-‐07 0.00261 3.4179E-‐05
00286 30 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 8.50E-‐06 4.00E-‐07 0.002456 3.8581E-‐05
00287 30 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.20E-‐06 4.00E-‐07 0.002522 3.6604E-‐05
00288 30 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.00E-‐06 4.00E-‐07 0.002503 3.7143E-‐05
00289 40 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 1.06E-‐05 4.00E-‐07 0.002644 3.3317E-‐05
00290 40 0.5 0.0051 2.00E-‐04 0.0235 7.62E-‐05 4.6078 1.81E-‐01 1.02E-‐05 4.00E-‐07 0.00261 3.4179E-‐05
00291 50 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.90E-‐06 4.00E-‐07 0.002584 3.4863E-‐05
00292 50 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 9.20E-‐06 4.00E-‐07 0.002522 3.6604E-‐05
00293 60 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 8.90E-‐06 4.00E-‐07 0.002494 3.742E-‐05
00294 60 0.5 0.0052 2.00E-‐04 0.0235 7.62E-‐05 4.5192 1.74E-‐01 1.07E-‐05 4.00E-‐07 0.002652 3.311E-‐05
00321 20 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.79E-‐05 4.00E-‐07 0.004658 1.1149E-‐05
00322 20 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.79E-‐05 4.00E-‐07 0.004658 1.1149E-‐05
00323 30 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.74E-‐05 4.00E-‐07 0.004644 1.1207E-‐05
00324 30 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.80E-‐05 4.00E-‐07 0.00466 1.1138E-‐05
00325 40 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.67E-‐05 4.00E-‐07 0.004625 1.1289E-‐05
00326 40 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.58E-‐05 4.00E-‐07 0.0046 1.1398E-‐05
00327 50 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.34E-‐05 4.00E-‐07 0.004533 1.1704E-‐05
00328 50 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.99E-‐05 4.00E-‐07 0.004711 1.0928E-‐05
00329 60 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 6.07E-‐05 4.00E-‐07 0.004732 1.0843E-‐05
00330 60 0.5 0.005 2.00E-‐04 0.0235 7.62E-‐05 4.7 1.89E-‐01 5.82E-‐05 4.00E-‐07 0.004666 1.1115E-‐05
00351 20 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.58E-‐05 4.00E-‐07 0.0046 1.1398E-‐05
00352 20 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.55E-‐05 4.00E-‐07 0.004592 1.1435E-‐05
00353 30 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.65E-‐05 4.00E-‐07 0.004619 1.1313E-‐05
00354 30 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.84E-‐05 4.00E-‐07 0.004671 1.1093E-‐05
00355 40 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.95E-‐05 4.00E-‐07 0.0047 1.0971E-‐05
00356 40 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.91E-‐05 4.00E-‐07 0.00469 1.1015E-‐05
00357 50 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.79E-‐05 4.00E-‐07 0.004658 1.1149E-‐05
00358 50 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.86E-‐05 4.00E-‐07 0.004676 1.107E-‐05
00359 60 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.64E-‐05 4.00E-‐07 0.004617 1.1325E-‐05
00360 60 0.5 0.0063 2.00E-‐04 0.0235 7.62E-‐05 3.7302 1.19E-‐01 5.48E-‐05 4.00E-‐07 0.004572 1.1523E-‐05
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Data for impacts on paper (continued) 

 

00211 1638.746 64.8708 418.1382 26.99398 6422.488 190.047 1.17123 0.038092 11.34745 0.15192 16
00212 1416.063 68.1732 351.2823 24.19944 5708.324 239.338 1.05755 0.041991 11.7563 0.1689 13
00213 1165.973 82.2339 281.4253 23.82625 4830.744 333.129 1.30172 0.04573 14.07223 0.21542 12
00214 1340.594 72.5235 332.5607 24.28187 5404.1 266.667 1.22603 0.037308 16.77703 0.22142 11
00215 1948.444 63.6921 497.1601 30.19341 7636.242 136.892 1.41045 0.038261 8.142599 0.10932 10
00216 1272.389 83.6004 324.6595 26.7957 4986.681 312.743 1.3937 0.040571 16.94766 0.23756 6
00217 1220.099 79.5782 298.5234 24.14177 4986.681 312.743 1.70339 0.040349 17.88178 0.24966 5
00218 1484.245 65.2554 368.1964 24.35579 5983.177 218.211 1.76744 0.036414 15.4034 0.19979 4
00219 1593.225 62.2009 395.2309 24.94222 6422.488 190.047 2.91 0.040309 13.22642 0.18441 2
00220 1543.76 65.2685 388.3541 25.48454 6136.658 207.659 2.90991 0.036315 17.84915 0.23106 2
00221 1659.723 104.474 529.3634 47.19415 5203.761 287.382 1.10204 0.038927 16.42613 0.22346 11
00222 1436.282 115.019 442.3012 44.28896 4664.032 357.243 1.07801 0.041013 18.40252 0.26005 19
00223 1802.073 97.0398 574.7653 47.83489 5650.072 244.225 1.27273 0.034787 17.66064 0.22192 13
00224 1320.865 131.081 406.7585 46.96277 4289.237 422.151 1.28571 0.047619 16.37412 0.2585 12
00225 2008.926 95.2134 652.3905 52.3893 6186.15 204.428 1.45455 0.035402 14.51764 0.18461 9
00226 1802.073 97.0398 574.7653 47.83489 5650.072 244.225 1.46377 0.036591 16.31023 0.21231 12
00227 1702.852 101.791 543.1192 47.26726 5338.984 273.141 1.6383 0.034264 21.34281 0.26544 7
00228 1659.723 104.474 529.3634 47.19415 5203.761 287.382 1.97842 0.032492 26.36638 0.31627 5
00229 1585.908 105.373 496.9464 45.11141 5061.12 303.674 2.55714 0.059617 9.136828 0.17157 3
00230 2170.899 94.2993 704.9904 55.07514 6684.916 175.899 2.83636 0.036888 14.34475 0.18771 5
00283 2633.926 108.496 904.7041 72.51882 7668.328 135.844 1.15217 0.024364 19.23495 0.19142 21
00284 3203.885 130.146 1144.493 94.15974 8968.93 103.581 1.12903 0.022811 16.01943 0.15316 19
00285 2912.104 118.303 1019.866 82.65996 8315.162 117.553 1.14097 0.024799 15.77985 0.15873 14
00286 2687.695 109.714 923.1726 73.83062 7824.867 130.937 1.21393 0.02722 14.86451 0.15854 17
00287 2759.537 111.473 947.8491 75.60709 8034.027 124.88 1.22174 0.02372 18.58174 0.18191 15
00288 2739.394 110.966 940.9302 75.10649 7975.382 126.523 1.26396 0.027277 14.31137 0.15283 20
00289 2892.959 115.07 993.6769 78.96452 8422.466 114.982 1.4058 0.024802 15.75809 0.15852 12
00290 2912.104 118.303 1019.866 82.65996 8315.162 117.553 1.49756 0.024406 16.89155 0.16826 10
00291 2827.822 113.266 971.3036 77.31699 8232.828 119.608 1.715 0.023746 18.78212 0.18399 6
00292 2759.537 111.473 947.8491 75.60709 8034.027 124.88 2.1677 0.02723 16.15487 0.17233 6
00293 2729.21 110.714 937.4323 74.85413 7945.734 127.37 2.01099 0.02468 19.57957 0.19639 7
00294 2902.028 115.328 996.7919 79.19504 8448.869 114.368 2.65409 0.025977 17.4434 0.1806 3
00321 5199.591 208.749 1863.969 154.6732 14504.39 71.6994 1.09916 0.012087 21.94818 0.15101 30
00322 5199.591 208.749 1863.969 154.6732 14504.39 71.6994 1.103 0.012274 21.28784 0.14746 25
00323 5184.502 208.15 1858.56 154.2254 14462.3 71.6431 1.19134 0.01257 20.52452 0.14369 27
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00324 5202.598 208.869 1865.047 154.7625 14512.78 71.7109 1.13502 0.011905 22.63815 0.15472 26
00325 5163.229 207.304 1850.934 153.594 14402.96 71.567 1.32697 0.012556 20.99747 0.14692 18
00326 5135.617 206.207 1841.036 152.7745 14325.94 71.474 1.32511 0.011803 24.01363 0.16351 19
00327 5060.497 203.224 1814.106 150.5453 14116.39 71.2554 1.65664 0.012057 24.74622 0.17008 17
00328 5259.088 211.115 1885.298 156.4393 14670.36 71.9394 1.56706 0.011563 24.59026 0.16596 14
00329 5282.514 212.047 1893.696 157.1348 14735.71 72.0414 1.95616 0.012421 22.4404 0.15626 11
00330 5208.602 209.108 1867.2 154.9407 14529.53 71.734 1.91842 0.01201 24.5352 0.16833 11
00351 4075.887 130.354 1159.634 76.55076 14325.94 71.474 1.10791 0.013688 17.55147 0.12778 28
00352 4068.529 130.122 1157.541 76.4131 14300.08 71.4442 1.09337 0.014113 16.55996 0.12232 26
00353 4092.951 130.89 1164.489 76.87007 14385.92 71.5459 1.16063 0.012635 20.48549 0.14375 19
00354 4138.565 132.326 1177.467 77.72372 14546.24 71.7573 1.19954 0.012617 20.14968 0.1413 18
00355 4164.521 133.143 1184.852 78.20953 14637.47 71.8896 1.37709 0.012359 21.09791 0.14659 16
00356 4155.12 132.847 1182.177 78.03357 14604.43 71.8407 1.3601 0.012666 20.14031 0.14148 14
00357 4126.659 131.951 1174.08 77.50089 14504.39 71.6994 1.37093 0.013003 19.39736 0.1379 8
00358 4143.309 132.475 1178.817 77.8125 14562.91 71.7808 1.65445 0.0126 21.2846 0.14917 10
00359 4090.522 130.814 1163.798 76.82461 14377.38 71.5354 2.18681 0.012011 26.20817 0.17982 9
00360 4051.258 129.579 1152.627 76.08996 14239.38 71.3774 2.17919 0.012649 24.05732 0.1689 10
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