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SUMMARY 

 

 This dissertation focuses on the development and implementation of a new 

method to solve the time-dependent form of the linear Boltzmann transport equation for 

reactor transients. This new method allows for a stable solution to the fully explicit form 

of the transport equation with delayed neutrons by employing an error-controlled, 

adaptive Runge-Kutta-Fehlberg (RKF) method to differentiate the time domain. Allowing 

for the time step size to vary adaptively and as needed to resolve the time-dependent 

behavior of the angular flux and neutron precursor concentrations. The RKF expansion of 

the time domain occurs at each point and is coupled with a Source Iteration to resolve the 

spatial behavior of the angular flux at the specified point in time. The decoupling of the 

space and time domains requires the application of a quasi-static iteration between 

solving the time domain using adaptive RKF with error control and resolving the space 

domain with a Source Iteration sweep. The research culminated with the development of 

the 1-D Adaptive Runge-Kutta Time-Dependent Transport code (ARKTRAN-TD), 

which successfully implemented the new method and applied it to a suite of reactor 

transient benchmarks. 

 

 



 

1 

 

CHAPTER 1 

INTRODUCTION 

 

 Solution methods of time-dependent radiation transport problems require a 

significant increase in computational time (and memory) relative to steady-state (time-

independent) problems. For reactor transient problems, the inclusion of delayed neutrons 

is imperative when modeling realistic transient behavior. However, these delayed 

neutrons evolve over multiple time scales, which span up to six orders of magnitude. The 

solution to the fully explicit form of the transport equation, including explicit definitions 

of the delayed neutrons, can lead to unstable solutions when a fixed time step is applied. 

This effect is partially due to the large difference in time step based on prompt versus 

delayed neutron behavior. 

1.1 Brief Discussion of Previous Works in Time-Dependent SN Transport 

 As mentioned previously, time-dependent discrete ordinates transport codes have 

either functioned using a fully-implicit or semi-implicit solution methods to date, which 

allows for the stability of the time-dependent transport equation with fixed time steps. 

The definition of implicit and explicit form can be found in Eq. 1.1, where H represents 

the entire transport operator, and n refers to the time step. 

 
𝛹(𝑛+1) − 𝛹(𝑛)

𝜈𝛥𝑡𝑛
= {

𝐻(𝑛)𝛹(𝑛)            𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡

𝐻(𝑛+1)𝛹(𝑛+1)    𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡
 (1.1) 

The most recent work by Pautz and Birkhofer has shown success in solving the time-

dependent transport equation using a discrete ordinates transport solver in 2-D by 
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separating the time and space domains in TORT-TD. (Pautz and Birkhofer 2003) In this 

work, Pautz and Birkhofer use a combination of the implicit and explicit transport 

equation using the relationship in Eq. 1.2 

 
𝛹(𝑛+1) − 𝛹(𝑛)

𝜈𝛥𝑡𝑛
= 

1

2
𝐻(𝑛)𝛹(𝑛) +

1

2
𝐻(𝑛+1)𝛹(𝑛+1) (1.2) 

The form of Eq. 1.2 requires both a multiplication and inversion of the transport operator, 

H. Using the implicit discretized form in Eq. 1.1 and applying a significant amount of 

algebra, one can arrive at a form of the transport equation that is fully implicit. However, 

the neutron precursor concentrations are still differenced explicitly. Another solution 

method, employed in the TIMEX code casts the transport equation explicitly (with the 

exception of upscatter neutrons and precursors). However, the difference in neutron 

precursors is performed by a fully implicit scheme which results in a scheme that is semi-

implicit overall. (Hill and Reed 1976) . Fixed time steps were applied in both of these 

solution methods, which are unconditionally stable by definition. The numerical accuracy 

of the time difference is 1st order with 2nd order truncation error for these works. 

1.2 Introduction to New Method for Time-Dependent Transport 

 This research work develops a new method, which allows for a stable solution to 

the fully explicit form of the transport equation with delayed neutrons by employing an 

error-controlled, adaptive Runge-Kutta-Fehlberg (RKF) method to difference the time 

domain. This method allows for the time step size to vary adaptively and as needed to 

resolve the time-dependent behavior of the angular flux and neutron precursor 

concentrations. Furthermore, current methods used in time-dependent discrete ordinates 

codes only differentiate the time domain to 1st order, resulting in truncation error of 2nd 
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order. The RKF expansion about points in time can be performed for a variety of 

expansion order pairs, of which the 4th order expansion with 5th order truncation error is 

most popular.  

 

By limiting the size of the truncation error, one can ensure stability of the fully 

explicit form of the equation by mandating that the time step selected results in a 

truncation error (in both angular flux and delayed neutron precursors) falls within a 

specified tolerance. If this is not met, the time step size can be reduced and the updated 

truncation error determined. The process then repeats until a time step is found that meets 

this criteria. In an effort to reduce the number of these repetitions, the RKF method is 

performed on each point in space. However, this decoupling of the space domain from 

the time domain requires the implementation of a quasi-static iteration between solving 

the time domain using adaptive RKF with error control and resolving the space domain 

with a standard Source Iteration space sweep. The theory behind this new method is 

presented in Chapter 3. 

 

The following chapter addresses the general theory applied to the discrete 

ordinates approximation to the linear Boltzmann transport equation and methodology 

behind the Runge-Kutta-Fehlberg expansion with error control. Chapter 4 provides 

benchmark results for the newly developed 1-D Adaptive Runge-Kutta Time-Dependent 

Transport code (ARKTRAN-TD) when solving steady-state solutions (the starting basis 

for reactor transient calculations). Chapter 5 presents ARKTRAN-TD results to a suite of 

benchmark problems and provides comparisons to other time-dependent codes. Chapter 6 
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presents a newly implemented adaptive RKF scheme, which automatically selects the 

optimum RKF expansion order pair that allows for the largest stable time step at any 

point in the transient simulation. Chapter 7 concludes the dissertation and discusses the 

possibilities for future works. 
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CHAPTER 2 

BACKGROUND 

 

 Many different methods have been explored in an effort to solve the steady-state 

form of the linear Boltzmann transport equation, including Discrete Ordinates, Monte 

Carlo, Collision Probability, and Even-Parity Methods to name a few. (Lewis and Miller 

1993) (Bell and Glasstone 1970) Furthermore, there are many mathematical methods 

available for solving differential equations in the time domain, including the Runge-

Kutta-Fehlberg Method, which allows for one to determine the optimum time step rather 

than simply apply a global limit on the step size. (Fehlberg 1969) This dissertation 

focuses on utilizing the Discrete Ordinates Method for solving the transport equation, in 

order to resolve the spatial behavior of the neutron flux, followed by coupling with a 

Runge-Kutta-Fehlberg numerical method to resolve the behavior of the neutron flux in 

the time domain using optimized varying time steps. The full application of these two 

methods to the transport equation, assumptions, and coupling between them are 

addressed in Chapter 3. However, the subsequent sections in this Chapter are devoted to 

providing an introduction to these methods in the general sense. 

2.1 The Discrete Ordinates (SN) Method 

 The Discrete Ordinates (SN) Method results in a discretized form of the transport 

equation for the space, energy, and angular domains. This dissertation focuses on the 

development of a new solution method for the time-dependent form of the transport 
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equation, in one spatial dimension. Thus, the 1-D form of the time-dependent transport 

equation is presented in Eq. 2.1, below. (Lewis and Miller 1993) 

 

1

𝜈(𝐸)

𝜕

𝜕𝑡
(𝑧, 𝐸, 𝜇, 𝑡) + 𝜇 ∙ ∇⃗⃗ (𝑧, 𝐸, 𝜇, 𝑡) +  (𝑧, 𝐸)(𝑧, 𝐸, 𝜇, 𝑡) 

= ∫ 𝑑𝐸′
∞

0

∫𝑑𝜇′𝑠(𝑧, 𝐸
′ → 𝐸, 𝜇 ∙ 𝜇′)(𝑧, 𝐸′, 𝜇′, 𝑡) 

+
𝑃
(𝑧, 𝐸)[1 − 𝛽]∫ 𝑑𝐸′

∞

0

∫𝑑𝜇′𝑓(𝑧, 𝐸
′)(𝑧, 𝐸′, 𝜇′, 𝑡)            

+ ∑ 𝜒𝑑
𝑙 (𝑧, 𝐸)𝜆𝑙𝐶𝑙(𝑧, 𝑡)

𝑛𝑑𝑔

𝑙=1

+ 𝑞𝑒𝑥𝑡(𝑧, 𝐸, 𝜇, 𝑡) 

(2.1) 

where, 

(𝑧, 𝐸, 𝜇, 𝑡)  = angular flux 

 

 𝜈(𝐸)   = neutron velocity 

  

𝜇  = flight direction 

 

 , 𝑠, and 𝑓 = total, scatter, and prompt neutron yield times fission 

    cross sections 

 

 ndg   = number of delayed neutron groups 

 

 
𝑃

 and 𝜒𝑑
𝑙   = prompt and delayed fission spectra, l=1,ndg 

 

 β, βl, and λl = overall fraction, delayed fraction, and decay constants of 

   delayed neutron groups 

 

 𝑞𝑒𝑥𝑡(𝑧, 𝐸, 𝜇, 𝑡) = external source term 

 

The neutron precursor concentrations 𝐶𝑙(𝑧, 𝑡), are governed by: 

 
𝜕

𝜕𝑡
𝐶𝑙(𝑧, 𝑡) =  −𝜆𝑙𝐶𝑙(𝑟 , 𝑡) + 𝛽𝑙 ∫𝑑𝐸′𝜈(𝐸′)𝑓(𝑧, 𝐸

′) 𝜙(𝑧, 𝐸′, 𝑡) (2.2) 
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2.1.1 Discretization of the Energy Variable 

 The energy domain of the transport equation can be partitioned into a number of 

discrete energy ranges, commonly referred to as “multi-group.” (Bell and Glasstone 

1970) Traditionally, one starts with the highest energy particles (g=1) and ends with the 

lowest energy particles in the highest group index (g=G). Thus, particles in energy group 

g are defined with energies between Eg-1 and Eg. Where Eg-1 denotes the highest energy 

particle contained in group g, and Eg is the loewst energy particle in group g. Overall, the 

result of this discretization is an approximation to the linear Boltzmann transport 

equation, whereby the angular flux in each discrete energy group is defined by Eq. 2.3. 

 
𝑔
(𝑧, 𝜇, 𝑡) =  ∫𝑑𝐸(𝑧, 𝐸, 𝜇, 𝑡)

 

𝑔

= ∫ 𝑑𝐸(𝑧, 𝐸, 𝜇, 𝑡)
𝐸𝑔−1

𝐸𝑔

 (2.3) 

Furthermore, the energy integrals are partitioned to represent the contribution from each 

energy group. 

 ∫ dE′
∞

0

≈ ∑ ∫ 𝑑𝐸′
 

𝑔′

𝐺

𝑔′=1

 (2.4) 

By integrating Eq. 2.1 over energies between Eg-1 and Eg, one obtains the multigroup 

form of the transport equation. Whereby, each discrete energy domain is defined by its 

own transport equation, which is coupled to the other discrete energy ranges via the 

multigroup cross sections. Thus, the multigroup cross sections representing total, fission, 

and scattering reactions can be defined by Eqs. 2.5-2.7. 

 𝑡,𝑔(𝑧) =  
∫ 𝑑𝐸

𝐸𝑔−1

𝐸𝑔
∫𝑑𝜇𝑡(𝑧, 𝐸)(𝑧, 𝐸, 𝜇, 𝑡)

∫ 𝑑𝐸
𝐸𝑔−1

𝐸𝑔
∫𝑑𝜇(𝑧, 𝐸, 𝜇, 𝑡)

 (2.5) 
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 𝑓,𝑔(𝑧) =  
∫ 𝑑𝐸

𝐸𝑔−1

𝐸𝑔
∫𝑑𝜇𝑓(𝑧, 𝐸)(𝑧, 𝐸, 𝜇, 𝑡)

∫ 𝑑𝐸
𝐸𝑔−1

𝐸𝑔
∫𝑑𝜇(𝑧, 𝐸, 𝜇, 𝑡)

 (2.6) 

 

𝑠,𝑔𝑔′(𝑧, 𝜇 ∙ 𝜇′)

=  
∫ 𝑑𝐸′

𝐸𝑔′−1

𝐸𝑔′
∫ 𝑑𝐸

𝐸𝑔−1

𝐸𝑔
∫𝑑𝜇′𝑠(𝑧, 𝐸′ → 𝐸, 𝜇′ ∙ 𝜇)(𝑧, 𝐸′, 𝜇′, 𝑡)

∫ 𝑑𝐸′
𝐸𝑔−1

𝐸𝑔
∫𝑑𝜇′(𝑧, 𝐸′, 𝜇′, 𝑡)

 

(2.7) 

 The angular dependency of the neutron scattering cross-section can be expanded 

using spherical harmonics (Eq. 2.8 and 2.9). The scattering cross-section is assumed to 

only be dependent on the cosine of the scattering angle (μ0 = μ·μ’); where μ’ and μ 

represent the direction of the particle before and after the scattering event, respectively. 

This implies the probability of scattering into direction μ’ with energy g’ is independent 

of the initial direction of the particle. 

 𝑠,𝑔′→𝑔(𝑧,0
) ≅  ∑(2𝑙 + 1)𝑠𝑙,𝑔′→𝑔(𝑧)𝑃𝑙(0

)

𝐿

𝑙=1

 (2.8) 

 𝑠𝑙,𝑔′→𝑔(𝑧) =  ∫
𝑑

0

2
𝑠,𝑔′→𝑔(𝑧, 0

)
1

−1

𝑃𝑙(0
) (2.9) 

It is important to note that, as neutron energies become very low (i.e. cold neutrons), this 

assumption becomes an approximation. Furthermore, in 1-D Cartesian coordinates, the 

streaming operator (the μ·∇⃗⃗  in Eq. 2.1) becomes: 

 𝜇 ∙ ∇⃗⃗ =  
𝜕

𝜕𝑧
 (2.10) 

Substituting Eqs. 2.8 and 2.10 into Eq. 2.1, and using the definition of multigroup cross 

sections Eqs. 2.5-2.7, one arrives at:  
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1

𝑣𝑔

𝜕

𝜕𝑡


𝑔
(𝑧, 𝜇, 𝑡) + 𝜇 ∙

𝜕

𝜕𝑧


𝑔
(𝑧, 𝜇, 𝑡) + 𝑡(𝑧)𝑔

(𝑧, 𝜇, 𝑡) 

= ∑ ∑(2𝑙 + 1)𝑠𝑙,𝑔′→𝑔(𝑧)𝑃𝑙()𝑙,𝑔′(𝑧, 𝑡)

𝐿

𝑙=0

𝐺

𝑔′=1

 

+
𝑃,𝑔

(𝑧)[1 − 𝛽] ∑ 𝑓,𝑔′(𝑧)𝜙0,𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

            

+ ∑ 𝜒𝑑,𝑔
𝑙 (𝑧)𝜆𝑙𝐶𝑙(𝑧, 𝑡)

𝑛𝑑𝑔

𝑙=1

+ 𝑞𝑔
𝑒𝑥𝑡(𝑧, 𝜇, 𝑡) 

(2.11) 

The scalar flux moments in Eq. 2.11 are defined as follows: 

 
𝑙,𝑔

(𝑧, 𝑡) = ∫
𝑑𝜇

2
𝑃𝑙()

1

−1


𝑔
(𝑧, 𝜇, 𝑡) (2.12) 

2.1.2 Discretization of the Angular Variable 

 The angular component of the transport equation, denoted by μ in the one-

dimensional form, is discretized by considering a finite number of discrete directions 

(referred to as ordinates). By requiring the transport equation (Eq. 2.11) to hold for a 

distinct number of angles μn, and then applying an accurate quadrature approximation to 

the integral terms, one can arrive at the multigroup form of the time-dependent transport 

equation in 1-D, shown in Eq. 2.13 below. (Lewis and Miller 1993) The angular flux 


𝑔
(𝑧, 𝜇, 𝑡), is now written as 

𝑛,𝑔
(𝑧, 𝑡), where n refers to the angle or ordinate number in 

the quadrature set. Thus, one must choose a quadrature set on the interval of -1 ≤ μ ≤ 1, 

having N ordinates with corresponding weights wn. 
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1

𝜈𝑔

𝜕

𝜕𝑡


𝑛,𝑔
(𝑧, 𝑡) + 𝜇𝑛

𝜕

𝜕𝑧


𝑛,𝑔
(𝑧, 𝑡) + 𝜎𝑔(𝑧, 𝑡)𝑛,𝑔

(𝑧, 𝑡)  

=  ∑(2𝑙 + 1)𝑃𝑙(𝜇𝑛)

𝐿

𝑙=0

∑ 𝜎𝑙,𝑔′→𝑔(𝑧, 𝑡)𝜙𝑙,𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

+ 
𝑃,𝑔

(𝑧)[1 − 𝛽] ∑ 𝑓,𝑔′(𝑧, 𝑡)𝜙𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

+ ∑ 𝜒𝑑,𝑔
𝑙 (𝑧)𝜆𝑙𝐶𝑙(𝑧, 𝑡)

𝑛𝑑𝑔

𝑙=1

+ 𝑞𝑛,𝑔
𝑒𝑥𝑡(𝑧, 𝑡) 

(2.13) 

The scalar flux and scalar flux moments, in Eq. 2.13, are approximated by the quadrature 

set and can be reconstituted as follows using the associated weights of the quadrature. 

 𝜙𝑔(𝑧, 𝑡) =
1

2
∑ 𝑤𝑛𝑛,𝑔

(𝑧, 𝑡)

𝑁

𝑛=1

 (2.14) 

 𝜙𝑙,𝑔(𝑧, 𝑡) =
1

2
∑ 𝑤𝑛𝑃𝑙(𝜇𝑛)𝑛,𝑔

(𝑧, 𝑡)

𝑁

𝑛=1

 (2.15) 

The transport code developed as part of this dissertation utilized Gauss-Legendre 

quadrature sets from S2 to S20, Appendix A provides the quadrature angles μn and the 

weights wn associated with the angle, for Sn orders from 2 to 20 in one-dimension. 

2.1.3 Discretization of the Spatial Variable 

 The time-dependent form of the linear Boltzman equation, as it appears in Eq. 

2.13 can be recast in an abbreviated form as follows, where the entire right hand side of 

the equation has been collapsed into 𝑄𝑛,𝑔(𝑧, 𝑡), and the time-derivative term has been 

moved from the left-hand side to the right-hand side. 
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 (
𝑛

𝜕

𝜕𝑧
+ 𝑡,𝑔(𝑧))𝑛,𝑔

(𝑧, 𝑡) =  𝑄𝑛,𝑔(𝑧, 𝑡) (2.16) 

The angular dependence in the equation is denoted by n, which represents the discrete 

ordinate direction of the angular flux from n = 1, to N, with N being the total number of 

angles. The energy dependence is denoted by the subscript, g, referencing the energy 

group from g = 1, to G, with G being the total number of energy groups. The spatial 

domain is the partitioned into spatial cells. Within each of these spatial cells, the material 

cross sections and source terms are assumed to be constant. Integrating Eq. 2.16 over the 

volume of the cell and then dividing by the cell volume, results in the volume and surface 

averaged angular flux values. 

 


𝑛

𝑧𝑖
(

𝑖+
1
2
,,𝑛,𝑔

(𝑡) − 
𝑖−

1
2
,𝑛,𝑔

(𝑡)) + 𝑖,𝑡,𝑔𝑖,𝑛,𝑔
(𝑡) =  𝑄𝑖,𝑛,𝑔(𝑡) (2.17) 

The index i refers to the cell center value, while i±1/2, represents the cell surface values. 

Furthermore, these cells can be defined based on a coarse and fine grid. Whereby, the 

fine grid is contained within a coarse grid, thereby allowing for discontinuous cell size in 

the spatial dimension. The ability to model a system using a coarse/fine cell grid allows 

for refinement in areas where there are steep flux gradients or optically thin/thick cells 

and mitigates one problem area from dictating the cell size for the entire spatial domain. 

Therefore, this enables an increase in computation speed and decrease in memory storage 

requirements. 

2.1.4 Differencing Scheme, Boundary Conditions, and Iterative Methods 

 The solution to the discrete ordinate transport equations in a phase space are 

obtained through a process referred to as a “transport sweep.” Whereby the solutions are 
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calculated by marching along each ordinate, in the direction of particle flight. (Lewis and 

Miller 1993) For each fine cell in the system, the incoming angular flux is known on one 

boundary. Thus, a relationship can be formed between this incoming angular flux and the 

cell averaged volumetric source term (assumed to be known from the previous iterations), 

to the outgoing angular flux for each ordinate. These relationships are known as 

“differencing schemes.”  

2.1.4.1 Diamond Difference (DD) 

While there are several forms of differencing schemes available for use in 

transport calculations, the Diamond Difference (DD) Scheme was used in the transport 

code developed for this dissertation; and will be presented in this section for 

comprehensiveness. 

In the Diamond Differencing Scheme, the cell averaged angular flux is 

represented by the mathematical average of any two opposite cell boundary fluxes, or in 

equation form: 

 
𝒊,𝑛,𝑔

(𝑡) =
1

2
(

𝑖+
1
2
,𝑛,𝑔

(𝑡) + 
𝑖−

1
2
,𝑛,𝑔

(𝑡)) (2.18) 

In order to obtain the cell center angular flux, when traveling in the direction where μn is 

positive, one must eliminate the outgoing angular flux in Eq. 2.17; since it is guaranteed 

to have the incoming angular flux in the direction of flight, either from boundary 

conditions or the previous cell calculation. In doing so, one arrives at the following: 
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 
𝑖,𝑛,𝑔

(𝑡) =

2
𝑛

𝑧𝑖
(

𝑖−
1
2
,𝑛,𝑔

(𝑡)) +  𝑄𝑖,𝑛,𝑔(𝑡)

𝑖,𝑡,𝑔 +
2

𝑛

𝑧𝑖

 (2.19) 

The outgoing angular flux can then be evaluated by recasting Eq. 2.18 in terms of the cell 

averaged angular flux (just obtained) and the incoming angular flux on each ordinate, 

taking into account if μn is positive or negative. For example, if μn is positive, the 

outgoing angular flux would be given by: 

 
𝑖+

1
2
,𝑛,𝑔

(𝑡) = 2
𝑖,𝑛,𝑔

(𝑡) − 
𝑖−

1
2
,𝑛,𝑔

(𝑡) (2.20) 

The diamond differencing scheme is accurate to second order, but may result in negative 

flux solutions. (Lewis and Miller 1993) To mitigate this nonphysical issue, one can 

reduce the cell size or set the negative fluxes to zero and recalculate the cell average flux 

to maintain a balance of particles. Furthermore, it is important to note that non-physical 

oscillations can be inherent in solutions obtained through diamond differencing schemes. 

(Petrovic and Haghighat 1995) 

2.1.4.2 Boundary Conditions 

 Three standard boundary conditions: albedo, specular reflective, and vacuum 

(zero return angular flux), can be expressed by: 

 
𝑔
(𝑧, 𝜇𝑛, 𝑡) = 𝛼

𝑔
(𝑧, 𝜇′𝑛, 𝑡) (2.21) 

where 𝜇𝑛 = −𝜇′𝑛 and α is defined based on the type of boundary condition. Due to the 

nature of the even order symmetric quadrature set, where N is the number of quadrature 

angles, we have 
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 𝜇𝑁+1−𝑛 = −𝜇𝑛,     𝑓𝑜𝑟 𝑛 = 1, 2, … ,
𝑁

2
 (2.22) 

and 

 𝑤𝑁+1−𝑛 = 𝑤𝑛. (2.23) 

With even ordinate sets, one can then define the specular reflective boundary condition, 

at a z boundary location z = 0 as: 

 
𝑔,𝑛

(0, 𝑡) = 
𝑔,𝑁+1−𝑛

(0, 𝑡),     𝑓𝑜𝑟 𝑛 = 1, 2, … ,
𝑁

2
. (2.24) 

One can also define the vacuum, or zero return boundary condition, on the right hand 

boundary z = a, by: 

 
𝑔,𝑛

(𝑎, 𝑡) = 0,     𝑓𝑜𝑟 𝑛 = 1, 2, … ,
𝑁

2
. (2.25) 

Lastly, one can define an albedo (partially reflective) boundary condition, similarly to the 

reflective boundary condition in Eq. 2.24, but with the addition of the energy group 

dependent 𝛼𝑔, which provides the fraction of particles which are reflected back into the 

system. For example, at the general boundary zbnd, the albedo condition can be defined as: 

 
𝑔,𝑛

(𝑧𝑏𝑛𝑑, 𝑡) = 𝛼𝑔𝑔,𝑁+1−𝑛
(𝑧𝑏𝑛𝑑, 𝑡),     𝑓𝑜𝑟 𝑛 = 1, 2, … ,

𝑁

2
. (2.26) 

2.1.4.3 Iterative Methods 

 Based on the integro-differential nature of the transport equation, the solution of 

the multigroup discrete ordinates equations can be obtained via the use of an iterative 

process. For fixed-source problems, only the Source Iteration Method is required. For 

eigenvalue problems (steady-state), both the Source Iteration and Power Iteration 
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Methods are required to obtain a converged spatial flux profile as well as an accurate 

eigenvalue. 

2.1.4.3.1 Source Iteration Method 

The Source Iteration Method, defines the process of guessing a source (generally 

the in-group scattering source), and then sweeping through the angular, spatial and 

energy domains of the discretized system representing the problem geometry. (Lewis and 

Miller 1993) After completion of the initial transport sweep, the scalar flux and flux 

moment solutions are calculated from the angular fluxes and an updated in-group 

scattering source is determined. The process is repeated until a convergence criteria (or 

tolerance) is met for each cell averaged angular flux solution, on all ordinates, for each 

energy group, and at every spatial location, as given by Eq. 2.27. 

   
|𝑖 − 𝑖−1|

𝑖−1
< ∈ (2.27) 

Typical the convergence criteria, ∈ will vary from problem to problem and may depend 

on the importance of a particular region’s solution to the rest of the problem. Values for 

∈ generally span from 10-3 to 10-4
 for most applications, depending upon the problem. 

2.1.4.3.2 Power Iteration Method 

 Criticality eigenvalue problems can be solved with the use of the Power Iteration 

Method, whereby the eigenvalue of the system is associated with the nonnegative 

distribution of fission neutrons. Traditionally, source iterations are performed based on an 

initial guess of the angular flux (at all spatial locations, for each angle, and every energy 

group). After the convergence of the source iteration, a power iteration is performed to 

obtain the updated eigenvalue. This process is then repeated until both the source 
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iteration convergence criteria (eq. 2.27) and the power iteration tolerance (Eq. 2.29) have 

been met. The eigenvalue for the ℓ𝑡ℎ power iteration can be calculated using Eq. 2.28. 

 𝑘ℓ = 𝑘ℓ−1  
∫ 𝑑𝐸 ∫ 𝑑𝑧𝑓(𝑧, 𝐸)ℓ(𝑧, 𝐸)

∫𝑑𝐸 ∫𝑑𝑧𝑓(𝑧, 𝐸)ℓ−1(𝑧, 𝐸)
 (2.28) 

The typical initial guess for the eigenvalue k is 1.00, however if the eigenvalue of the 

system can be guessed more accurately at the beginning of the problem, faster 

convergence of the system may be obtained. Convergence criteria for the eigenvalue ∈𝑘, 

is typically taken to be 10-5 at a minimum. 

   
|𝑘ℓ − 𝑘ℓ−1|

𝑘ℓ−1
< ∈𝑘  (2.29) 

It is important to note, in the computational framework for reactor physics solvers, power 

iterations are often called “outer iterations,” while source iterations are referred to as 

“inner iterations.” This nomenclature is derived from the location of the source iteration 

calculation being inside the computational loop that performs the power iteration. 

2.2 The Runge-Kutta-Fehlberg (RKF) Method 

 The Runge-Kutta-Fehlberg (RKF) Method utilizes the traditional Runge-Kutta 

method of recurrence (Eq. 2.30)  

 𝑦𝑖+1 = 𝑦𝒊 + 𝑎1𝑘1 + 𝑎2𝑘2 + 𝑎3𝑘3 + ⋯+ 𝑎𝑛𝑘𝑛 (2.30) 

to calculate successive values of the dependent variable t of differential equations of the 

form shown in Eq. 2.31. (James, Smith and Wolford 1993)  

 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) (2.31) 
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where, kn can be defined with a step size of h as: 

 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑦𝑖) 

𝑘2 = ℎ𝑓(𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1) 

𝑘3 = ℎ𝑓(𝑡𝑖 + 𝑝2ℎ, 𝑦𝑖 + 𝑞21𝑘1 + 𝑞22𝑘2) 

… 

𝑘𝑛 = ℎ𝑓(𝑡𝑖 + 𝑝𝑛−1ℎ, 𝑦𝑖 + 𝑞𝑛−1,1𝑘1 + 𝑞𝑛−1,2𝑘2 + ⋯

+ 𝑞𝑛−1,𝑛−1𝑘𝑛−1) 

(2.32) 

Eqs. 2.30 and 2.32 constitute the Runge-Kutta equations, which may be written more 

compactly with Eqs. 2.33 and 2.34. 

 𝑦𝑖+1 = 𝑦𝒊 + ∑𝑎𝑗𝑘𝑗

𝑛

𝑗=1

 (2.33) 

 𝑘𝑗 = ℎ𝑓 (𝑡𝑖 + 𝑝𝑗−1ℎ, 𝑦𝑖 + ∑𝑞𝑗−1,𝑙𝑘𝑙

𝑗−1

𝑙=1

) ,    𝑗 = 1, 2, … , 𝑛 (2.34) 

and by definition, 

 𝑝0 = 0 𝑎𝑛𝑑 ∑𝑞𝑗−1,𝑙𝑘𝑙

𝑗−1

𝑙=1

= 0,   𝑓𝑜𝑟 𝑗 = 1.  (2.35) 

The determination of the a, p, and q coefficients must be made such that Eq. 2.30 yields 

successive values of y, and is accomplished by expanding y in a specified order of Taylor 

series about a point ti. (Fehlberg 1969) 

 

The inclusion of Fehlberg’s work to the traditional Runge-Kutta formulas 

(presented above) allow for error control of the time step size in the equation, which is 
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accurate to the truncation error of the Taylor Expansion order of the Runge-Kutta. 

(Burden and Faires 2010) For example, and RKF4/5 provides a solution to the differential 

equation which is accurate to 4th order, within a tolerance of the 5th order truncation error 

control. The ability to control the error of the time step size, and adaptively refine the 

time step as a function of time makes the Runge-Kutta-Fehlberg Method an ideal 

candidate for solving the time-dependent form of the Boltzmann transport equation. 

 

The derivation of Fehlberg’s formulas to obtain the coefficients of the Runge-

Kutta method may be found in the References. (Fehlberg 1969) Solutions for Runge-

Kutta-Fehlberg methods of 1st/2nd, 2nd/3rd, and 3rd/4th can be found in Appendix B, while 

the 4th/5th order method can be found in the upcoming section. Section 2.2.2 address error 

control of the time-step size when using the RKF Method. 

2.2.1 4th Order RKF with 5th Order Truncation Error Control 

 Given a differential equation of the form of Eq. 2.31, one can apply the Runge-

Kutta method with a local truncation error of order five, to obtain 

 𝑦̂𝑖+1 = 𝑦𝑖 +
16

135
𝑘1 +

6656

12825
𝑘3 +

28561

56430
𝑘4 −

9

50
𝑘5 +

2

55
𝑘6 (2.36) 

which can be used to estimate the local error in the Runge-Kutta method of order four, 

where the subscript i denotes the time step index. The resultant solution at the i+1 time 

step, is given by the 4th order extrapolation of derivatives. 

 𝑦𝑖+1 = 𝑦𝑖 +
25

216
𝑘1 +

1408

2565
𝑘3 +

2197

4104
𝑘4 −

1

5
𝑘5  (2.37) 
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The coefficient terms present in Eqs. 2.36 and 2.37 are given by Eq. 2.38, where h is the 

time step size: 

 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑦𝑖) 
 

𝑘2 = ℎ𝑓 (𝑡𝑖 +
ℎ

4
, 𝑦𝑖 +

1

4
𝑘1) 

 

𝑘3 = ℎ𝑓 (𝑡𝑖 +
3ℎ

8
, 𝑦𝑖 +

3

32
𝑘1 +

9

32
𝑘2) 

 

𝑘4 = ℎ𝑓 (𝑡𝑖 +
12ℎ

13
, 𝑦𝑖 +

1932

2197
𝑘1 −

7200

2197
𝑘2 +

7296

2197
𝑘3) 

 

𝑘5 = ℎ𝑓 (𝑡𝑖 + ℎ, 𝑦𝑖 +
439

216
𝑘1 − 8𝑘2 +

3680

513
𝑘3 −

845

4104
𝑘4) 

 

𝑘6 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 −

8

27
𝑘1 + 2𝑘2 −

3544

2565
𝑘3 +

1859

4104
𝑘4 −

11

40
𝑘5) 

 

(2.38) 

The major advantage of the Fehlberg method is that it only requires six evaluations of the 

function f per step. (Fehlberg 1969) Should one apply a traditional arbitrary Runge-Kutta 

method of fourth-order and an additional fifth-order evaluation to formulate relations 

similar to those in Eqs. 2.36 and 2.37, one would have a minimum of ten evaluations of 

the function f per step, four for the fourth-order equation and six for the fifth-order 

equation. Thus, the Runge-Kutta-Fehlberg method has at least a 40% reduction in the 

number of function evaluations (when using RKF4/5) over the use of a pair of arbitrary 

fourth-order and fifth-order methods. (Burden and Faires 2010) The local truncation error 

of the 4th order method (Eq. 2.37) can now be obtained by subtracting Eq. 2.37 from Eq. 

2.36, resulting in a truncation error (TE) in the 4th order method of 

 𝑇𝐸 =  
1

360
𝑘1 −

128

4275
𝑘3 −

2197

75240
𝑘4 +

1

50
𝑘5 +

2

55
𝑘6 . (2.39) 
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2.2.2 Runge-Kutta-Fehlberg Error Control Theory 

 When applying error control theory, an initial value for the step size h at the ith 

step is used to calculate the first values of 𝑦̂𝑖+1 and 𝑦𝑖+1. Although this procedure leads to 

additional evaluations of the function f, and therefore additional evaluations of all the 

kn’s, it does allow for the user to control the maximum allowable truncation error, or 

tolerance on the truncation error, denoted by ε in Eq. 2.41. One must first compute the 

residual, which is a function of the truncation error as follows:  

 𝑅 =
|𝑦̂𝑖+1 − 𝑦𝑖+1|

ℎ
 . (2.40) 

If the residual, R, in Eq. 2.40 is greater than the tolerance on the truncation error, then 

one must evaluate q, as it appears in Eq. 2.41 to determine the appropriate change in the 

step size h. 

 𝑞 = 0.84 (
𝜀ℎ

|𝑦̂𝑖+1 − 𝑦𝑖+1|
)

1
4

 (2.41) 

When q is less than 1, reject the initial choice of the time step size h and repeat the 

calculations for the time step using qh as the time step. If q is greater than or equal to 1, 

accept the value for the time step and change the step size to qh for the i+1 time step. A 

pseudo-code for an RKF solver algorithm is provided in Figure 1. Although the 

application of error control theory in the RKF method can result in an increase in the 

number of function evaluations, the benefit of knowing the solution is converged within 

the local truncation error outweighs the additional computational overhead in most cases. 

Bearing in mind the additional cost of function re-evaluations, q tends to be chosen 

conservatively.  
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Figure 1: RKF solver pseudo-code. 

 

 The error controlled RKF can be applied to a coupled system of differential 

equations, such as a set of equations defining angular fluxes and neutron precursors at the 

same point in space. The application of the RKF method to coupled equations is identical 

to if one was solving a single equation, however when a system of equations is solved the 

RKF_SOLVER (a, b, alpha, tolerance, hmax, hmin) 

 

t = a 

y = alpha 

h = hmax 

FLAG = 1 

 

DO WHILE (FLAG .EQ. 1) 

   Solve Equation 2.38 for k1, k2, k3, k4, k5, k6 

 

   Calculate R = 
1

ℎ
|

1

360
𝑘1 −

128

4275
𝑘3 −

2197

75240
𝑘4 +

1

50
𝑘5 +

2

55
𝑘6|  

 

(Note: R = 
1

ℎ
|𝑦̂𝑖+1 − 𝑦𝑖+1|) 

 

   IF (R .LE. tolerance) THEN 

      Accept Approximation 

       

      t = t + h 

      Solve Equation 2.37 for 𝑦𝑖+1 

 

     OUTPUT(t,y,h) 

   ELSE 

      Solve Equation 2.41 for q 

       

      Change Step Size using h = constant*q*h 

         (Note: Account for low q & high q with if statements) 

 

      IF (h .GT. hmax) h = hmax 

 

      IF (t .GE. b) FLAG = 0         !Reached last time point 

      IF (t+h .GT. b) h = t - b 

   ENDIF 

 

END DO 

 

OUTPUT(t,y,h) 

 

END RKF_SOLVER 



22 

 

error control is applied until all equations within the set meet the convergence tolerance 

set on the residual. It is imperative all equations meet the tolerance, as failure of one 

equation in an interrelated system would cause divergence in the solution of other related 

equations. Therefore, the choice of step size in a set of coupled equations must be the 

global minimum step size satisfying the tolerance, resulting in a solution to the set of 

equations within the specified tolerance criteria. 
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CHAPTER 3 

THEORY 

 

 The major focus of this dissertation is a coupled method which solves the discrete 

ordinates form of the time-dependent Boltzmann transport equation (Eq. 2.13). The 

Adaptive Runge-Kutta Time-Dependent Transport Code (ARKTRAN-TD) was 

developed using the methodoloy presented in this chapter. This is accomplished by 

coupling a standard source iteration, to resolve the spatial profile and thus the spatial 

derivative of the angular flux, with a RKF solver which takes the time step for both the 

angular fluxes as well as the delayed neutron precursor concentrations. The starting point 

for any time-dependent reactor transient will be a converged steady-state solution, which 

is then scaled to power before launching into the RKF solver to take the initial time step, 

after which the source iteration is performed, resulting in a converged flux profile at a 

time of t+Δt. This quasi-static iteration between the time sweep and space sweep is 

repeated until the total time is greater than the time cutoff provided by the user. The first 

major section in this chapter addresses the application of RKF to the transport equation 

and its implementation in the computer code, while the second major section addresses 

the application of the source iteration to resolve the spatial flux profile. 

3.1 Application of RKF Method to the Time Domain of the SN Transport Equation 

 By using the adaptive Runge–Kutta–Fehlberg method for the time domain, one 

can estimate the time step error using a difference of higher order Runge-Kutta methods. 

By determining the maximum acceptable time step size for each spatial location in the 
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global solution space, then choosing the minimum of these to be the global Δt for the time 

step, one can ensure the stability of the explicit solution form of the transport equation 

and neutron precursor equations over the time domain; as the time step size is now 

adaptive and specific to the physics of the problem of interest. The RKF method then 

uses an extrapolation of derivatives of both the angular flux and neutron precursors to 

determine the angular flux and precursor concentrations at a time of t+Δt. When looking 

at the general time dependent form of the transport equation, one realizes that the 

equation can be cast in the form: 

 
𝑑𝛹

𝑑𝑡
= 𝑓(𝑡, 𝛹),        𝑎 ≤ 𝑡 ≤ 𝑏,        𝛹(𝑎) =∝. (3.1) 

Where the time derivative of the angular flux is a function of the angular flux and time. 

Thus, one can apply the Runge-Kutta Method to resolve the solution to the initial value 

problem in Eq. 3.1, on the time domain from a to b. The initial condition 𝛹(𝑎), is given 

by the steady-state solution to the transport equation, resolved with a standard coupled 

Source Iteration and Power Iteration Method. Initial delayed neutron precursors are 

assumed to be in equilibrium at steady-state, thus their initial condition is defined at t=a 

as well. 

 

 For the sake of discussion of the application methods in this chapter, it is assumed 

the code will utilize a Runge-Kutta-Fehlberg method of 4th order, with a 5th order local 

truncation error. Applying the equations presented in Section 2.1.4 to the generalized 

transport functional, presented in Eq. 3.1, one arrives at the 5th order local truncation 

given by the following, where i refers to the time step and i+1 denotes the next time step. 
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 𝜓̂𝑖+1 = 𝛹𝑖 +
16

135
𝑘1 +

6656

12825
𝑘3 +

28561

56430
𝑘4 −

9

50
𝑘5 +

2

55
𝑘6 (3.2) 

This truncation error is used to determine the appropriate time step size to evaluate the 

angular flux and neutron precursors (for neutron precursors, the Ψ term in all equations in 

this section simply become Cl where l=1-6). Resulting in the angular flux at time i+1, 

given by a 4th order Taylor series expansion of the transport equation and the neutron 

precursor concentrations. 

 𝛹𝑖+1 = 𝛹𝑖 +
25

216
𝑘1 +

1408

2565
𝑘3 +

2197

4104
𝑘4 −

1

5
𝑘5 (3.3) 

The coefficient terms in Eq. 3.2 and 3.3 are the same as those presented in Eq. 2.38 for 

the generalized form of the RKF4/5, however they are included below as a function of Ψ 

for completeness. 

 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝛹𝑖) 
 

𝑘2 = ℎ𝑓 (𝑡𝑖 +
ℎ

4
, 𝛹𝑖 +

1

4
𝑘1) 

 

𝑘3 = ℎ𝑓 (𝑡𝑖 +
3ℎ

8
,𝛹𝑖 +

3

32
𝑘1 +

9

32
𝑘2) 

 

𝑘4 = ℎ𝑓 (𝑡𝑖 +
12ℎ

13
,𝛹𝑖 +

1932

2197
𝑘1 −

7200

2197
𝑘2 +

7296

2197
𝑘3) 

 

𝑘5 = ℎ𝑓 (𝑡𝑖 + ℎ,𝛹𝑖 +
439

216
𝑘1 − 8𝑘2 +

3680

513
𝑘3 −

845

4104
𝑘4) 

 

𝑘6 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝛹𝑖 −

8

27
𝑘1 + 2𝑘2 −

3544

2565
𝑘3 +

1859

4104
𝑘4 −

11

40
𝑘5) 

(3.4) 

 

The truncation error can be calculated with Eq. 2.38 and error control is applied based on 

the general method discussed in Section 2.2.2 to determine the appropriate time step size 

before taking the time step. 
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 After determining the scaled-to-power angular flux profile, based on the steady-

state solution, the code will launch into the RKF scheme, using the RKF4/5 method 

discussed in Eqs 3.2-3.4. Solving the time-dependent form of the discrete ordinate 

transport equation (Eqn. 2.13) in the following form:  

 

𝜕

𝜕𝑡


𝑛,𝑔
(𝑧, 𝑡) = 𝜈𝑔 [−𝜇𝑛

𝜕

𝜕𝑧


𝑛,𝑔
(𝑧, 𝑡) − 𝜎𝑔(𝑧, 𝑡)𝑛,𝑔

(𝑧, 𝑡)

+ ∑(2𝑙 + 1)𝑃𝑙(𝜇𝑛)

𝐿

𝑙=0

∑ 𝜎𝑙,𝑔′→𝑔(𝑧, 𝑡)𝜙𝑙,𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

 

+ 
𝑃,𝑔

(𝑧)[1 − 𝛽] ∑ 𝑓,𝑔′(𝑧, 𝑡)𝜙𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

+ ∑ 𝜒𝑑,𝑔
𝑙 (𝑧)𝜆𝑙𝐶𝑙(𝑧, 𝑡)

𝑛𝑑𝑔

𝑙=1

+ 𝑞𝑛,𝑔
𝑒𝑥𝑡(𝑧, 𝑡)] 

(3.5) 

where neutron precursor concentrations are given by: 

 
𝜕

𝜕𝑡
𝐶𝑙(𝑧, 𝑡) =  −𝜆𝑙𝐶𝑙(𝑧, 𝑡) + 𝛽𝑙 ∑ 𝑓,𝑔′(𝑧, 𝑡)𝜙𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

 . (3.6) 

The values for the neutron precursor concentrations at t = 0 can be found by setting the 

time derivative in Eqn. 3.6 to zero and solving for each of the Cl from the steady-state 

flux profile; as this is representative of the assumption that the neutron precursor 

concentrations are in equilibrium at steady-state. The scalar flux and scalar flux moments 

of Eqs. 3.5 and 3.6 are given by the following, where wn is the quadrature weight 

associated with the angle μn for each angular flux ordinate (see Appendix A for values of 

μn and wn for different SN orders): 

 𝜙𝑔(𝑧, 𝑡) =
1

2
∑ 𝑤𝑛𝑛,𝑔

(𝑧, 𝑡)

𝑁

𝑛=1

 (3.7) 
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 𝜙𝑙,𝑔(𝑧, 𝑡) =
1

2
∑ 𝑤𝑛𝑃𝑙(𝜇𝑛)𝑛,𝑔

(𝑧, 𝑡)

𝑁

𝑛=1

 (3.8) 

3.1.1 Assumptions in Applying RKF Method to the Transport Equation 

 Taking a closer look at the time-dependent transport equation (Eq. 3.5), it quickly 

becomes apparent, with the presence of the space derivative term 
𝜕

𝜕𝑧


𝑛,𝑔
(𝑧, 𝑡), that the 

entire phase space is coupled together. This would result in a number of equations equal 

to the following: 

 
#𝐸𝑞𝑠.= (#𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑃𝑜𝑖𝑛𝑡𝑠)[#𝐷𝑒𝑙𝑎𝑦𝑒𝑑 𝐺𝑟𝑜𝑢𝑝𝑠

+ (#𝐸𝑛𝑒𝑟𝑔𝑦 𝐺𝑟𝑜𝑢𝑝𝑠 ∙ 𝑆𝑁 𝑂𝑟𝑑𝑒𝑟)] . 
(3.9) 

By performing the quasi-static time/space sweep, one effectively decouples the 

space/time dependence in the RKF time step sweep by assuming that over the time step 

the space derivative term is constant. Thereby reducing the number of coupled 

differential equations to a number of coupled differential equations at each cell center 

spatial location equivalent to: 

 
#𝐸𝑞𝑠.  𝑝𝑒𝑟 𝐶𝑒𝑙𝑙 = #𝐷𝑒𝑙𝑎𝑦𝑒𝑑 𝐺𝑟𝑜𝑢𝑝𝑠 

+(#𝐸𝑛𝑒𝑟𝑔𝑦 𝐺𝑟𝑜𝑢𝑝𝑠 ∙ 𝑆𝑁 𝑂𝑟𝑑𝑒𝑟). 
(3.10) 

For example, a S4 calculation, with 2 energy groups, and 6 delayed neutron precursor 

groups would result in 14 coupled equations at each point in space. One would then 

march through each space point in the phase space to determine the maximum value of Δt 

for each ordinate, at every point in space, for all energy groups. The global minimum of 

these maximum local Δt values is then used as the time step size. The values of k1 

through k6 in Eq. 3.4 are then recalculated at each point in space, for all coupled 
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equations present and the time step is taken at the point to get the updated values for 

neutron precursor concentrations, as well as angular flux.  This space derivative is 

recalculated during the space sweep of each time step, and is therefore the most recent 

representation of the space derivative in the equation. 

 

 The total number of coupled equations evaluated globally remains constant when 

this decoupling is performed. However, the computation time is reduced significantly, as 

if a time step size does not meet the error control criterial, one is only re-evaluating the 

coupled functionals at a single point in space, rather than in the entire phase space. When 

the maximum value of Δt has been determined, it is checked against the global minimum 

value of Δt. If the global minimum is greater than the local value, the local value becomes 

the new global minimum. When proceeding to the next spatial point, the most current 

local minimum Δt, is used as the starting point to see if the time step meets the residual 

convergence criteria, given by Eq.  2.40. So all in all, the assumption that the space 

derivative of the angular flux is constant over the time step allows for a much faster 

computational time; even though by doing this, one is now required to perform a spatial 

source iteration to resolve the space profile of the angular flux. It is far more 

computationally intensive to re-evaluate the transport and precursor functionals in the 

entire phase space once, than it is to perform a source iteration. In most cases, the 

functionals are re-evaluated at least 10 times before the residual tolerance is within the 

convergence criteria. 
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3.1.2 Subtleties to Consider when Applying RKF to the Transport Equation 

 Observing the time-dependent transport equation (Eq. 3.5) and the neutron 

precursor concentration equation (Eq. 3.6), one realizes that the scalar flux and/or scalar 

flux moments are used when resolving the contribution from scatter, fission, and delayed 

neutrons. Looking at Eqs. 3.7 and 3.8, it becomes apparent that the scalar flux and scalar 

flux moments are reconstituted from the angular fluxes, as a function of time. Therefore, 

any term in Eq. 3.5 which includes a scalar value needs to have the updated scalar value 

at the appropriate time designated in the functionals that represent the expansion of the 

angular flux (e.g. the kn values of Eq. 3.4) and using the expanded values of the angular 

flux to represent the scalar quantities. This is accounted for in the computer code by 

solving the equations in terms of the angular fluxes only (substituting Eqs 3.7 and 3.8 

into Eqs 3.5 and 3.6, where appropriate), as shown below: 

 

𝜕

𝜕𝑡


𝑛,𝑔
(𝑧, 𝑡)

= 𝜈𝑔 [−𝜇𝑛

𝜕

𝜕𝑧


𝑛,𝑔
(𝑧, 𝑡) − 𝜎𝑔(𝑧, 𝑡)𝑛,𝑔

(𝑧, 𝑡)

+ ∑(2𝑙 + 1)𝑃𝑙(𝜇𝑛)

𝐿

𝑙=0

∑ 𝜎𝑙,𝑔′→𝑔(𝑧, 𝑡) (
1

2
∑ 𝑤𝑛𝑃𝑙(𝜇𝑛)𝑛,𝑔′

(𝑧, 𝑡)

𝑁

𝑛=1

)

𝐺

𝑔′=1

 

+ 
𝑃,𝑔

(𝑧)[1 − 𝛽] ∑ 𝑓,𝑔′(𝑧, 𝑡) (
1

2
∑ 𝑤𝑛𝑛,𝑔′

(𝑧, 𝑡)

𝑁

𝑛=1

)

𝐺

𝑔′=1

+ ∑ 𝜒𝑑,𝑔
𝑙 (𝑧)𝜆𝑙𝐶𝑙(𝑧, 𝑡)

𝑛𝑑𝑔

𝑙=1

+ 𝑞𝑛,𝑔
𝑒𝑥𝑡(𝑧, 𝑡)] 

(3.11) 

and the neutron precursor concentrations are given by, 

 
𝜕

𝜕𝑡
𝐶𝑙(𝑧, 𝑡) =  −𝜆𝑙𝐶𝑙(𝑧, 𝑡) + 𝛽𝑙 ∑ 𝑓,𝑔′(𝑧, 𝑡) (

1

2
∑ 𝑤𝑛𝑛,𝑔′(𝑧, 𝑡)

𝑁

𝑛=1

)

𝐺

𝑔′=1

 . (3.12) 
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 As discussed previously, at t = 0, the angular flux is considered to be at steady-

state and scaled to power before entering into the time sweep and the initial neutron 

precursor concentrations are solved by setting the time derivative in the precursor 

equation equal to zero and solving for 𝐶𝑙(𝑧, 0). After the initial time step, the 𝛹𝑖 that 

appears in the RKF expansion and function evaluations (Eqs. 3.2-3.4), is set to equal to 

the converged angular flux values coming out of the source iteration sweep. While the 

neutron precursor concentrations 𝐶𝑙,𝑖 are set to be equal to the neutron precursor 

concentration from the previous time step, it is then expanded and calculated using the 

RKF method applied to Eq. 3.12. 

 

 Regarding data storage, all memory that is not represented by character, integer, 

or logical variable is stored as a double precision variables in FORTRAN (equivalent to 

double in C++). Quadrature weights and angles were hard coded into the program with 

15 significant digits of accuracy. Lastly, all file inputs and outputs or messages printed to 

the screen show time in seconds or values printed with units of seconds or per second. 

Inside the algorithm, the unit of time used is the “shake.” One shake is the equivalent to 

10-8 seconds (10 nanoseconds). The unit has a history in nuclear physics and is originally 

attributed to the Manhattan Project where, given the nature of the project, it was 

convenient to have a timescale that was not understood outside of the group. This 

conversion was performed internally to clean up the numerics as the calculation of time 

step residuals (Eq. 2.40) as well as the kn values, requires one to either divide or multiply 

by the time step size. Given the range of normal time steps size of  
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10-18 to 10-6 seconds for most calculations (though the average value is typically between 

10-9 and 10-7 seconds), having a unit of time which increases the magnitude of the time 

domain internally helps to significantly reduce numerical discrepancies and ill-conditions 

which may occur due to multiplication and division by values which are approaching 

zero. 

3.2 Spatial Transport Sweep Coupled to the RKF Time Sweep 

 After completing the optimized time step for the angular fluxes and neutron 

precursor concentrations, a source iteration must be performed in order to resolve the 

effects of radiation transport across the fine cell boundaries. To do this, a standard source 

iteration is performed, where the time-dependent form of the discrete ordinates transport 

equation (Eq. 2.13) is recast as follows, by shifting the time derivative term from the left-

hand side of the equation to the right-hand side of the equation. 

 

𝜇𝑛

𝜕

𝜕𝑧


𝑛,𝑔
(𝑧, 𝑡) + 𝜎𝑔(𝑧, 𝑡)𝑛,𝑔

(𝑧, 𝑡)  

=  ∑(2𝑙 + 1)𝑃𝑙(𝜇𝑛)

𝐿

𝑙=0

∑ 𝜎𝑙,𝑔′→𝑔(𝑧, 𝑡)𝜙𝑙,𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

+ 
𝑃,𝑔

(𝑧)[1 − 𝛽] ∑ 𝑓,𝑔′(𝑧, 𝑡)𝜙𝑔′(𝑧, 𝑡)

𝐺

𝑔′=1

+ ∑ 𝜒𝑑,𝑔
𝑙 (𝑧)𝜆𝑙𝐶𝑙(𝑧, 𝑡)

𝑛𝑑𝑔

𝑙=1

+ 𝑞𝑛,𝑔
𝑒𝑥𝑡(𝑧, 𝑡)

−
1

𝜈𝑔

𝜕

𝜕𝑡


𝑛,𝑔
(𝑧, 𝑡) 

(3.13) 

Substituting the collective source terms (right-hand side of Eq. 3.13) for the 

variable 𝑄𝑛,𝑔(𝑧, 𝑡); representing the scatter, prompt fission, delayed fission, external 

sources, and time rate of change of neutrons, one arrives at a more simplified form of the 

transport equation. 
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 𝜇𝑛

𝜕

𝜕𝑧


𝑛,𝑔
(𝑧, 𝑡) + 𝜎𝑔(𝑧, 𝑡)𝑛,𝑔

(𝑧, 𝑡)  =  𝑄𝑛,𝑔(𝑧, 𝑡) (3.14) 

The Diamond Difference Scheme can then be applied to Eq. 3.14, using appropriate 

boundary conditions, to perform a Source Iteration that converges the angular flux at the 

time step. The 𝑄𝑛,𝑔(𝑧, 𝑡) in Eq. 3.14 is the 𝑄𝑖,𝑛,𝑔(𝑡), which appears in the equation for the 

DD scheme (Eq. 2.19). The reader can refer to Section 2.1.4 to familiarize themselves 

with Differencing Schemes, Boundary Conditions, and Iterative Methods. After 

converging the angular fluxes in the spatial sweep, the resultant angular fluxes are used 

as the starting point for the angular fluxes in the next RKF time step.  

3.2.1 Assumptions in the Spatial Sweep 

While performing the Source Iteration, the value of the space derivative is stored 

for use in the next RKF time step (where it is assumed to be constant for the next time 

step). The space derivative at the fine mesh center is assumed to be equivalent to the 

difference in fine mesh edge fluxes divided by the mesh size along the flight path of the 

radiation. For example, for radiation traveling in a direction where μn > 0, 

 
𝜕

𝑛,𝑔
(𝑧, 𝑡)

𝜕𝑧
=


𝑖+

1
2
,,𝑛,𝑔

(𝑡) − 
𝑖−

1
2
,𝑛,𝑔

(𝑡)

𝛥𝑧
 (3.15) 

where i is the fine mesh center, and i±½ are the left and right edge fluxes for the mesh. 

Furthermore, looking at the spatial sweep form of the transport equation (Eq. 3.13) the 

time derivative of the angular flux in mesh i, along ordinate n, for energy group g is 

assumed to be constant during the space sweep and is represented by taking the 

difference in angular fluxes from the current and previous time steps and dividing them 

by current time step size, as shown below. 
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𝜕

𝑛,𝑔
(𝑧, 𝑡)

𝜕𝑡
=


𝑛,𝑔
(𝑧, 𝑡) − 

𝑛,𝑔
(𝑧, 𝑡 − 𝛥𝑡)

𝛥𝑡
 (3.15) 

Lastly, the neutron precursor concentrations are assumed to be constant during the spatial 

sweep as well. The time derivative and precursor concentrations must be constant in the 

transport sweep resolving the spatial behavior of the angular flux. By decoupling the 

space and time domains in the transport equation, and performing the quasi-static 

iteration between the space and time domains, all time dependent terms must be held 

constant in the space sweep, and all space dependent terms must be held constant in the 

time sweep. To do otherwise would result in an over-definition of the precursor 

concentrations, time rate of change of the angular flux, and/or space derivative of the 

angular flux; giving rise to non-physical behavior of the neutron flux and all associated 

quantities (precursors, fission source, scatter source, system power, et cetera) as a 

function of time. 

3.2.2 Addressing the Lack of Power Iteration 

 When considering the general approach to solving SN transport problems with 

fission sources, a power iteration is performed as the outer iteration which sets the fission 

source term. Thereafter, an inner source iteration is performed to converge the scatter 

source term for that fission source term. This process is repeated until both the fission 

source term and the angular flux (and scatter source) are converged. However, in the 

realm of time-dependent transport, at the current point in time the fission source term and 

delayed neutron precursor concentrations are known (coming out of the RKF time step). 

Thus, the Power Iteration is not needed to converge on the fission source or precursor 

concentrations, and only a Source Iteration is required to converge the scatter source and 
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account for the spatial migration of radiation between the fine mesh boundaries. Should 

one include a Power Iteration as part of the quasi-static space/time solution method, one 

is effectively forcing the fission and precursor contributions to assume steady-state 

values, which is not representative of a time-dependent solution. The resultant angular 

flux would immediately transition to a flux profile which would be consistent with the 

“settled out” solution after a transient. Pictorially, one would observe the prompt jump or 

drop from the transient occurring immediately and the flux profile of the solution would 

simply increase or decrease in magnitude thereafter.  

3.3 Concluding Remarks on Quasi-Static RKF Time/Space Transport Sweep 

 Overall, the main benefit of the quasi-static RKF time/space transport sweep is 

the reduction in the number of RKF expansion functionals which are evaluated at every 

time step (compared to a purely RKF based time-dependent transport code) while 

obtaining the appropriate Δt. Furthermore, using the RKF with the adaptive time step size 

yields a solution guaranteed to be within the truncation error tolerance, and is a huge 

improvement over the guess work involved in employing a user-specified time step, 

which can yield incorrect solutions if the time step size it chosen to be too large. Figure 2 

provides a brief pseudo-code representation of the layout of the quasi-static space/time 

sweep, as implemented in the code developed. 



35 

 

 

Figure 2: Pseudo-code of the RKF Time/Space Transport Sweep. 

 

Perform steady-state calculation 

Scale flux to desired power level 

 

t=0 

 

Calculate neutron precursor concentrations by setting derivative in 

equation 3.6 to zero 

 

DO WHILE (t .LE. tmax) 

 

  Solve Eqn. 3.5 & 6 coupled precursor equations using RKF find the  

  required time step at each spatial location, for each energy group, 

  and every ordinate 

 

  Determine the minimum global time step 

 

  Calculate k1 through k6 (Eq. 3.4) using min global time step and  

  solve for angular flux and precursor concentrations at t+dt, for  

  each ordinate, group, and location using Eq. 3.3 

 

  Calculate the new fission source term using the updated angular  

  flux values 

 

  Perform the Source Iteration spatial sweep to resolve the space 

  behavior of the angular flux and the space derivative (Eqs. 3.14 &     

  3.15 with Diamond Difference) 

 

  t=t+dt 

 

ENDDO 

 

Print Results 

 



36 

 

CHAPTER 4 

VERIFICATION OF THE STEADY STATE TRANSPORT SOLVER 

  

As discussed in Chapter 3: Theory, the starting basis for a reactor transient 

calculation is a converged steady-state solution, scaled to the system power. Therefore, it 

is imperative the steady-state transport solver incorporated into ARKTRAN-TD be 

validated against an additional transport code, using several benchmark problems of 

interest. To this point, this dissertation has solely been focused on the time-dependent 

form of the transport equation, therefore the first major section of this chapter addresses 

the steady-state equation form and solution method. The subsequent sections provide 

code to code comparisons with several problems of interest between the ARKTRAN-TD 

solution and the PENTRAN solution. PENTRAN is the Parallel Environment Neutral 

Particle Transport Code by Sjoden and Haghighat, which uses the SN method to solve 3-D 

forward and adjoint transport calculations for fixed source and eigenvalue problems at 

steady-state. (Sjoden and Haghighat 2008) 

4.1 Brief Overview of Steady-State Transport Solution Methods 

 The steady-state form of the multigroup discrete ordinates transport equation is 

given by Eq. 4.1. (Lewis and Miller 1993) The energy, angle, and space discretization 

from the integral form of the transport equation is identical to the methods discussed in 

Chapter 2. However, with the time domain removed, there is no time derivative, delayed 

neutron concentrations, or beta in the fission source term. The delayed neutrons are 
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considered to be in equilibrium, thus all fission neutrons are incorporated into the fission 

term observed in Eq. 4.1. 

 

𝜇 ∙
𝜕

𝜕𝑧


𝑔
(𝑧, 𝜇) + 𝑡(𝑧)𝑔

(𝑧, 𝜇) 

= ∑ ∑(2𝑙 + 1)𝑠𝑙,𝑔′→𝑔(𝑧)𝑃𝑙()𝑙,𝑔′(𝑧)

𝐿

𝑙=0

𝐺

𝑔′=1

 

+


𝑔
(𝑧)

𝑘
∑ 𝑓,𝑔′(𝑧)𝜙0,𝑔′(𝑧)

𝐺

𝑔′=1

+ 𝑞𝑔
𝑒𝑥𝑡(𝑧, 𝜇) 

(4.1) 

The k present in Eq. 4.1 represents the eigenvalue of the system. An eigenvalue equal to 1 

implies the reactor system is critical, an eigenvalue less than 1 results in a subcritical 

system, and an eigenvalue greater than 1 represents a supercritical system. The right hand 

side of Eq. 4.1 equals the total source from scatter, fission, and external sources, 

respectively. One can solve for both the eigenvalue and angular flux using a combination 

of the Power Iteration and Source Iteration methods coupled with the boundary 

conditions discussed in Chapter 2. The Diamond Difference scheme was employed when 

calculating the angular fluxes in the transport sweep. For purely fixed source calculations 

that do not have a multiplying (e.g. fissionable) medium, only the Source Iteration is 

used, as the Power Iteration converges the fission source and k eigenvalue that would not 

be present in the system. Figure 3 depicts a pseudo-code of the steady-state solver as 

coded in ARKTRAN-TD. 
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Figure 3: Pseudo-code depicting the steady-state solver in ARKTRAN-TD. 

 

 The inner loop in Figure 3 represents the Source Iteration process that converges 

the scatter source and angular flux profiles, while the outer loop contains the Power 

Iteration which determines the eigenvalue and fission source term. In addition to the 

convergence criteria from Eqs. 2.27 and 2.29, for angular flux and eigenvalue, 

respectively, one can also specify a maximum number of inner and outer iterations which 

will also cause the code to proceed to the next iteration. This can help move the solution 

towards convergence faster, especially if the fission source term is not well defined by 

the initial guess. 

Perform steady-state calculation 

Scale flux to desired power level 

 

Guess initial k, ϕ and Ψ 

 

DO WHILE (k_tol .lt. cutoff) 

  Calculate fission source 

 

  DO WHILE (flux_tol .lt. flux_cutoff) 

 

    Perform DD Transport Sweep using Eq. 2.19 and 2.20 in the 

    positive and negative directions of μ 

 

    Determine flux_tol using Eq. 2.27 

 

    Set the new values of Ψ to the old value of Ψ 

 

  ENDDO 

 

  Calculate new k using Eq. 2.28 

  Determine k_tol using Eq. 2.29 

 

  Set the new values of ϕ to the old value of ϕ 

 

ENDDO 

 

Print Results 



39 

 

4.2 Alcouffe Slab Problem 

 The first model used to validate the steady-state transport solver in ARKTRAN-

TD, is a test problem originally presented in a paper by Alcouffe, et. al. containing a 

mixture of both streaming and diffuse mediums. (Alcouffe, et al. 1979) This problem is 

purely a fixed source calculation, without any fissionable material. While the time-

dependent code is designed to solve reactor transients, it is important that the fixed source 

representation in the transport solver is designed correctly, should one need to include a 

combination of fixed sources and fission sources in a transient model. 

4.2.1 Detailed Problem Geometry 

 The Alcouffe slab problem consists of 4 coarse meshes (or slabs), each containing 

different materials and numbered sequentially from left to right. Figure 4 depicts the 

problem geometry. The first zone consists of a half-scattering region, the second zone has 

a unit density source in a pure absorber, the third zone consists of a typical shielding 

material, and the fourth zone is a diffuse region with a unit density source. The coarse 

slab boundaries span the z-axis and are located at 0.0, 3.0, 6.0, 36.0, and 48.0 cm. The 

number of fine meshes in each coarse slab was specified to be 60, 60, 600, and 240 for 

slabs 1, 2, 3, and 4, respectively.  

 

Vacuum boundary conditions are applied to the left and right hand z-boundaries. 

As PENTRAN is a 3-D transport code, which was used as a basis of comparison, 

reflective boundary conditions were employed in the x- and y-directions to effectively 

model the 1-D slab geometry. The convergence criteria on the angular flux was set to 10-5 
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and evaluated using Eq. 2.27. Quadrature specified for evaluation of this problem as S8, 

which results in 8 angles in ARKTRAN-TD and 80 angles in PENTRAN (as PENTRAN 

is using a 3-D quadrature set). One energy group, P0 cross sections were specified in the 

problem documentation, and provided in Table 1 for each slab material present. 

 

 

Figure 4: Alcouffe slab test problem geometry. 

 

Table 1: Alcouffe slab test problem cross sections. 

Material σa νσf σt σs 

1. Half Scatterer 0.50 0.00 1.00 0.50 

2. Pure Absorber + 

Source (1 n/cm3s) 
1.00 0.00 1.00 1x10-6 

3. Shield 0.95 0.00 1.00 0.05 

4. Diffuse Region + 

Source (1 n/cm3s)  
0.05 0.00 1.00 0.95 

  

4.2.2 Results of Alcouffe Test Problem 

 The resulting scalar flux profiles for the converged solution from PENTRAN and 

ARKTRAN-TD are shown in Figure 5. The yellow line represents the scalar flux profile 

obtained with ARKTRAN-TD, while the dotted black line depicts the solution from 

PENTRAN. When viewing the scalar flux plot, excellent agreement is seen between the 
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two transport codes, as the lines sit directly on top of each other. An average relative 

error in scalar flux values of 0.25% was computed according to Eq. 4.2. 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝜙𝐴𝑅𝐾𝑇𝑅𝐴𝑁−𝑇𝐷 − 𝜙𝑃𝐸𝑁𝑇𝑅𝐴𝑁

𝜙𝑃𝐸𝑁𝑇𝑅𝐴𝑁
| (4.2) 

The low relative error between the codes, coupled with the overlapping scalar flux 

profiles, verifies the capability of ARKTRAN-TD to model fixed source transport 

simulations as well as its ability to resolve the spatial profile of angular (and scalar) 

fluxes in geometries containing purely absorbing, shielding, and highly scattering 

materials.   

 

 

Figure 5: Alcouffe test problem flux profiles from PENTRAN and ARKTRAN-TD. 
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4.3 Boiling Water Reactor (BWR) Test Problems 

 In order to verify ARKTRAN-TD’s ability to solve multigroup eigenvalue 

problems representative of reactor calculations, a set of four benchmark problems 

originally developed by Douglas were chosen for their versatility using a set of thirteen 

materials to model four different GE9 based BWR fuel bundles. (Douglass 2012) The 

next section addresses the problem geometries for the fuel, while Section 4.3.2 discusses 

the results obtained with ARKTRAN-TD and compares these to the PENTRAN 

calculated solutions. 

4.3.1 BWR Bundle Geometries and Core Configurations 

 The BWR benchmark problems are composed of a set of different pin cells, 

representing twelve fuel types (10 enrichments and 2 gadded pins) which were used to 

generate 47 group cross sections, collapsed via a flux weighting and originally generated 

with the HELIOS code. (Simenov 2003) Furthermore, the cross section definition utilizes 

upscatter cross sections and P1 anisotropic scattering moments. Each fuel bundle or 

assembly is composed of a total of 10 material regions. The central 8 regions contain fuel 

pins while the outer region on each side contains a moderator material. The fuel regions 

are 1.6256 cm in width each, and the outer moderator regions are slightly smaller at 

1.1176 cm in with. Thus, the total length of a single fuel bundle is 15.24 cm, which is 

consistent with BWR bundle size.  

 

Table 2 contains the material map for each of the 4 bundle types modeled, were M 

refers to the moderator material, the numbers reflect the fuel type used in that pin cell. 
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Fuel types 1 through 10 contain various enrichments, while fuel types 11 and 12 

represent the gadded pins. Each fuel bundle was modeled using a single coarse slab for 

each pin or moderator boundary (e.g. a total of 10 coarse slabs), while moderator regions 

contained 24 fine meshes each and fuel regions consisted of 12 fine meshes each, for a 

total of 144 fine meshes per bundle. All fuel bundle simulations were performed with S8 

quadrature, P1 scattering moments, and reflective boundary conditions on the positive 

and negative z-axis boundaries. Convergence criteria were set at 10-3 for the angular flux 

and 10-5 for the eigenvalue, which represent standard values for these tolerances. The 

Diamond Differencing scheme was used by both transport codes to resolve the angular 

flux. 

 

Table 2: BWR benchmark fuel bundle layouts by material type. 

Bundle Type Material Layout 

1 M  03  03  08  08  08  08  03  03  M 

2 M  03  03  03  03  03  03  03  03  M 

3 M  03  03  11  11  11  11  03  03  M 

4 M  11  11  11  11  11  11  11  11  M 

 

4.3.2 Fuel Bundle Benchmark Results 

The resulting eigenvalues from ARKTRAN-TD and PENTRAN are shown in 

Table 3, and display agreement between the two solution methods. The difference in the 

two eigenvalues were calculated and provided in pcm (1 pcm or per cent mil is equivalent 

to 10-5), using Eq. 4.3.  

 𝛥𝑘 [𝑝𝑐𝑚] = |𝑘𝐴𝑅𝐾𝑇𝑅𝐴𝑁−𝑇𝐷 − 𝑘𝑃𝐸𝑁𝑇𝑅𝐴𝑁| ∙ 105 (4.3) 
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The largest difference in the calculated eigenvalues was 1.70 pcm in Bundle 2, while 

Bundle 4 displayed the smallest delta k of 1.13 pcm. It is important to note that while 

these differences are relatively small, some difference is expected given PENTRAN’s use 

of a 3-D quadrature in the 1-D model, while ARKTRAN-TD is using a 1-D quadrature 

only. Furthermore, comparing computer run time for these models would not be a fair 

metric, as the 3-D quadrature set is represented by a factor of 10 more angles, thus 

increasing the number of equations PENTRAN solves per point. Thus, computer runtime 

will not be compared for these benchmarks. 

 

Table 3: Eigenvalues of BWR fuel bundles 

Bundle ARKTRAN-TD PENTRAN Δk [pcm] 

1 1.334821 1.334936 1.15 

2 1.278310 1.278480 1.70 

3 0.694472 0.694590 1.18 

4 0.316440 0.316327 1.13 

 

 

 Scalar flux profiles obtained from each bundle type were compared between the 

PENTRAN solution (dotted black line in plots) and the ARKTRAN-TD solution (solid 

gold line in plots) in order to verify ARKTRAN-TD’s ability to not only resolve the 

system eigenvalue, but also determine the correct spatial profile of the flux. Two energy 

groups were chosen to display the flux profiles from both codes, the first Group 5 depicts 

the flux between energies of 0.82 MeV and 1.35 MeV. The Group 39 fluxes were also 

plotted, to show the behavior in a more thermal region between 0.018 eV and 0.027 eV. 

Flux profiles were normalized to the maximum value of the scalar flux (for each code) in 
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Group 5. This allows for a fair comparison between the flux profiles’ shape, as the fluxes 

were not scaled to a particular power during the simulation. 

 

 The scalar flux profiles for Bundle 1 are shown in Figure 6. Observing the fast 

flux (Group 5) one notices an increase when following the profile through the fuel region. 

The sight increase between 4 cm and 6 cm depicts the transition from one fuel type to 

another and suggests that the central fuel pins are more highly enriched than the outer 

pins. The thermal flux (Group 39) profile verifies this, as a more pronounced absorption 

is seen in the central pins compared with the edge pins. The average relative error, from 

Eq. 4.2, was calculated to be 0.20% for Group 5 and 0.08% for Group 39. Maximum 

relative errors were observed to be 0.55% in Group 5 and 0.15% in Group 39. 

 

Flux profile behavior for Bundle 2 is shown in Figure 7. Compared with the 

profile for Bundle 1, one observes a much more pronounces plateau region in the Group 5 

flux, which is attributed to the inner fuel regions all having the same enrichment. Based 

on this profile, one would expect the central fuel pins to have a lower enrichment than the 

outer fuel pins. Again we see a depression in the fast flux going into the moderator 

regions, as the flux is scattering into more thermal energy groups. The profile of the 

Group 39 flux, again displays almost an inverse behavior compared with the Group 5 

flux. Average relative error in the scalar flux, was calculated to be 0.21% and 0.08%, for 

the Group 5 and Group 39 fluxes, respectively. While the maximum relative errors were 

0.60% in Group 5 and 0.13% in Group 39. 
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Figure 6: BWR benchmark Bundle 1 scalar flux profiles for select groups. 

 

Figure 7: BWR benchmark Bundle 2 scalar flux profiles for select groups. 
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 Bundle 3 provides the flux profiles which exhibit the most variant behavior as a 

function of position across the bundle. Observing the behavior of the flux, shown in 

Figure 8, one notes a rise in the fast flux through the traditional fuel pin region before 

noticing a decrease in the fast flux as neutrons enter the gadded fuel pins. The thermal 

flux is the highest at the problem boundaries (due to the moderator region) and is 

absorbed as neutrons travel further and further into the fuel. The gadded pins have a 

higher absorption cross section for the thermal neutrons, which results in the thermal 

neutron well in the center of the fuel bundle. Given the more oscillatory shape of the flux 

profiles in the Bundle 3 model, mean relative errors were slightly higher than the 

previous two bundle cases; 0.58% in Group 5 and 0.38% in Group 39. The maximum 

relative error in the scalar flux for Bundle 3 was 1.25% and 0.62%, for Group 5 and 

Group 39, respectively. 

 

 The last of the BWR bundle benchmark cases consisted of the assembly made up 

entirely of gadded pins. The flux profiles for Group 5 and Group 39 are shown in Figure 

9 and depict the anticipated behavior through the moderator region and into the gadded 

fuel pin region. As the flux profiles are well behaved, the average relative error between 

the PENTRAN and ARKTRAN-TD solutions are more in line with those of the Bundle 1 

case; 0.20% for Group 5 and 0.11% for Group 39. While the maximum relative error in 

the fast group was 0.58% at the boundary of the problem and 0.41% in the thermal group 

at the interface between the moderator region and the first gadded fuel pin. 
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Figure 8: BWR benchmark Bundle 3 scalar flux profiles for select groups. 

 

Figure 9: BWR benchmark Bundle 4 scalar flux profiles for select groups. 
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4.3.3 Brief Comment on Cross Section Format Conversion 

Since both PENTRAN and ARKTRAN-TD operate using the standard LANL 

cross section format, these cross sections had to be converted into the correct format. 

Some discrepancies in the conversation of the transport cross section (output from 

HELIOS) and the reconstituted total cross section (used in PENTRAN and ARKTRAN-

TD) were observed. While results between PENTRAN and ARKTRAN-TD depict 

excellent comparison, some of the eigenvalues are slightly different than the values 

reported by Douglass. This is due purely to discrepancies in the cross sections causing 

minor differences in the eigenvalue. All flux profiles exhibit the same behavior as the 

benchmark document. 
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CHAPTER 5 

VALIDATION OF THE TIME-DEPENDENT TRANSPORT SOLVER 

 

 The previous chapter demonstrated the steady-state starting basis for time-

dependent calculations has been verified to be working correctly, from solving the 

benchmark problems. Therefore, this chapter goes on to validate that the quasi-static 

coupled RKF method with source iterations to solve time-dependent reactor transient 

problems. Results will be presented from a suite of problems in the number 16 

benchmark of the ANL Benchmark Book. (Argonne National Laboratory 1985) The 

Benchmark Book Problem 16 provided an excellent point of reference for evaluating 

ARKTRAN-TD. Three separate fast reactor transient problems: a delayed supercritical 

transient, a prompt supercritical transient, and a rod ejection followed by rod insertion 

were explored and compared against solutions from TIMEX and TDA provided in the 

Benchmark Book. (Hill and Reed 1976) (Engle 1967) The next section provides a detailed 

geometry of the benchmark setup. Subsequent sections present and discuss results. 

5.1 ANL Time-Dependent Benchmark Problem 16 Geometry 

 The ANL time-dependent benchmark Problem 16, provides a 2-group fast reactor 

transient benchmark containing seven homogeneous slabs and fully utilizing the time-

dependent theory (including delayed neutron effects) developed in Chapter 3. Three 

separate transient situations are then formulated from this base model, where the 

transients are initiated by changing the density of the material in some of the fuel zones 
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or via ejection/insertion of a control rod. Some of the basic parameters of the benchmark 

problem include: 

 One-dimensional, two-group neutron transport simulation 

 Isotropic scattering (scattering moments are P0) 

 Vacuum boundary conditions at the problem boundaries 

 Initial condition (t=0) steady-state critical 

 Six delayed neutron precursor groups 

 

Figure 10 depicts Problem 16’s basic geometry, consisting of a total of 7 coarse slabs 

and spanning a total distance of 226.748 cm in the z-direction. The lengths for each slab 

can be found in Figure 10. Slabs 1 and 7 contain a blanket type material; slabs 2, 4, and 6 

are the core material; and slabs 3 and 5 contain a mixture of sodium and control rod 

materials. The benchmark specification called for S4 quadrature and a fine mesh density 

per slab equivalent to the values in Table 4. Convergence criteria was set to 10-5 for the 

flux and 10-6 for the eigenvalue when resolving the initial condition.  

 

 

Figure 10: ANL Benchmark Book Problem 16 geometry. 
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Table 4: ANL Benchmark Book Problem 16 fine mesh density. 

Slab Number of Fine Meshes 

1 20 

2 24 

3 5 

4 16 

5 5 

6 24 

7 20 

 

 

 There are no external sources present in the model (e.g. all neutrons are a product 

of fission or decay of fission products). Furthermore, all neutrons (both prompt and 

delayed) are considered to be born in the fast group; meaning that 𝜒1 = 1.0 and 𝜒2 = 0.0. 

The delayed neutron precursor parameters are defined in Table 5 for all six delayed 

groups, and the velocity of neutrons in energy group 1 was given as 5.40249x108 cm/s 

and 9.19118x107 cm/s in energy group 2. Cross sections for each of the seven slab 

regions are given in Table 6. The benchmark problem geometry is initially made critical 

by dividing the production cross sections (νσf,g) by the steady-state criticality eigenvalue, 

k, before beginning the transient calculation. 

 

Table 5: ANL Benchmark Book Problem 16 delayed neutron parameters. 

Delayed Group βl λl [s-1] 

1 8.100x10-5 0.0129 

2 6.870x10-4 0.0311 

3 6.120x10-4 0.1340 

4 1.138x10-3 0.3310 

5 5.120x10-4 1.2600 

6 1.700x10-4 3.2100 
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Table 6: ANL Benchmark Book Problem 16 cross sections [cm-1]. 

Slab Group σa νσf σt σs(g,g) σs(g’,g) 

1, 7 1 3.85800E-03 3.84410E-04 2.41100E-01 2.33644E-01 0.00000E-00 

 2 1.01960E-02 3.27760E-04 4.17200E-01 4.07004E-01 3.59800E-03 

2, 4, 6 1 5.10400E-03 7.45180E-03 1.84900E-01 1.77711E-01 0.00000E-00 

 2 1.30790E-02 1.10612E-02 3.66800E-01 3.53721E-01 1.71680E-03 

3, 5 1 8.61000E-03 0.00000E-00 9.43200E-02 8.57100E-02 0.00000E-00 

 2 1.45930E-02 0.00000E-00 1.87620E-01 1.71310E-01 1.71860E-03 

 

 

Solutions for the three transients using the Problem 16 geometry were computed 

using TIMEX and TDA, resulting in plots of power versus time and scalar flux at specific 

points in time. These results were tabulated and included in the ANL Benchmark Book, 

allowing for comparison of these transient results to the ARKTRAN-TD results. 

Reviewers then examined the results of both codes, and set a window of time where 

solutions were considered to be valid for each transient. For completeness, the next two 

brief sub-sections will discuss the TIMEX and TDA code approaches to solving the time-

dependent transport equation. However, both of these simulation methods are 

fundamentally different than the quasi-static RKF Time method coupled to a Source 

Iteration Space method developed for this dissertation. 

5.1.1 Brief Description of the TIMEX Code 

 The TIMEX code utilizes the discrete ordinates approximation of the transport 

code and solves across a fine mesh domain using the Diamond Difference scheme. The 

transport method is based on ONETRAN, which uses a linear discontinuous finite 

element representation of for the angular flux. (Hill 1975) The time-domain is 

differenced explicitly via a method which is considered to be unconditionally stable, to 



54 

 

allow for large time steps to be taken. (Hill and Reed 1976) Furthermore, while the 

casting of the time-dependent transport equation is explicit, the precursor concentrations 

are differenced by a fully-implicit scheme. TIMEX utilizes user supplied fixed time step 

sizes, which can be set over different ranges of time during the course of the transient. 

Typically, one starts with smaller time steps and then increases the step size as the code 

progresses further in time. The TIMEX code utilizes single precision data storage, with 

14 digits of accuracy on the decimal places. 

5.1.2 Brief Description of the TDA Code 

 The TDA code functions using the discrete ordinates approximation of the 

Boltzmann transport equation and uses a weighted difference to resolve the space and 

time domains with automatic coarse mesh rebalance. (Engle and al. 1969) The ANISN 

code (one-dimensional anisotropic discrete ordinates) is used to solve the Boltzmann 

equation and TDA is effectively a time-dependent wrapper that uses ANSIN to solve for 

the space profile. (Engle and al. 1969) There is minimal documentation present in the 

literature that discusses exactly how the time-domain is cast (explicit vs. implicit). 

However, the description of the mathematical model in the ANL Benchmark Book, leads 

one to believe the time domain is differenced semi-implicitly using Engle’s weighted 

scheme in a similar manner to the way one differences the spatial domain. Fixed sized 

time steps are taken by the code, however, the user can specify multiple step sizes a 

different points in time. ANSIN and TDA use single precision storage with 6 decimal 

places of accuracy. The low number of significant digits may likely cause discrepancies 
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in observed code solutions, as only having 6 significant digits to represent the quadrature 

and weights can cause difficulties is resolving the angular flux solutions.  

5.2 Problem 16-A1: Delayed Supercritical Transient 

  Starting from a stable critical solution, with delayed neutron precursors in 

equilibrium (e.g. steady-state critical), at time t = 0.00 seconds, the density of the material 

in slab 2 is increased by 5% and the density of the material in slab 6 is decreased by 5%; 

resulting in a step insertion of reactivity at t = 0.00 seconds. A 5% change in density 

results in a 5% change in the number of nuclei per unit volume, which directly results in a 

5% change in the cross sections from Table 6. Reactor power is normalized to yield 1.0 

neutron/second a t = 0.00 seconds. Plots of total power as a function of time and scalar 

flux as a function of position at t = 0.00, 0.01, and 1.00 seconds were plotted. Plots are 

given out to 1.00 seconds for comparison, however the valid time interval of the 

benchmark is considered to be 0 ≤ t ≤ 0.1 seconds. ARKTRAN-TD was run, using a 

RKF4/5 expansion to solve the time domain, with a residual tolerance of 10-3 (see Eq. 

2.40 for definition of residual). 

5.2.1 Time Step Size 

 ARKTRAN-TD uses an adaptive time step determined by the RKF4/5 expansion, 

which represents the optimized time step, to attain a solution at the next time step that is 

within the desired tolerance. TIMEX and TDA utilized user specified time steps. Table 7 

provides the average time step size for ARKTRAN-TD and the fixed time step size for 

TIMEX and TDA at various times after the initial transient. Over the entire post transient 

time domain, ARKTRAN-TD takes a time step several orders of magnitude less than the 
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TDA time step. However, at early times the steps are in line with time steps taken by 

TIMEX. At times greater than t = 10-3 seconds, the ARKTRAN-TD time step remains 

consistent with the 25 nanosecond to 27 nanosecond steps the code has been taking. 

TIMEX moves to step sizes almost 100 times larger, while TDA is performing step sizes 

almost 200 times larger. Though one would expect larger allowable time steps for code 

methodologies only employing a first-order difference method in the time domain 

(TIMEX and TDA) and partially implicit solutions, the large discrepancies in time step 

size could account for the larger difference observed in the power as a function of time at 

times greater than t = 0.1 seconds between the TIMEX and TDA codes. ARKTRAN-TD 

was within 2% of the power determined by TIMEX over the entire 1 second past the 

transient. 

 

Table 7: Problem 16-A1 time step comparison. 

Time 

[s] 

𝜟𝒕̅̅ ̅ ARKTRAN-TD 

[s] 

Δt TIMEX 

[s] 

Δt TDA 

[s] 

0 to 10-6 1.00x10-9 2.00x10-8 1.00x10-6 

10-6 to 10-5 2.20x10-8 2.00x10-8 1.00x10-6 

10-5 to 10-4 2.30x10-8 2.00x10-8 1.00x10-6 

10-4 to 10-3 2.60x10-8 2.00x10-8 5.00x10-6 

10-3 to 10-1 2.70x10-8 2.00x10-6 5.00x10-6 

10-1 to 1 2.70x10-8 2.00x10-5 5.00x10-5 

 

5.2.2 Total Power Behavior Post Transient Onset 

 The normalized power post transient onset calculated by ARKTRAN-TD, 

TIMEX, and TDA is shown in Figure 11. Over the entirety of the 1.00 second post 

transient timeframe, the total power calculated by ARKTRAN-TD is within 2% of the 
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values from TIMEX. When comparing to the TDA values, ARKTRAN-TD provides 

solutions within 2% at times less than 10-3 seconds, 4% at times less than 0.1 seconds and 

6% at times greater than 0.1 seconds. The larger discrepancy between the ARKTRAN-

TD power and the TDA power is most likely due to TDA using time steps that are too 

large for the simulation; as when one observes the choice of step size employed by 

TIMEX (Table 7) it is quickly apparent that the TIMEX step size is almost the same as 

the automatically optimized time step obtained by AKCTRAN-TD’s RKF4/5 expansion.  

 

 

Figure 11: Problem 16-A1 power vs. time post transient. 
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more accurate modeling of the delayed neutron effects and initial transient changes at the 

onset of the problem as time steps 20 times smaller than the other codes were required to 

attain the residual tolerance. Overall, the ARKTRAN-TD power profile solution is well 

behaved and comparable to the code to code comparisons provided in the ANL 

Benchmark Book. 

5.2.3 Behavior of Neutron Flux as a Function of Time 

 The Problem 16-A1 benchmark specification called for scalar flux profiles of both 

energy groups at times of 0.00, 0.01, and 1.00 seconds post transient onset. The first set 

of flux profiles at t = 0.00 seconds for energy Group 1 and energy Group 2 are shown in 

Figure 12 and Figure 13, respectively. These two plots essentially show the steady-state 

solution to the scalar flux for the sodium fast reactor modeled in the Problem 16 

benchmark series. Behavior of the initial flux profiles are as expected: the fast flux is 

highest in the fuel regions, dips in the control regions, and decreases through the blanket 

as neutrons approach the zero return current boundaries. The Group 1 fluxes obtained 

from ARKTRAN-TD exhibit a 0.36% mean relative error (Eq. 4.2) from the TIMEX flux 

profiles and a 0.31% mean relative error from the TDA flux profiles, calculated using an 

equation of the form of Eq. 4.2. The maximum relative error at t = 0.00 in Group 1 was 

2.76% and 1.92% for the TIMEX and TDA solutions, respectively at the boundary. 

Similar mean relative errors of 0.25% (TIMEX) and 0.21% (TDA) are observed for 

Group 2 fluxes, with slightly higher maximum relative errors of 2.91% (TIMEX) and 

2.22% (TDA). Thermal flux behavior is consistent with the anticipated shape for a fast 

spectrum reactor, one observes a higher amount of thermal neutrons in the fuel regions 
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(since they are not being preferentially absorbed), depressions in the control regions, and 

a decrease through the blanket as neutrons approach the vacuum boundaries. 

 

Figure 12: Problem 16 scalar flux in energy group 1 at t = 0.00 seconds. 

 

Figure 13: Problem 16 scalar flux in energy group 2 at t = 0.00 seconds. 
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 As the time increases beyond the onset of the transient, since the transient results 

in a supercritical configuration and increasing power level as a function of time, one 

would expect the overall magnitude of both the Group 1 and Group 2 fluxes to increase 

for this reactor. Additionally, the flux profile should shift from its symmetric shape 

observed at t = 0.00 seconds, to a profile showing a peaked flux in slab 2 and a somewhat 

depressed flux in slab 6. This results from the increase in density in slab 2 and decrease in 

slab 6. It is important to note that the flux is proportional to total power. Thus, the 

difference in total power between codes has a large impact on relative error values in the 

flux (discussed in the next paragraph).  

 

The Group 1 flux at t = 0.01 seconds is provided in Figure 14 while the Group 2 

flux is given in Figure 15. As expected, both the fast and thermal fluxes increased in 

overall magnitude and an asymmetrical flux profile peaked in slab 2 is observed, while 

slab 6 yields the smallest fuel zone peak. Mean relative error in the scalar flux for Group 

1 is 0.93% for TIMEX values and 1.68% for TDA values; with maximum relative errors 

of 1.98% (TIMEX) and 3.91% (TDA). Group 2 mean relative errors were calculated to 

be 0.92% and 1.66% for TIMEX and TDA, respectively; with maximum relative errors of 

1.64% (TIMEX) and 2.45% (TDA). At t = 0.01 the relative error in the normalized power 

was 1.34% (TIMEX) and 1.73% (TDA); accounting for the majority of the relative error 

in the fluxes. Therefore, the overall shape of the flux profile is of more concern than the 

relative error values as the total powers diverge between transport code methodologies. 
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Figure 14: Problem 16-A1 scalar flux in energy group 1 at t = 0.01 seconds. 

 

 

Figure 15: Problem 16-A1 scalar flux in energy group 2 at t = 0.01 seconds. 
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 According to the benchmark documentation, the Problem 16-A1 benchmark was 

considered valid for code-to-code comparisons up to 0.10 seconds, after which the 

difference in normalized power between TIMEX and TDA was between 2% and closer to 

4% as the simulations approached t = 1.00 second. Though outside the recommended 

time range for simulation, scalar flux and power data was provided, so it was compared 

to results obtained from ARKTRAN-TD. Interestingly, ARKTRAN-TD provided both 

flux and power results within reasonable errors at t = 1.00 second when compared to 

TIMEX.  Relative error in normalized power at 1.00 second was 1.90% for TIMEX, 

which was within the 2% desired range for code-to-code comparisons expressed by the 

benchmark reviewers. However, the relative error in normalized power was 6.13% 

between ARKTRAN-TD and TIMEX (it was 4.16% between TIMEX and TDA). The 

discrepancy with TDA at longer simulation times is most likely attributed to poor 

numerical precision (6 digits vs. 14+ digits for the other codes) and time steps which are 

much larger than TIMEX or ARKTRAN-TD. 

 

 Figure 16 gives the Group 1 scalar flux plots and Figure 17 provides the same for 

Group 2. Mean relative errors in the scalar flux a t = 1.00 second between ARKTRAN-

TD and TIMEX were 1.46% and 1.47% for Group 1 and Group 2, respectively. The 

maximum relative error for the same codes was 2.54% in Group 1 and 2.08% in Group 2. 

Average relative errors between ARKTRAN-TD and TDA were consistent with the 

observed relative error in normalized power at t = 1.00 second. 
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Figure 16: Problem 16-A1 scalar flux in energy group 1 at t = 1.0 seconds. 

 

 

Figure 17: Problem 16-A2 scalar flux in energy group 2 at t = 1.0 seconds. 
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5.3 Problem 16-A2: Prompt Supercritical Transient 

Starting from the stable critical solution, the density of the material in slab 2 is 

increased by 10% and the density of the material in slab 6 is decreased by 10%; resulting 

in a step insertion of reactivity at t = 0.00 seconds that yields a core configuration that is 

supercritical on the prompt neutron contribution alone. Reactor power was normalized to 

yield 1.0 neutron/second a t = 0.00 seconds. Plots of total power as a function of time and 

scalar flux as a function of position at 10-4 seconds were generated. The plot of 

normalized power as a function of time is given to 10-3 seconds and the valid time 

interval of the benchmark is considered to be 0 ≤ t ≤ 10-3 seconds for code-to-code 

comparisons. ARKTRAN-TD was run, using a RKF4/5 expansion to solve the time 

domain, with a residual tolerance of 10-3 for the interval 0 ≤ t ≤ 8.00x10-4 seconds and 

was increased to 10-2 for t > 8.00x10-4 seconds (see Eq. 2.40 for definition of residual).  

5.3.1 Time Step Size 

Table 8 provides the average adaptive time step size for ARKTRAN-TD in the 

given simulation time range and the fixed time step size for TIMEX and TDA at various 

times after the initial transient. The adaptive time step determined by the RKF residual in 

ARKTRAN-TD resulted in average time steps which started around 20 nanoseconds and 

then decreased, as the prompt supercritical nature of the transient resulted in high flux 

and power gradients as a function of time. At 8.00x10-4 seconds, the residual tolerance 

was decreased by an order of magnitude to allow for the simulation to run in a reasonable 

amount to time, as to obtain a residual tolerance of 10-3 in that time range would have 

resulted in time steps on the order of 10-12 to 10-15 seconds using RKF4/5. The TIMEX 
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code begins with time steps on the same order of magnitude as ARKTRAN-TD, but then 

the time step is increased to 100 nanoseconds in the same region where the adaptive RKF 

is decreasing the step size to resolve the solution. The TDA code begins with a time step 

which is an order of magnitude higher than ARKTRAN-TD and TIMEX, and then 

increases the time set size by multiplying each Δt by 1.024798 times the previous Δt. 

 

Table 8: Problem 16-A2 time step comparison. 

Time 

[s] 

𝜟𝒕̅̅ ̅ ARKTRAN-TD* 

[s] 

Δt TIMEX 

[s] 

Δt TDA 

[s] 

0 to 10-5 2.00x10-8 1.00x10-8 2.50x10-7 

10-5 to 10-4 1.70x10-8 1.00x10-8 1.024798Δti-1 

10-4 to 4x10-4 1.25x10-8 1.00x10-7 1.024798Δti-1 

4x10-4 to 5x10-4 1.00x10-8 1.00x10-7 1.024798Δti-1 

5x10-4 to 6x10-4 8.00x10-9 1.00x10-7 1.024798Δti-1 

6x10-4 to 8x10-4 7.00x10-9   1.00x10-7 1.024798Δti-1 

8x10-4 to 10-3 1.00x10-8 1.00x10-7 1.024798Δti-1 

* RKF residual tolerance was increased for t > 8x10-4 to allow for reasonable Δt.  

 

5.3.2 Total Power Behavior Post Transient Onset 

 The total power as a function of time after the prompt supercritical transient for 

ARKTRAN-TD, TIMEX, and TDA is plotted in Figure 18 on a log scale. For time less 

than 10-4 seconds, the relative error in the power is 4.64% for TIMEX and 2.56% for 

TDA when comparing to ARKTRAN-TD. Continuing further along in time, the relative 

errors increase to 9.40% (TIMEX) and 6.76% (TDA) at t = 4x10-4 seconds to a maximum 

of 19.78% (TIMEX) and 20.79% (TDA) at t = 10-3 seconds. Given the successful 

benchmarking with Problem 16-A1, the RKF’s desire to decrease the time step as the 
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prompt supercritical transient progresses in time, and the fact that ARKTRAN-TD uses a 

4th order expansion of the time derivative with 5th order truncation error, the resulting 

power profile seems reasonable. It is probable that the first-order difference methods used 

by TIMEX and TDA to resolve the time derivative, coupled with the use of increasing 

fixed time steps (when they may need to be decreasing to resolve large flux gradients in 

time with accuracy) is resulting in an under prediction of the power as a function of time. 

Thus, contributing to the larger errors observed in the power. Figure 18 shows all three 

codes yielding results with similar shape functions. It appears that the higher order 

method used by ARKTRAN-TD, coupled with the application of error control methods 

on the step size, yield a solution that is more accurate for the difficult to resolve prompt 

supercritical transient case. 

 

Figure 18: Problem 16-A2 power vs. time post transient. 
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5.3.3 Behavior of Neutron Flux as a Function of Time 

 The Problem 16-A2 benchmark specification called for flux profiles to be 

provided at two time points within the valid time range for code-to-code comparisons. 

The first plot at t = 0.00 seconds is identical to the plots in Figure 12 and Figure 13, as 

these represent steady-state starting points just before the transient begins. The second 

plot was specified a t = 10-4 seconds after the transient. Figure 19 provides the scalar flux 

as a function of position for Group 1, while Figure 20 depicts the same for Group 2 at the 

specified time. Both the fast and thermal flux plots exhibit a similar change in shape, 

when compared to the Problem 16-A1 benchmark. However, the effects of the transient 

are more pronounced (i.e. higher peaking in slab 2 and a larger depression in the relative 

sense in zone 6) due to the larger change in density for the two regions, and thus the 

larger transient observed. 

 

 The mean relative error in the scalar flux for Group 1 was 2.55% (TIMEX) and 

2.14% (TDA); with maximums of 3.77% (TIMEX) and 3.27% (TDA). The Group 2 

scalar flux resulted in similar mean relative errors of 2.56% and 2.12% for TIMEX and 

TDA, respectively; with maximums of 3.30% (TIMEX) and 2.93% (TDA). These are 

consistent with the relative error in the power at t = 10-4 of 4.63% for TIMEX and 2.56% 

for TDA. The reason the relative errors are slightly larger in the power is due to the 

power only coming from scalar flux values in regions containing fuel, while the average 

relative error in the scalar flux is over the entire spatial domain and is lower due to near 

equal scalar fluxes outside the major fuel zones. 
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Figure 19: Problem 16-A2 scalar flux in energy group 1 at t = 10-4 seconds. 

 

 

Figure 20: Problem 16-A2 scalar flux in energy group 2 at t = 10-4 seconds. 
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5.4 Problem 16-A3: Rod Ejection and Rod Insertion Transient 

 Starting from the initial stable-critical solution at t = 0.00 seconds, the material in 

slab 5 is changed from a mixture of control rod material and sodium to pure sodium; 

resulting in a control rod bank ejection. When a time of t = 10-4 seconds, the material in 

slab 3 is changed from a mixture of control rod material and sodium to 100% control rod 

material; resulting in a full insertion of the control rod bank. Thus, this transient models 

both an initial rod ejection and subsequent rod insertion. Cross sections for the pure 

sodium and control rod material regions (used in the transient) are provided in Table 9. 

 

Table 9: Problem 16-A3 supplemental cross sections used in transient simulation. 

Material Group σa νσf σt σs(g,g) σs(g’,g) 

Sodium 1 3.71300E-03 0.00000E-00 6.83000E-02 6.32930E-02 0.00000E-00 

 2 4.70100E-02 0.00000E-00 1.25800E-02 1.21099E-02 1.29400E-03 

Control 1 1.73210E-02 0.00000E-00 1.79500E-01 1.59078E-01 0.00000E-00 

Rod 2 5.46390E-02 0.00000E-00 3.90300E-01 3.35661E-01 3.10100E-03 

 

  

Problem 16-A3 provided an interesting point of analysis for ARKTRAN-TD, 

when attempting to solve the problem using the adaptive time step size with RKF4/5 and 

a residual tolerance of 10-3 (see Eq. 2.40 for definition of the residual), time step sizes of 

10-18 to 10-15 seconds were required to resolve the time derivative within the specified 5th 

order truncation error cutoff. This made computation time unfeasible, as it would require 

a great amount of time to solve the entire simulation time of 0.01 seconds as the step size 

is incredibly small. The second approach undertaken involved reducing the residual 

tolerance to 10-2, as implemented at later times in Problem 16-A2. However, this transient 
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causes the power to increase at an even higher rate than Problem 16-A2, and time step 

sizes were only reduced to 10-16 to 10-14 seconds; again unreasonable step sizes for the 

entire simulation time. It may be noted that one could just fix the time step size and run 

the simulation like TIMEX and TDA. However, this would effectively cause 

ARKTRAN-TD to solve the time-domain with a 4th order Runge-Kutta (without error 

control) coupled to a Source Iteration to resolve the spatial domain. In order to get the 

time steps into a range that is reasonable for computation time, one needs the majority of 

the steps to be on the order of 10-10 to 10-8 seconds. From the initial attempt to run the 

RKF4/5 it is known that time step sizes in this range are well outside acceptable values 

for the truncation error, resulting in incorrect solutions should one fix the time step. 

 

In an attempt to mitigate the issues stemming from the small step size required by 

the high order expansion and understanding that generally one can use slightly larger 

time steps with lower order expansion methods. An RKF2/3 was added into ARKTRAN-

TD, allowing for a 2nd order expansion of the transport equation in the time domain with 

3rd order truncation error. Furthermore, this method still allows for adaptive time step 

sizes with error control of the truncation error within a specified tolerance; guaranteeing 

the resulting solution is within acceptable limits. With the tolerance of the RKF residual 

set to 10-3, one observes step sizes from 10-15 to 10-8 seconds, with the majority of the 

steps occurring between 5x10-11 and 2x10-8 seconds. Thus, the results presented for 

Problem 16-A3 with ARKTRAN-TD were calculated using a RKF2/3 expansion to solve 

the time domain, with a residual tolerance of 10-3. This methodology led to the 
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implementation of adaptive RKF expansion orders as a function of time in ARKTRAN-

TD, which are presented and discussed in Chapter 6. 

5.4.1 Time Step Size 

 Table 10 provides a comparison of the average time step taken by ARKTRAN-

TD’s RKF2/3 expansion of the time-domain with error control to the fixed steps taken by 

TIMEX and TDA. In the ranges of depicted in Table 10, the average Δt taken by 

ARKTRAN-TD ranged from 5.0x10-11 to 2.3x10-8 seconds. During a brief period 

following the insertion of the control rod banks, time steps on the order of 10-14 seconds 

were required to resolve the rapidly changing transient. Observing the difference in step 

size between the code, ARCTRAN-TD’s time steps are a factor of 10-3 to 10-2 smaller 

than the steps taken by TIMEX and a factor of 10-4 to 10-3 smaller than TDA.  

 

Table 10: Problem 16-A3 time step comparison. 

Time 

[s] 

𝜟𝒕̅̅ ̅ ARKTRAN-TD 

[s] 

Δt TIMEX 

[s] 

Δt TDA 

[s] 

0 to 10-7 5.00x10-11 1.00x10-8 5.00x10-7 

10-7 to 10-5 5.00x10-10 1.00x10-8 5.00x10-7
 

10-5 to 5x10-5 2.00x10-10 1.00x10-8 5.00x10-7 

5x10-5 to 10-4 1.50x10-11 1.00x10-8 5.00x10-7 

10-4 to 2x10-4 1.00x10-11 1.00x10-8 5.00x10-7 

2x10-4 to 3x10-4 5.00x10-11   1.00x10-8 1.004996Δti-1 

3x10-4 to 7x10-4 5.00x10-10 1.00x10-7 1.004996Δti-1 

7x10-4 to 10-3 4.00x10-9 1.00x10-7 1.004996Δti-1 

10-3 to 10-2 2.30x10-8 1.00x10-6 1.004996Δti-1 
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The discrepancies in step size shown in Table 10 are noteworthy, since the results 

comparison for Problem 16-A3 look at error controlled step size with 2nd order time 

differenced solutions calculated by ARKTRAN-TD (as opposed to 4th order for Problems 

16-A1 and 16-A2) and non-error controlled step size 1st order time differenced solutions 

from TIMEX and TDA. 

5.4.2 Total Power Behavior Post Transient Onset 

 The normalized total power as a function of time for the control rod bank ejection 

at t = 0.00 seconds and insertion at t = 10-4 seconds is shown in Figure 21 on a log scale. 

Comparing the solutions in the 10-6 to 10-5 second range, TIMEX and TDA calculate 

slightly higher powers than ARKTRAN-TD. However, the major jump in power due to 

the rod ejection occurs during the 10-5 to 10-4 second range. At t = 10-4 seconds 

ARKTRAN-TD peaks at a relative power of 3268.13 compared to 3038.34 from TIMEX 

and 3044.50 from TDA. This results in a relative error of the ARKTRAN-TD solution of 

7.56% from TIMEX and 7.35% from TDA at the maximum power. The relative error in 

power increases in the 10-4 to 10-3 second range as the higher power level before the rod 

bank insertion results in a longer die away time for ARKTRAN-TD. At 10-2 seconds 

relative errors are 8.14% and 9.39% TIMEX and TDA, respectively. 
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Figure 21: Problem 16-A3 power vs. time post transient. 
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these represent steady-state starting points just before the transient begins. The second 

plot was specified a t = 10-4 seconds after the transient, where the flux and power are at 

their maximum values just before the control rod bank in slab 3 is fully inserted. Figure 
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inserted rod bank in zone 3. Figure 23 depicts the scalar flux in energy group 2 as a 

function of position. The thermal scalar flux also follows the same increasing 

asymmetrical shape as the fast flux. However, in the region where the rod bank was 

ejected and increase in the thermal flux profile is observed while a decrease was seen in 

the fast flux. This is due to the thermalization of the fast flux in the now purely sodium 

region, which depresses the fast flux and increases the thermal flux at this location. The 

mean relative error of the ARKTRAN-TD scalar flux profiles for Group 1 were 7.70% 

(TIMEX) and 7.27% (TDA); with maximums of 8.84% (TIMEX) and 8.40% (TDA). The 

Group 2 scalar flux resulted in similar mean relative errors of 7.64% and 7.25% for 

TIMEX and TDA, respectively; with maximums of 8.22% (TIMEX) and 7.70% (TDA). 

These are consistent with the relative error in the power at t = 10-4 of 7.56% for TIMEX 

and 7.35% for TDA; accounting for a major portion of the relative error in the scalar 

fluxes between codes.  

 

Figure 22: Problem 16-A3 scalar flux in energy group 1 at t = 10-4 seconds. 
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Figure 23: Problem 16-A3 scalar flux in energy group 2 at t = 10-4 seconds. 
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CHAPTER 6 

APPLICATION OF ADAPTIVE AND OPTIMIZED RKF 

EXPANSION ORDERS 

 

 Based on the positive results obtained when using a lower order Runge-Kutta-

Fehlberg pair to expand the transport equation in the time-domain, an adaptive method 

which automatically selects the RKF pair providing the largest time step size meeting the 

specified truncation error tolerance was developed to provide expedited computation 

times. Since the residual sets a limit on the size of the truncation error term, should a 

lower order RKF pair provide a time step larger than that of a higher order RKF pair with 

the same error tolerance, computation time will decrease for two reasons. First, lower 

order RKF pairs require fewer functional evaluations per step (RKF2/3 requires 40% 

fewer than RKF4/5) and reducing the number of equations results in faster computation 

time. Second, a larger time step meeting the same convergence criteria on the truncation 

error means a faster simulation (due to a smaller number of time steps overall) while still 

maintaining the desired accuracy of the truncation error. Overall, this gives ARKTRAN-

TD the ability to adaptively optimize its choice of expansion in the time-domain (using 

1st through 4th order Runge-Kutta, with 2nd to 5th order truncation errors) while still 

allowing for adaptive time step sizes meeting the desired tolerances. The first section in 

this Chapter addresses the application of the adaptive RKF scheme in ARKTRAN-TD 

and the subsequent sections compare results of the adaptive RKF scheme with results 
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using fixed RKF expansion pairs. The coefficients, truncation error, and function 

expansions for alternative RKF1/2, RKF2/3, and RKF3/4 can be found in Appendix B. 

6.1 Theory and Implementation in ARKTRAN-TD 

 Observing the behavior of the error controlled time steps while ARKTRAN-TD is 

executing, it was noted that while the time steps change frequently (generally by less than 

a couple of percent per step), there is a tendency for the same set of time steps to repeat in 

a semi-periodic manner over particular time ranges post transient onset. Because of this 

phenomena, it would be unwise to implement an adaptive RKF determination sequence 

every set number of evaluated time steps, since this may result in only seeing the same 

set of step sizes for the RKF expansion pairs. Furthermore, one does not want to check 

the feasibility of all the expansion pairs (RKF1/2, RKF2/3, RKF3/4, and RKF4/5) 

implemented in ARKTRAN-TD at each time step, as this would increase the number of 

equations evaluated for each time step and increase the overall computation time – the  

exact opposite of the goal for implementing an adaptive RKF scheme.  

 

Another method could force the ARKTRAN-TD to evaluate each RKF expansion 

pair every so many time steps, determine the average Δt required for each expansion 

order (e.g. every 500 time steps, do 5 steps for each of RKF1/2, RKF2/3, RKF3/4, and 

RKF4/5), then force the use of the RKF pair with the largest average Δt for the next 500 

steps. The issue with this approach is the code will be performing the time step using 

whatever expansion pair is specified, so if RKF1/2 requires a time step of 10-100 seconds 

to resolve the truncation error, a step of 10-100 seconds would be taken and could 
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introduce numerical instabilities in the solution as the code multiplies and divides by Δt 

in many places; again resulting in undesirable solution numerics, et cetera. 

 

One could impose a limit on the volumetric time rate of change of the neutron 

population, 
1

𝜈

𝑑𝛹

𝑑𝑡
, where if the value of this quantity was less than a user imposed limit to 

upgrade or downgrade to the next RKF expansion pair the code would use the target pair 

for the next step. For example, if the limit to switch from RKF4/5 to RKF3/4 was 2.5x108 

n/cm3s, and the calculated value of  
1

𝜈

𝑑𝛹

𝑑𝑡
 is 2.0x108 n/cm3s, in the next step ARCTRAN-

TD would use RKF3/4. This approach may seem feasible at the onset but there several 

limitations which make this approach unattractive. First, there is no accounting for the 

step size used. Therefore it is possible, to downgrade to a lower RKF pair which requires 

fewer function evaluations but in the process decrease the step size; a more detrimental 

effect than the additional function evaluations. Second, there is no guarantee that the next 

lower (or next higher) order RKF pair will provide the optimum time step. It may be 

more advantageous to go directly from RKF4/5 to RKF2/3 and skip the 3rd order pair 

entirely. Lastly and most significantly, this would require the user to have a tremendously 

deep understanding of the physics of the transient (particularly the behavior of  
1

𝜈

𝑑𝛹

𝑑𝑡
 as a 

function of time, as well as where in time the step sizes stabilize between RKF expansion 

pairs) a priori to running the simulation. 

 

Taking into account all of the limitations of the methods for creating a code with 

an adaptive RKF expansion order noted, it is clear that whatever method one uses to 
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make the automatic determination of the RKF expansion order, there are several major 

factors which must be accounted for to remove all of the potential issues raised thus far: 

 

 No required a priori knowledge of the problem physics 

 Ability to determine the RKF pair resulting in the largest Δt 

 Must not actually apply the step to avoid numerical instabilities caused by Δts 

approaching zero 

 Accounts for the potential semi-periodic repetition of Δts 

 Does not evaluate all RKF pairs at each time step 

 

Taking all of these requirements into consideration, an adaptive method was developed 

accounting for all of the potential issues just discussed. ARKTRAN-TD’s adaptive RKF 

scheme functions by evaluating the values of Δt that would be used to obtain a solution 

within the residual tolerance using RKF1/2, RKF2/3, RKF3/4, and RKF4/5 every random 

stride of time steps. The random stride is determined by: 

 𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑡𝑟𝑖𝑑𝑒 =  𝜂 ∙ (Maximum Stride − 1) (6.1) 

where, η is a random number and maximum stride is a user supplied value representing 

the maximum number of time steps ARKTRAN-TD can go before evaluating which RKF 

expansion pair would provide the largest Δt. The time step is not actually taken when 

ARKTRAN-TD is determining the Δts that would result from each of the RKF pairs, 

removing the ability to introduce numerical instabilities from suboptimum expansion 

orders at that point in time. It also removes the issue caused by the semi-periodic 

repetition of time steps, since the code making its determination of the stride between 
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“checkups” based on a randomly determined number of time steps. Furthermore, no 

knowledge of the physics of the transient is required a priori. After making the 

determination of which RKF expansion pair provides the largest Δt, ARKTRAN-TD 

locks that RKF expansion pair for the next random stride of time steps.  Figure 24 

provides a pseudo-code representation of the process, as implemented in ARKTRAN-TD. 

 

 

Figure 24: Pseudo-code of ARKTRAN-TD’s adaptive RKF expansion order scheme. 

  

t=0 

curr_stride = 1 

max_stride = 1000 

 

rand_stride = RANDOM*(max_stride – 1) 

 

DO WHILE (t .LE. tmax) 

 

  Perform quasi-static Time/Space Iteration 

 

  if (curr_stride .eq. rand_stride) then 

 

    Determine the dt required for RKF1/2 

    Determine the dt required for RKF2/3 

    Determine the dt required for RKF3/4 

    Determine the dt required for RKF4/5 

 

    RKF Order = RKF with MAX dt from RKF1/2, RKF2/3, RKF3/4 & RKF4/5 

 

 

  ! Obtain next random stride 

    rand_stride = RANDOM*(max_stride – 1) 

 

  ! Reset the current stride counter 

    curr_stride = 1 

 

  endif 

 

  curr_stride = curr_stride + 1 

  t=t+dt 

 

ENDDO 

 

Print Results 
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6.2 Implementing the Adaptive RKF Scheme on Problem 16-A1 Benchmark 

 With the adaptive RKF expansion order implemented in ARKTRAN-TD, 

benchmark Problem 16-A1 (Section 5.2) was rerun using the adaptive scheme. 

Additionally, all four RKF expansion orders were locked to obtain computation times and 

power profiles as points of comparison. Results from this trial are shown in Table 11. The 

delayed supercritical transient in Problem 16-A1 is relatively stable after the initial 

prompt jump, allowing for all four RKF pairs to calculate a solution in a reasonable 

timeframe (compared to each other) and obtain the same power level at the simulation 

stop time of t = 1.0 second. Use of the adaptive RKF order provided a speedup of 10.37% 

over the originally implemented RKF4/5 calculation. The adaptive RKF order also 

outperformed the RKF1/2 and RKF2/3 methods, yielding speedups of 35.48% faster than 

RKF1/2 and 7.75% faster than RKF2/3. Interestingly, the RKF3/4 pair saw a 16.91% 

speedup over the adaptive RKF scheme. While the time steps from RKF3/4 were much 

smaller at the transient onset (compared with the steps taken by the adaptive RKF), over 

time the smaller amount of function evaluations compared to the adaptive RKF scheme 

allowed for a faster computation time with RKF3/4 locked. 

 

Table 11: Results of adaptive RKF orders in ARKTRAN-TD for Problem 16-A1. 

Solution  

Method 

Residual 

Tolerance 

Final 

Power 

CPU Time 

[hr] 

RKF1/2 10-3 1.8797 114.55 

RKF2/3 10-3 1.8797 91.10 

RKF3/4 10-3 1.8797 72.32 

RKF4/5 10-3 1.8797 93.32 

Adaptive RKF Order 10-3 1.8797 84.55 
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The results in Table 11 verify the successful implementation of the adaptive RKF 

scheme and its ability to provide accurate solutions while decreasing computation time. 

Though locking the RKF3/4 scheme provides a shorter computation time in this case, 

without any prior user knowledge of the behavior of the system, the adaptive RKF 

scheme outperformed the other locked RKF pairs while providing a solution that 

maintained the accuracy across the suite of simulations. Figure 25 depicts the normalized 

power as a function of time for each locked RKF pair solution and the adaptive RKF 

solution. All of the power levels as a function of time calculated using the various RKF 

pairs available in ARKTRAN-TD and the adaptive RKF solution overlap and provide no 

visible discrepancies. The maximum relative error between the adaptive RKF scheme and 

any locked RKF pair is 0.28%. 

 

 

Figure 25: Power profiles for Problem 16-A1 using various RKF pairs. 
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6.3 Implementing the Adaptive RKF Scheme on Problem 16-A2 Benchmark 

 The prompt supercritical transient benchmark problem presented in Section 5.3 

(Problem 16-A2) was also analyzed using a variety of RKF expansion pairs and residual 

tolerance values. Results from the suite of solution methods are shown in Table 12, for 

any locked RKF expansion pair which provided a complete solution to the benchmark in 

a reasonable amount of computation time. Recalling the discussion of the original results 

for Problem 16-A2, the residual tolerance was increased from 10-3 to 10-2 at t > 8x10-4 

seconds, as the RKF4/5 pair required time steps sizes which were too short for practical 

computation time. Interestingly, looking at the RKF expansion order selected by the 

adaptive RKF scheme for the calculation with a residual tolerance of 10-3, the adaptive 

scheme ran RKF4/5 until t = 8.7281x10-04 and then proceeded to run RKF2/3 for the 

remainder of the problem. The adaptive RKF scheme exhibited a speedup of 3.47 times 

faster than the locked RKF2/3 scheme when the residual tolerance was set to 10-3. 

 

Table 12: Results of adaptive RKF orders in ARKTRAN-TD for Problem 16-A2. 

Solution  

Method 

Residual 

Tolerance 

Final 

Power 

CPU Time 

[hr] 

RKF2/3 10-3 76.5768 2.88 

Adaptive RKF Order 10-3 78.0749 0.83 

RKF2/3 10-2 77.2303 0.95 

RKF4/5 10-2 79.6950 0.17 

Adaptive RKF Order 10-2 79.6957 0.08 

 

 When the residual tolerance was decreased to 10-2, two of the locked RKF pairs 

provided complete solutions within a reasonable amount of time. The adaptive RKF 

scheme displayed a speedup of 2.125 times the locked RKF4/5. Additionally, the 
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adaptive RKF scheme exhibited a speedup of 11.875 times the locked RKF2/3 solution. 

Figure 26 depicts the total power as a function of time for each of the solution methods 

presented in Table 12. All solutions provide results with relative errors of 2% or less from 

the basis solution (taken to be the adaptive RKF scheme with residual tolerance of 10-3). 

One would expect the solutions with lower residual tolerances to be more accurate, as the 

residual tolerance is directly proportional to the truncation error of the Runge-Kutta 

expansion. Overall, the newly implemented adaptive RKF expansion order scheme 

coupled with the error controlled time steps showed excellent speedup when compared to 

the basis locked RKF expansion orders for this case. 

 

 

Figure 26: Power profiles for Problem 16-A2 for various RKF pairs and tolerances. 
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6.4 The Adaptive RKF Scheme Applied to the Problem 16-A3 Benchmark 

 Originally, the Problem 16-A3 benchmark was evaluated using a locked RKF2/3 

expansion in the time-domain with a maximum truncation error on the residual of 10-3. 

Simulations were run using RKF1/2, RKF2/3, RKF3/4, and RKF4/5 expansion orders, as 

well as the new adaptive RKF scheme with a residual tolerance of 10-3 for all simulations. 

As expected, the RKF4/5 scheme did not run in a reasonable amount of time. 

Surprisingly, neither the locked RKF3/4 nor locked RKF1/2 pairs exhibited run times that 

were reasonable. Thus, the adaptive RKF scheme replicated the simulation using locked 

RKF2/3, presented in Section 5.4. The total computation time required by ARCTRAN-

TD was 27.55 hours to calculate the result of the control rod bank ejection and insertion 

from t = 0.00 seconds to t = 0.01 seconds.   

  



86 

 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

 In this research work, a new method has been developed to solve the time-

dependent form of the linear Boltzmann transport equation which implements a Runge-

Kutta-Fehlberg expansion in the time domain with automated truncation error controlled 

time step selection, coupled with a Source Iteration to resolve the spatial domain of the 

angular flux. The method was implemented in the 1-D Adaptive Runge-Kutta Time-

Dependent Transport code (ARKTRAN-TD), which was developed as part of this 

dissertation and solves the multigroup form of the time-dependent discrete ordinates 

transport equation. 

 

 ARKTRAN-TD was designed to solve reactor transient calculations in which the 

reactor system is assumed to be at stable-critical power before the transient commences. 

Thus, a steady-state solver for the multigroup SN transport equation was incorporated into 

ARKTRAN-TD. The steady-state solver was benchmarked against a set of fixed source 

and eigenvalue problems. Results of these benchmark problems displayed agreement 

between ARKTRAN-TD and the 3-D SN code PENTRAN (which is fully benchmarked 

for steady-state problems in the literature), verifying the ability of ARKTRAN-TD to 

accurately model the initial conditions for transient calculations. 
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 The newly developed ARKTRAN-TD was validated against a set of fast reactor 

transient benchmark problems, presented in the ANL Benchmark Book. The results 

(displayed in detail in Chapter 5) depict agreement between ARKTRAN-TD and two 

other time-dependent transport codes for three transient conditions: delayed supercritical, 

prompt supercritical, and control rod bank ejection followed by rod bank insertion. 

ARKTRAN-TD’s ability to successfully provide comparable results for these three 

transient cases verified the use of the fully explicit solution (both in angular flux and 

neutron precursor concentrations) obtained using the RKF expansion method with error 

controlled step sizes to expand the time domain, coupled to a quasi-static source iteration 

which resolved the space derivative.  

 

ARKTRAN-TD was extended further to allow for automatically adaptive Runge-

Kutta-Fehlberg expansion pair orders to provide a solution that maintains the accuracy in 

the truncation error of the expansion while providing solutions in a reduced amount of 

computation time. For the delayed supercritical transient, the adaptive RKF expansion 

pair scheme provided a speedup of 1.10 times the originally implemented RKF4/5 solver. 

The prompt supercritical transient problem displayed an even higher speedup of 2.125 

times the RKF4/5 solver when the residual tolerance was 10-2, and 3.47 times the RKF2/3 

solver when the residual tolerance was 10-3 when the adaptive RKF expansion pair 

scheme was implemented. 

 

In regards to future work, it would be interesting to explore additional methods to 

increase computational efficiency even further than the success gained with the adaptive 
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RKF scheme. Furthermore, the incorporation of additional differencing schemes such as 

directional theta weighted (DTW) or exponential directional iterative (EDI) would 

provide for increased accuracy of the spatial sweep compared to Diamond Difference. 

Inclusion of these schemes could allow for a reduction in computation time, as fewer fine 

meshes may be required to resolve the solution. Lastly, given the current trend in 

computational methods for nuclear applications, expanding ARKTRAN-TD to 3-D or 

including the method in an already established 3-D transport code, and coupling this to an 

accurate thermal hydraulics code could provide the potential to incorporate a detailed and 

representative feedback model during the transient. 
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APPENDIX A 

1-D QUADRATURE SETS FROM S2 TO S20 

 

S2 Quadrature Set 

Angle μn Weight wn 

± 0.577350269189626 1.000000000000000 

 

S4 Quadrature Set 

Angle μn Weight wn 

± 0.339981043584856 0.652145154862546 

± 0.861136311594053 0.347854845137454 

 

S6 Quadrature Set 

Angle μn Weight wn 

± 0.238619186083197 0.467913934572691 

± 0.661209386466265 0.360761573048139 

± 0.932469514203152 0.171324492379170 

 

S8 Quadrature Set 

Angle μn Weight wn 

± 0.183434642495650 0.362683783378362 

± 0.525532409916329 0.313706645877887 

± 0.796666477413627 0.222381034453374 

± 0.960289856497536 0.101228536290376 

 

S10 Quadrature Set 

Angle μn Weight wn 

± 0.1488743389816312 0.2955242247147529 

± 0.4333953941292472 0.2692667193099963 

± 0.6794095682990244 0.2190863625159820 

± 0.8650633666889845 0.1494513491505806 

± 0.9739065285171717 0.0666713443086881 

 

 



90 

 

S12 Quadrature Set 

Angle μn Weight wn 

± 0.1252334085114689 0.2491470458134028 

± 0.3678314989981802 0.2334925365383548 

± 0.5873179542866175 0.2031674267230659 

± 0.7699026741943047 0.1600783285433462 

± 0.9041172563704749 0.1069393259953184 

± 0.9815606342467192 0.0471753363865118 

 

S14 Quadrature Set 

Angle μn Weight wn 

± 0.1080549487073437 0.2152638534631578 

± 0.3191123689278897 0.2051984637212956 

± 0.5152486363581541 0.1855383974779378 

± 0.6872929048116855 0.1572031671581935 

± 0.8272013150697650 0.1215185706879032 

± 0.9284348836635735 0.0801580871597602 

± 0.9862838086968123 0.0351194603317519 

 

S16 Quadrature Set 

Angle μn Weight wn 

± 0.0950125098376374 0.1894506104550685 

± 0.2816035507792589 0.1826034150449236 

± 0.4580167776572274 0.1691565193950025 

± 0.6178762444026438 0.1495959888165767 

± 0.7554044083550030 0.1246289712555339 

± 0.8656312023878318 0.0951585116824928 

± 0.9445750230732326 0.0622535239386479 

± 0.9894009349916499 0.0271524594117541 

 

S18 Quadrature Set 

Angle μn Weight wn 

± 0.0847750130417353 0.1691423829631436 

± 0.2518862256915055 0.1642764837458327 

± 0.4117511614628426 0.1546846751262652 

± 0.5597708310739475 0.1406429146706507 

± 0.6916870430603532 0.1225552067114785 

± 0.8037049589725231 0.1009420441062872 

± 0.8926024664975557 0.0764257302548891 

± 0.9558239495713977 0.0497145488949698 

± 0.9915651684209309 0.0216160135264833 
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S20 Quadrature Set 

Angle μn Weight wn 

± 0.0765265211334973 0.1527533871307258 

± 0.2277858511416451 0.1491729864726037 

± 0.3737060887154195 0.1420961093183820 

± 0.5108670019508271 0.1316886384491766 

± 0.6360536807265150 0.1181945319615184 

± 0.7463319064601508 0.1019301198172404 

± 0.8391169718222188 0.0832767415767048 

± 0.9122344282513259 0.0626720483341091 

± 0.9639719272779138 0.0406014298003869 

± 0.9931285991850949 0.0176140071391521 
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APPENDIX B 

ADDITIONAL RKF EXPANSION ORDER PAIRS 

 

 Additional expansion order pairs for the Runge-Kutta-Fehlberg as derived in 

Fehlberg’s original reference and implemented in ARKTRAN-TD’s adaptive RKF 

scheme. (Fehlberg 1969) Refer to Section 2.2 for a complete explanation of the RKF 

method. 

1st Order RKF with 2nd  Order Truncation Error 

Applying the Runge-Kutta method with local truncation error of order two, one obtains: 

 𝑦𝑖+1̂ = 𝑦𝑖 +
1

512
𝑘1 +

255

256
𝑘2 +

1

512
𝑘3 (B.1) 

which can be used to estimate the local truncation error in the Runge-Kutta method of 

order one, at the i+1 time step (Eq. B.2). 

 𝑦𝑖+1 = 𝑦𝑖 +
1

256
𝑘1 +

255

256
𝑘2  (B.2) 

The coefficient terms present in Eqs. B.1 and B.2 for RKF1/2 are given by B.3, where h 

is the time step size: 

 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑦𝑖) 
 

𝑘2 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

1

2
𝑘1) 

 

𝑘3 = ℎ𝑓 (𝑡𝑖 + ℎ, 𝑦𝑖 +
1

256
𝑘1 +

255

256
𝑘2) 

(B.3) 
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The local truncation error (TE) to the 1st order method (Eq. B.2) can be obtained by 

subtracting Eq. B.2 from Eq. B.1, resulting in the following truncation error in the 1st 

order method: 

 𝑇𝐸𝑅𝐾𝐹1/2 = −
1

512
𝑘1 +

1

512
𝑘3 . (B.4) 

2rd Order RKF with 3th Order Truncation Error 

Applying the Runge-Kutta method with local truncation error of order three, one obtains: 

 𝑦𝑖+1̂ = 𝑦𝑖 +
533

2106
𝑘1 +

800

1053
𝑘3 −

1

78
𝑘4 (B.5) 

which can be used to estimate the local truncation error in the Runge-Kutta method of 

order two, at the i+1 time step (Eq. B.6). 

 𝑦𝑖+1 = 𝑦𝑖 +
214

891
𝑘1 +

1

33
𝑘2 +

650

891
𝑘3  (B.6) 

The coefficient terms present in Eqs. B.5 and B.6 for RKF2/3 are given by B.7, where h 

is the time step size: 

 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑦𝑖) 
 

𝑘2 = ℎ𝑓 (𝑡𝑖 +
ℎ

4
, 𝑦𝑖 +

1

4
𝑘1) 

 

𝑘3 = ℎ𝑓 (𝑡𝑖 +
27ℎ

40
, 𝑦𝑖 −

189

800
𝑘1 +

729

800
𝑘2) 

 

𝑘4 = ℎ𝑓 (𝑡𝑖 + ℎ, 𝑦𝑖 +
214

891
𝑘1 +

1

33
𝑘2 +

650

891
𝑘3) 

(B.7) 

 

The local truncation error (TE) of the 2nd order method (Eq. B.6) can be obtained by 

subtracting Eq. B.6 from Eq. B.5, resulting in the following truncation error in the 2nd 

order method: 
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 𝑇𝐸𝑅𝐾𝐹2/3 = 
23

1782
𝑘1 −

1

33
𝑘2 +

350

11583
𝑘3 −

1

78
𝑘4 . (B.8) 

3rd Order RKF with 4th Order Truncation Error 

Applying the Runge-Kutta method with local truncation error of order four, one obtains: 

 𝑦𝑖+1̂ = 𝑦𝑖 +
229

1470
𝑘1 +

1125

1813
𝑘3 +

13718

81585
𝑘4 +

1

18
𝑘5 (B.9) 

which can be used to estimate the local truncation error in the Runge-Kutta method of 

order three, at the i+1 time step (Eq. B.10). 

 𝑦𝑖+1 = 𝑦𝑖 +
79

490
𝑘1 +

2175

3626
𝑘3 +

2166

9065
𝑘4  (B.10) 

The coefficient terms present in Eqs. B.9 and B.10 for RKF3/4 are given by B.11, where 

h is the time step size: 

 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑦𝑖) 
 

𝑘2 = ℎ𝑓 (𝑡𝑖 +
2ℎ

7
, 𝑦𝑖 +

2

7
𝑘1) 

 

𝑘3 = ℎ𝑓 (𝑡𝑖 +
7ℎ

15
, 𝑦𝑖 +

77

900
𝑘1 +

343

900
𝑘2) 

 

𝑘4 = ℎ𝑓 (𝑡𝑖 +
35ℎ

38
, 𝑦𝑖 +

805

1444
𝑘1 −

77175

54872
𝑘2 +

97125

54872
𝑘3) 

 

𝑘5 = ℎ𝑓 (𝑡𝑖 + ℎ, 𝑦𝑖 +
79

490
𝑘1 +

2175

3626
𝑘3 +

2166

9065
𝑘4) 

(B.11) 

 

The local truncation error (TE) to the 3rd order method (Eq. B.10) can be obtained by 

subtracting Eq. B.10 from Eq. B.9, resulting in the following truncation error in the 3rd 

order method: 

 𝑇𝐸𝑅𝐾𝐹3/4 = −
4

735
𝑘1 +

75

3626
𝑘3 −

5776

81585
𝑘4 +

1

18
𝑘5 . (B.12) 
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APPENDIX C 

ARKTRAN-TD TABULAR RESULTS TO PROBLEM 16-A1 

 

Problem 16-A1 Power versus Time 
Time [s] Normalized Power 

1.00000E-06 
1.07426E-05 
2.20691E-05 
3.39367E-05 
4.58043E-05 
5.76906E-05 
7.01127E-05 
8.19802E-05 
9.38478E-05 
1.06191E-04 
2.11391E-04 
3.06940E-04 
4.02488E-04 
5.11687E-04 
6.07237E-04 
7.02785E-04 
8.11983E-04 
9.07531E-04 
1.00308E-03 
2.01316E-03 
3.00960E-03 
4.00603E-03 
5.00247E-03 
6.01255E-03 
7.00899E-03 
8.00542E-03 
9.00185E-03 
1.00119E-02 
2.00036E-02 
3.00089E-02 
4.00005E-02 
5.00058E-02 
6.00111E-02 
7.00027E-02 
8.00080E-02 
9.00133E-02 
1.00005E-01 
2.00003E-01 
3.00002E-01 
4.00000E-01 
5.00012E-01 
6.00010E-01 
7.00008E-01 
8.00007E-01 
9.00005E-01 
1.00000E-00 

1.00000E+00 
1.02757E+00 
1.05808E+00 
1.08821E+00 
1.11642E+00 
1.14287E+00 
1.16871E+00 
1.19167E+00 
1.21317E+00 
1.23409E+00 
1.36482E+00 
1.43288E+00 
1.47304E+00 
1.49922E+00 
1.51220E+00 
1.51987E+00 
1.52490E+00 
1.52741E+00 
1.52891E+00 
1.53145E+00 
1.53190E+00 
1.53233E+00 
1.53277E+00 
1.53321E+00 
1.53365E+00 
1.53409E+00 
1.53452E+00 
1.53496E+00 
1.53931E+00 
1.54363E+00 
1.54791E+00 
1.55217E+00 
1.55639E+00 
1.56058E+00 
1.56474E+00 
1.56888E+00 
1.57298E+00 
1.61260E+00 
1.65006E+00 
1.68580E+00 
1.72019E+00 
1.75351E+00 
1.78596E+00 
1.81772E+00 
1.84893E+00 
1.87970E+00 
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Problem 16-A1 Neutron Flux at t = 0.0 seconds 
Z Position  Group 1 Flux Group 2 Flux Z Position Group 1 Flux Group 2 Flux 

1.00000E+00 
3.00000E+00 
5.00000E+00 
7.00000E+00 
9.00000E+00 
1.10000E+01 
1.30000E+01 
1.50000E+01 
1.70000E+01 
1.90000E+01 
2.10000E+01 
2.30000E+01 
2.50000E+01 
2.70000E+01 
2.90000E+01 
3.10000E+01 
3.30000E+01 
3.50000E+01 
3.70000E+01 
3.90000E+01 
4.09870E+01 
4.29609E+01 
4.49348E+01 
4.69087E+01 
4.88826E+01 
5.08565E+01 
5.28304E+01 
5.48044E+01 
5.67783E+01 
5.87522E+01 
6.07261E+01 
6.27000E+01 
6.46739E+01 
6.66479E+01 
6.86218E+01 
7.05957E+01 
7.25696E+01 
7.45435E+01 
7.65174E+01 
7.84913E+01 
8.04653E+01 
8.24392E+01 
8.44131E+01 
8.63870E+01 
8.82740E+01 
9.00740E+01 
9.18740E+01 
9.36740E+01 
9.54740E+01 
9.74365E+01 
9.95615E+01 
1.01687E+02 
1.03812E+02 
1.05937E+02 
1.08062E+02 
1.10187E+02 
1.12312E+02 

1.34732E-02 
2.20497E-02 
3.05178E-02 
3.93677E-02 
4.88789E-02 
5.92683E-02 
7.07409E-02 
8.35142E-02 
9.78249E-02 
1.13939E-01 
1.32153E-01 
1.52806E-01 
1.76281E-01 
2.03017E-01 
2.33520E-01 
2.68383E-01 
3.08328E-01 
3.54314E-01 
4.07801E-01 
4.71508E-01 
5.34053E-01 
5.86897E-01 
6.35226E-01 
6.79791E-01 
7.20884E-01 
7.58579E-01 
7.92858E-01 
8.23657E-01 
8.50901E-01 
8.74502E-01 
8.94391E-01 
9.10499E-01 
9.22775E-01 
9.31173E-01 
9.35665E-01 
9.36231E-01 
9.32863E-01 
9.25552E-01 
9.14267E-01 
8.98933E-01 
8.79338E-01 
8.54969E-01 
8.24676E-01 
7.85904E-01 
7.54720E-01 
7.40914E-01 
7.36209E-01 
7.40355E-01 
7.53592E-01 
7.85291E-01 
8.25013E-01 
8.55259E-01 
8.78963E-01 
8.97371E-01 
9.10990E-01 
9.20019E-01 
9.24524E-01 

4.93206E-03 
9.14614E-03 
1.31787E-02 
1.73107E-02 
2.16154E-02 
2.61433E-02 
3.09389E-02 
3.60406E-02 
4.14794E-02 
4.72755E-02 
5.34350E-02 
5.99457E-02 
6.67688E-02 
7.38312E-02 
8.10145E-02 
8.81384E-02 
9.49422E-02 
1.01056E-01 
1.05926E-01 
1.08362E-01 
1.08736E-01 
1.09587E-01 
1.11741E-01 
1.14532E-01 
1.17666E-01 
1.20945E-01 
1.24217E-01 
1.27360E-01 
1.30277E-01 
1.32889E-01 
1.35131E-01 
1.36953E-01 
1.38313E-01 
1.39179E-01 
1.39523E-01 
1.39326E-01 
1.38570E-01 
1.37246E-01 
1.35342E-01 
1.32853E-01 
1.29775E-01 
1.26096E-01 
1.21761E-01 
1.16395E-01 
1.12093E-01 
1.10194E-01 
1.09548E-01 
1.10088E-01 
1.11879E-01 
1.16200E-01 
1.21632E-01 
1.25909E-01 
1.29438E-01 
1.32262E-01 
1.34381E-01 
1.35795E-01 
1.36503E-01 

1.14437E+02 
1.16562E+02 
1.18687E+02 
1.20812E+02 
1.22937E+02 
1.25062E+02 
1.27187E+02 
1.29311E+02 
1.31274E+02 
1.33074E+02 
1.34874E+02 
1.36674E+02 
1.38474E+02 
1.40361E+02 
1.42335E+02 
1.44309E+02 
1.46283E+02 
1.48257E+02 
1.50231E+02 
1.52204E+02 
1.54178E+02 
1.56152E+02 
1.58126E+02 
1.60100E+02 
1.62074E+02 
1.64048E+02 
1.66022E+02 
1.67996E+02 
1.69970E+02 
1.71944E+02 
1.73918E+02 
1.75892E+02 
1.77865E+02 
1.79839E+02 
1.81813E+02 
1.83787E+02 
1.85761E+02 
1.87748E+02 
1.89748E+02 
1.91748E+02 
1.93748E+02 
1.95748E+02 
1.97748E+02 
1.99748E+02 
2.01748E+02 
2.03748E+02 
2.05748E+02 
2.07748E+02 
2.09748E+02 
2.11748E+02 
2.13748E+02 
2.15748E+02 
2.17748E+02 
2.19748E+02 
2.21748E+02 
2.23748E+02 
2.25748E+02 

9.24524E-01 
9.20019E-01 
9.10990E-01 
8.97371E-01 
8.78963E-01 
8.55259E-01 
8.25013E-01 
7.85291E-01 
7.53592E-01 
7.40355E-01 
7.36209E-01 
7.40914E-01 
7.54720E-01 
7.85904E-01 
8.24676E-01 
8.54969E-01 
8.79338E-01 
8.98933E-01 
9.14267E-01 
9.25552E-01 
9.32863E-01 
9.36231E-01 
9.35665E-01 
9.31173E-01 
9.22775E-01 
9.10499E-01 
8.94391E-01 
8.74502E-01 
8.50901E-01 
8.23657E-01 
7.92858E-01 
7.58579E-01 
7.20884E-01 
6.79791E-01 
6.35226E-01 
5.86897E-01 
5.34053E-01 
4.71508E-01 
4.07801E-01 
3.54314E-01 
3.08328E-01 
2.68383E-01 
2.33520E-01 
2.03017E-01 
1.76281E-01 
1.52806E-01 
1.32153E-01 
1.13939E-01 
9.78249E-02 
8.35142E-02 
7.07409E-02 
5.92683E-02 
4.88789E-02 
3.93677E-02 
3.05178E-02 
2.20497E-02 
1.34732E-02 

1.36503E-01 
1.35795E-01 
1.34381E-01 
1.32262E-01 
1.29438E-01 
1.25909E-01 
1.21632E-01 
1.16200E-01 
1.11879E-01 
1.10088E-01 
1.09548E-01 
1.10194E-01 
1.12093E-01 
1.16395E-01 
1.21761E-01 
1.26096E-01 
1.29775E-01 
1.32853E-01 
1.35342E-01 
1.37246E-01 
1.38570E-01 
1.39326E-01 
1.39523E-01 
1.39179E-01 
1.38313E-01 
1.36953E-01 
1.35131E-01 
1.32889E-01 
1.30277E-01 
1.27360E-01 
1.24217E-01 
1.20945E-01 
1.17666E-01 
1.14532E-01 
1.11741E-01 
1.09587E-01 
1.08736E-01 
1.08362E-01 
1.05926E-01 
1.01056E-01 
9.49422E-02 
8.81384E-02 
8.10145E-02 
7.38312E-02 
6.67688E-02 
5.99457E-02 
5.34350E-02 
4.72755E-02 
4.14794E-02 
3.60406E-02 
3.09389E-02 
2.61433E-02 
2.16154E-02 
1.73107E-02 
1.31787E-02 
9.14614E-03 
4.93206E-03 

  



97 

 

 

 

Problem 16-A1 Neutron Flux at t = 0.01 seconds 
Z Position  Group 1 Flux Group 2 Flux Z Position Group 1 Flux Group 2 Flux 

1.00000E+00 
3.00000E+00 
5.00000E+00 
7.00000E+00 
9.00000E+00 
1.10000E+01 
1.30000E+01 
1.50000E+01 
1.70000E+01 
1.90000E+01 
2.10000E+01 
2.30000E+01 
2.50000E+01 
2.70000E+01 
2.90000E+01 
3.10000E+01 
3.30000E+01 
3.50000E+01 
3.70000E+01 
3.90000E+01 
4.09870E+01 
4.29609E+01 
4.49348E+01 
4.69087E+01 
4.88826E+01 
5.08565E+01 
5.28304E+01 
5.48044E+01 
5.67783E+01 
5.87522E+01 
6.07261E+01 
6.27000E+01 
6.46739E+01 
6.66479E+01 
6.86218E+01 
7.05957E+01 
7.25696E+01 
7.45435E+01 
7.65174E+01 
7.84913E+01 
8.04653E+01 
8.24392E+01 
8.44131E+01 
8.63870E+01 
8.82740E+01 
9.00740E+01 
9.18740E+01 
9.36740E+01 
9.54740E+01 
9.74365E+01 
9.95615E+01 
1.01687E+02 
1.03812E+02 
1.05937E+02 
1.08062E+02 
1.10187E+02 
1.12312E+02 

2.29229E-02 
3.75147E-02 
5.19222E-02 
6.69790E-02 
8.31621E-02 
1.00839E-01 
1.20360E-01 
1.42093E-01 
1.66444E-01 
1.93862E-01 
2.24855E-01 
2.59999E-01 
2.99945E-01 
3.45441E-01 
3.97348E-01 
4.56671E-01 
5.24649E-01 
6.02903E-01 
6.93922E-01 
8.02328E-01 
9.11002E-01 
1.00505E+00 
1.09075E+00 
1.16952E+00 
1.24185E+00 
1.30783E+00 
1.36742E+00 
1.42048E+00 
1.46683E+00 
1.50634E+00 
1.53885E+00 
1.56426E+00 
1.58245E+00 
1.59338E+00 
1.59699E+00 
1.59327E+00 
1.58224E+00 
1.56390E+00 
1.53827E+00 
1.50527E+00 
1.46462E+00 
1.41555E+00 
1.35614E+00 
1.28193E+00 
1.22340E+00 
1.19709E+00 
1.18550E+00 
1.18817E+00 
1.20540E+00 
1.24956E+00 
1.30397E+00 
1.34329E+00 
1.37229E+00 
1.39301E+00 
1.40630E+00 
1.41253E+00 
1.41185E+00 

8.39194E-03 
1.55624E-02 
2.24239E-02 
2.94548E-02 
3.67795E-02 
4.44843E-02 
5.26449E-02 
6.13263E-02 
7.05816E-02 
8.04449E-02 
9.09275E-02 
1.02007E-01 
1.13620E-01 
1.25640E-01 
1.37866E-01 
1.49993E-01 
1.61576E-01 
1.71985E-01 
1.80280E-01 
1.84435E-01 
1.85120E-01 
1.86768E-01 
1.90774E-01 
1.95897E-01 
2.01595E-01 
2.07503E-01 
2.13336E-01 
2.18872E-01 
2.23930E-01 
2.28371E-01 
2.32078E-01 
2.34963E-01 
2.36954E-01 
2.37996E-01 
2.38045E-01 
2.37069E-01 
2.35046E-01 
2.31959E-01 
2.27797E-01 
2.22556E-01 
2.16234E-01 
2.08825E-01 
2.00253E-01 
1.89880E-01 
1.81733E-01 
1.78070E-01 
1.76434E-01 
1.76708E-01 
1.78987E-01 
1.84934E-01 
1.92277E-01 
1.97783E-01 
2.02115E-01 
2.05347E-01 
2.07488E-01 
2.08542E-01 
2.08516E-01 

1.14437E+02 
1.16562E+02 
1.18687E+02 
1.20812E+02 
1.22937E+02 
1.25062E+02 
1.27187E+02 
1.29311E+02 
1.31274E+02 
1.33074E+02 
1.34874E+02 
1.36674E+02 
1.38474E+02 
1.40361E+02 
1.42335E+02 
1.44309E+02 
1.46283E+02 
1.48257E+02 
1.50231E+02 
1.52204E+02 
1.54178E+02 
1.56152E+02 
1.58126E+02 
1.60100E+02 
1.62074E+02 
1.64048E+02 
1.66022E+02 
1.67996E+02 
1.69970E+02 
1.71944E+02 
1.73918E+02 
1.75892E+02 
1.77865E+02 
1.79839E+02 
1.81813E+02 
1.83787E+02 
1.85761E+02 
1.87748E+02 
1.89748E+02 
1.91748E+02 
1.93748E+02 
1.95748E+02 
1.97748E+02 
1.99748E+02 
2.01748E+02 
2.03748E+02 
2.05748E+02 
2.07748E+02 
2.09748E+02 
2.11748E+02 
2.13748E+02 
2.15748E+02 
2.17748E+02 
2.19748E+02 
2.21748E+02 
2.23748E+02 
2.25748E+02 

1.40431E+00 
1.38997E+00 
1.36883E+00 
1.34084E+00 
1.30574E+00 
1.26286E+00 
1.21043E+00 
1.14426E+00 
1.09219E+00 
1.06931E+00 
1.05958E+00 
1.06259E+00 
1.07863E+00 
1.11618E+00 
1.16185E+00 
1.19637E+00 
1.22308E+00 
1.24358E+00 
1.25863E+00 
1.26858E+00 
1.27359E+00 
1.27372E+00 
1.26902E+00 
1.25952E+00 
1.24526E+00 
1.22628E+00 
1.20266E+00 
1.17444E+00 
1.14173E+00 
1.10461E+00 
1.06317E+00 
1.01751E+00 
9.67686E-01 
9.13702E-01 
8.55434E-01 
7.92502E-01 
7.23974E-01 
6.40775E-01 
5.54195E-01 
4.81506E-01 
4.19011E-01 
3.64721E-01 
3.17344E-01 
2.75889E-01 
2.39555E-01 
2.07652E-01 
1.79585E-01 
1.54832E-01 
1.32934E-01 
1.13487E-01 
9.61288E-02 
8.05380E-02 
6.64201E-02 
5.34950E-02 
4.14694E-02 
2.99624E-02 
1.83082E-02 

2.07412E-01 
2.05239E-01 
2.02004E-01 
1.97713E-01 
1.92377E-01 
1.86000E-01 
1.78527E-01 
1.69373E-01 
1.62194E-01 
1.59048E-01 
1.57712E-01 
1.58085E-01 
1.60253E-01 
1.65382E-01 
1.71632E-01 
1.76522E-01 
1.80560E-01 
1.83840E-01 
1.86384E-01 
1.88203E-01 
1.89309E-01 
1.89720E-01 
1.89455E-01 
1.88538E-01 
1.86998E-01 
1.84873E-01 
1.82207E-01 
1.79056E-01 
1.75485E-01 
1.71579E-01 
1.67437E-01 
1.63182E-01 
1.58965E-01 
1.54974E-01 
1.51454E-01 
1.48775E-01 
1.47759E-01 
1.47276E-01 
1.43962E-01 
1.37341E-01 
1.29031E-01 
1.19783E-01 
1.10100E-01 
1.00337E-01 
9.07381E-02 
8.14653E-02 
7.26171E-02 
6.42459E-02 
5.63690E-02 
4.89776E-02 
4.20442E-02 
3.55273E-02 
2.93739E-02 
2.35241E-02 
1.79089E-02 
1.24289E-02 
6.70228E-03 
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Problem 16-A1 Neutron Flux at t = 1.0 second 
Z Position  Group 1 Flux Group 2 Flux Z Position Group 1 Flux Group 2 Flux 

1.00000E+00 
3.00000E+00 
5.00000E+00 
7.00000E+00 
9.00000E+00 
1.10000E+01 
1.30000E+01 
1.50000E+01 
1.70000E+01 
1.90000E+01 
2.10000E+01 
2.30000E+01 
2.50000E+01 
2.70000E+01 
2.90000E+01 
3.10000E+01 
3.30000E+01 
3.50000E+01 
3.70000E+01 
3.90000E+01 
4.09870E+01 
4.29609E+01 
4.49348E+01 
4.69087E+01 
4.88826E+01 
5.08565E+01 
5.28304E+01 
5.48044E+01 
5.67783E+01 
5.87522E+01 
6.07261E+01 
6.27000E+01 
6.46739E+01 
6.66479E+01 
6.86218E+01 
7.05957E+01 
7.25696E+01 
7.45435E+01 
7.65174E+01 
7.84913E+01 
8.04653E+01 
8.24392E+01 
8.44131E+01 
8.63870E+01 
8.82740E+01 
9.00740E+01 
9.18740E+01 
9.36740E+01 
9.54740E+01 
9.74365E+01 
9.95615E+01 
1.01687E+02 
1.03812E+02 
1.05937E+02 
1.08062E+02 
1.10187E+02 
1.12312E+02 

2.81042E-02 
4.59942E-02 
6.36582E-02 
8.21186E-02 
1.01959E-01 
1.23632E-01 
1.47565E-01 
1.74211E-01 
2.04065E-01 
2.37680E-01 
2.75679E-01 
3.18766E-01 
3.67742E-01 
4.23520E-01 
4.87158E-01 
5.59891E-01 
6.43231E-01 
7.39174E-01 
8.50763E-01 
9.83673E-01 
1.11691E+00 
1.23221E+00 
1.33728E+00 
1.43384E+00 
1.52250E+00 
1.60339E+00 
1.67643E+00 
1.74145E+00 
1.79825E+00 
1.84666E+00 
1.88648E+00 
1.91759E+00 
1.93985E+00 
1.95320E+00 
1.95757E+00 
1.95296E+00 
1.93938E+00 
1.91684E+00 
1.88536E+00 
1.84484E+00 
1.79494E+00 
1.73472E+00 
1.66182E+00 
1.57079E+00 
1.49899E+00 
1.46671E+00 
1.45247E+00 
1.45568E+00 
1.47675E+00 
1.53077E+00 
1.59731E+00 
1.64537E+00 
1.68079E+00 
1.70606E+00 
1.72224E+00 
1.72977E+00 
1.72883E+00 

1.02888E-02 
1.90798E-02 
2.74923E-02 
3.61125E-02 
4.50926E-02 
5.45388E-02 
6.45436E-02 
7.51877E-02 
8.65348E-02 
9.86275E-02 
1.11479E-01 
1.25063E-01 
1.39300E-01 
1.54037E-01 
1.69027E-01 
1.83894E-01 
1.98094E-01 
2.10855E-01 
2.21024E-01 
2.26117E-01 
2.26956E-01 
2.28975E-01 
2.33886E-01 
2.40164E-01 
2.47148E-01 
2.54388E-01 
2.61536E-01 
2.68319E-01 
2.74517E-01 
2.79955E-01 
2.84496E-01 
2.88027E-01 
2.90461E-01 
2.91731E-01 
2.91784E-01 
2.90580E-01 
2.88092E-01 
2.84299E-01 
2.79188E-01 
2.72755E-01 
2.64995E-01 
2.55903E-01 
2.45387E-01 
2.32661E-01 
2.22669E-01 
2.18174E-01 
2.16163E-01 
2.16491E-01 
2.19277E-01 
2.26551E-01 
2.35531E-01 
2.42260E-01 
2.47550E-01 
2.51494E-01 
2.54101E-01 
2.55379E-01 
2.55332E-01 

1.14437E+02 
1.16562E+02 
1.18687E+02 
1.20812E+02 
1.22937E+02 
1.25062E+02 
1.27187E+02 
1.29311E+02 
1.31274E+02 
1.33074E+02 
1.34874E+02 
1.36674E+02 
1.38474E+02 
1.40361E+02 
1.42335E+02 
1.44309E+02 
1.46283E+02 
1.48257E+02 
1.50231E+02 
1.52204E+02 
1.54178E+02 
1.56152E+02 
1.58126E+02 
1.60100E+02 
1.62074E+02 
1.64048E+02 
1.66022E+02 
1.67996E+02 
1.69970E+02 
1.71944E+02 
1.73918E+02 
1.75892E+02 
1.77865E+02 
1.79839E+02 
1.81813E+02 
1.83787E+02 
1.85761E+02 
1.87748E+02 
1.89748E+02 
1.91748E+02 
1.93748E+02 
1.95748E+02 
1.97748E+02 
1.99748E+02 
2.01748E+02 
2.03748E+02 
2.05748E+02 
2.07748E+02 
2.09748E+02 
2.11748E+02 
2.13748E+02 
2.15748E+02 
2.17748E+02 
2.19748E+02 
2.21748E+02 
2.23748E+02 
2.25748E+02 

1.71950E+00 
1.70184E+00 
1.67586E+00 
1.64148E+00 
1.59843E+00 
1.54583E+00 
1.48154E+00 
1.40045E+00 
1.33664E+00 
1.30860E+00 
1.29664E+00 
1.30027E+00 
1.31986E+00 
1.36573E+00 
1.42151E+00 
1.46366E+00 
1.49625E+00 
1.52126E+00 
1.53960E+00 
1.55170E+00 
1.55776E+00 
1.55786E+00 
1.55206E+00 
1.54040E+00 
1.52291E+00 
1.49966E+00 
1.47073E+00 
1.43619E+00 
1.39616E+00 
1.35074E+00 
1.30005E+00 
1.24420E+00 
1.18326E+00 
1.11724E+00 
1.04598E+00 
9.69026E-01 
8.85233E-01 
7.83501E-01 
6.77638E-01 
5.88756E-01 
5.12339E-01 
4.45958E-01 
3.88028E-01 
3.37340E-01 
2.92911E-01 
2.53902E-01 
2.19584E-01 
1.89318E-01 
1.62543E-01 
1.38763E-01 
1.17539E-01 
9.84760E-02 
8.12135E-02 
6.54097E-02 
5.07056E-02 
3.66358E-02 
2.23859E-02 

2.53966E-01 
2.51291E-01 
2.47315E-01 
2.42049E-01 
2.35502E-01 
2.27680E-01 
2.18517E-01 
2.07298E-01 
1.98500E-01 
1.94644E-01 
1.93002E-01 
1.93450E-01 
1.96096E-01 
2.02363E-01 
2.09997E-01 
2.15968E-01 
2.20897E-01 
2.24898E-01 
2.27999E-01 
2.30215E-01 
2.31560E-01 
2.32054E-01 
2.31722E-01 
2.30593E-01 
2.28703E-01 
2.26098E-01 
2.22832E-01 
2.18973E-01 
2.14603E-01 
2.09822E-01 
2.04753E-01 
1.99546E-01 
1.94387E-01 
1.89504E-01 
1.85198E-01 
1.81921E-01 
1.80677E-01 
1.80085E-01 
1.76032E-01 
1.67935E-01 
1.57774E-01 
1.46465E-01 
1.34625E-01 
1.22687E-01 
1.10950E-01 
9.96114E-02 
8.87920E-02 
7.85563E-02 
6.89245E-02 
5.98869E-02 
5.14092E-02 
4.34405E-02 
3.59166E-02 
2.87637E-02 
2.18978E-02 
1.51973E-02 
8.19511E-03 
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APPENDIX D 

ARKTRAN-TD TABULAR RESULTS TO PROBLEM 16-A2 

 

Problem 16-A2 Power versus Time 
Time [s] Normalized Power 

1.00000E-06 
1.73151E-06 
2.69150E-06 
3.52905E-06 
4.34286E-06 
5.15667E-06 
5.97048E-06 
6.82712E-06 
7.68376E-06 
8.54040E-06 
9.39704E-06 
1.02537E-05 
2.03292E-05 
3.03797E-05 
4.04303E-05 
5.04808E-05 
6.05313E-05 
7.05819E-05 
8.06016E-05 
9.05180E-05 
1.00461E-04 
1.50628E-04 
2.00375E-04 
2.50466E-04 
3.00337E-04 
3.50431E-04 
4.00465E-04 
4.50073E-04 
5.00068E-04 
5.50157E-04 
6.00063E-04 
6.50276E-04 
7.00077E-04 
7.50140E-04 
8.00099E-04 
8.50059E-04 
9.00342E-04 
9.50403E-04 
1.00026E-03 

1.00000E+00 
1.01544E+00 
1.02448E+00 
1.03284E+00 
1.04127E+00 
1.04996E+00 
1.05885E+00 
1.06840E+00 
1.07810E+00 
1.08792E+00 
1.09784E+00 
1.10786E+00 
1.22893E+00 
1.35407E+00 
1.48321E+00 
1.61645E+00 
1.75393E+00 
1.89578E+00 
2.04167E+00 
2.19033E+00 
2.34360E+00 
3.19311E+00 
4.17538E+00 
5.32952E+00 
6.67062E+00 
8.24279E+00 
1.00737E+01 
1.21819E+01 
1.46584E+01 
1.75523E+01 
2.09149E+01 
2.48614E+01 
2.94259E+01 
3.47760E+01 
4.10026E+01 
4.82639E+01 
5.67875E+01 
6.66960E+01 
7.82033E+01 
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Problem 16-A2 Neutron Flux at t = 10-4 seconds 
Z Position  Group 1 Flux Group 2 Flux Z Position Group 1 Flux Group 2 Flux 

1.00000E+00 
3.00000E+00 
5.00000E+00 
7.00000E+00 
9.00000E+00 
1.10000E+01 
1.30000E+01 
1.50000E+01 
1.70000E+01 
1.90000E+01 
2.10000E+01 
2.30000E+01 
2.50000E+01 
2.70000E+01 
2.90000E+01 
3.10000E+01 
3.30000E+01 
3.50000E+01 
3.70000E+01 
3.90000E+01 
4.09870E+01 
4.29609E+01 
4.49348E+01 
4.69087E+01 
4.88826E+01 
5.08565E+01 
5.28304E+01 
5.48044E+01 
5.67783E+01 
5.87522E+01 
6.07261E+01 
6.27000E+01 
6.46739E+01 
6.66479E+01 
6.86218E+01 
7.05957E+01 
7.25696E+01 
7.45435E+01 
7.65174E+01 
7.84913E+01 
8.04653E+01 
8.24392E+01 
8.44131E+01 
8.63870E+01 
8.82740E+01 
9.00740E+01 
9.18740E+01 
9.36740E+01 
9.54740E+01 
9.74365E+01 
9.95615E+01 
1.01687E+02 
1.03812E+02 
1.05937E+02 
1.08062E+02 
1.10187E+02 
1.12312E+02 

3.78496E-02 
6.19439E-02 
8.57368E-02 
1.10605E-01 
1.37338E-01 
1.66542E-01 
1.98799E-01 
2.34718E-01 
2.74969E-01 
3.20300E-01 
3.71547E-01 
4.29668E-01 
4.95743E-01 
5.71010E-01 
6.56893E-01 
7.55067E-01 
8.67572E-01 
9.97101E-01 
1.14778E+00 
1.32724E+00 
1.51087E+00 
1.67343E+00 
1.82118E+00 
1.95659E+00 
2.08050E+00 
2.19305E+00 
2.29405E+00 
2.38323E+00 
2.46030E+00 
2.52496E+00 
2.57696E+00 
2.61608E+00 
2.64217E+00 
2.65513E+00 
2.65490E+00 
2.64150E+00 
2.61498E+00 
2.57545E+00 
2.52297E+00 
2.45755E+00 
2.37884E+00 
2.28573E+00 
2.17515E+00 
2.03952E+00 
1.93443E+00 
1.88708E+00 
1.86296E+00 
1.86124E+00 
1.88235E+00 
1.94168E+00 
2.01329E+00 
2.06154E+00 
2.09395E+00 
2.11379E+00 
2.12247E+00 
2.12061E+00 
2.10849E+00 

1.37582E-02 
2.55141E-02 
3.67648E-02 
4.82956E-02 
6.03118E-02 
7.29557E-02 
8.63526E-02 
1.00611E-01 
1.15818E-01 
1.32032E-01 
1.49272E-01 
1.67504E-01 
1.86622E-01 
2.06423E-01 
2.26576E-01 
2.46578E-01 
2.65699E-01 
2.82901E-01 
2.96632E-01 
3.03549E-01 
3.04820E-01 
3.07942E-01 
3.15192E-01 
3.24337E-01 
3.34415E-01 
3.44772E-01 
3.54898E-01 
3.64399E-01 
3.72963E-01 
3.80336E-01 
3.86331E-01 
3.90790E-01 
3.93599E-01 
3.94667E-01 
3.93930E-01 
3.91333E-01 
3.86853E-01 
3.80467E-01 
3.72166E-01 
3.61956E-01 
3.49843E-01 
3.35831E-01 
3.19828E-01 
3.00788E-01 
2.86106E-01 
2.79470E-01 
2.76024E-01 
2.75581E-01 
2.78267E-01 
2.86096E-01 
2.95553E-01 
3.02183E-01 
3.07028E-01 
3.10218E-01 
3.11776E-01 
3.11718E-01 
3.10061E-01 

1.14437E+02 
1.16562E+02 
1.18687E+02 
1.20812E+02 
1.22937E+02 
1.25062E+02 
1.27187E+02 
1.29311E+02 
1.31274E+02 
1.33074E+02 
1.34874E+02 
1.36674E+02 
1.38474E+02 
1.40361E+02 
1.42335E+02 
1.44309E+02 
1.46283E+02 
1.48257E+02 
1.50231E+02 
1.52204E+02 
1.54178E+02 
1.56152E+02 
1.58126E+02 
1.60100E+02 
1.62074E+02 
1.64048E+02 
1.66022E+02 
1.67996E+02 
1.69970E+02 
1.71944E+02 
1.73918E+02 
1.75892E+02 
1.77865E+02 
1.79839E+02 
1.81813E+02 
1.83787E+02 
1.85761E+02 
1.87748E+02 
1.89748E+02 
1.91748E+02 
1.93748E+02 
1.95748E+02 
1.97748E+02 
1.99748E+02 
2.01748E+02 
2.03748E+02 
2.05748E+02 
2.07748E+02 
2.09748E+02 
2.11748E+02 
2.13748E+02 
2.15748E+02 
2.17748E+02 
2.19748E+02 
2.21748E+02 
2.23748E+02 
2.25748E+02 

2.08629E+00 
2.05411E+00 
2.01202E+00 
1.96001E+00 
1.89778E+00 
1.82442E+00 
1.73750E+00 
1.63118E+00 
1.54847E+00 
1.51072E+00 
1.49156E+00 
1.49035E+00 
1.50740E+00 
1.55032E+00 
1.60123E+00 
1.63792E+00 
1.66462E+00 
1.68349E+00 
1.69559E+00 
1.70148E+00 
1.70141E+00 
1.69552E+00 
1.68392E+00 
1.66665E+00 
1.64379E+00 
1.61541E+00 
1.58159E+00 
1.54242E+00 
1.49799E+00 
1.44843E+00 
1.39382E+00 
1.33427E+00 
1.26983E+00 
1.20047E+00 
1.12603E+00 
1.04600E+00 
9.59272E-01 
8.51076E-01 
7.36003E-01 
6.39385E-01 
5.56329E-01 
4.84187E-01 
4.21236E-01 
3.66164E-01 
3.17901E-01 
2.75532E-01 
2.38263E-01 
2.05399E-01 
1.76332E-01 
1.50520E-01 
1.27486E-01 
1.06801E-01 
8.80728E-02 
7.09300E-02 
5.49821E-02 
3.97241E-02 
2.42726E-02 

3.06823E-01 
3.02021E-01 
2.95676E-01 
2.87807E-01 
2.78435E-01 
2.67578E-01 
2.55162E-01 
2.40377E-01 
2.28916E-01 
2.23678E-01 
2.20991E-01 
2.20707E-01 
2.22931E-01 
2.28677E-01 
2.35497E-01 
2.40587E-01 
2.44609E-01 
2.47711E-01 
2.49931E-01 
2.51290E-01 
2.51811E-01 
2.51520E-01 
2.50444E-01 
2.48618E-01 
2.46083E-01 
2.42889E-01 
2.39094E-01 
2.34769E-01 
2.29998E-01 
2.24883E-01 
2.19547E-01 
2.14140E-01 
2.08843E-01 
2.03883E-01 
1.99552E-01 
1.96304E-01 
1.95122E-01 
1.94500E-01 
1.90097E-01 
1.81317E-01 
1.70306E-01 
1.58061E-01 
1.45248E-01 
1.32335E-01 
1.19645E-01 
1.07392E-01 
9.57060E-02 
8.46546E-02 
7.42604E-02 
6.45112E-02 
5.53695E-02 
4.67800E-02 
3.86731E-02 
3.09685E-02 
2.35747E-02 
1.63605E-02 
8.82231E-03 
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APPENDIX E 

ARKTRAN-TD TABULAR RESULTS TO PROBLEM 16-A3 

 

Problem 16-A3 Power versus Time 
Time [s] Normalized Power Time [s] Normalized Power 

1.00000E-06 
1.98419E-06 
3.01129E-06 
4.01441E-06 
4.99647E-06 
5.99488E-06 
7.00815E-06 
8.00544E-06 
9.01666E-06 
1.00145E-05 
2.00015E-05 
2.99993E-05 
4.00062E-05 
5.00037E-05 
6.00009E-05 
7.00011E-05 
8.00003E-05 
9.00003E-05 
1.00000E-04 
1.10000E-04 
1.20000E-04 
1.30000E-04 
1.40000E-04 
1.50001E-04 
1.60000E-04 
1.70001E-04 
1.80000E-04 
1.90000E-04 
2.00001E-04 
2.10001E-04 
2.20001E-04 
2.30001E-04 
2.40001E-04 
2.50001E-04 
2.60002E-04 
2.70001E-04 
2.80001E-04 

1.00000E+00 
1.15118E+00 
1.25174E+00 
1.36110E+00 
1.47903E+00 
1.61014E+00 
1.75527E+00 
1.91074E+00 
2.08210E+00 
2.26580E+00 
5.19385E+00 
1.17434E+01 
2.64144E+01 
5.92123E+01 
1.32576E+02 
2.96551E+02 
6.61378E+02 
1.47025E+03 
3.26814E+03 
2.59346E+03 
2.33596E+03 
2.11198E+03 
1.90972E+03 
1.72683E+03 
1.56149E+03 
1.41196E+03 
1.27679E+03 
1.15455E+03 
1.04401E+03 
9.44073E+02 
8.53706E+02 
7.71996E+02 
6.98115E+02 
6.31313E+02 
5.70910E+02 
5.16299E+02 
4.66912E+02 

2.90000E-04 
3.00001E-04 
3.10002E-04 
3.20001E-04 
3.30002E-04 
3.40003E-04 
3.50000E-04 
3.60000E-04 
3.70001E-04 
3.80001E-04 
3.90000E-04 
4.00003E-04 
5.00006E-04 
6.00010E-04 
7.00009E-04 
8.00018E-04 
9.00040E-04 
1.00006E-03 
1.10004E-03 
1.20019E-03 
1.30027E-03 
1.40011E-03 
1.50002E-03 
1.60081E-03 
1.70039E-03 
1.80112E-03 
1.90070E-03 
2.00029E-03 
3.00070E-03 
4.00112E-03 
5.00040E-03 
6.00081E-03 
7.00009E-03 
8.00051E-03 
9.00092E-03 
1.00000E-02 

4.22264E+02 
3.81887E+02 
3.45376E+02 
3.12370E+02 
2.82519E+02 
2.55530E+02 
2.31133E+02 
2.09068E+02 
1.89116E+02 
1.71077E+02 
1.54766E+02 
1.40013E+02 
5.16591E+01 
1.93849E+01 
7.57144E+00 
3.26855E+00 
1.70446E+00 
1.13611E+00 
9.29615E-01 
8.54503E-01 
8.27297E-01 
8.17372E-01 
8.13729E-01 
8.12375E-01 
8.11876E-01 
8.11678E-01 
8.11592E-01 
8.11546E-01 
8.11302E-01 
8.11072E-01 
8.10843E-01 
8.10614E-01 
8.10386E-01 
8.10158E-01 
8.09930E-01 
8.09703E-01 
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Problem 16-A3 Neutron Flux at t = 10-4 seconds 
Z Position  Group 1 Flux Group 2 Flux Z Position Group 1 Flux Group 2 Flux 

1.00000E+00 
3.00000E+00 
5.00000E+00 
7.00000E+00 
9.00000E+00 
1.10000E+01 
1.30000E+01 
1.50000E+01 
1.70000E+01 
1.90000E+01 
2.10000E+01 
2.30000E+01 
2.50000E+01 
2.70000E+01 
2.90000E+01 
3.10000E+01 
3.30000E+01 
3.50000E+01 
3.70000E+01 
3.90000E+01 
4.09870E+01 
4.29609E+01 
4.49348E+01 
4.69087E+01 
4.88826E+01 
5.08565E+01 
5.28304E+01 
5.48044E+01 
5.67783E+01 
5.87522E+01 
6.07261E+01 
6.27000E+01 
6.46739E+01 
6.66479E+01 
6.86218E+01 
7.05957E+01 
7.25696E+01 
7.45435E+01 
7.65174E+01 
7.84913E+01 
8.04653E+01 
8.24392E+01 
8.44131E+01 
8.63870E+01 
8.82740E+01 
9.00740E+01 
9.18740E+01 
9.36740E+01 
9.54740E+01 
9.74365E+01 
9.95615E+01 
1.01687E+02 
1.03812E+02 
1.05937E+02 
1.08062E+02 
1.10187E+02 
1.12312E+02 

3.39199E+01 
5.55229E+01 
7.68779E+01 
9.92293E+01 
1.23293E+02 
1.49627E+02 
1.78763E+02 
2.11265E+02 
2.47752E+02 
2.88914E+02 
3.35531E+02 
3.88490E+02 
4.48795E+02 
5.17601E+02 
5.96235E+02 
6.86258E+02 
7.89575E+02 
9.08687E+02 
1.04738E+03 
1.21264E+03 
1.37516E+03 
1.51343E+03 
1.64118E+03 
1.76031E+03 
1.87157E+03 
1.97517E+03 
2.07107E+03 
2.15911E+03 
2.23911E+03 
2.31084E+03 
2.37410E+03 
2.42870E+03 
2.47448E+03 
2.51128E+03 
2.53899E+03 
2.55750E+03 
2.56672E+03 
2.56653E+03 
2.55678E+03 
2.53710E+03 
2.50673E+03 
2.46401E+03 
2.40528E+03 
2.32267E+03 
2.25450E+03 
2.22951E+03 
2.23214E+03 
2.26190E+03 
2.31978E+03 
2.44663E+03 
2.61100E+03 
2.74770E+03 
2.86553E+03 
2.96813E+03 
3.05688E+03 
3.13217E+03 
3.19397E+03 

1.14326E+01 
2.12028E+01 
3.05636E+01 
4.01778E+01 
5.02251E+01 
6.08339E+01 
7.21181E+01 
8.41791E+01 
9.70998E+01 
1.10940E+02 
1.25727E+02 
1.41442E+02 
1.58006E+02 
1.75253E+02 
1.92906E+02 
2.10534E+02 
2.27503E+02 
2.42896E+02 
2.55332E+02 
2.61797E+02 
2.63163E+02 
2.65807E+02 
2.71834E+02 
2.79568E+02 
2.88275E+02 
2.97466E+02 
3.06767E+02 
3.15882E+02 
3.24574E+02 
3.32647E+02 
3.39949E+02 
3.46350E+02 
3.51749E+02 
3.56054E+02 
3.59203E+02 
3.61134E+02 
3.61793E+02 
3.61147E+02 
3.59150E+02 
3.55770E+02 
3.50977E+02 
3.44719E+02 
3.36802E+02 
3.26092E+02 
3.17260E+02 
3.14142E+02 
3.14729E+02 
3.18866E+02 
3.26789E+02 
3.44135E+02 
3.66755E+02 
3.86200E+02 
4.03740E+02 
4.19536E+02 
4.33649E+02 
4.46142E+02 
4.57096E+02 

1.14437E+02 
1.16562E+02 
1.18687E+02 
1.20812E+02 
1.22937E+02 
1.25062E+02 
1.27187E+02 
1.29311E+02 
1.31274E+02 
1.33074E+02 
1.34874E+02 
1.36674E+02 
1.38474E+02 
1.40361E+02 
1.42335E+02 
1.44309E+02 
1.46283E+02 
1.48257E+02 
1.50231E+02 
1.52204E+02 
1.54178E+02 
1.56152E+02 
1.58126E+02 
1.60100E+02 
1.62074E+02 
1.64048E+02 
1.66022E+02 
1.67996E+02 
1.69970E+02 
1.71944E+02 
1.73918E+02 
1.75892E+02 
1.77865E+02 
1.79839E+02 
1.81813E+02 
1.83787E+02 
1.85761E+02 
1.87748E+02 
1.89748E+02 
1.91748E+02 
1.93748E+02 
1.95748E+02 
1.97748E+02 
1.99748E+02 
2.01748E+02 
2.03748E+02 
2.05748E+02 
2.07748E+02 
2.09748E+02 
2.11748E+02 
2.13748E+02 
2.15748E+02 
2.17748E+02 
2.19748E+02 
2.21748E+02 
2.23748E+02 
2.25748E+02 

3.24212E+03 
3.27633E+03 
3.29626E+03 
3.30138E+03 
3.29070E+03 
3.26230E+03 
3.21187E+03 
3.12989E+03 
3.06437E+03 
3.04325E+03 
3.03959E+03 
3.05317E+03 
3.08429E+03 
3.16685E+03 
3.27495E+03 
3.35465E+03 
3.41408E+03 
3.45710E+03 
3.48553E+03 
3.50024E+03 
3.50162E+03 
3.48996E+03 
3.46541E+03 
3.42814E+03 
3.37833E+03 
3.31616E+03 
3.24187E+03 
3.15567E+03 
3.05784E+03 
2.94871E+03 
2.82854E+03 
2.69763E+03 
2.55617E+03 
2.40424E+03 
2.24155E+03 
2.06709E+03 
1.87824E+03 
1.65625E+03 
1.43054E+03 
1.24111E+03 
1.07842E+03 
9.37309E+02 
8.14350E+02 
7.06950E+02 
6.12975E+02 
5.30610E+02 
4.58277E+02 
3.94608E+02 
3.38386E+02 
2.88552E+02 
2.44159E+02 
2.04364E+02 
1.68397E+02 
1.35530E+02 
1.05002E+02 
7.58344E+01 
4.63285E+01 

4.66631E+02 
4.74908E+02 
4.82137E+02 
4.88608E+02 
4.94712E+02 
5.00995E+02 
5.08347E+02 
5.19341E+02 
5.28383E+02 
5.31722E+02 
5.33278E+02 
5.33135E+02 
5.31194E+02 
5.25449E+02 
5.19394E+02 
5.16713E+02 
5.15139E+02 
5.13842E+02 
5.12343E+02 
5.10293E+02 
5.07453E+02 
5.03638E+02 
4.98733E+02 
4.92660E+02 
4.85390E+02 
4.76935E+02 
4.67350E+02 
4.56718E+02 
4.45174E+02 
4.32902E+02 
4.20136E+02 
4.07186E+02 
3.94442E+02 
3.82401E+02 
3.71722E+02 
3.63399E+02 
3.59719E+02 
3.57798E+02 
3.48921E+02 
3.31897E+02 
3.10844E+02 
2.87644E+02 
2.63547E+02 
2.39421E+02 
2.15853E+02 
1.93220E+02 
1.71749E+02 
1.51547E+02 
1.32639E+02 
1.14987E+02 
9.85116E+01 
8.30968E+01 
6.86052E+01 
5.48806E+01 
4.17480E+01 
2.89616E+01 
1.56161E+01 
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