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𝑎𝑘= product attribute; 

𝐴= set of product attributes; 

𝐴𝐴𝑐𝑡𝑖𝑣𝑒 = set of updated attributes 

𝑎𝑖𝑙
∗ = attribute level; 

𝐴𝑖
∗= set of attribute levels for a attribute; 

𝑝𝑗 = product profile; 

𝑃 = set of products; 

𝛺𝐸𝑥𝑖𝑠𝑡 = existing product line; 

𝛺𝑁𝑒𝑤 = new product line; 

𝐶𝑗 = engineering cost of a product; 

𝑠𝑘 = market segment; 

𝑆 =set of market segments; 

𝑄𝑘 = size of a market segment; 

𝑈𝑘𝑗 = customer-perceived utility of a product; 

𝐷𝑘𝑗 = probability of a customer choosing a product; 

𝑢𝑘𝑖𝑙 = part-worth utility of segment 𝑠𝑘  for the lth level of attribute 𝑎𝑖; 

𝑤𝑗𝑖 = utility weights among attributes; 

𝜋𝑗= constant of composite utility for a product; 

𝜀𝑘𝑗 = error term for a segment-product pair; 

𝜇 = scaling parameter of conditional multinomial logit choice rule; 

𝑃𝐶𝐼𝑗= process capability index corresponding to a product; 

𝐿𝑆𝐿𝑇 = lower specification limit of cycle time estimation; 

𝜇𝑗
𝑇= mean value of the estimated cycle time corresponding to a product; 

𝜎𝑗
𝑇= standard deviation of the estimated cycle time corresponding to a product; 

𝛽 = constant indicating the average dollar cost per variation of process capabilities; 

𝜁𝑗𝑖/𝜔𝑗 = regression coefficients; 
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𝑡 = mean value of the part-worth standard time for attribute level 𝑎𝑘𝑙
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SUMMARY 
 

 

 

Product line planning aims at optimal planning of product variety. In addition, the traditional 

product line planning problem develops new product lines based on product attributes without 

considering existing product lines. However, in reality, almost all new product lines evolve from 

existing product lines, which leads to the product line evolution problem. Product line evolution 

involves trade-offs between the marketing perspective and engineering perspective. The 

marketing concern focuses on maximizing utility for customers; the engineering concern focuses 

on minimizing engineering cost. Utility represents satisfaction experienced by the customers of a 

product. Engineering cost is the total cost involved in the process of the development of a 

product line. These two goals are in conflict since the high utility requires high-end product 

attributes which could increase the engineering cost and vice versa. Rather than aggregating both 

problems as one single level optimization problem, the marketing and engineering concerns 

entail a non-collaborative game per se. This research investigates a game-theoretic approach to 

the product line evolution problem. A leader-follower joint optimization model is developed to 

leverage conflicting goals of marketing and engineering concerns within a coherent framework 

of game theoretic optimization. To solve the joint optimization model efficiently, a bi-level 

nested genetic algorithm is developed. A case study of smart watch product line evolution is 

reported to illustrate the feasibility and potential of the proposed approach. 

 



1 
 

CHAPTER 1: INTRODUCTION 
 

 

 

This chapter introduces the motivation of this research in section 1.1, defines the research 

objectives and scope in section 1.2, and then outlines the organization of this thesis in section 1.3. 

1.1 Motivation 

1.1.1 Mass customization 

By taking the benefit of mass production efficiency, mass customization introduces product 

proliferation, which satisfies increasing diversification of customer needs and improves the sales 

(Pine 1993). However, the benefits do not keep increasing as variety increasing. Variety can 

cause exponential growth of complexity and diminish the efficiency of manufacturing processes, 

thus the engineering costs would increase; it can also jeopardize the efficiency of the 

manufacturing process (Wortmann et al., 1997). In addition, mass customization may lead to 

mass confusion (Huffman and Kahn, 1998). A wide variety of products provides customers too 

many choices, which is more than the customer needs. Therefore, companies should offer proper 

product varieties to customers (Pine et al., 1993). For example, Nissan reportedly offered 87 

different types of steering wheels; 20% of Toyota’s product variety accounted for 80% of its 

sales. Moreover, different markets may have different customer needs. Therefore, companies 

should offer different product varieties to different target markets. 

The company should make the decision on product varieties at the early stage of the entire 

product design process because this is a key decision. Once this decision is fixed, large amount 

of costs are committed for the remainder of the design process. Therefore, the quality of the 

decision made on product varieties is very important.  
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A product is customized by choosing different attributes. A product attribute is an element for a 

product. It is also called option or feature for product. Therefore, a product is composed of 

various attributes. For example, the CPU type, storage size and battery life are all attributes of a 

laptop.  

Product line is a set of products with similar functions but having some different characteristics 

offered by the same company. Traditional product line planning problem develops new product 

line based on attributes without considering existing product line. However, in reality, almost all 

new product lines evolve from existing product line, which leads to product line evolution 

problem. For a product line evolution, the existing product line should serve as parameters when 

developing new product lines.  

1.1.3 Marketing-engineering trade-off 

There are two perspectives for product line evolution, marketing perspective and engineering 

perspective. Traditionally, product line planning focuses on marketing perspective. The goal for 

product line planning is to maximize the profit, sale or customer perceived value (utility). 

Therefore, it is necessary to measure the customer preference. Conjoint analysis is one of the 

most popular preference-based techniques for identifying and evaluating new product concepts 

(Green and Krieger, 1985; 1996.). From the engineering perspective, the main goal is to 

minimize the engineering cost. It is very difficult to measure the exact engineering costs at the 

early stage of product lifecycle.  

Previously, marketing and engineering perspectives are considered as a collaborative problem, 

which means they can achieve global optimization results to satisfy both requirements. However, 

maximizing customer perceived value and minimizing engineering costs are non-collaborative, 

which means the goals of the marketing and engineering perspectives are in conflict. For 



3 
 

example, assume a high-end computer and a low-end computer are at the same price. The 

computer with high-end configurations such as an i7-CPU, 16GB memory and 1TB SSD could 

provide higher customer perceived value than the low-end computer with i3-CPU, 4GB memory 

and 512GB HDD. However, the engineering cost for a low-end computer is much less than the 

high-end one. From the marketing perspective, high-end computers are preferred since customers 

have higher preferences to purchase them due to high utilities. From the engineering perspective, 

low-end computers are preferred since engineering cost including the design and manufacturing 

cost is less. Therefore, the optimization should trade off the marketing perspective and 

engineering perspective. 

1.2 Research objectives and scope 

The objective of this research is to develop a game theoretic optimization for product line 

evolution to assist company to provide right choices of products. This research introduces the 

evolution process into the product line planning problem, which most previous literature does not 

cover. In addition, the product line evolution problem is treated as a non-collaborative game in 

this research, since the goals of marketing and engineering perspectives are in conflict. There are 

two stages for product line evolution, which are the product line generation stage and the 

optimization stage (Li and Azarm, 2002).This research focuses on the optimization stage of the 

product line evolution, which means that the attributes need to be optimized and their 

information are all provided. The optimization for the product line evolution is a combinatorial 

optimization problem. A bi-level nested genetic algorithm (BNGA) is developed in this thesis to 

solve this problem. A case study of smart watch is reported to illustrate the feasibility and the 

potential of the proposed approach. This research targets the competitive markets where the 

producers need to improve their profits to survive. The profit in this research is not measured 
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directly. The profit is considered maximized when the utility is maximized while the engineering 

cost is minimized. To evaluate the quality of the results, the utility/cost ratio for the product line 

should be computed. The larger the ratio is, the better the results are. This research does not 

consider the competitors’ decisions. All decisions are made based on the company’s existing 

product line and new added attributes. The customer perceived values are calculated based on the 

part-worth utility, customer preference and the demand quantity for specific market segments. 

The engineering costs are calculated based on standard time estimation (Tseng and Jiao, 1996), 

and the demand for each product.  

1.3 Organization of the thesis 

There are in total 7 chapters for this thesis. Chapter 1 is a general introduction to this research 

which illustrates the motivation of product line evolution. Chapter 2 is the literature review on 

product line planning and evolution from both marketing and engineering perspective. The 

literature review also covers the design optimization and then the game theory for product line 

planning. Chapter 3 covers the problem formulation for game theoretic decisions on product line 

evolution. This chapter develops a product line evolution model with marketing and engineering 

interaction. Since the product line evolution is a non-collaborative game, it is formulated as a 

leader-follower joint optimization. In chapter 4, the methodology to deal with leader-follower 

joint optimization of marketing and engineering is developed. For this methodology, bi-level 

nested genetic algorithm is adopted as the solution which is described in chapter 5. Chapter 6 

uses the smart watch as a use case to validate the model and the solution strategy for product line 

evolution. Chapter 7 presents the conclusion for the research, and also discusses the limitations 

and future work for this research. 
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CHAPTER 2: LITERATURE REVIEW 
 

 

 

This chapter systematically reviews the literature from four perspectives. Section 2.1 reviews the 

product line planning. Section 2.2 reviews the design optimization for product line planning 

problem. Section 2.3 summarizes the game theory used for design optimization. And Section 2.4 

reviews current theory and methodology for product line evolution process. 

2.1 Product line planning 

For the product line planning, most literature maximizes the surplus in order to get the optimal 

combination of different products. The surplus is the margin between the customer perceived 

value and the price of the products (Kaul and Rao, 1995; Kohli and Sukumar, 1990). There are 

also other goals used to select products among potential products such as maximization of profit 

(Monroe et al., 1976), market share (Kohli and Krishnamurti, 1987), a seller’s welfare (McBride 

and Zufryden, 1988), share of choices (Balakrishnan and Jacob, 1996), and net present value (Li 

and Azarm, 2002).  

QFD and conjoint analysis have been combined to compare the most preferred features with 

profit maximizing features to optimize the sales or profits of product line (Pullmana et al., 2002). 

Product line commonality measure for product line can capture the level of component 

commonality in a product family in order to minimize non-value added variations across models 

without limiting customer choices (Kota et al., 2002). 

For the product line, most papers are in marketing literature, which focus on the marketing 

perspective to maximize profit. However, very few of them model the costs of engineering 

design (Yano and Dobson, 1998). Green and Krieger (1985) did not incorporate prices or costs in 
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their product line models. Then Dobson and Kalish (1988, 1993) extended to include per-product 

fixed cost. Product line design models include more complex cost structures recently. Raman and 

Chhajed (1995) and Kim and Chhajed (2001) have noticed that the product line planning must 

choose the manufacturing process for the products in addition to choosing which products to 

offer. Dobson and Yano (1994) studied complex interaction by considering per-product fixed 

costs, resources shared by multiple products, and technology choices for each. Radas and Sayney 

(2001) also analyze the fixed cost of a component shared by two products. Chidambaram and 

Agogino (1999) have formulated the product line analysis as an optimization problem which is 

consistent with the manufacturer’s goal to minimize costs in the redesign of existing standard 

components, and meet the customer specifications and design constraints at the same time. 

In addition, product line planning involves two stages: generation of a set of feasible product 

alternatives, and construction of a product line by selecting products from the reference set (Li 

and Azarm, 2002). There are two categories of existing approaches to product line planning 

which are one-step approaches and two-step approaches (Steiner and Hruschka, 2002). One-step 

approaches use part-worth preference and cost-return functions to construct the product line 

directly. Two-step approaches reduce the entire set of feasible product profiles to a smaller set 

first, then select products from this reduced set to construct a product line. Kohli and Sukumar 

(1990) and Nair et al. (1995) used one-step approaches. However, most literature adopts the two-

step approaches and focus on maximizing the profit in the second step (McBride and Zufryden, 

1988; Dobson and Kalish, 1993; Chen and Hausman, 2000). Generally speaking, the one-step 

approach is better than two-step approach since the intermediate step for the two-step approach 

of enumerating utilities and profits of a large quantity of reference set product profiles can be 

eliminated by using one-step approach (Steiner and Hruschka, 2002). The two-step approach 
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works better only when the reference set contains small number of product profiles. Hence, most 

literature only involves small number of attributes to describe the product (Yano and Dobson, 

1998). 

2.2 Design optimization 

Traditional design optimization emphasizes more on the designer’s perspective (Tarasewich and 

Nair, 2001). The primary concern of product design optimization is to measure customer 

preference in terms of expected utilities (Krishnan and Ulrich, 2001). For preference-based 

product design, conjoint analysis (Green and Krieger, 1985) has been proven to be an effective 

method to estimate part-worth utilities of individual attribute levels with individual product 

attributes. The market shares of potential products can be simulated by collecting scaled 

preference evaluations from respondents with regard to a subset of a subset of product profiles 

with multiple attributes which is constructed according to fractional factorial design. Then, the 

part-worth preference functions could be estimated using regression analysis. The part-worth 

utilities of attribute level can also be measured using choice-based conjoint analysis, and then 

establishes a direct connection between preference and choice (Kuhfeld, 2004). Generally, 

conjoint analysis uses discrete attribute, and thus the product design optimization using conjoint-

based searching is always a combinatorial optimization problem (Kual and Rao, 1995; Kohli and 

Sukumar, 1990; Nair et al., 1995). 

Multi-attribute utility analysis is widely used to predict total utilities for feasible product profile 

composed of underlying attribute level part-worth utilities (Keeney and Raiffa, 1976). Multi-

attribute utility analysis assumes that the utility of each attribute are mutually independent 

(Wassenaar and Chen, 2001). However, for the product line, this may not be true because the 
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customer perceived value (utility) of an individual attribute may vary due to the availability of 

other offerings. 

Furthermore, multi-attribute weighting and normalization must be considered when combining 

individual attribute utility functions into one multi-attribute utility function. The weight for each 

attribute should be determined based on the rank order of alternatives. But a selected alternative 

may result from the underlying voting method rather than the quality of the alternative itself 

(Saari, 2000). Normalization is often used to assist the comparison of design alternatives when 

the attributes have different metrics or dimensions. The normalized value depends on the relative 

position of the attribute level within the range of values, and thus, there is not a rigorous method 

to determine the normalizing range (Wassenaar and Chen, 2001).  The weighted sum method 

which assigns different weights to attributes is often adopted for the relative importance of 

multiple attributes. However, the weights assignment is subjective and often results in bias when 

an attribute is correlated to a product’s success (Arrow and Raynaud, 1986). In addition, the 

weight sum method assumes a linear tradeoff, which is only true for limited variation of attribute 

levels (Wassenaar and Chen, 2001). Therefore, this method is not suitable for product line 

planning since the number of attributes and levels could be large. Wassenaar and Chen (2001) 

have addressed the necessity to use a single criterion approach to decision-based design, which 

should reflect various issues regarding customers, design and manufacturing. 

2.3 Game theory 

The product line planning problem needs to address two concerns which are marketing and 

engineering. Previously, the marketing perspective and engineering perspective are combined 

into an all-in-one problem, and then to find the global optimal results (Jiao and Zhang, 2005). 

However, these two perspectives are non-collaborative. Therefore, product line planning should 
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be a bi-level optimization problem. It is originated from game theory with a hierarchical 

optimization problem (Stackelberg, 1952). In the bi-level optimization problem, the lower-level 

optimization problem which is the follower is nested within the upper-level optimization 

problem which is the leader (Colson et al., 2007). The leader and the follower compete against 

each other; the leader makes the decision first and then the follower reacts based on the leader’s 

decision to make his/her optimal decision as feedback, and then the leader adjusts the decision 

accordingly (Du et al., 2014). The process terminates when both actors obtain satisfactory 

solutions. However, the solution to the bi-level programming is hard to obtain, mainly because of 

non-convexity (Calvete et al., 2008). Traditional solutions usually replace the lower-level 

problem with its Karush-Kuhn-Tucker (KKT) conditions which are the conditions when it is 

convex and continuous differentiable, and then applying gradient methods (Calvete et al., 2008). 

However, this type of approaches is not efficient for large problems, and may lead to a paradox 

that the follower’s decision dominates the leader’s (Lai, 1996). Recently, evolutionary 

algorithms are adopted to deal with complex optimization problems such as genetic algorithms. 

Evolutionary algorithms usually have low risks of ending up in a local optimum (Brands and van 

Berkum, 2014).  Calvete et al. (2008) combine classical enumeration techniques with genetic 

algorithm to achieve near-optimal solutions in reasonable computational times. Ji et al. (2013) 

adopts a constrained genetic algorithm to solve a leader-follower joint optimization problem of 

technical system modularity and material reuse modularity.  

2.4 Product line evolution 

Traditionally, product line planning is treated as a static optimization problem. In practice, 

companies usually update the product lines by introducing new products and retiring old ones 

gradually, which is a process that mimics the natural evolution (Tellis and Merle Crawford, 1981, 
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Sorenson 2000). The evolution concept has been recognized as a general design methodology for 

a wide range of applications (Hingston et al., 2008). Its application for product design has been 

emphasized on individual product (Otto and Wood, 1998; Maher and Tang, 2003), but few on 

product line planning. Ramdas and Sawhney (2001) utilized incremental revenue and life-cycle 

costs to evaluate multiple product line extensions. Bryan et al. (2007) proposed a co-evolution 

model with the goal of maximizing incremental profit for joint design of product lines and 

assembly system configurations. 

2.5 Chapter summary 

Previously, product line planning is based on individual attributes. The new product line does not 

consider the existing product. However, in reality, almost all new product lines are developed 

from existing product lines. Therefore, the input for the new product line should be the existing 

product line.  
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CHAPTER 3: GAME THEORETIC DECISIONS FOR PRODUCT LINE 

EVOLUTION 
 

 

 

In this chapter, the problem formulation for product line evolution is represented in section 3.1, 

which illustrates the product line evolution process and clarifies the design factors. Section 3.2 

shows that the product line evolution problem is a non-collaborative game. More specifically, it 

is a leader-follower game which is described in section 3.3. Section 3.4 formulates the problem 

as a bi-level joint optimization problem and defines the design variables for this problem. 

3.1 Product line evolution 

For the existing product line, each attribute is 𝑎𝑖 , and a set of product attributes, 𝐴 =

{𝑎𝑖|𝑖 = 1, … , 𝐼} are identified, where 𝑖 is the index of each attribute, and 𝐼 is the total number of 

available attributes. The attributes may have several levels as 𝐴𝑖
∗ = {𝑎𝑖𝑙

∗ |𝑙 = 1, … , 𝐿𝑖}, where 𝑙 is 

the index of each attribute level, and 𝐿𝑖 is the total number of attribute levels for each attribute. 

Each product is 𝑝𝑗, and the potential product profiles, 𝑃𝐸𝑥𝑖𝑠𝑡 = {𝑝𝑗
𝐸𝑥𝑖𝑠𝑡|𝑗 = 1, … , 𝐽} are generated 

by selecting the attributes, where 𝑗 is the index of each product, and 𝐽 is the total number of 

potential products. A product line 𝛺𝐸𝑥𝑖𝑠𝑡, is a set consisting of several selected product profiles, 

i.e., 𝛺𝐸𝑥𝑖𝑠𝑡 = {𝑝𝑗
𝐸𝑥𝑖𝑠𝑡|𝑗 = 1, … , 𝐽∗} ⊆ 𝑃𝐸𝑥𝑖𝑠𝑡 , ∃𝐽∗ ∈ {1, … , 𝐽}, where 𝐽∗ is the number of products 

for the product line. For the new product line, 𝑁 new product attributes are added to the existing 

attributes. Therefore, the updated product attribute set is 𝐴𝐴𝑐𝑡𝑖𝑣𝑒 = {𝑎𝑖|𝑖 = 1, … , 𝐼 + 𝑁}. The 

new potential product profiles, 𝑃𝑁𝑒𝑤 = {𝑝𝑗
𝑁𝑒𝑤|𝑗 = 1, … , 𝐽} , are generated by selecting the 

updated attributes. The new product line, 𝛺𝑁𝑒𝑤, consists of new selected product profiles, i.e., 

𝛺𝑁𝑒𝑤 = {𝑝𝑗
𝑁𝑒𝑤|𝑗 = 1, … , 𝐽∗} ⊆ 𝑃𝑁𝑒𝑤. Figure 3-1 illustrates the product line evolution.   
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The product line evolution is generic and easy to implement. As shown in the figure, the new set 

of attributes is added to the existing set of attributes to generate the updated attribute set 𝐴𝐴𝑐𝑡𝑖𝑣𝑒. 

The new product line 𝛺𝑁𝑒𝑤 consists of new product profiles that are combination of selected 

attributes. Compared to the existing product line 𝛺𝐸𝑥𝑖𝑠𝑡, the new product line may drop some of 

the existing attributes and add new attributes. Some products in 𝛺𝑁𝑒𝑤may be identical to the 

products in 𝛺𝐸𝑥𝑖𝑠𝑡 . In addition, the product line evolution can serve future generations by 

continuously adding new product attributes to the updated feature set. Figure 3-2 shows the 

product line evolution for the second generation. 𝛺𝐸𝑥𝑖𝑠𝑡  and 𝛺𝑁𝑒𝑤1 are combined as the new 

𝛺𝐸𝑥𝑖𝑠𝑡, new attributes are also given. 𝛺𝑁𝑒𝑤2is the product line for the second generation. 

Figure 3-3 shows the evolution of product line for future generations. For the first generation 

product line, 𝛺𝐸𝑥𝑖𝑠𝑡 is given, 𝛺𝑁𝑒𝑤1 needs to be found. For the second generation, 𝛺𝐸𝑥𝑖𝑠𝑡  and 

𝛺𝑁𝑒𝑤1 are given, 𝛺𝑁𝑒𝑤2needs to be found. The future generations follow this.  

 

 

 

Figure 3-3. Product Line Evolution by Generations 

 

 

 

From the marketing perspective, there are several market segments, 𝑆 = {𝑠𝑘|𝑘 = 1, … , 𝐾}. Each 

market segment contains customers with size 𝑄𝑘. The customer preferences on different products 

are described by part-worth utilities, {𝑈𝑘𝑗}
𝐾𝐽

. The demand of the diverse products, {𝐷𝑘𝑗}
𝐾𝐽

, is 
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represented by the customer choice probabilities. From the engineering perspective, each product 

has engineering cost, {𝐶𝑗}
𝐽
, and price {$𝑗}

𝐽
. The goal of the product line planning is to find the 

optimal combinations of attributes and their level of respective market segments to maximize the 

customer perceived value for marketing and minimize the engineering cost for engineering. 

3.2 Non-collaborative game 

The goal of the marketing perspective is to maximize the customer perceived value. In general, 

higher customer perceived value leads to higher engineering costs. However, the goal of the 

engineering perspective is to minimize the engineering costs. The decrease of the engineering 

costs generally diminishes the customer perceived value. Therefore, the goals of the marketing 

concern and engineering concern conflict with each other. Thus, they formulate a non-

collaborative game. Traditionally, the product line planning problem is formulated to an all-in-

one problem, which means the engineering and marketing perspectives are combined into one 

problem. Then a global optimal result can be found for this all-in-one problem. However, there is 

no global optimal result that can be generated for a non-collaborative game. The optimization 

process must leverage between the two concerns in order to generate an equilibrium result. 

3.3 Leader-follower game 

There are various types of games for non-collaborative game. For the marketing-engineering 

interaction, the non-collaborative game has two levels. Therefore, this is a bi-level competition. 

The bi-level competition is described by Stackelberg game that involves one leader and one 

follower. Therefore, leader-follower game is adopted in this research. The marketing perspective 

is treated as the leader (upper level). The engineering perspective is treated as the follower 
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(lower level). The leader-follower game assumes that both actors have certain decision power, 

and the leader has higher priority than the follower. 

3.4 Bi-level joint optimization 

The product line evolution involves a bi-level joint optimization problem. It consists of an upper 

level optimization problem and a lower level optimization problem. For the product line, 

maximizing the customer perceived value (upper level) and minimizing the engineering cost 

(lower level) should be joint together. Figure 3-4 shows that the optimization should leverage 

both marketing and engineering perspective. The upper level needs to find an optimal set of 

attributes and their levels to maximize the customer perceived value. Therefore, the leader has 

the design variable, 𝑋, which represents the choice of attributes and their levels. The lower level 

has the design variable 𝑌 to find an optimal set of products to minimize the engineering cost. The 

design variable 𝑌 is the decision of offering a product.  

 

 

 

 

Figure 3-4. Bi-level Joint Optimization for Marketing-Engineering Interaction 
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3.5 Chapter Summary 

This chapter formulates the product line evolution problem with description of all design factors 

including the attributes and their levels, the potential products and the existing and new product 

lines. The product line evolution problem is a non-collaborative game since maximizing the 

customer perceived value and minimizing the engineering cost has conflict goals. Furthermore, 

product line evolution is a leader-follower game. The marketing perspective is the leader, and the 

engineering perspective is the follower. Then the bi-level joint optimization model is formulated. 
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CHAPTER 4: LEADER-FOLLOWER JOINT OPTIMIZATION 
 

 

 

This chapter illustrates the methodology to solve the problem formulated in chapter 3. Section 

4.1 shows the theoretic ground to solve the bi-level optimization model. Section 4.2 describes 

different types of leader-follower joint optimization. Section 4.3 discusses solution strategies for 

the product line evolution. Section 4.4 illustrates detailed solution for the joint optimization of 

marketing and engineering interaction. This section describes upper level model, lower level 

model, and then the joint optimization model.  

4.1 Bi-level programming 

In general, the bi-level model formulation can be represented as follows (Bard, 1998; Colson et 

al., 2007): 

Max𝐗 𝐹(𝐗, 𝐘), (4-1.1) 

                     s.t.   𝐺(𝐗, 𝐘) ≤ 0, 𝐗 ∈ 𝐑𝑠, (4-1.2) 

                       𝐘  is solved from (4-1.3) 

                              Max𝐘 𝑓(𝐗, 𝐘), (4-1.4) 

                                                    s.t.   𝑔(𝐗, 𝐘) ≤ 0, 𝐘 ∈ 𝐑𝑡, (4-1.5) 

where 𝐗 and 𝐹 are the decision variables and objective functions for the upper level optimization 

problem; 𝐘  and 𝑓  are the decision variables and objective functions for the lower level 

optimization problem. 𝐺 and 𝑔 are vector valued functions showing the constraints for the upper 

and lower level respectively. The bi-level optimization problem can be solved in three steps: 

Step1: The leader makes a decision, 𝑿∗, using his/her own strategy 𝐹(𝐗, 𝐘). And then informs 

the follower with this decision and a set of constraints; 
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Step 2: The follower makes a decision, 𝒀∗, according to his/her own strategy 𝑓(𝐗, 𝐘) and the 

leader’s decision, 𝑿∗.  And then the follower gives the leader feedback of the decision 𝒀∗. 

Step 3: The leader adjusts its decision to obtain a new decision 𝑿∗∗ based on 𝐹(𝐗, 𝐘) and 𝒀∗. 

These steps are iterated until both leader and follower achieve their satisfactory results (Ji et al., 

2013). Equation (4-1) can be converted into a single-level parametric optimization problem 

(Colson et al., 2007): 

Max 𝐹(𝐗, 𝐘′(𝐗)), (4-2.1) 

                    s.t.   𝐺(𝐗, 𝐘′(𝐗)) ≤ 0, 𝐗 ∈ 𝐑𝑠. 

 

(4-2.2) 

It is converted based on the unique response function, 𝐘 = 𝐘′(𝐗). Equation 3 is essentially a bi-

level optimization problem. But it does not need to go through the three steps directly, and 

evolutionary algorithms are proposed to solve this problem efficiently (Li et al., 2014). 

4.2 Leader-follower joint optimization 

There are several types of leader-follower joint optimization.  

1 leader-1 follower: there are only two actors in this model. The leader makes decision first, and 

then the follower reacts to this decision to make his/her optimal decision. The leader will change 

his/her decision based on the follower’s decision. Therefore, the leader has higher priority than 

the follower. 

1 leader-multiple followers: there are more than two actors in this model. The leader makes 

decision first, and then all followers (at least two) react to this decision to make their optimal 

decisions. The followers do not interchange information among themselves. The leader will then 

modify his/her decision based on all followers’ decisions. 
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Nested: for the nested leader-follower joint optimization, it can be 1 leader-1 follower or 1 

leader-multiple followers. For this type of optimization, after the leader modifies his/her decision, 

he will inform the follower again. Then the follower will also modify the decision. These steps 

are iterated until satisfactory results are achieved for both the leader and the follower. 

For this research, the nested leader-follower joint optimization is used. There are 1 leader and 1 

follower in the problem. In addition, the product line evolution should find the optimal results 

that both leader and follower are satisfied with results. 1 leader-1 follower joint optimization 

cannot fully meet the requirements. Therefore, nested leader-follower joint optimization is used. 

4.3 Solution strategies 

The formulation in equation 4-1 is an integer non-linear bi-level programming problem. This 

equation involves two design variables, which are the choice of attributes and the choice of 

products(𝑋, 𝑌). To solve the bi-level optimization problem, there are accurate solutions and 

heuristic solutions. One example of the accurate solutions is replacing the lower-level with its 

KKT conditions as stated in Chapter 2. The accurate solutions are not efficient; therefore, 

heuristic solutions can be used to find the near-optimal solutions. The bi-level optimization 

problem can be solved by bi-level nested genetic algorithm (BNGA). For BNGA, both the upper 

and lower level problems are solved by genetic algorithm. The upper level needs to obtain the 

optimal solution 𝑋 using GA. The output 𝑋 of the upper level is used as the input to the lower 

level to find the optimal solution 𝑌 also using GA. This output 𝑌 is as a feedback to the upper 

level. Then the upper level takes 𝑌  as input to get the updated solution 𝑋∗ . This process is 

iterated until both the upper and lower level get the satisfactory solutions. This methodology is 

called BNGA since it has two levels of GA, and the lower level GA is nested into the upper level 
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GA. Each level optimizes one design variable and this design variable is taken as input to the 

other level. 

4.4 Joint optimization of marketing-engineering 

4.4.1 Upper level: Marketing  

From the marketing perspective, the part worth utility of the 𝑘-th segment of the 𝑗 -th product is 

𝑈𝑘𝑗. The part worth utility for each attribute level in the specific market segment is analyzed 

using conjoint analysis. 𝑈𝑘𝑗 is assumed as a linear function of the part worth utilities of each 

attribute level of product 𝑝𝑗, which is shown in equation 4-3 (Jiao and Zhang, 2005). 

 𝑈𝑘𝑗 = ∑ ∑ (𝑤𝑗𝑖𝑢𝑘𝑖𝑙𝑥𝑗𝑖𝑙 + 𝜋𝑗) + 𝜀𝑘𝑗
𝐿𝑘
𝑙=1

𝐼
𝑖=1  (4-3) 

where ukil is the part-worth utility for the 𝑙-th level of attribute 𝑎𝑖 of the 𝑘-th segment. 𝑤𝑗𝑖 is the 

weights of attribute 𝑎𝑖 contained in the product 𝑝𝑗. 𝜋𝑗 is the constant related to the derivation of a 

composite utility with respect to product 𝑝𝑗. 𝜀𝑘𝑗 is each segment-product pair’s error term. 𝑥𝑗𝑖𝑙 is 

a binary design variable, 𝑥𝑗𝑖𝑙 = 1  if the 𝑙 -th level of attribute 𝑎𝑖  is chosen for product 𝑝𝑗 , 

otherwise, 𝑥𝑗𝑖𝑙 = 0. 

The customer preference model can also be generated from conjoint analysis. Customer’s 

preference is modeled by relative preference and is shown in Equation 4-4 (Jiao and Zhang, 

2005). The relative preference is 𝑈𝑘𝑗  of the overall utilities of all the products related to the 

market segment. The probabilistic choice rule used is the conditional multinomial logit choice 

rule (MNL).  

 𝐷𝑘𝑗 =
𝑒

𝛼𝑈𝑘𝑗

∑ 𝑒𝛼𝑈𝑘𝑛𝑁
𝑛=1

 (4-4) 
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where {𝑈𝑘𝑛}𝑁 is the associated deterministic utilities for all product alternatives considered in 

the choice set, which may also include competitor’s products, 𝑁 denotes the size of the choice 

set, and α is a scaling parameter.  

4.4.2 Lower level: Engineering 

The cost estimation is very difficult especially at the product line planning phase, since the 

details design of the product is not available at this point. At this level, only potential attributes 

are available to choose. In addition, design and manufacturing resources could be shared among 

multiple products in mass customization (Moore et al., 1999). Therefore, the traditional fixed 

costs and variable costs estimation are not suitable for product line planning.  

In addition, the cost advantages in mass customization rely on the mass production efficiency. 

Therefore, it is more important to analyze the magnitudes of deviations from existing product 

and process platforms due to design changes and process variations in relation to product variety 

to justify optimal product offerings rather than the absolute amount of dollar costs (Tseng and 

Jiao, 1996). Therefore, Jiao and Tseng (2004) have proposed to model the cost of providing 

variety based on varying impacts on process capabilities. The process capability index is used to 

handle the sunk costs related to product line and shared resources. This research uses a pragmatic 

costing approach based on standard time estimation developed by Jiao and Tseng (1999) for 

engineering costs estimations. The idea of pragmatic costing approach is to allocate costs to 

established standard time. Therefore, there is no need to identify various cost drivers and cost-

related activities. Therefore, for product line, the cost is estimated based on the part-worth 

standard time of different attribute levels. The cost of each product is estimated based on its 

expected cycle time. The expected cycle time is calculated by aggregating part-worth standard 

times of selected attributes. The expected cycle time can be used as a performance indicator of 
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variation in process capabilities (Jiao and Tseng, 2004). The cycle time is used to justify the 

engineering cost, and thus the smaller it is the better. The cycle time can be described by normal 

distributions. Therefore, the one-side control limit specification capability index 𝑃𝐶𝐼 using 3-

sigma can be describe in Equation 4-5. 

 𝑃𝐶𝐼 =
𝜇𝑇−𝐿𝑆𝐿𝑇

3𝜎𝑇  (4-5) 

where 𝜇𝑇 is the mean of the estimated cycle time, 𝜎𝑇 is the standard deviation of the cycle time, 

and 𝐿𝑆𝐿𝑇 is the lower specification limit. The 𝐿𝑆𝐿𝑇  can be determined based on the best case 

analysis of a given process platform, in which standard routings can be reconfigured to 

accommodate various products derived from the corresponding product platform (Jiao et al., 

2004). 𝑃𝐶𝐼 is large when the production process is easy to implement, and is small when the 

production process is difficult. A penalty function for a product, 𝐶𝑗 ,is introduced as the cost 

function based on the 𝑃𝐶𝐼 which is shown in Equation 4-6. 

𝐶𝑗 = 𝛽𝑒
1

𝑃𝐶𝐼𝑗 = 𝛽𝑒

3𝜎𝑗
𝑇

𝜇𝑗
𝑇−𝐿𝑆𝐿𝑇

 (4-6) 

where 𝛽 is a constant to indicate the average dollar per variation of process capabilities. 𝑃𝐶𝐼𝑗 is 

the respective process capability of the product 𝑝𝑗 . 𝜇𝑗
𝑇  and 𝜎𝑗

𝑇  are the mean and standard 

deviation of the estimated cycle time for product 𝑝𝑗. 𝐿𝑆𝐿𝑇 is the baseline of cycle times for all 

products which are produced within the process platform. The mean and standard deviation are 

calculated using Equation 4-7 and 4-8 respectively. 

𝜇𝑗
𝑇 = ∑ ∑ (𝜁𝑗𝑖𝜇𝑖𝑙

𝑡 𝑥𝑗𝑖𝑙 + 𝜔𝑗)
𝐿𝑖
𝑙=1

𝐼
𝑖=1  (4-7) 

𝜎𝑗
𝑇 = √∑ ∑ (𝜎𝑖𝑙

𝑡 𝑥𝑗𝑖𝑙)2𝐿𝑖
𝑙=1

𝐼
𝑖=1  (4-8) 
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where 𝜁𝑗𝑖 and 𝜔𝑗 are regression coefficient. 𝜇𝑖𝑙
𝑡  and 𝜎𝑖𝑙

𝑡  are the mean and standard deviation of the 

part-wort standard time of the 𝑙-th level of attribute 𝑎𝑖. 

4.4.3 Joint optimization model 

By comparing the upper level model and the lower level model, the joint optimization model is 

constructed as below: 

               𝐌𝐚𝐱𝐗  ∑ ∑ 𝑼𝒌𝒋𝑫𝒌𝒋𝑸
𝒌

𝒚
𝒋

𝑱
𝒋=𝟏

𝑲
𝒌=𝟏  (4-9.1) 

             s. t. 𝑈𝑘𝑗 = ∑ ∑ (𝑤𝑗𝑖𝑢𝑘𝑖𝑙𝑥𝑗𝑖𝑙 + 𝜋𝑗) + 𝜀𝑘𝑗
𝐿𝑖
𝑙=1

𝐼
𝑖=1 ,     𝑖 ∈ {1, … , 𝐼}, 𝑗 ∈ {1, … , 𝐽},   𝑘 ∈ {1, … , 𝐾} (4-9.2) 

                        𝐷𝑘𝑗 =
𝑒

𝜇𝑈𝑘𝑗

∑ 𝑒𝜇𝑈𝑘𝑛𝑁
𝑛=1

,      𝑘 ∈ {1, … , 𝐾}, 𝑗 ∈ {1, … , 𝐽}, (4-9.3) 

                     ∑ ∑ 𝑥𝑗𝑖𝑙 = 1,
𝐿𝑖

𝑙=1
𝐼
𝑖=1         𝑖 ∈ {1, … , 𝐼}, 𝑗 ∈ {1, … , 𝐽}, (4-9.4) 

                     ∑ ∑ |𝑥𝑗𝑖𝑙 − 𝑥𝑗′𝑖𝑙| > 0,    𝑗, 𝑗′ ∈
𝐿𝑖
𝑙=1

𝐼
𝑖=1 {1, … , 𝐽}, 𝑗 ≠ 𝑗′, (4-9.5) 

                        ∑ 𝑦𝑗 ≤ 𝐽∗,   𝐽∗ ∈ 𝐽
𝑗=1 {1, … , 𝐽}, (4-9.6) 

                     𝑥𝑗𝑖𝑙 , 𝑦𝑗  ∈ {0,1}, 𝑖 ∈ {1, … , 𝐼}, 𝑗 ∈ {1, … , 𝐽}, 𝑙 ∈  {1, … , 𝐿𝑖}, (4-9.7) 

                     𝐌𝐢𝐧𝐘 ∑ ∑ 𝑪𝒋𝑸
𝒌

𝒚
𝒋

𝑱
𝒋=𝟏

𝑲
𝒌=𝟏  (4-9.8) 

                         𝑠. 𝑡. 𝐶𝑗 = 𝛽𝑒

3𝜎𝑗
𝑇

𝜇𝑗
𝑇−𝐿𝑆𝐿𝑇

,    
(4-9.9) 

                                 𝑠. 𝑡.  𝜇𝑗
𝑇 = ∑ ∑ (𝜁𝑗𝑖𝜇𝑖𝑙

𝑡 𝑥𝑗𝑖𝑙 + 𝜔𝑗)
𝐿𝑖
𝑙=1

𝐼
𝑖=1 ,      𝑖 ∈ {1, … , 𝐼}, 𝑗 ∈ {1, … , 𝐽},   (4-9.10) 

                                    𝜎𝑗
𝑇 = √∑ ∑ (𝜎𝑖𝑙

𝑡 𝑥𝑗𝑖𝑙)2𝐿𝑖

𝑙=1
𝐼
𝑖=1 ,  𝑖 ∈ {1, … , 𝐼}, 𝑗 ∈ {1, … , 𝐽}, 𝑙 ∈  {1, … , 𝐿𝑖}. (4-9.11) 

where Equation 4-9.1 and 4-9.8 show the objective functions for upper and lower level 

respectively. The design variable needs to be optimized for the upper level is 𝑋, which is a set of 

choices of each attribute level for potential products. The design variable needs to be optimized 

for the lower level is 𝑌, which is a set of decisions of offering of each product. Equation 4-9.4 

shows that each product must consist of at least one attribute. Equation 4-9.5 describes that two 
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products cannot be the same in the product line. Equation 4-9.6 shows that the number of 

products in the product line cannot exceed the defined maximum number of products for the 

product line.  

4.5 Chapter Summary 

This chapter describes the methodology to solve the leader-follower joint optimization of product 

line evolution. The theoretic ground for the bi-level programming is illustrated with general 

solution step for the bi-level joint optimization. Then three types of leader-follower joint 

optimization are described. Both the accurate and heuristic solution strategies for bi-level joint 

optimization are discussed in this chapter. Then detailed upper level model to maximize the 

customer perceived value and lower level model to minimize engineering cost are presented. At 

last, the joint optimization model for the product line evolution problem which is the 

combination of the upper and lower level model is illustrated.  
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CHAPTER 5: BI-LEVEL NESTED GENETIC ALGORITHM (BNGA) 
 

 

 

This chapter illustrates the development of bi-level nested genetic algorithm to solve the problem 

as formulated in Chapter 3 using the methodology developed in Chapter 4. Section 5.1 describes 

the rational to use BNGA solve the product line evolution problem. Section 5.2 shows the 

procedure of BNGA with a process flow chart. Section 5.3 explains the detailed software 

implementation of BNGA using MATLAB. 

5.1 Rational of BNGA 

Twelve attributes of three levels each may generate 312 = 531441 possible products. A product 

line consisting of five products may produce (312)5 + (312)4 + (312)3+(312)2+(312)1 =

4.239 × 1028 possible combinations.  Therefore, it is not feasible to use enumeration to get the 

optimal product line. Complete enumeration to obtain optimal product selections in product line 

planning becomes numerically prohibitive (Tarasewich and Nair, 2001). In addition, product line 

planning problems are combinatorial optimization problems because typical attributes used are 

discrete (Kaul and Rao, 1995). Nearly all product line planning problems are NP-hard problem, 

therefore, heuristic solution strategies have been proposed to solve this type of problems (Nair et 

al., 1995). For the combinatorial optimization problem, it has been proven that genetic algorithm 

(GA) is excel comparing with traditional calculus based or approximation optimization 

techniques (Steiner and Hruschka, 2002).  

GA uses a probabilistic technique based on the principle of natural selection. For product line 

planning, GA allows product profiles to be constructed directly from attribute level part-worth 

data (Kohli and Sukumar, 1990). Therefore, it can facilitate the one-step approach for the 
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product line planning problem. In addition, the product line evolution problem cannot be solved 

using two-step approach. In other words, the product profiles for the potential product line must 

be constructed from attribute level part-worth data other than the reference set enumeration. 

Therefore, GA is adopted in this research to solve the joint optimization problem in Equation 4-9. 

Since this is a leader-follower game, a bi-level nested GA (BNGA) is developed. BNGA has two 

levels corresponding to the upper and lower levels. The lower level is nested into the upper level.  

5.2 BNGA procedure 

 (1) Chromosome Coding: The first step to implement the BNGA is the encoding of the product 

and product line into chromosome. Figure 5-1 shows the GA composition for the upper and 

lower level of the model. For the upper level, the chromosome represents the potential products, 

and is also the design variable 𝑋, which indicates the choice of attribute levels for the potential 

products. For the lower level, the chromosome represents the product line, which is also the 

design variable 𝑌, the decision of offerings of the potential products.  

 

 

 
Figure 5-1. GA Composition 
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For one product, the chromosome contains 𝐼 genes. Each gene represents an attribute. The value 

for the gene shows the attribute level. If the value is 0, this attribute is not selected for the 

respective product. Assume the product line will contain at most five products; a chromosome 

consisting of a 5-element string is coded. Each gene represents one product. If the value of the 

gene is 1, the product is chosen for the product line; otherwise, it is not selected. Figure 5-2 and 

Figure 5-3 show the detailed chromosome encoding for lower level and upper level respectively. 

 

 

 

 

Figure 5-2. Chromosome Encoding for Lower Level 
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 (2) Initialization: The initialization should generate initial solutions to the problem. The initial 

solution can be generated using random number generator (rand in MATLAB). The population 

size 𝑀 determines number of chromosome strings encoded for each run. A larger number of 𝑀 

gives GA a larger chance of success since it can search in more solution space. 𝑀 also affects the 

efficiency of the algorithm. A larger 𝑀 will lead to more calculations and reduce the efficiency 

of GA. 

(3) Fitness function: Fitness function is used to evaluate each individual chromosome within the 

population of each generation. The fitness function of the upper level model is Equation 4.9-1, of 

the lower level is Equation 4.9-8.  

(4) Selection and reproduction: The fitness function is used to evaluate all generated 

chromosomes and then rank them in descending order. Only the top N chromosomes will be kept. 

The GA starts the parent selection and reproduction after the fitness function defined. Parent 

selection allocates reproductive opportunities for the chromosome among the population, which 

is based on the fitness value of individual chromosome.  

(5) Crossover: Crossover is a genetic operator that can vary a chromosome from one generation 

to the next. After reproduction, each pair of two parent strings is randomly chosen and undergoes 

crossover with a probability. For each pair, the two individual chromosomes exchange their 

genetic composition to generate their offspring. Therefore, the offspring has some fragments of 

genes from each parent. This research uses a single point random crossover operator. The 

crossover operator randomly selects the cut-point. Then the offspring copies the first parent’s 

genes from the start to the crossover point, and then inherits the second parent’s genes from the 

crossover point to the end. The probability of crossover is defined by the crossover rate, which 

describes the percentage of chromosomes undergoing crossover in each generation.  
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(6) Mutation: Mutation is a genetic operator applied to each individual offspring after crossover, 

which is used to maintain and introduce genetic diversity from one generation to the next. It 

randomly picks a gene within each individual chromosome and alter the attribute level. The 

probability is defined by the mutation rate. The mutation rate of 0.001 is adopted, which is 

suggested that can produce good solutions from empirical findings (Gen and Cheng, 2000).  

(7) Termination: The reproduction and crossover processes will not be terminated until the 

maximum iteration number is arrived. If the maximum iteration number is not reached, but the 

population has converged, the processes will also be terminated since the optimal solution has 

already been found. GA uses a moving average rule to indicate the convergence. 

Figure 5-4 shows the process flow of BNGA. After the initialization process, the upper level GA 

runs to find the attribute choice in order to maximize the utility. Then, the termination criteria for 

the BNGA is checked. If the BNGA is not terminated, the updated attribute choices are input to 

lower level GA. Lower level GA runs to find the optimal decisions of product offerings to 

minimize engineering cost. The updated product choices are feedback to the upper level GA. 

Then the upper level GA runs again to find the new optimal attribute choices for potential 

products. This process iterates until it meets the termination criteria of the BNGA. 
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Figure 5-4. Process Flow of BNGA 
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5.3 Software implementation 

This research adopts MATLAB as the software to implement the BNGA. The program is shown 

in the appendix. There are three functions defined in the program. The fitness function for upper 

level to maximize the customer perceived value, the fitness function for lower level to minimize 

the engineering cost, and the main function for BNGA which specifies the initialization, 

constraints and GA for both levels.  

 

 

Figure 5-5. MATLAB Program for BNGA 

 

 

 

Figure 5-4 shows the iterations for BNGA in MATLAB. options_x and options_y shows the 

options for upper and lower level’s GA respectively. FF_UL is the fitness function for upper level. 

It calls the upper level function UpperLevel(x,y). @(x) means x is the variable which needs to 

while e<n 

    options_x = gaoptimset('PlotFcns',@gaplotbestf,'TolFun',1e-8,... 

         'PopulationSize',1000,'PopInitRange',bound_x,'Generations',500,... 

         'CrossoverFraction',0.55); 

    FF_UL=@(x) UpperLevel(x,y); 

    

[x,fval_x,exitflag_x]=ga(FF_UL,I*J,[],[],[],[],lb_x,ub_x,[],IntCon_x,options_x) 

     

    utility=1./(UpperLevel(x,y)); 

    cost=LowerLevel(y,x); 

    ratio=utility/cost; 

    ratio_o=[ratio_o ratio]; 

    u_gen=[u_gen utility]; 

    c_gen=[c_gen cost]; 

    x_all=[x_all; x]; 

    y_all=[y_all; y]; 

    

    options_y = gaoptimset('PlotFcns',@gaplotbestf,'TolFun',1e-8,... 

         'PopulationSize',1000,'PopInitRange',bound_x,'Generations',100,... 

         'CrossoverFraction',0.55); 

    FF_LL=@(y) LowerLevel(y,x); 

    cons=@constraint; 

    

[y,fval_y,exitflag_y]=ga(FF_LL,J,[],[],[],[],lb_y,ub_y,cons,IntCon_y,options_y) 

     

    e=e+1; 

end 
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be maximized for this fitness function. This program uses MATLAB function ga for genetic 

algorithm. ga is used to find the minimum of the function. Therefore, the upper level function 

calculates 1/utility.  The first argument for ga function is the fitness function. The second one is 

the number of variables need to be maximized.  lb_x , ub_x, lb_y and ub_y define the lower 

bound and upper bound for variables of both levels respectively. The initial input for the upper 

level is defined by the rand function in MATLAB.  The output of the upper level, x, is the input 

for the lower level. Then the output of the lower level, y, is feedback to the upper level. This 

process will iterate for n generations. For each individual generation, the GA for upper level 

terminates when it runs for 500 generations or the change of mean of the fitness function is less 

than 10-8; the GA for lower level terminates when it runs for 100 generations or the change of 

mean of the fitness function is less than 10-8.  

The utility, cost and utility/cost ratio for n generations of are recorded. Then the value and index 

for the maximum utility/cost ratio is found. The index is used to locate the corresponding x and 

y, which are the decisions of attributes offerings and product offerings. 

5.4 Chapter Summary 

This chapter first illustrates the rational of BNGA to solve the leader-follower joint optimization 

for product line evolution. The BNGA can solve the mixed integer combinatorial problem 

efficiently. Then the detailed procedure of BNGA is shown with a process flow chart. The last 

section explains the MATLAB implementation of BNGA. 
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CHAPTER 6: CASE STUDY OF SMART WATCH  
 

 

 

In this chapter, a case study of smart watch is reported to illustrate the proposed methodology 

and solution. Section 6.1 introduces the case. Section 6.2 presents the results for the case study. 

Section 6.3 analyzes the results to validate the proposed approach, and also compares the bi-level 

joint optimization with all-in-one optimization to show the advantage of this method. 

6.1 Problem context 

Smart watch is a type of wearable device. It combines the functionality of traditional watch like 

timekeeping and some features of computers or mobile phone. A smart watch may include 

features such as touchscreen, camera, pedometer, etc. Compared to computers and mobile 

phones, smart watches are more advanced in the size, interfaces and especially service packages 

such as health related applications, E-payment service, etc. There are large amount features for 

smart watch. Therefore, it is necessary to select and find the optimal combination of these 

features to maximize the customer perceived value and minimize engineering cost. In addition, 

smart watch is relatively a new product. Hence, it evolves and updates very often. Therefore, 

product line evolution is very necessary for smart watch design. For the smart watch, feature is 

treated as attribute for product line evolution. Table 6-1 shows the attributes and their levels for 

smart watch. 
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Table 6-1. Attributes and Levels for Smart Watch 

Attribute Attribute Levels 

𝒂𝒊 Description 𝒂𝒊𝒍
∗  Code Description 

𝑎1 Display shape 
𝑎11

∗  A1-1 Round 

𝑎12
∗  A1-2 Square 

𝑎2 Display size 

𝑎21
∗  A2-1 1.3 in2 

𝑎22
∗  A2-2 1.6 in2 

𝑎23
∗  A2-3 2.0 in2 

𝑎3 
Internal 

memory 

𝑎31
∗  A3-1 1GB 

𝑎32
∗  A3-2 4GB 

𝑎33
∗  A3-3 8GB 

𝑎4 
 

Connectivity 

𝑎41
∗  A4-1 Wi-Fi 

𝑎42
∗  A4-2 Wi-Fi & Cellular 

𝑎43
∗  A4-3 GPS & Cellular 

𝑎44
∗  A4-4 Wi-Fi, Cellular & GPS 

𝑎5 Battery life 
𝑎51

∗  A5-1 < 20 hours 

𝑎52
∗  A5-2 > 20 hours 

 
𝑎6 

 
Input device 

𝑎61
∗  A6-1 Touchscreen &microphone 

𝑎62
∗  A6-2 Microphone & camera 

𝑎63
∗  A6-3 Button & microphone 

𝑎64
∗  A6-4 Touchscreen, microphone &camera 

𝑎7 Output device 

𝑎71
∗  A7-1 Speaker 

𝑎72
∗  A7-2 Speaker &IR blaster 

𝑎73
∗  A7-3 Vibration/Haptic engine 

𝑎8 
Health & 

Fitness Sensor 

𝑎81
∗  A8-1 Pedometer 

𝑎82
∗  A8-2 Pedometer & Heart rate sensor 

𝑎83
∗  A8-3 Heart rate & SpO2 sensor 

𝑎9 
Environment 

sensor 

𝑎91
∗  A9-1 Light sensor 

𝑎92
∗  A9-2 Digital compass & barometer 

𝑎93
∗  A9-3 Gyrometer & light sensor 

𝑎10 
Operation 

System 

Compatibility 

𝑎101
∗  A10-1 Android 

𝑎102
∗  A10-2 iOS 

𝑎103
∗  A10-3 Android & iOS 

𝑎11 
Health & 

Fitness Service 

𝑎111
∗  A11-1 Exercise monitor 

𝑎112
∗  A11-2 Exercise monitor & sleep monitor 

𝑎113
∗  A11-3 Sleep monitor & family doctor 

𝑎12 
Utilities 

Software 

𝑎121
∗  A12-1 Notifications 

𝑎122
∗  A12-2 Voice recognition & personal assistant 

𝑎123
∗  A12-3 Notifications & media controller 

𝑎124
∗  A12-4 Notifications & E-payment 

𝑎125
∗  A12-5 

Voice recognition , personal assistant & E-

payment 
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There are in total 12 attributes and each attribute has several levels. These attributes are chosen 

based on research of existing products. These are the attributes that are different and provide 

variety of smart watch. These attributes are classified into three categories: 𝑎1  to 𝑎7  are 

traditional hardware; 𝑎8 and  𝑎9 are service related hardware; 𝑎10 to  𝑎12 are software. There are 

three market segments considered in this case study: the teenagers, adults and senior. The part-

worth utilities for the attribute levels to each market segment and the part-worth standard time 

estimations are shown in the appendix. 

6.2 Results 

The part-worth utilities for the attribute levels to each market segment and the part-worth 

standard time estimations are inputs for the BNGA MATLAB program described in section 5.3. 

The product line results in highest utility/cost ratio is considered the optimal solution. Table 6-2 

shows the optimal solution for the smart watch product line. It contains 3 products. Product 2 is a 

low-end product that serves as a traditional watch. Product 1 and 3 are both high-end products 

but with different types of output device, sensors and services, which can satisfy customer needs 

for different market segments.  
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Table 6-2. Optimal Solution for Smart Watch Product Line 

Decision of 

attribute offerings 

{1,2,3,4,2,4,3,3,2,3,3,5;2,1,1,1,2,0,3,0,0,1,0,0;2,3,1,3,1,0,0,0,0,1,0,0;2,2,1,

1,1,0,0,0,0,1,0,0;1,3,1,3,2,0,0,0,0,1,0,0;1,2,3,4,2,4,2,2,2,3,2,5} 

Decision of 

product offerings 
{1,1,0,0,0,1} 

 Product 1 Product 2 Product 3 

Display shape Round Square Round 

Display size 1.6 in2 1.3 in2 1.6 in2 

Internal memory 8 GB 1 GB 8 GB 

Connectivity Wi-Fi, Cellular & GPS Wi-Fi Wi-Fi, Cellular & GPS 

Battery life > 20 hours > 20 hours > 20 hours 

Input device 
Touchscreen, 

microphone &camera 
Nil. 

Touchscreen, 

microphone &camera 

Output device 
Vibration/Haptic 

engine 

Vibration/Haptic 

engine 
Speaker &IR blaster 

Health & fitness 

sensor 

Heart rate & SpO2 

sensor 
Nil. 

Pedometer & Heart 

rate sensor 

Environment 

sensor 

Digital compass & 

barometer 
Nil. 

Digital compass & 

barometer 

OS compatibility Android & iOS Android Android & iOS 

Health & fitness 

service 

Sleep monitor & 

family doctor 
Nil. 

Exercise monitor & 

sleep monitor 

Utilities software 

Voice recognition , 

personal assistant & 

E-payment 

Nil. 

Voice recognition , 

personal assistant & E-

payment 
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6.3 Analysis 

For BNGA, the upper level minimizes 1/utility, and the lower level minimizes the engineering 

cost. For each individual iteration, the best value of the fitness function and mean value of the 

fitness function for both levels look like Figure 6-1 and 6-2 respectively. 

 

 

 

 

Figure 6-1. 1/Utility (Upper Level) for An Individual Iteration using GA 

 

 

 

 

Figure 6-2. Cost (Lower Level) for An Individual Iteration using GA 
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Figure 6-3, 6-4 and 6-5 shows the utilities, costs and utility/cost ratios among the 500 iterations. 

The maximum utility/cost ratio occurs at the 430th iteration. For the 430th generation, the utility 

is 1037, the cost is 1.238, and the utility/cost ratio is 837.1.   

 

 

 

 

Figure 6-3. Utility among 500 Iterations 

 

 

 

 

Figure 6-4. Cost among 500 Iterations 
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Figure 6-5. Utility/Cost Ratio among 500 Iterations 

 

Table 6-3 and Figure 6-6 show the comparison of maximum ratio, maximum utility and 

minimum cost points among the 500 generations. Among the 500 generations, the maximum 

utility occurs at the 84th generation. At this generation, the cost is more compared to the cost of 

the 430th generation, and the cost/utility ratio is less than that of the 430th generation. The 

minimum cost occurs at the 454th generation.  

 

 

Table 6-3 Comparison of Maximum Ratio, Maximum Utility and Minimum Cost 

 Generation 
Cost/Utility 

Ratio 
Utility Cost 

𝐦𝐚𝐱(𝐂𝐨𝐬𝐭/𝐔𝐭𝐢𝐥𝐢𝐭𝐲 𝐑𝐚𝐭𝐢𝐨) 430 837.1 1037 1.238 

𝐦𝐚𝐱(𝐔𝐭𝐢𝐥𝐢𝐭𝐲) 84 836.8 1040 1.242 

𝐦𝐢𝐧(𝐂𝐨𝐬𝐭) 454 808.0 997.6 1.235 
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Figure 6-6. Comparison of Maximum Ratio, Maximum Utility and Minimum Cost 

 

 

 

A comparison experiment is tested using the shared-surplus method (Jiao and Zhang, 2005). This 

is an all-in-one method. The cost/utility ratio among the process of GA is shown in Figure 6-6. 

For this experiment, the optimal utility/cost ratio is 419.8. Therefore, the bi-level joint 

optimization using BNGA can produce double utility/cost ratio compared to the all-in-one 

method. The all-in-one method is more efficient than bi-level joint optimization since this 

method only need to run single level GA once. The proposed approach need to run the upper 

level GA and lower level GA for 500 iterations. For each iteration, the upper level GA will get 

the optimal results in around 150 generations, and the lower level GA will get the optimal 

solution in around 20 generations. Although the bi-level joint optimization model is less efficient, 
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it can get much better results than the all-in-one method. Therefore, it is worth the cost of 

efficiency. 

 

 

 

Figure 6-7. Cost/Utility using All-In-One Method 

 

 

 

6.4 Chapter Summary 

This chapter presents a case study of smart watch. The problem context is first illustrated. Then 

the optimal solution for the smart watch product line is presented. The optimal product line 

consists of three products to maximize the utility/cost ratio. Then the results are analyzed to 

show that the proposed approach leveraging marketing and engineering perspective is better than 

only using the upper level or lower level model. Also, an all-in-one method which combines the 

utility and cost in one equation and use only one level of GA is used to find the optimal solutions. 

The optimal solutions derived from all-in-one methods can only produce half of the utility/cost 

ratio derived from the bi-level joint optimization model.   
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CHAPTER 7: CONCLUSIONS 
 

 

 

This chapter concludes this thesis in three sections. The first section presents the contributions of 

this thesis. Section 7.2 shows the limitations of the research. Finally, section 7.3 briefly discusses 

the work could be done in the future based on current research. 

7.1 Contribution  

This research illustrates the new idea of product line evolution. Product line evolution is 

originated from the product line planning problem. It updates the product line based on existing 

product lines. It can also serve for future generations. Then this thesis proposes a bi-level joint 

optimization model for product line evolution. Compared to the traditional all-in-one model to 

product line evolution problem, joint optimization model can leverage the conflict goals of 

marketing perspective and engineering perspective.  

Product line evolution is a combinatorial optimization problem. Hence, a bi-level genetic 

algorithm is developed and applied to this combinatorial optimization problem. BNGA is 

composed of two individual GA operations for the upper level model and lower level model. The 

lower level GA is nested into the upper level GA. BNGA is used to find the optimal solutions for 

the attribute choice and the product choice. 

A case study of smart watch product line evolution is reported to illustrate the feasibility and 

potential of the proposed approach. Compared to all-in-one method, the bi-level optimization 

model could generate double utility/cost ratio. 
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7.2 Limitations 

There are still some limitations in this research. This thesis only focuses on the optimization 

stage of the product line evolution and does not propose new methodology for the product line 

generation stage. The current case study addresses the traditional static optimization for the 

product line evolution. It does not show the dynamic process of the product line evolution. For 

the evolution purpose, the proposed approach can only select product attributes from what 

manufacturers already have, rather than creating new attributes. Hence, it cannot innovate new 

ideas for the product designer. It is only able to assist the company to construct products from 

available attributes. Moreover, this research does not consider competitor’s product. In addition, 

factors such as the new technologies, the releasing time of a new product which will influence 

the customer’s preferences and the perceived value are not considered in this research.  

In addition, BNGA is a stochastic method. Therefore, it can only find the near-optimal solutions 

to the problem, but cannot guarantee to find the best solutions. 

7.3 Future work 

Based on the current computational model and approach, more work can be done to make this 

research more complete. An improved method could be developed for the product line 

generation stage in order to get a better product line evolution model. The competitors’ products 

should be involved into the model. Since most companies will react to their competitors’ new 

product lines, the competition model should be developed to simulate the dynamic competition 

among the markets. For the case study, it only considers a small number of available attributes. 

However, the customers may consider many more factors when purchasing a product. In the 

future, a more comprehensive case study should be done to cover more attributes. In addition, 

future case study should also consist the dynamic optimization process for the product line 
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evolution problem. Moreover, this case study only considers three market segments. In reality, 

the markets are highly segmented due to various reasons such as geographical ones. 
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APPENDIX A: PART-WORTH DATA 
 

Table A-1. Part-Worth Preference and Standard Time Table 

Attribute 

Level 

Part-worth utility (customer segment) 

Part-worth standard time 

(assembly & testing 

operations) 

𝒔𝟏 𝒔𝟐 𝒔𝟑 𝝁𝒕(second) 𝝈𝒕 (second) 

A1-1 

A1-2 

0.92 

0.62 

0.81 

0.70 

0.69 

0.75 

436 

325 

10.8 

8.5 

A2-1 

A2-2 

A2-3 

0.63 

0.84 

0.56 

0.73 

0.68 

0.80 

0.62 

0.86 

0.98 

232 

298 

336 

4.1 

4.6 

5.1 

A3-1 

A3-2 

A3-3 

0.52 

0.86 

0.94 

0.54 

0.65 

0.78 

0.64 

0.73 

0.71 

648 

683 

725 

6.2 

6.4 

6.6 

A4-1 

A4-2 

A4-3 

A4-4 

0.83 

0.71 

0.68 

0.92 

0.65 

0.93 

0.84 

0.99 

0.76 

0.72 

0.68 

0.84 

278 

392 

416 

694 

4.4 

9.6 

10.3 

12.4 

A5-1 

A5-2 

0.72 

0.83 

0.64 

0.93 

0.52 

0.98 

184 

281 

3.6 

4.2 

A6-1 

A6-2 

A6-3 

A6-4 

0.94 

0.89 

0.62 

0.97 

0.85 

0.89 

0.81 

0.91 

0.72 

0.76 

0.82 

0.79 

428 

686 

317 

833 

9.8 

16.3 

7.4 

26 

A7-1 

A7-2 

A7-3 

0.88 

0.96 

0.93 

0.84 

0.89 

0.92 

0.94 

0.86 

0.81 

196 

361 

249 

3.7 

6.8 

4.4 

A8-1 

A8-2 

A8-3 

0.76 

0.91 

0.78 

0.71 

0.79 

0.93 

0.84 

0.92 

0.99 

207 

529 

672 

3.8 

12.1 

16.3 

A9-1 

A9-2 

A9-3 

0.71 

0.82 

0.79 

0.62 

0.95 

0.73 

0.53 

0.98 

0.67 

198 

273 

365 

3.7 

4.9 

7.0 

A10-1 

A10-2 

A10-3 

0.64 

0.86 

0.95 

0.79 

0.88 

0.97 

0.54 

0.57 

0.79 

98 

105 

182 

10.2 

13.5 

20.6 
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Table A-1 (continued). 

Attribute 

Level 

Part-worth utility (customer segment) 

Part-worth standard time 

(assembly & testing 

operations) 

𝒔𝟏 𝒔𝟐 𝒔𝟑 𝝁𝒕(second) 𝝈𝒕 (second) 

A11-1 

A11-2 

A11-3 

0.59 

0.73 

0.70 

0.66 

0.81 

0.86 

0.73 

0.88 

0.95 

79 

114 

237 

9.8 

16.8 

23.4 

A12-1 

A12-2 

A12-3 

A12-4 

A12-5 

0.72 

0.79 

0.84 

0.82 

0.97 

0.66 

0.83 

0.70 

0.81 

0.89 

0.55 

0.60 

0.57 

0.58 

0.73 

51 

226 

139 

154 

329 

5.6 

26.8 

17.3 

18.2 

35.9 
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APPENDIX B: MATLAB CODES FOR BNGA 
 

B-1 Main function 

function [x_all,y_all,ratio_o,u_gen,c_gen] = bnga(n) 
%%Initialization 
J=6; 
IntCon_x=1:(12*J); 
lb=[1 1 1 1 1 0 0 0 0 1 0 0]; 
ub=[2 3 3 4 2 4 3 3 3 3 3 5]; 
ub_x=[]; 
lb_x=[]; 

  
for i=1:J 
    ub_x=[ub_x ub]; 
    lb_x=[lb_x lb]; 
end 

  
bound_x=[lb_x;ub_x]; 

  
IntCon_y=1:J; 
lb_y=zeros(1,J); 
ub_y=ones(1,J); 
bound_y=[lb_y;ub_y]; 

  

  
function [c ceq]=constraint(y) 
c=[-(sum(y)-3)]; 
ceq=[]; 
end 

  
y=round(rand(1,J)); 
e=0; 
ratio_o=[]; 
u_gen=[]; 
c_gen=[]; 
x_all=[]; 
y_all=[]; 
while e<n 
    options_x = gaoptimset('PlotFcns',@gaplotbestf,'TolFun',1e-

8,'PopulationSize',1000,... 
        'PopInitRange',bound_x,'Generations',500,'CrossoverFraction',0.55,... 
        'MigrationFraction',0.55); 
    FF_UL=@(x) UpperLevel(x,y); 
    

[x,fval_x,exitflag_x]=ga(FF_UL,12*J,[],[],[],[],lb_x,ub_x,[],IntCon_x,options

_x) 
    utility=1./(UpperLevel(x,y)); 
    cost=LowerLevel(y,x); 
    ratio=utility/cost; 
    ratio_o=[ratio_o ratio]; 
    u_gen=[u_gen utility]; 
    c_gen=[c_gen cost]; 
    x_all=[x_all; x]; 
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    y_all=[y_all; y]; 

    
    options_y = gaoptimset('PlotFcns',@gaplotbestf,'TolFun',1e-

8,'PopulationSize',1000,... 
        'PopInitRange',bound_y,'Generations',100,'CrossoverFraction',0.55,... 
        'MigrationFraction',0.55); 
FF_LL=@(y) LowerLevel(y,x); 
cons=@constraint; 
[y,fval_y,exitflag_y]=ga(FF_LL,J,[],[],[],[],lb_y,ub_y,cons,IntCon_y,options_

y)     

 
    e=e+1; 
end 
end 

 

B-2 Upper level function 

function UL=UpperLevel(x,y) 
J = 6; 
K = 3; 
U(:,:,1)=[0,0.92, 0.62,0,0,0;... 
    0,0.63,0.84,0.56,0,0;... 
    0,0.52,0.86,0.94,0,0;... 
    0,0.83,0.71,0.68,0.92,0;... 
    0,0.72,0.83,0,0,0;... 
    0,0.94,0.89,0.62,0.97,0;... 
    0,0.88,0.96,0.93,0,0;... 
    0,0.76,0.91,0.78,0,0;... 
    0,0.71,0.82,0.79,0,0;... 
    0,0.64,0.86,0.95,0,0;... 
    0,0.59,0.73,0.70,0,0;... 
    0,0.72,0.79,0.84,0.82,0.97]; 
U(:,:,2)=[0,0.81,0.70,0,0,0;... 
    0,0.73,0.68,0.80,0,0;... 
    0,0.54,0.65,0.78,0,0;... 
    0,0.65,0.93,0.84,0.99,0;... 
    0,0.64,0.63,0,0,0;... 
    0,0.85,0.89,0.81,0.91,0;... 
    0,0.84,0.89,0.92,0,0;... 
    0,0.71,0.79,0.93,0,0;... 
    0,0.62,0.95,0.73,0,0;... 
    0,0.79,0.88,0.97,0,0;... 
    0,0.66,0.81,0.86,0,0;... 
    0,0.66,0.83,0.70,0.81,0.89]; 
U(:,:,3)=[0,0.69,0.75,0,0,0;... 
    0,0.62,0.86,0.98,0,0;... 
    0,0.64,0.73,0.71,0,0;... 
    0,0.76,0.72,0.68,0.84,0;... 
    0,0.52,0.98,0,0,0;... 
    0,0.72,0.76,0.82,0.79,0;... 
    0,0.94,0.86,0.81,0,0;... 
    0,0.84,0.92,0.99,0,0;... 
    0,0.53,0.98,0.67,0,0;... 
    0,0.54,0.57,0.79,0,0;... 
    0,0.73,0.88,0.95,0,0;... 
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    0,0.55,0.60,0.57,0.58,0.73]; 
Q=[50 20 30]; 
max_obj = 0; 
for j=1:J 
    x_in(j,:)=x(1+12*(j-1):12+12*(j-1)); 
end 
for k = 1:K 
    for j = 1:J 
        Ukj(k,j) = U(1,x_in(j,1)+1,k)+U(2,x_in(j,2)+1,k)+U(3,x_in(j,3)+1,k)... 
            +U(4,x_in(j,4)+1,k)+U(5,x_in(j,5)+1,k)+U(6,x_in(j,6)+1,k)... 
            +U(7,x_in(j,7)+1,k)+U(8,x_in(j,8)+1,k)+U(9,x_in(j,9)+1,k)... 
            +U(10,x_in(j,10)+1,k)+U(11,x_in(j,11)+1,k)+U(12,x_in(j,12)+1,k); 
        eUkj(k,j)=exp(Ukj(k,j)); 
    end 
end 

  
denominator=sum(eUkj'); 
for k=1:K 
    for j=1:J 
        Pkj(k,j)=eUkj(k,j)/denominator(k); 
    end 
end 

  
for k=1:K 
    for j=1:J 
        max_obj = max_obj + Ukj(k,j) * Pkj(k,j) * Q(k) * y(j); 
    end 
end 

  
UL=1/max_obj; 
end 

 

B-3 Lower level function 

function LL=LowerLevel(y,x) 
I = 50; 
J = 6; 
K = 3; 
LSL=45; 
beta=0.004; 
mu=[0,436,325,0,0,0;... 
    0,232,298,336,0,0;... 
    0,648,683,725,0,0;... 
    0,278,392,416,694,0;... 
    0,184,281,0,0,0;... 
    0,428,686,317,833,0;... 
    0,196,361,249,0,0;... 
    0,207,529,672,0,0;... 
    0,198,273,365,0,0;... 
    0,98,105,182,0,0;... 
    0,79,114,237,0,0;... 
    0,51,226,139,154,329]; 
sigma=[0,10.8,8.5,0,0,0;... 
    0,4.1,4.6,5.1,0,0;... 
    0,6.2,6.4,6.6,0,0;... 
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    0,4.4,9.6,10.3,12.4,0;... 
    0,3.6,4.2,0,0,0;... 
    0,9.8,16.3,7.4,26,0;... 
    0,3.7,6.8,4.4,0,0;... 
    0,3.8,12.1,16.,0,0;... 
    0,3.7,4.9,7.0,0,0;... 
    0,10.2,13.5,20.6,0,0;... 
    0,9.8,16.8,23.4,0,0;... 
    0,5.6,26.8,17.3,18.2,35.9]; 
Q=[50 20 30]; 
min_obj = 0; 
for j=1:J 
    x_in(j,:)=x(1+12*(j-1):12+12*(j-1)); 
end 
for k = 1:K 
    for j = 1:J 
        muj(j) = mu(1,x_in(j,1)+1)+mu(2,x_in(j,2)+1)+mu(3,x_in(j,3)+1)... 
            +mu(4,x_in(j,4)+1)+mu(5,x_in(j,5)+1)+mu(6,x_in(j,6)+1)... 
            +mu(7,x_in(j,7)+1)+mu(8,x_in(j,8)+1)+mu(9,x_in(j,9)+1)... 
            +mu(10,x_in(j,10)+1)+mu(11,x_in(j,11)+1)+mu(12,x_in(j,12)+1); 
        sigmaj(j) = 

sqrt(sigma(1,x_in(j,1)+1)^2+sigma(2,x_in(j,2)+1)^2+sigma(3,x_in(j,3)+1)^2 ... 
            

+sigma(4,x_in(j,4)+1)^2+sigma(5,x_in(j,5)+1)^2+sigma(6,x_in(j,6)+1)^2 ... 
            

+sigma(7,x_in(j,7)+1)^2+sigma(8,x_in(j,8)+1)^2+sigma(9,x_in(j,9)+1)^2 ... 
            

+sigma(10,x_in(j,10)+1)^2+sigma(11,x_in(j,11)+1)^2+sigma(12,x_in(j,12)+1)^2 ); 
        C(j)=beta*exp(3*sigmaj(j)/(muj(j)-LSL)); 
    end 
end 
for k=1:K 
    for j=1:J 
        min_obj = min_obj + C(j) * Q(k) * y(j); 
    end 
end 
LL=min_obj; 
end 
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