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ABSTRACT

A SYSTEM DYNAMICS APPROACH FOR THE
DEVELOPMENT OF A PATIENT-SPECIFIC PROTOCOL FOR

RADIOIODINE TREATMENT OF GRAVES’ DISEASE

MAY 2009

STEVEN J. MERRILL

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yossi Chait and Professor Christopher V. Hollot

The thyroid gland secretes hormones that help to govern metabolism and energy ex-

penditure within the body [1]; these hormones also affect growth and development. As a

result, the regulation of thyroid hormones is vital for maintaining an individual’s well being.

Graves’ disease is an autoimmune disorder and is a major cause of hyperthyroidism or an

overproduction of thyroid hormones. Radioactive iodine (RAI) therapy has become the pre-

ferred treatment with typical RAI protocols being based on the Marinelli-Quimby equation

to compute the dose; however, up to 90% of subjects become hypothyroid within the first

year after therapy. In this thesis we focus on the development of a new computational proto-

col for the calculation of RAI in the treatment of Graves’ hyperthyroidism. The new protocol

implements a two-compartment model to describe RAI kinetics in the body, which accounts

for the conversion between different RAI isotopes used in diagnostic and therapeutic appli-

vi



cations. Thus, by using the measured response of the subject’s thyroid to a test dose of 123I,

the model predicts what amount of RAI (131I) will be needed to reduce, through ablation,

the functional, thyroid volume/mass to an amount that would result in a normal metabolic

balance. A detailed uncertainty analysis was performed using both a standard propagation

of error method as well as a simulation method. The simulation method consisted of both

parametric and nonparametric bootstrapping techniques. Using clinical data consisting of

activity kinetics and mass dynamics of 17 subjects and measured final mass values of 7 of

the 17 subjects, we were able to validate the protocol as well as quantify the uncertainty

analysis. This protocol is the basis of an ongoing pilot study in conjunction with Cooley

Dickinson hospital, Northampton, MA.
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CHAPTER 1

INTRODUCTION

The thyroid gland secretes hormones that help regulate metabolism and energy expen-

diture within the body [1]; these hormones also affect growth and development. As a result,

the regulation of thyroid hormones is vital for maintaining an individual’s well being. One

form of thyroid dysfunction, which affects the secretion of hormones, is hyperthyroidism.

Hyperthyroidism occurs when there is an overproduction of thyroid hormones due to a vari-

ety of reasons. It can lead to mild/moderate health risks, including nervousness, weight loss,

sweating, tachycardia, and fatigue [1, 2, 3]. If left untreated, these symptoms can progress

to more severe symptoms. For example, nervousness can progress into mental status changes

and tachycardia can progress into arrhythmia.

When this overproduction of hormones is caused by thyroid stimulating anti-bodies,

produced by the autoimmune system, it is known as Graves’ Disease. Graves’ disease is the

most common form of hyperthyroidism and is more common in women than men [1, 2, 3].

Graves’ disease occurs in 1-2 % of Americans and is approximately eight times more frequent

in women than men [3]. As a result of the severity of the health risks mentioned above, a

safe and effective treatment for Graves’ disease is required. Currently, the three main forms

of treatment are surgery, medication, and radioactive iodine (RAI) therapy [1, 2, 3]:

1. Surgery. The surgical treatment option usually involves subtotal thyroidectomy or

the removal of most of the thyroid. While surgery is one of the oldest forms of therapy

for hyperthyroidism caused by Graves’ disease it is rarely used today [3]. Along with
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complicati ons that accompany any surgery such as bleeding and infection, there can

also be damage to the recurrent laryngeal nerve [3]. There is also debate on how

much thyroid tissue to remove [1]. If not enough tissue is removed there is a chance of

recurrent hyperthyroidism and if too much tissue is removed hypothyroidism (under

active thyroid gland) will result. Therefore, surgery is usually performed on a limited

number of cases involving children, pregnant women, and subjects with large goiters

[3].

2. Medication. The two main antithyroid medications are methimazole, MMI, and

propylthiouracil, PTU. The main action of MMI and PTU is to reduce thyroid hormone

production by inhibiting iodine oxidization in the thyroid [1, 3]. PTU has the added

effect of inhibiting conversion of the thyroid hormone Thyroxine, T4, to the more potent

thyroid hormone Triiodothyronine, T3, in peripheral tissue [3]. Antithyroid drugs are

usually associated with long-term treatment of Graves’ hyperthyroidism with subjects

being on antithyroid medication for 1-2 years [3]. It is reported in [1] that spontaneous

remission is seen in only 20-40 % of subjects treated with antithyroid drugs. Along

with the low remission rate, numerous side effects have been reported including fever,

rash, and agranulocytosis or a reduction in the number of white blood cells [3]. If

a patient is not euthyroid after 1-2 years, an alternative treatment is usually given

because of the ongoing risk and seriousness of the side effects.

3. Radioactive Iodine. Radioactive iodine therapy has been administered to treat

Graves’ hyperthyroidism for over 50 years [4]. It is reported in [5] that RAI has become

the primary treatment used by clinicians for the treatment of Graves’ hyperthyroidism

in the United States. RAI is administered orally in capsule form and is quickly con-

centrated in the thyroid. 131I, the most common radioiodine isotope used in therapy,

emits both beta and gamma radiation. However, it is only the beta radiation that
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causes thyroid cell destruction [3]. The idea is that the thyroid will produce less hor-

mones with fewer cells. Cell destruction is often referred to as mass destruction. RAI

is relatively safe as side effects are uncommon with the exception of hypothyroidism

[6]. Up to 90 % of subjects become hypothyroid within the first year after RAI therapy

and about 2 % to 3 % become hypothyroid each year following the first [3].

In this thesis, we focus on RAI therapy. Currently, there is an ongoing debate on how much

RAI activity needs to be administered. The three main protocols are to: 1) administer a

fixed dose of RAI activity to all subjects, 2) administer a dose of RAI activity that was

calculated using an absorbed dose that was fixed for all subject (i.e. the activity absorbed

per unit mass in the target region), and 3) administer a dose of RAI activity based on an

absorbed dose that has been calculated on a subject to subject basis. This debate will be

discussed in detail in Chapter 2. We will follow the third protocol in this thesis. We will

attempt to add rigor into the protocol by explicitly considering the underlying dynamics

governed by the physics of radiation therapy.

1.1 Clinical Data

In order to test our protocol, we required clinical activity and mass data. Dr. Traino

was generous enough to supply us with both clinical activity and mass data for 17 subjects;

including mass values measured at one year for 7 of the 17 subjects. This data allowed us

to both validate our new protocol and to quantify the uncertainty analysis. All of the data

can be found in Appendix A.

1.2 Thesis Contributions

The contributions of this thesis are:
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1. We present a new computational protocol for the calculation of RAI in the treatment of

Graves’ hyperthyroidism. This protocol was developed by utilizing a two-compartment

model to describe the activity kinetics in the body and an improved method of estimat-

ing the mass dynamics required to calculate the absorbed dose. The activity kinetic

model allows for the conversion between different RAI isotopes, which is a crucial step

in our protocol.

2. A detailed uncertainty analysis was performed of the new protocol. The uncertainty

analysis consisted of both a standard propagation of error method and a simulation

based method. The ultimate goal of the uncertainty analysis was to estimate the

uncertainty in the calculation of the final thyroid mass. The uncertainty analysis was

also used to validate our new protocol. To our knowledge, this uncertainty analysis is

the first of its kind.
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CHAPTER 2

CURRENT PROTOCOLS FOR RAI DOSE COMPUTATION

Radioactive iodine has become the primary treatment for Graves’ hyperthyroidism in

the United States, however, there is not a consensus on how much RAI activity needs to be

administered or if the desired outcome is a euthyroid or hypothyroid state. The three main

protocols are to: 1) administer a fixed dose of RAI activity to all subjects, 2) administer a

dose of RAI activity that was calculated using a fixed absorbed dose for all subjects using

a version of the Marinelli-Quimby equation, and 3) administer a dose of RAI activity based

on a subject-specific absorbed dose. Each of these protocols and their limitations will be

discussed next.

2.1 Overview Of The Current Protocols

The protocol chosen by the clinician is often based on the desired outcome of the RAI

therapy, euthyroidism or hypothyroidism [4]. It has been reported in [6] that hypothyroidism

is an acceptable outcome of RAI therapy because it can be diagnosed at an early stage and

easily treated with thyroid hormone replacement. As a result, some clinicians use a large

fixed dose of RAI activity for all subjects in the hope of obtaining a hypothyroid state with

a single round of treatment [4, 7, 8, 9]. The increase in cost due to extra measurements

required for an optimized protocol also plays a role in the decision to use a fixed dose of

RAI activity [4, 7]. A variation of this protocol is to administer a fixed dose of RAI activity

per unit mass of the thyroid [4, 7]. However, these therapy protocols often result in the

administration of higher levels of activities and absorbed doses than desired. This is due
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to variability of intra-patient iodine metabolism kinetics [4, 7]. This over administration

of activity has been one of the arguments in opposition of the fixed dose of RAI activity

protocol [7].

One way clinicians try to overcome this problem is to explicitly account for the thyroid’s

iodine kinetics. This is often accomplished using empirical relations with the Marinelli-

Quimby equation being the most famous [10]. This equation accounts for the approximated

maximal iodine intake and effective half-life of iodine within the thyroid, the mass of the

thyroid, and the estimated absorbed dose. The desired quantity of absorbed dose is usually

chosen from a predetermined range based on the clinicians experience and judgment. This

approach has been reported by many clinicians, e.g., [4, 7, 11, 12, 13, 14, 15]. It provides a

patient-specific calculation of the dose of RAI activity to be administered and is preferred

over the protocol that administers a fixed dose of RAI activity to all subjects [4, 7, 13].

However, there are two limitations to this approach as well: 1) in practice, not enough

activity points are collected to accurately account for the kinetics and 2) the mass dynamics

are ignored which results in the wrong absorbed dose being used. Clinicians often manage

with only one RAI uptake measurement and assume that the maximum uptake of RAI by

the thyroid occurs at 24 hours for each subject. The second limitation is assuming the

effective half-life is 5 days for each subject. These assumptions allow for the clinician to take

only one measurement at 24 hours for each subject. Furthermore, the Marinelli-Quimby

equation assumes a fixed mass while RAI treatment always results in mass reduction. This

assumption results in a larger dose of RAI than desired. This could be the reason [3] reports

that currently up to 90 % of subjects become hypothyroid within 1 year after therapy. As

a result, most clinicians aim for a hypothyroid state after RAI therapy because a euthyroid

state is too hard to obtain.

To overcome the limitations associated with use of the Marinelli-Quimby equation, Traino

et al have proposed a model for thyroidal mass reduction after RAI therapy [16, 17, 18,
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19, 20]. The authors also report a protocol to calculate a subject specific absorbed dose.

This absorbed dose can then be used to calculate an individualized dose of RAI activity to

administer to a subject in the hopes of achieving a euthyroid state.

In this thesis, we will follow the work of Traino et al [16, 17, 18, 19, 20], however, we

will utilize a two-compartment model to describe the activity kinetics in the body and an

improved method of estimating the mass dynamics required to calculate the absorbed dose.

Before we present a description of their work, a brief discussion of mass dynamics and its

relation to the absorbed dose will be presented.

2.2 Medical Physics Background Of Radiation Effects On Cells

In [16], a new model was proposed to describe the reduction in the mass of the thyroid

after RAI therapy. A brief description of mass reduction resulting from radiation will be

discussed here in order to give some insight into the model.

In [21, 22] it has been reported that the number of cells that survive ionizing radiation

therapy, N , can be described by a linear quadratic (LQ) model

N = N0e
−(αDT+βD2

T ), (2.1)

where N0 is the number of cells before therapy, DT (Gray, Gy) is the absorbed dose, and α

(Gy−1) and β (Gy−2) are constants. An important assumption is this thesis is that α and

β are the same for all subjects. Equation (2.1) describes cell death occurring due to two

types of events at the chromosomal DNA level: a single double-hit event, or double single-

hit events in the chromosomal DNA [21, 23, 24]. A single double-hit event occurs when a

single ionizing track produces a lesion in both strands in chromosomal DNA [19, 22, 25]. A

double single-hit event occurs when one ionizing track produces a lesion in one strand of the

chromosomal DNA and a separate ionizing track produces a lesion in the other strand of the
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chromosomal DNA [19, 22, 25]. In [26], these two types of events are referred to as Type A

and Type B cell destruction, respectively. In (2.1), Type A cell destruction is represented

by the term αDT , while Type B cell destruction is represented by the term βD2
T .

In certain situations, it is possible to simplify the LQ model. The simplification results

from sub-lethal chromosomal DNA damage which is considered repairable with time [21, 25].

Sub-lethal damage can occur as a result of a few different causes. The first cause occurs

when a single ionizing track produces a lesion in one strand of the chromosomal DNA [21].

Two other cases occur when the lesions in both strands of chromosomal DNA, resulting

from either one or two tracks, are separated by greater than 3 base pairs [21]. In these

three scenarios, a second ionizing track would be required to transform them into lethal

chromosomal DNA damage. Therefore, the repair of sub-lethal damage is dependent on

the frequency of the ionizing events near the chromosomal DNA [25]. As a result, Type B

damage is also dependent on the frequency of the ionizing events because Type B damage

is associated with more than one ionizing track [25]. The frequency of the ionizing events

is directly related to the dose-rate or the rate at which the dose is absorbed by the cells

[25]. Lower dose rates provide time for sub-lethal damage to repair itself before being hit by

another ionizing track. For radiation therapy similar to RAI therapy which is administered

in high doses but at low dose rates, the βD2
T term can be neglected [19, 25]. This results in

N = N0e
−αDT . (2.2)

Following the hypothesis proposed in [19] that the mass of a tissue, m, is linearly related to

N , (2.2) can be re-written to describe the ratio between the final mass m(∞) (grams, g) and

the pre-treatment mass m(0) by

m(∞)

m(0)
= e−αDT . (2.3)
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The Medical Internal Radiation Dose committee (MIRD) [27, 28] defines DT as

DT = σ

∫ ∞
0

A(t)

m(t)
dt, (2.4)

where A denotes the activity kinetics in the target tissue (Becquerel, Bq), m denotes the

mass dynamics 1 of the target tissue (grams, g), and σ is a constant dependent on the

radioisotope. Both A(t) and m(t) will be discussed in detail, in Sections 2.3.1 and 2.3.2,

respectively.

The above relations are general purpose concepts in internal radiation therapy. The mass

dynamics can be specialized to RAI therapy for a patient with Graves’ hyperthyroidism as

proposed by Traino et al [16, 18]. It is reported that thyroid mass dynamics following Type

A RAI destruction occurs in two distinct stages [18]. While [18] reports that the two stages

are distinct we believe that the two stages could be coupled. However, because of the lack

of evidence suggesting coupling we will assume that the two stages are distinct. The first

stage is assumed to occur in the first 30-35 days (0- 840 hours) after RAI administration

as a direct result of the activity of the RAI in the thyroid. The second stage is assumed to

occur between 30-35 days to 1 year (840 - 8760 hours) as a result of irreparable damage of

the thyroid cells caused by the RAI. Note that throughout this thesis we refer to these stages

in units of hours. To clarify, (2.3) describes the mass dynamics of both stages. Next, all of

the relations are specialized to RAI therapy for a patient with Graves’ hyperthyroidism as

proposed by Traino et al [16].

1This is sometimes referred to as mass destruction but, in this thesis, we will refer to cell destruction as
mass dynamics.
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2.3 Computational Protocol

The equations that relate the absorbed dose in terms of mass dynamics have been pre-

sented above in general terms. Traino et al have proposed mathematical models for both

activity kinetics and mass dynamics specific for RAI therapy [16]. These relations will be

presented next and will provide the basis for the protocol proposed in Chapter 3.

2.3.1 Activity Kinetic Model

The activity kinetics for RAI therapy for a patient with Graves’ disease can be approxi-

mated to support two distinct phases: uptake and clearance [16]. The initial uptake phase

is approximated to be linear, where the activity is 0 at the start of the application, t = 0, to

where the activity is at a maximum value, Amax, at t = Tmax (usually within 12-36 hours).

The clearance dynamics are modeled by a single exponential decay equation starting at Tmax

where A(Tmax) , Amax. The overall activity kinetics is approximated in [16] by

A(t) =

 Amax
t

Tmax
, t ∈ [0, Tmax]

Amaxe
−ρ(t−Tmax), t ≥ Tmax

(2.5)

where ρ is a patient-specific constant that depends on the physical half-life of the isotope

and on the biological half-life of the isotope in the thyroid. The physical half-life is the time

it takes the number of atoms to decay to half the original number. The biological half-life

is the time it takes the thyroid to secrete half of its RAI atoms. In this thesis, we will drop

this model of activity kinetics and use a two-compartment model to describe the activity

kinetics.

2.3.2 Mass Dynamic Model

In [16] the following mass dynamics model was proposed
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ṁ(t) = −k A(t)

m(t)
, (2.6)

where k ( g2

hrMBq
) is a patient-specific constant. Equation (2.6) describes the mass dynamics

that occur during the first stage and cannot be used to calculate the final mass m(∞) since

the destruction continues even when A(t) = 0. Based on clinical observations, [16] assumed

that m(t) = m(0), t ∈ [0, Tmax], and used

A(t) = Amaxe
−ρ(t−Tmax)

to solve (2.6) for m(t):

m(t) =

[
2

(
kAmax
ρ

e−ρ(t−Tmax) − kAmax
ρ

+
m(0)2

2

)] 1
2

. (2.7)

The subject-specific constant k can be found by fitting (2.7) to clinical mass and activity

data.

The key idea behind these relations is that, in theory, if a subjects’ activity and mass

parameters are known a priori, then one could compute the dose of RAI activity needed

to achieve a desired final mass. In practice, however, the subjects’ mass dynamics are not

known a priori. As a result, [17] has proposed a procedure to calculate the constant k

that does not require a priori knowledge of the subjects’ mass dynamics. Specifically, [17]

postulated that k is strongly correlated to key patient-specific data, m(0) and Amax, so an

estimate, referred to as kcalc, is given by

k = kcalc , γcalc
m(0)2Ad
Amax

, (2.8)

where γcalc (hr−1MBq−1) is a fitting constant, and Ad is the initial 131I dose of activity MBq.
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2.3.3 Limitations Of The Computational Protocol That Are Addressed In This

Thesis

The method of calculating a patient-specific absorbed dose for the treatment of Graves’

hyperthyroidism, indicated above, improves on the previous protocols. However, even this

method has limitations. It is common in the USA to use 123I, a non-destructive isotope, as

a diagnostic isotope [3]. To utilize data generated from a diagnostic procedure involving a

different isotope requires a method to be able to convert 123I activity data into the therapeutic

isotope 131I activity data. The activity kinetics proposed by [16] do not allow for this

conversion. Another limitation is the absence of an uncertainty analysis reported for this

method. Traino et al [16] report an uncertainty of 10% for activity measurements and 15%-

20% for mass measurements. These values are rather large and should be propagated through

to the calculation of the absorbed dose and the final mass.
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CHAPTER 3

PROPOSED PROTOCOL FOR RAI DOSE COMPUTATION
AND ADMINISTRATION

The computational approach described in Section 2.3 is the current state-of-the-art

patient-specific approach for RAI dose calculation. We follow (2.3), however, we will re-

move the assumption of a linear uptake phase in the activity kinetics to provide a more

accurate estimate of the activity in the thyroid. A computational approach to calculate the

absorbed dose, based on new activity relations, and the approaches ability to predict the final

mass will be discussed. Also, using this computational approach, we will show that a dose

of RAI activity can be calculated to predict a desired final mass after therapy. In developing

this protocol, the following tasks were addressed: the ability to convert between different

RAI isotopes, the ability to estimate the activity parameters with a limited number of data

points, the ability to estimate the mass dynamics during the first time frame, t ∈ [0, 840],

and the ability to estimate the constant α in (2.3).

3.1 Activity Kinetic Relations

A two-compartment model to describe the flow of iodine within the body was presented

in [29]. We will adapt this model by explicitly including the physical decay constants. A

schematic diagram of our new model can be found in Figure 3.1. This model is described by

ẋ1 = λux2 − λsx1 − λpx1, x1(0) = 0

ẋ2 = λsx1 − λux2 − λcx2 − λpx2, x2(0) = XInput

(3.1)
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Figure 3.1. A two-compartment model of RAI flow within the body; λi represent rate
constants ( 1

hr
).

where x1 is the amount of RAI in the thyroid (µg), x2 is the amount of RAI in the plasma

(µg), λu is the rate constant associated with thyroid iodine uptake, λs is the rate constant

associated with thyroid iodine secretion, λc is the rate constant associated with urine iodine

clearance, λp is the rate constant associated with the physical decay of RAI, and XInput is

the administered dose of RAI (µg). This model assumes that the appearance of administered

RAI in the plasma is fast as can be noticed by the administration of the dose being modeled

as an impulse. The solution of (3.1) can be derived analytically and is given by the form

x1(t) = He−bt −He−ct (3.2)

where,

H =
λuXInput

(λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s)

1/2

b =
1

2
(λu + λc + 2λp + λs)−

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2

c =
1

2
(λu + λc + 2λp + λs) +

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2 .

Note that this model tracts the amount (µg) of RAI in the body and not the activity of RAI.

However, the amount (µg) of RAI can be converted into activity (MBq) using
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XInput =
1

δconv

1

λp
Ad,

where Ad is the dose of RAI administered (MBq), and δconv can be found using the following

conversion

MBq =
µg

hr
· nmol/hr

µg/hr

1

0.127
· moles/hr

nmol/hr
10−9 · moles/sec

moles/hr

1

3600

· disintegrations/sec

moles
6.022 · 1023 · MBq

disintegrations/sec
106

= δconv
µg

hr
= 1.317E18

µg

hr
.

Using these conversions the activity found in the thyroid can be described by

A1(t) = Y e−bt − Y e−ct (3.3)

where,

Y =
λuAd

(λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s)

1/2

b =
1

2
(λu + λc + 2λp + λs)−

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2

c =
1

2
(λu + λc + 2λp + λs) +

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2 .

This solution is described by two exponential terms which is notably different from Equa-

tion (2.5) which assumes a linear uptake and an exponential clearance phase. It should be

of note that the two-compartment model has only been used in one protocol to calculate a

dose of RAI activity for the treatment of Graves’ hyperthyroidism [15]. And the model used

in [15] did not explicitly account for the physical half-life of RAI.

There are a number of technical challenges related to the applicability of (3.3). One

challenge was the conversion of diagnostic activity using 123I to its corresponding therapeutic

131I activity. 123I only causes a minimal amount of mass dynamics and is therefore a desirable
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diagnostic isotope [3]. Therefore, there exists a need to estimate 131I activity dynamics from

123I activity. A second challenge was how to identify the parameters of Equation (3.3) using

a minimal number of data points. Constraints on both the subjects’ time as well as the cost

of the measurements have an effect on the number of measurements that can be taken. To

simplify the presentation, here we will assume that there is no uncertainty associated with

the activity measurements.

3.1.1 Converting Between Activities Of Different Isotopes

We can gain insight on how to convert between the different isotopes of RAI by investi-

gating the closed form solution of the activity in the thyroid. It can be observed that the

physical half-life, λp, can only be found in the two poles, b and c, in (3.3). In particular,

λp is only found in the linear portion of the two pole equations. We make the reasonable

assumption that the rate constants λu, λc, and λs will not change significantly between the

different isotopes in comparison with the dynamics of the iodine present in the thyroid. The

constant λp is known for each iodine isotope and can be assigned its value depending on the

isotope of interest. Therefore, using activity data corresponding to 123I, 131I activity data

can be estimated by switching λp of 123I for λp of 131I. An example will be shown to clarify

this procedure.

Given 123I activity data, non-linear regression of (3.3) will yield estimates of the param-

eters Ŷ , b̂, and ĉ. The two estimates of the poles for 123I activity data can be expressed

as

b̂123 =
1

2
(λu + λc + 2λp123 + λs)−

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2

ĉ123 =
1

2
(λu + λc + 2λp123 + λs) +

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2 ,

where λp123 is the rate constant associated with the physical decay of 123I. These pole esti-

mates can be converted to estimates of 131I activity data by
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b̂131 = b̂123 + ξ =
1

2
(λu + λc + 2λp123 + λs) + ξ − 1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2

ĉ131 = ĉ123 + ξ =
1

2
(λu + λc + 2λp123 + λs) + ξ +

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2 ,

where ξ = λp131 − λp123. This results in estimates of the 131I poles

b̂131 =
1

2
(λu + λc + 2λp131 + λs)−

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2

ĉ131 =
1

2
(λu + λc + 2λp131 + λs) +

1

2

(
λ2
u + 2λuλc + 2λuλs − 2λcλs + λ2

c + λ2
s

) 1
2 .

3.1.2 Estimating Activity Parameters With A Minimum Number Of Data Points

In an ideal case, many activity measurements would be made to aid in the identification of

the activity parameters. However, only three measurement will be made when implementing

our new protocol. The activity point A(t = 0) = 0 can be used as a fourth point. We

used clinical activity data to test whether it is possible to accurately identify the activity

parameters with a limited number of data points. Figure 3.2 shows the activity kinetics for

subject 21. The solid line represents the activity kinetics found from non-linear regression

of (3.3) and all of the measured activity data points. The dashed line represents the activity

kinetics found from non-linear regression of (3.3) and a limited number of data points. Figure

3.2 shows that even with a limited number of data points the activity parameters can still be

accurately identified. The times at which the limited number of activity points were chosen

were ti = [0, 2, 70.5, 163.6] hours. These points are representative of the times at which

the activity will be measured in our protocol. There is one measurement during the uptake

phase and two measurements taken during the clearance phase. Before deciding to estimate

the activity parameters using non-linear regression, we investigated calculating the activity

parameter analytically. This analytical approach is discussed in Appendix B.

17



Figure 3.2. Activity kinetics for subject 21. The crosses represent measured activity data
points. The solid line represents the activity kinetics fit using all measured data points. The
dashed line represents the activity kinetics fit using a limited number of data points.

3.2 Calculation Of The Absorbed Dose

In computing the absorbed dose using (2.4), we follow (2.6) as the mass dynamics model

ṁ(t) = −kA(t)

m
.

This equation is only valid while there is activity present in the thyroid. We make the

assumption that A(t) ≈ 0 at t ≥ 840 from clinical data. As a result we can only directly

calculate the mass until 840 hours, m(840). Therefore, (2.6) describes the mass dynamics

occurring in the first time frame, t ∈ [0, 840]. There is no available model for m(t), t ∈

[840, 8760]. As a result we can only calculate the absorbed dose until t = 840 hours using

DT ≈ σ

∫ 840

0

A(t)

m(t)
dt,

where σ = 0.1152 Gy g
MBqhr

[16]. We investigated computing DT until other times around

840 hours, however, we found that there was negligible difference between DT values when
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calculated up to t = 720 hours or up to t = 1080 hours. These calculations can be found in

Appendix C. This integral can be computed to produce the following closed form solution

DT =
σ

k
(m(0)−m(840)) , (3.4)

where,

m(840) =

[
2

(
Y k

b
e−b 840 +

Y k

c
− Y k

c
e−c 840 − Y k

b
+
m(0)2

2

)] 1
2

. (3.5)

As stated before, if the absorbed dose can be computed for a subject a priori, then one could

compute the dose of RAI activity, Ad, that would achieve a desired final mass using (2.3) with

an estimate of α. However, before this protocol can be used, a number of technical challenges

need to be addressed. One challenge concerns the fact that a subject’s mass dynamics

during the first time frame, t ∈ [0, 840] will not be known a priori. Therefore, a method to

estimate m(840) and therefore the parameter k is required. The second challenge involves

the estimation of the constant α from (3.11). The protocol to calculate and administer Ad

will be discussed in more detail later in the chapter; however, how to estimate the mass

dynamics and α will be discussed next.

3.2.1 Estimating The Mass Dynamics During The First Time Frame, t ∈ [0,840]

As a result of a subject’s mass dynamics not being available before therapy, a method

of estimating m(840) is required to compute DT . Traino et al, [17], proposed (2.8) to

estimate the parameter k a priori. We propose a modification of this approach that utilizes

all information that will be known a priori as well as accounts for the offset from linear

regression to estimate the parameter k. Rearranging (3.5) yields

ki =
m2
i (0)

gi
− m2

i (840)

gi
, (3.6)
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where,

gi = 2Y

(
1

c
e−c 840 − 1

b
e−b 840 − 1

c
+

1

b

)
, (3.7)

and i denotes the ith subject. The initial mass, mi(0), will be measured and gi will be known

once the activity parameters are obtained, however, mi(840) will not be known a priori but

it can be estimated using two approaches: 1) by finding the average of measured m(840)

values
(

(m̄(840))2 or m2(840)
)

and 2) linear regression of

m2
i (0) = kgi +m2(840),

to provide estimates of k and m2(840). The estimate of k will not be used but the estimate

of m2(840) can be used in (3.6) as a common value for m2
i (840). However, both of these

approaches to estimatem2(840) produced unreasonable results when used in (3.6) to calculate

ki. This is the result of the subject-specific nature of the mass dynamics.

To circumvent this technical limitation, we used an alternative approach. For the regres-

sion, ki in (3.6) can be replaced by what [17] refers to as kfit. kfit can be found by fitting

measured mass data to

m(t) =

[
2

(
Y k

b
e−bt +

Y k

c
− Y k

c
e−ct − Y k

b
+
m(0)2

2

)] 1
2

(3.8)

using non-linear regression. Also, we will let the term
m2
i (840)

gi
, in (3.6), be defined as ϕ, and

let the linear regression estimate it. Therefore, linear regression needs to be performed on

kfiti = φ
m2
i (0)

gi
− ϕ,

to estimate φ and ϕ. After performing the linear regression, the following predictive equation

for k, kpred can be obtained:

kpredi = φ
m2
i (0)

gi
− ϕ. (3.9)
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Equation (3.9) differs from (2.8) in that it takes advantage of all parameters that will be

available before therapy as well accounts for the offset from the linear regression.

3.2.2 Estimating α

The constant α needs to be estimated before the dose of RAI activity can be computed.

In this thesis we follow [16, 18] and assume α is a population constant. We used clinical data

of 7 subjects to calculate α for each patient. Using measured activity data, the parameters

Y , b, and c can be identified using non-linear regression of (3.3). Then using measured mass

data, the parameter k can be identified using non-linear regression of (3.8). We decided to

use the measured mass data in calculating k instead of using (3.16) because we wanted to

take advantage of all data available to us. The absorbed dose can then be calculated using

(3.4) and the identified parameters. α can be calculated by rearranging (3.11) to yield

α =
1

DT

(ln (m(0))− ln (m(∞))) . (3.10)

Then a minimum variance estimate of α, α̂mv, can be found by using

α̂mv =

∑
αi

V (αi)∑
1

V (αi)

,

where

V (α̂i) =
0.015 + α2

i (SEDT )2

D2
T

,

and where SEDT is the standard error of the absorbed dose, 0.015 corresponds to the assumed

15% multiplicative error in m(0) and m(∞), and i denotes the ith subject. This expression

was derived from the usual propagation of error formula [30, 31]. The 15% multiplicative
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error assumption will be discussed in detail in Chapter 4. The variance of α̂mv can be

calculated using

V (α̂mv) =
1∑

1
V (αi)

.

3.3 Proposed Protocol For Calculating And Administering Ad

The absorbed dose can be calculated with the estimate of m(840). However, the dose

of RAI activity, Ad, cannot be calculated without an estimate of m(∞) in (2.3). It is not

feasible to estimate m(∞), therefore, using the assumption that the second time frame of

the mass dynamics ends at 1 year, we will approximate m(∞) to be m(8760). Note that

from here on in this thesis m(∞) is defined as m(8760). Rewriting (2.3) yields

m(∞) ≈ m(0)e−αDT . (3.11)

A method to estimate m(∞) is still required. A full-order mathematical model of the thyroid

can be used to specify the desired m(∞) corresponding to a goal of becoming euthyroid [32].

The thyroid model is highly non-linear with an output of thyroid hormones in response to

an input of thyroid stimulating hormone (TSH) and iodine. The model has been shown to

match known thyroidal behavior such as the Wolff-Chaikoff block. Before the model can be

used, it needs to be parameterized for a specific subject. The model can be parameterized

using subject-specific measured values that will be known a priori, specifically, the initial

mass and the measured activity values. The mass of the thyroid is often decreased until

the thyroid hormone output of the model reaches a euthyroid state predetermined by an

endocrinologist. The mass of the thyroid that results in the euthyroid state is the desired

target m(∞).
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With estimates of m(840), m(∞), and α̂, we will be able to calculate a dose of RAI

activity using (3.11). Equation (3.11) can be re-written as

m(∞)

m(0)
≈ e−αAdD̃T , (3.12)

where

D̃T =
DT

Ad
= σ

∫ 840

0

Ã(t)

m(t)
dt,

and where

Ã(t) =
A(t)

Ad
= Ỹ

(
e−bt − e−ct

)
. (3.13)

Solving (3.12) for Ad yields

Ad = −
ln
(
m(∞)
m(0)

)
αD̃T

. (3.14)

The ability to calculate a dose of RAI activity that will achieve a desired final mass by

using (3.14) has lead us to develop the following 3-step protocol for administering the dose

Ad:

1. Measure the pre-therapy mass of the thyroid, m(0).

2. Administer a tracer dose of 123I. Measure the activity in the thyroid and convert the

123I data into 131I data. Compute kpred using parameters found from the 131I activity

data.

3. Compute Ad in order to achieve the desired m(∞).

3.4 Validating The Protocol

The protocol was tested by using the clinical activity and mass data presented in Ap-

pendix A. The data was used to estimate the relevant parameters required to calculate DT

and m(∞). The calculated m(∞) values were compared to the measured m(∞) values for
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each subject. As shown in Section 3.3, a normalized activity equation is required to calculate

the initial dose Ad using (3.14). Therefore, activity data, normalized by Ad, was used with

non-linear regression of (3.13) to estimate the activity parameters Ỹ , b, and c. Inserting

(3.13) into (2.6) yielded

ṁ(t) = −k̆ Ǎ(t)

m(t)
,

where k̆ = Adk. Solving for m(t) yielded

m(t) =

(
2

(
Y̌ k̆

b
e−bt +

Y̌ k̆

c
− Y̌ k̆

c
e−ct − Y̌ k̆

b
+
m(0)2

2

)) 1
2

. (3.15)

k̆ was estimated by non-linear regression of (3.15) with mass data to yield k̆fit and also

calculated using (3.9) as

k̆pred = 0.5951
m(0)2

ǧ
− 0.0108, (3.16)

where, ǧ = Adg. The calculation of the constants in (3.16) can be found in Appendix D.

Only the subjects with mass values measured at one year were used to test our protocol.

The normalized activity data were used with non-linear regression to estimate the activity

parameters of (3.13) and the parameters can be found in Table 3.1. Table 3.2 reports the

mass parameter k̆fit found using non-linear regression of (3.15) using mass data.

Table 3.1. Activity parameters from (3.13) estimated using non-linear regression with
normalized activity data.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

Y̌ 0.909 0.772 1.232 0.820 0.517 0.988 0.466

b (hr−1) 0.0059 0.0055 0.0054 0.0071 0.0059 0.0048 0.0047

c (hr−1) 0.523 0.112 0.082 0.792 0.159 1.271 0.282
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Table 3.2. The mass parameter k̆ from (3.15) estimated using non-linear regression with
mass data.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆fit ( g
2

hr
) 1.711 2.412 0.465 1.003 0.498 0.367 0.055

Using the estimated activity and mass parameters, α was found for each subject as

described in Section 3.2.2. Table 3.3 contains α and its respective variance for each subject.

Using these values, a minimum variance estimate of α was calculated to be α̂mv=0.0031

Gy−1 with V (α̂mv)=1.30E-6 Gy−2.

Table 3.3. α and its respective variance are reported for each subject. α and its variance
were calculated as described in Section 3.2.2.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

α (Gy−1) 0.0036 0.0037 0.0027 0.0037 0.0032 0.0023 0.0040

V (α) (Gy−2) 1.53E-5 2.90E-5 2.75E-5 3.76E-6 2.46E-5 3.62E-6 1.98E-5

Using α̂mv for all subjects, m (∞) was calculated using (3.11). DT was calculated using

three estimates of k̆: 1) k̆fit was estimated using non-linear regression of (3.15) with mass

data 2) k̆pred was calculated using (3.16) and 3) k̆calc was calculated using (2.8). Table 3.4

contains estimates of k̆fit, DT and m (∞).

Table 3.5 reports calculations of k̆pred, DT , and m (∞). The parameter estimates are

similar between Tables 3.5 and 3.4. This provides evidence that k̆pred provides a reasonable

estimate of k̆ and can be used to accurately calculate m (∞).

Table 3.6 reports calculations of k̆calc, DT , and m (∞). The parameter values from Table

3.6 are reasonably close to the parameter values in Tables 3.4 and 3.5.

To validate the protocol we compared the calculated m(∞) values to the measured values

which are reported in Table 3.7. We minimized the error between the two m(∞) values by
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Table 3.4. Calculated values of k̆fit, DT , and m(∞). k̆ was found using non-linear regression
of (3.15).

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆fit ( g
2

hr
) 1.71 2.41 0.47 1.00 0.50 0.37 0.06

DT (Gy) 427 459 728 347 367 596 379

m(∞) (g) 8.2 6.2 2.0 5.9 4.9 2.4 2.7

Table 3.5. Calculated values of k̆pred, DT , and m(∞). Each parameter’s standard error
values, found through Taylor series approximation, are reported.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆pred ( g
2

hr
) 2.00 1.64 0.62 0.84 0.90 0.37 0.24

DT (Gy) 443 380 774 327 407 596 442

m(∞) (g) 7.7 8.0 1.8 6.3 4.3 2.4 2.2

Table 3.6. Calculated values of k̆calc, DT , and m(∞). Each parameter’s standard error
values, found through Taylor series approximation, are reported.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆calc ( g
2

hr
) 1.80 1.74 0.70 0.62 0.88 0.40 0.28

DT (Gy) 431 387 804 307 404 610 467

m(∞) (g) 8.0 7.8 1.6 6.7 4.4 2.3 2.0
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taking the square root of the sum of the squares between the two values. The error between

the m(∞) values calculated using k̆pred and the measured m(∞) values was 3.96. The error

between the m(∞) values calculated using k̆calc and the measured m(∞) values was 4.12.

This implies that k̆pred provides a more accurate m(∞) than k̆calc.

Table 3.7. Mass values measured at one year.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

m(∞) (g) 7 5 3 5 5 4 2
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CHAPTER 4

UNCERTAINTY ANALYSIS - THEORETICAL AND
COMPUTATIONAL CONSIDERATIONS

The central challenge in computing a subject-specific RAI dose to achieve a desired

m (∞) relates to figuring out how measurement and parameter identification errors affect

the prediction accuracy of the final result. This problem can be stated as follows.

Central Prediction Problem. Let the target subject mass m (∞) be related to activity kinetics

and mass dynamics by the following relations (see Chapter 3)

m (∞) = m(0)e−αDT

DT =
σ

k
(m(0)−m(840))

A(t) = Y
(
e−bt − e−ct

)
m(t) =

[
2

(
Y k

b
e−bt +

Y k

c
− Y k

c
e−ct − Y k

b
+
m(0)2

2

)] 1
2

, t ∈ [0, 840]

where all parameters in the above relations are unknown with the exception of σ. Given nA

activity measurements, Ã(ti), and nm mass measurements, m̃(ti), estimate the true expected

value of m (∞) in terms of its predicted value

m (∞) ,

and confidence interval
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[mL (∞) ,mH (∞)].

Before the predicted value, m (∞), and confidence interval, [mL (∞) ,mH (∞)], can be

obtained, the activity and mass parameters first need to be identified using non-linear regres-

sion and one should clarify which parameters are subject-specific and which can be considered

population constants. Note that in this chapter we will write m (∞) as m (∞) to simplify

the notation. In this thesis we follow [16, 18] and assume α to be a population parameter,

while all other parameters are evaluated as subject-specific values. All computations are

based on clinical data consisting of activity and mass data sets of 17 subjects and mass

values measured at one year for 7 of the 17 subjects [16].

The most common standard propagation of error used to quantify the confidence interval

involves uncertainty propagation via the square root of the sum of squares method (RSS)

[30, 31]. This method requires the standard error, SE, of each of the parameters. The

standard errors can be obtained from non-linear regression and are estimates of the true

standard error of the mean for each of the parameters. We pursued this route (see Section

4.6) but decided to discontinue due to unreasonably large standard errors in DT and m (∞).

Such large values might be due to the small sample size in the clinical data and/or a poor

accuracy of the first-order expansion in the analytical derivations. Our work, therefore,

focuses on a simulation-based study which involves the generation of additional data [33, 34].

As described in Section 2.3.3, Traino et al [16] reports the uncertainties for activity and mass

measurements as percentages or relative errors. Relative errors correspond to multiplicative

measurement errors, therefore, we assume a multiplicative measurement error model in the

activity and mass models for an individual subject
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Ã(ti) =
(
Y e−bti − Y e−cti

)
(1 + εAi) ,

m̃(ti) =

((
2

(
Y k

b
e−bti +

Y k

c
− Y k

c
e−cti − Y k

b
+
m(0)2

2

)) 1
2

)
(1 + εmi) ,

where εAi and εmi are independent random variables. The data can be simulated using two

methods:

1. Parametric bootstrapping, and

2. Nonparametric bootstrapping,

which are described next.

4.1 Parametric Bootstrapping

Parametric bootstrapping can be used for generating additional data by assuming the

measurement error associated with the data belongs to a known distribution with either

specified or unspecified parameters [33, 34]. Therefore, this method can be used to simulate

additional activity and mass data which can be used to obtain additional activity and mass

parameters. This section focuses on the assumed distributions of the measurement error and

the procedure used to simulate the additional data. Note that we assume the same error

distribution for all subjects, which may be a limitation to the validity of the results. The

results from this section can be found in Chapter 5. The additional parameters obtained

from the simulated data can be used to estimate m (∞) as described in Section 4.3. Section

4.4 describes an alternative method to simulate the mass parameter k. Section 4.5 describes

different ways to analyze the simulation results including how to estimate the confidence

interval in the estimated m (∞) values, as well as, various tests that can be performed to

determine the distribution of the measurement errors.

A method to estimate the original activity and mass parameters using non-linear re-

gression of the measured activity and mass data is required before the simulations can be

30



performed and will be described next. Again, by assuming a multiplicative measurement

error, the measured activity in the thyroid is described by

Ã(ti) =
(
Y e−bti − Y e−cti

)
(1 + εAi) , i = 1, . . . , nA, (4.1)

where εAi are independent, identically distributed random variables. However, (4.1) is not

suitable for non-linear regression because the error term is not additive. An additive error

model is obtained by taking the natural logarithm of (4.1)

ln
(
Ã(ti)

)
= ln (Y ) + ln

(
e−bti − e−cti

)
+ ln (1 + εAi) , i = 1, . . . , nA. (4.2)

The new error term in (4.2) has an expected value E (ln (1 + εAi)) = µA. Since non-linear

regression requires the error term to have an expected value of zero, we re-write (4.2) as

ln
(
Ã(ti)

)
= µA + ln (Y ) + ln

(
e−bti − e−cti

)
+ ηAi, i = 1, . . . , nA, (4.3)

where ηAi , ln (1 + εAi) − µA. The new error term ηAi has an expected value E (ηAi) = 0

and variance V (ηAi) = σ2
ηA

. Note that µA and Y in (4.3) cannot be estimated separately.

To circumvent this technical limitation, we can substitute a numerical value of µA into (4.3).

Expected values of µA can be calculated by assuming a specific statistical distribution and

will be described below.

Assuming a multiplicative measurement error and using the activity parameters estimated

from the measured activity data, the measured mass is described by

m̃(ti) =

(2

(
Ŷ k

b̂
e−b̂ti +

Ŷ k

ĉi
− Ŷ k

ĉ
e−ĉt − Ŷ k

b̂
+
m(0)2

2

)) 1
2

 (1 + εmi) ,

i = 1, . . . , nm,

(4.4)
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where εmi are independent, identically distributed random variables. Following the same

arguments used above, a mass model suitable for non-linear regression is obtained

ln (m̃(ti)) = µm + ln

(2

(
Ŷ k

b̂
e−b̂ti +

Ŷ k

ĉ
− Ŷ k

ĉ
e−ĉti − Ŷ k

b̂
+
m(0)2

2

)) 1
2

+ ηmi,

i = 1, . . . , nm,

(4.5)

where ηmi , ln (1 + εmi) − µm. The error term ηmi has an expected value E (ηmi) = 0 and

variance V (ηmi) = σ2
ηm .

The measurement errors are used to simulate the additional data, however, very little

is known about the statistical properties of these errors. As a result, we investigate the

statistical properties of the measurement error using two approaches:

1. The errors are uniformly distributed, and

2. The errors are normally distributed.

We chose to model the errors to follow a uniform distribution based on the fact that Dr.

Traino believes that the measurement errors are from a uniform distribution. We chose to

model the errors to follow a normal distribution because this is the usual assumption for

measurement errors. Both distributions will be discussed next. Note that we assume the

same error distribution for all subjects.

4.1.1 Uniform Error Assumptions

The activity measurement errors, εAi, are independent random errors and assumed to be

Unif(-ζ,ζ). Therefore, it follows that the term (1 + εAi) is Unif(1-ζ, 1+ζ), we chose ζ = 0.10

for activity data based on the 10% error in the activity measurements reported in [16].
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Expected values for µA and σ2
ηA

following the uniform distribution, µAU and σ2
ηAU

, can be

calculated as follows:

µAU = E (ln (1 + εAi)) =
1

2ζ

∫ ζ

−ζ
ln (1 + εAi) dεAi = −0.00167,

and

σ2
ηAU

=
1

2ζ

∫ ζ

−ζ
(ln (1 + εAi)− µAU)2 dεAi = 0.00334,

where the subscript U refers to the uniform distribution.

The mass measurement errors, εmi, are independent random errors and assumed to be

Unif(-ζ,ζ). Therefore, it follows that the term (1 + εmi) is Unif(1-ζ, 1+ζ), we chose ζ = 0.15

for mass dynamics data based on the 15% error in the mass measurements reported in [16].

Expected values for µm and σ2
ηm following the uniform distribution, µmU and σ2

ηmU
, can

be calculated as:

µmU = E (ln (1 + εmi)) =
1

2ζ

∫ ζ

−ζ
ln (1 + εmi) dεmi = −0.00378,

and

σ2
ηmU =

1

2ζ

∫ ζ

−ζ
(ln (1 + εmi)− µmU)2 dεmi = 0.0076.

4.1.2 Normal Error Assumptions

Numerical values for µA and σ2
ηA

can be calculated by assuming the activity measurement

error, εAi, are N(0, ζ
2

9
) (ζ = 0.10). In order to get the activity measurements to fall within 3

standard deviations of the mean with a probability of 99.74%, the standard deviation, σ, is

chosen to be ζ
3

which yields a variance, σ2, of ζ2

9
. Hence, it follows that the term (1 + εAi) will

be in the range of 1± ζ with the same probability. Expected values for µA and σ2
ηA

following
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the normal distribution, µAN and σ2
ηAN

(the subscript N refers to the normal distribution),

are more difficult to calculate because

P (−∞ ≤ εAi ≤ −1) =

∫ −1

−∞

1

SD
√

2π
e−

ε2Ai
2SD2 dεAi = 4.9E − 198 ≈ 0,

therefore, ln (1 + εAi) is undefined with probability ≈ 0. As a result, εAi was considered to

follow a truncated normal distribution confined to the interval (-1,1):

P (εAi ≤ x| − 1 < εAi < 1) =
P (εAi ≤ x

⋂
−1 < εAi < 1)

P (−1 < εAi < 1)
≈ P (εAi ≤ x) ; |x| ≤ 1.

Expected values of µAN and σ2
ηAN

can be calculated as follows:

µAN = E (ln (1 + εAi)) =
3√

2π(ζ)

∫ 1

−1

ln (1 + εAi) e
−9ε2Ai
2(ζ)2 dεAi = −0.00056,

and

σ2
ηAN

=
3√

2π(ζ)

∫ 1

−1

(ln (1 + εAi)− µAN)2 e
−9ε2Ai
2(ζ)2 dεAi = 0.00111.

Similarly, expected values for µm and σ2
ηm can be calculated by assuming a normal sta-

tistical distribution. εmi are assumed N(0, ζ
2

9
) (ζ = 0.15) to again ensure that the mass data

will fall within 3 standard deviations of the mean with a probability of 99.74%. Following

the same argument proposed above, εmi are also considered to follow a truncated normal

distribution confined to the interval (-1,1). µmN and σ2
ηmN

can be calculated as follows:

µmN = E (ln (1 + εmi)) =
3√

2π(ζ)

∫ 1

−1

ln (1 + εmi) e
−9ε2mi
2(ζ)2 dεmi = −0.00125,

and

σ2
ηmU =

3√
2π(ζ)

∫ 1

−1

(ln (1 + εmi)− µmN)2 e
−9ε2mi
2(ζ)2 dεmi = 0.00252.

The activity and mass data can be simulated using both of these assumed distributions

of the measurement error as will be described next. To aid in the procedure, consider that
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subject ` has n`A activity data points measured at times ti. The superscript ` denotes the

`th subject and ti ∈
{
t`A
}

where
{
t`A
}

=
{
t`1, . . . , t

`
n`A

}
. Also, subject ` has n`m mass data

points measured at times ti. The superscript ` denotes the `th subject and ti ∈
{
t`m
}

where{
t`m
}

=
{
t`1, . . . , t

`
n`m

}
. The procedure to simulate the activity and mass data is split into

two sections for clarity.

4.1.3 Simulating Activity Kinetics

Non-linear regression of (4.3) using the measured activity data for subject ` yields esti-

mates of the original activity parameters Ŷ , b̂, and ĉ. Using these activity parameters, N

simulated activity data sets can be created:

Ãsim(ti) = Ŷ
(
e−b̂ti − e−ĉti

)
(1 + εAi) , ti ∈

{
t`A
}

,

where  = 1, . . . , N for patient `. The error terms εAi can be computed from either the

Unif(−ζ, ζ) or N(0, ζ
2

9
) distributions, with ζ=0.10. Figure 4.1 demonstrates the simulation of

activity data for subject 12. At each time, ti, there are N simulated data points. Each of the

N simulated data sets can be put into the form of (4.3) and used in a non-linear regression

routine to estimate the activity parameters for that set. For example, the th set for subject

` will be

ln
(
Ãsim(ti)

)
= µA + ln (Y ) + ln

(
e−bti − e−cti

)
+ ηAi, ti ∈

{
t`A
}

,

Non-linear regression yields parameter estimates of Ŷ , b̂, ĉ, and
(
σ̂ηA
)2

where  = 1, . . . , N .

These parameters can be studied using methods described in Section 4.5.
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Figure 4.1. Activity kinetics for subject 12. The crosses represent the original measured
activity data points. The circles represent the simulated activity data points. At each time,
ti, there are N simulated data points.

4.1.4 Simulating Mass Dynamics

The simulation of the mass dynamics were performed in a similar manner to the activity

simulations. Non-linear regression of (4.5) using the measured mass data for subject ` yields

estimates of the original mass parameters µ̂m and k̂. Using these mass parameters and the

N sets of activity parameters, N simulated mass data sets can be created:

m̃
sim(ti) =

(2

(
Ŷ k̂

b̂
e−b̂

ti +
Ŷ k̂

ĉ
− Ŷ k̂

ĉ
e−ĉ

ti − Ŷ k̂

b̂
+

(m(0))2

2

)) 1
2

 (1 + εmi) ,

ti ∈
{
t`m
}

,

where  = 1, . . . , N for patient `. The error term εmi can be computed from either the

Unif(-ζ, ζ) or N(0, ζ
2

9
) distribution with ζ = 0.15. The m(0) term can also be simulated for

each data set using the simulated εmi` error terms as
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m(0) = m(0)
(
1 + ε1m1

)

Each of the simulated data sets can be put into the form of (4.5) and used in a non-linear

regression routine to estimate the mass parameter for that set. For example, the th set

would be

ln (m̃
sim(ti)) = µm + ln

(2

(
Ŷ 

b̂
e−b̂

ti +
Ŷ k

ĉ
− Ŷ k

ĉ
e−ĉ

ti − Ŷ k

b̂
+

(m(0))2

2

)) 1
2

+ ηmi,

ti ∈
{
t`m
}

.

Note that Ŷ , b̂, and ĉ are as in Section 4.1.3. Non-linear regression will yield parameter

estimates of µ̂m, k̂, and
(
σ̂ηm
)

where  = 1, . . . , N . These parameters can be studied using

methods described in Section 4.5.

4.2 Nonparametric Bootstrapping

Nonparametric bootstrapping is used to study the distribution of the parameter estima-

tors without an a priori statistical distribution assumption [33, 34]. Activity and mass data

can be simulated by using the residuals obtained from regression of the measured activity

and mass data and assuming that the residuals are independent and identically distributed

[35]. An alternative form of (4.3) will be used to estimate the activity parameters because

of the need to eliminate the assumptions associated with the numerical value of µA. This

section describes how the activity and mass parameters are estimated, how the residuals

are obtained from non-linear regression, and how the additional activity and mass data are

simulated using these residuals. The results from this section can be found in Chapter 5.

The simulated data are then used to estimate m (∞) as described in Section 4.3. Section

4.4 describes an alternative method to simulate the mass parameter k. Section 4.5 describes
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different ways to analyze the simulation results including how to estimate the confidence

interval in the estimated m (∞) values, as well as, various tests that can be performed to

determine the distribution of the measurement errors.

4.2.1 Simulating The Activity Kinetics Using Residuals

As first described in Section 4.1, the expected value µA is required a priori in order to

perform non-linear regression on (4.3). However, this forces a specific statistical distribution

on εAi and as a result proper analysis can not be conducted to verify the actual distribution

of εAi. To circumvent this technical limitation, (4.3) can be re-written as

ln
(
Ã(ti)

)
= z + ln

(
e−bti − e−cti

)
+ ηAi, (4.6)

where z = µA + ln (Y ). Non-linear regression of (4.6) using the original measured activity

data yields predicted (or ”fitted”) values of activity given by

ln
(
Â(ti)

)
= ẑ + ln

(
e−b̂ti − e−ĉti

)
. (4.7)

The residuals were then calculated as the difference between the natural log of the original

measured activity data points, ln
(
Ã(ti)

)
, used in the regression and the expected activity

values calculated using (4.7). Mathematically the residuals can be written as

rAi = ln
(
Ã(ti)

)
− ln

(
Â(ti)

)
.

The residuals for all subjects should be stored together yielding a bank of residuals which

can be used to simulate the activity data. Note that this approach assumes that the error

distributions are the same for all subjects.
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Again, consider that subject ` has n`A data points measured at times ti. From this activity

data set, estimates of the activity parameters ẑ, b̂, and ĉ, are found for subject ` as described

on the previous page. With these estimated activity parameters, N simulated activity data

sets are created:

ln
(
Ãsim(ti)

)
= ẑ + ln

(
e−b̂ti − e−ĉti

)
+ ηAi, ti ∈

{
t`A
}

.

The error terms ηAi are simulated using the residuals, that is the residuals rAi mimic ηAi.

The total number of residuals for all subjects was 43. However, bootstrap sampling is used

to simulate a large number of sets of residuals [36, 37]. Therefore, even though the total

number of residuals is small, bootstrap sampling can be used to simulate N sets of residuals

and give the effect of a larger data set. Bootstrap sampling is the random sampling of a

data set with replacement. A bootstrap sample of size w should be chosen for each of the

N simulations, where w is the total number of residuals in the data set for all ` subjects.

The bootstrap sampling should be repeated N times to yield N x w ηAi values ηAi where

 = 1, . . . , N and i = 1, . . . , w. Simulations can be performed using each of the N sets of

errors. The ηAi values found in one of the N sets are to be used for all subjects. For example,

the first nA1 values are used for subject 1 and the next nA2 values are used for subject 2.

Where nA1 and nA2 are the number of measured data points for subjects 1 and 2 respectively.

Each of the simulated data sets were used in a non-linear regression routine to estimate the

activity parameters for that set. For example, the th set is

ln
(
Ãsim(ti)

)
= z + ln

(
e−bti − e−cti

)
+ ηAi, ti ∈

{
t`A
}

.

Non-linear regression yields parameter estimates of ẑ, b̂, ĉ, and
(
σ̂ηA
)2

where  = 1, . . . , N .

These parameters can be studied using methods described in Section 4.5.
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4.2.2 Simulating Mass Dynamics Using Residuals

Non-linear regression of (4.5) with the measured mass data yields estimates of the original

mass parameters. The estimates of the activity parameters ẑ, b̂, and ĉ can be found using

non-linear regression of the activity data as described in Section 4.2.1. Ŷ is required for the

estimation of the mass parameters and therefore needs to be calculated from the estimate of

ẑ. Recalling, from Section 4.2.1, that

ẑ = µ̂A + ln
(
Ŷ
)

, (4.8)

an estimate of µ̂A is required to calculate Ŷ . To estimate µ̂A, the error term

ηAi = ln (1 + εAi)− µA

can be used. The residuals rAi are an approximation to the corresponding ηAi

rAi ≈ ln (1 + εAi)− µA

∴

erAi ≈ (1 + εAi) e
−µA .

Taking the average of both sides yields

er ≈ (1 + ε̄A) e−µA .

Following the assumption that E(εAi) = 0, it follows that ε̄A ≈ 0. As a result,

er ≈ e−µA

∴

µA ≈ − ln (er) .
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An estimate of Ŷ to be used in the mass dynamics model can be calculated using (4.8) with

the estimate µ̂A = −0.009.

The parameters µm and k can be estimated using non-linear regression of (4.5) with

measured mass data. The residuals can then be calculated as the difference between the

natural logarithm of the actual measured mass data points, ln (m̃(ti)), used in the regression

and the expected mass values calculated using (4.5). Mathematically this can be written as

rmi = ln (m̃(ti))− ln (m̂(ti)) .

Again, the residuals for all subjects should be stored together yielding a bank of residuals

which can be used to simulate the mass data.

The simulation of the mass dynamics were performed in a similar manner to the activity

kinetics simulations. Consider that subject ` has n`m mass data points measured at times ti.

From this mass data set, estimates of the original mass parameters µ̂m and k̂, are found for

subject `. Using these mass parameters, and the N sets of activity parameters, N simulated

mass data sets can be created:

ln (m̃
sim(ti)) = µ̂m

+ ln

(2

(
Ŷ k̂

b̂
e−b̂

ti +
Ŷ k̂

ĉ
− Ŷ k̂

ĉ
e−ĉ

ti − Ŷ k̂

b̂
+

(m(0))2

2

)) 1
2

+ ηmi,

ti ∈
{
t`A
}

.

The error terms ηmi can be simulated using the mass residuals. The residuals rmi mimic

ηmi. A bootstrap sample of size w can be chosen for each of the N simulations, where w is

the total number of residuals in the data set for all ` subjects. The bootstrap sampling can

be repeated N times to yield w x N ηmi values ηmi where  = 1, . . . , N and i = 1, . . . , w.

Simulations can be performed using each of the N sets of errors. The ηmi values found in
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one of the N sets can be used for all subjects. For example, the first nm1 values can be used

for subject 1 and the next nm2 values can be used for subject 2. Where nm1 and nm2 are the

number of measured data points for subjects 1 and 2, respectively. The m(0) term can also

be simulated for each data set using the simulated ηm error terms by

m(0) = m(0)
(
1 + ε1mi

)
where εmi ≈ e−ηmi+µm − 1. µm was found using the same procedure to calculate µA as

described above. The estimate of µm, µ̂m, was calculated to be µ̂m = −0.0019. Each of

the simulated data sets can be used in a non-linear regression routine to estimate the mass

parameter for that set. For example, the jth set will be

ln
(
m̃j
sim(ti)

)
= µm + ln

(2

(
Ŷ jk

b̂j
e−b̂

jti +
Ŷ jk

ĉj
− Ŷ jk

ĉj
e−ĉ

jti − Ŷ jk

b̂j
+

(mj(0))
2

2

)) 1
2

+ ηjmi,

ti ∈
{
t`A
}

.

Non-linear regression will yield parameter estimates of µ̂jm, k̂j, and
(
σ̂jηm
)2

j = 1, . . . , N .

These parameters can be studied using methods described in Section 4.5.

4.3 Predicting The Final Mass

Using the simulated activity and mass parameters obtained from either of the three

approaches, m (∞) can be calculated using (3.11),

m(∞) ≈ m(0)e−αDT .

The absorbed dose is expressed in the following closed form solution using (3.4)

DT =
σ

k
(m(0)−m(840)) , (4.9)
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where,

m(840) =

(
2

(
Y k

b
e−b840 +

Y k

c
− Y k

c
e−c840 − Y k

b
+
m(0)2

2

)) 1
2

.

Using (4.9), the absorbed dose can be calculated for each of the N simulated data sets for

subject `:

D̃T


sim =
σ

k̂

m(0)−

(2

(
Ŷ k̂

b̂
e−b̂

840 +
Ŷ k̂

ĉ
− Ŷ k̂

ĉ
e−ĉ

840 − Ŷ k̂

b̂
+

(m(0))2

2

)) 1
2

 ,

where  = 1, . . . , N and Ŷ , b̂, ĉ, and k̂ were found using non-linear regression of the th

simulated data set.

An α value is calculated using (3.10),

α =
1

DT

(ln (m(0))− ln (m(∞))) .

For subject `, there are N simulated DT and m(0) values. By creating N more εmi error

terms using one of the methods described in this chapter, N m(∞) values can be simulated

from

m(∞) = m(∞) (1 + εmi) .

N α values can then be calculated for subject ` and an average ᾱsubject,

ᾱsubject =
N∑
1

α

N
,

as well as the standard deviation,

σα =

(
N∑
1

(α − ᾱsubject)2

N

) 1
2

,
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of the N α values can be calculated. This procedure can be repeated for all subjects. Using

the ᾱsubject values for each subject, a minimum variance estimate of α, α̂mv, can be calculated

α̂mv =

∑ ᾱsubject
V (ᾱsubject)∑

1
V (ᾱsubject)

,

where V (ᾱsubject) = (σ(ᾱsubject))
2. The variance of α̂mv can be calculated using

V (α̂mv) =
1∑

1
V (ᾱsubject)

.

Inserting α̂mv, into (3.11), the final mass can be calculated for each of the N simulated

activity data sets for subject `:

m̃
sim(∞) ≈ m(0)e−α̂mvD


T

4.4 kpred

Throughout this chapter we have estimated the mass parameter k using non-linear re-

gression with mass data. However, the mass parameter k could have been estimated using

(3.9) to yield kpred. kpred could be simulated N times using the simulated activity parameters

as follows

k̃pred,sim = φ
(m(0))2(

Ŷ 

ĉ
e−ĉ840 − Ŷ 

b̂
e−b̂840 − Ŷ 

ĉ
+ Ŷ 

b̂

) − ϕ
where  = 1, . . . , N and Ŷ , b̂, and ĉ were found using non-linear regression of the th

simulated activity kinetics data set. The m(0) terms were simulated as described in Section

4.2.2. These simulated kpred values could then be used to calculate DT as described in Section

4.3.
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4.5 Analysis

The simulations yield parameter estimates Ŷ , b̂, ĉ, µ̂m, k̂, D̂
T , and m̂ (∞) where

 = 1, . . . , N . The average parameter values can be calculated. For example, the average

value of Ŷ will be the average of Ŷ 1, . . . , Ŷ N . The standard deviation of these parameter

estimates will be an approximation to the standard error of the estimator. The distribution

of each of the parameters can be studied with the use of a histogram and normal probability

plot. Also, the parameters estimated from the simulated data can be compared to parameters

estimated from the measured data. For example, the average value of Ŷ for patient `

estimated from the simulated data can be compared to Ŷ estimated from regression of the

measured data. Also, the standard deviation of the Ŷ estimated from the simulated data can

be compared to the standard error of Ŷ estimated from the measured data. If the simulation

results are reasonably close to the original regression results, then the simulations may not

be required.

The N simulated m(∞) values can be used to estimate its confidence interval by finding

the percentiles of the N values [38]. For example, if a 95% confidence level is desired, the

2.5% and 97.5% percentiles can be found from the N m(∞) values and the corresponding

values at these percentiles will make up the uncertainty band or confidence interval.

4.5.1 Testing The Measurement Error Distribution Assumptions

Various methods exist to informally test which assumption about the statistical distri-

butions of the activity and mass data are correct. One method is to compare the estimates

of µ (µ = µA or µm) and σ2
η (σ2

η = σ2
ηA
or σ2

ηm) found from the non-linear regression to their

expected values. However, this method will not apply to the activity data because a numer-

ical value of µA was inserted into (4.3). Non-linear regression of (4.5) provides estimates of

the parameters µ̂m, k̂, and σ̂2
ηm . If µ̂ and σ̂2

η are close to their expected values for a particular

assumption, it will support that assumption. If the values are not close to the expected
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values of either the uniform or normal distribution, then an alternative error distribution

might need to be considered.

A second method is to investigate the residuals ri (ri = rAi or rmi) from the non-linear

regression of Equations (4.3) and (4.5) while assuming either a uniform or normal error

distribution. If the models were fit successfully, the residuals should mimic the ηi values

ri ≈ ηi = ln (1 + εi)− µ,

where (εi = εAi or εmi). Therefore,

ri + µ ≈ ln (1 + εi) .

Solving for εi yields

εi ≈ eri+µ − 1.

The εi values should either be approximately Unif(-ζ,ζ) or approximately N(0, ζ
2

9
). These

assumptions can be assessed by using histograms and normal probability plots of εi.

Various test can also be performed on the residuals themselves to try and gain insight

into their statistical distribution. The tests include side by side box plots, normal probability

plots, and histograms. The box plots are for each subject’s residuals separately, while the

normal probability plot and histogram are for all the residuals together. The box plots will

provide evidence of whether each subject shares the same distribution and the normal prob-

ability plot and histogram will provide evidence of which distribution the subjects possibly

share.

4.6 Standard Propagation of Error Method

The usual propagation of error formula to calculate the standard error of a variable, f ,

which is a function of variables, x and y, can be expressed as
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SEf(x,y) =

[(
∂f(x, y)

∂x
SEx

)2

+

(
∂f(x, y)

∂y
SEy

)2
] 1

2

. (4.10)

The uncertainty of the final result can be obtained by multiplying the standard error by a

student t value [30, 31]. For example, the standard error of m (∞) will be computed using

the standard errors of m(0), α, and DT . The method consists of calculating a Taylor series

approximation about each of the parameters. The approximation of each parameter is then

multiplied by its respective standard error, SE, and all the terms are combined taking the

square root of the sum of the squares of the individual terms to provide the SE of the final

answer. An example of the standard propagation of error method will now be shown. The

final mass of the thyroid is defined as

m(∞) ≈ m(0)e−αDT .

To emphasize the dependence on the individual parameters, the above equation is re-written

as

m(∞) ≈ F (m(0), α,DT (m(0), k,m(840) (Y, b, c,m(0), k))) .

The Taylor series approximations were found by taking the partial derivatives of m(∞) with

respect to α, m(0), k, Y , b, and c. These partial derivatives were used to calculate the

variance of m(∞) as follows

SE(m(∞)) =

[(
∂m(∞)

∂α
SEα

)2

+

(
∂m(∞)

∂m(0)
SEm(0)

)2

+

(
∂m(∞)

∂k
SEk

)2

+

(
∂m(∞)

∂Y
SEY

)2

+

(
∂m(1 year)

∂b
SEb

)2

+

(
∂m(∞)

∂c
SEc

)2

+ 2
∂m(∞)

∂Y

∂m(∞)

∂b
COV (Y, b) + 2

∂m(∞)

∂Y

∂m(∞)

∂c
COV (Y, c)

+2
∂m(∞)

∂b

∂m(∞)

∂c
COV (b, c)

]1/2
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The activity parameters, standard error, and covariance terms were estimated from the non-

linear regression of the measured activity data. The uncertainty of m(∞) can be calculated

using

δm = SE (m(∞)) t,

where t is a Student’s t value.
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CHAPTER 5

UNCERTAINTY ANALYSIS RESULTS AND DISCUSSION

This chapter will present and discuss the results of the uncertainty analysis discussed

in Chapter 4. The uncertainty analysis was conducted as described in Chapter 4 with the

exception that the activity data used to estimate the activity parameters was normalized by

the initial dose, Ad. Normalized activity data was used because the activity data used in

our new protocol will be normalized as described in Section 3.4. The fact that normalized

activity data was used to estimate the activity parameters was omitted from Chapter 4 so

the theory was not cluttered with extra notation. However, repeating what was presented

in Section 3.4 to clarify the notation for this chapter, (3.3) was re-written as

Ǎ(ti) = Y̌
(
e−bti − e−cti

)
, (5.1)

where Y = AdY̌ . Inserting (5.1) into (2.6) yielded

ṁ(t) = −k̆ Ǎ(t)

m(t)
,

where k̆ = Adk. Solving for m(t) yielded

m(t) =

(
2

(
Y̌ k̆

b
e−bt +

Y̌ k̆

c
− Y̌ k̆

c
e−ct − Y̌ k̆

b
+
m(0)2

2

)) 1
2

. (5.2)

49



k̆ was estimated using non-linear regression to yield k̆fit and using (3.16) to yield k̆pred

k̆pred = 0.5951
m(0)2

ǧ
− 0.0108,

where, ǧ = Adg.

This chapter is organized as follows. Section 5.1 is an overview of the results for the

uncertainty analysis described in this chapter. Section 5.2 contains the results from the

parametric bootstrap simulations. The results presented in this section will be of only the

uniform distribution simulations. The normal distribution simulations resulted in confidence

intervals for m(∞) that were much to narrow to be clinically useful and therefore will only be

presented in Appendix E. Section 5.3 contains the results from the nonparametric bootstrap

simulations. Section 5.4 contains the calculation of m(∞) using parameters estimated from

data simulated from each of the methods. Finally, Section 5.5 contains the results from the

standard propagation of error method.

5.1 Summary Of The Uncertainty Analysis Results

Our goal was to see how well we can predict m(∞) and to assess the uncertainty in the

prediction. To do this we predict m(∞) in terms of its predicted value

m (∞) ,

and confidence interval

[mL (∞) ,mH (∞)].

To obtain the predicted value and the confidence interval, we used 2 methods: 1) A stan-

dard propagation of error method and 2) A bootstrap simulations method (parametric and
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nonparametric). Note that in this chapter we will write m (∞) as m (∞) to simplify the

notation.

We first looked into the standard propagation of error method. The full results from

this method can be found in Section 5.5. However, in following this method we obtained

unreasonably large SE values for DT and m(∞). Such large values might be due to the

small sample size in the clinical data and/or a poor accuracy of the first-order expansion

in the analytical derivations. The limited clinical data led us to simulate additional data.

Note that we did not return to the standard propagation of error method after starting to

investigate the bootstrap simulations.

We simulated data using the bootstrap techniques discussed in Chapter 4. When sim-

ulating data using the parametric bootstrap method, we assumed the measurement error

follows a Unif(−ζ,ζ) distribution. The full results from the parametric bootstrap method

can be found in Section 5.2. As discussed in Chapter 4, we first estimated the activity and

mass parameters using non-linear regression with the measured activity and mass data. The

residuals obtained from regression of the measured activity data were used to estimate εAi

as described in Section 4.5.1. We could not conclude if the errors follow the Unif(−ζ,ζ) or

the N(0, ζ
2

9
) distribution or neither. The same is true for εmi estimated from the residuals of

the regression of the measured mass data. As a result, we simulated activity and mass data

using both distributions.

As described in Section 4.5, we compared the parameters and SE values estimated from

the simulated data to the parameters and SE values estimated from the measured data. We

can conclude that the parameters and SE values do not match well between the two methods

of estimating the parameters, with the exception of the activity parameters and SE values

estimated assuming the Unif(−ζ,ζ) distribution. This implies that while investigating the

uncertainty in m(∞), the simulated activity and mass data will be required to estimate the

activity and mass parameters. The parameters estimated from the simulated data were also
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used in histograms and normal probability plots to investigate their distributions as described

in Section 4.5. However, conclusions could not be made from these plots. It should be noted

that the parameters estimated from the data that was simulated assuming the Unif(−ζ,ζ)

distribution matched reasonably well with the parameters estimated from the data that was

simulated assuming the N(0, ζ
2

9
) distribution. However, the SE values estimated from data

simulated assuming the N(0, ζ
2

9
) distribution were on average smaller than the SE values

estimated from the data simulated assuming the Unif(−ζ,ζ) distribution. This was expected

because the variance of the Unif(−ζ,ζ) distribution is ζ2

3
, while the variance of the N(0, ζ

2

9
)

distribution is ζ2

9
.

The absorbed dose, DT , α, and m(∞) were calculated using the parameters estimated

from the data simulated assuming the Unif(−ζ,ζ) distribution. To calculate DT , we used 3

estimates of k̆: 1) k̆fit estimated from non-linear regression, 2) k̆pred calculated using (3.16),

and 3) k̆calc calculated using (2.8). The 3 estimates of k̆ were used to investigate the various

ways to calculate DT and their effect on the prediction of m(∞). The statistical properties

of DT and m(∞) were also studied with the use of histograms. However, a conclusion of

what distribution these parameters follow could not be made from these plots alone. Here

we will present the m(∞) values calculated using activity and mass parameters estimated

from data simulated assuming the Unif(−ζ,ζ) distribution and using k̆pred to calculate DT .

The uncertainty in m(∞) will be presented in terms of the confidence interval of m(∞),

CIm(∞), as described in Section 4.5. Table 5.1 contains m(∞) values and its confidence

interval corresponding to a 95% confidence level.
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Table 5.1. m (∞) was calculated from parameters estimated from data simulated assum-
ing the uniform distribution. The confidence interval of m(∞), CIm(∞) was calculated as
described in Section 4.5 assuming a 95% confidence level. Note that this table corresponds
to Table 5.13.

Constants # 12 # 13 # 19 # 21 # 28 # 43

m (∞) (g) 8.2 8.0 1.5 6.3 4.2 2.1

CIm(∞) [5.5 11.4] [5.5 10.6] [0.8 2.4] [4.4 8.1] [2.8 5.6] [1.5 3.0]

We also simulated data using the nonparametric bootstrapping techniques discussed in

Section 4.2. Nonparametric bootstrapping is used to investigate data without assuming

the data follows a specific distribution. Therefore, we had to use a new activity equation

that does not assume a distribution as described in Section 4.2. The full results from the

nonparametric bootstrapping can be found in Section 5.3. Again, we first estimated the

activity and mass parameters using non-linear regression with the measured activity and

mass data. The residuals obtained from the regression of the measured activity and mass

data were used to simulate additional activity and mass data. We investigated these residuals

with box and whisker plots, histograms, and normal probability plots. We could not conclude

which distribution these residuals follow but we could conclude that the assumption that the

residuals for all subjects follow the same distribution is a reasonable assumption from the

box and whisker plot.

As described in Section 4.5, we compared the parameters and SE values estimated from

the simulated data to the parameters and SE values estimated from the measured data.

We can conclude that the parameters and SE values match well between the two methods

of estimating the parameters. This implies that while investigating the uncertainty in the

estimate of m(∞), the simulated activity and mass data may not be required because the

regression of the measured data provides reasonable parameter estimates. The parameters
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estimated from the simulated data were used in histograms and normal probability plots to

investigate their distributions as described in Section 4.5. However, conclusions could not

be made from these plots.

The absorbed dose, DT , α, and m(∞) were calculated using the parameters estimated

from the data simulated using the residuals. Similar to the parametric bootstrap method,

we used the 3 estimates of k̆ to calculate DT . The statistical properties of DT and m(∞)

were also studied with the use of histograms. However, a conclusion of what distribution

these parameters follow could not be made from these plots alone. The parameter estimates

of DT and m(∞) were not substantially different when calculated using either estimate of

k̆. Therefore, here we will present only the m(∞) values calculated using DT which was

calculated using k̆pred. The uncertainty in m(∞) will be presented in terms of the confidence

interval of m(∞), CIm(∞), as described in Section 4.5. Table 5.2 contains m(∞) values and

its confidence interval corresponding to a 95% confidence level. The values in Table 5.2

match very closely with the values from Table 5.1.

Table 5.2. m (∞) was calculated from parameters estimated from data simulated using
the residuals from the original regression. The confidence interval of m(∞), CIm(∞) was
calculated as described in Section 4.5 assuming a 95% confidence level. Note that this table
corresponds to Table 5.17.

Constants # 12 # 13 # 19 # 21 # 28 # 43

m (∞) (g) 8.3 7.6 1.9 7.7 4.3 1.8

CIm(∞) [5.5 11.6] [4.8 10.7] [1.1 3.1] [5.5 10.0] [2.8 6.0] [1.1 2.5]

5.2 Parametric Bootstrap Simulation Results

The results presented in this section are from the parametric bootstrap simulations.

Section 5.2.1 will present the simulation results when the uniform distribution of the error
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was assumed. This section will present both activity and mass parameters estimated from

the original regression of the measured data and from the simulated data. The parameters

obtained from the simulated data were used to calculate and investigate the error of m(∞).

The results of these calculations are presented in Section 5.4.

5.2.1 Uniform Distribution Simulation Results

To simulate the activity and mass data using the parametric bootstrap method, a dis-

tribution needs to be assumed. In this section, the distribution was assumed Unif(-ζ,ζ) as

described in Section 4.1.1. The activity parameters estimated from the measured data and

from the simulated data will be presented. Analysis of both methods will be presented along

with a comparison of both methods. The same will be repeated for the mass parameters.

5.2.1.1 Activity Results For The Uniform Distribution

The original activity parameters were estimated using non-linear regression with the

normalized measured activity data. The procedure discussed in Section 4.1 was still followed

only a normalized version of (4.3),

ln
(

˜̌A(ti)
)

= −0.00167 + ln
(
Y̌
)

+ ln
(
e−bti − e−cti

)
+ ηAi, (5.3)

was used for the regression of the normalized measured activity data. µA was replaced by its

expected value in (5.3) for the regression. Table 5.3 reports the original activity parameters

and their respective standard errors (SE) found using non-linear regression of (5.3) with

normalized measured activity data. Note that subject 30 does not have sufficient activity

data for non-linear regression of (5.3) and was omitted from the simulations.
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Table 5.3. The original activity parameters and their SE estimated using non-linear re-
gression of (5.3) with normalized measured activity data. A uniform error distribution was
assumed for the non-linear regression of (5.3).

Constants # 12 # 13 # 19 # 21 # 28 # 43

ln
(
Y̌
)

0.017 -0.192 0.286 -0.169 -0.686 -0.737

SEY̌ 0.047 0.106 0.049 0.028 0.039 0.041

b (hr−1) 0.0071 0.0060 0.0052 0.0075 0.0057 0.0049

SEb 0.0002 0.0004 0.0001 0.0001 0.0002 0.0002

c (hr−1) 0.410 0.104 0.037 0.744 0.195 0.272

SEc 0.057 0.024 0.003 0.235 0.016 0.028

σ2
ηA

0.064 0.004 0.089 0.001 0.009 0.004

As a result of the uniform error distribution being assumed while estimating the activity

parameters, µA and σ2
ηA

could not be compared to their expected values in order to gain

insight of the distribution of εAi as described in Section 4.5.1. However, a histogram and

normal probability plot of εAi was used instead which was also described in Section 4.5.1.

Figure 5.1 contains a histogram and a normal probability plot of εAi for all subjects. The

purpose of these plots was to determine if εAi follows either the Unif(-ζ,ζ) or N(0, ζ
2

9
) dis-

tributions (ζ = 0.10). By inspection, the histogram suggests normality as compared with

uniformity. The normal probability plot does not provide much more information. Although

the middle of the data appears to follow a linear trend, the tails of the data depart from

linearity. However, the departure from linearity in the tails, in not uncommon for small

sample sizes. This suggests that N
(

0, ζ
2

9

)
might be reasonable for the errors and could be

used in the simulations.
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(a) Histogram of εAi for all subjects.

(b) Normal probability plot of εAi for all subjects.

Figure 5.1. Histogram and normal probability plot of εAi for all subjects assuming a uniform
error distribution. The crosses represent the εAi data points and the dotted line is used to
help evaluate the linearity of the data.
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The activity parameters were also estimated from the simulated activity data sets fol-

lowing the method described in Section 4.1.3. Section 4.5 describes how an average estimate

and standard deviation of each activity parameter can be obtained from the N = 500 sets

of simulated activity parameters. Similar to the measured data, the simulated data was also

normalized by Ad, and therefore (5.3) was used again to estimate the activity parameters.

Table 5.4 contains the estimated activity parameters and their standard deviations (SD).

The activity parameters estimated from the simulated data were used to check the ac-

curacy of the parameters estimated from the measured activity data as described in Section

4.5. The estimated activity parameter values in Table 5.4 were compared to their respective

estimated values from Table 5.3. By inspection, all parameter estimates and standard error

values match reasonably well between the two tables. For example, ln
(
Y̌
)

= 0.019, -0.192,

and 0.290 for subjects 12, 13, and 19 respectively. These values were estimated from the

simulated data. For the same subjects, ln
(
Y̌
)

= 0.017, -0.192, and 0.286 estimated from

the measured data. The values are identical for subject 13 and within 10% for subjects 12

and 19. The parameter estimates from the simulated data support the parameter estimates

from the measured data which suggests that the parameter estimates from the measured

data may be sufficient to investigate the uncertainty in m(∞).
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Table 5.4. Activity parameters from (5.3) and their standard deviations estimated from
the simulations which assumed a uniform distribution.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ln
(
Y̌
)

0.019 -0.192 0.290 -0.168 -0.687 -0.739

SDY̌ 0.043 0.060 0.050 0.034 0.033 0.032

b (hr−1) 0.0071 0.0060 0.0052 0.0075 0.0057 0.0049

SDb 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001

c (hr−1) 0.417 0.105 0.037 0.765 0.167 0.272

SDc 0.067 0.012 0.002 0.120 0.015 0.021

σ2
ηA

0.0036 0.0111 0.0036 0.0024 0.0042 0.0052

The activity parameters estimated from the simulated data can also be used to study

their distribution as described in Section 4.5. Figures 5.2(a)-5.2(c) are histograms for the

estimated activity parameters for subject 21. We have assumed that the error distribution

is the same for all subjects and therefore the results from subject 21 are representative of

all the subjects. As a result, only subject 21 will be used to provide examples for all of the

simulations. Figures 5.2(a) and 5.2(b) are histograms of ln
(
Y̌
)

and b respectively. By in-

spection, the figures appear to possibly follow a normal distribution. However, Figure 5.2(c)

is a histogram of c and by inspection does not appear to follow a normal distribution. Fig-

ures 5.3(a)-5.3(c) are normal probability plots for each of the estimated activity parameters.

Figures 5.3(a) and 5.3(b) are normal probability plots of ln
(
Y̌
)

and b respectively. These

figures provide more evidence that ln
(
Y̌
)

and b may follow a normal distribution. All of the

data in Figure 5.3(a) appears to follow a linear trend, however, only the middle of the data

in Figure 5.3(b) follows a linear trend. Figure 5.3(c) is a normal probability plot of c and
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(a) Histogram of ln
(
Y̌
)

for subject 21. (b) Histogram of b for subject 21.

(c) Histogram of c for subject 21.

Figure 5.2. Histograms of the activity parameters from (5.3) assuming a uniform error
distribution for subject 21.
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does not provide definitive evidence that c does or does not follow a normal distribution.

However, a conclusion of which statistical distribution the activity parameters follow could

not be made from these plots alone.

(a) Normal probability plot of ln
(
Y̌
)

for subject
21.

(b) Normal probability plot of b for subject 21.

(c) Normal probability plot of c for subject 21.

Figure 5.3. Normal probability plots of the activity parameters from (5.3) assuming a
uniform error distribution for subject 21. The crosses represent the data points and the
dotted line is used to help evaluate the linearity of the data.

5.2.1.2 Mass Results For The Uniform Distribution

The original mass parameters were estimated using the method described in Section

4.1. Equation (4.5) was re-written to incorporate the normalized activity parameters which

yielded
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ln (m̃(ti)) = µm + ln

(2

(
ˆ̌Y k̆

b̂
e−b̂ti +

ˆ̌Y k̆

ĉ
−

ˆ̌Y k̆

ĉ
e−ĉti −

ˆ̌Y k̆

b̂
+
m(0)2

2

)) 1
2

+ ηmi. (5.4)

Equation (5.4) was used for the initial regression of the measured mass data. Table 5.5

reports the mass parameters and their respective standard errors found using non-linear

regression of (5.4) with measured mass data. Note that the symbol ”-” was used in the table

when a parameter could not be estimated because of a lack of mass data. Specifically, data

for subjects 12 and 13 consists of two measured points. This leads to a problem of estimating

the standard errors of the mass parameters because the degrees of freedom becomes zero as

a result of the regression estimating two parameters.

Table 5.5. Mass parameters from (5.4) and their standard errors estimated using non-linear
regression with measured mass data. Note that the symbol ”-” was used in the table when
a parameter could not be estimated because of a lack of mass data.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 1.94 2.49 0.48 1.18 0.69 0.04

SEk̆fit - - 0.04 0.07 0.09 0.06

µm 0.039 0.040 0.018 0.165 0.077 -0.015

SEµm - - 0.028 0.087 0.036 0.054

σ2
ηm - - 0.0016 0.0164 0.0022 0.0043

The estimated µm and σ2
ηm values were compared to their expected values calculated

assuming either a uniform or a normal distribution of εmi as described in Section 4.5.1.

The estimated µm values from the regression are positive for all subjects with the exception

of subject 43. The estimated µm values could not support either a Unif(-ζ, ζ) or N(0, ζ
2

9
)

distribution of εmi (ζ = 0.15) because both expected µm values are negative. µmU = -

0.00378 and µmN = -0.00125. This can be explained by the fact that the error model is
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correct, however there is an upward bias or that the error model is wrong. The estimated

σ2
ηm values did not support either distribution. The expected σ2

ηm values are 0.0076 and

0.0025 for the uniform and normal distribution respectively. While on the same order of

magnitude, definite support for either distribution could not be concluded.

As with the activity parameters, a histogram and normal probability plot of εmi was

used to investigate the error distribution as described in Section 4.5.1. Figure 5.4 contains

a histogram and normal probability plot of εmi. By inspection, the histogram of εmi neither

supports the Unif(-ζ, ζ) nor the N(0, ζ
2

9
) distribution. The normal probability plot of εmi

does not provide evidence that the sample does or does not follow a normal distribution. A

section of the data appears to follow a linear trend, however, the tails depart from linearity.

The mass parameters were also estimated from the simulated mass data sets following

the method described in Section 4.1.4. Section 4.5 describes how an average estimate and

standard deviation of each mass parameter can be obtained from the N = 500 sets of

simulated mass parameters. However, similar to the estimation of the mass parameters from

the measured data, (5.4) was used to incorporate the normalized activity parameters and

estimate the mass parameter from the simulated data. Table 5.6 contains the estimated

mass parameters and their standard deviations (SD).

The mass parameters estimated from the simulated data were also compared to the

mass parameters estimated from the measured mass data as described in Section 4.5. The

estimated mass parameters in Table 5.6 were compared to their respective estimated values

from Table 5.5. The mass parameter k̆fit matched reasonable well between the two tables.

For example, k̆fit = 0.49
g2

hr
and 1.18

g2

hr
for subjects 19 and 21 respectively. These values

were obtained from the simulated data. For the same subjects, k̆fit = 0.48
g2

hr
and 1.18

g2

hr
estimated from the measured data. The values match exactly for subject 21 and only

differ by 2% for subject 19. However, the standard deviations of k̆fit are on an order of

magnitude larger than the standard errors of k̆fit. For example, SEk̆fit = 0.04
g2

hr
and 0.07
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(a) Histogram of εmi for all subjects.

(b) Normal probability plot of εmi for all subjects.

Figure 5.4. Histogram and normal probability plot of εmi for all subjects. The crosses
represent the εmi data points and the dotted line is used to help evaluate the linearity of the
data.
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g2

hr
for subjects 19 and 21, while SDk̆fit

= 0.16
g2

hr
and 0.24

g2

hr
for the same subjects. The

estimated µm values from the simulated data were all negative, µm = -0.0029 and -0.00003 for

subjects 19 and 21, while the µm values estimated from the measured data were all positive,

µm = 0.018 and 0.165 for subjects 19 and 21, with the exception of subject 43, µm = -0.015.

However, the standard errors of µm, SEµm = 0.028 for subject 19, and standard deviations

of µm, SEµm = 0.064 for subject 19, match well. Also, the estimated σ2
ηm values match well

between the two tables. The fact that all of the parameters do not match well between the

two tables suggests that the simulated data are required for estimating the mass parameters

while assuming a uniform distribution of εmi.

Table 5.6. Mass parameters from (5.4) and their standard deviations estimated from the
simulations which assumed a uniform distribution.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 1.94 2.52 0.49 1.18 0.69 0.048

SDk̆fit
0.77 0.51 0.16 0.24 0.26 0.08

µm -0.0014 -0.0002 -0.0029 -0.00003 -0.0053 -0.0006

SDµm 0.0107 0.0022 0.0635 0.0673 0.0626 0.0549

σ2
ηm - - 0.0075 0.0079 0.0076 0.0074

Figures 5.5(a) and 5.5(b) are histograms of k̆fit and µm, respectively. Not much can

be concluded from these plots by inspection. Another approach to gain insight into the

distributions of these parameters is to investigate the normal probability plots in Figures

5.6(a) and 5.6(b). Figures 5.6(a) and 5.6(b) are normal probability plots of k̆fit and µm

respectively. In both plots, the tails of the data deviate from linearity, which does not imply

whether these parameters follow a normal distribution or not.
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(a) Histogram of k̆fit for subject 21. (b) Histogram of µm for subject 21.

Figure 5.5. Histograms of the mass parameters from (5.4) assuming a uniform error distri-
bution for subject 21.

(a) Normal probability plot of k̆fit for subject 21. (b) Normal probability plot of µm for subject 21.

Figure 5.6. Normal probability plots of the mass parameters from (5.4) assuming a uniform
error distribution for subject 21. The crosses represent the data points and the dotted line
is used to help evaluate the linearity of the data.
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5.3 Nonparametric Bootstrap Simulation Results

The results presented in this section are from the nonparametric simulations. The simula-

tions can be performed by using the residuals from the non-linear regression of the measured

activity and mass data as the error terms. Section 5.3.1 will present how the activity resid-

uals are obtained and used to simulate the activity data. Section 5.3.2 will present how the

mass residuals are obtained and used to simulate the mass data. The parameters estimated

from the simulated data were used to calculate and investigate the error of m(∞). The

results of these calculations are presented in Section 5.4.

5.3.1 Results From Simulating The Activity Kinetics Using Residuals

The original activity parameters were estimated using non-linear regression with the nor-

malized measured activity data. The procedure discussed in Section 4.2.1 was still followed

only a normalized version of (4.6),

ln
(

˜̌A(ti)
)

= ž + ln
(
e−bti − e−cti

)
+ ηAi, (5.5)

was used to estimate the activity parameters. ž = µA + ln
(
Y̌
)
. Table 5.7 reports the

original activity parameters and their respective standard errors (SE) found using non-linear

regression of (5.5) with the normalized measured activity data.

The residuals from the regression will be used to simulate the activity data as described

in Section 4.2.1. The residuals were investigated using the usual histogram and normal prob-

ability plot as well as a box and whisker plot as described in Section 4.5.1. Figures 5.7(a)-

5.7(c) are of a histogram, a normal probability plot, and a box and whisker plot, respec-

tively, of the activity residuals rAi for all subjects. By inspection, the histogram appears

to possibly follow a normal distribution. The tails of the data depart from linearity on the

normal probability plot, which does not imply whether rAi follows a normal distribution or
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Table 5.7. The original activity parameters from (5.5) and their SE estimated using non-
linear regression with the normalized measured activity data.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ž 0.015 -0.195 0.284 -0.171 -0.687 -0.739

SEž 0.199 0.065 0.248 0.015 0.057 0.035

Y̌ 1.024 0.830 1.341 0.850 0.508 0.482

SEY̌ - - - - - -

b (hr−1) 0.0070 0.0060 0.0052 0.0075 0.0057 0.0049

SEb 0.0008 0.0002 0.0006 0.0001 0.0002 0.0001

c (hr−1) 0.411 0.104 0.037 0.745 0.165 0.272

SEc 0.271 0.013 0.012 0.050 0.024 0.022

σ2
ηA

0.0641 0.0039 0.0894 0.0007 0.0092 0.0038
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not. By inspection, the box and whisker plot provides evidence that all subjects possibly

share the same statistical distribution. The median and quartile values for each subject

are within reason of each other implying that their respective distributions share the same

characteristics.

(a) Histogram of rAi for the activity data. (b) Normal probability plot of rAi for the activity
data.

(c) Box and whisker plot of rAi for the activity
data.

Figure 5.7. Analysis of the activity residuals consisted of a box and whisker plot, a normal
probability plot and a histogram.

The activity parameters were also estimated from the simulated activity data sets fol-

lowing the method described in Section 4.2.1. Section 4.5 describes how an average estimate

and standard deviation of each activity parameter can be obtained from the N = 500 sets of

simulated activity parameters. However, similar to estimating the activity parameters from

the measured data (5.5) was use to estimate the activity parameters from the simulated data.
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Note that we had to put bounds on the activity parameters while performing non-linear re-

gression on (5.5). This was due to the residuals. One of the residuals was relatively large

(rAi=0.5) and when it was added to a subjects initial activity data point it would make this

point the largest for that subject. If the initial data point is the largest value, then the data

would resemble a straight line making the estimation of the activity parameters impossible.

We used the following bounds: −3 ≤ z ≤ 1, 0 ≤ b ≤ 0.01, and 0 ≤ c ≤ 2. Table 5.8 contains

the estimated activity parameters and their standard deviations (SD).

The activity parameters estimated from the simulated data were used to check the accu-

racy of the results from the original regression of the measured activity data. The estimated

activity parameter values in Table 5.8 were compared to their respective estimated values

from Table 5.7. All parameter estimates and standard error values match reasonable well

between the two tables. For example, Y̌ = 0.920 and 0.842 for subjects 12 and 13 estimated

from the simulated data. For the same subjects, Y̌ = 1.024 and 0.830 estimated from the

measured data.

Figures 5.8(a) - 5.8(c) are histograms of ž, b and c respectively. By inspection, the Figures

5.8(a) and 5.8(c) do not appear to follow a normal distribution however Figure 5.8(b) does

appear to possibly follow a normal distribution.
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Table 5.8. Activity parameters from (5.5) and their standard deviations estimated from
the simulations performed using the residuals.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ž -0.097 -0.192 -0.194 -0.169 -0.691 -0.735

SEž 0.098 0.140 0.091 0.072 0.080 0.077

Y̌ 0.920 0.842 0.835 0.854 0.507 0.485

SEY̌ 0.092 0.127 0.078 0.062 0.042 0.038

b (hr−1) 0.0067 0.0060 0.0042 0.0075 0.0057 0.0049

SEb 0.0004 0.0005 0.0002 0.0003 0.0003 0.0003

c (hr−1) 0.681 0.111 0.060 0.803 0.171 0.272

SEc 0.468 0.043 0.011 0.305 0.041 0.048

σ2
ηA

0.0188 0.0157 0.0172 0.0188 0.0168 0.0178
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(a) Histogram of ž for subject 21. (b) Histogram of b for subject 21.

(c) Histogram of c for subject 21.

Figure 5.8. Histograms of the activity parameters from (5.5) for subject 21.

Figures 5.9(a) - 5.9(c) are normal probability plots of ž, b, and c respectively. The figures

do not provide evidence that the activity parameters do or do not follow a normal distribution

as a result of the tails of the data departing from linearity on each plot. A conclusion could

not be made from these plots alone.
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(a) Normal probability plot of ž for subject 21. (b) Normal probability plot of b for subject 21.

(c) Normal probability plot of c for subject 21.

Figure 5.9. Normal probability plots of the activity parameters from (5.5) for subject 21.
The crosses represent the data points and the dotted line is used to help evaluate the linearity
of the data.

5.3.2 Results From Simulating The Mass Dynamics Using Residuals

The original mass parameters were estimated using the method described in Section 4.2.2.

Equation (5.4) was used to incorporate the normalized activity parameters and estimate the

mass parameters from the measured mass data. Table 5.9 reports the mass parameters and

their respective standard errors found using non-linear regression of (5.4) with measured

mass data.

The estimated µm and σ2
ηm values were compared to their expected values calculated

assuming either a uniform or a normal distribution of εmi as described in Section 4.5.1. The

estimated µm values from the regression are positive for all subjects with the exception of sub-
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Table 5.9. The original mass parameters from (5.4) and their SE estimated using non-linear
regression with measured mass data.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 1.93 2.48 0.48 1.17 0.69 0.04

SEk̆fit - - 0.04 0.07 0.09 0.06

µm 0.039 0.040 0.018 0.165 0.077 -0.015

SEµm - - 0.028 0.087 0.036 0.054

σ2
ηm - - 0.0016 0.0164 0.0022 0.0043

ject 43. The estimated µm values could not support either a U(-ζ, ζ) or N(0, ζ
2

9
) distribution

of εmi (ζ = 0.15) because both expected µm values (µmU=-0.00378 and µmN=-0.00125 ) are

negative. The estimated σ2
ηm values did not support either distribution. The expected σ2

ηm

values are 0.0076 and 0.0025 for the uniform and normal distribution respectively. While on

the same order of magnitude, definite support for either distribution could not be concluded.

Similar to the activity residuals, the mass residuals were investigated with the use of a

histogram, normal probability plot, and a box and whisker plot as described in Section 4.5.1.

Figures 5.10(a)-5.10(c) are a histogram, a normal probability plot, and a box and whisker

plot, respectively, of the mass residuals rmi for all subjects. By inspection, a conclusion

about the distribution of the histogram cannot be made. The tails of the data depart from

linearity on the normal probability plot, which does not imply whether rmi follows a normal

distribution or not. By inspection, the box and whisker plot provides evidence that all

subjects possibly share the same statistical distribution. The median and quartile values

for each subject are within reason of each other implying that their respective distributions

share the same characteristics.
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(a) Histogram of rmi for the mass data. (b) Normal probability plot of rmi for the mass
data.

(c) Box and whisker plot of rmi for the mass data.

Figure 5.10. Analysis of the mass residuals consisted of a box and whisker plot, a normal
probability plot and a histogram.
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The mass parameters were also estimated from the simulated mass data sets following

the method described in Section 4.2.2. Section 4.5 describes how an average estimate and

standard deviation of each mass parameter can be obtained from the N = 500 sets of simu-

lated mass parameters. However, similar to the estimation of the measured mass parameters,

(5.4) was used to incorporate the normalized activity parameters and estimate the mass pa-

rameters using the simulated data. Table 5.10 contains the estimated mass parameters and

their standard deviations (SD).

The mass parameters estimated from the simulated data were also compared to the mass

parameters estimated from the measured data. The estimated mass parameters in Table 5.10

were compared to their respective estimated values from Table 5.9. All parameters except

µm match reasonable well between the two tables. For example, k̆fit = 2.16
g2

hr
and 2.60

g2

hr

for subjects 19 and 21 respectively. These values were obtained from the simulated data.

For the same subjects, k̆fit = 1.93
g2

hr
and 2.48

g2

hr
estimated from the measured data. With

the exception of subjects 28 and 43, all of the estimated µm values from the simulated data

were negative while the µm values estimated from the measured data were all positive with

the exception of subject 43. These results suggest that the simulated mass data are required

for estimating the mass parameters.

Figures 5.11(a) and 5.11(b) are histograms of k̆fit and µm, respectively. The histograms

appear to follow a normal distribution. Another approach to gain insight into the distribu-

tions of these parameters is to investigate the normal probability plots in Figures 5.12(a)

and 5.12(b). Figures 5.12(a) and 5.12(b) are normal probability plots of k̆fit and µm, re-

spectively, and do not provide evidence that the mass parameters do or do not belong to

a normal distribution because the tails of the data depart from linearity on each plot. A

conclusion could not be made from these plots alone.
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Table 5.10. Mass parameters from (5.4) and their standard deviations estimated from the
simulations performed using the residuals.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 2.16 2.60 0.59 1.59 0.78 0.06

SEk̆fit 0.64 0.42 0.15 0.22 0.23 0.06

µm -0.0006 -0.0003 -0.0004 -0.0055 0.0009 0.0001

SEµm 0.0076 0.0036 0.0439 0.0747 0.0460 0.0448

σ2
ηm - - 0.0038 0.0040 0.0042 0.0040

(a) Histogram of k̆fit for subject 21. (b) Histogram of µm for subject 21.

Figure 5.11. Histogram of the mass parameters from (5.4) for subject 21.
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(a) Normal probability plot of k̆fit for subject 21. (b) Normal probability plot of µm for subject 21.

Figure 5.12. Normal probability plots of the mass parameters from (5.4) for subject 21.
The crosses represent the data points and the dotted line is used to help evaluate the linearity
of the data.

5.4 m(∞) Calculation Results

This section presents the results of the calculation of m(∞) as described in Section

4.3. Section 5.4.1 presents the calculation of m(∞) using parameters estimated from the

uniformly distributed data. Finally, Section 5.4.2 presents the calculation of m(∞) using

parameters estimated from the nonparametric bootstrap simulations. In each section, m(∞)

will be calculated using 3 estimates of the mass parameter k̆: 1) k̆ found using non-linear

regression of mass data, k̆fit, 2) k̆ calculated using (3.16), k̆pred, and 3) k̆ calculated using

(2.8), k̆calc. The 3 estimates of k̆ are used to investigate the error in our new protocol when

using a predictive equation to calculate k̆.

5.4.1 m(∞) Calculated Using Parameters Estimated From Simulations Of The

Uniform Distribution

Using the activity and mass parameters estimated from the data simulated assuming the

Unif(-ζ,ζ) distribution, DT was calculated as described in Section 4.3. Here, k̆fit was used

to calculate DT . With an estimate of DT , ᾱsubject was found as also described in Section

4.3. Table 5.11 contains ᾱsubject and its respective variance for each subject. Using these
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values, a minimum variance estimate of α was calculated to be α̂mv=0.0033 Gy−1. Also,

V (α̂mv)=3.35E-8 Gy−2.

Table 5.11. For each subject an average α, ᾱsubject was calculated along with the variance
in ᾱsubject as described in Section 4.3.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ᾱsubject (Gy−1) 0.0038 0.0037 0.0026 0.0035 0.0031 0.0041

V (ᾱsubject) (Gy−2) 1.66E-7 2.10E-7 1.06E-7 3.53E-7 2.79E-7 3.15E-7

Using α̂mv for all subjects, m (∞) could be calculated as described in Section 4.3. To

calculate m (∞), DT and thus an estimate of k̆ is required. Again, here we used k̆fit to

calculate DT and m (∞). Table 5.12 contains estimates of k̆fit, DT and m (∞). Each

parameters standard error was also found from the simulated data. The confidence interval

of m(∞), CIm(∞), was calculated as described in Section 4.5 assuming a 95% confidence

level.

The statistical distributions of DT and m (∞) were investigated with the use of his-

tograms as described in Section 4.5. Normal probability plots were not used because the

distribution of DT and m (∞) are not expected to be normal. Figure 5.13(a) is the his-

togram of DT for subject 21 and Figure 5.13(b) is the histogram of m (∞) for subject 21.

By inspection, a conclusion of the distribution of these parameters could not be made from

the histograms. The histograms are only reported for DT and m (∞) which were calculated

using k̆fit. Histograms of DT and m (∞) calculated using k̆pred and k̆calc were very similar.

Table 5.13 reports estimates of k̆pred, DT , and m (∞) which were calculated from param-

eters estimated from data that was simulated assuming the uniform distribution. Table 5.14

reports estimates of k̆calc, DT , and m (∞).
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Table 5.12. k̆fit, DT , and m (∞) were calculated from parameters estimated from data
simulated assuming the uniform distribution. The standard deviation of the parameters
were found as described in Section 4.5. The confidence interval of m(∞), CIm(∞), was
calculated as described in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 1.92 2.53 0.49 1.19 0.69 0.05

SDk̆fit
0.76 0.51 0.15 0.23 0.26 0.08

DT (Gy) 405 454 770 372 391 370

SDDT 27.4 34.1 58.6 29.0 29.0 26.6

m (∞) (g) 8.4 6.1 1.7 5.4 4.4 2.7

SDm(∞) 1.4 1.2 0.5 0.9 0.8 0.4

CIm(∞) [6.1 11.0] [4.3 8.0] [1.0 2.6] [3.8 7.0] [3.2 5.8] [1.9 3.4]

(a) Histogram of DT for subject 21. (b) Histogram of m (∞) for subject 21.

Figure 5.13. Histograms of the DT and m (∞) for subject 21.
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Table 5.13. k̆pred, DT , and m (∞) were calculated from parameters estimated from data
simulated assuming the uniform distribution. The standard deviation of the parameters were
found as described in Section 4.5. The confidence interval of m(∞), CIm(∞) was calculated
as described in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆pred ( g
2

hr
) 2.15 1.69 0.60 0.87 0.90 0.24

SD ˘kpred
0.37 0.31 0.12 0.15 0.16 0.04

DT (Gy) 417 375 805 323 414 440

SDDT 37.0 35.7 72.0 28.2 37.3 37.6

m (∞) (g) 8.2 8.0 1.5 6.3 4.2 2.1

SDm(∞) 1.7 1.6 0.48 1.1 0.9 0.4

CIm(∞) [5.5 11.4] [5.5 10.6] [0.8 2.4] [4.4 8.1] [2.8 5.6] [1.5 3.0]

Table 5.14. k̆calc, DT , and m (∞) were calculated from parameters estimated from data
simulated assuming the uniform distribution. The standard deviation of the parameters were
found as described in Section 4.5. The confidence interval of m(∞), CIm(∞) was calculated
as described in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆calc ( g
2

hr
) 1.65 1.69 0.79 0.62 0.91 0.28

SDk̆calc
0.29 0.29 0.14 0.10 0.15 0.05

DT (Gy) 395 374 918 302 411 458

SDDT 36.0 33.4 85.7 27.3 36.1 42.1

m (∞) (g) 8.8 7.8 1.1 6.8 4.2 2.0

SDm(∞) 1.7 1.5 0.4 1.2 0.8 0.4

CIm(∞) [6.1 12.1] [5.4 10.7] [0.5 1.8] [4.8 8.6 ] [2.8 5.7] [1.3 2.8]
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The parameter estimates and their standard deviations are very similar between Tables

5.13, 5.14, and 5.12. For example, m (∞) =8.2, 8.0, and 1.5 grams for subjects 12, 13, and 19

from Table 5.13. For the same subjects, m (∞) =8.4, 6.1, and 1.7 grams from Table 5.12 and

m (∞) =8.8, 7.8, and 1.1 grams from Table 5.14. The m (∞) values for a particular subject

are within 1.9 grams of each other between the three tables. This provides evidence that

k̆pred and k̆calc provide a reasonable estimate of k̆fit and can be used to accurately calculate

m (∞).

5.4.2 m(∞) Calculated Using Parameters Estimated From The Nonparametric

Bootstrap Simulations

Using the activity and mass parameters estimated from the data simulated assuming the

residuals, DT was calculated as described in Section 4.3. Here, k̆fit was used to calculate DT .

With an estimate of DT , ᾱsubject was found as described in Section 4.3. Table 5.15 contains

ᾱsubject and its respective variance for each subject. Using these values, a minimum variance

estimate of α was calculated to be α̂mv=0.0034 Gy−1 with V (α̂mv)=2.64E-8 Gy−2. Using

Table 5.15. For each subject an average α, ᾱsubject was calculated along with the variance
in ᾱsubject as described in Section 4.3.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ᾱsubject (Gy−1) 0.0042 0.0040 0.0031 0.0042 0.0033 0.0038

V (ᾱsubject) (Gy−2) 1.68E-7 1.75E-7 8.87E-8 2.70E-7 1.70E-7 1.88E-7

α̂mv for all subjects, m (∞) could be calculated as described in Section 4.3. To calculate

m (∞), DT and thus an estimate of k̆ is required. Again, here we used k̆fit to calculate DT

and m (∞). Table 5.16 contains estimates of k̆fit, DT and m (∞).
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Table 5.16. k̆fit, DT , and m (∞) were calculated from parameters estimated from data
simulated using the residuals. The standard deviation of the parameters were found as de-
scribed in Section 4.5. The confidence interval of m(∞), CIm(∞), was calculated as described
in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 2.14 2.58 0.60 1.58 0.77 0.05

SDk̆fit
0.61 0.4391 0.15 0.23 0.21 0.06

DT (Gy) 367 428 619 310 360 376

SDDT 29.2 37.4 43.0 25.6 25.0 26.6

m (∞) (g) 8.7 5.9 2.2 6.9 4.6 2.3

SDm(∞) 1.3 1.0 0.5 1.0 0.6 0.3

CIm(∞) [6.1 11.4] [4.1 8.3] [1.5 3.5] [4.7 9.2] [3.5 6.4] [1.7 3.1]

The statistical distributions of DT and m (∞) were investigated with the use of his-

tograms as described in Section 4.5. Figures 5.14(a) and 5.14(b) are histograms of DT and

m (∞), respectively, for subject 21. By inspection, the histograms appear to follow a normal

distribution.

Table 5.17 reports estimates of k̆pred, DT , and m (∞). Table 5.18 reports estimates of

k̆calc, DT , and m (∞). The parameter estimates and their standard errors are very similar

between Tables 5.17, 5.18, and 5.16. For example, m (∞) = 8.3, 7.6, and 1.9 grams for

subjects 12, 13, and 19 from Table 5.17. For the same subjects, m (∞) = 8.7, 5.9, and 2.2

grams from Table 5.16 and m (∞) = 8.9, 7.5, and 1.3 grams from Table 5.18. The m (∞)

values for a particular subject are within 1.7 grams of each other between the three tables.

This provides evidence that k̆pred and k̆calc provide a reasonable estimate of k̆ and can be

used to accurately calculate m (∞).
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(a) Histogram of DT for subject 21. (b) Histogram of m (∞) for subject 21.

Figure 5.14. Histograms of the DT and m (∞) for subject 21.

Table 5.17. k̆pred, DT , and m (∞) were calculated from parameters estimated from data
simulated using the residuals. The standard deviation of the parameters were found as de-
scribed in Section 4.5. The confidence interval of m(∞), CIm(∞) was calculated as described
in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆pred ( g
2

hr
) 2.50 1.8 0.74 1.19 1.05 0.24

SDk̆pred
0.37 0.25 0.11 0.16 0.14 0.04

DT (Gy) 382 359 660 278 382 438

SDDT 37.0 30.6 55.3 22.5 29.5 34.1

m (∞) (g) 8.3 7.6 1.9 7.7 4.3 1.8

SDm(∞) 1.5 1.2 0.5 1.1 0.7 0.3

CIm(∞) [5.5 11.6] [4.8 10.7] [1.1 3.1] [5.5 10.0] [2.8 6.0] [1.1 2.5]
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Table 5.18. k̆calc, DT , and m (∞) were calculated from parameters estimated from data
simulated using the residuals. The standard deviation of the parameters were found as de-
scribed in Section 4.5. The confidence interval of m(∞), CIm(∞), was calculated as described
in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆calc ( g
2

hr
) 1.94 1.82 1.10 0.85 1.04 0.28

SDk̆calc
0.28 0.28 0.14 0.13 0.15 0.04

DT (Gy) 363 363 780 257 386 460

SDDT 33.5 35.4 61.1 20.9 32.8 36.9

m (∞) (g) 8.9 7.5 1.3 8.3 4.3 1.7

SDm(∞) 1.4 1.3 0.3 1.1 0.7 0.3

CIm(∞) [6.2 10.2] [5.0 10.1] [0.61 2.3] [6.0 10.9] [2.8 6.0] [1.2 2.5]

5.5 Standard Propagation Of Error Method Results

The first step in performing the standard propagation of error method was to estimate the

relevant parameter values. Table 5.19 reports the activity parameters and their respective

SE values found using non-linear regression of (5.1) with normalized activity data. Table

5.20 reports the mass parameters and their respective SE values found using non-linear

regression of (5.2) using mass data.

Using the estimated activity and mass parameters, α was found for each subject as

described in Section 3.2.2. Table 5.21 contains α and its respective variance for each subject.

Using these values, a minimum variance estimate of α was calculated to be α̂mv=0.0031 Gy−1

with V (α̂mv)=1.30E-6 Gy−2.
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Table 5.19. Activity parameters from (5.1) and their SE estimated using non-linear re-
gression with normalized activity data.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

Y̌ 0.909 0.772 1.232 0.820 0.517 0.988 0.466

SEY̌ 0.035 0.026 0.137 0.006 0.031 0.021 0.014

b (hr−1) 0.0059 0.0055 0.0054 0.0071 0.0059 0.0048 0.0047

SEb 0.0005 0.0003 0.0009 0.0001 0.0007 0.0002 0.0003

c (hr−1) 0.523 0.112 0.082 0.792 0.159 1.271 0.282

SEc 0.076 0.008 0.024 0.021 0.029 0.666 0.041

Table 5.20. The mass parameter k̆fit from (5.2) and its SE estimated using non-linear
regression with mass data.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆fit ( g
2

hr
) 1.7 2.4 0.5 1.0 0.5 0.4 0.06

SEk̆fit 5.8E-14 1.8E-15 0.0283 0.0855 0.0857 0.1256 0.0228

Table 5.21. α and its respective variance are reported for each subject. α and its variance
were calculated as described in Section 3.2.2.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

α (Gy−1) 0.0036 0.0037 0.0027 0.0037 0.0032 0.0023 0.0040

V (α) (Gy−2) 1.53E-5 2.90E-5 2.75E-5 3.76E-6 2.46E-5 3.62E-6 1.98E-5
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Using α̂mv for all subjects, m (∞) was calculated. To calculate m (∞), DT and thus an

estimate of k̆ is required. Here we used k̆fit to calculate DT and m (∞). Table 5.22 contains

estimates of k̆fit, DT and m (∞). Each parameters standard error was calculated using the

analytical approximation method.

Table 5.22. Calculated values of k̆fit, DT , and m(∞). Each parameter’s standard error
values were found using the standard propagation of error method.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆fit ( g
2

hr
) 1.71 2.41 0.47 1.00 0.50 0.37 0.06

SEk̆fit 5.8E-14 1.8E-15 0.03 0.09 0.09 0.13 0.023

DT (Gy) 427 459 728 347 367 596 379

SEDT 463 668 1413 179 568 490 421

m(∞) (g) 8.2 6.2 2.0 5.9 4.9 2.4 2.7

SEm(∞) 11.4 12.8 9.1 2.3 8.7 3.3 3.4

Table 5.23 reports calculations of k̆pred, DT , and m (∞). Table 5.24 reports calculations

of k̆calc, DT , and m (∞). The parameter estimates and their standard errors are very similar

between Tables 5.23, 5.24, and 5.22. For example, m (∞) = 7.7, 8.0, and 1.8 grams for

subjects 12, 13, and 19 from Table 5.23. For the same subjects, m (∞) = 8.2, 6.2, and 2.0

grams from Table 5.22 and m (∞) = 8.0, 7.8, and 1.6 grams from Table 5.24. The m (∞)

values for a particular subject are within 1.8 grams of each other between the three tables.

This provides evidence that k̆pred and k̆calc provide a reasonable estimate of k̆ and can be

used to accurately calculate m (∞).

The standard errors for DT and m (∞) are unreasonably large and therefore the uncer-

tainties were not calculated. The standard errors calculated from the standard propagation
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Table 5.23. Calculated values of k̆pred, DT , and m(∞). Each parameter’s standard error
values were found using the standard propagation of error method.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆pred ( g
2

hr
) 2.00 1.64 0.62 0.84 0.90 0.37 0.24

SEk̆pred 2.25 1.85 1.29 0.39 1.54 0.31 0.32

DT (Gy) 443 380 774 327 407 596 442

SEDT 499 431 1589 158 690 490 557

m(∞) (g) 7.7 8.0 1.8 6.3 4.3 2.4 2.2

SEm(∞) 11.7 10.4 8.8 2.0 9.4 3.4 3.7

Table 5.24. Calculated values of k̆calc, DT , and m(∞). Each parameter’s standard error
values were found using the standard propagation of error method.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

k̆calc ( g
2

hr
) 1.80 1.74 0.70 0.62 0.88 0.40 0.28

SEk̆calc 0.33 0.78 0.73 0.09 0.52 0.05 0.08

DT (Gy) 431 387 804 307 404 610 467

SEDT 532 472 1708 160 744 574 683

m(∞) (g) 8.0 7.8 1.6 6.7 4.4 2.3 2.0

SEm(∞) 13.0 11.2 8.6 2.3 10.2 3.9 4.3

88



of error method can be compared with the standard deviations calculated from the simulated

data. The estimates of DT and m(∞) are similar between the three methods of estimating

k̆ and therefore only the values calculated using k̆pred will be used to compare the standard

propagation of error and simulation methods. Comparing the parameter estimates from

Table 5.13 with the parameters estimates from Table 5.23 shows that the simulation results

are very different from the standard propagation of error method results. While the param-

eter estimates of k̆pred, DT , and m (∞) are close between the two tables, each parameter’s

standard error is considerably different. The standard errors from the standard propagation

of error method (SEm(∞) = 13.0 grams and 11.2 grams for subjects 12 and 13) are much

larger than the standard deviations from the simulated data (SDm(∞) = 1.4 grams and 1.2

grams for subjects 12 and 13). The standard deviations calculated from the simulated data

are an order of magnitude smaller than the standard errors calculated from the standard

propagation of error method. This implies that the standard propagation of error method

does not provide reasonable estimates of the standard errors and provides evidence that the

simulated data are required for the uncertainty analysis of our new protocol.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis we presented a new computational protocol for the calculation of RAI in the

treatment of Graves’ hyperthyroidism. The new protocol implemented a two-compartment

model to describe RAI kinetics in the body which allows for the conversion between different

RAI isotopes used in diagnostic and therapeutic applications. The protocol allows for the

prediction of the final thyroid mass from the absorbed dose which is calculated using the

new activity kinetics and an improved method to predict the thyroid mass dynamics directly

related to the activity in the thyroid. Using clinical data consisting of activity kinetics and

mass dynamics of 17 subjects and measured final mass values of 7 of the 17 subjects, we were

able to show that our new protocol can accurately predict the measured final thyroid mass

values. Uncertainty analysis of the protocol was performed using an standard propagation of

error method, however, this yielded large standard error values in the absorbed dose and final

mass. The unreasonable results could be due to the small sample size of the clinical data. As a

result, we simulated additional data using parametric and nonparametric bootstrap methods.

Conclusions could not be made of the statistical distributions of the activity and mass data,

however we were able to obtain a 95 % confidence interval: 0.53m(∞) < m(∞) < 1.38m(∞).

The uncertainty was calculated using the bootstrap methods with a 95% confidence level.

There is an open question, namely, whether this confidence interval is clinically useful,

because, if a subject were at one of the extremes of the confidence interval, it may not

correspond to a euthyroid state.
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There are also some open problems that still remain. One problem would be to identify an

error distribution pertaining to all subjects. The proper way to identify this error distribution

would be through the use of non-linear mixed-effects (NLME) models.

Another problem would be to investigate the quality of the activity parameters estimated

from three activity measurements. We have touched on this briefly in this thesis, however,

a detailed investigation is required. The identification of the activity parameters based on

three measurements is at the heart of our protocol and needs to be formally addressed.

Finally, the constant α in (3.11) needs to be further investigated. Much of the uncertainty

in the final mass estimate is a result from the uncertainty in α. Therefore, if we can find a

better estimate of α, then we can reduce the uncertainty in the calculation of the final mass.

This can be accomplished by either finding a better method of calculating the variance of α,

V (α̂), or by using the data of more subjects to estimate α.
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APPENDIX A

CLINICAL DATA

Dr. Traino provided us with detailed activity and mass data of 7 Graves’ subjects who

underwent RAI therapy. The data consists of pre-therapy mass m(0) and therapeutic ac-

tivity Ad in Table A.1, measured mass dynamics in Table A.2, and measured, normalized

activity kinetics A(t)
Ad

in Table A.3.

Table A.1. The measured pre-therapeutic mass and the therapeutic activity Ad.

Subject # 12 13 19 21 28 30 43
m(0) (g) 32 27 21 18 16 16 9
Ad (MBq) 666 555 555 370 555 339 296

Table A.2. Measured mass dynamics data.

RAI therapy mass dynamics m(t)
Time (days) # 12 # 13 # 19 # 21 # 28 # 30 # 43
Pre-therapy 32 27 21 18 16 16 9
3 days - - 21 18 17 - 9
7 days - - 18 16 15 - 8
14 days - - 17 9 13 15 8
21 days 23 - 15 11 13 - 9
28 days - - 16 9 13 - 9
30 days - 10 - - - 8 -
35 days - - 16 9 - - 8
1 year 7 5 3 5 5 4 2
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Table A.3. Measured, normalized activity kinetics data.

# 12 # 13 # 19 # 21
Time(hr) A(t)/Ad Time(hr) A(t)/Ad Time(hr) A(t)/Ad Time(hr) A(t)/Ad

0 0 0 0 0 0 0 0
3.3 0.73 6 0.36 2.3 0.06 2 0.64
19.3 0.82 23 0.61 21.5 0.97 22.6 0.70
68.0 0.59 95.0 0.47 45.1 0.88 46.5 0.58
236.2 0.26 263.0 0.18 69.3 0.88 70.5 0.50
404.0 0.05 430.0 0.06 141.4 0.48 140.4 0.30
- - - - 165.1 0.52 163.6 0.26
- - - - 333.2 0.25 332.4 0.07
- - - - 526.5 0.09 500.3 0.02
- - - - 670.3 0.04 - -

# 28 # 30 # 43
Time(hr) A(t)/Ad Time(hr) A(t)/Ad Time(hr) A(t)/Ad

0 0 0 0 0 0
3.5 0.21 3.5 0.96 1.2 0.13
22.6 0.44 22.8 0.87 20.2 0.44
46.3 0.36 70.3 0.73 44.1 0.35
70.0 0.39 239.5 0.30 67.4 0.35
141.7 0.20 407.5 0.14 139.1 0.24
166.0 0.20 - - 163.3 0.23
333.8 0.07 - - 331.2 0.10
501.5 0.03 - - 499.4 0.04

Dr. Traino also provided the normalized activity kinetics data and mass dynamics data

of the additional ten subjects [16]. The initial administered RAI dose and initial measured

mass can be found in Table A.4. The activity kinetics data is in Table A.5 and the mass

dynamics data is in Table A.6.

Table A.4. The measured pre-therapeutic mass and the therapeutic activity Ad.

Subject # 1 2 3 4 5 6 7 8 9 10
m(0) (g) 64 54 43 40 26 18 16 14 13 13
Ad (MBq) 592 666 555 555 629 518 518 518 518 444
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Table A.5. Measured, normalized activity kinetics data.

#1 # 2 #3 # 4
Time(hr) A(t)/Ad Time(hr) A(t)/Ad Time(hr) A(t)/Ad Time(hr) A(t)/Ad

0 0 0 0 0 0 0 0
2 0.52 2 0.10 2 0.49 2 0.35
24 0.46 24 0.44 3 0.44 24 0.52
72 0.32 72 0.39 24 0.34 48 0.62
120 0.26 120 0.31 72 0.38 168 0.38
144 0.23 168 0.26 120 0.26 336 0.13
168 0.19 336 0.12 240 0.13 840 0.02
336 0.1 504 0.05 288 0.11 - -
- - - - 480 0.04 - -
- - - - 576 0.02 - -

# 5 # 6 # 7 # 8
Time(hr) A(t)/Ad Time(hr) A(t)/Ad Time(hr) A(t)/Ad Time(hr) A(t)/Ad

0 0 0 0 0 0 0 0
24 0.43 2 0.34 8 0.20 2 0.17
48 0.46 72 0.47 24 0.41 24 0.38
72 0.41 168 0.24 72 0.28 48 0.29
120 0.38 312 0.10 120 0.23 120 0.21
168 0.30 144 0.21 144 0.21 144 0.21
336 0.11 480 0.047 168 0.16 168 0.21
600 0.03 - - 336 0.07 336 0.08
- - - - 504 0.02 480 0.04

# 9 # 10
Time(hr) A(t)/Ad Time(hr) A(t)/Ad

0 0 0 0
2 0.22 2 0.31
24 0.63 24 0.53
72 0.41 72 0.50
120 0.34 120 0.44
144 0.32 144 0.39
168 0.30 168 0.35
312 0.12 336 0.17
480 0.06 504 0.06
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Table A.6. Measured mass dynamics data.

RAI therapy mass dynamics m(t)
Time (days) # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
Pre-therapy 64 54 43 40 26 18 16 14 13 13
3 days 56 42 41 39 24 15 15 16 10 -
7 days 58 47 34 36 23 17 16 14 14 12
14 days - 33 33 29 23 7 12 14 10 6
21 days 43 39 32 17 21 - 12 11 12 6
30 days - 25 27 10 20 9 - 7 9 9
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APPENDIX B

CALCULATING THE ACTIVITY PARAMETERS
ANALYTICALLY WITH LIMITED DATA

Before deciding to use non-linear regression to estimate the activity parameters Y , b,

and c with 3 measured data points, we looked into calculating these parameters analytically.

Below is our attempt at finding an analytical solution to this problem.

Original Question. Given a function of the form

A(t) = Y
(
e−bt − e−ct

)
,

where b < c and t ≥ 0, is it possible to determine Y , b, and c on the basis of 3 observations

a times t1 < t2 < t3?

Answer. Let c = b+ δ (δ > 0), so

A(t) = Y
(
e−bt − e−bt−δt

)
= Y e−bt

(
1− e−δt

)
,

and let

ai = A(ti) = Y e−bti
(
1− e−δti

)
.

Also, denote
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η12 =
a1

a2

= e−b(t1−t2) 1− e−δt1
1− e−δt2

, (B.1)

η13 =
a1

a3

= e−b(t1−t3) 1− e−δt1
1− e−δt3

, (B.2)

∆12 = t1 − t2, (B.3)

and

∆13 = t1 − t3. (B.4)

Equation (B.1) can be re-written using (B.3) to yield

eb∆12 =
1

η12

1− e−δt1
1− e−δt2

, (B.5)

also, (B.2) can be re-written using (B.4) to yield

eb∆13 =
(
eb∆12

)P
, (B.6)

where P = ∆13

∆12
> 1. Combining (B.5) and (B.6) yields

(
1

η12

1− e−δt1
1− e−δt2

)P
= eb∆13

=
1

η13

1− e−δt1
1− e−δt3

,

which reduces to (
1− e−δt1
1− e−δt2

)P
1− e−δt3
1− e−δt1

=
ηP12

η13

. (B.7)

The parameters η12 and η13 are known from observations, if (B.7) can be solved for δ,

then b can be calculated from (B.5) and Y can be calculated from

a1 = Y e−bt1
(
1− e−δt1

)
. (B.8)
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Denote the left side of (B.7) by f(δ) where δ is the only unknown parameter in (B.7).

The question is whether there exists a δ > 0 such that

f(δ) =
ηP12

η13

.

Note that

f(0+) = lim
δ↓0

f(δ) =

(
t1
t2

)P
t3
t1

f(∞) = 1.

Let u = e−δt1 , so as δ goes from 0 to ∞, u goes from 1 to 0. Now

e−δt2 =
(
e−δt1

) t2
t1 = u

t2
t1 = uτ21

e−δt3 = u
t3
t1 = uτ31 ,

where τ21 = t2
t1

, τ31 = t3
t1

, and τ21, τ31 > 1. This results in

f(δ) =

(
1− u

1− uτ21

)P
1− uτ31
1− u

= h(u).

This can be further explored through an example.

Example. Let P=2, τ21=2, and τ31=3. Using these values in the equation for h(u) yields

h(u) =

(
1− u
1− u2

)2
1− u3

1− u

=
u2 + u+ 1

(1 + u)2
.
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Taking the derivative of this equation with respect to u results in

h′(u) =
u2 − 1

(u+ 1)4 ,

where 0 < u < 1. If we denote the numerator of h′(u) to be Θ(u), then Θ(0) = -1 and

Θ(1)=0. Taking the derivative of Θ(u) with respect to u results in

Θ′(u) = 2u.

The term Θ′(u) ≥ 0 for 0 ≤ u ≤ 1 and hence Θ(u) is monotone increasing on 0 ≤ u ≤ 1.

Therefore, Θ(u) ≤ 0 and h′(u) ≤ 0 for 0 ≤ u ≤ 1. It follows that h(u) is a monotone

decreasing function. Thus the values of h(u) all lie between h(0)=1 and h(1)=0.75 and the

values of f(δ) lie between 0.75 and 1. Therefore, (B.7) will have a solution δ if and only if

0.75 ≤ ηP12
η13
≤ 1.

General conditions could probably be found that would guarantee a solution to (B.7),

however, we did not pursue this further. We used non-linear regression to estimate the

activity parameters Y , b, and c throughout this thesis.
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APPENDIX C

INVESTIGATING DT

The absorbed dose can be expressed as

DT = σ

∫ ∞
0

A(x)

m(x)
dx.

As described in Section 3.2, we can only directly calculate the mass dynamics, m(t), during

the first time frame. The first time frame, as described in Section 2.2, is assumed to occur

during the first 30-35 days (720-840 hours) after administration of RAI. Throughout this

thesis we have calculated the mass dynamics, m(t), until t = 840 hours, m(840). As a result,

we only calculated the absorbed dose integral to t = 840 hours. Although we cannot prove

that the first time frame does occur during the first 840 hours after RAI administration, we

can prove that the absorbed dose will be not change significantly when calculated up t =

720 hours or up to t = 1080 hours (45 days). To investigate this conjecture, we can re-write

the absorbed dose integral as

DT = σ

∫ t

0

A(t)

m(t)
dt.

We set the upper limit of the integral to the time variable, t, because we want to evaluate

this integral at various times. The following closed from solution of this integral can be

found

DT =
σ

k
(m(0)−m(t)) , (C.1)

where,

m(t) =

[
2

(
Y k

b
e−b t +

Y k

c
− Y k

c
e−c t − Y k

b
+
m(0)2

2

)] 1
2

.
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We calculated the absorbed dose using (C.1) evaluated at times t= 720, 840, and 1080 hours.

The absorbed dose values can be found in Table C.1. As can be seen from Table C.1, DT

does not change significantly when calculated using these three times. While any of these

time values would result in a reasonable DT , we chose to calculate DT up to t = 840 hours.

Table C.1. DT values calculated using (C.1) evaluated at times t = 720, t = 840, and
t = 1080. DT720 denotes the absorbed dose evaluated up to time t = 720. DT840 denotes the
absorbed dose evaluated up to time t = 840. DT1080 denotes the absorbed dose evaluated up
to time t = 1080.

Constants # 12 # 13 # 19 # 21 # 28 # 30 # 43

DT720 Gy 423 451 719 346 364 585 373

DT840 Gy 427 459 728 347 367 596 379

DT1080 Gy 429 466 735 348 369 605 384
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APPENDIX D

CALCULATING KPRED

The general procedure to calculate kpred is described in Section 3.2.1. kpred can be ex-

pressed using (3.9)

kpredi = φ
m2
i (0)

gi
− ϕ,

where

gi = 2Y

(
1

c
e−c 840 − 1

b
e−b 840 − 1

c
+

1

b

)
,

and i denotes the ith subject. As described in Section 3.4, an estimate of k̆pred is desired.

The mass constant k̆pred can be expressed as

k̆predi = φ̆
m2
i (0)

ǧi
− ϕ̆, (D.1)

where

ǧi = 2Y̌

(
1

c
e−c 840 − 1

b
e−b 840 − 1

c
+

1

b

)
.

We will describe the procedure to estimate the constants φ̆ and ϕ̆. We used the data for all

17 subjects to calculate these constants because k̆pred is used to estimate the mass dynamics

during the first time frame for which we had data from all subjects. Using the normalized

activity data, the activity parameters Y̌ , b, and c were estimated using non-linear regression
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of (3.13). With these activity parameters, ǧ was calculated for each subject. These values

were stored together in a vector as

ǧi = [193 222 177 292 228 225 141 163 246 296 283 257 433 224 169 401 190],

where i = [1-10,12,13,19,21,28,30,43]. The activity parameters were also used in (3.15) to

estimate k̆fit for each subject. These values were also stored together in a vector as

k̆fiti = [12 9 5 5 1 1 1 1 0.3 0.4 2 2 0.5 1 1 0.4 0.06],

where i = [1-10,12,13,19,21,28,30,43]. Using the measured initial mass, m(0), values

mi(0) = [64 54 43 40 26 18 16 14 13 13 32 27 21 18 16 16 9],

the term
m2
i (0)

ǧi
was calculated. These values were also stored in a vector as

m2
i (0)

ǧi
= [21 13 10 5 3 1 2 1 1 1 4 3 1 1 2 1 0.4].

Using linear algebra, (D.1) can be expressed as

k̆predi =

[
m2
i (0)

ǧi
1

] [
φ̆ − ϕ̆

]T
, (D.2)

where T denotes transpose. Following the argument in Section 3.2.1, k̆fit can replace k̆pred

in (D.2) which yields

k̆fiti =

[
m2
i (0)

ǧi
1

] [
φ̆ − ϕ̆

]T
. (D.3)
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Linear regression on (D.3) yields the estimates of φ̆ = 0.5951 and ϕ̆ = 0.0108. Plugging

these estimates into (D.1) yields

k̆predi = 0.5951
m2
i (0)

ǧi
− 0.0108,

which can be used to estimate the mass dynamics during the first time frame.
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APPENDIX E

PARAMETRIC BOOTSTRAPPING RESULTS ASSUMING A
NORMAL DISTRIBUTION

The results presented in this appendix are from the parametric bootstrap simulations

when the normal distribution of the error was assumed. This appendix will present both

activity and mass parameters estimated from the original regression of the measured data

and from the simulated data. The parameters obtained from the simulated data were used to

calculate and investigate the error of m(∞). The results of these calculations are presented

in this appendix.

Normal Distribution Simulation Results

In this section, the measurement error distribution was assumed N(0, ζ
2

9
)(ζ = 0.10) as

described in Section 4.1.2. The activity parameters estimated from the measured activity

data and from the simulated data will be presented. Analysis of both methods will be

presented along with a comparison of both methods. The same will be repeated for the mass

parameters.

Activity Results For The Normal Distribution

The original activity parameters were estimated using non-linear regression with the

normalized measured activity data. The procedure discussed in Section 4.1 was still followed

only a normalized version of (4.3),

ln
(

˜̌A(ti)
)

= −0.00056 + ln
(
Y̌
)

+ ln
(
e−bti − e−cti

)
+ ηAi, (E.1)
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was used for the regression of the normalized measured activity data. µA was replaced

with its expected value in (E.1) for the regression. Table E.1 reports the original activity

parameters and their respective standard errors found using non-linear regression of (E.1)

with normalized measured activity data.

Table E.1. The original activity parameters from (E.1) and their SE estimated using
non-linear regression with normalized measured activity data.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ln
(
Y̌
)

0.016 -0.193 0.285 -0.171 -0.687 -0.738

SEY̌ 0.008 0.014 0.008 0.006 0.007 0.003

b (hr−1) 0.0071 0.0060 0.0052 0.0075 0.0057 0.0049

SEb 0.00004 0.00005 0.00002 0.00003 0.00003 0.00001

c (hr−1) 0.410 0.104 0.037 0.744 0.165 0.272

SEc 0.011 0.003 0.0004 0.021 0.003 0.002

σ2
ηA

0.064 0.004 0.089 0.001 0.009 0.004

The normal error distribution was assumed while estimating the activity parameters from

the measured data and therefore µA and σ2
ηA

could not be compared to their expected values

in order to gain insight of their distributions as described in Section 4.5.1. However, as de-

scribed in Section 4.5.1, a histogram and normal probability plot of εAi was used instead. The

histogram and normal probability plot for εAi found assuming the normal error distribution

were almost identical to Figure 5.1 and therefore were not included in this thesis.

The activity parameters were also estimated from the simulated activity data sets fol-

lowing the method described in Section 4.1.3. Section 4.5 describes how an average estimate

and standard deviation of each activity parameter can be obtained from the N = 500 sets of
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simulated activity parameters. The simulated data was also normalized by Ad, and therefore

(E.1) was used to again estimate the activity parameters. Table E.2 contains the activity

parameters and their standard deviations (SD) estimated from the simulated data.

The activity parameters estimated from the simulated data were used to check the accu-

racy of the results from the original regression of the measured activity data. The estimated

activity parameter values in Table E.2 were compared to their respective estimated values

from Table E.1. All parameter estimates and standard error values match reasonably well

between the two tables except for σ2
ηA

. The variance σ2
ηA

estimated from the measured data

is much larger than its respective value from the simulated data. For example, σ2
ηA

= 0.00008

and 0.00009 for subjects 12 and 13, estimated from the simulated data. For the same sub-

jects, σ2
ηA

= 0.064 and 0.004 estimated from the measured data. Because of the discrepancy

between the σ2
ηA

values, the simulations of the activity data assuming a normal distribution

appear to be required to accurately estimate the parameters.

Table E.2. Activity parameters from (E.1) and their standard deviations estimated from
the simulations which assumed a normal distribution.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ln
(
Y̌
)

0.033 -0.178 0.302 -0.154 -0.670 -0.721

SDY̌ 0.008 0.010 0.008 0.006 0.006 0.005

b (hr−1) 0.0070 0.0060 0.0052 0.0075 0.0057 0.0049

SDb 0.00003 0.00004 0.00002 0.00002 0.00002 0.00002

c (hr−1) 0.411 0.104 0.037 0.745 0.165 0.271

SDc 0.010 0.002 0.0004 0.018 0.002 0.004

σ2
ηA

0.00008 0.00009 0.00009 0.00008 0.00009 0.00009
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The activity parameters estimated from the simulated data can also be used to study

their distributions through the use of histograms and normal probability plots as described

in Section 4.5. Figures E.1(a) - E.1(c) are histograms of ln
(
Y̌
)
, b and c respectively. By

inspection, the figures appear to possibly follow a normal distribution. Figures E.2(a)-E.2(c)

are normal probability plots for each of the activity parameters estimated from the simulated

data. Figures E.2(a) - E.2(c) are normal probability plots of ln
(
Y̌
)
, b, and c respectively.

Although the tails of the data depart from linearity, the plots suggest that normality could

be approximately correct. However, a conclusion could not be made from these plots alone.

(a) Histogram of ln
(
Y̌
)

for subject 21. (b) Histogram of b for subject 21.

(c) Histogram of c for subject 21.

Figure E.1. Histograms of the activity parameters from (E.1) assuming a normal error
distribution for subject 21.
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(a) Normal probability plot of ln
(
Y̌
)

for subject
21.

(b) Normal probability plot of b for subject 21.

(c) Normal probability plot of c for subject 21.

Figure E.2. Normal probability plots of the activity parameters from (E.1) assuming a
normal error distribution for subject 21. The crosses represent the data points and the
dotted line is used to help evaluate the linearity of the data.
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Mass Results For The Normal Distribution

The original mass parameters were estimated using the method described in Section 4.1.

Equation (5.4) was used to incorporate the normalized activity parameters. Table E.3 reports

the mass parameters and their respective standard errors found using non-linear regression

of (5.4) with measured mass data.

Table E.3. The original mass parameters from (5.4) and their SE estimated using non-
linear regression with measured mass data.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 1.95 2.50 0.48 1.18 0.69 0.04

SEk̆fit - - 0.04 0.07 0.09 0.06

µm 0.039 0.040 0.018 0.165 0.077 -0.014

SEµm - - 0.028 0.087 0.036 0.054

σ2
ηm - - 0.0016 0.0164 0.0022 0.0043

The estimated µm and σ2
ηm values were compared to their respective expected values

calculated assuming both a uniform and normal distribution of εmi as described in Section

4.5.1. The estimated µm values from the regression are positive for all subjects with the

exception of subject 43. The estimated µm values could not support either a U(-ζ, ζ) or

N(0, ζ
2

9
) distribution of εmi (ζ = 0.15) because both expected µm values (µmU=-0.00378 and

µmN=-0.00125 ) are negative. This can be explained by the fact that the error model is

correct, however there is an upward bias or that the error model is wrong. The estimated

σ2
ηm values did not support either distribution. The expected σ2

ηm values are 0.0076 and

0.0025 for the uniform and normal distribution respectively. While on the same order of

magnitude, definite support for either distribution could not be concluded.
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As with the activity kinetics, a histogram and normal probability plot of εmi was used to

investigate the error distribution as described in Section 4.5.1. The histogram and normal

probability plot for εmi found assuming the normal error distribution were almost identical

to Figure 5.4 and therefore were not included in this thesis.

The mass parameters were also estimated from the simulated mass data sets following the

method described in Section 4.1.4. Section 4.5 describes how an average estimate and stan-

dard deviation of each mass parameter can be obtained from the N = 500 sets of simulated

mass parameters. However, similar to estimating the parameters from the measured mass

data, (5.4) was used to incorporate the normalized activity parameters and estimate the mass

parameters from the simulated data. Table E.4 contains the estimated mass parameters and

their standard deviations (SD).

The mass parameters estimated from the simulated data were also compared to the mass

parameters estimated from the measured data. The estimated mass parameters in Table E.4

were compared to their respective estimated values from Table E.3. k̆fit matched reasonably

well between the two tables. For example, k̆fit = 0.50
g2

hr
and 1.22

g2

hr
for subjects 19

and 21 respectively. These values were obtained from the simulated data. For the same

subjects, k̆fit = 0.48
g2

hr
and 1.18

g2

hr
estimated from the measured data. With the exception

of subject 19, all of the estimated µm values from the simulated data were negative while

the µm values estimated from the measured data were all positive with the exception of

subject 43. However, the standard errors of µm and k̆fit match well between the two tables.

For example, SEk̆fit = 0.04
g2

hr
and 0.07

g2

hr
and SDk̆fit

= 0.03
g2

hr
and 0.04

g2

hr
for subjects

19 and 21. Also, SEµm = 0.028 and 0.087 and SDµm = 0.01 and 0.01 for subjects 19

and 21. σ2
ηm is on an order of magnitude smaller when estimated from the simulated data(

σ2
ηm = 0.0002 for subject 19

)
than from the measured data

(
σ2
ηm = 0.0016for subject 19

)
.

The fact that the parameter values do not match well between the two tables suggests that
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the simulated data are required for estimating the mass parameters while assuming a normal

distribution of εmi.

Table E.4. Mass parameters from (5.4) and their standard deviations estimated from the
simulations which assumed a normal distribution.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 2.01 2.58 0.50 1.22 0.71 0.05

SEk̆fit 0.13 0.09 0.03 0.04 0.04 0.01

µm -.000012 -.000007 0.000894 -0.001160 -0.000141 -0.000059

SEµm 0.001668 0.000374 0.010387 0.010996 0.009915 0.009533

σ2
ηm - - 0.0002 0.0002 0.0002 0.0002

Figures E.3(a) and E.3(b) are histograms of the mass parameters k̆ and µm, respectively,

estimated from the simulated data. By inspection, Figure E.3(b) resembles a normal distri-

bution however Figure E.3(a) resembles a uniform distribution. Another approach to gain

insight into the distributions of these parameters is to investigate the normal probability

plots in Figures E.4(a) and E.4(b). Figures E.4(a) and E.4(b) are normal probability plots

of k̆ and µm respectively. In both plots, the tails of the data deviate from linearity, which

does not imply whether these parameters follow a normal distribution or not.
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(a) Histogram of k̆ for subject 21. (b) Histogram of µm for subject 21.

Figure E.3. Histograms of the mass parameters from (5.4) assuming a normal error distri-
bution for subject 21.

(a) Normal probability plot of k̆ for subject 21. (b) Normal probability plot of µm for subject 21.

Figure E.4. Normal probability plots of the mass parameters from (5.4) assuming a normal
error distribution for subject 21. The crosses represent the data points and the dotted line
is used to help evaluate the linearity of the data.

m(∞) Calculated Using Parameters Estimated From Simulations

Of The Normal Distribution

This section presents the results of the calculation of m(∞) as described in Section 4.3. It

presents the calculation of m(∞) using parameters estimated from the normally distributed

data. m(∞) will be calculated using 3 estimates of the mass parameter k̆: 1) k̆ found using
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non-linear regression of mass data, k̆fit, 2) k̆ calculated using (3.16), k̆pred, and 3) k̆ calculated

using (2.8), k̆calc. The 3 estimates of k̆ are used to investigate the error in our new protocol

when using a predictive equation to calculate k̆.

Using the activity and mass parameters estimated from the data simulated assuming

the N(0, ζ
2

9
) distribution, DT was calculated as described in Section 4.3. Here, k̆fit was

used to calculate DT . With an estimate of DT , ᾱsubject was found as described in Section

4.3. Table E.5 contains ᾱsubject and its respective variance for each subject. Using these

values, a minimum variance estimate of α was calculated to be α̂mv=0.0033 Gy−1 with

V (α̂mv)=8.99E-10 Gy−2.

Table E.5. For each subject an average α, ᾱsubject was calculated along with the variance
in ᾱsubject as described in Section 4.3.

Constants # 12 # 13 # 19 # 21 # 28 # 43

ᾱsubject (Gy−1) 0.0038 0.0038 0.0026 0.0035 0.0030 0.0041

V (ᾱsubject) (Gy−2) 4.52E-9 5.60E-9 2.95E-9 9.13E-9 6.48E-9 9.13E-9

Using α̂mv for all subjects, m (∞) could be calculated as described in Section 4.3. To

calculate m (∞), DT and thus an estimate of k̆ is required. Again, here we used k̆fit to

calculate DT and m (∞). Table E.6 contains estimates of k̆fit, DT and m (∞). The standard

deviation of the parameters were found as described in Section 4.5. The confidence interval

of m(∞), CIm(∞), was calculated as described in Section 4.5 assuming a 95% confidence

level

The statistical distributions ofDT andm (∞) were investigated with the use of histograms

as described in Section 4.5. The histograms of DT and m (∞) were similar to the histograms

in Figure 5.4.1 and were not included in this thesis.
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Table E.6. k̆fit, DT , and m (∞) were calculated from parameters estimated from data
simulated assuming the normal distribution. The standard deviation of the parameters were
found as described in Section 4.5. The confidence interval of m(∞), CIm(∞), was calculated
as described in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆fit ( g
2

hr
) 2.01 2.58 0.50 1.22 0.71 0.04

SDk̆fit
0.13 0.08 0.03 0.04 0.04 0.01

DT (Gy) 400 448 758 367 384 366

SDDT 4.25 5.59 9.58 4.74 4.53 4.24

m (∞) (g) 8.7 6.3 1.7 5.5 4.6 2.7

SDm(∞) 0.2 0.2 0.1 0.2 0.1 0.1

CIm(∞) [8.3 9.1] [6.0 6.6] [1.6 1.9] [5.2 5.8] [4.4 4.8] [2.6 2.9]

Table E.7 reports estimates of k̆pred, DT , and m (∞) which were calculated from param-

eters that were estimated from data that was simulated assuming a normal distribution.

Table E.8 reports estimates of k̆calc, DT , and m (∞). The parameter estimates and their

standard errors are very similar between Tables E.7, E.8, and E.6. For example, m (∞)

=8.4, 8.2, and 1.5 grams for subjects 12, 13, and 19 from Table E.7. For the same subjects,

m (∞) =8.7, 6.3, and 1.7 grams from Table E.6 and m (∞) =9.1, 8.2, and 1.1 grams from

Table E.8. The m (∞) values for a particular subject are within 1.9 grams of each other

between the three tables. This provides evidence that k̆pred and k̆calc provide a reasonable

estimate of k̆fit and produce similar estimates of m (∞). However, the confidence intervals

are unrealistically narrow.
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Table E.7. k̆pred, DT , and m (∞) were calculated from parameters estimated from data
simulated assuming the normal distribution. The standard deviation of the parameters were
found as described in Section 4.5. The confidence interval of m(∞), CIm(∞), was calculated
as described in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆pred ( g
2

hr
) 2.22 1.74 0.62 0.88 0.92 0.25

SD ˘kpred
0.06 0.05 0.02 0.02 0.03 0.01

DT (Gy) 410 368 795 320 407 430

SDDT 6.10 5.71 11.38 4.44 5.89 5.92

m (∞) (g) 8.4 8.2 1.5 6.4 4.3 2.2

SDm(∞) 0.3 0.3 0.1 0.2 0.1 0.1

CIm(∞) [8.0 8.9] [7.7 8.6] [1.4 1.7] [6.1 6.7] [4.0 4.5] [2.1 2.3]
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Table E.8. k̆calc, DT , and m (∞) were calculated from parameters estimated from data
simulated assuming the normal distribution. The standard deviation of the parameters were
found as described in Section 4.5. The confidence interval of m(∞), CIm(∞), was calculated
as described in Section 4.5 assuming a 95% confidence level.

Constants # 12 # 13 # 19 # 21 # 28 # 43

k̆calc ( g
2

hr
) 1.71 1.73 0.83 0.63 0.92 0.29

SDk̆calc
0.05 0.05 0.02 0.02 0.03 0.01

DT (Gy) 387 368 893 298 407 447

SDDT 5.70 5.48 13.15 4.30 6.15 6.40

m (∞) (g) 9.1 8.2 1.1 6.9 4.3 2.1

SDm(∞) 0.3 0.3 0.1 0.2 0.1 0.1

CIm(∞) [8.6 9.6] [7.8 8.6] [1.0 1.2] [6.6 7.2] [4.0 4.5] [2.0 2.2]
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