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ABSTRACT 

INTENT ACTIVITY MODE RECOGNITION BASED ON SURFACE 

ELECTROMYOGRAPHY AND INERTIAL MEASUREMENT UNIT 

MAY 2013 

ZHE ZHANG, B.S., BEIJING JIAOTONG UNIVERSITY 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Frank Sup 

This thesis presents an activity mode intent recognition approach for safe, robust 

and reliable control of powered backbone exoskeleton. The thesis presents the 

background and a concept for a powered backbone exoskeleton that would work in 

parallel with a user. The necessary prerequisites for the thesis are presented, including the 

collection and processing of surface electromyography signals and inertial sensor data to 

recognize the user’s activity. The development of activity mode intent recognizer was 

described based on decision tree classification in order to leverage its computational 

efficiency. The intent recognizer is a high-level supervisory controller that belongs to a 

three-level control structure for a powered backbone exoskeleton. The recognizer uses 

surface electromyography and inertial signals as the input and CART (classification and 

regression tree) as the classifier. The experimental results indicate that the recognizer can 

extract the user’s intent with minimal delay. The approach achieves a low recognition 
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error rate and a user-unperceived latency by using sliding overlapped analysis window. 

The approach shows great potential for future implementation on a prototype backbone 

exoskeleton. 
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CHAPTER 1 

INTRODUCTION 

Recent technological advances in robotics make possible the development of an 

exoskeleton that can act as an extension of themselves. Augmenting the upper and lower 

limbs has been the primary focus of exoskeleton research to-date. A powered backbone 

component of an exoskeleton can increase the load carrying capacity of a person and can 

potentially benefit a wide array of people, ranging from people bringing groceries into 

their homes, to people suffering from disabilities such as: paraplegia and hemiplegia, 

since daily activities such as flexion or extension can prove to be very challenging for 

them. In these respective cases, the benefits could result in improved load carrying 

capacity and an ability to stand and walk freely. By making the control of the device 

intuitive, the user needs to worry less about its operation and can be more concerned 

about participating in activities of daily life. But current exoskeleton technology still 

limits the natural flexibility and movement of the torso, the capabilities of users, and 

activities that users are able to participate in since the connection between the upper and 

lower limbs has been a rigid spine. In addition, when unintended events occur such as 

stepping on a rock or curb, maintaining ones balance and stability may be impossible. 
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1.1  Research objective 

The objective of this research is to develop an intelligent, powered backbone 

exoskeleton with a real-time intent recognition system. The powered backbone 

exoskeleton has a three-level control structure which consists of a high-level supervisory 

controller, a middle-level controller and a low-level controller. This thesis will focus on 

the activity mode intent recognizer, which is a high-level supervisory controller and its 

function is to distinguish between the intent activities modes of subject, such as flexion, 

extension and twisting. The recognizer uses surface electromyography and inertial signals 

as the input and CART (classification and regression tree) as the classifier.  

1.2  Research approach 

The major goal of this research is to develop an intent recognition system for a 

powered backbone exoskeleton. To meet the final goal of this project, the project has 

been divided into two main sections, the first section is to develop concept for the 

mechanical structure of backbone exoskeleton and the second section focuses on the 

developing the intent recognition system. The research tasks are as follows. 

1. Understand the structure and mechanics of the human spine.  

2. Develop concept of a powered backbone exoskeleton. 

3. Develop an approach to collect surface electromyography signals and inertial signals. 
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4. Preprocess the raw signal by filtering, rectification and normalization. Extract signal 

feature by sliding window and reduce the data dimension by PCA. 

5. Evaluate classifiers for intent recognition and filter out the noise by majority voting 

to determine the patient’s intended activity and discuss the result. 

Dividing the research into several steps can help to keep the project focused and 

easy to implement, which is important for the successful completion of project. The long 

term goal of this research is to develop an intelligent, intuitive powered backbone 

exoskeleton.  

1.3  Scope 

The project deliverables include a concept for a backbone exoskeleton and an 

appropriate intent recognition system for control of the device. This thesis will focus on 

the development of activity mode intent recognizer, which is a high-level supervisory 

controller and its function is to distinguish between the intent activity modes of subject, 

such as flexion, extension and twisting. The recognizer uses sEMG and inertial signals as 

the input and decision tree as the classifier. Designing an intelligent backbone 

exoskeleton involves the coordination of many tasks and attaining the help from many 

people in order to achieve the final goal. The project was implemented at the 

Mechatronics and Robotics Research Laboratory at the University of Massachusetts, 

Amherst and directed by Professor Frank Sup. Also attained help from the Biomechanics 



4 

 

Laboratory of the Kinesiology Department at the University of Massachusetts, Amherst 

for the instruction of human torso biomechanics and neural-muscular system.  

1.4  Structure of this thesis 

This thesis is organized into six chapters. After introduction, Chapters 2 presents 

the design concept of backbone exoskeleton which would provide scientific insights into 

the effects of an external flexible robot on the human backbone. Chapter 3 describes the 

background of electromyography signal, which includes the history and physiology of 

EMG signal, and also the collection, processing and application of EMG signal. Chapter 

4 introduces the basic knowledge of pattern recognition and the background of decision 

tree classification. Chapter 5 describes the detailed procedure for surface 

electromyography and inertial signals based activity mode intent recognition, and discuss 

the result of experiments. In chapter 6, conclusions from the work are presented and 

along with suggestions for further improvement. In Appendix, the detailed recognition 

error rates results for the additional four subjects using different window lengths are 

presented. 
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CHAPTER 2 

BACKGROUND OF BACKBONE EXOSKELETON 

2.1  Introduction 

An understanding of the dynamics of the human backbone is essential to 

modeling and designing such a powered exoskeleton device, targeted at the backbone. 

This can be achieved through experimental studies on simulated backbone devices. This 

work will help advance the knowledge related to strength augmenting devices and can 

help realize a functional powered backbone exoskeletons. This chapter aims to design and 

prototype an experimental test-bed that would provide scientific insights into the effects 

of an external flexible robot on the human backbone. 

Research exoskeletons have been focused on power augmentation for the lower 

limbs, like the Berkeley Lower Extremity Exoskeleton (BLEEX) [1], [2], a quasi-passive 

leg exoskeleton from MIT [3], Hybrid Assisted Leg (HAL-3) [4] [5], or to all the four 

limb such as HAL-5 [6], Wearable Energetically Autonomous Robot (WEAR) and XOS 

by Raytheon [7] and Body Extender [8], etc. Besides, some other exoskeleton includes: A 

powered knee brace called RoboKnee [9] that functions in parallel to the wearer’s knee 

but does not transfer loads to the ground. This device transfers the weight of the load onto 

the human skeleton (including shanks, ankles, and feet), a joint-coupled controlled brake 

orthosis (JCO) [10] has been designed as part of a hybrid FES/orthosis system for 
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restoring gait to spinal cord injured individuals, a rehabilitation system Lokomat [11] 

where the patient legs are driven by the device through a predefined trajectory without 

any feedback from the patient. Below is more detail information about two excellent 

exoskeleton projects: Berkeley Lower Extremity Exoskeleton (BLEEX) and Hybrid 

Assistive Leg (HAL-5). 

The Berkeley Lower Extremity Exoskeleton (BLEEX) was the first functional 

load-carrying and energetically autonomous exoskeleton. Users were able to walk at an 

average speed of 1.3 m/s while carrying a 34 kg (75 lb) payload. Four essential 

technologies were tackled during the course of this project include: the exoskeleton 

architecture design, control schemes, a body local area network (bLAN) to host the 

control algorithm and an on-board power unit to power the sensors, actuators and the 

computers. BLEEX allows the pilot to comfortably finish some basic daily motions such 

as: flexion and extension of the spine, twisting left or right, swing from side to side and 

walk on ascending and descending slopes, while also offering the ability to step over and 

under obstructions while carrying payload (equipment or supplies). The BLEEX has a 

wide potential application area include: it can provide disaster relief workers, soldiers, 

fire fighters and other emergency personnel the ability to carry heavy loads such as food, 

first-aid supplies, rescue equipment, communications gear and weaponry. Fig.1 gives us 

the system overview of BLEEX. 
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Figure 1. Berkeley Lower Extremity Exoskeleton (BLEEX) and pilot. [1] 

1: Load occupies the upper portion of the backpack and around the Power Unit; 2: Rigid 

connection of the BLEEX spine to the pilot’s vest; 3: Power unit and central computer 

occupies the lower portion of the backpack; 4: Semi-rigid vest connecting BLEEX to the 

pilot; 5: One of the hydraulic actuators; 6: Rigid connection of the BLEEX feet to the 

pilot’s boots. 

 

Hybrid Assistive Leg (HAL-5) is a robotics suite developed by University of 

Tsukuba, which is integrated with human and helps lower limb of people with gait 

disorder, provide a way for them to be able to continue walking without assistance from a 

caregiver, in order to prevent them from becoming bedridden. The exoskeleton system is 

constructed as master/slave system that master is incorporated into slave system. Using 

the exoskeleton as a master device in a master/slave system cables the operator attached 

to the exoskeleton (master) to control HAL-5 (slave) and to generate amplified power. 

HAL-5 system is consisted of three main parts: skeleton and actuator, controller, and 

sensor. Fig.2 gives us the whole system overview of HAL-5, which is currently being 

commercialized. 
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Figure 2. HAL-5 system overview. [6] 

 

Each of these prior research works has their advantages and drawbacks, but all 

these devices provide power only to joints of arms and legs, none of them actuate back 

and torso. Moreover, the structures for the back and torso in these exoskeletons are rigid 

structures intended to either provided support or limit motion, and are limited to a central 

anchoring point in most cases. They cannot actively reduce the loading of the spine or 

augment its strength while maintaining its flexibility since these devices lack actuation. 

Among exoskeletons that focus on providing actuation to the back are an assistive device 

for lower back support [12], [13] and a wearable power assisting suit [14]. Both of these 

devices incorporate rigid links to provide assistive torque to the back, resulting in a rigid 

and straight posture. In each of these cases, the natural flexibility of the human spine is 

compromised. Overcoming the limitations imposed by absence of actuation and lack of 
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flexibility presents an avenue for the development of a fully active backbone exoskeleton 

that would provide strength augmentation during load carrying and benefit people 

suffering from spinal cord injuries. 

The overall goal of the work that thesis contributes to is the development of a 

powered backbone exoskeleton that maintains the natural flexibility of the spine and also 

fulfill all the functions which an assistive device required at the same time. Fig.3 shows 

the HAL-5 exoskeleton spine [15], [16] which is a research thrust in a similar direction. 

Also, previous research on flexible links has been within the domain of flexible and 

continuum manipulators. More prominent in this field are hyper degree-of-freedom, 

rigid-link manipulators [17]. These manipulators are made up of an assembly of a large 

number of small, pin-jointed, rigid links that contribute to an immensely large number of 

degrees-of-freedom. The literature available in this field is exhaustive in nature, ranging 

from analysis of kinematics and dynamics, to design and control of manipulators arms 

[18–20]. Flexible, elastic (non-rigid) links and manipulators have also been widely 

researched, as can been seen from this review [21] and other related works [22], [23]. 

However, much of the work is very general in nature and cannot be easily adapted to our 

project. Therefore in this section, we describe our approach to this problem which models 

the structural members of the exoskeleton frame as an assembly of three elastically 

flexible sections connected by high-impedance revolute joints, and to design the rest of 

the exoskeleton components based on this frame [15]. 
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Figure 3. Exoskeleton spine for HAL-5. 

 

2.2  Backbone exoskeleton design concept 

The vertebral column in the human body consists of twenty-four articulating 

vertebrae in the cervical, thoracic and lumbar curves, and nine fused vertebrae in the 

sacral and coccygeal curves. The proposed exoskeleton is conceptualized to work with 

twenty-four articulate vertebrae in the cervical, thoracic and lumbar curves. The nine 

fused vertebrae of the coccygeal region are approximated in the fixed supports of the 

design. 

A two-dimensional concept sketch of the exoskeleton structural frame is shown in 

Fig.4 (a). Two identical spines are installed side by side on a rigid platform and connected 

via mechanical linkages that represent a brace/corset. The left backbone designated as the 

internal backbone with a known weight, the right backbone designated as the exoskeleton. 

Alongside is a figure of a human backbone (Fig.4 (b)). 
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                   (a)                                 (b) 

Figure 4. (a) Structural frame of backbone exoskeleton. (b) Human backbone. [24] 

 

The structural frame of the exoskeleton is a manipulator consists of three flexible 

sections. Each section would be designed to represent and closely mimic the cervical, 

thoracic and lumbar segments of the human spine. The links of each section are to be 

assembled together via high-impedance revolute joints. These joints can help separate the 

individual curved segments and therefore helpful in controlling the curvature of 

individual segments. Actuation would be provided at three locations by three pairs of 

opposing tendons, driven by motors located at the base of the structure. The motors and 

tendons are configured in an overlapping manner. Specially, the cervical segment is 

subject to moments from a single motor. The thoracic segment in turn is designed to 

respond to moments from two motors and the lumbar segment is subject to moments 

from all three motors. 
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CHAPTER 3 

BACKGROUND OF ELECTROMYOGRAPHY SIGNAL 

3.1  History of Electromyography signal 

In 1664, the beginning of research about electromyography (EMG) signal, Jan 

Swammerdam [25] discovered that stroking the innervating nerve of the frog’s 

gastrocnemius generated a contraction and he also conducted the first electrical 

stimulation experiments. Luigi Galvani [25] is credited as the father of neurophysiology 

for his research work with frogs’ legs, he showed that electrical stimulation of muscular 

tissue produces contraction and force. Francesco Redi [26] was the first scientist to 

recognize the connection between muscles and generation of electricity. Alessandro 

Volta [27] developed a device which produced electricity and could be used to stimulate 

muscles.  

In 1838, Matteucci [25] used galvanometer (an instrument used to detect, measure, 

and determine the direction of small electric currents by means of mechanical effects 

produced by a current-carrying coil, designed by Carlo Matteucci) in a magnetic field to 

show that bioelectricity is connected with muscular contraction and in 1842 he 

demonstrated the existence of the action potential accompanying a frog’s muscle. 
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The term electromyography comes from Etienne Marey, who modified Lippman’s 

capillary electrometer (1876) as one of his many contributions to kinesiology. Willem 

Einthoven [25] made a string galvanometer in 1903 and won the Nobel Prize for it, it 

uses a thin conductor wire placed between two magnets. In 1922, Gasser and Erlanger 

used an oscilloscope to show the electrical signals from muscles, but because of the 

stochastic nature of the myoelectric signal, only rough information could be obtained 

from its observation. In 1929, Adrian and Bronk [28] developed the concentric needle 

electrode and used it primarily for researching motor control and muscle schemes. The 

capability of detecting electromyographic signals improved steadily from the 1930s 

through the 1950s and researchers began to use improved electrodes more widely for the 

study of muscles [29]. Clinical use of surface EMG (sEMG) for the treatment of more 

specific disorders began in the 1960s. Hardyck and his researchers were the first (1966) 

practitioners to use sEMG. In the early 1980s, Cram and Steger [30] introduced a clinical 

method for scanning a variety of muscles using an EMG sensing device. The most 

influential person in recent EMG history might be Carlo Luca, he wrote the famous 

often-cited paper: “The Use of Surface Electromyography in Biomechanics” [31]. 
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3.2  Physiology of the EMG signal 

3.2.1  Skeletal muscle organization 

There are three kinds of muscles: skeletal muscles, heart muscle and smooth 

muscle. Skeletal muscles are the muscles attached to the skeleton and the only kind of 

muscles which can be controlled voluntarily by a person. The structure of skeletal muscle 

(Fig.5) includes: muscle fibers (wrapped by endomysium), muscle fascicles (bundles of 

muscle fibers, wrapped by perimysium) and attached to bones via tendons (composed of 

epimysium). 

 

Figure 5. Skeletal muscle structure. [32] 

 

3.2.2  Muscle contraction and the production of EMG signal 

The contraction of skeletal muscles is controlled by the nervous system. Each 

muscle fiber can be recruited by one motor neuron. One motor neuron can branch in up to 

several thousand branches, each one terminating in a different muscle fiber. A motor 

neuron and all the fibers it innervates are called a motor unit (Fig.6). 
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Figure 6. Typical motor unit. [33] 

 

When a motor unit fires, the impulse (called an action potential) is carried down 

the motor neuron to the muscle. The area where the nerve contacts the muscle is called 

the neuromuscular junction, or the motor end plate. After the action potential is 

transmitted across the neuromuscular junction, an action potential is elicited in all of the 

innervated muscle fibers of that particular motor unit. The sum of all this electrical 

activity is known as a motor unit action potential (MUAP) and the sum of all independent 

MUAPT is the original EMG signal (Fig.7). This electrophysiological activity from 

multiple motor units is the signal typically evaluated during an EMG. The composition of 

the motor unit, the number of muscle fibers per motor unit, the metabolic type of muscle 

fibers and many other factors affect the shape of the motor unit potentials in the 

electromyogram. 
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Figure 7. The composing of original EMG signal. [34] 

 

3.3  Collection of EMG signal 

Electrodes, amplifier and A/D converter were needed to collect raw EMG signal. 

Electrodes serve as converters of the ionic currents produced in muscles into electronic 

currents that can be manipulated in electronic circuits. Amplifier can optimize the 

resolution of the digitizing equipment. Besides, an amplifier can also be used to 

maximize the signal-to-noise ratio, that is, the ratio of the energy of the wanted EMG 

signal to the energy of unwanted noise contributions of the environment. A/D-converter 

transforms an analog signal into a discrete digital signal.  

3.3.1  Electrodes 

There are two main kinds of electrodes: inserted electrode (fine-wire or needle) 

and surface electrode (bipolar or array). Fig.8 shows variations on these kinds of 
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electrodes and each kind has advantages and disadvantages [35]. For inserted electrode, 

its advantages include: extremely sensitive, record the activity of a single motor unit, 

access to deep musculature and little cross-talk concern; disadvantages include: requires 

certification of medical personnel, repositioning nearly impossible and detection area 

may not be representative of entire muscle. For surface electrode, its advantages include: 

quick, easy to apply, no medical supervision and certification, minimal discomfort and 

easy to reposition; disadvantages include: generally used only for superficial muscles, 

cross-talk concerns, no standard electrode placement and may affect movement patterns 

of subject. 

   

             (a)                            (b) 

   

                (c)                              (d) 

Figure 8. Different kinds of electrode.  (a) Fine-wire inserted electrode.  (b) Needle 

inserted electrode.  (c) Surface bipolar electrode.  (d) Surface array electrode. 
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In this project, surface array electrodes were chose for their simplicity, ease of 

application, subject comfort, no medical supervision needed, and detection area can be 

the representative of entire muscle. Compared to bipolar surface electrode, surface array 

electrodes can identify single MU action potentials (MUAPs) located at innervation and 

tendon zones, estimate conduction velocity (CV) of the individual MUAPs and of their 

firing patterns. 

Fig.9 shows the geometry of DELSYS DE-2.3 single differential surface EMG 

sensor used in this project. The sensor housing is constructed from durable polycarbonate 

and completely sealed. It is also internally shielded to reject ambient electrical noise. 

Specialized signal conditioning circuitry ensures a noise-free, stable EMG signal with a 

full bandwidth of 20-450 Hz. The sensor contacts are made from 99.9% pure silver bars 

measuring 10mm in length, 1mm in diameter and spaced 10mm apart for optimal signal 

detection and consistency. The curved enclosure geometry (see Figure on the right) is 

designed to maximize skin contact and adhesion while minimizing the negative effects of 

sweat during vigorous activities. 

 

Figure 9. DELSYS DE-2.3 single differential surface EMG sensor geometry. [36] 
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3.3.2  Orienting and attaching the sEMG sensors on the skin 

The DE-2.3 sEMG sensor is fitted with two silver bar contacts for detecting the 

EMG signal at the skin surface. It is crucial that the orientation of these bars be 

perpendicular to the muscle fibers for maximum signal detection (Fig.10). The top of the 

sensor is stamped with an arrow to aid in the determination of this orientation. The arrow 

should be placed parallel to the muscle fibers underneath the sensor. The sensor should 

also be placed in the center of the muscle belly away from tendons and the edge of the 

muscle.  

 

Figure 10. EMG sensor orientation with respect to the muscle fibers. [36] 

 

The sensor is easily attached to the skin using the DELSYS Adhesive Sensor 

Interface. The Adhesive Sensor Interfaces use medical-grade adhesive specifically 

designed for dermatological applications. Usage of the interface promotes a high quality 

electrical connection between the sensor bars and the skin, minimizing motion artifacts 

and the ill-effects of line interference. To ensure a strong bond with the skin, the skin area 
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and the EMG sensors are wiped with isopropyl alcohol to remove oils and surface 

residues. The skin was allowed to dry completely before application. 

3.3.3  Surface EMG collection circuit 

Surface EMG signals are very weak. Fig.11 shows an example of unamplified 

sEMG signal and its corresponding frequency spectrum. The amplitude range is about 

0-0.1 mV before amplification, frequency range is about 10-500 Hz but the dominant 

energy focus on the range of 50-150 Hz, its peak appears at the range of 80-100 Hz. 

Nyquist–Shannon sampling theorem tells us that the sampling frequency should be at 

least two times of the signal highest frequency in order to prevent information from 

losing, thus the sampling frequency should be at least 1000 Hz when collecting sEMG 

signal based on the fact that the sEMG signal highest frequency component is around the 

range of 400-500 Hz. 
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Figure 11. Example of an unamplified surface EMG signal and its corresponding 

frequency spectrum. 

 

The quality of the detected sEMG signal determines the usefulness of the 

information extracted from the sEMG signal, it depends on: sensor location (upon the 

middle of muscle belly), sensor characteristics, and electrode-skin interface (The skin 

area and the EMG sensors are wiped with isopropyl alcohol to remove oils and surface 

residues. The skin was allowed to dry completely before application), cross-talk from 

other muscles and noise contamination. 

Noise is defined as any unwanted signal collected with the wanted signal and 

should be removed. The main sources of noise and the ways of removing them include: 

Physiological Noise (e.g. EKG, EOG, respiratory signals, etc, reduced by proper 

positioning of the sensors), Ambient Noise (power line radiation (50 or 60 Hz), removed 
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by differential amplification), Baseline Noise (Electro-chemical noise from skin-electrode 

interface reduced by effective skin preparation), Movement Artifact Noise (movement of 

electrode with respect to the skin which can be reduced by effective skin preparation, 

proper fixation of the sensor to the skin and filtering). 

Fig.12 shows the schematic diagram of DE-2.3 sEMG sensor circuit. Input signals 

come from two different points of muscle and they should be closed (usually 1 to 2 cm), 

electrode should be alignment with the direction of muscle fibers in order to increase the 

probability of detecting same signal, the ground electrode should be placed on electrically 

neutral (e.g. bony) tissue relatively far away from the detection site in order to serve as 

common reference to the differential input of the preamplifier. Then the two original 

EMG input signals were sent to differential amplifier, subtracted and amplified the 

difference there. Finally, the output signal will be sent to A/D converter. 

 

Figure 12. Schematic diagram of sEMG collection circuit. [37] 
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Figure 13. Complete sEMG collection circuit. 

 

Fig.13 shows the complete sEMG collection circuit developed for this project. 

Instrumentation amplifier, Analog Devices AD620, were used and add a low pass filter 

circuit was added to remove the unwanted noise before sending the output signal to A/D 

converter. Fig.14 shows a complete commercial EMG measurement system suite 

(DELSYS Myomonitor IV Wireless EMG System), which is exactly what we use in our 

project for collecting sEMG signals. 



24 

 

 

Figure 14. sEMG system suite used for collecting muscle activity data (DELSYS 

Myomonitor IV Wireless sEMG System). 

 

3.4  Processing of EMG signal 

3.4.1  sEMG signal preprocessing 

The raw sEMG signal has amplitude of 0-0.1 mV and frequency of 10-500 Hz, it 

represents the amount of muscle energy measured. Raw sEMG signals offer valuable 

information and must be processed to remove several types of artifacts. In this project, 

high-pass filtering, low-pass filtering, rectification and normalization were used for 

preprocessing. 
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3.4.2  sEMG signal feature extraction 

The success of any pattern classification system significantly depends on the 

choice of features used to represent the raw signals. It is desirable to use multiple feature 

parameters for EMG pattern classification because it is difficult to extract a feature 

parameter which reflects the unique feature of the measured signals to a motion 

command perfectly. Considering some previous research works [38] [39] [40], the 

following four low computational cost features which could result in high classification 

accuracy rate based on time statistics are used in this project to represent the myoelectric 

pattern. Time domain features are calculated based on signal amplitude. They can be 

computed very fast since they don’t need a signal transformation. All features are 

computed over a data segment with N samples. 

1. Mean Absolute Value (MAV) 

This is an estimate of mean absolute value of the signal, as defined by 
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x x
N =

= ∑   (3.1) 

where xk is the kth sample in segment i. 

2. Standard Deviation (SD) 

This feature shows how much variation exists from the mean value of data segment, as 

defined by 
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where x� is the mean value of data segment. 

3. Difference Absolute Mean Value (DAMV) 

This is the mean absolute value of the difference between the adjacent samples, k and 

k+1, as defined by 
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4. Root Mean Square (RMS) 

Calculated by squaring each data point, summing the squares, dividing the sum by the 

number of observations and taking the square root, as defined by 
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where it’s a n
th

 order AR model. 

3.5  Applications of sEMG signal in rehabilitation engineering 

sEMG signals are used in many clinical and biomedical applications. sEMG is 

used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back 

pain and disorders of motor control. Especially, it can also be used for developing sEMG 

pattern recognition-based control approaches for powered prostheses. Some prior works 

such as: A Gaussian mixture model based classification scheme for myoelectric control 

of powered upper limb prostheses is described in [41]. A volitional control approach of a 
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prosthetic knee using surface electromyography is described in [42]. A multiclass 

real-time intent recognition method for a powered lower limb prosthesis is presented in 

[43]. Other researchers emphasize on describing the development of pattern recognition 

approach based on EMG signal, such as: An EMG-based pattern recognition approach for 

identifying locomotion modes by using artificial neural networks (ANN) and linear 

discriminant analysis (LDA) is presented in [44]. A robust, real-time control scheme for 

multifunction myoelectric control is presented in [45]. An EMG-based hand gesture 

recognition approach for real-time biosignal interfacing is described in [46]. 

Current prosthetic devices predominantly utilize sEMG signals from the user’s 

body, in addition to pressure and force sensors, mounted at various locations on the 

device and along the body. Related prior research works such as: A multimodal 

interpretation of muscular activities using a body sensor network with electromyogram 

and inertial sensors is developed in [47]. An automatic recognition method of sign 

language sub-words based on portable accelerometer and EMG sensors is described in 

[48]. A rule-based control approach of walking by using decision trees and practical 

sensors is designed in [49]. 
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CHAPTER 4 

PATTERN CLASSIFICATION 

4.1  Introduction  

Pattern recognition in machine learning is the assignment of a label to a given 

input value. An example of pattern recognition is classification, which attempts to assign 

each input value to one of a given set of classes. Both choosing suitable feature 

parameters and a well-behaved classifier are important for EMG signal pattern 

recognition. Nowadays, with the fast development of the recognition theory, more and 

more different kinds of classifiers have been used for classifying sEMG signal. Below are 

some commonly-used classification methods: 

1. Statistical Pattern Classification 

It’s very difficult to describe an EMG signal by mathematic function because of 

its random feature, but the statistical result indicates that the EMG signal has some 

statistical rules. Statistical pattern classification is an approach to machine intelligence 

which is based on statistical modeling of data. With a statistical model in hand, one 

applies probability theory and decision theory to get an algorithm. This is opposed to 

using training data merely to select among different algorithms or using 



29 

 

heuristics/common sense to design an algorithm. Some commonly-used classification 

criterion includes: Bayesian decision theory, and Minimum-Error-Rate classification. 

2. Linear Discriminate Analysis 

Linear discriminate analysis (LDA) and the related Fisher linear discriminate are 

methods used in statistics, pattern recognition and machine learning to find a linear 

combination of features which characterizes or separates two or more classes of objects 

or events. The resulting combination may be used as a linear classifier, or more 

commonly, for dimension reduction before later classification. LDA is also closely 

related to principal component analysis (PCA) and factor analysis in that they both look 

for linear combinations of variables which best explain the data. 

3. Artificial Neural Network Classification 

An artificial neural network (ANN) is a mathematical model or computational 

model that is inspired by the structure and/or functional aspects of biological neural 

networks. A neural network consists of an interconnected group of artificial neurons, and 

it processes information using a connectionist approach to computation. In most cases an 

ANN is an adaptive system that changes its structure based on external or internal 

information that flows through the network during the learning phase. Modern neural 

networks are non-linear statistical data modeling tools. They are usually used to model 

complex relationships between inputs and outputs or to find patterns in data. In 2004, 
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Satoshi Kawai classified 3 human daily motions (lift up, put down, don’t move) 

successfully by using EMG signals from human torso and a 3-layer ANN. 

4. Clustering Classification 

Clustering is the task of assigning a set of objects into groups (called clusters) so 

that the objects in the same cluster are more similar to each other than to those in other 

clusters. Clustering is a main task of explorative data mining, and a common technique 

for statistical data analysis used in many fields, including machine learning, pattern 

recognition, image analysis, information retrieval, and bioinformatics. 

5. Decision Tree Classification 

Decision tree classification, which used in statistics, data mining and machine 

learning, uses a decision tree as a predictive model which maps observations about an 

item to conclusions about the item's target value. In these tree structures, leaves represent 

class labels and branches represent conjunctions of features that lead to those class labels. 

There are many specific decision-tree algorithms. Notable ones such as: CART 

(classification and regression tree) algorithm, ID3 algorithm, C4.5 algorithm, 

CHi-squared Automatic Interaction Detector (CHAID) algorithm, which performs 

multi-level splits when computing classification trees and MARS (extends decision trees 

to better handle numerical data) algorithm. 

In this project, decision trees were chosen to design the classifier since it is simple 

to understand and interpret, computational efficient to implement [49] and easy to 
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separate more than two classes of objects or events [48]. Training the classifier took only 

a few seconds, which is very important for real-time recognition system to ensure a fast 

response. 

4.2  Details of Decision Tree Classification 

Decision tree classification [50] is a kind of non-metric pattern recognition 

method for approximating discrete-valued target functions, in which the learned function 

is represented by a decision tree. The advantage of decision tree includes: simple to 

understand and interpret, have value even with little hard data, possible scenarios can be 

added, worst, best and expected values can be determined for different scenarios, use a 

white box model if a given result is provided by a model, and can be combined with other 

decision techniques. Disadvantage such as: output attribute must be categorical, limited 

to one output attribute, decision tree algorithms are unstable, and trees created from 

numeric datasets can be complex. Fig.15 shows a typical decision tree classifier. This 

decision tree classifies one day morning according to whether they are suitable for 

playing tennis. For example, the sample (Outlook =Rain, Temperature = Hot, Humidity = 

Normal, Wind =Weak) would be sorted down the right-most branch of this decision tree 

and would therefore be classified as a positive instance, that means PlayTennis = yes. 
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Figure 15. A typical decision tree for the concept of PlayTennis. [50] 

 

Now comes to the question, how to create a decision tree based on training data? 

The basic generic tree-growing methodology know as CART (Classification and 

Regression Trees) algorithm, which provides a general framework that can be instantiated 

in various ways to produce different decision trees. The fundamental principle of tree 

creation is very simple: decisions that lead to a simple, compact tree with few nodes 

should be preferred [51]. This is a version of Occam’s razor, that the simplest model that 

explains data is the one to be preferred. Therefore, a term called “impurity” should be 

defined in order to make sure the data reaching the immediate descendent nodes as pure 

as possible. Let i(N) denotes the impurity of a node N. In all cases, i(N) should be 0 if all 

of the patterns that reach the node bear the same category label, and to be large if the 

categories are equally represented. The most popular measure is the entropy impurity: 

 2( ) ( ) log ( )j j

j

i N P Pω ω= −∑   (4.1) 

where P(ωj) is the fraction of patterns at node N that are in categoryωj. 
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The node entropy impurity is 0 if all the patterns are of the same category; 

otherwise it is positive, with the greatest value occurs when the different classes are 

equally likely. For example, suppose N is a collection of 14 examples of some boolean 

concept, including 5 positive and 9 negative examples. Then the entropy of N relative to 

this boolean classification is: 

2 2( ) (9 /14) log (9 /14) (5 /14) log (5 /14) 0.94i N = − − =  

Other impurity methods such as Gini impurity: 

 
2( ) 1 ( )j

j

i N P ω= −∑   (4.2) 

This is just the expected error rate at node N if the category label is selected randomly 

from the class distribution present at N. This criterion is more strongly peaked at equal 

probabilities than entropy impurity. 

And also Misclassification impurity: 

 ( ) 1 max ( )
j

j
i N P ω= −   (4.3) 

This measure is the most strongly peaked at equal probabilities than the other two. Fig.16 

shows these three impurity functions for a two-category case, as a function of the 

probability of one of the categories. 
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Figure 16. Three impurity functions for a two-category case. [51] 

 

The CART algorithm learns decision trees by building them from top to down. 

Now comes to another important question: which attribute should we choose for the 

property test T at node N? One solution is to choose the test that decreases the impurity as 

much as possible. The information gain (drop in impurity) is defined by: 

 ( ) ( ) ( ) (1 ) ( )
L L L R

i N i N P i N P i N∆ = − − −   (4.4) 

where NL and NR are the left and right descendent nodes, i(NL) and i(NR) their impurities, 

and PL is the fraction of patterns at node N that will go to NL when property test T is used. 

Therefore, the best test attribute is the choice for T that maximizes ∆i(N). 

As mentioned before, decision trees were chosen to design the classifier in this 

project since it is computational efficiency to implement. So one may ask what is the time 

and space computational complexities of training the CART decision tree? To answer this 

question, suppose a two-category problem with n training patterns in d dimensions, and 

wish to build a binary tree based on entropy impurity. Therefore, the total average time 



35 

 

complexity is O(dn (log n)
2
).The space complexity is simply the number of nodes, which 

is 1 + 2 + 4 + ... + n/2 ≈ n, that is, O(n). 

In general, the tree won’t stop growing until all of the nodes are pure. However, 

this will reflect the noise in the training data and the classifier can’t perform well when 

applied to the unknown data. Fig.17 shows the impact of overfitting in decision tree 

learning. The horizontal axis indicates the total number of terminal nodes in the decision 

tree, as the tree is being constructed. The vertical axis indicates the classification 

accuracy rate made by each subtree. The solid line shows the accuracy rate by using 

resubstitution method, which is based on the training data that was used to create the 

original tree, whereas the broken line shows the accuracy rate by using 10-fold cross 

validation method. The accuracy rate of the tree measured by the resubstitution method 

increases monotonically. However, when measured by 10-fold cross validation method, 

the accuracy rate first increases, then decreases. As can be seen, once the tree size 

exceeds approximately 25 nodes, further elaboration of the tree decreases its accuracy 

rate over the test data despite increasing its accuracy rate on the training data. Therefore, 

it proves that the original decision tree overestimates the accuracy rate of applying the 

tree to new data. 
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Figure 17. Impact of overfitting in decision tree learning. [50] 

 

To avoid overfitting, a 10-fold cross validation (CV) method is utilized after 

training. In 10-fold cross validation, the function partitions the training data set (N 

samples) into ten subsets with N/10 each, choose randomly but with roughly equal size, 

nine subsets are used for training the classifier and the remaining one is used for testing. 

The procedure is then run ten times, each time using a different one of these subsets as 

the validation set and combining the other subsets for the training set. Thus, each subset 

is used in the validation set for one of the experiments and in the training set for the other 

9 experiments. The mean classification accuracy rate is calculated as the performance 

metric for different number of terminal nodes of each subtree. Finally, the tree is pruned 

at the best level, which is the one that produces the smallest tree that is within one 

standard error of the maximum classification accuracy rate subtree. Fig.18 illustrates the 

effect of 10-fold cross validation pruning in decision tree learning. This plot shows the 
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same accuracy rate curves by using resubstitution and 10-fold cross validation methods. 

After pruning, the number of tree nodes is reduced, which lead to a strong generalization 

for unknown data and lower computational cost. 

 

Figure 18. Effect of 10-fold cross validation pruning. [50] 

 

While most tree-growing algorithms use entropy impurity criterion, there are 

many choices for stopping rules, for pruning methods and for the treatment of missing 

attributes, such as two other popular tree algorithms: ID3 and C4.5. In general, no single 

tree algorithm dominates or is dominated by others, which tree classifier to choose 

depends on certain situation. 
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CHAPTER 5 

SURFACE ELECTROMYOGRAPHY AND INERTIAL SIGNALS 

BASED ACTIVITY MODE INTENT RECOGNITION 

5.1  Introduction 

The surface electromyography (sEMG) signals are detected over the skin surface 

and are generated by the electrical activity of muscle fibers during contraction. 

Multi-channel EMG signals, collected by electrodes placed on the involved muscles, can 

be used to identify the user’s intent activity mode since each activity corresponds to a 

specific pattern of activation of several muscles. Therefore, sEMG signals are one of the 

major neural control sources for powered prostheses, exoskeleton and rehabilitation 

robots. Some prior works exist on developing sEMG pattern recognition-based control 

approach for many other kinds of powered prostheses, such as: A Gaussian mixture 

model based classification scheme for myoelectric control of powered upper limb 

prostheses is described in [41]. A volitional control approach of a prosthetic knee using 

surface electromyography is described in [42]. A multiclass real-time intent recognition 

method for a powered lower limb prosthesis is presented in [43]. Other researchers 

emphasize on describing the development of pattern recognition approach based on EMG 

signal, such as: An EMG-based pattern recognition approach for identifying locomotion 
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modes by using artificial neural networks (ANN) and linear discriminant analysis (LDA) 

is presented in [44]. A robust, real-time control scheme for multifunction myoelectric 

control is presented in [45]. An EMG-based hand gesture recognition approach for 

real-time biosignal interfacing is described in [46]. 

Current prosthetic devices predominantly utilize sEMG signals from the user’s 

body, in addition to pressure and force sensors, mounted at various locations on the 

device and along the body. As part of efforts to develop a suitable sensor suite to 

recognize user intent, this chapter proposes an approach based on a combination of EMG 

and inertial sensors in order for sensor fusion. EMG signals from the user’s body 

correspond to a local, area specific level, and play the most important role in pattern 

classification, while inertial sensors mounted on the exoskeleton and user correspond to a 

more holistic and generalized way of intent recognition. Related prior research works 

such as: A multimodal interpretation of muscular activities using a body sensor network 

with electromyogram and inertial sensors is developed in [47]. An automatic recognition 

method of sign language sub-words based on portable accelerometer and EMG sensors is 

described in [48]. A rule-based control approach of walking by using decision trees and 

practical sensors is designed in [49]. This chapter aims to describe a control structure 

which is safe, robust and reliable for the control of powered backbone exoskeleton, with 

the emphasis on developing activity mode intent recognizer. 
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5.2  Backbone exoskeleton control structure 

5.2.1  Architecture 

A three-level control structure for powered backbone exoskeleton is shown in 

Fig.19. It consists of a high-level supervisory controller, a middle-level controller and a 

low-level controller. The low-level controller is a closed-loop feedback controller which 

can control motor torques and compensate for the transmission dynamics. The 

middle-level controller generates torque references by using a finite-state machine which 

can regulate the impedance of the joints. The high-level controller consists of two parts: 

activity mode recognizer and state estimator. The state estimator is used to estimate 

actions of the user in order to trigger the corresponding middle-level controller. The 

activity mode recognizer distinguishes between different activity modes, such as flexion, 

extension and twisting. This project focuses on the activity mode recognizer and 

specifically describes the processing of EMG and inertial measurement unit (IMU) data 

streams and intent recognition algorithm by using decision tree. 

 
Figure 19. Powered backbone exoskeleton control structure. 
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5.2.2  Intent recognition methodology 

Intent recognition, also called goal recognition, is the task of recognizing the 

intents of a subject by analyzing some or all of their actions and/or analyzing the changes 

in the state resulting from their actions based on certain classifier. The classifier was 

designed and trained with appropriate database in order to be used for real time intent 

recognition. Appropriate set of sensors, appropriate window length for sensor data 

streams, and appropriate set of features to extract from each window need to be 

determined in order to train and use the classifier. Further, an appropriate data dimension 

reduction method was needed for real-time implementation. After a decision tree 

classifier was established, it was used in real time to determine which activity was most 

probable at a certain instant in time. Finally, the result was essentially low-pass filtered 

by a majority voting system in order to filter out noise and increase classification 

accuracy. The specific procedure [43] is described below. 

1. Sensor suite and data streams 

The sensor suite for the backbone exoskeleton was designed for providing enough 

data streams for intent recognizer. It consists of EMG sensors on the flexor and extensor 

muscles of the back and abdomen, inertial measurement unit at multiple locations on the 

back to provide inertial measurement. The raw data streams were preprocessed by some 
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commonly used methods include: high-pass filtering, low-pass filtering, rectification and 

normalization 

2. Feature selection and extraction 

Features were selected from sliding windows in our project since a relatively long 

window can be condensed into few information-rich features. Both sliding disjoint and 

overlapped windows [45] were used in order to compare their classification accuracy rate 

and delay time respectively. The real-time nature of intent recognition system requires 

that the features selected should have low computational cost, such as mean absolute 

value or standard deviation. For each sensor channel, four features will be selected and 

then a feature space can be obtained after computing. 

3. Dimension reduction 

The feature space dimension needs to be reduced in order to keep the most 

important information, decrease the time requirement for training the classifier and 

facilitate the real-time system implementation. A previous research work on myoelectric 

pattern classification for upper limb prostheses [52] shows that principal component 

analysis (PCA) dimension reduction algorithm can fulfill the target successfully and also 

improve classification accuracy. So in this project PCA was considered for dimension 

reduction. 

4. Decision tree classification 
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CART (classification and regression tree) was chose as the decision tree classifier 

[49]. It is computational efficiency to implement, training the classifier took only a few 

seconds, which is very important for real-time recognition system to ensure a fast 

response. The algorithm constructs the CART by making recursive binary splitting of the 

training data set. The data are partitioned into smaller and smaller subsets which are 

represented as the nodes in the tree until all of the nodes are pure. Gini impurity was used 

as split criterion: 
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( ) ( ) ( ) 1 ( )
k

i j j

i j j

i N P P Pω ω ω
≠ =

= = −∑ ∑   (4.5) 

where i(N) denote the impurity of a node N, P(ωj) is the fraction of patterns at node N 

that are in categoryωj. 

After training the binary decision tree, a 10-fold cross validation (CV) [50] 

method was utilized to prune the tree in order to avoid overfitting. Therefore, the 

classifier can show strong generalization when applied to the unknown data. 

5. Majority voting system 

The classification accuracy of the real-time intent recognizer can be increased by 

various kinds of low-pass filters. In this project we choose a majority voting system [41] 

which requires a majority agreement over a frame of activity mode decisions coming 

from the previous step in order to decide whether the high-level controller needs to 

switch activity mode or not. Such an approach can filter out noise and increase 
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classification accuracy, but at the cost of increased delay time. Thus the tradeoff between 

classification accuracy and switching latency based on certain requirement for an 

application should be estimated. 

5.3  Implementation 

5.3.1  Experimental design 

An experimental study was designed to evaluate the performance of EMG and 

inertial measurement unit for providing enough data streams for intent recognizer. EMG 

signals were recorded by using a commercial EMG measurement system (DELSYS 

Myomonitor IV Wireless EMG System), while inertial signals were calculated from 

home-made inertial measurement unit board, as shown in Fig.20. The board includes: 

LIS331AL analog 3-axis 2G accelerometer with acceleration range: +/- 2g, sensitivity: 

478.5mV/g, zero-g-level: 1.65V (+/- 6%) and low pass filter (noise reduction): 50Hz. 

LPR550AL dual-axis (Pitch and Roll) gyroscope and LY550ALH single axis (Yaw) 

gyroscope, each with measurement range: +/-500deg/sec, sensitivity: 2mV/Deg/sec, 

zero-rate level: 1.23V, high pass filter (drift compensation): 0.16Hz and low pass filter 

(noise reduction): 160Hz. 
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(a)                                  (b) 

Figure 20. (a) Home-made Inertial Measurement Unit (IMU) board. (b) Connected to the 

QUALISYS motion capture systems by BNC connecter. 

 

The EMG measurement system had 16 independent channels, each sampling at 

1.2 kHz. Twelve of these channels were used and connected to Ag-AgCl (99.9% silver – 

silver chloride) surface EMG electrodes, with 10 mm spacing between the contacts. Eight 

electrodes were placed on the back and four were placed on the abdomen. The electrode 

mounting sites corresponded to multiple locations on the latissimus dorsi and erector 

spinae on the back, and the rectus abdominis and external obliques on the front, as shown 

in Fig.21. The inertial measurement unit system had two sensor boards with 6 

independent channels each, 3 for inertial accelerometers and 3 for gyroscope sensors, 

each sampling at 1.2 kHz. Both of the two sensor boards were placed on the back. The 

two systems were synchronized in order to ensure a common time stamp on all the 

readings. A photograph of the placement of the sensor suite attached to the test subject is 

shown in Fig.22. 
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(a)                             (b) 

Figure 21. (a) Human back muscle. (b) Human front muscle. Red circles highlight 

muscles targeted in this study. 
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Figure 22. Placement of sensor suite (include EMG and Inertial Measurement Unit), 

subject: 30 year old healthy human with 1.83 m and 70 kg. 

 

5.3.2  Test subject and experiment protocol 

The testing protocol was approved by the Institutional Review Board at the 

University of Massachusetts, Amherst. The test subject were healthy individuals, 18 - 55 

years old, free from any chronic pain, arthritis or any other disabilities and medical 

conditions. During the experiment, the subject spent approximately 2 hours at the 

biomechanics lab at UMass Amherst in the Kinesiology Department. sEMG sensors and 

inertial measurement units on the back and torso by using medical adhesives were placed 

on the subject. The subject was instructed to go through a series of daily motions such as 

flexion, extension twisting your torso, walking and running, as listed in Table 1 below. 

The speed of any motion was controlled by a device called Metronome, which keeps time 
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by beeping at a set interval, referred to a bpm (Beats per minute). For example, a 

metronome set at 60 bpm will beep or click at 60 beats per minute. 

 

Table 1. List of motions to be performed by subject during experiment. 

 

5.3.3  Signal processing and analysis 

The recorded raw sEMG signals were preprocessed by three steps [49]: First 

high-pass filtered by an 8
th

order Butterworth filter with a 5 Hz cutoff frequency in order 

to remove any DC offset, minimize eventual movement artifacts. Then the signals were 

full-wave rectified and low-pass filtered by an 8
th

 order Butterworth filter with a 20 Hz 

cutoff frequency to eliminate noise and interference in order to get a smooth signal, and 

also focus on the part of the spectrum during which large scale motion occurs [42] [53]. 

Dual-pass filter was used to get a zero-phase shift, thus the correct muscle activity timing 
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can be preserved. Finally, the signals were normalized in magnitude to the largest 

amplitude observed during all the tests. Fig.23 shows a demonstration of preprocessing 

result based on a subset of a raw sEMG signal, the signals were collected when test 

subject twisted their torso left at the speed of 40 bpm. After preprocessing, the magnitude 

of the signal in time domain was normalized between 0 and 1, the content of the signal in 

frequency domain focused on the range of 5 – 20 Hz. 

 

Figure 23. Demonstration of preprocessing result based on a subset of raw sEMG signal. 

 

The signals from the inertial measurement unit were scaled to intervals [-1, 1], 

Fig.24 shows sEMG and inertial signals recorded from the test subject after 

preprocessing. 
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Figure 24. sEMG and inertial signals recorded from the test subject after preprocessing. 

 

After preprocessing, the database for each motion was split into two subsets, the 

training set and the test set. The first 60% of the trails were merged together for the 

training set and was used to generate classifier. The rest 40% of the trails were merged 

together for the test set and was used to validate the classifier generated by the training 

set. For example, the motion twist torso left and back to neutral position at the speed of 

60 bpm had 15 trails, so the first 10 trails were merged together for training set and the 

rest 5 trails were merged together for test set.  

Currently each motion had a 24-channel signal database, 12 for sEMG, 6 for 

inertial acceleration signal and 6 for gyroscope signal. Pattern classification was 

performed on sliding analysis window and the window length needed to be carefully 

considered. For such a real-time recognition system, the system delay time should not 
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perceivable by the user and the threshold is generally regarded to be about 300 ms [45], a 

long window length may challenge this constraint. Besides, the sEMG signal can be 

regarded as Gaussian random process [54], so the length of analysis window should not 

exceed 200 ms in order to ensure the small statistical variance of calculated features of 

EMG signals [44] since EMG signal plays the most important role in pattern 

classification. Therefore, the classification accuracy rate resulting from the window 

lengths ranging from 30 to 180 ms were compared [44] [55], for both sliding disjoint and 

overlapped window. Window increment for sliding overlapped window was decided to 

be 10 ms since the smaller the window increment, the faster the classification decision 

could be made. For each analysis window of each channel, four low computational cost 

features which could result in high classification accuracy rate [40] were computed, that 

include: mean absolute value (MAV), standard deviation (SD), difference absolute mean 

value (DAMV) and root mean square (RMS). Finally, each motion could get a 

96-dimensional feature space after computing and PCA algorithm was used to reduce the 

dimension to three, these three principle components can represent most of the 

information of the original feature data set. 

The three-dimensional training subset feature space of each motion was then 

provided to train decision tree classifier. In general, the tree wouldn’t stop growing until 

all of the nodes are pure. However, this would reflect the noise in the training data and 

the classifier couldn’t perform well when applied to the unknown data. Therefore, a 
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10-fold cross validation (CV) method was utilized to avoid overfitting after training. In 

10-fold cross validation, the function partitioned the training data set (N samples) into ten 

subsets with N/10 each, chosen randomly but with roughly equal size, nine subsets were 

used for training the classifier and the remaining one was used for testing. The procedure 

was then run ten times, each time using a different one of these subsets as the validation 

set and combining the other subsets for the training set. Thus, each subset was used in the 

validation set for one of the experiments and in the training set for the other 9 

experiments. The mean classification error rate was calculated as the performance metric 

for different number of terminal nodes of each subtree. Finally, the tree was pruned at the 

best level, which was the one that produces the smallest tree that was within one standard 

error of the minimum classification error rate subtree. 

After pruning, the test subsets were provided to the decision tree classifier and 

then produced a decision stream. A majority voting postprocessing strategy was needed 

to filter out the noise and improve classification accuracy. In the majority voting 

postprocessing system, N classifier decisions were stored in a voting vector and the 

activity mode that occurs more than a certain ratio in those N decisions is selected as the 

high-level controller output. (For sliding disjoint window, N ranges from 10 to 60 in 

increments of 5, ratio equals to 60%. For sliding overlapped window, N ranges from 20 

to 50 in increments of 5, ratio equals to 80%). The controller kept the previous output if 

none of the activity modes occur more than that ratio. 
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Delay time is very important for such a real-time control system. For example, 

Peleg et al. research work [56] performed classification results up to 1.4 seconds after the 

onset of the motion, which was perceivable and quite frustrating for the user. Therefore 

the delay time should be considered and discussed in details. Table 2 summarizes the 

equations for calculating delay time of different classifier type [57], while Ta represents 

the analysis window length,τ represents the processing time from the completion of 

data collection to a decision is made, Tnew represents window increment of sliding 

overlapped window, n represents number of decisions in a voting vector. The whole 

signal processing system was performed on a 2.4-GHz Intel Core i3 based laptop with 

Maltab version of 32-bit R2010a. 

 
Table 2. Delay time equations of different classifier type [57] 

 

5.4  Results and discussions 

5.4.1  10-fold cross validation pruning 

Fig.25 (a) shows the impact of overfitting after training the decision tree. The 

horizontal axis indicates the total number of terminal nodes in the decision tree, as the 
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tree is being constructed. The vertical axis indicates the misclassification rate made by 

each subtree. The red line shows the misclassification rate by using resubstitution method, 

which is based on the same sample that was used to create the original tree, whereas the 

blue line shows the misclassification rate by using 10-fold cross validation method. As 

the figure shows, the misclassification rate of the tree measured by the resubstitution 

method decreases monotonically. However, when measured by 10-fold cross validation 

method, the misclassification rate first decreases, then increases. As can be seen, once the 

tree size exceeds approximately 40 nodes, further elaboration of the tree increases its 

misclassification rate over the new data despite decreasing its misclassification rate on 

the training data. Therefore, it proves that the original decision tree underestimates the 

misclassification rate of applying the tree to new data and the tree was pruned at the best 

level (showed in Fig.25 (a) by a purple circle), which is the one that produces the smallest 

tree that is within one standard error of the minimum misclassification rate subtree. 

Fig.25 (b) illustrates the effect of 10-fold cross validation pruning in decision tree 

learning. This plot shows the same misclassification rate curves by using resubstitution 

and 10-fold cross validation methods. After pruning, the number of tree nodes was 

reduced, which led to a strong generalization for unknown data and lower computational 

cost. 
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(a)                                 (b) 

Figure 25. (a) Impact of overfitting and the best choice of number of terminal nodes 

(purple circle).  (b) Effect of 10-fold cross validation pruning. 

 

5.4.2  Sliding disjoint window analysis 

The decision tree classifier was finally built after pruning, then a 90-s long 

four-class motions (standing, twist torso left at 40 bpm, twist torso right at 40 bpm, bend 

forward at 60 bpm) test data trail was used to validate the performance of the classifier. 

Table 3 lists the recognition error rate (after majority voting) of different window length 

by using sliding disjoint window. For each window length, the recognition error rate was 

computed for different voting vector length ranged from 10 to 60 in increments of 5 and 

the one which resulted in the best recognition performance was chosen as the optimal 

length. As the table shows, the lowest recognition error rate is 0.43%, which corresponds 

to a window length of 100 ms and a voting vector length of 25. Fig.26 plots the 
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recognition error rate of different window length. The curve shows an overall upward 

trend with fluctuation. 

 

Table 3. Recognition error rate of different window length by using sliding disjoint 

window, the shadow indicates the best recognition performance. 

 

 

Figure 26. Recognition error rate of different window length (sliding disjoint window). 
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Fig.27 shows the output of the activity mode recognizer, using a window length of 

100 ms and a voting vector length of 25. As can be seen, high recognition accuracy rate 

was achieved when comparing to the correct activity mode. 

 
Figure 27. The output of the activity mode recognizer for a 90-s long test trial, with a 

window length of 100 ms and a voting vector length of 25. 

 

After training and testing, the parameter of the classifier (window length and 

voting vector length) was fixed. Fig.28 shows a 120-s long real-time activity mode 

recognition result to test the performance of the classifier. During the experiment, the test 

subject was asked to do the same four-class motions, but with random order. The raw 

signal was then provided to the recognition system and the subject intent was outputted in 

real time. As can be seen, there is no obvious visual evidence of the incorrect switching 

except the switching latency, as the red broken line shows. The average delay time is:  
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which is far beyond the 300 ms maximum latency without a perceivable delay for the 

user. 

 

Figure 28. Real-time activity mode recognition for a 120-s long test trial. 

 

5.4.3  Sliding overlapped window analysis 

The processing (feature extraction and classification) only occurred in a portion of 

the time spent acquiring the raw signal when using sliding disjoint window, which 

indicated that the recognition system was underutilized, thus led to the unacceptable 

delay time. Another available approach was sliding overlapped window, which could 

fully utilize the computing capacity of the system and produce a decision stream as dense 

as possible. Table 4 lists the recognition error rate (after majority voting) of different 
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window length by providing the same test data trail to the classifier again. For each 

window length, the recognition error rate was computed for different voting vector length 

ranged from 20 to 50 in increments of 1 and the one which resulted in the best 

recognition performance was chosen as the optimal length. As the table shows, the lowest 

recognition error rate is 0.17%, which corresponds to a window length of 30 ms and a 

voting vector length of 38. Fig.29 plots the recognition error rate of different window 

length. The curve shows an overall upward trend with fluctuation, but the average error 

rate (1.84%) is much lower than using sliding disjoint window (4.10%). 

 
Table 4. Recognition error rate of different window length by using sliding overlapped 

window, the shadow indicates the best recognition performance. 
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Figure 29. Recognition error rate of different window length (sliding overlapped 

window). 

 

Fig.30 shows the output of the activity mode recognizer, using a window length of 

30 ms and a voting vector length of 38. As can be seen, high recognition accuracy rate 

was achieved when comparing to the correct activity mode. 
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Figure 30. The output of the activity mode recognizer for a 90-s long test trial, with a 

window length of 30 ms and a voting vector length of 38. 

 

After fixing the window length and voting vector length of the classifier, the same 

120-s long data trail was used to test the performance of the classifier again, as the Fig.31 

shows. Comparing to the recognition result by using sliding disjoint window, this 

approach shows no obvious visual evidence for both incorrect switching and the 

switching latency. The average delay time is:  
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which is within the constraint and not perceived by the user. Therefore, an approach using 

sliding overlapped analysis window should be applied in order to generate faster decision 

updates, allow the system to be much more responsive, and ensure a high recognition 

accuracy rate system in mode switching.  
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Figure 31. Real-time activity mode recognition for a 120-s long test trial. 

 

5.4.4  Validating the performance of the recognizer via multiple subject dataset 

To validate the performance of the intent recognizer using sliding overlapped 

window analysis four additional datasets were used from four different healthy subjects. 

Table 5 shows age, height and weight of each subject. 

Subject Age Height (m) Weight (kg) 

2 34 1.93 83 

3 25 1.70 60 

4 29 1.81 72 

5 26 1.75 66 

Table 5. Age, height and weight of each subject. 
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Fig.32 plots the recognition error rate of different window length for all five 

subjects. All of these error rates show an overall increasing trend with variations, 

however, the minimum recognition error rate always occurred with window lengths 

between 30-50 ms. Therefore, for sliding overlapped window analysis, a smaller window 

length is better. 

 

Figure 32. Recognition error rates for five subjects for different window lengths (sliding 

overlapped window). 

 

Table 6 demonstrates the minimum recognition error rate and its corresponding 
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belongs to this range could significantly eliminate misclassifications. All these five 

recognition error rates were below 1.00%, and the effective delay times were less than the 

300 ms constraint. Therefore, the recognition results validate the performance of 

described recognizer with multiple subject datasets. The detailed recognition error rates 

results for the additional four subjects using different window lengths (similar to data 

shown for Subject 1 in Table 4) are presented in the Appendix. Also contained in the 

Appendix are the results of the 120 s real-time recognition tests for each of the additional 

subjects (as was shown for Subject 1 in Fig. 31).  

Subject Window 

length (ms) 

Voting vector 

length 

Recognition 

error rate 

Delay time 

(ms) 

1 30 38 0.17% 215 

2 40 43 0.62% 245 

3 30 36 0.35% 205 

4 30 35 0.43% 200 

5 40 41 0.23% 235 

Table 6. Five subject test results (sliding overlapped window). 

 

5.5  Conclusion 

This chapter presents an activity mode intent recognizer, which is a high-level 

supervisory controller belongs to a three-level control structure for powered backbone 

exoskeleton. The recognizer uses surface electromyography and inertial signals as the 

input and CART (classification and regression tree) as the classifier. The CART 

algorithm is computational efficiency to implement, which is very important for real-time 
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recognition system to ensure a fast response. The approach was described in details and 

the experiment result indicates that the recognizer extracts the user intent and switches to 

the correct middle-level controller in real time. The approach achieves a low recognition 

error rate and a user-unperceived latency by using sliding overlapped analysis window, 

which shows great potential for implementing on a prototype backbone exoskeleton. 

Future study includes improving the recognition performance by incorporating additional 

sensors, adding new activity modes, such as twisting or bending at different speeds, 

walking and running, validating the performance of described recognizer with multiple 

subjects wearing a prototype backbone exoskeleton. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE STUDY 

This thesis presents the development of an activity mode intent recognizer using 

surface electromyography and inertial measurement unit. The background and design 

concept of powered backbone exoskeleton, background of electromyography signal, and 

the necessary prerequisites for the thesis, namely the collection and processing of sEMG 

signal and the background of decision tree classification, were presented. The 

development of the activity mode intent recognizer was described which acts as a 

supervisory controller in a three-level control structure for a powered backbone 

exoskeleton. The recognizer uses surface electromyography and inertial signals as the 

input and CART (classification and regression tree) as the classifier. The experimental 

results indicate that the recognizer extracts the user intent in real-time. The approach 

achieves a low recognition error rate and is fast enough to potentially not be perceived by 

a user by using sliding overlapped analysis window. The approach shows great potential 

for implementing on a prototype backbone exoskeleton. 

Future study includes improving the recognition performance by incorporating 

additional sensors, adding new activity modes, such as twisting or bending at different 

speeds, walking and running, validating the performance of described recognizer with 

multiple subjects wearing the prototype backbone exoskeleton, how this powered 
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backbone exoskeleton can be commercialized, and how the device can be used to restore 

function for individuals with impairments (spinal cord injured) or coupled with lower and 

upper limb robotic exoskeletons. 
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APPENDIX 

FOUR TEST SUBJECTS RECOGNITION RESULTS 

Tables 7-10 and Figures 33-36 in the appendix show the other four test subjects (Subject 

2-5) recognition error rates of different window length and 120 s real-time recognition 

test results. The real-time recognition test results (Fig. 33-36) show no obvious visual 

evidence for both incorrect switching and the switching latency. 

 

Window length (ms)Window length (ms)Window length (ms)Window length (ms)    Voting vector lengthVoting vector lengthVoting vector lengthVoting vector length    Recognition error rateRecognition error rateRecognition error rateRecognition error rate    

30 48 0.83% 

40 43 0.62% 

50 37 1.59% 

60 47 1.37% 

70 29 1.83% 

80 36 2.23% 

90 47 2.37% 

100 42 1.27% 

110 45 2.83% 

120 32 2.75% 

130 42 1.26% 

140 38 2.57% 

150 34 1.73% 

160 50 2.86% 

170 45 1.99% 

180 43 2.21% 

Table 7. Subject 2 recognition error rate of different window length (sliding overlapped 

window), the shadow indicates the best recognition performance. 
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Figure 33. Subject 2 real-time activity mode recognition for a 120-s long test trial. 

 

Window length (ms)Window length (ms)Window length (ms)Window length (ms)    Voting vector Voting vector Voting vector Voting vector lengthlengthlengthlength    Recognition error rateRecognition error rateRecognition error rateRecognition error rate    

30 36 0.35% 

40 38 0.81% 

50 43 0.67% 

60 36 1.98% 

70 34 1.76% 

80 47 1.35% 

90 37 1.12% 

100 35 1.21% 

110 42 2.07% 

120 49 1.43% 

130 46 1.54% 

140 41 1.34% 

150 38 2.29% 

160 43 2.42% 

170 39 2.03% 

180 45 1.68% 

Table 8. Subject 3 recognition error rate of different window length (sliding overlapped 

window), the shadow indicates the best recognition performance. 
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Figure 34. Subject 3 real-time activity mode recognition for a 120-s long test trial. 

 

Window length (ms)Window length (ms)Window length (ms)Window length (ms)    Voting vector lengthVoting vector lengthVoting vector lengthVoting vector length    Recognition error rateRecognition error rateRecognition error rateRecognition error rate    

30 35 0.43% 

40 42 0.73% 

50 32 0.87% 

60 29 0.61% 

70 37 1.38% 

80 45 1.92% 

90 34 2.35% 

100 32 2.49% 

110 38 1.89% 

120 46 1.79% 

130 47 2.07% 

140 37 1.64% 

150 46 2.68% 

160 42 1.79% 

170 45 2.27% 

180 37 2.32% 

Table 9. Subject 4 recognition error rate of different window length (sliding overlapped 

window), the shadow indicates the best recognition performance. 
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Figure 35. Subject 4 real-time activity mode recognition for a 120-s long test trial. 

 

Window length (ms)Window length (ms)Window length (ms)Window length (ms)    Voting vector lengthVoting vector lengthVoting vector lengthVoting vector length    Recognition error rateRecognition error rateRecognition error rateRecognition error rate    

30 43 0.65% 

40 41 0.23% 

50 34 1.11% 

60 29 2.22% 

70 29 1.30% 

80 40 1.42% 

90 29 2.05% 

100 46 2.30% 

110 38 0.85% 

120 42 2.47% 

130 42 1.89% 

140 36 2.39% 

150 34 3.29% 

160 49 3.70% 

170 49 1.63% 

180 43 2.75% 

Table 10. Subject 5 recognition error rate of different window length (sliding overlapped 

window), the shadow indicates the best recognition performance. 
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  Figure 36. Subject 5 real-time activity mode recognition for a 120 -s long test trial. 
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