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Figure 6.1 Real composite structure for Multiphysics modeling (a) Undamaged with 
manufacturing defect (b) Damaged after 30 A/sq. inch current intensity   

 For predicting the electrical response, the entire volume is presented as homogenous 

medium and damages have different material properties than the homogenous medium. The 

goal is to investigate the thermal-electrical response with material damage state. The material 

properties are taken from the experimental study. The FEA model, which simplifies the 

complicated experimental procedure, is capable of conducting convenient studies without any 

troublesome effect that is accompanied to the experiment. For example, electric loading during 

the experiment might have defect, as the electrodes are handmade and hard to be perfectly 

attached to the surface to conduct the loads. Any mismatch between the sample and electrode 

causes contact resistance, and any kind of contact resistance is responsible for heating source. 

This thermal-electrical FEA model provides full control on the loading sections. The role of 

contact resistance either can be compensated for or included in the model if the electrode is 

included in the FE model. 

6.2.1 Electric Potential Distribution 

The electric potential (voltage) at any volume is produced by a continuous distribution of 

charge. Figure 6.2 and Figure 6.3 shows the electric potential distribution of undamaged and 

damaged composite structure. The electrical potential reaches the highest value at the loading 
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side and gradually decreases. Corresponding to the composite specimen for electrical current 

experiment, the load applied in this model is equivalent to 2A/ sq. inch current for undamaged 

sample and 30A/ sq. inch for damaged sample. As shown in Figure 6.3, the electrical potential 

distribution changes with the damage around the damage region. It can be seen that the 

potential distribution of undamaged and damaged sample reflect the damage effects of the 

electrical potential on the composite. The electrical current goes to an alternative route when 

damage occurs, which leads to the changes of electrical potential around the damage.  

 

Figure 6.2 Potential distribution on undamaged sample after passing 2A/sq inch current 
in x- direction 
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Figure 6.3 Potential distribution on damaged sample after passing 30A/sq inch current in 
x- direction 

Figure 6.4 shows the corresponding impedance value of undamaged and damaged sample. 

The impedance value is higher for damages sample than undamaged one. Damaged sample 

contains damage area with homogenous medium surrounding to it and presence of damage 

causes loss of conductivity. In contrast during the experiment damages due to current 

causes fiber to fiber contact and ultimately reduce the impedance. 
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Figure 6.4 Impedance of undamaged and damaged sample 

6.2.2 Electric current density 

Electric current density over the surface is very important. Electric current density heavily 

depends on conductivity. Heterogeneous conductivity causes change in electric current 

density. Damage in the homogenous medium can causes heterogeneous conductivity. 

Electric current density arises from the charge flow and thus it depends on the conductivity 

of the sample.  
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Figure 6.5 Current density (A/m2) on undamaged sample after passing 2A/sq inch current 
in x direction 

 

Figure 6.6 Current density (A/m2) on damage sample after passing 30A/sq inch current in 
x direction 
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Figure 6.5 shows the surface current density of undamaged sample with manufacturing 

defects. The current density over the volume is constant except the defect region. Charges 

are accumulated around the damage and causes high current density. 

 Figure 6.6 shows the surface current density of a damaged sample. The damage was 

experimentally created after passing 30A/sq. inch. In the FEA the same amount of current 

intensity is provided to investigate the effect of evolving material state. At 30A/ sq. inch, 

there is significant amount of damage. The current density inside the damage area is quite 

low as the damage area is not good electrical conductor compared to the surrounding area. 

There is a big mismatch in electrical conductivity at the damaged boundary. The charges 

are accumulated at the damage boundary and cause high current density. 

6.2.3 Temperature Distribution 

The coupled thermal-electrical FEA model is adopted for the thermography simulation using 

the same study as in the electrical potential distribution. The temperature distribution is 

simulated by Joule heating coupling. Thus, damage leads to significant change in temperature 

distribution. When the temperature distributions are compared to those of the experimental 

measurements they are in good agreement. Figure 6.7 and Figure 6.8 show the temperature 

distribution of undamaged sample and damaged sample, respectively. It can be seen the 

there are some localized areas associated with damage where current density is much 

higher than in other area. Those localized areas experience higher temperature than the 

surrounding which ultimately leads to further damage growth or evolution of damage. 
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Figure 6.7 Temperature distribution (T) on undamaged sample after passing 30A/sq inch 
current in x-direction. 

 

Figure 6.8 Temperature distribution (T) on damaged sample after passing 30A/sq inch 
current in x-direction. 
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ESTIMATION OF ELECTRICAL CONDUCTIVITY OF A TRANSVERSELY 

ISOTROPIC LAMINA 

As discussed in earlier chapters, electrical behavior of composite materials is clearly not 

isotropic. The behavior can be orthotropic in material coordinate system (at the lamina 

scale) and anisotropic in global coordinate system (at the laminate scale) with significant 

off-diagonal conductivity components. There is strong dependence on fiber orientation 

angle which not only affects bulk laminate properties but also controls local lamina 

nonlinear behavior.  For a comprehensive understanding of electrical response, the role of 

the local geometries and properties of the individual constituents needs to be quantified. 

 Experimental and analytical estimation of electrical properties of composite 

materials has attracted a significant interest in the recent years. The electrical conductivity 

of two phase composite media has been studied by various researchers [50]-[52]. Electrical 

resistivity prediction of dry carbon fiber media as a function of thickness and fiber volume 

fraction combining empirical and analytical formulation has also been reported [51]. An 

experimental investigation of through-thickness electrical resistivity of carbon fiber 

reinforced laminates has been conducted by Louis et al.[53]. Ezquerra et al. [54] has 

measured alternating-current electrical properties of carbon-fiber polymeric composites. Y 

lin et al. [55] has improved through thickness electrical conductivity by adding carbon 

nanotubes addition in the through-thickness of composite laminates for aircraft 

applications. Despite progress in this area, there is very limited work on a micromechanics 

based predictive formulation of electrical properties of composite materials. Specifically, 
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it is very important to understand how electrical conductivity of a composite lamina is 

affected by volume fraction, distribution, and orientation of its constituents. This can form 

a foundation for a more robust constitutive law governing electrical behavior of a 

composite laminate. 

 In this chapter, an effective electrical conductivity estimation is performed by 

developing new micromechanics formulations based on a classical micromechanics 

technique called concentric cylinder method (CCM). Micromechanics schemes such as the 

Mori-Tanaka method, the self-consistent method are good approximation methods for 

composites with a low volume fraction of reinforcements in a resin. [56]. CCM is 

developed based on the assumption that composites are in a state of periodic arrangement; 

CCM provides a closed form solution. In this study, CCM has been extended to predict 

electrical properties and continuity boundary conditions are also preserved in terms of 

electrical variables.  In addition of volume fraction and constituent properties, the 

formulation can account for other complexities such as interphase which can have a 

significant role in controlling electrical behavior. 

7.1 GOVERNING EQUATION 

To develop governing equation, we assume that the composite lamina is electrically 

transversely isotropic, i.e., 2 3σ σ=  . This is consistent with most micromechanics theories 

for mechanical properties. It is well understood that although lamina is assumed 

transversely isotropic, the laminate may not be transversely isotropic.  

In cylindrical coordinates ( , , )x r θ , the following electrical equilibrium equation can be 

written for orthotropic materials 
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2 2 2

   2 2 2 2

1 1
0r x

r r r r x
θ

φ φ φ φ
σ σ σ

θ

   ∂ ∂ ∂ ∂
+ + + =   

∂ ∂ ∂ ∂   
 (7-1) 

Here, σ  = electrical conductivity and φ  = electric potential function. 

To evaluate conductivity in axial (fiber direction) and transverse (perpendicular to fiber 

direction) direction the following cases are considered.  

In axial direction: ( )xφ φ=  and in transverse direction: ( , )rφ φ θ=  

Axis x is an arbitrary radial direction along which the electrical conductivity is constant.  

We make a major simplifying assumption that the electrical potential function can be 

written as ( ) ( ) ( ) , ,    Θ ( )x r X x R rφ θ θ= . Hence the governing equation (7-1) can be 

expressed as  
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 2
0z

X

x
σ

 ∂
= 

∂ 
 (7-2) 

 
2 2

2 2 2

1 Θ 1
Θ Θ 0

R R
R

r r r rθ

 ∂ ∂ ∂
+ + = 

∂ ∂ ∂ 
 (7-3) 

Solution of equations (7-2) and (7-3) are respectively 

 ( )X x Ax B= +  (7-4) 

 
1

( ) ; ( )R r Cr D cos
r

θ θ
 

= + Θ = 
 

 (7-5) 

Where A, B, C, D are constants to be determined from boundary and/or interface 

conditions. 
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7.2 TWO PHASE CONCENTRIC CYLINDERS METHOD (CCM) 

The composite cylinder assemblage of Figure 7.1.is embedded with two phases whose 

material properties are the same as the material properties of the effective solid 

homogeneous material of Figure 7.1. Constant A, B, C, D from equation (7-4) and (7-5) 

can be found from two-phase composite cylinders model. 

7.2.1 Axial (fiber direction) Conductivity 

The two-phase CCM is used to determine the effective axial conductivity consists of two 

concentric cylinders or phases (Figure 7.1), each of which is assumed to have material 

symmetry and has potential of the form. 

   0f f f

fA x B for r rφ = + ≤ ≤  (7-6) 

   m m m

f mA x B for r r rφ = + ≤ ≤  (7-7) 

Where, superscript f= fiber and superscript m= matrix 

 

Figure 7.1 Two phase concentric composite cylinders model 

Boundary Condition: the following boundary condition is imposed in order to determine 

the axial conductivity  
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,

0 2
f m L

xφ φ
 

= − = 
 

 (7-8) 

 
,

02
f m L

xφ φ φ
 

= = + ∆ 
 

 (7-9) 

By using boundary condition equation (7-8) and (7-9), equation (7-6) and (7-7) gives the 

following values 

 f m
A A

L

φ∆
= =  (7-10) 

 
0 

2
f m

B B
φ

φ
∆

= = +  (7-11) 

Thus the nonzero electric field component in each phase is determined to be 

 
,

, ,
f m

f m f m

xE A
x

φ∂
= − = −

∂
 (7-12) 

The nonzero current flux in axial direction is  

 
, , , , ,f m f m f m f m f m

x xJ E Aσ σ= = −  (7-13) 

The axial conductivity 1 σ  can be expressed as following equation 

 1 x

x

J

E
σ =  (7-14) 

The current flux �� is the spatial average of the electric current density along the x axis  

 1 ,
x

f mJ
xV

J dV= ∫∫∫  (7-15) 

The electric field can be written as  
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  f m

x x x
E E E

L

φ∆
= = = −  (7-16) 

Using equation (7-15) and (7-16) into equation (7-14) the following expression can be 

written 

 1

,1

 
x

f m

xV

E

J dV
σ =

∫∫∫
 (7-17) 

 
1 1, , [ ]f i m f i m

dV dV
x x x xV V

J dV J dV J J= + +∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫  (7-18) 

Here,
2  mV r zπ=  and  dV r drd dzθ= . After solving equation (7-17), the axial conductivity 

1σ .can be found as  

  
1 (1 )f m

f f
V Vσ σ σ = + −   (7-19) 

Here, f
V = fiber volume fraction. This CCM based axial conductivity equation has the form 

of the classical rule of mixture model (ROM). The outcome is expected be reasonable as 

current flow is quite unidirectional and dominated by conduction path provided by the 

fibers. 

7.2.2 Transverse Conductivity 

Due to the variation of the cylindrical surface area in the transverse direction, the law-of 

mixture rule is not applicable for calculating the electrical conductivity in this direction. In 

order to determine the transverse electrical conductivity �	, the system is subjected to 

uniform electric field E0 along 2 direction at a large distance sufficiently far away (Figure 

7.2). The two phase composite cylinder assemblage used to determine the effective 
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transverse conductivity consists of two concentric cylinders or phases (Figure 7.1), each of 

which is assumed to have material symmetry and has a potential of the form  

 
1

      0f f f

fC r D cos for r r
r

φ θ
 

= + ≤ ≤ 
 

 (7-20) 

 
1

   m m m

f mC r D cos for r r r
r

φ θ
 

= + ≤ ≤ 
 

 (7-21) 

Where, superscript f= fiber and superscript m= epoxy matrix 

 

Figure 7.2 Two phase composite cylinder assemblage under electric field 

The following boundary condition has been applied in order to determine the axial 

conductivity: At r = 0 potential should have finite value; hence, 0f
D = . 

To enforce continuity of current and potential across the material boundary, the boundary 

conditions are 

 | |
f f

f m

r r r r
φ φ= ==  (7-22) 

 | |
f f

f m

r r r r
J J= ==  (7-23) 

Equation (7-23) can also be written as  
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∂ ∂
 (7-24) 

Boundary condition at mr r=  

 0|  
m

m

r r E cos
r

φ
θ=

∂
− =

∂
 (7-25) 

or 

 0|  
m

m

r r mE r cosφ θ= −=  (7-26) 

From equations (7-22), (7-24) and (7-26), the constant f
C , m

C , mD  can be found as the 

solution of the following equation 
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 (7-27) 

After solving the above equation for coefficients f
C , m

C , mD , the electric potential can 

be found from equation (7-20) and (7-21) 
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 (7-28) 
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 (7-29) 

Electric field and current flux can be found from the following expression 
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Transverse conductivity can be express as  
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Where, 

1 1, [ ( cos sin )( cos sin ) ]
2

f ff m m mJ JJ J dV dvJ dV
rrV V

θ θθ θ θθ
= + −−∫∫∫ ∫∫∫ ∫∫∫

  (7-35) 

From equation (7-34) and (7-35), one gets 

 

 

 
2  

)

)

(1 (1 )
 

(1 (1 )

f m

f fm

f m

f f

V V

V V

σ σ
σ σ

σ σ
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 (7-36) 

Equation (7-36) is the micromechanical relationship for predicting electrical conductivity 

of a lamina in the transverse (perpendicular to fiber) directions. 

7.3 THREE PHASE CONCENTRIC CYLINDERS METHOD (CCM) 

Three phase composite cylinder assemblage as shown in Figure 7.3 is embedded by three 

phases whose material properties are the same as the material properties of the effective 
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solid homogeneous material. Constant A, B, C, D from equation (7-4) and (7-5) can be 

found from the three phase composite cylinders model. 

7.3.1 Axial Conductivity 

The three-phase composite cylinder assemblage used to determine the effective axial 

conductivity consists of three concentric cylinders or phases (Figure 7.3) each of which is 

assumed to have isotropic material symmetry and has a potential of the form 

   0f f f

fA B for r rxφ = + ≤ ≤  (7-37) 

   i i i

f iA x B for r r rφ = + ≤ ≤  (7-38) 

   m m m

i mA x B forr r rφ = + ≤ ≤  (7-39) 

Where, f= fiber, m= epoxy matrix and i=interphase 

 

Figure 7.3 Three phase concentric composite cylinders model 

Boundary Condition: the following boundary condition is imposed in order to determine 

the axial conductivity  
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By using the boundary condition (7-40), (7-41) and equation (7-37), (7-38) and (7-39) the 

following constants can be found 

 f i m
A A A

L

φ∆
= = =   (7-42)  
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φ
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Thus, the nonzero electric field component in each phase is determined to be 

 
,
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 (7-44) 

The nonzero current flux is  

 
, , , , , , , , ,f i m f i m f m f i m f i m

x xJ E Aσ σ= = −  (7-45) 

The axial conductivity can be expressed as following equation 

 1 x

x

J

E
σ =  (7-46) 

The current flux �� is the spatial averages of the electric current density along the z axis 

 , ,1
x

f i m

x
J

V
J dV= ∫∫∫   (7-47) 

And electric field can be written as follow 
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Using equation (7-47) and (7-48) into equation (7-46) the following expression can be 

written 
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Here,
2  mV r zπ=  ���  dV r drd dzθ=  

   
1 (1 )f i m

f i f i
V V V Vσ σ σ σ = + + − −   (7-51) 

Here iV = interphase volume fraction. This is rule of mixture of axial conductivity. 

7.3.2 Transverse Conductivity 

Due to the variation of the cylindrical surface area in the transverse direction, the law-of 

mixture rule is not applicable for calculating the electrical conductivity in this direction. In 

order to determine the transverse electrical conductivity �	, the system is subjected to 

uniform electric field E0 along 2 direction at a large distance sufficiently far away (Figure 

7.4) . The three phase composite cylinder assemblage is used to determine the effective 

transverse conductivity consists of three concentric cylinders or phases (Figure 7.3), each 

of which is assumed to have isotropic material symmetry and has a potential of the form  
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 (7-54) 

 

Where, f= fiber, i= interphase and m= epoxy matrix 

 

Figure 7.4 Three phase composite cylinder assemblage under electric field 

The following boundary condition is imposed in order to determine the axial conductivity: 

At r = 0 potential should have finite value; hence, �� = 0  

From continuity equation, 
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Boundary condition at mr r= , 
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or 0|  
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m

r r mE r cosφ θ= −=  (7-62) 

By using continuity equations, boundary conditions, and equation (7-52), (7-53) and (7-54) 

the following equations can be written 
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After solving the above equation and using equations (7-52), (7-53) and (7-54), the electric 

field and current flux can be found as 
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Transverse conductivity can be calculated from following equation  
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where 

1 1, [ ]
2 ( ) ( ) ( )f f i i m mf m dV dV

r r rV V
J cos J sin dV J cos J sin J cos J sinJ dV θ θ θθ θ θ θ θ θ= + +− − −∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫  (7-69) 

7.4 RESULTS AND DISCUSSION 

It should be mentioned that the CCM micromechanics model in the current work is 

modified based on the assumption of straight carbon fibers which are uniformly distributed 

in the polymer matrix. The interaction between one fibers to another fiber is neglected this 

corresponds to the dilute mixture assumption as applied in different effective medium 

theories. Micromechanics modeling results for the effective axial electrical conductivity 

and transverse conductivity of two-phase CCM are presented in Figure 7.5-7.6. In these 

figures, different ratios of fiber to matrix conductivities have been used which indicates the 

degree of heterogeneity in electrical properties. Figure 7.5 shows the variation of axial 

electrical conductivity with fiber volume fraction. Equation (7-19) for the axial electrical 

conductivity is linear in nature that means the axial conductivity directly depends on the 

amount of carbon fiber and the conductivity of carbon fiber. As the volume fraction of 

carbon fiber increases the conductivity increases. Matrix is less conductive than carbon 
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fiber so the values of effective axial conductivity of composite are between the value of 

matrix conductivity and carbon fiber conductivity.  

 

Figure 7.5 Axial Conductivity of two phase composite cylinder model 
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Figure 7.6 Transverse Conductivity of two phase composite cylinder model 

 Figure 7.6 shows the variation of transverse conductivity of composite materials 

with fiber volume fraction. In the transverse direction, there is no direct conduction path; 

hence conductivity is much lower than in the axial direction. There is no significant change 

in conductivity in transverse direction up to certain 50% fiber volume fraction. As the fiber 

volume fraction increases the conductivity increases. Figure 7.6 shows different 

conductivity data for different carbon fiber conductivity to matrix conductivity ratios. At 

low carbon fiber to matrix conductivity ratio, there is no significant change in effective 

transverse conductivity of composite with fiber volume fraction. However, as the 

conductivity ratio increases, the transverse conductivity also increases. It should also be 

noted that though the transverse conductivity increases with the ratio of fiber conductivity 

to matrix conductivity, this increase is not significant compared to axial conductivity.  



 

69 

 Another fact is that the transverse conductivity increases with the ratio of fiber 

conductivity to matrix conductivity up to a certain limit. Beyond that limit, there is no 

significant change in transverse conductivity with carbon fiber to matrix conductivity ratio. 

It should be mentioned that, for polymeric composites, the fiber-to-matrix conductivity 

ratio is very high. (For example, for a carbon fiber/epoxy polymer matrix composite, σf 

/σm = 1e5). The transverse electrical conductivity of the composite in such cases changes 

appreciably only for large fiber volume fractions. Figure 3(b) shows that, for high σf /σm 

ratios, the contribution of the fiber conductivity only increases substantially for a fiber 

volume fraction greater than 80%. These fiber volume fractions are not practical and, in 

many cases, are physically impossible due to the geometry of fiber packing. 

 Figure 7.7, Figure 7.8, Figure 7.9 and Figure 7.10 Show that variation of axial 

conductivity of three phase model with different fiber and interphase volume fraction. In 

the axial direction, the rule of mixture formulation is used. This rule is linear in nature and 

the total conductivity depends on individual volume fraction and conductivity values. In 

the axial direction, carbon fiber conductivity is dominant over the others so axial 

conductivity is increased with increasing carbon fiber volume fraction and fiber to matrix 

conductivity. By comparing Figure 7.7, Figure 7.8, and Figure 7.9 it can be seen that there 

is very less significant effect on interphase conductivity and interphase volume fraction on 

total conductivity. 
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Figure 7.7 Axial Conductivity for three phase model with 
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Figure 7.8 Axial conductivity for three phase model with 
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Figure 7.9 Axial conductivity for three phase model with 
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Figure 7.10 Axial conductivity for three phase model with 
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Figure 7.11, Figure 7.12, Figure 7.13, and Figure 7.14 show the variation of transverse 

conductivity of three phase model with different fiber and interphase volume fraction. In 

transverse direction, there is no direct conduction path; hence the total conductivity values 

depend on all individual component. Volume fraction and conductivity of individual 

constituents has significant effect on transverse conductivity. Figure 7.11 shows the effect 

of fiber volume fraction and fiber conductivity on the transverse conductivity. Transverse 

conductivity increases with fiber conductivity and fiber volume fraction when fiber to 

matrix conductivity ratio is more than 1. By comparing Figure 7.11 and Figure 7.13 it can 

be seen that if the interphase to matrix conductivity ratio is low, then there is no significant 

change in transverse conductivity with interphase volume fraction. And by comparing 

Figure 7.11, Figure 7.12 and Figure 7.13, it can be said that transverse conductivity 

increases with increasing interphase conductivity and, if the volume fraction of interphase 

is increased, then the transverse conductivity value is also increased (Figure 7.14). The 

matrix and interphase conductivity can be increased easily by mixing conductive 

nanomaterials (carbon nanotube, carbon nanofiber, nickel or silver nanoparticle) with the 

matrix. Modification of interphase is important to enhance transverse conductivity and it 

may have a more significant role in nonlinear behavior. It should be noted that increasing 

volume fraction of interphase is not recommended because the mechanical strength may 

be compromised. Interphase region needs to be within certain limit for proper load transfer 

from fiber to matrix and to keep interfacial strength high.  
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Figure 7.11 Transverse conductivity for three phase composite model with 
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Figure 7.12 Transverse conductivity for three phase composite model with 
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Figure 7.13 Transverse conductivity for three phase composite model with 
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Figure 7.14 Transverse conductivity for three phase composite model with 
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CONCLUSION 

In this research work, we utilized broadband dielectric spectroscopy (BbDS) of different 

heterogeneous material systems to understand the relationship between the internal 

microstructural mechanisms in the material and the electrical properties. Experimental 

results show that electrical properties are indeed dependent on laminate design and fiber 

orientation in the laminate. Electrical effects are often coupled with the structural integrity 

and the thermal behavior due to “Joule heating” in the composite parts and in their joints. 

Thermal-electrical properties also depend on progressive increase in current intensity. 

Electrical current can cause significant damage in the dielectric matrix material while 

conducting through the fibers. Thus ultimately causes significant change in the electrical 

properties due to material state changes. 3D image of X-ray microscopy is used to visualize 

(down to 1 micron) such local material state changes. A finite element analysis on real 

micro-structure is carried out to understand the electrical-thermal coupling response on 

evolving material state. 

 Damage due to electrical load is much more complex than due to pure mechanical 

load because of the multi-physics coupling behavior. Electrical load is responsible for 

changing the material state which ultimately affects the electrical response and mechanical 

response. Materials under service may not perform as expected due to electric current 

loads. It has also been studied that synergistic mechanical and electrical loading cause 

material to respond faster than individual loading. Prior mechanical damage influence the 
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degradation due to electrical response; therefore a previously damaged composite loses its 

strength faster. It is important to understand how multi-physics properties (e.g. strength, 

impedance) depend on local details (e.g. micro-structure). This thesis has explored how 

electrical current is related to material architecture and damage development. Electrical/ 

mechanical properties measurements were carried out with different current intensity.  

Summary of major observations are:  

1) Electrical properties depend heavily on the available conduction path (fiber 

orientation) in the laminate and also laminate design. 

2) Increasing current intensity beyond a threshold value can induce irreversible 

damage in the laminate and such threshold value depends on the laminate 

architecture. 

3) Electrical effects are coupled with thermal behavior due to “Joule heating” and 

cause significant damage in composite ply.  

4) Electrical load is responsible only for changing the material state which ultimately 

affects the electrical response and mechanical response.  

5) Materials respond and degrade differently under synergistic electrical and 

mechanical loads  

6) 3D X-ray imaging validated the fact that Broadband dielectric spectroscopy can be 

used to calculate impedance and this represents the current state of the material.  

7) The material state depends heavily on coupled thermal-electrical effect and when 

the temperature distributions are compared to those of the electrical measurements 

and finite element analysis, they are in good agreement in locating the damage. 
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 A micromechanics model is developed to assess the impact of the fiber volume 

fraction and the electrical conductivity of fiber and matrix on the electrical conductivity of 

polymer composites. The micromechanics model is used to qualitatively identify the 

potential causes for how volume fraction changes in conductivity both in the axial direction 

and in the transverse direction. From the micromechanics model, it is observed that the 

axial conductivity of carbon fiber composite directly depend on fiber volume fraction and 

electrical conductivity. The transverse electrical conductivity of composite materials would 

changed significantly for fiber volume fraction greater than 80%, but this would be 

unrealistic. Transverse conductivity is matrix dominated and may have greater role in 

nonlinear behavior. Due to high fiber-to-matrix conductivity ratio, there is no significant 

improvement of conductivity in transverse direction compared to axial conductivity.  
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