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ABSTRACT

APPLICATION OF FINITE ELEMENT METHOD
IN PROTEIN NORMAL MODE ANALYSIS

FEBRUARY 2013

CHIUNG-FANG HSU

B.S.M.E., NATIONAL TAIWAN UNIVERSITY, TAIWAN

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Byung H. Kim

This study proposed a finite element procedure for protein normal mode analysis

(NMA). The finite element model adopted the protein solvent-excluded surface to

generate a homogeneous and isotropic volume. A simplified triangular approximation

of coarse molecular surface was generated from the original surface model by using

the Gaussian-based blurring technique. Similar to the widely adopted elastic network

model, the finite element model holds a major advantage over standard all-atom

normal mode analysis: the computationally expensive process of energy minimization

that may distort the initial protein structure has been eliminated. This modification

significantly increases the efficiency of normal mode analysis. In addition, the finite

element model successfully brings out the capability of normal mode analysis in low-

frequency/high collectivity molecular motion by capturing protein shape properties.

Fair results from six protein models in this study have fortified the capability of the

finite element model in protein normal mode analysis.
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CHAPTER 1

INTRODUCTION

1.1 Background

The pursuit of understanding protein structures and functional activities has long

been a critical concern in life sciences. It is well known that proteins are not static

objects with fixed configurations but are instead dynamic actors. In addition, protein

dynamics play a fundamental role in many diseases, and spans a wide timescale,

from picoseconds to milliseconds or even longer. To understand why and how the

proteins hold their functionally significant behavior, it is essential to review some

basic knowledge about proteins. Hereafter, we will present a review of the biological

relevance of protein structural informations.

1.1.1 Definition of Proteins

Proteins are fundamental biochemical compounds and are building blocks of most

living organisms. They are linear chains of amino acids (Figure1.1) linked by peptide

bonds. The genetic code specifies 22 standard amino acids, which underlie countless

linear combinations of proteins. In general, amino acid chains consist of more than two

and less than fifty units are called peptides. Amino acids which have been incorporated

into a peptide are termed residues, every peptide has a N-terminus and C-terminus

residue on the ends of the peptide. Amino acid chains in much greater sizes (e.g.

500 residues) are known as polypeptides. In other words, a protein is one or more

polypeptides with specific dimensional structure and assigned functions. Biochemists

often refer to four distinct aspects of a protein’s structure (Figure 1.2):
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Figure 1.1. (a) Amino acids, which usually refer to alpha-amino acids in biochem-
istry, are molecules containing an amine group (H2N–), a carboxylic acid group (–
COOH), and a side-chain (R) that is specific to each amino acide. The first carbon
that attaches to a functional group refers to the alpha-carbon (Cα) in organic chem-
istry. (b) Every peptide has a N-terminus residue and a C-terminus residue on the
ends of the peptide.
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• Primary structure: the amino acid sequence. (Figure 1.2(a))

• Secondary structure: regularly repeating local structures stabilized by hydrogen

bonds. The most common examples are the alpha helix, beta sheet and turns.

(Figure 1.2(b))

• Tertiary structure: the overall shape of a single protein molecule; the spatial

relationship of the secondary structures to one another. The term “tertiary

structure” is often used as synonymous with the term fold. The tertiary struc-

ture is what controls the basic function of the protein. (Figure 1.2(c))

• Quaternary structure: the structure formed by several protein molecules (i.e.

polypeptide chains) , which function as a single protein complex. (Figure 1.2(d))

In terms of the tertiary struture, each protein has its unique three-dimensional

structure which usually refers to “conformation”. A native conformation of a protein

is acquired in the first place by folding its lengthy peptide chains and forming into a

certain structure. This protein forming process is known as “folding”. In some cases,

a protein can have more than one native conformation.

1.1.2 Protein Folding and Conformational Change

Folding is a natural but delicate process that a protein undergo in order to achieve

its stable and unique conformation. In this regard, protein structures are confined

to a global energy minimum (or the aforementioned native state).[7] This process

takes place in a highly crowded, complex, molecular environment within the cell.

Many proteins can fold unassisted, simply through the chemical properties of their

amino acids, while others require the aid of molecular chaperones to fold into their

native states. Notably, folding accounts for the main structural difference between

proteins and other chain molecules; by folding, proteins achieve narrower distribution

of conformations comparing to disordered polymers.[7]
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(a) (b)

(c) (d)

Figure 1.2. Gregory A. Petsko, Dagmar Ringe, 2004 [54]; Levels of protein structure
illustrated by the catabolite activator protein: (a) The amino-acid sequence (primary
structure) contains all the information needed to specify (b) the regular repeating
patterns of hydrogen-bonded backbone conformations (secondary structure) such as
alpha helices (red) and beta sheets (blue), as well as (c) the way these elements pack
together to form the overall fold of the protein (tertiary structure) (protein PDB:
2CGP); (d) The relative arrangement of two or more individual polypeptide chains
is called quaternary structure (protein PDB: 1CGP).
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When a protein acquired its native conformations, it does not remain static; there

is a dynamic equilibrium which is induced by thermal fluctuation. The thermal fluctu-

ation of atoms that were originally viewed as random and stochastic events, actually

account for a local relaxation phenomena in nanoseconds regime.[7] They may fa-

cilitate, for instance, diffusion of oxygen into myoglobin[73] or permeation of ions

across ion channels.[63, 59, 58] Furthermore, these thermal fluctuations may also fa-

cilitate concerted domain movements or allosteric interactions.[26] In other words,

these atomic scale movements may intrinsically influence protein behavior in broad

length (i.e. angstroms to millimeters) and time (i.e. femtoseconds to milliseconds)

scales.(Figure 1.3) Moreover, numerous studies have indicated that those equilibrium

dynamics underlie the “collective motions”, which play important roles in protein

biological functions.[38, 55, 19] As a result, the conformation of a protein is usually

flexible and dynamic. A protein can change its conformations in response to changes

in its environment or other factors; the transition is called a conformational change.

Notably, the mechanisms behind folding and conformational change, both bio-

logically and mechanically, are considerably distinct. While protein folding results

solely from the arrangement of amino acid sequence, a conformational change may be

induced by many factors such as a change in temperature, pH, voltage, ion concentra-

tion, phosphorylation, or the binding of a ligand. However, to some degree, there is

an analogy between folding and conformational changes; amino acid sequence encodes

structure (i.e. folding) while structure encodes equilibrium dynamics (i.e. conforma-

tional change).[7]

In protein dynamics, conformational changes hold functional significance which

is the cause for this study. In general, functional movements involve collections of

either microstates or substates in a dynamic equilibrium. However, collective motions

which engage large substructures or even the entire structure, are dominant in overall

conformational changes. These collective motions are designated as global or essential
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modes.[7] They usually occur at the low frequency (i.e. long time scale) end of the

mode spectrum and engage large-scale structural rearrangements.[49] (see Figure 1.3)

1.2 Current Studies of Protein Collective Motions

Function-related collective motions have always been a major concern in protein

dynamics studies. In addition to many biophysical techniques, such as X-ray crystal-

lography, nuclear magnetic resonance (NMR), and electron paramagnetic resonance

(EPR) that are widely used to study macromolecular motions. Mathematical meth-

ods based on principal components analysis (PCA) have also been introduced to this

area. In the past two decades, a large number of studies based on PCA have provided

great contributions for understanding protein low-frequency and collective motions.

Normal mode analysis (NMA) of equilibrium structure [55, 19], essential dynamics

analysis (EDA) of the covariance matrices retrieved from MD runs [2], and singular

value decomposition (SVD) of Molecular Dynamic (MD) or Monte Carlo (MC) tra-

jectories [37, 27, 57] are all in the category of PCA-based methods; these methods

can provide better insights into protein motions by bridging with the PCA.

An efficient and predominant approach among the aforementioned methods, in

terms of increasing computational efficiency and decreasing modeling resolution, is the

normal mode analysis (NMA). Normal mode analysis assumes the system is stabilized

by harmonic potentials at its native state and provides information of equilibrium

modes by solving the system as a free vibration problem. Its application to proteins

can date back to the early 1980s.[53, 12, 67, 50] For the past decade, it has been widely

used for exploring protein functional motions. The major reason to its broader use

is the global modes unraveled by normal mode analysis bear functional significance.

This feature became even more evident with the use of simplified models in coarse-

grained normal mode analysis (CG NMA). A widely adopted CG NMA technique is
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Figure 1.3. Ivet Bahar et al., 2010 [7]; Equilibrium motions of proteins: An overview
of the broad range of equilibrium motions accessible under native state conditions,
ranging from bond length vibrations, of the order of femtoseconds, to coupled move-
ments of multimeric substructures, of the order of milliseconds or seconds. Collective
motions (i.e. global or essential modes) usually occur at the low frequency (i.e. long
time scale) end of the mode spectrum and engage large-scale structural rearrange-
ments.
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the elastic network (EN) model. It enables NMA computation for very large biological

molecules in a very short amount of time.[49]

1.3 Research Objective

In consequence of the success of normal mode analysis in protein functional mo-

tions, this study performs an analysis based on normal mode analysis for understand-

ing protein conformational changes. However, the protein models are solved by the

finite element (FE) method, which is a less common approach in protein dynamics.

The FE method is a relatively new technique in protein normal mode analysis. It was

first applied by Bathe et al. for solving protein and macromolecular assemblies based

on normal mode analysis.[9] This study aims to establish an analytic procedure of

FE-based normal mode analysis to provide an efficient and competent analysis option

for understanding protein conformational changes.
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CHAPTER 2

LITERATURE REVIEW

2.1 Normal Mode Analysis (NMA)

2.1.1 Introduction

Normal mode analysis (NMA) is a technique based on classical mechanics. It is

the study of motion patterns and dynamic response of a system (e.g. structures or

fluids) when excited by an input. A normal mode of a system is a pattern of concerted

motion that all parts of the system move sinusoidally with the same frequency. Under

the motion of a certain normal mode, the center of mass of the system does not move

and all parts pass through their equilibrium positions at the same time. Normal

modes are independent; they do not interact with each other. The frequencies of the

normal modes are known as natural frequencies or resonant frequencies. Any system

has a set of normal modes that depend on its structure and mechanical properties

(e.g. Young’s modulus, Poisson’s ratio).

In normal mode analysis, the modes of greatest fluctuation are those with the

lowest frequencies. In this regard, normal mode analysis is one of the major simula-

tion techniques used to probe low-frequency, large-scale, shape-changing motions in

biological molecules.[7, 69] In the harmonic approximation of a normal mode analy-

sis, the conformational energy surface at an energy minimum is approximated by a

parabola over the range of thermal fluctuations.(Figure 2.1(b))

Originally, the normal mode analysis requires three main steps of performance

in the Cartesian coordinate space: (1) minimization of the conformational potential

energy as a function of the atomic Cartesian coordinates; (2) the calculation of the so-
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(a) A simple harmonic oscillator. The behavior of a harmonic oscillar

is described as md2x
dt2 = −kx, where m is the mass, k is an elastic

constant and x is the displacement.

(b) Sen, T. Z. and Jernigan, R. L., 2006 [65]; A schematic one-dimentional
view of the potential energy surface of a protein showing two kinds of har-
monic approximations: an approximation to a local minimum, and an ap-
proximation to the smoothed-out potential well.

Figure 2.1. In the harmonic approximation of a normal mode analysis, a protein is
presumed as an assemblage of (a) harmonic oscillators, and (b) the conformational
energy surface at an energy minimum can be approximated by a parabola over the
range of thermal fluctuations.
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called Hessian matrix, which is the matrix of second derivatives of the potential energy

with respect to the atomic coordinates; and (3) the diagonalization of the Hessian

matrix. The final step yields eigenvalues and eigenvectors of the normal modes.

Usually, the first and final steps are the bottlenecks which led to the late revival of the

application of normal mode analysis. The energy minimization and diagonalization

are computationally demanding, both of CPU time and memory, especially while

the number of atoms increases. Normal mode analysis (NMA) that requires the

aforementioned manners is called standard NMA, to distinguish it from other coarse-

grained NMAs such as elastic network modeled NMA.

2.1.2 Theory

A standard NMA is usually performed in a vacuum, and the dynamics of system

is represented as a set of harmonic oscillators. Consider a system containing N

interaction sites (e.g. a molecule with N atoms). In Cartesian coordinates, the

potential energy function V , near the equilibrium conformation, can be expressed in

a Taylor series [7]:

V (q) =V (q0) +
∑
i

(
δV

δqi

)0

(qi − q0i )+

1

2

∑
i,j

(
δ2V

δqiδqj

)0

(qi − q0i )(qj − q0j ) + .... (2.1)

, where q0 is the equilibrium conformation. The first term is the minimum value of

the potential, which may be set to zero. The second term is identically zero at any

local minimum of the potential. If the expansion is terminated at the quadratic level,

the potential energy can be expressed as:
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V (q) =
1

2

∑
i,j

(
δ2V

δqiδqj

)0

(qi − q0i )(qj − q0j )

=
1

2

∑
i,j

(qi − q0i )Hij(qj − q0j ) =
1

2
∆qTH∆q (2.2)

, where H is the Hessian matrix obtained from the second derivatives of the potential

with respect to the components of q [7]:

Hij =

(
δ2V

δqiδqj

)0

(2.3)

The Hessian matrix H is an N ×N matrix of 3 × 3 submatrices, each describes the

energetic contribution from the interaction of two sites. Two important properties

of the Hessian are: (1) The H is real and symmetric and is therefore diagonalized

by an orthogonal transformation. If H is not symmetric, its eigenvectors would

not form an orthonormal basis over the full space of molecular motions and normal

mode analysis could not be performed. (2) None of the eigenvalues of H can be

negative if H is constructed at a local potential energy minimum. The sign of a

given eigenvalue indicates the local curvature of the potential along the corresponding

mode directional vector or eigenvector: Positive eigenvalues indicate local minima,

and negative eigenvalues indicate local maxima. The local potential energy landscape

for a system in a potential energy minimum will have only positive or zero curvature

in all directions. Eigenvalues that are identically zero indicate conformational changes

that have no effect on the systems (internal) potential energy. Typically, H has six

zero eigenvalues, corresponding to the rigid-body rotations and translations of the

whole molecule, which yield to 3N − 6 internal degrees of freedom (i.e. 3N − 6 sets

of valid solutions).

Given the potential of the system, the total energy of the system can be described

by the Hamiltonian as [49]:
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K(q) + V (q) =
1

2

∑
i

mi
dq2i
dt

+
1

2

∑
i,j

(
δ2V

δqiδqj

)0

(qi − q0i )(qj − q0j )

=
1

2

∑
i

mi
dq2i
dt

+
1

2
∆qTH∆q (2.4)

, where K(q) represents the kinetic energy, and mi represents the mass of the atom

i. Another commonly used equation for describing the mechanical behavior of the

system is the equation of motion which can be written as [7]:

M
d2∆q

dt2
+ H∆q = 0 (2.5)

, where M represents a diagonal matrix containing the masses of the atoms. Both

equations lead to same solutions of eigenvalues and eigenvectors. Usually, the Hessian

matrix is solved by transforming the system coordinates into mass-weighted coordi-

nates, Xi =
√
mi(qi − q0i ) =

√
mi∆qi. As a result, Eq.2.4 can be rewritten as:

K(X) + V (X) =
1

2

∑
i

dX2
i

dt
+

1

2

∑
i,j

(
δ2V

δXiδXj

)0

XiXj

=
1

2

∑
i

dX2
i

dt
+

1

2
XT H̃X (2.6)

, where the mass-weighted Hessian can be acquired from the above equation [49]:

H̃ij =
δ2V

δXiδXj

(2.7)

The diagonalization of mass-weighted Hessian yields to a generalized eigenvalue equa-

tion:

H̃uk = λkuk

= ω2
kuk (2.8)
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, where uk and λk are the kth eigenvector and eignvalue respectively, and ωk represents

the frequency of the mode of motion. The solutions are normally sorted in ascending

order of the eigenvalue, providing the eigenvector matrix U = (u1,u2, ...,u3N−6)

and eigenvalue matrix Λ = diag(λ1, λ2, ..., λ3N−6). Again, it is noted that among

the total of N normal modes, only 3N − 6 of them are meaningful; the first six

normal modes have eigenvalues equal to 0 and correspond to rigid-body translations

and rotations of the whole system. Consequently, the dynamics of the system can

be described as a linear combination of “independent” normal mode oscillators; the

atomic displacements can be expressed as the sum of normal mode contributions [20]:

Xi =
√
mi∆qi =

∑
k

ukiQk (2.9)

, where Qk is the kth normal mode coordinates. Note that the sum is over all normal

modes at site i, and
∑

k uki = 1. In other words, in normal mode coordinates, the

kth normal mode variable, Qk, oscillate with the frequency ωk in a set of directions

given by the eigenvector, uk. The orginal Cartesian coordiantes is therefore derived

as:

∆qi =
1
√
mi

∑
k

ukiQk (2.10)

Figure 2.2 shows an example of the resulting normal modes obtained for a small model

such as a water molecule. Normal mode analysis reveals three well known motions of

the water molecule, i.e. bending mode, symmetric stretching mode and asymmetric

stretching mode.

Furthermore, according to equipartition theorem of a thermal equilibrium system,

the vibrational energy is equally partitioned among all the modes [6]. That is, the

average potential of each mode is equal to kBT/2, where T is the absolute temperature
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(a) A molecular model of H2O

(b) Symmetric stretching (c) Bending (d) Asymmetric stretching

Figure 2.2. Three well known normal mode motions of the water molecule (H2O):
(b) symmetric stretching, (c) bending and (d) asymmetric stretching. These three
motion patterns are also often found in molecules of various sizes.
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and kB is the Boltzmann constant. To this end, the potential energy of the kth mode

is 1
2
ω2
k 〈Q2〉 = 1

2
kBT , which yields the following relation:

〈
Q2
〉

=
kBT

ω2
k

(2.11)

, where 〈Q2〉 denotes the average value of Q2. This implies that the average amplitude

of oscillation along mode k scales with 1/ω2
k. Thus, the molecule experiences the

greatest displacement along the lowest frequency modes (i.e. the “slowest” modes).

2.2 Elastic Network Model in Protein NMA

2.2.1 Introduction

One of the major differences between the elastic network normal mode analysis

(EN NMA) and the standard NMA is the energy minimization. As elucidated pre-

viously, a standard NMA requires energy minimization prior to performing NMA, to

ensure that the first derivative of the total potential is zero with respect to all degrees

of freedom and to evaluate the second derivatives (i.e. Hessian matrix). However,

energy minimization is computationally expensive and generally distorts the initial

conformation. As a result, normal mode analysis is usually performed on a structure

altered from the original. These drawbacks aroused a surge of studies in coarse-

grained NMAs, including the EN NMA.[55, 19] The term coarse-grained refers to the

simplification of models in which numbers of atoms are greatly cut down. This signifi-

cantly decreases the size of the Hessian matrix while evaluating solutions. Besides, no

energy minimization is required prior to the EN NMA since the initial conformation,

taken directly from the crystallography structure, is assumed to be an energy mini-

mum. These features enable the elastic network model to analyze large biomolecular

complexes and assemblies with competent efficiency.

Another motivation of the application of elastic network normal mode analysis

(EN NMA) is the robustness of protein global motions. As mentioned in the previ-
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ous chapter, low-frequency global motions usually hold functional significance. These

global motions are found to be favored by the overall architecture despite of detailed

structural and energetic changes.[21, 52, 74] More specifically, the property that dom-

inates the global modes is the network of inter-residue contacts, which is a purely

geometric quality defined by the overall shape or native contact topology. To this

end, the EN NMA, which simplifies the model without distorting its overall shape,

can greatly enhance computational efficiency and still, conserve the essence of global

movements. Indeed, in recent years, the EN-based NMAs have contributed greatly

to improve the understanding of collective/global dynamics in membrane proteins.

Two commonly used elastic network (EN) models are the Gaussian network model

(GNM) [22, 23] and the anisotropic network model (ANM) [5, 24, 15]. In both

models, the structure is represented as a network of nodes, i.e. α-carbons (Cα), and

elastic springs (Figure 2.3). The springs connect the α-carbon pairs that lie within

a pre-specified cutoff distance, RC , in the native structure. The EN model then

approximates the potential energy as that of a classical network of masses coupled

by springs. The main difference between GNM and ANM is that the former uses

an N × N Kirchhoff matrix, as opposed to the 3N × 3N Hessian in ANM. As a

consequence, the ANM became the most broadly used EN model since no information

on the three-dimensional direction of motions can be obtained by the GNM. Herein,

we only consider the ANM, and any latter discussions of EN model will only refer to

the ANM.

2.2.2 Theory

In the case of elastic network model (i.e. ANM), the Hessian is derived from the

following potential energy function [7]:

V =
1

2

∑
|R0

ij |<RC

γij(Rij −R0
ij)

2 (2.12)
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Figure 2.3. Moon K Kim et al., 2002 [41]; A representation of protein structure as
an elastic network. The backbone trace (i.e. trace of α-carbons) is shown dark lines.
The grey lines represent the spring connections between α-carbons within a specific
cutoff distance RC .

, where Rij is the distance between atoms i and j and R0
ij is the distance between

the atoms in the original crystallographic structure. The summation here is only

performed over atoms within the cut-off distance Rc. The force constant, γij, of the

spring represents chemical bond or atomic force between atoms i and j. In most

applications, γij is taken as a constant, γ, for all pairs of residues connected in the

network.[71] However, some studies adopted varying force constants: Hinsen pro-

posed using a force constant that decays rapidly with distance [34]; Sen and Jernigan

demonstrated how the force constants vary with the residue coordination numbers

[65]; the adoption of stiffer springs for sequentially neighboring residues [44] or amino

acid-specific force constants [31, 45] has been shown to improve the agreement with

experiments.

Nonetheless, the choice of the specific spring constants has little effect on the

global modes. Since the global modes are mostly dominated by intrinsic properties of
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the shape of a protein, they have been confirmed in several studies to be insensitive

to model parameters.[21, 52, 74] Additionally, the absolute value of spring constant

for a given level representation does not affect the mode shapes (i.e. the eigenvectors

of H) but their frequencies, since the eigenvalues, λk, are proportional to γ. Likewise,

the global modes are insensitive to the adoption of residue-specific force constants.

Therefore, In this study, the force constant is set as unity for all interactions. Once

Eq.2.12 has been calculated, the procedure is the same as for the standard NMA;

the Hessian is calculated and its eigenvalues and eigenvectors are determined. As

mentioned, the elastic network model is carried out on a subset of atoms, which are

usually the α-carbons, Cα, instead of all atoms in the protein. This would result in

a Hessian approximately tenfold lower in order compared with the standard NMA.

The computational cost for calculating the eigenvalues and eigenvectors is, therefore,

reduced considerably.

2.3 Finite Element Model in Protein NMA

2.3.1 Introduction

The finite element (FE) method is a powerful numerical technique which was de-

veloped for solving complex problems in structural mechanics. Its origin can be traced

back to the matrix analysis of structures where the concept of displacement or stiff-

ness matrix approach was introduced.[72] It is common to apply the FE method for

modal analysis (i.e. normal mode analysis), since the object being analyzed can have

arbitrary shape and the results of the calculations are acceptable. In the FE method,

the structural system is modeled by a set of appropriate finite elements (whether

one-, two-, or three-dimensional) interconnected to each other. These elements are

generated by “meshing”, which is a technique that discretize a continuous domain(i.e.

whole system) into a set of discrete sub-domains. Elements may have physical prop-

erties such as thickness, coefficient of thermal expansion, density, Young’s modulus,
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shear modulus and Poisson’s ratio. Three-dimensional elements are used for model-

ing 3D solids such as machine components, dams, soil masses or ,most specially in

this study, proteins. Common three-dimensional element shapes include tetrahedrals

and hexahedrals. (Nodes to be concerned in solution are placed at the vertexes of

elements and possibly in the element faces or within the element.) In the early ap-

plications of the FE method, molecular shapes of proteins and their assemblies were

assumed a priori, i.e. molecules are typically modeled as regular geometric objects

such as cylinders, spheres, and sheets.[47, 70] However, while the meshing technique

has been improved, molecules are modeled according to their intrinsically irregular

shape.[9, 40]

Similar to elastic network models, the proposed finite element based procedure

offers several distinct advantages over standard NMA. Firstly, the costly energy mini-

mization that may distort the initial protein structure is eliminated. Secondly, it pro-

vides direct applicability to X-ray data of proteins with unknown atomic structure.[48,

68] Thirdly, the FE method is suitable to calculate the mechanical response of pro-

teins and their supramolecular assemblies to applied bending, buckling, and other

generalized loading scenarios.[47, 36, 42, 51, 16, 66, 35, 70] Nonetheless, a great fea-

ture that facilitates the applicability of FE method is the robustness of protein global

motion. As emphasized previously, global modes are widely recognized to be intrinsic

properties of the shape of the protein and are insensitive to minor perturbation of pa-

rameters. Since the protein structures in FE model is isotropic and shape/structure

sensitive, it favors the intrinsic properties of global modes.

Indeed, the FE method has achieved considerable success in the computational

modeling of tissue and cell mechanics.[39] Moreover, in the cases of further applica-

tion, the FE-based protein model may be coupled directly to field calculations in-

cluding the Poisson-Boltzmann equation to model aqueous electrolyte-mediated elec-
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trostatic interactions [33, 29] and the Stokes equations to model solvent damping

[14, 18, 60].

2.3.2 Theory

In the finit element (FE) model, given the protein volume, constitutive behavior,

and boundary conditions, a set of equations of motion can be derived as follows [28]:

M
d2∆q

dt2
+ K∆q = r (2.13)

, where ∆q is the finite element nodal displacement degrees of freedom, M is the

diagonal mass-matrix, K is the elastic stiffness matrix, and r is a force vector that

results from boundary conditions. In the case of the free vibration problem,i.e. r = 0,

Eq.2.13 is basically the same as Eq.2.5. Substitution of the oscillatory solution:

∆qk = ukcos(ωkt+φ), into the free vibration form of Eq.2.13 results in the generalized

eigenvalue problem:

Kuk = λkMuk (2.14)

, where λk is the eigenvalue and λk = ω2
k. The solutions to the problem, similar

to the EN model, will yield pairs of eigenvalues and eigenvectors, i.e. (λk ,uk). The

corresponding solutions to the α-carbons can be derived by mapping the finit element

nodal degrees of freedom onto the original atomic coordinates.

While the FE model is conceptually similar to elastic network based models, there

is a great distinction: The EN models typically connect Cα atoms by springs of equal

stiffness, which results in a locally anisotropic and inhomogeneous elastic material

with length-scale dependent mechanical properties. In contrast, the FE model treats

the protein as a homogeneous continuum solid with an isotropic elastic material re-

sponse.
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Hereafter, we will focus on the application of FE method to the computation of

protein normal modes and readers are referred to the references [8, 75] for compre-

hensive details on its theoretical foundations.
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CHAPTER 3

METHODOLOGY

To generate the finite element model, three steps are required: (1) definition

and discretization of the protein volume; (2) definition of constitutive behavior and

the mass density of the protein; and (3) application of boundary conditions such as

loading.

Regarding the first step, the protein volume is defined by its bounding solvent-

excluded surface, which is also called the Richards molecular surface or simply the

molecular surface. This surface is defined by the closest point of contact of a solvent-

sized probe-sphere that is rolled over the van der Waals surface of the protein. The

molecular volume defined by the solvent-excluded surface is never penetrated by any

part of the solvent probe-sphere.[30, 17] Herein, the solvent-excluded surface is com-

puted by using MSMS 2.6.1 [61], a computational software package which gener-

ates triangulated approximation to the solvent-excluded surface. The protein volume

bound by the closed solvent-excluded surface is then generated and discretized for fur-

ther analysis by using proper finite element programs or software. The finite element

software used here is ANSYS® 13.0.[1]

Secondly, the protein constitutive response is modeled using the standard Hooke’s

Law, which treats the protein as a homogeneous, isotropic, elastic continuum with

Youngs modulus E and Poisson ratio ν.[28] As pointed out in previous chapter, while

the finite element (FE) model is conceptually similar to the elastic network (EN)

model, a great distinction still exists. The EN model connects α-carbon atoms by

springs of equal stiffness, which results in a locally anisotropic and inhomogeneous
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elastic material with length-scale dependent mechanical properties. In contrast, the

FE model defined here treats the protein as homogeneous material, with an isotropic

elastic response that is length-scale invariant.

Finally, in the third step, arbitrary boundary conditions that consist of displace-

ment or force based loading may be applied to the molecule, modeling after the effects

of the protein environment. In this application, all proteins are solved as free vibration

problems in the absence of any boundary condition.

The following diagram (Figure 3.1) shows the comprehensive procedure of this

finite element based normal mode analysis. While the three steps mentioned before

are rather conceptual, this flow chart demonstrates the actual course for accomplish-

ing the application. A detailed explanation of each step is presented in the following

sections.

3.1 Protein Data Acquiring

This study targets six proteins, as shown in Table 3.1 in ascending order of size,

with their two end conformational PDB codes.

Table 3.1. List of targeted proteins; the two pdb codes of each protein represent its
“open” and “closed” conformations respectively.

Protein Name Residue Numbers PDB Codes
HIV-1 protease 99 1HHP, 1AJX
Che Y protein 128 3CHY, 1CHN
LAO binding protein 238 2LAO, 1LST
Maltodextrin binding protein 370 1OMP, 1ANF
Enolase 436 3ENL, 7ENL
Lactoferrin 691 1LFH, 1LFG

Each PDB code stands for a specific conformation of a protein, which is held

in a Protein Data Bank (.pdb) file. The pdb file format is a textual file format

describing the three dimensional structures of molecules held in Protein Data Bank
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Figure 3.1. A schematic illustration of the finite element analysis procedure. The
aforementioned three steps are rather conceptual and are presented by blue arrow
text boxes. The rectangle boxes represent the actual course for accomplishing the
analysis precedure. A detailed explanation of each step is presented in the following
sections.
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[11]. The pdb format contains description and annotation of protein and nucleic

acid structures including atomic coordinates, observed sidechain rotamers, secondary

structure assignments, as well as atomic connectivity.

The two PDB codes of each protein corresponds to its “open” (left) and “closed”

(right) conformation structures respectively . As pointed out by F. Tama et al. [69],

normal mode analysis performs better with open conformations which usually have a

less compact shape with dispersed domains. Therefore, only “open” conformers are

implemented in the normal mode analysis process within this study. The “closed”

conformers are studied only in post-processing, along with “open” conformers, as

experimental data.

A number of Molecular viewers are now available online for users to visualize

protein structures and perform further computations with pdb files. The Python

Molecular Viewer (PMV) 1.5.4 is preferably adopted in this work regarding its ex-

tensive computational package, including the MSMS mentioned before. Application

details of this software are provided in the following section.

3.2 Protein Solvent-excluded Surface Computation

Given structural data from Protein Data Bank, the protein model is ready for

generation. As mentioned, a protein’s volume is defined by its bounding solvent-

excluded surface. The solvent-excluded surface, also known as the molecular surface,

is defined by the closest point of contact of a solvent-sized probe-sphere that is rolled

over the van der Waals surface of the protein, which defines the molecular volume

that is never penetrated by any part of the solvent probe-sphere. This solvent probe-

sphere represents the solvent molecule, which is usually set as a water molecule with

a radius of 1.5 Å. (Figure 3.2)
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Figure 3.2. Michel F. Sanner et al., 1996 [61]; 2D illustration of the concept of
solvent-excluded surface (SES); the SES, shown by black solid line, is defined by
rolling a solvent-sized probe-sphere over the van der Waals surface of the protein.

27



3.2.1 MSMS/Fine Molecular Surface

As mentioned, the MSMS is adopted here to compute protein solvent-excluded

surface. Redundant molecules such as water, ions etc., are removed prior to protein

surface calculation. The MSMS generates a high density triangulated approximation

(one triangular vertex per Å2) to the exact solvent-excluded surface. (Figure 3.3)

Figure 3.3. Michel F. Sanner et al., 1996 [61]; 3D illustration of the solvent-excluded
surface probe-sphere; an adequate probe-sphere radius is usually set as 1.5 Å, repre-
senting the size of a water molecule.

It is noted that the radius of the probe-sphere should not be too small nor too

large. Too small of a radius will results in surface points that are too dense, while a

radius that is too large will cause separate parts to connect (Figure 3.4). An adequate
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probe-sphere radius is usually set as 1.5 Å. Therefore, a default radius (i.e. 1.5 Å) is

used here for all proteins except HIV-1 protease, and a smaller radius (i.e. 1.0 Å) is

used for HIV-1 protease to avoid the connection in Figure 3.4.

Figure 3.4. Too large of a probe-sphere radius will cause separate parts to connect.
The demonstrated protein is HIV-1 protease. (Image rendered by PMV 1.5.4)

3.2.2 Coarse Molecular Surface

In comparison to the MSMS computation, a more efficient way to generate the pro-

tein volume is through computing a coarser molecular surface which can also be done

in PMV. This calculation is done by using the Gaussian-based blurring technique.[62]

In this computation process, selected atoms are first blurred as gaussians into a grid.

The grid is then isocontoured at a user specific value and an indexed polygon geom-

etry is added to the viewer. Similar to MSMS computation, the Gaussian blurring

approach yields surface approximation comprising of triangulated areas. The result-
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ing surface is a decimated version of the original surface and the number of faces are

greatly reduced by user definition.

3.2.3 Surface Data Processing

The molecular surfaces derived from the above methods are saved as files compris-

ing of information on vertices and triangles, and used for volume generation. However,

these surfaces require improvement because they often contain duplicated vertices or

residual areas due to triangle degeneration resulting from computation. This will lead

to failure of volume generation in the following process. In some cases, the problem

is solved easily by removing all duplicated points prior to generating the volume. On

the other hand, some cases need a more involved process to acquire clean surface

models. Figure 3.6 shows the concept of finding a closed molecular surface.

3.3 Model Generation and Meshing

3.3.1 Mesh elements

Once a surface model is generated, it can be imported into the finite element

software ANSYS to define a protein volume. The protein volume that is bounded by

the closed solvent-excluded surface is subsequently discretized with three-dimensional

tetrahedral elements via automatic mesh generation using built-in mesher in ANSYS.

The mesh element used here for finite element analysis is SOLID 185 (Figure

3.7) [4], which is a 8-node structural solid in ANSYS element library. This three-

dimensional element has three degrees of freedom at each node: translations in the

nodal x, y, and z directions. It allows for prism and tetrahedral degenerations when

used in irregular regions which is suitable for protein models regarding their irregular

shapes. Additionally, in the case of a protein model, the adoption of this element

results in better efficiency in comparison with the more commonly used tetrahedral

element SOLID 187. In contradiction to SOLID 187, the SOLID 185 element does not
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(a) LAO binding protein 3D structure.

(b) MSMS molecular surface

(c) Coarsen molecular surface

Figure 3.5. (a) 3D structure of the LAO binding protein; (b) a triangular approxi-
mation of the molecular surface; (c) a coarser molecular surface is calculated by using
the Gaussian-based blurring technique.
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Figure 3.6. Illustration of finding a closed surface; the main concept is to extend
the surface in a hierarchical manner. On a closed surface, every edge/side is shared
by two areas. Therefore, given randomly a known side (i.e. the red line), there are
two adjacent triangles found (i.e. triangles with blue lines). To each of these known
triangles, there are also two other triangles adjacent to it (i.e. triangles with gray
solid lines). Accordingly, the search process will continue until no more new triangles
are found (e.g. yellow lines indicate a halt when two known triangles meet).
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contain mid-side nodes which significantly reduce the time for meshing and solving

when the model is complex or large.

Figure 3.7. Illustration of the mesh element SOLID 185.[4] This eight-node element
allows for prism and tetrahedral degenerations when used in irregular regions which
is suitable for protein models regarding their irregular shapes.

3.3.2 Density and Constitutive Behavior

3.3.2.1 Density

The mass density of the protein is taken to be homogeneous. A simple molecular-

weight-depending function proposed by Fischer et al.[25] is provided below for accu-

rate estimation of the average protein density:

ρ(M) =

[
1.410 + 0.145 · exp

(
−M(kDa)

13

)]
g/cm3

, where ρ is the mass density of a protein and M is the weight of a protein measured

in kDa. Given protein weight information from Protein Data Bank, density of each

protein is derived and listed in Table 3.2.
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Table 3.2. List of protein weight and mass density.

Protein Weight (kDa) density (g/cm3)
HIV-1 protease 10.80 1.4739
Che Y protein 13.97 1.4602
LAO binding protein 26.03 1.4302
Maltodextrin binding protein 40.71 1.4169
Enolase 46.63 1.4146
Lactoferrin 76.14 1.4110

3.3.2.2 Young’s Modulus

The effective Youngs modulus is generally unknown for proteins, however, it is

determined sometimes by matching protein stretching stiffness to an experiment, as

has been performed by Tirion et al.[10, 43] In other cases, Young’s modulus can

be obtained by fitting thermal fluctuations of α-carbon atoms in the FE model to

those obtained using either the all-atom NMA or the RTB procedure, which gener-

ally ranges from 2 to 5 GPa.[9, 64] Herein, all cases are computed using a Youngs

modulus of 2 GPa, representing an approximate lower bound on protein stiffness.[9]

Nonetheless, since the precise value of the Youngs modulus affects the magnitude of

thermal fluctuations linearly, the precision of Young’s modulus will not affect much

in the FE model. Furthermore, the results from the EN model are actually ”scaled”

values due to assumption of unity stiffness. After all, it is the ”relative” fluctuation

that is concerning therefore all results from both models will be scaled for comparison

in post-processing.

3.3.2.3 Poisson’s Ratio

Studies have indicated that it is most appropriate to model the protein interior

as crystalline.[3] Therefore, the Poisson’s ratio is said to be 0.3 , which is typical for

crystalline solids, for all cases in this study. In addition, Bathe et al.[9] have found

that the precise value of Poisson’ ratio does not affect the computation results within
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the range of 0.3∼0.5. The material compressibility does not play an important role

in normal mode analysis.

3.4 Normal Mode Analysis

Similar to the coarse-grained elastic network model, the initial structure of the

finite element (FE) model extracted from the pdb file is assumed to be the ground-

state structure. In other words, the FE model is presumed to be at its minimal energy

state, and no energy minimization is performed prior to the FE-based NMA.

As pointed out previously, all cases here are solved as free vibration problems in

the absence of any boundary condition. The solution method used here is the PCG

Lanczos method.[32] The PCG Lanczos method internally uses the Lanczos algorithm

[56], combined with the PCG iterative solver. This method will be significantly

faster when working with large models that are dominated by three-dimensional solid

elements. Moreover, it works well when only if a few of the lowest modes are requested.

These features fit the method to protein model since only low-frequency/dominant

modes are interested in protein normal mode analysis.

3.5 Post-Processing

In post-processing, normal mode solutions of α-carbons are obtained by map-

ping the original atomic coordinates onto the FE model; modal displacements (i.e.

eigenvectors) and frequencies (i.e. eigenvalues) of every α-carbon are retrieved at its

corresponding nodal degrees of freedom. Given normal mode solutions, the following

quantities of interest are commonly adopted for analysing the results and provid-

ing better understanding. In order to assess the applicability of the FE model, the

aforementioned quantities will be discussed along with those from the EN model.
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3.5.1 Relative Displacement

For the sake of comparison, modal displacements of α-carbons, from both FE

model and EN model, will be scaled to proper magnitude. Usually, each α-carbon is

represented by its corresponding residue index/number. This will be seen in figures

from the latter chapter.

3.5.2 Overlap and Cumulative Overlap

Overlap, Ik, is a measure of the similarity between the direction of the conforma-

tional change and the one given by normal mode k [46]:

Ik =
∆qAB · uk

∆qAB
(3.1)

, where uk is the normalized directional vector, and ∆qAB = qB − qA represents

the actual displacements between two conformations. A value of unity for the overlap

means that the direction given by the normal mode k is identical to ∆qAB. Moreover,

the potential contribution of every normal mode to the transition may be deduced

from the cumulative overlap, Qk [46]:

Qk =

[∑
k

I2k

]1/2
(3.2)

, where the summation is performed over the subset of modes of interest. Note

that the summation is identically equal to unity if it is performed over all 3N − 6

modes/eigenvectors, which form a complete orthonormal basis set for the 3N − 6

dimensional space of conformational changes.

3.5.3 Degree of Collectivity

The degree of collectivity, κk, is a measure which implies how collective a concerted

motion (e.g. conformational change) is [13]:
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κk =
1

N
exp

[
−

N∑
i=1

α(∆Ri)
2

∣∣∣∣
k

log(α∆Ri)
2

∣∣∣∣
k

]
(3.3)

, ∆Ri is the displacement/fluctuation of residue i, and α is a normalized constant

chosen so that
∑

i(∆Ri)
2|k = 1. This quantity reflects the number of atoms that are

affected during the conformational change. In addition, it has entropic significance

that the mode with the highest degree of collectivity has the hightest entropy. In other

words, the mode with higher κ value is distributed over a larger number of residues

rather than being orderly confined to a few residues. It is of interest to identify the

most collective modes since they are intrinsically favored by the functional movements.

3.5.4 B-factor

The B-factor or Boltzmann factor (also known as temperature-factor or Debye-

Waller factor) of protein crystal structures reflects the fluctuation of atoms above

their average positions. The B-factor is given by [49]:

Bi =
8π2

3

〈
(qi − q0i )2

〉
(3.4)

, where q0i is the coordinates of residue i at its native/equilibrium conformation.

Comparisons of B-factors derived from the normal mode results and experimentally

measured B-factors give an indication on differences in protein flexibility between the

free protein and the protein in a crystallographic environment.
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CHAPTER 4

RESULTS AND DISCUSSION

Herein, the finite element based normal mode analysis results are discussed mainly

in three aspects: (1) relative displacement of low-frequency modes; (2) overlaps of the

first twenty modes with respect to experimental data; and (3) quality of the cumulative

overlaps. As shown in Table 4.1, the first three proteins, sorted in ascending order,

are analyzed with both fine (MSMS) and coarse molecular surface for comparison.

The remaining three proteins are analyzed with coarse surface solely for the sake of

efficiency. Results from the two surface models are presented separately followed by

an overall discussion.

Table 4.1. List of targeted proteins with different surface models; figures in paren-
theses are the numbers of residues.

Targeted Protein
Fine Molecular Surface HIV-1 protease (99), Che Y protein (128),
(MSMS) LAO binding protein (238)
Coarse Molecular Surface HIV-1 protease (99), Che Y protein (128),

LAO binding protein (238), Maltodextrin binding
protein (370), Enolase (436), Lactoferrin (691)

4.1 MSMS/Fine Molecular Surface

4.1.1 HIV-1 Protease

As indicated in the previous chapter, the finite element (FE) model is defined

directly from the atomic structure without initial energy minimization. That is,
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the atomic structure extracted from HIV-1 protease PDB file is presumed energy-

minimized, which is consistent with the elastic network (EN) model.

In post-processing, α-carbon coordinates are mapped onto the FE model to re-

trieve corresponding relative displacements of each α-carbon/residue; displacements

of residue are usually represented by displacements of α-carbons in convention. Fig-

ure 4.1 is the comparison of relative displacements of the first eight modes between

the FE and the EN models. Correspondence between the FE model and the EN

model is quite satisfying regarding two end sections (residue 1 to 15 and 85 to 99)

and the middle section (residue 45 to 60) of the protein chain. Furthermore, the

forementioned three sections all have high relative displacements except in the first

mode. This feature can be self-explaining while we look at the residue displacements

extracted from two end conformations (Figure 4.2). Indeed, the middle section and

two end sections of the protein chain undergo relatively high positional changes. This

similarity of relative displacement corresponds well to the theory that low frequency

modes are dominant modes, which hold significant character of the conformational

change. In this case, the FE model works as well as the EN model for capturing the

dominant modes movements.

Figure 4.3 shows scaled B-factors from the FE results and experimental data.

Data from the FE model differs greatly from the experiment since those B-factors are

derived from only twenty modes. However, the B-factors successfully reveal flexibility

of residues who play predominant roles in conformational change; both the B-factors

from the FE model (Figure 4.3) and α-carbon displacements (Figure 4.2) have peaks

around three crucial sections.

Furthermore, Figure 4.4 provides a rather vivid demonstration of this feature.

Residues in the three forementioned regions, which perform large displacement during

conformational change, are colored in blue, red, and green respectively. These regions

are located exactly on the protruded parts of the protein, which implies that the FE
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Figure 4.1. HIV-1 protease: Comparisons of the relative displacements for the lowest
eight normal modes. (FE model - thick red line; EN model - blue line) The residue
index represents the number of alpha-carbons. Correspondence between the FE model
and the EN model is quite satisfying regarding two end sections (residue index 1 to
15 and 85 to 99) and the middle sections (residue index 45 to 60) of the charts.
Furthermore, the forementioned three sections all have high relative displacements
except in the first mode. Indeed, these three sections of the protein chain all undergo
relatively high positional changes according to the experimental data.
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Figure 4.2. HIV-1 protease: α-carbon/residue displacements between two end con-
formations, i.e. ”open” conformation to ”closed” conformation. The middle section
and two end sections of the protein chain undergo relatively high positional changes.
This corresponds well to the results shown in Figure 4.1. These three sections will
later be proven significant regarding the property of the protein shape. (Figure 4.4)

Figure 4.3. HIV-1 protease: B-factors from FE results and experimental data.
(FE model - thick red line; experiment - blue line) Data from the FE model differs
greatly from the experiment since those B-factors are derived from only twenty modes.
However, the B-factors successfully reveal flexibility of residues who play predominant
roles in conformational change; both the B-factors from the FE model and α-carbon
displacements (Figure 4.2) have peaks around three crucial sections.
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Figure 4.4. HIV-1 protease 3D surface model: Residue 1 to 10 (blue) , 45 to 60(red)
and 85 to 99(green). These regions located exactly on the protruded parts of the
protein which imply that FE model performs well by capturing the property of the
molecular shape.(Image rendered with PMV 1.5.4)
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model performs well by capturing the property of the molecular shape. Again, this

confirms the importance of protein shape to its conformational change.

Overlaps and cumulative overlaps of the first twenty modes, with respect to ex-

perimental data, are shown in the following bar charts (Figure 4.5)1. Although two

bar charts of overlaps seem quite different at first glance, they both acquired high

overlaps within the first few modes. Furthermore, cumulative overlaps in both charts

reached a plateau at approximately the fifth mode. The maximum overlaps of the FE

model and the EN model occurred at the second and the third mode, respectively.

Figure 4.6 shows the comparison of residual displacements between the FE model

and the EN model, regarding normal modes that hold the maximum overlaps. Pre-

dictably, two sets of data are similar even though they are retrieved from different

modes. In addition, Figure 4.6(b) shows the comparison of residual displacements

between the FE model and experimental data which also yields good correspondency.

According Tama et al., it is often found that a single normal mode can carry a lot of

information.[69] Moreover, this single mode is very often found within the first four

modes. At this point, the second mode from the FE model is not only one of the

dominant modes but also that very single mode bearing most of the conformational

change.

1Before reviewing the charts, it is noted that the value of cumulative overlap should never exceed
100% (Figure 4.5(a) bottom). The summation of overlaps over 3N − 6 modes should be unity. The
reason that the cumulative overlap of HIV-protease went beyond reasonable value can be attributed
to the underlying distinction between FE model and EN model. In EN model, the number of con-
cerned components is determined by the number of residues, which means a molecule with N residues
(i.e. N components) yields in 3N − 6 degrees of freedom and 3N − 6 normal modes. These numbers
are predetermined and fixed for a molecule. On the contrary, the number of components/nodes in a
FE model is determined by mesh since the molecule is deemed as a homogenous solid. For instance,
the FE model of HIV-1 Protease has 11, 951 nodes, thus, there should be 3 ∗ 11, 951 − 6 = 35, 847
normal modes. However, herein, only the 99 residues are considered in the post-processing step.
In other words, a 11, 951-node model is now replaced by a 99-node model, although these 99 nodes
are crucial and representative. Therefore, a large portion of the overlap value from all nodes is
missed and replaced with that from only 99-nodes due to simplification, and result in ”seemingly
unreasonable” values of cumulative overlap. However, considering all nodal results in the FE model
is undoubtedly inefficient and unnecessary. As long as one bear in mind this very distinction of FE
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(a) FE model : overlap and cumulative overlap

(b) EN model : overlap and cumulative overlap

Figure 4.5. HIV-1 protease: Values of overlap and cumulative overlap from (a) the
FE model and (b) the EN mode. Although two bar charts of overlaps seem quite
different at first glance, they both acquired high overlaps within the first few modes.
Cumulative overlaps in both charts reached a plateau at approximately the fifth mode.
The maximum overlaps of the FE model and the EN model occured at the second
and the third mode, respectively.
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(a) FE mode 2 and EN mode 3

(b) FE mode 2 and Experimental Data

Figure 4.6. Comparison of normal modes that hold the maximum overlaps (i.e.
dominant modes) : (a) The FE model matches well with the EN model. Two sets of
data are similar even though they are retrieved from different modes. (b) Data from
the FE model and experiments also yield good correspondency. According Tama et
al., [69] the second mode from the FE model might not only be one of the dominant
modes but also be that very single mode bearing most of the conformational change.
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4.1.2 Che Y Protein

Likewise, the FE model of Che Y protein is defined directly without initial energy

minimization. Relative displacement comparisons of the first four modes between the

finite element (FE) and the elastic network (EN) models yield great correspondency

(Figure 4.7). Moreover, both models have their first two maximum overlaps at the

same modes, i.e. mode 1 and mode 6.(Figure 4.8) In othe words, they have comparable

ability in predicting dominant modes. However, modal overlaps between the FE

results and experimental data were not correctly predicted. The maximum overlap

occured at the first mode only yielding a value of 0.412. This also happened to the

EN model which yielded a value of 0.415. Cumulative overlaps from both models

share a poor ascending rate.

Notwithstanding , comparison of B-factors between the FE results and experimen-

tal data has similarities in the first 20 modes. (Figure 4.9) To this end, the FE results

have indeed made good predictions of the overall flexibility of the protein. In fact,

the failure of poor overlaps has a reasonable explanation stemming from the shape

of the protein. In comparing to other cases in this study, Che Y protein has a fairly

globular shape which results in a more complex conformational change. (Figure 4.10)

The movement of the protein might be rather localized, and the moving direction

of residues might change constantly during conformational change.[69] While the FE

model predicts the instantaneous movement at each normal mode, experimental data

(i.e. displacements between two end conformations) reveal only movement concern-

ing the two end states. Therefore, even if the FE model predicts normal modes with

proper movements, it fails to obtain overlaps with expected values.

model, the cumulative overlap analysis can still stand its referential importance. In this study, it is
the rate of cumulation that is concerned rather than the cumulation value itself.
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Figure 4.7. Che Y protein: Comparisons of relative displacement of the first four
normal modes. (FE model - thick red line; EN model - blue line) In general, most
portion of the data yield great correspondency.
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(a) FE model : overlap and cumulative overlap

(b) EN model : overlap and cumulative overlap

Figure 4.8. Che Y protein: Values of overlap and cumulative overlap from (a) the
FE model and (b) the EN mode. Both models have their first two maximum overlaps
at the same modes – mode 1 and mode 6. They have comparable ability in predicting
dominant modes. However, modal overlaps between the FE results and experimental
data were not well predicted. The maximum overlap occured at the first mode only
yielding a value of 0.412. This also happened to the EN model which yielded a value
of 0.415. Cumulative overlaps from both models share a poor ascending rate.
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Figure 4.9. Che Y protein: Comparison of B-factors between the FE results and
experimental data has similarities in the first 20 modes. The FE results have made
good predictions of the overall flexibility of the protein.

4.1.3 LAO Binding Protein

Similar to previous cases, initial energy minimization is omitted for defining the

finite element (FE) model of the LAO binding protein. Figure 4.11 shows relative

displacement comparisons of the first four modes between the FE and the elastic

network (EN) models. The two models yield great correspondency especially in the

first three modes. Encouragingly, both models have very high overlaps at the first

normal modes (Figure 4.12), and cumulative overlaps remain almost static after the

first mode.

In this case, the first mode is the best fit to the very single mode which bearing

most of the conformational change. Again, the shape of the protein, as shown in Fig-

ure 4.13, provides a decent explanation. The necking shape in the middle of the LAO

binding protein might be the cause of a hinge-like motion during a conformational

change. This collective motion involves a large amount of residues moving in almost
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(a) (b)

Figure 4.10. Che Y protein: Both of the two end conformations (a) and (b) (PDB
code: 3CHY & 1CHN), have rather globallur shape, and thus result in a more complex
conformational change. The movement of the protein might be rather localized,
and the moving direction of residues might change constantly during conformational
change. (Image rendered with Jmol from http://www.rcsb.org)
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Figure 4.11. LAO binding protein: Comparison of relative displacement of the first
four normal modes. The two models yield great correspondency especially in the first
three modes. (FE model - thick red line; EN model - blue line)
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(a) FE model : overlap and cumulative overlap

(b) EN model : overlap and cumulative overlap

Figure 4.12. LAO binding protein: Values of overlap and cumulative overlap from
(a) the FE model and (b) the EN mode. Both models have very high overlaps at the
first normal modes and the cumulative overlaps remain almost static after the first
mode. These indicate that the first mode is the dominant mode which bearing most
of the conformational change.
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the same direction. Consequently, the movement is quite straightforward and any

change of direction is limited.

Figure 4.13. LAO binding protein: The necking shape in the middle of the protein
might be the cause of a hinge-like motion during conformational change. (Image
rendered with PMV 1.5.4)

Again, the degree of collectivity has its contribution to the normal mode results.

The LAO binding protein has a high degree of collectivity, i.e. 0.68. This implies

that the conformational change involves fairly collective movement. Likewise, detailed

discussion about degree of collectivity will be mentioned latter.

Regarding the previous three cases based on MSMS/fine surface approximation,

the FE model unfolds good potential in predicting protein normal modes. Although,

results in the second case seem questionable at first glance, queries can be answered

by scrutinizing the pattern of motion throughout conformational change.

4.2 Coarse Molecular Surface

In previous sections, data from the finite element (FE) model have been compared,

in many aspects, to those from the elastic network (EN) model as well as experimental
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data. Normal mode analysis based on the FE model shows satisfactory results. In

this section, discussions will focus on contrasts and analogies between MSMS/fine

molecular surface model and coarse molecular surface model. The same three proteins

above are analyzed again by coarse molecular surface model.

Hereafter, for the sake of convenience, the MSMS/fine molecular surface model

and the coarse molecular surface model are simply called the fine model and the

coarse model, respectively.

4.2.1 HIV-1 Protease, Che Y Protein, LAO Binding Protein

4.2.1.1 HIV-1 Protease

Figure 4.14(a)&(b) show cumulative overlaps for both fine and coarse surface

model. Both models capture dominant modes, i.e. modes with highest overlaps,

within the first few normal modes. The maximum overlap of coarse models occurs

at the forth mode while for fine model the maximum occurs at the second mode.

Relative displacement comparison between these two maximum overlaps is shown in

Figure 4.14(c). In terms of collective motion, there are good analogies between these

two lines; both lines reveal high relative displacements at two end sections (residue

1 to 15 and 85 to 99) and the middle section (residue 45 to 60) of the protein chain.

Overall, the results prove good competence of the coarse model in comparison with

the fine model.

4.2.1.2 Che Y Protein

As mentioned previously, Che Y protein has a pattern of motion in which di-

rections change constantly. This results in poor motion prediction (i.e. low overlap

values) for not only the fine model but also the coarse model.(Figure 4.15) Notwith-

standing this condition, it is still worth observing the behavior of this two models

for understanding the distinction of their capabilities. Cumulative overlaps of the

first few modes from the coarse model fall slightly behind those from the fine model.
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(a) Fine surface model : cumulative overlap

(b) Coarse surface model : cumulative overlap

(c) Relative displacement : FE – mode 2 and EN – mode 4

Figure 4.14. HIV–1 protease: Cumulative overlap from (a) fine surface model and
(b) coarse surface model; (c) comparison of relative displacement between fine and
coarse surface model at their most dominant modes. Both models capture dominant
modes (i.e. modes with highest overlaps) within the first few normal modes. The
maximum overlap of coarse models occurs at the forth mode while for fine model the
maximum occurs at the second mode.
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However, in terms of overall performance in over 20 normal modes, the coarse model

closely parallels the fine model. Both models yield the maximum overlaps at the first

normal mode. Figure 4.15(c) is the comparison of relative displacement between the

two maximum overlaps. The tight correspondence between two lines confirms again

the capability of the coarse model.

4.2.1.3 LAO Binding Protein

Recalling from the previous section, the consistency of the motion of LAO binding

protein has yielded excellent predictability (i.e. considerably high overlaps). Since the

coarse model has shown its capability in previous cases, it is conceivable that in this

case, the coarse model provides a satisfactory prediction as well. Indeed, the coarse

model yields not only high overlap at the first mode but almost identical predictions

to the fine model. (Figure 4.16)

4.2.2 Maltodextrin Binding Protein, Enolase, Lactoferrin

In previous sections, results have confirmed the capability of the coarse model for

conformational change prediction. For the sake of efficiency, hereafter, the rest of the

sizable proteins will be analyzed solely by the coarse model.

4.2.2.1 Maltodextrin Binding Protein

The pattern of results of maltodextrin binding protein has a great resemblance

to those of the LAO binding protein. (Figure 4.16(a)(b) and Figure 4.17(a)(b))

Likewise, the maximum overlap happens at the first normal mode with a remarkably

high value. Furthermore, relative displacement results in Figure 4.17(b) provides a

prominent demonstration to this correspondency; the majority of the data at the first

mode coinciding with the experimental data.

The first normal mode in this case can be deemed as that very single mode featur-

ing the most in conformational change. Presumably, the shape of the protein plays
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(a) Fine model : cumulative overlap

(b) Coarse model : cumulative overlap

(c) Relative displacement : FE – mode 2 and EN – mode 4

Figure 4.15. Che Y protein: Cumulative overlap from (a) the fine model and (b) the
coarse model. Since the Che Y protein has a pattern of motion in which directions
change constantly, the results have poor motion prediction (i.e. low overlap values) for
not only the fine model but also the coarse model. In terms of overall performance
in over 20 normal modes, the coarse model closely parallels the fine model. Both
models yield the maximum overlaps at the first normal mode. (c) Comparison of
relative displacement between the fine and the coarse models at their most dominant
modes. The tight correspondence between two lines confirms again the capability of
the coarse model.

57



(a) Fine model : cumulative overlap

(b) Coarse model : cumulative overlap

(c) Relative displacement : FE – mode 2 and EN – mode 4

Figure 4.16. LAO binding protein: Cumulative overlap from (a) the fine model and
(b) the coarse model. (c) Comparison of relative displacement between the fine and
the coarse models at their most dominant modes. The coarse model yields not only
high overlap at the first mode but almost identical predictions to the fine model. This
capability was shown in the previous case (Figure 4.12).
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(a) Overlap and cumulative overlap.

(b) Relative displacement : FE – mode 1 vs. experimental data

Figure 4.17. Maltodextrin binding protein: (a) Values of overlap and cumulative
overlap. The pattern of results of maltodextrin binding protein has a great resem-
blance to those of the LAO binding protein (Figure 4.17(a)(b)). Likewise, the max-
imum overlap happens at the first normal mode with a remarkably high value. (b)
The comparison of relative displacement between the most dominant mode and ex-
perimental data provides a prominent demonstration to the correspondency in (a);
the majority of the data at the first mode coinciding with the experimental data.
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an important role in this upshot. The maltodextrin binding protein has a smaller

cross-section in the middle and performs a hinge-like motion, with a bit of it twisting,

during conformational change. The conformational change is fairly collective which

involves a large amount of residue.

4.2.2.2 Enolase

In this case, the bar chart (Figure 4.18(b)) shows quite a dispersive distribution of

overlap of enolase protein. While the first three maximum overlaps all happen within

the first four normal modes, the cumulative rate of overlaps over twenty normal modes

is relatively low. However, this consequence is predictable in terms of collectivity.

Enolase has a fairly low collectivity, i.e. 0.10, which implies a more localized motion

during conformational change. Figure 4.19 is a visualization of the second normal

mode. The second mode holds the maximum overlap and is also the only collective

motion predicted in the dominant modes. Other dominant modes with high overlaps

have motions confined to a small amount of residue and are not as collective as the

second mode.

4.2.2.3 Lactoferrin

In comparison with the previous case, lactoferrin has a relatively concentrated dis-

tribution of overlaps. All dominant modes (i.e. high overlap modes) occurred within

the lowest few modes (Figure 4.20(b)). Cumulative overlaps reach a fair plateau

around the eighth normal mode. Furthermore, the maximum overlap is found at the

third normal mode which also corresponds to the inference by Tama et al.– the most

dominant modes are very often found within the first four modes.[69] Figure 4.21

shows the open and closed conformations of lactoferrin (Figure 4.21(a)&(b)), accom-

panying the motion pattern of normal modes with the first two maximum overlaps

(Figure 4.21(c)–(f)). It is evident that these two dominant normal modes (i.e. mode

3 and mode 4) yield good predictions of the collective motion.
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(a) Enolase: Comparison of relative displacements of the first four normal modes. (FE model
- red line; EN model - blue line)

(b) EN model : overlap and cumulative overlap

Figure 4.18. Enolase: (a) Relative displacement and (b) values of overlap and
cumulative overlap. The bar chart shows quite a dispersive distribution of overlap
of enolase protein. While the first three maximum overlaps all happen within the
first four normal modes, the cumulative rate of overlaps over twenty normal modes is
relatively low.
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Figure 4.19. Enolase: The movement of the second normal mode. This normal
mode holds the maximum overlap and is also the only collective motion predicted in
the dominant modes. (Image rendered with ANSYS 13.0)

4.3 Overall Discussion

Generally speaking, finite element based normal mode analysis is competent in

comparison with elastic network based analysis. In the second section of this chapter,

the finite element (FE) model performs as well as the elastic network (EN) model

dose for all three fine models. Moreover, the coarse model from the third section also

shows its great potential. In terms of all six proteins, four of them yield pleasing

results; low frequency modes yield high overlap values in general. The unfavorable

results from the other two proteins might refer to an important factor: degree of

collectivity.

As shown in Table 4.2, both proteins (i.e. Che Y protein and enolase) have fairly

low degrees of collectivity. In other words, their conformational changes are rather

localized. Since normal mode analysis is favorable for predicting collective motions, it

is conceivable that low degrees of collectivity might lead to poor overlap results. Fur-
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(a) Lactoferrin: Comparison of relative displacements of the first four normal modes. (FE
model - red line; EN model - blue line)

(b) EN model : overlap and cumulative overlap

Figure 4.20. Lactoferrin: (a) Relative displacement and (b) values of overlap and
cumulative overlap. Lactoferrin has a relatively concentrated distribution of overlaps.
All dominant modes (i.e. high overlap modes) occured within the lowest few modes.
Cumulative overlaps reach a fair plateau around the eighth normal mode. The max-
imum overlap is found at the third normal mode which corresponds to the inference
by Tama et al.– the most dominant modes are very often found within the first four
modes.[69]
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Figure 4.21. Lactoferrin: (a)(b) – Conformational change from experimental data.
(c)(d) – Motion pattern of the 3rd normal mode. (e)(f) – Motion pattern of the 4th

normal mode. The similarity among these three sets of motion pattern indicates that
these two dominant normal modes perform well on predicting the collective motion.
(Image rendered with Rasmol and ANSYS)
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thermore, Table 4.2 implies that the predictability of conformational changes might

be highly correlated to degrees of collectivity. Both LAO and maltodextrin binding

proteins, which have the highest collectivities, yield admirably high overlaps values at

the lowest mode. HIV-1 protease and lactoferrin, which have degrees of collectivity

higher than the lowest two, also yield satisfactory results for the first few normal

modes. However, overlaps are quite dispersed for the Che Y protein and enolase over

the first twenty modes, and dominant modes are less obvious.

In addition, the single dominant mode proposed by Tama et al. may be greatly

affected by degrees of collectivity. As mentioned in previous sections, the very single

dominant mode was found at the first normal mode for both LAO and maltodextrin

binding proteins, which have the highest degrees of collectivity. Moreover, for HIV-1

protease and lactoferrin, the single dominant mode was also found within the first

four modes (i.e. second and third mode, respectively). However, for Che Y protein

and enolase which have the low degrees of collectivity, overlap values are low and the

single dominant mode is unrecognizable. As a result, it is likely that higher degrees of

collectivity will result in a higher degree of recognition in the single dominant mode.

This corresponds to the spirit of normal mode analysis that movement with higher

collectivity is more likely to be well predicted with few dominant modes.

Nonetheless, there are some mechanical responses resulting from molecular shape

that cannot be learned solely from analytical data. At this point, it is crucial to

take a close look at the three-dimensional protein structure. For instance, sometimes

the moving direction of residues changes notably during conformational change. Since

normal mode analysis predicts the instantaneous movement at the ground state, while

experimental data (i.e. displacements between two end conformations) reveals move-

ment concerning the two end states, so comparison of two sets of data might result in

poor correspondency. Therefore, it is critical to observe and compare all the informa-

tion in different aspect for acquiring a comprehensive understanding of the results.
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Table 4.2. An overview of protein collectivties and cumulative overlaps. The varia-
tion pattern of cumulative overlaps implies that the predictability of conformational
changes might be highly correlated to degrees of collectivity.

Protein Collectivity Cumulative Overlap
HIV-1 protease
(99)

0.23

Che Y protein
(128)

0.17

LAO binding
protein (238)

0.68

Maltodextrin
binding protein
(370)

0.67

Enolase (436) 0.10

Lactoferrin (691) 0.48
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CHAPTER 5

CONCLUSIONS

This study proposed a finite element (FE) procedure for protein normal mode

analysis (NMA). The FE model adopted the protein solvent-excluded surface to gen-

erate a homogeneous and isotropic volume. A simplified triangular approximation of

the coarse molecular surface was generated from the original surface model by using

the Gaussian-based blurring technique. Similar to the elastic network (EN) model,

the FE model holds a major advantage over all-atom NMA; the computationally

expensive process of energy minimization that may distort the initial protein struc-

ture has been eliminated. This modification significantly increases the efficiency of

NMA. Fair results from the FE model also fortify the capability of this simplification

manner.

In comparison with the EN model, the FE model successfully brings out the

capability of NMA in low-frequency/high collectivity molecular motion. In spite of

the hypothesis of homogeneity, which contradicts the protein intrinsic property and

other NMA methods, the FE model performs encouragingly by capturing protein

shape properties. This also underlines the predominance of shape in protein dynamic

behavior. In addition, the coarsen molecular surface model yields competent results

in comparison with the original solvent-excluded surface model.

An exclusive advantage of FE method proposed here is the forthright visualization

feature. Protein behavior can be complicated to analyze and elucidate. Observations

on both protein structure and visualized motion pattern provide perspectives that

may clarify potential blind spots and deepen the understanding.
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However, a great drawback of this FE model is the slow meshing process which

can take hours to days. Moreover, the irregular shapes of proteins can lead to prob-

lematic and sometimes unsuccessful meshing. To enhance the practicality of the FE

model, it is imperative to improve the quality and speed of meshing. On the other

hand, except the built-in mesher in the FE software used here, numerous developing

mesh programs providing better performance are available from other resources. By

coupling a superior mesh program to the FE model, the issue might be overcome.

Nonetheless, a couple more advantages, which have not been shown in this study,

should also be addressed. Firstly, the FE method is able to calculate the mechanical

response of proteins and apply to bending, buckling, and other generalized loading

scenarios. This feature is crucial for probing the structure-function relation of protein

supramolecular assemblies, as has been studied by Bathe et al.[9]. Secondly, the

Poisson-Boltzmann equation used to model aqueous electrolyte-mediated electrostatic

interactions in proteins may be coupled directly to the FE model. Since protein

dynamics can be influenced by various factors such as pH, temperature, ionic strength,

etc., coupling analysis can provide more realistic and comprehensive perspectives.

Finally, the atomic Hessian can be projected onto the FE space in order to incorporate

atomic-level interactions into the model, thereby eliminating the a priori assumption

of homogeneous isotropic elastic response.

The application of the FE method in protein NMA is still in its infancy. To the

authors’ knowledge, research with this technique up until now has only been studied

by Bathe et al.[9, 40]. There is plenty of room to explore in this area. It is worth

expecting that future studies of FE-based NMA will provide distinct contributions in

protein dynamics prediction.

68



BIBLIOGRAPHY

[1] ANSYS ®. Academic Research, Release 13.0 .

[2] Amadei, A.; Linssen, A. B.; Berendsen H. J. Proteins 17, 412 (1993).

[3] Anfinsen, C.B. Thermodynamics of structural stability and cooperative folding
behavior in proteins. In Advances in Protein Chemistry (Orlando, Florida, 1984),
vol. 36, Academic Press Inc, pp. 316–334.

[4] ANSYS, Inc. ANSYS mechanical APDL element reference. Academic Research,
Release 13.0 .

[5] Atilgan, A. R.; Durell, S. R.; Jernigan R. L.; Demirel M. C.; Keskin O.; Bahar I.
Biophys. J. 80, 505 (2001).

[6] Attard, P. Equipartition theorem. In Thermodynamics and Statistical Mechanics:
Equilibrium by Entropy Maximisation (525 B Street, Suite 1900, San Diego, CA
92101-4495, 2002), Academic Press, pp. 165–166.

[7] Bahar, I.; Lezon, T. R.; Bakan A.; Shrivastava I. H. Normal mode analysis of
biomolecular structures: Functional mechanisms of membrane proteins. ACS
Chem. Rev. 110, 3 (2010), 1463–1497.

[8] Bathe, K. J. In Finite element procedures (Upper Saddle River, NJ, 1996),
Prentice-Hall.

[9] Bathe, M. A finite element framework for computation of protein normal modes
and mechanical response. Proteins 70 (2008), 1595–1609.

[10] ben Avraham, D.; Tirion, M.M. Dynamic and elastic properties of factin: a
normal modes analysis. Biophys J 68 (1995), 1231–1245.

[11] Berman, H.M.; Westbrook, J; Feng Z; Gilliland G; Bhat T.N.; Weissig H.;
Shindyalov I.N.; Bourne P.E. The protein data bank. Nucleic Acids Research 28
(2000), 235–242 (http://www.pdb.org/).

[12] Brooks, B.; Karplus, M. Proc. Natl. Acad. Sci. U.S.A. 80, 6571 (1983).

[13] Bruschweiler, R. J. Chem. Phys. 102 (1995).

[14] Case, D. A. Normal mode analysis of protein dynamics. Curr Opin Struct Biol
4 (1994).

69



[15] Chennubhotla, C.; Rader, A. J.; Yang L. W.; Bahar I. Elastic network models
for understanding biomolecular machinery: From enzymes to supramolecular
assemblies. Physical Biology 2 (2005).

[16] Claessens, M.M.A.E.; Bathe, M.; Frey E.; Bausch A.R. Actin-binding proteins
sensitively mediate f-actin bundle stiffness. Nat Mater 5 (2006).

[17] Connolly, M.L. J. Appl. Cryst. 16 (1983), 548–558.

[18] Cortis, C.M.; Friesner, R.A. Numerical solution of the poissonboltzmann equa-
tion using tetrahedral finite-element meshes. J Comput Chem 18 (1997).

[19] Cui, Q.; Bahar, I. E. In Normal Mode Analysis. Theory and Applications to
Biological and Chemical Systems (Boca Raton, FL, 2006), Taylor & Francis
Group.

[20] de Groot, Steven Hayward; Bert L. Normal modes and essential dynamics.
In Molecular modeling of proteins (Clifton, N.J., 2008), Andreas Kukol, Ed.,
Totowa, NJ : Humana Press, pp. 89–106.

[21] Doruker, P.; Jernigan, R. L.; Bahar I. J. Comput. Chem. 23, 119 (2002).

[22] Erman, I. Bahar; A. R. Atilgan; B. Fold. Des. 2, 173 (1997).

[23] Erman, T. Haliloglu; I. Bahar; B. Phys. ReV. Lett. 79, 3090 (1997).

[24] Eyal, E.; Yang, L. W.; Bahar I. Bioinformatics 22, 2619 (2006).

[25] Fischer, H; Polikarpov, I; Craievich A.F. Average protein density is a molecular-
weight-dependent function. Protein Sci. 13, 10 (October 2004), 2825–2828.

[26] Frauenfelder, H.; McMahon, B. H.; Austin R. H.; Chu K.; Groves J. T. Proc.
Natl. Acad. Sci. U.S.A. 98, 2370 (2001).

[27] Garcia, A. E.; Harman, J. G. Protein Sci. 5, 62 (1996).

[28] Gere, J.M.; Timoshenko, S. Linear elasticity, hooke’s law, and poisson’s ratio.
In Mechanics of Materials (1997), Boston : PWS-Kent Pub. Co., pp. 27–31.

[29] Green, D.F.; Tidor, B. Escherichia coli glutaminyl-trna synthetase is electro-
statically optimization for binding of its cognate substrates. J Mol Biol 342
(2004).

[30] Greer, J.; Bush, B.L. Proc. Natl. Acad. Sci. USA. 75 (1978), 303–307.

[31] Hamacher, K.; McCammon, J. A. J. Chem. Theory Comput. 2, 873 (2006).

[32] Help System, Structural Guide, ANSYS Inc. ANSYS ®. Academic Research,
Release 13.0 .

70



[33] Hendsch, Z.S.; Tidor, B. Do salt bridges stabilize proteins? a continuum elec-
trostatic analysis. Prot Sci 3 (1994).

[34] Hinsen, K. Proteins 33, 417 (1998).

[35] Howard, J. In Mechanics of Motor Proteins and the Cytoskeleton (Sunderland,
MA, 2001), Sinauer Associates, Inc.

[36] Ivanovska, I.; Wuite, G.; Jonsson B.; Evilevitch A. Internal dna pressure modified
stability of wt phage. Proc Natl Acad Sci USA 104 (2007).

[37] Jernigan, I. Bahar; B. Erman; T. Haliloglu; R. L. Biochemistry 36 (1997).

[38] Jolliffe, I. T. In Principal Component Analysis (New York, 2002), Springer.

[39] Kaazempur-Mofrad, M.R.; Bathe, M.; Karcher H.; Younis H.F.; Seong H.C.;
Shim E.B.; Chan R.C.; Hinton D.P.; Isasi A.G.; Upadhyaya A.; Powers M.J.;
Griffith L.G.; Kamm R.D. Role of simulation in understanding biological sys-
tems. Comput Struct 81 (2003).

[40] Kim, D.-N.; Nguyen, C.-T.; Bathe M. Conformational dynamics of supramolec-
ular protein assemblies. Journal of Structural Biology 173 (2011), 261–270.

[41] Kim, M.K.; Chirikjian, G.S.; Jernigan-R.L. Elastic models of conformational
transitions in macromolecules. Journal of Molecular Graphics and Modelling 21
(2002), 151–160.

[42] Kis, A.; Kasas, S.; Babic-B.; Kulik A.J.; Benoit W.; Briggs GAD; Schonenberger
C.; Catsicas S.; Forro L. Nanomechanics of microtubules. Phys Rev Lett 89,
248101 (2002).

[43] Kojima, H.; Ishijima, A.; Yanagida-T. Direct measurement of stiffness of sin-
gle actin-filaments with and without tropomyosin by in-vitro nanomanipulation.
Proc. Natl. Acad. Sci. USA 91 (1994), 12962–12966.

[44] Kondrashov, D. A.; Cui, Q.; Phillips G. N. Jr. Biophys. J. 91, 2760 (2006).

[45] Lyman, E.; Pfaendtner, J.; Voth G. A. Biophys. J. 95, 4183 (2008).

[46] Marques, O.; Sanejouand, Y. H. Proteins 23 (1995).

[47] Michel, J.P.; Ivanovska, I.L.; Gibbons M.M.; Klug W.S.; Knobler C.M.; Wuite
G.J.L.; Schmidt C.F. Nanoindentation studies of full and empty viral capsids
and the effects of capsid protein mutations on elasticity and strength. Proc Natl
Acad Sci USA 103 (2006).

[48] Ming, D.; Kong, Y.F.; Lambert M.A.; Huang Z.; Ma J.P. How to describe protein
motion without amino acid sequence and atomic coordinates. Proc Natl Acad
Sci USA 99 (2002).

71



[49] Miyashita, O.; Tama, F. Normal mode analysis techniques in structural biology.
Encyclopedia of life sciences (2007).

[50] Naik, V. M.; Krimm, S.; Denton J. B.; Nemethy G.; Scheraga H. A. Int. J. Pept.
Protein Res. 24, 613 (1984).

[51] Needleman, D.J.; Ojeda-Lopez, M.A.; Raviv U.; Ewert K.; Miller H.P.; Wilson
L.; Safinya CR. Radial compression of microtubules and the mechanism of action
of taxol and associated proteins. Biophys J 89 (2005).

[52] Nicolay, S.; Sanejouand, Y. H. Phys. ReV. Lett. 96, 078104 (2006).

[53] Nishikawa, N. Go; T. Noguti; T. Proc. Natl. Acad. Sci. U.S.A. 80, 3696 (1983).

[54] Petsko, G.A.; Ringe, D. From sequence to structure. In Protein Structure and
Function (23 Plumtree Road, Sunderland, MA 01375, 2004), Miranda Robertson
Eleanor Lawrence, Ed., New Science Press., Sinauer Associates Inc.

[55] Rader, I. Bahar; A. J. Curr. Opin. Struct. Biol. 15, 586 (2005).

[56] Rajakumar, C.; Rogers, C.R. The lanczos algorithm applied to unsymmetric
generalized eigenvalue problem. International Journal for Numerical Methods in
Engineering 32, 5 (1991), 1009–1026.

[57] Romo, T. D.; Clarage, J. B.; Sorensen D. C.; Phillips G. N. Jr. Proteins 22, 311
(1995).

[58] Roux, B. Acc. Chem. Res 35, 366 (2002).

[59] Roux, S. Berneche; B. Nature 414, 73 (2001).

[60] Rugonyi, S.; Bathe, K.J. On finite element analysis of fluid flows fully coupled
with structural interactions. CMES: Comput Model Eng Sci 2 (2001).

[61] Sanner, M.F.; Olson, A.J. Reduced surface: an efficient way to compute molec-
ular surfaces. Biopolymers 38, 3 (1996), 305–320.

[62] Sanner, M.F. A component-based software environment for visualizing large
macromolecular assemblies. Structure 13 (March 2005), 447–462.

[63] Sansom, I. H. Shrivastava; M. S. Biophys. J. 78, 557 (2000).

[64] Sedeh, R.S.; Bathe, M.; Bathe K.J. The subspace iteration method in protein
normal mode analysis. J. Comput. Chem. 31 (2010), 66–74.

[65] Sen, T. Z.; Jernigan, R. L. In Normal Mode Analysis: Theory and Applications
to Biological and Chemical Systems (Boca Raton, FL, 2006), Chapman & Hall
CRC.

[66] Shemesh, T.; Geiger, B.; Bershadsky A.D.; Kozlov M.M. Focal adhesions as
mechanosensors: A physical mechanism. Proc Natl Acad Sci USA 102 (2005).

72



[67] Stern, M. Levitt; C. Sander; P. S. J. Mol. Biol. 181, 423 (1985).

[68] Tama, F.; Wriggers, W.; Brooks C.L. Exploring global distortions of biological
macromolecules and assemblies from low-resolution structural information and
elastic network theory. J Mol Biol 321 (2002).

[69] Tama, F.; Sanejouand, Y.-H. Conformational change of proteins arising from
normal mode calculations. Protein Eng. 14, 1 (2001), 1–6.

[70] Tang, Y.Y.; Cao, G.X.; Chen X.; Yoo J.; Yethiraj A.; Cui Q. A finite element
framework for studying the mechanical response of macromolecules: application
to the gating of the mechanosensitive channel mscl. Biophys J 91 (2006).

[71] Tirion, M. M. Phys. ReV. Lett. 77 (1996).

[72] Weaver, Jr. W.; Gere, J.M. In Matrix Analysis Of Framed Structures, 3rd Edition
(1966), Springer-Verlag New York, LLC.

[73] Wittenberg, J. B. Wittenberg; B. A. Annu. ReV. Biophys. Biophys. Chem. 19,
217 (1990).

[74] Zheng, W.; Brooks, B. R.; Thirumalai D. Proc. Natl. Acad. Sci. U.S.A. 103,
7664 (2006).

[75] Zienkiewicz, O.C.; Taylor, R.L. In The finite element method (Boston, 2000),
Butterworth-Heinemann.

73


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2013

	Application of Finite Element Method in Protein Normal Mode Analysis
	Chiung-fang Hsu

	Application of Finite Element Method in Protein Normal Mode Analysis

