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ABSTRACT

IMPROVING TEXT RECOGNITION IN IMAGES OF
NATURAL SCENES

FEBRUARY 2014

JACQUELINE L. FEILD

B.Sc., LOYOLA UNIVERSITY MARYLAND

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik G. Learned-Miller

The area of scene text recognition focuses on the problem of recognizing arbitrary

text in images of natural scenes. Examples of scene text include street signs, business

signs, grocery item labels, and license plates. With the increased use of smartphones

and digital cameras, the ability to accurately recognize text in images is becoming

increasingly useful and many people will benefit from advances in this area.

The goal of this thesis is to develop methods for improving scene text recognition.

We do this by incorporating new types of information into models and by exploring

how to compose simple components into highly effective systems. We focus on three

areas of scene text recognition, each with a decreasing number of prior assumptions.

First, we introduce two techniques for character recognition, where word and char-

acter bounding boxes are assumed. We describe a character recognition system that

vi



incorporates similarity information in a novel way and a new language model that

models syllables in a word to produce word labels that can be pronounced in English.

Next we look at word recognition, where only word bounding boxes are assumed.

We develop a new technique for segmenting text for these images called bilateral

regression segmentation, and we introduce an open-vocabulary word recognition sys-

tem that uses a very large web-based lexicon to achieve state of the art recognition

performance. Lastly, we remove the assumption that words have been located and

describe an end-to-end system that detects and recognizes text in any natural scene

image.
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CHAPTER 1

INTRODUCTION

The area of scene text recognition focuses on the problem of recognizing arbitrary

text in images of natural scenes. Examples of scene text include street signs, busi-

ness signs, grocery item labels, and license plates. Potential applications of scene

text recognition include improving navigation for people with low vision, recogniz-

ing and translating text into other languages, improving image retrieval and aiding

autonomous navigation for cars and robots.

This problem is similar to the well studied area of optical character recognition

(OCR) for documents. However, unlike images of documents that usually have stan-

dard fonts, structured text on a plain background and are usually captured in a con-

trolled setting, images of natural scenes have many characteristics that make them

difficult to analyze. They often contain more extreme lighting variation, may include

unusual or highly stylized fonts, often vary widely in color and texture and may be

captured from a wide range of viewing angles. In addition, scene text images usually

contain only a few words, so it is more difficult to benefit from linguistic constraints

or to learn repeated patterns of appearance.

Because of these additional challenges, existing solutions for recognizing text in

documents do not perform well when applied directly to images of scene text and new

techniques that can address these difficulties are needed. The goal of this thesis is

to develop improved methods by incorporating new information sources into models

and by exploring how to compose simple components into highly effective systems.
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This thesis develops techniques for three different areas of scene text recognition,

each with a different number of prior assumptions. Character recognition is explored

first, which is the problem of producing an output label for each character in an

image, assuming that individual character bounding boxes are given as input. Next

the focus is on word recognition, which is the similar problem of producing an output

label for each word in an image, assuming that word bounding boxes are given as

input. This is sometimes also referred to as cropped word recognition. Finally, the

prior assumption that text has already been located is removed and the problem of

end-to-end recognition is explored, where all text in an image must be located and

labelled.

This thesis begins by focusing on the area of character recognition, and in Chapter

4 a character recognition system that incorporates similarity information in a novel

way is introduced. This is motivated by the idea that characters in the same word that

have similar appearances should be given the same label, and characters in the same

word that have different appearances should be given different labels. While trying to

recognize the correct label for a character image is a difficult task, verifying whether

two character images are nearly identical is relatively easy. Although characters may

vary widely in appearance across fonts, characters appearing in the same scene text

word will almost always be in the same font. Within a font, we expect consistency of

character appearance that can be verified with a simple classifier. This allows us to

take advantage of similarity information to constrain the space of possible recognized

words and produce character labels that are consistent with appearances within a

scene text word.

In Chapter 5 a new language model that models syllables in a word to produce

word labels that can be pronounced in English is described. While many appearance

models have been shown to perform very well for recognizing individual characters,

language information is also important for improving recognition results. Many re-
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cent approaches incorporate bigram information, which describes how likely a pair

of characters is to occur next to each other, into their models. Bigram information

is very informative, but it is a highly local source of information. Some bigrams are

very uncommon, but will still occur next to each other in a word, often across a

syllable boundary. As an example, consider the word ‘Amherst’. The combination of

‘m’ followed by ‘h’ is very rare in English, and as a result the correct spelling has a

low probability under a bigram model. To overcome this problem, we describe a new

probabilistic syllable model that encapsulates information about syllables in English,

and forces output labelings to be consistent with a grammar. This better models

language information across syllable boundaries and each labeling is pronounceable

in English. This is important for the domain of scene text recognition where many

of the words are proper nouns that are not likely to be in a standard dictionary.

While these techniques improve performance for character recognition, removing

the assumption that characters have been located a priori, and focusing on the prob-

lem of word recognition, will make these techniques more useful in the real-world.

In Chapter 6 a technique for segmenting text pixels from the background in natural

scene images of cropped words is developed, which will allow characters to be found

without needing to know their location a priori. This technique is motivated by two

observations. The first is that many scene text images have a consistent foreground

color, but may have complex backgrounds. The second is that often images con-

tain smooth color changes caused by lighting, causing foreground text to vary widely

from one part of the scene to another. These images are not handled well by exist-

ing segmentation techniques that rely on clustering colors. Our approach is to use

a regression model that allows us to model smooth color changes. We only model

the foreground of each image, since the background is often complex and difficult

to model well. Our segmentation method provides a way to model the foreground

pixels closely while ignoring pixels that belong to the background, even though they
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are spatially adjacent. We also describe an effective word recognition system that

combines segmentation with simple, yet effective, components for recognition. We

evaluate this system on the problem of word spotting, where recognized words come

from a small, pre-specified lexicon of valid labels.

While many existing approaches also require that recognized words be drawn from

a lexicon, this assumption is restrictive for scene text, since many words are proper

nouns that are not in a standard lexicon. To remove this assumption, in Chapter 7 an

open-vocabulary word recognition system that does not require recognized words to be

drawn from a lexicon is introduced. The web is a rich source of language information

and contains a collection of dictionary words and proper nouns that is constantly

being updated. Existing methods obtain web-based language information by sending

queries to a search engine to collect document frequency information for each query.

This process can be slow and expensive for researchers, due to the currently available

APIs. To overcome these limitations, we demonstrate the use of a static N-Gram Data

Set released by Google. It includes approximately 13.5 million words that occur in a

crawl of the web and their term frequencies, which we use as a probabilistic lexicon.

We incorporate this language information into a full system, including segmentation

and a simple, efficient method for text recognition.

Finally, in Chapter 8 the assumption that text has already been located is removed

and an end-to-end scene text recognition system for automatically finding and labeling

text in images of natural scenes is described. We begin by combining the recognition

method from Chapter 7 with a state-of-the-art text detection technique. Next, we

take advantage of the fact that we are performing text detection and recognition

together, and we use recognition information to perform image-specific parameter

adaptation in the text detection step to significantly improve performance. We also

incorporate this technique into a hybrid system that combines our recognition system
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with an open-source recognition system to further improve performance. We evaluate

this system on the task of end-to-end text recognition and show promising results.

1.1 Contributions

This thesis includes the following contributions:

• Chapter 4

– A description of a novel technique for incorporating similarity information

– A description of an effective character recognition system

– An evaluation of this system compared to state-of-the-art systems on a

public data set

• Chapter 5

– A novel language model that produces word labels that can be pronounced

in English

– An analysis of using this model for character recognition, compared to a

bigram model and a dictionary model

• Chapter 6

– A new model for segmentation in scene text images called bilateral regres-

sion segmentation

– A description of a complete system for word spotting with a pre-specified

lexicon

– An evaluation of bilateral regression segmentation compared to existing

methods

– An evaluation of the complete system compared to state-of-the-art meth-

ods on standard data sets
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• Chapter 7

– A demonstration of a new approach for incorporating web-based language

information

– A description of an efficient system for open vocabulary word recognition

using a very large lexicon of over 13.5 million words.

– An evaluation of our system against state-of-the-art methods on standard

data sets

• Chapter 8

– A demonstration of a novel framework for automatic image-specific pa-

rameter adaptation

– A description and evaluation of an end-to-end system with state-of-the-art

performance on standard data sets
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CHAPTER 2

RELATED WORK

There is existing work on many different subproblems of scene text recognition.

In this chapter we will define each problem, discuss the assumptions that are made,

and describe existing work in that area. We will also explain how our work is different

from existing methods.

2.1 Character Recognition

Character recognition is the problem of predicting a label for each character in a

scene text image. It assumes that character locations described by bounding boxes

are given, so the tasks of text detection and text segmentation are assumed to be

complete. This makes the problem significantly easier, as neither detection or seg-

mentation is a solved problem, but allows appearance and language models to be

evaluated in an ideal setting.

De Campos et al. present an evaluation of six types of local feature descriptors

with a bag of words approach [13]. Similarly, Yi et al. present a performance eval-

uation of five existing feature descriptors, and look at the effect of two sampling

methods, five dictionary sizes, four types of coding schemes and two different SVM

kernels on character recognition performance [72]. Tian et al. also focus on feature

descriptors and extend the histogram of oriented gradients descriptor in co-occurance

HOG descriptors, which capture the gradient orientation of neighboring pixel pairs

to improve recognition [56]. Weinman et al. incorporate many different sources of

information into their recognition process, such as character appearance, bigram fre-
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quencies, similarity and lexicons [66]. Other approaches include convolutional neural

networks that require no preprocessing [50] and a technique that uses image bina-

rization followed by GAT correlation [75]. Donoser et al. also show that character

recognition results can be improved using information from a web search engine [15].

The current state-of-the-art character recognition results on the ICDAR 2003 data set

are presented by Coates et al. [12]. They take an unsupervised approach to learning

features from unlabeled data.

We present a contribution to character recognition that is inspired by Wienman et

al. and Donoser et al. [66, 15]. Weinman et al. showed that similarity information can

be used to improve recognition performance, but their similarity features were not

designed specifically for scene text data. We have designed a similarity classifier that

is trained to predict equivalence between two scene text characters and we show that

we can improve character recognition performance over state-of-the-art using this

information. Following the technique of Donoser et al., we also incorporate global

language information from a search engine.

2.2 Text Segmentation

The problem of text segmentation is to decide if each pixel in a cropped word image

is part of the text or the background. The output of a text segmentation algorithm

is a binary image that labels each pixel with the class it belongs to. Those pixels

that are part of the text can then be grouped into connected components and treated

as characters, allowing for text recognition without knowing character bounding box

locations a priori.

Many of the methods developed to solve this problem cluster colors in the image

to produce several possible segmentations, then choose the one that is most likely

to be correct [55, 60, 26]. Similarly, Wang et al. [64] extract color information from

confident text regions and use it to create segmentations. Mishra et al. [38] also
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extract foreground and background colors, and use an MRF model in an iterative

graph cut framework.

Another recent method by Zhou et al. [77] takes a different approach and esti-

mates rendering parameters and illumination effects to improve segmentation accu-

racy. They use iterative optimization to find the best parameters for the light source,

material properties and blur kernel size and use that information to inform segmenta-

tion decisions for each pixel. In addition, since the parameters are learned, new text

images can be synthesized that mimic the appearance of an existing image.

The segmentation approach we present in this thesis is similar to the clustering

methods, but we use color clustering as a starting point to fit a regression model for

each image. When colors change across an image, as often occurs in scene text images

due to lighting, pixels that belong to the foreground text are not well modeled by

the unimodal localized distributions (like the Gaussians) usually used in clustering.

Using a regression model allows us to segment a larger class of images, since we can

model the smooth color changes.

2.3 Word Spotting

Word Spotting is the problem of selecting a word label for a scene text word image

from a pre-specified lexicon. This assumes that we are given a cropped image of a

word, so text detection is complete. This also assumes that we have a pre-specified,

and usually small (50 or 1000 words), lexicon that contains the true word label. This

is a simplified version of word recognition, where a system can ‘spot’ words in the

images. An example application is identifying specific keywords to direct a low-vision

user during a navigational task, like the word ‘RESTAURANT’.

This problem was introduced for the problem of scene text by Wang et al. at ECCV

2010 [62, 61]. They presented an end-to-end word spotting system using random ferns

and pictorial structures, along with a new data set for word spotting called Street View
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Text. Others have also approached this problem by combining bottom-up and top

down cues [40] and using unsupervised feature learning combined with a convolutional

neural network in an end-to-end system [63]. Novikova et al. present a system for

word spotting with a large lexicon of around 100,000 words. They model visual and

lexicon information in one model using weighted finite-state transducers [45]. Goel et

al. take a different approach and instead of detecting character locations they present

a system that matches input images to synthetic images generated from the lexicon

words [18]. They use gradient-based features with a novel weighted dynamic time

warping approach.

We present a word spotting system that uses a novel segmentation method de-

signed for scene text images combined with standard, but effective, recognition meth-

ods. One of the main differences between the work we present and these existing

solutions is the technique used to detect character locations. These methods use a

sliding window approach to evaluate all possible locations and sizes to find possible

characters. They avoid relying on an initial hard segmentation step, but evaluating

all sub-windows is expensive, and there is great potential for confusion when non-

text areas exhibit character-like features. In contrast, a text segmentation based

method like ours can take advantage of coherence across an image. For example, the

color characteristics of easier characters can help identify more difficult characters.

We demonstrate that a segmentation-based approach can outperform sliding-window

based approaches for the task of word spotting.

2.4 Open-Vocabulary Word Recognition

Word recognition with an open vocabulary is the problem of predicting a label

for a word in a scene text word image. The word label does not have to occur in any

lexicon. The only assumption of this problem is that we are given a cropped word
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image, so text detection is complete. This problem is significantly more difficult than

word spotting.

To solve this problem, Weinman et al. integrate both character segmentation and

recognition using a semi-Markov model and character width information [65]. Mishra

et al. use higher order language priors to improve open-vocabulary word recognition

accuracy [39]. In addition, Neumann et al. have demonstrated a real-time solution

using extremal regions [41, 42]. Kumar et al. have also shown increased performance

on this task by developing specialized segmentation techniques and using commercial

OCR systems for recognition. These methods include segmenting the middle rows

of each image first, and propagating labels to the rest of the pixels [27] and using a

non-linear enhancement with image plane selection [28]. Very recently, researchers

from Google have demonstrated significantly improved state-of-the-art performance

on this problem using a deep-learning approach for character classification and large

amounts of training data and computational resources [4].

We present an open-vocabulary word recognition system that uses a large web-

based lexicon, since many scene text words are proper nouns that are not likely

to occur in a standard lexicon. Web based language information was first used by

Donoser et al. [15] and was used to create dynamic dictionaries for handwriting recog-

nition by Oprean et al. [46]. Instead of querying a search engine to obtain language

information as they did, which is slow and expensive, we demonstrate the use of an

n-gram data set created from a crawl of the web. This gives us a similar type of in-

formation but is fast to use. We show that we can combine this rich source of global

language information with a standard recognition technique to improve performance

on this problem.
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2.5 Text Detection

Text detection is the problem of locating text in an image. Given any image, a

text detector must return the bounding boxes of all text in the image. There are no

assumptions made about size, orientation or location of text. Text detection in natural

scene images is difficult for many of the same reasons that recognition is difficult

including complex backgrounds, variation of text due to lighting and perspective

distortion and low quality images. Text detection is a very active research area

and this section does not include a comprehensive list of existing methods. Instead,

we discuss the main approaches and include descriptions of related techniques as

examples.

There are two main approaches to the problem of text detection. Most current

methods use a sliding-window based approach or a connected-component based ap-

proach. The sliding window based approaches scan the entire image with a sliding

window, classifying each patch as text or non-text using local features. They usually

do this at multiple scales. Chen et al. use an Adaboost classifier with gradient-based

features [10]. Lee et al. also use a variant of Adaboost, only with local gabor filters

and texture features [32]. Wang et al. use a random fern classifier and histogram of

oriented gradients features [61]. Wang et al. learn a set of low-level features and use

a convolutional neural network for classification [63].

Connected-component based approaches identify character candidates using a va-

riety of local features, then group characters together into text lines. The elimination

of non-text regions is usually rule-based. Chen et al. detect characters using multi-

resolution edge detection and color analysis along with geometric analysis and affine

rectification [9]. Phan et al. and Bai et al. use gradient-based features for charac-

ter detection [48, 2]. Epshtein et al. introduce the stroke width transform and detect

characters by looking for connected-components with similar stroke width values [17].

Yi et al. use stroke with and color uniformity to detect character candidates [71]. Yao
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et al. also use stroke width information and filter non-text components using a ran-

dom forest classifier to detect text at arbitrary orientations [69]. Neumann et al. show

that maximally stable extremal regions (MSERs) are effective for character candidate

detection and provide a method for efficiently pruned exhaustive search for text. Re-

cently, MSERs have been shown to perform well in several other systems as well.

Yin et al. use MSERs with an adaboost classifier [74] and Ye et al. use MSERs with

a support vector machine (SVM) [70]. Shi et al. also use MSERs in a graph-based

approach [53].

Both approaches have led to good performance on the problem of text detection.

The sliding window based approaches often have simpler architectures and can be

more robust to noise, but they are computationally expensive, since a large number

of image rectangles must be evaluated at different sizes and aspect ratios. In ad-

dition, non-horizontal text detection is difficult using this approach. Alternatively,

connected-component based approaches are more efficient and run in real-time. How-

ever, many parameters are often required and finding a robust method for filtering

out non-text from the large number of initial character candidates is very difficult.

2.6 End-To-End Scene Text Recognition

The full problem of scene text recognition is to predict a word label for all text

found in an image. There are no assumptions about what the image may contain, for

example it may have multiple lines of text that need to be detected and recognized.

There are also no assumptions about the predicted word labels.

Chen et al. present a system to detect and recognize text in city scenes [10].

They use AdaBoost to classify text regions that are then binarized and processed

by commercial optical character recognition (OCR) software. Chen et al. present a

system to detect, recognize and translate text from Chinese signs [9]. Neumann et

al. present a real time text detection and recognition system based on maximally
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stable extremal regions (MSERs) [41]. They also extend this method for real-time

performance [42] and improve recognition performance further by choosing character

segmentations later in the pipeline when more information is known about which

is the best [43]. Weinman et al. also present an end-to-end system by combining

their recognition system with an existing text detection system by Yi et al. [67,

71]. Recently, Milyaev et al. showed that binarizing an image and passing it to

a commercial optical character recognition (OCR) system leads to state-of-the-art

recognition performance on the ICDAR data sets [37].

We improve end-to-end text recognition by using recognition information to per-

form image-specific parameter adaptation. Most existing techniques combine text de-

tection and recognition in a feed-forward pipeline, performing both tasks in isolation.

Instead, we take advantage of performing both tasks together, and use information

from the recognition phase to adapt a key text detector parameter to each image to

improve performance.

2.7 ICDAR Competitions

Over the last ten years there have been several Robust Reading competitions held

at the International Conference on Document Analysis and Recognition (ICDAR).

The first competition in 2003 released standard data sets for the problems of text

detection, character recognition and word recognition. Ground truth text detection

results were provided for the recognition competitions, so teams could enter either

competition separately. There were five entries for the text detection competition

and zero entries for the character and word recognition competitions. A description

of the data sets and the evaluation of the text detection methods are described in a

final report by Lucas et al. [35].
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In 2005 the Robust Reading competition included only the task of text detection

and received five new entries. Several of these methods are described in the final

report by Lucas [34] .

For the next competition in 2011, the original data set was updated, fixed and

expanded based on feedback from the community. In addition, a new evaluation

method was chosen for the text detection competition. They chose to use the DetEval

software which is publicly available from Wolf et al. [68]. The word recognition task

was reintroduced and there were nine entries for text detection and three entires

for word recognition. Summaries of the methods and results are summarized in the

report by Shahab et al. [52].

The most recent competition was in 2013. The data set from 2011 was revised

again to fix ground truth errors and remove images duplicated over the training and

test sets. Additionally, pixel-level ground truth labels were provided for the first time

for text segments. There were competitions for text detection, text segmentation

(new), word recognition and reading text in videos (new). There were nine entries to

the text detection competition, seven entries for text segmentation, eight entires for

word recognition and one entry for reading text in videos. Descriptions of some of

these methods and a summary of results are provided in the report by Karatzas et

al. [25].
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CHAPTER 3

DATA SETS AND EVALUATION PROCEDURES

In this chapter we describe the scene text data sets used in our experimental

evaluations in more detail. We also describe how to compute some of the evaluation

metrics used in our experiments.

3.1 VIDI Data Set

The VIDI data set was created by Weinman et al. [66] from images of text on signs

from around a city. It consists of 95 grayscale sign images with ground truth labels

and ground truth character bounding boxes. There are a total of 215 words and 1209

characters in the data set, including digits, lowercase letters, and uppercase letters.

The average number of words per sign is 2.26 and the average number of letters per

word is 5.62. Sample images from this data set are shown in Figure 3.1.

Published with the VIDI data set is a training set of synthetic character images

from different fonts. This includes that characters A-Za-z0-9 in 1866 different fonts.

The images contain one character each, with black text on a white background and

are all generated in a 128x128 pixel window with the same baseline. Sample images

from this data set are shown in Figure 3.2.

3.2 ICDAR 2003 Data Set

The ICDAR 2003 data set was created for the Robust Reading competition [35]

and includes images of text in the environment, but not necessarily from a sign. This

data set is suitable for the tasks of end-to-end recognition, text localization, word
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Figure 3.1: Sample images from the VIDI data set.

Figure 3.2: Sample images from the VIDI training set of synthetic characters.
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recognition and character recognition. There are 251 color images containing 1110

words and 5430 characters. There is also a training set of comparable size. Ground

truth information is provided for word bounding box locations and labels as well as

character locations and labels for both the training and test sets. Note that unlike the

VIDI data set, this data set includes punctuation in ground truth labels. Figure 3.3

shows sample images from this data set.

There is also a version of this data set called the ICDAR 2003 Scene data set which

is identical except that it only contains 1107 words. We acknowledge it here because

several researchers in this area use this data set instead of the original version.

The task of word spotting requires a lexicon for each word in the data set, but

this data set was not created with ground truth lexicons. We follow the experiments

of Wang et al. [61] and use two different approaches for creating lexicons to use for

this task. The first approach is to use the same lexicon for all words, consisting of

the ground truth words for all images in the data set. This is referred to as the

ICDAR03(FULL) lexicon. The second approach is to create a lexicon for each word

using the ground truth label for that word plus 50 other random words from the data

set. This is called the ICDAR03(50) lexicon.

3.3 ICDAR 2011 Data Set

There was also a data set created for the ICDAR 2011 Robust Reading compe-

tition [52] which updated, fixed and expanded the ICDAR 2003 data set. This also

contain images different types of text in the environment. It contains 255 color images

with 1189 words. There is also a training set of a similar size. Ground truth informa-

tion is provided for word bounding box locations and labels, which makes this suitable

for the tasks of end-to-end recognition, text localization and word recognition. Un-

like the ICDAR 2003 data set, this does not contain ground truth character location

and label information. Sample images from the ICDAR 2011 data set are shown in
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Figure 3.3: Sample images from the ICDAR 2003, 2011 and 2013 data sets.

Figure 3.3. Note that for the task of word spotting, we create the ICDAR11(full)

lexicon and the ICDAR11(50) lexicon in the same way we did for the ICDAR 2003

data set.

3.4 ICDAR 2013 Data Set

The latest version of the ICDAR data set is ICDAR 2013 [25]. This is also based

on the previous data sets, but ground truth errors are fixed and image duplicates

are removed. It contains 233 color images with 1095 words. The training set is of a

similar size. Ground truth information is provided for word bounding box locations

and labels, which makes this suitable for the tasks of end-to-end recognition, text

localization and word recognition. In addition, pixel-level ground truth labels are

provided for the first time for text segments, enabling the task of text segmentation.

Figure 3.3 shows sample images from this data set.
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Figure 3.4: Sample images from the SVT data set.

3.5 SVT Data Set

The Street View Text (SVT) data set [62] was designed specifically for the word

spotting problem. It consists of 647 words from 250 images. Each image is taken

from Google Street View and word bounding box locations and ground truth labels

are provided. In addition, there is a lexicon given for every word, which contains the

ground truth label plus other local business names obtained from using the ‘Search

Nearby’ feature in Google Maps. The lexicons consist of around 50 unique words

each. Sample images from the SVT data set are shown in Figure 3.4.

3.6 End-to-End Evaluation

In our experiments we most often look at the character recognition accuracy,

word recognition accuracy and end-to-end precision/recall. The character accuracy

is calculated by dividing the number of correctly recognized characters by the total
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number of characters. The word accuracy is calculated the same way, except with

words instead of characters.

For end-to-end recognition accuracy, we follow the procedure used by the first

ICDAR 2003 Robust Reading competition. It is described in the competition re-

port [35].

For each detected bounding box, we compute a match score. This is found by

calculating how well each detection matches the best ground truth bounding box.

A score is computed for each ground truth bounding box by dividing the area of

intersection between the two rectangles by the minimum bounding box containing

both rectangles. This score has a value of zero when the bounding boxes do not

intersect, and a value of one when they are identical. The maximum score over all of

the ground truth rectangles is the match score for a detection.

When computing end-to-end recognition results, a detected bounding box is con-

sidered to be correct if it matches a ground truth bounding box with a match score

greater than .5 and the detected text matches the ground truth text exactly.

21



CHAPTER 4

USING CHARACTER SIMILARITY INFORMATION TO
IMPROVE CHARACTER RECOGNITION

In this chapter we describe a new way to incorporate character similarity infor-

mation for scene text recognition. We train a similarity expert that learns to classify

each pair of character images as equivalent or not. Next we describe a character

recognition system that combines this similarity information with appearance and

language information. We formulate the search for the maximum likelihood interpre-

tation of a word as an integer program. We incorporate the equivalence information

as constraints in the integer program and build an optimization criterion out of ap-

pearance features and character bigrams. Finally, we take the optimal solution from

the integer program, and compare all nearby solutions using a probability model

for strings derived from search engine queries. We evaluate the performance of this

system compared to the current state-of-the-art.

4.1 Similarity Information

The use of character similarity information is motivated by the idea that characters

in the same word that have similar appearances should be given the same label,

and characters in the same word that have different appearances should be given

different labels. By identifying these constraints, the space of possible word labels

can be reduced. While trying to recognize the correct label for a character image is a

difficult task, verifying whether two character images are nearly identical is relatively

easy. Although characters may vary widely in appearance across fonts, characters
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Figure 4.1: An example sign image. Due to the specialized font, the character ‘A’ is
particularly difficult to recognize.

appearing in the same scene text word will almost always be in the same font, where

we expect consistency of character appearance. Figure 4.1 shows a sample image

where similarity information is useful. The character ‘A’ is particularly difficult to

recognize because it looks like a triangle. Even if we don’t know what the label should

be, we can use the fact that this character appears in multiple places to constrain the

results.

Recently, Weinman et al. showed that using information about similarity among

characters can improve scene text recognition [66]. They compute a raw similarity

score for each pair of characters A and B by computing

1− fA · fB, (4.1)

where fA and fB are unit feature vectors for the characters A and B. This yields

a number between 0 (when the vectors are identical) and 2 (when the vectors point

in opposite directions) which is then put through a learned monotonic non-linearity.

This similarity score was then used to define factors between each pair of characters

in a factor graph, and integrated into a general belief propagation framework using

other types of appearance and language information.

This similarity score encodes important information about similarity, but our

hypothesis is that we can develop a better score using a classifier that is designed

specifically to evaluate the similarity of two character images. We will investigate

whether this score will lead to more accurate character recognition. This idea is
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motivated by recent work on the face verification problem [19, 30] that has shown

relatively high accuracy rates in determining whether two faces are of the same person

or not. That problem is more difficult than determining whether two characters

represent the same letter in the same font under natural viewing conditions.

The goal is to create a classifier that takes two character images as input and

predicts whether the characters should have the same label. We use a support vector

machine (SVM) [7, 8, 20] trained on a set of feature vectors extracted from pairs

of character images. We extract one SIFT descriptor [33, 58] from each image by

placing it in the center of the image, scaled to cover the entire image. We also create

an alternate version of this classifier by extracting a two by two non-overlapping grid

of four SIFT descriptors from each image rather than a single SIFT descriptor. In

our experiments, we investigate if this provides a performance increase over the single

descriptor version.

We form two feature vectors for each pair of images. One is created by subtracting

the SIFT descriptor of the first image from the second and the other is created by

subtracting the SIFT descriptor of the second image from the first. We append the

ratios of the original image widths and the original image heights to both difference

descriptors. We add these additional features because they are good predictors of

dissimilarity. If two images vary significantly in their original size, then they are

more likely to have different labels than two images with similar sizes. For each pair

of training images A and B, we then end up with two training sample vectors: f(A,B)

and f(B,A), where f is the augmented SIFT vector described above. While we use

both feature vectors in training to generate more training data, at test time we use

only the first to represent a pair of images.
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4.2 A Complete Character Recognition System

We combine this new similarity information with appearance and language infor-

mation into a complete character recognition system. We use appearance features

developed by Weinman [22] that are given to us pre-computed. They were computed

by training class conditional weights over a vector of edge-like features to maximize

the classification performance on a set of synthetic fonts. We use language features

that combine bigram and case transition statistics. The bigram statistics were trained

on a selection of books from Project Gutenberg1. Inter-word case change statistics

(i.e. changing from upper to lower or lower to upper) were trained on the press-

related sections of the Brown Corpus of American English.2 For the first transition,

we assume a uniform probability of transitioning from upper case to lower case and

upper case to upper case.

The goal of this system is to find the word labels for each image that maximize

the conditional probability of the labels given the observations. Given a set of N

character image observations x = {x1, x2, . . . , xN}, the recognition task is to assign

the best set of labels y = {y1, y2, . . . , yN} for these characters subject to a set of

consistent equivalence and difference constraints C. That is, we want to compute

y∗ = argmax
y

p(y|x) = argmax
y

p(y,x) (4.2)

subject to C. We assume a Markov model over the labels, leading us to express p(y,x)

as

p(y,x) =
N∏
i=1

p(xi|yi)
N∏
i=1

p(yi|yi−1). (4.3)

1http://www.gutenberg.org

2http://icame.uib.no/brown/bcm.html

25



Rather than maximizing Eq. 4.3, we can equivalently minimize its negative log. Thus,

y∗ = argmin
y

−
N∑
i=1

log p(xi|yi)−
N∑
i=1

log p(yi|yi−1). (4.4)

Let A denote our alphabet. For simplicity, let φi:j = − log p(xi|yi = Aj), the negative

log probability that character i takes on the label Aj. Similarly we will let φi(i+1):jk =

− log p(yi+1 = Ak|yi = Aj), the negative log probability that character i takes on the

label Aj and character i+ 1 takes on the label Ak. Using this notation, we have

y∗ = argmin
y

N∑
i=1

φi:j +
N−1∑
i=1

φi(i+1):jk. (4.5)

We use an integer program to find the initial word labeling y∗. We follow that

with an error correction process to incorporate global language information. Both

methods are described next.

4.2.1 Integer Program Formalization

An integer program (IP) is an optimization problem of a linear objective function

over integer-valued variables y, where the space of solutions is bounded by a set of

linear constraints. The goal is to find the assignment to these variables that minimizes

the objective function. An IP in standard form [3] is written

minimize cTy

subject to Ay = b

y ≥ 0

y ∈ Zn,

where c ∈ Rn,b ∈ Rm, A ∈ Rm × Rn, and Z is the integers. Here we are now using

y to denote the set of variables in the optimization criterion, rather than the set of
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labels for our characters. The connection between these uses will become clear below.

We will solve our optimization problem by posing it as an IP over binary valued

variables.

Using the notation defined for Eq. (4.5), let yi:j = 1 if variable yi = Aj and 0

otherwise. Let yi(i+1):jk = 1 if variables yi = Aj and yi+1 = Ak and yi(i+1):jk = 0 oth-

erwise. Our optimization problem from Eq. (4.5) (before integrating the equivalence

and non-equivalence constraints C) can then be written

minimize
N∑
i=1

|A|∑
j=1

φi:jyi:j +
N−1∑
i=1

|A|∑
j=1

|A|∑
k=1

φi(i+1):jkyi(i+1):jk (4.6)

subject to

|A|∑
j=1

yi:j = 1 (4.7)

|A|∑
k=1

yi(i+1):jk = yi:j (4.8)

|A|∑
j=1

yi(i+1):jk = y(i+1):k (4.9)

yi:j, yi(i+1):jk ≥ 0 (4.10)

yi:j, yi(i+1):jk ∈ Z. (4.11)

Eq. (4.7) ensures that we choose exactly one label for each character. Eqs. (4.8) and

(4.9) ensure that we choose exactly one pairwise factor for each pair of characters and

enforce consistency between assignments. Lastly Ineq. (4.10) and Eq. (4.11) ensure

that our variables are restricted to non-negative integers.

We will enforce the equivalence and non-equivalence constraints C as follows. Let

C = {Cs, Cd}, where Cs is the set of equivalence constraints and Cd is the set of non-

equivalence constraints. In order to enforce these constraints, we add the following

to our IP constraint set:
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yi:j − yi′:j = 0,∀(i, i′) ∈ Cs (4.12)

yi:j + yi′:j ≤ 1,∀(i, i′) ∈ Cd (4.13)

The equivalence constraints expressed in Eq. (4.12) enforce that whenever either yi:j

or yi′:j is set to 1, the other must be set to 1 as well. The non-equivalence constraints

expressed in Ineq. (4.13) enforce that both yi:j and yi′:j cannot be set to 1 at the same

time. Note that non-equivalence constraints such as (4.13) can be incorporated into

an IP in standard form by including both the constraint and its negation.

4.2.2 Optimization Considerations

We use the Mosek3 optimization toolbox, which uses a variant of the branch-

and-cut method, to efficiently solve our integer programs. Branch-and-cut works by

first relaxing the integer program to a linear program. The optimization proceeds,

eliminating non-integral solutions by adding constraints that remove these solutions

from consideration. Once no more constraints can be added, the optimization uses

the branch and bound strategy, which incrementally adds integer constraints on the

variables. A branch in the optimization tree corresponds to choosing 0 or 1 for a spe-

cific variable. A lower bound on the optimization criterion is maintained by checking

conditions on LP relaxations solved throughout the algorithm. An upper bound is

maintained by noting the cases where the solution to an LP relaxation has binary

values. These bounds allow the algorithm to prune subtrees of the optimization. For

more information on linear optimization, see [3].

The Mosek solver uses finite error tolerances on both the integer feasibility and

the optimization criterion in order to improve performance. Therefore, we do not

have a formal guarantee of optimality. In our experiments, the solver’s optimum was

3http://mosek.com/
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always the true optimum. Here the true optimum refers to the best solution with

respect to the optimization criterion, not necessarily to the correct solution.

4.2.3 Handling Inconsistent Constraints

If we assume ground-truth equivalence and non-equivalence constraints, our op-

timization space is guaranteed to be feasible. When we estimate equivalence and

non-equivalence, we need to ensure that our constraints are consistent. For example,

suppose we estimate that characters i and j are equivalent, characters j and k are

equivalent, and characters i and k are different. These constraints are contradictory

and hence there is no solution that satisfies them. We resolve this by removing con-

straints that violate consistency. An example of this scenario is shown in Figure 4.2.

Figure 4.2: An example of inconsistent constraints. The similarity classifier labels
i and j as equivalent, j and k as equivalent, but i and k as different. Through
transitivity we know that i should be equivalent to k, which is inconsistent with
the classifier output. In order to make our constraints consistent, we remove the
constraints associated with this clique.

The root of this problem is that under certain conflicting constraints, we can

determine that two characters should be equivalent through transitivity (i.e. i = j =

k), and this equivalence conflicts with a non-equivalence constraint. To detect such

a conflict, we compute a graph over characters, where the graph contains an edge
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between characters i and j if i and j are equivalent under transitivity. All connected

components of this graph will be fully connected. If we find that we have included an

edge between two nodes that we have estimated to be different, we have a conflict.

We can remove this conflict by removing all constraints in the relevant clique.

4.2.4 Error Correction

The final stage of recognition involves using information from a search engine to

incorporate language statistics that are more global than our bigram model. We use

search engine results to model the distribution of common strings, as in described by

Donoser et al. [14].

Given a labeling hinit from our IP optimization, we create a set of 1-character

substitutions of hinit over all characters in our alphabet A. We add to this set any

suggestions made by the search engine when these candidate strings are submitted to

the search engine. This results in a set of hypotheses H for the true string. For each

h ∈ H, we record the number of hits from the search engine. We induce a probability

distribution pH(h) over H by normalizing the search hit counts with add-1 smoothing.

Rather than relying solely on search hit counts to correct errors in hinit, we wanted

to combine this information with appearance information px(h) to produce a final

probability for each h. If px and pH are both probabilities, we could assume indepen-

dence and multiply them together. However, as occurs frequently when combining

language models with appearance models, these two distributions were “imbalanced”

in the sense that the appearance term dominated the product, rendering pH useless.

To address this, we introduced a correction factor α to balance the terms:

f(h) = px(h)α · pH(h)(1−α), (4.14)

for 0 ≤ α ≤ 1. We compute px by evaluating each hypothesis h ∈ H according to

a linear function in the form of Eq. (4.6), with bigram factors removed, and then
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normalizing. We remove the bigram factors to rely solely on language information

from the search engine. After setting α on held out data, the best hypothesis h∗ ∈ H

is simply the one maximizing Eq. (4.14).

4.3 Experiments

For these experiments, we chose to use the VIDI data set, which is described in

more detail in Chapter 3. We chose this data set to evaluate our algorithms because

a consistent body of work has been evaluated on this data set. We also used the

ICDAR 2003 data set as a source of exploratory data for our initial experiments on

equivalence classification.

While scene text recognition requires finding text in an image, possibly segmenting

it, and finally recognizing, we adopted a common simplification by starting with

hand segmentations of each character in the form of a rectangular bounding box.

This is a substantial simplification of the full scene text recognition problem, and the

difficulty of solving the initial stages of detection and segmentation should not be

underestimated. Nevertheless, we felt we could better assess our contributions by

deferring the solution of these initial stages. We compare results to others that have

made the same assumptions.

4.3.1 Similarity Classifier Experiments

We use five-fold cross validation to evaluate the accuracy of the similarity classifier

on the test data. We extract all pairs of same and different images originating from

the same sign from the data set and divide them into five groups, making sure that all

pairs from the same sign are in the same group. We train an SVM with a quadratic

kernel using four of the folds as the training set and the remaining fold as the test

set.
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(a) Equivalent image pairs that are classified as different. Problems giv-
ing difficulty to the similarity classifier include 3-dimensional layering effects
(left), perspective distortion (center), and lighting effects (right).

(b) Different image pairs that are classified as equivalent. The leftmost pair
represents a capital S and a lowercase s, which are considered to be different
according to our evaluation criterion.

Figure 4.3: Examples of classification errors made by the similarity classifier using
four SIFT descriptors.

The result is a classification for each of the 10,290 pairs of similar and dissimilar

characters in the test set. Using the classifier with one SIFT descriptor we correctly

classify 10,215 pairs for an accuracy of 99.27%. Using the classifier with four SIFT

descriptors, we correctly classify 10,230 pairs for an accuracy of 99.42%. Examples

of classification errors made by the classifier using four SIFT descriptors are shown

in Figure 4.3.

While we achieve over 99% accuracy for our equivalence classification for both

types of features, this result is not quite as good as it sounds. In particular, for each

string of words with k characters in our sign database, there are O(k2) similarity

comparisons. Since we are making hard decisions about equivalence, an error in any

one of these O(k2) equivalence determinations would result in at least one incorrect

word coming out of our integer program. While we mitigate this problem to some

extent by eliminating equivalence constraints which are inconsistent with each other,

our IP accuracy is still highly sensitive to errors in equivalence determination. Thus,

the error rate needs to be extremely low for this source of information to be helpful.
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As the next section shows, the similarity information, even with some errors, does

indeed improve the accuracy of our integer program (see Table 4.1). With our second

processing step using search engine correction, it proves even more helpful.

4.3.2 Character Recognition System Experiments

In this section, we first describe our cross-validation scheme which allows us to use

the same data for training and testing by using different folds. We report results for a

variety of experiments that compare accuracies of sign recognition with no similarity,

with estimated similarity, and with ground truth similarity as given by an oracle.

We report accuracies with and without post-processing using the search engine-based

language model.

4.3.2.1 Cross Validation

While we developed the general form of our similarity expert using the ICDAR

data, after we settled on the form of our model, we wanted to adapt the parameters

(for the similarity SVM and the α parameter for balancing appearance and language

information in the IP) to the properties of the VIDI data set. To do this, we split

the VIDI data set into five folds of approximately the same size. No characters from

a single sign appeared in more than one fold. The reason for avoiding having some

characters from a sign go into one fold and some go into another is that this would

make the similarity classification artificially easy, since the training data and test data

might have pairs of characters that were virtually equivalent.

After splitting the VIDI data into five folds, we used four folds for training the

similarity SVM and used this SVM to rate all of the pairs in the other fold as equiva-

lent or different. This resulted in five independent sets of estimated equivalences and

differences. Again using four folds at a time for training, we estimated the parameter

α from Eq. (4.14). We then solved the IP for the test fold and applied the error
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No error correction Error Correction
No Similarity Word Accuracy 75.35 88.37

Char. Accuracy 91.81 94.21
Similarity Classifier Word Accuracy 78.60 92.56
(1 SIFT feature) Char. Accuracy 93.05 96.20
Similarity Classifier Word Accuracy 78.60 92.56
(4 SIFT features) Char. Accuracy 93.30 96.28
Ground Truth Word Accuracy 83.72 93.02
Similarity Char. Accuracy 94.46 96.44

Table 4.1: A table of word and character accuracies for each experiment. Results are
shown with and without error correction.

correction procedure of Section 4.2.4, often resulting in dramatic increases in word

accuracy.

Table 4.1 shows a variety of results, compiled across folds, for word accuracy

and character accuracy. Word accuracy is simply the percentage of words that are

completely correct, including the proper case. A single character error, even if just a

case disagreement, renders a word incorrect.

We show an improvement in word recognition accuracy due to similarity. With

and without error correction we attain larger than 3% improvement in word accu-

racy over the equivalent method with similarity removed. Our best result of 92.56%

achieves close to the same accuracy as our technique using ground-truth similarity.

Furthermore, this result is higher than the state of the art result of 86.05% reported

in [22]. See Figure 4.4 for examples of cases where the use of equivalence information

improved performance.

4.4 Discussion

Perhaps the most immediate question about our results is what caused the im-

provement? It is tempting to conclude that our large gain in performance was due

only to the search engine-based correction. However, a closer examination suggests
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IP Solution IP Solution
without Equivalence with Equivalence

Information Information
Via Wia Via Via

KELLOGE KELLOGG
ALAN N SHAREE ALAN N SHARPE

Figure 4.4: Sample signs from the data set where equivalence or difference information
improves recognition performance. The first two examples show how equivalence
information can improve recognition while the third example shows how difference
information can improve performance.

that we are squeezing more information out of similarity than was demonstrated in

previous work.

In particular, in previous work [66], it is shown that similarity can be beneficial

when there is a poor language model, but that when language information is added

in the form of a lexicon, the similarity information, as implemented, is of little ad-

ditional benefit. Specifically, without a dictionary, similarity information increases

word accuracy from 75.35% to 78.60%, for a gain of about 3.25%. But when a lex-

icon is added, it seems to reduce the benefits of adding similarity. With a lexicon,

similarity raises the accuracy only about 0.50%, from 85.58% to 86.05%.

However, in our work, even with the sophisticated language model implicitly de-

fined by the search engine queries, we still see a 4% gain in word accuracy from adding

similarity: from 88.37% to 92.56%. It is interesting to note that this occurs despite

the significantly smaller gain in character accuracy of about 2%. We hypothesize one

reason this may occur. If a word has exactly one error, and it violates an equivalence

constraint, then this constraint effectively forces the algorithm to choose a single la-

bel for the equivalent characters. If the algorithm is correct in this guess 50% of the
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time, then the character accuracy would not change, but the word accuracy would

be increased, since some of the single error words would be converted to zero errors,

and others would be converted to two errors. Despite this analysis, it is likely that

the system of Weinman et al. [66] would benefit significantly from post-processing

using the search engine technique. Hence, it is difficult to conclude from our current

experiments which combination of components would lead to the best overall system.

Given these observations, one direction for future work is to systematically vary

factors and study trade-offs between belief propagation with soft equivalence con-

straints and integer programming with hard equivalence constraints. In addition,

our similarity results can most likely be further improved by incorporating better

alignment algorithms before using our similarity expert.

4.5 Conclusion

In this chapter we described a novel approach to incorporating similarity infor-

mation that improves scene text recognition performance. We trained a similarity

expert that learned to classify each pair of characters in a sign image as equivalent

or not, and we formulated the search for the maximum likelihood interpretation of

a sign as an integer program. We incorporated the equivalence information as con-

straints in the integer program and built an optimization criterion out of appearance

features and character bigrams. Finally, we took the optimal solution from the inte-

ger program, and compared all nearby solutions using a probability model for strings

derived from search engine queries. We demonstrated word error reductions of more

than 30% relative to previous methods on the same data set with a word accuracy

rate of 92.56%.
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CHAPTER 5

A PROBABILISTIC SYLLABLE MODEL FOR
CHARACTER RECOGNITION

While many appearance models have been shown to perform very well for recogniz-

ing individual characters, language information is also important for improving recog-

nition results. Many existing techniques, including the one in the previous chapter,

incorporate n-gram information as an additional source of information. One problem

is that some n-grams are very uncommon, but will still appear in a word across a syl-

lable boundary and these words are given a low probability under an n-gram model.

To overcome this problem, we introduce a probabilistic syllable language model that

uses a probabilistic context-free grammar to generate recognized word labels that are

consistent with English syllables. We evaluate this language model for the problem

of character recognition compared to a bigram model and a dictionary model.

5.1 Probabilistic Syllable Model

We introduce a new probabilistic syllable language model that incorporates ad-

ditional information about syllables into the model. While many appearance models

have been shown to perform very well for recognizing individual characters [13, 41, 12],

language information is also important for improving recognition results, especially

in difficult images such as those shown in Figure 5.1. Many existing techniques in-

corporate n-gram information into their models, which describes how likely groups

of characters are to occur next to each other [41, 54, 66, 39]. This information is

very informative, but it is a highly local source of information so it can lead to word
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Figure 5.1: Sample scene text images with fonts that are difficult to recognize. Per-
formance can be improved by combining appearance information with language in-
formation.

labeling errors. For example, bigram models allow a word to have a high probability

as long as neighboring character labels have a high probability of occurring together.

This means that a word may have a sequence of three unlikely consonants, but the

probability will be high as long as each pair is likely to occur next to each other.

Additionally, pairs of neighboring characters that occur across a syllable boundary

may have a very low probability of occurring together, giving the entire word a low

probability. As an example, consider the word ‘Amherst’. The combination of ‘m’

followed by ‘h’ is very rare in English, and as a result the word has a low probability

under a bigram model.

We introduce a new probabilistic syllable language model that overcomes this

problem by incorporating additional information about syllables into the model. We

demonstrate the use of a probabilistic context-free grammar (PCFG), which encap-

sulates information about syllables, consonant groups and vowel groups in English
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and forces word labels to be consistent with a grammar. When humans encounter

a new word, we often parse the word into syllables first and then look at the vowel

and consonant sequences. This model produces word labels that can be parsed in the

same way, because each will be made up of syllables. As a result, each recognized

word generated under this language model is pronounceable. This type of syllable-

based language model is particularly useful for the domain of scene text recognition

where many of the words are proper nouns. These words are not likely to be in a

standard dictionary, but we can take advantage of the fact that they should all be

pronounceable.

This work is related to literature on probabilistic context-free grammars (PCFG).

In this work, we use a PCFG as a language model for a text recognition task. This was

done previously for mathematical equation recognition [36]. In addition, probabilistic

context-free grammars have been used as language models for speech recognition

tasks [21, 31]. They have also been used for syllabification tasks [23, 24].

5.1.1 Probabilistic Context-Free Grammar Definition

We model syllables in words with a probabilistic context-free grammar (PCFG). A

context-free grammar G is formally defined as a four tuple G =< V,Σ, R, S >, where

V is a set of non-terminal characters, Σ is a set of terminal characters, R is a set

of production rules and S is the start symbol. A probabilistic context-free grammar

associates a probability with each production rule. The probability of a particular

parse under a grammar can be found by multiplying the probabilities of each rule in

the parse.

Using a PCFG for our language model will incorporate a broader range of in-

formation. Instead of producing results which are consistent at the level of pairs

of characters, results under this model will be consistent at the syllable level. This

syllable model will also alleviate the problem of penalties on neighboring labels that
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cross a syllable boundary. Consider the example of the word ‘Amherst’ which was

mentioned previously. A syllable model can produce the syllables ‘am’ and ‘herst’,

which are both likely under a standard English syllable model, giving ‘Amherst’ a

high probability. Next we define the probabilistic context-free grammar and explain

our training method.

We define a PCFG G that has the following set of terminal characters,

Σ = { A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z }.

The set of non-terminals is,

V = {W,S,S1,S2,S3,S4,S5,S6,S7,S8,V,C,V1,..,V3, C1,..,C5}

with the start symbol of W .

The start symbol W represents a word. The non-terminal S represents a syllable

and S1-S8 represent the eight types of syllables in this grammar. Each syllable type

is made up of some combination of vowel and consonant sequences, represented by

the non-terminals V and C. Vowel sequences can be one to three vowels long and

consonant sequences can be one to five consonants long. Within each sequence, this

grammar models the character at each position explicitly from training data, repre-

sented by the non-terminals V1−V3 and C1−C5. The rules R are listed in Table 5.1.

Table 5.2 contains examples of words of varying lengths that are randomly gen-

erated from this grammar. These examples show that this grammar generates words

that are pronounceable. Note that they are not necessarily words in English, since

this grammar is only a basic approximation of English grammatical rules. The case

of each character is not taken into account by this grammar, so we converted these

examples to lowercase for readability, since letters can swap between uppercase and

lowercase within a word.
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W → S
W → SW
S → S1|S2|S3|S4|S5|S6S7|S8

S1 → V
S2 → CV
S3 → VC
S4 → CVC
S5 → VCe
S6 → CVCe
S7 → CVCeC
S8 → VCeC
V → V1|V2|V3

C → C1|C2|C3|C4|C5

V1 → a|e|i|o|u|y
V2 → aa|ae|ai|ao|au|ay|...|yy
V3 → aaa|aae|aai|aao|aau|aay|...|yyy
C1 → b|...|z
C2 → bb|...|zz
C3 → bbb|...|zzz
C4 → bbbb|...|zzzz
C5 → bbbbb|...|zzzzz

Table 5.1: The set of rules for our probabilistic context-free grammar.

Length 2 3 4 6 8
Words co nag tear tanluw ancenner

el sel pene enples opintest
ta bal whin esshep ritfurci
ni ner bini tyfmyc itentlec
am dow thaw enodan iinefoth

Table 5.2: Words of varying lengths that are randomly generated by our grammar.
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5.1.2 Model Training

We estimated the probabilities for this context free grammar on a combination of

two types of documents. First, we used a syllabified version of Webster’s dictionary

to count and normalize the information needed. Since a dictionary does not contain a

proportional amount of syllables (i.e. there are many words in a dictionary that start

with zy, but these do not occur nearly as often in real documents), we augmented

this training data with the same information from the top ten books from Project

Gutenberg1. We tested the three methods of just dictionary information, just book

information and both types of information together and found that all three per-

formed similarly. For the experiments in this thesis we use the combination method.

5.2 Experiments

In this section we compare the performance of a probabilistic syllable model to

three different models for text recognition. These include an appearance model, a

model that combines appearance and bigram information, and a model that combines

appearance and dictionary information.

5.2.1 Data Sets

We use two publicly available data sets in our experiments, VIDI and ICDAR

2011. They are both described in detail in Chapter 3. For these experiments, we use

the ground truth character location information provided by the VIDI data set. Since

ICDAR 2011 does not include character bounding boxes, we use the text segmentation

method in Chapter 6 to identify character locations.

Since the probabilistic syllable model produces labels from the 52 character classes

A...Za...z, we use subsets of both of these data sets created by removing words that

1http://www.gutenberg.org
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include punctuation and numbers. The ICDAR 2011 subset includes 1008 words and

the VIDI subset includes 209 words.

5.2.2 Appearance Model

Since the focus of this chapter is on demonstrating the benefit of using a prob-

abilistic syllable model, we use a very simple appearance model in our experiments.

We choose to use a logistic regression classifier because it is easy to train and produces

a conditional probability for each character class, given an input feature descriptor.

Note that this will not produce state-of-the-art character recognition results, but is

sufficient for showing the benefits of using our new language model over a bigram

model and a dictionary model.

We choose to use a histogram of oriented gradients (HOG) descriptor to model

the appearance of characters. This descriptor has been shown to work well for scene

text images [62, 61, 40, 39]. We resize each character to 60 by 60 pixels, and we

extract one HOG descriptor, centered over the image.

We use these descriptors to train a 52 class (A-Za-z) logistic regression classifier.

We use an implementation by Mark Schmidt [51]. This classifier is trained with

synthetic font images provided by Weinman et al. [66]. These are binary character

images for each character class in 1866 different fonts. We used 1866 positive example

images and 200 negative example images for each class.

Once trained, this classifier takes a feature descriptor from an image and produces

the conditional probability of each character class. To compute a word label for a

new word image using only appearance information, we extract a HOG descriptor

from each character image and find the maximum probability label for each using the

classifier.
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y1 y2 yn

x1 x2 xn

…

…

Figure 5.2: Hidden Markov model used to combine appearance information with
bigram probabilities.

5.2.3 Bigram Language Model

We also show the results of using appearance information with bigram language

information. These two sources of information can be combined using a standard hid-

den Markov model (HMM). This is represented by the graphical model in Figure 5.2.

Each output label yi takes into account the appearance of that character xi and the

previous label yi−1 Given this model, we know that,

p(x,y) = p(y1) ∗
N−1∏
i=1

p(yi+1|yi) ∗
N∏
i=1

p(xi|yi)

Our goal is to find the word labels y that maximize that probability. We do this

using the Viterbi algorithm, which uses dynamic programming to efficiently compute

the most probable character labels, given appearance and bigram probabilities [59].

To compute a word label for a new word image we extract appearance information

using the process described in the previous section and estimate bigram probabilities

from a collection of books from Project Gutenburg.2 We then use the Viterbi algo-

rithm to compute the most probable word label given the appearance and bigram

information.

2http://www.gutenberg.org/

44



5.2.4 Probabilistic Syllable Language Model

In comparison, we show the result of using appearance information with our prob-

abilistic syllable model (PSM). One of the benefits of using a probabilistic context-free

grammar is that a dynamic programming algorithm exists to efficiently search for the

most probable parse of a sequence of characters under a grammar. This algorithm

is called CYK [76]. So for a new word image, we extract HOG descriptors for each

character, and calculate the conditional probability for each class using the logistic

regression classifier described above. We alter CYK slightly to include these appear-

ance probabilities. So for each character, we give CYK a different distribution over

the terminal characters, based on the appearance model probabilities for that char-

acter. Then, we run the standard CYK algorithm to find the most probable output

labels using our probabilistic syllable language model.

5.2.5 Dictionary Language Model

We also compare the performance of a probabilistic syllable model to the per-

formance of a dictionary model. To label a new word image using a dictionary, we

evaluate the probability of each word in the dictionary by multiplying the appearance

probabilities of each character in the word. Then, we choose the dictionary word with

the highest probability as the label. Since a dictionary does not include case informa-

tion, we evaluate three versions of each dictionary word, one in all uppercase letters,

one in all lowercase letters and one in title case with the first letter in uppercase

and the rest in lowercase. In order to make a fair comparison to the probabilistic

syllable model, we modify the labeling process to include case as well. We generate

label versions using CYK, restricted to choose only uppercase letters, only lowercase

letters, or an uppercase letter followed by all lowercase letters.
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VIDI ICDAR11

Appearance 29.19 14.09

Appearance + Bigrams 31.10 15.38

Appearance + PSM 33.49 16.37

Table 5.3: Word accuracy results comparing a probabilistic syllable model to a bigram
model on the VIDI and ICDAR11 data sets.

VIDI ICDAR11

Appearance + PSMcase 59.33 27.38

Appearance + Dictionarycase 57.42 30.46

Table 5.4: Word accuracy results comparing a probabilistic syllable model to a dic-
tionary model on the VIDI and ICDAR11 data sets.

5.2.6 Results

We computed word labels for images in both data sets using appearance infor-

mation, appearance and bigram language information, and appearance information

combined with our probabilistic syllable model. The word accuracy results are shown

in Table 5.3. This experiment shows that on the VIDI data set, the word accuracy in-

creased by around 2% when bigram language information is added and by another 2%

when the probabilistic syllable model is used, compared to the bigram model. For the

ICDAR 2011 data set, the word accuracy increased by 1% each time. This demon-

strates the benefits of using a more sophisticated model, that can capture correct

language information across syllable boundaries.

Table 5.5 shows the output of the HMM model and the PCFG model for some

sample scene text images. Each of these examples shows the benefit of using a prob-

abilistic context-free grammar as a language model instead of a bigram model. As

mentioned previously, one of the downfalls of a bigram model is that it gives high

probabilities to entire words as long as each pair of neighboring characters is likely

to occur together. In the first example, ’lm’ and ‘mb’ are common bigrams, but
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(a)

Word HMM Output PCFG Output
1 AMHERST LMBERst AMHERst
2 PRODUCTS pPOoUCTS pRODUCTS
3 Essex SssEx EssEx
4 address Rdiness address
5 Attorney Nttorney Attorney
6 Oldenburg Cldenburg oldenburg

(b)

Table 5.5: Output of the HMM model vs. the PCFG model for sample scene text
images.

put together in a sequence they become highly unlikely. The PCFG constructs re-

sults by syllables instead, so the output in each example, even if it is incorrect, is

pronounceable.

We also computed word labels for images in both data sets using appearance

information and a dictionary, compared to appearance information and a probabilistic

syllable model. The word accuracy results are shown in Table 5.4. On the VIDI

data set, the syllable model performs better than the dictionary model with a word

accuracy of 59.33% compared to 57.42% using the dictionary model. On the ICDAR

2011 data set, the dictionary model performs better with a word accuracy of 30.46

% compared to 27.38% using the probabilistic syllable model. The strength of the
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dictionary model is that it maps each word image to the best dictionary word. The

downfall is that it cannot produce labels that do not occur in the dictionary. In

contrast, the probabilistic syllable model labelled 16.67% of the ICDAR 2011 non-

dictionary words correctly, and 33% of the VIDI non-dictionary words correctly. This

makes the probabilistic syllable model a better choice for data sets that include a

large fraction of non-dictionary words.

5.3 Discussion

This model suggests several directions for future work. The first is to explore

changes to the grammar definition. In this chapter, we defined a grammar that

models each syllable as a sequence of consonant and vowel groups, and models the

probabilities of each combination of consonants or vowels within those groups. This

grammar does not use any information about how often syllable types occur next to

each other, which can be a problem, for example, when words are generated with two

vowel groups next to each other. We could alter the grammar to include information

about what types of syllables occur near each other. As another extension, we could

also learn how consonant and vowel groups relate to one another, i.e a particular

vowel group follows a particular consonant group with high probability.

The experimental results in Table 5.3 and Table 5.4 also show the motivation for

incorporating case information into the model. We see a large increase in accuracy

on both data sets when case information is added to the probabilistic syllable model.

Without this information, the case can swap between lowercase and uppercase in the

middle of a word. One special case we discovered is when words have an uppercase

letter in the middle of the word. This can occur in business names, i.e. PeoplesBank.

The uppercase letter is likely to occur at the beginning of a syllable, so a syllable-based

language model like this is a natural choice to handle this special case.
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It should also be noted that the particular grammar presented in this chapter could

also be represented as a regular grammar using a finite state machine, or a composition

of finite state machines. We chose to represent it as a context-free grammar here for

several reasons. First, as described in Section 5.2.4, the standard CYK algorithm

generates the most probable parse under a grammar in O(n3) time, which we found

to be practical in our experiments. In contrast, representing the grammar as a set

of finite state machines was cumbersome, and the machines were very large due to

having 52 character classes. In practice we found the amount of memory required

for our implementation to be prohibitively large. In addition, there is no standard

algorithm, like CYK, for finding the most probable string under a finite state machine.

In addition to these difficulties, as discussed above, many other grammar definitions

may be explored in future work. These extensions may not be regular grammars, so

having a more general framework for generating the most probable parse is beneficial.

5.4 Conclusion

In this chapter, we presented a new language model for scene text recognition.

It incorporates more sophisticated language information by modeling syllables with

a probabilistic context-free grammar. This approach is a better model of language

information across syllable boundaries, so words with unlikely bigrams that cross

syllable boundaries are not penalized. In addition, words are made up of syllable

components, so word labels produced are pronounceable. In our experiments, we

showed an increase in recognition performance when using this language model, com-

pared to a bigram model and show the benefits of using it compared to a dictionary

model.
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CHAPTER 6

BILATERAL REGRESSION SEGMENTATION

We present a new model for segmenting text in natural scene images called bi-

lateral regression segmentation. This technique allows us to remove the assumption

made in previous chapters that character bounding boxes are given, but still assumes

that word bounding boxes are given. The model is motivated by the observation that

many scene text images contain smooth color changes due to lighting conditions and

these images are not handled well by existing segmentation techniques based on color

clustering. Instead, we use a regression to model these changes closely and show that

we can segment images that are often missed by other techniques. We also describe

a cropped word recognition system that combines bilateral regression segmentation

with simple, yet effective, components for recognition. We evaluate this system on the

problem of word spotting, where recognized words come from a small, pre-specified

lexicon of valid labels.

6.1 Text Segmentation

During the segmentation stage, our goal is to separate pixels in an image into two

groups. The foreground should contain pixels that represent text, and all other pixels

should be assigned to the background. Some existing object segmentation techniques

divide images into coherent regions. However, in a scene text image, disjoint letters

may be segmented as different regions, with no way to associate them as all belonging

to the foreground. Other segmentation techniques use color information to group

regions that are similar [55, 60, 26, 64, 38]. These work well when images have two
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(a) Original Images

(b) Segmentation by Otsu’s method

(c) Bilateral Regression Segmentation

Figure 6.1: Sample images where the color changes across the image. We model these
changes using a regression-based segmentation method. This figure is best viewed in
color.

distinct colors, but as colors change across images and image backgrounds become

more complex, it becomes harder to find the correct distinction between background

and foreground pixels.

We observe that in scene text images, the foreground pixels are very often a sin-

gle constant or smoothly varying color and the background may be very complex.

Figure 6.1 shows examples of images with colors that change across the image. Fig-

ure 6.2 shows examples where there are more than two prominent colors in an image

and backgrounds are complex. To address these characteristics of scene text images

and problems with existing techniques, we present a regression-based segmentation

technique.

Regression allows us to model the smoothly varying color changes that often oc-

cur due to lighting. One possible approach for modeling an image with regression

is to use a mixture of regressions. This is also known as a mixture of experts [49].

To optimize such a model, an expectation-maximization procedure can be used to

alternate between assigning pixels to different regressions and re-estimating the re-

gressions based on the assignments. These can be hard or soft assignments. This
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Figure 6.2: Sample images with complex backgrounds and their segmentations using
bilateral regression.

Figure 6.3: Sample segmentations that result from poor initialization using a mixture
of two regressions.

type of method poses several difficulties. First, it can be difficult to initialize these

models. Figure 6.3 shows examples of the type of segmentations that can result from

poor initialization. Also, the complex backgrounds often found in scene text images

are not well modeled by simple mixture models.

Instead of modeling every pixel in an image with a regression as the mixture of

regressions framework does, we propose a technique that only models a subset of the

pixels. We present a method to extract and model just the subset of pixels that

belong to a coherent region that we are interested in modeling (like the foreground).

This gives us a simple way to model pixel colors without the results being affected
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by nearby, unrelated pixels. We use this technique to model foreground hypotheses

and present a selection procedure that chooses the best foreground segmentation from

this set. Since this allows us to ignore background pixels, this technique is robust for

images with complex backgrounds.

6.1.1 Bilateral Regression Segmentation

We now introduce our regression based segmentation technique that models only

the foreground of each image. We call this method bilateral regression, because it

borrows ideas from bilateral filtering [1, 57].

Polynomial regression models can be used to model the relationship between two

variables x and y as a polynomial curve. The order of the polynomial changes based

on the relationship between x and y. A regression model of order one is the line that

best models y as a function of x,

y = ax+ b

Similarly, a regression model of order two is the quadratic curve that best models y

as a function of x,

y = ax2 + bx+ c

This can be easily extended to two dimensions, where the regression models the

relationship between three variables, x, y and z,

z = ax2 + by2 + cxy + dx+ ey + f

This model represents the quadratic surface that best models z as a function of x and

y. In this form, a regression model can be used to model smooth brightness changes

in an image. We use color images in this work, which can be modeled using a separate

quadratic surface for each color plane.
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Each of the above equations can be re-written in matrix form. In the one dimen-

sional linear case,

y = ax+ b

=



x1 1

x2 1

. .

. .

. .

xn 1



a
b



= XC

And similarly, for a two dimensional quadratic regression,

z = ax2 + by2 + cxy + dx+ ey + f

=



x2
1 y2

1 x1y1 x1 y1 1

x2
2 y2

2 x2y2 x2 y2 1

. .

. .

. .

x2
n y2

n xnyn xn yn 1





a

b

c

d

e

f


= XC

The vector of coefficients defining the model can be found using a least squares ap-

proach. This leads to a solution that minimizes the sum of squared differences be-

tween the data and their values predicted by the model. Given the matrix notation

described above, we can find the following solution for the regression coefficients C,
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y = XC

X>y = X>XC

(X>X)−1X>y = (X>X)−1X>XC

C = (X>X)−1X>y

It is also possible to find a weighted least squares solution, where there is a weight

associated with each data point.

Our goal is to model only the foreground of an image, so our approach is to use

a weighted regression, where each pixel is weighted according to how close it is to

the foreground in feature space. This allows the regression to select out pixels we are

interested in modeling (those that are part of the foreground text) and to ignore pixels

that are a poor fit (those that are part of the background scene). Since we do not

know the color of the foreground text a priori, we model the top n most prominent

colors in each image separately and then automatically select the best segmentation.

For each foreground color, we calculate pixel weights as in bilateral filtering to

select the subset of similar pixels automatically. Each pixel is weighted according to

its spatial distance from a representative seed pixel, combined with its distance in color

space. To calculate these distances, we use two Gaussian distributions generated from

the seed pixel p from image I. We define p = I(x, y) to have color cp = (rp,gp,bp). The

first distribution Gs is a two dimensional Gaussian distribution based on the spatial

location of pixel p. It has µ = (x, y) and σ = σs in both dimensions. The second

distribution Gc is a three dimensional Gaussian distribution based on the color of

pixel p with µ = (rp, gp, bp) and σ = σc in all dimensions. The weight of each pixel q

with color cq is then

wq = Gs(||p− q||) ∗Gc(||cp − cq||).
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(a) Original Image (b) Error Image (c) Segmentation

Figure 6.4: A sample image, the corresponding regression error image (blue represents
low error and red represents high error) and the resulting segmentation image. This
figure is best viewed in color.

These weights allow the regression model to ignore pixels that are a poor fit, so the

regression represents a close fit to the foreground pixels. Additionally, the model can

ignore an arbitrary amount of data that is too far away in feature space. This can be

thought of as a type of image-adaptive robust regression, just the way the bilateral

filter can be thought of as a image-adaptive, robust way of estimating the local mean

of an image. This idea is similar in spirit to several extensions to the bilateral filter

that include linear components [6, 11, 16]. However, our goal is not to smooth images,

but to use the weights to select a subset of pixels to build a local model that fits the

data well.

We can create a segmentation from this model by calculating the error between

each pixel and the model. We threshold the error image using Otsu’s method to

obtain a segmentation. Figure 6.4 shows a sample image, the regression error image

and the resulting segmentation.

Once we have segmentations for the n most prominent color regions, we want

to automatically select the segmentation representing the true foreground. To do

this, we choose the segmentation with the components that can best be recognized as

characters. We represent each cropped connected-component image with a histogram

of oriented gradients (HOG) descriptor and calculate the l1 distance to each image in

a reference set of synthetic character images from 200 different fonts for 62 character

classes. These include twenty-six uppercase letters, twenty-six lowercase letters and
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Figure 6.5: System Overview.

ten digits. The images are provided by Weinman [66]. The score of a segmentation

image is the average of minimum distance for each component.

Before scoring connected components, we filter out noisy components that are not

likely to be text. We remove components that have a height of less than one third

of the image height and those that are more than 2.5 times as wide as they are tall.

We also remove components that span the entire width or height of the image, since

we know that the input images have a at least a small border around each word. In

addition, we filter out images that contain a large amount of overlapping connected

components, since the characters in a good segmentation should not be overlapping.

We want to choose a segmentation with foreground components that cover the

image area as much as possible, so we choose the segmentation with the best score

from the those that are within 10 percent as covered as the most covered of the

choices.

6.2 A Complete Word Spotting System

We combine bilateral regression segmentation with simple components for recog-

nition to create a complete word recognition system. An overview of this system is

shown in Figure 6.5. Specifically, we address the problem of word spotting, where

word labels are chosen from a small, pre-specified lexicon. This problem was intro-

duced by Wang et al. [62, 61].
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For each connected component in a segmentation image, we compute similarity

scores to each of the 62 possible character classes. As above, we represent each

cropped connected-component image with a HOG descriptor and calculate the l1

distance to each image in the reference set described in the previous section. We use

a nearest-neighbor approach where the similarity score for each character class is the

distance to the nearest neighbor in that class. So for each connected component, we

compute a vector of 62 similarity scores.

Given these similarity scores, we want to choose the most likely lexicon word

label for an image. For each character, we form an equivalence class containing the

three character classes with the highest similarity. Then we calculate the string edit

distance to each lexicon word, where the substitution of a character for a member

of its equivalence class has zero cost. The string edit distance returns the minimum

number of insertions, deletions and non-equivalence class substitutions required to

transform one string into the other. We label the image with the lexicon word that

has the smallest edit distance. If there is more than one lexicon word with the smallest

edit distance, we repeat the process, only we form larger equivalence classes from the

top ten choices for each character. We do this because we want to favor words that

include characters that were found to be similar in appearance. We calculate the edit

distance to the remaining tied words and choose the lexicon word with the smallest

value. If tied words remain, we choose a random word from this final set of ties.

6.3 Experiments

In the following sections, we evaluate both our proposed segmentation method

and our complete word recognition system.
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Figure 6.6: Word recognition accuracy results for different numbers of segmentation
choices

6.3.1 Parameter Selection

For our experiments, we chose the value of n segmentation choices by looking at

the performance of a range of values on a training set. We use the ICDAR 2003

training set, which is described in Chapter 3. For each number of segmentation

choices from two to ten, we calculated the word recognition accuracy of our system.

Figure 6.6 contains results of this experiment. This shows that the accuracy of our

system is not very sensitive to the choice of this parameter. We use a value of n = 6

for all experiments described in this paper since it performs the best.

We set values for σs and σc for the regression weights experimentally. For all

experiments on all data sets, σs is one third of the image width and σc = 10.

6.3.2 Bilateral Regression Segmentation Evaluation

To evaluate the new segmentation technique we propose in this paper, we need to

compare the segmentations we produce to those produced by existing segmentation
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methods for scene text. One way to do that is to compare the segmentations to

foreground/background ground truth information for a data set. As far as we know,

complete ground truth information does not exist for any scene text data set, including

the widely used ICDAR scene text data sets. In addition, this analysis does not

capture exactly what we are interested in evaluating. Since the segmentation of scene

text is done as an initial step for a recognition process, we want to compare whether

our segmentations allow us to recognize words better than another segmentation

method. We do this by varying the segmentation method used by our complete

recognition system.

6.3.2.1 Data set

We use the ICDAR 2003 data set for this evaluation. We use the scene test

set instead of the word test set because we were provided segmentations from the

state-of-the-art segmentation method published by Mishra et al. [38] for direct com-

parison. We use the ICDAR03(50) and ICDAR03(FULL) lexicons that are described

in Chapter 3.

6.3.2.2 Results

Table 6.1 shows the word recognition accuracy for both lexicon versions for the

ICDAR 2003 data set. These results are evaluated in a case-insensitive way. This

means that the label ‘The’ for an image with ground truth ‘THE’ is considered correct.

Since our algorithm may contain a random choice during the labeling process, the

accuracies we report are the average over 50 trials. We compare our technique to two

existing segmentation methods. The first is Otsu’s method [47] and the other is by

Mishra et al. [38].

These results show that our segmentation method provides more accurate recog-

nition than existing methods. Our method is also more than an order of magnitude
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Segmentation Method ICDAR03(FULL) ICDAR03(50)
Otsu 58.81 66.40
Mishra et al. 66.33 74.76
Bilateral Reg. 67.76 76.53

Table 6.1: Word accuracy for word spotting on the ICDAR 2003 scene data set of
1107 words.

faster than the method by Mishra et al. Their method takes an average of 32 seconds

per image while our method takes an average of 3 seconds per image.

6.3.2.3 Segmentation Selection Evaluation

Since our method produces n segmentations and chooses the best automatically,

we want to analyze this selection process. We performed the following experiments

using the ICDAR 2003 data set. We compare our selection process to two baseline

selection techniques and an oracle. The first baseline process is to always choose

the segmentation created by the most prominent color in the image (assuming it is

the foreground). The second baseline process is to always choose the segmentation

created by the second most prominent color in the image (assuming that the most

prominent is the background). The oracle chooses the segmentation that results in the

best labeling of an image. That is, if a segmentation results in the correct labeling it

is chosen. The word accuracies for the first and second baseline processes are 13.24%

and 44.23% respectively and the word accuracy of the oracle is 71.80%. The word

accuracy for our selection process is 66.94%, which is just a few percent less than the

oracle. This shows that the high level recognition information we use in our selection

process plays an important role in improving segmentation selection.

6.3.3 Complete Word Recognition System Evaluation

We evaluate our complete word recognition system by comparing it to the existing

state-of-the-art system for the problem of word spotting.
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ICDAR03(FULL) ICDAR03(50) SVT
Wang et al. 62.00 76.00 57.00
Otsu + Word Rec. 67.21 72.13 43.16
Bilateral Regression + Word Rec. 73.43 79.47 54.20

Table 6.2: Word accuracy for word spotting on the ICDAR 2003 and SVT data
sets. The ICDAR 2003 data set used is a subset of the original, to allow for a fair
comparison to existing work.

ICDAR03(FULL) ICDAR03(50) ICDAR11(FULL) ICDAR11(50)
Bilateral Regression 66.78 76.03 62.28 72.69

Table 6.3: Word accuracy for word spotting on the complete ICDAR 2003 and ICDAR
2011 data sets.

6.3.3.1 Data sets

We evaluate our method on three data sets, ICDAR 2003, ICDAR 2011 and SVT.

We use the ICDAR(50) and ICDAR(FULL) lexicons. These are all described in

Chapter 3.

For ICDAR 2003, we follow the experiments of Wang et al. [61] and present results

on a subset. We remove all words that contain non-alphanumeric characters and those

with a length of two or less, for a total of 862 words. We also present results on the

complete test set to allow for future comparisons with our method. We do not know

of any existing word spotting results for the ICDAR 2011 data set, but provide ours

for future comparison and completeness.

6.3.3.2 Results

Table 6.2 shows the word recognition accuracy for both lexicon versions for the

ICDAR 2003 data set and the SVT data set. As in the previous evaluation, these

results are also evaluated in a case-insensitive way. Additionally, the accuracies we

report are the average over 50 trials. We compare our method to the current state
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Figure 6.7: Examples of words that we identify correctly and their foreground seg-
mentations.

of the art system by Wang et al. [61]. We also compare to a version of our word

recognition system that uses Otsu’s method for segmentation.

Using our method, there is a large increase in word accuracy using the IC-

DAR03(FULL) lexicon from 62% to 73.43%. This is a 30% reduction in error over the

current state of the art. There is also a smaller increase from 76% to 79.47% using the

ICDAR03(50) lexicon and a decrease from 57% to 54.2% for the SVT data set. Fig-

ure 6.7 shows examples of sign images that we label correctly and their segmentations.

Figure 6.8 shows examples of sign images that we label incorrectly. The difficulties

include low resolution, low contrast, abrupt lighting changes and connected text.

Table 6.3 shows the word recognition accuracy for word spotting on the complete

ICDAR 2003 and ICDAR 2011 data sets. These are provided for future comparison

and completeness.
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Figure 6.8: Sample images that we identify incorrectly. Characteristics that make
these images difficult are low resolution, abrupt lighting changes, connected text, and
low contrast.

6.4 Discussion

In our experiments, we see a large increase in word accuracy on the ICDAR 2003

data set, but a modest decrease on the SVT data set. We believe this is because the

images in the SVT data set are much more difficult to segment. Overall, they have

a lower resolution than the images in the ICDAR03 data set and they exhibit more

artifacts due to blur. This may be because they were collected from Google Street

View and the images are taken from a moving vehicle. In this setting, approaches

that do not rely on segmentation seem to perform better. However, when images have

sufficient resolution and less blur, such as in the ICDAR 2003 data set, our approach

based on segmentation performs better.

We chose a segmentation-based approach because we observed that by segmenting

images into foreground and background components, we can eliminate many areas of

the image that might exhibit features of text. We believe that this contributes to the

method’s success in many instances. The disadvantage to this approach is that if text

is connected, or if an image is blurry or low resolution and the boundary between
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characters becomes less clear, it is difficult to find the correct segmentation. This is

because our technique relies on recognizing distinct connected components to select

the best segmentation.

There are many directions for future work that may improve this method. As

discussed above, the biggest weakness of this segmentation method is that it relies

on characters being distinct connected components in order to choose the best of

n segmentations, so it does not work well on connected or blurred text. It would

likely improve performance to adapt the segmentation selection procedure to not rely

on text being separated. It should also be advantageous to use a better recognition

model in the segmentation selection procedure. Right now we use a nearest neighbor

approach, but this could be replaced with a logistic-regression classifier, like the one

described in the previous chapter, or a CRF-based recognition model like the one

described in the next chapter. In this work, we use the average character distance

over a word as the score of a segmentation, but changes to this score function could

also be explored.

Another weakness of this work is that it is evaluated using the task of word spot-

ting. While this captures the fact that we want to evaluate our segmentation tech-

nique by how well it allows us to recognize words, it does not provide a full picture

of how changes to the segmentation technique change performance. This is because

word spotting requires that we choose a label from a pre-specified lexicon. Consider

the case where there maximum probability character labels predict ‘SGHOOL’, and

this maps to the word spotting label ‘SCHOOL’. A change to the segmentation tech-

nique may produce the character labels ‘SCHOOL’, and we should prefer this version

of the method. Unfortunately, this also maps to ‘SCHOOL’, so we won’t see any

change in the word spotting performance. A better evaluation would be on the task

of open-vocabulary word recognition, where words are not chosen from a pre-specified

lexicon.
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6.5 Conclusion

In this chapter, we presented a new model for segmenting text in natural scene im-

ages of cropped words called bilateral regression segmentation. We used a regression-

based technique to model smooth color changes in just the subset of pixels that belong

to the foreground text, while ignoring the background pixels altogether. We showed

that it is suitable for segmenting images with color changes like those caused by light-

ing and complex backgrounds. We evaluated this method compared to the current

state-of-the-art on the task of word-spotting and showed that our method leads to

better recognition accuracy.
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CHAPTER 7

A WEB-BASED LEXICON FOR OPEN-VOCABULARY
WORD RECOGNITION

In the previous chapter, we relied on a pre-specified, small lexicon for possible

word labels. This utility of this system is limited, since text in the environment is

likely to contain proper nouns and other words that will not appear in a general lex-

icon and specialized lexicons have to be built by hand. Instead, in this chapter we

present a system for open-vocabulary cropped word recognition. We present a new

approach for incorporating web-based language information that improves recogni-

tion performance. We also describe a complete system for open-vocabulary word

recognition that combines the segmentation method from the previous chapter with

a standard method for recognition and an error correction step that relies on the

web-based language information. We evaluate this system compared to existing state

of the art approaches.

7.1 A Web-Based Lexicon

Lexicon information has been shown to improve performance in scene text recog-

nition. However, general lexicons are not likely to contain the proper nouns and

other words that appear in scene text images. To address this problem, Donoser et

al. introduced the idea of using document frequency counts for a query from a search

engine as a source of global language information in word recognition [15]. This in-

formation source is always changing and reflects new words, like business and street

names. Unfortunately, this process can be slow for researchers, since most search en-
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gines limit query submissions to one query per second and only allow a small number

of queries per month through the API without paying fees.

To overcome these limitations, we introduce a new approach to incorporating web-

based language information. We use a static word n-gram data set called Web 1T

5-gram released by Google [5]. It includes words that occur in a crawl of the web

and their term frequencies. Since this information does not require querying a search

engine, we can incorporate language information efficiently.

We construct a lexicon containing the word unigrams in the Web 1T 5-gram data

set and the frequency count associated with each. The frequency count is the number

of times a word unigram occurs on web pages. This lexicon contains around 13.5

million words. Since it is created from word unigrams that are found on the web,

many entries are misspelled words or contain symbols within a word. The word

unigrams are not processed at all to remove these errors, the data set contains all

word unigrams found on the web crawl. Our method is robust to these included

entries because we use the frequency count information to determine how common

each entry is. We describe how we use this lexicon for error correction in the next

section.

7.2 An Open-Vocabulary Word Recognition System

The word recognition system we describe in this section is shown in Figure 8.1.

First, we segment each cropped word image into foreground and background compo-

nents using the text segmentation method presented in the previous chapter. Given

the characters from this segmentation, our goal is to find the best word label given

appearance and character bigram probabilities for the characters and global language

information from a web-based lexicon. We could evaluate the probability of every

lexicon word based on this information and choose the word with the maximum

probability, but since it contains over 13.5 million words this approach is too ex-
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Figure 7.1: This describes a step-by-step example of our system. First, an image is
segmented into foreground text and background. Next, a conditional random field
(CRF) model is used to find the most likely text string, given the connected compo-
nents in the segmentation. Finally, web-based error correction is performed, where
global language and appearance information are combined. The most likely hypoth-
esis is chosen as the final text label.

pensive. Instead, we describe a fast approximation to this approach. We use the

Viterbi algorithm to find an initial word label based on just appearance and bigram

probabilities, and then we correct any errors in the initial label by evaluating the

probability of lexicon words that are within 2-characters of this label given global

language information.

Below, we explain the process for finding an initial word label and describe the

fast web-based error correction step in more detail.

7.2.1 Initial Word Recognition

Given the binary foreground/background image output by bilateral regression

segmentation, we use a CRF model to produce an initial text label for each image.
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Figure 7.2: We use a linear-chain conditional random field (CRF) model.

We consider each connected component in the binary image as a character and we

use a linear-chain CRF to represent the sequence of those characters in a word. A

graphical representation of the model is shown in Figure 7.2. The open circle nodes

are observed and the shaded nodes are variables that are predicted by the model.

The variables Y1, Y2, ..., Yn are character labels, and can take one of the 62 different

labels from the set A-Z, a-z or 0-9. The variables X1, X2, ..., Xn represent appearance

features of each individual character.

We create appearance features by extracting one HOG descriptor from each char-

acter, centered and covering the entire character image. These are the same appear-

ance features used in the segmentation step above. We also add a weak case feature to

represent the height of each character. This feature value is the height of a character

divided by the height of the tallest character in the same word. We concatenate the

HOG descriptor with the case feature value into one feature vector.

We estimate the CRF model parameters with maximum likelihood training by

minimizing the negative log-likelihood of the objective function. We use both the

ICDAR 2003 training set and the ICDAR 2011 training set as training data. We

found that this was not enough data to learn a good model, so we also generated

synthetic training data. This was straightforward because we are using binary fore-

ground/background images. We generated our own using the set of synthetic fonts

introduced by Weinman et al. [66], described in Chapter 3. We selected a random
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word from a dictionary and a random font, and generated each word as white text

on a black background. We included words in lowercase, uppercase and title case.

Next, we use the Viterbi decoding algorithm to find an initial word label, given

the CRF model [59]. This is a fast, dynamic-programming solution for finding the

joint configuration of labels Y1, Y2, ..., Yn that has the highest probability. We also

compute three other word labels to encourage case consistency. We know that text

is usually written either in all uppercase letters, all lowercase letters, or an uppercase

letter followed by all lowercase letters (title case). We compute a word label for each

version by restricting the Viterbi algorithm to use only these subsets of characters.

Since our model only includes a weak case feature, this method helps to produce

labels that follow the case patterns that we expect to see most often. We use the

restricted version of the Viterbi model to produce these word labels instead of just

transforming the initial word label to have the case patterns since many characters

look different in lowercase and uppercase.

7.2.2 Web-based Error Correction

We use a web-based error correction step to fix any errors in the initial text labels,

which uses the web-based lexicon described in Section 7.1.

To correct errors, we build a list of hypotheses for possible word labels, evaluate

each hypothesis based on the appearance and the global language information ob-

tained from the lexicon, and choose the most likely hypothesis. We begin with the

four initial word labels from the previous step, and add hypotheses to this set for all

two-character edits of these strings. This means that each hypothesis added must

have the same length as the original word labels, but can have up to two characters

that are different. We add all two character edits because it allows us to correct a

large amount of errors while maintaining a reasonable running time.
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Next we calculate the language probability, pl, for each hypothesis, which is the

term frequency count normalized by the sum of all frequency counts in the hypothesis

list. To get the final probability of a hypothesis, we multiply this by the appearance

probability, pa, of each character in the word. This value comes from the node

marginals from the CRF model trained in the previous step. To summarize, the

probability of a hypothesis h with characters c1...cn in the error correction step is

p(h) = pl(h) ∗
n∏
i=1

pa(ci).

We choose the hypothesis with the highest probability as the final word label for the

error correction step. If none of the hypotheses can be found in the lexicon, we back

off to the initial word label from the previous step. This allows us to label images

with words that are not found in the lexicon.

This error correction step is important because prior to incorporating this global

language information, the CRF model used only character bigram information. While

bigrams are useful for improving labels, they contain local information. In practice,

many words contain bigrams that are highly unlikely if looked at alone. For example,

the word ‘Amherst’, contains the characters ‘mh’, which have a low bigram probabil-

ity. However, as a word, Amherst is a common town name. To recognize words like

this correctly, global language information is required.

7.3 Experiments

7.3.1 Implementation Details

We use a software package for graphical models by Mark Schmidt to implement

the CRF model in this paper [51]. This package includes standard methods for pa-

rameter estimation, inference and decoding. Using this implementation, our method

for finding initial word labels is efficient. It took an average of .09 seconds per image

to find the four initial word labels.
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ICDAR 03 (S) ICDAR 11

Without Error Correction 52.90 41.04

With Error Correction 62.76 48.86

Table 7.1: Word accuracy results with and without web-based error correction.

Our techniques for text segmentation and error correction are also efficient. We

implemented bilateral regression segmentation and error correction in Matlab and the

average running time for our unoptimized segmentation code on a standard desktop

is around 3 seconds over the ICDAR 2003 test set. The smallest image in this set

is 17 x 12 pixels and the largest is 630 x 1204 pixels. The average size is around 70

x 200 pixels. The average running time for our unoptimized error correction code is

also 3 seconds per image.

7.3.2 Complete System Evaluation

We evaluate our complete system on the task of open-vocabulary word recognition

using the ICDAR 2003 and ICDAR 2011 data sets. These are described in more detail

in Chapter 3.

In order to compare against existing work, we follow the experiments of Mishra

et al. [39] and present results on a subset of the ICDAR 2003 data set. It is created

by removing all words with non-alphanumeric characters and all words with less than

three characters. The evaluations on this subset are done in a case-insensitive way.

For the ICDAR 2011 data set, we present results on the complete data set and,

following previous work, evaluate results in a case-sensitive way.

Table 7.1 shows the word accuracy of our system with and without error correction.

Performance increases by almost 10% on ICDAR 2003 and over 7.5% on ICDAR

2011. This shows the importance of using web-based error correction. Table 7.2

shows our results compared to existing methods. On the ICDAR 2003 data set our

method increases word accuracy by over 4.5% over the existing state-of-the-art. For
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ICDAR 03 (S) ICDAR 11

Neumann’s Method [52] - 33.11

KAIST AIPR System [52] - 35.60

TH-OCR System [52] - 41.2

Mishra et al. [39] 57.92 -

Our Method 62.76 48.86

Table 7.2: Open-vocabulary word accuracy results for word recognition on the ICDAR
2003 and ICDAR 2011 data sets. The first column is a subset (S) of the data set with
all words with non alpha-numeric characters or less than 3 characters removed. The
reduced set is evaluated in a case insensitive way. The second column includes the
complete data set and is evaluated case sensitive.

Total Edit Distance Word Accuracy
PhotoOCR [4] 122.7 82.83
PicRead [45] 332.4 57.99
NESP [27] 360.1 64.20
PLT [29] 392.1 62.37
MAPS [28] 421.8 62.74
Feild’s Method 422.1 47.95
PIONEER [67] 479.8 53.70
Baseline: ABBYY OCR 539.0 45.30
TextSpotter [43] 606.3 26.85

Table 7.3: ICDAR 2013 Robust Reading Competition results.

the ICDAR 2011 data set, our method increases word accuracy by over 7.5% over

the best method submitted to the Robust Reading competition. These results show

that our technique out-performs state-of-the-art methods for open-vocabulary word

recognition. Figure 7.3 shows examples of words that were recognized correctly with

this system and Figure 7.4 shows several failure cases.

7.3.3 ICDAR 2013 Robust Reading Competition Results

We also evaluated our system on the ICDAR 2013 data set by submitting to the

ICDAR 2013 Robust Reading competition on the task of cropped word recognition.
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Figure 7.3: Sample images that we recognize correctly. This image is best viewed in
color.

Figure 7.4: Sample images that we recognize incorrectly. Characteristics that make
these images difficult include low resolution, abrupt lighting changes and low contrast.
In addition, words that do not appear in the web-based lexicon, but look similar to
something that does can be confused. Here ‘lowns’ is recognized as ‘Towns’ and ‘20p’
is recognized as ‘200’. This image is best viewed in color.

The results of the competition are shown in Table 7.3. The evaluation metrics are

word accuracy and total edit distance, where edit distance is defined as the number
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of insertions, deletions and substitutions required to transform a word label into the

ground truth label. The baseline system is the commercial OCR system by ABBYY.

Our system placed 6th in this competition with a total edit distance of 422.1

and a word accuracy of 47.95. It is interesting to compare our system to the 5th

place system. The edit distances of the two systems are just .3 apart, but the word

accuracies differ by 14.8%. This shows that there must be many instances where we

label almost all characters correctly, but do not label the entire word correctly.

7.4 Discussion

One of the main differences between the work we present here and other existing

solutions is the technique used to detect character locations. Many recent techniques

use a sliding window approach to evaluate all possible locations and sizes to find

possible characters [45, 39, 65]. These approaches avoid relying on an initial hard

segmentation step, but evaluating all sub-windows is expensive, and there is great

potential for confusion when non-text areas exhibit character-like features. In con-

trast, a text segmentation based method can take advantage of coherence across an

image. For example, the color characteristics of easier characters can help identify

more difficult characters. In this chapter, we demonstrate that a segmentation-based

approach can outperform sliding-window based approaches for the task of word recog-

nition.

There are several possible directions for future work that would improve this

word recognition technique. One of the main weaknesses is that it cannot recognize

connected text. This stems from the choice we made to use a segmentation-based

method to identify characters, so we can only recognize characters that are individual

connected components. One way to address this might be to use a sliding window

approach only when a connected component cannot be recognized well, since it is very

computationally expensive. Similarly, a text splitting technique could be used instead
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and we could try to identify the parts of the connected text. A different approach

would also be to train a character classifier that identifies two or three character

groups in addition to single characters.

The other main weakness to be addressed is that our technique cannot handle

missing characters. The final word label must be the same length as the number of

characters detected. This is problematic when some number of characters are not

detected, but the word is still recognizable with a high probability. An important

extension would be to develop a method for evaluating if a segmented image may be

missing a letter or group of letters, and then extend the error correction step to allow

word labels of different lengths than the number of detected characters.

A last direction for future work is to incorporate better case features into the

model. Right now we use case information in the CRF feature vectors, but they do

not provide perfect case labels. In our experiments a case-insensitive evaluation of

our system leads to better recognition performance, which means that there are words

where we label the characters correctly, but in the wrong case.

7.5 Conclusion

In this chapter, we presented an efficient system for the task of open-vocabulary

word recognition. We demonstrated a new approach to incorporating web-based

language information that allows us to take advantage of a lexicon of over 13.5 million

words that appear on the web for error correction. In our experiments, we presented

state-of-the-art experimental results for open vocabulary word recognition using this

system on two standard data sets, ICDAR 2003 and ICDAR 2011.
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CHAPTER 8

END-TO-END SCENE TEXT RECOGNITION

In this chapter, we remove the assumption that text has already been located

and describe an end-to-end scene text recognition system for automatically finding

and labeling text in images of natural scenes. Recently, many new techniques for

text detection and text recognition in natural images have been proposed, but the

majority of these methods look at these two problems in isolation [17, 71, 74, 39, 65].

This has led to increased state of the art performance on each individual problem, but

does not enable useful real-world applications which require an end-to-end solution.

Towards this end, there have been several end-to-end solutions proposed recently

as well. One approach is to combine detection and recognition in a feed-forward

pipeline [42, 67, 37]. While this type of system can be used in real-world applications,

it does not take advantage of the fact that information from detection and recognition

can be shared to improve results. To address this, we show that performance can

be improved by using recognition information to inform parameter choices in the

detection phase. We use a state of the art text detection technique and perform image

specific parameter adaptation. We also introduce a hybrid recognition component

that uses an open-source OCR system when it is confident in the labeling, and passes

more difficult images to our specialized recognition module. We evaluate this system

compared to current state-of-the-art approaches on publicly available data sets.
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Figure 8.1: A step-by-step example of our final end-to-end system. First, text is
detected and segmented using a state-of-the-art method over a range of settings for
the delta parameter. Next, the delta parameter is optimized based on recognition
information. Finally, each detection is recognized by either Tesseract, if it is confident
of its label choice, or our own specialized recognition method.

8.1 End-to-End Scene Text Recognition

Here we combine the text recognition method from the previous chapter with

a state-of-the-art text detection technique to create an end-to-end system. In this

chapter we will refer to our recognition method as STR. In this section we will de-

scribe the detection method in more detail and explain how we can improve detection

and recognition performance by using image-specific parameter adaptation and by

creating a hybrid recognition component that uses an open-source optical character

recognition (OCR) method. Our complete system is shown in Figure 8.1.

8.1.1 Text Detection and Segmentation

For text detection, we use the existing state-of-the-art method USTB TexStar

by Yin et al. [73]. This method first identifies maximally stable extremal regions
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(MSERs) and then prunes them using the strategy of minimizing regularized varia-

tions of extremal regions (ERs) to extract character candidates. These character can-

didates are grouped into text candidates by adaptive single-link clustering in which

similarity weights and a clustering threshold are learned by a self-training distance

metric learning algorithm. Text candidates are evaluated using a character classi-

fier and non-text regions are removed. Finally, each text region is divided into word

regions by a word partition step [74]. One advantage of this method is that text seg-

mentation is completed as part of the detection process, and we can use this output

instead of performing segmentation as an additional step, using a method like the

one described in Chapter 5. The segmentation method used in this detection process

is called USTB FuStar.

8.1.2 Image Specific Parameter Adaptation Using Recognition

The USTB TexStar method is based on using MSERs to find candidate characters.

The MSER algorithm identifies candidate connected components as those with a size

and shape that stay relatively constant over a range of threshold values. This range

is controlled by a parameter delta, and is a measure of the stability of a component.

We hypothesized that the best value of the delta parameter should depend on

individual image characteristics, since images with sharper edges contain components

that are stable over a larger range of threshold values. We confirmed experimentally

that text detection output can change significantly based on the value of the delta

parameter that is used. To illustrate this, Figure 8.2 shows sample images and their

text detection output for different values of the delta parameter. This shows that

selecting the value for the delta parameter is an important choice for accurate text

detection.

For the text detection task, this parameter is found by learning the best value

over a set of training images, and using that value for all test images. This makes
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Figure 8.2: Sample images and their text detection output with different values for
the delta parameter. This figure is best viewed in color.

sense when text detection is performed in isolation, but this globally chosen delta

value can not be optimal for all images. Our goal is improve detection performance

by automatically adapting the delta value to each image, instead of to each data set.

We show how to use recognition information to determine the best parameter value

for each image, which we can take advantage of since we are performing both tasks

together.

At a high level, the idea is to perform text detection using a range of delta param-

eter values and to choose the delta value that results in detections that look the most
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like text. The output of the text detection step for each image is a set of bounding

boxes identifying regions that contain text. We run text recognition on each bounding

box, which gives us the appearance probability of the maximum probability character

label for each character candidate. Using this information, we use the following score

function to evaluate the image,

S∆ =
1

n
∗

n∑
i=1

log(Ai).

In this equation, A1, A2, ..., An represent the appearance probabilities of the characters

in the image. This score function gives higher scores to images with characters that

are recognized with a higher probability. Since we are comparing detections over the

same image with different parameter values, this allows us to choose the parameter

value that results in detections that look the most like text as possible.

This score function is simple, but the experiments in Section 8.2.1 show that it

leads to a large increase in performance. We experimented with incorporating lan-

guage information as well, but it did not improve performance. We also experimented

with using a classifier to predict if the detection output from one parameter setting

is better than the output from another setting using the appearance information,

language information, the number of bounding boxes and the number of characters

as features. This also lead to comparable performance, so we use the simple score

function described above instead.

8.1.3 A Hybrid System for Text Recognition

For many years, commercially developed optical character recognition (OCR) sys-

tems were used as a baseline for performance for scene text recognition tasks. These

systems were developed for use on documents and did not work well given the addi-

tional challenges of scene text images. Recently though, Milyaev et al. showed state-
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Groundtruth Tesseract Label STR Label
PROPER PROPEP PROPER

FOOD FUDE FOOD
PRONTO PRONTC PRONTO

Professional Profesgignal Professional
Mining Jmnlne Mining

Groundtruth Tesseract Label STR Label
SUPERKINGS SUPERKINGS SUPERBEINGS

Counselling Counselling counselling
University University Universrwot

Estates Estates Eshter
Rettungsweg Rettungsweg RenungsWE

Table 8.1: The top of the table shows sample text where the STR label is correct
but the Tesseract label is not. The bottom of the table shows sample text where the
Tesseract label is correct but the STR label is not.

of-the-art recognition performance by combining a specialized binarization technique

with Omnipage OCR [37].

Inspired by this increase in performance, we experimented with the open-source

commercial OCR system Tesseract1 developed by Google. We hypothesized that the

set of images that could be recognized correctly by Tesseract and STR would be dif-

ferent, since both recognition systems have different strengths and weaknesses. We

confirmed with initial experiments that there were some text images that Tesseract

could label correctly but STR could not and that there were other text images that

Tesseract could label correctly while STR could not. Table 8.1 shows some exam-

ple words in both categories from the ICDAR 2011 data set. We describe a way

to combine Tesseract and STR into a hybrid recognition system to improve overall

performance.

Our method is simple but very effective for improving performance. The detection

output from Tesseract includes a confidence score associated with each recognized

1https://code.google.com/p/tesseract-ocr/
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Precision Recall f
∆ = random choice 50.5 36.2 42.1
∆ = 1 (default) 49.5 37.9 42.9
∆ = 5 (learned) 55.3 38.4 45.4
∆ = optimized 58.6 39.9 47.5

Table 8.2: End-to-end recognition results on the ICDAR 2011 data set using STR
and different methods for choosing the delta parameter.

word. We run Tesseract on each region from our text detector and examine the

confidence score. If that confidence is above a threshold, meaning that Tesseract is

confident in its label, we use the label. If it is below a threshold, we pass the the

region to STR and use that label instead.

Here we also experimented with using a classifier to choose which recognition

system to choose for each image. We used the confidence scores from each system as

features in an SVM classifier. This lead to comparable performance, so we use the

simpler threshold method instead.

8.2 Experiments

In this section we evaluate our contributions on the task of end-to-end text recog-

nition using the ICDAR 2011 and ICDAR 2013 data sets. These are described in

more detail in Chapter 3. We chose the ICDAR 2011 data set because it is used by

all previous authors for this task and will allow a direct comparison to the current

state-of-the-art. Following previous work, we evaluate label results in a case-sensitive

way. There is no previous work using the ICDAR 2013 data set for the end-to-end

task, so we provide our results here for future comparison.

8.2.1 Evaluation of Parameter Optimization

In this section we show that choosing the delta parameter using our automatic

optimization method leads to better recognition performance than several other meth-
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Precision Recall f
∆ = random choice 84.4 64.9 73.4
∆ = 1 (default) 83.8 68.2 75.2
∆ = 5 (learned) 89.1 64.8 75.1
∆ = optimized 90.4 64.6 75.3

Table 8.3: End-to-end text detection results on the ICDAR 2011 data set using
different methods for choosing the delta parameter.

ods. Table 8.2 shows the end-to-end recognition precision, recall and f measure for

these methods. One choice is to randomly choose a delta parameter from a set of

reasonable choices for each image. Here we choose delta from the discrete set zero

to six. This leads to a precision value of 50.5, recall of 36.2 and an f measure of

42.1. Another option is to use the default setting of the text detector for all images,

which in this case was the value one. This leads to a decrease in precision to 49.5,

but a larger increase in recall to 37.9 and an increased f measure of 42.9. In addition

to these, we also tried learning the best delta parameter on a set of training images

and using it for all images. We selected the value that gave the best end-to-end

recognition performance, which was five. This lead to a large increase in precision to

55.3 and an increase in recall to 38.4 for an f measure of 45.4. We can significantly

improve both precision and recall by optimizing the delta parameter using the score

function described in section 8.1.2. The precision is 58.6 and the recall is 39.9 for an

f measure of 47.5.

We also include results for text detection precision, recall and f measure when

using different values of the delta parameter. These are computed using the evaluation

method developed by Wolf et al. that was adopted by the ICDAR competitions [68].

These results are shown in Table 8.3. These results show that there is not a large

change in the f measure of text detection performance when the delta parameter

changes. The performance using the optimized delta values is slightly higher than
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Precision Recall f
Tesseract 38.8 26.4 31.4
STR 58.6 39.9 47.5
Hybrid 61.7 42.0 50.0

Hybrid (oracle) 65.3 44.1 52.9

Table 8.4: End-to-end recognition results on the ICDAR 2011 data set using different
recognition systems.

Precision Recall f
Neumann et al. [42] 37.1 37.2 37.2
Neumann et al. [43] 39.4 37.8 38.6
Weinman et al. [67] 41.1 36.5 38.6
Neumann et al. [44] 44.8 45.4 45.2
Tesseract/STR Hybrid 61.7 42.0 50.0

Tesseract/STR Hybrid (case in.) 64.4 43.8 52.2

Table 8.5: A comparison of end-to-end recognition results for current methods on the
ICDAR 2011 data set.

the learned delta values, but it does not suggest the large increase in end-to-end

recognition performance that we see.

8.2.2 Evaluation of Hybrid System

In this section we show that combining recognition systems into a hybrid system

using a confidence threshold leads to better end-to-end recognition performance than

using either system alone. These results are shown in Table 8.4.

Tesseract has a precision of 38.8, recall of 26.4 and an f measure of 31.4. STR

performs significantly better on this problem, with a precision of 58.6, a recall of

39.9 and an f-measure of 47.5. We learn the threshold of t = 75 to combine these

systems by choosing the threshold that leads to the best end-to-end performance on

the ICDAR 2011 training set. This hybrid system leads to an increase of precision by
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Tesseract Tesseract STR
Data Label Label Label # of

Subset Correct Used Correct Images

A X X X 225

B X X 45

C X X 35

D X 9

E X X 20

F X 54

G X 194

H 227

Table 8.6: A description of the eight data subsets of the ICDAR 2011 data set and
the number of images from the data set in each category.

3.1% to 61.7, an increase in recall of 2.1% to 42.0 and an increase to the f measure

of 2.5% to 50.0.

For comparison, we also present results of our hybrid system with an oracle to

select the confidence value for Tesseract. If Tesseract had perfect confidence values

that were above the threshold when the label was correct and below the threshold

when the label was incorrect, then the precision would be 65.3, recall would be 44.1

and the f measure would be 52.9. This shows that performance could increase even

more if we could improve the confidence scores produced by Tesseract.

In Table 8.5 we show a comparison of our hybrid system to other published meth-

ods for this task. Our precision and f-measure are higher than all of the other systems.

Our precision is 16.9% higher than the current best at 61.7 and our f measure is 4.8%

higher at 50.0. Our recall is 2.8% lower than the current best at 42.0. This increase

in the f measure is significant increase, given the small improvements shown on this

task in recent years. Figure 8.3 shows sample images where our system detects and

recognizes all of the existing text. Figure 8.4 shows sample images where there are in-

correct results due to missed detections or incorrect labels. Figure 8.5 shows difficult

images from the test set where we do not recognize any text.
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Figure 8.3: Sample images with text detection and recognition output. We correctly
detect and recognize all of the text in these images.
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Figure 8.4: Sample images that have incorrect detection and/or recognition results.
Errors include missing detections, incorrect word labels, capitalization errors and
missing punctuation.
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Figure 8.5: Sample images where we do not detect any text. Difficult characteristics
include low contrast between text and background, unusual text layout and complex
background scenes.
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Data
Subset Groundtruth Tesseract Conf. ST Rec.

A the the 87 the
parcel parcel 91 parcel
Bookshop Bookshop 88 Bookshop

B tickets tickets 87 tiger
FAMOUS FAMOUS 86 Famous
Centre Centre 88 centre

C Factory Factory 59 Factory
access access 71 access
ARE ARE 74 ARE

D LITTER LITTER 53 LETTER
Centre Centre 69 cente
Education Education 74 Educaton

E COLCHESTER COLCH 89 COLCHESTER
Cycles Cycies 79 Cycles
EXIT XIT 94 EXIT

F HOT MILK HOT 93 HOT
area! area 93 area
Virtual irt 89 virtual

G PROPER PROPEP 74 PROPER
Psychology Psycholo9V 72 Psychology
Professional Profesgignal 58 Professional

H SHINING BHHWIE 46 SHINE
priory Dkiony 63 PRIORI
sure SUTE 72 Sure

Table 8.7: Sample output from Tesseract and STR for each of the eight data subsets
in Figure 8.6.

There is also a method for this task by Milyaev et al. [37] that uses a commercial

OCR system. We put this method in a different category because the details of the

recognition component are not described or published, so it cannot be implemented

and extended. This method has shown the highest precision, recall and f measure

for this task with a precision of 66, recall of 46 and an f measure of 54. It is

interesting to note that the oracle version of our hybrid system has a performance

almost comparable to this method.

We also describe the eight possible data subsets created by the correctness of

Tesseract’s label, if Tesseract’s label is used and the correctness of STR’s label in
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Precision Recall f

BR + Tesseract 42.8 28.3 34.1
USTB FuStar + Tesseract 38.8 26.4 31.4

BR + STR 54.3 35.9 43.2
USTB FuStar + STR 58.6 39.9 47.5

BR + Hybrid 58.8 38.9 46.9
USTB FuStar + Hybrid 61.7 42.0 50.0

BR + Hybrid (oracle) 61.5 40.7 49.0
USTB FuStar + Hybrid (oracle) 65.3 44.1 52.9

Table 8.8: End-to-end recognition results on the ICDAR 2011 data set using different
segmentation and recognition method combinations.

Table 8.6. This table includes the number of images in each category. This is useful

for understanding the output of each system and the hybrid system. It shows that

there are 225 words that both systems label correctly, 45 images that Tesseract labels

correctly but STR does not and 194 images that STR labels correctly but Tesseract

does not. We can also see that data subsets A, B, C and G are labelled correctly

by the hybrid system. Data subsets D and E are errors that could be corrected if

the confidence values from Tesseract were more accurate. Subsets F and H represent

images that neither system labelled correctly. Table 8.7 shows sample words from

each of the data subsets in Table 8.6 and the Tesseract label and confidence score as

well as the STR label.

8.2.3 Evaluation of Segmentation Method

For completeness, we also evaluate our end-to-end system using the segmentation

method described in Chapter 6. Table 8.8 shows the precision, recall and f measure

of combining bilateral regression segmentation with Tesseract, STR and the hybrid

recognition system compared to using USTB FuStar for segmentation. The precision,

recall and f measure is much higher when using bilateral regression segmentation
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with Tesseract. However, when combined with STR or the hybrid system, using

USTB FuStar leads to significantly better performance.

8.2.4 Evaluation on ICDAR 2013 Data Set

We also present results on the ICDAR 2013 Robust Reading data set [25]. Ta-

ble 8.9 includes results comparing the components we use for each task to other

submissions to the 2013 Robust Reading competition. This includes text detection,

text segmentation and cropped word recognition. We also include results for end-

to-end text recognition. To our best knowledge, there are no previously published

results for end-to-end text recognition on this data set.

As shown in Table 8.9, the text detection and segmentation methods we use

perform well. They were first place and 3rd place respectively in the competition.

Our cropped word recognition approach is also fairly competitive. Note that in our

end-to-end system, STR is only the basic recognition approach; actually, our hy-

brid recognition framework described in this paper has a higher recognition accuracy.

Moreover, our method also achieves better performance with the addition of auto-

matic parameter optimization. Our end-to-end text recognition system performs well

with f measures for case-sensitive and case-insensitive on this dataset of 50.6% and

53.2% respectively.

8.3 Discussion

It is interesting to note that both the parameter adaptation score function and

method for creating a hybrid system are both simple but effective components. We

experimented with score functions that also incorporated language information, but

the performance was slightly worse. We also tried building a logistic regression classi-

fier to predict whether one set of text detection output was better than another. We

tried combinations of character appearance, language, number of bounding boxes and
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(a) Text detection
Methods Recall Precision f Results
USTB TexStar 66.45 88.47 75.89 1st place
TextSpotter 64.84 87.51 74.49 2nd place
CASIA NLPR 68.24 78.89 73.18 3rd place
(b) Text segmentation (atom based results)
Methods Recall Precision f Results
I2R NUS FAR 68.64 80.59 74.14 1st place
NSTextractor 63.38 83.57 72.09 2nd place
USTB FuStar 68.03 72.46 70.18 3rd place
(c) Cropped word recognition
Methods T.E.D. C.R.W. C.R.W.(u) Results
PhotoOCR 122.7 82.83 85.30 1st place
PicRead 332.4 57.99 61.92 2nd place
NESP 360.1 64.20 64.84 3rd place
STR 422.1 47.95 52.33 6th place
(d) End-to-end text recognition
Our method Recall Precision f Remarks

44.1 67.0 53.2 Case-insensitive
41.9 63.7 50.6 Case-sensitive

Table 8.9: Results on ICDAR 2013 data set, where “USTB TexStar”, “USTB FuStar”
and “STR” are the text detection, text segmentation, and (basic) word recognition
methods used in our system. “T.E.D.”, “C.R.W.” and “u” represent “Total Edit
Distance”, “Correctly Recognized Words”(%) and “upper” respectively. Competition
results come from [25].

number of characters as features. The performance of this classifier was comparable

to the simple score function, so we chose to use the simple component. We saw the

same trend for the hybrid system component. We used an SVM classifier with an

RBF kernel to predict which recognition system should be used for each image. Our

features were the confidence scores from both recognition systems. Using this classi-

fier in place of the threshold led to a .3% increase in precision, recall and f measure.

These results are comparable, so we chose the more simple threshold method.

In this chapter we showed that the idea of adapting parameters to each image

increased performance considerably. One direction of future work is to extend this
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idea to include adapting multiple parameters simultaneously. For the task of text

detection using the USTB TexStar method, one other parameter to adapt might

include the parameter that controls where to split text lines into words. There are

many examples in the output where text lines are detected correctly, but they are

not broken into words correctly. The way each task is structured, even if we identify

all of the characters correctly, each bounding box can only be mapped to one ground

truth word, so it will be counted as incorrect. Other parameters to investigate are

the parameters that control the minimum and maximum size component to accept.

These parameter help filter false positives, but also filter good detections in some

cases.

8.4 Conclusion

We have presented a system for end-to-end text recognition with state-of-the-art

performance compared to existing published methods. We introduced the idea of

image specific parameter adaptation using recognition information and showed that

this increases performance significantly. We also compared two recognition systems,

Tesseract and STR, and showed that combining these into a hybrid system leads to

better performance than using either system individually. Finally, we compared our

system to the current state of the art on the publicly available ICDAR 2011 data set

and presented the first end-to-end results on the ICDAR 2013 data set.
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CHAPTER 9

CONCLUSIONS

In this thesis we focused on the problem of recognizing text in images of natural

scenes. This problem has important real-world applications, and existing solutions for

recognizing text in documents do not work well due to the additional challenging char-

acteristics of scene text images. To improve recognition performance, we presented

methods that incorporated new information sources into models and we composed

simple components into highly effective systems. We focused on three different scene

text tasks, each with a different number of prior assumptions: character recognition,

cropped word recognition and end-to-end text recognition. Throughout the thesis we

aimed to develop methods that allow us to reduce necessary assumptions.

First, we described a novel approach to incorporating similarity information. We

found that the problem of deciding whether two character images are equivalent is

much easier than deciding the character label of an image, and we took advantage

of this information to constrain our label search space. We did this by training a

similarity expert that learned to classify each pair of characters in a sign image as

equivalent or not. We formulated the search for the maximum likelihood interpreta-

tion of a sign as an integer program and incorporated the equivalence information as

constraints. Since the labels produced by the integer program only took into account

local language information via bigram probabilities, we also presented an error correc-

tion step based on global language information from a search engine. We found that

adding similarity information increased overall performance, and we demonstrated
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word error reductions of more than 30% relative to previous methods on the same

data set. Our system had a word accuracy rate of 92.56%.

Next we presented a new language model for scene text recognition. We modeled

words with a probabilistic context free grammar, which captured information about

syllables. We found that this was a better model of language information across

syllable boundaries, so words with unlikely bigrams that cross syllable boundaries

were not penalized. Also, since words are made up of syllables, labels produced by

this model are pronounceable. This eliminates all incorrect labels that a human would

know are wrong since they cannot even be pronounced. We compared this model to

the commonly used bigram model and showed that using more sophisticated language

information improves character recognition performance. We also showed benefits of

this model compared to a dictionary model.

We also presented a new model for segmenting text in natural scene images called

bilateral regression segmentation. This method allows us to remove the assumption

that character detection is complete. We can use this technique to divide each image

into foreground text and background, and consider each foreground connected com-

ponent as a character. We used a regression-based technique to model smooth color

changes in just the subset of pixels that belong to the foreground text, while ignoring

the background pixels altogether. We showed that it is suitable for segmenting im-

ages that are not handled well by existing methods, those with color changes caused

by lighting and complex backgrounds. We evaluated this method compared to the

current state-of-the-art segmentation method and showed performance improvement

of up to almost 2%. We also showed that our cropped word spotting system led to

increased performance over current methods on some data sets by 11%.

Next we removed the assumption that word labels must be drawn from a pre-

specified lexicon and described an efficient system for the task of open-vocabulary

word recognition. We demonstrated a new approach to incorporating web-based

97



language information that allowed us to take advantage of a lexicon of over 13.5

million words that appear on the web for error correction. In our experiments, we

presented state-of-the-art experimental results for open vocabulary word recognition

using this system on two standard data sets, ICDAR 2003 and ICDAR 2011. The

word recognition accuracies were 62.76% and 48.86% respectively.

Finally, in the last chapter of this thesis we presented a system for end-to-end

text recognition that does not require any assumptions. We combined our recognition

system from Chapter 7 with a state-of-the-art text detector and improved performance

by introducing the idea of image specific parameter adaptation using recognition

information. We showed that adapting text detection parameters to each image

significantly improves recognition performance. We also compared two recognition

systems, Tesseract and STR, and showed that combining these into a hybrid system

leads to better performance than using either system individually. We compared our

system to the current state of the art methods on the ICDAR 2011 data set and

presented the first end-to-end results on the ICDAR 2013 data set.

9.1 Future Work

The evaluation and analysis of the methods developed in this thesis suggest several

interesting directions for future work. One extension is to integrate bilateral regres-

sion segmentation from Chapter 6 with our word recognition method from Chapter

7. Right now, our segmentation method uses recognition information to automati-

cally select the best segmentation choice, but it uses a nearest neighbor classifier to

recognize characters, while our recognition method from uses a CRF classifier. We

expect segmentation performance to increase with the integration of a better char-

acter classifier. Related to this, another avenue for future work is to explore the use

of different character classifiers. Our systems are designed so that it is easy to re-

place the classifiers we use with other methods. Recently, state-of-the-art character
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classification was demonstrated using a deep-learning approach [12], and future work

should explore whether this technique can be used to improve our system.

One of the biggest challenges for our recognition approach is connected text, either

due to the font type or image blur. This is a challenge because our method assumes

that each connected component is one distinct character. Future research should

explore how to adapt this method so it does not rely on having separated characters.

One possible way to address this is to use a sliding window character classification

approach. Since we originally chose to use a segmentation-based approach due to

computational complexity, the sliding window could be used only when a connected

component could not be recognized well. Another possible approach is to explore

using a text splitting technique to try to identify the parts of the connected text.

Alternatively, a classifier could be trained that identifies two and three character

groups in addition to single characters.

Another direction for future work is to extend our recognition technique to handle

missing characters. As described, the final word label must be the same length as the

number of characters detected. This is problematic when some number of characters

are not detected but the word is still recognizable with a high probability. Future work

should explore how to evaluate if a segmented image is missing a letter or group of

letters and extend the error correction step to allow word labels with lengths different

from the number of detected characters.

In addition to future work that improves the components we present in this the-

sis, there are many interesting research directions for the scene text community in

general. First, it is important to expand the type of data sets used to evaluate text

recognition systems. Most of the scene text community evaluates new techniques

using the ICDAR competition data, which makes assumptions about the type of text

to be recognized. Most of the text in the ICDAR data sets is oriented horizontally

and captured from the front. In the future, scene text recognition techniques also
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need to focus on text captured at a wider variety of viewing angles, which is a much

more difficult task. The Street View Text data set took one step in this direction,

as this data set is significantly harder to recognize than the ICDAR data set due to

things like low resolution and blur.

Very recently, Google has demonstrated incredible recognition performance using

the latest techniques for character classification and language modeling [4]. They

train their models with extremely large amounts of data and use vast computational

resources to significantly improve performance over existing techniques. This demon-

stration leads to the research question of how to adapt this technique to the case

where computational resources are limited. Also since they have shown that having

more training data improves performance, what are some methods that non-industrial

researchers can use to generate larger quantities of training data.

Related to this, another important area for future research is how to implement

a scene text system in real time on a restricted architecture, like a smartphone.

Some of the important applications of scene text recognition include being able to

translate text into another language and aiding navigational tasks for people with low

vision and in these cases, it may not always be feasible for the user to have internet

connectivity. It would be useful for this type of system to be able to run in real-time

without a lot of memory or computational power.
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