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ABSTRACT

TOWARDS LARGE-SCALE VALIDATION OF PROTEIN
FLEXIBILITY USING RIGIDITY ANALYSIS

SEPTEMBER 2012

FILIP JAGODZINSKI

B.Sc., COLUMBIA UNIVERSITY

M.Sc., VILLANOVA UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ileana Streinu

Proteins are dynamic molecules involved in virtually every chemical process in

our bodies. Understanding how they flex and bend provides fundamental insights to

their functions. At the atomic level, protein motion cannot be observed using existing

experimental methods. To gain insights into these motions, simulation methods are

used. However such simulations are computationally expensive.

Rigidity analysis is a fast, alternative graph-based method to molecular simula-

tions, that gives information about the flexibility properties of molecules modeled as

mechanical structures. Due to the lack of convenient tools for curating protein data,

the usefulness of rigidity analysis has been demonstrated on only a handful of pro-

teins to infer several of their biophysical properties. Previous studies also relied on

heuristics to determine which choice of modeling options of important stabilizing in-

teractions allowed for extracting relevant biological observations from rigidity analysis

vii



results. Thus there is no agreed-upon choice of modeling of stabilizing interactions

that is validated with experimental data.

In this thesis we make progress towards large-scale validation of protein flexibility

using rigidity analysis. We have developed the KINARI software to test the predictive

power of using rigidity analysis to infer biophysical properties of proteins. We develop

new tools for curating protein data files and for generating biological functional forms

and crystal lattices of molecules. We show that rigidity analysis of these biological

assemblies provides structural and functional information that would be missed if

only the unprocessed data of protein structures were analyzed. To provide a proof-

of-concept that rigidity analysis can be used to perform fast evaluation of in silico

mutations that may not be easy to perform in vitro, we have developed KINARI-

Mutagen. Finally, we perform a systematic study in which we vary how hydrogen

bonds and hydrophobic interactions are modeled when constructing a mechanical

framework of a protein. We propose a general method to evaluate how varying the

modeling of these important inter-atomic interactions affects the degree to which

rigidity parameters correlate with experimental stability data.

viii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 KINARI: An Infrastructure for Rigidity Analysis of Proteins . . . . . 6
1.2.2 Rigidity Analysis of Protein Biological Assemblies . . . . . . . . . . . . . . 7
1.2.3 KINARI-Mutagen: Identifying Critical Residues . . . . . . . . . . . . . . . . 8
1.2.4 Correlating Rigidity Parameters with Experimental Data . . . . . . . . 8

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Biology and Chemistry Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Proteins: Polypeptide Chains of Amino Acids . . . . . . . . . . . . . . . . . 12
2.1.2 Determining Protein Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Experimental Methods for Measuring Protein Stability . . . . . . . . . 16
2.1.4 The Protein Data Bank and the ProTherm Database . . . . . . . . . . 19
2.1.5 Lysozyme from Bacteriophage T4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Methods for Studying Protein Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 An Experimental Method for Visualizing Protein Motions . . . . . . 21

ix



2.2.2 Simulating Protein Motions: Molecular Dynamics . . . . . . . . . . . . . 21
2.2.3 Minimalist Models for Simulating Protein Motions . . . . . . . . . . . . . 22
2.2.4 Inferring Protein Conformations from Structure Data . . . . . . . . . . 22

2.3 Rigidity Based Protein Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Rigidity of Bar-and-Joint Frameworks . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Mechanical Modeling of Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Pebble Game Rigidity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Rigidity Based Protein Flexibility: Related Work . . . . . . . . . . . . . . . . . . . . 25

3. KINARI: AN INFRASTRUCTURE FOR LARGE-SCALE
RIGIDITY STUDIES OF PROTEINS . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Software Profiling and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Generating Biological Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Building Crystal Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Generating in silico Mutant Protein Structures . . . . . . . . . . . . . . . . 37

4. ANALYZING PROTEIN BIOLOGICAL ASSEMBLIES AND
CRYSTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Summary of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Merging of Rigid Clusters in a Biological Assembly . . . . . . . . . . . . 43
4.3.2 The Biological Assembly Of A Nucleoprotein . . . . . . . . . . . . . . . . . . 45
4.3.3 Analyzing How Subunits of a Protein Affect Its Rigidity . . . . . . . . 46
4.3.4 Crystal Lattice Dominant Cluster Aggregation . . . . . . . . . . . . . . . . 49
4.3.5 A Significant Increase of Rigid Clusters in a Crystal Lattice . . . . . 51
4.3.6 Rigidity Analysis Of Several Forms of Ribonuclease A . . . . . . . . . . 52
4.3.7 Survey of 982 Crystal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5. PREDICTING THE EFFECT OF MUTATIONS ON PROTEIN
STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Motivation and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



5.2.1 Mutations Affect Protein Structure and Function . . . . . . . . . . . . . . 58
5.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Methods and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Case Study - Crambin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Case Study - Lysozyme from Bacteriophage T4 . . . . . . . . . . . . . . . . 65
5.3.3 Validation - 48 Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6. TOWARDS VALIDATION OF MOLECULAR MODELING
FOR RIGIDITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Motivation and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Constructing a Dataset of Protein Data Files and Systematically

Varying Modeling of Stabilizing Interactions . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Correlating Rigidity Parameters to Experimental Data . . . . . . . . . . . . . . . 76

6.3.1 Scatter Plots of Rigidity Measurements and Experimental
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Calculating Correlation Using Spearman’s Rank Coefficient
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.3 A General Method for Correlating ∆∆G With Rigidity
Metrics, Assuming a Linear Relationship . . . . . . . . . . . . . . . . . . 79

6.3.3.1 Evaluation of the Dominant Rigid Cluster Metric . . . . . . 82
6.3.3.2 Evaluation of the Cluster Configuration Entropy

Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.3.3 Evaluation of the Average Cluster Size Metric . . . . . . . . . 82

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.1 KINARI: Infrastructure for Rigidity Analysis of Proteins . . . . . . . 91
7.1.2 Inferring Structural and Functional Information of Protein

Biological Assemblies and Crystals . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1.3 KINARI-Mutagen: Inferring Critical Residues . . . . . . . . . . . . . . . . . 93
7.1.4 Correlating Rigidity Parameters to Experimental Data . . . . . . . . . 93

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



APPENDICES

A. RIGIDITY RESULTS OF PROTEIN BIOLOGICAL
ASSEMBLIES AND CRYSTAL LATTICES . . . . . . . . . . . . . . . . . . . . 96

B. EXPERIMENTAL AND RIGIDITY DATA FOR 48 MUTANT
PROTEINS ANALYZED BY KINARI-MUTAGEN . . . . . . . . . . . 100

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



LIST OF TABLES

Table Page

4.1 Experimental setup for generating crystal lattices . . . . . . . . . . . . . . . . . . . . 42

4.2 Summary of dataset for survey of crystal structures . . . . . . . . . . . . . . . . . . 54

4.3 Classification of protein crystals according to their rigidity . . . . . . . . . . . . 56

5.1 Rigidity analysis results of 8 lysozyme mutants . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Rigidity results of 48 mutants analyzed by KINARI-Mutagen . . . . . . . . . . 70

6.1 Modeling of hydrogen bonds according to their energies . . . . . . . . . . . . . . . 76

6.2 Non-Parametric Spearman’s Correlation Testing; Lowest p-values . . . . . . 79

6.3 Sample dataset for correlating experimental with rigidity data . . . . . . . . . 81

A.1 Rigidity results for putative protein from the gram-negative
bacterium Thermus thermophilus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.2 Rigidity results of the scaffolding protein of Vaccinia Virus . . . . . . . . . . . . 97

A.3 Rigidity results for Nucleoprotein from Rift Valley Fever Virus . . . . . . . . . 98

A.4 Rigidity results for Type III Antifreeze Protein RD1 . . . . . . . . . . . . . . . . . . 99

A.5 Rigidity results of Ribonuclease A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1 Protein structures with no stabilizing interactions at substitution . . . . . 100

B.2 Protein structures with too few stabilizing interactions at
substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.3 Protein structures with sufficient stabilizing interactions at
substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.4 Structure files with solvent exposed mutation points . . . . . . . . . . . . . . . . . 103

xiii



LIST OF FIGURES

Figure Page

2.1 Structure of proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Conformations of HIV-1 Protease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Modeling proteins as body-bar-hinge frameworks . . . . . . . . . . . . . . . . . . . . . 24

2.4 Abstract mechanical framework of a protein’s structure . . . . . . . . . . . . . . . 25

3.1 Curation, modeling, and rigidity analysis in KINARI . . . . . . . . . . . . . . . . . 30

3.2 Visualizing rigid cluster of HIV-1 Protease . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Profiling results for 25,000 proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Symmetry operations in proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Matrices for generating crystal structures from an asymmetric unit . . . . . 36

3.6 Rigidity analysis of a crystal lattice of the B domain of the
streptococcal protein G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Generating crystal lattices from asymmetric units . . . . . . . . . . . . . . . . . . . . 38

3.8 Simulating mutations to glycine in KINARI-Mutagen . . . . . . . . . . . . . . . . . 39

3.9 System description of KINARI-Mutagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Schematic and rigidity results of HIV-1 Protease . . . . . . . . . . . . . . . . . . . . . 44

4.2 Rigidity Results of Rift Valley Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Rigidity analysis of Vaccinia Virus D13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Aggregating of rigid clusters in unit cells of Thermus thermophilus . . . . . 50

xiv



4.5 Rigid clusters of unit cells of Type III Antifreeze Protein . . . . . . . . . . . . . . 51

4.6 Comparing rigidity of two crystal forms of Ribonuclease A . . . . . . . . . . . . 53

5.1 Rigidity results of two in silico mutants of Crambin . . . . . . . . . . . . . . . . . . 63

5.2 SASA and Size of Dominant Rigid Cluster plot for Crambin . . . . . . . . . . . 64

5.3 Rigidity results of wild-type Lysozyme from bacteriophage T4 . . . . . . . . . 66

5.4 Distribution of Rigid Bodies, By Residue, Plot for Lysozyme . . . . . . . . . . 68

5.5 Solvent exposed amino acids not identified as critical . . . . . . . . . . . . . . . . . 71

6.1 Choice of modeling affects rigidity results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Scatter plots for Change of the Dominant Rigid Cluster versus
∆∆G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Scatter plots for Change in Cluster Configuration Entropy versus
∆∆G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Scatter plots for Change of the Average Cluster Sizer versus ∆∆G . . . . . 87

6.5 Correlating rigidity metrics with experimental data . . . . . . . . . . . . . . . . . . 88

6.6 Quantitative correlations for Dominant Rigid Cluster and ∆∆G . . . . . . . 88

6.7 Quantitative correlations for Cluster Configuration Entropy and
∆∆G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.8 Quantitative correlations for Average Cluster Size and ∆∆G . . . . . . . . . . 89

xv



CHAPTER 1

INTRODUCTION

Proteins are dynamic biological molecules that bend and flex, and interact with

other molecules, in order to perform their functions. We want to understand these mo-

tions, so that we can design medicines to therapeutically regulate these biomolecules.

Unfortunately, there are no existing experimental methods that allow us to observe

how proteins bend and flex on the atomic level. To gain insight into these motions,

researchers use computationally intensive methods that rely on numerical techniques

to simulate molecular motion. Pebble game-based rigidity analysis is an alternative,

computationally efficient graph-based technique that determines the rigid components

of a protein. Its usefulness in inferring structural and biophysical properties has been

demonstrated on several molecules, but a large-scale study correlating protein rigidity

parameters against experimental data has not been performed.

The goal of this thesis is to make progress towards a large-scale validation of

protein flexibility using rigidity analysis. We develop new tools for curating protein

structure data, we demonstrate KINARI-Mutagen for inferring which residues of a

protein are critical, and we propose a general method for correlating rigidity param-

eters to experimental data in the form of ∆∆G measurements.

1.1 Background and Motivation

Proteins are long chains of amino acids that fold into complex three dimensional

shapes. They perform a myriad of functions in our bodies. Some have mechanical

structural roles, others are involved in the immune response, while still others help
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to translate and transcribe the genetic information in our chromosomes so that new

molecules can be synthesized. Proteins perform their functions by flexing, bending,

and interacting with other molecules. HIV-1 Protease, for example, plays an inte-

gral role in the maturation process of HIV. The protease undergoes a conformational

change that is necessary for it to perform its function. So that medicines can be

designed to regulate such proteins, we need an atomic-level understanding of where

proteins flex, bend, and permit motion. Unfortunately, there are no existing experi-

mental methods that allow us to observe atomic motion.

To gain insight into the motions of proteins on an atomic level, researchers rely

on computational simulation methods. One such method is Molecular Dynamics

(MD), in which the trajectories of a protein’s atoms are calculated using numerical

methods utilizing Newton’s equations of motion. MD methods unfortunately have

a very serious drawback: they are computationally intensive, and require hundreds,

and up to tens of thousands, of computer processors [64].

Rigidity analysis of proteins is complementary to simulation methods such as MD.

Its goal is not to simulate or predict a protein’s motion, but to identify a molecule’s

flexible and rigid clusters of atoms. The input to rigidity analysis is a protein struc-

ture file. The Protein Data Bank (PDB), is a freely-accessible repository of protein

structure data, whose entries of protein structures were solved using experimental

methods such as X-ray crystallography. In preparation for rigidity analysis, impor-

tant stabilizing chemical interactions among the atoms in the protein are identified.

Atoms and their chemical interactions are used to construct a mechanical model of

the molecule. Covalent bonds between atoms in the protein are represented as hinges

in the mechanical model, and other stabilizing interactions such as hydrogen bonds

and hydrophobic interactions are represented as hinges or as rigid bars. A graph is

constructed from the mechanical model, in which each body in the mechanical struc-

ture is associated to a node, hinges between two bodies are associated to five edges
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between two nodes, and bars are associated to edges. Depending on the type and

strength of the chemical interactions that exists between atoms, a single or multiple

edges – up to 6 – are placed between the two nodes in the graph representing the

chemical constraints in the mechanical model. Efficient algorithms based on the peb-

ble game paradigm [32, 46](explained in Section 2.3.3) are used to analyze the rigidity

of the graph. The rigidity results permit inferring the rigid and flexible regions of the

mechanical model, and hence the protein.

Rigidity analysis of proteins was first implemented in MSU-First [34, 33] and

the first online tool was FlexWeb [79]. Since the late 1990s, the usefulness of rigid-

ity analysis was demonstrated in inferring various structural and functional proper-

ties of proteins. Among these, rigidity analysis was used to identify the stability

core of Rhodopsin [69], it was used to investigate the stability differences between

temperature-sensitive proteins called thermophiles [25], and locations of rigid clusters

of atoms have been correlated with the dynamics of well-studied proteins such as

HIV-1 Protease [79].

Although tools such as MSU-First and FlexWeb were successful in demonstrating

the usefulness of rigidity analysis in inferring structural and biological properties of a

handful of proteins, the method has not been validated on a large dataset of proteins.

There are several reasons why this is so.

Firstly, experimental methods such as X-ray crystallography produce the asym-

metric unit, which is the smallest portion of a crystallized protein on which symmetry

operations can be applied to reproduce the crystal form of the molecule. The asym-

metric unit most often does not represent the biological functional form of a protein.

To generate the biological assembly of a molecule, symmetry, rotation, and transla-

tion operations are applied on the atomic coordinates of the atoms in the asymmetric

unit. If done by hand, generating the biological assembly of a molecule is a tedious

process. And, automated tools for generating the biological form of a protein are dif-
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ficult to design. This is because proteins exhibit a wide range of structural features,

so the process is difficult to automate. Some biological forms of proteins are made up

of a single chain of amino acids, while others are made up of multiple copies of the

asymmetric unit. Others still are composed of multiple copies of different amino acid

chains. And, the data files of protein structures solved using experimental methods

are often incomplete, and may include water molecules along with non-standard amino

acids or ligands. All of these are reasons why a high-throughput rigidity analysis of

large datasets of proteins has not been performed.

Secondly, in the cases where rigidity analysis was used to infer biophysical prop-

erties of proteins, the interpretation of the rigidity results relied on biological insights

of the studied molecules. Requiring in-depth knowledge of each protein that is studied

makes rigidity analysis of large datasets of proteins impractical. Thus, a large-scale

study to correlate rigidity properties of proteins with experimental data has not been

conducted.

Finally, MSU-First and FlexWeb do not provide the user easily accessible options

to designate how important stabilizing interactions should be modeled in the mechan-

ical representation of a protein. Thus these tools cannot be used to easily perform

large-scale studies to infer how changing the modeling of these interactions affects

the rigidity results. Also, related to this is that there is often very sparse structural

experimental data about any one protein. This is because experiments performed on

a physical protein are generally expensive and time-intensive. A consequence of this

is that there is no agreed-upon choice of how chemical interactions should be modeled

in the mechanical framework of a protein.

The central theme of this thesis is to make progress towards a large scale valida-

tion study of rigidity analysis of proteins. As such, we have developed the KINARI

software, which has allowed us to address each of the three shortcomings mentioned

above. Namely, we have:
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1. Developed curation tools, that permit the generating of biological forms of pro-

teins from their asymmetric units. As a result, it is now possible to perform

automated rigidity experiments on large datasets of biological structures. In

Chapter 4, we demonstrate these new curation tools. Moreover, we show in

several case studies that rigidity analysis of protein biological assemblies and

of crystal lattices provides information about the biological form of a protein,

that would not have been attained if only the asymmetric unit from a protein

structure file were analyzed.

2. Developed KINARI-Mutagen, to help infer the locations of critical regions of

a protein, that help to maintain its stability. This tool is a new application of

rigidity analysis, whose predictive power does not rely on any biological insight

of the protein that is being studied.

3. Investigated possible correlations between various rigidity parameters and ex-

perimental stability measurements of a dataset of 158 proteins. We have sys-

tematically varied how important stabilizing interactions were modeled in the

mechanical representations of these biomolecules. We propose and demonstrate

a general method to rank the choices of modeling of stabilizing interactions,

based on how the rigidity results correlate to experimental data. Such a large-

scale correlation study has not been done before.

1.2 Thesis Contributions

The contributions in this thesis build upon research results of Streinu and her col-

laborators. Also, the problems that we are trying to address – how should constraints

be modeled, can critical residues be identified, and what is the rigidity of protein bio-

logical assemblies and crystals? – are not new problems. The contributions, however,

are in the form of new approaches to these problems, and in the design of tools that
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enable us to make progress towards a large-scale validation of rigidity analysis of

proteins.

1.2.1 KINARI: An Infrastructure for Rigidity Analysis of Proteins

The first tools that implemented rigidity analysis of biomolecules [34, 33, 79] of-

fered few options for curating protein structure data files. Thus large-scale studies

of rigidity analysis of protein biological forms could not be performed, because the

structure files had to be cleaned and curated by hand. Also, the choices of model-

ing of important stabilizing interactions were fixed. To provide an infrastructure to

easily test if and how rigidity analysis can function as a predictive tool for inferring

biophysical properties of proteins, we have developed KINARI-Web. It is a general,

well-tested, versatile web server for rigidity analysis of molecular structures. It pro-

vides options for streamlining the curation of input protein data and for building

protein biological assemblies and crystals. It relies on a mechanical model of a pro-

tein that is customizable by the user, it performs rigidity analysis of the mechanical

framework, and it includes an interactive visualizer for exploring the rigidity results.

KINARI is an on-going, collaborative project in Ileana Streinu’s Linkage Labo-

ratory. Several people have contributed over the years. Professor Streinu supervises

the entire project. Naomi Fox wrote the C++ code for the pebble game algorithms.

Her dissertation work focuses on improving accuracy in the representation of proteins

as mechanical frameworks. Yang Li, a former undergraduate honors thesis student

at Smith College, integrated into KINARI the visualizer tools, which are based on

Jmol, an open-source Java 3D viewer for chemical structures. In my work I focused

on developing the curation tools, which permit a user to designate which portions of

a protein structure file should be retained. Along with Naomi Fox, I developed the

infrastructure for calculating rigidity metrics for proteins that are analyzed by the

pebble game algorithm. All of the work leading up to and including the release of
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the KINARI-Web server was published in 2011 [20]. The first public release of the

underlying software library [21], which implements the pebble game algorithm and

provides support for several mechanical models, was made available in 2012.

1.2.2 Rigidity Analysis of Protein Biological Assemblies

The structure data in a PDB file does not always represent the biological functional

form of a protein. And, a PDB file contains only the asymmetric unit of a crystal,

which is the smallest repeating unit, from which the structure of the crystal can

be inferred using symmetry, rotation, and transformation matrices. Because early

tools for performing rigidity analysis of proteins did not provide automated tools for

generating a protein biological assembly from experimental structure data, a large-

scale, high throughput, study of the rigidity properties of proteins has not been

performed. In collaboration with Tiffany Liu and other undergraduate students, I

have developed the tools for generating biological assemblies of proteins and crystal

forms of a protein from its asymmetric unit. I have also performed benchmarking

testing on over 25,000 protein structures, that relied on streamlining the automated

curation tools that I developed with the rigidity analysis algorithms developed in the

Linkage Laboratory.

To determine if new insights into protein flexibility can be obtained by perform-

ing rigidity analysis on biological assemblies and protein crystal structures, we have

generated over 900 crystal lattices of various sizes for more than 300 proteins. Ini-

tial results indicate that analyzing protein biological assemblies and crystals provides

structural and functional information that would be missed if only the asymmetric

unit of a protein were analyzed. The initial results were presented in 2012 at the

ICCABS conference [13], and a subsequent, extended version of the study has been

submitted to an invited issue of BMC Bioinformatics [35].
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1.2.3 KINARI-Mutagen: Identifying Critical Residues

Predicting the effect of a single amino acid substitution on the stability of a

protein structure is a fundamental task in macromolecular modeling. Not only did

we want to make progress towards a tool that permits fast evaluation of the effects of

mutations that may not be easy to perform in vitro, but we also wanted to develop a

new application of rigidity analysis that was not dependent on in-depth knowledge of

any one protein to help infer from the rigidity results important structural features

of the biomolecule.

Towards this goal, we have developed KINARI-Mutagen, that identifies critical

residues based on the degree to which an in silico mutation to glycine affects the pro-

tein’s rigidity. We show that the residues we identify as critical in the protein Cram-

bin correlate with residue that are conserved for several homologues of the molecule,

and that they would not have been identified by other methods. We also generate

48 mutants for 14 proteins, and compare our rigidity-based results with experimen-

tal stability measurements performed on the physical mutant proteins. Our rigid-

ity analysis graph-theoretic approach at inferring the role of residues in stabilizing

a protein’s structure was presented at the Computational Structural Bioinformat-

ics Workshop [36], and subsequently published in the Journal of Bioinformatics and

Computational Biology [37].

1.2.4 Correlating Rigidity Parameters with Experimental Data

In preparation for performing rigidity analysis, a mechanical framework of a

molecule is constructed, in which various stabilizing interactions among atoms are

modeled according to their strength. No systematic study has been conducted as to

what is the most plausible, chemically validated modeling scheme. This is in part

because initial tools for performing rigidity analysis of proteins did not provide op-

tions for changing how important stabilizing interactions should be modeled. All
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previous implementations relied on heuristics, which allowed for extracting relevant

biophysical observations, but only for a limited set of proteins. As such, there is no

agreed-upon choice of modeling of important stabilizing interactions so that rigidity

parameters correlate with experimental data.

We seek a possible correlation between rigidity parameters and this experimen-

tal data. Towards this goal, we have used the KINARI software to systematically

vary how stabilizing interactions are modeled. We propose a method to measure

how rigidity metrics correlate with experimental stability data in the form of ∆∆G

measurements. Our general method is not dependent on a case-by-case analysis of

the proteins that are being studied, but instead requires only experimental data, and

rigidity results, for a dataset of molecules. This work has been accepted for presen-

tation at ACM-BCB 2012, the ACM Conference on Bioinformatics, Computational

Biology and Biomedicine [38].

1.3 Thesis Outline

This thesis is structured as follows. In Chapter 2, Background and Related Work,

we provide a short review of relevant biology and chemistry principles, which are

needed for explaining KINARI-Mutagen, and discussing biological results presented

in subsequent chapters. Throughout this dissertation, rigidity results are compared

and correlated with experimental data. The source of that experimental data is

discussed in Section 2.1.4. In Section 2.2 we overview an experimental method and

several simulation techniques for studying protein motions; we discuss the advantages

and limitations of each. We then motivate the use of rigidity-based protein flexibility

in Section 2.3. In Section 2.4 we present related work that relies on rigidity analysis

to infer biophysical properties of proteins. Chapter 3 is a description of KINARI, the

first contribution of this thesis; it is a collaborative project involving several people.

There, we present our methodology of generating files of protein biological assemblies
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and crystal structures, and give a system description of KINARI-Mutagen, developed

to analyze mutant protein structures. In Chapter 4 we provide results of our studies

in which we generated and analyzed over 900 crystal lattices of more than 300 protein

structures. In Chapter 5 we discuss our results of using KINARI-Mutagen to identify

critical residues that contribute to a protein’s stability. In Chapter 6, we present our

general method for correlating rigidity metrics with experimental data, and discuss

results of systematically varying how hydrogen bonds and hydrophobic interactions

are modeled in biomolecules. In Chapter 7, we conclude with a summary, and briefly

discuss future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Proteins are dynamic molecules composed of amino acids. In order to understand

how a protein functions, we need to know how it moves and interacts with other

molecules. We cannot observe directly protein motion on an atomic level. However,

we rely on experimental methods to resolve the structure of proteins, to identify the

identities and locations of their atoms. Computational methods are used to simulate

atomic motion.

In this chapter we review key biology and chemistry concepts relevant to this

thesis. This includes a short review of protein structures, and a high-level introduc-

tion to experimental methods used to calculate a protein’s stability. We discuss an

experimental method, as well as several computational ones, for studying protein dy-

namics; we point out the strengths and limitations of each of them. We then review

rigidity analysis, and motivate its use in studying proteins. We finish this chapter by

highlighting a few of the research studies that have relied on rigidity analysis to infer

biophysical properties of molecules.

2.1 Biology and Chemistry Primer

In order to understand a protein’s function, we need to know how it interacts with

other molecules, how it bends, and how it flexes. We cannot observe directly pro-

tein motion on an atomic level, so instead we rely on information from experimental

methods to infer a protein’s stability and possible motions. The information from

measuring the thermodynamic properties of proteins is used to infer protein stability.
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We present here a short review of protein structures and a discussion of protein sta-

bility. We review ∆∆G, an experimentally derived stability measurement of proteins,

which we rely on throughout this thesis.

2.1.1 Proteins: Polypeptide Chains of Amino Acids

Proteins are composed of amino acids joined end-to-end to form a chain. Amino

acids are molecules containing an amine group, a carboxylic acid group, and a side

chain that varies between the 20 different amino acids that occur in nature. Each of

the 20 amino acids can be referred to by either its name, a three letter abbreviation,

or a one letter abbreviation. For example, Alanine is referred to by its three letter

abbreviation, Ala, or its single letter designation, A.

The chain of amino acids, which is called a polypeptide chain, folds into a three

dimensional shape, the protein’s tertiary structure. A single amino acid unit within

a polypeptide chain is called a residue. Polypeptide chains vary in length, from as

short as a few tens of residues, to as long as tens of thousands of residues. A segment

of a polypeptide chain is designated by a sequence of letters, such as AAVP, which

denotes a sequence of Alanine, Alanine, Valine, and Proline. The amino acids are

held in place in a defined spatial arrangement by chemical bonds between atoms that

are close in 3-dimensional space. Arrangements of segments of a polypeptide chain,

or motifs, that occur frequently in nature are called secondary structures. α-helices

and β-sheets are two such secondary structures. Regions of the protein that form

compact, three-dimensional structures that often act independently of other regions

of a protein are called domains. A protein may contain multiple domains.

Figure 2.1 shows a schematic representation of the amino acid proline, an atom

model of proline, a polypeptide chain of three amino acids, and an α-helix. A

schematic representation denotes the connectivity between atoms, but it does not

describe the relative position of those atoms in three-dimensional space. A bar-and-
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(a) (b) (c) (d)

Figure 2.1. Structure of proteins. Proline (schematic diagram shown in (a), bar-
and-stick model shown in (b)). Proteins are molecules made up of amino acids that
are joined end-to-end to form a polypeptide chain (c), which is the protein’s primary
sequence. Due to chemical interactions among the atoms, there is rotation allowed
around some bonds, but not around others. Regular arrangements, or motifs, of parts
of the peptide chain are called secondary structures. A cartoon drawing of an α-helix,
an often-occurring secondary structure in proteins, is shown in (d).

joint model denotes the connections between atoms and their relative positions. The

schematic representation of the polypeptide chain in Figure 2.1 denotes the protein’s

backbone, which is composed of alternating dark gray and blue atoms, designating

the carbon and nitrogen atoms, that lie along the green bonds. An oxygen atom, red,

is attached to one of the carbons, while the side-chain, of which there are 20 kinds

occurring in nature, is designated by the orange hexagon. Hydrogen atoms are the

small gray atoms attached to the carbons or the nitrogens. The specific orientation

of atoms and their physical interactions allows for rotation along some of the bonds,

but not all. It is this rotation around some bonds that allows a protein to flex, bend,

and interact with other molecules.

A protein’s tertiary structure is stabilized by chemical interactions that exist be-

tween atoms that are close in proximity. A chemical bond is the attraction caused

by the electromagnetic force between opposing charges, either between electrons and

nuclei of individual atoms, or as the result of a dipole attraction. Dipole attractions

are caused by non-uniform distributions of positive and negative charges on various

atoms. Examples of bonds include covalent bonds, hydrogen bonds, and disulfide
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bonds. Hydrophobic interactions are another form of interaction that help to stabi-

lize a protein’s structure. The hydrophobics effect is the tendency of water molecules

to exclude non-polar molecules, which leads to segregation of water and non-polar

substances. Some of the bonds and interactions are strong, and are not easily broken,

while others are relatively weak, and are known to continually break and re-form as

the protein moves, flexes, and bends to perform its biological function. The amount

of energy that it takes to break a bond is called the bond strength. Biologists measure

bond strength in units of heat, measured in units of kilo-calorie (kcal). The strength

of a bond or interaction is based on many factors, including the actual atoms that

are involved. Sample bond strengths include 83-85 kcal/mol for a Carbon-Carbon

single covalent bond, and 5-6 kcal/mol for a hydrogen bond [57] (where the involved

bonding atoms are a hydrogen atom that is attached to a nitrogen, called the donor,

and an oxygen, which is called the acceptor). The mole (mol) is a unit of measure-

ment for the amount of substance or chemical amount. These two bond strengths

are approximate; there is an observed range of bond strengths for a type of bond.

Nonetheless there is a clear dichotomy between the strengths of different bonds.

Nearby water molecules, ions, as well as other, small compounds called ligands,

interact with and affect the stability of a protein. These interactions all determine

whether, and how, a protein bends, flexes, and interacts with other molecules. Fig-

ure 2.2 shows the representations of two conformations of HIV-1 Protease; the protein

transitions from one conformation to another. It plays a crucial role in the maturation

process of the Human Immunodeficiency Virus, HIV. The protease has two flap-like

regions that close in on the interior of the protein, where a catalytic reaction occurs.

It is because of this motion that the protease performs its function.
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Figure 2.2. Conformations of HIV-1 Protease. Proteins flex and bend in order to
perform their functions. HIV-1 Protease, which plays a crucial role in the maturation
process of the virus that causes AIDS, transitions between several conformations.
Movement of two flap regions renders the protein open (PDB file 1hhp, left) or closed
(PDB file 1hvr, right). Images were generated by PyMol.

2.1.2 Determining Protein Structures

X-ray crystallography and protein Nuclear Magnetic Resonance (NMR) spec-

troscopy are two experimental methods used to resolve the structure of proteins.

In preparation for X-ray crystallography, a protein is purified and crystallized.

Then, X-rays are passed through the crystal, which causes the beam to spread into

many directions due to its interacting with the electrons in the atoms of the proteins

in the crystal lattice. The angles and intensities of the spread-out beam generate a

detectable diffraction pattern, which is used to recreate a three-dimensional model

of the density of electrons in the crystal. From this electron density map, the mean

positions of the atoms in the crystal are determined. 1958 was when Kendrew [39],

et al. were the first to use X-ray crystallography to resolve the structure of a protein,

sperm whale myoglobin. For that work, Perutz and Kendrew were awarded the Nobel

Prize in Chemistry in 1962. Since that time, more than 72,000 structures have been

resolved using X-ray crystallography.

However, X-ray crystallography does not give information about the dynamics of

a protein, for one key reason: it is an averaging of the atom positions in all of the

individual proteins crystallized in the crystal lattice. Proteins perform their functions
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by transitioning from one conformation to another via a transition pathway that most

often involves the protein assuming a high-energy, or highly unfavorable, conforma-

tion. High-energy conformers have short lifetimes, and proteins spend the majority of

their times in energetically stable, or low-energy, conformations. Thus, the low prob-

ability of a protein assuming the high energy conformation among all of the proteins

that are crystallized in the crystal lattice means that X-ray crystallography produces

a “snapshot” structure that is the average orientation from among the ensemble of

conformations of the proteins in the crystal lattice. The critical conformations, during

which large dynamic motions occur that are crucial to the function of a protein, are

thus “invisible” to X-ray crystallography.

In protein NMR experiments, an aqueous sample of a purified protein is placed in a

magnetic field. Distinct atomic nuclei absorb electromagnetic radiation and resonate

at different frequencies. The NMR resonance data is analyzed to afford information

about the structure and dynamics of the molecule. One drawback of NMR is that

it usually is limited to the study of small molecules, but recent advances [63] have

allowed it to be used on proteins in sizes upwards of 82 kilo Daltons (kDa); the

dalton is a molecular mass unit. With these advances, the dynamics of proteins such

as human INPP5E (PDB file 2xsw, 357 residues) and heat shock cognate protein

ATP hydrolytic activity (PDB file 1ngb, 386 residues) might be studied using NMR,

but analysis of proteins any larger than these is currently beyond the reach of this

method.

2.1.3 Experimental Methods for Measuring Protein Stability

Although we cannot directly observe protein motion at the atomic level, we can

calculate various properties of a molecule that allow us to reason about the protein’s

stability and function. Thermodynamics is the study of energy conversion between

heat and mechanical work. A protein performs work by virtue of its motion, and
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indirectly we measure that motion by inspecting macroscopic variables such as tem-

perature. Thermodynamic data, then, is indirect proof of the possible motions, and

hence stability, of a protein.

The majority of small, single-stranded proteins exist predominantly in one of two

thermodynamic states, the folded, or Native (N), state, and the Unfolded (U) state.

These two states correspond to ensembles of molecular conformations. A protein may

transition between the native and unfolded states according to a simple kinetic model:

U ⇀↽ N (2.1)

where the rate from U to N is described by the rate constant kf , and the transition

from N to U is described by the rate constant ku. The dimensionless rate constant

for the equilibrium equation is given as follows:

Keq =
ku
kf

=
[U ]eq
[N ]eq

(2.2)

where the square brackets designate the concentrations of the native and unfolded

proteins at equilibrium. Concentration of a protein in different states is experimen-

tally calculated in several ways. One such method is circular dichroism (CD) spec-

troscopy [8], which measures the differences in absorption patterns of left and right-

handed polarized light. The CD spectrum of a protein in the near ultraviolet spectral

region is sensitive to certain aspects of tertiary and secondary structures. Thus, an

analysis of the CD spectrum can be used to determine the presence of secondary struc-

tures. If a protein is known to have secondary structures such as α-helices, and if an

analysis of the CD spectrum reveals that there are no α-helices in the sample, then

the protein is assumed to be denatured, or unfolded. Using Equation 2.2, if a sample

of proteins is calculated to contain a concentration of 80% folded proteins, then the

∆G value will be higher than if the concentration of folded protein is 60%. ∆G is
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also referred to as the Gibbs free energy, the maximum amount of non-expansion

work that can be extracted from a closed system, or the chemical potential that is

minimized when a system reaches equilibrium at constant pressure and temperature.

The equilibrium constant is used to determine the conformational stability ∆G of

a protein:

∆G = −RT lnKeq (2.3)

where R is the universal Gas constant, 8.314 J
K mol, and T is the absolute temper-

ature in Kelvin. In equation 2.3, ∆G is positive if the unfolded state is less stable

(disfavored) relative to the native state. Therefore, ∆G characterizes whether a pro-

tein tends to favor the folded, native state, or whether it tends to favor the unfolded

state.

If ∆G data is available for different conformations of the same protein, that infor-

mation can be used to infer the relative stability of the two protein structures. The

delta, or change, of the Gibbs free energy, ∆∆G, determines how a change in the

conformation or sequence of a protein affects the equilibrium constant of the protein

species. For example, assume that you have two samples of the same protein, Sample

1 and Sample 2. The proteins in Sample 1 are known to perform their biological func-

tion, while the structure of the proteins in Sample 2 have been experimentally modi-

fied. Also assume that the following ∆G values have been calculated for both Sample

1 and Sample 2: ∆GSample 1 = 4.12 kcal/mol and ∆GSample 2 = 3.27 kcal/mol.

The change of the Gibbs free energy, ∆∆G, between the two proteins is defined and

calculated as follows:

∆∆G = ∆GSample 1 −∆GSample 2 = 0.85 kcal/mol. (2.4)

Therefore, given two samples, Sample 1 and Sample 2, of a protein for which there is

available ∆G data, the experimentally derived ∆∆G value can be used to determine
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the relative stability of the proteins in the two samples. Using Equation 2.4, if ∆∆G

is negative, then the proteins in Sample 1 are more stable than the proteins in Sample

2. In this example, because ∆∆G is positive, the proteins in Sample 2 are more stable

than the proteins in Sample 1.

Throughout this thesis, the experimentally derived ∆∆G values for different con-

formations and/or mutated forms of a protein are taken as the “ground truth” values

for the relative stability of two conformations of a protein, described in the next

subsection.

2.1.4 The Protein Data Bank and the ProTherm Database

The Protein Data Bank [87] is a publicly accessible archive of experimentally de-

termined structures of proteins, nucleic acids, and biomolecular complexes. More

than 83,000 structures have been deposited into the PDB, of which approximately

72,000 were determined using X-ray crystallography. Proteins in the PDB are des-

ignated by four letter and/or number codes, such as 1hhp and 1hvr. Each PDB file

contains the experimentally resolve identities and relative coordinates of the atoms

in the asymmetric unit of a molecule. Throughout this thesis, we rely on structures

from the PDB to conduct many of our computational experiments.

The ProTherm database [42] is a collection of numerical data of thermodynamic

parameters, including ∆∆G. Currently approximately 25,000 entries are in the database,

for 733 unique proteins. Throughout this thesis, observations that are drawn regard-

ing the relative stability of two proteins using rigidity metrics are correlated with

experimentally derived ∆∆G values.

2.1.5 Lysozyme from Bacteriophage T4

The most-often referred to protein throughout this thesis is Lysozyme from bacte-

riophage T4. Lysozymes are enzymes that damage bacterial cell walls by catalyzing

hydrolysis of 1,4-beta-linkages between different residues. Lysozyme is a well stud-
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ied protein, and thermodynamics data for the wild type and for many of its mutated

forms is available in the literature and the ProTherm[42] database. We used lysozyme

thermodynamics data to evaluate and determine if the rigidity analysis results corre-

lated with the known, calculated kinetic and stability properties of the protein. Of

the more than 25,000 entries in the ProTherm database, 1,719 of them are for vari-

ants of lysozyme from bacteriophage T4, more than any other protein. It is because

of this that the protein was used throughout this thesis. The rich dataset of ther-

modynamic properties of lysozyme from Bacteriophage T4 enables us to more easily

perform correlation studies.

2.2 Methods for Studying Protein Motions

Proteins are dynamic structures. They fluctuate on the atomic level, and they

transition between distinct states (Figure 2.2). We want to study their dynamics,

so that we can understand how they function. Unfortunately, there are no existing

experimental methods that allow us to watch, in real-time, the individual atoms mov-

ing within a protein. In this section we briefly review an experimental method, and

several computational methods, used to study protein motions. Computational meth-

ods have the advantage over experimental methods in that they can describe protein

dynamics completely. However, a fully accurate computational method would require

a perfect force field function describing the protein-solvent system and the potential

energies of all of the involved atoms. Existing force fields are used in molecular dy-

namics simulations. We describe molecular dynamics, the Go model, along with the

Morph Server from the Gerstein Lab. We list the limitations of each technique. The

short review of these methods is not meant to be comprehensive. Rather we review

them here with the goal of placing rigidity analysis, described in Sections 2.3 and 2.4,

within the context of other experimental and computational methods.
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2.2.1 An Experimental Method for Visualizing Protein Motions

One recently developed exciting experimental method for studying protein dy-

namics is Fluorescence Resonance Energy Transfer (FRET) [14, 58]. It relies on

fluorophores, which are chemical compounds that absorb certain wavelengths of vis-

ible light, and transmit or reflect others. When two fluorophores, one a donor in an

electron excited state, and one an acceptor, are close in proximity, energy is trans-

ferred between the two. The efficiency of this transfer is inversely proportional to

the sixth power of the distance between the donor and acceptor [44]. Measuring the

efficiency of the energy transfer permits determining the distance between the two

fluorophores. Diez, et al. [15] have used this technique to study F0F1-ATP synthase.

They bound an acceptor fluorophore to the protein’s b-subunit, and the donor to the

γ subunit, and measured their intensities and their intensity ratio, over hundreds of

milliseconds. This revealed three distinct states of the protein, and the donor-acceptor

distances were used to identified the protein’s molecular mechanism. However, one

of the current limitations of single-molecule FRET is that only the change of the

distance between a single pair of fluorophores is able to be measured. Thus even for

this experimental method viewing the movement of individual atoms is not possible.

2.2.2 Simulating Protein Motions: Molecular Dynamics

Molecular Dynamics relies on numerical methods using Newton’s equations of

motion to calculate trajectories of a protein’s atoms. It requires an empirical po-

tential energy function. Its theoretical foundations were developed in the 1950s [4].

The first demonstration of an MD simulation, in 1977, was that of a 3.2 picosecond

simulation of bovine pancreatic trypsin inhibitor [55]. However, many large domain

motions that are important to the functioning of a protein occur on the microsecond

to millisecond time ranges[31]. Even with progress in developing force fields for use

in MD, protein dynamics on these long timescales are still beyond the practical reach
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of MD simulations. Part of this is due to the large computational resources that are

required, even for small simulations. Some of these limitations can be overcome, but

doing so requires thousands of processors [64] and specialized algorithms, and even

then simulations may require weeks of computation time.

2.2.3 Minimalist Models for Simulating Protein Motions

To address some of these limitations of MD, several minimalist models have been

proposed. In the 1970s, Ueda et al. [84] and Taketomi et al. [75], modeled a protein

as a chain of one-bead amino acids, and utilized a simplified force field of attractive

and repulsive non-bonded interactions among the beads, to simulate a protein’s mo-

tions. Since then, one-bead minimalist models have been developed for protein folding

computational experiments [9], which require only a starting sequence, and are not

dependent on the tertiary contacts that exist in the native state of the biomolecule.

2.2.4 Inferring Protein Conformations from Structure Data

In still another approach, the Yale Morph Server [41] produces three-dimensional

animations of plausible domain motion pathways between two known conformations

of a protein. Intermediate conformations are extrapolated from a trajectory between

one conformation of a protein to another. Although this method is relatively quick,

requiring usually no more than 30 minutes to generate a morph, there is no time-scale,

kinetic, nor dynamic information that is used by the server. In recent extensions to

the original Morph Server, energy minimization is used to calculate the intermediate

frames and conformations of a protein, which produces results that are usually much

better than morphs made by simple linear interpolation [17]. Still, the real interme-

diate conformations might be quite different from those that are hypothesized by this

method, and the authors state that the morphs generate at worst a semi-plausible

pathway between two submitted protein subunit conformations.
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2.3 Rigidity Based Protein Flexibility

Rigidity analysis of proteins is an alternative to physics-based simulation methods,

that instead analyzes a single static structure of a protein. Its goal is not to predict

how a molecule bends and flexes, or to simulate a molecule’s motions, but instead

identify which parts of it are rigid. In this section, we give a short historical review

of rigidity analysis, we describe how proteins are modeled as mechanical frameworks,

and we describe pebble game rigidity analysis of these mechanical structures. The

mechanical framework that is presented in this section is just one of several that have

been developed. A description of another mechanical framework is available [20].

2.3.1 Rigidity of Bar-and-Joint Frameworks

The study of rigidity and flexibility of bar-and-joint frameworks was developed

by 19th century engineers attempting to analyze cross-bracing of steel structures. In

1864 James Clerk Maxwell [53] identified a simple counting rule to determine the

rigidity of such structures. This counting rule was proven correct in 2 dimensions by

Laman [45] in 1970, and subsequently was modified for the analysis of 3-dimensional

structures, called body-bar-hinge framework [76]:

Theorem (Tay) Let G be a graph with n vertices and m edges. G is the

graph of a generic minimally rigid body-bar-hinge framework if and only

if: any subset of n’ vertices in G spans at most 6n’-6 edges; and m=6n-6.

2.3.2 Mechanical Modeling of Proteins

In the KINARI software, body-bar-hinge 3-dimensional structures are used to

model the mechanics of proteins. Atoms along with their covalently bonded neigh-

bors form bodies. Covalent bonds between bodies are modeled as hinges, and other

stabilizing interactions such as hydrogen bonds and hydrophobics are modeled as

hinges or bars. In Figure 2.3 we show a schematic of a protein, and how the mechan-

ical model is constructed.
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Figure 2.3. Modeling proteins as body-bar-hinge frameworks. Solid lines designate
covalent bonds, and dashed lines represent distance constraints that arise due to angle
constraints imposed by bonds; covalently bonded atoms form bodies (for example the
purple region), shown on the left. R1 and R2 denote two residues. The body-bar-hinge
framework for the protein (left) is shown on the right, where body 2 is composed of
C1α, C, O, and N2, while body 3 is composed of C, N2, and C2α. A hinge between
two bodies allows for a one-degree-of-freedom rotation of one body about the other,
along the hinge axis.

2.3.3 Pebble Game Rigidity Analysis

Because the pebble algorithm is run on a graph, the mechanical framework must

be associated to a set of nodes and edges. From the body-bar-hinge framework, the

graph is constructed in the following fashion: each body is associated to a distinct

node, each bar in the mechanical framework is associated to an edge between two

nodes, and hinges in the mechanical framework are associated to 5 bars between

the two nodes that represent the rigid bodies (Figure 2.4). Because two bodies in

three-dimensional space have six non-trivial degrees of freedom between them (three

translations along and three rotations around the x, y, and z axes), placing five

bars between two bodies is equivalent to retaining just one of those six degrees of

freedom, which represents the mechanical behavior of a hinge. An efficient pebble

game algorithm [34] decomposes this graph into clusters which correspond to rigid

components in the framework.

The algorithm starts with 6 pebbles on each vertex of the associated graph, and

reasons about the edges one at a time, and accepts or rejects them. To be accepted,

an edge must have at least 7 pebbles distributed somehow on its two endpoints. If not
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Figure 2.4. Abstract mechanical framework of a protein’s structure. An abstract
model illustrates how bars would be placed between bodies, if hydrogen bonds or
other stabilizing interactions existed between them (left). The graph (right) is built
by associating each rigid body to a node, and hinge to 5 bars, and a bar to each edge.
Here bodies 2 and 3 on the left are represented as having 6 edges between the nodes
in the graph that represent the two bodies, 5 edges for the hinge (depicted as yellow
in (a)), and 1 for the bar.

enough pebbles are present, they are collected using a depth-first search approach.

An accepted edge consumes one pebble. As more and more edges are accepted, they

are combined into rigid components. The algorithm ends when all edges have been

considered. A formal proof of correctness for this algorithm can be found in [46].

2.4 Rigidity Based Protein Flexibility: Related Work

Rigidity analysis of proteins has been demonstrated on a handful of proteins, and

has been used to infer biophysical properties of several biomolecules. In this section

we review a few of these published results.

Rigidity analysis of protein structures was first introduced in the work of Thorpe,

et al. [79]. They studied different states of HIV-1 protease and showed that the rigid

clusters in open and closed conformations of the protease are correlated with the

known mechanical properties of the cantilever flaps of the molecule [80].

Rader et al. [69] simulated the thermal unfolding of Rhodopsin, a trans-membrane

receptor, by performing a rigidity dilution analysis using the FIRST software [80]. In
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this method, hydrogen bonds are removed from the molecular model one after another,

from weakest to strongest, and rigidity analysis is performed on the model after each

removal. A “folding core” is identified when there exists only one rigid cluster with

at least three residues of two or more secondary structures. The computed core was

correlated with experimental results, and confirmed via a visual inspection of the

protein using insights of its physical properties.

In a comparative study of the rigidity analysis of 62 protein structures from six

different protein families, Wells et al. [86] demonstrated that the main-chain rigidity

of a protein is very sensitive to small structural variations. In that study, Wells

concluded that the modeling of hydrogen bonds needs to be chosen carefully so that

specific hypotheses about the rigidity of particular proteins can be formed.

Recently, Fox, et al. [22], used a benchmark dataset of 32 PDB structure files

to validate the modeling in KINARI against a dataset that was analyzed using the

Gerstein Lab’s RigidFinder algorithm [1]. Fox introduced a metric called the cluster

decomposition score to compare KINARI’s rigidity results against Gerstein’s struc-

tural predictions. They found that the sensitivity of the cluster decomposition score

is dependent on the choice of the hydrogen bond energy cutoff value, which designates

a threshold at which these bonds are retained in the molecular model.

Ivet Bahar, et al. [68] have relied on elastic network as well as constraint net-

work models of freely rotating rods to predict protein folding nuclei. Both methods

were verified against data that was attained from native state hydrogen-deuterium

exchange experiments. Hydrogen-deuterium exchange gives information about the

solvent accessibility of various parts of a molecule, and thus the tertiary structure of

a protein. In these studies, the role of specific interactions in protein folding was also

investigated.

Radestock et al. [25] used a dilution analysis to study the different states of ther-

mophilic and mesophilic protein homologues. A mesophile is an organism that func-
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tions best in a moderate temperature environment, while a thermophile thrives best

at relatively high temperatures. In that study, macroscopic properties of the pro-

teins were correlated with rigid cluster sizes, using Cluster Configuration Entropy

(CCE) [82]. CCE is a function of the probability that a vertex in the mechanical

model is part of a cluster of size s. To compute CCE, a normalized cluster number,

ns is defined as the number of clusters of size s divided by the total number of vertices

in the mechanical model. The probability that a vertex belongs to an s-cluster, ws,

and the CCE value of the entire mechanical model are given as the following:

ws =
sns∑
s sns

(2.5)

CCE = −
∑
s

ws ln ws (2.6)

For two conformations of a protein, the one with the higher CCE value is more disor-

dered, and hence is more unstable. Radestock et al. used the CCE descriptor to show

that in approximately 70% of the proteins in their dataset, the thermophilic molecules

transitioned from rigid to flexible at higher temperatures than the mesophilic homo-

logues.

AJ Rader, et al. have used rigidity theory to relate the constraint network of

proteins to that network’s deformability [70]. A protein’s transition state can be

determined from the inflection point in the change in the number of independent

bond-rotational degrees of freedom (floppy modes) of the protein as its mean atomic

coordination decreases. Rader was concerned with the calculation of a universal

property of proteins that relied on a dilution analysis. Rader performed multiple

rigidity analyses, as many as there were hydrogen bonds in the protein.
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CHAPTER 3

KINARI: AN INFRASTRUCTURE FOR LARGE-SCALE
RIGIDITY STUDIES OF PROTEINS

Rigidity analysis of proteins was initially implemented in MSU-First [34, 33] and

the first online tool was FlexWeb [79]. Those applications had several limitations,

including a need to curate protein data by hand, and the choice of modeling of

important stabilizing interactions was fixed. To address several of these limitations

– and to provide an infrastructure for performing large-scale validation studies of

rigidity analysis of molecules – we have developed KINARI-Web. It is a second

generation free online server for protein rigidity analysis, that implements a variation

of the pebble game algorithm that was developed by Jacobs and Hendrickson [32, 46].

KINARI-Web is available at http://kinari.cs.umass.edu.

3.1 Introduction and Background

Proteins interact with organelles, other proteins, ligands, and ions. Thus, per-

forming rigidity analysis of proteins outside of the context of their neighbors might

cause important structural or functional information to be missed.

The structural data that is deposited into the PDB is the asymmetric unit of a

protein’s crystal, which may or may not be the same as the biological assembly (or

functional form) of the protein. To help facilitate the rigidity analysis of biological

assemblies of proteins, we have developed BioAssembly. It is a feature of the curation

portion of the KINARI [20] software, that permits the building of biological assemblies

or their sub-components, from the asymmetric unit in a PDB file. We have also
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developed KINARICrystal, that allows a user to generate a structure file representing

the crystal lattice of a protein, in which many instances of a molecule are nestled side-

by-side, as they do in the crystal used for X-ray crystallography experiments. The

KINARICrystal tool was developed in collaboration with post-baccalaureate students

working with Ileana Streinu, while the BioAssembly tool was designed with the help

of Tiffany Liu, an honor’s thesis student at Smith College, advised by Streinu.

In addition, KINARI-Lib V1.0 [21] has been released. It is a C++ library that

implements the pebble game algorithm and provides support for body-bar-hinge and

bar-joint mechanisms.

3.2 System Description

KINARI-Web is comprised of two phases: (1) data input and curation, and (2)

rigidity analysis and visualization.

Curation is composed of four steps. In the first step, a protein structure file is

either uploaded to the server, or the user designates a four-character protein code, and

KINARI fetches that structure from the PDB. KINARI-Web lists the models, chains,

ligands, water molecules, etc. that are included in the uploaded PDB file, and the

user selects the ones to be retained. In the second step of curation, hydrogen atoms

are added using the Reduce software. In the third step, stabilizing interactions such

as single and double covalent bonds, resonance bonds in peptide units, and disulfide

bonds are calculated. Hydrogen bonds are determined using the HBPlus software, and

hydrophobic interactions are identified using the algorithm described in in the ASU-

FIRST User Guide [11]. Each covalent, resonance and disulfide bond is assigned an

energy, in kcal/mol, that is determined from a table of average energies for each bond

type and pair of atoms that are involved in the interaction. The energy of a hydrogen

bond is computed by the KINARI software using the Mayo energy function [54]. In

the final curation step, the computed chemical interactions that exist between atoms
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Figure 3.1. Curation, modeling, and rigidity analysis in KINARI. We model proline
as a mechanical structure, from which an internal multi-graph is built. A pebble game
algorithm calculates rigid components in the multi-graph, from which the protein’s
rigid clusters are inferred. Image adapted from [20].

in the PDB-formatted input file are presented to the user, who can designate which

of them should be retained, and which should be removed. Chemical interactions not

identified by KINARI are supplied as user-defined constraints.

In the second phase of KINARI-Web, a user designates how different chemical

interactions should be modeled in the mechanical framework of the protein. This is

a novel feature of KINARI, not available in FlexWeb. KINARI-Web then generates

a mechanical model of the protein, and builds the associated graph, that is used as

input to a pebble game algorithm. The output of the pebble game is then inter-

preted in terms of clusters of atoms within the protein. The entire process of building

the mechanical framework, generating the association graph, and inferring the rigid-

ity results from the output of the pebble game algorithm are shown in Figure 3.2,

reproduced from [20].

After rigidity analysis has been performed, the KINARI-Web visualizer is used

to explore the rigidity properties of the protein. The input biomolecule is displayed

along with its calculated rigid regions. In Figure 3.2, left, we show the rigidity results

of HIV-1 Protease (PDB file 1hvr). KINARI-Web’s visualizer options enable a user

to investigate the rigidity results. Among these options, a user can display certain

clusters while hiding others, zoom in to investigate specific parts of the protein, or

30



Figure 3.2. Visualizing rigid cluster of HIV-1 Protease. Groups of colored atoms
indicate rigid clusters. For HIV-1 Protease (PDB file 1hvr), most of the atoms are in
a dominant rigid cluster (orange). The options in KINARI-Web’s visualizer enable a
user to investigate the rigidity results. For the crystal structure of Diedel, a marker of
the immune response of Drosophila melanogaster (PDB file 3zzo), the largest cluster
has been hidden, and cartoon rendering is enabled.

display bonds that act as hinges between rigid bodies. Many of these visualizer

features are novel to KINARI-Web. In Figure 3.2, right, we show the rigidity results

of the crystal structure of Diedel, a marker of the immune response of Drosophila

melanogaster (PDB file 3zzo); all rigid clusters containing more than 5 atoms are

displayed, the largest rigid cluster has been hidden from view, and cartoon rendering

has been enabled.

3.3 Software Profiling and Testing

Two types of software profiling were performed, to determine the limitations of

KINARI-Web: (1) back-end software testing, and (2) front-end testing of the web

interface. Both types of profiling were performed on the server that currently houses

the KINARI webpage. The back-end software testing was performed on more than

25,000 proteins retrieved from the Protein Data Bank (PDB), and was conducted to

test each of the four curation steps and the rigidity analysis phases of KINARI. The

profile testing of the front-end graphical user interface was performed to evaluate the

visualizer and front-end features of KINARI-Web.
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For the back-end profile testing, the following five components of KINARI were

tested: (1) Curation - Cleaning a PDB file, (2) Curation - Adding Hydrogen Atoms,

(3) Curation - Calculating Interactions, (4) Curation - Removing Unwanted Interac-

tions, and (5) Performing Rigidity Analysis. Several separate PDB data sets were

used, each with different sized proteins. Also, the curation and modeling options

were varied across several of the profile runs to test how the different components

of KINARI and KINARI-Web perform under various combinations of options that a

user might designate. For each data set, the PDB IDs that were used are posted on

the KINARI website. The log file, as well as plots of the average run time of each

curation and rigidity analysis step vs. the number of residues, are also listed there.

In Figure 3.3, we show the average run time for the different phases of KINARI for

proteins of various sizes.
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Figure 3.3. Profiling results for 25,000 proteins. Run-times were recorded for each
of the four curation steps and the rigidity analysis phase, for proteins of various sizes.
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For the front-end testing, each step of KINARI-Web was invoked, including down-

loading, cleaning/curating a PDB file, performing rigidity analysis, and generating

output files necessary to render the protein and the results in the visualizer.

3.3.1 Generating Biological Assemblies

Protein structure files contain atom coordinates for the asymmetric unit of a

protein, i.e. the minimal set of atoms necessary to reproduce the complete protein

biological assembly and crystal which was analyzed with X-ray diffraction. A PDB

file has information on how to create the biomolecule, the functional biological unit,

and unit cell, the repeating unit of the crystal. A unit cell vector is a vector from

the origin of the coordinate system to a lattice point of the crystal [71]. Three unit cell

vectors are needed to describe a unit cell. A symmetry operation is a transformation

operation (represented as a matrix) acting on a protein that produces a copy of it,

possibly translated and rotated. The space group referred to in the PDB file is a

combination of symmetry operations and a lattice specified by the unit cell vectors.

Over 87% of the protein structures deposited in the Protein Data Bank have been

solved with X-ray crystallography. Protein function is correlated with flexibility,

which motivates us to analyze the rigidity properties of the biological forms of pro-

teins. However, protein flexibility studies using rigidity analysis have been performed

until now primarily on individual asymmetric units (the smallest part of a protein

that is needed to re-create the protein’s biological functional form) from the data

available in the PDB. For some proteins the asymmetric unit is identical to the bio-

logical assembly. However, for many proteins, especially those determined via X-ray

crystallography, the asymmetric unit is different from the biological assembly. De-

pending on how the protein was crystallized, the relationship between the asymmetric

unit and the biological assembly can vary from protein to protein. Some biological

assemblies are composed of many copies of the asymmetric unit.
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The PDB file contains only the atomic coordinates of the asymmetric unit, and

it is natural to expect that its rigidity analysis may not always reflect the flexibil-

ity properties of the biological form. One extreme example is a viral capsid: the

icosahedral type is composed of 60 repeating units, and each one may contain several

monomeric units. To gain information on the flexibility of the virus would require

building the entire assembly, but this would be a very large molecule, and so far, no

existing software automatically performs this task.

In order to generate the biological assembly form of a protein, the asymmetric

unit in a PDB file must be rotated, copied, translated, etc. The number of asym-

metric units that make up a biological assembly varies from protein to protein. In

some case, the asymmetric unit is the biological form, but in others, two, three, or

many more asymmetric units, arranged uniquely in relation to each other, form the

biological assembly. A transformation matrix in the PDB file details how chain(s) in

the asymmetric unit need to be processed to form the biological form of the protein.

For the purposes of rigidity analysis, building just portions of the biological assem-

bly may be useful. For instance, analyzing increasingly larger portions of a biological

assembly may provide insight into the evolution of its flexibility as it builds up from

its subunit components, or as it decomposes into its smaller subunits. From a com-

putational point of view, generating a PDB file for the biological unit may not always

be possible in the PDB format, which is what KINARI currently supports. Indeed,

this format can only accommodate up to 99,999 atoms and up to 36 chains, and many

large biological units such as viruses easily exceed these limits.

For generating a protein’s biological assembly, we used the translation and rotation

matrices included in the header of a PDB file. We applied transformation operations

that were given as matrices in REMARK 350 of each structure file on each atom of the

asymmetric unit. Each matrix contains a 3D rotation matrix and three translation
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(a) Symmetry rotation of one of the
homo-dimer halves of HIV-1 Protease
about a line a symmetry

(b) Translating the protein unit in PDB file 3ovo
(left) would generate a possible crystal lattice struc-
ture (right), composed of several asymmetric units

Figure 3.4. Symmetry operations in proteins. The 3 symmetry operations allowed
in proteins due to chirality are rotation (a), translation (b), and screw rotation (not
shown). These do not compromise the handedness of the alpha-helix.

vectors (one for each axis). The listing of secondary structures also was updated with

references to the newly generated atom coordinates.

3.3.2 Building Crystal Lattices

The symmetry operations and space groups used to recreate a crystal lattice from

an asymmetric unit have their foundation in mathematical crystallography. There

are seven types of symmetry operations, each of which has a specific matrix repre-

sentation, but only three (rotation, translation, and screw rotation) are allowed in

proteins due to chirality; that is, four symmetry operations are not allowed because

they would change the handedness of an alpha-helix of a protein [71] (Figure 3.4).

Matrix representations of two symmetry operations are shown in Figure 3.5. On

the left, a matrix which has only ±1 values on the diagonal and zeroes elsewhere

would transform the original protein data by 180° rotations and reflections about one

of the three orthogonal axes. The general structure of a transformation matrix using

arbitrary angles is shown on the right.

To generate a crystal, three linearly independent translations are required. If

the translations are represented by three vectors, a, b, and c, then all lattice points
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±1 0 0
0 ±1 0
0 0 ±1

 cos θ −sin θ 0
sin θ cos θ 0

0 0 ±1


Figure 3.5. Matrices for generating crystal structures from an asymmetric unit.
These matrices can assume one of several forms, based on the specific transformation
that is required to reproduce the repeating crystal units. Depending on the combi-
nation of integer ±1 values on the diagonal (left), these can be either a rotation by
180°or a reflection. If a symmetry operation uses rotations with angles other than
180°, the matrix has the form shown on the right, with corresponding values of sin
and cos substituted.

are generated by linear combinations of the vectors with integer coefficients [72].

There are 14 types of Bravais lattices, categorized into seven crystal groups: cubic,

tetragonal, rhombohedral, orthorhombic, monoclinic, triclinic, and hexagonal.

A space group is a combination of one of the 14 lattice types and one to three

symmetry operations. While there are 230 distinct space groups, proteins only crys-

tallize into only 65 of them, due to chirality. For example, the protein in PDB file

1onj [49] crystallizes into space group P 41 21 2, with eight symmetry operations; thus

it will have eight asymmetric units in the unit cell. The P and initial 4 indicate a

primitive tetragonal lattice type. 41 indicates a four-fold screw axis: a 90o rotation,

followed by a translation of 1/4 of the c unit cell vector length. 21 indicates a two-fold

screw axis: a 180o rotation along with a translation of 1/2 of the a unit cell vector

length. 2 indicates a 180o rotation.

To create the asymmetric unit and crystal lattices, we applied symmetry oper-

ations that were given in REMARK 350 of each structure file on each atom of the

asymmetric unit. We built the unit cell with supercell.py [28], a Python script. It re-

trieves the three unit cell vectors from the CRYST1 line of a PDB file, and generates

the unit cell by applying the space group symmetry operations on the asymmetric

unit. We built the crystal by translating the unit cell in the direction of the three unit

cell vectors. For self-checking, we generated the crystal structures using two meth-
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(a) Cartoon rendering of
asymmetric unit of PDB
file 2on8

(b) Crystal made up for 4
unit cells, each composed
of asymmetric units.

(c) Rigidity analysis of
a protein crystal. Some
neighboring asymmetric
units collapse into a large
rigid body.

Figure 3.6. Rigidity analysis of a crystal lattice of the B domain of the streptococcal
protein G. For the gbeta1 domain (PDB file 2on8), the cartoon rendering of the
asymmetric unit is shown in (a). The crystal lattice of 2×2×1 unit cells of the gbeta1
domain as generated by KINARICrystal is shown in (b). Its flexibility properties are
visualized in (c). Different colors designate distinct rigid clusters.

ods: a custom-built interface to the python script supercell.py [28], and an in-house

implementation. An example, illustrating the Immunoglobulin G-binding protein G

(PDB file 2on8) is shown in Figure 3.7. Figure 3.6 shows the asymmetric unit and

small crystal of protein 2on8; different colors indicate different rigid clusters.

3.3.3 Generating in silico Mutant Protein Structures

Predicting the effect of a single amino acid substitution on the stability of a protein

structure is a fundamental task in macromolecular modeling. We have extended

KINARI to generate mutant protein structures and analyze their rigidity. We present

here the first release of this new tool, KINARI-Mutagen. Its ultimate goal is to

identify destabilizing mutations. This first version performs an in silico mutation to

a glycine, which we call an excision.

The KINARI Mutation Engine performs a simple computational mutation, where

a residue is converted to a glycine. For the purpose of performing the rigidity analysis,
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(a) Generated unit cell, colored
by secondary structure

(b) Generated crystal lattice, made up of 2 unit cells
(red and blue); bounding box for right unit cell not
shown

Figure 3.7. Generating crystal lattices from asymmetric units. From the B domain
of the streptococcal protein G (PDB file 2on8), we generated the unit cell (a) from
the asymmetric unit. In (b), the unit cell is translated using the unit cell vectors to
generate a 2×1×1 crystal lattice.

it is not necessary to alter the positions of, or remove, atoms. Instead, it suffices

to remove the side-chain’s hydrogen bonds and hydrophobic interactions from the

protein’s molecular framework. This functions in our model like the removal of a side-

chain. Subsequent versions of the Mutation Engine will permit increasingly advanced

mutation functions. Because rigidity analysis is efficient, many generated mutant

protein structures can be analyzed quickly.

We demonstrate the excision process on a fragment of human α-defensin 1 (Fig-

ure 3.8). When excision is performed on residue 3, the hydrophobic interactions

between it and residue 5 are removed from the molecular framework (Figure 3.8(b)).

When excision is performed on residue 5 (Figure 3.8(c)), then the hydrogen bonds

and hydrophobic interactions that it engages in are removed.

KINARI-Mutagen investigates how different residues affect the rigidity and sta-

bility of a protein. Analyzing a protein involves four phases: 1) downloading and

curating a PDB file, 2) performing excision to generate mutants, 3) analyzing the

rigidity of each mutant, and 4) aggregating the results to help the user identify criti-

cal residues. For step 1, KINARI-Mutagen provides a direct link to KINARI-Web[20],
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(a) No excision. (b) Excision on Residue 3. (c) Excision on Residue 5.

Figure 3.8. Simulating mutations to glycine in KINARI-Mutagen. Side-chain hy-
drogen bonds and hydrophobic interactions are removed from the molecular model
of a protein to simulate a mutation. In the wild-type of PDB file 2pm1 (a), two
hydrogen bonds (light green bars) and two hydrophobic interactions (blue bars) exist
among residues 3, 5, and 13. Excising residue 3 (b) removes the hydrophobic interac-
tions that it forms with residue 5. Excising residue 5 (c) removes the hydrogen bonds
between residue 5 and 13 and the hydrophobic interactions between residue 5 and 3.

for downloading a PDB file. Chains, ligands and water molecules in the protein can

be retained or removed, and covalent and non-covalent interactions are identified.

In step 2, the Mutation Engine performs an in silico mutation (described in Sec-

tion 3.3.3). In the third phase, the KINARI software is invoked to perform rigidity

analysis on each mutant. Detailed descriptions of the rigidity calculation and mod-

eling options are described in Section 2.3. When rigidity analysis is complete, an

integrated Jmol-based visualizer is used to inspect the rigid regions of each mutant.

In the final stage of KINARI-Mutagen, the rigidity results for each of the mutants

are aggregated. Information about critical residues can be inferred from several of the

generated plots. Although this version of KINARI-Mutagen does not automatically

predict which residues are critical, the SASA and Size of Dominant Rigid Cluster

vs Excised Residue plot (see Figure 5.2 as an example) designates a critical residue

threshold, which is the average size of the dominant rigid body for all of the analyzed

mutants. Residues whose in silico mutation to a glycine causes the dominant rigid

body to decrease in size to below this threshold, are easily identified.
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Figure 3.9. System description of KINARI-Mutagen. A PDB file is downloaded
and curated, excision is performed to generate mutants, each mutant is analyzed, and
rigidity results are aggregated. The generated plots and metrics provide information
about which residues are critical in maintaining the protein’s rigidity. Shown here is
the procedure for generating and analyzing the mutation of residues 3, 7 and 28.

In addition, KINARI-Mutagen uses the SurfRace program[83] to calculate the

Solvent Accessible Surface Area (SASA)[47] of each residue. A residue that is not

exposed to the solvent has a low SASA value, measured in Å2. Residues closer to

the surface of a protein have higher SASA values, and completely buried residues

have a SASA value of 0. Residues on the surface of a protein are not expected to

help maintain a protein’s stability[2]. Thus, we included the SASA calculation in the

SASA and Size of Dominant Rigid Cluster versus Excised Residue plot to permit us

to easily determine if KINARI-Mutagen can identify critical residues on the surface

of a protein that may not be easily identified using other methods.
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CHAPTER 4

ANALYZING PROTEIN BIOLOGICAL ASSEMBLIES AND
CRYSTALS

The goal in developing KINARICrystal and BioAssembly was to determine if, and

how, the interactions among neighboring crystal cells and protein subchains affect the

flexibility of a biological assembly or of the molecule in its crystallized state. In this

chapter, we demonstrate that new insights into protein flexibility are obtained by

performing rigidity analysis on biological assemblies and protein crystal lattices. In

the analysis of over 900 crystal lattices, we have identified two types of behaviors:

some crystals aggregate into rigid bodies that span multiple unit cells/asymmetric

units, while in other cases, the rigidity properties of the asymmetric units are retained,

because the rigid bodies did not combine. We also identified two interesting cases

where rigidity analysis correlated with the functional behavior of the protein.

4.1 Introduction and Motivation

Within the lattice of a crystal, the interactions among neighboring cells and sub-

chains affect the flexibility of a biological assembly or of the molecule in its crystallized

state. Zhang, et al. [90], in a comparison of 25 crystal forms of T4 lysozyme, revealed

that crystal contacts perturb a protein’s backbone structure by 0.2 to 0.5Å. Also,

flexibility studies using rigidity analysis have been performed until now primarily on

individual asymmetric units (the smallest part of a protein that is needed to re-create

the protein’s biological functional form) from the data available in the PDB. To de-

termine if rigidity analysis could provide additional information about the effects of
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Table 4.1. Experimental setup for generating crystal lattices

Step Description
Selection and Curation 324 PDB files selected for analysis, having

50-150 residues in asymmetric unit)
Building of Crystal Lattice supercell.py and custom scripts were used

to apply symmetry and translation opera-
tions on each protein’s asymmetric unit

Performing Rigidity Analysis The KINARI software was used to calcu-
late the rigid regions of the asymmetric
unit and crystal lattices of each protein

Identifying Rigid Clusters The rigidity results were analyzed to de-
termine if interactions of unit cells led to
larger rigid clusters.

crystal packing, and to determine if, and how, the interactions among neighboring

cells and subchains affect the flexibility of a biological assembly or of the molecule

in its crystallized state as measured using rigidity analysis, we analyzed a dataset of

more than 900 crystal structures of more than 300 proteins.

4.2 Summary of Methods

Our computational setup involves the following: we parse the input PDB file,

build the biological unit and desired crystal structures, then we use our KINARI-Web

software to place hydrogen atoms, identify chemical interactions, and perform rigidity

analysis, which outputs the rigidity clusters. To perform the experiments, we selected

a dataset based primarily on protein size, for reasons having to do with the limitations

of the current implementation. However, in our experiments we demonstrate that our

software is able to handle relatively large protein structures.

Table 4.1 summarizes the steps of our experimental setup and methods for gen-

erating and analyzing crystals build from PDB structure files. The advanced search

feature of the PDB was used to select proteins that had between 50 and 150 residues,

whose structure was determined using X-Ray crystallography. Only proteins with no

DNA nor RNA were selected.
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We tested our method on 982 crystals lattices of various sizes, build from 324

protein structure files retrieved from the PDB. We found that the rigidity results

vary among different proteins, an indication that there is additional information to

be extracted from rigidity analysis of crystals and biological assemblies, as opposed to

just a single asymmetric unit. In some cases, the biological unit, analyzed in isolation,

exhibits significantly more flexibility than its crystal counterpart, while in others, the

rigidity properties appear to be stable in the two forms.

For these 324 proteins, we built the unit cell, as well as 2×1×1, and 2×2×1 crystal

lattices from the asymmetric unit data in each PDB file. The rigidity results were

analyzed to reveal trends in the rigidity properties of the crystal lattices.

The rigidity analysis of a protein can find a dominant rigid cluster, whose size

is substantially larger than any other rigid cluster, or several significant clusters of

comparable sizes. Cluster sizes below a certain threshold (referred to as insignificant),

are not taken into account in our analysis. They typically belong to flexible regions.

4.3 Results

Here we present three detailed case studies of the rigidity analysis of biological

assemblies, which highlight why it is important to analyze a protein in its functional

form as opposed to just its asymmetric unit. Then, we include three case studies

of proteins analyzed in crystal form, and identify a significant, small, or no effect in

rigidity. Finally, we show a survey of 982 crystal lattice structures of various sizes,

generated from 324 protein asymmetric units.

4.3.1 Merging of Rigid Clusters in a Biological Assembly

As a first proof-of-concept step to demonstrate the importance of analyzing the

biological assembly versus just a protein’s asymmetric unit, we analyzed PDB struc-

ture 1hhp. It is the monomeric unit (one-half) of the dimer aspartyl protease, which
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(a) Functional form (b) Monomer (c) Dimer

Size AU BU
3 23 38
4 8 12
5 199 336
6 34 44
11 3 4
12 2 2
15 1 0
16 2 2
19 1 2
710 1 0
1802 0 1

(d) rigid clusters

Figure 4.1. Schematic and rigidity results of HIV-1 Protease. The protein is a
dimeric aspartyl protease (PDB file 1hhp)(a). The asymmetric unit (b) in the PDB file
has one significant rigid cluster. Two of the asymmetric units make up the biological
form of the protein. When the rigidity of the biological form of the protein is analyzed
(c), the rigid clusters of the two individual monomers combine into one dominant rigid
cluster. The black outlined region designates one of the two beta hairpin loops often
referred to as flaps, which function as chemical scissors and close in on the interior
of the protein to facilitate an enzymatic reaction. In (d) the number of each type
of rigid cluster is listed for the asymmetric and biological units (AU = Asymmetric
Unit, BU = Biological Unit)

plays a crucial function in the maturation process of HIV-1. The functional form of

the protease is made up of two identical chains, each composed of 99 residues. The

PDB file 1hhp contains only the asymmetric unit. Using KINARI’s BioAssembly,

Curation, and Rigidity Analysis tools, we compared the rigidity of the asymmetric

unit in 1hhp with its biological assembly (Table 4.1(d)).

From these results, we see that the asymmetric unit of 1hhp (Figure 4.1(b)) has a

dominant rigid cluster of 710 atoms, while all other clusters have 19 or fewer atoms.

In the biological assembly of 1hhp, however, the two monomeric chains have a rigid

cluster of approximately 1,800 atoms, more than double the size in the asymmetric

unit. Analyzing the monomeric form of HIV-1 Protease would not be expected to

reveal any biologically relevant information about the protein, because it only exists

in the dimeric form. However, we show this analysis here to demonstrate that chem-

ical interactions between the two monomers affect the protein’s rigidity, and that

analyzing only the asymmetric unit of the protein would cause important structural

information to be missed.
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HIV-1 protease transitions between two predominant conformations, the open and

closed forms. These two forms are distinguished by the locations of two extended beta

hairpin regions often referred to as flaps (the left flap is shown as the outlined black

region in Figure 4.1(c)). The two flaps close in onto the interior of the protease, to

help facilitate an enzymatic reaction that is integral to the protein’s function [62].

The two flap regions are identified in the biological assembly (Figure 4.1(c)) as being

flexible, which is consistent with the studies and simulations on the protein’s flaps,

which have been shown to exhibit a wide range of motion [65].

4.3.2 The Biological Assembly Of A Nucleoprotein

The Rift Valley Fever Virus (RVFV) nucleoprotein [19] (PDB file 3ouo), was

chosen to highlight how separate domains of a structure contribute differently to the

protein’s overall rigidity. The asymmetric unit in this PDB file contains a 2-chained

dimer and a 1-chained monomer; each chain has 245 residues. The two biological

units for this protein are the hexamer generated with three copies of the dimer and

the hexamer generated with six copies of the monomer. Each monomeric chain has

an extended, N-terminal arm.

We investigated the rigidity of the asymmetric unit of 3ouo, the monomeric unit

of chain A, the monomeric unit of chain B, the dimer made of one copy each of chain

A and chain B, the monomer made of chain C, the dimer made of two copies of chain

C (Figure 4.2). Using the biological assembly information in the PDB file, we also

generated the hexamer made of three copies of the A-B dimer, and the hexamer made

of six copies of chain C. The tabulations of the rigid clusters for these components

of the biological assembly and the two biological forms of the protein (Table A.3,

Appendix A) show that as the structure becomes larger by a factor of n, the number

of rigid clusters of a particular size increase by about the same factor. A closer look at

Table A.3 further suggests that new rigid clusters are introduced when the hexamer
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(a) (b) (c) (d) (e) (f)

(g) (h)

Figure 4.2. Rigidity Results of Rift Valley Virus. The asymmetric unit (PDB file
3ouo), is composed of three chains, A, B, and C. With the BioAssembly tool, we
analyzed the rigidity of just chain A (b), chain B (c), the dimer made up of chains
A and B (d), chain C (e), two copies of chain C (f), the hexamer made up of three
copies of the dimer (g), and the hexamer made up of six copies of chain C (h).

is built from three copies of the dimer and when the hexamer is built from six copies

of the monomer. In the first biological assembly, we found three new clusters with

237 atoms; in the second, we found six new rigid clusters with 118 atoms each. These

rigidity results might be explained by the fact that the N-terminal arms bind to a

hydrophobic pocket in the surface of the neighboring chain of the biological assembly,

which is known to stabilize the hexamer structure [19].

4.3.3 Analyzing How Subunits of a Protein Affect Its Rigidity

The Vaccinia Virus D13 (PDB file 3saq) is a key structural component of the

outer scaffold of viral crescents [5, 30]. The asymmetric unit contains two chains,

A and B (Figure 4.3 b,d), with 576 residues each. The PDB file 3saq identifies two
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biological assemblies that are generated from the two chains in the asymmetric unit.

The first biological assembly (Figure 4.3c) is composed of three copies of chain A,

and the second (Figure 4.3e) is composed of three copies of Chain B.

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 4.3. Rigidity analysis of Vaccinia Virus D13. The asymmetric unit (a)
PDB file 3saq is composed of two chains, A and B. We analyzed the rigidity of just
chain A (b), just chain B (c), the biological assembly made up of three copies of
chain A (g),and the biological assembly made up of three copies of chain b (f). Due
to the rotamer nature of certain amino acids, hydrogen atoms were placed by the
Reduce software at different rotamer positions for certain residues, including residue
511, Threonine (residue 511 for subunits 1 and 2 are show in (d) and (e)). This
caused subunit 1 to have a different number of hydrogen bonds than subunits 2 and
3, resulting in the non-symmetric rigidity of the second biological assembly. When
KINARI’s curation tools were used to adjust for this discrepancy of hydrogen bonds,
the resulting biological assembly was symmetrically rigid (h), as expected.

The rigidity results for the two biological assemblies are surprisingly different, in

that assembly 2, which has a dominant cluster composed of 9,475 atoms, is much

more rigid than biological assembly 1, whose significant rigid cluster contains far

fewer 2,277 atoms. To investigate this, we looked at the chemical interactions among

the chains in both biological forms of the protein. Biological assembly 1 has 1,092
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hydrogen bonds, and 700 hydrophobic interactions, while biological assembly 2 has

1,161 hydrogen bonds, and 805 hydrophobic interactions. This suggests that the

stabilizing interactions among the three copies of chain B have a stronger effect on

the rigidity of biological assembly 2 than do the chemical interactions among the

three copies of chain A in biological assembly 1. The disparity in rigidity between the

two biological assemblies might be explained by findings that multiple copies of both

biological units form a honeycomb lattice, which is what provides structural stability

for the immature virion membrane [30]. Thus both biological assemblies function

cooperatively to perform their structural roles. Rigidity results for the structures

generated from file 3saq are in Table A.2 in Appendix A.

In addition, we investigated why the rigidity of the second biological assembly is

non-symmetric, even though it is composed of three identical, symmetric, subunits,

that are translated and rotated copies of chain B. We compared the hydrogen bonds in

each of the three subunits, and found that they had 385, 386, and 384 hydrogen bonds

respectively. A further inspection revealed that chain B has several amino acids, for

example residue 511, Threonine, to which hydrogen atoms can be assigned in several

ways. This is because threonine is one of two amino acids out of the naturally occur-

ring twenty with two chiral centers [56], and it can exist as four possible stereoisomers

(molecules that have the same molecular formula and sequence of bonded atoms, but

that differ only in the three-dimensional orientations of their atoms in space). In

addition, Threonine can assume one of several rotamer conformations even among a

sample of the same protein [74, 50]. These help to explain why the adding of hydrogen

atoms to such a residue can be done in one of several ways. The RMSD aligned, su-

perimposed residues 511 for subunit 1 (Figure 4.3f) and subunit 2 (Figure 4.3g), have

their HG1 hydrogen atoms (as were placed using the Reduce software) at different

rotamer locations, which explains why one of these engages in a hydrogen bond, and

the other does not.
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To confirm that indeed the disparity of the number and placement of the hydrogen

bonds among the three subunits of the second biological assembly is what causes the

protein’s non-symmetric rigidity, we performed a pairwise comparison of the stabi-

lizing interactions among the three subunits. We identified where the three subunits

differ in their hydrogen bonds. To investigate the effect of adding these hydrogen

bonds involving the rotamer residues, we manually added 2, 1, and 3 hydrogen bonds

to the first, second, and third subunits. We used the KINARI curation software (step

4) to insert the hydrogen bonds. In this case, the resulting rigidity of the biological

assembly turned out to be symmetric (Figure 4.3g). Table A.2 in Appendix A shows

the counts and sizes of the rigid clusters for the subunits of PDB structure 3saq.

In this case study, it is striking that the placement of such a small number of

hydrogen bonds in a subunit of a biological assembly can vastly alter the rigidity of

the trimeric protein. Adding 6 hydrogen bonds to an already existing 1,161 had a

profound impact on the rigidity of the biological assembly. On the one hand, this

suggests that the rigidity analysis of this protein is overly sensitive to these small

differences in the counts and locations of hydrogen bonds. However, the fact that

rigidity analysis is sensitive to the placement of these few hydrogen bonds might

be taken advantage of, to help identify stabilizing interactions that are critical in

stabilizing a macromolecular structure.

4.3.4 Crystal Lattice Dominant Cluster Aggregation

The putative protein from the gram-negative bacterium Thermus thermophilus

[16] (PDB file 2yzt), crystallizes in a P 31 2 1 space group, which has 6 associated

symmetry operations. Its small size (579 atoms) allows us to quickly analyze the

asymmetric unit, unit cell (1×1×1), as well as 2×1×1 and 2×2×1 crystal lattices.

The unit cell, the 2×1×1 crystal, and the 2×2×1 crystal have, respectively, 2, 4, and

8 asymmetric units.
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(a) Asymmetric unit (b) Unit cell made up of 2 asym-
metric units

(c) 2×2×1 Crystal Lattice

Figure 4.4. Aggregating of rigid clusters in unit cells of Thermus thermophilus. The
significant rigid cluster in the asymmetric unit (a) of PDB file 2yzt has 463 atoms.
In both the unit cell and the generated lattice, chemical interactions between the
neighboring asymmetric units cause the rigid clusters of the individual unit cells to
aggregate into a dominant one.

The asymmetric unit is a globular structure with a rigid region and a tail-like

segment that remains flexible (Figure 4.4(a)). The dominant rigid cluster contains

463 atoms, and all other rigid clusters contain fewer than 26 atoms. The unit cell (the

protein after the application of the 6 symmetry operations, i.e. the 1×1×1 crystal)

maintains two significant rigid clusters of 463 atoms, but the other rigid clusters of the

unit cell combine to form a rigid body containing 2,504 atoms, approximately 6 times

the size of the significant rigid cluster in the unit cell (Figure 4.4(b)). In other words,

the significant clusters being adjacent, combine to form the dominant rigid body in

the crystal. For the 2×2×1 crystal, the largest body contains 14,328 atoms (Table

A.1 and Figure 4.4(c)), which is significantly larger than four times the size of the

significant rigid cluster in the unit cell. This indicates that the chemical interactions

among the unit cells of the crystal have a significant impact on the rigidity of the

entire crystal lattice. Table A.1 in Appendix A lists the rigidity results of the crystals

generated from PDB file 2yzt.
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4.3.5 A Significant Increase of Rigid Clusters in a Crystal Lattice

In the previous case study we found a very rigid crystal of PDB file 2yzt, with a

very large dominant cluster. This is not always the case. Aggregating the asymmetric

units of some proteins into a crystal lattice does not appear to greatly affect the

rigidity of the resulting crystal structure. We illustrate this by analyzing one of the

four types of antifreeze proteins found in marine fish living at sub-zero temperatures

[40] (PDB file 1ucs). This protein crystallizes in a P 21 21 21 space group, which has 4

related symmetry operations. The unit cell of 1ucs is made up of 3 asymmetric units,

the 2×1×1 crystal has 6 asymmetric units, and the 2×2×1 crystal has 12. In this

case, the asymmetric unit does not have a dominant rigid cluster; it has four small

significant clusters (Figure 4.5). Their number increases proportionally to the size of

the crystal, and there is no aggregating of rigid clusters of unit cells (Table A.4 in

Appendix A and Figure 4.5).

(a) Asymmetric unit (b) Unit cell of 1ucs (c) 2×1×1 Crystal Lattice

Figure 4.5. Rigid clusters of unit cells of Type III Antifreeze Protein RD1. In the
crystal structure of Antarctic Eel Pout (PDB file 1ucs), the asymmetric unit (a) is
composed of four significant rigid clusters (many more smaller ones are not displayed).
Unlike PDB structure 2yzt (Figure 4.4), none of these is substantially larger than the
others. In this case, the number of significant rigid clusters in the crystal form is more
than the sum of the significant rigid clusters of the asymmetric units. This indicates
interactions between the units that affect the rigidity of the crystal structure.
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4.3.6 Rigidity Analysis Of Several Forms of Ribonuclease A

Our last cast study is on Ribonuclease A, which we analyze based on two PDB files

(5rsa and 9rsa). In one case (5rsa), we see that aggregating the asymmetric units into

a crystal has no bearing on the rigidity of the lattice. 5rsa crystallizes in a P 1 21 1

space group, with only 2 symmetry operations. The asymmetric unit, which contains

a single instance of the protein, is made up of 2,250 atoms. It has no dominant cluster,

and the significant ones are made of approximately 65 atoms. The unit cell and the

two crystals we analyzed (2×1×1 and 2×2×1) all have significant clusters of about

the same size (65) (Figure 4.6(a) and 4.6(b)). Unlike the previous two case studies

(PDB files 1ucs and 2yzt), no clusters (significant or insignificant) are merged at the

interface of the units when forming the crystals (Table A.5 in Appendix A). This

may be because no hydrogen bonds form between the two asymmetric units in the

unit cell (data not shown). Also, we notice that only 4 new bonds appear between

the cells that make up the 2×1×1 lattice, and only 8 in the 2×2×1 lattice. However,

this small number of bonds does not preclude the formation of larger clusters (see

case study for 3saq). These rigidity results of the crystallized form of the protein,

therefore, are in agreement with the protein’s known properties, in that Bello [7],

et al. have shown that Ribonuclease A (PDB code 5rsa) retains its function in the

crystallized form.

RNase A is a widely studied protein, for which there are many structure files in

the PDB. One such entry, file 9rsa, is that of a derivative, which is know to retain only

1% of its enzymatic activity [60]. We compared the rigidity results of the two forms.

PDB structure 9rsa crystallizes in a P 212121 configuration, and the asymmetric unit

contains two instances of the protein. The PDB file 9rsa contains two copies of RNase

A. To make the comparison meaningful, we retained only a single instance of RNase A

from file 9rsa. Interestingly, the rigidity results of the asymmetric unit (Figure 4.6(c))
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of 9rsa has a dominant rigid cluster of 1,339 atoms, in stark contrast to the significant

rigid clusters in 5rsa.

(a) 5rsa

(b) 5rsa unit cell

(c) 9rsa
(d) 9rsa unit cell

Figure 4.6. Comparing rigidity of two crystal forms of Ribonuclease A. For Ribonu-
clease A (PDB file 5rsa), which performs its function in its crystalline form [7], the
asymmetric unit (a) and its unit cell (b) are largely flexible. In contrast, a derivative
of the protein (PDB file 9rsa), which is known to lose virtually all activity [60], the
asymmetric unit (c) and unit cell (d) are both very rigid, and contain far more atoms
in the dominant rigid cluster than the structure in file 5rsa.

4.3.7 Survey of 982 Crystal Structures

In addition to the previous case studies, we surveyed a dataset of 324 proteins,

in 982 biological assembly and crystal forms. The dataset contains a diverse set of

proteins. As illustrated in Table 4.2, it is not biased towards proteins with only

large dominant clusters. For each crystal, we tallied what percent of the structure’s

atoms were in the dominant cluster. We summarized the rigidity of the crystals

and information concerning the dominant cluster in three groups, with dominant

cluster size larger than 75%, between 50 and 75%, and between 25 and 50%. We also

tabulated each crystal’s number of hydrogen bonds and hydrophobic interactions.

The generated crystals varied in size, the largest having 54,107 atoms (PDB file 3hon,

2×2×1 crystal). Some crystals were made up of as few as a single asymmetric unit,
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Table 4.2. Summary of dataset for survey of crystal structures

# Protein structure files retrieved from PDB 324
# Crystals generated using KINARI 982
Maximum number of asymmetric units in a crystallographic unit cell 48
Largest crystal (atoms) 54,107
# Crystals with hydrogen bonds between unit cells 776
# Structures with 25% or more but fewer than 50% of atoms in domi-
nant rigid cluster

228 (18%)

# Structures with 50% or more but fewer than 75% of atoms in domi-
nant rigid cluster

364 (29%)

# Structures with 75% or more of atoms in dominant rigid cluster 334 (27%)

or as many as 48. The asymmetric units and generated crystals varied surprisingly

in terms of how many of the structure’s atoms were part of the dominant rigid body.

We performed a preliminary classification of the proteins, based on the rigidity

of their crystal lattices. We summarize it in Table 4.3. For the majority of proteins,

we observed a behavior which we call dominant cluster aggregation at all levels (case

1). This means that the crystal contains a dominant cluster of size more than the

sum of the dominant clusters in its unit cells or asymmetric units. For 27 of the

proteins (case 2), we observed a dominant cluster aggregation at the unit cell level,

and no aggregation at the crystal level. Case 3 (33 proteins), shows no change in

rigidity among the asymmetric unit and any of the generated crystals. For twenty of

the proteins (case 4) the unit cell and 2×2×1 crystal had rigid bodies that spanned

several asymmetric units or unit cells, respectively, but the 2×1×1 crystal had rigid

bodies that were no bigger than the rigid bodies in the unit cell. This may be because

the interactions between the unit cells along one crystal lattice axis may be different.

The 10 proteins in case 5 had asymmetric units and unit cells that had the same

sized dominant cluster, but for the 2×1×1 and 2×2×1 crystals there was a collapse

of the dominant cluster. Case 6 contains those proteins with a dominant cluster at

the unit cell level that spans multiple asymmetric units but does not aggregate in the

larger crystals.
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There were some proteins which did not quite fit into any of the six cases. We

observed that the asymmetric unit and unit cell of PDB file 2bf9 had no change in

rigidity, but when building the 2×1×1 crystal there was a collapse of rigidity, and the

2×1×1 and 2×2×1 crystals had the same rigidity. For the analyses of PDB file 6rxn,

the asymmetric unit, unit cell, and 2×1×1 crystal all had no additional collapse, but

when the 2×2×1 crystal was built the size of the largest rigid cluster increased.

Although this survey is by no means comprehensive, it already displays patterns

of rigidity properties for protein crystals that motivate future extensions of our com-

putational experiments for fully understanding protein crystal lattices. Such future

extensions to the software will need to take into account several structural features

of the crystals lattices. For example, the functional form of a protein is stabilized

in the crystal lattice not only via interactions among the biological assemblies in

the different unit cells, but also through water molecules at the crystal contact lo-

cations. The molecules may play an important role in stabilizing the crystallized

macromolecules. Currently, although the KINARI software does permit the inclusion

of water molecules when analyzing the rigidity of a single biological assembly, the ef-

fect of water molecules at the interface of crystal units is not included in the rigidity

analysis.

4.4 Conclusions

The results of a rigidity analysis of a single asymmetric unit may not always

provide structural information that is relevant to the biological form of a protein.

Using our KINARI software, we demonstrated that additional functional and rigidity

information is gained by analyzing a protein’s biological assembly and/or crystal

structure.

We analyzed 982 crystal lattices, made up of unit cells composed of relatively

small asymmetric units. Performing a large-scale study of protein structures with
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Table 4.3. Classification of protein crystals according to their rigidity

Case # Proteins % of Dataset
1. Dominant cluster aggregation at all levels 192 59
2. Dominant cluster aggregation at the unit cell

level
27 8

3. No combining of rigid bodies in unit cell nor
in larger crystals

33 10

4. Rigid bodies of asymmetric units combined
in unit cell and 2×2×1 crystal, but not for
2×1×1 crystal

20 6

5. Size of dominant cluster in asymmetric unit
and unit cell was the same, but there was ag-
gregation of dominant body in 2×1×1 and
2×2×1 crystals

10 4

6. Dominant cluster at unit cell that spans mul-
tiple asymmetric units but does not aggregate
in crystals

24 8

7. Other; unclassified. 18 5

larger asymmetric units would be computationally expensive (due to the size of the

molecules involved). Overcoming this limitation will require novel mathematical and

computational extensions to our software.

For the analysis of larger assemblies of asymmetric units, we found that relying

on “black box” software has to be taken with a grain of salt. In the case of X-ray

resolved structures, the PDB files do not contain hydrogen atoms, and these have to

be placed with software (such as Reduce). Conversely, using the KINARI curation

feature allows one to formulate and verify hypotheses concerning the molecular model,

when the placement of atoms or stabilizing interactions needs to be disambiguated.

In summary, this work shows that rigidity analysis of protein crystals and bio-

logical assemblies is feasible, and can now be easily performed using the KINARI

software. Moreover, this permits fast evaluation of the rigidity properties of the bio-

logical form of a protein, and can be used to test hypotheses regarding the role that

different subunits play in contributing to the rigidity of a biomolecule.
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CHAPTER 5

PREDICTING THE EFFECT OF MUTATIONS ON
PROTEIN STABILITY

Predicting the effect of a single amino acid substitution on the stability of a protein

structure is a fundamental task in macromolecular modeling. It has relevance to

drug design and understanding of disease-causing protein variants. We use KINARI-

Mutagen to identify critical residues, and we show that our predictions correlate with

destabilizing mutations to glycine.

5.1 Motivation and Introduction

A mutation in a protein’s amino acid sequence can have deleterious effects on

its stability and function. A number of diseases result from single point mutations.

Hence knowing a mutation’s effect can guide the design of drugs aimed at combating

those disorders. To predict and better understand the roles of mutations, the genetic

information that codes for the amino acid sequence of a protein can be altered, and

the expressed mutant proteins analyzed to infer the impact of the specific mutation.

Such studies are aided by several widely-used molecular biology techniques, such as

site-directed mutagenesis[29]. Unfortunately, such experiments are often labor and

time intensive. The possible number of mutants that can be made from even the

smallest proteins makes exhaustive mutagenesis studies impractical. For example,

20100 mutants could in principle be engineered for a 100-residue protein using the 20

naturally occurring amino acids.
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Here we focus on rigidity analysis as implemented in our software KINARI[20].

The premise is that the protein’s function is directly correlated with its distribution

and sizes of rigid clusters, and destabilizing any of them will have an observable effect.

We used KINARI-Mutagen to answer two types of questions: 1) will mutating a

residue in a protein destabilize it, or 2) given a protein, which residues could desta-

bilize a protein if mutated? We demonstrate our software’s usefulness in two case

studies, which show that the mutated residues identified by KINARI-Mutagen as crit-

ical correlate with experimental data, and would not have been identified by other

methods such as Solvent Accessible Surface Area measurements or residue ranking

by contributions to stabilizing interactions.

5.2 Background and Related Work

Here we review previous work that addressed the effect of mutations on the struc-

ture of a protein. We summarize other studies whose aim was to determine the effects

of mutations on a protein’s stability.

5.2.1 Mutations Affect Protein Structure and Function

Deoxyribonucleic acid, DNA, contains the instructions on how amino acids should

be joined during protein synthesis to make a protein. If there is an error in the process,

the resulting amino acid sequence may differ from the most common sequence of

amino acids, which is designated the wild-type version of that protein. A protein

with mutations is called a mutant. Mutant proteins contribute to many genetic

diseases. For example, single point mutations in the cystic fibrosis transmembrane

conductance regulator protein lead to development of cystic fibrosis. In the protein

α-galactosidase there are over 190 single point mutations that lead to development of

Fabry Disease[23]. Thus understanding the effect of point mutations is of biomedical

importance.
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A mutation in the amino acid sequence can inhibit the protein’s function. Alber et

al.[2] have found that temperature-sensitive mutations often occur at residues which

are structurally important. Similarly, a mutation at a residue location that plays a

crucial role may render a protein inoperative[26]. However, because not all mutations

are equally disruptive, it is important to know how a mutation will affect the protein.

5.2.2 Related Work

One way to study how mutations affect a protein’s function is to locate or synthe-

size pieces of DNA, called templates, which contain a mutation. Many copies of the

DNA template can be generated, through a process called polymerase chain reaction

(PCR). The multiple copies of the mutated DNA can then be introduced into a cell’s

nucleus, where the DNA is transcribed, and translation at the ribosomes results in

the synthesis of mutated proteins.

One way in which the role of a residue substitution can be directly studied is

by mutation experiments in the physical protein. Matthews et al. have designed

and analyzed many mutants of lysozyme from the bacteriophage T4. When core

residues in lysozyme were substituted by alanine, an analysis of the crystal structures

revealed that the unoccupied volume in some of the mutants underwent a collapse,

while other mutants formed an empty cavity[89]. Residues of T4 lysozyme with

high mobility or high solvent accessibility were shown to be much less susceptible

to destabilizing substitutions. The authors concluded that residues that are held

relatively rigidly within the core of the protein make the largest contribution to the

protein’s stability[2]. Also, studies have been performed to determine the role that

disulfide bonds play in stabilizing lysozyme [52], and a host of residues have been

mutated, to infer how they affect the protein’s stability [51, 3, 2].

Although the studies by Matthews and others provide precise, experimentally

verified insight into the role of a residue based on its mutation, such studies are
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time consuming and often cost prohibitive. Moreover some mutant proteins cannot

be expressed, due to dramatic destabilization caused by the mutation, and so only

a small subset of all possible mutations can be studied explicitly. To address this,

computational and analysis techniques have been proposed.

In computational experiments by Lee, et al.[48], the side-chains in each of 78 struc-

tures of mutant proteins were perturbed. A heuristic energy measure, Ecalc, was used

to predict the stability of each protein, and compared to known activity data. Gilis,

et al.[24], estimated the folding free energy changes upon mutations using database-

derived potentials, and concluded that hydrophobic interactions contribute most to

the stabilizing of the protein core. Similarly, Prevost, et al.[66], have used molecular

dynamics simulations to study the effect of mutating Barnase residue Isoleucine 96

to alanine, and predicted that the major contributions to the free energy difference

arose from non-bonded interactions.

Machine learning and statistical methods have also been developed to help predict

the effects of mutations. Cheng,et al.[12] used Support Vector Machines to predict

with 84% accuracy the sign of the stability change for a protein induced by a single-

site mutation. However, their online tool MUpro only outputs whether a mutation

is expected to stabilize or destabilize a protein, and does not provide data that can

be used to rank residue mutations based on their impact on the protein’s stability.

Also, data of amino acid replacements that are tolerated within families of homol-

ogous proteins has been used to devise stability scores for predicting the effect of

residue substitutions[81], which has been extended and implemented into an online

web server[88]. It is not clear, however, how the use of environmental substitution

data to devise a score for the effect of a mutation is appropriate if no such data exists,

or if a newly discovered protein has few homologues.

The hydrophobics effect is the tendency of water molecules to exclude non-polar

molecules, which leads to segregation of water and non-polar substances. The hy-
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drophobic effect has been shown to play an important role in the stability of proteins,

in which hydrophobic atoms are buried within the interior of the protein, away from

its surface. In the case of mutants of lysozyme from bacteriophage T4, amino acid

substitutions decreased stability of the protein by different amounts, depending on

the exact pH of the solvent. In chemistry, pH is a measure of the acidity of a solution.

∆G values for different lysozyme proteins in different pH solutions ranged from 2.7

kcal/mol for the L46A mutation, to 5.0 kcal/mol for the L99A mutation. Kilo-calorie

per mole, or kcal/mol, is a derived unit of energy. From such experiments, it has been

shown that changes in thermal stability associated with each of the mutations vary

substantially from case to case, but can be correlated with the size of the cavity that

is created by the mutation [18]. According to these studies, the larger the cavity that

is created by the mutation, the more destabilizing is the replacement.

It has also been found that the energy difference between two conformations of

a protein arise from bonding terms involving degrees of freedom of the mutated side

chain and from non-bonded interactions of that side chain with its environment in

the folded protein [66]. That set of experiments concludes that the essential effect

of mutations is the difference in the stability of the folded state rather than the

differential salvation of isoleucine and alanine in the unfolded state.

Scientists have also used neural networks in an attempt to predict the effects of

mutations. A neural network is a framework in which different nodes - atoms, in

this case - interact with each other, and a numerical analysis of the neural network

is used to infer the relationships and structural dependencies between the nodes.

Emidio Capriotti, et al. have used neural networks to predict whether a given mu-

tation increases or decreases a protein’s stability, without predicting the exact ∆∆G

value, but merely the sign of that measurement [10]. Capriotti claims that the major

drawback of methods based on physically effective energy functions is that they are
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computationally intensive, and so their usage is nearly prohibitive for applications

that involve an analysis of a large number of proteins.

In still other work, scientists have developed force fields to help predict protein

stability. A force field refers to the parameter sets used to describe the potential

energy of a system of particles, and they are derived from experimental work and

quantum mechanical calculations. Such force fields allow us to reason about and

quantify the interactions among atoms. Guerois et al. have developed a computer

algorithm, FOLDEF, that aims to provide a fast and quantitative estimation of the

importance of the interactions contributing to the stability of proteins and protein

complexes [27]. Guerois concludes that packing density around each atom is a suit-

able parameter that can be used to predict the flexibility of proteins; a simple method

of counting the contacts around hydrophobic residues can be quite successful at pre-

dicting ∆∆G.

Thus, progress has been made in predicting the effects of mutations on protein

stability. However, many such methods rely on computationally intensive energy

calculations, or are not able to infer the role of a single amino acid in stabilizing

a protein’s structure. To complement these already existing methods, we seek to

apply rigidity concepts to the computational prediction and analysis of the stability

of mutant protein structures.

5.3 Methods and Results

In two in-depth case studies we show that the mutated residues identified by KINARI-

Mutagen as critical correlate with experimental data, and would not have been iden-

tified by other methods such as Solvent Accessible Surface Area measurements or

residue ranking by contributions to stabilizing interactions. We also generated 48

mutants for 14 proteins, and compare our rigidity results with experimental data.
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(a) (b) (c)

Figure 5.1. Rigidity results of two in silico mutants of Crambin. KINARI-
Mutagen was used to analyze PDB file 1crn (a). The dominant rigid cluster of the
wild-type protein (b) is compared to the rigidity results of a mutant (c) generated by
KINARI, to determine the effect of the mutation.

5.3.1 Case Study - Crambin

To demonstrate KINARI-Mutagen, for the first case study we generated and ana-

lyzed mutants of Crambin (PDB file 1crn, Figure 5.1(a)), a 46 amino acid plant seed

protein, whose crystals diffract to ultra-high resolution[78, 77].

The cartoon representation and rigidity results for two generated mutants of Cram-

bin are shown in Figure 5.1. The wild-type protein has a dominant rigid cluster

(brown, Figure 5.1(b)). Viewing the rigidity results of a mutant can be used to infer

the impact of the mutation on the protein’s rigidity. When excision was performed

on residue 10, an arginine, (Figure 5.1(c)), the size of the dominant rigid cluster

decreased, and the number of clusters increased, when compared to the wild-type.

Several residues in the core of Crambin had a pronounced effect on the protein’s

predicted rigidity when they were mutated (residue 3 for example). Similarly, many

residues (7, 15, and 28) that are solvent accessible, when mutated, had little effect

on the dominant rigid cluster. These findings were not surprising, because residues

on the surface of a protein are not expected to help maintain a protein’s stability[2].

However, the software was able to identify critical residues on the surface of the

protein that affected the protein’s rigidity when mutated to a glycine.
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Figure 5.2. SASA and Size of Dominant Rigid Cluster plot for Crambin. Solvent
exposed amino acids that play a crucial role in stabilizing the protein are identified.
The blue dotted line, the critical residue threshold, designates the size of the average
dominant rigid body among all of the generated mutants, and can be used to select
residues whose mutation affects the protein’s rigidity.

We inspected the Dominant Rigid Cluster and SASA vs. Excised Residue plot

(Figure 5.2), to identify critical residues that could not be located by using the SASA

calculations alone. Of the 11 mutants that had dominant rigid clusters below the

critical residue threshold, eight of them (residue 2, 10, 17, 35, 36, 40, 41, and 44) had

SASA values in the wild-type protein that were well above zero. Of these eight, 4 are

known to be identical among viscotoxin A3 and α1-purothionin[78], while another 3 of

them were conserved among two of these three homologous proteins. Only residue 44,

with a SASA value of 70, was not conserved among the three homologues, indicating

that KINARI-Mutagen identified incorrectly residue 44 as critical.

One may hypothesize that KINARI’s results may have a simpler explanation. A

residue engaged in many stabilizing interactions (hydrogen bonds and hydrophobics)

is likely to have an effect on the protein’s stability and rigidity. To investigate this,

we inspected the strengths of the hydrogen bonds of Crambin, which are calculated
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by KINARI-Mutagen using an energy function[54]. Residues 46, 21, and 30, have

side chains that engage in strong hydrogen bonds with energies of -5.2, -5.9, and

-5.07 kcal/mol. KINARI-Mutagen did not identify them as critical, and they are

not conserved among homologues of Crambin. We similarly confirmed that critical

residues could not have been found by merely identifying amino acids that engage

in many hydrophobic interactions. Residue 19, a proline, engages in 5 hydrophobic

interactions. It is neither conserved among Crambin homologues, nor did KINARI-

Mutagen identify it as critical.

KINARI-Mutagen is thus a method that supplements other approaches that study

protein stability due to mutations and residue conservation. The set of critical

residues identified by our method is different that the set of amino acids that are

ranked by just the strength of hydrogen bonds or number of stabilizing hydropho-

bic interactions. Moreover, KINARI-Mutagen can identify conserved surface exposed

residues that would not be detected using SASA measurements alone.

5.3.2 Case Study - Lysozyme from Bacteriophage T4

In the second case study, we evaluate whether rigidity analysis can identify desta-

bilizing mutations. From the literature[2, 6, 59, 61] we retrieved stability data for

158 different point mutations in lysozyme from bacteriophage T4 (PDB file 2lzm for

wild-type). The rigidity of the wild-type of lysozyme from bacteriophage T4 is shown

in Figure 5.3. The experimentally derived value ∆∆G, the free energy of unfolding,

measures the stability of a variant against a reference protein (nearly always the wild-

type protein). The lower the ∆∆G value, the more unstable is the variant. From the

available ∆∆G dataset, we selected the 8 mutations that involved a substitution to

a glycine. We compared ∆∆G values of these mutations that had been performed in

the physical protein to the rigidity calculation predictions of KINARI-Mutagen.
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Figure 5.3. Rigidity results of wild-type Lysozyme from bacteriophage T4. The
color bodies of PDB file 2lzm indicate clusters of atoms that are rigid, as identified
by KINARI-Web.

Table 5.1 lists for each lysozyme mutant several rigidity measures, that we eval-

uated as predictors of protein stability. For the amino acid which was mutated at a

particular sequence location, we list its Solvent Accessible Surface Area, the volume

of the wild-type amino acid, the change of the volume of the residue when mutated

to glycine, as well as the stability data from the literature (∆∆G), which we consider

the “ground truth” stability measurement. The loss in number of hydrogen bonds and

hydrophobic interactions that were caused by the mutation to glycine are listed, as

well as the change of the dominant rigid cluster relative to the wild-type.

When KINARI-Mutagen was used to mutate residues 96, 105, 157, and 124, the

size of the dominant rigid cluster decreased in size in parallel to a decrease in the

∆∆G value. For example, residue 96, an arginine, when mutated to a glycine, caused

the dominant rigid cluster of the mutant to decrease by 130 atoms relative to the

dominant rigid cluster in the wild-type protein. When residue 96 was mutated to a

glycine in the physical lysozyme, the stability of the protein decreased significantly,

as indicated by the low ∆∆G value. Similarly, for residues 105, 157, and 124, the

size of the dominant rigid cluster decreased in size relative to the wild-type protein.

The ∆∆G values for mutations at residues 105, 157, and 124, indicate that their
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Table 5.1. Rigidity data of 8 lysozyme mutants. For each mutant, the experimen-
tal ∆∆G value, the change in volume of the amino acid when mutated to glycine, the
loss of hydrogen bonds and hydrophobic interactions, the change of the dominant rigid
cluster, and the Cluster Configuration Entropy (Section 2.4) values are listed. For the
wild-type of the protein, the CCE value is 0.43, and the dominant rigid cluster con-
tains 830 atoms. Mutants are ordered by ∆∆G values, and rows shaded gray indicate
amino acid mutations that KINARI-Mutagen correctly identified as destabilizing.
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99 LEU, 166 0 -106 -6.3 0 0 0 0.43
96 ARG, 173 73.04 -113 -2.6 2 0 130 0.61
3 ILE, 166 43.72 -106 -2.1 0 1 0 0.43
59 THR, 116 128.75 -56 -1.6 1 0 0 0.39
105 GLN, 143 64.8 -83 -1.5 2 0 11 0.44
157 THR, 116 100.97 -56 -1.1 2 1 63 0.49
55 ASN, 114 113.45 -54 -0.6 0 0 0 0.43
124 LYS, 168 103.19 -108 -0.1 1 2 15 0.44

destabilizing effect is not as great as when a mutation is performed on residue 96. In

these cases KINARI-Mutagen was able to predict a change in the protein’s stability.

KINARI-Mutagen was not able in all instances to predict the effect of a mutation

on the protein’s stability. For residues 99, 3, 59, and 55, the lack of loss of hydro-

gen bonds and/or hydrophobic interactions when these residues were mutated to a

glycine explains why KINARI-Mutagen’s could not be used as a discerning measure

of protein stability. For these mutations, the loss of hydrogen bonds and hydrophobic

interactions were not as great as when mutations were performed on residues 96, 105,

157, and 124. The predictive ability of KINARI-Mutagen relies on the change in the

molecular model due to a loss of these interactions. For these mutation instances, the

change in the protein’s stability is caused by phenomena that KINARI-Mutagen does

not currently capture. We suspect that the change in volume of the wild-type amino
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Figure 5.4. Distribution of Rigid Bodies, By Residue, Plot for Lysozyme. The left
axis lists mutants that were analyzed. The vertical color legend on the right-hand
side assigns colors to the rigid body sizes found among the mutants. The color at
each x -y position in the plot indicates the size of the largest cluster that residue x
belongs to for the mutant in row y.

acid to a glycine causes a large-enough collapse or reorientation of the protein’s struc-

ture in the vicinity of the substitution, which affects the protein’s stability.

Lastly, we compared KINARI-Mutagen’s predictions to the Cluster Configuration

Entropy (CCE) measurement (Section 2.4). The CCE values for several variants

correlated well with the dominant rigid cluster metrics for those mutants. For mutants

that had residue substitutions at amino acids 105, 124, 157, and 96, the CCE values

were 0.43, 0.44, 0.49, and 0.61, respectively, while the change in the size of the

dominant rigid cluster for those variants were 11, 15, 63, and 130.

To investigate why we did not predict the mutation of residue 59 Tyrosine being

mutated to Glycine (designated as T59G) to be destabilizing, we referred to the

Distribution of Rigid Bodies, By Residue (DRBR) plot (Figure 5.4). It was used to

distinguish between mutations that have only a local effect on the rigidity of a protein

and mutations that drastically affect a protein’s stability. The row 2lzm.A.0059
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indicates that a mutant was generated by excising residue 59 of chain A of protein

2lzm. For the residue 59 mutation, the change of the protein’s rigidity is not localized

to the largest rigid cluster, which explains why using the size of the dominant rigid

cluster was not a good predictor of protein stability.

5.3.3 Validation - 48 Mutants

To further determine if KINARI-Mutagen could correctly identify destabilizing

mutations in a wider range of proteins, we searched the ProTherm Database[42]

for ∆∆G measurements for substitutions that have been performed in the physical

protein. A total of 167 entries had mutations to glycine. Of those, 48 mutants among

14 proteins had single-point substitutions. We also chose PDB files that had all core

residues resolved.

We used KINARI-Mutagen to generate the 48 in silico mutants and analyze their

rigidity. Along with the SASA value for each wild-type residue at the location where

the mutation was performed, we tallied the change to the dominant rigid cluster

of the protein caused by the point mutation, and the degree of hydrophobicity of

each wild-type residue, using the Kyte and Doolite hydrophobicity scale[43]. The

output of KINARI was also used to tally how many hydrogen bonds and hydrophobic

interactions were lost due to the mutation. To facilitate analysis, the 48 mutants were

grouped according to whether the substituted residue engaged in hydrogen bonds and

hydrophobic interactions (Table 5.2). Detailed rigidity results for the 48 mutants are

shown in Tables B.1 - B.4 in Appendix B.

KINARI-Mutagen relies on the loss of hydrogen bonds and hydrophobic interac-

tions upon a residue’s change to glycine, to predict the effects of a mutation. Thus we

did not expect to accurately predict a substitution as destabilizing, if KINARI found

that in the wild-type protein the amino acid engaged in neither hydrogen bonds nor

hydrophobic interactions (Group 1). Group 2 has entries for which the residue of the
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Table 5.2. Rigidity results of 48 mutants analyzed by KINARI-Mutagen. The results
for the 48 mutants were grouped based on whether the mutated residue engaged in
stabilizing interactions.

Group Description of Wild Type AA at
Mutation Point

#
Mu-
tants

Identified As
Destabilizing

1 No hydrogen bonds or hydrophobics
detected

13 0

2 Solvent exposed (>50%) 8 0
3 Too few hydrophobic 4 0
4 Stabilizing interactions found 23 22

wild-type protein was solvent exposed (more than 50% of the residue was exposed).

Because these residues are on the periphery of the protein, their being mutated to

glycine would not be expected to have a large effect on the size of the dominant rigid

cluster, especially if the side chain of the residue was protruding fully into the solvent

(Figure 5.5(a)).

In Group 3, four mutants had wild-type amino acids (Valine, Leucine, Methionine,

Phenylalanine) that do form hydrophobic interactions that can be observed by visual

inspection. However, because of the packing of these core residues in this structure

which were slightly less tight than in many protein cores, the algorithm in KINARI

to detect hydrophobic interactions detected far too few of them. Figure 5.5(b) shows

a phenylalanine that upon visual inspection should have been stabilized via several

hydrophobic interactions, but no atoms in the residue were within 3.5Å of a heavy

neighbor atom, so no hydrophobic interactions were detected. Had the atoms of

that part of the structure been oriented slightly differently to allow closer packing,

KINARI’s hydrophobic detection algorithm would have placed more hydrophobic in-

teractions there, which could have caused that residue to be labeled as critical when

it was mutated.

Group 4 contains 23 mutants that had more reasonable numbers of hydrophobic

interactions which were identified by KINARI, and many of them have hydrogen
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(a) In the Streptomyces Subtilisin Protease
inhibitor, (PDB file 3ssi), Valine 13 (spheres)
is 56% exposed, so only 1 hydrophobic was
detected, precluding KINARI analysis.

(b) In Staphylococcal Nuclease, (PDB
1stn) Penylalalanine 61 (green spheres)
lies in a hydrophobic pocket (orange),
but no hydrophobics were detected.

Figure 5.5. Solvent exposed amino acids not identified as critical. Some amino acids
that are highly solvent exposed were not identified as destabilizing, because they did
not engage in stabilizing interactions (Figure 5.5(a)). Some residues like those that
are completely or largely solvent inaccessible lie more than 3.5Å from the nearest
heavy atom, so hydrophobic interactions (orange sticks, Figure 5.5(b)) in the range
of 3.6Å to 4.5Å are not found by the hydrophobic detection algorithm in KINARI,
preventing quantitative analysis of the impact of the mutation to glycine.

bonds. Of these, 22 were identified as critical, based on the fact that these mutants

had dominant rigid clusters that were smaller than the dominant rigid cluster of the

wild-type protein.

From the analysis of these 48 mutants, this first implementation of KINARI-

Mutagen is able to make qualitative stability predictions. In the cases when residues

are highly solvent exposed, KINARI-Mutagen is not as accurate, because such residues

do not engage in as many stabilizing interactions as would be expected of them.

Similarly, the pre-existing algorithm to detect hydrophobic interactions is not always

accurate, when compared to the predicted hydrophobic interactions from a visual

inspection. In future work, we plan to address this hydrophobic interaction algorithm.

5.4 Conclusions

In our two case studies, and in the analysis of 48 mutant protein structure files,

we have shown that rigidity analysis of even the most simple in silico mutations to
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glycine provides valuable information about the stability of a mutated protein, that

could not have been inferred by other methods, such as SASA measurements, or by

ranking of contributions to stabilizing interactions.
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CHAPTER 6

TOWARDS VALIDATION OF MOLECULAR MODELING
FOR RIGIDITY ANALYSIS

Rigidity analysis is a relatively new, alternative method, in which a protein struc-

ture is analyzed to infer which portions of the molecule are flexible. To perform

rigidity analysis, a model is first constructed in which various inter-atomic stabilizing

interactions are modeled according to their strength. No systematic study has been

conducted as to what is the most plausible, chemically validated modeling scheme.

All previous implementations have relied on heuristics, which allowed for extracting

relevant observations but only for a very limited set of proteins. In this chapter, we

describe how we use our KINARI-web server for protein rigidity analysis to system-

atically vary how stabilizing interactions are modeled. To our knowledge, this work is

the first study that attempts to correlate rigidity metrics with experimental data, for

a non-trivial sized dataset. We correlate rigidity results of proteins to experimentally

derived biological data from the literature, in the form of ∆∆G measurements, and

we measure the correlation using a non-parametric approach.

6.1 Motivation and Introduction

Rigidity analysis of proteins was initially implemented in MSU-First [34, 33] and

the first online tool was FlexWeb [79]. These were used to correlate rigidity results

with physical properties of several proteins, but they required case-by-case visual

inspections of the biomolecules that were involved. Moreover, the choice of modeling

of hydrogen bonds and hydrophobic interactions in FlexWeb has been determined
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(a) Hydrogen bonds modeled
as 5 bars; hydrophobic interac-
tions as 2

(b) Hydrogen bonds modeled
as 4 bars; hydrophobic interac-
tions as 2

(c) Hydrogen bonds modeled as
5 bars; hydrophobic interac-
tions as 3

Figure 6.1. Choice of modeling affects rigidity results. Changing how hydrogen
bonds and hydrophobic interactions are modeled drastically affects the rigidity results.

based on the analysis of a small set of proteins. Up until now, no systematic study

has been performed with the intent to determine a universal modeling for hydrogen

bonds and hydrophobic interactions. In fact, recent work [86] has demonstrated that

there is no general agreement about what the correct modeling should be, so that

rigidity results for a large protein dataset correlate with biological phenomena.

As is shown in Figure 6.1, even small changes to how hydrogen bonds and hy-

drophobic interactions are modeled can drastically alter the rigidity results. Our goal

is to correlate rigidity results of proteins to experimentally derived biological data from

the literature, in the form of ∆∆G. The experimental data designates whether a vari-

ant of a protein is stable, and we use that as the ground-truth. We investigate which

set of modeling options for hydrogen bonds and hydrophobic interactions produces

rigidity results that correlate to this biological data. To do this, we have retrieved

from the PDB the structure files of the wild type and 158 variants of Lysozyme from

bacteriophage T4. For each variant, we have searched the ProTherm [42] database

for its ∆∆G value. We systematically varied how hydrogen bonds and hydrophobic

interactions are modeled during rigidity analysis of the 158 variants. In this chapter

we correlate rigidity results of our protein dataset to experimentally derived biological

data from the literature, in the form of ∆∆G.
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6.2 Constructing a Dataset of Protein Data Files and System-

atically Varying Modeling of Stabilizing Interactions

In order to have as rich as possible a dataset of protein structure files along with

their experimentally measured data, we searched the ProTherm database [42], which

catalogues numerical data of thermodynamic parameters of proteins. Of the more

than 25,000 entries in the ProTherm database, 1,719 of them are for variants of

lysozyme from bacteriophage T4, more than any other protein. Of those, we retained

the 158 entries which had a ∆∆G measurement and had corresponding structure files

in the PDB. For all of these 158 variants, the reference protein (the wild-type, non-

mutated form) was the protein structure in PDB file 2lzm [85]. The ∆∆G values of

these protein mutants ranged from very negative, meaning that a mutant was much

less stable than the wild-type, to positive, indicating that the mutant was more stable

than the wild-type.

In preparation for rigidity analysis, single and double covalent bonds were modeled

in the associated graph as 5 bars and 6 bars, respectively. This modeling represents

that single covalent bonds impose one degree of freedom between the corresponding

atoms in the mechanical model of the protein, which is equivalent to allowing rotation

along the bond, and that the double covalent bonds retain zero degrees of freedom

and do not permit rotation.

Because there is no agreed-upon way of performing the mechanical modeling of

hydrogen bonds and hydrophobic interactions, we used KINARI’s customizable mod-

eling feature to systematically vary the modeling of these constraints.

Both hydrophobic interactions and hydrogen bonds were modeled as 1, 2, 3, 4,

5, 6 bars, or as hinges, when building the mechanical framework. Because hydrogen

bonds have associated with them energies that determine their strength, they were

also modeled in seven additional ways: strong hydrogen bonds were modeled with

more bars, than weaker bonds (Table 6.1). In previous implementations of software
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Table 6.1. Modeling of hydrogen bonds according to their energies. Hydrogen
bonds were binned into six energy categories (ByEnergy1), three energy categories
(ByEnergy2), or into two energy categories (ByEnergy3 through ByEnergy7).
Bonds in a specific bin were modeled using the number of bars (or as hinges) desig-
nated in the How modeled column.

Scheme Energy of hydrogen bond (kcal/mol) How modeled

ByEnergy1

strength < -5 6 Bars
-5 < strength < -4 Hinges
-4 < strength < -3 4 Bars
-3 < strength < -2 3 Bars
-2 < strength < -1 2 Bars

-1 < strength 1 Bar

ByEnergy2
strength < -4 Hinges

-4 < strength < -1 4 Bars
-1 < strength 3 Bars

ByEnergy3 strength < -2 4 Bars
-2 < strength Hinges

ByEnergy4 strength < -3 4 Bars
-3 < strength Hinges

ByEnergy5 strength < -4 4 Bars
-4 < strength Hinges

ByEnergy6 strength < -5 4 Bars
-5 < strength Hinges

ByEnergy7 strength < -6 4 Bars
-6 < strength Hinges

for rigidity analysis of proteins, all hydrogen bonds were modeled the same, irrespec-

tive of strength. Thus we had 13 different ways that hydrogen bonds were modeled,

and 7 ways that hydrophobic interaction were modeled, for a total of 13×7=98 unique

modeling settings. For each protein, 98 different mechanical frameworks were gener-

ated, and their rigidity analyzed using the KINARI software.

6.3 Correlating Rigidity Parameters to Experimental Data

In an attempt to gain insight into the possible correlation between rigidity results

and experimental data, for each protein structure, for each of the 98 different com-

binations of modeling hydrogen bonds and hydrophobic interactions, we calculated

three rigidity metrics: Cluster Configuration Entry (CCE, Section 2.4), Dominant
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Rigid Cluster size (DRC), and Average Cluster Size (ACS). In this section we pro-

vide scatter plots for the rigidity metrics versus experimental results, and we calculate

the Spearman’s rank correlation coefficient to measure the extent of their statistical

dependence. Finally, assuming a linear relationship, we propose a general method for

correlating rigidity metrics with ∆∆G measurements.

6.3.1 Scatter Plots of Rigidity Measurements and Experimental Data

To get a sense of the relationship between the calculated rigidity properties and

experimental data for the 158 variants in our dataset, we generated scatter plots of the

three rigidity metrics versus ∆∆G measurements for the 98 combinations of modeling

hydrogen bonds and hydrophobic interactions. Figure 6.2 shows the scatter plots for

the Dominant Rigid Cluster versus ∆∆G measurements. In Figure 6.3, we show

the scatter plots for the ∆∆G measurement versus Cluster Configuration Entropy

(Section 2.4), and in Figure 6.4, we show the scatter plots for ∆∆G versus Average

Cluster Size. For the scatter plots, there is no discernible relationship between any

of the three rigidity metrics and ∆∆G.

6.3.2 Calculating Correlation Using Spearman’s Rank Coefficient Testing

To see if there is some sort of monotonic, linear, or non-linear relationship between

the calculated rigidity parameters and experimental ∆∆G data that the scatter plots

did not reveal, we performed statistical significance testing on our rigidity results. We

calculated Spearman’s rank correlation coefficient, or ρ [73]. It is a non-parametric

measure of statistical dependence between two variables. We used it to assess how well

the relationship between the rigidity metrics and experimental data can be described

using a monotonic function. Specifically, we employed the cor.test function in R [67],

which outputs a measure of association in the range [-1,1]. A Spearman correlation

ρ = 0 indicates no association between the two variables, while a value of ρ = 1

results when the two variables being compared are monotonically related, even if their
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relationship is not linear. A positive Spearman correlation coefficient corresponds to

an increasing monotonic trend between the two variables, while a negative value of

ρ corresponds to a decreasing monotonic trend. Note also that R did not output

confidence intervals for the p-values because there were ties when the ∆∆G and

rigidity metrics were ranked.

In Table 6.2, we list the rigidity metrics and the modeling options for hydrogen

bonds and hydrophobic interactions for which |ρ| was the greatest. From that table,

we see that the largest association between rigidity measurements and experimental

data occurred for the Cluster Configuration Entropy (CCE) metric. When hydrogen

bonds were modeled as 1 Bar, and hydrophobic interactions as 5 Bars, the correlation

between CCE and ∆∆G was -0.234. Although there are four ways of modeling hydro-

gen bonds and hydrophobic interactions so that the absolute value of the correlation

between the rigidity metric and experimental data is greater than 0.2, note that val-

ues of -0.234, -0.227, -0.218, and -0.212 are each quite small and far removed from -1.

This indicates that the correlation between experimental data and the CCE metric

is small. Also, the negative correlation values for Average Cluster Size (ACS) and

Dominant Rigid Cluster (DRC) are not what was expected. For those two metrics,

an increase in the ∆∆G measurement for a protein should correspond to an increase

in the DRC and ACS. To the contrary, the values for the two ACS and one DRC

value were -0.179, -0.179, and -0.171, respectively.

On the other hand, Cluster Configuration Entropy (CCE) is a function of the

probability that a vertex in the mechanical model is part of a cluster of size s (ex-

plained in Section 2.4). Protein variants with high CCE values are more disordered

than proteins with low CCE values. For the purpose of our experiments, proteins

that have a high CCE value correlate well with experimental data whose ∆∆G values

are low. Thus, unlike for the DRC and ACS metrics, a negative slope for the model-
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Table 6.2. Non-Parametric Spearman’s Correlation Testing; Lowest p-values

Metric HBonds
Modeling

HPhobes
Modeling

p-value correlation

CCE 1Bar 5Bars 0.002 -0.234
CCE 3Bars 3Bars 0.003 -0.227
CCE 2Bars 5Bars 0.005 -0.218
CCE 1Bar Hinge 0.007 -0.212
CCE 2Bars Hinge 0.013 -0.195
ACS E6 4Bars 0.023 -0.179
ACS E1 4Bars 0.023 -0.179
CCE 3Bars 2Bars 0.026 -0.176
DRC E6 4Bars 0.030 -0.171
CCE 2Bars 4Bars 0.031 -0.170

ing versus CCE metric value indicates the expected correlation between the rigidity

metric and experimental data.

Finally, even with these low correlation measurements, notice that for the top

five rows in Table 6.2, the modeling of hydrogen bonds and hydrophobic interactions

was confined to a small region of the set of possible combinations of modeling these

stabilizing interactions. Namely, both hydrogen bonds and hydrophobic interactions

should not be both modeled as very few bars, nor should they both be modeled as too

many bars. In any case, the low correlation values indicate that there is no convincing

evidence that rigidity models correlate well with experimentally measured stability

data given any of our rigidity metrics.

6.3.3 A General Method for Correlating ∆∆G With Rigidity Metrics,

Assuming a Linear Relationship

Under the assumption that there is a linear correlation between a rigidity metric

and experimentally derived ∆∆G measurements, we want to assess the predictive

ability of our model with respect to ∆∆G for the 158 proteins. To do this, we

tabulated how many of the proteins, for each of the 98 combinations of modeling

options, would have been correctly identified as stable (relative to the wild-type)
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using the rigidity metric (Algorithm 1). Using our approach, it is possible to rank

the different modeling choices based on their ability to provide rigidity results that

correlate with experimental data.

To illustrate on a small sample dataset, Table 6.3 lists the ∆∆G, and rigidity DRC

values, for three variants of lysozyme, for two separate modeling schemes that differ

only in how the hydrogen bonds were modeled. Our quantitative correlation analysis

of the two schemes reveals that the DRC metric would have correctly identified the

stability of the three proteins if modeling scheme 1 were used. However, if modeling

scheme 2 were used, then the quantitative correlation analysis indicates that the

relative stability of only one of the three proteins would have been correctly identified

using the DRC metric. In Figure 6.5, we plot ∆∆G vs. the DRC metrics for the

three proteins, for both modeling schemes. The red lines indicate slopes where the

DRC metric did NOT positively correlate with the ∆∆G values; green lines indicate

proteins who have metric-∆∆G slopes for the variant and wild-type protein where

the rigidity metric positively correlates with the experimental data.

Figures 6.6 through 6.8 show the quantitative correlation scores for the correlation

of the three metrics versus the experimentally derived ∆∆G values, for the 98 different

ways that stabilizing interactions were systematically modeled using the dataset of

158 protein mutant structures and one wild-type.

In each of the Figures 6.6 - 6.8, the number at position x,y in the grid indicates

for how many of the 158 proteins did the rigidity results quantitatively correlate with

experimentally derived data from the literature. Boxes whose color tends towards

yellow designate the hydrogen bond (y-axis) and hydrophobic modeling choice (x-

axis) whose rigidity results correlated best with ∆∆G data.
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Table 6.3. Sample dataset for correlating experimental with rigidity data. Sample
experimental (∆∆G) values and rigidity metrics (Dominant Rigid Cluster), for three
variants of bacteriophage T4 lysozyme proteins 255l, 1l73, and 1l67, for two separate
modeling schemes, were used. The wild-type protein, 2lzm, is the reference protein
against which ∆∆G values are reported for the three proteins in the literature. Our
quantitative correlations indicates that modeling scheme 1 versus 2 generates rigidity
metrics that correlate better with experimental data.

Modeling
Scheme 1

Modeling
Scheme 2

Hydrogen Bonds 4 Bars 2 Bars
Hydrophobic Interactions 3 Bars 3 Bars

DRC2lzm 510 641
DRC255l 743 810
DRC1l73 603 270
DRC1l67 440 820
∆∆G2lzm 0.00
∆∆G255l +1.30
∆∆G1l73 +0.85
∆∆G1l67 -2.10

Correct Count 3/3 1/3

Algorithm 1: Measuring Quantitative Correlation of Rigidity DRC with Ex-
perimental ∆∆G. HP=Hydrophobic Interaction, HB=Hydrogen Bond

Input: Rigidity Results of proteins
Input: ∆∆G values for all protein-mutant pairs
Initialize correlationCorrectCounts[][] matrix to be all 0s
foreach ith protein analyzed do

foreach j modeling of HP do
foreach k modeling HB do

DRCvar = size of DRC for i when modeling j, k
DRCwt = size of DRC for wt when modeling j, k
ddg = ∆∆G for wt, i pair
if DRCvar < DRCwt then

if ddg < 0 then
correlationCorrectCounts[j][k] + +

end
else

if ddg > 0 then
correlationCorrectCounts[j][k] + +

end
end

end
end

end
Output: correlationCorrectCounts matrix

81



6.3.3.1 Evaluation of the Dominant Rigid Cluster Metric

The Dominant Rigid Cluster metric is the count of atoms that are in the largest

rigid cluster. Figure 6.3.3.1 illustrates that there are no ways of modeling hydrogen

bonds and hydrophobic interactions so that the DRC metric correlates positively with

at least 100 of 158 analyzed proteins. When hydrogen bonds were modeled as 3 bars,

and hydrophobic interactions as 6 Bars, then the DRC metric correctly identified the

stability of 95 of the 158 proteins, respectively.

6.3.3.2 Evaluation of the Cluster Configuration Entropy Metric

The Cluster Configuration Entropy (CCE) is a function of the probability that a

vertex in the mechanical model is part of a cluster of size s (explained in Section 2.4).

Protein variants with high CCE values are more disordered than proteins with low

CCE values. For the purpose of our experiments, proteins that have a high CCE

value correlate well with experimental data whose ∆∆G values are low.

Figure 6.3.3.2 indicates that there are multiple ways of modeling hydrogen bonds

and hydrophobic interactions, so that at least 100 of the 158 analyzed proteins had

rigidity CCE values that quantitatively correlated with the experimentally derived

stability ∆∆G data. From among these 8, when hydrogen bonds were modeled as

3 Bars, and hydrophobic interactions as 3 Bars, then the stability of 111 of the 158

variants would have been correctly identified using the CCE metric.

6.3.3.3 Evaluation of the Average Cluster Size Metric

The Average Cluster Size metric computes the average number of atoms that

are contained among all of the rigid bodies identified in a protein. Figure 6.3.3.3

illustrates that there is only a single modeling combinations where the ACS metric

would have correctly identified the stability at least 100 of the 158 proteins (Hydrogen

Bonds modeled as 1 Bar, and Hydrophobic Interactions modeled as 6 Bars).
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6.4 Conclusions

Based on the analysis of our method of systematically varying how hydrogen bonds

and hydrophobic interactions are modeled, we observed several behaviors.

There is no one single choice of modeling of hydrogen bonds and hydrophobic

interactions that would have given rigidity results that correlated positively for all

158 variants with ∆∆G data. This is corroborated by the results of Wells, et al [86],

in which he showed that the choice of modeling of hydrogen bonds and selecting of

the hydrogen bond cutoff needs to be chosen on a protein case-by-case basis so that

rigidity results can be verified against biological data. One possible explanation for

this is that the size of the dominant rigid body is not the best metric as an indicator of

a protein’s stability. Similarly, correlating rigidity results to ∆∆G data might require

a multi-dimensional analysis that uses several rigidity metrics.

Moreover, we found that there is no choice of modeling of hydrogen bonds and

hydrophobic interactions which would have generated DRC, CCE, and ACS rigidity

metrics that would have quantitatively positively correlated with ∆∆G data in at

least 150 of the 158 variants in our dataset. There are certain reasons why this may

be the case.

It may be that some critical stabilizing interactions are not identified in the pro-

tein’s structure in building the mechanical model of the molecule. This would affect

the rigidity results. Some hydrophobic interactions not being found could be caused

by slight non-optimal packing of the atoms in the protein, which would preclude KI-

NARI’s hydrophobic detection algorithm from identifying critical interactions. Sec-

ondly, there may be yet another scheme of modeling hydrogen bonds according to

their energies, which would yield rigidity results that 100% of the time correlate

quantitatively with experimental data. Lastly, hydrophobic interactions may also

need to be modeled according to energy, and not all the same way, as was done in
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these experiments. At the current time, modeling of stabilizing interactions according

to energy in the KINARI software is available only for hydrogen bonds.

Although we did not identify a single choice of modeling of hydrogen bonds and

hydrophobic interactions which generated rigidity results that positively correlated

with ∆∆G data in all of our proteins in our dataset, we have demonstrated our

method (Algorithm 1) in correlating rigidity metrics to experimental data. Moreover,

our method is not dependent on a case-by-case analysis of the proteins that were

studied, but instead requires only experimental data (here ∆∆G), and rigidity results.

As such, we believe that our method can be used with other rigidity metrics, possible

other experimental data, as well as on other, potentially larger protein datasets.
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Figure 6.2. Scatter plots for Change of the Dominant Rigid Cluster versus ∆∆G.
The y-axis of each plot designates the Change in the Dominant Rigid Cluster (DRC)
metric, while the x-axis designates the ∆∆G values, of the proteins in the dataset.
The left-most label for each row indicates how hydrogen bonds were modeled, and
the bottom-most label for each column designates how hydrophobic interactions were
modeled in that column.
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Figure 6.3. Scatter plots for Change in Cluster Configuration Entropy versus ∆∆G.
The y-axis of each plot designates the Change in the Cluster Configuration Entropy
(CCE) metric, while the x-axis designates the ∆∆G values, of the proteins in the
dataset. The left-most label for each row indicates how hydrogen bonds were modeled,
and the bottom-most label for each column designates how hydrophobic interactions
were modeled in that column.
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Figure 6.4. Scatter plots for Change of the Average Cluster Size versus ∆∆G. The
y-axis of each plot designates the Change in the Average Cluster Size metric, while
the x-axis designates the ∆∆G values, of the proteins in the dataset. The left-most
label for each row indicates how hydrogen bonds were modeled, and the bottom-most
label for each column designates how hydrophobic interactions were modeled in that
column.
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Figure 6.5. Correlating rigidity metrics with experimental data. When Modeling
Scheme 1 (a) is used, the DRC rigidity metric correctly identifies the stability of the
three proteins relative to the wild-type, 2lzm. When Modeling Scheme 2 (b) is used,
the DRC metric incorrectly identifies protein 1L67 as more stable than 2lzm (the
negative ∆∆G value for 1l67 indicates that the protein is less stable than 2lzm), and
protein 1l73 is incorrectly identified as less stable than 2lzm, (the positive ∆∆G for
1l73 designates that it is more stable than 2lzm).
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Figure 6.6. Quantitative correlations for Dominant Rigid Cluster and ∆∆G. The
number at position x,y in the grid indicates for how many of the 158 proteins did
the rigidity results quantitatively correlate with experimentally derived data from the
literature. Boxes whose color tends towards yellow designate the modeling choices
whose rigidity results correlated best with ∆∆G data.
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Figure 6.7. Quantitative correlations for Cluster Configuration Entropy and ∆∆G.
The number at position x,y in the grid indicates for how many of the 158 proteins did
the rigidity results quantitatively correlate with experimentally derived data from the
literature. Boxes whose color tends towards yellow designate the modeling choices
whose rigidity metric values correlated best with ∆∆G data.
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Figure 6.8. Quantitative correlations for Average Cluster Size and ∆∆G. The num-
ber at position x,y in the grid indicates for how many of the 158 proteins did the
rigidity results quantitatively correlate with experimentally derived data from the
literature. Boxes whose color tends towards yellow designate the modeling choices
whose rigidity metric values correlated best with ∆∆G data.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

Proteins bend and flex, and interact with other molecules, in order to perform their

functions. Scientists would like to understand, on an atomic level, how proteins move.

Having knowledge of where and how proteins bend and flex can guide the design of

drugs aimed to regulate proteans associated with diseases. Unfortunately there are

not existing experimental methods that permit observing on the atomic level, in real-

time, how proteins bend and flex. To gain insight into these motions, simulation based

methods have been developed, but unfortunately they are computationally intensive.

Rigidity analysis is an alternative, complimentary approach to simulation meth-

ods. Its goal is not to predict or simulate motion, but instead to infer which parts

of a protein are rigid, and which are flexible. In rigidity analysis, a protein’s atoms

and chemical interactions are used to build a mechanical model, which is associated

to a graph composed of nodes that represent atoms, and edges that correspond to

chemical constraints.

Rigidity analysis of proteins was first implemented in MSU-First and the first on-

line tool was FlexWeb. Beginning in the late 1990s, the usefulness of rigidity analysis

was demonstrated in inferring various structural and functional properties of proteins.

Many such studies relied on heuristics to determine which choice of modeling settings

of important stabilizing interactions allowed for extracting relevant biological obser-

vations from rigidity analysis results of a small set of proteins. This is one reason

why large-scale validate of protein flexibility has not been performed.
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Also, experimental methods such as X-ray crystallography produce the asymmet-

ric unit, which is the smallest portion of a crystallized protein on which symmetry

operations can be applied to reproduce the crystal lattice. The asymmetric unit most

often does not represent the biological functional form of a protein. The generate the

biological form of a protein, its asymmetric unit has be translated, rotated, copied,

etc. If done by hand, it is a time consuming process. MSU-First and FlexWeb do not

provide tools to generate the biological assembly of a protein, so performing rigidity

analysis on large datasets of biological forms of proteins cannot be done easily using

those tools.

Also, because MSU-First and FlexWeb do not provide the user with easily accessi-

ble options to designate how important stabilizing interactions should be modeled in

the mechanical model of a protein, these tools cannot be used to perform large-scale

studies to infer how changing the modeling of these interactions affects the rigidity

results. A consequence of this is that there is no agreed-upon choice of how chemical

interactions should be modeled in the mechanical framework of a protein.

In this thesis, we have made progress in addressing some of these obstacles, which

prevent high-throughput, large-scale validation of using rigidity analysis to infer pro-

tein flexibility. To achieve that, we have developed the KINARI software. This has

allowed us to generate and study the rigidity of a large set of biological assemblies.

Also, because KINARI is highly customizable, we’ve performed the first systematic

study to investigate the modeling of hydrogen bonds and hydrophobic interactions so

that rigidity results correlate with experimental data. The specifics of each contribu-

tion are described below.

7.1.1 KINARI: Infrastructure for Rigidity Analysis of Proteins

The first tools that implemented rigidity analysis of proteins offered few options

for curating PDB data files, and the choices of modeling of important stabilizing
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interactions were fixed. To provide an infrastructure to easily test if and how rigid-

ity analysis can function as a predictive tool for inferring biophysical properties of

proteins, we have developed KINARI-Web. It is a general, well-tested, versatile web

server for rigidity analysis of molecular structures. It relies on a mechanical model of a

protein that is customizable by the user, it performs rigidity analysis of the mechanical

framework, and it includes an interactive visualizer for exploring the rigidity results.

Moreover, the release of the C++ libraries for rigidity analysis allows a researcher

to easily integrate these tools into custom-made scripts meant for high-throughput

experiments of protein rigidity. The benchmarking experiments of more than 25,000

proteins that were performed as part of the this dissertation are an example of the

use of these freely-available tools.

7.1.2 Inferring Structural and Functional Information of Protein Biolog-

ical Assemblies and Crystals

PDB files contain only the asymmetric unit, which is the smallest part of a crystal

on which symmetry operations are applied to generate a crystal lattice and biologi-

cal form of a protein. The majority of previous rigidity-theoretic studies of protein

flexibility analyzed these asymmetric units. We extended KINARI and developed

the KINARICrystal and BioAssembly tools for generating crystal lattices and biolog-

ical assemblies from PDB structure files. With the features of KINARI that were not

available prior to the work presented in this thesis, it is now possible to perform larger

scale studies of the rigidity properties of the biological assemblies of proteins. Gener-

ating the biological forms of proteins is now easily done using the KINARICrystal and

BioAssembly feature that are integrated into the Curation feature of KINARI-Web.

As a demonstration, we have performed rigidity analysis of over 900 crystal lattices

and biological assemblies that we generated using these new tools. We’ve shown that
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when rigidity analysis is performed on only the asymmetric unit or just isolated

portions of a protein, then structural and functional information is missed.

7.1.3 KINARI-Mutagen: Inferring Critical Residues

To further expand the use of rigidity analysis in inferring structural and biological

properties of proteins, we developed KINARI-Mutagen. It infers which residues are

critical in maintaining a protein’s stability. The interpretation of the rigidity results is

not dependent on any in-depth, case-by-case knowledge of the biophysical properties

of studied protein. KINARI-Mutagen permits fast evaluation of in silico mutations

that may not be easy to perform in vitro. For two cases studies and a dataset of 48

proteins, we have shown that KINARI-Mutagen identifies critical residues that would

not have been easily identified using existing methods, or by ranking of residues by

their involvement in hydrogen bonds or hydrophobic interactions.

7.1.4 Correlating Rigidity Parameters to Experimental Data

A large-scale study correlating rigidity metrics to experimental data has not been

performed up until now. In Chapter 6, we have explain our method in which we

systematically varied how hydrogen bonds and hydrophobic interactions were modeled

for a dataset of 158 variants of lysozyme from bacteriophage T4. In correlating three

rigidity metrics for each of the proteins against ∆∆G data, we have found that there is

no one single “best” choice of modeling hydrogen bonds and hydrophobic interactions.

However, for our dataset, there were a few modeling schemes so that the rigidity

metrics for more than 100 of the 158 variants correlated against ∆∆G data.

Although we did not identify a single choice of modeling of hydrogen bonds and

hydrophobics which generated rigidity results that positively correlated with ∆∆G

data in all of the protein structures that we studied, we have demonstrated the use

of our method in correlating rigidity metrics to experimental data. In addition, we

have shown that there are several combinations of modeling hydrogen bonds and
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hydrophobic interactions so that the Cluster Configuration Entropy metric correlates

better with experimental data than the Dominant Rigid Cluster metric. Moreover,

our method is not dependent on a case-by-case analysis of the studied proteins, but

instead requires only experimental data (here ∆∆G), and rigidity metrics. As such,

with this method, we have provided a general, unbiased approach to correlate rigidity

metrics with experimental data. This now permits ranking rigidity metrics based on

how well they correlate with experimental data.

7.2 Future Directions

In the course of the work leading up to this dissertation, several future research

directions were identified. We describe a few of them here.

Rigidity of Protein Biological Assemblies and Crystal Structures

The crystal lattices that were generated using KINARICrystal were relatively small,

at most 2×2×2 unit cells. However, even these small crystals contained many atoms

(the largest lattice contained 54,107 atoms (PDB file 3hon, Table 4.2)). The reason

why larger crystals were not generated and analyzed was because curation, modeling,

and parts of the rigidity analysis required upwards of 10 minutes of run-time when

analyzing structure files with more than 10,000 atoms.

Several advancements to the software might be made. Firstly, stabilizing interac-

tions do not need to be computed for every unit cell. Instead the symmetry among

unit cells might be taken advantage of, which would require calculating interactions

for one unit cell only, under the assumption that the same interactions would exist

in other unit cells. If such a scheme were used, interactions would need to be also

identified in the boundary areas where unit cells abut. Secondly, a systematic study

could be performed on a dataset of biological assemblies. The KINARI curation tools

permit a user to easily generate components of a biological assembly. That feature
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could be used to classify proteins based on the degree to which each subunit con-

tributes (if at all) to the stability of the entire biological assembly.

Using Rigidity Analysis to Infer Which Residues are Critical In Stabilizing

a Protein’s Structure

KINARI-Mutagen performs in silico mutations to glycine, only, and calculates their

effects on the protein’s rigidity. The mutation engine can be expanded to permit

generating amino substitutions to other residues. Doing so would permit validating

KINARI-Mutagen against an even larger dataset of proteins, for which mutations to

a host of different residues have been performed.

Using other rigidity metrics, such as Cluster Configuration Entropy and Average

Cluster size, as predictors of which residues are critical, might permit identifying

important residues that the current version of the software missed. Moreover, in or-

der for KINARI-Mutagen to quantitatively predict the role of residues in stabilizing a

protein, a multi-dimensional analysis that incorporates several rigidity metrics, might

be required.

Correlating Rigidity Metrics with Experimental Data, and Evaluating How

Stabilizing Interactions Should Be Modeled

In this thesis, the hydrogen bonds and hydrophobic interactions were systematically

varied, and the resulting rigidity metrics were correlated with experimental data. In

our studies, no one single universal choice of modeling of these stabilizing interactions

was identified, that enabled any of the three rigidity metrics to always predict the

stability of a variant protein structure. One possible extension to our method would

entail modeling hydrophobic interactions according to their energies, just as we did

for hydrogen bonds.
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APPENDIX A

RIGIDITY RESULTS OF PROTEIN BIOLOGICAL
ASSEMBLIES AND CRYSTAL LATTICES

Table A.1. Rigidity results for putative protein from the gram-negative bacterium
Thermus thermophilus. The count of the sizes of the rigid clusters for PDB file 2yzt
are shown for the asymmetric unit (AU, column 2), the unit cell (column 3), the
2×1×1 crystal (column 4), and 2×2×1 crystal (column 5)

Size (atoms) of rigid cluster AU 111.2yzt 211.2yzt 221.2yzt
3 4 26 49 91
4 21 106 201 308
5 122 632 1165 2126
6 22 88 133 1880
7 1 4 6 8
11 5 26 49 93
12 2 8 12 16
26 1 4 6 8
463 1 2 3 4
2504 0 1 0 0
6084 0 0 1 0
14328 0 0 0 1
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Table A.2. Rigidity results of the scaffolding protein of Vaccinia Virus. The number
of each type of rigid cluster in PDB file 3saq is listed for the asymmetric (AU) and
biological units (BU). Column 2 lists the count of the different sizes of the rigid
bodies in the asymmetric unit, which contains one copy of chain A and B. Columns
3 and 5 list the counts of the different sizes of the rigid bodies in one-third of the
two biological units, respectively. Columns 4 (three copies of chain A) and 6 (three
copies of chain B) list the counts of the different sizes of the rigid bodies for the two
complete biological assemblies.

Size (atoms) of rigid cluster AU BU1a BU1 BU2a BU2
3 321 303 911 140 434
4 77 45 132 40 117
5 1462 905 2715 696 2117
6 179 187 561 66 217
7 1 4 12 1 4
11 16 12 36 8 25
12 45 31 93 19 56
13 2 1 3 1 3
15 2 3 9 0 0
16 2 1 3 1 3
19 7 8 24 2 7
22 1 2 6 0 0
25 1 2 6 0 0
33 1 1 3 0 1
38 1 1 0 0 0
42 0 0 3 0 0
48 1 1 3 0 0
71 1 1 3 0 0
98 2 1 3 1 3
104 1 2 6 0 1
2277 0 1 3 0 0
3912 0 0 0 0 1
4562 0 0 0 1 0
7883 1 0 0 0 0
9475 0 0 0 0 1
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Table A.3. Rigidity results for Nucleoprotein from Rift Valley Fever Virus. The first
biological of PDB file 3ouo assembly is a hexamer, where each of the 6 units is a dimer
(chains A and B). The second biological assembly is made up of six copies of Chain
C. The number of each size (column 1, number of atoms) of rigid cluster is listed for
the asymmetric (AU) and biological (BU) units. Column 2 designates the number of
rigid clusters of the asymmetric unit, which contains one copy of chains A, B, and C.
Columns 3 and 4 list the count of the rigid clusters for chains A and B of the first
biological assembly. Columns 5 and 8 list the counts of the rigid bodies of the dimer
(chains A and B) and the monomer (chain C) in the asymmetric unit, respectively.
Column 7 lists the counts of the rigid clusters of two copies of the monomer (chain C).
Columns 6 and 9 list the counts of the rigid bodies for the first and second complete
biological assemblies, respectively.

Size (atoms) of rigid cluster AU BU1a BU1b BU1ab BU1 BU2cc BU2c BU2
3 215 67 66 142 454 72 148 458
4 91 33 29 62 186 30 60 182
5 1289 429 431 854 2556 435 854 2520
6 159 52 57 107 318 53 102 300
7 10 3 3 8 27 2 4 12
11 32 10 10 19 57 13 25 72
12 31 9 12 20 57 11 21 60
13 1 1 0 1 3 1 2 6
15 5 3 2 4 12 1 1 0
16 11 4 3 7 18 4 9 30
17 1 0 0 0 0 1 1 0
19 5 2 1 3 9 2 4 12
22 6 2 2 4 12 2 4 12
23 1 0 0 0 0 1 2 6
30 2 0 2 2 6 0 0 0
38 1 1 0 1 3 0 0 0
39 0 0 0 0 0 1 2 6
55 1 1 0 1 3 0 0 0
56 2 0 0 0 0 2 4 10
57 3 1 1 2 6 1 2 6
58 3 0 1 1 3 1 2 6
60 0 0 0 0 0 0 0 2
64 3 1 1 2 6 1 2 6
66 1 1 0 1 3 0 0 0
73 1 0 1 1 3 0 0 0
86 1 0 1 1 0 0 0 0
89 0 1 0 0 0 0 0 0
90 0 0 1 0 0 0 0 0
91 2 1 0 1 3 1 2 6
92 1 0 0 0 0 2 3 6
93 2 1 0 1 3 0 0 0
97 1 0 0 0 0 1 1 0
100 1 0 1 1 3 0 0 0
105 1 0 0 0 0 1 2 6
111 1 0 1 1 6 0 0 0
113 1 0 1 1 3 0 0 0
115 1 1 0 1 0 0 0 0
118 1 1 0 1 0 0 1 6
122 1 0 0 0 0 1 1 0
152 0 0 1 0 0 0 0 0
174 1 2 0 1 3 0 0 0
175 1 0 0 1 3 0 0 0
187 1 0 1 1 3 0 0 0
197 1 0 0 0 0 1 1 0
221 1 0 0 0 0 1 2 6
237 0 0 0 0 3 0 0 0
277 1 0 0 0 0 1 1 0
381 1 0 0 1 3 0 0 0
536 1 0 1 1 3 0 0 0
585 1 1 0 1 3 0 0 0
737 0 0 0 0 0 0 1 6

98



Table A.4. Rigidity results for Type III Antifreeze Protein RD1. The number of
each type of cluster for PDB file 1ucs is shown for the asymmetric unit (AU, column
2), the unit cell (column 3), the 2×1×1 crystal (column 4), and the 2×2×1 crystal
(column 5).

Size (atoms) of rigid cluster AU 111.1ucs 211.1ucs 221.1ucs
2 1 5 11 22
3 63 255 511 1029
4 8 32 64 128
5 181 718 1434 2868
6 46 189 375 747
7 3 14 30 63
8 4 16 32 64
11 1 4 8 16
12 1 4 8 16
19 3 12 24 48
23 1 3 5 10
27 1 4 8 16
36 0 1 3 6
45 1 4 8 16
67 1 4 8 16

Table A.5. Rigidity results for Ribonuclease A. The count of different sized rigid
clusters of PDB file 5rsa is show for the asymmetric unit (AU, column 2), the unit
cell (column 3), the 2×1×1 crystal (column 4), and the 2×2×1 crystal (column 5).

Size (atoms) of rigid cluster AU 111.5rsa 211.5rsa 221.5rsa
3 62 124 248 496
4 20 40 80 160
5 386 772 1544 3088
6 31 62 124 248
10 3 6 12 24
11 3 6 12 24
12 6 12 24 48
19 1 2 4 8
21 1 2 4 8
22 1 2 4 8
24 1 2 4 8
25 2 4 8 16
29 1 2 4 8
35 1 2 4 8
65 1 2 4 8
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APPENDIX B

EXPERIMENTAL AND RIGIDITY DATA FOR 48
MUTANT PROTEINS ANALYZED BY

KINARI-MUTAGEN

Table B.1. Protein structures with no stabilizing interactions at substitution. For
these, the wild-type residue did not engage in stabilizing interactions, so in silico
mutating the residue was not expected to change the rigidity results. DRC=Dominant
Rigid Cluster; HPhobe=Hydrophobic Interaction; HBond=Hydrogen Bond.
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1stn Staphylococcal Nucl. 18,I very 59 -2.6 0 0 0
1stn Staphylococcal Nucl. 37,L very 9 -3.9 0 0 0
1stn Staphylococcal Nucl. 60,A slightly 77 -1.5 0 0 0
1stn Staphylococcal Nucl. 62,T - 0 -3.4 0 0 0
1rtb Thymidylic Acid 63,V very 41 -3.5 0 0 0
1rtb Thymidylic Acid 64,A slightly 77 -0.44 0 0 0
1lz1 Human Lysozyme 2,V very 68 -2.3 0 0 0
3mbp Maltodextrin-Binding 276,A slightly 0 -1.5 0 0 0
2rn2 Ribonuclease H 52,A slightly 1 -2.7 0 0 0
3ssi Streptomyces Subtilisin Protease Inh. 73,M slightly 98 -0.49 0 0 0
1bvc Biliverdin apomyoglobin 8,Q - 59 -0.5 0 0 0
1ftg Apo Flavodoxin 84,A slightly 0 -1.25 0 0 0
1cto Granulocyte 45,V very 62 -1.9 0 0 0
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Table B.2. Protein structures with too fee stabilizing interactions at substitution.
For these structures, the wild-type residue engaged in fewer than exepcted hydro-
gen bonds or hydrophobic interactions, so in silico mutating the residue was not
expected to affect the rigidity results as much as if all expected hydrogen bonds
and/or hydrophobic interactions were detected. DRC=Dominant Rigid Cluster;
HPhobe=Hydrophobic Interaction; HBond=Hydrogen Bond.
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1stn Staphylococcal Nucl. 61,F medium 34 -4.7 0 0 0
3ssi Streptomyces Subtilisin Protease Inh. 103,M slight 0 -6.8 0 0 0
1stn Staphylococcal Nucl. 36,L very 0 -5.4 0 2 0
1rtb Thymidylic Acid 54,V very 0 -4.87 0 1 0
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Table B.3. Protein structures with sufficient stabilizing interactions at substitution.
For these structures, the wild-type residue engaged in as many hydrogen bonds or
hydrophobic interactions as was expected via a visual inspection, so in silico mutating
the residue was expected to affect the rigidity results. In all but one case (protein
1bpi, residue 35), the change to the DRC positively correlated with the experimen-
tal ∆∆G value. DRC=Dominant Rigid Cluster; HPhobe=Hydrophobic Interaction;
HBond=Hydrogen Bond
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1rtb Thymidylic Acid 47,V very 22 -7.35 1 2 6
1rtb Thymidylic Acid 108,V very 4 -7.29 0 3 9
1bpi Trypsin 43,N - 15 -5.7 3 0 7
1rtb Thymidylic Acid 57,V very 14 -5.52 0 3 12
1bpi Trypsin 35,Y - 7 -5.0 0 3 0
1rtb Thymidylic Acid 81,I very 34 -4.81 0 2 6
1bpi Trypsin 44,N - 20 -4.7 1 2 18
1stn Staphylococcal Nucl. 76,F medium 25 -4.7 0 1 13
1lz1 Human Lysozyme 59,I very 2 -3.83 0 1 6
1stn Staphylococcal Nucl. 95,D - 67 -3.1 1 0 5
1stn Staphylococcal Nucl. 83,D - 63 -2.8 4 0 49
1rtb Thymidylic Acid 118,V very 20 -2.7 0 1 6
1iob Interleukin1 9,T very 4 -2.6 1 1 7
2rn2 Ribonuclease H 68,S - 2 -2.4 2 0 12
1lz1 Human Lysozyme 38,Y - 12 -2.32 0 4 16
1stn Staphylococcal Nucl. 77,D - 0 -2.2 4 0 9
2abd Acyl-coenzyme A 9,A slight 12 -1.8 0 3 3
2abd Acyl-coenzyme A 34,A slight 0 -1.57 0 4 3
1pga Streptococcal G 53,T - 38 -1.2 1 1 8
1rtb Thymidylic Acid 16,V very 18 -1.18 0 2 9
3mbp Maltodextrin-Binding 8,V very 31 -1.0 0 1 6
1rtb Thymidylic Acid 109,A slight 8 -0.43 0 2 3
1ank Adenylate Kinase 88,R - 36 -0.2 2 1 19
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Table B.4. Structure files with solvent exposed mutation points. Mutants for which
the wild-type residue at the mutation point was more than 50% solvent exposed were
not expected to be identified as critical using KINARI-Mutagen. DRC=Dominant
Rigid Cluster; HPhobe=Hydrophobic Interaction; HBond=Hydrogen Bond.
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1rtb Thymidylic Acid 93,P - 69 -2.6 0 0 0
1lz1 Human Lysozyme 103,P - 94 -0.1 0 0 0
1lz1 Human Lysozyme 78,H - 86 -0.12 0 0 0
1rtb Thymidylic Acid 114,P - 81 -3.6 0 0 0
1lz1 Human Lysozyme 74,V very 62 -0.22 0 0 0
1lz1 Human Lysozyme 71,P - 57 -1.6 0 0 0
1iob Interleukin1 97,P - 51 -1.2 0 0 0
3ssi Streptomyces Subtilisin Protease Inh. 13,V very 56 -9.3 0 0 0

103



BIBLIOGRAPHY

[1] Abyzov, A., Bjornson, R., Felipe, M., and Gerstein, M. RigidFinder: a fast
and sensitive method to detect rigid blocks in large macromolecular complexes.
Proteins 78, 2 (February 2010), 309–324.

[2] Alber, T., Dao-pin, S., Nye, J.A., Muchmore, D.C., and Matthews, B.W.
Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites
with low mobility and low solvent accessibility in the folded protein. Biochem-
istry 26, 13 (1987), 3754–3758.

[3] Alber, T., Dao-pin, S., Wozniak, J.A., Cook, S.P., and Matthews, B.W. Contri-
butions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage
T4 lysozyme. Nature 330 (November 1987), 41–46.

[4] Alder, B.J., and Wainwright, T.E. Studies in molecular dynamics. I. General
method. Journal of Chemical Physics 31, 2 (1959), 459–466.

[5] Bahar, M., Graham, S., Stuart, D., and Grimes, J. Insights into the evolution
of a complex virus from the crystal structure of vaccinia virus D13. Structure 19
(July 2011), 1011–1020.

[6] Bell, J.A., Becktel, W.J., Sauer, U., Baase, W.A., and Matthews, B.W. Dissec-
tion of helix capping in T4 lysozyme by structural and thermodynamic analysis
of six amino acid substitutions at Thr 59. Biochemistry 31, 14 (1992), 3590–3596.

[7] Bello, J., and Nowoswiat, E.F. The activity of crystalline ribonuclease A.
Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation
105, 2 (1965), 325–332.

[8] Berova, N., Nakanishi, K., and Woody, R. Circular Dichroism: Principles and
Applications. Wiley-VCH, 2000.

[9] Brown, S., Fawzi, N.J., and Head-Gordon, T. Coarse-grained sequences for
protein folding and design. Proceedings of the National Academy of Sciences
100, 19 (2003), 10712–10717.

[10] Capriotti, E., Fariselli, P., and Casadio, R. A neural-network-based method for
predicting protein stability changes upon single point mutations. Bioinformatics
20, Supplemental (2004), i63–i68.

[11] Center for Biological Physics, Arizon State University. FIRST 6.2.1 User Guide.
Available at: http://flexweb.asu.edu/ (10 June 2011, date last accessed).

104



[12] Cheng, J., Randall, A., and Baldi, P. Prediction of protein stability changes
for single-site mutations using support vector machines. PROTEINS: Structure,
Function, and Bioinformatics 62 (2006), 1125–1132.

[13] Clark, P., Grant, J., Monastra, S., Jagodzinski, F., and Streinu, I. Periodic
rigidity of protein crystal structures. In 2nd IEEE International Conference on
Computational Advances in Bio and Medical Sciences (ICCABS’12) (February
2012).

[14] Clegg, Robert M. Forster resonance energy transfer–FRET what is it, why do
it, and how it’s done. In Fret and Flim Techniques, T.W.J. Gadella, Ed., vol. 33
of Laboratory Techniques in Biochemistry and Molecular Biology. Elsevier, 2009,
pp. 1–57.

[15] Diez, M, Zimmermann, B., Borsch, M, Konig, M., Schweinberger, E., Steigmiller,
S., Reuter, R., Felekyan, S., Kudryavtsev, V., Seidel, C.A., and Graber, P.
Proton-powered subunit rotation in single membrane-bound F0F1-ATP syn-
thase. Nature Structural and Molecular Biology 11, 5 (2004), 135–41.

[16] Ebihara, A., Manzoku, M., Iino, H., Kanagawa, M., Shinkai, A., Yokoyama,
S., and Kuramitsu, S. Crystal structure of uncharacterized protein ttha1756
from thermus thermophilus hb8: Structural variety in upf0150 family proteins.
Proteins: Structure, Function, and Bioinformatics 71 (2008), 2097–2101.

[17] Echols, N., milburn, D., and Gerstein, M. MolMovDB: analysis and visualization
of conformational change and structural flexibility. Nucleic Acids Research 31
(2003), 478–482.

[18] Eriksson, A.E., Baase, W.A., Zhang, X.J., Heinz, D.W., Baldwin, E.P., and
Matthews, B.W. Response of a protein structure to cavity-creating mutations
and its relation to the hydrophobic effect. Science 255 (1992), 178–183.

[19] Ferron, F., Li, Z., Danek, E.I., Luo, D., Wong, Y., Coutard, B., Lantez, V.,
Charrel, R., Canard, B., Waiz, T., and Lescar, J. The hexamer structure of the
rift valley fever virus nucleoprotein suggests a mechanism for its assembly into
ribonucleoproteiin complexes. PLoS Pathogens 7, 5 (May 2011).

[20] Fox, N., Jagodzinski, F., Li, Y., and Streinu, I. KINARI-Web: A server for
protein rigidity analysis. Nucleic Acids Research 39 (Web Server Issue) (2011),
W177–W183.

[21] Fox, N., Jagodzinski, F., and Streinu, I. Kinari-lib: a C++ library for pebble
game rigidity analysis of mechanical models. In Minisymposium on Publicly
Available Geometric/Topological Software, Chapel Hill, NC, USA (June 2012).

[22] Fox, N., and Streinu, I. Towards accurate modeling for protein rigidity analysis.
In 2nd IEEE International Conference on Computational Advances in Bio and
Medical Sciences (ICCABS’12). Feb. 23-25 (February 2012).

105



[23] Garman, S.C., and Garboczi, D.N. Structural basis of Fabry disease. Molecular
Genetics and Metabolism 77, 1-2 (2002), 3 – 11.

[24] Gilis, D., and Rooman, M. Predicting protein stability changes upon muta-
tion using database-dervied potentials: Solvent accessibility determines the im-
portance of local versus non-local interactions along the sequence. Journal of
Molecular Biology 272, 2 (1997), 276–290.

[25] Gohlke, H., and Radestock, S. Exploiting the link between protein rigidity and
thermostability for data-driven protein engineering. Engineering Life Science 8
(2008), 507–522.

[26] Granzin, J., Puras-Lutzke, R., Landt, O., Grundert, H-P, Heinemann, U.,
Saenger, W., and Hahn, U. RNase T1 mutant Glu46Gln binds the inhibitors
2’GMP and 2’AMP at the 3’ subsite. Journal of Molecular Biology 225, 2 (1992),
533–542.

[27] Guerois, R., Nielsen, J.E., and Serrano, L. Predicting changes in the stability of
proteins and protein complexes: A study of more than 1000 mutations. Journal
of Molecular Biology 320, 2 (2002), 369–387.

[28] Holder, T. Supercell. http://www.pymolwiki.org/index.php/Supercell, Au-
gust 2011.

[29] Hutschison, C.A., Philipps, S., Edgell, M.H., Gillham, S., Jagnke, P., and Smith,
M. Mutagenesis at a specific position in a DNA sequence. Journal of Biological
Chemistry, 18 (1978), 6551–6560.

[30] Hyun, J.K., Accurso, C., Hijnen, M., Schult, P., Pettikiriarachchi, A., Mitra,
A.K., and Coulibaly, F. Membrane remodeling by the double-barrel scaffolding
protein of poxvirus. PLoS Pathogens 7, 9 (September 2011).

[31] Ishima, R., Freedberg, D.I., Wang, Y.-X., Louis, J.M., and Torchia, D.A. Flap
opening and dimer-interface flexibility in the free and inhibitor-bound HIV pro-
tease, and their implications for function. Structure 7, 9 (1999), 1047–1055.

[32] Jacobs, D.J., and Hendrickson, B. An algorithms for two-dimensional rigidity
percolation: the pebble game. Journal of Computational Physics 137 (1997),
346–365.

[33] Jacobs, D.J., Rader, A.J., Thorpe, M.F., and Kuhn, L.A. Protein flexibility
predictions using graph theory. Proteins 44 (2001), 150–165.

[34] Jacobs, D.J., and Thorpe, M.F. Generic rigidity percolation: the pebble game.
Physics Review Letters 75 (1995), 4051–4054.

[35] Jagodzinski, F., Clark, P., Liu, T., Grant, J., Monastra, S., and Streinu, I.
Rigidity analysis of periodic crystal structures and protein biological assemblies.
Submitted, BMC BioInformatics (2012).

106



[36] Jagodzinski, F., Hardy, J., and Streinu, I. Using rigidity analysis to probe
mutation-induced structural changes in proteins. In Workshop on Computational
Structural Bioinformatics (November 2011), IEEE Int. Conf. on Bioinformatics
and Biomedicine (BIBM’11), pp. 432–437.

[37] Jagodzinski, F., Hardy, J., and Streinu, I. Using rigidity analysis to probe
mutation-induced structural changes in proteins. Journal of Bioinformatics and
Computational Biology 10, 3 (2012).

[38] Jagodzinski, F., and Streinu, I. Towards biophysical validation of constraint
modeling for rigidity analysis of proteins. BMC Bioinformatics , Accepted.

[39] Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., and andD.C. Phillips,
H. Wyckoff. A three-dimensional model of the myoglobin molecule obtained by
x-ray analysis. Nature 181, 4610 (1958), 662–666.

[40] Ko, T.-P, Robinson, H., Gao, Y.-G, Cheng, C.-H.C., DeVries, A.L, and Wang,
A.H.-J. The refined crystal structure of an eel pout type III antifreeze protein
RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and
solvation. Biophysical Journal 84 (2003), 1228–1237.

[41] Krebs, W.G., and Gerstein, M. The morph server: a standardized system for
analyzing and visualizing macromolecular motions in a database framework. Nu-
cleic Acids Research 28, 8 (2000), 1665–1675.

[42] Kumar, M.D., Bava, K.A., Gromiha, M.M., Prabakaran, P., Kitajima, K.,
Uedaira, H., and Sarai, A. Protherm and pronit: thermodynamic databases
for proteins and proteinâĂŞnucleic acid interactions. Nucleic Acids Research 34,
suppl 1 (2005), D204–D206.

[43] Kyte, J., and Doolittle, R.F. A simple method for displaying the hydropathic
character of a protein. Journal of Molecular Biology 157, 1 (1982), 105–132.

[44] Lakowicz, J.R. Principles of Fluorescence Spectroscopy. Springer, 3rd edition,
2006.

[45] Laman, G. On graphs and rigidity of plane skeletal structures. Journal of
Engineering Mathematics 4 (1970), 331–340.

[46] Lee, A., and Streinu, I. Pebble game algorithms and sparse graphs. Discrete
Mathematics 308, 8 (2008), 1425—1437.

[47] Lee, B., and Richards, F.M. The interpretation of protein structures: Estimation
of static accessibility. Journal of Molecular Biology 55, 3 (1971), 379–400.

[48] Lee, C., and Levitt, M. Accurate prediction of the stability and activity effects
of site-directed mutagenesis on a protein core. Nature 352 (1991), 448–451.

107



[49] Lou, X., Tu, X., Pan, G., Xu, C., Fan, R., Lu, W., Deng, W., Rao, P., Teng,
M., and Niu, L. Purification, N-terminal sequencing, crystallization and pre-
liminary structural determination of atratoxin-b, a short-chain alpha-neurotoxin
from Naja atra venom. Acta Crystallography 59, 6 (2003), 1038–1042.

[50] Lovell, S.C., Word, J.M., Richardson, J.S., and Richardson, D.C. The penul-
timate rotamer library. Proteins Structure Function and Genetics 40 (2000),
389–408.

[51] Matsumura, M., Becktel, W.J., and Matthews, B.W. Hydrophobic stabilization
in t4 lysozyme determined directly by multiple substitutions of ile 3. Nature 334
(1988), 406–410.

[52] Matsumura, Masazumi, Becktel, Wayne J., Levitt, Michael, and Matthews,
Brian W. Stabilization of phage t4 lysozyme by engineered disulfide bonds.
Proceedings of the National Academy of Sciences 86, 17 (1989), 6562–6566.

[53] Maxwell, J.C. On the calculation of the equilibrium and stiffness of frames.
Philosophical Magazine Series 4 27 (1864), 294–299.

[54] Mayo, S.L., Dahiyat, B.I., and Gordon, D.B. Automated design of the surface
positions of protein helices. Protein Science 6, 6 (1997), 1333–1337.

[55] McCammon, J.A., Gelin, B.R., and Karplus, M. Dynamics of folded proteins.
Nature 267, 5612 (1977), 585–590.

[56] McCoy, R.H., Meyer, C.E., and Rose, W.C. Feeding experiments with mixtures
of highly purified amino acids. viii. isolation and identification of a new essential
amino acid. Journal of Biological Chemistry 112 (1935), 283–302.

[57] Mcnaught, A. D., and Wilkinson, A. IUPAC. Compendium of Chemi-
cal Terminology, 2nd ed. (the "Gold Book"), xml on-line corrected version:
http://goldbook.iupac.org (2006-) created by m. nic, j. jirat, b. kosata; updates
compiled by a. jenkins ed. Blackwell Scientific Publications, Oxford, 1997.

[58] Michalet, X., Weiss, S., and Jager, M. Single-molecule fluorescence studies of
protein folding and conformational dynamics. Chemical Reviews 106, 5 (2006),
1785–1813.

[59] Mooers, B., Baase, W.A., Wray, J.W., and Matthews, B.W. Contributions of all
20 amino acids at site 96 to the stability and structure of T4 lysozyme. Protein
Science 18, 5 (2009), 871–880.

[60] Nachman, J., Miller, M., Gilliland, G.L., Carty, R., Pincus, M., and Wlodawer,
A. Crystal structure of two covalent nucleoside derivatives of ribonuclease a.
Biochemistry 29, 4 (1990), 928–937.

108



[61] Nicholson, H., Soderlind, E., Tronrud, D.E., and Matthews, B.W. Contributions
of left-handed helical residues to the structure and stability of bacteriophage T4
lysozyme. Journal of Molecular Biology 210, 1 (1989), 181–193.

[62] Nicholson, L. K., Yamazaki, T., Torchia, D. A., Grzesiek, S., Bax, A., Stahl,
S. J., Kaufman, J. D., Wingfield, P. T., Lam, P. Y. S., Jadhav, P. K., and
Others. Flexibility and function in HIV-1 protease. Nature Structural Biology 2,
4 (1995), 274–280.

[63] Palmer, A.G, Grey, M.J., and Wang, C. Solution nmr spin relaxation methods
for characterizing chemical exchange in high-molecular-weight systems. In Nu-
clear Magnetic Resonance of Biological Macromolecules, Thomas L. James, Ed.,
vol. 394 of Methods in Enzymology. Academic Press, 2005, pp. 430 – 465.

[64] Pande, Vijay S., Baker, Ian, Chapman, Jarrod, Elmer, Sidney P., Khaliq, Siraj,
Larson, Stefan M., Rhee, Young Min, Shirts, Michael R., Snow, Christopher D.,
Sorin, Eric J., and Zagrovic, Bojan. Atomistic protein folding simulations on the
submillisecond time scale using worldwide distributed computing. Biopolymers
68, 1 (2003), 91–109.

[65] Perryman, A.L., Lin, J.-H., and McCammon, J.A. HIV-1 protease molecular
dynamics of a wild-type and of the V82F/I84V mutant: Possible contributions
to drug resistance and a potential new target site for drugs. Protein Science 13,
4 (2004), 1108–1123.

[66] Prevost, M., Wodak, S.J., Tidor, B., and Karplus, M. Contribution of the
hydrophobic effect to protein stability: analysis based on simulations of the Ile-
96-Ala mutation in barnase. Proceedings of the National Academy of Sciences,
U.S.A. 88, 23 (1991), 10880–10884.

[67] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010.
ISBN 3-900051-07-0.

[68] Rader, A. J., and Bahar, I. Folding core predictions from network models of
proteins. Polymer 45, 2 (2004), 659–668.

[69] Rader, A.J., Anderson, G., Basak, I., Bahar, I., and Klein-Seetharaman, J. Iden-
tification of core amino acids stabilizing rhodopsin. Proceedings of the National
Academy 0f Science of the United States of America 101, 19 (May 2004), 7246–
7251.

[70] Rader, A.J., Hespenheide, B.M, Kuhn, L.A., and Thorpe, M.F. Protein unfold-
ing: Rigidity lost. Proceedings of National Academy of Sciences, U.S.A. (2002),
3540–3545.

[71] Rupp, B. Biomolecular Crystallography: Principles, Practice, and Application
to Structural Biology, 1st ed. Garland Science, New York, 2009.

109



[72] Senechal, Marjorie. Crystalline Symmetries, An Informal Mathematical Intro-
duction. Adam Hilger Publishing, 1990.

[73] Smith, M.J-de. STATSREF: Statistical analysis handbook. http://www.
statsref.com/, 2010.

[74] Smith, S.O., Eilers, M., Song, D., Crocker, E., Ying, W., Groesbeek, M., and
Aimoto, G. Metz M. Ziliox S. Implications of threonine hydrogen bonding in
the glycophorin a transmembrane helix dimer. Biophysics Journal 82 (2002),
2476–2486.

[75] Taketomi, H., Ueda, Y., and Gō, N. Studies on protein folding, unfolding and
fluctuations by computer simulation. I. The effect of specific amino acid sequence
represented by specific inter-unit interactions. International Journal of Peptide
and Protein Research 7, 6 (1975), 445–459.

[76] Tay, T.-S. Rigidity of multigraphs I: linking rigid bodies in n-space. Journal of
Combinatorial Theory, Series B 36 (1984), 95–112.

[77] Teeter, M.M., and Hendrickson, W.A. Highly ordered crystals of the plant seed
protein crambin. Journal of Molecular Biology 127, 2 (1979), 219–223.

[78] Teeter, M.M., Mazer, J.A., and L’Italien, J.J. Primary structure of the hy-
drophobic plant protein crambin. Biochemistry 20, 19 (1981), 5437–5443.

[79] Thorpe, M.F., Lei, M., Rader, A.J., and Kuhn, D.J. Jacobs L.A. Protein flexi-
bility and dynamics using constraint theory. Journal of Molecular Graphics and
Modeling 19, 1 (2001), 60–9.

[80] Thorpe, Michael F., Chubynsky, M. V., Hespenheide, B. M, Menor, Scott, Ja-
cobs, Donald J., Kuhn, Leslie A., Zavodszky, Maria I., Lei, Ming, Rader, A. J.,
and Whiteley, Walter. Flexibility in Biomolecules. Current Topics in Physics.
Imperial College Press, London, 2005, ch. 6, pp. 97–112. R.A. Barrio and K.K.
Kaski, eds.

[81] Topham, C.M., Srinivasan, N., and Blundell, T. Prediction of the stability of
protein mutants based on structural environment-dependent amino acid substi-
tutions and propensity tables. Protein Engineering 10, 1 (1997), 7–21.

[82] Tsang, I.R., and Tsang, I.J. Cluster size diversity, percolation, and complex
systems. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics 60
(1999), 2684–2698.

[83] Tsodikov, O.V., Record, M.T., and Sergeev, Y.V. Novel computer program
for fast exact calculation of accessible and molecular surface areas and average
surface curvature. Journal of Computational Chemistry 23, 6 (2002), 600–609.

110
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