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ABSTRACT 

MULTISCALE MODELING OF HUMAN ADDICTION: A COMPUTATIONAL 

HYPOTHESIS FOR ALLOSTASIS AND HEALING 

 
FEBRUARY 2013 

 
YARIV Z. LEVY 

 
B.Sc., ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

 
M.Sc., ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Andrew G. Barto and Professor Jerrold S. Meyer 

 
 
 

This dissertation presents a computational multiscale framework for 

predicting behavioral tendencies related to human addiction. The research 

encompasses three main contributions. The first contribution presents a formal, 

heuristic, and exploratory framework to conduct interdisciplinary investigations 

about the neuropsychological, cognitive, behavioral, and recovery constituents of 

addiction. The second contribution proposes a computational framework to 

account for real-life recoveries that are not dependent on pharmaceutical, clinical, 

and counseling support. This exploration relies upon a combination of current 

biological beliefs together with unorthodox rehabilitation practices, such as 

meditation, and proposes a conjecture regarding possible cognitive mechanisms 

involved in the recovery process. Further elaboration of this investigation leads 

on to the third contribution, which introduces a computational hypothesis for 

exploring the allostatic theory of addiction. A person engaging in drug 
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consumption is likely to encounter mood deterioration and eventually to suffer the 

loss of a reasonable functional state (e.g., experience depression). The allostatic 

theory describes how the consumption of abusive substances modifies the 

brain's reward system by means of two mechanisms which aim to viably maintain 

the functional state of an addict. The first mechanism is initiated in the reward 

system itself, whereas the second might originate in the endocrine system or 

elsewhere. The proposed computational hypothesis indicates that the first 

mechanism can explain the functional stabilization of the addict, whereas the 

second mechanism is a candidate for a source of possible recovery. 

The formal arguments presented in this dissertation are illustrated by 

simulations which delineate archetypal patterns of human behavior toward drug 

consumption: escalation of use and influence of conventional and alternative 

rehabilitation treatments. Results obtained from this computational framework 

encourage an integrative approach to drug rehabilitation therapies which 

combine conventional therapies with alternative practices to achieve higher rates 

of consumption cessation and lower rates of relapse. 
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CHAPTER 1 

 
INTRODUCTION 

 

Use and misuse of addictive substances has been an ongoing 

phenomenon throughout the history of mankind from early civilizations to the 

present. While addiction has been widely regarded as detrimental and even 

criminal, science and popular beliefs have recently converged to consider 

addiction as a disease (1,2). Advances in social sciences, psychology, 

pharmacology, and physiology are continually providing new insight into the 

nature of addictive drugs and the consequences of their consumption. Extensive 

computational research has been conducted which deals with the 

neuropsychological, cognitive, behavioral and recovery aspects or scales of drug 

addiction. In the present document these scales presented in Figure 1 are 

defined as follows: 

• The neuropsychological scale describes the ongoing activity of the 

relevant neural structures, which include the brain's reward system; 

• The cognitive scale outlines the processing and integration of the 

neural activity, mimicking regions of the frontal cortex; 

• The behavioral scale delineates the conduct of an individual, with 

respect to itself and the surrounding society; 

• The recovery scale refers to possible interventions which prevent 

maladaptive behavior (i.e., the tendency to consume a drug). 
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Figure 1: Neuropsychological, cognitive, behavioral and recovery scales are the four aspects 
considered in mathematical and computational models of addiction. Actual models of addiction 

commonly embrace one or two of these aspects.

Up to now, mathematical and computational models of addiction have 

considered only one or two of these scales. Effective use of the knowledge from 

these diverse facets to understand and treat drug addictions presents a daunting 

challenge: many aspects of this complex phenomenon are interrelated and time 

dependent. Moreover, a trade-off between a model's mathematical properties 

and its biological rationality should be found: a pertinent computational 

framework shouldn't be excessively complex, while allowing the model to 

simulate a significant diversity of behavioral profiles. 
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In the present dissertation, computational methods are used to integrate 

all four archetypal aspects of drug addiction into a comprehensive and 

translational multiscale model combining neuropsychological, cognitive, 

behavioral, and recovery observations, toward the prediction of drug-seeking 

behavior. It is expected that the results of this research will expand the 

understanding of substance addiction, with particular emphasis on cognitive 

correlations of the allostatic theory of addiction (3). 

This chapter starts with an historic overlook of human drug dependency, 

continues with a glimpse of how computer science is deployed in biological 

investigations, and concludes with a description of the scientific contributions 

provided by this dissertation. Chapter 2 gives a background of the biological 

modeling of drug addiction; and Chapter 3 discusses previous formal models. In 

Chapter 4 are outlined the formal procedures engaged in developing the new 

formal framework discussed in this dissertation. Chapter 5 puts forward a 

cognitive learning mechanism as a necessary apparatus for emulating natural 

recoveries from drug addiction, where no pharmacological or behavioral 

interventions are employed. Chapter 6 computationally explores the allostatic 

theory of addiction and provides behavioral predictions with respect to cognitive 

correlates. Finally, Chapter 7 includes summary and conclusions of this 

dissertation. 
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1.1 Historical account of addiction in humankind 

The lawful or illegal consumption of substances such as caffeine, alcohol, 

amphetamines, barbiturates, cocaine, and opium alkaloids can be traced back 

about 7000 years. The earliest documented evidence of addictive substance 

availability can be traced back to the Sumerian, Ancient Egyptian, and Ancient 

Chinese civilizations, involving opium, alcohol, and theine (caffeine1). 

Around the year 5000 B.C. in Mesopotamia, the Sumerian civilization 

developed agriculture which significantly increased land productivity and the 

need to store sustenance surpluses. This prosperity led to the establishment of 

community life with permanent places of residence, as well as the need for a 

higher level of social organization and labor division. This new socio-economic 

organization facilitated cultural development and the invention of phonetic writing. 

The Sumerian written character for opium was associated with "rejoicing" (4). 

By about 3500 B.C., the nearby Ancient Egypt civilization had new 

architectural techniques, a system of mathematics, a system of medicine, the first 

known ships, glass technology, and the earliest evidence of alcohol production in 

the form of a papyrus describing a brewery (5). 

In a different part of the world sometime later in about 2000 B.C., the ruler 

of Ancient China, Shen Nong, known as the Emperor of the Five Grains, taught 

his people how to cultivate cereals, which led to the decrease in slaughtering of 

animals. The Emperor discovered many medicinal herbs and was accustomed to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1
 Theine was shown to have the same composition as caffeine in 1868. (Not to be confused with 

Theanine.) 
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boiling his water before drinking. It is believed that on one occasion some herbal 

leaves fell into his boiling water, he drank the brew, and he liked it (6). 

Western civilization dates back to Ancient Greece and Ancient Rome, 

which were endowed not only with schools of art, philosophy, and rhetoric, but 

also with knowledge of the curative properties of plants and their euphoric 

characteristics. These societies had practical knowledge of the hallucinatory and 

temporary psychotic effects in opium poppies, ergot2, mushrooms, and deadly 

nightshade3 (7). The epic poet Homer cited the intoxicating, pain-relieving and 

sleep-inducing properties of these substances in The Iliad and The Odyssey, 

while the classical Roman poet Virgil mentioned them in The Aeneid (4). 

Opium, alcohol and theine (caffeine) were known substances from the 

earliest time of the human civilization and their use has been celebrated, studied, 

and debated ever since. 

More recently in 1821, the Englishman Thomas De Quincey wrote 

"Confessions of an English Opium Eater" (8,9), an account of his controlled 

laudanum4 consumption and the effects on his life. At that time, it was not 

uncommon and even socially acceptable among Romantic writers to use opioids 

for both recreational and medical purposes. Some years later, from 1839 to 1842 

and from 1856 to 1858, Britain declared two Opium Wars on China: under the 

pretext of enforcing anti-opium laws issued by the Chinese Emperor. These laws, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2
 A group of fungi used as a source of certain alkaloids. 

3
 A plant used as a recreational drug because of the vivid hallucinations and delirium that it 

produces. 
4
 Defined by the New Oxford American Dictionary as "an alcoholic solution containing morphine, 

prepared from opium and used as a narcotic painkiller". 
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which were intended to decrease the large quantities of opium imported from 

India to China, indirectly affected British trading policy and eventually provided 

the pretext for Britain's military pursuit of commercial imperialism (10). 

The first international alcoholism congress was held in Paris in 1878, and 

28 years later the first international association for drug regulation was founded in 

Lausanne, Switzerland. Alcohol was never considered for international 

regulation, but opioids were. In the early 1900s, the Shanghai Opium 

Commission was established, and before World War I it became a global 

regulatory system. This control institution evolved into a preclusive authority 

during World War II (10). 

The history of addictive substance use and abuse in the United States 

dates back almost 150 year to the American Civil War. Wounded veterans were 

legally given morphine-containing bundles for pain relief, and the first legal 

measure against substance abuse that was at least partially instigated by this 

medical practice dates back to 1875 when San Francisco opium dens were made 

illegal. Towards the end of the 19th century, substances such as morphine, 

laudanum, and cocaine were being legally used for pain relief and other medical 

purposes (e.g. heroin based cough syrup, cocaine toothache drops, etc.), the 

problem of addiction started to be recognized, and commercial drug regulation 

was begun. In 1906 the management of drug labeling was enforced with the 

passage of the Pure Food and Drug Act; in 1914 the legal distribution and use of 

opioids and cocaine became regulated by the Harrison Act; in 1920 the 18th 
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Constitutional Amendment banned most alcohol sales until 1933 (Prohibition); 

and in 1970 the Drug Enforcement Administration was created by the Controlled 

Substances Act in response to the growing availability and consumption of illegal 

drugs and increasing problems with addiction. The Anti-Drug Abuse Acts of 1986 

and 1988 increased funding for drug treatment and rehabilitation and provided for 

the creation of the Office of National Drug Control Policy with responsibility for 

coordinating the national drug control policy (11,12). 

A major shift occurred during the early 1950s when the World Health 

Organization (WHO) declared alcoholism as a disease. Already around 1870, the 

American Association for the Cure of Inebriates defined alcoholism as a disease. 

Even earlier, during the Age of Enlightenment, drunkenness was discussed as a 

disease (11,13). These views faded until the late 1990s, when the National 

Institute on Drug Abuse (NIDA) presented neuroscience and behavioral science 

evidence to promote this concept to the general public, politicians, and 

healthcare professionals (1). It was in 2004 that the WHO defined substance 

dependence as a disorder of the brain (14). Presently, addiction is considered a 

"bio-psycho-social-spiritual disorder" (2,15). 

The use of addictive substances affects a very large portion of the 

population. Of the three substances discussed above (opium, alcohol, and 

theine-caffeine), caffeine is by far the most commonly used psychoactive 

substance, consumed daily by approximately 80% of the world's adult population 

(~3.5 billion). Moreover, it is estimated that 15-21 million people used opiates at 
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least once in 2007 and that about 76 million persons were diagnosed with alcohol 

use disorders in 2004. Other addictive substances in wide use include cocaine, 

amphetamines-group substances, and ecstasy-group drugs, with estimated 

worldwide use in 2007 between 16 and 21 million, 16 and 51 million, and 12 and 

24 million, respectively. In the USA, these translate into a cost of approximately 

$181 billion for illicit drugs, $168 billion for tobacco, and $185 billion for alcohol 

(16,17,18). It should be noted that these estimates include only direct costs and 

disregard social, economic, and health implications associated with other factors 

such as deaths due to overdose or other complications from drug use (19). 

 

1.2 Maturing out of addiction and natural recoveries 

Nowadays, untreated recoveries from drug abuse are referred as "natural 

recoveries" (20,21). The first phenomenological instances were noticed in 

narcotics users and were referred as "maturing out of addiction" by Winick (22). 

Similar observations were successively noted and investigated also for other 

substances of abuse, such as alcohol and cocaine (23). 

In 1962, Winick popularized the phenomenon of maturing out of narcotics 

addiction. His studies revealed cases where regular users of opium derivatives 

such as heroin, and of synthetic opiates such as meperidine, ceased to use the 

addictive substance without any psychological or pharmacological treatment (22). 

In 1980, Maddux and Desmond presented in the same venue an investigation 

discussing the possible overestimation present in the statistics of the original 



9 

study, and proposed further data to increase the accuracy of the description of 

this phenomenon (24). 

In the two decades between theses studies, a number of studies were 

undertaken whose results were exceedingly dissimilar, arguing against a unified 

theory describing this type of phenomenon. The graph presented in Figure 2 

plots the percentage of addicts becoming narcotics-abstinent against the follow-

up period of the correspondent study, for 10 representative studies of maturing 

out of addiction listed in Table 1 of (25). The present dissertation focuses on the 

studies of Winick (red circle) and of Maddux and Desmond (blue plus sign), by 

integrating them and utilizing them within a computational framework to study 

natural recoveries from addiction in humans.

 

Figure 2: Recapitulation of 10 investigations of maturing out from heroin addiction undertaken 
between 1962-1980. These data were reported in (25). The percentage of former addicts 

achieving inactive status is plotted as a function of the investigation's lengths. The red circle 
corresponds to data in (22), the blue plus sign to data in (24), and the two united black dots to a 
study for which the follow-up period of the patients was distributed in the range 1 to 4.5 years. 
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1.3 Contributions 

This dissertation presents three main contributions. The first one is a five-

step procedure to convey biological and sociological correlates of addiction into a 

reliable computational framework. The second contribution encompasses a 

theoretical examination of unexplained cessation from drug consumption in the 

absence of medical and professional support, a phenomenon known as maturing 

out of addiction (22). The third and most significant contribution is a 

computational hypothesis to account for the allostatic theory of addiction (3). The 

present dissertation relates to the field of Computational Biology, which the 

National Institute of Health defines as 

"... the development and application of data-analytical and theoretical 

methods, mathematical modeling and computational simulation 

techniques to the study of biological, behavioral, and social systems" (26). 
 

First contribution. The five-step procedure illustrated in Chapter 4 

consists of formalization, expansion, qualitative validation, dynamical property 

analysis, and sensitivity analysis. The biological processes previously described 

by Levy5 and Siegelmann in (27) are used to define the experimental framework 

of the computational model at the center of this dissertation. The formalization of 

these biological processes, presented in (28) and Appendix A, is organized into a 

multiscale model of drug addiction which includes four levels of observations: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5
 Dino J. Levy 
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neuropsychological, cognitive, behavioral, and recovery. Such formal 

organization, advanced in (29), promotes the clarity of the model and strengthens 

the interdisciplinary perspective on this disease. In order to enhance the 

biological plausibility of the experimental framework previously described by 

Levy5 and Siegelmann (27), the model is enhanced with a more realistic 

behavioral scale. This elaboration, detailed in (29), is a demonstration of the 

model's expandability. In particular, the compulsion component of the model is 

enhanced to include elements of the incentive-sensitization theory of addiction, 

and the inhibition component of the model is enhanced to include developmental 

and biosocial elements (29). A conventional quantitative evaluation of the model 

is not possible to perform because the measure of several parameters defining 

the model is not available at this time. Instead, a qualitative validation of the 

model qualitative done to the extent possible was performed which involves 

computational simulations mimicking real-life patterns of drug abuse and their 

qualitative assessment. Initial explorations of qualitative validation are detailed in 

(29,30) and further developed in (31,32). The dynamic behavior of the system is 

assessed by testing how the framework converges toward a particular state of 

healthy or maladaptive behavior, and by examining how changes in the virtual 

subject's state influence fluctuations of the predicted behavior toward drug 

consumption, as described in (30). A sensitivity examination of the model, which 

considers both its phenomenological and mathematical characteristics, illustrates 

in (31) how a portion of the model could undermine the entire framework if not 
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properly calibrated. A functional constraint and a visualization tool are proposed 

as a means to identify and control this possible issue (31). 

This first contribution addresses a fundamental step of modeling: the 

framework's validation. According to Zeigler et al. (33), the validation step 

typically requires a significant correspondence between experimental data and 

computational simulations to "check if the model is in error". The discussed five-

step procedure analyzes and evaluates the model in order to provide as strong 

an argument as possible in favor of the system's validity. 

 

Second contribution. The preliminary recovery scale presented in (28) is 

enhanced to connect current drug-related neurological beliefs related to the 

neural plasticity of the brain's frontal cortex (34) with sociological studies 

describing natural recoveries from opioids (22,24). This contribution, detailed in 

Chapter 5 and in (32), results in a theoretical look at how episodes of maturing 

out of addiction may be triggered by non-conventional treatments (e.g., 

mindfulness-based cognitive techniques) emulated through a hypothetical 

learning mechanism. Even though speculative, this contribution provides support 

for the biological hypothesis that there is a cognitive learning mechanism, in the 

prefrontal cortex, which influences decision-making processes associated with 

drug abuse (32). This contribution constitutes a proof of concept in line with past 

and current opinions encouraging stronger interactions between social, natural, 



!

13 

and formal sciences for characterizing a disease such as drug addiction 

(35,15,36). 

 

Third contribution. The third and main contribution of this dissertation is 

a computational hypothesis related to allostasis (3), a neuroscientific theory 

outlining how the brain's reward system reorganizes as drug intake progresses. 

The computational framework discussed in this dissertation is further elaborated 

to incorporate a pharmacokinetic/pharmacodynamic animal model of allostasis 

previously developed by Ahmed and Koob (37). This expansion corresponds to a 

theoretical translation of the animal model discussed in (37) toward human 

application. The augmented model, detailed in Chapter 6 and (38), assesses 

mood variations and drug consumption rates of a virtual subject, while providing 

biologically plausible and testable hypotheses related to allostasis in humans. 
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CHAPTER 2 

 
BACKGROUND: BIOLOGICAL MODELS OF ADDICTION 

 

The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) 

defines two types of maladaptive substance use: "substance abuse" and 

"substance dependence" (39). Both definitions include distinctive behavioral 

aspects. Substance abuse can manifest itself in reckless, negligent, unreliable, 

delinquent, or confrontational behavior. Substance dependence can present itself 

in eager, greedy, perfervid, zealous, or gluttonous behavior towards the addictive 

drug. Typically the word addiction refers to substance dependence. The transition 

from substance abuse to addiction is characterized by a significant increase in 

the time and energies invested by an individual to come into possession and use, 

or recover from the substance, along with the increase of the subject's tolerance 

to the drug and correspondent enlargement of its consumed amount. Patterns of 

drug use not only depend on the maladaptive state of the individual but also on 

the particular substance. Drugs such as nicotine and opiates are usually taken by 

humans according to a schedule, whereas others including alcohol, cocaine, and 

amphetamines may be taken intermittently. The common behavioral patterns 

encountered by a drug user include recreational, binge, regular or heavy use, 

recovery, and relapse. These behavioral patterns are defined by the aggregation 

of biological, psychological, and social elements, which jointly establish the 
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individual's state driving the desire or willingness to engage with the addictive 

drug. 

Researchers investigating the elements responsible for substance 

dependence began to evaluate and estimate the inherent features of addiction by 

observing natural phenomena such as medical conditions, psychological 

deviations, and social awareness. 

In 1968, Siegler and Osmond described seven models of drug addiction: 

one medical model, one socio-psychological model, and five moral models (40). 

The medical model considers the addict as a patient and addiction as a chronic 

disease which can be caused by contact with an addictive drug, but where 

predisposition factors and relevant chemical processes are unknown. As written 

by Siegler and Osmond, the socio-psychological model considers the addict as a 

"victim of social forces beyond his control" (40), an individual with strong 

personality problems related to substance dependencies and influenced by social 

class, neighborhood, age, and mental health. The five moral models are the 

retributive, deterrent, restitutive, preventive, and restorative models. These 

frameworks respectively describe the addict as a convicted criminal, a bad 

example, a debtor, a failure in moral education, or a wrongdoer, and the set of 

causes to become an addict include moral failure and lack of deterrence or moral 

instruction. 

Twelve years later, in 1980, the National Institute on Drug Abuse (NIDA) 

published its 30th Research Monograph with a collection of articles providing a 
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more comprehensive perspective of drug addiction. This collection considers 43 

different theories of addiction which together encompass more than 13 distinct 

centers of interests such as psychiatry, psychology, sociology, biomedical 

sciences, neurosciences, etc. (41). 

In their 2005 book on psychopharmacology, Meyer and Quenzer describe 

the most prominent views of addiction: the physical dependence model, the 

positive reinforcement model, the incentive-sensitization model, the opponent-

process model, the allostatic model, and the disease model (11). These six 

models and a more recently developed view of addiction, the impaired response 

inhibition and salience attribution (I-RISA) model (34), are described below. 

The neuropsychological scale of the model at the center of this 

investigation relates to the physical dependence and disease models, the 

cognitive scale relates to the positive reinforcement and the I-RISA models, and 

the behavioral scale relates to the allostatic and, by extension, the opponent-

process models. 

 

2.1 The physical dependence model 

The physical dependence model describes addiction in terms of relapse 

and comprises two concepts related to withdrawal symptoms, which are the 

unpleasant physical reactions that generally occur after ceasing to take an 

addictive substance. The first concept relates to relapse as mean to alleviate 

physical reaction to abstinence that typically occurs shortly after the drug has 
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been discontinued. In this case, relapse occurs when the addict which is 

struggling to cope with distressing withdrawal symptoms resumes drug intakes to 

alleviate this pain. The unwanted pain is removed, but the subject is once again 

exposed to addiction. The second concept delineates cases of relapse due to 

conditioned withdrawal, which usually occurs after the addict has been drug-free 

for a significant time. In this case, physical reactions to abstinence occur in 

particular places, and hence the subject develops a classical conditioning 

between addictive substance and location. Even after a long drug free period, a 

former addict may be subject to drug cravings which arise when in previously 

drug-conditioned locations. Research related to the physical dependence model 

emphasizes how brain regions including the amygdala, the anterior cingulate 

cortex, and the basal ganglia are particularly active during conditioned withdrawal 

episodes. 

There are two main critiques of the physical dependence model. First, 

there are no insights into the processes that occur when the subject experiences 

drugs for the first time. This model can explain the maintenance of an addiction, 

but cannot account for the changes that occur to the addict-to-be. Second, this 

model assumes strong physical dependence on the abused substance, and thus 

fails to consider drugs such as cocaine which do not produce a strong physical 

dependence (11). 
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2.2 The positive reinforcement model 

According to this model, the euphoric state experienced after drug intake 

reinforces actions that preceded the substance administration. In other words, 

repeated drug intake induces a desire by the subject to experience again the 

euphoric state and to engage again in the course of actions that led to the drug 

intake. Furthermore, in case of an attempt to cease using the substance, the 

subject will experience a craving caused by the overwhelming desire to attain 

again the feeling of wellbeing caused by the drug. 

Behavioral studies focused on the development of this model used rodents 

and primates. For a limited amount of time each day, the test subject was given 

free access to intravenous drug injections administered through an accessible 

lever. A precise amount of drug was injected into the bloodstream of the subject 

when the bar was pressed. The action of pressing the lever can provide the drug: 

for example, one dose of drug is delivered for every five lever presses. Thus it 

was possible to measure the relative strength of substance reinforcement effects. 

This reinforcement eventually reached its upper limit (threshold) when the animal 

stopped pressing the lever, presumably because the reward acquired to achieve 

this action did not justify the effort: the effort required for receiving the actual drug 

(reward) was too large with respect to the drug dose provided. For the same ratio 

between real and empty injections, an animal was generally found to have a 

higher perseverance to press the lever when the dose provided in the actual drug 

injection was higher. While clearly illustrating the role of positive reinforcement, 

this model neglects the social effects of drug abuse, which can have negative 
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real life consequences in the career of a drug user, family breakups, professional 

and financial problems, health issues, engagement in criminal activities, etc. (11). 

 

2.3 The incentive-sensitization model 

The incentive-sensitization theory of addiction is grounded on the 

distinction between drug liking and drug wanting or, more specifically, between 

the euphoric sensation that arises while taking a drug and the powerful desire to 

take the drug again. This theory, formulated by Robinson and Berridge (42), 

states that during the establishment of the addictive state, the "wanting" level of a 

subject strongly increases, while the "liking" level stays constant or even slightly 

decreases (42,43,44). The discrepancy between these two processes is believed 

to originate at the level of neural pathways within the brain. Since it is known that 

the mesolimbic dopamine pathway can be sensitized by repeated intakes of 

addictive substances, this framework justifies the hypothesis for which this 

particular neural circuit could be more important to drug wanting rather than for 

drug liking. The psychological process called "incentive salience", which leads 

the subject to a wanting state, may be caused by long-lasting neuroadaptations 

and could explain why it is difficult for a former addict to avoid relapse episodes. 

While supported by strong experimental data from both animal and human 

studies, the accuracy of this model might substantially benefit by considering 

additional psychosocial factors interacting with the biology of addiction (11). 
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In the computational model presented in this document, the incentive-

sensitization theory partially defines the behavioral scale: the compulsive 

component within that scale is described as the average of the "wanting" and the 

"liking" processes. 

 

2.4 The opponent-process model 

The opponent-process model for drug addiction is also relevant to 

motivation in general. Similar to the incentive-sensitization model, it involves two 

processes which are different instead of complementary. 

In the early 1970s Solomon and Corbit introduced the opponent-process 

theory of motivation to describes how the affective homeostatic state of an 

individual is maintained by 

"... many systems in the brain, the business of which it is to suppress or 

reduce all excursions from hedonic neutrality, whether those excursions 

be appetitive or aversive, pleasant or unpleasant" (45). 
 

This psychological framework considers the emotional reaction to a 

stimulus as the sum of two elements: an a-process which occurs immediately 

after the event, and a b-process which begins after a slight delay at a slower rate 

with a reversed hedonic magnitude. Drug intake initially causes large and positive 

a-processes that gradually diminish due to the subject's increasing tolerance to 

the substance. The corresponding b-processes are minor at first, but their 

intensity and duration grow with continued use of the substance. The opponent-



!

21 

process framework properly predicts that repetitive drug intake can diminish the 

euphoric state originated by an addictive substance and eventually cause 

withdrawal symptoms, but it fails to account for the transitions in the gradual 

development of a dependency whereby in initial stages drugs are experienced to 

feel high but subsequently become used to feel normal. This model assumes that 

the hedonic homeostatic state of an addict persists and remains unimpaired over 

time even though every drug intake perturbs it. In other words, the baseline 

around which the a- and b-processes fluctuate remains constant. 

 

2.5 The allostatic model 

The principle of allostasis was established to enhance the homeostatic 

model whereby the well-balanced functional state of a living being is sustained by 

the constant conservation of the organism's inner environment. Each divergence 

from the normal state of the organism is counterbalanced by negative feedback 

mechanisms which support the reinstatement of original setpoints. Instead, the 

allostatic model advances that the internal state of the organism continuously 

adapts to the surrounding natural world, attaining functional stability through the 

adaptation of physiological thresholds (46). Allostasis, as defined by Sterling and 

Eyer, 

"... provides for continuous re-evaluation of need and for continuous 

readjustment of all parameters toward new setpoints" (46). 
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In humans, this continuous adaptation to the environment is reached by 

means of neural and endocrine processes that are able to take priority over 

homeostatic regulations (46). 

According to the hypothesis put forward by Koob and colleagues, a drug 

addict attains the allostatic state by means of the chronic deviation of their 

hedonic baseline. The addict's physiological state is maintained operative by 

means of this affective adaptation, rather than by reinstatement of the original 

homeostatic balance. Symptoms of allostasis are manifested by changes in the 

addict's mood or state of mind (3). The concept of allostasis enhances the 

opponent-process model with neurobiological findings and similarly, but more 

comprehensively, accounts for the transitions in the gradual development of a 

dependency whereby drugs are first experienced to feel high but subsequently to 

feel normal. The allostatic framework of addiction relies on changes observed in 

the subject's nervous and endocrinal systems which occur as addiction 

perpetuates, causing continuous and progressive distortions of the subject's 

affective state (47). The raison d'être of these distortions is to guarantee the 

functional stability of the organism while its hedonic homeostatic state is 

corrupted. 

The hedonic effect of an addictive substance on the brain's reward system 

is orchestrated by within-system neuroadaptations and between-system 

neuroadaptations (48). Experimental observations show that rats undergo a 

continuous degradation of hedonic valence during extended periods of cocaine 
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consumption (49). Similarly, the negative hedonic valence of the individual is 

increased by within-system and between-system neuroadaptations, and 

chronically impacts the person's mood (3). Initial drug consumption disrupts the 

normal synaptic physiology of the reward system (50) which aims to reinstate its 

equilibrium by means of within-system neuroadaptations (48). Within-system 

adaptations act at the molecular or cellular level defining the brain reward 

circuitry (51) and increase the magnitude of the ideal threshold of the reward 

(37). For instance, if the effect of the consumed drug of abuse relies on the 

availability of a particular neurotransmitter, within-system adaptations will 

diminish its amount within the reward system (52). With repeated drug 

administration the reward system becomes accustomed to extended activations 

of the within-system component, which eventually causes withdrawal symptoms 

during periods of abstinence (48). Dopamine in the nucleus accumbens (NAc) 

and extended amygdala plays an important role in within-system adaptations 

(53). As consumption further advances, the brain's expectation for future rewards 

increases and within-system neuroadaptations become progressively inadequate 

and eventually fail to provide the individual with a well-adjusted functional state. 

Due to deficiencies of within-system adaptations, brain structures different 

than the one defining the reward system are recruited through the deployment of 

between-system neuroadaptations to further counterbalance the effect of the 

drug (48). These brain structures, delineated by Koob and Le Moal, embody the 

"anti-reward systems" (54). Between-system adaptations increase the baseline 
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reward threshold (37) and originate in the brain stress system (48). For example, 

if a drug has a particular effect on the reward circuit, between-system activations 

could promote a hormonal response leading to the opposite effect (52). The 

corticotropin-releasing factor operating in the amygdala, stria terminalis, and 

ventral tegmental area (VTA) plays an important role in between-system 

adaptations (53). 

 

2.6 The disease model 

The disease model has been accepted as a valid perspective on addiction 

after a few failed introductory attempts, as discussed in the historical overview 

above. Jellinek's research about alcoholism published in 1960 began this 

successful ascent by proposing a straightforward definition of alcoholism and a 

corresponding taxonomy (55,56). 

Jellinek's description of alcoholism includes two characteristics: 

"... one is drinking and the other is damage (individual or social, or both) 

incumbent upon the drinking" (55). 
 

This interpretation was received as a significant upgrade of the precursor 

moral model that considered the addict an individual with weak mental and moral 

qualities. The proposed classification includes five grades of alcoholism which in 

increasing order of severity are: alpha, beta, gamma, delta, and epsilon 

alcoholism. These five categories are organized with respect of three main 

questions: 



!

25 

• What causes a person to become an alcoholic? 

• What are the processes involved? 

• What are the implicated damages? 

 

The recognized causes encompass psychological, physiological, socio-

cultural, and economical domains; the involved processes embrace tolerance, 

loss of control, physical versus psychological dependence, nutritional and 

physical habits; and the damages include physical and/or mental, and socio-

economic types (55). 

Jellinek's classification of alcoholism provided an early distinction between 

"chronic alcoholism" (up to beta alcoholism) correlated with physical and 

behavioral consequences of long-term alcohol use, and "alcohol addiction" 

(starting from gamma alcoholism) related to craving and lack of control (55). 

Nowadays the disease model is a main reference in scientific research, 

professional treatments, self-help groups, and also mass media. Early disease 

models considered the addict as a human being inclined to the use and misuse 

of drugs mostly because of an inherited susceptibility, and are referred to as 

susceptibility models. With the blooming of neuroscientific investigations it 

became apparent that long-term drug use causes significant changes in the 

structure and functioning of the addict's brain. These findings supported the 

evolution of susceptibility models into exposure models, which consider the 



!

26 

changes occurring at the neural substrate level of a long-standing drug user as 

accountable for the addictive behavior of the subject (11). 

The advancement that the field of neuroscience underwent from the late 

1970s drove the adaptation of the disease model into the "brain disease" (1) 

model, as expressed by Leshner in the late 1990s. Investigations relaying on 

laboratory animal data and on human brain imaging techniques promoted the 

understanding of the substance abuse cycle, including involved ionotropic and 

metabotropic mechanisms (50). The enhanced neurobiological comprehension of 

the addict's states (e.g., loss of control, drug craving, and withdrawal symptoms) 

promoted and delineated new pharmacological treatments and facilitated the 

progress of health practices related to addiction (57). 

The brain disease model of addiction positively influences society, heath 

care, and research, even though a recent study warns about a possible adverse 

effect: the progressive instauration of a view of addiction exclusively centered on 

brain studies (58). Such an exclusive view could diminish important contributions 

from fields such as psychology or sociology which are equally significant towards 

a better understanding of this phenomenon. Moreover, assigning to an addict the 

category of a person with a brain disease could result in an increased ostracism 

among human beings addicted to drugs (59). An interdisciplinary attitude 

including features ranging from neuroadaptations to socio-economic context, 

including biological, psychological, and social elements, was discussed as a 

pragmatic candidate to avoid such unwanted outcome (36). 
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2.7 The impaired response inhibition and salience attribution model 

In their 2002 review, Goldstein and Volkow describe neuroimaging studies 

that support a new conceptualization of addiction, designated as I-RISA. In 

addition to the limbic system, until that point believed to represent the essential 

neural structure involved in addiction, the authors discuss the involvement of 

another brain region: the frontal cortex. The I-RISA model hypothesizes two 

processes to explain how the state of an addict cycles with a positive feedback 

from drug intoxication to drug craving, to compulsive drug administration, to drug 

withdrawal, and again to intoxication. Goldstein and Volkow state that these two 

processes are the 

"... loss of self-directed/willed behaviors to automatic sensory-driven 

formulas" and the "attribution of primary salience to the drug of abuse at 

the expense of other available rewarding stimuli" (34). 
 

The first process relies on observed changes within the mesolimbic and 

mesocortical dopaminic pathways which suggest that an addict expresses a 

different response inhibition with respect to a healthy individual. Presented with 

the same stimulus (a drug of abuse), the neural substrate of the addict will 

facilitate the behavior leading to the immediate reward (drug intake), whereas the 

neural substrate of the healthy individual will more carefully ponder such 

immediate reward since it is potentially harmful in a longer term. 
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The second process depends on the alterations observed within the 

orbitofrontal and anterior cingulate cortices (regions active in cognitive, 

emotional, and decision-making processes) which suggest that an addict and a 

healthy individual have contrasting saliencies while attributing reward values to 

emotional matters (34). 

Even though prefrontal cortex and anterior cingulate gyrus consistently 

show activation during drug intoxication, cocaine abusers experiencing craving 

express a higher neural activity and a different glucose metabolism in these brain 

regions than do healthy individuals. Withdrawing cocaine users exhibit a lower 

cerebral blood flow than healthy subjects in the prefrontal and lateral frontal 

cortices, and as the cessation period become longer; they also exhibit a higher 

glucose metabolism in the orbitofrontal cortex and in the striatum, as opposed to 

healthy subjects. 

With respect to a healthy individual, the neural differences observed in 

addicted subjects suggest that an addict is more likely to experience cognitive 

distortions leading to a misjudged reward evaluation for drug intakes to the 

disadvantage of non-drug stimuli. With respect to the computational model 

advanced in the present investigation, the I-RISA view of drug addiction supports 

the conjecture of a cognitive level which integrates neural activities that define 

the subject's drug-seeking behavior. 
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CHAPTER 3 

 
RELATED WORK: COMPUTATIONAL MODELS OF ADDICTION 

 

Technological advances and the consequent increase in the quality and 

quantity of data describing multiple characteristics of addiction have enabled 

researchers to use mathematical and computational tools to further advance the 

study of drug abuse. Computational techniques are widely accepted as valid 

tools to describe and predict processes associated with drug dependences (60), 

as well as other mental (61) and physical (62) diseases. 

It has been recently proposed (63) that existing computational models of 

addiction which consider dopaminergic signaling as having an essential role can 

be organized into three different families: quantitative pharmacological models, 

abstract models of dopamine functions, and knowledge repository models. Here 

this categorization of formal models is expanded to include two additional families 

– epidemiological and economic models – which do not explicitly take into 

consideration the dopaminergic effects, but are pertinent to comprehensively 

understanding how computational descriptions of addiction can further advance 

this field of study. Hereafter these five categories, shown in Figure 3, are 

described and discussed. For the most part, these computational models take 

into consideration one or two of the scales of observations described in Figure 1. 

A pragmatic approach to integrate all these scales into one formal framework is 

discussed at the end of this chapter, and resides in knowledge repository models. 
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Figure 3: Epidemiological, economic, pharmacological, dopaminergic, and knowledge repository 
models of addiction. Current models are mostly concerned with two scales of observations 

(neuropsychology, cognition, behavior, and recovery). 

3.1 Epidemiological models 

Epidemiological models provide a tool to predict how classes of drug 

takers behave, and could qualify as a useful framework to assist professionals in 

the formulation of treatment and prevention strategies. A model in this family 

consists of a system of differential equations describing over time the size of a 

subset within the studied population, and is mainly used in the field of 
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mathematical epidemiology. As described by Diekmann and Heesterbeek, this 

field is 

"... about translating biological assumptions into mathematics, about 

mathematical analysis aided by interpretation and about obtaining insight 

into epidemic phenomena when translating mathematical results back into 

population biology" (64,65). 
 

An epidemiological model proposed in 2000 uses three nonlinear 

differential equations to describe the dynamics of tobacco use, recovery, and 

relapse. This model considers a constant population, divides it into smokers, 

potential smokers, and smokers who have quit smoking permanently. It 

describes their respective rates of change with respect to time (65,66). More 

recently, the introduction of two new classes of mild and chain-smokers, as well 

as the impact of smoking-related illnesses, have extended this model. That study 

shows how the number of smokers decreases when chain-smokers stay no 

longer than 1.5 years in this class before reverting to the mild-smoking class. 

Similarly, the number of smokers decreases if mild-smokers stay as such for no 

longer than 1.5 years (67). A deeper analysis of the original model reveals four 

states of equilibria, only one smoking-free (68). 

One of the first epidemiological models of opiate addiction using ordinary 

differential equations appeared in 2007 (69). Mathematical epidemiology 

principles, more specifically compartmental model structures, were applied in 

order to identify the parameters that policy-makers should modulate in order to 

maximize the effectiveness of prevention and treatment resources. This study 



!

32 

concluded that increased drug-use would prevail when the probability of 

becoming a heroin user is greater than the sum of the cessation probabilities. 

The cessation probabilities describe situations such as treatments, natural or 

drug-related deaths, and spontaneous recoveries. To reduce the total number of 

heroin users within the population, the probability of becoming an addict is 

identified as more significant than the ratio of users accessing treatments. While 

assuming that all individuals have the same level of susceptibility, this study 

reinforces a foregone conclusion that prevention is better than cure (69). Using 

realistic parameters, this model has a stable equilibrium which indicates the 

exclusion of an epidemic in heroin use (70). Similar frameworks have been 

developed for alcohol addiction (71,72,73). 

 

3.2 Economic models 

Conventional economic theory is based upon a fundamental assumption 

that an individual acts so as to maximize his/her personal level of satisfaction 

with respect to the available resources. The level of satisfaction is called utility, 

the available resources are called the budget, and the behavioral phenomenon is 

called the utility maximization (74). Economists became interested in drug 

addiction by first studying topics related to product consumption and habit 

formation. In the standard model of consumption, exclusively current 

consumption affects utility rather than past and future consumption. More recent 

studies consider such temporal component as a fundamental element in 
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decision-making processes, which is labeled temporal discounting (75). The 

reward, or utility, of an action was initially described as a time-dependent 

exponentially decaying function. This expansion originated the current categories 

of economic models for addictive behavior, which include the myopic (or 

irrational), imperfectly rational, and rational models (76). 

The myopic model considers that an addicted individual's preferences 

change over time as a consequence of past experiences and other factors such 

as advertisements (e.g., a drug prevention campaign) and a drug's price. The 

imperfectly rational model assumes two competing natures of the individual, one 

that will consistently try to quit using the drug, and another that will regularly 

encourage drug use. In the context of cigarette smoking, as described by 

Chaloupka and Warner, 

"... everybody behaves like two people, one who wants clean lungs and 

long life and another who adores tobacco" (77). 
 

The rational addiction model proposed by Becker and Murphy in 1988 (78) 

is the most popular of the three models, especially for the analysis of cigarette 

consumption, where an individual is assumed to consistently plan the 

maximization of utility over time, with current consumption influenced by present, 

past, and future budget constraints. Under this framework, addiction is 

represented as a strong habit (78). 

The field of behavioral economics, where conventional economic theory 

meets and unites with psychological correlates, is interested in how people 
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behave in reality rather than what an idealized "rational" person would do. For 

example, in 1999 Bickel et al. (79) empirically showed that the temporal 

discounting of real-life nicotine addicts is better approximated by a hyperbolic 

function, rather than by a traditional exponential function. In fact, a smoker 

discounts cigarettes more rapidly than financial rewards and, unexpectedly, a 

non-smoker and an ex-smoker have similar discount rates for monetary rewards 

(79). 

More recently, the integration of behavioral economics together with 

correlates of neuroscience originated the field of neuroeconomics. In 2005, 

Bechara suggested that addiction is 

"... the product of an imbalance between two separate, but interacting, 

neural systems that control decision making: an impulsive, amygdala 

system for signaling pain or pleasure of immediate prospects, and a 

reflective, prefrontal cortex system for signaling pain or pleasure of future 

prospects" (80). 
 

According to this view, denoted as the "competing brain regions 

hypothesis" (75), the consumption of an addictive drug induces an increase in the 

activity of the impulsive system and a decrease in the activity of the reflective 

system. The addict's temporal discounting of the addictive drug and, as a 

consequence, the addict's substance consumption rate are influenced by the 

interaction of these systems (75). 
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3.3 Quantitative pharmacological models 

Pharmacological models of drug addiction consist of a pharmacokinetic 

(PK) unit and a pharmacodynamic (PD) unit. PK/PD models are mainly applied to 

cocaine self-administration. As expressed by Holford and Sheiner, the first 

component characterizes "what the body does to the drug", whereas the latter 

component delineates "what the drug does to the body" (81). The PK component 

is relevant when the relationships between the drug's concentration and effects 

are known, whereas the PD component is pertinent for a constant concentration 

of the drug since it does not consider the temporal factor within the 

concentration-effects relationships (82). More specifically: 

• The PK module delineates the evolution of drug concentrations in 

the brain over time using an open model6 composed of a central or 

blood compartment and a peripheral or brain compartment (83); 

• The PD component describes the facilitation of the reward system's 

gain using the inhibitory maximal effect (Emax) model which 

describes the drug's effects in terms of the it's concentration (84). 

 

One of the earliest quantitative pharmacological models of cocaine self-

administration, presented in 1999, predicts the PK and PD of drug self-

administration in rats (85). The main conclusion of this study concerned how rats 

cease cocaine use when the substance concentration is maintained above the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6
 In a PK/PD open model the animal's body is considered as a unique homogeneous agent which 

absorbs the substance instantaneously and eliminates it as time passes. 
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satiety threshold. In particular, a rat will no longer undergo cocaine self-

administration when its inner drug concentration is at a certain level (86). 

A more recent PK/PD model from 2000 also incorporated the theory of 

receptors dating from the early 1900s (87). This model describes the pertinent 

endogenous chemical signaling, more specifically, the receptor pharmacology 

and the timing properties characterizing them (88). 

A more comprehensive quantitative model of cocaine self-administration 

further developed the allostatic framework, discussed in Chapter 2, by proposing 

a PK/PD model that accounts for the correlation between compulsive drug intake 

and a chronically deviated baseline reward threshold in laboratory rats (37). 

Simulations based upon this framework successfully replicate patterns of 

intravenous cocaine self-administration observed in laboratory rats. More details 

of this PK/PD model, presented by Ahmed and Koob in 2005 (37), are discussed 

in Chapter 6. 

 

3.4 Abstract models of dopamine functions 

Dopaminergic models of addiction are derived from the artificial 

intelligence paradigm, presented by Sutton and Barto (89), known as temporal 

difference reinforcement learning (TDRL). The main objective with this family of 

models is to characterize the functioning of dopamine in the brain. 

The TDRL framework (89), inspired by behavioral psychology, aids an 

artificial agent in learning to maximize a numerical reward signal in a given 
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environment. The temporal difference component drives the learning process of 

the agent by relying on the difference of consecutive predictions of reward related 

to the agent's environment (90). In such models, an autonomous intelligent agent 

learns from experience how to select actions in order to maximize future rewards. 

The agent's decision-making process for action selection is based upon the 

strength of the predicted future reward discounted by the expected time to the 

reward (89,90). 

In 1986, Schultz (91) recorded the activation of dopaminergic neurons of a 

monkey in three different settings: (i) the animal is not trained and is provided 

with an unexpected reward; (ii) the animal is trained to receive a reward after a 

previously activated cue (e.g., visual or auditory stimulus); and (iii) the trained 

animal is presented with the activation cue but receives no reward. Barto (92) 

and Houk et al. (93) proposed in 1995 a model based on TDRL in which 

dopamine encodes prediction errors. In particular, the experimental results of 

Schultz (91) demonstrated that: (i) dopaminergic neurons strongly activate when 

the monkey receives an unexpected reward; (ii) when the primate has learned 

that a visual or auditory cue is precursor of an upcoming reward, dopaminergic 

neurons fire when the cue is presented to the animal instead of when the reward 

is received; and (iii) the dopaminergic neurons of a trained animal presented with 

the learned cue are inactive when the expected reward becomes available. 

Barto (92) and Houk et al. (93) presented the first instance of this model's 

class in terms of a particular TDRL architecture, called the Actor-Critic 
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architecture, to computationally describe dopaminergic neurons in the basal 

ganglia. The Actor-Critic framework relates to an agent composed by two 

components: the Actor, which controls the agent's actions in relation to its 

environment; and the Critic, which provides the Actor with evaluative feedback 

about the undertaken actions (92). In 1996-97, Montague et al. (94) and Schultz 

et al. (95) also proposed a computational model where dopamine acts as a 

"predictive reward signal" (96), while using a slightly different TDRL architecture 

than the one previously proposed by Barto (92). 

The investigations presented in (92,93) and (95) emphasize how the firing 

rates of dopamine neurons in the midbrain mimic the error term of the TDRL 

framework. The TD error notifies the computational agent about the difference 

between the expected and the actual reward. These studies suggest that the 

phasic activity of dopaminergic neurons within the animal's neural substrate code 

the internal representation of the monkey's reward prediction errors. A predicted 

reward that has a higher or lower value than expected drives the policy revision 

of the agent. This, in turn, translates to the monkey thereby changing the strategy 

for the next actions. 

In 2004, Redish presented a computational model of cocaine addiction 

based on a modified TDRL framework (97). The effects of the substance are 

simulated by a synthetic positive signal that relates to the dopamine increase 

experienced by the subject after a drug intake. The introduction of such synthetic 

signal as part of the TD error function prevents the predicted and actual rewards 
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from being equal, and therefore precludes the agent from learning a policy other 

than taking the drug. In other words, this model just eliminates negative 

prediction errors. In such context, addiction is described as a monotonic process 

which prevents recovery. Experimental results published in 2007 by Panlilio et al. 

(98) refute Redish's hypothesis that each drug intake leads to a reward larger 

than the expected reward for that intake. 

A subsequent study by Dezfouli et al. (99) reports in 2009 a TDRL 

framework which employs an average reward algorithm (100) and does not 

consider addiction as a monotonic process towards drug use. The unlearning of 

seeking behavior is tackled, but the model cannot describe reinstatement.7 As 

pointed out by the authors, the model's validation through experimental data 

remains difficult because of its theoretical nature. 

 

3.5 Knowledge repository models 

The top-down approaches of the epidemiological and economic models 

and the bottom-up approaches of the pharmacological and dopaminergic models 

are not, by themselves, sufficient to create a computational framework which 

comprehensively describes the addiction process. The former relies on psycho-

social factors that affect the addictive behavior of a population, whereas the latter 

focus on physiological and neurological evidence to understand the process of 

addiction. The common interest of both approaches is to understand animal 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7
 Reinstatement may be the homolog of the human experience of relapse. 
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behavior (human, primate, or rodent) related to substance use and abuse. A new 

family of biologically plausible models has recently emerged, named knowledge 

repository (KR) models, which attempts to describe drug addiction as 

comprehensively as possible (101). 

Bobashev et al. (101) first expressed this view in their summary of the 

2006 College on Problems of Drug Dependence workshop. The objective of a KR 

model is to amalgamate findings obtained from investigations that focus on 

different scales of observation to advance a comprehensive understanding of 

substance addiction. The exemplification of a KR model of addiction described by 

the authors embraces a wide variety of different factors (e.g., socioeconomic 

components, interpersonal relationships, life-changing events, presence of 

chronic diseases, physiological and cognitive features, etc.) which may be 

correlated in order to simulate plausible behavioral trajectories that illustrate 

archetypal patterns of drug use and misuse (e.g., initiation and escalation of drug 

use, recovery, relapse, etc.). The principal characteristic of a KR model resides in 

the consideration of a multi-scale standpoint that corresponds to a conceptual 

framework that is increasingly supported by the scientific community studying 

addiction (60,102). 

In 2006, Gutkin et al. (103) present the first KR model for nicotine 

addiction, which describes the acquisition and maintenance of drug-taking 

behavior by means of two modules: one that characterizes action-selection, and 

another that describes the signaling of receptors of dopaminergic neurons. The 
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major hypothesis is that dopaminergic neurons of the ventral tegmental area 

(VTA) are affected by nicotine, which initiates molecular changes in the 

glutamate-based learning process within the dorsal striatum. In other words, 

nicotine in the VTA acts as a multiplier of the dopaminergic neural signaling that 

evaluates a reward related to substance intake. This evaluation modulates the 

synaptic plasticity in the dorsal striatum area through glutamate neurons modeled 

as a stochastic winner-take-all network which regulates the actual action of 

nicotine self-administration. This investigation also integrates a dopamine-

dependent learning rule differentiating between phasic and tonic dopamine 

neurotransmissions (103). 

With respect to the abstract models of dopamine functions discussed in 

Section 3.4, this KR model is relatively similar in terms of neural correlates that 

are modeled, but differs in the computational tools used to describe the system. 

Abstract models of dopamine function deploy the computational paradigm of 

TDRL where the correspondences between mathematical parameters and 

biological means are not always recognized. Instead, KR models as the one 

discussed above use ad hoc dynamical systems, where the biological processes 

of interest are translated into mathematical language. 

The KR model of Gutkin et al. (103) was later discussed in terms of how 

nicotine and the neurotransmitter acetylcholine impact the addictive process by 

combining the neural dynamics of the VTA with the activities of specific nicotinic 

ACh receptor subtypes (104). This investigation suggested furthering the 
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exploration of nicotinic acetylcholine receptor mechanisms that are influenced by 

nicotine and, in turn, alter the dynamic properties of the reward neural circuitry 

(104). 

In terms of the scales of observation presented in Figure 1, and as shown 

in Figure 3, the KR model for nicotine addiction discussed above (103) includes 

neuropsychological and behavioral elements (63). The former layer takes into 

account how dopaminergic signals from the ventral pathway influence the 

glutamatergic learning processes in the dorsal striatal structures of the brain 

(103) and combines the neural dynamics of the VTA with the activities of specific 

nicotinic ACh receptor subtypes (104). The latter layer is a stochastic function 

contingent on the neural activity of the considered brain areas (103). 

The multi-layer approach of KR models may provide pertinent insight for 

the interdisciplinary study of addiction. Health care professionals, sociologists, 

psychologists, pharmacologists, physiologists, etc. can use such models to 

computationally evaluate new hypotheses based on their own expertise, while 

taking into account state-of-the-art knowledge from other domains. 

In 2008, a review relying on a system biology perspective emphasized the 

possible impact that formal frameworks might provide to the study of mental 

disorders (61). This survey discussed how the relationship between empirical 

and formal methods could be enhanced; presented modeling approaches that 

should be considered; reviewed software that may ease formal translations; 

identified signal pathways within the neural and molecular scales; and concluded 
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that a better understanding of mental disorders linking the molecular level to the 

whole system may be achieved by adopting a formal standpoint. 

In 2009, the same venue published a review by Tretter et al. (102) 

discussing from a systems biology standpoint the onset of addiction while 

considering three scales of observations: behavior, the brain's networks 

connectivity, and molecules inside the brain's cells. The authors formally 

assessed these distinct levels by providing biological architectures of their 

structures and exploratory mathematical formulations of their dynamics. 

Moreover, the authors proposed a skeleton for a qualitative view of the brain to 

include these three scales of observations and predict drug consumption 

patterns. 

 

3.6 Relations to the model advanced in this dissertation 

This section describes how the computational model at the center of this 

dissertation relates to the five categories of models shown in Figure 3 and 

discussed in the present chapter. 

Epidemiological models. Epidemiological models are more pertinent to 

the field of Public Heath than the KR model presented in this dissertation, and 

they can be helpful in making decisions about regulations related to drug use and 

abuse (e.g., laws, taxes, etc.). These models aim to describe how addiction 

spreads within a population, whereas the model presented in this dissertation is 



!

44 

intended to describe the processes that drive an individual to abuse an addictive 

substance. 

A significant difference between these two types of modes resides in the 

characterization of an individual. Epidemiological models generally assume 

uniform drug vulnerability within the population, whereas the computational 

model presented in this dissertation includes a large number of parameters which 

can describe a large variety of virtual subjects. This difference underlies the 

broad conclusions of the studies discussed in Section 3.1 (e.g., prevention is 

better than cure). 

Epidemiological models consider two of the four scales of observations 

encompassed in the KR model presented in this dissertation: the behavioral and 

the recovery scales. 

Economic models. Conventional economic models of addiction treat drug 

consumption as a rational or irrational behavior, and provide important insight 

into how price, opportunity cost, and income influence substance abuse. These 

models mainly consider that an addict's aim is to maximize hedonic reward. 

The main difference between these models and the model at the center of 

this dissertation relates to economic factors. In the model presented here they 

are not explicitly taken into consideration but instead they are more broadly 

considered by means of a process describing influences that social rules have on 

individual behavior. 
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Conventional economic models consider two of the four scales of 

observations considered in the KR model discussed in this dissertation: 

behavioral and cognitive. Recently, the neuroeconomics community started to 

join conventional economics and abstract models of dopamine functions in order 

to better understand decision-making processes. This will eventually enhance 

economic models with a neuropsychological and a recovery scale. 

Quantitative pharmacological models. PK/PD models arise from the 

field of clinical pharmacology and aim to understand the effects of a drug with 

respect of specific dosing regimens. This family of models is centered on the 

cellular level of an organism. As such, PD/PK models describe how different 

concentrations of a pharmaceutical drug influences an organism. 

The main contribution of this dissertation is based on the connection of a 

KR and a PK/PD model of addiction. In particular, the computational hypothesis 

for allostasis presented in Chapter 6 is crafted by integrating the multiscale model 

of addiction discussed in Chapters 4 and 5, together with the PK/PD animal 

model of addiction presented by Ahmed and Koob (37). The study presented in 

Chapter 6 connects a KR and a pharmacological model of addiction, while 

providing testable hypotheses about how to increase the success rates of current 

addiction treatments in humans. 

Pharmacological models of drug addiction generally consider two of the 

four scales of observations included in the model advanced in this dissertation: 

neuropsychology and cognition. 
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Abstract models of dopamine functions. The family of abstract 

dopamine models is valuable for proposing testable hypotheses about 

dopaminergic structures and functions within the brain. Dopaminergic models use 

practical implementations of the TDRL paradigm to match experimental 

observations related to dopamine. 

The main challenge for these models is to create a connection between 

computational theory and real brain systems. In particular, TDRL frameworks are 

used to describe dopaminergic functions in the animal brain, but some of the 

involved computational parameters still require a clear correspondence with real 

brain correlates. Moreover, these models are exclusively based on the 

neurotransmitter dopamine, which has a significant role in the process of 

addiction but is not the only involved compound. 

The KR model discussed in this dissertation takes into account the 

influence of dopamine in the process of addiction, while integrating additional 

factors which are significant for a more comprehensive understanding of this 

disease. The KR model discussed herein does not include a TDRL apparatus. 

Nonetheless, a possible location where the discussed KR model can be united 

with dopaminergic models is indicated in Chapter 6. 

Abstract models of dopamine functions encompass two of the four scales 

of observations considered in the KR model discussed in this dissertation: 

neuropsychology and recovery. As mentioned earlier, recent neuroeconomics 

studies combine dopaminergic models with conventional economic models, and 
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will eventually enhance dopaminergic models with a behavioral and cognitive 

scale. 

Knowledge repository models. The model at the center of this 

dissertation is a KR model aiming to describe drug use and abuse by integrating 

within the same formal framework multiple layers of observations. With respect to 

the foundational KR model by Gutkin et al. (103), which includes studies of 

neuropsychology and behavior, the model presented in this dissertation 

encompasses the four scales of observations discussed in Chapter 1, namely: 

neuropsychological, cognitive, behavioral, and recovery scales. 
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CHAPTER 4 

 
FIVE-STEPS TOWARD A COMPUTATIONAL MODEL 

 

The formal framework advanced in this dissertation is, in terms of 

Bobashev et al. (101), a knowledge repository (KR) model of addiction. The 

proposed computational framework integrates into a unique apparatus four 

different scales of observations to provide a more comprehensive view of drug 

addiction, as illustrated in Figure 4. The neuropsychological scale relies on 

quantitative studies of neural processes involved in addiction; the cognitive scale 

is a computational hypothesis whose rationale is endorsed by experimental 

findings; and the behavioral scale relies on quantitative observations about 

neural development, on established theories about addiction, and on the possible 

impact that social rules may have on addictive behaviors. The recovery scale is a 

biological speculation that may be supported by the empirical observations 

discussed in Chapter 1, known as maturing out of addiction (22) or as natural 

recoveries (105,20), which are remission instances from abusive drug 

consumption that occur without any behavioral or pharmacological interventions 

and that are so far unexplained. 
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Figure 4: The knowledge repository (KR) model presented in this dissertation takes into account 
the four scales of observations, namely neuropsychology, cognition, behavior, and recovery. 

In terms of modeling and simulation theory, these four scales of 

observations outline the experimental frame of the model. Zeigler et al. (33)

define the experimental frame as a collection of data of interest and against 

which model validity will be examined. 

The computational model advanced in this dissertation intends to describe 

drug addiction as the aggregate of the relevant collection of data outlined by 

Levy5 and Siegelmann (27), and elaborated by Levy et al. (29,32,38): neural 

activities resulting from drug use; the mediation of mental processes converting 

these activities into decision-making; the related sociocultural and educational 

influences; and the intervention of rehabilitative means.

This chapter outlines the five steps undertaken with the objective of 

providing a simulator capable of predicting archetypal instances of observations 

contained in the experimental frame. The five steps are formalization, 

demonstration of expandability, qualitative validation, analysis of dynamics, and 

sensitivity analysis. This formal course of action results in a framework 
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appropriate for the comprehensive study of addiction aiming to encourage 

hypothesis-driven research. Within this line of research, in Chapter 5 is 

presented an exploratory hypothesis relating the brain's cognitive mechanisms to 

natural recoveries. Furthermore, and aiming to support translational research for 

drug addiction, in Chapter 6 are studied the connections between the allostatic 

theory of addiction (presented in Chapter 2) and current practices of 

rehabilitation. 

 

4.1 Formalization of the biology underlying addiction 

This initial step includes the creation of the conceptual diagram describing 

the model, the development of mathematical definitions characterizing it, and 

their implementation within a computational framework. 

The formalization phase is intended to present the system architecture 

with the relevant processes classified according to four scales of observation: 

neuropsychology, cognition, behavior, and recovery. This step facilitates the 

initiation of the mathematical definitions of the model's processes and their 

implementation within a computational framework, while easing communication 

among the multidisciplinary community for which this research is intended. 

In the natural world, the processes subject to modeling operate in 

continuous time. During the formalization phase these natural processes are 

each mathematically approximated by discrete time functions, such as functions 

of a discrete variable geometrically increasing or decreasing; functions of a 
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discrete variable with decreasing values throughout activation. These functions 

are defined largely through weighted sums and sigmoid functions. These 

mathematical definitions are crafted to restrain the model's parameter search 

space while allowing a large diversity of dynamics to arise. In addition, parameter 

values are constrained to biological data to the extent possible. 

During the formalization process, a basic learning rule inspired by the 

weights adaptation of a perceptron was proposed and demonstrated to be a 

necessary condition for making this framework effective in the emulation of a 

recovery process. These learning rules and demonstrations are discussed in 

Chapter 5 and in (32). 

A KR model of addiction was established which includes four scales of 

observation. The outcomes of the formalization phase are detailed in (28,30); in 

Chapters 5 and 6 of this dissertation, which include conceptual diagrams; and in 

Appendix A, which includes mathematical definitions. 

 

4.2 Demonstration of expandability 

Expandability is an important feature of a model if its plausibility is to be 

improved over time. Practically any biological entity can be observed at different 

scales of observation. For example, the study of an organism's nervous system 

includes granularities ranging from units of angstrom to meter (30). Any level of 

observation is potentially a pertinent source of knowledge towards a more 

accurate description of the studied system. Moreover, expandability is a suitable 
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property for a computational model prepared to include new scientific insights 

without compromising the whole framework underlying the model. 

Hypothesis: the presented KR computational model of addiction is 

expandable in terms of the levels of observation defining it. 

 

Levy5 and Siegelmann (27) considered as constant two main processes of 

their model: inhibition and compulsion. To strengthen the model's rationale, the 

present model extends these constant signals into dynamical processes. The 

inhibition process is defined to include social and developmental factors, and the 

compulsion process is designed to mimic the incentive-sensitization theory of 

addiction. 

This contribution demonstrates the model's expandability in terms of its 

levels of observations and further incorporates additional biological details. The 

evaluation of this expansion is immediate: on the one hand, the non-monotonic 

and relapse properties of the systems are preserved; on the other hand, these 

expansions allow characterizing virtual subjects of different ages and living in 

various environments. This expansion was presented by Levy et al. (29). 

An additional demonstration of expansion is presented in (38) and in 

Chapter 6, where the integration of a pharmacokinetic/pharmacodynamic module 

into the model increases its scope without compromising the framework. 

The hypothesis of the model's expandability was demonstrated. The 

discussed model's elaborations augment the computational description of 
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addiction toward a more comprehensive portrayal, while verifying that pre- and 

post- expansion outcomes are consistent with each other. 

 

4.3 Qualitative validation 

As described by Zeigler et al. (33), the validation step requires a significant 

correspondence between experimental data and computational simulations. 

Usually, a computational model of a biological system is designed to mimic a 

specific set of data that are measured in a particular experimental frame. 

The computational model at the center of this dissertation relies on 

qualitative descriptions of processes defining addiction. These descriptions are 

grounded on animal studies, human observations, or even common sense. A 

classical quantitative validation is not suitable because the model is meant to 

mimic behavioral trajectories of a virtual human subject by integrating a multitude 

of features characterizing addictive drug use and abuse rather than, for example, 

to precisely correlate firing frequencies and responsiveness of neurons within a 

particular area of a particular brain. 

Qualitative processes included in the discussed model include the level of 

negative consequences (or pain), the negative emotional state (or stress), current 

craving for the drug, the saliency of drug cues, as well as several external 

triggers such as sudden traumas, strong stressful events, drug priming, and 

acute cues (106), which details are presented by Levy et al. (29,32,38). 
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Hypothesis: the KR model of addiction presented in this investigation is 

qualitatively valid for a useful range of human behaviors. 

 

Within this context, the validation of the present model relies on qualitative 

and rational arguments which emphasize the model's ability to mimic real-life 

patterns of behavior related to substance use and abuse. Preliminary qualitative 

validations were presented in (29,30) while considering limited drug consumption 

and relapse. Simulations of archetypal behavioral patterns of drug consumption 

such as escalation of drug use; conventional treatments (e.g., nicotine patches 

for smoking); and alternative medical cures (e.g., meditation) are discussed in 

Chapters 5 and 6 of this dissertation, and presented in (32,38). 

The validity hypothesis is problematic to prove because of the high-

dimensionality of the computational model and its large number of parameters. 

The simulations provided in Chapters 5 and 6 account for a demonstration of 

validity by providing appropriate simulations for representative behavioral 

patterns defined within the system's experimental framework. 

Qualitative validation of the KR model at the center of this dissertation was 

demonstrated to the extent possible. 

 

4.4 Dynamical properties analysis 

The computational model at the center of this investigation considers 

addiction as a non-monotonic disease. In other words, the addictive state of a 

virtual subject described by the model is assumed to be a reversible process. In 
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terms of dynamical system, this assumption considers the existence of an 

addictive state able to evolve into a healthy state as a consequence of a slight 

perturbation of the system. More specifically, the addictive state described by the 

model should not be an attractor. A dynamical system analysis of the model's 

output could reveal otherwise. 

Hypothesis: the KR model of addiction presented in this investigation is 

able to describe non-monotonic cases of addiction. 

 

In the analysis conducted in (30), no steady states were found in 

simulations related to behavioral patterns of drug consumption. Also no evidence 

was found which attests to the existence of fixed points in the trajectory of the 

model's output. 

A deeper analysis of these simulations suggests that the processes 

defining the neuropsychological scale of the model do not prevent the addicted 

virtual subject from regaining a healthy behavioral state. These analyses 

demonstrate that a less-healthy virtual subject (i.e., an agent more likely to 

consume drugs) expresses fewer fluctuations and less flexibility in drug-seeking 

behavior than a more-healthy virtual subject (i.e., an agent less prone to drug 

intake). The dynamical analysis step presented in (30) supports the possibility of 

a computational intervention that simulates rehabilitation, as discussed by 

Siegelmann et al. (28), and by Levy et al. (32,107). 

The proposed KR model of addiction was shown to be able to describe 

non-monotonic cases of addiction. 
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4.5 Sensitivity analysis 

During the framework's formalization step, the mathematical definitions of 

the processes were crafted to minimize the number of parameters, while allowing 

the simulation to mimic a variety of behavioral profiles. Nevertheless, the number 

of the model's parameters is large. Many of these parameters arise from 

mathematical constraints rather than from natural observations. The effect of 

such parameter on the model's output should be analyzed in order to avoid the 

framework's corruption. 

Sensitivity analysis was applied to identify such possible parameters. A 

suitable technique was found in a one-factor-at-a-time (OAT) analysis, where all 

the parameters are methodically examined for different values to understand how 

they affect the model's output (108). A classical OAT approach necessitates 

systematically testing one parameter against the others. Given the large number 

of parameters employed in the model's formal description, such approach would 

have consumed excessive resources. Aiming to optimize resources while taking 

advantage of the classical OAT procedure, the model's mathematical features 

were examined with respect to the natural processes they are meant to describe. 

For example, the parameters defining the geometrically increasing or decreasing 

processes within the model are intended to describe real-life features which have 

different rates of change for different nonfictional subjects. Because these 

functions are bounded, the values of their parameters are not undermining the 
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framework's dynamics toward a particular outcome. In other words, and as 

shown in Figure 5 and detailed in (31), the framework's structure was analyzed 

while simultaneously considering both the phenomenological and mathematical 

properties of the model, to identify possible sources of destabilization. Such 

structural analysis recognized one potentially problematic parameter, which may 

bias the virtual subject toward an unchanging behavioral trajectory: to always or 

to never consume the substance. 

To avoid this bias, a safe set of possible values for this potentially 

problematic parameter was proposed in form of a function dependent upon other 

pertinent parameters of the model. To test such functional control, several 

simulations were undertaken with different values of this potentially problematic 

parameter, and the corresponding outputs were analyzed (31). 

Figure 5: Prior to execution, the model's phenomenological and mathematical inter-correlations 
were analyzed, and when necessary a functional control was crafted and refined by analysis of 

the model's output. Modified from (31). 
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In more detail, the majority of processes within the neuropsychological and 

behavioral scales of the model are exponential functions that are explicitly 

restricted to remain within a bounded interval (e.g., [0,1]) and include a number of 

parameters defining their rates of change. These processes are not inclined to 

destabilize the framework's output even though increasing or decreasing at 

different paces. 

A hyperbolic tangent function is used within the cognitive scale to scale a 

process into a specific interval (e.g., [–1,1]). This hyperbolic tangent includes a 

parameter which is a mathematical requisite rather than a biologically inspired 

component. Algebraic analysis of this particular parameter shows that, under 

defined conditions, the virtual subject's state could become biased toward a 

consistent drug consumption or abstinence. This issue was discussed in (31), 

where it was shown that the introduction of a functional control can limit the 

model's bias toward a particular behavior of the virtual subject. 

The objective of identificating sensible parameter values was attained, and 

the possible control for such parameter values was demonstrated. The details of 

the sensitivity analysis are presented by Levy et al. (31). 

 

4.6 Concluding remarks 

The five-step procedure described in the present chapter generates a 

computational framework whose features may be pertinent to hypothesis-driven 

research about substance use and abuse. The computational definitions of the 
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processes composing the model are reported in Appendix A of this dissertation. 

The biological descriptions of these processes are reported in (29,32,38) and in 

Chapters 5 and 6 of this dissertation. 

In particular, Chapter 5 presents a computational speculation about 

maturing out of addiction, whereas Chapter 6 provides plausible insight about 

addiction by further elaborating the model to include two theories discussed in 

Chapter 2: the allostatic model and the impaired response inhibition and salience 

attribution model. 
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CHAPTER 5 

 
HYPOTHESIS-DRIVEN FRAMEWORK FOR MATURING OUT 

 

The computational model resulting from the five-step procedure discussed 

in Chapter 4 is presented and deployed in this chapter. The aim of this 

contribution is to provide a theoretical and biologically plausible computational 

description for the unexplained phenomenon of maturing out of addiction (22). 

 

Most of this chapter reports the investigation discussed in (32). 

 

5.1 A Multiscale Model of Addiction 

In this chapter, a systemic model is advanced, as shown in Figure 6, 

which aims to characterize the comportment of a human through its tendency 

toward drug-seeking behavior. This computational framework was defined and 

qualitatively validated (29), its dynamics and sensitivity were analyzed (30,31), 

and its recovery scale initiated (28). 

The model shown in Figure 6 comprises neuropsychological, recovery, 

cognitive, and behavioral elements. The neuropsychological scale incorporates 

internal and external processes describing the neural ongoing activity that 

depends on time t (in hours). Internal processes include the level of negative 

consequences such as poor health or social relations, P(t), the level of negative 

emotional state, S(t), the level of drug craving, D(t), and the saliency of drug-
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associated cues, Q(t). The external processes characterize sudden experiences 

that, when activated, instantly influence the subject's neural activity. These are: 

drug-associated cues, AQ(t), that may be triggered by an event such as visiting a 

drug buddy; painful traumas, AP(t), that may cause an addict to stop taking drugs 

immediately for a period of time; strong stressful episodes, AS(t), that may lead a 

former addict into immediate drug-use; and drug priming, AD(t), such as social 

drinking, that may bring the virtual subject into drug-use again. The output of the 

model, G(t), depends on both internal and external processes. The process G(t) 

defines a feedback loop to the neuropsychological scale. The behavioral scale 

includes the model's output G(t), which is a qualitative evaluation of a virtual 

subject's tendency for drug-seeking, and arises from the antagonism between 

inhibitory and compulsory elements. Negative values of G(t) correspond to 

maladaptive behavior, whereas positive ones account for healthy behavior. For 

the sake of clarity, the processes of inhibition and compulsion are considered 

constants even though explicit time dependencies of these processes were 

previously defined (29). 

The cognitive scale complies with the definition by Bourgine and Stewart: 

"A system is cognitive if and only if sensory inputs serve to trigger actions 

in a specific way, so as to satisfy a viability constraint" (109). 
 

This scale is established as a mediator between low and high level of 

behavioral control. In a perceptron-like architecture, the neuropsychological 

processes are weighted and integrated to define the degree of rationality, rd(t), 
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which drives the virtual subject's cognitive state, cs(t), toward a more inhibited or 

a more compulsive behavior. The recovery scale is a computational hypothesis 

which relies on the definition of natural recovery, for which the addict ceases 

using the drug "without the help of treatment intervention" (105), suggesting a 

recovery process solely impacting the cognitive scale (no pharmacological or 

behavioral interventions). The recovery process is designated as a sudden 

cognitive change which, when induced, makes achievable a drug abstinence 

period that may or may not endure. The recovery scale affects the virtual 

subject's cognitive state by two mechanisms: a direct intervention on the virtual 

subject's rationality estimation, and a modulation of the internal and external 

processes weights. The second mechanism can endure and aims to emulate 

cognitive learning (i.e., the neural plasticity in the prefrontal cortex). In the next 

section are presented the formal descriptions of the cognitive and recovery 

scales. Computational definitions of the neuropsychological and behavioral 

scales are reported in (29) and in Appendix A. 
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5.2 Methods 

This section presents the details of the cognitive and recovery scales, as 

well as the data used to emulate instances of the recovery process. 

The rationality density, rd(t), is defined as a weighted sum of the 

neuropsychological and recovery processes: 

 

rd(t) = ωS (t) ⋅S(t)+ωP (t) ⋅P(t)+ωD (t) ⋅D(t)+

+ωAS ⋅AS (t)+ωAP ⋅AP (t)+ωAD ⋅AD (t)+

+Q(t) ⋅A
Q (t)+ωh ⋅h(t).

 Eq. 1 

 

The weights ω for the processes P(t) and AP(t) are in !
+
, whereas the 

other weights are in !
−

. This rationality estimate drives the cognitive state of the 

virtual subject, cs(t): 

 cs(t) =
1

2
tanh α ⋅cs(t −1)+β ⋅ rd(t)+γ( )+

1

2
,  Eq. 2 

 

where of α, β, and γ are constants and the model's sensitivity to their values is 

discussed in (31). 

The recovery process, h(t), equals 1 if it is active, and 0 otherwise. The 

active state of the recovery process is determined by trigger events that occur at 

any time step t with a probability that depends on the subject's age, together with 

a duration process that determines the active state's duration once triggered. 



!

65 

Letting te(t) indicate the presence or absence of a trigger event at time step t (in 

hours): 

 te(t) =
1 with probability p(T )

0 otherwise,






 Eq. 3 

 

where p(T ) depends on the subject's age T (in years) according to Equation 8 that 

is a smooth fit to the discrete data in Table 1. 

The duration process, d(t), accumulates trigger events by being increased 

by a positive constant, δ, whenever there is a trigger event, i.e., whenever te(t) = 

1, and otherwise being decremented by 1 but bounded below by 0: 

 d(t +1) =
δ ⋅d(t) if te(t) =1

max 0,  d(t)−1( ) otherwise.






 Eq. 4 

Given this, the recovery process is active whenever d(t) is non-zero: 

 h(t) =
1 if d(t)> 0

0 otherwise.






 Eq. 5 

 

The effect of this is that if one assumes that at initial time t0, d(t0) = 0, then 

the recovery process becomes active upon the first occurrence of a trigger event 

and remains active for δ time steps after that, unless other trigger events occur 

while it is active, in which case the duration is increased by δ for each trigger 

event.8 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8
 The author thanks A. G. Barto for his help with this formal description. 
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When a recovery process arises, it influences rd(t) through two 

mechanisms. On the one hand, h(t) has a direct effect on rd(t) as defined in 

Equation 1. On the other hand, the cognitive weights ω of the processes P(t), S(t), 

and D(t) provisionally change their values according to the relationship: 

 ω(t) =
κ +∆ if h(t) =1

κ otherwise,






 Eq. 6 

 

where ∆ is in !
−

 for S(t) and D(t), and in !
+
 for P(t). 

At the last active time step of a recovery process, h(t), the temporary effect 

on ω of processes P(t), S(t), and D(t) can become permanent with arbitrary 

probability θ (different for the three processes): 

 κ (t) =
κ +∆ if d(t) =1 and with probability θ

κ otherwise.






 Eq. 7 

 

This equation aims to mimic neural plasticity within the cognitive cortex of 

the virtual subject and is referred to as cognitive learning. 

5.2.1 Probability of a recovery process P(T ) 

In 1962, Charles Winick popularized the phenomenon of maturing out of 

narcotics addiction, revealing cases where regular heroin and synthetic opiate 

abusers ceased using the substance without any psychological or 

pharmacological treatment (22). In 1980, Maddux and Desmond discussed the 

possible overestimation of Winik's statistics, and proposed further data to 
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increase the accuracy of the study (24). Maddux and Desmond confirmed that 

the trends of age distribution for withdrawal initiations were consistent in both 

studies, and argued the possible overestimation due to the disregard of cessation 

onset rates in the base addict population. 

In the present investigation, data reported in (22) and (24) are combined to 

quantify the likelihood of a narcotic addict to undergo a maturing out experience. 

Winick based his investigation on the number of addicts reported to the Federal 

Bureau of Narcotics in 1955 that were not reported again during a five-year 

period (22). As reported in Table 1, the probability for an addict to experience a 

maturing out experience is inferred (fourth column in Table 1). This probability is 

scaled using the subsequent results by Maddux and Desmond, which report the 

annual rates of abstinence onset in the base population (24). For simplification 

purposes, the age category "All ages" in (24) is considered to describe the age 

range from 0 to 19 years old, and the category "40-49" to additionally include 

ages exceeding 49 years old. The scaled cumulative distribution function for a 

maturing out event to arise can be approximated in terms of the age in years T of 

a virtual subject as: 

 p(T ) =
0.02359

1+ e
−0.154⋅T+5.037

.  Eq. 8 
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5.3 Results: plausible scenarios of drug-seeking and maturing out 

Two scenarios are presented of a virtual subject denoted as B.T, who had 

a healthy mental and physical development and became an addict in her early 

adulthood. In the first set of simulations, the weights ω of the processes P(t), S(t), 

and D(t) can only change their values according to Equation 6, whereas in the 

second set of simulations Equation 7 also applies. The graphs reported in this 

section represent the mean of 100 simulations of 600 time steps (~25 days) each 

and their corresponding standard errors of the mean for B.T. at the age of 35. 

 

5.3.1 Baseline simulations 

The baseline scenario is presented in Figure 7, where the computed 

profile of B.T.'s drug seeking-behavior, G(t), is not influenced either from the 

direct or from the indirect effects of the recovery process. In these situations, the 

model's output G(t) is steady at negative values, corresponding to maladaptive 

behavior. The internal processes have stable trajectories, and only the external 

processes AP(t) and AQ(t) occur, since AS(t) and AD(t) can not be triggered when 

G(t) is negative. 
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5.3.2 Direct Influence of the Recovery Process 

According to Equation 8, a 35 year old virtual subject can be exposed to at 

most 5 recovery processes within the year. In more details, p(35) = 0.0144 which 

corresponds to 5.27 expected recovery events within 365 days. Figure 8 shows 

the graphs corresponding to the processes defining B.T.'s profile. The recovery 

process h(t) has a direct effect solely on her cognitive scale. In other words, the 

weights ω of the processes P(t), S(t), and D(t), used to estimate the cognitive 

state, can only temporarily change their values, during an active process h(t), but 

are not subject to any permanent alteration. There are 4 recovery processes that 

occur during these simulations, at t ∈ {120, 200, 210, 420}, which correspond to 

an immediate and strong change in the model's output G(t). For a limited time, 

B.T. expresses healthy behavior because of the new value of the weights ω. 

During this period, the model's output G(t) becomes positive, but this sudden 

change does not last for a sufficient time for B.T. to acquire a permanent healthy 

behavior, and her maladaptive behavior regains predominance when the active 

effect of h(t) ceases. 

 

5.3.3 Direct and Potentially Long-Term Influences of the Recovery Process 

In the previous scenario, the direct effect of the recovery process by itself 

is not durable enough for the whole system to acquire the necessary dynamic 

allowing B.T. to start a potentially long-lasting period of abstinence. The non-

monotonic property of this model (30) computationally grants B.T. a possible 
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lifelong rehabilitation, but the values of the constants defining the model that are 

necessary to achieve such a condition will correspond to a situation beyond 

biological plausibility (e.g., an event h(t) lasting several months). In the 

simulations presented in Figure 9, the weights ω of the processes P(t), S(t), and 

D(t), can permanently change their values once the active effect of h(t) ceases 

accordingly to Equation 7. After completing the 3rd recovery process, B.T. 

expresses a fragile healthy behavior (positive G(t) values), which is further 

consolidated by the 4th recovery process. This simulation exemplifies a plausible 

trajectory of an addict that starts an abstinence period within a period of about 

one month, as a result of 4 long-lasting recovery events, as for example could 

correspond to instances of non-traditional healing techniques to help overcoming 

addiction. Instances of these techniques were discussed in the late 1970s (e.g. 

meditation, faith healing, holistic medicine, etc.) (110), and more recently were at 

the center of two issues of the journal serving the Association for Medical 

Education and Research in Substance Abuse (e.g. "attentional control", 

Mindfulness-Based Cognitive Therapy, etc.) (111,112). 

The simulations presented in Figures 7 and 8 show the contrast between 

the progressions of a virtual subject in the absence and in the presence of 

recovery events, respectively. In both scenarios, maladaptive behavior persists. It 

is only when the virtual subject's cognitive learning is active, as described in 

Equation 7, that the virtual subject is able to maintain healthy behavior even after 

recovery events dissipate. 
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5.4 Analysis: a cognitive learning mechanism to enable maturing out 

The parameter γ in Equation 2 significantly influences the output of the 

model, and its value can be calculated to mathematically ensure that the virtual 

subject has no cognitive preference toward a particular behavior. This is 

exemplified in Figure 10 and detailed in (31). In Figure 10 are presented two 

identical virtual subjects which differ only by the magnitude of ω
P
, whose values 

are ω
P
 = 0.55 and ω

P
 = 0.75 for Class 1 and Class 2, respectively. In the 

simulations presented in Figure 10 there is no recovery process and all weights 

are constant throughout the experiments. Three evaluations are presented with 

different values of γ, in particular, a profile biased toward maladaptive behavior (γ 

= –1.3), a profile biased toward healthy behavior (γ = 3.3), and a profile without 

prior cognitive bias (unbiased γ, γ = –0.49375). The evaluations with a biased γ 

express considerably less flexibility than the evaluation with the unbiased γ. 

The simulations presented in this chapter show that a cognitive learning 

mechanism is a necessary but not sufficient condition for recovery: for some 

virtual subjects, cognitive interventions are successful in facilitating rehabilitation, 

whereas for some others they are not. 
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Figure 10: Simulations of a virtual subject having different cognitive inclinations. The profile 

biased toward maladaptive behavior has γ = –1.3, the profile biased toward healthy behavior has γ 

= 3.3, and the unbiased profile has γ = –0.49375. Classes 1 and 2 represents two virtual subject 

which have the same profile with exception the value of ωP, which is ωP = 0.55 and ωP = 0.75, 

respectively. Slightly modified from (31). 

Comparisons of simulations defined by an arbitrary γ with simulations 

using the unbiased γ, defined in (31), are presented in Figure 11. The unbiased γ

ensures that the virtual subject's cognitive scale is able to range over 

maladaptive and healthy behaviors without becoming trapped into a particular 

state. The value of γ is the same for simulations presented in Figures 7-8, and 

the ones in Figure 9 labeled as "B.T.'s original γ". All other parameters are 

equivalent for all simulations. In Figure 9 (A and D) there are no recovery 

processes h(t); in Figure 11 (B and E) only direct influences of h(t) are 

considered; and in Figure 11 (C and F) both Equations 6 and 7 apply. The 

baseline simulations presented in Figure 11 (A and D), which do not include any 
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recovery occurrences, show the cognitive predilection of B.T. toward a healthier 

behavior. B.T.'s original portrayal expresses a less accentuated likelihood of 

maladaptive behavior than its correspondent cognitively unbiased description. 

The computed behaviors involving solely the direct influence of the recovery 

process h(t), compared in Figure 11 (B and E), describe a situation in which B.T. 

successfully abstains from drug use for a limited time, but the corresponding 

cognitively unbiased profile constantly preserves maladaptive behavior. The 

behavioral and neuropsychological characteristics of the subject make this 

abstinence difficult to preserve for B.T.'s original profile, and establish a 

challenging environment for her unbiased profile to reach a healthy behavior. The 

model's outcomes presented in Figure 11 (C and F) compare the original and 

unbiased profiles of B.T. when both the direct and the potentially long-term 

influences of the recovery process h(t) are active. Both cases tend towards a 

healthier behavior, which is reached and maintained by the original profile but is 

barely touched by the unbiased profile. 

The 2-D cross-correlations shown in Figure 11 D, E, and F provide an 

immediate look at the similarity between B.T.'s original profile and its 

correspondent cognitively unbiased alter ego, considering each simulation rather 

than the mean of several simulations. Without any recovery processes, the cross-

correlation matrix has a smooth circular pattern (Figure 11D), which becomes 

distorted when only the local effect of the process h(t) is active (Figure 11E), and 

substantially changes the motif for simulations operating the cognitive learning 
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described above (Figure 11F). These cross-correlation patterns suggest that the 

first and second case studies share a moderately similar dynamic, whereas they 

differ with respect to the dynamic of the third case study. 

These results suggest that an addict may have the cognitive means to 

start an abstinence period which, depending on his or her neural substrate and 

natural surroundings, could persist over time. 

The juxtaposition of the original and the unbiased profiles demonstrate 

that the cognitive learning mechanism discussed in this chapter is a necessary 

but not sufficient condition to guarantee recovery. This may provide a biologically 

plausible rationale to assist further explorations on how drug abusers respond to 

recovery practices including cognitive interventions. 

 

5.5 Concluding Remarks 

The fields of psychology and neuroscience provide us with a growing 

amount of evidence supporting the fundamental role of cognitive components in 

the course of an addict's life. A pivotal investigation demonstrates that cocaine 

craving is induced by neural correlates within the frontal cortex, rather than by the 

dopaminergic circuitry (113), and in a recent review paper, George and Koob 

propose the hypothesis for which 

"drug addiction involves a failure of the different subcomponents of the 

executive systems controlling key cognitive modules that process reward, 

pain, stress, emotion, habits, and decision-making" (114). 
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Heeding this belief, and supported by observations of natural recoveries, 

the framework presented here aims to describe a simplistic computational 

scheme necessary to counteract such cognitive deficiency. Even though the 

neural correlates of an addict's limbic system have been modified compared to 

the brain of a healthy individual, it seems biologically plausible to consider neural 

changes in the prefrontal cortex to account, at least partially, for a balancing 

mechanism reconditioning the brain's functions towards a healthy state. 

The present investigation proposes formal arguments to support the 

hypothesis of a cognitive learning mechanism, defined in Equation 7, capable of 

influencing decision-making processes associated with drug abuse. The 

emulated abstinence onsets from drug abuse presented above are an initial 

attempt toward the localization of such a balancing mechanism. To advance this 

exploration, it would be interesting to emulate similar rehabilitation properties 

within a more elaborated biologically inspired cognitive architecture, as for 

example Leabra (115), Clarion (116), or GMU-BICA (117). To further enhance 

psychological plausibility of the model presented in this paper, components 

studied in pathological gambling (stressors, cognitive distortions, ruminations, 

and distractions) (118) could be incorporated and explored. 

The framework presented in this chapter supports the view that 

mindfulness-based cognitive techniques can act as a catalyst for maturing out of 

addiction. 
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CHAPTER 6 

 

A COMPUTATIONAL HYPOTHESIS FOR ALLOSTASIS 

 

In the present Chapter, the KR framework supporting the hypothesis for 

maturing out discussed in Chapter 5 is modified and expanded to include a 

module relating the allostasis theory of addiction, which is based on 

pharmacokinetic and pharmacodynamic characteristics of drug use and abuse. 

The objective of this contribution is to provide a theory-based hypothesis that 

could be tested experimentally, possibly leading to an improvement in the 

understanding of this phenomenon. 

 

This Chapter reports the investigation in (38). 

 

The current investigation was undertaken to explore the allostatic 

framework of addiction, described in Chapter 2, by considering two computational 

hypotheses in which within-system and between-system adaptations are explicit 

time-dependent processes, and to introduce a computational estimation of mood 

change related to drug intake in human users. Motivated by animal observations 

(119), the within-system adaptations predicted by the presented model depend 

upon ongoing neural activities defining the virtual subject's current attitude 

towards drug use. Between-system adaptations rely on higher-order cognitive 

processes in accordance with the "impaired response inhibition and salience 
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attribution" (I-RISA) theory of addiction by Goldstein and Volkow (34), discussed 

in Section 2.7. For evaluation and validation purposes, an additional provisional 

assumption is formulated to predict the subject's mood as dependent on reward 

functions controlling behavior and on euphoric and dysphoric effects of the 

consumed substance. 

 

6.1 Introduction 

The allostatic theory of drug abuse describes how the brain's reward 

system evolves as substance misuse progresses. Neural adaptations arising 

from the reward system itself and from the antireward system provide the subject 

with functional stability, while affecting the person's mood. The present 

investigation proposes a computational hypothesis describing how a virtual 

subject's drug consumption, cognitive substrate, and mood interface with reward 

and antireward system neuroadaptations. Reward system adaptations are 

presumed interrelated with the ongoing neural activity defining behavior towards 

drug intake. These adaptations arise from brain areas that encompass the 

nucleus accumbens, ventral tegmental area, and prefrontal cortex (PFC). 

Antireward system adaptations are assumed to mutually connect with higher-

order cognitive processes occurring within PFC, orbitofrontal cortex, and anterior 

cingulate cortex. The subject's mood estimation is a provisional function of 

reward components. 
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A knowledge repository model for allostasis is presented, which 

incorporates pharmacokinetic, pharmacodynamic, neuropsychological, cognitive, 

and behavioral components. Behavioral patterns of tobacco smoking exemplify 

the predictive properties of the framework. Three case studies are discussed: 

escalation of cigarettes consumption; conventional treatments similar to nicotine 

patches; and alternative medical practices comparable to meditation. Each 

computed profile comprises 100 simulations over a period of 160 days for a 

virtual subject encountering drugs on the fifth day. The primary outcome 

measures of the model include an estimate of the virtual subject's mood, and the 

daily account of drug intakes. The main limitation of this study resides in the 21 

time-dependent processes which at the same time only partially describe the 

complex phenomena of drug addiction, and involve a large number of parameters 

which may underconstrain the framework. 

Simulated patterns of drug intake, including escalation of drug use and 

rehabilitation, predict that reward system neuroadaptations account for mood 

stabilization, whereas antireward neuroadaptations delineate mood improvement 

and reduction in drug consumption. As an effort toward translational research in 

drug use and abuse, the discussed computational framework provides formal 

arguments encouraging current rehabilitation therapies to include meditation-like 

practices along with pharmaceutical drugs and counseling. 
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Figure 12: Diagram of the computational model. Time units differ: t is in minutes and t* in hours. 

Output M(t) is the mood estimation within the allostatic framework which combines the 

rush/comedown effect of the drug, rc(t), with the virtual subject's cognitive distortion, cd(t). Levels 

of observations include the neuropsychological scale in green, the cognitive scale in red, and the 

healing scale in orange (32), which are connected to the expanded PK/PD model (37) in light 

blue. The cognitive weights, which modulate the ongoing neural activity on the 

neuropsychological scale, define the tendency of drug-seeking behavior, G(t*). This 

predisposition influences the reward set point, TS(t*), which together with the lowering effect on 

reward threshold, T(t), defines decisions about drug intake, Z(t). The cognitive weights influence 

the baseline reward threshold, T0(t*), indirectly influence T(t), and are affected by Z(t). A healing 

intervention has a direct impact on both cognitive learning and T0(t*), and an indirect effect on 

TS(t*) associated with changes in the virtual subject's rationality density, rd(t*). The mood M(t) is a 

combination of Z(t), T(t), T0(t*), and TS(t*). 
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6.2 Methods: Computational framework for allostasis 

A pharmacokinetic/pharmacodynamic (PK/PD) model of allostasis for 

laboratory rats has been developed which relates compulsive drug intake to a 

chronically deviated baseline reward threshold (37). The PK component of this 

model represents how the rat's bloodstream and brain absorb the substance, and 

the PD component accounts for the threshold-lowering effect of the drug. The 

decision-making process defining the animal's future drug self-administration is 

controlled by the negative hedonic valence induced by the substance. Within-

system alterations are represented by changes in the drug potency index in the 

PD component of the model, and between-system adjustments are described by 

variations of the baseline reward threshold. Simulations based upon this 

computational framework successfully replicate patterns of intravenous cocaine 

self-administration observed in laboratory rats, while relying on constant values to 

represent the within-system and the between-system adaptations (37). 

In the present study, this animal model is translated toward human 

application by mathematically describing the within- and the between-system 

components as time-dependent functions, and by providing an estimation of the 

virtual subject's mood. This discrete-time model, which is shown in Figure 12, 

accounts for the behavioral, neuropsychological, and cognitive scales of 

observation in humans over time scales of minutes t and hours t*, along with 

correlates of brain reward. The model produces computational predictions of drug 

intakes, Z(t), and mood, M(t). The provisional measure of M is an aggregate of 



!

86 

neural and psychological components. The former relies upon the direct 

rush/comedown effect of the drug, rc(t), and the latter upon cognitive distortions, 

cd(t), emulated as a function of current and previous hedonic adaptations. The 

Encyclopedia of Cognitive Behavior Therapy defines cognitive distortions as 

"identifiable errors in thinking" (120) which sustain pathologies related to alcohol 

and drug use (121) gambling (122,123), eating (124), and Internet use (125). 

The behavioral scale includes the binary decision toward Z which depends 

on the arithmetical difference between the lowering effect on reward threshold 

T(t) and the reward set point TS(t*), similar to (37). The baseline reward threshold 

T0(t*) influences T. The thresholds T, TS, and T0, are the reward components 

associated respectively with the inverse variation of the brain's reward sensitivity, 

the drug's evolving acute effect which is reminiscent of the intracranial self-

stimulation paradigm (126), and the minimal drug effect providing the individual 

with a reliable outcome (feel high). The drug concentration in the brain is 

represented by C(t), which depends on Z and influences T. 

Two hypotheses are introduced to account for the time-dependency of 

within-system and between-system neuroadaptations. The first hypothesis was 

inspired by observations on rats (119) and relates to changes within TS that are 

assumed contingent on the tendency for drug-seeking behavior, G(t*), estimated 

in (32). Accordingly, within-system adaptations are assumed to be dependent 

upon ongoing neural activities which define the current virtual subject's behavior 

towards drug use. G assesses the neural activity of brain regions sensitive to 
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addictive drugs. Healthy behavior (i.e., avoidance of drug use) corresponds to 

positive values of G, and maladaptive behavior (i.e., a tendency towards drug-

seeking behavior) to negative values. Within-system alterations are included in 

the PD component of the model and represented by TS as an alternative to the 

drug potency index discussed in (37). After the first drug intake, TS is assumed to 

monotonically increase for healthy behavior and exponentially decrease for 

maladaptive behavior: 

 T
S
(t *+1) =

λ ⋅ 1− e−β⋅d( )+TS (t
c
) if G(t*) ≥ 0 and ∑Z ≥1 

T
S
(t
c
) ⋅e−γ ⋅d if G(t*)< 0 and ∑Z ≥1 

T
S
(t*) otherwise,










 Eq. 9 

 

where λ, β, and γ, are constants; tc corresponds to the last time t* where G 

changed its sign; d is a temporal unit-step counter reset to 0 when G changes its 

sign; and ∑Z ≥1  denotes that at least one drug intake occurred up to time t*. 

Within-systems neuroadaptations impact the allostatic state of the virtual subject 

by affecting M. At first only these adaptations take action, but cooperate with 

between-system neuroadaptations after the virtual subject experienced several 

drug intakes. 

The estimation of G depends on internal processes (S, P, D, and Q) and 

external triggers (AS, AP, AD, and AQ), which define the neuropsychological scale 

of the model. The negative affective state of nervousness, anxiety, or stress S(t*) 

of an addict expands during withdrawal phases (127) due to changes occurring in 
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the brain reward and stress systems (3) including the VTA, the NAc, the 

amygdala, and the lateral hypothalamus (128). The level of burden or worry P(t*) 

related to a person's health state increases as a consequence of drug 

consumption (129). 

The intensity of drug craving D(t*) strongly correlates with the level of 

extracellular dopamine in key brain areas. Animal experiments show how the 

concentration of dopamine in the NAc increases during acute drug consumption 

(130) and decreases during withdrawal (131). Human studies suggest that 

dopamine-related neural activity in the orbitofrontal cortex (OFC) and anterior 

cingulate cortex (ACC) intensifies under the influence of drugs (132), and 

diminishes during long-term withdrawal (34). 

Severe stressors AS(t*) such as electric foot-shocks for laboratory rats 

(133) and verbal scolding for humans (134) can lead to the reinstatement of 

maladaptive behavior. Acute distress events AP(t*) such as non-fatal overdoses 

for injection drug users (135) or coronary heart disease for smokers (136) may 

cause the individual to rapidly cease using the substance. After a period of 

abstention, rats (137) and humans (138) exposed to drug priming AD(t*) are 

more likely to stumble into relapse. Drug-associated cues linked to a particular 

environment AQ(t*) can reactivate drug-seeking behavior (139). The magnitude 

Q(t*) of these cues depends upon the drug-contingent neural mechanisms of 

learning and memory (140) that may facilitate the sensitization of incentive 

salience of drug cues leading to compulsive consumption (44). 
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The cognitive apparatus of the virtual subject transforms the ongoing 

neuropsychological activities into information accessible at the behavioral scale. 

Internal processes, external triggers, and healing interventions H(t*) are adapted 

by a set of time-varying cognitive weights ωS(t*), ωP(t*), ωD(t*), and constant 

parameters ωQ, ωA, and ωH, to estimate the rationality density rd(t*) of the virtual 

subject. For the first number of drug intakes, the time-dependent cognitive 

weights ωS, ωP, and ωD stochastically adjust and predispose the virtual subject 

toward maladaptive behavior, mimicking associative learning between the drug 

and its pleasurable effect. The cognitive state, cs(t*), translates rd to reflect the 

proportion between inhibition and compulsion driving the estimation of G. 

The second computational hypothesis assumes that the baseline reward 

threshold T0 depends upon higher-order cognitive processes. This is consistent 

with the I-RISA model (34) whereby between-system adaptations are considered 

to depend upon learning and memory functions. After a number of drug intakes, 

the cognitive substrate of the virtual subject starts to stochastically influence T0 by 

means of ωS, ωP, ωD and the healing intervention H(t*). Between-system 

alternations are conveyed by T0, defined as a function of the cognitive time-

dependent weights and H. The modulating influence of ωS, ωP, and ωD on T0 has 

opposite valence when a healing intervention occurs (H = 1) than when it does 

not (H = 0): 
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 T
0
(t *+1) =

T
0
(t*)+δ

T 0
⋅ −2 ⋅H (t*)+1( ) ⋅

   ⋅ ω
S
(t*)−ω

P
(t*)+ω

D
(t*)( ) if ∑Z ≥α

T
0
(t*) otherwise,










 Eq. 10 

 

where δT0 and α are constants, and ∑Z ≥α  denotes the period subsequent to at 

least α drug intakes. Between-systems neuroadaptations adjust the virtual 

subject's allostatic state by altering M. These adaptations arise after α drug 

intakes and together with within-systems adaptations influences the virtual 

subject's mood. 

The time-dependent cognitive weights emulate PFC, OFC, and ACC 

alterations that lead addicted persons and healthy individuals to manifest 

contrasting saliencies during affective events related to drug consumption 

(141,142). When active, healing interventions influence ωS, ωP, ωD, and rd, 

inclining the virtual subject toward healthy behavior. Once H becomes idle, 

residual cognitive effects on these weights stochastically become permanent. 

Different occurrences of H delineate replacement therapies (e.g., nicotine 

replacement therapy) or complementary treatments (e.g., mindfulness 

meditation). Both techniques favorably support cigarette-smoking cessation 

(143,144). The first is simulated with an active H lasting several days, whereas 

the second by a sequence of active H's of much shorter durations. 

Formal definitions of the processes in Figure 12 are included in the 

Supplementary Material (Appendix A). 
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6.2.1 Model validation and provisional assumption 

Validation of the system dynamics model is divided into a structural 

module and a behavioral module (145). Both aspects were discussed in (37) for 

the PK/PD portion of the model of Figure 12 in terms of a sensitivity analysis of 

key parameters and output comparison with laboratory animal data. For the drug-

seeking prediction part of the model, the structural identification and control of 

intrinsic bias was discussed in (31), and simulations of plausible scenarios for 

human psychoactive drug consumption were discussed in (32). 

To further evaluate the validity of the present model, the virtual subject's 

mood is considered in addition to archetypal drug-seeking patterns. As 

mentioned above, mood alterations caused by an addictive substance are 

provisionally assessed as the aggregate of the drug's rush/comedown effect, 

rc(t), and consequent cognitive distortion, cd(t). The evolution of rc is defined as 

the summation of piece-wise sinusoidal functions each of one period with slightly 

exponentially decaying tails that initiate when a drug intake occurs. Cognitive 

distortions related to addiction are assumed to depend on the overall current 

reward state of the virtual subject which includes T, TS, and T0. Healthy individuals 

should not suffer from cognitive distortions: no current drug's effect on reward 

threshold, T, should arise, nor should any negative hedonic valences from within- 

and between-system neuroadaptations, TS and T0. The speculative cd combines 

the current reward state of the individual, the current activation of within- and 
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between-system neuroadaptations, alongside of previously experienced hedonic 

adaptations: 

 
M (t) = rc(t)+ cd(t)

with cd(t) = −T (t)+γ
M
⋅ ∆TSO(t*)−∆TSO(t *−1) when ∑Z ≥1,

 Eq. 11 

 

where γM is constant; ∑Z ≥1  denotes that at least one drug intake occurred up to 

t; and ∆TSO stands for the arithmetic difference between TS and T0. The 

formulation of cd is suggested by the temporal difference component employed in 

the first model of learning mechanism associated with dopaminergic neurons in 

the basal ganglia (92,93). 

 

6.3 Results 

Plausible real-life scenarios are illustrated in this section to simulate a 

virtual subject who is consuming abused substances. Three case studies 

narrating tobacco smoking are considered. The first depicts transitions from early 

to heavy smoking; the second considers conventional therapies (e.g., nicotine 

patches); and the third represents alternative medical treatments (e.g., 

meditation). Only cognitive correlates of conventional and alternative practices 

are emulated in the model at the center of this dissertation. In particular, only 

positive cognitive adaptations are emulated, even when emulating conventional 

therapies (for which the positive pharmacological effects are not emulated). 
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The simulation results include means for 100 simulations and standard 

errors of the mean corresponding to a period of 160 days with the drug becoming 

available on the fifth day. Changes in the allostatic state of the virtual subject are 

estimated through variations of the mood M. 

When possible, parameters defining the simulations were chosen 

according to human studies. The rat brain apparent volume of distribution for 

cocaine used in (37) was replaced with an estimate for (S)-[11C]nicotine in 

humans (146). The number of drug intakes defining the initial associative learning 

reflected in ωS, ωP, ωD, as well as the constant α in Equation 10, were chosen 

according to a clinical study by Difranza at al. (147) which classifies the 

progression of physical addiction into four stages: none (stage 1), wanting (stage 

2), craving (stage 3), and needing (stage 4). Associative learning may arise until 

the needing phase, and the constant α relates to the craving phase. For nicotine, 

the four stages correspond to consumption rates of 2.2±3.4, 4.4±5.0, 8.6±7.1, and 

13.2±7.7 cigarettes per smoking day (147), respectively. The minimum amount of 

time separating consecutive drug intake of 4 seconds in (37) was changed to 30 

minutes. All other initial conditions of the present simulations were defined in 

accordance with (37) and (32). The values of the parameters used in the 

simulations are reported in Table 2. 

The three considered case studies are presented in the next section and 

in Figure 13, where TS and T0 are constant. These settings correspond to the 

results presented by Ahmed and Koob in (37). The three case studies are 
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described in Sections 6.3.2 to 6.3.4, where Figures 14 to 19 each include three 

Evaluations: in the first both TS and T0 are time-dependent processes according to 

Equation 8 and Equation 9, in the second TS is constant, and in the third T0 is 

constant. The daily sobriety index is defined as the average number of simulated 

runs with at least one daily drug intake. 

 

6.3.1 Baseline: constant reward set point and constant baseline reward 

threshold 

This section presents simulations based on the model in Figure 12 while 

considering the reward set point, TS, and the baseline reward threshold, T0, as 

constants. This is comparable to the simulations of drug self-administration in 

rats presented by Amhed and Koob in (37) translated to humans. 

Figure 13 reports simulations of the three case studies considered in this 

chapter, with experimental settings as discussed in Sections 6.3.2 to 6.3.4, when 

TS and T0 have constant values throughout the simulations instead of being the 

time-dependent functions defined by Equations 9 and 10. The first column 

corresponds to Case Study 1 (transition from early to heavy smoking); the 

second column to Case Study 2 (nicotine patch therapy); and the third column to 

Case Study 3 (practice of meditation). In Figure 13, line A reports the evolution of 

the cognitive weights ωS, ωP, and ωD; line B the progression of T, TS, and T0; line C 

the prediction of mood M; and line D the average drug consumption and sobriety 

index. 
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The main difference between the simulated case studies in Figure 13 

resides in the evolution of the cognitive weights ωS, ωP, and ωD, which depends on 

the recovery process H. As detailed in the next sections, in Case Study 1 there 

are no H events, in Case Study 2 the occurrences of H are few and relatively 

long-lasting, whereas in Case Study 3 these are more frequent and of shorter in 

duration. 

The three case studies express a similar evolution of the lowering effect 

on reward threshold, T, which is characterized by a loading phase (where the 

agent frequency of drug intake is high until satiety is reached) and a consequent 

maintenance phase (where the drug intake frequency becomes smaller and 

endures for the duration of the simulation). This is visible in Figure 13 (line B and 

correspondent close-up) and equates with the results of Ahmed and Koob (37). 

The mood M steps down after the loading phase and does not express the 

chronic depression anticipated by Koob and Le Moal (3). The average drug 

consumption of the virtual subject is stable at ~12 cigarettes/day, and the 

sobriety index drops to 0% after the first intake. 

The fine details for the simulations presented in Figure 13 can be found in 

Figure 20 (Appendix B). The tendency for drug-seeking behavior G, the internal 

(S, P, D, and Q) and external processes (AS, AP, AD, and AQ) are different across 

the three case studies. The simulations provided in this section are a frame of 

reference to assess Equations 9 and 10, and the simulations discussed in the 

remainder of this chapter.  
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Figure 13: Baseline (TS and T0 are constant). Simulations of virtual behavior for cigarette 

consumption over a period of 160 days. Cigarettes are available on the fifth day. Results are the 

average of 100 runs and correspond to the three case studies discussed in this chapter. Line A 

shows the evolution of cognitive weights ωS (red), ωP (blue), and ωD (black); line B the progression 

of T (blue), TS (black), and T0 (red); line C the evolution of the subject's mood M; and line D the 

average number of drug intakes (red) and the sobriety index (blue). Further details of these 

simulations are reported in Figure 20. 
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6.3.2 Case Study 1: Allostatic state trajectory during escalation of drug 

consumption 

This section discusses a virtual subject who engages in cigarette smoking 

five days after the simulation begins. Figure 14 presents the evolution of 

cognitive weights and reward components, whereas Figure 15 mood and health 

state assessments. In Evaluation 1, changes in ωS, ωP, and ωD are gradual; T is at 

first weaker than TS but eventually surpasses it, and T0 continually increases; M 

increasingly oscillates around its downslope; the average drug consumption 

increases and the sobriety index diminishes. Upon completion of the simulation, 

this virtual subject is characterized by an average consumption of ~42 

intakes/day (~2 packs) and a sobriety index of ~11%, comparable to a severe 

stage 4. 

In Evaluation 2, the cognitive adaptations occur significantly faster than for 

Evaluation 1. T and TS are approximately equal at first, but eventually T becomes 

larger than TS as T0 constantly increases. M abruptly decreases during the 

loading phase and subsequently manifests a negative trend enclosed by minor 

oscillations. The average consumption quickly increases and the virtual subject 

reaches a satiety state of ~48 cigarettes/day. Note that the number of intakes 

defining satiety is not an explicit constraint defined in the model. The sobriety 

index is consistently at zero. 

In Evaluation 3, the evolution of the virtual subject's processes is very 

similar to the predictions for Evaluation 1, but T decreases and M has a less 
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negative downslope. This evaluation ends with ~34 intakes/day and ~25% 

sobriety. 

Additional details can be found in the Supplementary Figures (Appendix 

B). Figure 21 includes the fine details for Case Study 1, and Figures 22 and 23 

show how different probabilities defining changes in ωS, ωP, and ωD influence the 

predicted consumption rates and mood downslope. If the first smoked cigarette 

within the simulations is considered as the first ever in the life of the virtual 

subject, then Figures 22 and 23 can be considered to relate to different rates of 

progression from recreational smoking toward heavy smoking. 

Case Study 1 indicates that a virtual subject consuming drugs for the first 

time, or relapsing after a period of abstinence, undergoes a continuous negative 

shift in mood baseline which directly correlates with the strength of cognitive 

learning facilitating drug consumption. In addition, the virtual subject suffers 

growing mood swings during protracted consumption. When TS is constant, the 

mood substantially decreases during the first number of drug intakes, and the 

virtual subject rapidly reaches the satiety consumption rate. With T0 constant, the 

simulated mood has a weaker negative tendency and oscillates less. 

This Case Study shows that escalation in drug consumption occurs 

together with chronic depression of mood. These simulations predict that the 

virtual subject's mood strongly drops when only between-system adaptations are 

operative, and moderately decreases when only within-system adaptations are 

operative.  
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6.3.3 Case Study 2: Allostatic state trajectory during conventional 

therapies 

The profile presented in this section is similar to Case Study 1 but also 

includes healing interventions, H. Five-day long H events are activated at t = 1920 

and t = 2280 [hours]. This is intended to emulate 25 days of a replacement 

therapy using a nicotine transdermal system for 2 five-day periods separated 

from each other by 15 days. Case Study 2, does not replicate the 

pharmacological effects of the replacement drug, but rather aims to mimic 

possible cognitive facilitations toward a healthy state which may be enabled by 

this drug. 

All Evaluations for Case Studies 1 and 2 are similar until H is activated. 

During the first therapeutic period in Figures 16 and 17, ωS, ωP, and ωD are 

influenced by H to promote healthier behavior. This positive effect partially 

persists after the first period of therapy and is further strengthened by the 

second. In Evaluation 1, the activation of H causes a small upswing in T, a strong 

upswing in TS, and a decrease in the upslope of T0. The degradation of M 

becomes less accentuated after the treatment. The average drug consumption 

drops and the sobriety index rises while H is active. This experiment endpoint is 

comparable to an advanced stage 3 or an intermediate stage 4, with a 

consumption rate of ~14 intakes/day and a sobriety index of ~62%. In Evaluation 

2, both T and T0 reduce their upslope during the therapy, while the effect on M is 

negligible. The average consumption steadily increases ending at ~47 

intakes/day, and the sobriety index drops to zero. In Evaluation 3, the 
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progression of the virtual subject's processes is similar to Evaluation 1 but 

somewhat slower. M stabilizes and becomes nearly constant after the therapy. 

This endpoint is ~8 intakes/day and ~81% sobriety. 

Additional fine detail for Case Study 2 can be found in Figure 24 in the 

Supplementary Figures (Appendix B). Figures 25 and 26 show how different 

probabilities defining the influence of H affect the permanent predicted 

consumption rates. Higher probabilities lead the virtual subject to stage 1 or 

intermediate stage 2, whereas lower probabilities to advanced stage 4. The same 

sets of probabilities are tested when TS is constant (Figures 27 and 28) and when 

T0 is constant (Figures 29 and 30). For TS constant, the virtual subject always gets 

to a satiety consumption rate, and reveals a shy positive trend in M for the 

highest probabilities along with a decrease in average consumption. For T0 

constant, M becomes constant after the therapy and its variations become 

smaller as the tested probabilities become higher. 

Case study 2 shows how a few yet long healing interventions diminish the 

negative trend in the virtual addict's mood. Early indications of mood increase 

appear when healing signals are highly effective. When TS is constant, curative 

effects on the mood are negligible, unless cognitive learning is exceptionally 

successful. Even though positive, the influences on mood for this extreme case 

are quite limited. With T0 constant, the mood stabilizes after healing interventions 

and remains roughly constant. 
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This Case Study exemplifies the effect of prolonged healing interventions. 

These simulations predict that the virtual subject's mood continues to worsen in 

spite of therapeutic events when only between-system adaptations are operative. 

The predicted mood stabilizes as a consequence of healing periods when only 

within-system adaptations are operative. 

 

6.3.4 Case Study 3: Allostatic state trajectory during alternative medical 

treatments 

The profile in Figures 18 and 19 present a different type of healing 

intervention than in Case Study 2. At simulated times t ∈ {1920, 1960, 2000, 2040, 

2280, 2320, 2360, 2400} [hours], a fifteen hour H event is activated. This is 

intended to emulate 2 five-day healing periods during which the virtual subject 

undergoes four meditation practices separated by 40 hours. The benefits of each 

practice last for 15 hours, and the two healing periods are 10 days apart. Other 

than H event durations and activation times, all the parameters defining this Case 

Study are the same as in Case Studies 1 and 2. 

During the first period of meditation, ωS, ωP, and ωD strongly adjust. The 

enduring positive changes are additionally expanded after the second period of 

meditations. In Evaluation 1, T decreases before meditation, increases during 

meditation, and finally decreases again afterwards. There is an upswing of TS 

when H is active. T0 initially increases, becomes constant after the first healing 

session, and decreases after the second. After the first period of meditation, M 
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stops declining, and after it increases with reduced oscillation. The average drug 

consumption significantly decreases after the first healing period and further 

decreases after the second. The sobriety index robustly increases during the 

treatment. The endpoint of this evaluation corresponds to ~1 intake/day and 

~97% sobriety, placing the virtual subject in stage 1 or early stage 2. In 

Evaluation 2, T variations are minors, and T0 is a wide bell-shaped curve which 

maximal height corresponds to the healing periods. Activations of H first lead to 

stabilization of M, and then to its increase. The bell-shaped average drug 

consumption reaches its maximum and starts to decrease when H is active, 

finishing at ~12 intakes/day. The sobriety index starts to increase shortly after the 

end of the treatment reaching ~40% at the end of the simulation. Evaluation 3 is 

comparable to Evaluation 1 but M stabilizes after the therapy rather than 

increasing, and its final state is characterized by <1 intake/day and ~99% 

sobriety. 

Additional details for Case Study 3 can be found in the Supplementary 

Figures (Appendix B). Figure 31 shows the fine details. Figures 32 and 33 

illustrate how different probabilities defining the influence of H permanently 

impact the predicted consumption rates. Higher probabilities lead the virtual 

subject to cease using the drug, whereas lower probabilities to advanced stage 1 

or intermediate stage 2. The same sets of probabilities are tested when TS is 

constant (Figures 34 and 35) and when T0 is constant (Figures 36 and 37). For TS 

constant, the virtual subject always gets to its satiety consumption rate; and after 
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the treatment M increases. For T0 constant, M tends to become constant after the 

therapy and its variations become smaller as the probability becomes higher. 

Case study 3 displays how phasic healing interventions increase the mood 

of the virtual addict. This increase becomes very bold while healing signals have 

high effectiveness. Also, when TS is constant, mood increases as a direct 

correlation of healing success. With T0 constant, after healing interventions the 

mood stabilizes and becomes approximately constant. 

This Case Study exemplifies the effect of brief healing interventions that 

follow one another at short intervals. These simulations predict that the virtual 

subject's mood increases as a result of curative events when only between-

system adaptations are operative. The predicted mood stabilizes but does not 

improve after healing periods when only within-system adaptations are operative. 
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Figure 14: Case Study 1 (cognitive weights and reward components). Simulations of virtual 

behavior for cigarette consumption over a period of 160 days. Cigarettes are available on the fifth 

day. Results are the average of 100 runs. Evaluation 1 simulates both TS and T0 as time-

dependent processes. TS is constant and T0 time-dependent in Evaluation 2, TS is time-dependent 

and T0 constant in Evaluation 3. Column A shows the evolution of cognitive weights ωS (red), ωP 

(blue), and ωD (black); and column B the progression of T (blue), TS (black), and T0 (red). The gray 

shades correspond to SEM. The time-scales are hours for column A, and minutes for column B. 

Further details of these simulations are reported in Figure 21. 
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Figure 15: Case Study 1 (mood and health state assessments). Simulations of virtual 

behavior for cigarette consumption over a period of 160 days. Cigarettes are available on the fifth 

day. Results are the average of 100 runs. Evaluation 1 simulates both TS and T0 as time-

dependent processes. TS is constant and T0 time-dependent in Evaluation 2, TS is time-dependent 

and T0 constant in Evaluation 3. Column A shows the evolution of the subject's mood M; and 

column B the average number of drug intakes (red) and the sobriety index (blue). The gray shade 

in column A corresponds to SEM. The time-scales are minutes for column A, and days for column 

D. Further details of these simulations are reported in Figure 21. 
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Figure 16: Case Study 2 (cognitive weights and reward components). Simulations of virtual 

behavior for cigarette consumption over a period of 160 days. Cigarettes are available on the fifth 

day. Results are the average of 100 runs. Evaluation 1 simulates both TS and T0 as time-

dependent processes. TS is constant and T0 time-dependent in Evaluation 2, TS is time-dependent 

and T0 constant in Evaluation 3. In all evaluations, the recovery process H is activated at t = 1920 

and t = 2280 [hours] (in light pink) and stays active for 120 hours (dark pink). Column A shows the 

evolution of cognitive weights ωS (red), ωP (blue), and ωD (black); and column B the progression of 

T (blue), TS (black), and T0 (red). The gray shades correspond to SEM. The time-scales are hours 

for column A, minutes for column B. Further details of these simulations are reported in Figure 24. 
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Figure 17: Case Study 2 (mood and health state assessments). Simulations of virtual 

behavior for cigarette consumption over a period of 160 days. Cigarettes are available on the fifth 

day. Results are the average of 100 runs. Evaluation 1 simulates both TS and T0 as time-

dependent processes. TS is constant and T0 time-dependent in Evaluation 2, TS is time-dependent 

and T0 constant in Evaluation 3. In all evaluations, the recovery process H is activated at t = 1920 

and t = 2280 [hours] (in light pink) and stays active for 120 hours (dark pink). Column A shows the 

evolution of the subject's mood M; and column D the average number of drug intakes (red) and 

the sobriety index (blue). The gray shade in column A corresponds to SEM. The time-scales are 

minutes for column A, and days for column B. Further details of these simulations are reported in 

Figure 24. 
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Figure 18: Case Study 3 (cognitive weights and reward components). Simulations of virtual 

behavior for cigarette consumption over a period of 160 days. Cigarettes are available on the fifth 

day. Results are the average of 100 runs. Evaluation 1 simulates both TS and T0 as time-

dependent processes. TS is constant and T0 time-dependent in Evaluation 2, TS is time-dependent 

and T0 constant in Evaluation 3. In all evaluations, the recovery process H is activated at t ∈ 

{1920, 1960, 2000, 2040, 2280, 2320, 2360, 2400} [hours] (in light pink) and stays active for 15 hours 

(dark pink). Column A shows the evolution of cognitive weights ωS (red), ωP (blue), and ωD (black); 

and column B the progression of T (blue), TS (black), and T0 (red). The gray shades correspond to 

SEM. The time-scales are hours for column A, and minutes for column B. Further details of these 

simulations are reported in Figure 31.
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Figure 19: Case Study 3 (mood and health state assessments). Simulations of virtual 

behavior for cigarette consumption over a period of 160 days. Cigarettes are available on the fifth 

day. Results are the average of 100 runs. Evaluation 1 simulates both TS and T0 as time-

dependent processes. TS is constant and T0 time-dependent in Evaluation 2, TS is time-dependent 

and T0 constant in Evaluation 3. In all evaluations, the recovery process H is activated at t ∈ 

{1920, 1960, 2000, 2040, 2280, 2320, 2360, 2400} [hours] (in light pink) and stays active for 15 hours 

(dark pink). Column A shows the evolution of the subject's mood M; and column B the average 

number of drug intakes (red) and the sobriety index (blue). The gray shade in columns A 

corresponds to SEM. The time-scales are minutes for column A, and days for column B. Further 

details of these simulations are reported in Figure 31. 
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6.4 Concluding remarks 

The computational model presented in this article includes higher-level 

cognitive elements in addition to behavioral and neural elements. This may raise 

ethical questions and influence how addicted humans are viewed by society (59). 

A multi-leveled overlook of addiction that includes biological/psychological/social 

(35), and even spiritual (15) elements is suggested as a possible compromise to 

restrain such an undesirable possibility (36). The multiscale standpoint of the 

framework shown in Figure 12 aims to promote a more comprehensive 

understanding of addiction and provides prospect for recovery, which seems to 

occur more often than commonly believed (140). In the present chapter a 

multiscale computational model is developed to further explore the allostatic 

theory of addiction (3) in terms of a KR model (101) in line with the exploratory 

review in (102), which aims to engage hypothesis-driven research (148). Such an 

approach can facilitate the detection of ambiguous knowledge that requires future 

biological and computational exploration in order to better understand this 

disease. The framework presented in this chapter supports the view that 

integrative medicine can be an effective approach to improve treatment of drug 

addiction. 
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CHAPTER 7 

 

DISCUSSION AND CONCLUSION 

 

The computational framework for allostasis presented above unites and 

elaborates two earlier formal models (37,32). The first relies on a closed-loop 

representation of the pharmacokinetics, the pharmacodynamics, and a decision-

making processes delineating future cocaine consumption in rats (37). The 

second is a dynamical system model that encompasses neuropsychological and 

cognitive elements to mimic human occurrences of natural recoveries (32). The 

allostatic theory of addiction comprises within-system and between-system 

neuroadaptations that influence the brain's reward system: the former by a direct 

impact, and the latter by means of antireward system activations. The function of 

these adaptations is to balance the hedonic state of the addict and to provide the 

organism with a reasonable operational existence. Manifestations of the allostatic 

state come through mood alterations (3,51). 

The present manuscript is an exploratory instance of knowledge repository 

(KR) modeling for addiction (101) which investigates cognitive correlates of the 

allostatic theory. A KR model comprises a collection of empirical observations 

that are mathematically translated and unified to predict the natural course of an 

entity (101). This class of models promotes the identification of plausible 

hypotheses which, if experimentally tested, could provide pertinent knowledge to 

further improve the computational framework. The repetition of this investigative 
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process initiates a hypothesis-driven sequence of experiments supporting 

translational research (148). The present model assembles building blocks of 

neuropsychology, cognition, and behavior into a multiscale computational 

framework aiming to facilitate rational entailments of the allostatic theory. 

The computational description of a complex phenomenon such as drug 

use and abuse requires finding a compromise between two desirable but 

incompatible objectives. On the one hand, the biological components defining the 

model embrace a simplified ontology of addiction, and on the other hand, the 

mathematical features of the framework include a sizable number of elements 

and parameters making the model underconstrained. Moreover, a useful formal 

system should suggest testable hypotheses to further advance the investigated 

field. These perspectives are considered herein. 

 

7.1 Biological conjectures and limitations 

The simulations discussed in this investigation represent archetypal 

patterns of drug-seeking including transitions from recreational to heavy use, and 

rehabilitation. They express the comorbidity between addiction and mood 

depression for an addict vulnerable to both reward and antireward system 

neuroadaptations. As drug intake proceeds, the model estimates a steady 

decrease in the addict's mood that increasingly oscillates until the virtual subject 

reaches the satiety rate of drug consumption. This computational model also 

suggests a possible remission to the individual's healthy state as a consequence 
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of cognitive adjustments induced by conventional or alternative treatments. The 

model predicts a contraction in the addict's negative mood tendency and 

fluctuations while solely reward system neuroadaptations influence the hedonic 

valence of the individual. This rigidity endures during healing interventions as the 

model predicts stabilization of the subject's mood, rather than its increase. When 

the unique source of neuroadaptations affecting the subject's mood relies on the 

antireward system, the model predicts a noteworthy negative deflection of the 

subject's mood during the first number of drug intakes. The model also predicts 

that neuroadaptations occurring during healing periods, and that are uniquely 

induced by the antireward system, empower the individual with the possibility to 

regain a healthy mood state. These simulations also suggest that the satiety rate 

of drug consumption is reached more rapidly when the individual expresses only 

antireward system adaptations. 

An important biological limitation of this model resides in the omission of 

mechanisms responsible for the development of pharmacodynamic tolerance, 

which arises when receptors or second messengers are blunted by chronic 

exposure to drugs such as alcohol or opiates (11). One approach to overcome 

this shortcoming can be found in the expansion and incorporation of a cellular 

and molecular scale within the model. Such elaboration could also enhance the 

computational framework with a greater descriptive ability for diverse classes of 

drugs. For nicotine dependence, a suitable candidate lies in a previously 

presented KR model which describes how dopaminergic signaling in the VTA 
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increases through nicotine intake and influences synaptic plasticity in the dorsal 

striatum, making cigarette smoking compulsive (103). A complementary 

candidate resides in a model describing how variations of extracellular levels of 

dopamine and glutamate within the brain's reward system impact the virtual 

subject's likelihood of drug consumption (149). 

The presented model considers that the virtual subject is consuming some 

addictive substance rather than a specific kind. This is a major restriction of the 

framework which could be addressed by enhancing the pharmacokinetic (PK) 

module of the model. Previous studies present hypothetical but substance-

specific PK units that could be included in the model: e.g., for nicotine and 

alcohol as reviewed in (150), or cocaine (151). 

Furthermore, the model could be elaborated to incorporate elements 

related to medical conditions that occur frequently together with drug abuse, such 

as posttraumatic stress disorder, attention deficit hyperactivity disorder, and 

schizophrenia (152); as well as to include components of genetic regulatory 

networks pertinent to addiction (153). 

 

7.2 The model's high dimensionality 

A KR model is inclined toward a high-dimensionality due to a large number 

of descriptive variables, since its objective is to describe the studied phenomenon 

as comprehensively as possible. The predictions presented in this investigation 

rely on the high-dimensional dynamical model shown in Figure 12 that comprises 
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twenty-one time-dependent biological processes translated into the same number 

of mathematical expressions. In addition, there are seventy-one parameters, the 

setting of which can dramatically affect the model's behavior. Even though a 

mere approximation of the biological complexity delineating drug addiction in real 

life, such (computational) high-dimensionality could simulate an assortment of 

dynamics larger than the ones expressed by living creatures, and consequently 

limit the model's predictive power. The natural processes included in the 

presented computational framework are sizable, yet their descriptions are 

determined conservatively. For instance, the processes comprising the 

neuropsychological scale of the model have limited domains of definition which 

facilitate their tractability. These restricted domains reflect biological plausibility 

and ease the sensitivity analysis, necessary for the model's validation as 

discussed in (31). 

Another attempt of mathematical moderation resides in the definition of 

healing interventions. The same mathematical definition used with different 

calibrations to mimic conventional and alternative cures was intentionally 

deployed as a lower-bound estimation of real-life cleansing episodes. In fact, the 

minimal duration of nicotine replacement therapies ranges from three weeks to 

three months (143), and mindfulness meditation requires four weeks of training to 

effectively influence regions surrounding the ACC of humans (154). Even though 

broadly delineated and similarly defined, these healing emulations provisionally 

advocate that for some nicotine addicts short interventions closely spaced in time 
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(e.g., meditation episodes) have a more beneficial health impact on the brain's 

cognitive substrate than longer interventions (e.g., nicotine patches). This 

conjecture is supported by a recent translational study where memories related to 

drug consumptions are triggered at different times to facilitate their extinction and 

decrease heroin craving in recovering humans (155,156). The simulated healing 

processes also corroborate a recent cohort study debating how nicotine 

replacement therapies may not be the universal solution to attain long-term 

smoking abstinence (157). 

 

7.3 Conclusion: implications for treatments 

The current manuscript provides formal arguments, conditional upon the 

validity of the hypotheses defining the computational framework, in favor of a 

stronger consideration of the addict's cognitive state evolution throughout the 

treatment process. In particular, this investigation suggests that higher rates of 

rehabilitation from drug addiction in humans can be reached by combining 

medical therapies that employ pharmaceutical drugs and counseling along with 

non-conventional treatments. 

Several pharmacotherapies are available for smoking cessation, as for 

example nicotine in various forms (gums, patches, inhalers, tablets) and 

antidepressant drugs (144). Clinical studies show that these replacement 

therapies enhance the likelihood of rehabilitation by restraining drug craving 

during abstinence. The escalation of nicotine craving during smoking cessation is 
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lower for therapies involving the use of two medications rather than for 

monotherapies, and results in a higher cessation rate, respectively 54% and 45% 

in (157). Non-pharmacological interventions included in the therapy, such as 

behavioral counseling and personal support, aim to further increase smoking 

cessation rates and are recognized as primary components for the therapy's 

success (158). Behavioral counseling positively impacts cessation rates 

(159,160) by providing patients with coping skills effective in the reduction of 

withdrawal symptoms (161), but is less significant in preventing relapse (162). 

With respect to rehabilitation, the combination of pharmaceutical drugs is not 

effective on all occasions. For smokers with low dependence to nicotine and 

living in high-risk social environments (e.g., with a smoking partner) there is no 

significant difference in success rates of therapies involving one or the 

combination of two medications (161). 

Behavioral counseling and personal support are instances of behavioral-

cognitive therapies: non-pharmacological interventions which flourished from the 

1960s for the treatment of depression and anxiety (163,164,165). A 

complementary category of non-pharmacological interventions resides in mind-

body practices, which include mindfulness meditation, guided imagery, and 

relaxation (166). Both the definitions of behavioral-cognitive (165) and mind-body 

(166) practices rely on the beneficial impact that healthy cognitive states exert on 

the person's overall well being. A patient undergoing behavioral-cognitive therapy 

learns how to recognize and manage real life situations that are negatively 
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evaluated because of cognitive distortions, whereas mind-body practices provide 

the patient with a more realistic awareness that decreases irrational thoughts. In 

both cases the objective is to lead the patient to healthier physical and 

psychological states. 

Behavioral-cognitive practices have demonstrated their positive impact on 

smoking cessation (162,167), and mind-body techniques related to the treatment 

of nicotine addiction suffer from a shortage of related investigations (168), even 

though recent studies demonstrate their great potential. Preliminary experimental 

support in favor of mindfulness meditation as a practice decreasing relapse rates 

for post-rehabilitation patients was provided in a study including 168 participants 

who ceased the use of substances including alcohol, cocaine, and 

methamphetamines (169). 

The rational speculation that arises while considering pharmacological and 

non-pharmacological healing practices suggests that current therapies deploying 

one or multiple pharmacological means along with counseling will raise their 

success rates by uniting with alternative medical practices. The computational 

framework presented in this investigation provides formal arguments to endorse 

this conjecture as the allostatic state of an addict, assessed through mood 

variations, is shown to improve because of cognitive interventions provided by 

practices comparable to those of conventional and alternative medicine. 

If the predictions delivered by the computational model discussed in this 

investigation constitute a fair approximation to describe how cigarette smoking 
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influences the allostatic state of a human addicted to nicotine, then it is expected 

that an integrative medicine approach to drug rehabilitation will provide higher 

cessation rates and lower relapse rates than current therapies. Given that the 

allostatic theory of addiction is not limited to the description of a particular 

substance of abuse, this prediction should apply by extension also to addictive 

substances including heroin, alcohol, and others. 
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APPENDIX A 

 

SUPPLEMENTARY METHODS 

 

This Appendix reports the definitions of the computational framework in 

Figure 12. 

 

Notations 
Different time scales are used: t represents time in minutes, and t* 

represents time in hours. 

When used as a conditional term, the sum Z(s)

s=0

t

∑  is abbreviated with 

Z∑  and denotes the total number of drug intakes since the beginning of the 

simulation. 
The inequality t ≥ tGO indicates that the current time t is equal or grater than 

the time of the first drug intake tGO. The presented simulations use tGO = 5 [day]. 

The bounding function σ is defined as σ (x) =

0 if x < 0

x if x ∈ 0,1[ ]

1 if x >1









. 

The parameter ν, with ν ∈ [-0.05, 0.05], denotes the uniform noise that is 

different for every process and changes at each time step. 

 

 

MM1. Expanded PK/PD 

 
(Equation S1) Mood - M 

M (t) = rc(t)+ cd(t),  

where 
 rc(t) is the rush/comedown effect of the drug, defined below, and 

 cd(t) is the cognitive dissonance, defined below. 

 
(Equation S2) Rush/comedown effect of the drug - rc 

rc(t) = Z(s) ⋅ α −β ⋅
t − s

∆











2

⋅e
−
1

2

t−s

∆










2













s=0

t

∑ ,  

where 
 Z(t) is the occurrence of drug intakes, defined below, and 

 α, β, and ∆ are constants ∈ ! (e.g., α = 40, β = 60, and ∆ = 10). 
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(Equation S3) Cognitive distortion - cd 

cd(t +1) =
−T (t)+γ

M
⋅ ∆TSO(t*)−∆TSO(t *−1) if ∑Z ≥1

0 otherwise,






 

where 

 γM is a constant ∈ ! (e.g., γM = 0.3), 

 T(t) is the lowering effect on reward threshold, defined below, 

 ∆TSO(t*) = TS(t*) – T0(t*), where TS(t*) is the reward set point, and 

T0(t*) is the baseline reward threshold, both defined below, and 

 Z∑  is defined above. 

 
(Equation S4) Drug intakes - Z 

Z(t) =
1 if T (t) -T

S
(t*)> 0 and ∆

Z
≥ a and t ≥ t

GO

0 otherwise,






 

where 
 T(t) is the lowering effect on reward threshold, defined below, 

 TS(t*) is the reward set point, defined below, 

 ∆Z represents the number of minutes elapsed since the last drug 

intake, and 

 α is a constant ∈ " (e.g., α = 30 [minute]). 

 
(Equation S5) Lowering effect on reward threshold - T 

T (t) = T0 (t*)−
Tmax ⋅C(t)

T50 +C(t)
,  

where 
 T0(t*) is the baseline reward threshold, defined below, 

 Tmax is the maximum effect of the drug (e.g., Tmax = 120), 

 T50 is the index of drug potency (e.g., T50 = 588.6 [nM]), and 

 C(t) is the drug concentration in the brain, defined below. 

 
(Equation S6) Drug concentration in the brain - C 

C(t) = D ⋅
k
12

V
b
(α −β)

⋅ Z(s) ⋅ e−β⋅(t−s) − e−α⋅(t−s)( )
s=0

t

∑ ,  

where 
 D is the drug unit dose (e.g., D = 250 [μg]), 

 k12 is the compartment rate constant (e.g., k12 = 0.0054), 

 Vb is the apparent volume of distribution in the brain (e.g., Vb = 1.67, 

from (146)), 

 α and β are the aggregate rate constants as discussed in (37), and 
 Z(t) is the occurrence of drug intakes, defined above. 
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(Equation S7) Reward set point - TS 

T
S
(t *+1) =

λ ⋅ 1− e−β⋅d( )+TS (t
c
) if G(t*) ≥ 0 and ∑Z ≥1 

T
S
(t
c
) ⋅e−γ ⋅d if G(t*)< 0 and ∑Z ≥1 

T
S
(t*) otherwise,










 

where 
 TS(0) is a constant (e.g. TS(0) = 75), 

 β, γ, and λ are constants ∈ !
+
 (e.g., β = 0.05, γ = 0.05, λ = 100), 

 d is a time-steps counter, reset to 0 when the sign of G(t*) changes, 

 tc is the time t* of last change of sign of G(t*), 

 G(t*) is the tendency of drug-seeking behavior, defined below, and 

 Z∑  is defined above. 

 
(Equation S8) Baseline reward threshold - T0 

T
0
(t *+1) =

T
0
(t*)+δ

T 0
⋅ −2 ⋅H (t*)+1( ) ⋅ ωS

(t*)−ω
P
(t*)+ω

D
(t*)( ) if ∑Z ≥α

T
0
(t*) otherwise,






 

where 
 T0(0) is a constant (e.g. T0(0) = 100), 

 δT0 is a constant ∈ !
+
 (e.g., δT0 = 0.03), 

 H(t*) is the healing intervention process, defined below, 

 ωS(t*), ωP(t*), and ωD(t*) are the cognitive time-dependent weights, 

defined below, 

 α is a constant ∈ "
+
 (e.g., α = 20 [intakes]); similar to stage 4 in 

(147), and 

 Z∑  is defined above. 

 

 

MM2. Cognitive scale 

 
(Equation S9) Rationality density - rd 

rd(t*) = −ω
S
(t*) ⋅S(t*)+ω

P
(t*) ⋅P(t*)−ω

D
(t*) ⋅D(t*)−

−ω
Q
⋅AQ(t*)+ω

A
⋅ AS(t*)+ AP(t*)+ AD(t*)[ ]+ωH

⋅H (t*),
 

where 

 ωS(t*), ωP(t*), and ωD(t*) are the cognitive time-dependent weights, 

defined below, 
 S(t*), P(t*), and D(t*) are the internal processes, defined below, 

 AS(t*), AP(t*), AD(t*), and AQ(t*) are the external processes, defined 

below, and 
 H(t*) is the healing intervention process, defined below. 
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(Equation S10) Cognitive weights - ωS, ωP, ωD, ωQ, ωA, ωH 

• For i ∈ {Q, A, H}: 

ω = c 

where 

 c is a constant ∈ !
+
 (e.g., ωQ = 0.28, ωA = 0.35, ωH = 0.8). 

 

• For i ∈ {S, P, D}: 

ω
i
(t*) =max α

i
(t *−1)+ϑ

i
⋅H (t*), 0( ),  

with 

α
i
(t *+1) =

α
i
(t*)+ϑ

i
if A

α
i
(t*)−η

i
if B

α
i
(t*)+ϑ

i
−η

i
if A and B

α
i
(t*) otherwise,













 

where 

 αi(0) is a constant (e.g., αS(0) = 0.7, αP(0) = 1.2, αD(0) = 1), 

 Conditions A and B are conditional terms defined as: 

  A : if H(Θ(t*)) = 1 and pA(t*) < P(Hηi), 
  [for some probability, and if H is active, and at last time-step of activation] 

   where Θ(t*) is defined below 

  B : if Z(s)
s=t*−1

t*

∑ > 0 and p
B
(t*)< P(Zηi) and ∑Z ≤ β,  

 [for the first number of drug intakes, and for a certain probability, and if in 

the past hour there was at least one drug intake] 

 where β is a constant ∈ "
+
 (e.g., β = 15 [intakes]), 

similar to stage 3 in (147) 
 pA(t*) and pB(t*) are values sampled from a standard uniform 

distribution at each time-step t*, 

 P(Hηi) and P(Zηi) are constants ∈ [0,1] which denote, respectively, 

the probabilities of permanent changes in cognitive weights ωS(t*), 

ωP(t*), and ωD(t*) after a healing intervention or after a drug intake, 

with 

(e.g.) S P D 

P(Hηi) P(HηS) = 0.7 P(HηP) = 0.9 P(HηD) = 0.6 

P(Zηi) P(ZηS) = 0.2 P(ZηP) = 0.1 P(ZηD) = 0.05 

 
 H(t*) is the healing intervention process, defined below, and 

 ϑi and ηi are constants in the following domains: 

 S P D 

ϑi ∈ !
–
 (e.g., ϑS = –0.26) ∈ !

+
 (e.g., ϑP = –0.42) ∈ !

–
 (e.g., ϑS = –0.32) 

ηi ∈ !
–
 (e.g., ηS = –0.1) ∈ !

+
 (e.g., ηS = 0.05) ∈ !

–
 (e.g., ηS = –0.15) 
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(Equation S11) Cognitive state - cs 

cs(t*) =
1

2
tanh α ⋅cs(t *−1)+β ⋅ rd(t*)+γ( )+

1

2
 

where 

 α and β are constants ∈ !
+
 (e.g., α = 0.25, β = 0.25) 

 γ is a constant ∈ ! (e.g., γ = –0.4052); this constant can also be 

computed using the following equation, as described in (31): 

  γ =
1

2
α −β ⋅ ω

S
(0)−ω

P
(0)+ω

D
(0)+ω

Q
+ω

A( )



 , where 

 ωS(0), ωP(0), and ωD(0) a are the values of the cognitive 

time-dependent weights at time t* = 0, 

   α and β are the same constants used for cs(t*). 

 

 

MM3. Healing scale 

 
(Equation S12) Healing intervention - H 

H (t*) =
1 if p(t*)< P(nr) or if d ∈ 1,Θ(t*)[ ]

0 otherwise,






 

where 

 P(nr) is the probability of an healing intervention, P(nr) ∈ [0,1]; this 

probability can be based on data as in (32), 
 p(t*) is a value sampled from a standard uniform distribution at each 

time-step t*; in the simulations presented in this article, H 

processes are triggered at specific times, 
 d is a time step counter reset at every instance of H, and 

 Θ(t*) is the activation time of H, which increases for consecutive 

instances: 

Θ(t*) =

Θ(t*)+δi if p(t*)< P(nr)

Θ(t *−1) if d ∈ 1,Θ(t *−1)[ ]

max 0,  Θ(t*)−δd( ) otherwise,










 

 

  where 

 δi and δd are constants ∈ "
+
, (e.g., δi = 15, δd = 1 

[hour]). 
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MM4. Neuropsychological scale 

 
The internal processes are S, P, D, and Q (29). The external triggers are 

AS, AP, AD, and AQ (29). 

 
(Equation S13) Stress - S 

S(t*) =

σ 1− 1− S
0( ) ⋅e−β⋅d +ν( ) if G(t*)> 0

σ S(t *−1)+ν( ) if G(t*) = 0

σ S
0
⋅e−γ ⋅d +ν( ) if G(t*)< 0,













 

where 
 S0 is the value S(tc), where tc is the time t* of last change of sign of 

G(t*), 

 β and γ are constants ∈ !
+
 (e.g., β = 0.002, γ = 0.002), 

 d is a time-steps counter, reset to 0 when the sign of G(t*) changes, 

 G(t*) is the tendency of drug-seeking behavior, defined below, and 

 ν and σ (x) are defined above. 

 
(Equation S14) Pain - P 

P(t*) =

σ P
0
⋅e−β⋅d +ν( ) if G(t*)> 0

σ P(t *−1)+ν( ) if G(t*) = 0

σ 1− (1−P
0
) ⋅e−γ ⋅d +ν( ) if G(t*)< 0,













 

where 
 P0 is the value P(tc), where tc is the time t* of last change of sign of 

G(t*), 

 β and γ are constants ∈ !
+
 (e.g., β = 0.0002, γ = 0.01), 

 d is a time-steps counter, reset to 0 when the sign of G(t*) changes, 

 G(t*) is the tendency of drug-seeking behavior, defined below, and 

 ν and σ (x) are defined above. 
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(Equation S15) Drug craving - D 

D(t*) =

σ 1− 1−D
0( ) ⋅e−β⋅d +ν( ) if G(t*)> 0 and d ∈ [1,τ ]

σ D '
0
⋅e−β⋅d +ν( ) if G(t*)> 0 and d > τ

σ D(t *−1)+ν( ) if G(t*) = 0

σ 1− 1−D
0( ) ⋅e−γ ⋅d +ν( ) if G(t*)< 0,















 

where 
 D0 is the value D(tc), where tc is the time t* of last change of sign of 

G(t*), 

 D'0 is the value D(tc+τ), where tc is the time t* of last change of sign 

of G(t*), and τ is a constant ∈ !
+
 (e.g., τ = 20 [hour]), 

 β and γ are constants ∈ "
+
 (e.g., β = 0.00002, γ = 0.002), 

 d is a time-steps counter, reset to 0 when the sign of G(t*) changes, 

 G(t*) is the tendency of drug-seeking behavior, defined below, and 

 ν and σ (x) are defined above. 

 
(Equation S16) Saliency to drug cues - Q 

Q(t*) =

σ Q(t *−1)+ν( ) if G(t*)> 0 and d ∈ [1,τ ] or if G(t*) = 0

σ Q '
0
⋅e−β⋅d +ν( ) if G(t*)> 0 and d > τ

σ 1− 1−Q
0( ) ⋅e−γ ⋅d +ν( ) if G(t*)< 0,













 

where 
 Q0 is the value Q(tc), where tc is the time t* of last change of sign of 

G(t*), 

 Q'0 is the value Q(tc+τ), where tc is the time t* of last change of sign 

of G(t*), and τ is a constant ∈ !
+
 (e.g., τ = 10 [hour]), 

 β and γ are constants ∈ "
+
 (e.g., β = 0.002, γ = 0.0005), 

 d is a time-steps counter, reset to 0 when the sign of G(t*) changes, 

 G(t*) is the tendency of drug-seeking behavior, defined below, and 

 ν and σ (x) are defined above. 
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(Equation S17) Acute shock - AS 

AS(t*) =

S
0

if G(t*)> 0 and p(t*)< P(AS) or if d ∈ [1,τ
1
]

ρ ⋅AS(t *−1) if d ∈ [τ
1
,τ

2
]

0 otherwise,









 

where 

 S0 and ρ are constants ∈ !
+
 (e.g., S0 = 0.75, ρ = 0.9), 

 G(t*) is the tendency of drug-seeking behavior, defined below, 

 p(t*) is a value sampled from a standard uniform distribution at each 

time-step t*, 

 P(AS) is the probability of an acute shock (e.g., P(AS) = 0.01), 

 d is a time-steps counter, reset to 0 when a new AS(t*) arises, and 

 τ1 and τ2 are constants ∈ "
+
 with τ2 > τ1 (e.g., τ1 = 20, τ2 = 60 [hour]). 

 
(Equation S18) Acute trauma - AP 

AP(t*) =

P
0

if G(t*)< 0 and p(t*)< P(AP) or if d ∈ [1,τ
1
]

ρ ⋅AP(t *−1) if d ∈ [τ
1
,τ

2
]

0 otherwise,









 

where 

 P0 and ρ are constants ∈ !
+
 (e.g., P0 = 0.45, ρ = 0.4), 

 G(t*) is the tendency of drug-seeking behavior, defined below, 

 p(t*) is a value sampled from a standard uniform distribution at each 

time-step t*, 

 P(AP) is the probability of an acute shock (e.g., P(AP) = 0.03), 

 d is a time-steps counter, reset to 0 when a new AP(t*) arises, and 

 τ1 and τ2 are constants ∈ "
+
 with τ2 > τ1 (e.g., τ1 = 15, τ2 = 50 [hour]). 

 
(Equation S19) Acute drug priming - AD 

AD(t*) =

D
0

if G(t*)> 0 and p(t*)< P(AD) or if d ∈ [1,τ
1
]

ρ ⋅AD(t *−1) if d ∈ [τ
1
,τ

2
]

0 otherwise,









 

where 

 D0 and ρ are constants ∈ !
+
 (e.g., D0 = 0.75, ρ = 0.9), 

 G(t*) is the tendency of drug-seeking behavior, defined below, 

 p(t*) is a value sampled from a standard uniform distribution at each 

time-step t*, 

 P(AD) is the probability of an acute shock (e.g., P(AD) = 0.03), 

 d is a time-steps counter, reset to 0 when a new AD(t*) arises, and 

 τ1 and τ2 are constants ∈ "
+
 with τ2 > τ1 (e.g., τ1 = 5, τ2 = 30 [hour]). 
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(Equation S20) Acute drug cue - AQ 

AQ(t*) =

Q(t*) if p(t*)< P(AQ)

AQ(t *−1) if d ∈ [1,τ
1
]

ρ ⋅AQ(t *−1) if d ∈ [τ
1
,τ

2
]

0 otherwise,













 

where 
 Q(t*) is the saliency to drug cues, defined above, 

 ρ is a constants ∈ !
+
 (e.g., ρ = 0.9), 

 p(t*) is a value sampled from a standard uniform distribution at each 

time-step t*, 

 P(AQ) is the probability of an acute shock (e.g., P(AQ) = 0.02), 

 d is a time-steps counter, reset to 0 when a new AQ(t*) arises, and 

 τ1 and τ2 are constants ∈ "
+
 with τ2 > τ1 (e.g., τ1 = 20, τ2 = 40 [hour]). 

 

 

MM5. Behavioral scale 

 
(Equation S21) Tendency of drug-seeking behavior - G 

G(t*) = I ⋅cs(t*)−C ⋅ 1− cs(t*)( ) , 

where 
 I and C are a constant (e.g., I = 1, C = 1), 

 cs(t*) is the cognitive state, defined above. 
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APPENDIX B 

 

SUPPLEMENTARY FIGURES 

 

This Appendix reports the supplementary figures discussed in Chapter 6. 

The abbreviation SEM stands for standard error of the mean.  
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APPENDIX C 

 

SUPPLEMENTARY TABLE 

 

Table 2: Values of the parameters as used in Figures 13 to 37. 

 

 
Eq. Parameter Value 

S1,S9 N/A N/A 

S2 

α 40 

β 60 

∆ 10 

S3 γ 0.3 

S4 α 30 

S5 
Tmax 120 

T50 588.6 

S6 

D 250 

k12 0.0054 

Vb 1.67 

S7 

TS(0) 75 

β 0.05 

γ 0.05 

λ 100 

S8 

T0(0) 100 

δT0 0.03 

α 20 

S10 

ωQ 0.28 

ωA 0.35 

ωH 0.8 

αS(0) 0.7 

αP(0) 1.2 

αD(0) 1 

P(HηS) 0.2, 0.4, 0.8 

P(HηP) 
0.175, 0.35, 

0.7 

P(HηD) 0.8, 0.7, 0.6 

P(ZηS) 
0.05, 0.1, 0.2, 

0.4, 0.8 

P(ZηP) 
0.025, 0.05, 

0.1, 0.2, 0.4 

P(ZηD) 
0.0125, 0.025, 

0.05, 0.1, 0.2 

υS –0.26 

υP 0.42 

υ D –0.32 

ηS –0.1 

ηP 0.05 

ηD –0.15 

S11 

α 0.25 

β 0.85 

γ –0.4052 

S12 
δi 15 

δd 1 

S13 
β 0.002 

γ 0.002 

S14 
β 0.0002 

γ 0.01 

S15 

τ 20 

β 0.00002 

γ 0.002 

S16 

τ 10 

β 0.002 

γ 0.0005 

S17 

S0 0.75 

ρ 0.9 

P(AS) 0.01 

τ1 20 

τ2 60 

S18 

P0 0.45 

ρ 0.4 

P(AP) 0.03 

τ1 15 

τ2 50 

S19 

D0 0.65 

ρ 0.55 

P(AD) 0.03 

τ1 5 

τ2 30 

S20 

ρ 0.9 

P(AQ) 0.02 

τ1 20 

τ2 40 

S21 
I 1 

C 1 
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