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ABSTRACT

ACCURATE AND ROBUST MECHANICAL MODELING
OF PROTEINS

FEBRUARY 2013

NAOMI K. FOX

B.A., SMITH COLLEGE

B.E., DARTMOUTH COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ileana Streinu

Through their motion, proteins perform essential functions in the living cell.

Although we cannot observe protein motion directly, over 68,000 crystal structures are

freely available from the Protein Data Bank. Computational protein rigidity analysis

systems leverage this data, building a mechanical model from atoms and pairwise

interactions determined from a static 3D structure. The rigid and flexible components

of the model are then calculated with a pebble game algorithm, predicting a protein’s

flexibility with much more computational efficiency than physical simulation. In prior

work with rigidity analysis systems, the available modeling options were hard-coded,

and evaluation was limited to case studies.

The focus of this thesis is improving accuracy and robustness of rigidity analysis

systems. The first contribution is in new approaches to mechanical modeling of non-

covalent interactions, namely hydrogen bonds and hydrophobic interactions. Unlike

v



covalent bonds, the behavior of these interactions varies with their energies. I sys-

tematically investigate energy-refined modeling of these interactions. Included in this

is a method to assign a score to a predicted cluster decomposition, adapted from the

B-cubed score from information retrieval. Another contribution of this thesis is in

new approaches to measuring the robustness of rigidity analysis results. A protein’s

fold is held in place by weak noncovalent interactions, known to break and form dur-

ing natural fluctuations. Rigidity analysis has been conventionally performed on only

a single snapshot, rather than on an entire trajectory, and no information was made

available on the sensitivity of the clusters to variations in the interaction network. I

propose an approach to measure the robustness of rigidity results, by studying how

detrimental the loss of a single interaction may be to a cluster’s rigidity. The accom-

panying study shows that, when present, highly critical interactions are concentrated

around the active site, indicating that nature has designed a very versatile system for

transitioning between unique conformations.

Over the course of this thesis, we develop the KINARI library for experimenting

with extensions to rigidity analysis. The modular design of the software allows for

easy extensions and tool development. A specific feature is the inclusion of several

modeling options, allowing more freedom in exploring biological hypotheses and future

benchmarking experiments.

vi



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 KINARI: software for rigidity analysis, with applications in
molecular modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Toward improving modeling accuracy in protein rigidity
analysis systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Characterizing robustness of rigidity results . . . . . . . . . . . . . . . . . . . . 7

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Primer on rigidity theory and the pebble game algorithm . . . . . . . . . . . . . 10
2.2 A short introduction to protein structure and flexibility . . . . . . . . . . . . . . . 15
2.3 Methods for studying protein structure and motion . . . . . . . . . . . . . . . . . . 17

2.3.1 Laboratory experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Computational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Prior work using protein rigidity analysis systems . . . . . . . . . . . . . . . . . . . . 23
2.5 Historical overview of development of rigidity analysis theory and

applications to molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



3. KINARI: SOFTWARE FOR RIGIDITY ANALYSIS, WITH
APPLICATIONS IN MOLECULAR MODELING . . . . . . . . . . . . . 32

3.1 Motivation: mechanically accurate modeling for protein rigidity
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Key concepts in KINARI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1.1 Curation step 1: Specify models, chains, ligands and
water molecules to retain . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1.2 Curation step 2: Remove alternate atoms and add
hydrogen atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1.3 Curation step 3: Calculate chemical bonds and
interactions, and assign energies. . . . . . . . . . . . . . . . . . 37

3.2.1.4 Curation step 4: Prune undesired interactions or add
custom chemical constraints. . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Modeling molecules as body-bar-hinge frameworks . . . . . . . . . . . . . 40

3.2.2.1 Algorithm for converting a macromolecule to a
body-bar-hinge framework . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2.2 Converting to residue-level clusters . . . . . . . . . . . . . . . . . . 47

3.3 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Kernel Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 KINARI Molecular library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 KINARI-Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3.2 Case study of Cytochrome-c (1HRC), to

demonstrate KINARI-Web . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 KINARI-Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Case studies comparing results of KINARI v1.0 with previously
published rigidity analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Case study of Lysine-Arginine-Ornithine Binding Protein . . . . . . . 60
3.4.2 Case study of HIV-1 Protease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Case study of Dihydrofolate Reductase . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.4 Case study of Adenylate Kinase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



4. BENCHMARKING A RIGIDITY ANALYSIS SYSTEM . . . . . . . . . . 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Comparative cluster decomposition scoring . . . . . . . . . . . . . . . . . . . 69
4.2.2 Benchmark data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Benchmarking toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5. ENERGY REFINED MODELING OF NONCOVALENT
INTERACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Background and Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Hydrogen bonds in proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Hydrophobic interactions in proteins . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.3 Non-generic models and rigidity theory . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Modeling interactions with a bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Modeling weak hydrogen bonds as bars . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.3 Calculating hydrophobic interaction energies and modeling as

bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Cluster decomposition evaluation with decomposition
methods 1 to 3, all-floppy and all-rigid baselines and
KINARI v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Cluster decomposition evaluation with decomposition method
4, discarding weak hydrogen bonds. . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 Cluster decomposition evaluation with decomposition method
5, modeling weak hydrogen bonds as bars. . . . . . . . . . . . . . . . . . 95

5.4.4 Cluster decomposition evaluation with decomposition method
6, when using hydrophobic interaction energy cutoff. . . . . . . . . 99

5.4.5 Cluster decomposition evaluation with decomposition method
7, varying both hydrogen bond energy and hydrophobic
interaction energy cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6. EVALUATING ROBUSTNESS OF RIGIDITY RESULTS . . . . . . . 104

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Identifying the critical and redundant interactions within a
cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2 Scoring of clusters by redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.3 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.4 Redundancy Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Analysis of multiple conformations . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1.1 Adenylate Kinase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.1.2 Dihydrofolate Reductase . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.1.3 DNA Polymerase β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.1.4 HIV-1 Protease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.2 Correlating redundancy and foldons, case study of
Cytochrome-c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.3 Survey on a Pdomain benchmark data set . . . . . . . . . . . . . . . . . . . 125
6.4.4 Comparison with other techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.5 Further directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7. EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1 Applying rigidity analysis to a larger family of mechanical
frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.0.1 Atom-Body Structures and Tay’s Theorem . . . . . . . . . . 133
7.1.0.2 Identifying combinatorial degeneracies . . . . . . . . . . . . . . 139
7.1.0.3 Repairing and reducing combinatorial

degeneracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.1.0.4 Rigidity analysis on non-generic frameworks . . . . . . . . . 145

7.2 Extending benchmarking of rigidity analysis systems . . . . . . . . . . . . . . . . 145
7.3 Improving modeling accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4 Characterizing robustness of rigidity results . . . . . . . . . . . . . . . . . . . . . . . . 148

x



8. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.1.1 KINARI Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1.2 Towards improving accuracy of protein rigidity analysis

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.1.3 Characterizing robustness of rigidity analysis results. . . . . . . . . . . 153

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xi



LIST OF TABLES

Table Page

3.1 Curation steps to prepare protein data for rigidity analysis . . . . . . . . . . . . 36

3.2 Default curation parameter settings in KINARI v1.0 . . . . . . . . . . . . . . . . . 36

3.3 Default modeling parameter settings in KINARI v1.0 . . . . . . . . . . . . . . . . . 44

3.4 A comparison of the flexible loop regions detected by MSU-FIRST
and KINARI v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Calculation of B-cubed recall, precision, and F1-scores for the small
examples shown in Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 B-cubed scores for KINARI v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Frequency of hydrogen bonds which occur in special configurations . . . . . 81

5.2 Evaluated rigid cluster decomposition methods . . . . . . . . . . . . . . . . . . . . . . 92

5.3 B-cubed scores of each decomposition method on the benchmark data
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Prevalence of critical and redundant interactions in the largest rigid
clusters (LRCs) of the MSU-FIRST and Gerstein Lab data
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Critical interactions in Adenylate Kinase (open, 1DVR) . . . . . . . . . . . . . . 113

6.3 Critical interactions in largest rigid cluster of Adenylate Kinase
closed conformation (1AKY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Critical interactions in Dihydrofolate Reductase (1RA1). . . . . . . . . . . . . . 118

6.5 Critical interactions in the largest rigid cluster of DNA polymerase β
(2FMQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xii



6.6 Critical interactions in the largest rigid cluster of HIV-1 Protease
(1HTG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.7 Redundancy scores for the five largest rigid clusters of Cytochrome c
(1HRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 Dual of the example hypergraph shown in Figure 7.1. . . . . . . . . . . . . . . . . 135

7.2 The intersection of the hyper edges of the dual helps us to identify
hinges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xiii



LIST OF FIGURES

Figure Page

1.1 Steps of Protein Rigidity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 KINARI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Examples of planar bar-and-joint frameworks . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Examples of 3D body-bar and body-hinge frameworks . . . . . . . . . . . . . . . . 12

2.3 A body-bar-hinge framework and its associated Tay graph . . . . . . . . . . . . 13

2.4 Demonstration of the pebble game algorithm for determining rigidity
of a 2D bar-and-joint framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The chemical composition of the protein backbone . . . . . . . . . . . . . . . . . . . 15

2.6 Secondary structure motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Two conformations of HIV-1 protease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Crystal structure of closed conformation of HIV-1 Protease (1HVR)
colored by B-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 A 2D dilution plot produced by ASU-FIRST on Cytochrome-c
(1HRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Comparison of steps performed by KINARI and ASU-FIRST . . . . . . . . . . 34

3.2 Rigid cluster decomposition of proline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Converting a molecule to a body-bar-hinge framework. . . . . . . . . . . . . . . . 41

3.4 Hydrophobic interaction modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Mechanical equivalence of a pseudo-atom chain and multi-bar
modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiv



3.6 Hydrogen bond modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 KINARI Components (duplicate of Figure 1.2) . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Rigidity analysis applied to a generic body-bar-hinge framework. . . . . . . . 50

3.9 UML class diagram of selected classes from KINARI Kernel library
(KINARI-Lib). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Example code for invoking pebble game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Example code for body-bar-hinge framework rigidity analysis. . . . . . . . . . 53

3.12 UML class diagram of selected classes from KINARI Molecular
library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.13 Example code for protein rigidity analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.14 Demonstration of the KINARI-Web interactive visualizer . . . . . . . . . . . . . 57

3.15 Rigid cluster decompositions of lysine-arginine-ornithine binding
protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.16 Rigid cluster decompositions of HIV-1 Protease . . . . . . . . . . . . . . . . . . . . . . 62

3.17 Rigid cluster decompositios of Dihydrofolate Reductase . . . . . . . . . . . . . . . 64

3.18 Rigid cluster decompositions of Adenylate Kinase . . . . . . . . . . . . . . . . . . . . 65

4.1 Three decompositions on the same example protein to demonstrate
the B-cubed cluster decomposition score. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Comparison of KINARI v1.0 B-cubed scores against all-rigid
baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Definition of a hydrogen bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Hydrogen bond configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 The distributions of energies of hydrogen bonds varies based on its
configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Examples of generic and non-generic body-bar-hinge frameworks and
associated graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xv



5.5 Hydrogen bonds and hydrophobic interactions computed on a section
of α-helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Comparison of B-cubed scores on RigidFinder data set, as shown in
Table 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 RigidFinder and KINARI decompositions of Pyruvate Phosphate
Dikinase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.8 Accuracy of rigid cluster decompositions on Calmodulin (1CTR)
improves with new modeling approaches . . . . . . . . . . . . . . . . . . . . . . . . 101

5.9 Mean optimal cutoff energies for hydrogen bonds and hydrophobics in
evaluation of decomposition method 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Hydrogen bonds and hydrophobic interactions in the largest rigid
cluster of Cytochrome c (1HRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Case study of Adenylate Kinase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Case study of Dihydrofolate Reductase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Case study of DNA Polymerase β (2FMQ) . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Critical interactions in HIV-1 Protease (1HTG) . . . . . . . . . . . . . . . . . . . . . 122

6.6 Case study of Cytochrome-c (1HRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Case study of SNase protein (1SNP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Prevalence of critical interactions in Pdomain benchmark data
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1 Example atom-body structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Examples of joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Example hinges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Hinge incidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5 Molecular joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.6 Non-molecular joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvi



7.7 Example application of Module 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.8 Example application of Module 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.10 Example of metal-binding interactions in proteins . . . . . . . . . . . . . . . . . . . 148

xvii



CHAPTER 1

INTRODUCTION

Through their motion, proteins perform essential functions in the living cell. Their

mechanical and functional properties are dependent on their 3D shapes. In recent

years, the growth of the Protein Data Bank has provided a wealth of structural data,

with over 68,000 protein crystal structure data files freely available to download. For

many well-studied proteins, structural data on multiple unique conformations are

often available [18]. However, typically these structures are limited to the low energy

conformations. Available laboratory methods to study conformational change do not

produce atom-level data.

Computational methods hold promise in inferring protein motion from laboratory

experimental data. The most accurate and extensively-developed of these is physics-

based simulation, or molecular dynamics (MD). Conventional MD operates on a very

fine-grained representation of a macromolecule, incorporating all atoms and relevant

pairwise inter-atomic forces. Although its accuracy for studying atomic-level protein

motions is unmatched [39], MD proves to be quite computationally expensive. For ex-

ample, the first millisecond timescale MD simulation on a 58 residue protein required

over two months to compute on the Anton supercomputer in 2009 [57].

An alternative computational approach, protein rigidity analysis processes molec-

ular data and provides a course-grained representation describing the mechanics of

the molecule. The course-grained representation can be studied directly, or lever-

aged in motion generation methods [34]. Figure 1.1 shows the steps undertaken by

our protein rigidity analysis system, KINARI. Using the set of atoms in the PDB
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Figure 1.1: Steps of Protein Rigidity Analysis

and calculated inter-atomic interactions, a mechanical model of the protein is built.

The rigid and flexible regions of the model are then determined, with mathematical

guarantees, via an efficient graph-based algorithm. For a typical 100-residue protein,

rigidity analysis is completed in seconds. Because rigidity analysis is so fast, it is

feasible to analyze very large data sets.

Accuracy in the prediction of the flexible and rigid regions of the protein is of key

importance for understanding the protein’s behavior. The inclusion or exclusion of

one inter-atomic interaction in the input can have a drastic impact on the rigidity

results. In proteins, the function of the active site, where binding with other molecules

occurs, is often dictated by the mobility of adjacent loops. A method with strong

predictive power would successfully capture the flexibility of the loops within the

small region, while still detecting domains in which the relative mobility between

atoms is low.

Protein rigidity analysis was pioneered by Jacobs, Thorpe, and collaborators,

and implemented in the software MSU-FIRST, ASU-FIRST, and the Flexweb server

[10, 45, 48] (http://flexweb.asu.edu). In case studies on four proteins, flexibility

predictions by the MSU-FIRST software were shown to correlate well with experi-

mental evidence [47, 48]. But this validation was insufficient to prove that the same

performance could be expected on any protein. Also, many design decisions were

hard-coded into the software, hindering the development and testing of new model-

ing methods.
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1.1 Thesis contributions

We now describe the three main contributions made in this thesis. For the first

contribution, we have developed KINARI, an experimental software platform for val-

idating the predictive power of protein rigidity analysis. This was a collaborative

effort within Streinu’s Linkage lab, to address the need to experiment with different

modeling options. The second and third contributions are refinements we have made

towards this validation effort. The first refinement is toward improving modeling ac-

curacy of noncovalent interactions with new approaches. As part of this contribution,

we discuss the development of an evaluation and benchmarking methodology. The

second refinement is toward characterizing the robustness of rigidity analysis results.

In the next three subsections, we provide the motivations for each of these contri-

butions, as well as a short summary of the work we have undertaken.

1.1.1 KINARI: software for rigidity analysis, with applications in molec-

ular modeling

In prior rigidity analysis systems, modeling and curation options were limited, and

the software was not designed for modeling experimentation. In particular, the me-

chanical model representation in ASU-FIRST was incorrect, resulting in rigid clusters

which were not maximal. Also, no software libraries were available for performing

mechanical modeling or rigidity analysis. To address these limitations, we have have

developed KINARI to provide a general, well-tested, versatile library for rigidity anal-

ysis of molecular structures (not just proteins), which is easy to integrate in larger

applications.

In this thesis, we describe the concepts behind KINARI. We also give an overview

of the software architecture and detail how the modeling features are implemented.

Figure 1.2 shows the main components that fall under the KINARI project. All work

was completed under the direction of Prof. Ileana Streinu, who designed the soft-
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Figure 1.2: KINARI Components. The names of the software engineer contributors
are listed for each component. The core technology of our rigidity analysis applica-
tions lies in the Kernel library.

ware and contributed the mechanical modeling scheme. As part of my thesis work,

I implemented the kernel library and modeling code in the molecular library. Filip

Jagodzinski implemented the non-trivial task of PDB file parsing, and performed

much of the profiling. His thesis work focuses on correlating rigidity metrics with

protein stability data derived from laboratory experiments. Yang Li, Smith 2011,

wrote the bulk of the code for the web front-end and Jmol-based visualizer. We re-

leased the KINARI-Web server in 2011 with a publication in the NAR special web

server issue [21]. We followed this release with a tutorial at BIBM 2011 [80]. The ker-

nel library, was released under the name KINARI-Lib, with a corresponding tutorial,

in June of 2012 at the Minisymposium on Publicly Available Geometric/Topological

Software [22].
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1.1.2 Toward improving modeling accuracy in protein rigidity analysis

systems

Building on KINARI, we propose new approaches to mechanical modeling of non-

covalent interactions, namely hydrogen bonds and hydrophobic interactions. These

interactions are mainly responsible for stabilizing a protein’s 3D fold. In previous

work, hydrogen bonds were modeled as mechanically equivalent to covalent bonds,

fixing bond length and bond angles at incident atoms [10,21,32,48]. It has been ob-

served early on that such a method may lead to inaccurate results, such as an almost

complete rigidification of the protein model. Since it is known that not all hydrogen

bonds have the same strength, an energy function was applied to prune the weakest

bonds and exclude them from the model [48]. A universal hydrogen bond energy cut-

off, which would produce biologically credible results for any protein input, has never

been found. Wells et al. have pointed out the discrepancies in the chosen hydrogen

bond energy cutoffs used in a number of previous studies in the literature [94].

Also in previous systems, hydrophobic interactions were identified with heuristic

approaches [10], and, unlike hydrogen bonds, they had no associated energies. It

has been observed that the tuning of the hydrophobic interactions can be just as

important as for hydrogen bonds. Gohlke et al. [32] comment, in their study of flexi-

bility changes during Ras-Raf complex formation, “Finding the appropriate balance

between these interactions [hydrogen bonds and hydrophobics] is thus crucial for an

accurate representation of the flexibility characteristics of proteins”. Thus, we pose

the following question.

Can an energy-differentiated modeling scheme improve accuracy
of protein rigidity analysis?

A limitation of prior work is insufficient evaluation. Although MSU-FIRST proved

to have non-trivial performance at predicting rigid and flexible regions on a number of

case studies, it was not clear that this performance would generalize to other proteins.
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Indeed, in a number of studies which followed using the software, it was reported that

a fair amount of tuning was required [32,94]. The convention established for the MSU-

FIRST and ASU-FIRST software was to tune with the hydrogen bond energy cutoff.

There were no guidelines on how to do this, nor was there a quantitative way to

measure the accuracy of these systems.

Contribution. We propose two new methods for incorporating noncovalent in-

teractions for protein rigidity analysis. First, rather than simply removing weaker

hydrogen bonds, we propose varying the way that the hydrogen bonds are modeled,

based on their strength. We investigate modeling the weak hydrogen bonds as a rigid

bar which fixes the distance between the endpoints, but permits full rotational free-

dom. We reveal the limitations of the current mathematical theory for supporting

this modeling, and propose heuristics to approximate the rigidity results. The second

method we propose is in the inclusion of hydrophobic interactions. Rather than us-

ing a heuristic as first proposed in the ASU-FIRST software [10], we calculate these

interactions and assign to them an energy using the Lennard-Jones 6-12 potential.

Then, as for hydrogen bonds, we use an energy cutoff to determine which interac-

tions to include in the modeling. As a proof-of-concept, we investigated the use of a

single, rigid bar to model these interactions. We have implemented these extensions

in our KINARI software, and made it available for public use on the KINARI-Web

server [21].

To address the need for a fast, effective, evaluation and benchmarking, we propose

a method for evaluating the tuning of the hydrogen bond and hydrophobic energy

cutoffs. This is an adaptation of the B-cubed score from the information retrieval

literature, which is used to compare two clusterings of the same data [2]. We perform

an evaluation on a curated data set of proteins whose cluster decompositions were

computed by a different method. We have made the benchmarking scripts, written
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in python, available at the KINARI web site for public use. This work appeared in

ICCABS 2012 and an extended journal version is under submission [24].

1.1.3 Characterizing robustness of rigidity results

We propose a general extension to KINARI that can be used with any modeling

scheme. When providing the user with rigidity results on a protein, we can augment

this with data on the robustness of the results. What follows is the motivations for

this extension and a short summary of the work undertaken to address the problem.

Rigidity analysis is performed on only a single conformation of a protein, typically

using coordinates derived from X-ray crystallography experiments. A simplifying

assumption in these systems is that the set of interactions identified, particularly

the noncovalent interactions, namely hydrogen bonds and hydrophobics, are static

constraints. Yet, proteins undergo natural fluctuations around the native state, and

molecular dynamics simulations show the noncovalent interactions, flicker, breaking

and reforming rapidly, typically over nanoseconds [61]. An open question is if the

rigidity determined from a single conformation generalizes over the entire ensemble

of nearby conformations during fluctuation.

Nearly all PDB files, even those of the highest resolution, contain errors in the

coordinates which arise from ambiguities in the experimentally acquired data [9]. The

coordinates of the atoms are an estimate of their locations, with uncertainty encoded

in the resolution and B-values in the PDB file [74]. Because the occurrence of any

particular noncovalent interaction depends on local geometry, the noise in the atom

coordinates propagates to the set of interactions identified by software. This was

pointed out by Jacobs et al. early on, and it was recommended that only the highest

quality PDB structures be used for rigidity analysis [48]. Since such high quality

data is not always available, it is crucial to understand the effects of noise in the

coordinates on the rigidity results.
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Understanding the effects of atomic fluctuations and noise in PDB data on rigidity

results can be treated as the same problem, posed in the following question.

For the set of conformations near the native state, included in
normal protein fluctuations, are the rigid clusters stable?

The problem of understanding the persistence of rigid clusters, over a potentially

infinite set of protein conformations, is quite complex. To make progress towards this

larger problem, we study a restricted class of ensembles. These ensembles are created

not by perturbing atom positions, but by modifying the set of interactions. Observe

that although a protein’s geometry is needed to calculate important stabilizing in-

teractions, rigidity analysis relies only on connectivity information. Normal protein

fluctuations can be simulated by simply modifying the set of noncovalent interactions.

We begin with ensembles created by removing just one interaction at a time.

We use these to get information on the original conformation (containing all the

interactions). We would like to know the sensitivity of the rigid clusters to small

changes in the set of interactions. If any particular interaction within a cluster were

to break, would the cluster remain rigid, shatter into many smaller clusters, or would

the flexibility increase, but only negligibly?

Contribution. In order to understand how the slight variations in the set of in-

teractions effects rigidity, we propose a method of measuring the redundancy of a

cluster. First, we classify each noncovalent interaction as either critical or redundant

to the rigidity of its cluster. The counts of critical and redundant interactions can

be used to score the redundancy of each rigid cluster. A cluster with a higher re-

dundancy score is less likely to lose rigidity when any interaction breaks. In a 3D

visualization of the protein, the clusters are colored by score, so they can be easily

compared. In addition, we measure the change in cluster size upon the interaction’s

removal, which we call the interaction’s criticality value. We characterize what is

the typical occurrence of redundant and critical interactions with an evaluation on
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a benchmark data set of over 120 proteins. We show with case studies that when

interactions with higher criticality values (10% or more) are present, they tend to be

clustered together around the active site. We make these methods available from the

KINARI-Web server (http://kinari.cs.umass.edu).

In an earlier form, this work appeared in ICCABS 2011, but has been significantly

extended for this thesis [23].

1.2 Thesis outline

This thesis is structured as follows. In Chapter 2, Background and Related Work,

we have included relevant background material on protein structure and flexibility,

and a short introduction to rigidity theory and the pebble game algorithm. This

chapter includes a survey of related work to place the contributions of this thesis in

context. Chapter 3 describes the major concepts in KINARI and includes four case

studies showing the performance of KINARI v1.0 on 4 proteins which were previously

studied with rigidity analysis systems. In Chapter 4, we present our methodology for

benchmarking protein rigidity analysis systems. Then, in Chapter 5, we propose new

methods for including weaker interactions in the modeling and apply our benchmark-

ing methodology. In Chapter 6, we present our work on evaluating robustness of

rigidity analysis results via redundancy analysis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Molecule rigidity analysis is a research area which began as early as the 1980s,

combining biochemistry, mathematics, and computation. The history is a very col-

laborative one, and shows how the interdisciplinary nature of the work has resulted

in a method that is elegant, efficient, and applicable to a very important problem:

understanding the nature of proteins.

In this chapter, which contains only previous work, we briefly describe the math-

ematical theory and algorithms underlying rigidity analysis. we also include a short

introduction to protein structure. To place the thesis work in context, we survey cur-

rent laboratory and computational techniques for studying protein motion, including

prior studies using rigidity analysis systems. For the interested reader, the last section

of this chapter describes the history of the development of protein rigidity analysis,

from the 1980s to the present day.

2.1 Primer on rigidity theory and the pebble game algorithm

Flexible and rigid frameworks. A planar bar-and-joint framework is made of fixed-

length bars connected by universal joints, with full rotational freedom, Figure 2.1.

Only motions which preserve the lengths and connectivity of the bars are permitted.

If the framework admits a continuous deformation, permitting the distances between

any of the bar endpoints to vary, then it is flexible. Otherwise, if no such motions are

permitted, the framework is rigid.

10



For example, the triangle framework, depicted in Figure 2.1, is rigid. Because each

pair of points shares a bar, there is no way to continuously deform the framework

in order to change the distance between any pair of points. The four-bar-linkage

is flexible because the distance between two points which are on diagonal corners

can vary. By placing an additional bar on the diagonal, the framework is no longer

flexible, and now forms a single rigid body. The framework only permits the rigid

body transformations in the plane: translations along the x- and y-axes and rotation.

An additional diagonal placed between the remaining two endpoints (not depicted)

is an over-constraint; because the framework is already rigid, there is no effect of

placing the additional bar. Although the rigidity and flexibility of generic bar-and-

joint frameworks can be determined in 2D using simple counting conditions (via

Laman’s theorem, [62]), the characterization does not extend to 3D.

Figure 2.1: Examples of planar bar-and-joint frameworks. The triangle framework is
rigid, while a square is flexible. With the addition of a diagonal brace, the square
becomes rigid.

Body-bar-hinge frameworks. The focus in this thesis is on a different family of

frameworks, for which there are important fundamental theorems supporting their

analysis. A body-bar-hinge framework consists of rigid bodies connected by fixed

length bars and/or hinges [84, 85]. Bars are rigidly affixed to bodies at universal

joints. Hinges are a joint between two or more bodies that admit only one motion-

rotation about the hinge axis. See Figure 2.2 for examples.

Counting degrees of freedom. In 3D, a rigid body in isolation has 6 degrees of

freedom (DOFs): translation along the x, y, and z axes, and rotation around each

11



(a) (b)

Figure 2.2: Examples of 3D body-bar and body-hinge frameworks. (a) A bar con-
nects the two rigid bodies at universal joints allowing full rotational freedom. This
framework has 5 internal DOFs. (b) A hinge joint between two rigid bodies permits
only a rotation around the hinge axis. This framework has 1 internal DOF.

of the x, y, and z axes. Two disconnected rigid bodies have a total of 12 DOFs; k

disconnected rigid bodies have a total of 6k DOFs. When two bodies are connected

by a bar, as shown in Figure 2.2 (a), one degree of freedom is removed. Adding

additional bars between the two bodies can remove up to 6 DOFs, at which point the

two rigid bodies become rigidly attached to one another and form a single rigid body.

It is not possible to remove the remaining “trivial” 6 DOFs by placing additional bars

or hinge constraints. These 6 DOFs are the rigid transformations of the framework

itself. If instead the two bodies are connected at a hinge, Figure 2.2 (b), 5 DOFs are

removed. Seven DOFs remain: the 6 trivial DOFs and the one internal DOF, from

the rotation permitted along the hinge axis. For any body-bar-hinge framework, each

body contributes 6 DOFs. Each bar may remove 1 DOF and each hinge, 5 DOFs.

Tay graph of a body-bar-hinge framework. The associated graph of a body-bar-

hinge framework, or Tay graph as we refer to it in this thesis, is the multi-graph which

contains exactly one vertex for each body, one edge for each bar, and 5 edges for each

hinge. Figure 2.3 shows a body-bar-hinge framework and its associated Tay graph.

Tay’s theorem. A simple counting rule, due to Tay [84] (see also [86]) and rigor-

ously proven to be valid by Tay’s theorem, can be used on the Tay graph to determine

the rigidity and the DOFs of the framework. A graph is (k, `)-sparse if every subset

of vertices in the graph is spanned by no more than kn′− ` edges. If a graph is (k, `)-
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Figure 2.3: A body-bar-hinge framework and its associated Tay graph.

sparse and has exactly kn− l edges, it is (k, `)-tight. The following theorem describes

the relationship between the generic rigidity of the Tay graph and corresponding

body-bar-hinge frameworks.

Theorem 1. Tay’s Theorem: Theorem for 3D body-bar-hinge (Tay, Whitely): A

multi-graph G, with n vertices and m edges, is the graph of a generic minimally rigid

body-bar-hinge framework iff any subset of n′ vertices in G spans at most 6n′−6 edges

and m = 6n− 6.

Pebble game algorithms. A family of pebble game algorithms efficiently analyze

graph sparsity [64]. For body-bar-hinge frameworks, the (6, 6)-pebble game played

on the Tay graph determines if the framework is generically minimally rigid and if

not, what are its rigid components, DOFs, and overconstraints. The pebble game

algorithms run in time O(n2), where n is the number of vertices in the input graph.

We provide only a short description of the pebble game. For further background

on rigidity theory and the pebble game algorithm, we refer the reader to the Link-

age Lab’s educational website (http://linkage.cs.umass.edu/pg/) with interac-

tive Java applets and SoCG tutorial video of Lee-St. John, Theran, and Streinu [65].

Figure 2.4 shows an example application of the (2,3)-pebble game algorithm to

determine the rigidity of a 2D bar-and-joint framework. The input is an associated

graph with one vertex for each joint and one edge for each graph. The (k, `) pa-
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Figure 2.4: Demonstration of the pebble game algorithm for determining rigidity of a
2D bar-and-joint framework. Images generated with Java applet written by Audrey
Lee-St. John [65].

rameters are set to (2, 3). A pebble graph is created, with no edges and k (for this

example, k = 2) pebbles are placed on each edge. Edges are inserted when ` + 1

(for this example, ` + 1 = 4) pebbles can be collected. When an oriented edge is

placed into the graph, a pebble is removed from the source vertex. The (k, `)-tight

components are detected, and maintained, at each edge insertion. The game is com-

plete when all edges have either been inserted or rejected as overconstraints. The

output of the pebble game is the set of components, overconstraints, and the DOFs.

Although the worst-case runtime is O(n2), experiments have shown typical runtimes

to be near-linear [46]
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2.2 A short introduction to protein structure and flexibility

Proteins consist of one or more polypeptides arranged in a biologically functional

way. Each polypeptide is a chain of amino acids connected together along a backbone.

There are 20 typically occurring amino acids, each type defined by the sidechain.

A protein’s primary structure is its amino acid sequence. Protein backbone forms

regular secondary structure motifs, namely α-helices and β-sheets, Figure 2.6. Non-

secondary structure regions of the backbone are called loops. Secondary structures

pack together to form the overall fold of a chain, also called the tertiary structure. A

protein may be biologically functional as a single chain, called a monomer, or it can

be part of a larger complex. The arrangement of multiple chains in a macromolecule

is the protein’s quaternary structure. For example, virus capsids are formed from a

large number of proteins assembled symmetrically into a large sphere. Any molecule,

protein or not, which binds to another protein is called a ligand.
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H O
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H
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peptide unit peptide unit
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Figure 2.5: The chemical composition of the protein backbone. (a) Each amino acid
consists of an NH group, a Cα, a C’=O group, and a sidechain, shown only as R1,
R2 and R3. Peptde units are the building blocks of the protein backbone.

Stabilizing bonds and interactions. The protein backbone and sidechains are held

together by covalent bonds, formed from the sharing of electrons. Hydrogen bonds are

weaker interactions, which essentially form by the sharing of a hydrogen atom. Regu-

lar patterns of hydrogen bonding hold together secondary structures, and contribute

stability to the fold. The hydrophobic effect, the tendency of certain hydrophobic
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(a) (b) (c) (d) (e) (f)

Figure 2.6: α-helices and β-sheets are secondary structure motifs. (a) and (d) show
ball-and-stick models of protein fragments which form an α-helix and a β-sheet. The
regular hydrogen bond pattern hold the secondary structures together, shown in (b)
and (e). Secondary structures are often depicted in cartoon (or ribbon) form (c) and
(f). Drawn with Jmol, the helix is 1PEF and the β-sheet is 3LOZ.

residues to avoid water and crowd together to form a hydrophobic core, is the main

force behind folding. These hydrophobic interactions also stabilize the protein’s fold.

PDB data. Protein 3D structure is determined using X-ray crystallography or

NMR spectroscopy. The Protein Data Bank, or PDB, is a free online database

containing over 68,000 protein structures. Each structure deposited is assigned a

4-character PDB code, and the data for any of these proteins can be downloaded as a

PDB-formatted file [74]. A PDB file contains the type and coordinates for each atom

in the macromolecule for which the location was determined.

Protein flexibility. A protein’s 3D folded shape determines its function. For ex-

ample, we examine the protein HIV-1 protease, depicted in the ‘closed’ and ‘open’

conformations in Figure 2.7. This protein has been well-studied as a target for drug

therapy due to its essential role in the replication of the HIV virus [93]. During the

replication process, the protease cleaves a long peptide chain into shorter chains by

opening and closing the β-hairpin flaps, like molecular scissors. The two conforma-

tions show the two flaps to be quite mobile, while the remainder of the protein remains

relatively unchanged. NMR experiments and molecular dynamics simulations have

confirmed the flexibility and mobility of the flaps [27,43].
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(a) (b)

Figure 2.7: Two conformations of HIV-1 Protease; the closed conformation (1HVR)
and open conformation (1TW7). The upper flaps region open and close in order to
perform the cleaving action necessary for replicating the HIV-1 virus.

Graphical rendering of proteins. Many of the figures included in this thesis are

renderings of proteins in 3D, mainly generated with Jmol (http://jmol.org). Differ-

ent rendering styles are used depending on the features of interest. The ball-and-stick

rendering style shows the connectivity of atoms and covalent bonds. For example,

Figure 2.6 (a,d) show segments of protein chain which form an α-helix and β-sheet.

These motifs involve only backbone atoms, and the sidechains can be stripped off in

the visualization to display the atoms and bonds in the backbone only (b,e). The

cartoon rendering style shows only the shape of the backbone (c,f), permitting easier

examination of the secondary structure composition.

2.3 Methods for studying protein structure and motion

Computational methods for studying protein structure and motion rely on high-

quality laboratory experimental data. We survey some of the more widely used meth-

ods laboratory and computational methods in the next sections.

2.3.1 Laboratory experimental methods

It is not yet possible to directly observe individual atoms moving within the pro-

tein. When choosing a technique for studying protein motion, a trade-off must be

made between timescale and resolution. X-ray crystallography experiments provide
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the highest resolution data, but give a somewhat static picture of the protein at its na-

tive, folded state. Alternative laboratory experimental methods, such as fluorescence

resonance energy transfer (FRET) or hydrogen-deuterium (H-D) exchange, have been

developed for observing motion at lower resolutions.

X-ray crystallography. To resolve the coordinates of a 3D structure of a macro-

molecule via X-ray crystallography, first the protein must be crystallized. Proteins

may still be active in the crystal structure [71]. Each unit cell contains one or more

proteins, solvent, and other substrates. X-ray beams are cast through the crystal and

a 2D diffraction pattern is collected on a detector. The crystal is rotated in order

to collect diffraction patterns at different angles, and then these diffraction patterns

are used to determine an electron density map. An iterative process of fitting and

refinement is performed in order to resolve the positions of the atoms.

The resolution of a PDB file, in units Å, is a measure of precision in the positions

of the atoms. In a well-ordered crystal, the atoms will experience less vibration and

therefore less noise will be present in the diffraction data. Higher resolution data

will have a more detailed electron density map, and there will be less potential for

variance in how the molecular model is fit into the density map.

From this density map, the locations of specific atoms are resolved. The struc-

ture in the PDB file may contain more than one set of coordinates for some of the

atoms, called alternate locations [74]. The resolution, reported in the PDB file, of

the determined structure may vary based on experimental conditions. Also, for each

atom record in the PDB file, a B-value (or B-factor) is given, which describes the

amplitude of the vibration of the particular atom. This vibration arises from ther-

mal motion or disorder. Figure 2.8 shows the closed conformation of HIV-1 protease

(1HVR) colored by B-value. The cooler colors (blue) signify lower B-values and the

warmer colors (red) signify higher B-values. The atoms in the hydrophobic core are

more packed and tend to have lower B-values, while those side chains on the surfaces
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Figure 2.8: Crystal structure of closed conformation of HIV-1 Protease 1HVR) colored
by B-value. The atoms are colored from lowest B-value (blue) to highest (red).

have the highest B-values. B-values alone are not sufficient to determine the regions

of the protein which will move rigidly and collectively in domain-level motions.

One may assume that it is desirable to use only the highest resolution data avail-

able when studying protein flexibility from X-ray crystallography data. However,

under such a restriction, only the less dynamic proteins which undergo less confor-

mational motion would be observed. In order to study proteins which undergo larger

domain-level motions, one may need to rely on lower resolution data.

NMR spectroscopy. An alternative high-resolution method, NMR spectroscopy

examines proteins in solution rather than crystal form. The proteins in solution will

undergo some thermal fluctuation, but must be around the global free energy minima,

rather than a mix of conformations in different local energy minima. NMR provides

the same data on atom coordinates in the PDB file as X-ray crystallography, but

in addition, usually includes several models rather than a single structure. Using

the technique, a set of distance constraints between geometrically close-by atoms is

collected, and then used to determine the positions of the atoms. Because multi-

ple nearby conformations of the molecule agree with the set of constraints, multiple

models are included in the PDB file. The different models may describe thermal
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motions of the protein in solution. Although these atomic fluctuations are different

from conformational motion, the data may provide some insight into the flexibility of

the structure, for example in the flaps of HIV-1 protease [27].

Low-resolution methods. Other experimental methods can describe motion under

active conditions, as opposed to the steady-state conditions of NMR, but at lower

resolution. For example, fluorescence resonance energy transfer (FRET) can be used

as a ‘spectrosopic ruler’ [39]. With this method, two regions of the protein are tagged

by attaching fluorescent atoms. The distance between the two fluorescent tags can

be measured with time-dependencies. A major limitation of this method is that only

a single distance change is measured. Other methods, such as hydrogen-deuterium

(H-D) exchange experiments, can be used to measure the rates at which proteins

folding, but provide no details of atom positions [39]. For example, H-D exchange

experiments have been used to determine the folding order of subregions, known

as foldons, of Cytochrome-c [67]. H-D exchange data was used by Rader et al. to

validate a computational method for predicting folding cores, via a rigidity analysis

approach [76,77].

2.3.2 Computational methods

Computational methods may assist in testing hypotheses in cases where existing

laboratory experimental techniques are insufficient.

Molecular dynamics. The most accurate and extensively researched computational

method is physics-based simulation, or molecular dynamics (MD). Molecular dynam-

ics systems simulate the motions of the atoms as they interact with each other over

many small time steps. At each time step, the velocities of the atoms are calculated

using an energy equation and the atoms are moved to their new positions [28] (Chap-

ter 5). Some of the major software for performing MD simulations are AMBER [8],
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CHARMM [5], and Gromacs [41]. The following excerpt from a 2007 survey paper of

Wildman and Kern nicely summarizes the power and limitations of this method:

Computation has the unbeatable edge in that it can describe protein dy-

namics completely: the precise position of each atom at any instant in

time for a single protein molecule can be followed, along with the cor-

responding energies, provided that at least one high-resolution structure

in known as a starting point... Unfortunately, protein dynamics on the

microsecond-to-millisecond timescale is currently out of reach for conven-

tional MD simulations.

Although MD simulations have the potential to simulate the motion of proteins

with high accuracy, the scale in simulation time they cover is short, and typically

inadequate. Local motions, such as atomic fluctuations, take place on the femtosec-

onds (10−15) to milliseconds (10−6) timescale. Rigid body motions, such as protein

domain motions, take place on the nanoseconds (10−9) to seconds timescale. Large

scale motions, such as folding and unfolding, may take place on the milliseconds to

seconds timescale. To achieve a reasonable amount of accuracy, MD simulations use a

time step somewhere between a femtosecond (10−15) and a picosecond (10−12). Using

MD, simulating the folding of a 100 residue protein is not yet possible. The holy

grail of these projects is to simulate the complete and correct folding of a protein,

with no human intervention or information on the target conformation. The Fold-

ing@Home project has successfully simulated the millisecond-timescale folding of a 32

residue protein by using the same approach as SETI@HOME, using free clock cycles

of volunteers’ personal computers during unused periods [92]. The first millisecond

timescale MD simulation on a 58 residue protein required over two months to compute

on the Anton supercomputer in 2009 [57].

Monte Carlo. Unlike MD, Monte Carlo simulations do not produce time-scale

accurate simulations, but instead aim to sample a much larger area of conformation
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space [28]. Monte Carlo is a method for collecting an entire ensemble of possible

protein conformations. The method takes as input one initial conformation of a

protein, then perturbs the positions of the atoms at random. The energy is computed

using the same molecular mechanics forcefields used by MD, and the conformation

is either accepted or rejected, with some probability, based on the energy. This

sampling process is repeated until the space of conformations has been sufficiently

sampled. Monte Carlo experiments explore the energy landscape more thoroughly

and efficiently than MD, but do not produce accurate trajectories of protein motion.

Normal Mode Analysis. Normal Model Analysis (NMA) is another standard mod-

eling technique for molecular mechanics. In NMA, the harmonics of the molecular

system are studied, with the focus on characterizing the lowest frequency harmonics

which may be associated with the larger scale motions. The method detects subsets of

atoms which move “collectively” in the model [13]. Rather than generating different

sets of coordinates for the atoms in a protein, NMA attempts to identify domains in

a protein which vibrate at the same frequencies. NMA detects the mobility of atoms

in the molecule by analyzing correlated motions, but does not determine information

on the rigidity and flexibility of structural regions. NMA may show that atoms in a

certain domain, like a mobile α-helix, move collectively, but it won’t show that this

region is rigid and unlikely to deform, while other regions, which are flexible, will

permit deformation.

Rigid cluster decompositions using multiple conformations. A number of methods

have been proposed for determining a rigid cluster decomposition from two conforma-

tions of a protein, such as HingeFind [97], DynDom [66], and RigidFinder [1]. All of

these methods aim to find clusters of residues where the differences between pairwise

distances in the two conformations falls within some error tolerance. RigidFinder

uses a dynamic programming approach in order to do this. The RigidFinder method

was validated on a number of case studies, comparing the method with experimen-
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tal data and with prior methods. In the next three chapters of this thesis, we refer

to this RigidFinder data set and associated decompositions in order to measure the

performance of KINARI at determining rigid cluster decompositions.

2.4 Prior work using protein rigidity analysis systems

Prior software systems. The first application of pebble game rigidity analysis to

molecular system was a study of glass networks in 2D by Jacobs and Hendricksen [46]

and Jacobs and Thorpe [49]. In these studies, rigidity percolation of glass networks

was studied by modeling the molecular system as a bar-and-joint framework and

applying the 2D pebble game. By randomly “diluting” the system of bonds, they

effectively modeled a phase transition of glass between a solid state and a liquid

state.

Later, Jacobs extended the pebble game algorithm to a 3D bar-and-joint ver-

sion [45]. The explanation of the algorithm did not have a proof of mathematical

correctness, but experimental validation of the algorithm was performed by compar-

ing the rigid clusters identified by the algorithm with those identified by numerical

analysis. This was then applied to study proteins [48] using the software FIRST. This

version of FIRST (recently renamed Proflex), which we refer from this point on as

MSU-FIRST (as it was developed at Michigan State University), uses Jacobs’ 3D bar-

and-joint pebble game. A rigorous study of Jacobs’ 3D pebble game by Chubyinksi

and Thorpe later demonstrated that although the heuristic method frequently pro-

duced correct results, the errors were unpredictable [11].

MSU-FIRST was later upgraded to a version which used body-bar modeling of the

proteins and ran the 3D body-bar pebble game [10]. We refer to this version, devel-

oped in Thorpe’s laboratory at Arizona State University, as ASU-FIRST. The ratio-

nale presented for the move from the bar-and-joint modeling to the body-bar model-

ing is that there were complications in modeling non-covalent interactions, specifically
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the hydrophobic effect, in the bar-and-joint model that could be “overcome” in the

body-bar model.

Validation of protein rigidity analysis software. A number of techniques were used

to validate that the MSU-FIRST software produced correct results. We survey here

the techniques used to validate.

Comparing rigid cluster decompositions of unique conformations. In the 1999

book chapter which introduced the MSU-FIRST software, a few types of validation

were performed [47]. First, the DOFs counts for a few very small examples computed

by FIRST were shown to be correct; the small examples used were single α-helices

of different lengths and a non-biological molecule called cubane. Then a validation

on a real protein was performed, by investigating the results produced by the soft-

ware for two conformations of the same protein, a lysine-orthinine-arginine-binding

(LAO-binding) protein, in the open (2LAO) and closed (1LST) states. Running the

software MSU-FIRST on both conformations, they found that “Most of the rigid

substructures and underconstrained regions identified in the two conformations cor-

respond to one another”. For the two conformations, a flexibility index for each

bond is assigned. If a bond is in an overconstrained region, meaning it lies in a

rigid cluster with redundant bonds, as determined by the pebble game, the flexibility

index is the fraction of redundant bonds to all bonds in a rigid cluster. If a bond

is not in a rigid cluster, the flexible region it is in is computed, and the flexibility

index it is assigned is the fraction of rotatable bonds to the number of DOFs in the

region. Using this flexibility index, they were able to reason about some of the ex-

pected differences in flexibility between the two conformations which “correlated with

known motions”. A 2001 journal paper extended the validation [48], including 3 new

case studies in the flavor of the LAO-binding protein study. Each protein examined

had multiple structures from unique conformations deposited in the PDB; these were

HIV1-protease (1HHP, 1HTG); adenylate kinase (1AKY; 1DVR), and Dihydrofolate
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Reductase (1RA1, 1RX1, 1RX6). A thorough analysis was provided, comparing their

own proposed residue-based flexibility index with PDB B-values, RMSD values, and

changes in Φ and Ψ angles. The cluster decomposition itself was analyzed qualita-

tively, by comparing known flexible domain-level hinge regions with those identified

by the software. In order to validate that the results of KINARI match with those

previously published, we will revisit these case studies in Chapter 3, Section 3.4.

Comparing rigid cluster decompositions of protein homologues. A later study did

not attempt to compare the rigidity results between two conformations, but instead

verified the similarity of the rigid cluster decompositions of protein homologues. MSU-

FIRST analysis was performed on three different Cytochrome-c proteins from three

different species: horse (1HRC), yeast (1YCC), and a bacteria (1CO6 A) [90]. In the

study, “strong similarity in their flexible regions” was found in the results between the

sequence-aligned proteins. In addition, in a dilution analysis on the three proteins

(described next), the changes in the backbone rigidity in the three dilutions were

found to agree.

Validating dilution (simulated unfolding). The bond dilution technique has been

applied to protein folding; when the hydrogen bonds are removed (or “broken”) by

order of energy, it is called simulated unfolding [78]. They were able to find a cor-

relation between the “mean coordination” of the protein, < r >, with the “fraction

of floppy modes”, f = F/3N , where F is the number of DOFs and N is the total

number of atoms. That is, before bonds are placed, a protein has 3 DOFs for each

atom, so the “fraction of floppy modes’ is the fraction of DOFs over the total number

of DOFs. They correlate < r > with the first derivative of f to find the critical value

where a phase transition occurs from rigid to flexible. This is hypothesized to be the

same transition from the folded to unfolded states of the protein.

The simulated unfolding technique has been applied in the identification of pro-

tein folding cores [76, 77]. A protein folding core is defined to be the region of the
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protein that initializes folding, and it is hypothesized that the folding core is the

region of the protein that rigidifies first during folding and loses rigidity last during

unfolding. The study tests whether dilution experiments can find the folding cores.

The rigid groups of atoms in the protein’s backbone are monitored during the sim-

ulation. Experimentally detected folding cores are compared with the largest rigid

groups that remain. Folding cores identified by dilution were found to agree with

the experimentally determined folding cores of 10 proteins: BPTI, 1BPI; Ubiquitin,

1UBI; CI2, 2CI2; Ribonuclease T1, 1BU4; Cytochrome c, 1HRC; Barnase, 1A2P;

α-Lactalbumin, 1HML; Apo-Myoglogin, 1A6M; Interleukin-β, 1ILB; T4 Lysozyme,

3LZM [40].

Limited experiments were performed with orderings of hydrogen bonds other than

by energy. The two evaluated were (1) choosing one of the 10 lowest energy bonds at

random and (2) choosing a bond completely at random. They found the first method

was able to identify the folding core just as well as the non-randomized ordering. The

second method, completely randomized, could sometimes identify the correct folding

core, but sometimes could lead to a completely incorrectly identified folding core.

Thus they concluded that the energy of the hydrogen bonds is a significant factor in

simulating unfolding. This study was performed on 10 proteins.

Hinge prediction. The StoneHinge method and server for domain-level hinge pre-

diction, developed in the Gerstein Lab, used the MSU-FIRST software as a mod-

ule [56]. In their study they concluded that the MSU-FIRST-based method over-

predicted the occurrence of hinges when compared with a set of literature-annotated

hinges. The StoneHinge developers resorted to a consensus-based approach, com-

bining the rigidity analysis results with another independent method, in order to

achieve better precision in their predictions. Their data set was composed of: CAPK,

1CTP, 1ATP; Bence-Jones protein, 4BJL; LAO-binding protein, 2lao, 1lst; adenylate

kinase, 2ak3, 1ake; glutamine binding protein, 1GGG, 1WDN; DNA Polymerase β,
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ar 19 16:07:37 2011 

H-bond
number E <r> 1 10 20 30 40 50 60 70 80 90

100

All 160 Hbonds
 148  0.000  2.491 A S  72  M 82  
 129 -0.021  2.476 A M  1  S  93  
 113 -0.092  2.461 A M  2  S  93  
 106 -0.125  2.455 A M104  M100 
  88 -0.443  2.443 A S 103  M100 
  78 -0.716  2.435 A M 43  S  48  
  75 -0.859  2.433 A M 20  S  21  
  72 -1.007  2.432 A M 46  M 43  
  68 -1.165  2.429 A M 70  M 66  
  67 -1.269  2.429 A M  7  M  3  
  66 -1.308  2.428 A M 69  M 66  
  58 -2.073  2.422 A M  9  M  5  
  57 -2.118  2.421 A M 73  M 70  
  54 -2.214  2.419 A M 91  M 87  
  50 -2.503  2.416 A M 52  S  49  
  44 -2.868  2.413 A M 78  M 75  
  40 -3.082  2.409 A S  52  M 52  
  36 -3.245  2.406 A M 15  M 10  
  27 -4.048  2.401 A M 97  M 93  
  25 -4.259  2.399 A M 92  M 88  

Blue:donor Red:acceptor M:main-chain   S:side-chain   W:water   H:hetero-atom 1hrc_ProcessedHydrogen.

Figure 2.9: A 2D dilution plot produced by ASU-FIRST on Cytochrome-c (1HRC).
Each line shows the backbone rigidity, with each cluster assigned a different color.

2BPG, 1BPD; Calmodulin, 1CFD, 1CLL; Inorganic Pyrophosphatase, 1K23, 1K20;

ribose binding protein, 1URP, 2DRI; Ig domain of protein G, 1PDB; hydropterin

pyrophosphokinase, 1HKA; Cyclophilin A, 1BCK; Rhizopuspepsin, 2APR, 3APR;

Chloramphenicol Acetyltransferase, 2CLA, 3CLA; and Proteinase A, 2SGA, 5SGA.

Corresponding states of flexibility in protein homologues. Another study that

sought to validate dilution as a simulated unfolding built evidence toward the “corre-

sponding states of flexibility” hypothesis [33]. The hypothesis is that mesophilic and

thermophilic enzymes are in corresponding states, with similar flexibility characteris-

tics, at their respective optimal temperature. In this study, they collected a dataset

of 20 pairs of homologs and plotted the cluster configuration entropy and the rigidity

order parameter during the simulated unfolding and used different criteria to identify

the phase transition temperature. They found that for two-thirds of the proteins, the

phase transition temperature was higher in the thermophile than in its mesophilic

counterpart. A more recent study by the same authors strengthened the validation,

relating the corresponding states detected to the protein’s activity [79].
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Variations in hydrogen bond and hydrophobic interaction network. MD simula-

tions show that noncovalent interactions, the hydrogen bonds and hydrophobic inter-

actions, flicker on and off, breaking and forming at varying rates, but typically over

nanoseconds [61]. The duty cycle is the percentage of time a certain interaction ex-

ists during the simulaton. Duty cycles for different hydrogen bonds and hydrophobic

interactions were computed from MD simulations, and their duty cycles used as a

criterion for inclusion in a rigidity analysis experiment. They performed experiments

on two different proteins (barnase and the glutamate receptor ligand). This flickering

phenomenon contributes evidence to the need for studying the tolerance or rigidity

analysis in a protein to changes in the hydrogen bond set.

Heuristic-version of pebble game to predict ensemble rigidity. More recently, the

Jacobs’ lab proposed a heuristic method, called the virtual pebble game, for predicting

ensemble-averaged rigidity for a protein with fluctuating noncovalent interactions. To

validate the method, the Rand Measure, which is a count of the number of items that

match between two decompositions, was used to analyze a data set of 272 proteins

with 3 domains or fewer from the SCOP database [35].

Course grained models for motion generation. Another application of rigidity

results has been in motion generation. The FRODA method was included in ASU-

FIRST to generate motions by moving rigid clusters and maintaining chemical con-

straints [95]. Thomas et al. have used rigidity analysis as a module in the probabilistic

roadmap method, in order to provide a course-grained representation of the protein

for more efficient conformation sampling [87]. The NMSim server, recently released

by the Gohlke lab, combines a rigid cluster decomposition and low-frequency normal

modes from normal mode analysis to generate motions [60].
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2.5 Historical overview of development of rigidity analysis

theory and applications to molecules

We give some historical perspective on the development of graph-based character-

izations and algorithms for studying the rigidity and mobility of molecules.

The 1982 meeting, and subsequent volume, Symmetries and properties of non-

rigid molecules, was the first international symposium on important developments

concerning the symmetries, topologies and properties of flexible molecules. The vol-

ume contains the first conjecture (the Dress conjecture) on the rigidity of 3D bar-

and-joint framework models of molecules, posed by Dress, Dreiding and Haegi [16]

and discussed in [86]. Laman’s theorem [62], for 2D bar-and-joint frameworks, gives

a combinatorial characterization for determining rigidity. Although the equivalent

characterization for 3D bar-and-joint frameworks is necessary, it is insufficient for

determining whether or not a framework is rigid. The Dress conjecture was an effort

to extend Laman’s characterization to 3D bar-and-joint frameworks.

Although a combinatorial characterization for generic 3D bar-and-joint frame-

works is still an open problem, a different rigidity model, the body-bar-hinge frame-

work, was found to have a Laman-type combinatorial characterization. The theorems

for body-bar (Tay, 1981) [83] and body-hinge frameworks (Tay, Whitely, 1984) [86]

are the foundation for mathematically-guaranteed graph-based rigidity analysis of

molecules. In this thesis, we refer to the combination of these theorems, for body-bar-

hinge frameworks, as Tay’s theorem. With the theorem for body-hinge frameworks,

Tay and Whitely posed the molecular conjecture for body-hinge models of molecules,

which is that Tay’s theorem for generic body-hinge structures could also be applied

to molecules, which have non-generic configurations. 25 years later in 2009, Katoh

and Tanigawa produced a proof of the molecular conjecture [54,55].

Laman’s and Tay’s theorems give combinatorial characterizations, but either of

these theorems, implemented directly, result in exponential-time algorithms. In 1980,
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Sugihara proposed a polynomial-time graph algorithm to test the independence of set

of edges for the graph of a 2D bar-and-joint framework [81]. Improving on this in 1985,

Imai proposed an O(n2) network flow algorithm for 2D bar-and-joint graph rigidity

testing and extracting the maximal rigid component [44]. Gabow and Westermann

proposed an O(n2) algorithm using matroid sums [30].

In his 1991 Ph.D. thesis, Hendrickson proposed an O(n2) algorithm using bipartite

matching that could not only test if a graph was rigid or not, but also detect all the

rigid and redundantly rigid components. Hendrickson’s thesis addressed the molecule

problem, the problem of determining the coordinates of a set of points in space from

a set of pairwise distance measurements. One motivation behind the problem is

determining molecular structure from NMR spectroscopy data. Rigidity analysis,

and in particular, redundant rigidity where the removal of any constraint in a rigid

component will have no effect on the rigidity, are applied toward this problem. The

thesis contains combinatorial and numerical approaches toward solving the molecule

problem, and a description of the ABBIE software package for identifying regions of

a molecule for which the coordinates can be determined [38].

In 1995, Franzblau proposed an O(n2) algorithm, based on a technique called

chain- or ear- decomposition, to compute a non-trivial lower bound on the of a 3D

bar-and-joint framework with fixed angle joints [25]. She followed this with a vari-

ant of the algorithm to compute a non-trivial upper bound in 2000 [26]. Although

Jacobs and Thorpe were using an implementation for experimental studies of glass

networks as early as 1995 [49], the first paper on Jacobs’ and Hendrickson’s pebble

game algorithm for 2D bar-and-joint frameworks was published in a physics jour-

nal in 1997 [46]. The pebble game was a more practically implementable version

of the bipartite matching component finding algorithm of Hendrickson’s thesis. In

1996, Moukarzel proposed a bipartite matching method for determining rigidity in

2D body-bar structures [70]. In 1997, Jacobs’ proposed a heuristic variant of the
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pebble game algorithm, for determining rigid components in 3D bar-and-joint graphs

of molecules [45]. In 2005 (with a journal publication in 2008), Streinu and Lee pro-

posed a generalized version of the pebble game algorithm to determine properties of

(k, l)-sparse graphs [64].

In order to make rigidity analysis techniques available for research on proteins and

other molecules, a few different software tools have been published. The bar-and-

joint modeling and heuristic pebble game algorithm of Jacobs were implemented in

the patented MSU-FIRST software [48,50]. Later, the MSU-FIRST software was up-

graded to the ASU-FIRST software and Flexweb server (http://flexweb.asu.edu);

the bar-and-joint modeling was switched out for a body-bar-hinge type model which

could rely on Tay’s theorem and the (6,6)-pebble game [10, 89]. In 2005, the RIGIX

software was introduced which uses a variant of the bar-and-joint modeling and Ja-

cobs’ heuristic pebble game [15]. The PRM rigidity module, using yet another body-

bar-hinge-type modeling scheme, was published in 2007 [87]. Our system, KINARI

and KINARI-Web server (http://kinari.cs.umass.edu) relies on body-bar-hinge

modeling [21].
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CHAPTER 3

KINARI: SOFTWARE FOR RIGIDITY ANALYSIS, WITH
APPLICATIONS IN MOLECULAR MODELING

We have developed the KINARI software suite and libraries as a research tool for

studying protein rigidity and flexibility. The software is the first to support accurate

body-bar-hinge mechanical modeling of molecules. In this chapter, we describe the

concepts and design of KINARI, and provide case studies of its application on real

proteins.

The chapter begins with a review the justifications for building the KINARI li-

brary, in Section 3.1. Details on the main concepts in KINARI are included in Section

3.2. This section includes the parameter settings used in KINARI v1.0, to which we

will refer in the later chapters of this thesis. These settings are required for full repro-

ducibility. In Section 3.3, we describe the software design and features. In order to

demonstrate the use of protein rigidity analysis software to describe protein behavior,

Section 3.4 contains four case studies comparing the results on KINARI with those

published for MSU-FIRST [48].

3.1 Motivation: mechanically accurate modeling for protein

rigidity analysis

Prior software systems, namely MSU-FIRST [48] and ASU-FIRST [10], were de-

veloped as a proof-of-concept, in order to demonstrate the usefulness of rigidity anal-

ysis in real protein studies. But the approaches taken in these systems had some

limitations.
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For 3D, the only class of mechanical model for which a combinatorial character-

ization exists is the body-bar-hinge framework, and therefore, in order to provide

correct and precise rigidity results, a molecule must be properly modeled as such.

MSU-FIRST used a different type of underlying model, the bar-and-joint model, and

because of this, needed to resort to a heuristic version of the pebble game. An ex-

tensive study of Jacobs’ 3D bar-and-joint pebble game was performed by Chubynsky

and Thorpe, with the conclusion that, although the algorithm often produces cor-

rect results, it is approximate and there are frequently errors in the rigid cluster

decomposition and degrees of freedom determined [11]. ASU-FIRST was developed

to overcome this major deficiency, relying on a body-bar rigidity model. Unfortu-

nately, the modeling implementation of ASU-FIRST was imprecise. It mixed the

mechanical modeling and graph representation, and did not support the notion of a

hinge.

Figure 3.1 shows how KINARI differs from ASU-FIRST. KINARI builds a me-

chanical model where rigid bodies of atoms overlap on rotatable bonds that behave as

hinges, as shown in Figure 3.2. In contrast, ASU-FIRST models the protein directly

as a multi-graph where vertices represent groups of atoms and each edge represents

the removal of a single degree of freedom between the atoms. ASU-FIRST’s rigid

clusters are disjoint; they do not overlap at hinge joints. The rigid clusters identified

by KINARI and ASU-FIRST are not identical, but when the same input PDB files,

bonds and interactions, and modeling options are used, they will be in one-to-one

correspondence. On-going work on KINARI investigates extensions that will further

increase the modeling accuracy.

3.2 Key concepts in KINARI

Rigidity analysis decomposes a protein into rigid clusters. A rigid cluster is a

maximal set of atoms held together by interactions determining all the inter-atomic
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Figure 3.1: Comparison of steps performed by KINARI and ASU-FIRST. A molecule
is modeled as a mechanical structure called a body-bar-hinge framework, from which
an internal multi-graph is built. The pebble game algorithm calculates components
in the multi-graph, from which the flexibility of the mechanical structure and protein
rigid clusters are inferred. A prior system, ASU-FIRST, calculates the graph directly
from the molecular data, and returns clusters that are disjoint sets of atoms.

distances within the cluster. For small molecules, we can determine the rigid clusters

by hand. For example, we can identify two rigid clusters in the proline molecule,

Figure 3.2. One cluster is formed by the five atoms in the ring, known to be rigid,

and all of the atoms bonded to these 5 atoms. The other cluster is formed by the two

atoms bonded by the red-colored bond, and the last tail atom.

Figure 3.2: Rigid cluster decomposition of proline. A rigid cluster is a maximal set
of atoms and all bonds and interactions that hold them rigidly together. The proline
molecule (grey) is composed of two rigid clusters. The first rigid cluster (green) is
composed of the 5 atoms forming a ring, and all of their covalent neighbors. The one
atom not contained within this first cluster, plus the two atoms that share the red
bond, form the second cluster (blue).
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KINARI uses a mechanical modeling approach to determine the rigid clusters.

Figure 3.1 shows the steps performed by KINARI for running pebble game rigidity

analysis on a molecule. The input is a PDB file containing the set of atoms in a

protein with coordinates. The output is the maximal rigid clusters of atoms, as well

as the hinges and bars between the clusters. The first step is curation – the PDB

file is parsed and the relevant atoms, bonds, and interactions are calculated. After

curation, the protein is modeled as a body-bar-hinge framework. From the body-

bar-hinge framework, a Tay graph is built and then the (6, 6)-pebble game is run to

determine the rigid components of the graph. These components are used to build

a minimized body-bar-hinge framework model of the same protein, where each body

is now maximal. Information from the minimized body-bar-hinge framework is then

mapped back to the protein data, in order to determine the rigid clusters of atoms in

the protein.

In the next section we describe the curation process (Section 3.2.1) and in Section

3.2.2, we give important details of how modeling is performed. In Section 3.2.2.2

we’ve included the procedure to convert atom-level clusters produced by KINARI to

a residue-level representation. We will make use of the residue-level representations

in order to compare results from our system with other available protein rigidity data

in Chapters 4 and 5.

3.2.1 Curation

Before modeling is performed, the PDB data must be processed to include only

macromolecular data that is relevant for the rigidity analysis experiment. We refer to

the processing of PDB data, including calculation of relevant bonds and interactions,

as curation. The four steps of curation, shown in Table 3.2, were designed collab-

oratively under the lead of Ileana Streinu. The code for the curation executables

in KINARI was written by Filip Jagodzinski, who extended the steps in his thesis
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studies of rigidity of the biological unit and crystal forms. In order to allow others

to reproduce our results, we describe the details for each step. The default curation

settings of KINARI v1.0 are listed in Table 3.2.

Step Description
1 Specify models, chains, ligands and water molecules to retain.
2 Remove alternate atoms and add hydrogen atoms.
3 Calculate chemical bonds and interactions.
4 Prune undesired interactions or add custom chemical constraints.

Table 3.1: Curation steps to prepare protein data for rigidity analysis. Chains, lig-
ands, or chemical interactions can be removed or added to determine their effect on
protein rigidity.

3.2.1.1 Curation step 1: Specify models, chains, ligands and water molecules

to retain

In the first step, the user selects the parts of the macromolecule contained in the

data file to be retained for rigidity analysis. For example, PDB file 1HVR, one of

the available X-ray crystallography data files of HIV-1 Protease, contains two chains,

A and B, as well as a ligand, XK2. A user may choose to analyze the flexibility of

1HVR with and without the ligand in order to observe the effects on rigidity with the

ligand’s inclusion. Currently KINARI only supports PDB files with 100,000 atoms or

fewer. This is due to limitations in the column widths in the PDB format [74].

Step Description
1 Retain all chains, remove all ligands and waters.
2 Retain only first occurring alternate atom. Add hydrogens with Reduce.
3 Calculate hydrogen bonds with HBPLUS and hydrophobic interactions with

heuristic.
4 Prune nothing.

Table 3.2: Default curation parameter settings in KINARI v1.0
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3.2.1.2 Curation step 2: Remove alternate atoms and add hydrogen

atoms.

X-ray crystallography PDB files do not contain hydrogen atoms, which participate

in forming hydrogen bonds, the critical elements in stabilizing the biomolecule. Step

two of the curation process uses the Reduce software to insert hydrogen atoms into

the PDB file [96]. PDB files frequently contain multiple alternate locations for the

same atom. In order to resolve these ambiguities, by default only the first alternate

atom position is retained. A user wishing to retain different positions would edit their

PDB file directly.

3.2.1.3 Curation step 3: Calculate chemical bonds and interactions, and

assign energies.

In the third step, important stabilizing interactions are calculated, including co-

valent bonds, resonance bonds, disulfide bonds, hydrogen bonds, and hydrophobic

interactions.

Single and double covalent bonds, resonance bonds, and disulfide bonds.

Covalent bonds are formed by the sharing of electron atoms between atoms. Covalent

bonds are the strongest bonds that exist in nature. Once a protein is formed, we

assume that none of the covalent bonds will break. Once two atoms are covalently

bonded, the bond length is fixed. In addition, the bond-bending angle between each

pair of atoms covalently bonded to the same atom is fixed. In general, covalent bonds

permit rotation around the bond, so that the dihedral angle is varied.

There are some special cases of covalent bonds where this rotation does not occur.

Double covalent bonds, where multiple electrons are shared between two atoms. These

bonds restrict rotation around the bond axis, fixing the dihedral angle. Resonance

bonds, for instance peptide bonds, have a partial double covalent bond character. The

C-O bond in the peptide group, from which an electron is delocalized and contributed
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to the C-N peptide bond, is classified as a single covalent bond. This is to allow

rotation around the bond specifically when the O serves as a hydrogen bond acceptor.

This follows the convention originally set in MSU-FIRST [47].

A disulfide bond (or bridge) is a strong bond that forms between the sulfurs in

two cysteine side chains. These bonds are known add stability to the protein’s folded

structure. For example the protein 58 residue bovine pancreatic trypsin inhibitor

(BPTI, PDB 1bpi) contains 3 disulfide bonds. When these 3 disulfide bonds are

experimentally eliminated, the protein is known to unfold [75] (page 28). The disulfide

bonds are listed in the PDB file as an SSBOND record [74].

KINARI determines single covalent bonds, double covalent bonds, and resonance

bonds in the backbone and sidechains of the 20 typically occurring amino acid types.

For modified residues or ligands, a CIF-format file, containing connectivity informa-

tion, must be supplied [6]. The CIF files are easily retrieved from the PDB website

via the code listed in the PDB file under the residue name column.

Hydrogen bonds. A hydrogen bond is the attractive force between one elec-

tronegative atom and a hydrogen covalently bonded to another electronegative atom.

The electronegative atom is generally nitrogen or oxygen. A hydrogen bond is much

weaker (-15kcal/mol or weaker) than a covalent bond (around -85 kcal/mol). The

bond strength depends on temperature, pressure, bond angle, and environment (usu-

ally characterized by local dielectric constant).

KINARI uses the HBPLUS software to identify hydrogen bonds [69], and assigns

energies to them using the Mayo energy function [68]. An energy cutoff can be used

to reject the weaker hydrogen bonds and only include the stronger bonds. Generally,

hydrogen bonds range in strength between 0 and -7 kcal/mol.

Hydrophobic interactions. As a protein folds, its hydrophobic side chains tend

to pack into the interior of the protein, creating a hydrophobic core and a hydrophilic

surface. This behavior is thought to be the main driving force for folding. A hy-

38



drophobic interaction between two atoms is the tendency for these atoms to remain

near each other. KINARI provides two different methods for identifying hydrophobic

interactions.

The first is a heuristic method, reproducing the H3 function described in the ASU-

FIRST manual [88]. The heuristic finds all S-S, S-C, and C-C atom pairs such that

(1) the surfaces of the two atoms are within a cutoff distance of each other AND (2)

the number of covalent bonds between the two atoms is more than 3. The default

surface cutoff distance is 0.25 Å. The default radii for C and S are 1.7 and 1.8. This

heuristic aims to distribute the hydrophobic interactions evenly without placing too

many constraints too close together, which may completely rigidify a region.

The second method, implemented first in the KINARI software, uses interactions

as calculated by a molecular mechanics forcefield, namely, the potentials from the

Amber99 forcefield [8]. Unlike the heuristic method introduced in ASU-FIRST, the

atom types involved in the hydrophobic interaction are not restricted, so N and O

atoms are included. H atoms are not included because they already contribute to

structural stability through hydrogen bonding.

To determine hydrophobic interactions in a macromolecule with either method

(heuristic or van der Waals potential approach), all pairs of atoms that fall within

some cutoff distance must be determined. In a naive implementation, the distance

between every pair of points is calculated, requiring O(n2) time.

In order to speed up to this process to linear time, we preprocess the atoms into

a grid data structure. First, the bounding box of the set of atoms is calculated, by

determining the maximum and minimum for all x, y, and z coordinates. Then the

cell width is set to the cutoff distance and a grid data structure is initialized with a

3D array. The grid is populated with atoms, and the grid cell index for each atom

stored in a table for quick lookups. This preprocessing step is performed in linear

time.
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The number of distances that need to be computed for each atom is now decreased

from O(n) to a constant. For each atom, only the distances between that atom and

each of the atoms within its grid cell and all adjacent cells need by computed. Because

the van der Waals radii bounds the number of atoms that can fit in any grid cell,

there is a bound on the total number of atoms for which distances need be computed.

We assign an energy based on the van der Waals energy, using the Lennard Jones

6-12 potential, parameterized with values from the Amber 99 forcefield. This is a new

feature that implemented as part of the work in thesis on energy-refined modeling.

We will describe this further in Chapter 5, Section 5.3.3 of this thesis.

3.2.1.4 Curation step 4: Prune undesired interactions or add custom

chemical constraints.

In the final curation step, the computed chemical interactions that exist between

atoms in the PDB-formatted input file are presented to the user, who can designate

which of them should be retained, and which should be removed. In the case of

covalent, resonance, disulfide, or hydrogen bonds, a user can remove constraints within

a certain energy range or below or above a certain cutoff value. Chemical interactions

that KINARI did not detect but which should be included in the molecular model

of the protein, can be easily supplied as user-defined constraints. The ability to

manually add chemical constraints is a novel feature; it can be used for formulating

rigidity-based hypotheses regarding their effect on the stability of the protein.

3.2.2 Modeling molecules as body-bar-hinge frameworks

Once the relevant atoms, bonds, and interactions have been collected, the protein

is modeled in preparation for the pebble game algorithm, as illustrated in Figure 3.1.

In this section, we describe how the mechanical model is built.

The default style models the mechanics of the protein as a body-bar-hinge frame-

work. A body is a set of atoms rigidly attached to each other, as determined by
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(a) Methane (b) Tetrahedron (c) Ethane (d) Two tetrahedra

Figure 3.3: Converting a molecule to a body-bar-hinge framework. Methane (a) is
rigid because all pair-wise distances between atoms are fixed (b). In ethane (c),
each carbon atom (gray) and its bonded neighbor atoms form a rigid cluster. The
two clusters share a hinge along the center C-C bond. The abstract body-bar-hinge
framework for ethane is shown in (d); two rigid bodies (represented as tetrahedra)
share a hinge along the rotatable bond.

constraints imposed through chemical bonds and stabilizing interactions. For exam-

ple, methane CH3, the molecule in Figure 3.3a, is rigid, because all the pair-wise

distances between atoms are determined by the covalent bond length and angle con-

straints. Abstractly, this can be visualized as the rigid tetrahedron from Figure 3.3b.

Ethane C2H6, shown in Figure 3.3c, is flexible. As in methane, each C atom

together with its covalently-bonded neighbors, forms a rigid body comprising four

atoms; since the C-C bond permits rotation, the molecule is flexible. Figure 3.3d

shows the atoms of ethane clustered into two rigid bodies, forming intersecting tetra-

hedra, that share a rotatable bond acting as a hinge. The hinge model of a bond is

used for rotatable covalent bonds, disulfide bonds, and strong hydrogen bonds.

Weaker interactions, such as hydrophobic interactions, can be modeled with differ-

ent numbers of bars, introduced in the ASU-FIRST software [10]. The convention set

in the ASU-FIRST software, and set as a default in KINARI, is to model hydropho-

bic interactions with 2 bars. Figure 3.4 shows an example hydrophobic interaction

configuration and how KINARI would model it. The 2 bars are to be placed between

the C and CG atoms, but you may notice, that each of these atoms are contained in

multiple bodies. In order to build a defined Tay graph for a body-bar-hinge frame-
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work, a bar endpoint must lie in one and only one body. We choose the body that

contains the endpoint and all its covalent neighbors as the one to attach the bar to.

It is important to note that a multi-bar is a relaxed extension of the bar concept.

A true bar, when placed between two endpoints, enforces a distance constraint. Any

additional bars between the endpoints would only serve as overconstraints–no addi-

tional DOFs could be removed. These multi-bars represent the removal of DOFs,

rather than specifically acting as distance constraints. The ability to increase or de-

crease the number of bars provides greater control to tune the system in order to

achieve more rigid or flexible results. The developers of ASU-FIRST presented an

interesting interpretation in order to permit the use of multi-bars in the modeling,

using the concept of pseudo-atom chains [10]. Before building the constraint graph, a

(conceptual-only) step is performed where a covalently-linked chain of ‘pseudo-atoms’

is placed between the two atoms sharing the hydrophobic interaction, as shown in

Figure 3.5. This chain permits the angles and distance between the atoms to vary,

but still imposes a constraint on the maximum distance. And most importantly, the

chain does not introduce any degeneracies into the model. A clever observation was

made that this chain need not be explicitly included in the modeling. Instead, the

chain could be replaced by a multi-bar representing the number of degrees of freedom

removed by the chain.

In the example in Figure 3.5, a chain of 3 pseudo-atoms connected by 4 rotatable

covalent bonds has been placed. If the modeling is performed on this configuration,

an additional 3 bodies and 4 hinges will be placed. Therefore, the chain permits only

4 degrees of freedom – one rotational degree of freedom for each hinge. The hinge

removes 2 (6 - 4) degrees of freedom between the two bodies to which the chain is

attached. The number of degrees of freedom removed can be varied by lengthening

or shortening the chain.
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Figure 3.4: Hydrophobic interaction modeling. By default in KINARI, a hydrophobic
interaction is modeled with 2 bars.

When using equivalent modeling options, there is a one-to-one correspondence

between the non-overlapping bodies used in the modeling and ASU-FIRST, and those

used in KINARI. But one main difference is in multi-bar modeling for hydrogen bonds.

In ASU-FIRST, when the initial bodies are determined, the H and O atoms covalently

bonded to only one other atom, are placed into their own rigid bodies. Figure 3.6d

shows how ASU-FIRST models the hydrogen bond configuration of Figure 3.6a. This

results in a (non-generic) model with 4 bodies and 3 DOFs. In KINARI, when the

same hydrogen bond is modeled with 5 bars, this would results in a model with 2

bodies and 1 DOF. For backwards compatibility, we support a legacy style modeling,

as shown in Figure 3.6e. Notice that there are two bodies (shows as bodies 2 and 3 in

the figure) that are each completely contained in one of the two other bodies. These

‘phantom’ bodies are placed in order to have a one-to-one correspondence with those

in ASU-FIRST.
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Figure 3.5: Equivalence of a pseudo-atom chain and multi-bar modeling. The chain of
three pseudo-atoms, p1-p3, has 4 degrees of freedom. The constraint imposed by the
chain can be incorporated into the model without including the pseudo-atoms explic-
itly. Instead, two bars can be placed between the corresponding bodies, equivalently
to what is depicted in Figure 3.4b.

Interaction type How modeled

Single covalent bond Hinge
Double covalent bond 6 Bars

Resonance bonds 6 Bars
Disulfide bonds Hinge
Hydrogen bond Hinge

Hydrophobic interaction 2 Bars

Table 3.3: Default modeling parameter settings in KINARI v1.0

3.2.2.1 Algorithm for converting a macromolecule to a body-bar-hinge

framework

In KINARI, a body-bar-hinge framework model of a molecule is built using infor-

mation on the atoms and the interaction network. We describe the default converter.

The available modeling options are hinge or 1 to 6 bars. We also describe legacy-mode

for modeling hydrogen bonds.

We describe the input and output objects in the conversion process, and the

auxiliary data structure used during the building of the body-bar-hinge framework.
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Figure 3.6: Hydrogen bond modeling. (a) shows a hydrogen bond configuration as
would be found connecting the backbone, for example in a β-sheet or α-helix. (b)
The default style in KINARI is to treat a hydrogen bond equivalently as a covalent
bond, modeling as a hinge, resulting in a model with 4 bodies and 3 DOFs. (c) If
instead, 5 bars is specified, KINARI will place 2 bodies with 1 DOF. The number of
DOFs can be increased by removing bars. (d) shows how ASU-FIRST models the
configuration, resulting in 4 bodies and 3 DOFs. (e) KINARI supports a legacy mode
in order to attain a model that corresponds with that of ASU-FIRST.
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The described algorithm to convert a macromolecule to a body-bar-hinge framework

takes linear time.

Input:

• mol. A macro-molecule composed of a set of atoms and a set of pair-wise interac-

tions, including covalent bonds, hydrogen bonds, and hydrophobic interactions.

These are read in from the PDB file and bond files produced by curation.

• modeling-table. A modeling table stores the modeling option selected for each

interaction in the molecular framework. The available modeling options are

HINGE, 6BARS, 5BARS, 4BARS, 3BARS, 2BARS, and 1BAR.

• legacy-mode-flag. A flag to specify whether to use ASU-FIRST legacy style

for modeling hydrogen bonds. This only takes effect when modeling hydrogen

bonds with 1 to 6 bars. This modeling option simply specifies whether additional

bodies be placed for H-bonds. The first extra body consists of the H and the

donor atom, and the second consists of the C=O for backbone hydrogen bonds.

Output:

• bbh. A body-bar-hinge framework model of the molecule consisting of:

– A set bodies. Each body consists of a set of atoms.

– A set of bars. Each bar connects exactly two bodies at two atom endpoints.

– A set of hinges. Each hinge connect exactly two bodies at two atom end-

points. The two atoms must belong to each body of the hinge.

Auxiliary data structure:

• cmap. A central-atom-to-body map tracks the central atom for each body. Each

body consists of a central atom and its ‘hinge’ neighbors, atoms that share an

interaction with the central atom that is modeled as a hinge in the modeling
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table. A ‘bar’ neighbor is an atom connected with an interaction modeled by

1BAR to 6BARS. These are not included in the body.

Algorithms 1 contains the pseudocode for converting a molecular object into a

body-bar-hinge framework. It uses the functions listed in Algorithms 2, 3, and 4 as

subroutines. Algorithm 4, BuildBarsAndHinges, uses Algorithm 5, GetBody, as a

subroutine. GetBody queries cmap or bbh for efficiently determining the bodies to

connect with bar and hinge constraints.

Algorithm 1 ModelMoleculeAsBodyBarHinge()

InitializeBBHModeler()
BuildBodies()
BuildBarsAndHinges()

Algorithm 2 InitializeBBHModeler()

Initialize bbh as an empty body-bar-hinge framework
Initialize cmap to empty

Algorithm 3 BuildBodies()

for all atoms, a, in mol do
Create a new body, b, and add a
Collect all ‘hinge’ neighbors of a and add to b
if b has 3 or more atoms or a is in a hydrogen bond and legacy-mode is True

then
add b to bbh
update cmap, cmap[a] = b

else
discard b

end if
end for

3.2.2.2 Converting to residue-level clusters

KINARI employs an all-atom model to determine rigid clusters of atoms. For

comparison with other methods (as we will do in Chapters 4 and 5), it is oftentimes

necessary to have data on the rigidity of the backbone only. In order to present the
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Algorithm 4 BuildBarsAndHinges()

for all interactions i in mol, between atoms a1 and a2 do
b1 = GetBody(a1)
b2 = GetBody(a2)
look up modeling for i in modeltable
if i is modeled as a HINGE then

add new hinge (a1, a2, b1, b2) to bbh
else if i is modeled as 1BAR, 2BARS, ..., 6BARS then

add new bar(a1, a2, b1, b2) with multiplicity of 1, 2, ..., 6
end if

end for

Algorithm 5 GetBody(a)

if a is in cmap then
return cmap[a]

else
return the only body in bbh that contains a

end if

information in a residue-level format, we examine the body-bar-hinge model output

by KINARI. For each atom-level rigid cluster determined by KINARI, we collect the

residues whose CA atoms belong to the cluster. For each such CA atom, we examine

the C-CA and CA-N bonds. If neither corresponds to a hinge in the body-bar-hinge

model, meaning that the rotation is inhibited by the network of chemical constraints,

we add the CA atom’s residue to the residue cluster.

3.3 System description

Figure 3.7 shows the different software components that fall under the KINARI

project, a collaborative efforts in Streinu’s Linkage Laboratory. Ileana Streinu is

the project lead and the main designer. In particular, she came up with the novel

modeling scheme. Audrey Lee-St John consulted in early stages of design. The system

was built after discussions with Michael F. Thorpe, one of the pioneers of protein

rigidity analysis, and Brandon Hespenheide, who developed the FIRST systems in

his PhD thesis work and later as a researcher in Thorpe’s lab. They shared the ASU-
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Mol Library
molecular modeling for rigidity analysis

Naomi, Filip

Kernel Library
rigidity analysis data structures and 

algorithms
Naomi

Curation Application
tools for preparing PDB data for rigidity 

analysis and other applications
Filip

KINARI-Web
web server for rigidity analysis, including 

configuration and visualizer tools
Yang, Naomi, Filip

Protein Rigidity Analysis 
Application

executable to configure and run rigidity 
analysis experiments

Naomi

Figure 3.7: KINARI Components (duplicate of Figure 1.2)

FIRST code base, as well as important implementation details early on, in a visit I

made to Thorpe’s Biophysics lab at Arizona State University in 2007.

In my thesis work, I implemented the kernel library and modeling code in the

molecular library. Filip Jagodzinski implemented the non-trivial task of PDB file

parsing, and performed much of the profiling. His thesis work focuses on correlating

rigidity metrics with protein stability data derived from laboratory experiments. Yang

Li, Smith 2011, wrote the bulk of the code for the web front-end and Jmol-based

visualizer.

We describe some important details of the system design. The first released version

of KINARI-Web, with its default settings, is referred to through the rest of this thesis

as KINARI v1.0. The curation and modeling settings for KINARI v1.0 are listed in

Tables 3.2 and 3.3.
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3.3.1 Kernel Library

The kernel library, released under the name KINARI-Lib, has classes for pebble

games and for 3D body-bar-hinge framework mechanical modeling [22]. To support

this functionality, the kernel library also provides classes for representing graphs,

calculating some statistics on the body-bar-hinge frameworks, and for reading and

writing each data structure in XML. A brief description of the key classes is included

below and in Figure 3.9. Complete API documentation is distributed with the soft-

ware, and the tutorial is available for download from the KINARI website.

Body-Bar-Hinge 

Framework

Build 

graph

Run (6,6)-

pebble game

Body-Bar-Hinge 

Framework

Edge

contraction

BBH

Associated

graph

Pebble 

Graph

BBH

Associated

graph

Build

BBH

1
2

3

1

2

Figure 3.8: Rigidity analysis applied to a generic body-bar-hinge framework.

PebbleGame. This class contains an implementation of the component pebble

game, described in [64]. The constructor runs it by default, and requires the (k, `)

sparsity parameters and a (multi)graph as input. Functions are provided to retrieve

the number of degrees of freedom, the maximal (rigid) components, and to identify

over-constrained edges. The class contains one PebbleGraph object as a member

variable. A PebbleGraph is a special extension of a directed multi-graph, on which

the pebble game is played.

BodyBarHingeFramework. This class contains lists of nodes, bodies, bars, and

hinges. The nodes are a discrete set of points used to define the bodies, bars,

and hinges. The Node class represents a point, that can (optionally) have coordi-

nates associated with it. The Body class contains a set of nodes. The Bar rep-

resents the bar connection between two Body objects at two Node endpoints. A
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DirectedGraph

bool addEdge(Vertex* src, Vertex* dst);
map<Vertex*, int> pebbles;

PebbleGraph

int getNumDofs();
ComponentIterator components_begin();
ComponentIterator components_end();
EdgeIterator rejectedEdges_begin();
EdgeIterator rejectedEdges_end();

int k;
int l;
UndirectedGraph* inputGraph;
PebbleGraph* pebbleGraph;

PebbleGame

(a) (k, `)-Pebble Game

int id;
Node

List<Node*> nodes;
Body

Node* node1;
Node* node2;
Body* body1;
Body* body2;

Bar

Node* node1;
Node* node2;
List<Body*> bodies;

Hinge

bool validBodyBarHingeFramework();

List<Node*> nodes;
List<Body*> bodies;
List<Bar*> bars;
List<Hinge*> hinges;

BodyBarHingeFramework

(b) Body Bar Hinge
Framework

BodyBarHingeFrameworkAssociatedGraph* 
getConsolidatedGraph();

BodyBarHingeFramework AssociatedGraph* graph;
BodyBarHingeFrameworkPebbleGame

PebbleGame

UndirectedGraph

BodyBarHingeFrameworkAssociatedGraph(BodyBarHingeFramework* bbh);
BodyBarHingeFramework* makeBBH()

List<VertexBodySet*> vertices;
List<Edge*> edges;

BodyBarHingeFramework
AssociatedGraph

List<Body*> bodySet;
VertexBodySet

Vertex

(c) Body Bar Hinge Framework Pebble Game

Figure 3.9: UML class diagram of selected classes from KINARI Kernel library
(KINARI-Lib).

Hinge connects at least two bodies, at two nodes defining the hinge axis. The

BodyBarHingeFramework::validBodyBarHingeFramework() function can be called

to check a number of conditions that are described in the API documentation.

BodyBarHingeFrameworkPebbleGame. This class provides special functionality

applicable to the pebble game on body-bar-hinge frameworks. The input to this

is an object of the BBHFwkAssociatedGraph class. The BBHFwkAssociatedGraph a

special undirected graph associated with a body-bar-hinge framework. Each ver-

tex points to one (or more) bodies, and the edges have bars or hinges associated

with them. In this way, the post-pebble-game body-bar-hinge framework can be

built. The BodyBarHingeFrameworkPebbleGame::getConsolidatedGraph() func-

tion is provided to output an edge-contracted graph, where each component has been

consolidated into a single vertex. Because this graph is of type BBHFwkAssociatedGraph,

it contains all the information necessary to build the simplified BodyBarHingeFramework,

where each rigid body is maximal.

We include two short examples illustrating how the kernel libary functionality can

be incorporated into a C++ program. The first example runs the pebble game on
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#include <PebbleGame . h>
#include <GraphXMLFileIO . h>
#include <ComponentsXMLWriter . h>
us ing namespace Kinar i ;
int main ( int argc , char ∗∗ argv ) {

// 4 command l i n e parameters :
// 1 . The name of the XML f i l e conta in ing the input graph
std : : s t r i n g graphf i l ename ( argv [ 1 ] ) ;
// 2 . k in the ( k , l ) va lue s requ i red to con f i gure the pebb l e game
int k = a to i ( argv [ 2 ] ) ;
// 3 . l in the ( k , l ) va lue s requ i red to con f i gure the pebb l e game

int l = a t o i ( argv [ 3 ] ) ;
// 4 . The output f i l e f o r the components

std : : s t r i n g componentf i lename ( argv [ 4 ] ) ;
t ry {

GraphXMLFileIO graphReader ( graphf i l ename ) ;
UndirectedGraph∗ ugraph = graphReader . extractGraph ( ) ;
PebbleGame pg (k , l , ugraph ) ;
ComponentsXMLWriter : : writePebGameResultsFi le (pg , componentfi lename ) ;

} catch ( Kinar iExcept ion e ) {
std : : c e r r << e . t oS t r i ng ( ) << std : : endl ; }}

Figure 3.10: Example code for invoking pebble game.

graphs. The second one analyzes the rigidity of 3D body-bar-hinge frameworks. The

library distribution includes extended versions of the two examples.

General graph pebble game. This example code, shown in Figure 3.10, performs

the following steps:

1. Read a graph from file.

2. Run the pebble game on the graph, with user-specified (k, `) values

3. Write an XML file containing the components, DOFs, and over-constraints cal-

culated by the pebble game.

The error handling utilities inside the KINARI code are also demonstrated. Here,

the PebbleGame constructor will throw a KinariException if the (k, `) values do not

fall in the acceptable range.

Rigidity analysis of Body-Bar-Hinge Frameworks. The commented code exam-

ple in Figure 3.11 shows the KINARI classes and syntax for analyzing a body-bar-
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#include <BBHFwkXMLFileIO . h>
#include <GraphXMLFileIO . h>
#include <BodyBarHingeFrameworkPebbleGame . h>
us ing namespace Kinar i ;
int main ( int argc , char ∗∗ argv ) {

// Read a body−bar−hinge framework from an XML f i l e
BBHFwkXMLFileIO bbhXMLReader( ”bbh . xml” ) ;
BodyBarHingeFramework∗ bbh = bbhXMLReader . extractBBH ( ) ;
// Create an as soc i a t ed graph
BBHFrameworkAssociatedGraph bodyGraph (bbh ) ;
//Play pebb l e game and ge t the output graph with edge con t rac t i ons
BodyBarHingeFrameworkPebbleGame pg(&bodyGraph ) ;
BBHFrameworkAssociatedGraph∗ edgeContractedBBHGraph = pg . getConsol idatedGraph ( ) ;
GraphXMLFileIO : : writeOutGraph (∗ edgeContractedBBHGraph ,

”edgeContractedBBHGraph . xml” ) ;
// Retr i eve minimized body−bar−hinge and wr i t e to f i l e
BodyBarHingeFramework∗ consolidatedBBH = edgeContractedBBHGraph−>makeBBH( ) ;
BBHFwkXMLFileIO : : writeXMLToFile (∗ consolidatedBBH , ”postPG BBH . xml” ) ; }

Figure 3.11: Example code for body-bar-hinge framework rigidity analysis.

hinge framework using the BodyBarHingeFrameworkPebbleGame class. The steps

performed mirror those shown in Figure 3.8.

3.3.2 KINARI Molecular library

The KINARI molecular library contains all classes to facilitate molecular modeling

for rigidity analysis.

Figure 3.12 shows a UML-style diagram of simplified versions of some of the

important classes. The MolFramework class holds all the molecular data and sup-

ports fast queries of the atom-interaction network. The most important classes

in the library involve conversion between a molecule to a body-bar-hinge object.

The CustomizableMolFwToBBHFwConverter contains a reference to a modeling cus-

tomization table, of type MFToBBHFwModelingParameters. This class supports de-

fault modeling for each interaction type, and if desired, special modeling for particular

interactions. This specialized modeling feature is used for the energy-refined model-

ing features described in Chapter 5 of this thesis. File I/O classes provide support

for parsing data from PDB files and identifying relevant bonds and interactions.
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List<Atom*> atoms;
List<AtomPairConstraint*> interactions;
map< Atom*, List <AtomPairConstraint*> > 
atomToInteractionListLookup;

MolFramework

int id;
double x, y, z;

Atom

Atom* atom1;
Atom* atom2;
InteractionType iType;
double energy;

AtomPairConstraint

(a) Data Structures

map<InteractionType, InteractionModel> 
interactionModelingTable;
map<const AtomPairConstraint*, InteractionModel> 
specializedModelingTable;

MFToBBHFwModelingParameters

void setMolFramework(MolFramework* mf);
BodyBarHingeFramework* makeBBH();

MFToBBHFwModelingParameters modelingTable;
MolFrameworkPDB* mf;

CustomizableMolFwToBBHFwConverter

BodyBarHingeFramework* makeBBH() = 0;
BBHFwkFactory

(b) Converters

MolFramework* buildMolFramework()=0;
PDBFileExtractor

CuratePDBFileBondWriter

void writeToFile(BodyBarHingeFramework* bbh, 
MolFramework* mf, string filename);

ResidueRigidityWriter

MolFramework* buildMolFramework();
CuratePDBFile_MolFrameworkReader

vector< AtomPairConstraint * > 
parseHBondsFromHBPlusOutputFile();

HBondIdentifierHBPlus

(c) File I/O

Figure 3.12: UML class diagram of selected classes from KINARI Molecular library.

The main class for parsing PDB file input, calculating interactions, and building a

MolFramework is the CuratePDBFileMolFrameworkReader class. Although most in-

teractions are calculated internally by KINARI, we do rely on the HBPLUS software

to calculate hydrogen bonds [69]. The HBondIdentifierHBPlus class supports

parsing HBPLUS output files.

The code example of Figure 3.13 shows how the KINARI Molecular library classes

are used to:

1. Read in a molecular object from a PDB file and interactions files that are output

by curation.

2. Build a body-bar-hinge framework model of the molecular object.

3. Perform rigidity analysis on that molecule and output the results in an XML-

format file.

3.3.3 KINARI-Web

KINARI-Web is a publicly-available web server for protein rigidity analysis (http:

//kinari.cs.umass.edu). KINARI-Web was developed by Jagodzinski, Li, Streinu,

and myself. My main contribution in this endeavor was implementing the back-end
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#include <CuratePDBFile MolFrameworkReader . h>
#include <CustomizableMolFwToBBHFwConverter . h>
#include <BodyBarHingeFrameworkRigidityAnalyzer . h>
#include <BBHFwkXMLFileIO . h>
#include <s t r i ng>
#include <iostream>
us ing namespace std ;
us ing namespace Kinar i ;
// requ i red command l i n e arguments :
// 1 . pdb f i l e name
// 2−7: i n t e r a c t i o n s f i l e names
// 8 : body−bar−hinge framework output f i l e name
int main ( int argc , char ∗∗ argv ) {

// Step 1 : i n i t i a l i z e and con f i gure MolFramework b u i l d e r
CuratePDBFile MolFrameworkReader reader ( argv [ 1 ] ) ;
r eader . setBondFileName (SINGLECOVBOND, argv [ 2 ] ) ;
r eader . setBondFileName (DOUBLECOVBOND, argv [ 3 ] ) ;
r eader . setBondFileName (RBOND, argv [ 4 ] ) ;
r eader . setBondFileName (HBOND, argv [ 5 ] ) ;
r eader . setBondFileName (HYDROPHOBICTETHER, argv [ 6 ] ) ;
// Step 2 : Bui ld your molFramework o b j e c t and r e t r i e v e
r eader . buildMolFramework ( ) ;
MolFrameworkPDB∗ molFramework =
s t a t i c c a s t <MolFrameworkPDB∗>( r eader . getMolFramework ( ) ) ;
// Step 3 : model the MolFramework as the i n i t i a l BodyBarHingeFramework
CustomizableMolFwToBBHFwConverter modeler (molFramework ) ;
BodyBarHingeFramework∗ i n i t i a lBbh = modeler .makeBBH( ) ;
// Step 4 : Run the pebb l e game r i g i d i t y ana l y s i s
BodyBarHingeFrameworkRigidityAnalyzer r i g i d i t yAna l y z e r ( i n i t i a lBbh ) ;
BodyBarHingeFramework∗ minimizedBbh = r i g i d i t yAna l y z e r .makeBBH( ) ;
// Step 5 : Write the pos t pebb l e game bbh to f i l e
BBHFwkXMLFileIO : : writeXMLToFile (∗minimizedBbh , argv [ 7 ] ) ;

}

Figure 3.13: Example code for protein rigidity analysis.
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protein rigidity analyzer executable. This was configurable with an XML format in-

put file. This configuration file lists the input PDB and interactions file, as well as

any custom modeling options. We were very fortunate to work with Smith under-

graduate Yang Li, who implemented the bulk of the PHP code for the server. Having

access to this code base greatly eased the implementation of extensions, namely the

Redundancy analyzer described in the next section. I also contributed substantially

to the front-end design, testing, and debugging.

3.3.3.1 Features

KINARI-Web enhances the KINARI command-line applications with a web-based

front-end. It provides tools for streamlining the curation of the input protein data

file and for building a molecular model that can be customized by the user. A record

of the performed experiments is provided in text files containing all options needed

to reproduce the results. For beginners, KINARI-Web offers a quick-start alternative

that sets curation and modeling parameters to default values.

A key feature is the interactive Jmol-based visualization tool for exploring the

rigidity results. Each cluster is highlighted with a different color. Because two clusters

can overlap, the clusters are shown with colored surfaces rather than by coloring

each atom a single color. By default only the large rigid bodies are shown. The

system provides a list of all the calculated clusters, from which the user can select

which ones to display and which ones to hide; this makes it possible to view rigid

bodies in isolation or in context. The user can zoom in to investigate specific regions,

such as known active sites or domain interfaces that are functionally or structurally

important. Bonds that act as hinges between rigid clusters, surfaces for each rigid

cluster, specific atoms, and different chemical interactions can be displayed or hidden

from view. The ability to view and investigate the rigidity properties of specific small

regions of a protein is a visualization feature that is not available elsewhere.
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Other notable features of the visualizer include:

• Display hydrogen bonds and hydrophobic interactions.

• Show all atoms in ball-and-stick or cartoon mode. Shapes of rigid clusters are shown
with highlighted surfaces.

• Select which clusters to show, filtering by size, or select cluster IDs from drop-down
menu.

• Hide or show atoms to help better visualize regions of interest.

• Return to the ball-and-stick default view (shows the rigid clusters with at least 20
atoms each) at any time.

• Full functionality of Jmol : zoom-in and out, translate protein, and click on atoms to
get their names and IDs.

• Save an orientation, that can be reverted back to.

• Take a snapshot and save as a jpeg file for later use.

• Hinge and bar options: display all hinge axes and hinge bonds; select a particular
hinge from a drop-down menu; show the two clusters of the hinge in isolation (hiding
all other atoms), optionally highlight the two clusters with surfaces; apply spin. This
will rotate the molecules about selected hinge axis.

(a) Rigidity results with
default options

(b) Viewing specific
clusters

(c) Viewing hinge
regions

(d) Hinge between 2
bodies

Figure 3.14: Demonstration of the KINARI-Web interactive visualizer. The visual-
izer can be used to display different rigidity features of 1HRC. The quick-start option
uses default curation and modeling options, and displays the largest rigid clusters as
highlighted surfaces (a) in a bar-and-stick model. Many other visualization options
are available. The same protein can be viewed as a cartoon (b), two bodies that con-
nect at a mechanical hinge can be shown (c), while hydrogen bonds and hydrophobic
interactions can be displayed in the vicinity of a mechanical hinge region.
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3.3.3.2 Case study of Cytochrome-c (1HRC), to demonstrate KINARI-

Web

Included here is a case study to demonstrate the visualization features. Other

case studies using KINARI-Web are available from the KINARI website.

Horse heart Cytochrome-c is a 105 residue heme protein associated with the inner

membrane of mitochondria. The rigidity of this protein was previously investigated

by [40,90,94]. To analyze it with KINARI, we invoked the quick-start analysis option

with PDB code 1HRC. The curating of the PDB file (the ligand was automatically

removed) and the rigidity analysis using default options were performed in less than

5 seconds.

The calculated rigid regions of a protein can be easily explored in the visualizer.

Figure 3.14a shows the ball-and-stick model rendition of 1HRC in the Jmol applet

embedded in KINARI-Web. The 5 rigid bodies that are composed of at least 20

atoms are displayed with randomly-colored surfaces. Different visualizer features can

be used to customize the parts of the protein and the set of rigid clusters displayed.

Figure 3.14b shows the same protein, but the cartoon display option is selected, and

only a subset of the clusters are highlighted.

The pink and purple clusters share a rotatable bond that acts as a hinge. The

two clusters can be displayed in isolation, with highlighted clusters as in Figure 3.14c,

or, as in Figure 3.14d, with the hinge axis, hydrogen bonds (green) and hydrophobic

interactions (blue). The hydrogen bonds and hydrophobic interactions hold the two

clusters rigidly together, but do not cross-link between the clusters. Visualizing the

hinge up-close gives insight into the range of motion that the bond might exhibit.

3.3.4 KINARI-Redundancy

Chapter 6 contains a description of the KINARI-Redundancy web application.

This application supports all of the curation and modeling options of KINARI-Web
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Protein PDB MSU-FIRST KINARI v1.0
LAO-binding (closed) 1LST 1 1
LAO-binding (open) 2LAO 1 1

HIV-1 Protease (closed) 1HTG 4 3
HIV-1 Protease (open) 1HHP 3 3

Dihydrofolate Reductase (closed) 1RX1 2 1
Dihydrofolate Reductase (occluded) 1RX6 2 2

Dihydrofolate Reductase (open) 1RA1 2 2
Adenylate Kinase (closed) 1AKY 6 6
Adenylate Kinase (open) 1DVR 4 3

Table 3.4: A comparison of the flexible loop regions detected by MSU-FIRST and
KINARI v1.0. The loops are annotated in [48].

standard rigidity analyzer. But on top of that, it provides the user with access to the

critical and redundant interactions found within the rigid clusters.

3.4 Case studies comparing results of KINARI v1.0 with pre-

viously published rigidity analysis results

We describe in detail case studies comparing results from KINARI v1.0 (see Tables

3.2 and 3.3), and those reported for MSU-FIRST [47,48]. We found the KINARI v1.0

decompositions matched well with the MSU-FIRST decompositions, but there were

some subtle differences. We also include a comparison with results produced by the

RigidFinder method, described earlier in Chapter 2, Section 2.3.2.

Overall, the cluster decompositions produced by the two methods, visually, had

high overlap in the rigid clusters and flexible regions identified. The MSU-FIRST re-

port confirms literature annotated flexible loops with those identified by the software.

For most of the cases, KINARI identifies the same flexible loops as does MSU-FIRST.

Table 3.4 summarizes the counts of loops detected by MSU-FIRST and matched by

KINARI.
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3.4.1 Case study of Lysine-Arginine-Ornithine Binding Protein

The lysine-arginine-ornithine binding protein (LAO, which transports important

substrates in bacteria, has a bi-lobal or“clam-shell”, structure. The two LAO crystal

structures used in the original MSU-FIRST study were an open (2LAO) and closed

(1LST) structures [47]. It is composed of two stable domains: domain 1 (residues

1-87, 195-237, containing N- and C- terminals) and domain 2 (residues 94-181). The

remaining region consists of loops forming a domain-level hinge. See Figure 3.15a.

(a) Domains (b) RigidFinder

(c) KINARI v1.0, 1LST (d) KINARI v1.0, 2LAO

Figure 3.15: Rigid cluster decompositions of lysine-arginine-ornithine binding protein.
All of the decompositions are depicted on 2lao.

The MSU-FIRST results report that the residues of domain 1 lie in a single rigid

cluster. It was observed that domain 2 is more flexible. Smaller rigid cluster, mainly

composed of α-helices, form within the domain, but the β-sheet remains flexible.

There are slight differences in the distribution of the rigid clusters between the open

and closed conformations, but for both conformations, the MSU-FIRST software

60



predicts domain 2 to be rather flexible. The main difference between the two decom-

positions was that for the open conformation, the flexible domain-level hinge region

is larger, extending further into domain 2 than for the closed conformation. The open

conformation is expected to be more flexible than the closed conformation because

the interfaces are separated and there are fewer opportunities for hydrogen bonding

and hydrophobic interactions.

In the KINARI decompositions, the difference in flexibility between the open and

closed conformations is more stark. The KINARI decomposition on the closed con-

formation (2LAO, Figure 3.15d) reflects the same level of flexibility as that produced

by MSU-FIRST. Like the MSU-FIRST decomposition, domain 1 lies in a single rigid

cluster while domain 2 is composed of smaller, mainly α-helix, rigid clusters and a

flexible β-sheet. The decomposition for the closed conformation (1LST, Figure 3.15c)

does not show the same flexibility in the 2nd domain. The two domains are both

placed into their own rigid clusters.

It appears that the differences between the systems, mainly the inclusion of the

hydrophobics and the underlying rigidity analysis modeling and algorithm, have had

subtle but important differences for the cluster decompositions between the open and

closed structures.

For another comparison, we used RigidFinder [1] to decompose the protein into

rigid domains, based on the open and closed conformations. See Figure 3.15b).

RigidFinder decomposes the protein into exactly three domains: one that matches

domain 1, another that matches domain 2, and a third composed of the domain-level

hinge region. The RigidFinder decomposition does not identify the flexibility within

domain 2.
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3.4.2 Case study of HIV-1 Protease

For the open and closed forms of HIV-1 Protease (1HHP, 1HTG), the results

reported by MSU-FIRST and KINARI have good correspondence. For the closed

conformation, the KINARI residue-level cluster decomposition was the same whether

the ligand was present or removed from the analysis. For 1HHP, both MSU-FIRST

and KINARI identify the single, dominating rigid cluster and the three flexible regions

(labeled as α, β, and γ), Figure 3.16b. The large rigid cluster contains the base and

walls of the binding cavity. For the closed form (1HTG), KINARI and MSU-FIRST

results both reflect the increase in rigidity upon binding. The large rigid cluster now

includes the α and β regions, but not the γ region.

(a) RigidFinder (b) KINARI v1.0, 1HHP (c) KINARI v1.0, 1HTG

Figure 3.16: Rigid cluster decompositions of HIV-1 Protease. All of the decomposi-
tions are depicted on the 1HHP dimer.

One interesting difference is in the δ region is the dimer interface, composed of

residues at the N- and C-termini that do not belong to a secondary structure. Al-

though the KINARI results show flexibility in the δ in chain A, chain B has maintained

rigidity. In the MSU-FIRST decomposition, the entire δ region is flexible. The loops

above the δ region is the catalytic site, containing the characteristic Asp-Thr-Gly

sequence (Asp25, Thr26 and Gly27) common to aspartic proteases, lie within the

rigid core for both the open and closed conformations (computed both by KINARI

and ASU-FIRST). Functionally, the δ region is where the two monomers are held

together; none of the many known drug resistance mutation sites are located within
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δ [93]. The importance of the findings on the different levels of flexibility within the

regions is unclear.

The RigidFinder decomposition for HIV-1 Protease has some interesting differ-

ences from the either of the KINARI or MSU-FIRST decompositions. The α and

γ regions, the β-sheet that both regions share, as well as loops forming the wall of

the binding cavity, have been placed into a single cluster. The rest of the protein,

including γ and δ regions compose a second rigid cluster.

3.4.3 Case study of Dihydrofolate Reductase

We compare the MSU-FIRST decompositions of 3 conformational states of dihy-

drofolate reductase (open, 1RA1; closed, 1RX1; occluded, 1RX5) with those from

KINARI with default options. The KINARI decompositions were in general much

more rigid than those reported by MSU-FIRST. The labeled M20 and βF-βG loops

are of key importance to binding specificity and should be flexible. Overall, the KI-

NARI results report a larger dominating rigid cluster. Even with the exclusion of the

ligand from the analysis, the entire protein, other than the 2-3 flexible loops reported,

is included in a single rigid cluster. We now compare in further detail the results re-

ported by MSU-FIRST and KINARI in detecting flexibility in the loop regions.

For 1RA1 (Figure 3.17b), MSU-FIRST correctly detects flexibility in the M20

loop, a captures the flexibility of a subsection of the βF-βG loop. KINARI detects

the same regions of flexibility as MSU-FIRST on 1RA1.

For 1RX1 (Figure 3.17c), part of the M20 loop is detected by MSU-FIRST to

be flexible, while most of the βF-βG loop is detected to be flexible. KINARI does

not detect any flexibility in the M20 loop, but detects the same flexible region as

MSU-FIRST in the βF-βG loop.

The MSU-FIRST results for 1RX6 (Figure 3.17d) are similar to those it reports

for 1RX1, but an even larger region of flexibility is detected in the βF-βG loop. The
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(a) RigidFinder (b) KINARI v1.0, 1RA1

(c) KINARI v1.0, 1RX1 (d) KINARI v1.0, 1RX6

Figure 3.17: Rigid cluster decompositios of Dihydrofolate Reductase. All of the
decompositions are depicted on 1RA1.

flexible region of the M20 loop is more extensive (labeled δ) and the entire βF-βG

loop is detected to be flexible.

The RigidFinder decomposition (Figure 3.17a), based on 1RA1 and 1RX1, places

most of the protein into a single domain, except for a piece of the M20 loop and a

small segment of loop adjacent to the βF-βG loop.

3.4.4 Case study of Adenylate Kinase

Adenylate kinase undergoes a domain-level hinge motion upon ligand binding with

a 2-step mechanism. Figure 3.18 shows decompositions of adenylate kinase, depicted

on the ATP-bound, open conformation (1DVR). The domain containing the binding
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(a) RigidFinder (b) KINARI v1.0, 1AKY (c) KINARI v1.0, 1DVR

Figure 3.18: Rigid cluster decompositios of Adenylate Kinase. All of the decomposi-
tions are depicted on 1DVR.

domain is labeled as the lid-domain. The AP5A-bound, fully-closed conformation

(1AKY, not shown) was analyzed.

For 1AKY, MSU-FIRST and KINARI decompositions match quite closely, with a

nice alignment between the clusters and flexible regions between the two decomposi-

tions. However for the open conformation (1DVR), there are some subtle differences

between the two decompositions. MSU-FIRST identifies 6 flexible loop regions (la-

beled a-e). Of these, KINARI’s flexible regions match with all but 2 of them. Instead,

KINARI includes these two loop regions (labeled as e and f) in rigid clusters. KI-

NARI identifies the entire lid region as rigid, while in MSU-FIRST, the loops on the

tip of the region have been identified as flexible.

3.5 Conclusion

We have designed and built KINARI to serve as a general library to support me-

chanical modeling. In this chapter, we provided details on the curation and modeling

concepts important for reproducibility of our work, including the default parameter

settings for KINARI v1.0.
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The first application of KINARI is to protein modeling. The kernel library (pub-

licly released as KINARI-Lib) has been designed to readily integrate into other ap-

plications that may benefit from rigidity analysis, such as computer-aided design

(CAD) [37] or sensor network localization [63].
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CHAPTER 4

BENCHMARKING A RIGIDITY ANALYSIS SYSTEM

Our main goal in developing KINARI is to validate the predictive power of protein

rigidity analysis. Rigidity analysis, as a tool for determining rigid cluster decomposi-

tions (RCDs), has been validated on only a handful of proteins 1.

In this chapter, we will propose a method that goes beyond a case study-based

validation. We use a benchmarking data set and score the accuracy of the RCDs

determined with KINARI v1.0. We find that predictive power of KINARI v1.0 is

significant for the larger (> 500 residues) proteins, but performs worse than the

all-floppy or all-rigid baselines for the medium- and small-sized proteins. Our results

highlight the need to develop new methods which more accurately capture the rigidity

and flexibility properties of all proteins.

4.1 Introduction

As new generations of bioinformatics systems are released with new features and

updated methods, it is vital to ensure that their results continue to match or improve

upon previous generations. A number of protein rigidity analysis software systems

have been built, including MSU-FIRST (now ProFlex) [48], ASU-FIRST [10], and

our own KINARI [21]. All of these take as input a single protein structure in a

PDB file and output a decomposition of the protein into rigid clusters. Although all

1The dilution extension of rigidity analysis was more extensively validated as a method for com-
putationally determining the folding core. This is different task from accurately determining the
rigidity and flexibility at the native state.

67



the systems share the same general approach of mechanical modeling and running a

pebble game algorithm, there are substantial differences in both their modeling and

in the underlying algorithms.

Previously, case studies were used to validate the rigid cluster decompositions pro-

duced by rigidity analysis against data from laboratory experiments [48]. Providing

case analyses for validation should not be under-appreciated as a contribution. Case

studies demonstrate how the system may be used to test real hypotheses on protein

flexibility. Yet, they do not facilitate measurement of improvements. If a new case

study does not provide the desired results, one may spend months tuning curation and

modeling parameters until these are attained. A quantitative approach to evaluation

compliments these case studies, by providing a fast way to measure improvement.

Contribution. We propose a general methodology for benchmarking protein rigid-

ity analysis systems. Included in this a method to assign a score to a predicted cluster

decomposition, compared with decompositions produced by some other method. This

is an adaptation of the B-cubed score from the information retrieval literature, which

is used as a comparative score on two clusterings of the same data [2]. We use this

evaluation method to benchmark our software, KINARI. In our benchmarking we use

two data sets: the first is composed of several proteins used to validate the MSU-

FIRST software [47, 48] and the second is used in the Gerstein Lab to validate the

RigidFinder server [1]. We have made the benchmarking scripts, written in Python,

available at the KINARI web site for public use.

4.2 Methods

In the next sections, we discuss the B-cubed scoring method, the data set used in

our evaluation, and the scripts developed for performing the evaluation.
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4.2.1 Comparative cluster decomposition scoring

To evaluate our new methods for including and modeling hydrogen bonds and

hydrophobic interactions, we propose the application of a scoring method from the

information retrieval literature, called the B-cubed scoring method [2]. The score is

a measurement of the similarity of two clusterings of the same data. We will use it

to compare cluster decompositions produced by KINARI (the model) with a curated

set of gold standard decompositions. For each ‘item’ (data point, document, residue,

etc), the precision is the fraction of items in its predicted cluster that also lie in its

cluster in the gold standard. The recall is the fraction of items in its gold standard

which are also in its predicted cluster. The F1-score combines the precision and recall

into one score.

We more formally define the concepts now. For each item i, GS(i) is the cluster

it belongs to in the gold standard decomposition. Similarly, M(i) is i’s cluster in

the model’s predicted decomposition. Pr(i) and Re(i) are, respectively, i’s precision

and recall. The precision and recall of a decomposition D, Pr(D) and Re(D), are

simply the mean precision and recall of the items. F1(D), the F1-score of D, is the

harmonic mean of Pr(D) and Re(D). The following five equations show how Pr(i),

Re(i), Pr(D), Re(D), and F1(D) are calculated.

Pr(i) =
|GS(i) ∩M(i)|
|M(i)|

(4.1)

Re(i) =
|GS(i) ∩M(i)|
|GS(i)|

(4.2)

Pr(D) =
1

n

n∑
i=1

Pr(i) (4.3)

Re(D) =
1

n

n∑
i=1

Re(i) (4.4)

F1(D) =
2 ∗ Pr(D) ∗Re(D)

Pr(D) +Re(D)
(4.5)

69



All-floppy and all-rigid baselines. For a set of items, the two most extreme ways

of naively decomposing are a completely floppy prediction (placing each item into

its own unique cluster) or a completely rigid prediction (placing all items into the

same cluster). These two methods result in 100% precision and 100% recall, respec-

tively. We will use the all-floppy and all-rigid decompositions as baselines to compare

KINARI’s decompositions on real proteins.

These baselines may seem quite rudimentary, but they are quite powerful in show-

ing that the higher level of sophistication built into our system provides provably

better results. For example, single domain proteins such as Dihydrofolate Reductase

(DHFR, see case study in Section 3.4.3) may be mostly rigid, with a small flexible

region at the active site. In the KINARI v1.0 decomposition of the open conformation

(1RA1), 93% of the residues are contained in the largest rigid cluster. For such cases,

the all-rigid baseline might perform better than other methods which err toward a

more flexible model.
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Figure 4.1: Three decompositions on the same example protein to demonstrate the
B-cubed cluster decomposition score. GS represents the gold standard decomposition,
and the rest are predicted decompositions. D2 and D3 are the all-rigid (100%-recall)
and all-floppy (100%-precision) baselines. D1, D2, and D3 receive B-cubed scores,
respectively, of 0.55, 0.46, and 0.65. See Table 4.1 for example calculations.

Example of calculated B-cubed scores. Figure 4.1 depicts the predicted decompo-

sitions for an abstract molecule, compared with a gold standard decomposition (GS).

The decompositions are D1: produced by some predictive method, D2: all-rigid, and
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D3: all-floppy. The B-cubed scores for D1, D2, and D3, compared with GS, are

respectively 0.65, 0.55, and 0.46 (See Table 4.1 for calculation). This shows that the

decomposition of D1, which visually seems to better match the cluster distribution

of GS, achieves a higher score than either the all-rigid or all-floppy decomposition.

D1 D2 D3

Residue Re Pr Re Pr Re Pr

1 5
5

5
8

5
5

5
10

1
5

1
1

2 5
5

5
8

5
5

5
10

1
5

1
1

3 5
8

5
5

5
10

1
5

1
1

5
5

4 5
5

5
8

5
5

5
10

1
5

1
1

5 5
5

5
8

5
5

5
10

1
5

1
1

6 2
2

2
8

2
2

2
10

1
2

1
1

7 2
2

2
8

2
2

2
10

1
2

1
1

8 1
3

1
8

3
3

3
10

1
3

1
1

9 2
2

2
3

3
3

3
10

1
3

1
1

10 2
2

2
3

3
3

3
10

1
3

1
1

Avg 0.93 0.51 1.0 0.38 0.30 1.0

F1 0.65 0.55 0.46

LRC-match 0.63 0.20 0.50

Table 4.1: Calculation of B-cubed B-cubed precision, recall, and F1-scores for the
small examples shown in Figure 4.1. The B-cubed score (shown as F1) for decompo-
sition D1 is higher than the all-rigid (D2) and all-floppy (D3) decompositions. In the
all-rigid baseline, all 10 residues are placed into the same cluster (D2), resulting in
100% recall but low precision. To contrast, in the all-floppy baseline, each residue is
placed in a unique cluster resulting in 100% precision but low recall. The LRC-match
score listed is the ratio of the sizes of the intersection and union of the largest rigid
clusters from the two decompositions compared. Although not always the case, the
LRC-match score correlates with the B-cubed scores for these three decompositions.

4.2.2 Benchmark data set

Gerstein Lab RigidFinder data set. To apply the cluster decomposition score

evaluation method to real proteins, gold standard decompositions, to which compare

the results, are needed. To serve this purpose, we have chosen a dataset from the
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Gerstein Lab which is accompanied by decompositions that were validated against

evidence from the biochemistry literature.

The Gerstein Lab’s data set, listed in Table 5.3, was originally used to validate

the RigidFinder method, which determines rigid cluster decompositions using two

conformations of the same protein [1]. Although both RigidFinder and KINARI

produce decompositions, RigidFinder requires two unique conformations as input,

while KINARI requires only one. The RigidFinder data set has good coverage over

small (fewer than 200 residues), medium (between 200 and 500 residues), and large

(501 residues or more) proteins, and associated decompositions are readily available

from the RigidFinder server website. Due to limitations in the PDB format, we have

excluded GroEL-GroES from our study.

MSU-FIRST data set. In order to compare the new modeling options with pre-

vious results, we include four proteins used in the validation of the MSU-FIRST

software [47, 48]. The four proteins are the lysine-binding protein (closed, 1LST;

open, 2LAO), HIV-1 protease (closed, 1HHP; open, 1HTG), dihydrofolate reductase

(open, 1RA1; closed, 1RX1; occluded, 1RX1), and adenylate kinase (open, 1DVR;

closed, 1AKY). Although different PDB files were used, there is an overlap between

these proteins and those in the RigidFinder data set because these are standard, well-

studied proteins for which multiple conformations are known. We used RigidFinder

to determine our ‘gold standard’ rigid cluster decompositions, choosing the decom-

position according to the convention established in the paper [1], choosing the first

sensitivity cutoff at a local maximum.

Converting to residue-level clusters. KINARI employs an all-atom model to de-

termine rigid clusters of atoms, and not residues. Because the decompositions for the

Gerstein Lab’s benchmark data are at the residue level, the KINARI output must be

transformed to a residue decomposition. In order to do this, we examine the body-

bar-hinge model output by KINARI. For each atom-level rigid cluster determined by
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KINARI, we first create an empty residue-level cluster and then collect the residues

whose CA atoms belong to the cluster. Note that because rigid clusters can overlap,

the CA atoms do not necessarily belong uniquely to that cluster. For each such CA

atom, we examine the C-CA and CA-N bonds. If neither corresponds to a hinge

in the body-bar-hinge model, meaning that the rotation is inhibited by the network

of chemical constraints, we add the CA atom’s residue to the residue cluster. Fi-

nally, the residue-level cluster is added to the decomposition to be compared with the

benchmark.

4.2.3 Benchmarking toolkit

We have developed scripts for benchmarking systems which produce rigid cluster

decompositions of proteins. This is a general framework that could be applied to

other systems, not just those that rely on pebble game rigidity analysis.

• scoreRigidityResults.py : takes as input a gold standard and predicted decom-

positions and outputs the B-cubed precision, recall, and F1-score

• getNaiveBCubedScores.py : takes as input a gold standard decomposition and

outputs the B-cubed precision, recall, and F1-score for each of the all-floppy

and all-rigid baseline decompositions.

The ingredients for using the benchmarking toolkit are (1) a data set of PDBs

with some associated gold standard cluster decompositions and (2) predicted decom-

positions on the same data set of proteins. As input, the scripts support the file

format produced by RigidFinder for defining the decompositions into sets of residues.

The scripts, as well as the data sets, are available for download from the KINARI

website ( http://kinari.cs.umass.edu/Downloads/benchmarking/).

73



4.3 Results

We present the results of our evaluation of KINARI v1.0 on the benchmark data

set. We used the RigidFinder server to generate a residue-level cluster decomposition

for each of the proteins, using the two conformations for each protein as input. We

then computed the B-cubed scores for KINARI v1.0 decompositions in order to score

how well the decompositions matched those of RigidFinder. For comparison, we

also computed the B-cubed scores for the all-floppy all all-rigid baselines. Table 4.2

lists the results of our evaluation using the B-cubed evaluation method for the two

baselines and KINARI v1.0.

First, we discuss the results on the MSU-FIRST data set. For 3 of the 4 pro-

teins, KINARI v1.0’s score matched or performed better than the all-rigid baseline,

for either the open or closed conformations. The RigidFinder decomposition for Di-

hydrofolate Reductase is quite rigid, with over 90% of residues lying in the largest

rigid cluster. Although KINARI v1.0 detected the flexible loops for 1RA1 (see pre-

vious chapter, Section 3.4.3), the RigidFinder decomposition detected only one of

them. A different tuning value for the RigidFinder method, with a more flexible

decomposition, may result in improved B-cubed scores for KINARI v1.0.

Next we discuss the results on the 32 PDBs in the Gerstein lab data set. For 11

of the 17 proteins, the B-cubed score for at least one of the conformations was higher

than that of the completely rigid baseline. For some of the proteins, there was a large

discrepancy between the B-cubed scores. For example, the closed (1kc7) and open

(2r82) conformations of pyruvate phosphate dikinase received scores of 0.45 and 0.66,

respectively.

We performed a paired t-test on the results from the RigidFinder data set in

order to evaluate whether improvement was significant over the all-rigid baseline.

The means of differences and p-values are shown in Figure 4.2. This was indeed the

case for the large proteins in the set (p-value, 0.0077), but overall, the improvement
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over the baseline was not statistically significant. For the PDBs of medium and

small proteins, the mean of the differences in B-cubed was negative, showing that a

completely rigid decomposition was a better method prediction of the compared with

the gold standard decomposition. For example, the KINARI v1.0 decomposition

on Antigen 85C pdb 1dqz received a B-cubed score of 0.89, the highest among the

Gerstein Lab data set. But method 2 received an even higher score, 0.92.

In summary, KINARI v1.0 can produce significant results for large proteins, but

for medium and small proteins in the data set, the results are not significant. In the

next chapter, we explore different parameterizations of the rigidity analysis and how

these may improve accuracy.

(a) mean of differences (b) p-value

Figure 4.2: Comparison of KINARI v1.0 B-cubed scores against all-rigid baseline.
The B-cubed scores for the KINARI v1.0 rigid cluster decompositions and the all-
rigid decompositions were computed for the RigidFinder data set, as shown in Table
4.2. The mean of differences measures the change in B-cubed score between the two
methods. The p-value indicates whether the improvement is significant. We use the
convention that a p-value of 0.05 or less is significant.
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1 2 3
all 

floppy 
baseline

all rigid 
baseline

KINARI 
v1.0

Protein Size  
(#Res) PDB B-cubed 

score
B-cubed 

score
B-cubed 

score

MSU-FIRST Data Set

HIV-1 protease 198 1HHP 0.03 0.72 0.72HIV-1 protease 198 1HTG 0.03 0.72 0.71

Dihydrofolate Reductase 159
1RA1 0.03 0.94 0.92

Dihydrofolate Reductase 159 1RX1 0.03 0.94 0.85Dihydrofolate Reductase 159
1RX6 0.03 0.94 0.82

Adenylate Kinase 220 1AKY 0.06 0.68 0.65Adenylate Kinase 220 1DVR 0.06 0.68 0.74
Lysine-binding protein 238 1LST 0.03 0.72 0.90Lysine-binding protein 238 2LAO 0.03 0.72 0.65
RigidFinder Data Set

Pyruvate phosphate dikinase 872 1KC7 0.02 0.43 0.45Pyruvate phosphate dikinase 872 2R82 0.02 0.43 0.66
T7 RNA polymerase 843 1QLN 0.25 0.53 0.62T7 RNA polymerase 843 1MSW 0.25 0.53 0.57
RNA polymerase II 3519 1I50 0.11 0.60 0.70RNA polymerase II 3519 2NVQ 0.11 0.59 0.55

Nitrogenase 3074 1M1Y 0.01 0.62 0.87Nitrogenase 3074 2AFI 0.01 0.62 0.67
Rhodopsin 627 1F88 0.20 0.26 0.58Rhodopsin 627 3CAP 0.22 0.26 0.48

Phosphotransferase 214 2ECK 0.07 0.57 0.41Phosphotransferase 214 4AKE 0.07 0.57 0.41
Bacteriorhodopsin 170 1BRD 0.13 0.53 0.60Bacteriorhodopsin 170 2BRD 0.41 0.38 0.56

DNA polymerase beta 328 2FMQ 0.07 0.54 0.57DNA polymerase beta 328 9ICI 0.07 0.54 0.61
Alcohol dehydrogenase 374 6ADH 0.07 0.63 0.46Alcohol dehydrogenase 374 8ADH 0.07 0.63 0.66
Malate dehydrogenase 333 1BMD 0.11 0.68 0.69Malate dehydrogenase 333 4MDH 0.13 0.67 0.66

Antigen 85C 280 1DQY 0.07 0.91 0.88Antigen 85C 280 1DQZ 0.05 0.92 0.89
Aspartate aminotransferase 401 1AMA 0.02 0.72 0.68Aspartate aminotransferase 401 9AAT 0.02 0.72 0.66

S100A6 89 1K9K 0.13 0.34 0.35S100A6 89 1K9P 0.13 0.34 0.65
Cro repressor 61 5CRO 0.09 0.88 0.45Cro repressor 61 6CRO 0.06 0.90 0.47

HIV-1 protease 99 4HVP 0.04 0.75 0.52HIV-1 protease 99 3HVP 0.04 0.75 0.49
Calmodulin 141 1CLL 0.19 0.56 0.55Calmodulin 141 1CTR 0.15 0.57 0.48

Bungarotoxin 74 1IDG 0.41 0.31 0.46Bungarotoxin 74 1IDI 0.41 0.31 0.46

Table 4.2: B-cubed scores for KINARI v1.0. The MSU-FIRST data set consists of 4
proteins used to evaluate the MSU-FIRST software [48]. The RigidFinder data set
is categorized, from top to bottom, into large (greater than 500 residues), medium
(between 200 and 500 residues) and small (fewer than 200 residues) proteins.

76



4.4 Discussion

Performance of KINARI v1.0 on medium and small-sized proteins. The discrep-

ancy in the performance of KINARI v1.0 on the larger and smaller proteins may be

attributed to the noise in the set of hydrogen bonds and hydrophobic interactions.

In Chapter 6, we will present our characterization of redundancy of noncovalent in-

teractions, as identified by KINARI v1.0, in rigid clusters. Larger clusters have more

redundant interactions which do not cause a loss of rigidity when they are removed.

They are also less likely to contain interactions which are highly critical, such that

when they are removed the cluster’s size is reduced by 10% or more.

Gold standard data sets. A major challenge is in finding a very realistic gold

standard data set. Within the RigidFinder data set which we used as our ‘gold

standard’ decompositions, we found that there is some disagreement in the rigid

and flexible domains as compared with those annotated by the authors of MSU-

FIRST [48] (see Chapter 3, Section 3.4). RigidFinder is very effective at determining

course-grained domain decompositions, but lacks the sensitivity to identify smaller

flexible loops that may be functionally very important. This issue can be observed

in decompositions of Adenylate Kinase (1AKY, 1DVR), which has 6 functionally

important flexible loop regions as annotated in [48] (see also Table 3.4 and case

studies in Chapter 2, Section 3.4). RigidFinder places the loops into their adjacent

rigid clusters. With an improved annotated benchmarking data set, our evaluation

should be repeated and the benchmark scores compared.

Atom-level decomposition. The evaluations were performed only on backbone flex-

ibility, not taking advantage of the atom-level decompositions produced by KINARI.

If such a benchmarking data set were available, it is within the power of our evaluation

framework to compare sidechain flexibility as well.
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4.5 Conclusion

The power of a benchmark lies in fast hypothesis testing. Beyond using case

studies, in this chapter we demonstrated that KINARI v1.0 has significant predictive

power over the all-rigid and all-floppy baseline for at least the large proteins in the

data set. The performance on the larger sized proteins did not generalize for the

smaller and medium-sized proteins. Especially for the smaller-sized proteins, the

KINARI v1.0 predictions were overly flexible, and the all-rigid baseline performed

better on most cases. These results lead us to question whether the parameterization

of KINARI v1.0 is optimal for all proteins.

In the next chapter, we will propose new methods for modeling including hydrogen

bonds and hydrophobic interactions in the modeling. We use our benchmarking

methodology in order to validate the predictive power of the new methods.
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CHAPTER 5

ENERGY REFINED MODELING OF NONCOVALENT
INTERACTIONS

In the previous chapter, we quantitatively measured KINARI v1.0’s accuracy in

predicting rigid cluster decompositions on a benchmark data set, and showed that

with default parameter settings, the system outperformed the baselines for the large

proteins in the data set. We also confirmed what has been observed in the literature,

that there is no one-size-fits-all choice of curation and modeling options that will

deliver good across-the-board performance. To support this claim, we showed that

the all-rigid baseline proved to be a better predictor for the small and medium-sized

proteins in the data set, perhaps due to inadequacies in the curation and modeling

parameterization. In this chapter, we propose new approaches for incorporating hy-

drogen bonds and hydrophobic interactions into the modeling which can result in

dramatic improvement in accuracy.

5.1 Introduction

Previous approaches. In previous work, hydrogen bonds were modeled as mechan-

ically equivalent to covalent bonds, fixing bond length and bond angles at incident

atoms [10, 21, 32, 48]. It has been observed early on that such a method may lead

to inaccurate results, such as an almost complete rigidification of the protein model.

Since it is known that not all hydrogen bonds have the same strength, an energy func-

tion was applied to prune the weakest bonds and exclude them from the model [48].

A universal hydrogen bond energy cutoff, which would produce biologically credible
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Figure 5.1: Definition of a hydrogen bond. (a) A hydrogen bond forms between a
partially electronegative acceptor atom, A, and a hydrogen atom, H, that is covalently
bonded to a partially electronegative donor atom, D. AB is the acceptor base. (b)
hydrogen bonds are determined using geometric parameters.
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Figure 5.2: Hydrogen bond configurations. The triangles show the bodies determined
by KINARI for the mechanical model.

results for any protein input, was never found. Wells et al. [94] point out the dis-

crepancies of the hydrogen bond energy cutoffs in a number of previous studies in the

literature.

In these systems, hydrophobic interactions were identified with heuristic approaches

[10], and, unlike hydrogen bonds, they had no associated energies. It has been ob-

served that the tuning of the hydrophobic interactions can be just as important as

for hydrogen bonds. Gohlke et al. [32] comment, in their study of flexibility changes

during Ras-Raf complex formation, “Finding the appropriate balance between these

interactions [hydrogen bonds and hydrophobics] is thus crucial for an accurate repre-

sentation of the flexibility characteristics of proteins”.

Strength and geometries of hydrogen bonds and hydrophobic interactions. For

covalent bonds, energy and geometry is characterized by the identities of the two
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1HTG 1VGC 1BBP

total 146 173 553

non-furcated D 144 169 521

bifurcated D 2 4 32

non-furcated A 124 136 416

bifurcated A 22 34 116

trifurcated A 0 3 21

single-base A 139 143 448

double-base A 7 11 33

Table 5.1: Frequency of hydrogen bonds which occur in special configurations (see
Figure 5.2) in 3 example proteins.

electron-sharing atoms. The bond length and directionality (or bond-angle) tend to

be fully determined, as explained by molecular orbital theory. For example, in ethane

C2H6, each C atom is bonded to another C atom and 3 H atoms, forming two over-

lapping, rigid tetrahedra (Figure 3.3c). The bond angles and bond lengths remain

relatively fixed. In mechanical modeling for rigidity analysis, covalent bonds are in-

corporated as bond-length and bond-angle fixing constraints. By contrast, hydrogen

bonds display large variations in energies and geometries, even for those with the

same donor and acceptor atoms [31] (page 1, paragraph 2). Strong hydrogen bonds

behave essentially as a covalent bonds, but weaker hydrogen bonds behave more like

electrostatic interactions which have much more variance in length and directional-

ity [31]. Pairs of atoms which are packed closely together engage in hydrophobic

(also called van der Waals) interactions. The strength of these interactions depends

on the atom types and pairwise distances. Which hydrogen bonds and hydrophobic

interactions to incorporate, and how to model them, is crucial to obtaining accurate

results in rigidity analysis.

Contribution. We propose two new methods for incorporating noncovalent in-

teractions for protein rigidity analysis. First, rather than simply removing weaker
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hydrogen bonds, we propose varying the way that they are modeled, based on their

strength. We investigate modeling a weak hydrogen bond as a rigid bar which fixes

the distance between the endpoints, but permits full rotational freedom. We reveal

the limitations of the current mathematical theory for supporting this modeling, and

propose heuristics to approximate the rigidity results. The second method we pro-

pose is in the inclusion of hydrophobic interactions. We calculate these interactions

and assign to them an energy using the Lennard-Jones 6-12 potential. Then, as for

hydrogen bonds, we use an energy cutoff to determine which interactions to include

in the modeling. We investigated the use of a single, rigid bar to model these inter-

actions. We have implemented these extensions in our KINARI software, and made

it available for public use on the KINARI-Web server [21].

5.2 Background and Literature Review

Weaker hydrogen bonds play an important role in stabilizing a protein’s fold and

should not be neglected when modeling for rigidity analysis. Molecular mechanics

forcefields support the calculation of hydrophobic, or van der Waals, interactions and

their associated energies. In Sections 5.2.1 and 5.2.2, we give background on the

biophysics of hydrogen bonds and hydrophobic interactions and how energies can be

calculated. Because the new modeling methods, which we will propose in Section 5.3,

may introduce degeneracies, we provide some relevant background material on this

topic in Section 5.2.3.

5.2.1 Hydrogen bonds in proteins

A hydrogen bond forms between a partially electronegative acceptor (A) atom and

a hydrogen atom that is covalently bonded to a partially electronegative donor (D)

atom [52]. Schematically, we refer to the donor-hydrogen-acceptor triplet as D–H–A.
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(a) All (b) Simple (c) furcated D (d) furcated A (e) multi-base A

Figure 5.3: The distributions of energies of hydrogen bonds varies based on its con-
figuration. Hydrogen bonds from HIV-1 Protease (1HTG), Serine Protease (1VGC),
and Bilin-binding Protein (1BBP)

Secondary structure elements in proteins, mainly α-helices and β-sheets, are held

together by very regular hydrogen bonding patterns along the backbone [75]. Hy-

drogen bonds also form outside secondary structures, bracing together secondary

structures and loops in the folded shape. Inter-molecular hydrogen bonds, such as

those in the interface of two proteins in a complex, or between a protein and a ligand,

play an important role in stabilizing the complex [15,32,73].

Strong, moderate, and weak hydrogen bonds. Hydrogen bond energies in proteins

typically fall under 15 kcal/mol [31] (pg 31-32, Section 2.4.2). To compare, a typical

covalent bond has an energy of 85 kcal/mol [75]. Figure 5.3a shows a histogram of

the distribution of energies calculated in KINARI v1.0. The hydrogen bond energies

are normally distributed with an approximate mean of -5 kcal/mol. The histogram

shows that although fewer, the number of very weak hydrogen bonds, with energies

near 0 kcal/mol is not negligible.

Weak hydrogen bonds are electrostatic in nature but increasingly behave like

covalent bonds as their strength grows [31]. The boundary between ‘weak’ and ‘strong’

is blurred. One proposed assignment of a cutoff for weak bonds was < −4 kcal/mol

[31]. For the modeling scheme proposed here, the boundary between weak and strong

is left to the user to determine, as is the case in all previously implemented methods.
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Hydrogen bond energy functions. Hydrogen bonds display large variations in en-

ergies and geometries, even for those with the same donor and acceptor atoms. This

leads to difficulties in identifying bonds and their strengths, leading to what Gilli and

Gilli [31] called the hydrogen bond problem. Despite the difficulty, efforts have been

made to quantify the energy, or potential, of individual hydrogen bonds using orienta-

tion information alone. The two versions of FIRST and [10,48] and our own KINARI

software use the Mayo energy function [68] for this purpose. This is a closed-form

equation, parameterized on hydrogen bond angles and distances, as in Figure 5.1b.

The energy function of Kortemme et al. is similarly parameterized by angles and

distances, but rather than a closed-form equation, it sums the independent energetic

contributions from a database of statistics from crystallography-determined protein

structures [58].

Hydrogen bond configurations. Gilli and Gilli [31](pg. 24) present a review of

a number of different configurations that have been studied in the hydrogen bond

literature. Figure 5.2 shows several of them, which are relevant to our modeling. We

use the nomenclature from [73] for describing furcated configurations.

In a simple, non-furcated configuration, the hydrogen atom, which is covalently

bonded to a donor atom, forms a single hydrogen bond with an acceptor atom, which is

also covalently bonded to only one atom, the acceptor antecedent, as in Figure 5.2a. A

furcated donor configuration is formed when a single H engages in 2 or more hydrogen

bonds. An acceptor which engages in multiple hydrogen bonds is in a furcated acceptor

configuration. These three types of configurations have been identified and studied

in the literature. One additional configuration that we identify here, which is not

included in Gilli and Gilli’s listing, is the multiple-base acceptor configuration where

an acceptor that is covalently bonded to more than one atom engages in a hydrogen

bond. Later, in the Methods section of this chapter (5.3), we describe why this special

configuration is of concern in mechanical modeling.
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The most stable configuration of a hydrogen bond is linear, with D–H–A (θ)

forming a 180◦ angle, but hydrogen bonds are rarely found to be linear, and the most

probable value is 165◦ [52] (pg. 20). Because of geometric constraints, hydrogen

bonds in furcated configurations will tend to deviate even more from being linear.

Frequency of configurations in PDB data. Panigrahi and Desiraju [73] performed

a survey on hydrogen bond configurations on a data set of structures of 251 protein-

ligand complexes, using the HBAT software for determining hydrogen bonds. They

found that overall 65% of acceptors and 34% of donors were in furcated configu-

rations. Of the furcated acceptor configurations, 66% were bifurcated, 25% were

trifurcated, and the remainder engaged in 4 to 6 hydrogen bonds. Of the furcated

donor configurations, 39% were bifurcated, 27% were trifurcated, and the remainder

were tetrafurcated, pentafurcated, or hexafurcated.

Configuration energies. We examine the 3 PDB files from [15] which probed the

contribution of non-conventional hydrogen bonds to the rigidity of protein complexes:

HIV-1 Protease (1HTG), Serine Protease (1VGC), and Bilin-binding Protein (1BBP).

Table 5.1 shows the counts of types of hydrogen bonds in these three proteins. Because

we use a different method to identify hydrogen bonds, the set of hydrogen bonds

analyzed in Table 5.1 will have variations from those identified in [15]. In Figure 5.3,

we collect together the set of hydrogen bonds from all three proteins, and show the

distribution of energies for hydrogen bonds in different configurations. Hydrogen

bonds in furcated configurations tend to be weaker than non-furcated because the

angles tend to deviate further from 180◦.

5.2.2 Hydrophobic interactions in proteins

A pair of neutral atoms are subject to two distinct forces between them: an

attractive force at long ranges (van der Waals force), and a repulsive force at short

ranges (Pauli repulsion force). The Lennard-Jones (or 6-12) potential, shown in
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the equation below, is an approximation of the sum of these two forces involved in

a hydrophobic interaction in proteins. The Lennard-Jones potential is standardly

used in molecular mechanics force fields packages, such as the popular Amber-99

forcefield [8].

V = 4ε(
σ

r

12

− σ

r

6

) (5.1)

The ε and σ values, which are the potential well depth and the distance at which

the inter-atomic potential is zero, are experimentally determined and can be retrieved

from tables distributed with the Amber-99 forcefield.

5.2.3 Non-generic models and rigidity theory

Tay’s theorem applies to almost all geometric body-and-bar frameworks, but it

fails on a statistically insignificant (“measure-zero”) set of situations which are called

non-generic due to the existence of certain algebraic dependencies between the geo-

metric data. Identifying non-generic frameworks is in general a very difficult problem,

but it is sometimes possible to state whether certain combinatorially described con-

figurations are generic. A famous example is the Molecular conjecture, which states

that molecular frameworks still obey Tay’s theorem, generically, even when the set

of hinges incident at an atom are concurrent. This conjecture, essential in estab-

lishing the validity of the combinatorial approaches for rigidity analysis of molecular

structures, has been proven only recently [55], more than 25 years after it has been

raised.

In this chapter, we discuss a number of situations, described in combinatorial

(rather than geometric) terms and detected from the connectivity of the set of points

and constraints, for which a genericity theorem, similar to the molecular conjecture

would be needed. For practical purposes, we will have to work for now under the
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assumption that the conjecture holds, as this is what allows for the extension of the

pebble game algorithm to such cases; otherwise, our implemented method will have

to be, for the time being, considered as an unproven heuristic. We point out, however,

that such statements are sometimes notoriously difficult to prove; the first result of

this kind, due to Maxwell (1864) and Laman (1970) took over 100 years to become a

theorem. We will have to resort for now to empirical validation while waiting for the

rigorous proofs.

To summarize: 3-dimensions only generic body-bar-hinge frameworks can be an-

alyzed using Tay’s theorem with theoretical guarantees of correctness. Moreover, in

some situations the very definition of the associated graph fails to be well-defined.

For example, when the endpoints of two bars coincide, there is no guarantee of them

being in a generic position. We call this type of degeneracy a bar-bar concurrency

(Figure 5.4b). If one endpoint of a bar lies on a hinge, we have a bar-hinge concur-

rency degeneracy (Figure 5.4c). How to place the edges in the associated graph for

frameworks with this latter type of degeneracy is ambiguous. In the Methods sec-

tion, we discuss where these degeneracies turn up in protein modeling, and propose

a heuristic so that rigidity analysis can be performed.

5.3 Methods

In the next sections, we propose new methods for incorporating weak hydrogen

bonds and hydrophobic interactions in the modeling. These methods will be evalu-

ated in Section 5.4, using the data set and benchmarking methodology introduced in

Chapter 4.

5.3.1 Modeling interactions with a bar

A bar placed between two bodies fixes distance but permits angles to vary. This

bar concept is distinct from the ‘tether’ modeling introduced in ASU-FIRST, where
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Examples of generic and non-generic body-bar-hinge frameworks and
associated graphs. (a) shows a generic body-bar-hinge framework. The bar endpoints,
and the continuous sets of points along the hinge axes, are all distinct. Its associated
graph, shown in (d), is completely defined. The frameworks of (b,c) contain non-
generic features described in this chapter: a bar-bar concurrency (b) and a bar-hinge
concurrency (c). These two types of degeneracies may occur in mechanical models
of proteins when modeling hydrogen bonds or hydrophobic interactions with a bar.
Using our heuristic, we build associated graphs for the non-generic frameworks (e,f).
Although for these two examples the pebble game will produce the correct result,
there is no guarantee for non-generic cases.

bodies and multiple bars are placed in the model to approximate a pseudo-atom

chain [10]. We are the first to investigate the use of this true type of bar for modeling.

The motivation for using bars comes mainly from variable hydrogen bond modeling,

as described next.
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5.3.2 Modeling weak hydrogen bonds as bars

For our new modeling option for hydrogen bonds, we choose a cutoff energy value,

but instead of discarding the weak bonds (as was done previously [48]), we model

them with a weaker constraint than the one used for a covalent bond. The mechani-

cal models produced may contain degeneracies, as discussed below. Furthermore, we

survey where the problems occur for the different types of hydrogen bond configu-

rations we defined in the previous section (Figure 5.2). For the different hydrogen

bond topologies described earlier in the Background section, we describe how they

are included in the mechanical modeling and the heuristics needed in order to build a

graph for the pebble game algorithm. A case study is also provided to show how the

different modeling can have subtle effects on the resulting rigid cluster decomposition.

Non-furcated configurations. Because H and A are both covalently bonded to

only one other atom, during the body-building phase of modeling, they each are

placed in one, and only one body. Placing the bar between the two bodies introduces

no degeneracies because the endpoints are unique. No other bar is attached at the

endpoint.

Furcated configurations. When the configuration is a furcated one, either at the

hydrogen (Figure 5.2b) or acceptor (Figure 5.2c), then the mechanical model will

contain two bars which share an endpoint. This bar-bar concurrency is combina-

torially non-generic, but the multigraph associated to the resulting body-bar-hinge

framework is well defined and the usual pebble game can be used in this situation.

Multiple-base acceptor configurations. An acceptor can be covalently bonded to

multiple bases (Figure 5.2d). In the resulting mechanical model, A lies on a hinge

and is in more than one body. The mechanical model will contain a bar-hinge con-

currency, and the multigraph associated to the resulting body-bar-hinge framework

is not uniquely defined.
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Our heuristic. We propose a heuristic for building the associated graph in the

combinatorially non-generic situations identified above. See the Background section

for preliminaries. For each bar, if one of its end-points is a non-central atom, then

it belongs to only one body and there is no ambiguity: we place an edge in the

associated graph that is connected to the vertex corresponding to that body. If a

bar’s endpoint is attached to a central atom, then, in the multigraph associated to

the mechanical structure, we place the edge on the vertex corresponding to the body

of the central atom.

5.3.3 Calculating hydrophobic interaction energies and modeling as bars

This thesis is the first to evaluate the effect of varying the set of hydrophobic

interactions. To provide a tuning parameter for inclusion, we are assigning an energy

to each interaction based on its Lennard-Jones 6-12 potential. The ε and σ values are

taken from the the Amber-99 forcefield [8]. Interactions with hydrogen atoms were

excluded because these atoms take part in hydrogen bonding. Otherwise, all pairs of

atoms, and not just those identified with the heuristic method for hydrophobics as

introduced by ASU-FIRST, are considered as candidates for hydrophobic interactions.

Figure 5.5 shows 51 hydrophobic interactions, with energies ranging between -0.15

and -0.2 kcal/mol calculated on an 18-residue α-helix. The previous version of our

software, KINARI v1.0, would determine no hydrophobic interactions in the helix.

To model the hydrophobic interactions, we have chosen the single bar constraint

described in the previous section on weak hydrogen bond modeling. This constraint

models the atoms’ propensity to stay a fixed distance from each other, while permit-

ting angles to vary.

Using the new method for identifying hydrophobic interactions, a much greater

number of hydrophobic interactions is identified. The number of hydrophobic interac-

tions an atom might participate in varies by the energy cutoff used to exclude weaker
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Figure 5.5: Hydrogen bonds (green) and hydrophobic interactions (blue) computed
on a section of α-helix. In the 18 residue α-helix, 14 hydrogen bonds, with energies
ranging between -2 and -7 kcal/mol, and 51 hydrophobic interactions, with energies
ranging between -0.15 and -0.2 kcal/mol, were identified. With the heuristic version
of calculating hydrophobic interactions in KINARI v1.0, no hydrophobic interactions
would be identified within the α-helix.

interactions. See Figure 5.5 for an example of hydrogen bonds and hydrophobic inter-

actions calculated by KINARI, where those with energies weaker than -0.15 kcal/mol

are excluded.

5.4 Results and Discussion

We analyze now the results of applying the B-cubed score evaluation method

to the benchmark data set. This builds on the evaluation results presented in the

previous chapter. We have numbered the variants of the decomposition methods 1

through 7, as shown in Table 5.2. Refer to Chapter 4, Section 4.3 for the discussion

of the evaluation on decomposition method 3, which is just KINARI v1.0 run with

default options.

All scores and their associated cutoffs are listed in Table 5.3. The bar-plots in

Figure 5.6 show the comparisons between each of the methods with method 2 (all-

rigid decomposition) and method 3 (KINARI v1.0). The plots show the means of
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Decomposition Method Description

1 All-floppy decomposition

2 All-rigid decomposition

3 KINARI v1.0, default options

4 KINARI, vary hydrogen bond energy cutoff and exclude weak
hydrogen bonds

5 KINARI, vary hydrogen bond energy cutoff and model weak
hydrogen bonds as bars

6 KINARI, use default options for hydrogen bonds. compute hy-
drophobics and assign energy with LJ-potential. Exclude weak
hphobes and model the rest as bars

7 same as Method 6, but vary the hydrogen bond energy cutoff
and model the weaker hydrogen bonds as bars

Table 5.2: Evaluated rigid cluster decomposition methods.

differences and the p-values. We have also included two in-depth case studies on

Pyruvate Phosphate Dikinase and Calmodulin, in order to demonstrate the sensitivity

of the B-cubed evaluation method.

5.4.1 Cluster decomposition evaluation with decomposition methods 1 to

3, all-floppy and all-rigid baselines and KINARI v1.0

The decomposition methods 1 to 3 are (1) all-floppy baseline, (2) all-rigid base-

line, and (3) KINARI v1.0 with default options. These two baseline decomposition

methods are described in the previous chapter, Section 4.2.1. The first simply places

each residue into its own rigid cluster, and the second places all residues into the

same rigid cluster. The default options of KINARI v1.0 are shown in Tables 3.2 and

3.3 of Chapter 3.

We presented our evaluation of these three decomposition methods in the previ-

ous chapter. Although KINARI v1.0 proved to have non-trivial predictive power for

determining RCDs on the larger proteins (> 500 residues) in the data set, the same

version did not fare as well on the medium- and small-sized proteins. Overall, the
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(a) mean of differences, with Meth. 2 (b) mean of differences, with Meth. 3

(c) p-value, with Meth. 2 (d) p-value, with Meth. 3

Figure 5.6: Comparison of B-cubed scores on RigidFinder data set, as shown in Table
5.3. For each plot, the methods are numbered on the x-axis. In (a) and (c), methods
3-7 are compared with method 2 (all-rigid baseline). In (b) and (d), methods 4-
7 are compared with method 3 (KINARI v1.0). The performance of each method
is evaluated on the entire RigidFinder data set, as well as the large, medium, and
small-sized protein subsets. The mean of differences measures the change in B-cubed
score between the two methods. The p-value indicates whether the improvement is
significant. We use the convention that a p-value of 0.05 or less is significant.

system was out-performed by the all-rigid baseline. In the next sections, we evalu-

ate methods for tuning KINARI and measure how they may improve the system’s

performance.
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5.4.2 Cluster decomposition evaluation with decomposition method 4,

discarding weak hydrogen bonds.

For each of the PDBs, we compute the cluster decomposition score for the rigidity

results produced at each hydrogen bond energy cutoff, excluding weaker hydrogen

bonds. This is the conventional tuning parameter used in previous studies using

rigidity analysis, as was first proposed for the MSU-FIRST software [48] (see also the

discussion of cutoffs in [94]). For each PDB, the highest score was determined with

its associated cutoff. If multiple cutoffs achieved the same score, the strongest (most

negative) cutoff was the one used. The values are listed in Table 5.3.

For 11 of the PDBs (1HHP, 1RX1, 1LST, 1KC7, 2AFI, 1F88, 3CAP, 2BRD,

2FMQ, 1K9K, 1CLL), excluding weaker hydrogen bonds resulted in higher B-cubed

scores than KINARI v1.0, in a few cases, quite substantially. This seemed to be the

case when there was a large discrepancy in the KINARI v1.0 between two conforma-

tions of the same protein, as is typical for open and closed conformations. Removing

hydrogen bonds from the more rigid conformation results in a decomposition that

more closely matches those of RigidFinder and the other conformation in the pair.

The case study of Pyruvate Phosphate Dikinase described in the next section will

illustrate this phenomenon.

5.4.3 Cluster decomposition evaluation with decomposition method 5,

modeling weak hydrogen bonds as bars.

We reran our rigidity analysis experiments with KINARI, with the new proposed

modeling method for weak hydrogen bonds described in the Methods section. For

those PDBs for which using a cutoff did not lead to a higher score, the results were

the same. For the 12 which benefited from the cutoff, 5 PDBs received higher scores,

three did worse, and the rest remained unchanged.
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The MSU-FIRST and Gerstein Lab’s benchmark data sets of 21 proteins are

insufficient for inferring general conclusions on whether the new modeling hydrogen

bond method is significantly better than the default modeling method (removing

weak hydrogen bonds). One of the tasks that should be undertaken in the future is

to collect and validate a larger benchmarking data set.

Hydrogen bond classification. Our hydrogen bond identification and classification

method, using HBPLUS and the Mayo energy function, has its limitations. It would

also be interesting to use different criteria to classify the bonds as weak and strong,

for example, the duty cycle of Kurnikova et al. [61] or our classification of hydrogen

bonds as critical and redundant [23].

Case study of Pyruvate Phosphate Dikinase. Pyruvate Phosphate Dikinase (PPDK)

is a catalytic-enzyme which binds with ATP, pyruvate, and phosphate. The cluster

decomposition produced by RigidFinder and KINARI v1.0 on the open (2R82) and

closed (1KC7) conformations, are shown in Figure 5.7a, 5.7b, 5.7c. Visually, the 2R82

decomposition (Figure 5.7b) shows better agreement with that of RigidFinder’s. A

segmentation of the PEP/Pyruvate and His domains has been correctly identified.

The ATP-grasp domain does not appear in its own cluster. The decomposition for

the closed conformation (Figure 5.7c, 3D depiction of conformation not shown) placed

most of the protein into the same rigid cluster. A small fragment, a single α-helix, of

the ATP-grasp domain, has been determined to lie in a different rigid cluster. The

two baseline decompositions, all-floppy and all-rigid, have scores of 0.02 and 0.43.

Both the KINARI decompositions achieved better scores: 0.65 for 2R82 and 0.45 for

1KC7. The difference in scores between the two KINARI decompositions reflects the

better accuracy of the decomposition for 2R82. The more rigid decomposition for

1KC7 is not surprising, given that it had 10% more hydrogen bonds and 14% more

hydrophobic interactions than 2R82.
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(a) RigidFinder (b) 2R82, KINARI v1.0 (c) 1KC7, KINARI v1.0

(d) 1KC7, method 4 (e) 1KC7, method 5
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Figure 5.7: RigidFinder and KINARI decompositions of Pyruvate Phosphate Diki-
nase. (a) RigidFinder decomposition. (b) The KINARI decomposition for 2R82 was
optimal at cutoff energy 0, meaning all hydrogen bonds were included. For 1KC7,
the maximum score, 0.66, was achieved at -1.5 kcal/mol when excluding weak hydro-
gen bonds from the modeling (d). By using a bar to model weak hydrogen bonds,
a slightly better score (0.67, cutoff -2.75 kcal/mol) was achieved (e). The B-cubed
score plots for the two conformations (f) when using the new modeling option. As the
cutoff is varied, the precision and recall are monotonically increasing and decreasing.
An optimal B-cubed score is achieved when the F1-values combining the precision
and recall is optimized.

By excluding weaker hydrogen bonds from 1KC7, as in method 4, a decomposition

which more closely matches the RigidFinder decomposition is achieved. Figure 5.7f

shows the F1-scores for the decompositions produced by method 4 for each hydrogen
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bond energy cutoff. For 2R82, the match is optimal at a cutoff of 0 kcal/mol, where

all hydrogen bonds are retained. For 1KC7, excluding hydrogen bonds weaker than

-1.5 kcal/mol results in the optimal score of 0.66. The corresponding decomposition

is shown in Figure 5.7d, which places the important functional domains into separate

rigid clusters. Applying method 5 (bar modeling) to 1KC7 results in a higher B-cubed

score of 0.67 at the optimal cutoff of -2.75 kcal/mol, see Figure 5.7e.

This example on PPKD shows that by calculating the B-cubed score, the optimal

cutoff can be determined automatically. Although there is no universal parameteri-

zation for rigidity analysis, future studies should explore under what conditions, such

as conformational state or active temperature, the same cutoff best applies.

Prevalence of degeneracies in mechanical models. Because they are usually less

linear, hydrogen bonds in furcated configurations tend to have weaker energies. They

are more likely to be left-out from the mechanical model if an energy cutoff is used.

Furcated bonds are bundled together (by definition), so removing them can have a

drastic impact on the rigidity of a local area. By modeling them as a bar, we can

more realistically capture them in the model as weaker then covalent bonds. Although

individually the bars make a smaller contribution, when taken together, they have a

significant effect on the rigidity.

Furcated configurations do introduce bar-bar concurrency degeneracies into the

model, and depending on the boundary chosen between weak and strong, bar-bar

degeneracies may be in abundance in the mechanical model. There is a sterically-

imposed bound on the number of hydrogen bonds in a furcated configuration. Al-

though in their study Panigrahi and Desiraju found examples of up to hexafurcated

configurations, these were rare, and most configurations were bifurcated or trifur-

cated [73].

All bar-hinge concurrencies in the mechanical model are introduced when modeling

hydrogen bonds in multi-base acceptor configurations. These hydrogen bonds tend
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to be less common (about 6% of the hydrogen bonds in Table 5.1) and when they do

occur, they are stronger (Figure 5.3e).

5.4.4 Cluster decomposition evaluation with decomposition method 6,

when using hydrophobic interaction energy cutoff.

We repeated the evaluation, but this time, we used our new methods for hydropho-

bic interaction identification and modeling, as described in the Methods section. All

identified hydrogen bonds were included and modeled with the default modeling op-

tion, but the hydrophobic interaction energy cutoff was varied.

For the RigidFinder data set, the improvement in the B-cubed scores over the

baselines, methods 2 and 3, was significant. Compared with method 3, the mean

of differences over the set of PDBs was 0.11 overall, and the p-value in the paired

t-test was 0.00071 (Figure 5.6). The improvement was near-significant for the large

proteins (p-value 0.051), and significant for the medium and small-sized proteins (p-

values 0.0015 and 0.015). For the majority of proteins, the change in the hydrophobic

modeling improved B-cubed scores. There was no consensus in the best energy cutoff

value, but the median was -0.15 kcal/mol.

5.4.5 Cluster decomposition evaluation with decomposition method 7,

varying both hydrogen bond energy and hydrophobic interaction

energy cutoff

We next varied the energy cutoffs for both hydrogen bonds and hydrophobic in-

teractions. Hydrophobics were included and modeled with the same scheme as in the

method 6. For hydrogen bonds, we modeled bonds weaker than the cutoff with a

‘bar’ constraint (rather than excluding), as in method 5.

Compared with the highest scores attained on each PDB over all previous methods,

method 7 achieved an improvement in over 70% of the 43 PDB files. The average

change in score over method 6 was 0.02, and for a few cases, such as S100A6 and
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Calmodulin, the increase in score was quite significant. As with the previous method,

the median cutoff for hydrophobic interactions was again -0.15 kcal/mol. For the

medium and large proteins in the data set, including some or all hydrogen bonds

achieved the best score, confirming what has been stated in the literature [32] that

the best results come from a balance between the two types of stabilizing interaction .

For 4 out of 5 of the small proteins, including no hydrogen bonds (shown with a cutoff

energy of -7 kcal/mol), but still excluding some hydrophobic interactions, produced

the best decompositions.

We have introduced a method for identifying hydrophobic interactions and as-

signing energies based on the Lennard-Jones potential. This work is the first study

to formally evaluate how the set of hydrophobics included can impact the rigidity

results. Although it has been mentioned in papers from the Gohlke lab [29, 32] that

the hydrophobic identification function was insufficient for achieving valid rigidity

results for some classes of molecules (for example, RNA), there has been no thorough

study in order to determine the best parameterization for hydrophobics. Ours is the

first study to try to improve upon the inclusion of hydrophobic interactions.

Case study of Calmodulin. Figure 5.8d shows the results of varying both hydro-

gen bond energy and hydrophobic energy cutoff for Calmodulin (1CTR). By removing

hydrogen bonds and adding hydrophobic interactions, an improved fit with the gold

standard decompositions (shown in 5.8a) is achieved. Run with KINARI v1.0 (using

its default options), the B-cubed score of 0.48 was worse than the score of the decom-

position method 2 which is the all-rigid baseline (where all residues are placed into

a single rigid cluster). By removing some or all hydrogen bonds and including some

hydrophobic interactions, a score of 0.90 is achieved.
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(a) RigidFinder (b) KINARI v1.0 (c) KINARI, new modeling
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Figure 5.8: Accuracy of rigid cluster decompositions on Calmodulin (1CTR) improves
with new modeling approaches. (a-c) Rigid cluster decompositions of 1CTR. (d)
shows a plot of the B-cubed score as the energy cutoffs for hydrogen bonds and
hydrophobic interactions are varied. (e-f) shows the distribution of hydrogen bond
and hydrophobic interactions by energy.

5.4.6 Discussion

Toward automatic parameter settings in KINARI. In our evaluation of the de-

composition methods, we have validated that accuracy can be improved by balancing

hydrogen bonds and hydrophobic interactions in the modeling. How to optimally set

rigidity analysis modeling options for an arbitrary protein remains an open question.

We have shown in our evaluation that achieving a balance between hydrogen bonds

and hydrophobic interactions can greatly increase the accuracy of RCDs. We were

able to find the best tuning of parameter settings because the gold standard was

available for comparison. When applying rigidity analysis as a predictive tool, no
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Figure 5.9: Mean optimal cutoff energy for hydrogen bonds and hydrophobics for
decomposition method 7. The mean optimal cutoffs for the RigidFinder data set:
overall, large, medium, and small are shown. Error bars show standard deviation.

such gold standard will be available. We examine our evaluation in order to make

recommendations.

Figure 5.9 shows the mean optimal cutoff energies for hydrogen bonds and hy-

drophobic interactions computed in our evaluation of decomposition method 7 (see

Section 5.4.5). (A more negative cutoff means fewer hydrogen bonds were classified

as strong.) The mean hydrogen bond cutoff energies and protein sizes showed correla-

tion. For the larger proteins, a weaker cutoff was advantageous, while for the smaller

proteins, including more strong hydrogen bonds had less benefit. For hydrophobic

interactions, there was no correlation between cutoff energy and size.

Future studies should validate whether using the B-cubed scoring and a training

data set can assist in choosing the best modeling settings for protein families. For

example, kinases are one of the larger protein families available from the Protein Data

Bank, and often, multiple conformations are known. The benchmark data set (see
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Section 4.2.2) includes multiple conformations of yeast and e. coli Adenylate Kinase.

Future work should be undertaken to examine the variance of parameter settings

across this protein family and others.

Evaluating the heuristic approach to handle degeneracies in the model. We have

proposed a heuristic for placing the edges into the associated graph for non-generic

bars in the mechanical model. To analyze, empirically and mathematically, when the

heuristic works and when it fails is a problem for future investigations.

5.5 Conclusion

As has been iterated through the literature and demonstrated here, a one-size-

fits-all parameterization for rigidity analysis does not deliver good across-the-board

performance. Some tuning may be required to attain a rigid cluster decomposition

for a protein that most closely agrees with data from experimental studies. We pro-

posed two new methods: one for for inclusion and modeling of hydrogen bond and a

second for the inclusion and modeling of hydrophobic interactions. We showed on a

benchmarking data set that the new modeling in KINARI can produce rigid cluster

decompositions, computed on single conformation, that better match ‘gold standard’

decompositions than previous methods. To do this, we applied a comparative de-

composition scoring algorithm, first used in information retrieval, called the B-cubed

score, and described in the previous chapter in Section 4.2.1.
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CHAPTER 6

EVALUATING ROBUSTNESS OF RIGIDITY RESULTS

The focus of the previous chapter was on improving the accuracy in rigid cluster

decompositions. Specifically, we measured how accuracy could be improved by tun-

ing parameters using an energy cutoff. By measuring the precision and recall over

a number of energy cutoffs, we gain insight into the sensitivity of the rigidity re-

sults as interactions are removed or modeled with a weaker constraint. For example,

Figure 5.7g in the previous chapter shows a plot of the rate of change of the preci-

sion, recall, and B-cubed score during the tuning by hydrogen bond energy cutoff on

PPKD (1KC7). This concept is similar to ‘simulated unfolding’ (or dilution), where

the loss of rigidity is monitored while interactions are broken by order of energy. But

this approach assumes that weaker interactions always break before their stronger

counterparts, where in fact, there is some randomization to this process.

In this chapter, we take a different approach, which does not rely on energy calcu-

lations, to studying cluster sensitivity. We measure the tolerance of a cluster’s rigidity

to the loss of any interaction, strong or weak. In this way, we aim to characterize the

robustness built into protein rigidity by nature.

6.1 Introduction

Atomic fluctations are essential for protein functions, such as ligand binding, be-

cause they permit the structure to adjust to the binding of another molecule [75]. The

native state is stabilized by weak noncovalent interactions, namely hydrogen bonds

(H-bonds) and hydrophobic interactions, which due to fluctuations, break and form
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frequently. When existing weak interactions are broken, the released atomic groups

can make new interactions of comparable energy, potentially resulting in conforma-

tional rearrangement. Protein structures continuously fluctuate about the equilibrium

conformation observed in X-ray crystallography and NMR experiments. Therefore,

when developing methods that rely on PDB structural data to predict protein rigidity

and flexibility, it is crucial to assess how fluctuations may affect the results.

A simplifying assumption of this method is that the set of interactions is static.

Yet, as demonstrated in molecular dynamics simulations, noncovalent interactions

break and form rapidly, typically over nanoseconds [61]. An open question concerns

the sensitivity and robustness of the rigidity results. When using a rigidity analysis

system, what is our confidence in the rigid cluster decomposition determined? If

any particular interaction within a cluster were to break, would the cluster remain

rigid, “shatter” into many smaller clusters, or would the flexibility increase, but only

negligibly?

In this chapter, we present our investigation of the prevalence of redundant and

rigidity-critical interactions:

• Redundant interactions. How much redundancy is built into the network of

interactions which hold together rigid clusters? What is the tolerance of a

cluster to the loss of any particular interaction?

• Rigidity-critical interactions. How prevalent are non-redundant (critical) inter-

actions? These are the interactions, which when broken, cause a non-negligible

change in flexiblity that may effect function. How much will a cluster’s size

decrease when a critical interaction breaks?

Contribution. We address these question by proposing a method to classify non-

covalent interactions. Based on their individual contribution to the rigidity of the

cluster, they are labeled as either redundant or critical. In addition, we describe a
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method for scoring clusters using the classification. The criticality value of the inter-

action is the change in cluster size upon the interaction’s removal. We characterize

what is the typical occurrence of redundant and critical interactions with an evalua-

tion on a benchmark data set of over 120 proteins. We show with case studies that

interactions with criticality values ≥0.10 tend to be concentrated in the same local re-

gion and their removal causes functionally relevant changes in rigidity. We make these

methods available from the KINARI-Web server (http://kinari.cs.umass.edu) [21].

6.2 Literature Review

We include a short literature review to place this work in context. For other

details of related work, please refer to Chapter 2.

The output of MSU-FIRST included a flexibility index, associated with each bond,

to “characterize the degree of flexibility” [48]. We describe the MSU-FIRST flexibility

index in further detail in the Results and Discussion Section, where we compare it

with our method for scoring rigid clusters. Gohlke [32] extended the MSU-FIRST

flexibility index from a single protein to an MD trajectory, and used it to show

changes in flexibility during protein docking. Other flexibility indices have been

proposed based on B-values from PDB files and normal mode analysis [53, 59, 91].

A related method, made available in ASU-FIRST and the Flexweb server is dilution

analysis [78,90]. It can be interpreted as a simulated unfolding because H-bonds are

broken one-by-one, by order of energy. The rigid clusters of the protein are computed

at each step, with the most stable part, called the folding core remaining at the end.

Dilution was used to show that proteins undergo a rapid phase transition from rigid

to floppy [78], to computationally identify the protein folding core [40], and compare

patterns of rigidity within homologues [33,94].

Dilution studies an ensemble of models which are hypothesized to reveal the un-

folding path. Other efforts have been made to study an ensemble of around the native
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state. Calculated from MD snaphots, the duty cycle, is the percentage of time a par-

ticular interaction is present. It has been used as a criterion for which interactions to

include in a rigidity analysis [61]. More recently, Gonzalez et. al proposed a heuristic

method, called the virtual pebble game, for predicting ensemble-averaged rigidity for

a protein with fluctuating noncovalent interactions [35].

Differences from prior work. Our work proposed here is distinct from these pre-

vious studies because we perform an exhaustive study and do not resort to sampling.

We are interested in finding degenerate cases– those which may not be revealed with

a sampling approach. Rather than studying unfolding as was done with dilution, the

goal in our current work is to better understand the rigidity and flexibility properties

of the native state.

6.3 Materials and Methods

In this section, we present the methodology for redundancy analysis. We describe

our two methods applied to a rigid cluster for, first, classifying redundant and critical

noncovalent interactions and, second, calculating a redundancy score. Later in this

chapter, we will present a survey and case studies applying our redundancy analysis

methods, thus we present the datasets used in the evaluation. We have made the

methods available on the KINARI-Redundancy server, an extension of the KINARI-

Web server [21].

To apply redundancy analysis, we perform curation on the PDB file, select model-

ing options, and then compute the rigid cluster decomposition using KINARI. Refer

to Chapter 3 for details on these steps. Described next are our two methods which

work on each rigid cluster. Also included in this section is a description of the data

set that will be used in our evaluation, and an overview of the features of the KINARI

Redundancy server.
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6.3.1 Identifying the critical and redundant interactions within a cluster

A rigid cluster is a maximal set of atoms and all bonds and interactions that hold

them rigidly together. To identify the redundant interactions among the noncovalent

interactions, we proceed as follows. One after another, we remove a noncovalent

interaction, perform rigidity analysis, and verify if the cluster remains rigid, in which

case, we classify it as redundant. Otherwise, the interaction is classified as critical.

Note that once an interaction has been classified, it is placed back in the cluster. This

approach is different from dilution, which removes interactions one after another, but

does not replace them. Another difference is that hydrophobic interactions are not

involved in dilution, only H-bonds, which have an associated energy.

To classify each interaction, we run the pebble game. In the worst case, this takes

O(n2) time, thus the entire classification is in cubic time.

We propose a measure for each interaction, called its criticality value, based on

how much the cluster size is impacted. We measure the size of the rigid cluster once

an interaction has been removed and rigidity analysis re-run. The change in size of

the cluster becomes the criticality value of the interaction. For example, the removal

of an interaction with a criticality value of 0.10 will cause 10% of a cluster’s atoms to

break off into one or more separate clusters. We are interested in the cases in which

high impact critical interactions occur.

To illustrate, see Figure 6.1, which shows the largest rigid cluster in Cytochrome-c

(1HRC). The redundancy of this protein will be discussed in a case study in Sec-

tion 6.4.2. The cluster is composed of two α-helices bound together by hydrophobic

interactions (shown in blue). The hydrophobic interaction which is colored red is

critical. When it is removed, each α-helix breaks off into its own rigid cluster. The

criticality value of this interaction is 0.44.
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(a) (b)

Figure 6.1: Hydrogen bonds and hydrophobic interactions in the largest rigid clus-
ter of Cytochrome c (1HRC). (a) The cluster shown with H-bonds (green) and hy-
drophobic interactions (blue). (b) Removing the red hydrophobic interaction (with a
criticality value of 0.44) from the cluster causes the two α-helices to split apart into
separate rigid clusters (colors chosen at random).

6.3.2 Scoring of clusters by redundancy

Now we introduce a formula for the cluster redundancy score (Equation 6.1) which

requires the classification of noncovalent interactions. N(i) is the set of all noncovalent

interactions in cluster i, and R(i), the subset which are redundant. wj is the weight

assigned to an interaction j, determined by how it is modeled.

Φ(i) =

∑
j∈R(i)wj∑
k∈N(i)wk

(6.1)

In this study, H-bonds and hydrophobic interactions have weights of 5 and 2,

respectively, corresponding to the maximum degrees of freedom that may be removed

by the interaction in the mechanical model. If all of the noncovalent interactions

within the cluster were redundant, the redundancy score is 1. If instead all interactions

were critical, the redundancy score is 0.

109



6.3.3 Data sets

We employ a few different data sets in this current study.

Multiple conformations. We have collected the PDB files of proteins published

in the validation of the MSU-FIRST software [48]. The proteins are HIV-1 Pro-

tease (1HHP, 1HTG), Dihydrofolate Reductase (1RA1, 1RX1, 1RX6), Adenylate Ki-

nase (1AKY, 1DVR), and Lysine-Arginine-Ornithine binding (LAO-binding) protein

(1LST, 2LAO). We curated the protein data using the KINARI-Web curation tool.

Ligands were removed for all but Adenylate Kinase structures. Hydrogen atoms and

bonds and interactions were calculated with default options, as described in [21].

Since 1HHP is a homo-dimer, but only chain A is included in the PDB file, we ap-

plied a symmetry operation to compute the dimer [12]. Building the biological unit

is available as an option from the KINARI-Web curation tool. We also employ a

data set from the Gerstein Lab of 12 proteins used by the Gerstein Lab to validate

the RigidFinder server [1]. We have excluded 5 of the proteins in the data set that

contained more than 500 residues.

Proteins with known foldons. We include a case study of Cytochrome-c, a protein

for which the foldons, intermediate structures which form during the folding process,

are known [67].

Pdomain benchmark data set. For our survey to characterize the presence of

redundant and critical interactions over a range of different proteins, we use the

Pdomain Balanced Domain Benchmark 3 data set [42]. The original purpose for the

data set was for benchmarking domain identification systems. We chose to use the

data set because of the good coverage over the different topological groups as defined

by CATH. We excluded 6 PDBs with clusters larger than 6000 atoms, so in total we

included 121 PDB files in the analysis.
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6.3.4 Redundancy Server

The redundancy analysis methods presented here serve as a tool for investigat-

ing the robustness of rigidity results, in particular, for users who wish to hand-edit

their interaction set. We have deployed a server for redundancy analysis at the KI-

NARI website. and KINARI-Mutagen tools [51]. Pre-processed examples and a video

tutorial are provided to facilitate use. KINARI-Redundancy provides the following

functionality:

• Curate PDB data and assign modeling options, as supported by the KINARI-

Web server [21].

• Color clusters according to their redundancy score.

• Examine one cluster at a time in further detail. Color critical and redundant

interactions.

• Filter the set of interactions displayed. A threshold can be selected to show

only interactions with higher criticality values.

6.4 Results and Discussion

We applied our new methods on the data sets, described earlier in the previous

section. We present the results of these in the next three subsections. Then, we

compare the redundancy score with the flexibility index of MSU-FIRST [48] and

present a discussion of future applications of our method.

6.4.1 Analysis of multiple conformations

We performed redundancy analysis on the multiple conformation data set de-

scribed in Section 6.3.3. The rigidity analysis results of some of these proteins has

been presented previously [48], and we seek out what more information the redun-

dancy analysis can give us about these proteins.
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Table 6.1 lists the results of our analysis. Most of the proteins had very few

interactions with criticality values ≥0.10. We investigate these outliers in case stud-

ies on Adenylate Kinase, Dihydrofolate Reductase, DNA Polymerase β, and HIV-1

Protease.

Gerstein Lab data setGerstein Lab data setGerstein Lab data setGerstein Lab data set

Bungarotoxin 1IDG 74 1084 59 0.44 3 3 3 3 0 7 0 0 0
Bungarotoxin

1IDI 74 1085 51 0 0 0 0 0 0.41 8 3 3 1

Calmodulin 1CLL 147 2185 1068 0.43 109 31 20 17 0.41 47 27 9 9
Calmodulin

1CTR 147 2139 456 0.26 41 12 2 2 0.06 19 5 0 0

Cro repressor
5CRO 61 958 324 0.02 24 5 0 0 0.03 22 6 0 0

Cro repressor
6CRO 61 948 306 0.43 23 10 6 3 0.09 29 7 0 0

HIV-1 protease 3HVP 198 1534 771 0.28 48 24 7 3 0.12 77 30 4 0
HIV-1 protease

4HVP 198 1534 638 0.36 48 26 19 9 0.04 38 18 0 0

S100A6 1K9K 90 1426 841 0.09 85 21 0 0 0.02 23 7 0 0
S100A6

1K9P 90 1435 338 0.49 39 9 2 2 0.49 10 7 6 6
Alcohol 

Dehydrogenase
6ADH 374 1757 1757 0.08 85 24 0 0 0.1 181 55 3 0Alcohol 

Dehydrogenase 8ADH 374 3819 3819 0.07 284 74 0 0 0.07 243 99 0 0

Antigen 85C
1DQY 282 3360 3360 0.02 269 43 0 0 0.02 306 51 0 0

Antigen 85C
1DQZ 282 3118 3118 0.02 254 48 0 0 0.01 219 41 0 0

Aspartate 
Aminotransferase

1AMA 410 3576 3576 0.05 303 62 0 0 0.02 181 48 0 0Aspartate 
Aminotransferase 9AAT 410 3383 3383 0.03 317 63 0 0 0.01 147 46 0 0

Bacterio-
rhodopsin

1BRD 226 1818 1818 0.04 136 16 0 0 0.02 152 57 0 0Bacterio-
rhodopsin 2BRD 226 2148 2148 0.06 208 34 0 0 0.03 146 56 0 0

DNA Polymerase 
Beta

2FMQ 335 3106 3106 0.29 273 74 9 3 0.29 144 64 7 4DNA Polymerase 
Beta 9ICI 335 2336 2336 0.03 147 25 0 0 0.02 222 56 0 0

Malate 
Dehydrogenase

1BMD 332 3136 3136 0.08 292 52 0 0 0.01 146 53 0 0Malate 
Dehydrogenase 4MDH 333 2939 2939 0.04 220 51 0 0 0.04 192 69 0 0

Adenylate Kinase
2ECK 214 444 444 0.09 34 7 0 0 0.02 29 9 0 0

Adenylate Kinase
4AKE 214 549 549 0.71 43 26 18 12 0.71 38 17 4 4

AllAll LRC H-bonds in LRCH-bonds in LRCH-bonds in LRCH-bonds in LRCH-bonds in LRC Hydrophobics in LRCHydrophobics in LRCHydrophobics in LRCHydrophobics in LRCHydrophobics in LRC

Protein PDB Num. 
Residues

Num. 
Atoms

Num. 
Atoms

max crit. 
val. total

with criticality value:with criticality value:with criticality value: max crit. 
val. total

with criticality value:with criticality value:with criticality value:
Protein PDB Num. 

Residues
Num. 

Atoms
Num. 

Atoms
max crit. 

val. total
>0 >0.10 >0.25

max crit. 
val. total

>0 >0.10 >0.25
MSU-FIRST data setMSU-FIRST data setMSU-FIRST data setMSU-FIRST data set

HIV-1 protease
1HHP 198 3126 1802 0.02 134 36 0 0 0.01 96 54 0 0

HIV-1 protease
1HTG 198 3126 1791 0.36 134 31 14 0 0.02 87 48 0 0

Dihydrofolate 
Reductase

1RA1 159 2484 1683 0.11 122 37 13 0 0.1 98 37 2 0
Dihydrofolate 

Reductase 1RX1 159 2484 1606 0.06 122 27 0 0 0.01 110 40 0 0Dihydrofolate 
Reductase

1RX6 159 2484 1461 0.1 118 21 1 0 0.1 99 43 0 0

Adenylate Kinase
1AKY 220 3469 2032 0.12 176 51 5 0 0.01 89 29 0 0

Adenylate Kinase
1DVR 220 3435 1787 0.17 144 25 2 0 0.01 124 36 0 0

LAO-binding 
protein

1LST 238 3554 1224 0.07 112 22 0 0 0.02 35 20 0 0LAO-binding 
protein 2LAO 238 3608 1289 0.09 120 25 0 0 0.03 50 27 0 0

Table 6.1: Prevalence of critical and redundant interactions in the largest rigid clusters
(LRCs) of the MSU-FIRST and Gerstein Lab data sets. For each PDB, the total
number of residues and atoms are shown, as well as the size of the LRC. We classified
each of the H-bonds and hydrophobics as either critical or redundant to its clusters
rigidity. The number of interactions with criticality values ≥0.0, ≥0.0 and ≥0.0 are
displayed. There were no interactions with criticality values ≥0.50 in the data set.
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6.4.1.1 Adenylate Kinase

We first discuss the results on the yeast Adenylate Kinase (ADK), a monomer

known to undergo domain-level hinge motion upon ligand binding. Figure 6.2 shows

decompositions of ADK, depicted on the ATP-bound, open conformation (1DVR).

The domain containing the binding site is labeled as the LID-domain. In early work of

Jacobs et. al to validate the MSU-FIRST system, 6 flexible loops were detected in the

open conformation (1DVR). 4 of the 6 were also detected in the closed conformation

(1AKY). The 2 flexible loops not detected in 1AKY were those at the N- and C-

terminals of the 6 α-helix (95 ILE to 108 GLN). The loops are labeled a-f in Figure 6.2.

Running redundancy analysis, two of the H-bonds (1 and 2) were found to decrease

the size of the largest rigid cluster by 17% and 12% and are shown in Table 6.2. H-

bond 1 lies near the N-terminal, at the end of the parallel β-sheet, and connects the

β-sheet to the f-loop, between, 6 ARG O and 113 GLU H and H-bond 2 is between

105 LEU O and 110 THR H, anchors the end of the the 6 α-helix to the f-loop.

Figure 6.2a shows the residues which engage in the two very critical interactions,

highlighted in red. When either of these interactions is removed, the 6-α-helix breaks

apart from the cluster and the e and f-loops become flexible. The rest of the LRC

remains intact. These two H-bonds were assigned energies of -0.58 and -5.3 kcal/mol

by the Mayo Lab energy function [68].

ID Atom 1 Atom 2 Type Energy Crit. val.

1 6 ARG O 113 GLU H HB -5.3 0.17

2 105 LEU O 110 THR H HB -0.58 0.12

Table 6.2: Critical interactions in Adenylate Kinase (open, 1DVR). 2 H-bonds (HB)
and 0 hydrophobic interactions (HP) with criticality values ≥0.10 were detected.

We investigated whether using a dilution would identify these critical interac-

tions [78]. In dilution, or simulated unfolding, H-bonds are removed one-by-one and
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(a) 1DVR, RCD, default (b) 1DVR, locations of critical
H-bonds

(c) 1DVR, RCD, without crit-
ical H-bond

(d) 1AKY, RCD, default (e) 1AKY, locations of critical
H-bonds

(f) 1AKY, RCD, without crit-
ical H-bond

Figure 6.2: Case study of Adenylate Kinase. (a-c), open conformation 1DVR. (a) The
rigid cluster decomposition (RCD) determined by KINARI v1.0. The grey regions are
flexible and each colored region is a rigid cluster. (b) H-bonds with criticality values
of 0.17 (1) and 0.12 (2) were found in the largest rigid cluster (green). The residues
which engage in these H-bonds are highlighted in red. (c) Upon removing H-bond 1,
the e-loop and part of the f-loop becomes flexible. (d) Similarly, for H-bond 2, both
e and f-loops gain flexibility, although the region of flexbility in the f-loop is closer
to the β-sheet than the α-helix. (d-e), closed conformation 1AKY. (d) Rigid cluster
decomposition with default options. (e) location of the 5 interactions which have the
greatest impact on cluster size. (f) after removing a critical interaction.

cumulatively, by order of weakest to strongest, simulating H-bonds breaking during

denaturation. Of the 146 H-bonds in the LRC, H-bond 2 was the 18th weakest with

an energy of -0.58 kcal/mol. H-bond 1 with an energy of -5.3 kcal/mol ranked 109th,

and would not have been revealed with a dilution analysis.
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We next analyzed the closed conformation, 1AKY. With default options, KINARI

predicts a larger LRC than for 1DVR, the open conformation. The MSU-FIRST

software detected 4 flexible loop regions (b,c,d, and f) [48]. With default options,

KINARI detects 3 of these loops (b,c,d). Our redundancy analysis detected 5 H-bonds

with criticality values ≥0.12, listed in Table 6.3. When any of these interactions are

removed, the resulting RCD contains a flexible region in the a-loop.

ID Atom 1 Atom 2 Type Energy Crit. val.

1 34 ALA O 38 ALA H HB -3.96 0.12

2 37 ASP OD1 40 ASP HH21 HB -4.78 0.12

3 40 ARG HH12 301 ARG O1E HB -2.22 0.12

4 40 ARG HH22 301 ARG O1E HB -4.68 0.12

5 33 LEU O 89 LEU H HB -4.89 0.12

Table 6.3: Critical interactions in largest rigid cluster of Adenylate Kinase closed
conformation (1AKY). 5 H-bonds (HB) and 0 hydrophobic interactions (HP) with
criticality values ≥0.10 were detected.

To summarize, the LRCs of 1AKY and 1DVR both contained multiple interactions

with criticality values ≥0.10, and these were concentrated together in the structures.

In 1DVR, the removal of either of the two very critical interactions caused the same

two loops to gain flexibility concurrently. In 1AKY, the removal of any of the 5

very critical interactions all caused the a-loop to become flexible. These loops were

determined to be important to the flexibility and mobility for ADK to perform its

function.

6.4.1.2 Dihydrofolate Reductase

1RA1, 1RX1, and 1RX6 are structures of respectively, the open, closed, and oc-

cluded conformations of e. coli Dihydrofolate Reductase (DHFR), a small enzyme

which plays an essential role in DNA building. The flexibility of the Met20 loop

(residues 9 - 24) and the βF- βG loop (residues 116-132) near the active site plays a
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role in promoting the release of the product. Figure 6.3a shows an alignment of the

three DHFR structures, demonstrating the high mobility in the Met20 loop.

(a) 3 conformations (b) RCD, default

(c) locations of critical interactions (d) RCD, without critical H-bond

Figure 6.3: Case study of Dihydrofolate Reductase. (a) A 3D alignment of three
conformations (1RA1, 1RX1, 1RX6) shows the high mobility of the Met20 loop. (b)
With default options, the rigidity results on 1RA1 show flexibility in the Met 20 loop,
but the βF- βG loop is almost entirely rigid. (c) Residues which engage in very critical
interactions in the largest rigid cluster of 1RA1 are almost all within the Met20 and
βF- βG loops. (d) After removing a very critical interaction, a smaller cluster (blue)
composed of part of the Met20 and βF- βG loops breaks off from the LRC, and a
region in the βF- βG loop becomes flexible

The KINARI rigid cluster decompositions of the three structures show the pro-

tein to be mostly rigid, with most of the protein contained in the LRC. Each of the

decompositions show flexible regions in the βF- βG loop. In 1RX1, the closed con-
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formation, the Met20 loop is determined to be locked- it is contained in the largest

rigid cluster. 1RA1 and 1RX6, the open and occluded conformations, regions of the

Met20 loop are determined to be flexible, but there is some variation between the two

RCDs. These results agree with earlier results of Jacobs et al. using the MSU-FIRST

rigidity analysis software [48].

Table 6.1 includes the results of our redundancy analysis on the three confor-

mations. The closed conformation contained no interactions with criticality values

≥0.10 and the occluded conformation contained only one. In the open conformation

(1RA1), over 10% of the H-bonds (13 of 122), and 2 of the hydrophobic interactions

had criticality values greater than 0.10. These very critical interactions are all con-

centrated around the active site, adjacent to the Met20 and βF-βG. Table 6.4 lists

the set of very critical H-bonds and hydrophobic interactions and their locations. The

majority (7 of the 13) of very critical H-bonds connect the Met20 and βF-βG loops.

The remainder of H-bonds are in the local area of the two mobile loops. Removing

any of these H-bonds increases the extends the flexible regions in the Met20 or βF-βG

loop. None of these very critical interactions involve the ligand.

For example, when we remove the H-bond between atoms 8 LEU H and 113 LEU

O, the flexible region of the Met20 loop and βF-βG loop increases substantially, as

depicted in Figure 6.3d, even though this particular H-bond does not involve residues

within those loops.

The LRCs of 1RX1 (closed) and 1RX6 (occluded) contain few to no H-bonds with

high criticality values. These structures already had more flexibility in the βF-βG

loop.

The prevalence of very critical interactions in the active site region for the open

conformation shows that the rigidity of the βF- βG loop is ‘hanging by a thread’.

These H-bonds tended to be strong, and mostly backbone-backbone H-bonds, so
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ID Atom 1 Atom 2 Type Ener. C. V. In Met20 or βF- βG loops?

1 8 LEU H 113 LEU O HB -4.84 0.10 Neither

2 116 ASP H 150 ASP O HB -7.07 0.10 Both in βF- βG loop

3 8 LEU O 115 LEU H HB -5.58 0.10 Neither

4 115 ILE O 117 ILE H HB -1.74 0.10 One in βF- βG loop

5 9 ALA H 13 ALA O HB -5.77 0.10 Both in Met20 loop

6 10 VAL O 13 VAL H HB -2.69 0.10 Both in Met20 loop

7 10 VAL H 117 VAL O HB -6.33 0.10 Met20 and βF- βG loop

8 12 ARG O 125 ARG H HB -5.4 0.10 Met20 and βF- βG loop

9 12 ARG HE 125 ARG O HB -6.79 0.10 Met20 and βF- βG loop

10 14 ILE H 123 ILE O HB -6.91 0.11 Met20 and βF- βG loop

11 15 GLY O 122 ASP H HB -1.81 0.11 Met20 and βF- βG loop

12 15 GLY O 123 GLY H HB -2.02 0.11 Met20 and βF- βG loop

13 15 GLY H 123 GLY O HB -2.38 0.11 Met20 and βF- βG loop

14 11 ASP C 12 ARG CG HP N/A 0.10 both in Met20 loop

15 123 THR C 124 HIS CG HP N/A 0.10 Met20 and βF- βG loop

Table 6.4: Critical interactions in Dihydrofolate Reductase (1RA1). 13 H-bonds (HB)
and 12 hydrophobic interactions (HP) with criticality values≥0.10 were detected. The
type, energy, and criticality value for each interaction are shown. Also, the location
of both atoms, with respect to the Met20 and βF- βG loops. Any of these interaction,
when removed, lead to increased flexibility in the βF- βG loop, whether the two atoms
were located within the loops. See also Figure 6.3.

independently, each is unlikely to break. But snipping any of these very critical

interactions will cause the βF-βG loop to gain flexibility.

6.4.1.3 DNA Polymerase β

DNA polymerase β (POLB) is a 335 residue DNA and metal binding enzyme,

responsible for base excision repair of DNA. It is active as a monomer and composed of

an N-terminal 90-residue lyase domain connected to a C-terminal polymerase domain,

composed of 3 subdomains [3]. The lyase domain and 3 subdomains are depicted in

Figure 6.4a.
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(a) domains (b) two conformations

(c) RCD, default (d) highly critical interactions(e) RCD, without critical H-
bond

Figure 6.4: Case study of DNA Polymerase β (2FMQ). (a) 4 important functional
domains. The lyase domain (grey) is the important catalytic site. The N domain
interacts more strongly with the lyase domain in the closed conformation. (b) 3D
structural alignment of 2FMQ (red) and 9ICI (grey). (c) The rigid cluster decompo-
sition on 2FMQ shows one dominant rigid cluster (green) containing both the lyase
and N domains. Grey regions are flexible. (d) If any of the H-bonds (red) and
hydrophobics (pink) shown are removed, the lyase domain will break off from the
dominant rigid cluster, as shown in (e). Note that only 2 of these interactions actu-
ally crossbrace between the lyase domain and the other domains in the protein, and
the rest lie completely in the lyase domain. Therefore, a loss of an interaction within
the lyase domain will cause the separation of the lyase domain from the rest of the
cluster.

We examine the redundancy of one conformation of POLB, 2FMQ. The rigidity

analysis determines the LRC contains 3106 atoms. When redundancy analysis is

performed on the cluster, 200 of 274 H-bonds are determined to be redundant and

80 of 144 hydrophobic interactions are determined to be redundant, leading to a
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redundancy score of 0.70. 3 of the H-Bonds and 4 of the hydrophobic interactions

had criticality values of 0.29 or greater (see Table 6.5).

ID Atom 1 Atom 2 Type Energy Crit. val.

1 26 GLU O 32 GLU H HB -6.98 0.29

2 40 ARG HH12 276 ARG OD2 HB 1.08 0.29

3 40 ARG HH22 276 ARG OD2 HB -1.61 0.29

4 27 LYS CB 36 LYS CG HP N/A 0.29

5 27 LYS CB 36 LYS CD1 HP N/A 0.29

6 36 TYR CE1 40 TYR CD HP N/A 0.29

7 36 TYR CZ 40 TYR CD HP N/A 0.29

Table 6.5: Critical interactions in the largest rigid cluster of DNA polymerase β
(2FMQ). 3 H-bonds (HB) and 4 hydrophobic interactions (HP) with criticality values
≥0.25 were detected. The type, energy, and criticality value for each interaction are
shown.

When any of these 7 interactions is removed, the lyase domain breaks off from the

largest rigid cluster. The lyase domain does not form a single cluster, but instead shat-

ters into many smaller clusters. For example, when we remove the H-bond between

26 GLU O and 32 GLU H, and rerun our redundancy analysis, the results are shown

in 6.4e. The large rigid cluster remaining now contains no interactios with criticality

value greater than 0.03. Results for removing any of the other 6 critical interactions

are similar. The 2FMQ conformation is more closed than the 9ICI conformation. We

repeated the redundancy analysis on 9ICI and found that the rigid clusters were in

good agreement with the clusters of 2FMQ after the removal of any of the critical

interactions (as in Figure 6.4e). For the largest rigid cluster of 9ICI, composed of

2336 atoms, the maximum criticality value of any of its consituent interactions was

0.03.

To summarize, the resulting decomposition determined by KINARI, run with

default options, on the closed conformation (2FMQ) is very rigid, where the lyase
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domain is included in a large rigid cluster spanning other functional domains of the

protein. With our redundancy analysis, we found 7 interactions with very high crit-

icality values (0.29 or greater). When any of these interactions were removed, the

lyase domain decouples from the other domains and becomes very flexible, better

matching the rigidity results for the open conformation (9ICI).

6.4.1.4 HIV-1 Protease

Our analysis of two conformations of HIV-1 Protease, 1HHP (open) and 1HTG

(closed) uncovered interesting differences due to asymmetries in the 1HTG dimer.

The 1HHP PDB file contains only a single chain, and therefore we computed the

positions of atoms in chain B resulting in a dimer that is completely symmetric. The

rigidity analysis results show a large rigid consisting of 78 of the 99 residues in each

chain (residues 1-14, 19-36, 43-45, and 56-98). No interactions with criticality value

greater than 0.10 were found.

For 1HTG, which was crystallized as a dimer, both chains are already included in

the PDB file. The results of rigidity analysis on 1HTG reflect some of the asymmetries

in the two chains (see Figure 6.5). With default options, the largest rigid cluster

contains 81 residues from chain A (residues 9-33 and 43-98) and 90 residues from

chain B (residues 1-33 and 43-98). More differences in the rigidity properties of

the two chains are detected when analyzing the redundancy of the structure. 14

interactions were found criticality values ≥0.25 (see Table 6.6. All of these critical

interactions were found in a β-sheet of chain A. Due to asymmetries in chain A and B,

the set of H-bonds and hydrophobic interactions were not the same in the two chains.

For example, in chain B, 65 GLU CG and 68 GLY C are a distance of 3.60Å and

fell within the cutoff distance criteria for a hydrophobic interaction. The same pair

of atoms in chain B were a distance of 5.18Å, much greater than the 3.65Å cutoff

distance, and no hydrophobic interaction was placed.
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(a) RCD, default (b) highly critical interactions

(c) RCD, without critical H-bond

Figure 6.5: Critical interactions in HIV-1 Protease (1HTG). 10 interactions with crit-
icality values ≥0.10 were found for PDB 1HTG. (a) Before removing any interactions
(b) Interactions with criticality values ≥0.10 were detected in the largest rigid cluster
(LRC) are all H-bonds in the β-sheet of chain A. (c) After the removal of any of these
interactions, the β-sheet of chain A breaks off from the LRC and becomes flexible.

6.4.2 Correlating redundancy and foldons, case study of Cytochrome-c

Figure 6.6a show the five largest rigid clusters of Cytochrome-c (1HRC). The

rigidity of this protein has been previously investigated [78, 90, 94]. Here we perform

a refinement of the analysis from a redundancy point of view (Table 6.7). When we

focus on the largest rigid cluster (blue in Figure 6.1a and shown in Figure 6.1b) com-

posed of two α-helices, we identify 24 H-bonds (shown in green) and 10 hydrophobic

interactions (shown in blue). Each α-helix is held together by H-bonds, while the

hydrophobic interactions effectively “zip-up” the two α-helices and hold them rigidly

together. Redundancy analysis determines that 25% of the H-bonds and 40% of the

10 hydrophobic interactions are critical. Removing any of these critical interactions

will cause the cluster to break up and become flexible. Most of these interactions
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ID Atom 1 Atom 2 Type Energy Crit. val.

1 9 PRO O 24 LEU H HB -7.22 0.36

2 11 VAL O 22 ALA H HB -5.82 0.36

3 11 VAL H 22 ALA O HB -5.53 0.36

4 13 ILE O 20 LYS H HB -5.98 0.27

5 13 ILE H 20 LYS O HB -5.13 0.27

6 14 LYS O 65 GLU H HB -6.17 0.27

7 14 LYS H 65 GLU O HB -3.34 0.27

8 15 ILE H 18 GLN O HB -6.89 0.27

9 64 ILE H 71 ALA O HB -6.28 0.27

10 62 ILE O 73 GLY H HB -4.10 0.27

11 62 ILE H 73 GLY O HB -5.52 0.27

12 64 ILE O 71 ALA H HB -5.57 0.27

13 66 ILE O 69 HIS H HB -0.82 0.27

14 66 ILE H 69 HIS O HB -4.94 0.27

Table 6.6: Critical interactions in the largest rigid cluster of HIV-1 Protease (1HTG).
14 H-bonds (HB) with criticality values ≥0.25 were detected, all in chain A. The
type, energy, and criticality value for each interaction are shown.

Cluster Atoms HB redun / all HP redun / all Score Max crit. val.

blue 251 18 / 24 6 / 10 0.73 0.44

left yellow 194 2 / 13 6 / 12 0.25 0.55

red 80 0 / 4 0 / 0 0.00 0.88

green 35 0 / 1 5 / 6 0.59 0.40

right yellow 30 0 / 1 2 / 3 0.36 0.34

Table 6.7: Redundancy scores for the five largest rigid clusters of Cytochrome c
(1HRC), shown in Figure 6.6a. Listed for each cluster are number of atoms, numbers
of redundant / all H-bonds and hydrophobic interactions within the cluster, our
calculated redundancy score, and the greatest decrease in size observed after removing
an interaction.

which we have labeled as ‘critical’ do not have a large impact on the cluster size. For

each of the critical noncovalent interactions, we monitored how the original cluster
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(a) (b)

Figure 6.6: Case study of Cytochrome-c (1HRC). We compare the rigid clusters and
foldons. (a) The five largest rigid clusters of 1HRC are colored by their redundancy
score, from least redundant (red) to most redundant (blue). (b) Experimentally
determined foldons are numbered by their stepwise folding order

size of 251 atoms decreased when the critical interactions were removed. For all of

the H-bonds, the cluster size after removal remained at least 86% of its original size.

For three of the four hydrophobic interactions, the cluster size remained at least 98%.

For one hydrophobic interaction, the cluster size dropped to 56%. Figure 6.1b shows

how the cluster rigidity is affected when this particular interaction is removed. This

demonstrates how each critical interaction may have a different degree of impact on

a cluster’s rigidity when they are removed.

Extensive studies have been undertaken to understand the folding kinetics of this

protein. The foldons, intermediate structures which form during the folding pro-

cess, and the order that they form, have been experimentally identified using HX

experiments [67]. The foldons are blue (the 1-19 and 87-105, the N- and C-terminal

α-helices), green (60-70, 19-36, α-helix and V-loop), yellow (37-39:58-61, short two-

stranded antiparallel β-sheet), red (71-85 V-loop), and infrared (40-57 V-loop). Al-

though the helix and V-loop with the green appear disconnected, the two parts engage
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in hydrophobic interactions between sidechains PHE 36 and LEU 64. Not shown in

the picture is the HEME-ligand.

Visually there is some nice agreement between these experimentally identified

foldons and those determined by KINARI. In particular, the first foldon, the N- and

C-terminal α-helices, correlate well with the most redundant rigid cluster found in our

analysis. The α-helix of the 2nd foldon, and the entire 3rd and 4th foldons (yellow

and red) lie in the yellow cluster, which has a lower redundancy. The last foldon,

infrared, has not been placed into a single cluster but is instead determined to be

flexible and lies in a number of clusters. A nice result is that the redundancy scores

calculated (Table 6.7) also correlate with the foldon order.

Although this case study on Cytochrome-c demonstrates that KINARI with de-

fault parameters can assist in identifying these foldons, further analysis is needed to

know if this extends to other proteins for which foldons are known. SNase is a 149-

residue mixed α/β protein with three α-helices, a major five-stranded β-barrel, and

three minor β-strands. It is composed of 5 foldons, the first foldon of which is com-

posed primarily of the β-barrel. The default parameters for analysis of PDB 1SNP,

SNase protein [7], reveal an almost entirely rigid structure, with no differentiation be-

tween the structural elements identified to form foldons. Excluding weaker H-bonds,

the conventional parameter used to tune rigidity results, leads to the β-barrel losing

rigidity before other foldon regions, which does not agree with the experimental data.

6.4.3 Survey on a Pdomain benchmark data set

We calculated critical and redundant interactions for the largest rigid cluster

(LRC) of each protein in the Pdomain benchmark 3 data set (described earlier in

Section 6.3.3). To get a better sense of how redundancy and the presence of critical

interactions correlates with size, we divided up the 121 protein data set by the LRC
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(a) foldons (b) default (c) -2 kcal/mol
cutoff

(d) -3 kcal/mol
cutoff

Figure 6.7: Case study of SNase protein (1SNP). We compare the experimentally-
determined foldons of SNase protein, 1SNP, with the KINARI rigid cluster decompo-
sitions. (a) Experimentally determined foldons. (b) With default options, the entire
protein is determined to be almost complete rigid with a redundancy score of 0.72.
(c) After removing H-bond using a cutoff of -2 kcal/mol, the minor β strands are
determined to be flexible while the β barrel remains in the largest rigid cluster. (d)
With a cutoff of -3 kcal/mol, the β barrel no longer lies in a larger rigid cluster, while
two of the α-helices have remained rigid. Rigidity and redundancy analysis do not
appear to give strong insight into this SNase foldons, unlike the Cytochrome-c, which
is all alpha, for which there has been success in determining foldons.

sizes: small (fewer than 500 atoms, 12% of data set), medium (500-1000 atoms, 20%

of data set), and large (greater than 1000 atoms, 69% of data set).

Redundancy scores. Overall, the mean redundancy score was 0.74 (s=0.10). The

small clusters had a lower mean redundancy, 0.66 (s=0.17), than the medium, 0.73

(s=0.11), and large, and 0.75 (s=0.07) clusters, showing a trend that the redundancy

score increases and variance decreases with cluster size. Therefore, the larger rigid

clusters are shown to be more robust, and less sensitive to changes in rigidity.

Prevalence or highly critical interactions. Figure 6.8 shows the cumulative distri-

butions of clusters containing interactions with increasing criticality values. Although

virtually all of the clusters contained some critical interactions, most of the clusters

did not contain interactions with criticality value ≥0.10. Interactions with criticality

values ≥0.50 were in 13% of the small and medium-sized clusters, but quite rare in

the large clusters, occurring in fewer than 4% of them.
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Figure 6.8: Prevalence of critical interactions in Pdomain benchmark data set. (a)
Overall comparison of occurrence of critical H-bonds and hydrophobic interactions.
(b-c) Occurrence of critical H-bonds and hydrophobic interactions for small, medium,
and large-size clusters.

6.4.4 Comparison with other techniques

MSU-FIRST included a feature to assign each bond a flexibility index, using a

count of the redundant constraints [48]. In the underlying bar-and-joint model of the

protein used by MSU-FIRST, each bond is represented by a number of constraints:

central-force constraints for holding bond lengths, and external constraints for holding

bond-bending and dihedral angles. Using the MSU-FIRST pebble game, the input

macromolecule is decomposed into three types of regions: isostatically rigid, over-

constrained, and underconstrained. An isostatically rigid region is a rigid cluster in

which the removal of any of the constraints will cause the cluster to become flexible.

An overconstrained region is a rigid cluster in which at least one of the constraints
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is redundant. An underconstrained region is a region in which placing any additional

bond-bending or dihedral angle constraints will cause a rigid cluster to form.

Once the different regions were identified, Equation 6.2 was used to calculate the

flexibility index for each bond [48]. Hk and Fk are the number of rotatable bonds

and the number of degrees of freedom in the kth underconstrained region. Cj and Rj

are the numbers of bonds and redundant constraints within the jth overconstrained

region. The flexibility index is negative for overconstrained regions and positive for

underconstrained regions.

fi ≡



Fk

Hk
in an underconstrained region

0 in an isostatically rigid region

−Rj

Cj
in an overconstrained region

(6.2)

The flexibility index was defined for bonds within any region in the protein, not

just the rigid clusters. In order to directly compare our redundancy score, we trans-

form the flexibility index formula to an equation for scoring rigid clusters (Equa-

tion 6.3). Ψ(i) is the MSU-FIRST redundancy score for a cluster i, where Ri and Ci

are the numbers of redundant and central-force constraints within the cluster.

Ψ(i) =
Ri

Ci
(6.3)

This scoring formula and ours (Equation 6.1) are not equivalent. We demonstrate

this with a small example. A cluster consisting of a ring of 5 atoms connected by 4

single covalent bonds and one H-bond will be assigned a score of 0 with our method.

The score signifies that there is no redundancy in the set of noncovalent interac-

tions, and if the H-bond were removed, the cluster would break. MSU-FIRST assigns

the same cluster a score of 1/5 (1 redundant constraint and 5 bonds). Unlike our

approach, the MSU-FIRST approach does not detect the critical interactions.
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ASU-FIRST also included a flexibility index which does not use any information

on redundancy. The index for bonds in rigid clusters is based on the size of the

cluster [88].

6.4.5 Further directions

We proposed a method for understanding which interactions are critical in main-

taining a protein’s 3D shape. This may be applicable to other related questions

previously posed in the literature.

Energy. Energy functions provide a way to compare the relative strengths of H-

bonds. Different functions have been proposed that calculate the energy required to

break a H-bond using the local bond geometry [58,68]. We may infer that the stronger

interactions, the ones that require more energy to break, are the critical ones.

Flickering. The flickering phenomenon is the forming and breaking of interactions

at varying rates during the natural fluctuations of a protein about the native state [61].

The duty cycle, which is the percentage of time a particular interaction is present,

may be used similarly to energy, to rank interactions by how likely they are to break.

An advantage of the duty cycle concept is that it generalizes to any interaction which

may break and form. This is especially valuable for hydrophobic interactions since

the associated energy is unknown.

Evolutionary conservation. Using proteins within the same family with high struc-

tural conservation, it has been shown that even when there is low-sequence identity,

a network of hydrophobic interactions between residues are conserved [36]. The con-

served interactions may be considered the “critical” ones, and similar to the high duty

cycle interactions, identifying conserved interactions does not rely on computing an

energy function.

Other flexibility index methods. Another type of flexibility index was computed

on the amino acid sequence using parameters derived from B-values from a training
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set of PDB files [53,91]. Yet another method used normal mode analysis to calculate

the local chain deformability for each residue along the backbone [59]. This method

was shown to produce comparable resutls to the MSU-FIRST flexibility index in a

case study on 16pk kinase [59].

Dilution. Dilution reveals an unfolding pathway of a protein by removing H-bonds

one-by-one and performing rigidity analysis. It would be interesting to correlate

the set of H-bonds identified as critical using our method, with those which cause

the greatest changes in the rigidity during dilution. Dilution was used as a tool to

show the coordinated states of thermophilic and mesophilic protein homologues [33].

This study used measures of the rigidity properties to identify the transition point

from flexible to rigid, and showed that in 2/3rds of the proteins in their data set,

the transition points occurred at higher temperatures in the thermophilic than the

mesophilic homologues. The classification of the critical and redundant interactions

may be used as additional information to improve the order in which the bonds are

removed in dilution, which may lead to more consistently corresponding transition

points.

Computational efficiency. The algorithm for classifying all interactions as criti-

cal or redundant, described in Section 6.3.1, takes in worst case cubic time in the

number of atoms, so the method does not scale well to proteins with more than 500

residues. We have shown that due to the rarity of very critical interactions, a uni-

form sampling approach is inadequate. Because these critical interactions did tend

to be concentrated together, a targeted sampling approach may be sufficient if some

knowledge of the structure is known a priori. Another reasonable approach to speed

up the algorithm would be to devise a method that leverages common intermediate

states of the pebble game, so that a new run of the pebble game would not need to

be peformed for each interaction.
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6.5 Conclusion

Motivated by a need to understand the sensitivity of rigid clusters to changes in the

set of noncovalent interactions, we proposed a method for classifying the noncovalent

interactions as critical or redundant. An interaction is critical if, when it is removed,

the cluster it is contained in breaks up and becomes flexible . We also proposed

a method to score clusters using the redundancy of the noncovalent interactions.

We have implemented these methods as extensions to KINARI, our protein rigidity

analysis software. We provide results of our classification and scoring for the clusters

of a small data set of PDB files.
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CHAPTER 7

EXTENSIONS

In this chapter, we propose future work which builds upon the contributions of

this thesis. We begin with potential extensions to the KINARI software, presented

in Chapter 3, to expand the classes of mechanical models that can be processed

via the available rigidity analysis algorithms. In particular, we discuss our ideas for

processing non-generic mechanical models; this is new work and to the best of our

knowledge, these problems have not been posed elsewhere. Later in this chapter, we

discuss extensions to the benchmarking methodology presented in Chapter 4. We also

propose extensions to the methods for modeling noncovalent interactions, building on

work presented in Chapter 5. Finally, we discuss how the redundancy analysis work,

presented in Chapter 6, should be extended.

7.1 Applying rigidity analysis to a larger family of mechani-

cal frameworks

The KINARI software is the first to provide access to a mechanically accurate

underlying model. Tay’s theorem is only guaranteed on generic frameworks, and in

order to provide the user greater control in modeling choices, we permit non-generic

options (such as multi-bar modeling) and offer heuristics, as discussed in Sections

3.2.2 and Section 5.3.2.

The KINARI software supports non-generic modeling. For example, the code

supports representing multi hinges, which connect more than 2 bodies. We have also
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provided functions in the KINARI kernel library to confirm whether a body-bar-hinge

framework is ‘combinatorially’ generic.

For future work, the KINARI kernel library should be extended to support mixed

structures, called atom-body structures, which are more general than body-bar-hinge

frameworks. We define concepts for describing atom-body structures, and then use

these concepts in our proposed modules for detecting whether the structure is a

combinatorially generic body-bar-hinge framework.

7.1.0.1 Atom-Body Structures and Tay’s Theorem

A hypergraph H = (V,E) is composed of a set of vertices and a set of hyper

edges (or subsets) of vertices. A geometric hypergraph, (H, p) is a hypergraph and a

function p : V 7→ <d which assigns coordinates to all of the vertices.

We are interested in a particular class of geometric hypergraphs, which we call an

atom-body structure, for which the following three properties hold:

1. Covering. Every vertex is contained in some subset.

2. Non-inclusion. No set is a subset of any other set.

3. Bounded intersection. The intersection of any two subsets has size at most d−1,

where d is the dimension.

For the remainder of this chapter, we work with atom-body structures in dimension

3. When testing for the bounded intersection property, we hold d = 3.

We call a subset of size 1 an atom; a subset of size 2 a bar ; a subset of size 3 a

panel ; and a subset of size 3 or more, a body.

For helping in the succinctness of our definitions, we denote E(v) as the set of

hyper edges or subsets, D(v) as the set of bodies, R(v) as the set of bars, and A(v)

as the set of atoms that a vertex v is contained in.
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Figure 7.1: Example atom-body structure. The 7 joint points are numbered.

Joints. For a vertex v, if v is in more than one subset, |E(v)| > 1, then v is a

joint.

Pins. For a joint v, where the subsets of v are E(v) = e1, e2, .., ek, if |e1 ∩ e2 ∩

... ∩ ek| = 1, then v is a pin joint. If v is a pin joint, if |E(v)| = 2, v is a simple pin.

Otherwise v is a multi pin.

Hinges. For every pair of joints v1 and v2, if D(v1)∩D(v2) is non-empty, then v1

and v2 form a hinge. We call the two joints in the hinge, hinge joints. If |D(v1) ∩

D(v2)| = 2, the hinge is a simple hinge. Otherwise, the hinge is a multi hinge.

Hypergraph duals Given a hypergraph H = (V,E), the dual H∗ = (V ∗, E∗),

every edge ei ∈ E becomes a vertex vi∗ and every vertex vj ∈ V becomes an edge

ej∗ = v1∗, ..., vk∗ where ej∗ = vi ∗ |vj ∈ ei. The dual for the example atom-body

structure is shown in Table 7.1.

Joint features. There are three types of joints:

1. all-bar joint

2. all-body joint
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Joint Vertex Bars Bodies

1 1 R1 R2

2 2 R2 D1 D2 D3

3 3 R3 D1 D2 D3 D4

4 4 D2 D4

5 5 D2 D6

6 6 D2 D6

7 7 R4 D4 D5

Table 7.1: Dual of the example hypergraph shown in Figure 7.1. For each vertex, the
hyper edge in the dual is composed of the collection of atoms, bars, and bodies that
the vertex lies in. In this table, we only include the vertices that occur in more than
one body (the joints). Our example shows no subsets that are atoms, so we exclude
this in the table.

Figure 7.2: Examples of joints. (a) all-bar simple pin joint, (b) bar-body simple pin
joint, (c) all-body simple pin joint, (d) bar-body combination multi pin joint, (e) two
hinge joints forming a simple hinge.

3. bar-body combination joint

Figure 7.2 shows examples of joints.

In Table 7.2, we show the intersections of the hyperedges of the dual. We only

show the intersections of the bodies, and not the bars. For any two joints, if the size

of the intersection of the bodies of the joints, |D(j1)∩D(j2)| ≥ 2, then the two joints

form a hinge. If |D(j1)∩D(j2)| = 2, the hinge is a simple hinge. If |D(j1)∩D(j2)| ≥ 3,

the hinge is a multi hinge.
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Ja Jb D(Ja) ∪D(Jb)

2 3 D1 D2 D3

2 4 D2

2 5 D2

2 6 D2

2 7

3 4 D2 D4

3 5 D2

3 6 D2

3 7 D4

4 5 D2

4 6 D2

4 7 D4

5 6 D2 D6

5 7

6 7

Table 7.2: The intersection of the hyper edges of the dual helps us to identify hinges.
We have excluded joint 1 and bars in this table.

Isolated hinges. When every body that contains a joint in a hinge also contains

the other joint in the hinge, we call this an isolated hinge. For an isolated hinge

composed of joints v1 and v2, |D(p1)| = |D(p2)| = |D(p1) ∩D(p2)|.

Hinge incidences. When a joint in a hinge is also a bar-body joint, we call this a

bar-hinge concurrency. When two or more hinges share a joint in common, we call

these hinges concurrent hinges. See Figure 7.4.

We now describe a special type of all-body joint which are prominent in models

of molecules. When a joint is in multiple hinges, but all the hinges are common to

one body, we call this joint a molecular joint. Figure 7.6 show examples of joints that

are not molecular joints.

Tay-combinatorially-generic atom-body structures. Our goal in classifying these

features of atom-body structures is to:
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Figure 7.3: Example hinges. A simple hinge (a) and a multi hinge (b).

Figure 7.4: Hinge incidences. (a) a hinge that contains a multi-joint, (b) a bar-hinge
concurrency. (c) and (d) concurrent hinges.

Figure 7.5: Molecular joint. The joint shared by the concurrent hinges is a molecular
joint because there is one body to which all the hinge joints belong.
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Figure 7.6: Non-molecular joint. The joints shared by the concurrent hinges are not
molecular joints because the joints in the hinges do not all lie in the same body.

1. decide if an atom-body structure is valid to analyze using Tay’s theorem, as-

suming all points lie in generic position

2. if it is not valid, then to identify the degenerate combinatorial features

Definition 1. Without the molecular conjecture, an atom-body structure is

Tay-combinatorially-generic if the following conditions are satisfied:

• Proper. The “Covering”, “Non-inclusion”, and “Bounded intersection” prop-

erties hold.

• No singletons. There are no atoms.

• No dangling bars. Each bar endpoint is also a joint.

• Proper joints (without molecular conjecture). Every joint is either a

bar-body simple pin or an isolated simple hinge joint.

The above conditions to be Tay-combinatorially-generic exactly align with the

description of a body-bar-hinge framework in which there are no multi hinges, no

concurrent hinges, no concurrent bars, and no bar-hinge concurrencies. Tay’s theorem

is guaranteed to work on such frameworks. We know, because of the molecular

conjecture, that Tay’s theorem is also guaranteed on some body-bar-hinge frameworks

with concurrent hinges. We expand the conditions for an atom-body structure to be
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considered “Tay-combinatorially-generic”, and then make a conjecture that Tay’s

theorem is also guaranteed for such atom-body structures.

Definition 2. With the molecular conjecture, an atom-body structure is KT-

generic if the following conditions are satisfied:

• Proper. The “Covering”, “Non-inclusion”, and “Bounded intersection” prop-

erties hold.

• No singletons. There are no atoms.

• No dangling bars. Each bar endpoint is also a joint.

• Proper joints (with molecular conjecture). Every joint is either a bar-

body simple pin or a molecular joint.

• No multihinges. There are no multihinges.

Problem statement. Given an arbitrary atom-body structure, we are interested in

answering the following questions:

1. In its current form, is it Tay-combinatorially-generic (or KT-generic)?

2. If it is not Tay- (or KT-) generic, what are the features which make it non-

generic?

3. Is there an equivalent form that we may transform it to (for example, by re-

moving bars in which both endpoints are contained in the same body) so that

it is Tay- (or KT-) generic?

7.1.0.2 Identifying combinatorial degeneracies

We present a method for processing an atom-body structure to identify some of

the degeneracies that the user may consider and possibly fix. We describe first a set

of modules then the process for applying them.
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• Module 1. Check covering property. Detect whether every point is in some

atom, bar, or body.

Input An atom-body structure

Output The points in the atom-body structure which are not found in any atom,

bar, or body.

• Module 2a. Check non-inclusion property.

Input An atom-body structure

Output All atoms, bars, and bodies which may be discarded because they are

contained in another atom, bar, or body.

• Module 2b. Check bounded-intersection property. Identify all bodies which could

be merged.

Input A set of bodies.

Output Subsets of bodies which overlap on three or more points and should be

merged. (See algorithm below)

• Module 3. Check no-singleton property.

Input An atom-body structure

Output All atoms (subsets of size 1).

• Module 4. Detect if points in bars are contained in some body.

Input A set of bars and bodies.

Output All points which lie in a bar but not a body.

• Module 6. Detect pins.

Input. A set of bars and bodies.

Output. All pin.

• Module 8. Detect bar concurrencies If a bar lies in a connected component of

size 2 or more, then it is bar-concurrent.
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Input. A set of bars.

Output. Connected components of bars.

• Module 7. Detect hinges.

Input. A set of bars and bodies.

Output. All hinges. (Each hinge contains information about the incident bod-

ies).

• Module 7b. Detect isolated simple hinges

Input. A set of hinges, bars

Output. All isolated simple hinges.

• Module 9. Detect concurrent hinges. Every connected component of hinges of

size 2 or more contains concurrent hinges.

Input. A set of hinges.

Output. All concurrent hinges.

• Module 10. Detect bar-hinge incidences.

Input. A set of bars and hinges.

Output. All bar-hinge incidences. (Find connected components of bars and

hinges. If a bar and a hinge lie in a connected component, and are incident,

this is a bar-hinge incidences.)

We describe the steps for identifying if an atom-body structureis Tay-combinatorially-

generic.

• Perform module 1 and check if all points lie in some subset. If module 1 does

not hold, the user must deal with this.

• Perform module 2a and 2b, and check if inclusion property holds. Attempt to

“absorb” contained sets and glue bodies, and check again.
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• Perform module 3, and check if there are any atoms. If so, user intervention is

required. The user may choose to hand-edit the data to remove them.

• Perform module 4, and check that every point in a bar also lies in a body. If

not, user user intervention is again required to transform the data.

• Perform module 5, and then merge all bodies which are found to be rigid by

the gluing-lemma.

• Perform module 6. If no pins found, continue. Else, return the error to the

user.

• Perform module 7. If all hinges found are simple hinges, continue. Else return

the error to the user.

• Perform module 8-10. If any bar / hinge incidences found , return the error to

the user.

If the atom-body structure passes these steps with no errors, then we know that

it is a Tay-combinatorially-generic body-bar-hinge and that Tay’s theorem is guaran-

teed.

Algorithm 6 Computing all maximal bodies using gluing lemma.

Input. Sets of bodies.
Output. Sets of bodies that have been merged.

Build an adjacency list with weights. Each body is a vertex. The weight for each
edge is the number of points that the two bodies share.
while There exists an edge with weight 3 or more in the adjacency list. do

Contract the edge (uv) by merging u and v, and recomputing the weight of the
edges that were incident to u and v.
end while
Convert the graph back to bodies.
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Figure 7.7: Example application of Module 11. The framework in (a) is nongeneric.
More than one bar is attached at a joint, and the joint is isolated– it is not attached
to a body. We observe that for two of these bars, the endpoints are attached to the
same body and therefore rigidly attached to eachother. This is equivalent to a bar
between the two endpoints, as shown in (b). A triangle bar framework is rigid in any
dimension. We can relace these three bars with a triangle panel (or body) and now
the framework is a generic body-bar-hinge (c).

7.1.0.3 Repairing and reducing combinatorial degeneracies

Each connected component of two or more bars detected in module 4 presents some

obstacles in building a Tay-graph. The number of bars may be reduced by identifying

additional bodies created by the bars, and then removing the bars associated with

them. The connected components may be viewed as 3D bar-and-joint frameworks, so

identifying the rigid bodies of the atoms within such frameworks is non-trivial. There

is no known polynomial-time algorithm for doing such.

We identify two features of bars that may be converted into bodies.

• Triangle body. When two bars attached to one body share an end-point, as

shown in Figure 7.7.

• Tetrahedral extension. When three or more bars attached to one body share an

end-point. See Figure 7.8.

We extend the set of bars in a connected component by placing an additional bar

between a pair of end-points if they lie in the same body. Adding these extra bars

may only increase the number of rigid bodies found in the bar-and-joint framework
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Figure 7.8: Example application of Module 12. The framework in (a) is nongeneric.
We observe that the three bars extending from the left body form a rigid tetrahedron
(b). The framework can be transformed to a generic one by extending the body on
the left to contain this point. The convex hull is shown (c).

made from the connected component. We use a clique-finding algorithm to identify

all triangles and tetrahedra and replace the associated bars with bodies.

• Module 11: Finding additional triangle bodies in set of bars.

Input. A connected component of bars.

Output. All triangles that form rigid bodies.

• Module 12: Finding additional tetrahedral bodies in set of bars.

Input. A connected component of bars.

Output. All tetrahedra (K4s) that form rigid bodies.

After running modules 11 and 12, module 2 may be applied to merge bodies.

In addition to these two examples which are found by finding some patterns in the

bars, some degeneracies may be “fixed” by using the pebble game as a submodule. We

observe that adding extra constraints, such as pins or bars, can only further rigidify

a set of bodies. If a body-bar-hinge framework is rigid without adding the contraints

that cause degeneracies, this implies that the original body-bar-hinge framework is

rigid with the degenerate constraints. We suggest this as an additional method, which

we may investigate further later.
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Figure 7.9: An example of a body-bar-hinge framework for which heuristic techniques
for rigidity analysis may apply.

7.1.0.4 Rigidity analysis on non-generic frameworks

For frameworks which still contain degeneracies after performing triangle and

tetrahedral transformations, other approaches may be proposed for determining the

rigidity. For example, Figure 7.9 shows mechanical model composed of seven bodies,

a bar, and seven hinges. A multi hinge exists between bodies 1, 6, and 7. The bar

endpoints align with hinges. This is the type of structure which cannot be processed

with current techniques, because it does not have a defined Tay graph. A decomposi-

tion plan, to first analyze subcomponents of the framework which are generic, would

permit the rigidity of the framework to be analyzed.

7.2 Extending benchmarking of rigidity analysis systems

In Chapter 4, we proposed a methodology for benchmarking rigidity analysis sys-

tems. This was based on computing a similarity score of predicted rigid cluster

decompositions and those from a ‘gold standard’ data set. In our evaluation, we used

the cluster decompositions and data set of the Gerstein Lab’s RigidFinder server.
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This benchmarking methodology was designed to rapidly evaluate whether a clus-

ter decomposition has high overlap with the gold standard, and assisting in finding

the optimal setting for tuning parameters. This method is not especially sensitive to

detecting flexibility in small loop regions. This issue might be partially attributable to

the benchmarking data available. Ideally, scores from multiple different benchmarks

would be combined together in order to rank different cluster decompositions meth-

ods. One resource that could be leveraged is the Gerstein Lab’s hand-annotated hinge

listing that was used to validate a number of the lab’s prediction methods [20,56].

Methods to compare against. We compared with very crude baselines, the all-

floppy and all-rigid baselines. Future studies should compare with other decompo-

sition methods, such as those based on sequence analysis [17, 20] and energy func-

tions [19].

7.3 Improving modeling accuracy

Varying the number of energy ranges and using multi-bar modeling In this thesis,

we have presented the first study to evaluate the effects of varying the modeling the

hydrogen bonds by energy. We also studied the effects of varying both the hydrogen

bond energy cutoff and hydrophobic interactions. There were many other factors that

we might have varied.

• Multi-bar modeling. We looked only into modeling with hinges or 1 bar, but our

software also supports modeling a constraint as 2 to 6 bars. Future studies might

include these other options in the evaluation to measure if accuracy increases.

• > 2 energy ranges. For the hydrogen bonds, we limited our study to two energy

ranges: strong and weak. We could have an arbitrary number of energy ranges.

Extending types of supported interactions
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There are a number of other stabilizing reactions that we have not included in our

evaluation. First, by default in KINARI v1.0, all water molecules are removed. Hy-

drogen bonding with water molecules can contribute to the stability of the molecule,

and therefore, a very accruate system would incorporate these interactions and reflect

their contribution.

Ionic interactions, or “metal bonds”, are of particular importance because the

presence of a metal ion is crucial to the conformation or activity of over one third of

all proteins [82], and a recent study published in Nature reveals that metal-binding

proteins are even more abundant, than previously thought [14]. There is a push in

the protein research community to better understand how these interactions with

metal ions affect protein function. For example, Figure 7.10 shows Lactoferrin, a

homodimeric iron-binding protein which transports irons to cells and regulate the

level of iron in the blood. An iron ion binds to the protein with metal/ionic bonds.

Another interaction type which has not been studied in the context of rigidity analysis

are electrostatic interactions. These have also been shown to play a structural role in

proteins, especially in protein-protein interfaces within complexes [72].

How to set parameters to apply rigidity analysis to a protein. The benchmarking

methodology presented in Chapter 4 and further applied in Chapter 5 serves to find

the best parameter setting during an evaluation when the gold standard is known

previously. Our results confirmed that there is no universal parameter setting that

gives optimal results for all proteins, but the results can be used to guide the choice

of which parameter settings to use.

This data may be leveraged in the use of rigidity analysis as a predictive tool.

Future studies should examine if an approach using training data may guide setting

parameters.
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(a) (b)

Figure 7.10: Example of metal-binding interactions in proteins. The protein shown is
Lactoferrin (1B0L). (a) Folded structure with iron atoms shown in grey. (b) The two
iron atoms (orange), each coordinated with 6 atoms, help to stabilize the structure.

7.4 Characterizing robustness of rigidity results

The redundancy analysis we proposed in Chapter 6 adds additional value to the

RCD produced in a single rigidity analysis, for instance the results of KINARI-Web

v1.0 (see Chapter 3, Section 3.3.3). The redundancy score of each cluster gives some

sense of confidence of a cluster’s stability.

Fuzzy rigid clusters. In our analysis, we kept track of the decrease in size of the

rigid cluster as interactions were removed, but we did not make use of the informa-

tion of which regions within the cluster more frequently break off than others. We

hypothesize, with data supported by dilution experiments [40], that each cluster has

a core, which is probably always retained by the cluster. Future work would validate

whether this core correlates with the folding core determined in dilution. Additional

value to KINARI-Redundancy results would be added by coloring atoms in a cluster

based on how likely they are to break off in a redundancy analysis. This data might

be compared with the ‘fuzzy domains’ calculated by another method, which relied on

normal mode analysis [98]
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Effects of removing multiple interactions. We demonstrated that there exist single

interactions, that when removed, can have a big impact on the rigidity of a cluster.

An interesting extension of this approach would be to study the effects of removing

multiple interactions at a time. It may be the case that an interaction by itself is not

especially critical, but perhaps it has some partner interaction, and when both of these

are removed, the effects are detrimental to the rigidity of the cluster. Performing such

studies exhaustively will quickly become computationally intractable. For example,

KINARI v1.0 curation computes approximately 250 noncovalent interactions for the

closed conformation of HIV-1 protease (1HVR). Extending our approach to examine

the contribution of each pair of interactions would require (
(
250
2

)
= 31, 125) invoca-

tions of rigidity analysis. Further extending to check every 3 interactions requires 3

million invocations. Therefore, the approach is not scalable in this respect, and more

efficient methods would need to be developed.

Sampling interactions. Recent work in the Jacobs lab proposes heuristics to

extend rigidity results to approximate ensemble-averaged rigidity [35]. With this

method, each noncovalent interaction is assigned some probability. These probabil-

ities could be used to repeatedly sample from the set of interactions, and perform

rigidity analysis. Then the RCDs produced would be combined into a single RCD

with some weighting scheme. No study has yet been performed to validate whether

the ensemble-averaged rigidity better correlates with biological data than a single

rigidity analysis.
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CHAPTER 8

CONCLUSIONS

The goal of this thesis is to make progress toward accurate and robust software

for protein rigidity analysis. The contributions of the thesis are summarized in the

proceeding sections, but first, we provide a list of highlights:

• Chapter 3. We presented KINARI, an extensible and publicly-available soft-

ware library for mechanical modeling and rigidity analysis, with applications in

molecular modeling (http://kinari.cs.umass.edu).

• Chapter 4. We proposed a new benchmarking methodology which can be

applied to any system for decomposing a protein into rigid and flexible re-

gions. The approach comparatively scores two cluster decompositions of the

same protein by applying the B-cubed scoring method from the information

retrieval literature.

• Chapter 5. We proposed a new methodology for modeling hydrogen bonds

by their energy. Weak hydrogen bonds are modeled with a weaker constraint,

rather than being excluded completely as was done in prior work.

• Chapter 5. We performed a study to measure improvement in accuracy by

tuning the energy cutoff for hydrogen bonds and hydrophobic interactions.

• Chapter 6. We present results from our exhaustive study of sensitivity of

rigid clusters to variations in noncovalent interaction network on a benchmark

dataset.
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8.1 Summary of Contributions

A protein’s characteristic rigidity and flexibility is essential to its function. Pro-

tein rigidity analysis systems process structural data, determined by laboratory ex-

perimental methods, and provide a course-grained mechanical model, which describes

the rigid and flexible regions. A huge advantage of rigidity analysis over other com-

putational methods is its computational efficiency. A rigid cluster decomposition of

a 100 residue protein is determined in seconds.

Prior work with the MSU-FIRST and ASU-FIRST software demonstrated the

power of rigidity analysis for testing real biological hypotheses. These software sys-

tems served as powerful tools to demonstrate the usefulness of rigidity analysis in a

number of studies, but ongoing progress was stunted because the systems were not

built modularly, to permit customization of the modeling. Perhaps for this reason,

evaluation of the predictive power of the systems for performing rigid cluster decom-

position was limited to very few case studies. Qualitative case studies should not be

under-appreciated as contributions; they serve as powerful tools for demonstrating

the usefulness of a system. But this approach to validation needs to be complimented

with an unbiased, quantitative evaluation.

8.1.1 KINARI Software.

Towards our goal of validating the predictive power of rigidity analysis, we have

designed and written the KINARI software as a platform for rigidity analysis exper-

iments. KINARI is the first software to implement correct mechanical modeling of

molecules as body-bar-hinge frameworks. The analysis of such frameworks is well-

supported by mathematical theory and efficient, precise algorithms. In this thesis,

we described the important concepts in KINARI to provide full reproducibility of our

results. These included curation of the protein structural data, from PDB files, to a

molecular representation, and then the modeling algorithm, to convert the molecular
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representation into a mechanical structure. The other contributions of this thesis

were performed with extensions of the KINARI software.

8.1.2 Towards improving accuracy of protein rigidity analysis systems.

In order to make progress in any research area, benchmarks must be in place so

that improvements can be measured quantitatively. We have proposed a benchmark-

ing methodology for measuring the accuracy of rigid cluster decomposition predic-

tions. Our method borrows from the information retrieval literature, employing the

B-cubed method for comparing two clusterings of data [2].

Our benchmarking methodology made it possible for us to evaluate our new meth-

ods for modeling noncovalent interactions. These are the interactions which are

mainly responsible for holding a protein in its 3D folded shape. How they are in-

corporated into the mechanical modeling is vital to the accuracy of the results. In

prior work, weaker hydrogen bonds were removed via an energy cutoff. Yet the con-

tribution of these weaker hydrogen bonds to a protein’s stability is non-negligible. We

proposed a new methodology for their inclusion, in which, rather than removing the

weaker hydrogen bonds entirely, they are simply modeled with a weaker constraint.

Although others have observed earlier that a balance between hydrogen bonds

and hydrophobics was essential to achieving proper rigidity results [32], the effects of

tuning the set of hydrophobics had never been thoroughly evaluated. Hydrophobics

were not originally included in the MSU-FIRST software, and in the ASU-FIRST

software, were determined with heuristics with no associated energy. We proposed to

instead use van der Waals interactions, which can be calculated with a molecular me-

chanics package (we implemented the functions of Amber99 [8]), and assign energies

based on their Lennard Jones 6-12 potentials.

Our evaluation using the aforementioned benchmarking methodology validated

that KINARI v1.0, with default options, performed significantly better at determining
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RCDs than our crude baselines on the larger proteins in our data set. But we also

found that KINARI v1.0 performed worse than the baselines for the medium and

small-sized proteins in the data set. The best overall performance could be attained

by varying both the hydrogen bonds and hydrophobic interactions, thus finding the

balance between the two interaction types is essential for achieving the best rigidity

results.

8.1.3 Characterizing robustness of rigidity analysis results.

A rigid cluster which is robust is unlikely to break apart with the loss of any

interaction. The prevalence such ‘critical’ interactions in the rigidity results of real

protein data was previously unknown.

We proposed a new method, which we call redundancy analysis, which measures

the ratios of redundant and non-redundant interactions. First the method classifies

each interaction in a cluster as critical or redundant. An interaction is critical if its

removal causes the cluster to lose rigidity, breaking apart into smaller clusters. If its

removal has no effect of the cluster’s rigidity, the interaction is classified as redundant.

Then the interaction uses the counts to compute a redundancy score for each cluster.

We performed redundancy analysis, with KINARI v1.0 parameter settings, on the

largest rigid clusters of the Pdomain benchmark data set. The evaluation confirmed

our intuitions that, using these parameter settings, the small-sized clusters had lower

redundancy than the medium- and large-sized clusters. In this analysis, we also keep

track of the change in cluster size upon an interaction’s removal, which we called the

interaction’s criticality value. Clusters containing interactions with high criticality

values (> 10%) were rare, and when these did occur, it was worth a closer inspection.

We examined the PDBs in the Gerstein Lab data set in which the largest rigid clusters

had higher criticality values. We found that these interactions were typically clustered

together around the active site. They show that a delicate balance between rigidity
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and flexibility is maintained in these sites, as opposed to other rigid regions in the

protein.
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