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ABSTRACT

EXPLOITING DOMAIN STRUCTURE IN MULTIAGENT

DECISION-THEORETIC PLANNING AND REASONING

MAY 2013

AKSHAT KUMAR

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

This thesis focuses on decision-theoretic reasoning and planning problems that arise

when a group of collaborative agents are tasked to achieve a goal that requires collective

effort. The main contribution of this thesis is the development of effective, scalable and

quality-bounded computational approaches for multiagent planning and coordination un-

der uncertainty. This is achieved by a synthesis of techniques from multiple areas of artificial

intelligence, machine learning and operations research. Empirically, each algorithmic con-

tribution has been tested rigorously on common benchmark problems and, in many cases,

real-world applications from machine learning and operations research literature.

The first part of the thesis addresses multiagent single-step decision making problems

where a single joint-decision is required for the plan. We examine these decision-theoretic

problems within the broad frameworks of distributed constraint optimization and Markov

random fields. Such models succinctly capture the structure of interaction among different

decision variables, which is subsequently exploited by algorithms to enhance scalability. The

vii



algorithms presented in this thesis are rigorously grounded on concepts from mathematical

programming and optimization.

The second part of the thesis addresses multiagent sequential decision making problems

under uncertainty and partial observability. We use the decentralized partially observable

Markov decision processes (Dec-POMDPs) to formulate multiagent planning problems. To

address the challenge of NEXP-Hard complexity and yet push the envelope of scalability,

we represent the domain structure in a multiagent system using graphical models such as

dynamic Bayesian networks and constraint networks. By exploiting such graphical planning

representation in an algorithmic framework composed of techniques from different sub-areas

of artificial intelligence, machine learning and operations research, we show impressive gains

in increasing the scalability, the range of problems addressed and enabling quality-bounded

solutions for multiagent decision theoretic planning.

Our contributions for sequential decision making include a) development of efficient

dynamic programming algorithms for finite-horizon decision making, resulting in signifi-

cantly increased scalability w.r.t. the number of agents and multiple orders-of-magnitude

speedup over previous best approaches; b) development of probabilistic inference based

algorithms for infinite-horizon decision making, resulting in new insights connecting infer-

ence techniques from the machine learning literature to multiagent systems; c) development

of mathematical programming based scalable techniques for quality bounded solutions in

multiagent systems, which has been considered intractable so far.

Several of our contributions are some of the first for the respective class of problems. For

example, we show for the first time how machine learning is closely related to multiagent

decision making via a maximum likelihood formulation of the planning problem. We develop

new graphical models and machine learning based inference algorithms for large factored

planning problems. We also show for the first time how the problem of optimizing agents’

policies can be formulated as a compact mixed-integer program, resulting in optimal solution

for a range of Dec-POMDP benchmarks.

In summary, we present a synthesis of different techniques from multiple sub-areas of

AI, ML and OR to address the scalability and efficiency of algorithms for decision-theoretic
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reasoning and planning in multiagent systems. Such advances have already shown great

promise to bridge the gap between multiagent systems and real-world applications.
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CHAPTER 1

INTRODUCTION

Multiagent systems are one of the cornerstones of artificial intelligence. A key challenge

in multiagent systems is how to achieve intelligent coordination among agents despite avail-

ability of only limited information to each agent and stochasticity in the environment. In

this thesis, we address this problem of multiagent planning and coordination using decision-

theoretic formal frameworks. When only a single decision maker is present in the environ-

ment, then the decision-theoretic framework of partially observable MDPs is a popular and

well understood choice. However, extending decision theory to address multiagent systems

presents unique challenges such as significantly high complexity barrier than single-agent

approaches and the limited scalability of even approximate approaches. The main contribu-

tion of this thesis is the development of effective, scalable and quality-bounded computational

approaches for multiagent planning and coordination. This is achieved by exploiting the do-

main structure in an algorithmic framework developed using a synthesis of techniques from

multiple areas of artificial intelligence, machine learning and operations research.

When this thesis was started 5 years ago, research in decision-theoretic multiagent plan-

ning was mainly focused on developing scalable techniques for just 2-agent systems. There

were attempts to handle larger multiagent systems using restricted models, but their scal-

ability and the range of addressed problems were limited. Furthermore, the majority of

the relatively scalable algorithms were approximate and could not provide quality bounds.

Much of the research altogether avoided the question of quality bounds due to perceived

high intractability. The already proven complexity result that finding the optimal policy

just for 2-agents is NEXP-Complete hinted that despite the tantalizing promise of decision-

theoretic multiagent planning, developing effective and scalable approaches was bound to

be a fruitless effort.
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The main insight which pushed us to move forward in addressing the challenges of

multiagent coordination and planning was that despite the theoretical hardness, many real-

world inspired problems have underlying structure that can be exploited to yield scalable

approaches. Furthermore, instead of reinventing the wheel for scalable multiagent planning,

one may fare significantly better by bringing algorithmic advances from different areas of

artificial intelligence (AI), machine learning (ML) and operations research (OR) to the

context of multiagent systems. Some of the big questions which this thesis addresses include:

how to represent domain structure in a generic manner, how to exploit it in an algorithmic

framework and how to synthesize algorithmic advances in different sub-areas of AI, ML and

OR for scalable multiagent coordination and planning. We highlight this strategy below:

• Frameworks: We use the decision-theoretic frameworks of distributed constraint

optimization (DCOP) and decentralized partially observable MDPs (Dec-POMDPs)

to address multiagent decision making. DCOPs model single-step decision making,

where agents need to take a single action in a coordinated manner to maximize the

joint utility. Dec-POMDPs model scenarios where a team of agents need to take

multiple actions in a sequential manner to achieve their goal. Developing optimal

algorithms for DCOPs is NP-Hard and for Dec-POMDPs, it is NEXP-Hard.

• Representation: The first requirement for exploiting domain structure in a multia-

gent system is to find frameworks that can represent precisely the interdependencies

among multiple agents in a generic manner. We use the well established language of

probabilistic graphical models to represent structure within a large multiagent system.

We use both directed models such as dynamic Bayesian networks and undirected

models such as Markov random fields that lay bare the independencies present in a

multiagent system for exploitation in an algorithmic framework.

• Reasoning: Once the structure in a multiagent system is established using a graph-

ical model, we develop new algorithms that leverage techniques from AI, ML and

optimization literature to exploit the structure of this graphical model. For example,

we show that DCOPs can be handled by mapping them to Markov random fields and

then solved using mathematical optimization based approaches that result in a dis-
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tributed message-passing scheme over the underlying graph. Similarly, we show that

a Dec-POMDP can be modeled using a mixture of dynamic Bayesian networks and

thus, amenable to probabilistic inference based techniques from the ML literature.

Our main contributions are as following:

• For single-step multiagent decision making problems modeled using DCOPs, our ap-

proach has been to develop scalable algorithms using the framework of variational

inference from machine learning. Our approach is the first that unifies two different

existing frameworks based on quadratic and linear programming for DCOPs. We

show that the resulting hybrid framework is analytically tighter than existing formu-

lations. Furthermore, it combines desirable properties of existing formulations such

as accuracy and convexity, while minimizing the impact of their weaknesses. We de-

velop a scalable mathematical optimization based algorithm that efficiently exploits

the domain structure using a message-passing scheme over the underlying graph. Our

approach is always convergent, can provide tight quality bounds unlike other approxi-

mate approaches such as Max-Sum for DCOPs and empirically, provides near-optimal

solutions for a number of synthetic and real-world benchmarks from multiagent sys-

tems, machine learning and operations research literature.

• For sequential multiagent decision making problems modeled using Dec-POMDPs,

our approach has been to exploit techniques from machine learning and mathematical

optimization literature for developing scalable algorithms. Our main contributions

are as follows:

– We show how to exploit the underlying problem structure for finite-horizon plan-

ning using constraint networks, which are a sub-class of graphical models. Using

techniques from constraint optimization literature, our approach is more than an

order-of-magnitude faster than previous approaches and scalable even for larger

multiagent systems that could not be handled using previous approaches.

– We show how the multiagent planning problem can be reformulated as that of

probabilistic inference in a dynamic Bayesian network based graphical model.

4



Using this insight, we develop new algorithms based on techniques from the ML

literature such as Expectation-Maximization for multiagent planning. Our ap-

proach is the first to bring such inference-based view to multiagent planning. The

insight of representing a planning problem using a graphical model exposes in-

dependencies among different problem parameters enabling scalable algorithms,

and allows one to potentially address much richer class of problems such as fac-

tored and continuous planning models. We develop one such factored model

based on value factorization and show how using such a graphical model based

view results in a highly scalable message-passing algorithm.

– We develop the first mixed-integer linear programming (MILP) based approach

for Dec-POMDPs than enables quality-bounded solutions. Furthermore, our ap-

proach is also the first that can formulate single-agent planning problems modeled

using POMDPs as a MILP. Using such MILP-based formulations allows us to

use highly efficient industrial strength solvers such as CPLEX for multiagent

planning. We further show how one can exploit loosely-coupled multiagent sys-

tems in a Lagrangian relaxation based optimization framework to get scalable,

quality bounded solutions. Empirically, our approach is more than an order-of-

magnitude faster than previous approaches and provides provably near-optimal

solutions for a number of benchmark problems for the first time.

1.1 Examples of Multiagent Decision Making

Multiagent decision making is applicable in several different domains such as multi-robot

coordination [12, 100], broadcast channel protocols [13] and target tracking by a team of

sensors [99]. Some emerging application areas of multiagent decision making include smart

power grids [118], collaborative sensing of the atmosphere [91, 69] and cloud computing [167]

among others. Smart grids present a radical new design from its current monolithic structure

to being distributed and autonomous in nature. The presence of multiple renewable sources

of power and the uncertainty in supply and demand present a fertile ground for multiagent

decision making under uncertainty. My previous work has addressed the important task
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(a) The DARPS ANTS project [83] (b) An abstraction of the problem

Figure 1.1. Target tracking in sensor networks.

of reconfiguring a power grid after line failures using a distributed message-passing based

approach [74]. Another example of multiagent decision making is the distributed collabora-

tive sensing initiative of the NSF that focuses on a distributed sensing of the atmosphere,

rather than using a few, high cost radars [91] . My work has developed new models and

tractable algorithms for early outbreak detection of stochastically evolving events, such as

tornadoes in the atmosphere [69].

We next describe the single-step and sequential version of a multiagent sensor network

problem.

1.1.1 Single-Step Multiagent Decision Making

Fig. 1.1(a) shows the target tracking problem in a sensor network for the DARPA ANTS

project [83]. The tracks in the figure show where mobile targets can move. The task for

the stationary sensors is to track the targets by coordinated scanning of the target. An

abstraction of this problem is represented in Fig. 1.1(b). Each node in the graph is a sensor

agent. The edges of the graph represent the possible locations where a target can be. There

are multiple targets which can be present on the different edges of the graph. First, consider

the single-step reasoning problem where all targets are stationary. To track a target, a joint

scan of the edge where the target is present is required. When such coordination happens,

a positive joint-reward is given to the scanning agents. If agents scan in an uncoordinated
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manner or they scan an edge where a target is not present, a penalty is given to each agent.

There is no central controller which knows the location of all the agents and targets. Each

agent has a strictly local view of the problem which involves knowledge about only those

sensors that are its immediate neighbors. The goal for all the agents is to come up with

a scan strategy such that the joint reward is maximized. Furthermore, agents can only

communicate with their immediate neighbors using message-passing. Such decision making

problems can be modeled as a distributed constraint optimization problem (DCOP) [95].

Distributed meeting scheduling presents another multiagent decision making domain [109].

In this problem, an agent represents a person in an organization. Each agents needs to par-

ticipate in multiple meetings with a required set of attendees and range of start times. The

goal for such automated personal agents is to find a joint meeting schedule that satisfies

the local constraints of each meeting attendee and the global constraints for each meeting.

Such multiagent distributed decision making has also found applications in several other

domains such as distributed power supply reconfiguration in smart grids [74], synchronized

traffic lights [60] and truck route planning [103].

1.1.2 Sequential Multiagent Decision Making

Now consider a much more realistic sequential decision making version of the sensor net-

work problem described earlier. This version takes into account the case when the sensors

can be faulty and targets are mobile. This problem can be formulated as a decentralized

partially observable MDP (Dec-POMDP) [13]—the standard model for multiagent sequen-

tial decision making. In this problem, targets are mobile. All targets have independent,

stochastic trajectories, which means that either the target can stay at the same location

with some (low) probability or move to an adjacent location. Sensors also have an internal

state, an indication of the battery level of the sensor. Each scan action depletes the battery.

In addition to scanning, sensors have two additional actions sensor off and recharge. The

sensor off action allows sensors to conserve energy by remaining idle. When the battery

is completely depleted, a sensor must perform the recharge action, which has a cost. Each

sensor can receive one of the following observations after performing a scan action: target

present, target absent and sensor idle. False positives/negatives are allowed for the first
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two observations. Sensors are encouraged to coordinate as simultaneous scans by multiple

sensors are required to get the reward, otherwise a penalty is given. At runtime, sensors

operate in a decentralized manner without a central controller. This implies that each sensor

must select its next action based only on its local observation history. It seems that there

is no communication among sensors during execution time. However, this is not true. The

observations sensors receive are correlated by a joint observation function, that facilitates

information exchange during execution time.

This particular sensor network domain presents several interesting characteristics as a

multiagent planning benchmark. There are multiple agents (� 2) involved in the decision

making, which requires for scalability in the planning approach. There is significant struc-

ture present in the domain such as local interaction among sensors, which can be potentially

exploited for scalability. Furthermore, the requirement for coordination is significant as un-

coordinated scanning provides no benefit and incurs negative penalty. Other applications

for multiagent planning which can be formulated using the Dec-POMDP model include

coordinating the operation of planetary exploration rovers [12], coordinating firefighting

robots [100] and broadcast channel protocols [13].

1.2 Summary of Contributions

We now describe the main contributions of this thesis, which address multiagent decision

making problems that arise in different contexts. We address decision making problems in

which a single joint-decision is required and refer this as single-step decision making. We

also address sequential decision making problems in which agents need to perform several

actions in a sequential manner to achieve a common goal. Finally, we address the problem of

computing quality bounded solutions for sequential decision making problems in a scalable

manner, that has been particularly challenging so far in multiagent planning.

1.2.1 Single-Step Decision Making

Main research question: The main research question we address is how can multiple

agents coordinate in an intelligent manner to achieve a common goal by using only local
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communication protocols. As this is an NP-Hard problem, we also address the question of

finding quality bounds for a given problem instance.

Framework: We model the single-step multiagent decision making problem using the

framework of distributed constraint optimization (DCOP) [95]. We address a broader ver-

sion of this problem by showing that the problem of finding the maximum-a-posteriori

(MAP) assignment in Markov random fields [153] is equivalent to solving the DCOP under

certain conditions. We thus develop approaches which are equally applicable to DCOP and

the MAP problem in Markov random field, which is commonly used in machine learning

applications.

Technical contributions: We address the MAP problem by using the framework of vari-

ational inference, which analyzes the inference problem through the lens of mathematical

optimization. There are two main variational formulations for the MAP—Quadratic pro-

gramming (QP) formulation and linear programming (LP) formulation. The main advan-

tage of the LP formulation is that it is convex and computationally tractable, thus there

are no local optima. However, this formulation is inexact, implying the optimum of the

LP does not solves the MAP problem optimally. The QP formulation, on the other hand,

is exact. However, it is non-convex. Thus, globally optimizing the QP is intractable. We

present a new variational framework which combines the benefits of both the QP and the

LP formulation, while minimizing the impact of their weaknesses. This new hybrid formula-

tion presents a series of relaxations of the MAP problem, which on one extreme is identical

to the QP formulation and on the other extreme, it is identical to the LP formulation. It

can also represent an arbitrary combination of the QP and LP formulations, thus providing

high flexibility.

The main benefit of this formulation lies in settings where the LP formulation is loose

for a given instance. That is, the global optimum of the LP does not provide a good

approximation to the MAP problem. We show analytically as well as empirically that the

new hybrid formulation provides a tighter approximation to the MAP problem than the LP

formulation, which translates into a better solution quality. By judiciously choosing how to

introduce the QP constraints in the hybrid formulation, we can control the non-convexity of
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the hybrid formulation, which otherwise can lead to a poor local optima. Thus, optimization

over the hybrid formulation can avoid getting stuck in such poor local optima, which is the

main obstacle for the QP formulation.

We also develop a message-passing algorithm called Hybrid Belief Propagation (HBP)

that solves the hybrid variational formulation. This message-passing approach is developed

by exploiting the connection between the MAP problem and the difference-of-convex func-

tion programming. This approach is also guaranteed to converge unlike other approaches

such as max-sum [107, 41]. Such message-passing approach is also ideal for large multia-

gent systems as it only requires exchanging local, fixed-size messages among neighboring

agents. Empirically, we show that our approach provides much better solution quality than

the state-of-the-art approaches in both multiagent systems community and the machine

learning community on a number of large synthetic and real-world benchmarks.

1.2.2 Sequential Decision Making

Main research question: The main research question we address is how to develop

scalable planning algorithms that allow multiple agents to operate collaboratively in a de-

centralized manner and under the partial observability of the environment. In this setting,

multiple rounds of decision making are required. In each round, agents take an action based

on their individual history of observations received from the environment so far. They per-

ceive a new observation after taking the action. We address the problem of increasing the

scalability of planning algorithms w.r.t. both the number of time steps in the plan (also

called planning horizon) and the number of agents.

Framework: We use the framework of decentralized POMDPs (Dec-POMDPs) to model

multiagent sequential decision making problems [13]. We also use restricted sub-classes of

the Dec-POMDP model that can represent problems with structured interactions, such as

the Network-Distributed POMDP (ND-POMDP) [99]. We also develop a new sub-class of

the Dec-POMDP model called value-factorization based multiagent planning [76].

Technical contributions: Our technical contributions are along the two main sub-classes

of sequential decision making—finite-horizon planning and infinite-horizon planning.
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1.2.2.1 Finite-Horizon Planning

In finite-horizon planning problems, agents operate over a finite number of time steps

without any discounting of the reward they receive. Computing optimal policies under this

framework even for two agents is NEXP-Hard [13]. Therefore, approximation algorithms

are commonly used. We focus on the bottleneck dynamic programming step of several

approximate algorithms, also known as the backup problem. We investigate the compu-

tational characteristics of the backup problem for 2-agents and show that it is NP-Hard.

Despite this negative result, we present an efficient and scalable optimal algorithm for the

decentralized backup problem. We show how this problem can be mapped to a weighted

constraint satisfaction problem (WCSP). We then use state-of-the-art WCSP solvers to

solve the backup problem. Our results show that bringing the perspective of constraint

optimization helps solve the backup problem more than an order-of-magnitude faster than

state-of-the-art solver PBIP [36]. We also investigate the backup problem in other restricted

sub-classes of the Dec-POMDP model, such as ND-POMDPs, that can model larger mul-

tiagent systems. We again show how to solve this problem efficiently using WCSP solvers.

This approach provides magnitudes of speedup in the policy computation and generates

better quality solution for all test instances than earlier approaches [146, 88, 70].

1.2.2.2 Infinite-Horizon Planning

In the infinite-horizon planning problems, agents operate continuously with a discount-

ing of the reward. We address the problem of optimizing the joint-policy of a team of agents

represented as finite-state controllers (FSC) under the Dec-POMDP framework for infinite-

horizon planning problems [15, 6]. Relatively few algorithms existed before our work for

solving this planning class due to the intrinsic difficulty of infinite-horizon planning. We

present a promising new class of algorithms for the infinite-horizon case for 2-agent Dec-

POMDPs, which recasts the optimization problem as inference in a mixture of dynamic

Bayesian networks (DBNs), which represent directed graphical models. An attractive fea-

ture of this approach is the applicability of existing inference techniques in DBNs for solving

Dec-POMDPs and supporting richer representations such as factored or continuous states

and actions. We perform the inference in such DBNs by using the well known Expectation
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Maximization (EM) algorithm from the machine learning literature to optimize the joint

policy. Experiments on benchmark domains show that EM compares favorably against the

state-of-the-art solvers.

We also try to answer the following question: Is there a general characterization of the

interaction among agents that when present in a multiagent planning model leads to a rel-

atively scalable approximate algorithm? We identify such conditions based on a joint-value

factorization assumption, that when present in a planning model, enhances the scalability

w.r.t. the number of agents. We also develop a scalable, message-passing algorithm that can

solve such planning problems using the EM framework. The EM framework is particularly

suited for developing algorithms for such restricted models as the EM approach works di-

rectly on the DBN representation of the planning problem. Such graphical representation

allows for exploiting the independencies present in the planning model than the existing

nonlinear programming based approach.

1.2.3 Bounded Optimality for Sequential Decision Making

Main research questions: The main question we address in this part is how to develop

approaches that can provide boundedly optimal solutions for multiagent sequential deci-

sion making problems in a scalable manner. Since planning in the Dec-POMDP framework

is NEXP-Hard [13], an optimal approach would naturally be highly inefficient. However,

we can alternatively address the question that what is the optimal joint-policy when each

agent’s policy is restricted to a particular sub-class of all the allowed policies. This sub-

class corresponds to the case when the agents’ policies are represented as finite-state con-

trollers [6]. We address the question of how to find optimal finite-state controllers of a

given size for all the agents. This work is the first to propose a scalable technique for

finding optimal controller based policies for multiagent planning.

Framework: We use the the Dec-POMDP model as the multiagent planning frame-

work. We also use some restricted sub-classes of Dec-POMDPs, such as the ND-POMDP

model [99]. We use the mixed integer linear programming (MILP) framework [22] to model

the problem of finding optimal joint controllers. We also use the Lagrangian relaxation
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technique [16] in conjunction with the MILP framework to extend this approach to large

multiagent systems with structured interactions.

Technical contributions: Our main technical contribution is to show how to formulate

the problem of optimizing the joint-policy of agents represented as fixed-size finite state con-

trollers in the Dec-POMDP model as a compact mixed integer linear program (MILP). Once

we have a MILP representation of the planning problem, we can use off-the-shelf and highly

efficient MILP solvers such as CPLEX, which can solve the MILP to optimality or provide

non-trivial upper bounds. Previously, several attempts have been made to formulate both

the single-agent and multiagent planning problems under uncertainty using mathematical

programming [114, 24, 3, 4, 15, 6]. However, most of these approaches either result in a

non-convex program, which suffers from the problem of local optima or they approximate

the policy optimization using a convex program, which does not guarantee accuracy. These

difficulties arise due to the highly non-linear nature of the planning problem. We resolve

these problems by interpreting the multiagent planning problem under partial observability

as a single-agent planning problem under full observability. We then incorporate a small

number of constraints into the MILP which guarantee that the resulting policy will work

for the multiagent setting under partial observability.

Such connections to the MILP formulation also lays the groundwork for applying ad-

vanced mathematical programming techniques to planning. The mixed integer program-

ming is one of the heavily researched area in the mathematical optimization community

unlike non-convex programming. There are several techniques that can provide an approx-

imate solution to large mixed integer programs, while also providing a worst case quality

guarantee. We show how to apply one such technique called Lagrangian relaxation [16]

when there are large number of agents (� 2) involved in the planning problem. These tech-

niques can be easily implemented in a message-passing manner, implying their suitability

for multiagent systems.
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Area Contributions Techniques
Single-step decision making Efficient message-passing al-

gorithms for DCOP
Mathematical optimization—
Linear prog., quadratic prog.
and difference-of-convex function
prog.

Sequential decision making–
Finite-horizon

Scalable dynamic program-
ming based algorithms

Constraint optimization, branch-
and-bound search

Sequential decision making–
Infinite-horizon

Inference based approximate
planning algorithms

Machine learning—Graphical
models, probabilistic inference,
likelihood maximization

Sequential decision making–
Bounded optimality

Techniques for quality
bounded solutions for finite
state controller based policy
optimization

Mixed integer linear prog., La-
grangian relaxation, dual opti-
mization

Table 1.1. Summary of contributions

1.3 Discussion

To conclude, our main contributions lie along two broad contexts in multiagent systems—

single-step decision making and sequential decision making. For the single-step case, we ad-

dress the question that how can multiple agents coordinate in a decentralized manner when

the coordination problem is described using the distributed constraint optimization frame-

work. We develop efficient message-passing algorithms using techniques from mathematical

optimization.

For the finite-horizon sequential decision making problems, we address the bottleneck

decentralized backup step of several approximate dynamic programming algorithms. The re-

sulting techniques based on constraint optimization provide more than an order-of-magnitude

speed up over previous best approaches. For the infinite-horizon case, we explore and exploit

the connection between multiagent planning and probabilistic inference in graphical models

to develop scalable approximate planning algorithms. Finally, we present several techniques

that can provide quality bounded solutions for multiagent planning. This is achieved by

reformulating the policy optimization problem as a mixed integer program, which can be

solved using highly efficient off-the-shelf solvers such as CPLEX. Table 1.1 summarizes the

main contributions of this thesis.

By bringing together such diverse perspectives from a number of different sub-areas

of AI, ML and operations research, we show how efficient and rigorous algorithms can be
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developed for some of the most computationally challenging problems in multiagent systems.

Such synergy among multiple sub-disciplines of computer science holds a signicant promise

to make multiagent planning scalable in real-world settings.

15



Single-Step Decision Making



CHAPTER 2

DISTRIBUTED CONSTRAINT OPTIMIZATION FRAMEWORK

In several scenarios, multiple agents need to coordinate with each other so as to opti-

mize a joint objective function. Such problems can be formulated as distributed constraint

optimization problems (DCOPs) [95, 109]. Intuitively, each agent in these settings has

its own internal optimization problem, which may reflect its private utility on assignments

to decision variables modeled as constraints. Additionally, agents have shared constraints

with other agents, which may reflect, for example, the need to share common resources [39].

Because internal optimization problems are private, agents only have knowledge about

shared decision variables. A consensus among agents optimizing the joint utility must be

reached through a distributed message-passing scheme rather than a centralized planning

approach. Such problems arise in several application areas of growing importance such as

stream processing and cloud computing [39]. In these settings, agents represent users who

have to perform computation on several data streams in an overlay network. The network

provides computing resources, which have limited capacity and are shared across different

users. Users may have budget constraints and different preferences over the computing

resources that process their queries, defining their internal optimization problem. The task

for different users is to coordinate in a distributed manner so that the system efficiency

is maximized for a given amount of shared resources. The DCOP formulation has been

used to model several other practical multiagent problems such as coordinating unmanned

aerial vehicles [125, 161], coordinating sensor management [83], distributed power supply

management [74] among others.

While distributed constraint optimization is a relatively new framework dating back

to mid 90s [162, 164], a closely related model in the machine learning community, that

of Markov random field (MRF) [18], has been actively researched for more than thirty

years. We show that the decision-theoretic problem of finding the maximum-a-posteriori
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assignment (MAP) in MRFs is equivalent to that of DCOP with minor modifications [75].

Consequently, we build upon the wealth of research that already exists in the MRF literature

and show that it offers an effective framework for solving DCOPs. This has the additional

advantage that the resulting algorithms are equally applicable to several practical problems

that are modeled using MRFs in such areas as bioinformatics (protein-prediction), computer

vision (image denoising) among others. We first describe the MAP estimation problem in

MRFs, followed by its connection to the DCOP problem.

2.1 Markov Random Fields and MAP Estimation

A Markov random field is a class of undirected graphical models which define a prob-

ability distribution over a collection of random variables [63]. Markov random fields are

particularly useful in modeling inference problems for structured practical applications as

they marry probability theory with graph theory. Inference in such graphical models can be

made highly efficient by exploiting the local interaction structure among random variables.

Definition 1. A pairwise Markov random field (MRF) is described using an undirected

graph G = (V,E) such that

• There are n nodes in the graph.

• A discrete random variable xi is associated with each node i ∈ V of the graph.

• A random variable can take values over a finite domain with maximum size k.

• Associated with each edge (i, j) ∈ E is a potential function θij(xi, xj).

• The complete assignment x to all the variables in the MRF defines the following joint

probability:

p(x; θ) ∝ exp

(

∑

ij∈E

θij(xi, xj)

)

(2.1)

Although we have only described pairwise MRFs, this is without loss of generality as

any m-ary MRF can be converted to a pairwise MRF. Figure 2.1 represents a grid shaped
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Figure 2.1. An example of a MRF.

MRF. Each node has a random variable associated with it and edges represent the potential

functions. Next, we describe the MAP problem.

Definition 2. The maximum a posteriori (MAP) problem consists of finding the most

probable assignment to all the variables of the MRF under p(x; θ). Formally, it is given as:

argmax
x

exp

(

∑

ij∈E

θij(xi, xj)

)

(2.2)

The above problem is also equivalent to the following optimization problem, which is

mathematically a more convenient representation:

f(x; θ) =
∑

ij∈E

θij(xi, xj) (2.3)

We assume w.l.o.g. that each θij is nonnegative, otherwise a constant can be added to each

θij without changing the optimal solution.

2.2 The DCOP Model

Like MRFs, a distributed constraint optimization problem (DCOP) with binary con-

straints can also be visualized by an undirected graph G = (V,E), commonly called a

constraint graph. It is formally defined as:

• A set of agents X = {xi | ∀i ∈ V }, where each agent has a finite domain of possible

values that it can take on. Each agent xi is associated with a node i ∈ V of the graph.
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• A set of constraint functions θ = {θij(xi, xj) | ∀(i, j) ∈ E}. Each constraint θij(xi, xj)

is associated with an edge (i, j) ∈ E.1

Therefore agents and constraint functions in a DCOP correspond to random variables and

potential functions in an MRF, respectively. Similar to the MAP estimation problem,

the objective in a DCOP is to find the complete assignment x that maximizes the func-

tion f(x;θ) in Equation (2.3). The main difference between MAP estimation problems

and DCOPs is that the former are centralized problems while the latter are decentralized

problems. In MAP estimation problems, a single agent has complete knowledge of all the

potential functions and controls the value assignments of all the random variables. On the

other hand, in DCOPs, each agent has knowledge of only the constraint functions that it is

involved in and chooses its own value only. That is, an agent can compute based only on its

local information about its immediate neighbors in the constraint graph. Nonetheless, many

(centralized) MAP estimation algorithms are implemented using message-passing along the

edges of the MRF. These messages are computed based only on the local information avail-

able to a variable (or an agent) and the immediate neighbors of a variable in the MRF (or

the constraint graph). Thus, message-passing algorithms for MAP estimation in MRFs can

be directly adopted to solving DCOPs [75]. A significant advantage of such message-passing

algorithms is that they exploit the structure of the underlying MRF very efficiently and can

scale well to large problems. Thus, developing novel message-passing algorithms based on

rigorous principles from mathematical optimization will be the focus of our work.

2.3 Applications

We now describe some common application domains of DCOPs and MAP estimation.

• Multiagent systems: As the DCOP framework can naturally model problems

where distributed decision making is required, they have found numerous applica-

tions in multiagent systems. They have been applied in distributed meeting schedul-

1Although the typical notation of a constraint function is Fij or cij in the DCOP literature, we use
the notation in the machine learning literature to better illustrate the mapping between MAP estimation
problems and DCOPs.
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Figure 2.2. A protein backbone structure and its corresponding MRF [130]

ing [86, 108, 160], coordinating unmanned aerial vehicles [125], coordinated sensor

networks [82, 83, 168, 95, 58, 171], distributed power supply reconfiguration in smart

grids [74], synchronized operation of traffic lights [60] and truck route planning [103].

• Bioinformatics: Predicting the protein structure from its amino acid sequence is

crucial for drug design and biotechnology. The side-chain prediction problem involves

finding the three-dimensional configuration of rotamers given the backbone structure

of protein [134, 62]. This problem can be mapped to finding the MAP in an appro-

priately constructed MRF [134]. Figure 2.2 shows a schematic representation of this

problem.

• Computer vision: Recovering the original digital image from a given image that

has been contaminated with Gaussian noise is an important challenge in computer

vision [19]. This problem can also be handled by using MAP estimation in MRFs.

Computer stereo vision, which entails extracting 3D information from a set of images,

can also be addressed using this framework [68].

• Information theory: Given observations over a noisy channel, the decoding problem

is to determine the most likely codeword. In the context of low-density-parity-check

(LDPC) codes, which have proven to be quite useful in noisy communication channels,

the decoding task can again be translated to that of MAP estimation over a codeword

factor graph [43].
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2.4 Algorithmic Approach—Message-Passing

As most algorithms for DCOPs require iterative message-passing among the agents, we

now describe some of the desirable characteristic of such message-passing approaches.

• Convergence: An algorithm is said to have this property if it is guaranteed to

converge to a fixed point after a finite number of iterations. For message-passing

algorithms, the fixed point is the point where the content of every message no longer

changes. This property can be used as a basis to guarantee termination.

• Anytime Behavior: An algorithm is said to have this property if it finds solutions

whose qualities are monotonically non-decreasing.

• Error Bounded: An algorithm is said to have this property if it has an error bound

on the solution quality. This bound can provide a worse case guarantee about how

far the current solution is from the optimal.

• Adaptive: An algorithm is said to have this property if it is able to solve dynamic

DCOPs, that is, DCOPs that change over time. In such dynamic DCOPs, a message-

passing approach must be able to incorporate the situations in which new agents may

join the system or some of the agents become inactive over time. A desirable property

is that in spite of such dynamism, the message-passing approach must be able to warm

start the computation from previously computed messages, rather than throwing all

the work performed so far.

• Privacy Preserving: This a relevant property to DCOP algorithms which is not ap-

plicable in the MAP estimation case. In particular, this involves answering questions

such as what private information is revealed by such message-passing algorithms and

can such message-passing approaches be anonymized.

In section 3.5, we present message-passing algorithms that have most of the above properties.

2.5 Discussion

In this chapter, we have formally introduced the framework of distributed constraint

optimization as a model for multiagent single-step decision making. We have established a
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close relationship of this problem with that of MAP estimation in Markov random fields.

Our work is also the first that formally establishes such connections between DCOPs and

MAP estimation [75]. As a result, we can easily leverage approaches from machine learning

literature under the umbrella of message-passing algorithms for multiagent systems.
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CHAPTER 3

MESSAGE-PASSING ALGORITHMS FOR DCOPS

In this chapter, we provide an overview of message-passing approaches for multiagent

systems and related approaches in the Markov random field (MRF) literature. We start with

a review of complete and approximate algorithms for DCOPs, followed by variational infer-

ence based techniques commonly used in the machine learning literature. We then present

our contributions that leverages techniques from the machine learning and optimization

literature to develop novel algorithms for DCOPs.

A key contribution of our work is the unification of two different existing variational

frameworks based on quadratic programming (QP) and linear programming (LP) for MAP

and DCOPs [77]. The main benefit of the unified framework lies in its ability to combine

desirable properties of existing formulations such as the accuracy of the QP formulation

and the convexity of the LP formulation, while minimizing the impact of their weaknesses,

namely the non-convexity of the QP formulation and approximate nature of the LP for-

mulation. We show that the resulting unified framework is also analytically tighter than

existing formulations. We then develop a scalable algorithm based on difference-of-convex

functions (DC) programming that efficiently exploits the underlying graph structure using

a message-passing scheme. This approach is always convergent, can provide tight quality

bounds unlike other approximate approaches such as Max-Sum and empirically, provides

near-optimal solutions for a number of real-world and synthetic benchmarks from the mul-

tiagent systems, machine learning and operations research literature. Extensive empirical

results show that our approach significantly outperforms state-of-the-art approaches both

in the multiagent systems and machine learning literature.
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3.1 Related Work

3.1.1 DCOP Algorithms

DCOP algorithms have been typically categorized as incomplete algorithms and complete

algorithms. Incomplete algorithms generally refer to an approximation scheme, whereas

complete algorithms solve the DCOP problem optimally. It should be noted that the DCOP

problem is NP-Hard [34]. Therefore, any complete algorithm requires exponential compu-

tational time/space in the worst case in the number of agents, unless P=NP.

Some of the incomplete DCOP algorithms include the distributed breakout algorithm

(DBA) [163], distributed stochastic algorithm (DSA) [45] and maximum gain message [85].

These algorithms have the common property that they consider changing the assignments

of a small group of agents while keeping the assignments of the rest of the agents fixed.

Hence, these are hill climbing algorithms that converge quickly, but are prone to getting

stuck in poor local optima. There is another class of message-passing algorithms based

on the classical max-product algorithm [107], called max-sum [42]. Several extensions and

application domains of this method have been presented [137, 138, 139]. Another class of

algorithms include k-optimal algorithms [106, 21, 52, 149] and t-optimal algorithms [61].

Other frameworks for incomplete DCOP algorithms include anytime local search [170] and

divide-and-coordinate [148].

There has also been progress along complete DCOP algorithms. Some complete DCOP

algorithms allow partial centralization in which local groups of agents can transfer their

information to a mediator agent [87, 53]. There are also completely decentralized asyn-

chronous search algorithms such as ADOPT [95], BnB-ADOPT [161], no commitment

branch-and-bound search (NCBB) [25, 26] and SBB [55]. These algorithms have small

memory requirements, but the number of messages exchanged can be exponential in the

number of agents to reach optimality. Another direction for complete DCOP algorithms

is based on dynamic programming. The distributed pseudo-tree optimization (DPOP) al-

gorithm and its several variants have been influential in this direction [108, 109, 110, 111].

The dynamic programming approaches have the advantage that the number of messages ex-

changed remain linear in the number of agents. However, messages can have an exponential

size related to the tree width of the constraint network.
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3.1.2 MAP Estimation Algorithms

As the problem of MAP estimation in MRFs has proven to be useful in several different

application areas such as computer vision and information theory, there exists tremendous

literature on how to find the MAP in specialized cases that arise in these applications,

such as binary graphs or graphs with submodular potential functions. We do not attempt

to provide a comprehensive overview. Instead, we limit ourselves to general graphs and

state-of-the-art algorithms that have message-passing structure, rather than having a com-

binatorial nature such as being based on graph cuts [66] or network flow [121]. This is

because message-passing algorithms naturally satisfy the privacy and distributed computa-

tion requirements of multiagent decision making models such as DCOPs, and are therefore

directly applicable to DCOPs.

One of the earliest message-passing algorithm for finding the the MAP assignment in

MRFs is max-product belief propagation [107]. While this algorithm has been used suc-

cessfully in a variety of information-theoretic applications [1, 152], it comes without any

guarantee of either correctness or convergence on general graphs. As highlighted before,

the message-passing nature of this algorithm has led to its successful adoption for DCOPs

too [41]. As this algorithm has poor theoretical guarantees for general graphs, most of

the contemporary work for finding the MAP has been focused on the linear programming

(LP) relaxation of the MAP problem and its connection with the embedded spanning trees

of the graph [151]. Another direction of work has focused on the quadratic programming

(QP) relaxation of the MAP problem. We first provide an overview of LP-based approaches

followed by QP-based techniques.

An optimal solution of the LP relaxation provides an upper bound over the MAP as

the LP solution can be fractional, whereas the MAP assignment is always integral. The LP

formulation is also beneficial in proving optimality, which is guaranteed if the LP solution

is integral. The LP formulation is at the core of most of the state-of-the-art MAP algo-

rithms [151, 65, 154, 134, 131, 133, 120, 90, 68]. We now describe some of these approaches

briefly.

One of the earliest studies that introduced the LP relaxation method and led to a flurry

of developments in the field is due to Wainwright et al. [151]. They formally described
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the LP relaxation and its properties, and established its connection with the underlying

spanning trees of the graph. They also developed the tree-reweighted message-passing

algorithm (TRW) which solves the dual of the LP relaxation.

For tree-structred graphs, the TRW algorithm reduces to the max-product algorithm,

thus providing a formal grounding for max-product on trees. This algorithm has a partic-

ularly attractive property that at each iteration, it provides an upper bound on the MAP

solution quality. This algorithm is designed to decrease this upper bound and upon conver-

gence, it will provide the optimal LP solution. It can also provide a guarantee of optimality

based on certain optimum specifications. However, it is not guaranteed to decrease the dual

objective for every iteration and some damping of messages is required to guarantee conver-

gence. The non-monotonicity of TRW was addressed by Kolmogorov [65], who presented

the sequential TRW (TRW-S) algorithm that monotonically decreased the upper bound

with each iteration. The TRW-S algorithm modifies the original TRW algorithm in that

messages are updated in a specific sequential manner rather than in parallel. The TRW-S is

guaranteed to converge, however its converged solution may not provide the optimal bound,

a disadvantage compared to TRW. Werner [154] introduced another message-passing algo-

rithm, Max-Sum diffusion (MSD), that is also guaranteed to decrease the upper bound.

However, it is also not guaranteed to converge to the optimal bound based on the LP relax-

ation. Another approach which works on the dual of the LP relaxation is the max-product

LP (MPLP) algorithm [49]. This approach also monotonically decreases the upper bound

on MAP like TRW-S, but may get stuck in local optima.

The development of such theoretical advances led to the application of these approaches

to many practical problems such as protein side-chain prediction and protein design in

bioinformatics and in computer vision [159]. An empirical study of TRW-based algorithms

showed their effectiveness against black-box solvers such as CPLEX, which were not able to

solve LPs for some large problems [159], whereas message-passing algorithms still provided

good solutions as they effectively exploited the underlying graphical representation. Com-

bining such message-passing approaches with domain-dependent heuristics helped optimally

solve some large MAP instances in computer vision [92].
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Recently there has been an increasing interest in developing provably optimal algorithms

for solving the LP relaxation. Most of these algorithms are based on the framework of dual

decomposition [17]. In this framework, an optimization problem is decomposed into several

small and easy-to-solve sub-problems. These sub-problems are then solved independently,

but a simple composition of their solutions may be inconsistent. To make these sub-problems

consistent, a master program coordinates their parameters iteratively. This method has

been originally introduced in [67] for MRFs which also guarantees that the dual of the

relaxed LP is solved in the limit, but is quite slow in practice [120]. Others have proposed

to solve the dual LP faster using smoothing of discrete convex functions [59] or other

specialized approaches from the convex optimization literature [90].

An interesting point to notice is that even though the LP relaxation may be solved

optimally, it still does not provides the MAP solution as the LP relaxation is not exact.

To remedy this, a number of techniques have been proposed which tighten this LP [134,

131, 155] using cutting planes approach or cycle inequalities based on graph cuts. In these

techniques, additional constraints are added to the LP which restrict the feasible parameter

space, but do not preclude the optimal solution. This process is performed iteratively until

a satisfactory solution is found. A main concern with such approaches is that to make the

relaxation tighter either the computational complexity is increased exponentially [134, 155]

w.r.t. to the size of variable-cluster that are added to the LP relaxation or it requires the

LP to be solved using a black-box solver like CPLEX as message-passing algorithms are not

able to handle the new LP [131].

In our work, we will describe the outline of some of the techniques which can solve both

the relaxed LP optimally and also tighten it without increasing the size of the optimization

problem in stark contrast to previous approaches. Next we review an alternate variational

formulation of the MAP problem that is based on quadratic programming and also has

connection to the mean-field based variational inference.

A different formulation of MAP is based on quadratic programming (QP) [119, 78]. The

QP formulation is an attractive alternative to the LP formulation because it provides a more

compact representation of MAP: In a MRF with n variables, k values per variable, and |E|

edges, the QP has O(nk) variables whereas the LP has O(|E|k2) variables. The large size
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of the LP makes off-the-shelf LP solvers impractical for several real-world problems [159].

Another significant advantage of the QP formulation is that it is exact. However, the QP

formulation is non-convex, making global optimization hard.

As the QP formulation is non-convex, several convex relaxations of the above QP are also

proposed [119, 30]. Ravikumar et al. [119] convexify the above QP by making the potential

funtion matrix (consisting of the potentials θij in a matrix form) positive semidefinite. This

is done by adding certain unary terms for each node of the MRF to the objective and

subtracting a linear term for each edge. The convexified QP has the advantage that it can

be optimally solved by black-box QP solvers such as CPLEX. However this modified QP is

no longer exact and its optimal solution may not correspond to the MAP. Nonetheless, it

showed good empirical performance [119]. Another convexification of the QP is proposed

in [30] based on spectral techniques. However, the experiments do not provide enough

evidence that using spectral techniques is scalable enough to solve large graphical models.

The reason is that the algorithm in [30] does not involve message-passing and thus may

have difficulty in solving large QPs.

3.2 Variational Methods—An Optimization-based View

As our work utilizes an optimization based view of the MAP and DCOP problems, we

first introduce some existing variational techniques for this problem. In variational methods,

the main idea is to express the inference problem of interest (in our case, DCOP or MAP

inference) as the solution of a mathematical optimization problem. This does not make

the problem easier by itself. However, analyzing the inference problem through the lens of

mathematical optimization exposes the precise underlying structure of the problem. The

optimization problem can then be relaxed by approximating the complicating constraints

or the function to be optimized. This in turn provides a principled relaxation of the original

problem, which is often computationally tractable.

We start by defining marginal probabilities associated with an MRF.

Definition 3. Node marginals associated with each node i of the MRF are defined as:

µi(xi) = P (Xi = xi;θ) ∀xi
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Edge marginals associated with each edge (i, j) of the MRF are defined as:

µij(xi, xj) = P (Xi = xi, Xj = xj ;θ) ∀xi, xj

We represent the set of all node and edge marginals as µ. Based on this, we define the

following:

Definition 4. The set of marginal vector µ that arise from a valid joint distribution over

all the variables of the MRF G is called the marginal polytope:

M(G) =
{

µ | ∃p(x) : p(xi, xj)=µij(xi, xj), p(xi)=µi(xi)
}

(3.1)

The MAP problem now becomes equivalent to the following LP:

max
µ∈M(G)

µ · θ= max
µ∈M(G)

∑

ij∈E

∑

xixj

θij(xi, xj)µij(xi, xj) (3.2)

However, the above LP is intractable as representing the marginal polytope M(G) is pro-

hibitively hard. Therefore, despite this variational view, the MAP problem is still in-

tractable. However, this variational view highlights the main obstacle in solving the LP.

The constraint in the marginal polytope that the edge and node marginals must arise from a

valid joint distribution is generally prohibitive to represent. Therefore it is relaxed, yielding

an outer bound on the marginal polytope, also called the local polytope L(G) ⊇M(G) as it

enforces only the local consistency on the marginals.

Definition 5. The local polytope L(G) consists of all marginal vectors µ which satisfy the

following constraints:

∑

xi

µi(xi) = 1 ∀i ∈ V ;

∑

x̂j

µij(xi, x̂j) = µi(xi) ∀i ∈ V, ∀xi, ∀j ∈ Nb(i) (3.3)
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where Nb(i) refers to the set of all the immediate neighbors of a node i in the MRF.

There is another variational representation of the MAP problem which assumes the mean-

field structure on the joint distribution [119, 153]. That is, the joint probability factorizes

according to the nodes of the MRF: p(x) =
∏n

i=1 pi(xi). The resulting set of marginal

vectors give rise to the inner bound I(G) ⊆M(G) on the marginal polytope:

Definition 6. The inner bound I(G) consists of all marginal vectors µ which satisfy the

following constraints:

µij(xi, xj) = µi(xi)µj(xj) ∀(i, j) ∈ E

∑

xi

µi(xi) = 1 ∀i ∈ V (3.4)

The first constraint is non-linear in µ and, in general, I(G) is non-convex. The rela-

tionship among these different formulations and the MAP is given by:

Proposition 1. The MAP solution quality f? satisfies

f?= max
µ∈M(G)

µ · θ= max
µ∈I(G)

µ · θ ≤ max
µ∈L(G)

µ · θ (3.5)

This known result [151, 119, 153] shows that optimizing over I(G) is exact. Furthermore,

I(G) can be compactly represented using only O(n) normalization constraints for node

marginals and O(nk) variables for each µi(xi).

The optimization problem maxµ∈L(G) µ ·θ is also know as the linear programming (LP)

relaxation of the MAP problem. The above proposition also shows that the optimal value

of the LP relaxation provides an upper bound on the MAP solution quality. Formally, it is

given as:

max
µ∈L(G)

µ · θ= max
µ∈L(G)

∑

ij∈E

∑

xixj

θij(xi, xj)µij(xi, xj) (3.6)

31



The constraints which characterize the local polytope L(G) are given in Def. 5. The opti-

mization over the inner bound is also called the quadratic programming (QP) formulation

of the MAP and can be represented as follows:

max
µ∈I(G)

µ · θ= max
µ∈I(G)

∑

ij∈E

∑

xixj

θij(xi, xj)µi(xi)µj(xj) (3.7)

The constraints which characterize the inner bound I(G) are given in Def. 6. Even though

the above variational formulation of the MAP problem is exact, it is non-convex. Therefore,

local optima are the main obstacle while solving the QP formulation. On the other hand,

the LP relaxation is convex and can be solved optimally. However, it is non-exact. It does

not provide an accurate representation of the MAP problem. In our experiments, we found

that in several hard MAP problems, the LP relaxation is quite loose. Therefore, to remedy

these drawbacks of these variational formulations, we next present our approach.

3.3 Our Approach—A Hybrid Variational Bound

We now present our approach, which combines the inner bound with the outer bound,

resulting in the hybrid set of parameters H(G;Q). It is parameterized by a set of MRF

edges Q. Intuitively, the non-convexity in the set I(G) arises from the mean-field constraint

that µij(xi, xj)=µi(xi)µj(xj). The set Q contains all the edges e ∈ E for which the mean-

field constraint is enforced. Let L=E \ Q denote the rest of the edges, which intuitively

correspond to the outer bound constraints. We denote the edges in the set Q as QP edges

(short for quadratic) and the edges in L as LP edges. The hybrid bound for the marginal

polytope is defined as:

Definition 7. The hybrid bound H(G;Q) consists of all marginal vectors µ which satisfy

the following constraints:

µij(xi, xj) = µi(xi)µj(xj) ∀(i, j) ∈ Q ;

∑

xi

µi(xi) = 1 ∀i ∈ V ;

∑

x̂j

µij(xi, x̂j) = µi(xi) ∀i, ∀xi, ∀j ∈ Nbl(i) (3.8)
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Figure 3.1. a) Relationship among marginal polytope, inner and outer bound; b) Hybrid bound;
c) A grid graph with dotted edges denoting QP edges set Q.

where Nbl(i) denotes the LP neighbors of a node i: Nbl(i) = {j : j ∈ Nb(i)∧ (i, j) ∈ L}.

Proposition 2. It holds that: maxµ∈I(G) µ · θ ≤ maxµ∈H(G;Q) µ · θ ≤ maxµ∈L(G) µ · θ

Proof. First notice that the mean-field constraint µij(xi, xj) = µi(xi)µj(xj) for an edge

(i, j) automatically enforces the edge consistency constraint
∑

x̂i
µij(x̂i, xj)=µj(xj) in both

directions. Therefore, intuitively, the set I(G) is much smaller than the local polytope,

which only enforces the edge consistency constraints. The first inequality holds because

the mean-field constraint is not enforced for the LP edges in H(G;Q). Therefore the set

I(G) ⊆ H(G;Q). The second inequality holds because the mean-field constraint is enforced

in addition to edge consistency for the QP edges in Q. Therefore H(G;Q) ⊆ L(G).

The above proposition highlights that the set H(G;Q) provides a tighter approxima-

tion to the MAP than the local polytope. In fact, by controlling the set of QP edges Q,

the set H(G;Q) provides a hierarchy of relaxations ranging from I(G) (when Q = E) to

L(G) (when |Q| = 0). As the size of the set Q increases, the relaxation becomes tighter,

but the non-convexity increases. However, since we have control over the degree of non-

convexity, a judicious choice of the set Q will not only make the relaxation tighter, but also

provide a good solution quality with respect to the optimization over the local polytope.

Experimentally, we found this to be the case for almost all the instances.

Fig. 3.1(a) shows the high-level relationship among the marginal polytope and the inner

and outer bounds and is based on [153]. Each extreme point of the marginal polytope
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M(G) represents an integral assignment to all the variable of the MRF. They are shown as

solid black circles in Fig. 3.1(a). Consequently, the marginal polytope can also be described

as the convex hull of all the integral assignments to the MRF. The local polytope L(G)

includes fractional assignments to the MRF variables such as µi(xi) = 0.6, in addition to

all the integral assignments. If the LP solution occurs at one of these fractional vertices,

it provides an upper bound on the MAP. Such fractional vertices are shown as gray circles

in Fig. 3.1(a). The inner bound touches the marginal polytope at all its extreme points.

However, it is non-convex and is shown as a curved bound in Fig. 3.1(a).

Fig. 3.1(b) shows the hybrid set H(G;Q). This set includes all the integral assignment to

the MRF. In addition, it can include some fractional assignments too. Since, it incorporates

some constraints of the inner bound, it is non-convex. However, the non-convexity in hybrid

bound can be controlled precisely by judiciously choosing the set Q. Therefore, it can be

made qualitatively less non-convex than the inner bound, thereby decreasing the chances

of getting trapped in a poor local optimum. It is also more accurate than the outer bound

L(G) as it does not include all the fractional vertices of the outer bound.

Fig. 3.1(c) shows a strategy to select the QP edges set Q. As the outer bound is tight

for tree-structured graphs, we randomly choose a spanning tree of the graph with all its

edges constituting the set L; the rest are the QP edges. We can also construct multiple

such spanning trees independently with L being the union of their edges. Empirically, this

method worked well in our experiments.

Proposition 3. As the size of the QP edge set Q increases by 1, the number of parameters

decreases by O(k2) and the number of constraints decreases by O(2k).

Proof. For the QP edges, it holds that µij(xi, xj)=µi(xi)µj(xj). Instead of having a linear

objective function (µ · θ), we can substitute µij(xi, xj) by µi(xi)µj(xj) in the objective.

Thus we no longer need to store the parameter µij(xi, xj) nor the mean-field constraint

explicitly for QP edges. Therefore, the total number of parameters is O(k2|L| + nk) and

the total number of constraints is O(2|L|k + n) where L=E\Q. As the size of Q increases

by 1, the size of the set L decreases by 1. This proves the proposition.
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The above result shows that unlike the previous cluster-based approaches [134, 8], where

the number of parameters increases exponentially w.r.t. the cluster size to make the relax-

ation tighter, the number of parameters decreases in our hybrid inner-outer bound based

approach as it becomes tighter. This can potentially make the optimization easier at the

expense of losing some convexity.

To summarize, we have introduced a hybrid variational bound based on the combination

of inner and outer bound on the marginal polytope. The hybrid bound provides a hierarchy

of relaxations ranging from I(G) (when Q = E) to L(G) (when |Q| = 0). By controlling

the set of QP edges Q, we can control the non-convexity, which is the main obstacle for

optimization over the inner bound, and the accuracy, which is the main disadvantage for

the outer bound.

3.4 DC Programming for Optimization Over Hybrid Bound

In this section, we describe how to formulate the optimization problem over the hybrid

bound as a difference-of-convex functions (DC) program. The DC programming viewpoint

is quite powerful as it allows us to solve both the QP formulation and the LP relaxation

within the same framework. First, we explain the general DC optimization problem and

briefly describe the concave-convex procedure (CCCP), introduced in [166] to solve a DC

program. Consider the optimization problem:

min{g(x) : x ∈ Ω}

where g(x) = u(x)− v(x) is an arbitrary function with u, v being real-valued, differentiable

convex functions and Ω being a constraint set. CCCP was originally proposed for Ω that

is described by linear equality constraints, but [136] showed the same idea extends to any

constraint set including non-convex constraints. The CCCP method provides an iterative

procedure that generates a sequence of points xl by solving the following convex program:

xl+1 = argmin{u(x)− xT∇v(xl) : x ∈ Ω} (3.9)
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Each iteration of CCCP decreases the objective function g(x) for any Ω [136]. Furthermore,

it is guaranteed to converge to a stationary point where the Karush-Kuhn-Tucker (KKT)

conditions are satisfied when the constraint set Ω is convex [136]. Note that the objective

g(x) may be non-convex, which makes CCCP a general approach for non-linear optimization.

3.4.1 DC Formulation of MAP

We now describe how optimization over different variational formulations of MAP can

be formulated as a DC program. As the hybrid bound subsumes both the inner and the

outer bound, we describe our results in the context of hybrid bound. The optimization

problem over the set H(G;Q) is described as minimizing the following function subject to

constraints Ω of Eq. (3.8):

g(µ; θ,Q)=−
∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)µ(xi)µ(xj)−
∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj) (3.10)

For the sake of readability, we drop the subscripts, using θ(xi, xj) for θij(xi, xj), and µ(xi, xj)

for µij(xi, xj), as long as it is unambiguous. We also negate the MAP objective to get a

minimization problem. The critical question in this reformulation into a DC program is how

easy it is to perform the CCCP iteration in Eq. (3.9). Notice that the first term in g(µ; θ,Q)

is quadratic and neither concave nor convex. However, noting that all the marginals must

be positive, a simple substitution µ(xi) = ey(xi), where y(xi) is unconstrained, makes it

convex because the function eh(x) is convex when h(x) is affine. The CCCP procedure has

also been applied to optimize the Bethe free energy of a MRF [165]. Motivated by the fact

that negative entropy of an edge is convex and the constraints in the outer bound are the

same as in the Bethe free energy, we further perform the following optimality preserving

modifications:

• For each LP edge in L, add and subtract the negative entropy:

−Hij =
∑

xi,xj
µ(xi, xj) logµ(xi, xj) to g(µ; θ,Q).

• For each node i, add and subtract the term:
∑

xi
ey(xi) to g(µ; θ,Q).

The entropy term ensures that all the edge marginals µij are positive and the exponential

term ey(xi) ensures that all the node marginals are positive as well as simplifies the CCCP
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iteration. The objective g(µ; θ,Q) can now be written as the difference two functions u and

v. The function u(µ,y) is defined as:

−
∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj)−
∑

(i,j)∈L

Hij +
∑

i,xi

ey(xi) (3.11)

The function v(µ,y) is defined as:

∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)e
y(xi)+y(xj) −

∑

(i,j)∈L

Hij+
∑

i,xi

ey(xi) (3.12)

The modified constraint set Ω′ is described by the following non-convex constraints:

∑

xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑

x̂j

µij(xi, x̂j) = ey(xi) ∀i ∈ V, ∀xi, ∀Nbl(i) (3.13)

Notice that the constraints in Eq. (3.13) are different from those in Eq. (3.8) that describe

H(G;Q). This is deliberate to simplify the CCCP iteration without changing the feasible

parameter space. First, the factorization constraint µ(xi, xj) = µ(xi)µ(xj) for all (i, j) ∈ Q

is now explicit in the objective (3.10). Second, we impose a restriction that for each node i,

there should be at least a single neighbor j such that edge (i, j) is an LP edge or (i, j) ∈ L.

This restriction will not allow all the edges to become QP, i.e., Q 6= E. The reason for

this restriction is that we no longer enforce the normalization constraint for any node

explicitly. But the constraints
∑

xj
µ(xi, xj) = ey(xi) and

∑

xi,xj
µ(xi, xj) = 1 directly

imply
∑

xi
ey(xi) = 1. We note that restricting the set Q in this way does not compromise

generality—if we want to make the set Q = E, then for each MRF node i, we introduce

a dummy node di with a single state and make an edge (i, di) with every potential being

zero. Then we can add this edge to the LP edges set L. This will satisfy the previous

requirement.

Also notice that by using the substitution µ(xi) = ey(xi), we have made the con-

straint set non-convex. Let us denote the objective g(µ; θ,Q) (see Eq. (3.10)) with the
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exp-transformation as g(µ, y; θ,Q). We also refer as Ω to the counterpart of Ω′ which

uses the variables µ(xi) rather than ey(xi). We now study the properties of the stationary

points of g(µ; θ,Q) and g(µ, y; θ,Q) that will help answer questions about the convergence

properties of CCCP.

Proposition 4. Every stationary point of the problem min g(µ, y; θ,Q) subject to Ω′ is also

a stationary point of the problem min g(µ; θ,Q) subject to Ω.

The above proposition has interesting consequences. For the LP relaxation case when

|Q|=0, the optimization of g(µ; θ,Q) subject to Ω is equivalent to solving the LP relaxation

of MAP and there are no local optima. However, even for the case when |Q| = 0, the second

optimization problem of g(µ, y; θ,Q) over Ω′ is a non-convex optimization problem as the

equality constraints are not linear. However, we have shown that every stationary point

of the second optimization problem is also a stationary point of the LP, which shows that

there are no local optima in the second problem even though it is non-convex (only for

the case |Q|=0). Thus, achieving the stationary point of the second optimization problem

using CCCP will yield the global optima for the LP relaxation.

3.4.2 Solving the CCCP Iteration

We now describe how we can solve each iteration of CCCP, which itself is a convex

optimization problem, in the context of MAP DC program. Each iteration of CCCP is

given by:

min
µ,y

−
∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj)−
∑

(i,j)∈L

Hij +
∑

i,xi

ey(xi)

−
∑

(i,j)∈L

∑

xi,xj

µ(xi, xj)∇µ(xi,xj)v −
∑

i∈V,xi

y(xi)∇y(xi)v

subject to constraints Ω′ of Eq. (3.13), which are non-convex. Thus it might appear that

we may not be able to optimally solve the CCCP iteration. However, this is remedied by

again substituting µ(xi) = ey(xi) back to the above problem resulting in:
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min
µ,y

−
∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj)−
∑

(i,j)∈L

Hij +
∑

i,xi

µ(xi)

−
∑

(i,j)∈L

∑

xi,xj

µ(xi, xj)∇µ(xi,xj)v −
∑

i∈V,xi

∇y(xi)v logµ(xi) (3.14)

subject to :
∑

xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑

x̂j

µij(xi, x̂j) = µ(xi) ∀i ∈ V, ∀xi, ∀Nbl(i) (3.15)

Note that this re-substitution µ(xi)=ey(xi) is in the context of CCCP iteration (3.9); it does

not undo the substitution made in the context of the objective (3.10)—in (3.14) we still have

the gradient∇y(xi)v w.r.t. y(xi). Furthermore, the above optimization problem is a standard

convex optimization problem with convex objective and linear equality constraints. Thus

there are no local optima, and strong duality holds as we can show that Slater’s conditions

hold [22].

Proposition 5. CCCP converges to a stationary point of the problem min g(µ, y; θ,Q)

subject to Ω′.

The above proposition extends the convergence properties of CCCP when applied in

the context of non-convex constraints, which is the case for the MAP DC program. Pre-

vious results have analyzed the convergence properties of CCCP in the presence of convex

constraints or DC constraints [136].

3.4.3 DC Programs and Proximal Minimization

In [120], a number of globally convergent message-passing algorithms are developed to

solve the LP relaxation of MAP. Our DC programming based approach can also solve the

LP relaxation optimally using message-passing as shown in the next section. In this section,

we investigate the relationship between our approach and that of [120]. Interestingly, we can

show that the proximal minimization algorithms based on Bregman divergence, on which

the work of [120] is based, can be neatly described in the DC programming framework.

The CCCP approach to solve such DC programs gives an identical optimization problem to

the proximal minimization scheme. Therefore, the DC programming framework of MAP we
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have developed is quite general and subsumes existing frameworks to solve the LP relaxation

of the MAP.

We start by describing proximal proximal minimization schemes. Proximal minimization

schemes solve a convex program minµ∈Ω g(µ) indirectly via a sequence of problems of the

form [120]:

µn+1 = argmin
µ∈Ω

{

g(µ) +
1

ωn
Df (µ||µ

n)
}

(3.16)

where Df is a generalized distance function and ωn a positive weight. We focus on Bregman

divergence based distance function defined as Df (µ||ν) = f(µ)−f(ν)−〈∇f(ν), µ−ν〉, where

f is a strictly convex, differentiable function (also called a Bregman function).

Proposition 6. Each proximal iteration with Bregman divergence based distance function

and a fixed weight ω is equivalent to the CCCP iteration for the DC program minµ∈Ω{u(µ)−

v(µ)} where u(µ) = g(µ) + 1
ω
f(µ) and v(µ) = 1

ω
f(µ).

Proof. Substituting the definition of Bregman function in Eq. (3.16), we get:

µn+1 = argmin
µ∈Ω

{

g(µ) +
1

ω

(

f(µ)− f(µn)−∇f(µn)µ+∇f(µn)µn
)}

(3.17)

= argmin
µ∈Ω

{

g(µ) +
1

ω

(

f(µ)−∇f(µn) · µ
)}

(3.18)

Consider the D.C. program minµ∈Ω{u(µ)−v(µ)} equivalent to the original problem minµ∈Ω g(µ)

with u(µ) = g(µ) + 1
ω
f(µ) and v(µ) = 1

ω
f(µ). The CCCP iteration of Eq. (3.9) is given as:

argminµ∈Ω{g(µ) +
1
ω
f(µ) − 1

ω
∇f(µn) · µ}, which is equivalent to the proximal scheme of

Eq. (3.18).

Note that the DC program in the above proposition is equivalent to the original con-

vex program minµ∈Ω g(µ). We also note that the weights ωn can be adjusted for faster

convergence in proximal schemes, but they can also be set to constant as the Bregman dis-

tance function Df itself converges to zero as the algorithm approaches the optimum [120].

Furthermore, the DC program view can also simulate changing weight scenario as the DC

decomposition u(µ) = g(µ) + 1
ω
f(µ) and v(µ) = 1

ω
f(µ) is valid for any weight ω. In [120],
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several globally convergent algorithms to solve the LP relaxation areproposed based on dif-

ferent choices of the Bregman function f such as entropic, quadratic, etc. Such algorithms

can be interpreted as DC programs. Moreover, the proximal minimization schemes are only

applicable to convex functions, while DC programs need not be convex and are therefore

more general. Nonetheless, the connection we established is important. For example, CCCP

is generally considered to have a first-order convergence rate [124]. However Bregman pro-

jections for certain choices of Bregman functions have fast superlinear convergence [120],

implying a similar convergence rate for CCCP too in these cases. To recast the proximal

iteration of Eq. (3.16) as Bregman projections, the Bregman functions are restricted to be

of Legendre type in [120]. This prohibits them from using a tree-reweighted entropy-based

Bregman function. However the DC view of the proximal approach does not pose this

restriction and any Bregman function can be used.

3.5 Message-Passing for MAP DC Program

The CCCP iteration of Eq. (3.14) is a convex optimization problem. In theory, it can be

solve using black-box convex optimization solvers. However, such solvers may not be able

to scale well as they ignore the underlying graphical structure of this problem. Therefore,

in this section, we develop a customized message-passing algorithm to solve it. We now

describe how the CCCP iterations can be implemented using a message-passing paradigm.

At a high level, CCCP updates typically require a double loop. The outer loop computes

the gradient ∇v(µl, yl) and the inner loop solves the optimization problem of Eq. (3.14).

Both steps can be implemented using message-passing on the MRF as shown below.

3.5.1 The Gradient of v(µ, y) and Outer Loop Message-Passing

The gradient w.r.t. y(xi) is given by:

∇y(xi)v(µ, y)=ey(xi)+ey(xi)
∑

j∈Nbq(i)

ey(xj)θ(xi, xj) (3.19)

where Nb(i) denotes the neighbors of a node i and Nbq(i) denotes the QP neighbors of a

node i: Nbq(i) = {j : j ∈ Nb(i) ∧ (i, j) ∈ Q}. The second term in the above equation can
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be computed using message-passing on the graph. The other gradient, ∇µ(xi,xj)v(µ, y) =

1 + log µ(xi, xj), does not require any message-passing.

3.5.2 CCCP Inner Loop and Message-Passing

We now describe how to perform the CCCP iteration of Eq. (3.14). Because the dual

of this optimization problem is unconstrained and has simpler structure, we will perform

block coordinate ascent in the dual. First we introduce the following Lagrange multipliers:

λij :
∑

xi,xj

µ(xi, xj)=1; λji(xi) :
∑

x̂j

µij(xi, x̂j)=µ(xi)

The dual function is q(λ) = infµ,y L(µ, y, λ), where L(·) denotes the Lagrangian. We can

solve this optimization problem by solving for the KKT conditions, resulting in:

µ(xi)=
∇y(xi)v

1 +
∑

k∈Nbl(i)
λki(xi)

µ(xi, xj)=e
θ(xi,xj)+∇µ(xi,xj)

v+λij(xj)+λji(xi)−λij−1
(3.20)

Substituting these back into the Lagrangian, we get the dual. The dual can be maximized

iteratively by using the block coordinate ascent: hold all the λ’s fixed except one and

optimize the dual w.r.t. a single λ [16]. This iterative procedure is also guaranteed to

converge to the optimum of the convex program of Eq. (3.14). We directly give the analytical

update steps of the block coordinate ascent:

Proposition 7. The Lagrange multipliers λij, λij(xj) can be derived by using an inner loop

in the CCCP indexed by τ such that the multipliers for each edge (i, j) ∈ L are updated once

per inner loop. The update equations are as follows:

λτ+1
ij (xj)=W

(

∇y(xj)v e
∑

k∈Nbl(j)\i
λτ
kj

(xj)+1

∑

xi
e
θ(xi,xj)+∇µ(xi,xj)

v+λτ
ji(xi)−λτ

ij−1

)

− 1−
∑

k∈Nbl(j)\i

λτ
kj(xj) (3.21)

eλ
τ+1
ij =

∑

xi,xj

e
θ(xi,xj)+∇µ(xi,xj)

v+λτ
ij(xj)+λτ

ji(xi)−1
(3.22)

where W (·) is the Lambert W-function.
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Algorithm 1: Hybrid Bound Based Belief Propagation (HBP) for MAP

input: Graph G = (V,E) and potentials θij per edge
repeat1

Send message δ to j ∈ Nbq(i): δi→j(xj) =
∑

xi
µ(xi)θ(xi, xj) for each agent i ∈ V2

∇y(xi)v = µi(xi)
(

1 +
∑

j∈Nbq(i)
δj→i(xi)

)

∀i ∈ V3

Initialize µ0(xi) = ∇y(xi)v ∀i ∈ V , µ0(xi, xj) = µ(xi, xj)e
θ(xi,xj) ∀(i, j) ∈ L4

repeat5

foreach edge (i, j) ∈ L do6

Normalize
(

µτ (xi, xj)
)

7

Zτ (xj) = ∇y(xj) exp
(∇y(xj)

v

µτ (xj)

)

/
∑

xi
µτ (xi, xj)8

µτ+1(xi, xj)=µ
τ (xi, xj) exp

(

W (Zτ (xj))−
∇y(xj)

v

µτ (xj)

)

9

µτ+1(xj) = ∇y(xj)v/W (Zτ (xj))10

Repeat steps 8 to 10 analogously for node xi11

until inner loop converges12

until outer loop converges13

return: The decoded complete integral assignment

The Lambert W-function is the multi-valued inverse of the function w 7→ wew and is use-

ful in many engineering applications such as jet fuel planning and enzyme kinematics [29].

In our case, the argument of W (·) in Eq. (3.21) is always positive and the W-function is

properly defined over this range. Furthermore, these dual updates can be reinterpreted in

terms of the primal parameters, which alleviates the need to store the Lagrange multipliers

explicitly and greatly simplifies the implementation. The proof is given in the supplemen-

tary material. The resulting message-passing algorithm called Hybrid Bound Based Belief

Propagation (HBP) is detailed in Alg. 1. The superscripts on parameters (e.g. Zτ ) differ-

entiate between the old parameters and the new updated ones. The function Normalize(·)

normalizes a distribution by dividing each element by their sum. The inner loop convergence

is detected by checking if the node and edge marginals sum up to 1, with some tolerance

allowed (10−3).

Complexity: From Proposition 3, the total number of parameters is O(k2|L|+nk), where

k is the domain size. The total space complexity of Alg. 1, including the space for the δ

messages, is O(k2|L| + nk + |Q|k). The time complexity is O
(

Tk2
(

|Q| + I|L|
))

where T
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denotes the total number of outer loop iterations and I denotes the total number of inner

loop iterations.

3.5.3 Properties of HBP Algorithm

We now revisit some of the desirable properties for message-passing algorithms as high-

lighted in Section 2.4.

• Convergence: HBP algorithm increases the negated objective function of Eq. (3.10)

monotonically. This objective function is bounded above by the optimum of the LP

relaxation. Therefore, the HBP algorithm will converge eventually.

• Anytime Behavior: The HBP algorithm also has the anytime property w.r.t. the

objective function of Eq. (3.10). This, in theory, does not guarantee that the extracted

integral solution quality will also increase per iteration. However, in practice, we

noticed that the increase in integral solution quality is highly correlated with the

increase in the objective of HBP.

• Error Bounded: HBP algorithm can also provide bounds on the MAP solution

quality. When there are no QP edges in the hybrid bound (|Q| = 0), then the hybrid

bound is identical to the outer bound or the LP relaxation. Therefore, we can use

the HBP algorithm to solve the LP relaxation too, which provides an upper bound

on the MAP solution quality. Notice that due to Prop. (4) and Prop. (5), HBP will

converge to an optimal solution of the LP relaxation as there are no local optima in

the LP relaxation.

• Adaptive: HBP algorithm also has this property as the message-passing approach

of Alg. 1 can easily incorporate new nodes in the graph. Due to iterative nature of

the HBP algorithm, most of the messages from the previous iteration will be pre-

served, other than those which are related to the modified part of the problem. Thus,

HBP provides a warm start for the modified problem by reusing messages from the

unchanged part of the problem.
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• Privacy Preserving: HBP algorithm has privacy in a limited sense. As the HBP

algorithm is based on local message-passing, an agent i does not has any direct in-

formation about any agent k that is not an immediate neighbor of agent i. However,

this does not formally guarantee that an the agent k can not deduce any informa-

tion about agent i. Developing message-passing approaches which provide privacy

guarantees in a formal sense is an ongoing research frontier in the multiagent systems

community [40, 80, 81]. We plan to integrate such privacy preserving techniques in

the HBP algorithm in the future.

3.6 Other Contributions

We have made other contributions for solving the MAP problem using message-passing.

In [73], we developed a message-passing algorithm which solves the QP formulation. This

message-passing approach was derived by representing the QP formulation as a DC program,

similar to the approach described here. However, the QP formulation can suffer significantly

from the problem of local optima. Therefore, we derived a message-passing approach for a

convexified QP relaxation of the MAP problem. The resulting message-passing scheme can

solve the convexified QP formulation optimally and significantly faster than CPLEX, which

ignores the underlying graphically structure of the MRF. In [71], we showed a close rela-

tionship between the MAP problem and the problem of likelihood maximization. The MAP

problem can be reformulated in a lossless manner to the problem of likelihood maximiza-

tion in a mixture of simple Bayes nets. We then developed a message-passing approach for

MAP by adapting the well know Expectation-Maximization (EM) approach for likelihood

maximization.

Our experience in these previous approaches was that solving the QP formulation of

MAP directly may lead the algorithm to get stuck in poor local optima for some instances.

However, the QP formulation has the advantage that it is exact and results in a very

compact program. This lead us to the present idea of combining the QP formulation with

that of LP formulation to retain the good properties of both these formulations, namely

accuracy and convexity.
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3.7 Empirical Evaluation

We now describe empirical results demonstrating the effectiveness of the HBP algorithm.

Our main goals are to show the effectiveness of the HBP and the hybrid bound on following

metrics:

• Solution quality: This is an obvious criterion to compare HBP with other algo-

rithms. We would like to show that the HBP algorithm is competitive with other

state-of-the-art algorithms in the DCOP and machine learning literature on standard

benchmarks.

• Variational Bound Accuracy: One of the main motivating factor for developing

the hybrid bound was that it provides a better approximation to the marginal polytope

than the LP relaxation. Even though the optimization over the hybrid bound in non-

convex, we would also like to demonstrate that by the judicious choice of QP edges,

we can avoid poor local optima. We show this by comparing the fractional solution

quality of the LP relaxation and the hybrid bound. The term fractional quality

denotes the value of the objective function the respective algorithm is optimizing—

maxµ∈L(G) µ·θ for the LP relaxation and maxµ∈H(G;Q) µ·θ for the hybrid bound. Note

that, we approximate maxµ∈H(G;Q) µ · θ by using the final value given by HBP upon

convergence, as the maximization cannot be performed exactly due to non-convexity.

• Iterations: In each iteration of the HBP, every agent sends and receives a message

from all its neighbors. Therefore, the number of iterations required for convergence

implicitly determine the execution time and the message overhead, which is an im-

portant metric in the multiagent setting.

• Error Bound: Finally, we would like to determine that how far the solution quality

given by the HBP algorithm is from the optimal for each instance. As both the

MAP and DCOP problems are NP-Hard, for many of the instances we use, we could

not determine the exact optimal solution even by using centralized branch-and-bound

search techniques. However, there are algorithms in the machine learning literature,
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such as MPLP [134], that can provide an upper bound on the MAP solution quality.

Therefore, we report the error bound w.r.t. the best upper bound reported by MPLP.

Next, we describe the algorithms which are used in experiments.

• HBP: It refers to our approach or the Hybrid Belief Propagation (Alg. 1). The HBP

approach is parametrized by the set of QP edges Q. The strategy for computing

this set is the following. As the LP relaxation is exact for tree structured graphs,

we compute multiple spanning trees of the given problem instance. We then make

the union of all edges in these spanning trees as LP edges and the rest of the edges

constitute the QP edge set Q. We will denote the specific number of spanning trees

along with the particular instance. We denote the fraction of the LP edges as the

fraction of total edges for which the LP constraints are enforced (= |L|
|E|). The fraction

of QP edges is given by 1− |L|
|E| . This provides an insight about how much contribution

was needed from the QP formulation to get a good solution.

• HBP-LP: It refers to our approach or the Hybrid Belief Propagation when it is

applied to solve the LP relaxation. That is, in this case the QP edge set Q is empty.

We tested this variant to show that HBP-LP converges to the optimal solution quickly

and thus, can also provide quality bounds.

• MS: Max-Sum algorithm [137] is a state-of-the-art approximate algorithm to solve

DCOPs. We obtained the code from the authors. This algorithm is a DCOP variant of

the classical max-product algorithm, which solves the MAP estimation problem [107].

• ADOPT: Asynchronous Distributed Optimization (ADOPT) algorithm is a widely

used complete DCOP algorithm based on asynchronous search. It is guaranteed to

provide the optimal solution quality. However, it may have to exchange exponential

number of messages in the number of agents before converging to the optimal solution.

We used the latest variant of ADOPT called BnB-ADOPT [161]. The source code

was provided by the authors.

• MPLP: Max-Product Linear Programming (MPLP) algorithm is a state-of-the-art

algorithm to solve the MAP estimation problem in the machine learning literature [49].
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It is also based on iterative message-passing. We use the cluster-based variant of

MPLP [134], that further tightens the LP relaxation by incorporating node clusters of

size 3 in the LP relaxation. This algorithm works on the dual of the LP relaxation and

decreases the upper bound on the MAP quality per iteration. We use the best upper

bound computed by MPLP for computing all error bounds, unless stated otherwise.

• EP: Entropic Propagation (EP) is a globally convergent message-passing algorithm

that solves the LP relaxation [120] in the machine learning literature. This algorithm

works on the vanilla LP relaxation, unlike the previously described MPLP algorithm.

We implemented this algorithm based on the publication [120]. We use EP to mainly

compare its final solution quality against our approach HBP-LP.

We next describe the results of comparisons among different algorithms on synthetic and

real-world benchmarks in the DCOP literature, operations research (OR) literature and

machine learning literature.
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(a) Integral solution quality comparisons for 1-step sensor scheduling domain
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(b) Integral solution quality comparisons for 4-step sensor scheduling domain

Figure 3.2. Solution quality comparisons for sensor scheduling domain. The absence of a
bar for a particular algorithm denote zero error implying the algorithm achieved the optimal
solution.
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3.7.1 DCOP Benchmarks

We experimented on the sensor network scheduling problems from [86, 161]. In this

problem, sensors are arranged in the form of a n × n grid graph. Each node in this graph

is a sensor agent. An agent can potentially scan all its neighboring grid cells. There is a

target located in each grid cell. To track a target successfully, simultaneous scan by all four

sensors surrounding the grid cell is required. There is a cost to detect each target, which is

selected randomly between [0, 100] per target. If the target is not detected, then the cost is

100. The goal is to schedule the scan action of sensors such that the total cost is minimized.

We experimented with two problem settings—1-step scheduling and 4-step scheduling. In

the 1-step setting, there is only one time step. That is, each sensor can be detected at time

step 0 or remain undetected. This results in a domain size of 2 for each variable. In the

4-step problems, there are four time steps and a target can be scanned during one of these

time steps or remain undetected. This results in a domain size of 5 for each variable. The

4-step scheduling problems are naturally more complex than the 2-step problems.

Solution quality: Figure 3.2(a) shows the solution quality comparisons for different

algorithms and varying grid sizes for 1-step scheduling problems. On the y-axis, we report

the error bound for each algorithm, which is computed by using the best upper bound

provided by the MPLP algorithm. The results show that the HBP and the MPLP provide

the best solution quality. Furthermore, the error bound is quite small (< 2%), implying

that both these algorithms provide near-optimal solution. The MS algorithm provides good

solutions for small instances. However, for larger instances, it provides much worse solution

quality than both HBP and MPLP. Furthermore, the LP relaxation based approach, EP,

also provides worse solution quality than HBP. This proves our claim that the hybrid bound

provides a more accurate approximation to the marginal polytope than the local polytope.

The fraction of LP edges for the HBP approach was approximately 60%, corresponding to

2 spanning trees. This shows that a non-trivial contribution from the QP formulation is

required to make the hybrid bound tighter than the local polytope. Furthermore, despite

the non-convexity introduced by the QP constraints (for 40% of edges), our results show

that the HBP algorithm does not get stuck in a poor local optima. In-fact, it achieves

near-optimal solutions.
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Figure 3.2(b) shows the solution quality comparisons for 4-step scheduling problems.

These problems are much more complex than the 1-step scheduling problems. The results

clearly show that HBP outperforms all other approaches by a wide margin. Even for the

largest instance (11×11 grid), the HBP approach has an error of about 12%, whereas MPLP

has an error of about 30% and MS has an error of about 135%. This shows that the HBP

approach is highly competitive with previous state-of-the-art approaches in both machine

learning and DCOP literature. Furthermore, the worst-case quality bounds indicate that

the HBP algorithm provides near-optimal solutions (within 88% of the optimal) even for

large instances.

Bound accuracy: Figure 3.3 shows the fractional solution quality comparisons for the

HBP algorithm, denoted as HBP?, and the LP relaxation, denoted as LP?. The y-axis

denotes the percentage error using the upper bounds provided by MPLP. For both 1-step

and 4-step problems, the HBP algorithm has significantly less error than the LP relaxation.

This confirms empirically that the hybrid bound is much more accurate than the outer

bound based LP relaxation. Furthermore, even though the hybrid bound is non-convex, a

judicious choice of the QP edges helps it to avoid getting stuck in a poor local optima.

Time comparisons: Figure 3.4 shows the time comparisons between HBP and MS

algorithm. Both algorithms were run for 2000 iterations. In addition, the HBP algorithm

also used 20 inner loop iterations per outer loop iteration. The time shown in figure 3.4

denote the total running time. We can see that even for large benchmarks, the total running

time of HBP is about 1 minute. The MS algorithm is faster than the HBP as MS does not

has inner loops. However, the HBP algorithms makes up for it by providing much better

solution quality. For the MPLP algorithm, we used a fixed time cutoff of 30 minutes. Even

running it for 1 hour did not provide any significant benefit w.r.t. quality over shorter time

durations.

Comparison with optimal approaches: Table 3.1 shows the comparison of HBP

with optimal search based algorithms. We show results of comparisons with both decentral-

ized search algorithm (BnB-ADOPT) and centralized search algorithm AND/OR branch-

and-bound search (AOBB) [89] using the existential directional arc consistency (EDAC)

heuristic [31]. The BnB-ADOPT is the state-of-the-art complete solver for DCOPs and

51



 4*4  5*5  6*6  7*7  8*8  9*9 10*10 11*11
0

2

4

6

8

10

12

14

Grid Size

P
e
rc

e
n
ta

g
e
 E

rr
o
r

 

 

LP*

HBP*

(a) Fractional solution quality comparisons for 1-step sensor scheduling domain
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(b) Fractional solution quality comparisons for 4-step sensor scheduling domain

Figure 3.3. Fractional solution quality comparisons for sensor scheduling domain. The
absence of a bar for a particular algorithm denote zero error implying the algorithm achieved
the optimal solution.
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Figure 3.4. Time comparisons for sensor scheduling domain. a) 1-step sensor scheduling;
b) 4-step sensor scheduling

the AOBB algorithm is the state-of-the-art solver for centralized constraint optimization.

The ‘Cycles’ column for ADOPT indirectly indicates the message overhead as in each cycle,

every agent sends a message to every other agent. The ‘Time’ column denotes the total

running time for all the algorithms. The ‘Nodes’ column denote the total number of nodes

expanded by the AOBB algorithm. The ‘Iterations’ column denote the total number of

outer loop iterations for the HBP approach. The ‘Error’ column indicates the percentage

error in the solution quality of the HBP algorithm against the optimal solution obtained by

the AOBB.

As shown in Table 3.1, the HBP approach clearly outperforms the BnB-ADOPT algo-

rithm, which does not terminate in the time limit of 16, 000 seconds except for the smallest

of instances. The HBP algorithm obtains the optimal solution quality for every instance

solved by the BnB-ADOPT algorithm. Furthermore, the HBP approach is much faster than

the BnB-ADOPT for such instances.

The centralized search algorithm, AOBB, obtains the optimal solution for all of the

1-step scheduling problems. The running time of AOBB is faster than HBP. However,

it should be noted that the AOBB approach cannot be used in a decentralized setting.

The comparisons are used only to highlight the relative hardness of instances. The 1-step

scheduling problems seem to be easier from the centralized search perspective. Moreover,

in terms of solution quality, the HBP algorithm finds near-optimal solution for each of the
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ADOPT AOBB+EDAC HBP
Instance Cycles Time Nodes Time Iterations Time Error
4× 4 54 1.2 12 0 2000 2.29 0
5× 5 601 61.6 93 0 2000 3.25 0
6× 6 11311 6085.7 170 0 2000 5.52 0
7× 7 – – 513 0.01 2000 7.88 0.076
8× 8 – – 1555 0.04 2000 10.90 0
9× 9 – – 10631 0.38 2000 14.63 0
10× 10 – – 119902 3.60 2000 19.35 0.122
11× 11 – – 2276099 95.63 2000 22.02 0.110

4× 4 1192 63 54 0 2000 4.50 0
5× 5 – – 138 0 2000 8.06 0
6× 6 – – 1531 0.06 2000 13.03 0
7× 7 – – 6720 0.34 2000 19.02 0
8× 8 – – 1616973 117.56 2000 25.75 0.72
9× 9 – – 163536683 12621 2000 34.01 0.82
10× 10 – – 256307635 – 2000 44.26 –
11× 11 – – 252233565 – 2000 55.94 –

Table 3.1. Quality and time (in sec.) comparisons with BnB ADOPT and centralized branch-and-
bound solver AOBB. A ‘–’ indicates the algorithm did not terminate within 16000 sec. time limit.
The top half of the rows indicate 1-step scheduling benchmarks and the bottom half denotes the
4-step scheduling benchmarks. Error is w.r.t. the optimal solution given by AOBB in percentage:=
(HBP−AOBB)∗100

AOBB

instances with an error of only 0.1%. This confirms that the HBP algorithm can obtain

good solution quality on a number of benchmarks.

The 4-step scheduling problems are much harder even from the centralized search per-

spective, as shown in the bottom half of Table 3.1. AOBB algorithm is faster than HBP

for medium size instances (up to 7× 7 grid). However, for larger instances (8× 8 to 11× 11

grids), the HBP approach is much faster. The hardness of these larger instances can be

judged from the fact that AOBB takes about 12621 seconds for 9 × 9 grid and does not

terminate within the time limit of 16000 seconds for 10×10 and 11×11 grid problems. HBP

algorithm on the other hand takes less than a minute even for these harder problem thanks

to its scalable message-passing structure and provides near-optimal solution as shown in

Figure 3.2(b). Thus, the HBP approach is also competitive with state-of-the-art centralized

branch-and-bound solver.
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3.7.2 Operations Research Benchmarks

We also tested the HBP approach on a number of benchmarks from the operations

research literature. We use the Biq dataset or the binary integer quadratic (Biq) problems

publicly available from the Biq Mac library [123, 122]. Our main goal in these experiments

is twofold: a) show that the optimization over the hybrid bound H(G;Q) provides a tighter

approximation of the MAP problem and a significantly better solution quality than LP

relaxation over the outer bound; and b) show that CCCP converges to a global optimum

of the LP relaxation over the outer bound by comparing its quality against EP, which

optimizes the same objective function.

We use the convention that an asterisk (*) for a given algorithm denotes the best ob-

jective the algorithm achieved upon convergence (can be fractional); the name without it

shows the decoded integral assignment. For example, MPLP* denotes the upper bound

which MPLP minimizes, whereas MPLP denotes the integral quality. Similarly, HBP ? and

EP ? denote the fractional solution quality.

Table 3.2 shows the results for the Biq benchmarks. These benchmarks are particularly

interesting in that the LP relaxation on these problems is loose. Therefore, tightening the

outer bound is particularly beneficial. The last two columns show time (in sec.), while the

other columns show the best quality achieved for a given instance. For details on generating

these Biq problems and formulating them as MRFs we refer to [123, 122]. We chose Biq

problems with a varying number of nodes and edge densities. The instances ‘100-1’ to ‘100-

10’ have 100-node graphs with edge density 0.1, and edge potentials in the range [−200, 200]

(referred to as ‘bqp100-i’ in [122]). The instances ‘250-1’ to ‘250-10’ have 250-node graphs

with edge density 0.1 (‘bqp250-i’ in [122]). The instances 1b.n to 10b.n are complete graphs

(density 1) with ‘n’ denoting the number of nodes (‘gkaib.n’ in [122]). We used the decoding

scheme of [119] for both the HBP and EP algorithms.

Our hybrid bound based approach ‘HBP’ performs quite well in this dataset and achieves

the optimal solution for 26 out of 30 instances. The column ‘|L|’ shows the fraction of the

LP edges (|L|/|E|) in the hybrid bound. We selected the LP edges using the strategy shown

in Fig. 3.1(c): construct randomly a number of independent spanning tress and make L the

union of their edges. For instances ‘100-1’ to ‘250-10’, we used 8 spanning trees and for
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instances ‘1b.n’ to ‘10b.n’, only 2 trees were required. Despite such low fraction of LP edges,

our approach returns optimal solutions indicating that a judicious choice of the LP edges

can mitigate the adverse effect of non-convexity. This observation is further reinforced by

noting the fractional objective under ‘HBP*’, which is quite close to the true optimum. On

the other hand, the relaxed LP objective (under ‘HBP-LP*’ and ‘EP*’) seems to be loose,

specially for ‘250-i’ and ‘gka’ instances. The minor differences between ‘HBP-LP*’ and

‘EP*’ are mainly because the normalization constraints were enforced only to an accuracy

of 10−3 for faster convergence.

The decoded solution quality for HBP-LP and EP is not as good as HBP, as the LP

relaxation quite loose on these problems. MPLP provides tighter upper bounds than HBP-

LP (under ‘MPLP*’), but it fails to translate it into good solution quality as the upper

bounds are still loose when compared to the true optimum. HBP algorithm, as noted

earlier, provides the optimal solution for 26 out of 30 instances and a near-optimal solution

for the rest of the instances. This again confirms that the HBP approach can significantly

tighten the outer bound and provides good solution quality without getting stuck in a poor

local optima.

The last two columns provide runtime comparisons between HBP and MPLP. The total

outer loop iterations in HBP was fixed to 1100 and inner loop iterations to 60. MPLP was

run for 2 hours. The time in these columns shows when the best integral solution quality

was first achieved for each algorithm. In addition, for HBP, the performance was dependent

on the choice of spanning trees. Therefore we reported the best of 12 runs. The r value in

‘Tccqp/r’ denotes the best run. For most instances, HBP was quite robust. For the ‘250-i’

dataset, a higher number of runs was required. These instances are also the most difficult

of all the instances even for the optimal approach of [123], which required ≈ 4500 sec. at

the minimum and up to 316000 sec. for some instances. HBP on the other hand terminates

within ≈ 650 sec. for all the ‘250-i’ instances. The complete set of results for max-sum in

shown in table 3.3. MS converges and achieves good quality for the ‘100-i’, ‘250-i’ instances,

but for ‘gka’ instances it performs poorly achieving a quality of 0 for most instances.
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Instance Optimal MP
100-1 7970 7822
100-2 7970 11036
100-3 12723 12723
100-4 10368 10368
100-5 9083 9083
100-6 10210 10065
100-7 10125 10034
100-8 11435 11435
100-9 11455 11455
100-10 12565 12565

250-1 45607 45607
250-2 44810 44810
250-3 49037 49037
250-4 41274 41270
250-5 47961 47961
250-6 41014 41014
250-7 46757 46757
250-8 35726 34450
250-9 48916 48916
250-10 40442 40442

1b.20 133 0
2b.30 121 0
3b.40 118 0
4b.50 129 0
5b.60 150 0
6b.70 146 61
7b.80 160 0
8b.90 145 0
9b.100 137 0
10b.125 154 0

Table 3.3. Solution quality comparisons for max-sum (MS) on Biq benchmarks

3.7.3 Machine Learning Benchmarks

We also experimented on a number of synthetic and real-world benchmarks from the

machine learning literature. For the synthetic benchmarks, we tested HBP on the n × n

grid graphs with potentials functions generated using the Potts model [120] and the Ising

model [132]. These models are commonly used in computer vision problems [44]. The total

number of nodes in a grid graph are n2 and total edges are 2n(n− 1).

3.7.3.1 Synthetic Benchmarks

For both these models, the edge potentials were sampled from U [−β, β] for each edge

independently, where β is the coupling strength parameter. The unary potentials were
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sampled from U [−1, 1]. The problems become harder with the increasing value of β. For

these graphs, MPLP performs quite well in minimizing the upper bound. Therefore, we

report normalized values for all the algorithms in Fig. 3.5(a–c), where the best MPLP

upper bound (U.B.) is denoted as 1 and the quality obtained by rest of the algorithms are

linearly scaled.

Fig. 3.5(a,b) show that HBP again achieves better solution quality than the LP relax-

ation (HBP-LP, EP). The decoded quality is within 98.5% of optimal for all the settings.

For the Potts graphs, HBP used 2 spanning trees for the set L with the fraction of LP edges

being ≈ .75. The HBP fractional objective (‘HBP*’) is very close to the MPLP U.B., which

further confirms that the outer bound is tightened significantly using QP edges. The plots

for ‘HBP-LP*’ and ‘EP*’ almost overlap, which shows that HBP-LP converges to the same

quality as EP for the LP relaxation.

For the Ising graphs (Fig. 3.5(c)), HBP provides better quality (within 97% of the

optimal on average) than all the other algorithms including MPLP. Interestingly, the per-

formance of CCQP improved with a lower fraction of LP edges (≈ .45) than in the Potts

model. This can be explained by the relaxed LP objective (‘HBP-LP*’ or ‘EP*’), which is

relatively loose (≈1.25) as opposed to (≈1.06) in Potts. Therefore, a higher fraction of QP

edges is required to tighten the outer bound. This can also help explain the deteriorated

performance of MPLP, which may need even higher order clusters to further tighten the

outer bound. MS provided the worse quality for all these problems and is not plotted for

clarity sake. The normalized quality MS achieves for each coupling strength parameter

setting is: (0.99, 0.93, 0.82, 0.77, 0.75) for the Potts model with domain size 4 and (0.99, 0.94,

0.89, 0.82, 0.77) with size 8. For the Ising graphs, it was (0.60, 0.63, 0.62, 0.61, 0.61). Thus,

HBP algorithm provides consistent and much better performance than MS.

3.7.3.2 Real-World Protein Design Benchmarks

We also experimented on the real-world protein design problems (total of 97 instances),

which are described in [159]. In these problems, given a desired backbone structure of the

protein, the task is to find a sequence of amino-acids that is as stable as possible or has

the lowest energy. This problem can be represented as finding the MAP configuration in
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Figure 3.5. Quality comparison for 50×50 grids: a) Potts model with variable domain size 4 and
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β and y-axis the normalized quality.
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an MRF. These problems are particularly hard and dense with up to 170 variables, each

having a large domain size of up to 150 values. In these algorithms, the LP relaxation is

quite tight. However, even the LP relaxation becomes so large that it can not be solved using

the standard solvers such as CPLEX. For some of the largest problems, there are about 27

million LP variables and 0.5 million constraints. Thus, message-passing algorithms, such as

HBP and MPLP, are crucial to solve the LP relaxation for such large benchmarks. The main

goal in this set of experiments is to determine the convergence rate and scalability of the

HBP-LP algorithm to solve the LP relaxation. The optimal solution for these benchmarks

are obtained using the cluster based MPLP algorithm [49, 134].

Figure 3.6 shows the solution quality obtained by HBP-LP for the largest of 25 instances.

We can see that for almost all of the instances, the HBP-LP algorithm obtains near-optimal

solution quality, close to 94% of the optimal. This confirms that the LP relaxation is able

to provide good solution quality for these instances. Figure 3.7 shows the detailed results

for 6 of the largest proteins. The x-axis denotes the iteration number for the HBP-LP

algorithm (outer loop) and the y-axis denotes the corresponding solution quality. The

legend ‘LP’ denotes the fraction solution quality and ‘Integral’ denotes the solution quality

of the integral solution. ‘Optimal’ denotes the optimal solution obtained using the MPLP,

which tightens the LP relaxation using 3-node clusters.

As expected, the fraction solution quality (‘LP’) increases monotonically with each it-

eration and provides the upper bound on the optimal solution. Furthermore, the HBP-LP

algorithm converges well within 1500 iterations. This shows that the HBP algorithm has

fast convergence rate even for such large instances. The final gap between the ‘LP’ quality

and the optimum is relatively small. This shows that the LP relaxation is quite tight in

these problems. Therefore, attempting to tighten it using the hybrid bound did not yield

significant improvement in the solution quality.

3.8 Discussion

We have analyzed the problem of single-step multiagent decision making using the frame-

work of MAP estimation in graphical models. We investigated this problem through the

lens of mathematical optimization. We showed how existing variational formulations of the
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Figure 3.6. Protein design

MAP problem can be unified under a hybrid variational framework. This hybrid framework

addresses the main problems of existing frameworks, namely, the non-convexity of the QP

formulation and inaccuracy of the LP formulation. It retains the main advantages of these

frameworks such as the accuracy of the QP formulation and the convexity of the LP formu-

lation, while minimizing their disadvantages. We also develop a message-passing algorithm

that can solve the optimization problem over the hybrid bound using message-passing. The

resulting algorithm is highly scalable, increases the quality monotonically and is guaranteed

to converge, unlike other approximate algorithms such as max-sum.

We experimented on a number of benchmarks in the DCOP, OR and machine learning

literature. Our approach provides near-optimal solutions for a variety of benchmarks even

when other approximate algorithms such as max-sum incur an error of more than 100%.

Our approach is also more than an order-of-magnitude faster then complete DCOP algo-

rithm BnB-ADOPT, which could only scale to small instances. Our approach also provides

optimal solutions on a number of benchmarks from the OR literature, where standard ma-

chine learning approaches such as MPLP fail to do so. Overall, our hybrid bound based

belief propagation algorithm proved to be a robust and scalable approach that provides

high quality solutions across a number of benchmarks in diverse domains.

The main publications that describe the contributions of this chapter are the following:
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Figure 3.7. Protein design
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• The variational framework based on the hybrid bound is described by the following

publication. This publication also develops the message-passing algorithm to solve

the optimization problem over the hybrid bound.

A. Kumar, S. Zilberstein and M. Toussaint. Message-Passing Algorithms for MAP

Estimation Using DC Programming. In Proc. of the international conference on Ar-

tificial Intelligence and Statistics (AISTATS), pages 656–664, 2012.

• A message-passing algorithm that is based on the relationship between the quadratic

programming formulation of MAP estimation and likelihood maximization is de-

scribed by the following publication:

A. Kumar and S. Zilberstein. MAP Estimation for Graphical Models by Likelihood

Maximization. In Advances in Neural Information Processing Systems (NIPS), pages

1180–1188.

• The relationship between convex and non-convex QP formulations of MAP and DC

programming is described in the following publication:

A. Kumar and S. Zilberstein. Message-Passing Algorithms for Quadratic Program-

ming Formulations of MAP Estimation. In Proc. of the International Conference on

Uncertainty in Artificial Intelligence (UAI), pages 428–435, 2011.

• A formal mapping between DCOPs and MAP estimation along with an overview

of MAP estimation algorithms that can be easily adapted to the DCOP setting is

described in the following publication:

A. Kumar, W. Yeoh and S. Zilberstein. On Message-Passing, MAP Estimation in

Graphical Models and DCOPs. In Proc. of the IJCAI Workshop on Distributed

Constraint Reasoning (DCR), pages 57–70, 2011.

• A message-passing algorithm for decentralized management of smart power grids using

the DCOP formulation is presented in the following publication:
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A. Kumar, B. Faltings and A. Petcu. Distributed Constraint Optimization with Struc-

tured Resource Constraints. In Proc. of the International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 923–930, 2009.

• A technique based on constrained decision diagrams [27] to reduce the size of messages

exchanged in a dynamic programming based DCOP algorithm called DPOP [108] is

described in the following publication:

A. Kumar, A. Petcu and B. Faltings. H-DPOP: Using Hard Constraints for Search

Space Pruning in DCOP. In Proc. of the AAAI Conference on Artificial Intelligence

(AAAI), pages 325–330, 2008.
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CHAPTER 4

THE DECENTRALIZED POMDP MODEL

The decentralized POMDP (Dec-POMPD) model has emerged in recent years as a

unified framework for sequential decision making in multiagent systems. This chapter de-

scribes the basic characteristics of the model. We begin with a formal definition followed

by a description of how agents’ policies are represented. The decentralized nature of the

planning process is highlighted along the way. This chapter also sets the foundation for the

development of approximate algorithms in later chapters by describing how to represent

policies using bounded memory for both finite and infinite horizon planning problems. We

also discuss the objective function associated with different types of policy representations.

Finally, we discuss some application domains for decentralized decision making.

4.1 The Dec-POMDP Model

The Dec-POMDPmodel can be defined with a tuple 〈I, S, {Ai}, P,R, {Y i}, O, T 〉, where:

• I denotes a finite set of n agents

• S denotes a finite set of states with designated initial state distribution η0

• Ai denotes a finite set of actions for each agent i

• P denotes state transition probabilities: P (s′|s,~a), the probability of transitioning

from state s to s′ when the joint-action ~a is taken by the agents

• R denotes the reward function: R(s,~a) is the immediate reward for being in state s

and joint-action taken as ~a

• Y i denotes a finite set of observations for each agent i
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Figure 4.1. A 2-time slice dynamic decision network (DDN) representation of a 2-agent
Dec-POMDP. All nodes are random variables. Square nodes represent decisions; diamond
nodes represent the reward; p and q represent the states of policy for agent 0 and 1 respec-
tively; subscripts denote time.

• O denotes the observation probabilities: O(~y|s′,~a) is the probability of receiving the

joint-observation ~y when the last joint-action taken was ~a that resulted in the envi-

ronment state being s′

• T denotes the plan horizon or the number of time steps after which the problem

terminates

Solving a Dec-POMDP means finding the joint-policy θ that maximizes the total expected

reward:

E

[ T
∑

t=1

R
(

st,~at;θ
)

]

(4.1)

where θ denotes the join-policy and subscript t denotes the dependence on time. In a Dec-

POMDP, agents are acting under uncertainty not only about the underlying environment

state but also about each other. Although the joint-observation received by agents may

be correlated, each agent only observes its own component of the joint-observation. This

makes the coordination problem particularly challenging.
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When there are 2-agents in a given multiagent system, we adopt a simplified notation

as follows. The action set of agent 1 is denoted by a ∈ A and agent 2 by b ∈ B. The

state transition probability P (s′|s, a, b) depends upon the actions of both the agents. Upon

taking the joint action 〈a, b〉 in state s, agents receive the joint reward R(s, a, b). Y is

the finite set of observations for agent 1 and Z for agent 2. O(yz | s, a, b) denotes the

probability P (y, z|s, a, b) of agent 1 observing y ∈ Y and agent 2 observing z ∈ Z when

the joint action 〈a, b〉 was taken and resulted in state s. For infinite-horizon Dec-POMDPs,

a reward discounting factor γ < 1 is used. Figure 4.1 shows a DDN representation of a

2-agent Dec-POMDP. We use the convention that subscripts denote time and superscripts,

if any, identify agents. Different policy representations for agents are described next.

4.2 Policy representation

An information set ϕt for an agent i is a sequence of actions performed by the agent and

the observations received for t time steps:
(

ai1 · y
i
2 · a

i
2 · y

i
3 · · · y

i
t

)

[7]. The set of all possible

information sets of length less than or equal to T − 1 for an agent i is denoted by Φi.

Definition 8. An individual policy θi for an agent i is defined as a mapping from infor-

mation sets to actions:

θi : Φi → Ai

A joint-policy θ = 〈θ1, θ2, . . . , θn〉 is a tuple representing the individual policy for each

agent. The size of the set Φi is exponential in the length T of the plan. Therefore, the total

number of individual policies for an agent i is doubly-exponential in the length of the plan.

This makes decentralized planning significantly more challenging than the centralized case.

The following result establishes the formal complexity:

Theorem 1. The complexity of solving optimally 2-agent finite-horizon Dec-POMDP is

NEXP-Complete [13].

Despite this negative worst-case result, several approximate algorithms have been de-

veloped. Since even representing a policy takes an exponential amount of space in the plan

length, we next introduce the notion of finite-horizon policy trees, which are the backbone

of most approximate algorithms.
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(a) Individual policy for agent 1 and 2 (b) Meeting in a grid domain

Figure 4.2. A 2-step policy tree representation for ‘Meeting in a grid’ problem

4.2.1 Finite-Horizon Policy Trees

Most of the existing approximate as well as optimal Dec-POMDP algorithms for finite-

horizon planning use an explicit tree structured representation of the local policy for each

agent. A node in such a policy tree denotes the action to be executed and edges correspond

to the observations. Edges connect to subtrees, which are executed by the agent when the

corresponding observation is received. If p denotes a policy tree, then ap denotes the action

specified at the root of the tree p. The edges correspond to observations yi ∈ Y i and connect

to the respective subtree pyi .

Figure 4.2 shows an example of policy trees for a toy meeting in a grid domain. In this

problem, two agents want to meet at a particular cell in a grid, say the top left corner.

However, they do not observe their current location in the grid and can only observe if the

grid edge (or the wall) is to their left or right. Their actions also have stochastic outcomes—

they can fail with certain probability. Figure 4.2(a) shows a 2-step policy tree for each agent.

The actions are move left, right, top, down and stop. They are denoted symbolically in the

policy tree. The observations are wall left (wl) and wall right (wr). They are shown on the

edges of the tree.

One computational disadvantage with representing such policy trees is that their size

will become exponential with the number of levels in the tree. To deal with such a blowup,

a common approach is to share sub-trees at each level [127], as shown in Figure 4.3. In

such an approximate representation, at each level there are maxTree number of nodes. For

example, in Figure 4.3, the parameter maxTree = 5. Edges in such a representation connect
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Figure 4.3. Representation of an exponential sized policy using linear space by re-using
policy trees [127]

to sub-trees, which can be shared among multiple higher level trees. Using such a represen-

tation guarantees that the space requirements are linear in the parameter maxTree. This

representation may not be sufficient to capture the optimal Dec-POMDP policy, however, it

often provides accurate approximation. As the parameter maxTree increases, the accuracy

of this representation also increases.

4.2.1.1 Objective Function

For two agents, the joint-value of the trees p of agent 1 and q of agent 2 in the starting

state s can be computed recursively as follows:

V (p, q, s) = R(s, ap, aq) +
∑

y,z

∑

s′∈S

O(yz | s′, ap, aq)P (s′|s, ap, aq)V (py, qz, s
′) (4.2)

where py denotes the root of the subtree that results from a deterministic transition from

the current node p upon receiving the observation y; pz denotes the same for agent 2. The

value for the initial belief point η0 can be defined as

V (p, q, η0) =
∑

s∈S

η0(s) · V (p, q, s) (4.3)

The goal for finite-horizon Dec-POMDP algorithms is to find the best structure for the

policy trees such that the value V (p, q, η0) is maximized.
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4.2.2 Infinite-Horizon Finite-State Controllers

In the case of infinite-horizon Dec-POMDPs, agents operate continuously with the im-

mediate reward R being discounted by a factor γ < 1. Representing agents’ local policies

using an explicit tree structured representation is not feasible in this case. Therefore,

agents’ policies are represented as cyclic finite-state controllers (FSC). Such FSC based

representation generalizes the idea of approximate policy trees as shown in Figure 4.3 for

the infinite-horizon case.

We represent each agent’s policy as a bounded, finite state controller (FSC). This ap-

proach has been used successfully for both POMDPs [114] and Dec-POMDPs [6]. In this

case, each agent has a finite internal memory state, qi ∈ Qi, which summarizes the cru-

cial information obtained from past observations to support efficient action selection. The

size of the set Qi determines the expressiveness of the FSC based policy. For single agent

POMDPs, FSCs are beneficial due to their compactness compared to the full belief state.

In Dec-POMDPs, it is the only approach to tackle effectively both finite and infinite horizon

problems. There are other approaches based on nested agent beliefs such as the I-POMDP

framework [50], however we do not address them in this work.

The FSC of the ith agent is parameterized by θi=(πi, λi, νi). An agent chooses actions

depending on its internal state, q: P (a|q;π) = π(a, q). The internal state is updated with

each new observation, by the node transition function: P (q′|q, y;λ) = λ(q′, q, y). Finally,

ν is the initial node distribution P (q0) for each agent. Figure 4.4 shows the structure

of such controllers for two agents. Both the action selection parameter π and the node

transition parameter λ could be deterministic or stochastic. In theory, higher values can

be obtained with stochastic controllers. However, optimizing stochastic controllers involves

continuous variables and achieving global optimality can be challenging. On the other hand,

for deterministic controllers, the search space is discrete and one can use branch-and-bound

procedure to find optimal deterministic controllers [2]. However, the search space can be

quite large due to deterministic controller optimization problem being NP-Hard [93].

Furthermore, we also note that the tree based policy representation for finite-horizon

Dec-POMDPs in Sec. 4.2.1 can be viewed as an acyclic finite-state controller. Thus, de-

spite the apparent differences between the two policy representations for finite and infinite
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Figure 4.4. Representation of a 2-agent infinite-horizon joint-policy using finite-state
controllers. Each node is a memory state. Edges represent the node transition function.
Agent 1 has two observations y1 and y2. Agent 2 also has two observations z1 and z2.

horizon Dec-POMDPs, they actually belong to the same class of finite-state controllers.

An implication of this fact is that most of the algorithms we develop in this thesis for

infinite-horizon Dec-POMDPs can be applied to finite-horizon Dec-POMDPs with minimal

change.

4.2.2.1 Objective Function

As stated earlier, we denote the controller nodes for agent 1 by p and agent 2 by q. The

value for starting the controllers in nodes 〈p, q〉 at state s is given by:

V (p, q, s) =
∑

a,b

π(a, p)π(b, q)
[

R(s, a, b) + γ
∑

s′

P (s′ | s, a, b)
∑

y,z

O(yz | s′, a, b)

∑

p′q′

λ(p′, p, y)λ(q′, q, z)V (p′, q′, s′)
]

(4.4)

The goal is to set the parameters 〈π, λ, ν〉 of the agents’ controllers (of some given size)

that maximize the expected discounted reward for the initial belief η0:

V (η0) =
∑

p,q,s

ν(p)ν(q)η0(s)V (p, q, s)

4.3 Applications

Historically, decentralized decision making has been studied extensively in operations

research and control theory [117, 104, 145, 105, 144] and is still being actively pursued [28].
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A classical problem in control theory has been that of decentralized detection by a team of

sensors [144, 145], a problem whose sequential variant can be modeled as a Dec-POMDP,

as shown in later chapters of the thesis. In this problem, there are multiple hypotheses

on the state of the environment and each sensor receives some relevant information. In a

centralized scheme, each sensor will transmit all its information to a fusion center, which

then makes a decision about one of the hypotheses. However, in the decentralized variant,

each sensor sends a summary of its observations taking values over a finite set of alphabets.

In another variant of the problem, the fusion center is absent and sensor actions can be

viewed as local decisions. In such a decentralized scheme, apart from the hypothesis testing,

a new problem arises: how should a sensor decide which summary to send? This setting

provides a definitive advantage when sensors are geographically distributed and operate in

a communication limited environment. Decentralized detection has many application areas.

For example, it can be used for detecting an intruder in a secure area. It can also be used in

failure detection, where different sensors monitor multiple components of an equipment and

must transmit small messages to a central monitoring system which then makes a decision

about handling various types of failures. A further motivating application arises in the

context of human-computer interaction. In this setting, multiple sensors receive detailed

information about a complex system and given the limited attention of a human supervisor,

must transmit a small summary based on their local observations.

Decentralized POMDPs generalize the one step decentralized decision problem to a

sequential setting. The modeling advantage of Dec-POMDPs for various practical applica-

tions is that they allow multiple agents to control the underlying MDP in a decentralized

manner under partial observability. Consider, for example, a decentralized target tracking

problem [82, 83], where coordination among sensors is required to track mobile targets. The

decentralized detection model discussed earlier, can model the single step decision problem

where each hypothesis corresponds to possible locations of the targets. Noisy sensors receive

observation about the targets and must decide which region to scan based on this local in-

formation such that the joint reward is maximized. When the targets are mobile, the prior

distribution over the hypothesis varies with time and can be modeled using Dec-POMDPs.
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Other motivating applications include multi-robot control such as coordinating the op-

eration of planetary exploration rovers [12, 169]. In this application, rovers’ tasks include

exploring multiple sites on the planet, some of which can be visited by multiple rovers.

Rovers periodically transmit the information collected to the ground based control or fusion

center. As the communication is costly and resource constrained, rovers must coordinate

the exploration effort in order to maximize the value of information. Another application,

robotic team tag, is introduced by Montemerlo et al. [38], where a team of robots try to

herd and capture a moving target. Another relevant application is the firefighting domain

introduced by Oliehoek et al. [100], where a team of agents try to extinguish fire at a set

of locations having only local observability of fire locations. Decentralized control has also

been explored in developing broadcast channel protocols [102, 13]. In this case, two or

more agents control a network of communication channels and try to maximize the overall

throughput by avoiding message collisions. Agents only have local and partial observability

of collisions.

As highlighted earlier, the modeling advantage of Dec-POMDPs comes with a price,

namely their high computational complexity. Bernstein et al. [13] have already shown that

optimally solving finite-horizon Dec-POMDPs is NEXP-complete. Optimal algorithms can

only solve small problems involving two agents and small horizons [54, 140, 100], which is

expected in light of the complexity result. Therefore, the objective of our work is to develop

efficient approximate algorithms that can scale well w.r.t. different problem parameters. In

the next few chapters, we describe a number of different techniques that can be used to

accomplish this task.

4.4 Discussion

In this chapter, we formally introduced the Dec-POMDP model. We described how

agents’ individual policies can be represented as node-limited trees for the finite-horizon

planning or as finite-state controllers for the infinite-horizon case. Different objective func-

tions associated with such policy representations were discussed. We also discussed several

potential applications of decentralized decision making and their historical connections to

the field of OR and control theory. The need to develop efficient approximate algorithms

75



was highlighted as optimal planning even for a 2-agent Dec-POMDP has already been shown

to be NEXP-Hard.
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CHAPTER 5

EFFICIENT DYNAMIC PROGRAMMING FOR FINITE-HORIZON

SEQUENTIAL DECISION MAKING

In this chapter, we examine the problem of finite-horizon multiagent planning, where

agents operate over a finite number of time steps without any discounting of the reward they

receive. Computing optimal policies under this framework even for two agents is NEXP-

Hard [13]. Therefore, approximation algorithms are commonly used. Our main contribu-

tions lie in the analysis of the complexity and the development of optimal algorithms for the

decentralized backup problem, which is a computational bottleneck in several dynamic pro-

gramming approximate algorithms. We show that the decentralized backup problem is NP-

Hard. Despite this negative result, we present an efficient and scalable optimal algorithm

by exploiting the structure of the backup problem using constraint networks—a subclass of

graphical models. We reformulate the backup problem as a weighted constraint satisfaction

(WCSP) problem. We analyze several different multiagent settings, which include two agent

systems and larger multiagent systems, and present different WCSP formulations suited for

their particular characteristics.

Our results show that bringing the perspective of constraint optimization helps solve

the backup problem more than an order-of-magnitude faster than the state-of-the-art solver

PBIP [36]. We also investigate the backup problem in restricted sub-classes of the Dec-

POMDP model, such as the ND-POMDP model, that can capture larger multiagent sys-

tems. We again show how to solve this problem efficiently using WCSP solvers. This

approach provides magnitudes of speedup in the policy computation and generates better

quality solution for all test instances than previous best approaches [146, 88, 70]. Our

approach is one of the first that can scale well to problems with a few dozens of agents.
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5.1 Approximate Dynamic Programming for Dec-POMDPs

The intractability of optimal single agent POMDP algorithms can be attributed to

planning for the complete belief space. A similar barrier exists for planning in the multiagent

setting. The idea of planning for a finite set of belief points has lead to several successful

point-based POMDP algorithms in recent years such as PBVI [112] and Perseus [135] among

others. All these algorithms compute a set of reachable belief points using a heuristic such as

the underlying MDP policy or using randomized trajectories [135]. The policy is computed

over these beliefs by performing a sequence of point-based backups starting from the last

time step. Before we describe how such backups are performed in the context of Dec-

POMDPs, we make some observations about the belief space in Dec-POMDPs.

In a single agent POMDP, all the relevant information from the previous actions and

observations can be encoded succinctly as a belief over the environment states. This belief

about the environment state can also be shown to be a sufficient statistic for a POMDP [113].

If ηt represents the belief of the agent at time step t and the agent takes an action at and

receives an observation yt+1, then the next belief can be computed using Bayes rule as

follows:

ηt+1(s
′) = α

∑

s∈S

ηt(s)P (s′ | s, at)O(yt+1 | s
′, at) (5.1)

where α is a normalization constant.

Interestingly, in a multiagent setting, such maintaining of the underlying belief about

the environment state is not possible. The reason is that agents perceive only their local

observations. They do not observe the actions or local observations of other agents directly.

This makes computing and updating beliefs during execution time infeasible. However,

during the planning phase when a central planner is computing the policies for the agents,

it is indeed possible to simulate belief updating. We call such a belief state the centralized

belief state. In a multiagent setting, a belief state during the planning stage will always

imply centralized belief state. This is indeed an approximation as such centralized beliefs

cannot be maintained by agents during execution time. However, experimentally, it has
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Figure 5.1. Bottom up dynamic programming framework for 2-agent Dec-POMDPs

been shown to work well for a variety of problems [127, 126, 23]. Such beliefs can be

analogously updated during the planning phase as follows:

ηt+1(s
′) = α

∑

s∈S

ηt(s)P (s′ | s, a, b)O(yt+1zt+1 | s
′, at, bt) (5.2)

We now provide a brief overview of point-based dynamic programming algorithms for Dec-

POMDPs. Such approaches include the following steps:

1. Compute a belief selection heuristic

2. Select a number of belief points for each time step t = 0 to T

3. Construct the policy tree bottom up for each agent (see Figure 4.3 for a policy tree

example) by performing point-based backups starting from the last time step.

Figure 5.1 shows a high level outline for point-based dynamic programming algorithms.

The belief selection heuristic usually involves solving the underlying MDP or the POMDP

for the given Dec-POMDP problem. A number of belief points can be sampled for each

time step by simulating plan execution using the belief selection heuristic. The critical step,

which is the bottleneck of dynamic programming based algorithms, is that of performing

decentralized backup in the step 3. We show that performing this backup is indeed NP-Hard

even for 2-agents. Despite this negative result, in the next few sections, we present efficient
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optimal algorithms for the decentralized backup operation by leveraging techniques from

constraint optimization.

5.2 Related Work

As the modeling advantage of Dec-POMDPs comes with the price of NEXP-Hard com-

plexity, most of the recent research has focused on approximate algorithms, of which point-

based approaches have shown great promise in scaling up and finding good quality poli-

cies [127]. As in single agent POMDP point-based approaches [135, 112], the key idea is

to compute a set of reachable beliefs using a heuristic and compute the value function by

performing a sequence of point-based backups. However, the backup technique differs fun-

damentally in the multi-agent setting. In POMDPs, backups can be performed efficiently.

However, due to the decentralized nature of a Dec-POMDP policy, naively performing such

backups requires exponential effort in the number of observations [127].

In the past, there has been substantial research on solving this problem more efficiently

because point-based backups constitute the core of any point-based algorithm. For exam-

ple, the IMBDP algorithm [126] avoids exponential blowup by limiting the full backup to a

fixed number of observations which are most likely to occur at the given belief point. In the

MBDP-OC algorithm [23], an information-theoretic criterion is used to merge observations

into sets, while minimizing the total loss in solution quality. Dibangoye et al. [36] take a

different approach to solving this problem optimally by using a branch-and-bound search.

While in the worst case, the complexity remains the same, their approach is significantly

faster than previous approaches in practice. Amato at al. [5] further improve the scalability

of the previous algorithm by limiting the possible next step sub-policies using state reach-

ability analysis. There has been some work on this problem in the context of collaborative

Bayesian games and a search algorithm has been developed to solve such games [101]. It can

be shown that such Bayesian games are equivalent to the decentralized backup problem.

Linear programming based approximate algorithms for solving the backup problem have

been developed in [158].

All the above approaches are limited to two agent systems. Scaling even such approxi-

mate schemes to larger multiagent systems without additional assumptions about the struc-
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ture of interaction among agents is infeasible due to exponential computational requirements

in the number of agents. Therefore, an emerging approach to improve scalability w.r.t. the

number of agents has been to consider restricted forms of interaction that arise frequently

in practice [9, 99]. In particular, ND-POMDP [99] is one such general model which is

inspired by a realistic sensor network coordination problem [83]. The key assumption in

ND-POMDP is that of transition and observation independence and the locality of inter-

action, which help construct efficient algorithms that exploit the independence among the

agents.

A rich portfolio of algorithms has been developed for solving ND-POMDPs, featuring

locally optimal policy search [99], approximation schemes [146, 88] and a globally optimal

algorithm [99]. Most of these algorithms are based on policy search. This thesis presents

the first bottom up dynamic programming (DP) algorithm for ND-POMDPs. The ad-

vantage of the DP approach lies in its ability to focus planning on the reachable part of

the belief space using a forward heuristic search. As also highlighted earlier, such ap-

proximate DP algorithms–referred to as point-based dynamic programming techniques–have

shown great success in solving POMDPs. The algorithm we develop, Constraint-Based

Dynamic Programing (CBDP), to solve the ND-POMDP model shares its motivation with

such point-based approaches.

Next, we discuss the decentralized backup operation, the core of dynamic programming

approaches for Dec-POMDPs and establish its computational complexity.

5.3 Decentralized Backup—Two Agents

We first consider the decentralized backup operation for the two agents case. We denote

using p and q, the t-step policies for agent 1 and 2 respectively. Recall from Section 4.2.1.1

that the joint-value of the policy tree p of agent 1 and q of agent 2 in the starting state s

can be computed recursively as follows:

V (p, q, s) = R(s, ap, aq) +
∑

y,z

∑

s′∈S

O(yz | s′, ap, aq)P (s′|s, ap, aq)V (py, qz, s
′) (5.3)

Therefore, the value for the belief point ηt can be defined as:
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Figure 5.2. Schematic representation of decentralized backup operation for 2-agents. Op-
timization variables are denoted using the placeholder ‘?’.

V (p, q, ηt) =
∑

s∈S

ηt(s) · V (p, q, s) (5.4)

During the bottom up dynamic programming step, a fixed number of policies are retained

for each time step per agent. Let us denote the policy pool for agent 1 at time step t by ∆1
t

and for agent 2 by ∆2
t . In the decentralized backup step, we are interested in building the

best (t + 1)-step policy for a given belief ηt−1 and a pool of t-step policies ∆1
t and ∆2

t for

agent 1 and 2 respectively. Figure 5.2 shows a schematic representation of this decentralized

backup step.

Definition 9. Let δa denote a decision rule δa : Y → ∆1
t for each action a of agent 1 and

δb denote the same for agent 2, δb : Z → ∆2
t . The decentralized backup step consists of

finding the best root action a∗, b∗ and the best policy mapping δa∗, δb∗ for agents 1 and 2

that maximize the following objective function:

V ?
t−1(ηt−1) = maxa,b,δa,δb

[

∑

s∈S R(s, a, b)ηt−1(s)+
∑

yz

∑

s,s′ O(yz | s′, a, b)

P (s′|s, a, b)V
(

δa(y), δz(z), s
′
)

ηt−1(s)

]

(5.5)

Intuitively, the solution of the above optimization problem constructs the optimal (t+1)-

step policy tree for each agent for the belief ηt−1. The actions a∗ and b∗ replace the

placeholder ‘?’ at the root of the policy trees in Figure 5.2 and the policy mapping δa∗ , δb∗
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specify the best next-step policy that will be attached to the appropriate edge. The above

optimization problem can be derived by noting that the value of the best (t+1)-step policy

for belief ηt−1 can be written as follows:

V ?
t−1(ηt−1) = max

a,b,δa,δb

[

∑

s∈S

R(s, a, b)ηt−1(s)+

∑

y,z

P (yz|a, b, ηt−1)V
(

δa(y), δb(z), τ(ηt−1, a, b, y, z)
)

]

(5.6)

where τ(ηt−1, a, b, y, z) is the updated belief after agents take the joint action 〈a, b〉 and

receive observations 〈y, z〉 with current belief being ηt−1. It can be calculated in a straight-

forward manner using Bayes rule as shown in Eq. (5.2). Upon substituting the value of

V (δa(y), δb(z), τ(·)) by using Eq. (5.4), we get the optimization problem in definition 9.

The decentralized backup optimization problem does not admit efficient solutions and,

as we show next, it is NP-Complete to find the optimal solution. Intuitively, the reason is

that solving the above equation requires optimization over functions δ for each agent and

the space of all possible mappings δ is exponential in the number of observations.

5.3.1 Complexity of Decentralized Backup

Before establishing the complexity, we introduce the NP-Complete team decision prob-

lem (TDP) [145, 28]. In TDP, there are two decision makers, each of which observes some

local component of the system state. That is, if (o1, o2) ∈ O1 × O2 is a system state, then

agent 1 observes only o1 and agent 2 observes o2. The goal of the agents is to choose an

action (u1, u2) ∈ U1×U2 which maximizes the joint reward r(o1, o2, u1, u2) based only upon

their local observation. Stated formally, the goal is to find decision rules γ1 : O1 → U1 and

γ2 : O2 → U2 that maximize the expected reward, assuming each state is equally likely.

That is,

max
γ1,γ2

∑

o1,o2

r(o1, o2, γ1(o1), γ2(o2))

Theorem 2. Solving the decentralized backup problem optimally is NP-Complete.
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Proof. We reduce the TDP to a two agent Dec-POMDP M where taking one step backup

is equivalent to solving the TDP. It is clear that the backup problem is in NP, as given a

policy mapping δi, we can evaluate the R.H.S. of Eq. (5.5) in polynomial time.

There are 1 + |O1||O2| states in M. Let s be the initial state s.t. η0(s) = 1. The rest

of the system states are denoted by so1o2∀(o1, o2) ∈ O1 × O2. The observation sets of the

agents are: Y =O1 and Z =O2. The action space is defined as: A=U1 and B=U2. The

state s transitions with equal probability to each state so1o2 regardless of the action taken

and P (s|s)=0. The observation probabilities are also independent of the action taken and

observations identify the resulting state deterministically. That is, O(yz | so1o2)=1 if o1=y

and o2=z, else it is zero. The reward for any joint action in the initial state s is 0 and the

horizon for the problem is 2. The rest of the reward function will be defined shortly. First,

note that the backup Eq. 5.5 can be written as:

Vt(η0) = max
δ1,δ2

[

∑

y,z

∑

so1o2

P (so1o2 |s)O(yz | so1o2)V (δ1(y), δ2(z), so1o2)

]

In the above equation, we used the fact that R(s, ·) = 0 by the problem construction and

that any action can be taken at the initial belief η0 as state transition and observation

probabilities are independent of actions. As the problem horizon is 2, V (·, ·, ·) is simply the

immediate reward R. Since observations identify the resulting state deterministically and

P (so1o2 |s) = 1/|Y ||Z|, the equation can be further simplified as follows:

Vt(η0) =
1

|Y ||Z|
max
δ1,δ2

[

∑

o1,o2

R(so1o2 , δ1(o1), δ2(o2))

]

(5.7)

Now, we set the rest of the reward function such that

R(so1o2 , a, b) = r(yo1 , zo2 , ua, ub)∀so1o2 ∈ O1 ×O2

where yo1 , zo2 , and ua and ub are the counterparts of the Dec-POMDP in the given TDP

instance. Clearly, the reduction from TDP to the Dec-POMDP has polynomial complexity.

Finally, we can show that there exists a solution to the TDP problem providing total

reward W if and only if there exists a solution to the backup problem achieving a reward of
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W/(|Y ||Z|). This is straightforward to see as the functions γi from the TDP instance map

directly to δi and vice-versa. The reward function for the Dec-POMDP is the same as the

reward function for the TDP.

Next, we develop new algorithms for solving the decentralized backup problem efficiently

and in a principled way.

5.3.2 Optimal Backup Approach Using WCSPs

The optimal algorithm for the decentralized backup leverages recent advances in the

weighted constraint satisfaction (WCSP) literature by reformulating the backup problem

as finding the least cost solution of a WCSP instance. We briefly introduce the weighted

constraint satisfaction problem below; further details can be found in [31].

A WCSP is defined by the tuple 〈X ,D, C, k〉 where:

• X = {X1, . . . , Xn} is a set of variables.

• D is a set of domains Di for each variable Xi. Di is discrete and denotes all possible

assignments to the variable xi.

• C is a set of constraints.

• Each constraint CS is defined over a subset of variables S ⊆ X and maps the tuples

corresponding to assignments on S to a real valued cost. For example, Cij : Di×Dj →

[0 . . . k], where Cij is a constraint over variables Xi and Xj and k denotes the upper

bound on the cost of any assignment tuple. When a constraint assigns a cost k to

any assignment, it implies that the assignment is forbidden, else it is allowed with the

corresponding cost.

The goal is to find the complete assignment X to variables such that the global cost is

minimized. X[S] represents the projection of tuple X over variables in S. The total cost is

∑

CS∈C

CS(X[S]).
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We now describe the reformulation of the backup problem as a WCSP instance. First,

we note that for each joint action 〈a, b〉, the optimality equation (Eq. 5.5) can be written

as follows:

V ab
t−1(ηt−1) =

∑

s∈S

R(s, a, b)ηt−1(s)+max
δa,δb

[

∑

yz

∑

s,s′

O(yz | s′, a, b)

P (s′|s, a, b)V
(

δa(y), δb(z), s
′
)

ηt−1(s)

]

(5.8)

If we solve the above equation optimally for every joint-action, then finding V ?
t−1(ηt−1) is

easy as it requires iterating over all the joint actions, which has polynomial complexity for

two agents. In the above equation, only the second summation depends on the decision rule

δi. Therefore, the optimization problem becomes:

max
δa,δb

[

∑

yz

∑

s,s′

O(yz | s′, a, b)P (s′|s, a, b)V
(

δa(y), δb(z), s
′
)

ηt−1(s)

]

(5.9)

We seek to optimize the above equation by reformulating it as a WCSP for each joint action

〈a, b〉. The WCSP parameters are detailed below.

Definition 10. The WCSP for the decentralized backup problem (5.9) is defined by the

tuple 〈X ,D, C〉—

X Variables: One variable is created for each observation of each agent. For example,

if yi ∈ Y is a possible observation for agent 1, then variable Xyi is created.

D Domain: The domain of all the variables corresponding to an agent is the set of all

next step sub-policies available for that agent. For example, if P denotes the set of

sub-policies for agent 1, then Dyi = {p | p ∈ P} ∀yi ∈ Y .

C Constraints: A constraint is created for every pair of observations from agent 1 and

2. That is, we create a binary constraint Ci,j between variables Xyi and Xzj for every

pair of observations yi ∈ Y and zj ∈ Z.
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C Valuations: The valuation for each constraint Ci,j ∈ C is defined as in Eq. (5.9).

Ci,j(p, q) = α−
∑

s,s′

O(yizj | s
′, a, b)P (s′|s, a, b)V

(

p, q, s′
)

ηt−1(s)

where α is a large positive constant which is used to transform the maximization

objective of Eq. (5.9) to minimizing the WCSP cost. Intuitively, the second part of

the above equation (summation over states) represents the value accrued when agent

1, upon receiving observation yi, follows the sub-policy p and agent 2, upon receiving

observation zj, follows the sub-policy q.

We can visualize this WCSP by using its primal graph. The primal graph of a WCSP

with binary constraints is a graph whose nodes are the variables of the problem, and each

edge connects a pair of variables that occur together in the scope of a constraint function.

Figure 5.3 shows the primal graph of the WCSP for a backup instance when each of the

two agents has three observations. Each edge represents a constraint.

Theorem 3. Minimizing the objective function of the WCSP created in definition 10,

∑

Ci,j
Ci,j, is equivalent to solving the backup problem (5.9).

Proof. It is easy to see that minimizing the objective function of the WCSP,
∑

Ci,j
Ci,j , is

equivalent to maximizing Eq. (5.9). The complete assignment X represents the decision

rules δi for each agent and the optimal assignment solves Eq. (5.9). The global cost of

assignment X is given by:

∑

Ci,j∈C

Ci,j= |Y ||Z|α−
∑

yi,zj

∑

s,s′

O(yizj |s
′, a, b)P (s′|s, a, b)V (X[Xyi ], X[Xzj ], s

′)ηt−1(s) (5.10)

Therefore, if we minimize
∑

Ci,j
Ci,j , then the second part of the above equation gets max-

imized, which solves the backup problem. The first part of the above equation, |Y ||Z|α, is

a constant w.r.t. the backup problem.
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Figure 5.3. Primal graph of a WCSP for the backup problem. Each agent has three
observations

5.3.2.1 Solving the Backup WCSP

Unfortunately, optimally solving a WCSP is NP-Hard. However, as constraint reasoning

has numerous practical applications, many algorithms exist which can solve them efficiently

either using dynamic programming or search techniques. It has been shown that if the

primal graph of a WCSP has bounded tree-width, then the WCSP can be solved efficiently

using dynamic programming with the bucket elimination algorithm [33]. However, the

WCSP instance for the backup problem is a complete bipartite graph as shown in Figure 5.3.

For such graphs, the tree-width is O
(

max(|Y |, |Z|)
)

regardless of the variable ordering used.

Since the bucket elimination algorithm has complexity exponential in the tree-width, it

cannot scale well with the number observations. Therefore, we used a search-based solver,

AOBB [89], which uses a heuristic function to prune a large part of the search space. The

heuristic function provides a lower bound for the WCSP at each step of the search. We used

the state-of-the-art heuristic existential directional arc consistency (EDAC) [31]. We tried

other heuristics too, such as the mini buckets [89], however EDAC outperformed the others

by a significant margin, sometimes expanding an order of magnitude less nodes. Next, we

explain key differences between our approach and the previous optimal approach PBIP [36].

5.3.2.2 Comparison with PBIP

While point-based incremental pruning (PBIP) is also a search algorithm [36], our ap-

proach is fundamentally different. The key differences lie in how the search process is
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structured and how the heuristic function is computed. In PBIP, a node represents a par-

tial joint-policy tree, where the sub-policies that agents will follow are only specified for

some joint observations and not for others. Expanding a fringe node requires selecting an

unspecified joint observation and generating all possible successors by attaching all possible

subtrees to this joint-observation, which number MaxTree
2, assuming that the size of the

policy pool for each agent is MaxTree. This is one aspect where our formulation differs from

PBIP. In our approach, the search does not take place over joint observations, but over indi-

vidual observations of an agent (see Figure 5.3). Consequently, the number of successors of

a node is only MaxTree. The depth of the search tree in our case is 2|Y |, whereas in PBIP it

is |Y |. However, the worst-case complexity remains the same because the branching factor

in our case is MaxTree and in PBIP, it is MaxTree
2. By searching over the space of joint ob-

servations, PBIP loses the structure present in the backup problem whereas our approach

explicitly represents this structure using a constraint graph (Figure 5.3). The heuristic

function we use, EDAC, explicitly utilizes this constraint graph and produces much tighter

bounds than PBIP.

5.3.3 Experiments

We incorporated our backup algorithm into the point-based solver MBDP [127], which

provides the foundation for most approximate solvers for Dec-POMDPs. We compared our

WCSP-based optimal algorithm named Constraint based point backup (CBPB) with the best

existing approach PBIP [36], which also solves the backup problem optimally and is built

upon MBDP. We used the latest version of PBIP that uses incremental policy generation [5]

to further enhance its performance. Experiments were performed on a Linux machine with

2GB RAM and 2.6GHz CPU. We used two of the largest Dec-POMDP benchmarks: the

box pushing problem [126] and the stochastic Mars rover [5]. Each data point is an average

over 10 runs.

The aim of our experiments is threefold. First, we demonstrate the computational

advantages of CBPB over the PBIP algorithm in terms of execution time and the ability to

increase the number of belief points – CBPB provides more than 2 orders of magnitude of

speedup for some settings and is about an order of magnitude faster on average, and can
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Figure 5.4. Comparison of our approach CBPB with PBIP

increase the number of belief points (the MaxTree parameter) by more than a factor of 3.

As we compute one joint-policy for each belief point, the size of the policy pool for each

agent is also MaxTree. Second, we show the scalability of CBPB by explicitly comparing

the actual time required for performing all the backups versus the total execution time. We

show that as we increase the MaxTree parameter, the bottleneck becomes evaluating the

joint-policies. CBPB can still solve the larger search problem without considerable overhead

expanding sub-hundred nodes on average.

Figure 5.4(a) shows a comparison of CBPB with PBIP on the Box pushing domain

(|S| = 100, |A| = 4, |Y | = 5) with varying MaxTree values for horizon 10. Clearly, CBPB

provides significant savings over PBIP, whose time requirements become excessive very

quickly upon increasing the number of belief points. For MaxTree = 8, CBPB is about

500 times faster than PBIP, which takes over 19, 000 sec, whereas CBPB takes only 32
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sec. Furthermore, CBPB can scale up the number of belief points to 30 whereas PBIP

cannot scale above 8 belief points. Figure 5.4(b) shows how solution quality is impacted by

increasing the number of belief points. Overall, when MaxTree is increased from 3 to 30,

solution quality does increase significantly from 102 to 135. However, the rate of increase

with belief points is slow, which indicates that the number of beliefs has to be increased

further to gain higher solution quality. This observation also favors CBPB, which can

potentially increase this parameter further as highlighted in the next part of the experiments.

Figure 5.4(c) shows time comparisons with PBIP on one of the largest DEC-POMDP

domains – stochastic Mars rover (|S| = 256, |A| = 6, |Y | = 8) with varying horizon and

MaxTree=3. Again, we observe that as the horizon is increased from 5 to 20, the speedup

provided by CBPB increases significantly. At horizon 20, CBPB is about 33 times faster

than PBIP. For Mars rover too, CBPB can increase the belief points from 3 to 10 as shown

in Table 5.1. The runtime of CBPB does increases, but we will show later that this increase

is largely due to the overhead of evaluating joint-policies in MBDP. The actual search time

remains a tiny fraction of the total time. Solution quality increases as well by increasing

MaxTree. For horizon 20, with MaxTree=3 the best policy value is 37.8; with MaxTree=10,

it increases to 43.6. For this domain, we could not increase MaxTree further, as simply

storing and evaluating all joint policies would exceed the system RAM of 2GB.

For the next set of experiments, we emphasize the scalability of CBPB by explicitly

comparing the actual time required for performing all the backups versus the total execution

time (all time units in sec). Table 5.2 shows the total search time (time required by the

WCSP solver) over all point-based backups and the total execution time of CBPB for box

pushing for horizon 10. Clearly, even with increased MaxTree, the total search time remains

a small fraction of the total time. This is because the average number of nodes expanded

by CBPB for each backup (shown in the last column) remains below 100 for each setting.

Table 5.3 shows similar results for the Mars rover domain with MaxTree=10. The overall

execution time for CBPB is relatively high compared to box pushing as the rover domain’s

state and observation space is much larger than box pushing and evaluating joint-policies

is much more expensive. But, notice that performing backups requires only a tiny fraction

of the total time. Nodes expanded per backup instance also remain low. These results are
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X
X
X
X
X
X

X
X
X

X
X

MaxTree

Horizon
5 10 15 20

3 197.2 301.8 363.4 457

10 276.6 1250.3 2000.6 2729

Table 5.1. Mars Rover: Execution time

MaxTree Search Time Total Time Nodes Exp.

5 2.4 (18.3%) 13.1 27.6
10 6.1 (13.1%) 46.7 34.8
15 15.9 (15.5%) 102.5 39.5
20 24.6 (16.3%) 151.1 80.5
30 60 (14.8%) 404.2 82.1

Table 5.2. Box pushing: Search time Vs. Total time

a further testimony to the accuracy of the EDAC heuristic and show that if the memory

limitations of MBDP are overcome (using more efficient data structures), then CBPB can

scale to large numbers of belief points.

To summarize, we have shown that performing decentralized backup in a 2-agent setting

is NP-Hard. Despite this negative result, we presented an efficient and scalable technique

by leveraging the connection of decentralized backup with WCSPs. Empirically, we show

that our approach called CBPB is more than an order-of-magnitude faster than the previous

state-of-the-art algorithm for solving the backup problem. In the next section, we address

challenges that arise when there are more than two agents in the context of decentralized

backup.

5.4 Decentralized Backup—Multiple Agents

The decentralized backup problem presents several new challenges in the context of

multiple (� 2) agents. Let us assume that the size of available next-step policy pool for

each agent is O(MaxTree), where MaxTree denotes the number of sampled beliefs per time

step. The two main challenges in the context of large multiagent systems are as following:

1. Assume for simplicity that the number of observations for each agent is small enough

such that the space of all possible policy mappings, δai , for each agent i is man-

ageable. That is, the total number of backed up policies for the time step (t − 1),
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Horizon Search Time Total Time Nodes Exp.

5 8.1 (2.9%) 276.6 37.4
10 22 (1.8%) 1250.3 55.3
15 46.2 (2.3%) 2000.6 91.4
20 68.6(2.5%) 2729 94.5

Table 5.3. Mars Rover: Search time Vs. Total time

O(|Ai|MaxTree
|Y i|), is relatively small. This is possible in scenarios when the number

of observations per agent, Y i, is small. To find the best joint-policy for a given belief,

the search space is still exponential in the number of agents N , which is a bottleneck

for DP based algorithms. The combinatorial explosion is w.r.t. the number of agents.

2. In scenarios when the number of observations per agent are large, then enumerating

the space of all possible policy mappings, δai , is not feasible. In this case, the combi-

natorial explosion is w.r.t. both the number of agents and the size of the observation

space of each agent.

In this chapter, we present a constraint-based formulations for both these cases, which

can be solved using WCSP algorithms. In order to provide a mapping between the de-

centralized backup and a WCSP, we need additional assumptions over the structure of the

joint-policy value. These additional conditions are indeed satisfied in several existing sub-

classes of Dec-POMDPs such as ND-POMDPs [99] and TD-POMDPs [156]. We briefly

introduce the concept of value factorization, which will be discussed in more detail in Sec-

tion 7.2. Let us assume that the state-space S is factored s.t. S=(s1×. . .×SM ), which is true

in several multiagent planning models such as ND-POMDPs [99] and TD-POMDPs [156].

Definition 11. A value factor f defines a subset Af⊆{1, .., N} of agents and a subset

Sf ⊆{1, ..,M} of state variables.

Definition 12. A multiagent planning problem satisfies value factorization if the joint-
policy value for a belief η can be decomposed into a sum over value factors:

V
(

θ1:N , η
)

=
∑

f∈F

∑

sf∈Sf

η(sf )Vf

(

θf , sf
)

, (5.11)

where F is a set of value factors, θf ≡ θAgf is the joint-policy of agents of factor f , and sf ≡ sSf is
the collection of state variables of this factor and η(sf ) represents the belief over states in factor f .
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Figure 5.5. Targets T1 and T2 follow dotted trajectories.

Next, we present an example domain where the value factorization property is satisfied.

Example 1. The value factorization property holds in a sensor network based domain,

where the goal for the agents is to track targets, as shown in Figure 5.5. This example

includes a sensor network with 5 camera sensors (or agents). They can scan in four direc-

tions. Their task is to continuously track two targets, T1 and T2, which move along their

dotted trajectories in a stochastic manner.

To track a target and earn the associated reward, sensors must coordinate to simulta-

neously scan the location where the target is present. If sensors scan in an uncoordinated

manner or scan a location where no target is present, a penalty is given. Furthermore, sen-

sors are noisy, allowing for false positives and negatives in the observations sensors receive

after each scan action. Each target has its own independent Markovian transition function.

There is no central controller that knows what each sensor is observing. Sensors must act

based upon their individual observations.

5.4.1 WCSP Formulation—Case 1

In this section, we present the WCSP formulation of the decentralized backup problem

for the case when the observation space of each agent is small. Based on the value fac-

torization property, we can visualize the dependencies among agents using an interaction

hypergraph. In this hypergraph, there is a node for each of the N agents. There is an

(hyper)edge for each value factor f that connects all the agents that are involved in that

value factor.
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Figure 5.6. An example of a pairwise interaction graph (left) and its corresponding WCSP
primal graph (right)

Example 2. Consider the decomposition of the joint-value function for 4 agents as follows:

V
(

θ1:4, η
)

= V12(θ
1, θ2, ·) + V23(θ

2, θ3, ·) + V34(θ
3, θ4, ·) + V14(θ

1, θ4, ·)

The interaction graph for this instance is shown in Figure 5.6. Nodes represent agents and

edges represent value function components.

Let Θi denote the set of (t+ 1)-step backed up policies for each agent i. Based on joint

value factorization property of Eq. (5.11), we can write the best value for the belief ηt−1 as:

V ?
t−1(ηt−1) = max

θ1∈Θ1,..., θN∈ΘN

∑

f∈F

∑

sf∈Sf

η(sf )Vf

(

θf , sf
)

(5.12)

A naive algorithm to solve the above equation that enumerates over all θis will require expo-

nential effort in the number of agents. However, we can leverage the joint-value factorization

property to develop a WCSP based formulation that can be solved much more efficiently,

as also shown in Section 5.3.2. In the WCSP formulation, there is a policy variable XΘi for

each agent i. The domain D(XΘi) = {θi | θi ∈ Θi} is the set of all backed up policies of

agent i. Variables XΘi and XΘj are connected by an edge if their corresponding agents i

and j share a value factor f . The structure of this graph is similar to the interaction graph,

except that the agents are replaced by their corresponding policy variables. A constraint is

defined for each edge. The valuation for the edge associated with value factor f is:

Cf (θ
f ) =

∑

sf∈Sf

η(sf )Vf

(

θf , sf
)
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Figure 5.7. WCSP formulation (Case 2) for 4 agents with the interaction structure of
Figure 5.6(a). Each agent has 2 observations.

For example, consider the interaction structure of Figure 5.6(a). A constraint is defined for

each of the 4 links and the resulting WCSP’s primal graph is shown in Figure 5.6(b).

The optimization problem is to find the complete assignment θ? to the variables which

maximizes the sum
∑

f Cf , which is also the best joint-policy for the particular belief. Using

the bucket elimination algorithm, this problem can be solved in O
(

N(|A|MaxTree
|Y |

)d
) time

and space where d is the induced tree-width of the interaction graph, |Y | denotes the size

of the largest observation set for any agent and N denotes the number of agents. Thus,

we have reduced the complexity from being exponential in the number of agents to being

exponential in the induced width, which typically will be much smaller and linear in the

number of agents. We can also use a branch-and-bound algorithm such as AOBB [89] that

can prove to be more efficient when the induced tree-width is high.

5.4.2 WCSP Formulation—Case 2

When the observation space of agents is large, then the previous approach of search-

ing within the space of backed up policies is infeasible, as number of backed up policies,

O
(

|A|MaxTree
|Y |

)

, is prohibitively large. Therefore, we need a more sophisticated approach

that can implicitly search within the space of backed up policies. To address this, we extend

the approach of Section 5.3.2. The main reason that the previous approach of Section 5.3.2

cannot be applied directly to large multiagent systems is that the previous approach solves
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one WCSP for each joint-action. The number of joint-actions for large multiagent systems is

exponential in the number of agents. Therefore, a straightforward adoption of the previous

approach is not computationally tractable. We next a present a new wcsp formulation to

handle these issues.

Often, the joint-value factorization property of Eq. (5.11) leads to factorization of the

value function for a particular belief ηt−1, joint-action ~a and policy mappings ~δ as follows:

V ?(ηt−1) = max
~a,~δ

∑

f∈F

[

∑

s∈sf

R(sf , af )ηt−1(s
f ) +

∑

yf

P (yf | af , ηt−1)Vf

(

δaf (y
f ), τ(ηt−1, a

f , yf )
)

]

(5.13)

One subclass of Dec-POMDPs where this result holds is the ND-POMDP model [70]. We

can reformulate the above optimization problem as the following WCSP:

X Variables: We create one variable for each observation of each agent. For example, if

y1i ∈ Y is a possible observation for agent 1, then variable Xay1i is created. Figure 5.7

shows an example with four agents, each having two observations.

D Domain: The domain of all the variables corresponding to an agent is the cross-

product of available actions to the agent and the set of next step sub-policies available

for that agent. For example, if ∆t denotes the set of sub-policies for agent 1, then

Day1i = {〈a
1, p〉 ∈ A1 ×∆t} ∀y1i ∈ Y 1.

C Constraints: Two types of constraints are created—inter-agent constraints and

intra-agent constraints. Intra-agent constraints ensure that the agent always takes

the same action. If an agent has |Y | observations, then |Y −1| intra-agent constraints

are created that link each variable of the agent in a linear chain. For example, a

constraint is created among variables Xay11 and Xay12 of agent 1 in Figure 5.7.

Inter-agent constraints are created for every pair of observations between neighboring

agents in the interaction graph. Figure 5.7 shows such constraints.
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C Valuations: The valuation for intra-agent agent constraints is set as:

C(〈a, p〉, 〈a′, p′〉) =















0 if a = a′ ∀p, p′

∞ if a 6= a′ ∀p, p′
(5.14)

Intuitively, they encode the fact that an agent should always perform a single action.

The valuation for inter-agent constraints denote the value accrued when agents follow

a particular joint-policy upon receiving a particular observation. For example, the

constraint valuation among variables Xay11 and Xay22 for the example in Figure 5.7

is shown as follows:

C(Xay11 = 〈a1, p1〉, Xay22 = 〈a2, p2〉) = α−
∑

s∈s12

R(s12, a1, a2)ηt−1(s
12)−

P (y11, y22 | a
1, a2, ηt−1)V12

(

p1, p2, τ(ηt−1, a
1, a2, y11, y22)

)

(5.15)

where α is a large positive constant which is used to transform the maximization to

minimizing the WCSP cost. To avoid double counting, we add the immediate reward

component,
∑

s∈s12 R(s12, a1, a2)ηt−1(s
12), to only one inter-agent constraint between

agent 1 and 2.

It can be easily verified that the solution of the above WCSP solves the optimization problem

of Eq. (5.13). We can solve the above WCSP using branch-and-bound search similar to the

one used in Section 5.3.2.1. Using such state-of-the-art WCSP solvers will significantly

reduce the computational complexity of an exhaustive search based algorithm, which is

exponential in the number of agents and number of observations.

In the next section, we present experimental results confirming that the decentralized

backup for multiple agents can be solved efficiently using the WCSP based techniques we

have developed.

5.4.3 Experiments

We implemented the WCSP based backup approach of Section 5.4.1 for the ND-POMDP

model [99]. The resulting algorithm is called constraint-based dynamic programming (CBDP).
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11-Helix

(a)

7-H

(b)

15-3D

(c)

5-P

(d)

Figure 5.8. Sensor network configurations

All test examples are an instance of the target tracking problem introduced in Example 1.

The sensor network configurations are shown in Figure 5.8 and are taken from previous

work by Nair et al. [99] and Marecki et al. [88]. Each node represents a sensor agent. Each

square shaped region denotes a location where target can be present. To successfully track a

target, two adjacent sensors must scan the location simultaneously. In these examples, the

number of observations per agent was 2, which made the approach of Section 5.4.1 feasible.

The approach of Section 5.4.2 was not implemented.

We compare CBDP with FANS [88]–the most efficient of the existing algorithms includ-

ing SPIDER [146] and LID-JESP [99]. We conducted experiments on the sensor network

configurations introduced in [88], shown in Figure 5.8. All experiments were conducted on

a Dual core machine with 1GB RAM, 2.4GHz CPU. The main purpose of the experiments

is to show the scalability of CBDP, which has linear time and space complexity w.r.t. the

horizon. We use a publicly available constraint solver implementing the bucket elimination

algorithm [108]. The MaxTree parameter that governs the size of policy pool per horizon

was set to 5 as it provided good tradeoff between speed and solution quality across a range

of tried settings.

The experiments are divided into two sets. In the first set, we use relatively smaller

domains (5-P and 7-H) because they are the only domains for which FANS can scale up to

significant horizons. In the second set of experiments, we use the remaining larger domains

(11-helix, 15-3D, 15-mod). For these domains, FANS cannot scale well (for 15-3D it fails to

solve problems with horizons greater than 5).
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Figure 5.9. Comparisons of a) the solution quality and b) the execution time of our
approach CBDP and different versions of FANS (Node, Link) on the domain 5P

Figure 5.9(a) shows a comparison of the solution quality of CBDP and two different

versions of FANS, Node (k = 0.5) and Link, on the 5-P domain. FANS has multiple

heuristics which tradeoff solution quality for speed. It has been suggested in [88] that for

smaller domains, the Link and Node heuristics provide the best tradeoff. Hence, we chose

these two for comparisons. All three algorithms achieve almost the same solution quality for

all horizons. However, the key difference is in the runtime (Figure 5.9(b)). CBDP provides

significant speedup over both the Node and Link heuristics. For horizon 10, CBDP is about

2 orders of magnitude faster than FANS with either heuristic. Another notable observation

is that the increase in runtime for CBDP with the horizon is nearly linear, which can also

be shown analytically [70].

Figure 5.10(a) shows a comparison of the solution quality on the 7-H domain. We again

compare with FANS using the Node (k = 0.5) and Link heuristics. On this domain, due

to increase in the number of agents, FANS can provide solutions up to horizon 7. With

the increase in the domain size, FANS is no longer as competitive in the solution quality

as it was in the 5-P domain. CBDP provides much better solution quality for all horizons.

The runtime graph (Figure 5.10(b)) shows again that CBDP is much faster and that more

scalable. It is 5 times faster than the Link heuristic, and orders of magnitude faster than

the Node heuristic. The average time required by CBDP per horizon is 710ms which implies

CBDP can solve a 100 horizon instance within 1.5 minutes due to its linear complexity as
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Figure 5.10. Comparisons of a) the solution quality and b) the execution time of CBDP
and different versions of FANS (Node, Link) on the domain 7-H

opposed to the Node heuristic which requires 685 seconds to solve a horizon 7 instance.

This further illustrates the scalability of CBDP.

Figure 5.11 shows the next set of experiments in which we use larger domains (11-helix,

15-3D, 15-mod). To be consistent with the results of Marecki et al. [88], we set the horizon

to 3 because for 15-3D, FANS scales up to horizon 4 only. For these larger domains, a

Greedy heuristic has been proposed [88] and it provides best tradeoff than other heuristics.

Hence, we used this heuristic along with the Node (k = 0.75) heuristic for comparisons.

Figure 5.11(a) shows a comparison of the solution quality. For 11-helix, CBDP provides

much better solution quality than either the Greedy or Node heuristic. Similar trends are

observed for the 15-3D and 15-mod domains. CBDP provides better solution quality for

them as well. The runtime comparison (Figure 5.11(b)) again shows the stark difference

between CBDP and FANS. For 15-mod, CBDP takes 0.6 secs while FANS with the Greedy

heuristic takes over 2,000 secs. One can easily see the magnitude of speedup CBDP provides

over FANS.

The results of the last set of experiments are shown in Figure 5.12. These experiments

show the solution quality and execution time statistics for CBDP for different horizons on

the problem 15-3D, which is the most complex problem instance for both CBDP and FANS.

FANS could scale up to only horizon 5 on this problem. In contrast, CBDP can easily scale

up to horizon 100. The execution time curve in this experiment clearly supports the linear
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Figure 5.11. Comparisons of a) the solution quality and b) the execution time between
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Figure 5.12. Solution Quality and Execution time comparisons of CBDP and FANS for a
range of horizons for 15-3D.

time complexity of CBDP. The solution quality too increases at a nearly constant rate with

the horizon, which means that CBDP is able to maintain good solution quality for large

horizons.

These experiments consistently show that CBDP provides several orders-of-magnitude

of speedup over different versions of FANS, while providing better solution quality for all

the instances examined. CBDP further has a linear time and space complexity w.r.t. the

horizon, which makes it possible to apply it to problems with much larger horizons than

was previously possible.
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5.5 Discussion

In this chapter, we addressed the decentralized backup problem that forms the core of

several approximate dynamic programming algorithms to solve finite-horizon Dec-POMDPs.

Despite our analysis showing that this problem is NP-Hard, we developed a number of

optimal approaches based on the connection of the backup problem with weighted constraint

satisfaction problem. This insight allowed us to use highly efficient branch-and-bound and

dynamic programming based solvers in the WCSP literature to solve the decentralized

backup problem. We also analyzed a number of different multiagent contexts and proposed

different WCSP formulations suited to those contexts. Our results consistently illustrated

that using the WCSP-based insight, our approach significantly outperforms the existing

state-of-the-art algorithms. In terms of scalability, our approach was able to successfully

scale to large plan horizons for larger multiagent systems (up to 15-agents, horizon 100),

which had not been possible until now.

The main publications that describe the contributions of this chapter are the following:

• Complexity results and WCSP based algorithms for the decentralized backup problem

are described in the following publication:

A. Kumar and S. Zilberstein. Point-Based Backup for Decentralized POMDPs: Com-

plexity and New Algorithms. In Proc.of the International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 1315–1322, 2010.

• A bottom up dynamic programming algorithm for the ND-POMDP model that ex-

ploits the value factorization property for efficiently performing decentralized backup

in large multiagent systems is described in the following publication:

A. Kumar and S. Zilberstein. Constraint-Based Dynamic Programming for Decentral-

ized POMDPs with Structured Interactions. In Proc. of the International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pages 561-568, 2009.

The WCSP formulation for the backup problem developed in this chapter has been

found to be effective in other algorithms as described in following publication:
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• J. Dibangoye, C. Amato and A. Doniec. Scaling Up Decentralized MDPs Through

Heuristic Search. In Proc. of the International Conference on Uncertainty in Artificial

Intelligence (UAI), 2012.
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CHAPTER 6

PROBABILISTIC INFERENCE FOR INFINITE-HORIZON

SEQUENTIAL DECISION MAKING

In this chapter, we shift our attention to infinite-horizon sequential decision making

problems. While finite-horizon Dec-POMDPs have enjoyed significant success, progress re-

mains slow for the infinite-horizon case mainly due to the inherent complexity of optimizing

stochastic controllers representing agent policies. We present a promising new class of al-

gorithms for the infinite-horizon case by bringing in the perspective of graphical models

and probabilistic inference to multiagent planning. We show how the policy optimization

problem can be recast as inference in a mixture of dynamic Bayesian networks (DBNs). An

attractive feature of this approach is development of new insights that connect inference

techniques for DBNs with the multiagent planning, especially for supporting richer repre-

sentations such as factored or continuous states and actions, which so far have been out of

the scope of existing algorithms.

Such connections between multiagent planning and machine learning show significant

promise by opening the door to the application of a rich set of techniques developed in

the ML literature to multiagent planning. We make this connection precise by developing

the well known Expectation Maximization (EM) algorithm to optimize the joint policy of

agents represented as DBNs. Experiments on benchmark domains show that EM compares

favorably against the state-of-the-art solvers.

6.1 Related Work

As shown in the previous chapter, a number of point-based approximate algorithms have

been developed for solving finite-horizon Dec-POMDPs [72, 36, 127]. However, unlike their

point-based counterparts in POMDPs ([112, 128]), they cannot be easily adopted for the

infinite-horizon case due to a variety of reasons. For example, POMDP algorithms represent
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Variables: ε, x(a), x(a, y, p′) ∀p′, a, y

Maximize: ε (6.1)

Subject to:

V (p, q, s) + ε ≤
∑

a,b

π(b, q)

[

x(a)R(s, a, b) + γ
∑

s′,y,z,p′,q′

x(a, y, p′)λ(q′, q, z)

P (s′ | s, a, b)O(yz | s′, a, b)V (p′, q′, s′)

]

∀q, s (6.2)

∑

a

x(a) = 1,
∑

p′

x(a, y, p′) = x(a) ∀a, y (6.3)

x(a) ≥ 0 ∀a, x(a, y, p′) ≥ 0 ∀a, y, p′ (6.4)

Table 6.1. The linear program used by the DEC-BPI algorithm to find new parameters for a node
p of agent 1 [15]. Variable x(a) represents the action selection parameter P (a | p); variable x(a, y, p′)
represents controller node transition parameter P (a, p′ | y, p).

the policy compactly as α-vectors, whereas most Dec-POMDP algorithms explicitly store

the policy as a mapping from observation sequences to actions, making them unsuitable

for the infinite-horizon case. In POMDPs, the Bellman equation forms the basis of most

point-based solvers, but as Bernstein et. al. [15] highlight, no tractable Bellman equation

exists for Dec-POMDPs.

To alleviate such problems, most infinite-horizon algorithms represent agent policies as

finite-state controllers [6, 15]. So far, very few algorithms have shown promise for effectively

solving infinite-horizon Dec-POMDPs, which include decentralized bounded policy iteration

(DEC-BPI) [15] and a non-linear programming based approach (NLP) [6]. The DEC-BPI

algorithm uses a linear programming formulation to improve the parameters of a node, one

at a time. That is, it fixes the parameters of all the nodes of every agent’s controllers,

except a single node of a particular agent. Then, it uses a linear program, as shown in

table 6.1, to find a better estimate of the parameters of that particular node, say node p of

agent 1. This LP guarantees that the policy value is increased for every belief state. One

drawback of this scheme is that it is not designed to optimize the value of a given belief

state. Therefore, to produce a good policy, DEC-BPI may need a large number of controller

nodes, which may make the LP formulation infeasible.
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Variables: x(p, a), x(q, b), x(p, y, p′), x(q, z, q′), V (p, q, s) ∀p, q, a, b, s, y, z

Maximize:
∑

s

ηo(s)z(po, qo, s) (6.5)

Subject to:

V (p, q, s) =
∑

a,b

(

x(p, a)x(q, b)

[

R(s, a, b) + γ
∑

s′

P (s′ | s, a)
∑

y,z

O(yz | s′, a, b)

∑

p′,q′

x(p, y, p′)x(q, z, q′)V (p′, q′, s′)

])

∀p, q, s (6.6)

∑

a

x(p, a) = 1 ∀p,
∑

b

x(q, b) = 1 ∀q (6.7)

∑

p′

x(p, y, p′) = 1 ∀p, y
∑

q′

x(q, z, q′) = 1 ∀q, z (6.8)

x(p, a) ≥ 0, x(q, b) ≥ 0, x(p, a, y, p′) ≥ 0, x(q, b, z, q′) ≥ 0 (6.9)

Table 6.2. Nonlinear programming based formulation for optimizing a 2-agent, infinite-horizon
Dec-POMDP policy [6]. Variable x(p, a) represents the action selection parameter P (a |p) for agent
1; x(p, y, p′) represents the controller node transition parameter P (p′ | p, y) for agent 1. Variable
V (p, q, s) represents the value function for the controller state (p, q) and environment state s. Other
variables are defined analogously for agent 2.

Table 6.2 represents the nonlinear programming formulation for optimizing a 2-agent

Dec-POMDP policy. In contrast to the DEC-BPI algorithm, the NLP formulation is focused

for the initial belief state ηo. This formulation has a linear objective function. However,

the Bellman constraints of Eq. (6.6) are nonlinear and non-convex in all the variables x(·)

and V (·). This can cause the NLP solver to get stuck in a local optimum.

Another significant drawback of both DEC-BPI and NLP approach is the range of

problems that can be handled. For example, solving Dec-POMDPs with continuous state

or action spaces is not supported by either of these approaches. Scaling up to structured

representations such as factored or hierarchical state-space is difficult due to convergence

issues in DEC-BPI and a potential increase in the number of non-linear constraints in the

NLP solver. Furthermore, none of the above approaches have been shown to work for more

than 2 agents, a significant bottleneck for solving practical problems. Recently, another

approach to solve infinite-horizon Dec-POMDPs has been proposed [37]. This approach is

competitive with the NLP approach, but it is not clear how it can be extended to more

than two agents. In contrast to such approaches, this chapter provides a framework that
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can exploit the underlying structure present in the planning model by reasoning explicitly

with a graphical representation of the problem using dynamic Bayesian networks (DBNs).

Furthermore, the inference algorithm is based on well known techniques in the machine

learning literature, which opens the door to the application of other advanced machine

learning techniques to efficiently solve the multiagent planning problem.

6.2 Policy Optimization for Infinite-Horizon Dec-POMDPs

For notational simplicity, we use a modified model definition for a Dec-POMDP than

shown in Section 4.1. The modified 2-time slice dynamic decision network for a 2-agent

Dec-POMDP is shown in Figure 6.1. As before, the set S denotes the set of environment

states, with a given initial state distribution η0(s). The action set of agent 1 is denoted by

a ∈ A and agent 2 by b ∈ B. The state transition probability P (s′|s, a, b) depends upon

the actions of both the agents. Upon taking the joint action 〈a, b〉 in state s, agents receive

the joint reward R(s, a, b). Y is the finite set of observations for agent 1 and Z for agent 2.

O(yz | s, a, b) denotes the probability P (y, z|s, a, b) of agent 1 observing y ∈ Y and agent

2 observing z ∈ Z when the joint action 〈a, b〉 was taken and resulted in state s. We are

concerned with solving infinite-horizon Dec-POMDPs with a discount factor γ < 1.

As highlighted in Section 4.2.2, the policy of each agent is represented as a finite-state

controller (FSC). The FSC for an agent is specified by the parameters θ = 〈P, π, λ, ν〉. The

set P is a set of memory nodes or controller nodes for the agent. The stochastic decision

rule π : P → ∆A represents the actions selection model or the probability πap = P (a|p);

λ : P × Y → ∆P represents the node transition model or the probability λp′py = P (p′|p, y);

ν : P → ∆P represents the initial node distribution νp = P (p). We adopt the convention

that nodes of agent 1’s controller are denoted by p and agent 2’s by q. Other problem

parameters such as observation function O(y, z|s, a, b) are represented using subscripts as

Oyzsab. The value for starting the controllers in nodes 〈p, q〉 at state s is given by:

V (p, q, s) =
∑

a∈A,b∈B

πapπbq

[

Rsab + γ
∑

s′

Ps′sab

∑

y,z

Oyzs′ab

∑

p′,q′

λp′pyλq′qzV (p′, q′, s′)
]
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Figure 6.1. A two time slice dynamic decision network (DDN) for a two-agent Dec-
POMDP

The goal is to set the parameters 〈π, λ, ν〉 of the agents’ controllers (of some given size) that

maximize the expected discounted reward for the initial belief η0:

V (η0) =
∑

p,q,s

νpνqη0(s)V (p, q, s)

6.3 Dec-POMDPs as Mixture of DBNs

In this section, we describe how Dec-POMDPs can be reformulated as a mixture of

DBNs, such that maximizing the reward likelihood (to be defined later) in this framework is

equivalent to optimizing the joint-policy. Our approach is based on the framework proposed

in Toussaint et al. [142] and Toussaint and Storkey [141] to solve Markovian planning

problems using probabilistic inference. In this chapter, we develop the planning-by-inference

strategy for 2-agent Dec-POMDPs. In contrast, the previous approach of Toussaint et al.

[142] and Toussaint and Storkey [141] focused on single agent MDPs and POMDPs. In

the next chapter, we develop new mixture models that allow us to extend the planning-by-

inference strategy to multiple agents, a significant generalization of the single agent case.

First we briefly describe the intuition behind this reformulation (for details please refer

to [142]) and then we describe in detail the modifications required for Dec-POMDPs.

109



M
ix
tu
re

of
fi
n
it
e-
ti
m
e
D
ec
-P
O
M
D
P
s

A
ge
n
t1

A
ge
n
t2

s0 s1

q0 q1

p0 p1

r0

a0

b0 z1

y1

s0

q0

s2

a1

q1

p1

z1

y1

p0

a0

b0

s0

q0

p0 p2

y2

z2

q2

b1

s1

a0

b0

pT

yT

qT

aT

bT

s0

zT

sT r

q0

p0

a1

b1

s1

q1

p1

a0

b0 z1

y1

r

T = 0

T = 1

r

Figure 6.2. The time dependent DBN mixture (right) corresponding to a 2-agent Dec-
POMDP (left). The first DBN component in the mixture corresponds to the reward for
time step 1, second DBN corresponds to the reward for time step 2. The last DBN in the
mixture shows the general structure of a T -step DBN.
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A Dec-POMDP can be described using a single DBN where the reward is emitted at

each time step, such as the unrolled DBN corresponding to the one shown in Figure 6.1.

However in our approach, it is described by an infinite mixture of a special type of DBNs

where reward is emitted only at the end. For example, the first DBN in the DBN mixture

model shown in Figure 6.2 describes the DBN for time T = 0. The key intuition is that for

the reward emitted at any time step T , we have a separate DBN with the general structure

as shown in the last T -step DBN shown in Figure 6.2. Such a DBN shows how the reward

obtained at time step T depends on policy parameters and the underlying Dec-POMDP

model.

Furthermore, to simulate the discounting of rewards, probability of the time variable

T is set as P (T = t) = γt(1 − γ). This ensures that the time prior is normalized or

∑∞
t=0 P (T = t) = 1. In addition, the random variable r shown in the DBN mixture of

Fig. 6.2 is a binary variable with its conditional distribution (for any time T ) described

using the normalized immediate reward as:

R̂sab = P (r = 1|sT = s, aT = a, bT = b) = (Rsab −Rmin)/(Rmax −Rmin).

The parameter Rmax is the maximum reward for any state action pair in the given Dec-

POMDP instance and Rmin denotes the minimum reward. This scaling of the reward is

the key to transforming the optimization problem from the realm of planning to likelihood

maximization as stated below. Let θ denotes the joint parameters 〈π, λ, ν〉 for each agent’s

controller.

Theorem 4. By choosing the condition probability of binary rewards r such that R̂sab ∝ Rsab

and introducing the discounting time prior P (T ) = γT (1 − γ), maximizing the likelihood

Lθ = P (r = 1;θ) in the mixture of DBNs is equivalent to optimizing the Dec-POMDP

policy. Furthermore, the joint-policy value relates linearly to the likelihood as:

V θ = (Rmax −Rmin)L
θ/(1− γ) +

∑

T

γTRmin
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The above result shows that the policy optimization problem can be reformulated as a

parameter learning problem in a suitable DBN mixture. This immediately suggests using

machine learning approaches to maximize the likelihood. Furthermore, this reformulation

is lossless. We note that we never explicitly create a mixture of DBNs. All computations on

this DBN mixture can be implemented as message-passing over the original Dec-POMDP

DBN. The only additional computational requirement is that of scaling the rewards using

Rmax and Rmin, which can be done easily in linear time.

We next present the Expectation-Maximization (EM), a well known technique to max-

imize the likelihood..

6.4 The Expectation-Maxmization Algorithm

This section describes the EM algorithm [35] for maximizing the reward likelihood in the

mixture of DBNs representing a Dec-POMDPs. In the corresponding DBNs, only the binary

reward is treated as observed (r = 1); all other variables are latent. While maximizing the

likelihood, EM yields the Dec-POMDP joint-policy parameters θ. EM also possesses the

desirable anytime characteristic as the likelihood (and the policy value which is proportional

to the likelihood) is guaranteed to increase per iteration until convergence. We note that EM

is not guaranteed to converge to the global optima. However, in the experiments we show

that EM almost always achieves similar values as the state-of-the-art NLP based solver [6]

and much better than DEC-BPI [15]. The main advantage of using EM lies in its ability to

easily generalize to much richer representations than currently possible for Dec-POMDPs

such as factored or hierarchical controllers, continuous state and action spaces.

Another important advantage is the ability to generalize the solver to larger multi-agent

systems with more than 2 agents by exploiting the relative independence among agents, as

we will show in the next chapter. The E step we derive next is generic as any probabilistic

inference technique can be used. In the current formulation, we develop techniques for the

exact E-step. However, sampling based techniques can also be used, which for example

will be useful for handling problems with continuous state, action spaces [57, 56]. Further,

EM has been applied for planning in settings where the underlying planning model is not

available. Instead, a black-box simulator is used to generate state-action trajectory samples
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to approximate the E-step [150]. These characteristics of the EM make it suitable for

reinforcement learning for Dec-POMDPs.

6.4.1 E-step

In the E-step, for the fixed parameter θ, forward messages α and backward messages β

are propagated. First, we define the following Markovian transitions on the (p, q, s) state

in a T -step DBN of Figure 6.2. These transitions are independent of the time t due to

the stationary joint policy. We also adopt the convention that for any random variable v,

v′ refers to the next time slice and v̄ refers to the previous time slice. For any group of

variables v, Pt(v,v
′) refers to P (vt = v,vt+1 = v′).

P (p′, q′, s′|p, q, s) =
∑

aby′z′

λp′py′λq′qz′Oy′z′abs′πapπbqPs′sab (6.10)

αt is defined as Pt(p, q, s; θ). It might appear that we need to propagate α messages for

each DBN in the DBN mixture separately, but as pointed out in [142], only one sweep is

required as the head of the DBN is shared among all the mixture components. That is,

α2 is the same for all the T-step DBNs with T ≥ 2. We will omit using θ as long as it is

unambiguous.

α0(p, q, s) = νpνqη0(s) (6.11)

αt(p
′, q′, s′) =

∑

p,q,s

P (p′, q′, s′|p, q, s)αt−1(p, q, s) (6.12)

β messages are propagated backwards and are defined as Pt(r = 1|p, q, s). However, this

particular definition would require separate inference for each DBN as for T and T ′ step

DBN, βt will be different due to difference in the time-to-go (T−t and T ′−t). To circumvent

this problem, β messages are indexed backward in time as βτ (p, q, s) = PT−τ (r = 1|p, q, s)

using the index τ such that τ = 0 denotes the time slice t = T . Hence we get:
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β0(p, q, s) =
∑

ab

R̂sabπapπbq (6.13)

βτ (p, q, s) =
∑

p′,q′,s′

βτ−1(p
′, q′, s′)P (p′, q′, s′|p, q, s) (6.14)

Based on the α and β messages we also calculate two more quantities:

α̂(p, q, s) =
∑

t

P (T = t)α(p, q, s) (6.15)

β̂(p, q, s) =
∑

t

P (T = t)β(p, q, s) (6.16)

These are used in the M-step. The cut-off time for message propagation can either be

fixed a priori or be more flexible based on the likelihood accumulation. If α messages are

propagated for t-steps and β-messages for τ steps, then the likelihood for T = t+ τ is given

as:

Lθ
t+τ = P (r=1|T = t+ τ ; θ) =

∑

p,q,s

αt(p, q, s)βτ (p, q, s) (6.17)

If both α and β messages are propagated for k steps and Lθ
2k �

∑2k−1
T=0 γTLθ

T , then the

message propagation can be stopped.

6.4.1.1 Complexity

Calculating the Markov transitions on the (p, q, s) chain has complexityO(|P|4|S|2|A|2|Y |2),

where |P| is the maximum number of nodes for a controller. The message propagation has

complexity O(Tmax|P|
4|S|2). Techniques to effectively reduce this complexity without sac-

rificing accuracy will be discussed later.

6.4.2 M-step

In the DBNs of Fig. 6.2 every variable is hidden except the binary reward variable r.

After each M-step, EM provides better estimates of these variables, improving the likelihood

Lθ and hence the policy value. For details of EM, we refer to [35]. The parameters to

estimate are 〈π, λ, ν〉 for each agent. For a particular DBN for time T , let L̃ = (P,Q,A,B, S)
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denote the latent variables, where each variable denotes a sequence of length T . That is,

P = p0:T . EM maximizes the following expected complete log-likelihood for the Dec-

POMDP DBN mixture. Let θ denotes the previous iteration’s parameters and θ? denotes

new parameters.

Q(θ,θ?) =
∑

T

∑

L̃

P (r=1, L̃, T ;θ) logP (r=1, L̃, T ;θ?) (6.18)

In the rest of the section, all the derivations refer to the general T -step DBN structure as

shown in Fig. 6.2. The joint probability of all the variables is:

P (r = 1, L̃, T ; θ) = P (T )
[

R̂sab

]

t=T

T
∏

t=1

[

πapπbqPss̄āb̄Oyzsāb̄λpp̄yλqq̄z

]

t

[

πapπbqνpνqη0(s)
]

t=0
(6.19)

where brackets indicate the time slices, i.e.,
[

R̂sab

]

t=T
= R̂(sT , aT , bT ). Taking the log, we

get:

logP (r = 1, L̃, T ) = . . .+

T
∑

t=0

log πatpt +

T
∑

t=0

log πbtqt

+

T
∑

t=1

log λptpt−1yt +

T
∑

t=1

log λqtqt−1zt + log νp0 + log νq0 (6.20)

where the missing terms represents the quantities independent of θ. As all the policy

parameters 〈π, λ, ν〉 get separated out for each agent in the log above, we first derive the

action updates for an agent by substituting Eq. 6.20 in Q(θ,θ?).

6.4.2.1 Action updates

The update for action parameters π?
ap for agent 1 can be derived by simplifying Q(θ, θ?)

as follows:

Q(θ,θ?) =

∞
∑

T=0

P (T )

T
∑

t=0

∑

a,p

[

P (r=1, a, p|T ; θ)
]

t
log π?

ap (6.21)
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By breaking the above summation between t = T and t = 0 to T − 1, we get

Q(θ,θ?) =
∞
∑

T=0

P (T )
∑

apqbs

R̂sabπapπbqαT (p, q, s) log π
?
ap+

∞
∑

T=0

P (T )

T−1
∑

t=0

∑

app′q′s′

βT−t−1(p
′, q′, s′)Pt(a, p, p

′, q′, s′) log π?
ap (6.22)

In the above equation, we marginalized the last time slice over the variables (q, b, s). For

the intermediate time slice t, we condition upon the variables (p′, q′, s′) in the next time

slice t + 1. We now use the definition of α̂ and move the summation over time T inside

for the last time slice and further marginalize over the remaining variables (q, s) in the

intermediate slice t:

Q(θ,θ?) =
∑

a,p,q,b,s

R̂sabπapπbqα̂(p, q, s) log π
?
ap +

∞
∑

T=0

P (T )

T−1
∑

t=0

∑

ap

log π?
ap

∑

p′q′s′sq

βT−t−1(p
′, q′, s′)πapP (p′, q′, s′|a, p, q, s)αt(p, q, s) (6.23)

Upon further marginalizing over the joint observations y′z′ and simplifying we get:

Q(θ,θ?) =
∑

ap

πap log π
?
ap

∑

qs

[

∑

b

R̂sabπbqα̂(p, q, s) +
∑

p′q′s′y′z′

∞
∑

T=0

P (T )

T−1
∑

t=0

βT−t−1(p
′, q′, s′)

P (s′|a, q, s)λp′py′λq′qz′P (y′z′|a, q, s′)αt(p, q, s)

]

(6.24)

We resolve the above time summation, as in [142], based on the fact that:

∞
∑

T=0

T−1
∑

t=0

f(T − t− 1)g(t) =

∞
∑

t=0

∞
∑

T=t+1

f(T − t− 1)g(t)

and then setting τ = T − t− 1 to get
∑∞

t=0 g(t)
∑∞

τ=0 f(τ).

Finally we get:

Q(θ,θ?) =
∑

ap

πap log π
?
ap

∑

qs

α̂(p, q, s)

[

∑

b

R̂sabπbq +
γ

1− γ

∑

p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′P (s′|a, q, s)P (y′z′|a, q, s′)

]

(6.25)
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The product P (s′|a, q, s)P (y′z′|a, q, s′) can be further simplified by marginalizing out over

actions b of agent 2 as follows:

Q(θ,θ?) =
∑

ap

πap log π
?
ap

∑

qs

α̂(p, q, s)

[

∑

b

R̂sabπbq +
γ

1− γ

∑

p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′

∑

b

Oy′z′s′abπbqPs′sab

]

The above expression is maximized by setting the parameter π?
ap to be:

π?
ap=

πap
Cp

∑

qs

α̂(p, q, s)

[

∑

b

R̂sabπbq +
γ

1− γ

∑

p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′

∑

b

Oy′z′s′abπbqPs′sab

]

(6.26)

where Cp is a normalization constant. The action parameters π?
bq of the other agent can be

found similarly by the analogue of the previous equation.

6.4.2.2 Controller node transition updates

The update for controller node transition parameters λpp̄y for agent 1 can be found by

maximizing Q(θ,θ?) w.r.t λ?
pp̄y as follows.

Q(θ,θ?) =

∞
∑

T=0

P (T )

T
∑

t=1

∑

pp̄y

[

P (r=1, p, p̄, y|T ; θ)
]

t
log λ?

pp̄y (6.27)

By marginalizing over the variables (q, s) for the current time slice t, we get

Q(θ,θ?) =

∞
∑

T=0

P (T )

T
∑

t=1

∑

pp̄ysq

log λ?
pp̄yβT−t(p, q, s)Pt(p, p̄, y, s, q|T ; θ) (6.28)

By further marginalizing over the variables (s̄, q̄) for the previous time slice of t and over

the observations z of the other agent, we get

Q(θ,θ?) =
∑

pp̄y

λpp̄y log λ
?
pp̄y

∞
∑

T=0

P (T )

T
∑

t=1

∑

sqs̄q̄z

βT−t(p, q, s)λqq̄z

P (yz|p̄, q̄, s)P (s|p̄, q̄, s̄)αt−1(p̄, q̄, s̄) (6.29)
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The above equation can be further simplified by marginalizing the product P (yz|p̄, q̄, s)P (s|p̄, q̄, s̄)

over actions a and b of both the agents as follows:

Q(θ,θ?) =
∑

pp̄y

λpp̄y log λ
?
pp̄y

∞
∑

T=0

P (T )
T
∑

t=1

∑

sqs̄q̄z

βT−t(p, q, s)λqq̄zαt−1(p̄, q̄, s̄)
∑

ab

OyzsabPss̄abπap̄πbq̄

(6.30)

Upon resolving the time summation as before and maximizing Q(θ,θ?) w.r.t.λ?
pp̄y , we get

the final M-step estimate:

λ?
pp̄y =

λpp̄y

Cp̄y

∑

sqs̄q̄z

α̂(p̄, q̄, s̄)β̂(p, q, s)λqq̄z

∑

ab

OyzsabPss̄abπap̄πbq̄ (6.31)

The parameters λ?
qq̄z for the other agent can be found in an analogous way.

6.4.2.3 Initial node distribution

The initial node distribution ν for controller nodes of agent 1 and 2 can be updated

as follows. We do not show the complete derivation as it is similar to that of the other

parameters.

ν?p =
νp
Cp

∑

qs

β̂(p, q, s)νqPsη0(s) (6.32)

6.4.2.4 Complexity and implementation issues

The complexity of updating all action parameters is O(|P|4|S|2|A||Y |2). Updating node

transitions requires O(|P|4|S|2|Y |2 + |P|2|S|2|Y |2|A|2). This is relatively high when com-

pared to a single agent POMDP updates requiring O(|P|2|S|2|A||Y |) mainly due to the

scale of the interactions present in Dec-POMDPs.

In our experimental settings, we observed that having a relatively small sized controller

(N ≤ 5) suffices to yield good quality solutions. The main contributor to the complexity

is the factor S2 as we experimented with large domains having nearly 250 states. The

good news is that the structure of the E and M-step equations provides a way to effectively

reduce this complexity by significant factor without sacrificing accuracy. For a given state
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s, joint action 〈a, b〉 and joint observation 〈y, z〉, the possible next states can be calculated

as follows: succ(s, a, b, y, z) = {s′|P (s′|s, a, b)O(y, z|s′, a, b) > 0}. For most of the problems,

the size of this set is typically a constant k < 10. Such simple reachability analysis and

other techniques could speed up the EM algorithm by more than an order of magnitude

for large problems. The effective complexity reduces to O(|P|4|S||A||Y |2k) for the action

updates and O(|P|4|S||Y |2k + |P|2|S||Y |2|A|2k) for node transitions. Other enhancements

of the EM implementation are discussed in Section 6.6.

6.4.3 The Intuition Behind EM Update Strategy

In this section, we provide some insights about the update strategies of EM. We further

analyze the expected log likelihood function for the action update as shown in Section 6.4.2.1

as:

Q(θ,θ?) =

∞
∑

T=0

P (T )

T
∑

t=0

∑

a,p

[

P (r=1, a, p|T ; θ)
]

t
log π?

ap (6.33)

=
∑

a,p

log π?
ap

∞
∑

T=0

P (T )

T
∑

t=0

[

P (r=1, a, p|T ; θ)
]

t
(6.34)

=
∑

a,p

log π?
apEθ

[

r = 1, a, p
]

(6.35)

In the above expression, the expectation Eθ

[

r = 1, a, p
]

is the total expected reward when

the controller is in state p and action a is taken according to the previous iteration’s policy

parameter θ. When we maximize the above expression for π?
ap subject to normalization

constraints
∑

a π
?
ap = 1, we get the update as:

π?
ap =

Eθ

[

r = 1, a, p
]

Cp
(6.36)

where Cp is a normalization constant. The detailed expressions in Section 6.4.2.1 are essen-

tially computing this expectation using forward-backward message passing. To understand

Eq. (6.36) more clearly, consider the following iterative algorithm for optimizing the con-

troller. First, we fix every controller node’s parameters for every agent except for the

parameters for a single controller node for a particular agent. Now, we deterministically
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try every action setting for the particular node and greedily set the action parameter for

the node to be the action that results in maximum joint value. Clearly, this strategy will

monotonically improve the policy value until it reaches a local optima. Such a strategy has

been used in other decision making models such as influence diagrams and is referred to as

Single Policy Update (SPU) algorithm [79].

The updates of the EM algorithm are essentially a soft version of the above greedy and

deterministic rule. To understand this, let a? denote the action with maximum expectation:

a? = argmax
a∈A

Eθ

[

r = 1, a, p
]

(6.37)

Now consider applying the update rule of Eq. (6.36) infinitely many times without re-

computing the E-step. Clearly in the limit, we will have π?
a?p = 1 and the rest of action

parameters will be zero. This is essentially the SPU algorithm.

The above connection also provides insight as to why the soft-max approach of EM may

be a better strategy than the greedy deterministic update rule. First, the greedy update

rule computes deterministic controllers for both the agents. It has been already shown that

stochastic controllers can achieve better solution quality than deterministic controllers [114].

EM updates can provide stochastic controllers, which is an advantage. Second, it has been

already known in the graphical models community that the greedy update rule, also referred

to as Hard-Assignment EM [63, Chapter 19] and the EM algorithm optimize different

objectives. They can in general lead to different solutions, for example, in situations when

stochastic controllers are preferred to deterministic ones. The hard-assignment EM traverses

a combinatorial path and needs to fix all the parameters except one. The soft-asignment

EM, on the other hand, can simultaneously change the parameters of multiple nodes. Thus,

the moves in the parameter space of the soft-assignment EM are more sophisticated and

in general, infeasible for the hard-assignment EM, which cannot simultaneously change

multiple parameters. Thus, soft-assignment EM can converge to a better policy. Therefore,

using the soft-max based update strategy of the EM algorithm can be more advantageous

than the greedy deterministic rule.
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Size DEC-BPI NLP EM DEC-BPI EM

1 4.687 9.1 9.05 < 1s < 1s
2 4.068 9.1 9.05 < 1s < 1s
3 8.637 9.1 9.05 2s 1.7s
4 7.857 9.1 9.05 5s 4.62s

Table 6.3. Broadcast channel: Policy value, execution time

6.5 Experiments

We experimented with several standard 2-agent Dec-POMDP benchmarks with dis-

counting factor γ = 0.9. Complete details of these problems can be found in [6, 15]. We

compare our approach with the decentralized bounded policy iteration (DEC-BPI) algo-

rithm [15] and a non-linear, non-convex optimization solver (NLP) [6]. The DEC-BPI algo-

rithm iteratively improves the parameters of a node using a linear program while keeping

the other nodes’ parameters fixed. The NLP approach, which has been the state-of-the-art

for infinite-horizon Dec-POMDPs, recasts the policy optimization problem as a non-linear

program and uses an off-the-shelf solver, Snopt [48], to obtain a solution. We implemented

the EM algorithm in JAVA. All our experiments were on a Mac with 4GB RAM and 2.4GHz

CPU. Each data point is an average of 10 runs with random initial controller parameters.

In terms of solution quality, EM is always better than DEC-BPI and it achieves similar

or higher solution quality than NLP. We note that the NLP solver [48] is an optimized

package and therefore for larger problems is currently faster than the EM approach. For

the EM algorithm, we did not implement optimizations such as parallel execution using

multithreading, that can decrease the runtime significantly.

Table 6.3 shows results for the broadcast channel problem, which has 4 states, 2 actions

per agent and 5 observations. This is a networking problem where agents must decide

whether or not to send a message on a shared channel and must avoid collision to get

a reward. We tested with different controller sizes. On this problem, all the algorithms

compare reasonably well, with EM being better than DEC-BPI and very close in value to

NLP. The time for NLP is also ≈ 1s.
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Figure 6.3. Solution quality and runtime for ‘recycling robots’ (a) & (b) and ‘meeting on
a grid’ (c) & (d)

Figure 6.3(a) compares the solution quality of the EM approach against DEC-BPI and

NLP for varying controller sizes on the recycling robots problem. In this problem, two

robots have the task of picking up cans in an office building. They can search for a small

can, a big can or recharge the battery. The large item is only retrievable by the joint action

of the two robots. Their goal is to coordinate their actions to maximize the joint reward.

EM(2) and NLP(2) show the results with controller size 2 for both agents in Figure 6.3(a).

For this problem, EM works much better than both DEC-BPI and the NLP approach. EM

achieves a value of ≈ 62 for all controller sizes, providing nearly 12% improvement over

DEC-BPI (= 55) and 20% improvement over NLP (= 51). Figure 6.3(b) shows the time

comparisons for EM with different controller sizes. Both the NLP and DEC-BPI take nearly

1s to converge. EM with controller size 2 has comparable performance, but as expected,

EM with 4-node controllers takes longer as the complexity of EM is proportional to O(|P|4).
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Figure 6.4. Solution quality (a) and likelihood (b) for ‘multiagent tiger’

Figure 6.3(c) compares the solution quality of EM on the meeting on a grid problem.

In this problem, agents start diagonally across in a 2 × 2 grid and their goal is to take

actions such that they meet each other (i.e., share the same square) as much as possible.

As the figure shows, EM provides much better solution quality than the NLP approach. EM

achieves a value of ≈7, which nearly doubles the solution quality achieved by NLP (= 3.3).

DEC-BPI results are not plotted as it performs much worse and achieves a solution quality

of 0, essentially unable to improve the policy at all even for large controllers. Both DEC-

BPI and NLP take around 1s to converge. Figure 6.3(d) shows the time comparison for EM

versions. EM with 2-node controllers is very fast and takes < 1s to converge (50 iterations).

Again, because of EM’s quartic complexity in the controller size |P|, the time required for

larger controllers is higher. Also note that in both the cases, EM could run with much

larger controller sizes (≈10), but the increase in size did not provide tangible improvement

in solution quality.

Figure 6.4 shows the results for the multi-agent tiger problem, involving two doors with

a tiger behind one door and a treasure behind the other. Agents should coordinate to open

the door leading to the treasure [6]. Figure 6.4(a) shows the quality comparisons. EM does

not perform well in this case; even after increasing the controller size, it achieves a value

of −19. NLP works better with large controller sizes. However, this experiment presents

an interesting insight into the workings of EM as related to the scaling of the rewards.

Recalling the relation between the likelihood and the policy value from Theorem 4, the
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Figure 6.5. Solution quality and runtime for box pushing (a) & (b) and Mars rovers (c)
& (d)

equation for this problem is: V θ = 1210Lθ − 1004.5. For EM to achieve the same solution

as the best NLP setting (= −3), the likelihood should be .827. Figure 6.4(b) shows that the

likelihood EM converges to is .813. Therefore, from EM’s perspective, it is finding a really

good solution. Thus, the scaling of rewards has a significant impact (in this case, adverse)

on the policy value. This is a potential drawback of the EM approach, which applies to

other Markovian planning problems when using the technique of [142]. Incidently, DEC-BPI

performs much worse on this problem and gets a quality of −77.

Figure 6.5 shows the results for the two largest Dec-POMDP domains—Box pushing

and Mars rovers. In the box pushing domain, agents need to coordinate and push boxes

into a goal area. In the Mars rovers domain, agents need to coordinate their actions to

perform experiments at multiple sites. Figure 6.5(a) shows that EM performs much better

than DEC-BPI for every controller size. For controller size 2, EM achieves better quality
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than NLP with comparable runtime (Figure 6.5(b), 500 iterations). However, for the larger

controller size (= 3), it achieves slightly lower quality than NLP. For the largest Mars rovers

domain (Figure 6.5(c)), EM achieves better solution quality (= 9.9) than NLP (= 8.1).

However, EM also takes many more iterations to converge than for previous problems and

hence, requires more time than NLP. EM is also much better than DEC-BPI, which achieves

a quality of −1.18 and takes even longer to converge (Figure 6.5(d)).

6.6 Discussion

We presented a new approach to solve DEC-POMDPs using inference in mixtures of

DBNs. Even a simple implementation of the approach provides good results. Extensive

experiments show that EM is always better than DEC-BPI and compares favorably with the

state-of-the-art NLP solver. The experiments also highlight one potential drawback of the

EM approach: slow convergence rate for large problems. We can address the runtime issue

by parallelizing the algorithm, as all the steps of EM can be easily performed in parallel. For

example, α and β can be propagated in parallel. Even updating each node’s parameters

can be done in parallel for each iteration. Furthermore, the structure of EM’s update

equations is amenable to Google’s Map-Reduce paradigm [32], allowing each parameter

to be computed by a cluster of machines in parallel using Map-Reduce. Such scalable

techniques will certainly make our approach many times faster than the current serial

implementation. An interesting future direction of research is to investigate how a different

scaling of rewards will affect the convergence properties of EM.

The main benefit of the EM approach is that it opens up the possibility of using pow-

erful probabilistic inference techniques to solve decentralized planning problems. Using a

graphical DBN structure, EM can easily generalize to richer representations such as fac-

tored or hierarchical controllers, or continuous state and action spaces. Unlike the existing

techniques, EM can easily extend to larger multi-agent systems with more than 2 agents, as

will be shown in the next chapter. The ND-POMDP model [99] is a class of Dec-POMDPs

specifically designed to support large multi-agent systems. It makes some restrictive yet

realistic assumptions such as locality of interaction among agents, and transition and ob-

servation independence. EM can naturally exploit such independence structure in the DBN
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and scale to larger multi-agent systems, something that current infinite-horizon algorithms

fail to achieve.

The main publications that describe the contributions of this chapter are the following:

• The mapping between planning for decentralized POMDPs, probabilistic inference

and the EM algorithm is developed in the following publication:

A. Kumar and S. Zilberstein. Anytime Planning for Decentralized POMDPs using

Expectation Maximization. In Proc. of the International Conference on Uncertainty

in Artificial Intelligence (UAI), pages 294–301, 2010.

An extension of the inference-based approach to general influence diagrams was devel-

oped in the following publication:

• X. Wu, A. Kumar and S. Zilberstein. Influence Diagrams With Memory States: Rep-

resentation and Algorithms. In Proc. of the International Conference on Algorithmic

Decision Theory (ADT) , pages 306–319, 2011.
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CHAPTER 7

ACHIEVING SCALABILITY FOR RESTRICTED MODELS

In previous chapters, we have discussed and developed approximate algorithms that can

efficiently solve 2-agent Dec-POMDPs. However, scaling even such approximate algorithms

for more than 2-agents is a non-trivial task. In fact, most of the 2-agent approximate

algorithms we have developed, such as the EM approach of chapter 6, have exponential

complexity in the number of agents. Therefore, we ask the following question: Is there a

general characterization of the interaction among agents that when present in a multiagent

planning model leads to a relatively scalable approximate algorithm?

In this chapter, we answer this question affirmatively and identify certain mild condi-

tions that are sufficient to make multiagent planning amenable to a scalable approximation

w.r.t. the number of agents. This is achieved by constructing a graphical model that ex-

ploits such restricted interactions among agents. We again illustrate a close relationship

with machine learning by showing that likelihood maximization in such a graphical model

is equivalent to policy optimization. Using the Expectation-Maximization framework for

likelihood maximization, we show that the necessary inference can be decomposed into

processes that often involve a small subset of agents, thereby facilitating scalability. We

derive a global update rule that combines these local inferences to monotonically increase

the overall solution quality. Furthermore, our approach is easily parallelizable and takes

the form of message-passing among agents, ideally suited for large multiagent systems.

Experiments on a large multiagent planning benchmark, with state and action spaces

up to O(522), O(320) respectively, confirm that our approach is scalable w.r.t. the number

of agents and can solve planning problems for up to 20 agents, which cannot be handled

by previous best approaches. For smaller multiagent systems, our approach provides better

solution quality and is about an order-of-magnitude faster than the previous best nonlinear

programming approach.
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7.1 Related Work

Many recent attempts to increase the scalability of planners w.r.t. the number of agents

impose restrictions on the allowed interactions among the agents such as transition inde-

pendence [12, 99], weak-coupling among agents that is limited to certain states [147], and

directional transition dependence [156]. One of the earliest models that demonstrated scal-

ability by limiting interactions among agents was TI-Dec-MDP or transition-independent

Dec-MDP [10]. Agents in these models can fully observe their local state. The dependence

among agents was only through the joint-reward function. The complexity of this model

was shown to be NP-Complete [51]. A detailed complexity analysis of different types of

interactions among agents is provided in [51]. An extension of TI-Dec-MDP was proposed

in [11], which introduced structured transition dependencies.

The TI-Dec-MDP model was extended to handle the partial observability about environ-

ment states in [99], resulting in a model called network-distributed POMDP or ND-POMDP.

It was shown that the joint-value factorizes among smaller sub-groups of agents based on

immediate reward decomposability. Such factorization was exploited to develop a number

of algorithms that scale relatively well w.r.t. the number of agents [99, 146, 88]. Another

restricted class of models is the transition-decoupled POMDP or TD-POMDP [156]. This

model explicitly differentiated among an agent’s private state that can only be affected by

the agent’s local action and the shared states, that can be affected by other agents. However,

the representation power of TD-POMDP is mostly limited to non-concurrent interactions,

in which agents are structured in a parent-child relationship. An agent can only affect the

state transitions of its children, not vice-versa. Structured interactions were also exploited

for deciding how to communicate among agents [96, 97].

A majority of the above models try to identify restrictions on agent interactions that

can enable scalable planning. With the exception of the work of Witwicki and Durfee

[157], which was conducted concurrently with us, there has not been much work towards

a general characterization of conditions under which multiagent planning can be made

scalable. Witwicki and Durfee [157] provide a characterization of weak-coupling among

agents similar to our work. However, a significant difference is that, in our work we propose

a concrete algorithm that can efficiently exploit such weak-coupling among agents to enable
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scalability to large multiagent systems. The algorithm proposed by Witwicki and Durfee

[157] can only solve very small multiagent problems. In their formulation, the planning

problem is mapped to a constraint optimization problem, where variables denote agents.

The domain of a variable is the set of all possible policies for the agent. This is highly

inefficient as the policy space for an agent is extremely large and in general, limiting the

scalability of the approach. In contrast, the approach we present requires probabilistic

inference in small sub-groups of agents. Such probabilistic inference, in general, has the

computational requirement equivalent to evaluating the policies. Therefore, our approach

presents a concrete framework that can scale up to large multiagent systems by exploiting

weak-coupling among agents.

7.2 Value Factorization Framework for Multiagent Planning

As before, we represent each agent’s policy as a bounded, finite state controller (FSC).

This approach has been used successfully for both POMDPs [114] and Dec-POMDPs [6]. Let

us assume that the state space S is factored s.t. S = (S1×...×SM ), an assumption that holds

in several multiagent planning models such as ND-POMDPs [99] and TD-POMDPs [156].

Without making further (conditional independence) assumptions on the problem structure,

a general Dec-POMDP requires exact inference in the full corresponding (finite-time) DBNs,

which would be exponential in the number of state variables and agents. Our approach relies

on a general simplifying property of agent interaction, which we later show to be consistent

with many of the existing multiagent planning models.

Definition 13. A value factor f defines a subset Af⊆{1, .., N} of agents and a subset

Sf ⊆{1, ..,M} of state variables.

Definition 14. A multiagent planning problem satisfies value factorization if the joint-
policy value function can be decomposed into a sum over value factors:

V (θ, s) =
∑

f∈F

Vf (θ
f , sf ) , (7.1)

where F is a set of value factors, θf ≡ θAf is the collection of parameters of the agents of factor f ,
and sf ≡ sSf is the collection of state variables of this factor.

Even when the value factorization property holds, planning in such models is still highly

coupled because factors may overlap. That is, an agent can appear in multiple factors as
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Figure 7.1. Plate notation for (a) Dec-MDPs; (b) ND-POMDPs

can state variables. Therefore, a value factor cannot be optimized independently. But, as we

show later, it leads to an efficient Expectation Maximization algorithm. Such additive value

functions have also been used to solve large factored MDPs [64]. We require that each value

factor Vf can be evaluated using the DBN mixture based approach of Sec. 6.3. However, this

is not a restriction, as the DBN-based approach can model arbitrary Markovian planning

problems.

Theorem 5. The worst case complexity of optimally solving a multiagent planning problem

satisfying the value factorization property is NEXP-Hard.

The proof of the above theorem is straightforward—any two agent finite-horizon Dec-

POMDP is NEXP-Complete and also satisfies the value factorization property as there is

only a single factor involving two agents. In fact, in the previous chapter we precisely

addressed this issue using the EM framework (see Section 6.4). Next, we investigate when

this property holds and when it is computationally advantageous, and establish the following

result.

Theorem 6. The value factorization property holds in transition independent Dec-MDPs [12],

Network-Distributed POMDPs [99] and Transition-Decoupled POMDPs [156]. Each value

factor in these models also allows for efficient probabilistic inference in the EM framework.

The joint value is shown to be factorized based on the immediate-reward factorization

in Dec-MDPs [12] and ND-POMDPs [99]. Figure 7.1 shows the plate notation for our

value factor representation for both of these models. The outer plate shows a factor f

and the inner plate depicts the interaction among agent parameters which include state,
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action and observation variables. We provide the steps of the EM algorithm for these two

models in Sec. 7.2.2 and show that the inferences required by the E-step decompose along

the immediate-reward factorization, which involves fewer number of agents and is thus

scalable.

Our approach can also model Transition-Decoupled POMDPs (TD-POMDPs) [156]. In

this case, agents have local parameters (factored local state and rewards). However, certain

features of the local state can depend on other agents’ actions. This dependency among

agents is described using an influence directed acyclic graph (DAG) where each node is

an agent. A parent-child relationship in this DAG implies that the child’s local states are

controllable by the parent, but not vice-versa. An important characteristic is that given

its parents’ policies, an agent can compute its value function. In our representation, this

translates into a value factor for each agent i, which consists of i and all its ancestors in

the DAG. The joint-value decomposition along value factors is straightforward. It might

appear that the DBN corresponding to the value factor of a leaf node will become very

large leading to prohibitive inference. However, this is not so, as a summary of an agent’s

influence on its immediate children can be compactly represented as an influence DBN [156].

Intuitively, the inference queries EM requires can be performed by updating such influence

DBNs for each edge in this DAG in a top-down fashion, avoiding exponential complexity in

the number of agents.

We note that the value factorization property of Eq. (7.1) is trivially satisfied when all

the agent and state variables are included in a single factor. Obviously, the computational

advantages of our approach are limited to settings where each factor is sparse, involving

much fewer agents than the entire team. This allows for efficient inference in the respective

DBNs (inference can still be efficient for special cases such as TD-POMDPs that have

larger factors). In the general case, the additive value function may include components

depending on all states and agent parameters. This is analogous to the factored HMMs [47]

where, conditioned on the observations, all Markov chains become coupled and the exact

E-step of EM becomes infeasible. While this is beyond the scope of this paper, a promising

approach for the general case is using variational methods to approximate the posterior

P (s1:M1:T | r̂=1) (minimizing the KL-divergence between the factored representation and the
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Figure 7.2. (a) Value factor mixture; (b) Zoomed-in view of each mixture component (x, y
are generic placeholders for random variables).

true posterior) [47]. Given such an approximate posterior, the M-step updates we derive

next can be used to realize an approximate EM scheme.

Theorem 7. In models satisfying the value factorization property, the inferences in the

Expectation-Maximization framework can be performed independently for each value factor

f without imposing any restrictions on the interaction among the agents associated with

each value factor.

A constructive proof of this result is provided below. This result highlights the generality

and scalability of our approach, which —unlike previous works—does not require any further

independence assumptions.

7.2.1 DBN mixture for value factors

Figure 7.2 shows a new problem independent DBN mixture, also called value factor

mixture, which models Eq. 7.1. It consists of two mixture variable: F and T . F ranges

from 1 to |F |, the total number of value factors. Intuitively, F = i denotes the time

dependent DBN mixture for value factor i. A zoomed-in view of the this DBN mixture

is provided in Figure 7.2(b). The mixture variable F has a fixed, uniform distribution

(= 1/|F |). The distribution of the variable T is set as in Theorem 4.

This model relies on the fact that in our representation, each value factor can be repre-

sented and evaluated using a time dependent DBN mixture of Figure 7.2(b) and the binary

reward variable r, as also shown in the Section 6.3. This DBN mixture for a particular

value factor f will contain all the variables for agents involved in factor f : actions, con-
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troller nodes and observations, and the state variables Sf . The valuation Vf (θ
f ) can be

calculated by finding the likelihood L(r; θf ) = P (r = 1; θf ) of observing the binary reward

variable as r = 1.

Vf (θ
f ) = kL(r; θf ) + kf (7.2)

where k and kf are constants, with k being the same for all value factors. This can be easily

ensured by making all the original rewards positive by adding a suitable constant. Next we

state one of our main results. We are also assuming that the policy is being optimized for

an initial belief η0. We will also use a notational convenience that
∑|F |

F=1 is equivalent to

∑

f∈F .

Theorem 8. Maximizing the likelihood L(r;θ) of observing r = 1 in the value factor mixture

(Figure 7.2(a)) is equivalent to optimizing the global policy θ.

Proof. The overall likelihood is given by:

L(r;θ) = P (r = 1;θ) =
∑

f∈F

1

|F |
L(r; θf ) (7.3)

The theorem follows by substituting the value of each L(r; θf ) in the previous equation from

Eq. (7.2) and the joint-policy value decomposition assumption of Eq. (7.1).

7.2.2 The Expectation-Maximization Algorithm

We now derive the EM algorithm for maximizing the likelihood L(r;θ) in the value

factor mixture. Only r=1 is observed data, the rest of the variables are latent. We first

handle the infinite-horizon case, assuming a stationary policy. Later, we address finite-

horizon problems. Note that our derivations differ markedly from [141] as they focus on a

single-agent problem or from the EM approach for 2-agent Dec-POMDPs (see Section 6.4).

Our focus is on scalability w.r.t. the number of agents and generality.

An assignment to the mixture variables T and F=f denotes a T-step DBN for the value

factor f . For example, assume that the time dependent DBN mixture in Figure 7.2(b) is
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for value factor f . Then F = f and T = 1 denote the 1-step DBN (the second DBN) in

Figure 7.2(b). Let zt denote all the hidden variables for a single time slice t in this DBN. Let

Zf = z0...T denote a complete assignment to all the variables from slice 0 to T . We assume

for simplicity that each value factor f involves k agents. The full joint for the mixture is:

P (r = 1, Zf , T,F = f) = P (T )P (F = f)
[

R̂sfaf
]

t=T

k
∏

i=1

T
∏

t=0

[

πfi(a, q)
]

t

k
∏

i=1

T
∏

t=1

[

λfi(q, q̄, y)
]

t

k
∏

i=1

[νfi(q)]0P (Zf\(Af , Qf )|T,F = f)

(7.4)

where the subscript fi denotes the respective parameters for agent i involved in factor f .

The square brackets denote dependence upon time: [πfi(a, q)]t=πfi(at=a, qt=q). We also

use [P (v, v̄)]t to denote P (vt = v, vt−1 = v̄). Zf\(Af , Qf ) denotes all the variables in this

DBN except the action and controller nodes of all the agents. Importantly, the structure of

this equation is model independent as by the conditional independence of policy parameters

(π(a, q)=P (a|q)), the first part of the equation (the product terms) can always be written

this way. Since EM maximizes the expected log-likelihood, we take the log of the above to

get:

logP (r = 1, Zf , T,F = f) =

k
∑

i=1

T
∑

t=0

[

log πfi(a, q)
]

t
+

k
∑

i=1

T
∑

t=1

[

log λfi(q, q̄, y)
]

t

+
k

∑

i=1

[

log νfi(q)
]

0
+ 〈other terms〉 (7.5)

where 〈other terms〉 denote terms independent of policy parameters θ. EM maximizes the

following expected log-likelihood:

Q(θ,θ?) =
∑

f∈F

∞
∑

T=0

∑

Zf

P (r = 1, Zf , T,F = f ; θf ) logP (r = 1, Zf , T,F = f ; θf
?

) (7.6)

where θ denotes the previous iteration’s joint-policy and θ? is the current iteration’s policy

to be determined by maximization. The structure of the log term (Eq. (7.5)) is particularly
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advantageous as it allows us to perform maximization for each parameter of each agent

independently. This does not imply complete problem decoupling as all the parameters

still depend on the previous iteration’s parameters for all other agents. We first derive the

update for the action parameter of an agent j. P (F) can be ignored as it is a constant.

Q(θ,θ?) for action updates is given by:

Q(θ,θ?) =
∑

f∈F

∑

T

P (T )
∑

Zf

P (r = 1, Zf |T, f ; θ
f )

T
∑

t=0

[

log π?
j (a, q)

]

t
(7.7)

To maximize this expression, we only need to consider the set of factors f that include

agent j, denoted by F (j). And because the policy is stationary, Q(θ,θ?) can be simplified:

Q(θ,θ?) =
∑

f∈F (j),T

P (T )
T
∑

t=0

∑

(a,q)j

P (r=1, (at, qt) = (a, q)j |T,f ;θ
f ) log π?

j (a, q) (7.8)

Let µj(a, q; θ
f ) be defined for each agent j and each factor f ∈ F (j) as follows:

µj(a, q; θ
f ) =

∑

T

P (T )
T
∑

t=0

P (r=1, (at, qt)=(a, q)j |T,f ; θ
f ) (7.9)

Then, the expression for Q(θ,θ?) can be further simplified:

Q(θ,θ?) =
∑

(a,q)j

log π?
j (a, q)

∑

f∈F(j)

µj(a, q; θ
f ) (7.10)

This expression can be easily maximized by using the Lagrange multiplier for the constraint

∑

a πj(a, q) = 1. The final update for agent j’s action parameters is:

π?
j (a, q) =

1

Cq

∑

f∈F(j)

µj(a, q; θ
f ) (7.11)

Cq is a normalization constant. The update for controller transition parameter λj(q, q̄, y)

can be found analogously by defining a function µj(q, q̄, y; θ
f ) along the lines of Eq. (7.9):

µj(q, q̄, y; θ
f ) =

∑

T

P (T )

T
∑

t=0

P (r=1, (qt, qt−1, yt) = (q, q̄, y)j |T,f ; θ
f ) (7.12)
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Figure 7.3. Message passing on the value factor graph: (a) shows the message direction
for E-step; (b) shows the M-step.

The parameter νj can be updated similarly. Therefore the E-step in the EM algorithm

involves computing the function µj for each agent j and each factor f ∈ F (j). Eq. (7.11)

specifies the M-step. Algorithm 2 describes a high level view of the EM algorithm for

multiagent systems.

7.2.3 Finite-Horizon Planning

EM can be easily adapted to the finite-horizon case with planning horizon H and no

discounting (hence P (T )=1/H is uniform). Each agent has a non-stationary policy repre-

sented as an acyclic FSM. That is, each controller variable qt represents possible controller

states at time t. The only difference lies in the definition of the µ functions:

µj(a, q
t; θf ) =

H
∑

T=t

P (r = 1, (at, qt) = (a, qt)j |T, f ; θ
f ) (7.13)

Notice that computing the µ functions is simpler than in the infinite-horizon case (Eq. 7.9).

The above inference requires separate computation in each DBN of length T = t until T =H.

The global update rule (Eq. 7.11) remains the same.

7.2.4 Scalability and Message-Passing Implementation

The description of the µ functions highlights the high scalability of EM. Even though the

planning problem is highly coupled with each agent, state variables allowed to participate

in multiple value factors (see Eq. 7.1), yet updating policy parameters requires separate

local inference in each factor to compute the µ function. The global update rule (Eq. 7.11)

combines such local inferences to provide a monotonic increase in overall solution quality.

Each local inference is model dependent and can be computed using standard probabilistic
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Algorithm 2: Message-Passing For Value Factorization based Multiagent Planning

input: Value Factor Graph G = (V,E)
Initialize policy parameters of each agent i randomly: θi ← randInit()1

while iter ≤MAX−ITER do2

foreach Agent i = 1 to N do3

Send parameters θi to each value factor f ∈ F(i)4

foreach Value factor f ∈ F do5

foreach Agent i ∈ f do6

Compute µi(a
i, qi; θf ) ∀a ∈ Ai, qi ∈ Qi (See Eq. (7.9))7

Compute µi(q
i, q̄i, yi; θf ) ∀qi, q̄i ∈ Qi, yi ∈ Y i (See Eq. (7.12))8

Compute µi(q
i; θf ) ∀qi ∈ Qi

9

Send message 〈µi(a
i, qi; θf )〉 to agent i10

Send message 〈µi(q
i, q̄i, yi; θf )〉 to agent i11

Send message 〈µi(q
i; θf )〉 to agent i12

foreach Agent i = 1 to N do13

Receive all messages from all factors f ∈ F(i)14

Set π(ai, qi)← 1
Cq

∑

f∈F(i) µi(a
i, qi; θf ) ∀a ∈ Ai, qi ∈ Qi

15

Set λ(qi, q̄i, yi)← 1
C

q̄i,yi

∑

f∈F(i) µi(q
i, q̄i, yi; θf ) ∀qi, q̄i ∈ Qi, yi ∈ Y i

16

Set ν(qi)← 1
C

∑

f∈F(i) µi(q
i; θf ) ∀qi ∈ Qi

17

Set θi ← 〈π, λ, ν〉18

iter ← iter + 119

return: The last iteration’s policy parameters for each agent

techniques. As our problem setting includes sparse factors, such local inference will be

computationally much simpler than performing it on the complete planning model.

Furthermore, the E and M-steps can be implemented using a parallel, distributed message-

passing on a bipartite value-factor graph G= (U, V,E). The set U contains a node uj for

each agent j. The set V contains a node vf for each factor f ∈F . An edge e=(uj , vf ) is

created if agent j is involved in factor f . Figure 7.3 shows such a graph with three value

factors in the black squares (the set V ) and 4 agents (the set U).

During the E-step, each factor node vf computes and sends the message µf→j=µj(•; ; θ
f )

to each node uj that is connected to vf . Figure 7.3(a) shows this step. An agent node uj

upon receiving all the µ messages from each factor node connected to it, updates its pa-

rameters as in Eq. (7.11) and sends the updated policy parameters θ? back to each factor

node it is connected to (see Figure 7.3(b)). This procedure repeats until convergence. Al-

gorithm 2 describes such message passing procedure for multiagent systems. Based on this

message-passing interpretation of EM, we can state the following result:
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Figure 7.4. Benchmarks 20D (left), 15-3D, 5P and 11H (right)

Theorem 9. The EM algorithm has linear complexity in the number of edges in the value

factor graph and exponential complexity with respect to the maximum number of agents

involved in a single value factor.

As stated earlier, when the value factors are sparse, EM algorithm will provide significant

computational savings over an approach that is oblivious to the underlying interaction

among agents. Another significant advantage of the EM algorithm is that all messages

can be computed in parallel by each factor node. Our experiments, using an 8-core CPU

resulted in near linear speedup over a sequential version. These characteristics of the EM

algorithm significantly enhance its scalability for large, but sparse planning problems.

7.2.5 Nature of Local Optima

Variants of the Dec-POMDP model are often solved by fixing the policies of a group

of agents and then finding the best response policy of the agent that interacts with the

group [98, 156]. EM offers significant advantages over such strategy. While both find

local optima, EM is more stringent and satisfies the Karush-Kuhn-Tucker conditions [17],

which is the norm in nonlinear optimization. The best-response strategy provides no such

guarantees. Furthermore, in Dec-POMDPs computing the best response is exponential in

the plan horizon [98]. EM does not suffer this drawback as it directly performs inferences

on the DBN.
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Figure 7.5. Solution quality achieved by EM (y-axis denotes quality and x-axis denotes
the iteration number).

7.3 Experiments

We experimented on a target tracking application in sensor networks modeled as an

ND-POMDP [99]. Fig. 7.4 shows four sensor topologies: 5P, 11H and 15-3D from [88] and

the largest 20D from [69].

We describe a variant of this application next, originally introduced in [99]. Each node

in these graphs is a sensor agent and edges are locations where targets can move. To track

a target and gain reward (=+80), two sensors must scan the target location simultaneously,

otherwise a penalty (=−1) is given. All targets have independent, stochastic trajectories

and their all possible locations form the external state-space. Sensors have an internal

state, an indication of the battery level of the sensor. Each scan action depletes the battery.

In addition to scanning, sensors have two additional actions sensor off and recharge. The

sensor off action allows sensors to conserve energy by remaining idle. When the battery is
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Instance\Size 2-Node 3-Node 4-Node 5-Node

5P .232 1.07 3.22 7.74
11H 1.29 6.07 18.90 45.23
15-3D 1.17 5.39 16.69 40.47
20D 5.03 22.01 67.85 171.26

Table 7.1. Time in seconds per iteration of EM

completely depleted, a sensor must perform recharge action, which has a cost (=−1). Each

sensor has three observation: target present, target absent and idle. False positives/negatives

are allowed for the first two observations. At runtime, sensors operating in a decentralized

manner without a central controller.

Note that our formulation of sensor network application is much richer and challenging

than the previously used benchmarks [88]. Earlier benchmarks did not include any internal

states, sensors were assumed to have an unbounded battery life. In the current formulation,

planning is much more complex as sensors must reason not only about scanning, but also

about conserving their energy, as they have a limited battery. EM was implemented in

JAVA. All our experiments were done on an 8-core Mac with 2GB RAM. Our implementa-

tion used multithreading to parallelize EM and utilized all 8-cores. Each plot is the best of

10 runs. The discount factor γ was 0.95. To speed up EM’s convergence, we used a greedy

variant of the M-step [143].

The 5P domain has 2 targets, 11H has 3 targets, 15-3D has 5 targets, and 20D has

6 targets. These problems have very large state-spaces: 6 × 55 for 5P, 64 × 511 for 11H,

144× 515 for 15-3D and 2700× 520 for 20D. Evidently, EM efficiently exploits the factored

representation of the state and action spaces and is highly scalable with linear complexity

w.r.t. the number of edges in the graph.

Figure 7.5 shows the solution quality EM achieves for each of these benchmarks with

different controller sizes. A notable observation from these graphs is that EM converges

quickly, taking fewer than 200 iterations even for such large multiagent planning problems.

The solution quality, as expected, increases monotonically with each iteration highlighting

the anytime property of EM. In general, the solution quality increased with the number of
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Instance/Value EM U.B. Random

5P 1250.89 (44.3%) 2820 61.23
11H 1509.27 (35.6%) 4230 8.41
15-3D 3094.05 (43.8%) 7050 104.2
20D 4154.04 (49.1%) 8460 −31.67

Table 7.2. Quality comparisons with a loose upper bound and random controllers for all
instances

Internal State = 2 Internal State = 3

N EM NLP EM NLP

2 670.8/3.8 79/5.4 972.5/8.9 905.7/17.8
3 670.8/13.02 140.4/14.5 1053.16/35.8 887.2/139
4 710.4/35.8 140.4/139.4 1062.4/107.4 1024.8/1078.1

Table 7.3. Solution quality/time comparison of EM (100 iterations) with NLP for the 5P
domain, N denotes controller size, Time in seconds

controller nodes. For example, for 20D, a 2-node controller achieves a quality of 3585.06

and a 5 node controller achieves 4154.04. However, for 5P and 15-3D, we did not observe

a significant increase in quality by increasing controller size, possibly due to the relative

simplicity of these configurations.

Table 7.1 shows the runtime per iteration of EM for different instances and varying

controller sizes. Encouragingly, the runtime is fairly small—particularly for smaller con-

troller sizes—even for large problems such as 20D. To further decrease the runtime for

larger controllers, we plan to use Monte-Carlo sampling techniques in the future.

Table 7.3 shows the solution quality comparison of EM with random controllers and

a loose upper bound. The upper bound was computed by assuming that each target is

detected at every time step including the battery recharge cost. Against random controllers,

EM always achieves much better solution quality. When compared against the upper bound,

we can see that EM performs quite well. Despite being a very loose bound, EM still achieves

a quality within 49.1% of this bound for the largest 20D domain—a solid performance.

Previously, no algorithm could solve infinite-horizon ND-POMDPs (>2-agents). To

further assess EM’s performance, we developed a nonlinear programming (NLP) formulation

of the problem and used a state-of-the-art NLP solver called Snopt [48]. Snopt could only
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Version \ FSC Size Handcrafted 2 (EM) 3 (EM) 4 (EM)

No penalty 13.92 13.95 15.48 15.7

Penalty (−.25) -3.36 5.27 5.27 5.27

Table 7.4. Quality of handcrafted controllers vs. EM (11H)

solve the smallest 5P domain and could not scale beyond controller size 4 and internal state 3

as it ran out of memory (=2GB). Table 7.3 shows the solution quality and time comparisons.

For internal state size of 2, Snopt gets stuck in a poor local optimum compared to EM. It

provides more competitive solutions for internal state 3, but EM is still better in solution

quality. Furthermore, the runtime of Snopt degrades quickly with the increase in nonlinear

constraints. This makes Snopt about an order-of-magnitude slower for controller size 4 and

internal state 3. These results further highlight the scalability of EM, which could scale up

to controller size 10 and internal state 5 within 2GB RAM and ≈ 4 hours for 100 iterations.

Table 7.4 shows a comparison of EM against handcrafted controllers designed to take into

account the target trajectories and partial observation in the 11H benchmark (Figure 7.4).

To simplify the problem for the handcrafted solution, all penalties were zero and the reward

for detecting a target was 1. This allowed continuous scan by sensors without worrying

about miscoordination penalty. The first row in this table shows this no penalty case. We

see that EM is competitive with the handcrafted controller. The second row shows the

results when there was a cost to charge batteries. In this case, sensors need to decide when

to become idle to conserve power. The handcrafted controller cannot learn this behavior

and hence EM produces much better quality in this case.

Finally, Table 7.5 highlights the significant opportunities that EM provides for parallel

computation. We consistently obtained almost linear speedup when using multithreading

on an 8-core CPU (total possible parallel threads in the largest domain 20D is 60). By

using a massively parallel platform such a Google’s MapReduce,we could easily solve much

larger team decision problems than currently possible.
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Version \ FSC Size 2 3 4 5

Serial 41.05 177.54 543.52 1308.20

Parallel 5.03 22.01 67.85 171.26

Table 7.5. Serial vs. parallel execution times per EM iteration in 20D.

7.4 Discussion

Despite the rapid progress in multiagent planning, the scalability of the prevailing for-

mal models has been limited. We developed a new approach to multiagent planning by

identifying the general property of value factorization that facilitates the development of

a scalable approximate algorithm using probabilistic inference. We show that several ex-

isting classes of Dec-POMDPs satisfy this property. In contrast to previous approaches,

our framework does not impose any further restrictions on agent interaction beyond this

property, thus providing a general solution for structured multiagent planning.

The key result that supports the scalability of our approach is that, within the EM

framework, the inference process can be decomposed into separate components that are

much smaller than the complete model, thus avoiding an exponential complexity. Addi-

tionally, the EM algorithm allows for distributed planning using message-passing along the

edges of the value-factor graph, and is amenable to parallelization. It also provides signifi-

cant advantages over existing locally optimal approaches for Dec-POMDPs, delivering more

rigorous guarantees on the solution. Results on large sensor network problems confirm the

scalability of our approach. Empirically, our approach, which has linear complexity in the

number of edges in the agent interaction graph could scale up to 20 agents, whereas the

previous best approach based on nonlinear programming could only scale up to 5 agents

due to increase in the number of nonlinear constraints.

Our approach offers a form of policy iteration using finite-state controllers to represent

policies; extending it to the value iteration is an important future work. We currently assume

that the structure of each value factor remains static. A significant contribution would be

to allow agents to change this structure via their actions and still provide the current

guarantees. Overall, this new approach promises to significantly enhance the scalability

and practical applicability of decentralized POMDPs.
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The main publication that describes the contributions of this chapter is the following:

• A. Kumar, S. Zilberstein and M. Toussaint. Scalable Multiagent Planning using

Probabilistic Inference. In Proc. of the International Joint Conference on Artificial

Intelligence (IJCAI), pages 2140–2146, 2011.
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Bounded Optimality for Sequential

Decision Making



CHAPTER 8

QUALITY BOUNDED SOLUTIONS FOR SEQUENTIAL DECISION

MAKING

In previous chapters, we presented a number of approximate algorithms for multiagent

sequential decision making within the Dec-POMDP framework. These algorithms had poly-

nomial runtime complexity, however, they did not provide quality bounds or any guarantee

of optimality. Developing algorithms that can optimally solve multiagent decision-theoretic

planning problems within the Dec-POMDP framework seems inherently inefficient due to

the complexity being NEXP-Hard. In this chapter, we address an alternative question— If

agents’ policies are restricted to a particular sub-class of all the possible policies, then how

can we find the optimal policy within this sub-class?

We develop mixed integer linear programming (MILP) formulation for optimizing agents’

policies represented as finite-state controllers (FSC). Once we have a MILP representation

of the planning problem, then we can use off-the-shelf and highly efficient MILP solvers such

as CPLEX to solve the MILP to optimality or get non-trivial upper bounds. Previously,

several attempts have been made to formulate both the single agent and multiagent plan-

ning problems under uncertainty using mathematical programming [114, 24, 3, 4, 15, 6].

However, most of these approaches either result in a non-convex program, which suffers

from the problem of local optima or they approximate the policy optimization using a con-

vex program, which does not guarantee accuracy. Our approach is the first to formulate the

policy optimization problem as a compact mixed integer program for both Dec-POMDPs

and single agent POMDPs. A crucial aspect of our approach is representing the multiagent

planning problem using an alternate graphical model that highlights the main features nec-

essary for the MILP formulation. In our case, we represent the multiagent planning problem

using a cross-product MDP defined over the environment states and the finite-state con-
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troller states representing agents’ policies. This cross-product MDP provides the necessary

constraints that enable the formulation of the MILP.

Such connections to the MILP formulation are significant, as mixed integer programming

is one of the most heavily researched area in the mathematical optimization community

unlike other non-convex or non-linear formulations. There are several techniques that can

provide an approximate solution to large mixed integer programs, while also providing

worst case quality guarantees. We show how to apply one such technique called Lagrangian

relaxation [16] to settings when a large number of agents (� 2) are involved in the planning

problem. These techniques can be easily implemented in a message-passing manner, making

them particularly suitable for large multiagent systems.

8.1 Related Work

There have been several attempts to optimize the policy represented as a finite-state

controller for both single agent POMDPs and Dec-POMDPs. Most of the techniques to

optimize agents’ policies under the Dec-POMDP model borrow heavily from algorithms for

the POMDP model. Therefore, we first review approaches to optimize an agent’s policy

under the POMDP model.

A technique to optimize fixed-size controllers based on linear programming was presented

in [114]. However, this technique did not provide a focused way to find the optimal policy

for the given initial belief. It modifies the finite-state controller such that the value increases

for the complete belief space. As such, it could get stuck in a local optimum and may need

a large number of controller nodes to provide a good policy. A non-convex quadratic pro-

gramming formulation was developed in [3]. As this approach involved solving a non-convex

optimization problem, it could also get stuck in a local optimum. A number of techniques

based on non-linear programming to optimize hierarchical controllers for the POMDP model

were presented in [24]. As the proposed non-linear programs were non-convex, optimality

could not be guaranteed. An interesting approach to optimize deterministic finite-state con-

trollers was presented in [94]. This approach could provide the optimal FSC. However, the

technique was based on a customized branch-and-bound search, rather than a mathematical

programming formulation. As we show empirically, using highly efficient industrial-strength
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solvers such as CPLEX is likely to outperform a customized search algorithm. Furthermore,

modeling the policy optimization problem explicitly as a mathematical program provides

deeper insights into the structure of the problem. It also opens the door to the application

of approximate techniques such as Lagrangian relaxation that can solve large mixed integer

programs efficiently while also providing quality guarantees.

One of the first technique to optimize agents’ policies under the Dec-POMDP model

was proposed in [14]. It was an extension of the LP based approach of [114]. However, this

technique could also get stuck in a local optimum and does not target the given initial belief

state. A more efficient non-linear programming (NLP) based formulation was presented

in [6]. This approach resulted in a non-convex program and thus, no optimality guarantee

or quality bounds could be provided. The inference based approach which we developed

in Chapters 6 and 7, provides good solutions, but cannot provide any quality guarantees,

as the EM algorithm can also get stuck in local optima. In another line of work, Aras

and Dutech [7] presented a number of MILP formulations to optimize finite-horizon Dec-

POMDP policies. Their approach was based on the sequence form representation of a Dec-

POMDP policy. This approach resulted in large mixed integer programs as the number of

sequences or agent histories increases exponentially with the plan horizon. Furthermore, this

approach is not suitable for infinite-horizon Dec-POMDPs as the size of an agent’s history

is unbounded in the infinite-horizon case. A number of MILP formulations were presented

in [96, 97] for a sub-class of Dec-MDPs. These formulations also used the sequence form

and thus, are not suitable for infinite-horizon Dec-POMDPs where policies are represented

as cyclic finite-state controllers.

8.2 LP Formulation of MDPs

We first describe the linear programming formulation for an infinite-horizon MDP as our

approach to optimize Dec-POMDP controllers is based on this LP formulation. The two

time slice DBN for an MDP is shown in Figure 8.1. The variable s denotes the underlying

state, which is observable to the agent. The variable a denotes the action. The probability

P (·|s, a) denotes the transition function, R(·, ·) denotes the reward function; η0 denotes the
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Figure 8.1. Two time slice DBN for single agent MDP

initial belief over the state. The linear program for finding the optimal MDP policy is given

as:

max
∑

s

∑

a

R(s, a)x(s, a) (8.1)

∑

a

x(j, a)−
∑

s

∑

a

γ P (j|s, a)x(s, a) = η0(j) ∀j ∈ S (8.2)

where the parameter x(s, a), intuitively, denotes the total discounted amount of time the

environment state was s and action a was taken. Therefore, the total reward corresponding

to being in state s and taking action a is R(s, a)x(s, a). This describes the objective function

of the LP formulation. The constraints are analogous to the flow conservation principle.

Definition 15. The parameter x(s, a) is defined as follows [116]:

x(s, a) =
∑

j∈S

η0(j)

∞
∑

t=1

γt−1P (st = s, at = a | s1 = j) (8.3)

The MDP policy can be extracted from the x(·) parameters as follows:

P (a | s) =
x(s, a)

∑

a′∈A x(s, a′)
(8.4)

8.3 Cross-Product MDP For a 2-Agent Dec-POMDP

In this section, our goal is to develop a mathematical programming formulation anal-

ogous to the LP formulation for an MDP to optimize deterministic finite-state controllers

for a infinite-horizon 2-agent Dec-POMDP. Even though the formulation is developed for

infinite-horizon planning, it can be extended in a straightforward manner to handle finite-

horizon planing as the policy trees used in finite-horizon planning (see Section 4.2.1) can

be viewed as acyclic finite-state controllers.
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We use the same model definition for a 2-agent infinite-horizon Dec-POMDP as in

Section 6.2 and the corresponding 2 time slice DBN shown in Figure 6.1. The set S denotes

the set of environment states, with a given initial state distribution η0(s). The action set

of agent 1 is denoted by a ∈ A and agent 2 by b ∈ B. The state transition probability

P (s′|s, a, b) depends upon the actions of both the agents. Upon taking the joint action

〈a, b〉 in state s, agents receive the joint reward R(s, a, b). Y is the finite set of observations

for agent 1 and Z for agent 2. O(yz | s, a, b) denotes the probability P (y, z|s, a, b) of agent

1 observing y ∈ Y and agent 2 observing z ∈ Z when the joint action 〈a, b〉 was taken

and resulted in state s. We are concerned with solving infinite-horizon Dec-POMDPs with

a discount factor γ < 1. We adopt the convention that nodes of agent 1’s controller are

denoted by p and agent 2’s by q. The controller parameters 〈π, λ, ν〉 are the same as

described in Section 6.2.

Our approach is to interpret a 2-agent Dec-POMDP as an single agent MDP defined

over the underlying environment state and the states of finite-state controllers of both the

agents. We then introduce constraints in the LP formulation of this cross-product MDP

that enable the resulting policy to be executed in a decentralized and partially observable

setting. The state space, action space and transition function of this cross-product MDP

are defined below.

State space: Figure 8.2 shows the 2-time slice DBN for the underlying cross-product

MDP. The state of this MDP is the tuple (p, q, s). The state space is the cross-product of

the joint-controller state and the environment state.

Action space: The action space has two components. First, the actions a and b of both

the agents are included in the action space. In addition, the controller transition parameters

λ(·) for both the agents are also included in the action space. This is required as our goal

in solving this cross-product MDP is to not only find the action mapping for each state

(p, q, s), but is also to find out which node the control should transfer to for each possible

observation received. This is achieved by creating a new random variable nyi for each

observation yi of agent 1 and variable nzi for each observation zi of agent 2. The domain of

each random variable nyi is the set of all controller nodes to which the control can transfer
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Figure 8.2. Cross-product MDP corresponding to a 2 agent Dec-POMDP

upon receiving observation yi. The same is true for all variables nzi of agent 2. Therefore

the joint-action for the underlying cross-product MDP is

(a, b, ny1 , . . . , nyk , nz1 , . . . , nzk).

To simplify the notation, we denote the tuple (ny1 , . . . , nyk) by 〈ny〉 and the tuple (nz1 , . . . , nzk)

by 〈nz〉.

Transition function: The transition function for this cross-product MDP is given by:

P (p′, q′, s′ |p, q, s, a, b, 〈ny〉, 〈nz〉)=
∑

yr∈Y,zl∈Z

P (p′ |p, 〈ny〉, yr)P (q′ |q, 〈nz〉, zl)O(yrzl |s
′, a, b)P (s′ |s, a, b)

(8.5)

where distributions P (p′ |p, 〈ny〉, yr) and P (q′ | q, 〈nz〉, zl) are defined as:

P (p′ |p, 〈ny〉, yr) =

{

1 if nyr
= p′

0 otherwise
(8.6)

P (q′ |q, 〈nz〉, zl) =

{

1 if nzl = q′

0 otherwise
(8.7)

Intuitively, the above distributions encode the fact that a complete assignment to variables

〈ny〉 and 〈nz〉 defines a deterministic controller transition function.
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Similar to the single agent MDP linear program, we create parameters

x(p, q, s, a, b, ny1 , . . . , nyk , nz1 , . . . , nzk)

by noting that the underlying state in the cross-product MDP is (p, q, s) and the action

is (a, b, ny1 , . . . , nyk , nz1 , . . . , nzk). For notational simplicity, we represent this distribution

compactly as x(p, q, s, a, b, 〈ny〉, 〈nz〉). Notice that the total number of these variables is

exponential in the size of observation space of each agent. Fortunately, we can exploit

the independence structure present in the DBN of Figure 8.2 to reason with marginalized

version of these variables. Details are presented in later sections.

8.4 Mixed-Integer Linear Program for Dec-POMDPs

8.4.1 Objective

The objective function of the cross-product MDP can be written as:

max
∑

p,q,s

∑

a,b

R(s, a, b)x(p, q, s, a, b) (8.8)

Intuitively, the parameter x(p, q, s, a, b) arises as a result of marginalizing out
(

〈ny〉, 〈nz〉)
)

from x(p, q, s, a, b, 〈ny〉, 〈nz〉). A precise definition relating the two will be presented later.

8.4.2 Variables and Constraints

We first describe the variables in the MILP formulation of table 8.1.

• x(p, q, s, a, b) represents the total discounted amount of time when the controller of

agent 1 is in state p, controller of agent 2 is in state q, the underlying state is s,

agent 1 performed action a and agent 2 performed action b. The precise definition is

presented in the later sections.

• x(p, q, s, a, b, ny = p′, nz = q′) represents the total discounted amount of time when

the controller of agent 1 is in state p, controller of agent 2 is in state q, the underlying

state is s, agent 1 performed action a, the controller transition rule for agent 1 is to
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transition to node p′ if observation y is received, agent 2 performed action b and the

the controller transition rule for agent 2 is to transition of node q′ if observation z is

received.

• x(p, a) represents the total discounted amount of time when the controller of agent 1

is in state p and action taken is a. Variable x(q, b) can be described analogously.

• x(p) represents the total discounted amount of time when the controller of agent 1 is

in state p. Variable x(q) can be defined analogously.

• x(p, p′y) represents the total discounted amount of time when the controller of agent

1 is in state p and the controller transition rule for agent 1 is to transition to node p′

if observation y is received. Variable x(q, q′z) can be described analogously.

• x(a|p) represents the action selection parameter π(·) for agent 1. That is, if x(a|p)=1,

then action a is taken when the controller of agent 1 is in state p. It is an integer

variables, which implies the resulting controller is deterministic. Variable x(b|q) can

be defined analogously.

• x(p′|p, y) represents the controller node transition parameter λ(·) for agent 1. That is,

if x(p′|p, y)=1, then the control transfers to the node p′ if the observation y is received

and the current controller node is p. Variable x(q′|q, z) can be defined analogously.

We now write the equivalent of the MDP flow constraint in Eq. (8.2).

∑

a,b

x(p′, q′, s′, a, b) = η0(p
′, q′, s′)+

γ
∑

p,q,s

∑

a,b,y,z

O(yz | s′, a, b)P (s′ | s, a, b)x(p, q, s, a, b, ny = p′, nz = q′) (8.9)

To make sure that variables x(p′, q′, s′, a, b) and x(p, q, s, a, b, ny = p′, nz = q′) are consistent

with each other, we introduce the following constraints:
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x(p, q, s, a, b) =
∑

p′,q′,s′,y,z

O(yz | s′, a, b)P (s′ | s, a, b)x(p, q, s, a, b, p′y, q
′
z) (8.10)

x(p, q, s, a, b) =
∑

y,z,p′,q′

x(p, q, s, a, b, p′y, q
′
z) (8.11)

where we have represented the assignment ny = p′ as p′y and the assignment nz = q′ as q′z.

An explanation of the rest of the constraints is provided in the next section.

8.4.3 Correctness of the MILP for 2-Agent Dec-POMDP

The main idea behind the mixed-integer program of Table 8.1 is that one can interpret

optimizing the Dec-POMDP policy as optimizing an MDP policy. The MDP in this regard is

the cross-product MDP as shown in Figure 8.2. Therefore, we first write the constraints for

the LP formulation of this cross-product MDP. From the known results about MDPs [116,

Section 6.9], we can define the following:

Definition 16. The parameter x(p, q, s, a, b, 〈ny〉, 〈nz〉) is defined as:

∑

j∈S,k∈P,l∈Q

η0(j, k, l)
∞
∑

t=1

γt−1Pt(p, q, s, a, b, 〈ny〉, 〈nz〉 | s1=j, p1=k, q1= l) (8.31)

where we use the notation that P (ut = u, vt = v|·) can be concisely represented as

Pt(u, v|·), where ut and vt denote random variables for the time slice t and u, v are a par-

ticular assignment to theses random variables; · represents conditioning on the appropriate

variables. Subscripts denote time (for example s1 indicates the state random variable for

time step 1), unless stated otherwise. The set of all controller nodes for agent 1 is denoted

by P and for agent 2 by Q.

The main issue while reasoning with variables x(p, q, s, a, b, 〈ny〉, 〈nz〉) is that there are

exponentially many such variables in the number of observations of both the agents as total

assignments to the random vector 〈ny〉, 〈nz〉 are exponential in the size of the observation

space. Fortunately, by exploiting the conditional independencies in the DBN of the cross-

product MDP of Figure 8.2, we can substantially reduce the number of such variables to only

polynomial in all model parameter. To achieve this, we define the parameter x(p, q, s, a, b)

as follows:
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Variables: x(p, q, s, a, b), x(p, q, s, a, b, p′y, q
′
z), x(p, a), x(q, b), x(p), x(q),

x(p, p′y), x(q, q
′
z), x(a|p), x(b|q), x(p

′|p, y), x(q′|q, z) ∀ p, q, s, a, b, y, z, p′, q′

Maximize:
∑

p,q,s

∑

a,b

R(s, a, b)x(p, q, s, a, b) (8.12)

Subject to:
∑

a,b

x(p′, q′, s′, a, b) = η0(p
′, q′, s′) + γ

∑

p,q,s

∑

a,b,y,z

O(yz | s′, a, b)P (s′ | s, a, b)

x(p, q, s, a, b, ny = p′, nz = q′) ∀(p′, q′, s′) (8.13)

x(p, q, s, a, b) =
∑

p′,q′,s′,y,z

O(yz | s′, a, b)P (s′ | s, a, b)x(p, q, s, a, b, p′y, q
′
z) ∀(p, q, s, a, b) (8.14)

x(p, q, s, a, b) =
∑

y,z,p′,q′

x(p, q, s, a, b, p′y, q
′
z) ∀(p, q, s, a, b) (8.15)

x(p, a) =
∑

q,s,b

x(p, q, s, a, b) ∀(p, a) (8.16)

x(q, b) =
∑

p,s,a

x(p, q, s, a, b) ∀(q, b) (8.17)

x(p) =
∑

a

x(p, a) ∀p (8.18)

x(q) =
∑

b

x(q, b) ∀q (8.19)

x(p, p′y) =
∑

q,s,a,b,q′

x(p, q, s, a, b, p′y, q
′
z) ∀(p, y, z, p′) (8.20)

x(q, q′z) =
∑

p,s,a,b,p′

x(p, q, s, a, b, p′y, q
′
z) ∀(q, y, z, q′) (8.21)

x(p)− x(p, a) ≤
1− x(a|p)

1− γ
∀(p, a) (8.22)

x(q)− x(q, b) ≤
1− x(b|q)

1− γ
∀(q, b) (8.23)

x(p)− x(p, p′y) ≤
1− x(p′|p, y)

1− γ
∀(p, y, p′) (8.24)

x(q)− x(q, q′z) ≤
1− x(q′|q, z)

1− γ
∀(q, z, q′) (8.25)

∑

a

x(a|p) = 1 ∀p (8.26)

∑

b

x(b|q) = 1 ∀p (8.27)

∑

p′

x(p′|p, y) = 1 ∀(p, y) (8.28)

∑

q′

x(q′|q, z) = 1 ∀(q, z) (8.29)

x(a|p) ∈ {0, 1}, x(b|q) ∈ {0, 1}, x(p′|p, y) ∈ {0, 1}, x(q′|q, z) ∈ {0, 1} (8.30)

Table 8.1. Mixed-integer program for optimizing a 2-agent Dec-POMDP policy. The
0-1 binary variables are shown in Eq. (8.30). The rest are continuous, positive variables:
x(·) ≥ 0.
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Definition 17. The variable x(p, q, s, a, b) is defined as:

x(p, q, s, a, b) =
∑

〈ny〉,〈nz〉

x(p, q, s, a, b, 〈ny〉, 〈nz〉) (8.32)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1Pt

(

p, q, s, a, b | s1=j, p1=k, q1= l
)

(8.33)

The above variable denotes the marginalization over exponentially sized random vector
〈ny〉 and 〈nz〉. Intuitively, it represents the total discounted amount of time when the
controller of agent 1 is in state p, controller of agent 2 is in state q, the underlying state
is s, agent 1 performed action a and agent 2 performed action b. It is straightforward to
derive the above result from definition 16 as follows:

x(p, q, s, a, b) =
∑

〈ny〉,〈nz〉

x(p, q, s, a, b, 〈ny〉, 〈nz〉)

=
∑

〈ny〉,〈nz〉

∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1Pt

(

s, p, q, a, b, 〈ny〉, 〈nz〉 | s1=j, p1=k, q1= l
)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)
∞
∑

t=1

γt−1
∑

〈ny〉,〈nz〉

Pt

(

s, p, q, a, b, 〈ny〉, 〈nz〉 | s1=j, p1=k, q1= l
)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1Pt

(

s, p, q, a, b | s1=j, p1=k, q1= l
)

Let us consider a particular observation yr of agent 1 and zl of agent 2; a particular controller

node p′ of agent 1 and q′ of agent 2. Let us define the variable x(p, q, s, a, b, nyr =p′, nzl =q′)

as follows:

Definition 18. The variable x(p, q, s, a, b, nyr =p′, nzl =q′) is defined as follows:

x(p, q, s, a, b, nyr
=p′, nzl =q′)=

∑

〈ny〉\p′

yr
,〈nz〉\q′zl

x(p, q, s, a, b, p′yr
, q′zl , 〈ny〉 \ p

′
yr
, 〈nz〉 \ q

′
zl
)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1Pt

(

p, q, s, a, b, p′yr
, q′zl |s1=j, p1=k, q1= l

)

where we use the notational simplification that the assignment nyr = p′ is represented

as p′yr . The same is true for q′zl . The above definition can be easily derived by using

the expression of the variable x(p, q, s, a, b, 〈ny〉, 〈nz〉) from definition 16. Intuitively, the

variable x(p, q, s, a, b, nyr =p′, nzl =q′) represents the total discounted amount of time when

the controller of agent 1 is in state p, controller of agent 2 is in state q, the underlying state

is s, agent 1 performed action a, the controller transition rule for agent 1 is to transition

to node p′ if observation yr is received when the current controller node is p, agent 2

performed action b and the the controller transition rule for agent 2 is to transition of node

q′ if observation zl is received when the current controller node is q.
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8.4.3.1 Justification For MILP Constraint (8.14) and (8.15)

We now investigate the relationship between variables x(p, q, s, a, b, p′yr , q
′
zl
) and the vari-

able x(p, q, s, a, b, 〈ny〉, 〈nz〉). Although, these two variables are related to each other using

the joint frequency variable x(p, q, s, a, b, 〈ny〉, 〈nz〉), the key idea is to avoid using explicitly

the joint frequency variables as they are exponential in number. Therefore, we next in-

vestigate an explicit constraint between the variable x(p, q, s, a, b, p′yr , q
′
zl
) and the variable

x(p, q, s, a, b, 〈ny〉, 〈nz〉). This relationship will become a constraint in the MILP formulation

as shown in Eq. (8.14). Using definition 17, the variable x(p, q, s, a, b) is defined as:

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1Pt

(

p, q, s, a, b | s1=j, p1=k, q1= l
)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1
∑

p′,q′,s′,yr,zl,〈ny〉,〈nz〉

Pt

(

p, q, s, a, b, p′, q′, s′, yr, zl, 〈ny〉, 〈nz〉 | s1=j, p1=k, q1= l
)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1
∑

p′,q′,s′,yr,zl,〈ny〉,〈nz〉

P
(

p′|p, yr, 〈ny〉
)

P
(

q′|q, zl, 〈nz〉
)

Pt

(

p, q, s, a, b, s′, yr, zl, 〈ny〉, 〈nz〉 | s1=j, p1=k, q1= l
)

where we have used the conditional independencies present in the DBN of Figure 8.2.

Notice that the probability P
(

p′|p, yr, 〈ny〉
)

is 1 only if nyr = p′; 0 otherwise. Using this

fact, we can further simplify the above equation as:

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1
∑

p′,q′,s′,yr,zl
∑

〈ny〉\p′

yr
,〈nz〉\q′zl

Pt

(

p, q, s, a, b, s′, yr, zl, p
′
yr
, q′zl , 〈ny〉\p

′
yr
, 〈nz〉\q

′
zl
|s1=j, p1=k, q1= l

)

We can marginalize the expression involving Pt over 〈ny〉 \ p
′
yr and 〈nz〉 \ q

′
zl

to get:

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1
∑

p′,q′,s′,yr,zl

Pt

(

p, q, s, a, b, s′, yr, zl, p
′
yr
, q′zl |s1=j, p1=k, q1= l

)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1
∑

p′,q′,s′,yr,zl

O(yrzl |s
′, a, b)P (s′ |s, a, b)Pt

(

p, q, s, a, b, p′yr
, q′zl |s1=j, p1=k, q1= l

)

We can take the inner summation over states and observations outside to get:

=
∑

p′,q′,s′,yr,zl

O(yrzl |s
′, a, b)P (s′ |s, a, b)

∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1 Pt

(

p, q, s, a, b, p′yr
, q′zl |s1=j, p1=k, q1= l

)

Now using the definition 18, we get the following constraint:
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x(p, q, s, a, b) =
∑

p′,q′,s′,yr,zl

O(yrzl |s
′, a, b)P (s′ |s, a, b)x(p, q, s, a, b, p′yr

, q′zl) (8.34)

This is the constraint that specifies the relationship between the variable x(p, q, s, a, b) and

the variable x(p, q, s, a, b, p′yr , q
′
zl
), and is represented in the MILP constraint (8.14).

The MIP constraint (8.15) can be understood as marginalizing out the action variables

p′y and q′z from the joint-distribution x(p, q, s, a, b, p′y, q
′
z) and can be easily derived by ap-

plying the marginalization operation to the definition 18 to get the equivalent expression

for x(p, q, s, a, b) in definition 17.

8.4.3.2 Justification For MILP Constraint (8.13)

Intuitively, the MILP constraint (8.13) represents the flow constraint for the cross-

product MDP. Using variables x(p, q, s, a, b, 〈ny〉, 〈nz〉), this constraint can be written as:
∑

a,b,〈ny〉,〈nz〉

x(p′, q′, s′, a, b, 〈ny〉, 〈nz〉) = η0(p
′, q′, s′) + γ

∑

p,q,s,a,b,〈ny〉,〈nz〉

P (p′, q′, s′|p, q, s, a, b, 〈ny〉, 〈nz〉)

x(p, q, s, a, b, 〈ny〉, 〈nz〉) (8.35)

Using definition 17, the LHS of the above equation is equal to
∑

a,b x(p
′, q′, s′, a, b). This

is identical to the LHS of the MILP constraint (8.13). We now focus on the second term in

the RHS. We have:

=
∑

p,q,s,a,b,〈ny〉,〈nz〉

P (p′, q′, s′|p, q, s, a, b, 〈ny〉, 〈nz〉)x(p, q, s, a, b, 〈ny〉, 〈nz〉) (8.36)

=
∑

p,q,s,a,b,yr,zl,〈ny〉,〈nz〉

P (p′, q′, s′, yr, zl|p, q, s, a, b, 〈ny〉, 〈nz〉)x(p, q, s, a, b, 〈ny〉, 〈nz〉) (8.37)

=
∑

p,q,s,a,b,yr,zl,〈ny〉,〈nz〉

P (p′|p, yr, 〈ny〉)P (q′|q, zl, 〈nz〉)P (s′, yr, zl|p, q, s, a, b, 〈ny〉, 〈nz〉)x(p, q, s, a, b, 〈ny〉, 〈nz〉)

(8.38)

From the DBN of Figure 8.2, we note that the variables (s′, yr, zl) are independent of the

variables (p, q, 〈ny〉, 〈nz〉) given variables (s, a, b). Also, the distributions P (p′|p, yr, 〈ny〉)

and P (q′|q, zl, 〈nz〉) are deterministic and are 1 only when nyr =p′ and nzl =q′. Therefore,

we can simplify the above equation as:

=
∑

p,q,s,a,b,yr,zl

P (s′, yr, zl|s, a, b)
∑

〈ny〉\p′

yr
,〈nz〉\q′zl

x(p, q, s, a, b, p′yr
, q′zl , 〈ny〉\p

′
yr
, 〈nz〉\q

′
zl
) (8.39)

By using the expression for the variable x(p, q, s, a, b, nyr = p′, nzl = q′) from definition 18,

we have:
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=
∑

p,q,s,a,b,yr,zl

O(yrzl | s
′, a, b)P (s′ | a, b)x(p, q, s, a, b, p′yr

, q′zl) (8.40)

Substituting the above simplification into the RHS of the flow constraint of Eq. (8.35), we

get the MILP constraint (8.13).

8.4.3.3 Decentralization and Partial Observability Constraints

So far we have discussed how the constraints in the LP formulation of an MDP can be

represented for the cross-product MDP without using exponentially many variables in the

number of observations. In this section, we discuss the additional constraints that make the

resulting policy of the cross-product MDP to be realizable in a partially observable multia-

gent setting. To see why this may not be trivially true, consider the variables x(p, q, s, a, b).

These variables imply that the selection of the joint-action (a, b) depends on the underlying

state (p, q, s). However, no agent observes completely this joint-state during the execution

time. Therefore, without additional constraints, the policy of the cross-product MDP is

not useful for the multiagent case. The following results identify additional constraints that

make the policy of the cross-product MDP valid for partially observable multiagent settings.

Theorem 10. The MILP constraints (8.22) and (8.23) along with the integrality constraints

of Eq. (8.30) guarantee that the action selection parameter of the cross-product MDP policy

is executable in a decentralized and partially observable environment.

Proof. We prove the result for agent 1, it follows automatically for the agent 2. We know

from MILP constraints that:

x(p) =
∑

a

x(p, a) (8.41)

x(p) ≥ x(p, a) ∀ a (8.42)

As the variable x(a|p) is an integer, we consider a particular action a such that x(a|p) =

1. The rest of the action selection parameters will be zero due to the constraint that

∑

a x(a|p) = 1. Substituting the value x(a|p) = 1 to the constraint (8.22), we have:

x(p)− x(p, a) ≤ 0 (8.43)

x(p) ≤ x(p, a) (8.44)

From inequalities (8.42) and (8.44), we infer that:
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x(p) = x(p, a) (8.45)

That is, whenever the controller of the agent 1 is in state p, it always executes the action

a corresponding to the variable x(a|p) = 1. This is exactly how a policy in a decentralized

and partially observable environment should look like. The action selection depends only on

the controller state of the particular agent and not on the underlying state or the controller

state of other agents.

When the variable x(a|p) = 0, that is, when action a is not performed at controller state

p, then we have:

x(p)− x(p, a) ≤
1

1− γ
(8.46)

This inequality also holds as the maximum value the variable x(p, a) can get is 1
1−γ

. The

following equation based on definition 17 and constraint (8.18) explains it:

x(p) =
∑

q,s,a,b

∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1Pt

(

p, q, s, a, b | s1=j, p1=k, q1= l
)

(8.47)

=
∑

j∈S,k∈P,l∈Q

η0(j, k, l)

∞
∑

t=1

γt−1Pt

(

p | s1=j, p1=k, q1= l
)

(8.48)

≤ γ0 + γ1 + γ2 + . . . =
1

1− γ
(8.49)

Using the above results, we conclude that constraints (8.22) and (8.23) along with inte-

grality constraints ensure that the action selection part of the cross-product MDP policy is

executable in a decentralized and partially observable setting.

Theorem 11. The MILP constraints (8.24) and (8.25) along with the integrality constraints

of Eq. (8.30) guarantee that the controller node transition parameter of the cross-product

MDP policy is executable in decentralized and partially observable environment.

Proof. We prove the result for agent 1, it follows automatically for the agent 2. We can

infer from the MILP constraint (8.20) that:
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x(p) =
∑

p′

x(p, p′y) ∀ y (8.50)

x(p) ≥ x(p, p′y) ∀ p′y (8.51)

As the variable x(p′|p, y) is an integer, we consider a particular node p′ such that x(p′|p, y) =

1. The rest of the node transition parameters will be zero due to the constraint that

∑

p′ x(p
′|p, y) = 1. Substituting the value x(p′|p, y) = 1 to the constraint (8.24), we have:

x(p)− x(p, p′y) ≤ 0 (8.52)

x(p) ≤ x(p, p′y) (8.53)

From inequalities (8.51) and (8.53), we infer that:

x(p) = x(p, p′y) (8.54)

The above equality implies that whenever the controller of agent 1 is in state p, then the

controller node transition rule upon receiving the observation y is to transition determinis-

tically to the node p′. Thus, the controller transition parameters of an agent do not depend

on the underlying environment state s or the controller state q of the other agent. This

satisfies the requirement of a decentralizable policy in a partially observable environment.

When the variable x(p′|p, y) = 0, then we have:

x(p)− x(p, p′y) ≤
1

1− γ
(8.55)

The above inequality is always satisfied as we know that x(p) ≤ 1
1−γ

. Therefore, the

theorem holds.

8.4.4 Complexity

The complexity of the MILP in table 8.1 is governed by the number of variables and

constraints. The number of continuous variables are dominated by the number of variables

x(p, q, s, a, b, p′y, q
′
z). The total number of such variables is (k4|S||A|2|Y |2), assuming that

both the agents have the same number of actions and observations; k denotes the controller

size of an agent. The number of these continuous variables can become large for larger

benchmarks. However, they are still polynomial in all problem parameters. Furthermore,

the actual number of variables can be significantly reduced by exploiting the structure
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Figure 8.3. Cross-product MDP corresponding to a single agent POMDP

present in the conditional probability tables of the given instance, such as nearly determin-

istic transition and observation functions. Moreover, the complexity of solving the MILP

mainly depends on number of integer variables on which the branching is done in the search

tree.

The number of integer variables are 2× (k|A|+ k2|Y |). They increase linearly w.r.t. the

action and observation space, and quadratically w.r.t to the size of the controller. Fortu-

nately, unlike continuous variables, which are defined for the joint parameters of both the

agents, the number of integer variables are defined independently for each agent’s FSC. This

is a significant advantage of our MILP formulation, as otherwise a large number of integer

variables would have had a significantly negative impact on the scalability of solving the

MILP.

The total number of constraints are O(k2|S||A|2+k2|Y |+k|A|). Importantly, the number

of constraints increase linearly w.r.t.the state and observation space and quadratically w.r.t.

the action space. Furthermore, the number of these constraints can be reduced significantly

by considering the structure present in a particular problem instance. The number of

constraints which involve integer variables is quite small: O(4k|A|+ 2k2|Y |+ 2k|Y |).

8.5 Mixed-Integer Linear Program for POMDPs

As there is no existing mixed integer programming formulation for single agent POMDPs,

table 8.2 presents a MILP formulation for POMDPs. The constraints in this formulation

are derived by ignoring the second agent’s variables from the MILP formulation of Dec-
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Variables: x(p, s, a), x(p, s, a, p′y), x(p, a), x(p), x(p, p
′
y), x(a|p), x(p

′|p, y) ∀ p, s, a, y, p′

Maximize:
∑

p,s

∑

a

R(s, a)x(p, s, a) (8.56)

Subject to:
∑

a

x(p′, s′, a) = η0(p
′, s′) + γ

∑

p,s

∑

a,y

O(y | s′, a)P (s′ | s, a)x(p, s, a, ny = p′)

∀(p, s) (8.57)

x(p, s, a) =
∑

p′,s′,y

O(y | s′, a)P (s′ | s, a)x(p, s, a, p′y) ∀(p, s, a) (8.58)

x(p, s, a) =
∑

p′,y

x(p, s, a, p′y) ∀(p, s, a) (8.59)

x(p, a) =
∑

s

x(p, s, a) ∀(p, a) (8.60)

x(p) =
∑

a

x(p, a) ∀p (8.61)

x(p, p′y) =
∑

s,a

x(p, s, a, p′y) ∀(p, y, p′) (8.62)

x(p)− x(p, a) ≤
1− x(a|p)

1− γ
∀(p, a) (8.63)

x(p)− x(p, p′y) ≤
1− x(p′|p, y)

1− γ
∀(p, y, p′) (8.64)

∑

a

x(a|p) = 1 ∀p (8.65)

∑

p′

x(p′|p, y) = 1 ∀(p, y) (8.66)

x(a|p) ∈ {0, 1}, x(p′|p, y) ∈ {0, 1} (8.67)

Table 8.2. Mixed-integer program for optimizing a single agent POMDP policy. The
0-1 binary variables are shown in Eq. (8.67). The rest are continuous, positive variables:
x(·) ≥ 0.
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POMDPs. As expected, the size of the POMDP MILP is smaller than that of Dec-POMDP

formulation. The number of integer variables in this formulation are O(k2|Y |), which are

about half as many variables in a Dec-POMDP. This suggests that solving POMDP MILP

may be more scalable than the Dec-POMDP MILP.

8.6 Extension to Multiple Agents—Lagrangian Relaxation

In this section, we present an extension of the MILP formulation for 2-agent Dec-

POMDPs to handle multiple agents under the value factorization framework we introduced

earlier—see definition 14 and Eq. (5.13). According to this property, the joint value can be

factorized as:

V (θ, s) =
∑

f∈F

Vf (θ
f , sf ) (8.68)

where f denotes subgroups of agents that interact together. Often, we can also decompose

the value for the initial belief η0 as in the ND-POMDP model [70]:

V (θ, η0) =
∑

f∈F

∑

sf∈Sf

η0(s
f )Vf (θ

f , sf ) (8.69)

Ideally, to find the best joint-policy for a particular belief η0, if each component of the joint

value function could be optimized independently of each other, it would lead to significant

computational savings and increase scalability. This is because in many planning problems

the subgroups of agents that interact together is much smaller than the total number of

agents.

However, this does not appear to be the case as each agent can be involved in multiple

value factors. Therefore, if we optimize the policy for each value factor independently, then

an agent can be assigned different policies in different value factors. Clearly, this leads to

inconsistency. However, we can take an optimization based principled approach to retain

the advantage of optimizing the policy for each value factor independently and to also

minimize inconsistency between different policies computed for a single agent. A technique

called Lagrangian relaxation allows us to achieve such a decoupling [17].
Optimizing the joint-policy for all the agents gives rise to the following optimization

problem:

max
θ∈Θ

∑

f∈F

∑

sf∈Sf

η0(s
f )Vf (θ

f , sf ) (8.70)
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where Θ is the joint-parameter space. Let us denote an agent by index i. If an agent is

involved in value factor f , then we denote its policy by θfi . The idea behind consistency

is that if an agent is involved in two value factors f1 and f2, then it should be assigned

the same policy. That is θf1i = θf2i . We explicitly write this constraint in the optimization

problem as:

min
θf∈Θf ∀f∈F, ki ∀i

−
∑

f∈F

∑

sf∈Sf

η0(s
f )Vf (θ

f , sf ) (8.71)

Subject to: θfi = ki ∀i, ∀ f ∈ F (8.72)

Notice that we changed the sign of the optimization problem to make it a minimization

problem. In the above optimization problem, we let ki represents some arbitrary policy for

agent i. The above optimization problem is maintaining consistency among different copies

of the policy for an agent i by forcing all of them to be equal to ki. The above optimization

problem is still hard to solve due to the coupling constraint (8.72). We relax the above

constraint by writing the Lagrangian function as:

L(〈θf 〉,λ) = −
∑

f∈F

∑

sf∈Sf

η0(s
f )Vf (θ

f , sf ) +
∑

i

∑

f∈Fi

λf
i (θ

f
i − ki) (8.73)

where Fi denotes all the value factors f such that agent i is involved those value factors.

The variable λf
i is a dual variable introduced for each constraint in Eq. (8.72). Using the

above Lagrangian function, we can write the dual of optimization problem (8.71) as:

q(λ) = min
θf∈Θf ∀f∈F, ki ∀i

−
∑

f∈F

∑

sf∈Sf

η0(s
f )Vf (θ

f , sf ) +
∑

i

∑

f∈Fi

λf
i (θ

f
i − ki) (8.74)

= min
θf∈Θf ∀f∈F, ki∀i

∑

f∈F

{

−
∑

sf∈Sf

η0(s
f )Vf (θ

f , sf ) +
∑

i

λf
i θ

f
i

}

−
∑

i

ki
∑

f∈Fi

λf
i (8.75)

The dual function has the constraint that q(λ) ≥ −∞ for all the λ in its domain. In

the above optimization problem, notice that the variable ki is unconstrained. Therefore,

minimizing over it can make the dual unbounded from below. To prevent this, we introduce

the following set of constraints:

Λi =
{

{λf
i }f∈Fi

|
∑

f∈Fi

λf
i = 0

}

∀i (8.76)

By using the above condition, the expression for the dual simplifies to:
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q(λ) =
∑

f∈F

{

min
θf∈Θf ∀f∈F

−
∑

sf∈Sf

η0(s
f )Vf (θ

f , sf ) +
∑

i

λf
i θ

f
i

}

(8.77)

Notice that, in the above optimization problem, the dual function can be evaluated by

solving the inner optimization problem for each value factor independently. Furthermore,

the dual solution provides a quality bound for our original optimization problem (8.71).

Theorem 12. For every value of dual variables λ, the dual solution satisfies the inequality

q(λ) ≤ V ?

where v? is the optimal solution to the joint-policy optimization problem (8.71).

Using the above result, we know that the dual solution always provides a quality bound

for the optimal solution. Based on this result, our new optimization problem is to find dual

variables λ such that the dual function q(λ) is maximized:

max
λ∈Λ

q(λ) (8.78)

where Λ is the intersection of all the constraints Λi for each agent i. There are standard

techniques to solve the dual maximization problem such as dual sub-gradient optimiza-

tion [17]. In such a sub-gradient based technique, we can calculate a sub-gradient ∇(λ)

of the function q(λ) given a particular value of λ. Then we change the dual variables by

taking a step in the direction of the sub-gradient:

λ′ →
[

λ+ α∇(λ)
]

Λ
(8.79)

where [·]Λ denotes the projection onto the constraint set Λ; α denotes the step parameter;

λ is the previous iteration’s estimate of the dual variable and λ′ denotes the new estimate of

the dual variable. The sub-gradient itself is readily available from the solution of each inner

minimization problem in (8.77). Furthermore, the dual is a concave function. Therefore,

there are no local optima in the dual and under some regularity assumption on the set size

α, the sub-gradient technique will converge to the optimal dual solution. However, there

might be duality gap, which implies that the dual optimal solution quality may not be the

same as the primal optimal solution quality.
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Figure 8.4. Quality comparison between the Dec-POMDP MILP solved using CPLEX and the
NLP-based solver. Solution quality (y-axis) is normalized, with 1 representing the optimal solution.

Definition 19. The duality gap can be measured by using the difference between the dual

optimal and primal optimal solution

Duality Gap = V ? − q(λ?),

where λ? is the optimal dual solution and V ? is the optimal primal solution quality.

Often in real-world problems the duality gap is small [17]. Furthermore, one can always

estimate an upper bound on the duality gap by measuring V − q(λ), where V is our cur-

rent primal solution and λ denotes the current iteration’s estimate of the dual variables.

Therefore, during the execution of the sub-gradient technique, we always know how far the

current solution is from the optimum. A significant advantage of such a dual decomposition

based technique is its ability to scale well to large multiagent systems by optimizing each

value factor independently and at same time encouraging consistency among different value

factors using dual variables.
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Problem |S| |A| |Y|

Broadcast Channel 4 2 5
Multiagent Tiger 2 3 2
Box Pushing 100 4 5
Mars Rover 256 6 8

Table 8.3. Problem size for different instances; |S| represents the state-space, |A| represents the
action-space per agent and |Y | represents the observation-space per agent.

8.7 Experiments

We experimented with several standard 2-agent Dec-POMDP benchmarks with dis-

counting factor γ = 0.9. We compare the MILP-based approach with the non-linear,

non-convex optimization solver (NLP) [6], which is one of the state-of-the-art solver for

solving 2-agent infinite-horizon Dec-POMDPs. More details about the NLP formulation

can be found in Section 6.2. We used CPLEX 12.0 to solve the MILP (8.1) for the given

Dec-POMDP instance. We compare the resulting solution quality and the execution time

of the CPLEX with the NLP solver. We also report if the CPLEX was able to find the

optimal solution for the given Dec-POMDP instance.

Figure 8.4 shows the solution quality comparison on a number of Dec-POMDP bench-

marks between the CPLEX and the NLP solver. The size of these problems are shown in

Table 8.3. As it is clear from this figure, CPLEX is able to provide high quality solutions

for the MILP, significantly better than the NLP solver for all the problems. One key rea-

son is that the NLP solver is solving a non-convex problem and therefore, is susceptible to

local optima. The CPLEX, which employs a branch-and-bound procedure, can provide the

optimal solution given sufficient time and space, otherwise it can be terminated early, still

providing a non-trivial upper bound.

Table 8.4 shows the runtime comparison between CPLEX and the NLP solver for a

number of problems. The runtime for the NLP solver are taken from [2, 6]. We used the

same setting for the NLP formulation as reported in previously published works. For the

MILP formulation, we chose to optimize a reactive controller [84]. A reactive controller

represents a controller design in which each agent memorizes the last observation received

and takes the next action based on the last observation. We included an additional start
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Problem MILP NLP

Time Optimal # FSC Nodes Time # FSC Nodes

Broadcast Channel 1 yes 4 1.1 4
Multiagent Tiger 1.1 yes 7 6137.0 19
Box Pushing 1.9 yes 6 1824.0 4
Mars Rover 13.5 yes 9 43.0 2

Table 8.4. Runtime comparison between CPLEX for the Dec-POMDP MILP and the NLP solver.

node for the reactive controller. The advantage of such reactive controllers is that the

controller structure is fixed. The search space only includes the mapping of actions to

the controller nodes. Finding optimal reactive controllers is itself a non-trivial problem,

being NP-Hard even for a single-agent POMDP [84]. However, the MILP formulation for

a Dec-POMDP provides high quality information to CPLEX to guide its heuristic search.

This results in CPLEX being orders-of-magnitude faster than the NLP solver as shown

in Table 8.4. Furthermore, CPLEX was able to find optimal reactive controller for each

agent and for each problem. The solution quality achieved by these reactive controller is

significantly better than the NLP solver as shown in Figure 8.4. The ‘Mars Rover’ problem,

which is one of the largest 2-agent Dec-POMDP problem can be solved optimally by CPLEX

within a few seconds. This clearly highlights the power of using mixed-integer programming

and the industrial strength MILP solvers such as CPLEX.

Our future work includes taking the optimization based formulations to the next step,

namely solving factored multiagent planning models by exploring the domain structure

using the Lagrangian relaxation based approach of Section 8.6.

8.8 Discussion

In this chapter, we addressed the question of how to achieve bounded optimality for se-

quential decision making under partial observability. We presented mixed integer program-

ming based formulation to optimize agents’ policies represented as finite-state controllers

under the Dec-POMDP framework. The connections to mixed integer programming lays the

foundation to providing quality bounds for sequential multiagent decision making problems

and incorporating advanced optimization based techniques such as Lagrangian relaxation

169



to handle large multiagent systems. Progress in this direction has been slow so far due to

the inherent difficulty of the highly non-linear nature of planning in partially observable

and multiagent settings.

Empirically, using the MILP formulation developed in our work, CPLEX could solve

standard Dec-POMDP benchmarks to optimality orders-of-magnitude faster than existing

approaches. The solution quality achieved by CPLEX was also significantly better than

previous approaches, that could get stuck in a local optimum. These encouraging results

provide an initial glimpse towards significant advances that can be made possible by bringing

optimization based techniques to multiagent planning.

Our work is the first to present a mixed integer programming formulation for both

single agent POMDPs and Dec-POMDPs. Using mixed integer programs is advantageous

than using other non-linear formulations as there are already highly efficient solvers such as

CPLEX available for solving them. Such optimization based techniques hold a significant

potential to address quality bounded planning in large multiagent systems. Our work in

this chapter only starts to explore the great promise of a number of other possibilities for

bringing the perspective of optimization techniques into multiagent systems

The main publication which illustrates the application of Lagrangian relaxation tech-

nique similar to the one presented in Section 8.6 to large mixed integer programs in the

context of planning for spatial conservation is described is the following:

• A. Kumar, X. Wu and S. Zilberstein. Lagrangian Relaxation Techniques for Scalable

Spatial Conservation Planning. In Proc. of the international conference on Artificial

Intelligence (AAAI), pages 309–315, 2012.
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CHAPTER 9

SUMMARY

In this thesis, we addressed the question of how can multiple agents coordinate to achieve

a common goal within a decision-theoretic framework. This thesis developed several novel

techniques to enable scalable and quality-bounded decision making in multiagent systems.

The key insight was to exploit the domain structure in a multiagent system in an algorithmic

framework based on synthesis of techniques from artificial intelligence, machine learning and

operations research. Despite the proven hardness results about multiagent decision-theoretic

planning, the techniques developed in this thesis were successful in pushing the envelope of

scalability by opening the door to the application of optimization and ML based approaches

to multiagent systems.

We used two rich frameworks to model multiagent decision making problems—distributed

constraint optimization and decentralized partially observable MDPs. Reasoning and plan-

ning within both these frameworks is challenging—NP-Hard for DCOPs and NEXP-Hard

for Dec-POMDPs. Therefore, techniques developed in this thesis leveraged domain struc-

ture by analyzing and exploiting structured interactions and independencies present in a

large multiagent system. Such structure, often represented within the broad framework of

graphical models such as Markov random field and dynamic Bayesian network, was then em-

bedded in an optimization framework that formed the basis for developing various efficient

and scalable algorithms.

Often, the optimization problem, even after exploiting such structured interactions, re-

mains challenging. We then used the variational principle from machine learning, in which

the optimization was carried out over a representative subset of the complete parameter

space, to develop efficient approximate algorithms. For example, we developed the hy-

brid bound for DCOPs in Chapter 3 and used finite-memory policies for agents within

the Dec-POMDP framework, as shown in Chapter 4. Algorithmically, we developed a
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synthesis of different techniques from multiple sub-areas of AI and operations research to

address the scalability of algorithms for decision-theoretic reasoning and planning. We

drew upon various mathematical optimization frameworks such as convex optimization,

difference-of-convex functions programming and linear programming as a toolbox for devel-

oping rigorously grounded approximate algorithms. We also provided optimality preserving

transformations which transform a multiagent planning problem to that of parameter learn-

ing problem that can be handled by using a number of learning techniques from the machine

learning literature.

Next, we highlight our specific contributions for single-step decision making problems

and sequential decision making problems in multiagent systems.

9.1 Single-Step Decision Making

We used the framework of distributed constraint optimization (DCOP) [95] to model

the single-step multiagent decision making problems. We addressed a broader version of

this problem by showing that the problem of finding the maximum a posteriori (MAP)

assignment in Markov random fields [153] is equivalent to solving the DCOP under certain

conditions in Chapter 2. Our main contribution is the development of a new variational

framework, called the hybrid bound, for DCOP and the MAP problem, and a scalable

message-passing algorithm to solve the optimization problem over the hybrid bound.

The two existing variational frameworks for the DCOP and MAP are based on linear

programming and quadratic programming. The main advantage of the LP formulation is

that it is convex and computationally tractable, thus there are no local optima. However,

this formulation is inexact, implying that the optimum of the LP does not solve the MAP

problem optimally. The QP formulation, on the other hand, is exact. However, it is non-

convex. Thus, globally optimizing the QP is intractable. Our new variational framework

combined the benefits of both the QP and the LP formulations, while minimizing effects of

their undesired properties. We showed analytically as well as empirically that the proposed

hybrid formulation provides a tighter approximation to the MAP problem than the LP based

formulation, which translates into a significantly better solution quality. By judiciously

choosing how to introduce the QP constraints in the hybrid formulation, we can control the
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non-convexity of the hybrid formulation, which otherwise could lead to poor local optima.

Thus, optimization over the hybrid formulation can avoid getting stuck in such poor local

optima, which is the main obstacle for the QP formulation.

We also developed a message-passing algorithm called Hybrid Belief Propagation (HBP)

that solves the optimization problem over the hybrid bound. This message-passing approach

was developed by exploiting the connection between the MAP problem and the difference-

of-convex function programming. This approach is also guaranteed to converge unlike other

approaches such as max-sum [107, 41]. Such message-passing approach is also ideal for

large multiagent systems as it only requires exchanging local, fixed-size messages among

neighboring agents.

Empirically, we tested the HBP algorithm on a number of synthetic and real-world

benchmarks from multiagent systems, operations research and machine learning literature.

The DCOP benchmarks were based on a sensor scheduling domain. Our results showed

that the HBP algorithm provided near-optimal solutions much faster than the state-of-the-

art DCOP algorithms such as ADOPT and max-sum. The HBP algorithm was more than

an order-of-magnitude faster than ADOPT. The max-sum algorithm, being also based on

message-passing was faster than ADOPT, but it provided much worse solution quality than

HBP. The error bound for some instances for the max-sum algorithm was as high as ≈ 135%,

whereas it was ≈ 15% for the HBP approach. Results on a number of other benchmarks

from the OR and ML literature showed that the HBP approach provided significantly better

solution quality than other state-of-the-art algorithms in the machine learning literature

based on LP relaxation, such as MPLP [134].

9.2 Sequential Decision Making

Our main contributions for multiagent sequential decision making problems are along

three directions:

• Development of efficient dynamic programming algorithms for finite-horizon decision

making.
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• Development of probabilistic inference based algorithms for infinite-horizon decision

making.

• Development of mathematical programming based techniques for quality bounded so-

lutions for both finite and infinite horizon decision making.

For finite-horizon decision making, we focused on the bottleneck dynamic programming

step of several approximate point-based algorithms, also known as the backup problem.

We investigated the computational characteristics of the backup problem for 2-agents and

showed that it is NP-Hard. Despite this negative result, we presented an efficient and

scalable optimal algorithm. We showed how this problem can be mapped to a weighted

constraint satisfaction problem (WCSP) and can be solved using state-of-the-art WCSP

solvers. Our results showed that bringing the perspective of constraint optimization helped

solve the backup problem more than an order-of-magnitude faster than state-of-the-art

solver PBIP [36]. We also investigated the backup problem in other restricted sub-classes of

Dec-POMDPs, such as ND-POMDPs, that can model larger multiagent systems. We again

showed how to solve this problem efficiently using WCSP solvers. This approach provided

magnitudes of speedup in the policy computation and generated better quality solution for

all test instances than earlier approaches [146, 88, 70].

For infinite-horizon decision making, our main contribution was the development of

probabilistic inference based approaches to optimize agents’ policies represented as finite-

state controllers and an analysis of general conditions that can make such inference-based

approach scalable to larger (� 2) multiagent systems. We presented a promising new

class of algorithms for the infinite-horizon case for 2-agent Dec-POMDPs, which recasts

the optimization problem as inference in a mixture of dynamic Bayesian networks (DBNs).

An attractive feature of this approach is the development of new insights that connect

inference techniques for DBNs with the multiagent planning, especially for supporting richer

representations such as factored or continuous states and actions, which so far have been

outside of the scope of existing algorithms. We performed inference in such DBNs by

adapting the well known Expectation Maximization (EM) algorithm from the machine
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learning literature to multiagent systems. Experiments on benchmark domains showed

that EM compared favorably against the state-of-the-art solvers.

We also provided a general characterization of the interaction among agents that when

present in a multiagent planning model leads to a relatively scalable probabilistic inference

based approximate algorithm. We identified such conditions based on the joint-value factor-

ization property, that enhances algorithmic scalability w.r.t. the number of agents. We also

developed a scalable, message-passing algorithm that can solve such planning problems us-

ing the EM framework. The EM framework is particularly suited for developing algorithms

for such restricted models as the EM approach works directly on the DBN representation

of the planning problem. Such graphical representation facilitates significant exploitation

of the independencies present in the planning model than the existing nonlinear program-

ming approach. Empirical results on a large multiagent benchmarks with up to 20 agents

and state and action spaces as large as O(320) showed that our approach scaled well. The

nonlinear programming approach, on the other hand, could only solve the smallest instance

with 5 agents due to large increase in the number of nonlinear constraints.

Finally, we developed a novel framework based on mathematical programming that can

achieve bounded optimality for multiagent sequential decision making problems. The main

drawback of previous approaches is their inability to provide any quality bound for an ap-

proximate solution. Our approach, that formulates the problem of optimizing finite-state

controllers as a mixed integer program (MILP), remedies this drawback. Once we have a

MILP representation of the planning problem, we can then use off-the-shelf and highly effi-

cient MILP solvers such as CPLEX to solve the MILP to optimality or provide non-trivial

upper bounds. Previously, several attempts have been made to formulate both the single

agent and multiagent planning problems under uncertainty using mathematical program-

ming [114, 24, 3, 4, 15, 6]. However, most of these approaches either resulted in a non-convex

program, which suffers from the problem of local optima or they approximate the policy

optimization using a convex program, which does not guarantee accuracy. We resolved

these problems by interpreting the multiagent planning problem under partial observability

as a single agent planning problem under full observability. We then incorporated a small

number of constraints into the MILP which guarantee that the resulting policy will work
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for the multiagent setting under partial observability. Empirically, we showed that our

MILP based approach worked quite well, often providing optimal controller-based policies

within a few seconds even for large 2-agent Dec-POMDP benchmarks that were previously

considered intractable.

Such connections to the MILP formulation also provides the groundwork for applying

advanced mathematical programming techniques to planning. Mixed integer programming

is one of the heavily researched area in the mathematical optimization community unlike

non-convex programming. There are several techniques that can approximate the solution to

large mixed integer programs while also providing quality bounds. We investigated one such

technique, Lagrangian relaxation, in the context of multiagent planning models with value-

factorization property. Our work in this context only starts to explore the great promise of

a number of other possibilities for bringing the perspective of optimization techniques into

multiagent systems

9.3 Future Directions

The thesis explores several new directions in multi-agent reasoning and planning that

merit significant further examination and analysis. We highlight several questions that are

of particular interest.

In the context of single-step decision making problems and the variational framework

of the hybrid bound, one open question is how to determine the edges for which the QP

constraint needs to be enforced. In the current work, we provided a heuristic that worked

by identifying a number of spanning trees of the graphical model. However, a better future

approach would be to analyze the solution from the previous iteration and identify certain

consistency properties that are violated by such solution. One such class of consistency

properties is based on cycle inequalities that any valid solution must satisfy [131, 129]. A

better approach to identify the edges for which the QP constraint should be enforced is to

identify edges that contribute most to the violation of such valid cycle inequalities. Such a

technique has significant potential to minimize the adverse effect of local optima and can

tighten the LP relaxation to provide better quality solutions.

176



Extending LP and QP based variational frameworks to resource constrained DCOPs,

also known as RC-DCOPs [20], is another important future research direction. Multiagent

coordination problems that involves resource constraints, such as line capacity constraints

in smart power grids [74], present a significant challenge for DCOP algorithms. The tradi-

tional way to handle such resource constrained problems is to create virtual agents corre-

sponding to each resource. During the search procedure, these virtual agents assign infinite

cost to any assignment that violates resource constraints. However, such search procedure

leads to highly connected and dense graphs, which are harder to solve. A better approach

would be to solve the LP relaxation of such resource constrained problems using message-

passing. In the MAP estimation community, resource constraints are typically not used.

Such constraints are the hallmark of realistic multiagent coordination problems. Therefore,

developing message-passing algorithms for the LP relaxation of such problems would be a

novel contribution.

In the context of inference based approaches for sequential decision making, one future

direction is the analysis of local optima in the EM algorithm when applied to planning.

Approximate algorithms can get stuck into a local optimum. However, if we can analyze the

properties of such local optima and devise a way to escape them, then this would address one

of the main drawbacks of such approximate algorithms. There has been work on analyzing

the properties of the EM algorithm for single agent POMDPs [115]. Extending such local

optima analysis to the EM algorithm in the multiagent setting remains an important future

work.

Another future direction within the context of planning-by-inference strategy is the in-

corporation of sampling based techniques for multiagent planning. So far, most of the work

in the Dec-POMDP community addresses discrete problems. There is an acute shortage of

techniques that can handle problems with continuous model parameters such as continuous

state or action spaces. Inference based approaches are a great candidate to fill this void. In

the EM algorithm, the main challenge is the E-step, which requires performing a probabilis-

tic inference query in a mixture of DBNs. Incorporating sampling based approaches, such

as Monte-Carlo Markov chain (MCMC) [63], can provide the much needed ability to per-
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form inference in continuous domains and thus, significantly enrich the class of multiagent

planning problems that can be handled presently.

Another promising direction is based on the connection between multiagent planning

and likelihood maximization that we established in this thesis. There are sampling based

approaches, such as MCMC-MLE [46], for maximum likelihood estimation. Investigating

such approaches in the context of multiagent planning is a potentially fruitful research

direction. One advantage while working with such sampling based approaches is that they

often have good convergence guarantees, such as convergence to global optima given enough

samples. Having such properties in sampling based multiagent planning algorithms would

prove to be very useful.

The optimization based approaches that we developed in Chapter 8 open up a number

of possibilities for bringing advanced optimization based techniques to multiagent planning.

There exist several approaches that can approximately solve large mixed integer programs

such as Lagrangian relaxation and branch-and-price. Adapting such approaches within

multiagent systems has great promise to increase the scalability of existing approaches.

Once we have a precise mathematical programming formulation of a Dec-POMDP, then

we can use techniques based on the variational framework that analyze the given problem

through the lens of optimization. One can often find suitable simplifying approximations

to complicating constraints, which lead to a more tractable problem. This technique has

significant promise to handle large, weakly-coupled multiagent systems, such as those that

satisfy the value-factorization property.

To summarize, this thesis has explored several new directions in multi-agent reasoning

and planning including connections with machine learning and optimization. In the current

era of modern computing with the proliferation of smart sensing devices, embedded within

the so-called Internet-of-things, making effective long-term decisions is crucial. Algorithmic

advances in multiagent decision making are going to be the key to usher in the age of such

autonomous agents. This thesis has established several new insights that provide access to

a number of tools from the wide literature of machine learning and optimization. Exploring

deeper connections along this direction will go a long way towards addressing the challenges

of multiagent decision making and create a significant practical impact.
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