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ABSTRACT

LEVERAGING RELATIONAL REPRESENTATIONS
FOR

CAUSAL DISCOVERY

SEPTEMBER 2012

MATTHEW J. H. RATTIGAN

B.A., WESLEYAN UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Jensen

This thesis represents a synthesis of relational learning and causal discovery, two

subjects at the frontier of machine learning research. Relational learning investigates

algorithms for constructing statistical models of data drawn from of multiple types

of interrelated entities, and causal discovery investigates algorithms for constructing

causal models from observational data. My work demonstrates that there exists a

natural, methodological synergy between these two areas of study, and that despite

the sometimes onerous nature of each, their combination (perhaps counterintuitively)

can provide advances in the state of the art for both.

Traditionally, propositional (or “flat”) data representations have dominated the

statistical sciences. These representations assume that data consist of independent

and identically distributed (iid) entities which can be represented by a single data

table. More recently, data scientists have increasingly focused on “relational” data

vii



sets that consist of interrelated, heterogeneous entities. However, relational learn-

ing and causal discovery are rarely combined. Relational representations are wholly

absent from the literature where causality is discussed explicitly. Instead, the litera-

ture on causality that uses the framework of graphical models assumes that data are

independent and identically distributed.

This unexplored topical intersection represents an opportunity for advancement —

by combining relational learning with causal reasoning, we can provide insight into the

challenges found in each subject area. By adopting a causal viewpoint, we can clarify

the mechanisms that produce previously identified pathologies in relational learning.

Analogously, we can utilize relational data to establish and strengthen causal claims

in ways that are impossible using only propositional representations.
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INTRODUCTION

This thesis represents a synthesis of relational learning and causal discovery, two

subjects at the frontier of machine learning research. There exists a natural, method-

ological synergy between these two areas of study, and despite the sometimes onerous

nature of each, their combination (perhaps counterintuitively) can provide advances

in the state of the art for both.

Traditionally, propositional (or “flat”) data representations have dominated the

statistical sciences. These representations assume that data consist of independent

and identically distributed (iid) entities which can be represented by a single data

table. More recently, data scientists have increasingly focused on data sets that

are assumed to consist of interrelated, heterogeneous entities. The analysis of these

“relational” data sets, once confined to a niche in the scientific literature [12, 61], has

captured the attention of mainstream popular inquiry [5, 91].

Relational representations are more expressive than propositional ones, and can

more naturally model many real world systems. However, given that an assumption

of iid data is common to many statistical tests, the inherent interdependencies of

relational data violate the assumptions of may widely used statistical procedures.

For instance, previous work has demonstrated that failing to account for the in-

terdependence among variables of related data instances can lead to an erroneous

statistical conclusion of association when no such association exists [38, 41]. In ad-

dition, adopting a relational perspective is sometimes necessary merely to construct

accurate models, because the most significant causal dependencies in the data hold

between variables of related entities rather than merely within the variables of single

data entities.
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The second subject area of this thesis is causality. While we postpone a more for-

mal definition of causality until Section 1.1, an intuitive sense of the term will suffice

for the time being: We say that event A causes event B if and only if manipulating

A changes the probability distribution of B. Nearly all work in machine learning and

much of the work in statistics, in contrast, deals with statistical association alone,

examining only the conditional and joint distributions of A and B and foregoing any

inference about the effects of manipulation. Much of the current work in causality

utilizes the graphical models framework, a useful tool for describing the causal re-

lationships in data. Using the semantics of d-separation (see Section 1.1), we can

enumerate the conditional independence facts that are entailed by different causal

structures. As a result, by examining the conditional independence facts found in

data, we can often draw causal conclusions.

Perhaps surprisingly, relational learning and causal discovery are rarely combined.

Relational representations are wholly absent from the literature where causality is

discussed explicitly. Instead, the literature on causality that uses the framework of

graphical models assumes that data are propositional and thus iid.

Furthermore, very little of the work done in machine learning makes causal claims.

While common in disciplines such as philosophy [85], economics [93], and epidemiol-

ogy [36, 88], causal reasoning is largely absent from the machine learning literature,

despite the widespread use of graphical model representations [69]. Research in re-

lational learning in particular nearly always ignores causal mechanisms [23, 62]. In

general, relational learning algorithms focus solely on establishing statistical correla-

tion between properties or events. While useful, this goal is but a first step toward

discovering a causal relationship.

This unexplored topical intersection represents an opportunity for advancement

— by combining relational learning with causal reasoning, we can provide insight

into the challenges found in each subject area. While the relational learning litera-
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ture identifies some errors associated with naive analysis of non-iid data, very little

work has been done to explain why or how these errors arise. By adopting a causal

viewpoint, we can clarify the mechanisms that produce these errors. In addition, for

many machine learning systems to be truly applicable and actionable, they must seek

to discover causal knowledge rather than perform simple prediction. Analogously, we

can utilize relational data to establish and strengthen causal claims in ways that are

impossible using only propositional representations.

Contributions of the thesis

This thesis will focus on structure learning of joint causal models for relational

data sets through the synergy of work in statistical relational learning and causal

discovery. To that end, I will present the following four primary contributions:

• Defining propositionalization using graphical models — Propositionalization is

a set of widely used practices to convert a relational data set to a propositional

data set. In this work, I show how to represent the propositionalization process

using formal language and graphical models. In doing so, I identify graphically

the conditions necessary for accurate statistical testing and causal conclusions.

I show how to transform relational graphical models to their propositionalized

forms. By including additional variables in our models to represent relational

structure, we can explicitly model the interdependencies found within relational

data and enable the extension of existing work in causality to relational domains.

• Explaining previously identified biases in statistical tests on relational data — I

utilize graphical models to explain previously identified pathologies in relational

learning. I discuss two sources of Type I error in particular—instance depen-

dence bias and degree disparity bias—and explain their effects from a causal

viewpoint. Furthermore, I use these results to suggest simple statistical tests

3



that account for the biases introduced by these pathologies, and provide evi-

dence of their effectiveness on both real and synthetic data.

• Defining and describing the properties of relational blocking — I demonstrate

that when modeled correctly, relational data sets enable types of causal reason-

ing that are impossible with iid data sets. Much of the past work in causality

hinges on the assumption that all common causes are accounted for. I show

that relational data allow for sound causal reasoning even in the presence of la-

tent variables by conditioning on relational structure using relational blocking,

a novel, relational generalization of a traditional analysis technique.

• Demonstrating methods for automated causal discovery — I show how the equiv-

alence classes that are defined by conditional independence testing in relational

data can be identified by analyzing the data schemata algorithmically. In ad-

dition, I show how to identify which specific tests will indicate the existence

and/or direction of dependence between any pair of variables.
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CHAPTER 1

BACKGROUND

In this chapter, we present several important concepts and representations useful

for understanding causal discovery in relational data. At the heart of our discussion

will be the use of the ground graph to represent the causal dependencies in a data set.

Before introducing the ground graph, however, we review several related representa-

tions for causal and relational data sets. Examples of each can be found in Figure

1.1.

Bayesian networks are used to represent the causal dependency structure be-

tween variables in iid data in the form of a directed acyclic graph (DAG). The d-

separation criteria can be used to identify conditional independence relationships

between sets of variables, regardless of parameter settings. However, these models

cannot represent dependencies that occur in (non-iid) relational data sets, since they

are not expressive enough to represent different types of entities and probabilistic

dependencies among the variables of such entities.

Relational data graphs explicitly represent the relationships between individual

entities in a non-iid data set, though they do not represent the dependencies between

the attributes of those entities.

Entity-Relationship (ER) diagrams compactly summarize the abstract struc-

ture of a relational data graph. In an ER diagram, each entity type is explicitly

represented along with all of its associated attribute values. Possible relations are

represented by edges augmented with a “crow’s foot” that indicate the existence of

one-to-one, one-to-many, or many-to-many relationships.
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Directed Acyclic Probabilistic Entity-Relationship (DAPER) diagrams

add attribute dependency information to ER diagrams, using arrows to indicate direct

causal dependence between attributes. The causal arrows are constrained by the

existence of relations between the appropriate entities.

Finally, ground graphs combine the relational specificity of data graphs with

the attribute dependency information of DAPER. The ground graphs represents an

instantiation of a DAPER model for a particular data graph. A ground graph is a valid

Bayesian network that represents dependencies between the variables associated with

specific entities in the data graph. Since ground graphs define a coherent probability

distribution, they may be analyzed using d-separation criteria.

Movie

rating

Actor

genre

gender

age

Movie

rating

Actor

genre

gender

age

ER Diagram

The 
Hustler

drama

Cool Hand 
Luke

crime
Paul 

Newman
M

George 
Kennedy

M

Jackie 
Gelason

M

Piper 
Laurie

F

Data Graph

DAPER Diagram
Ground Graph

Bayesian Network

The 
Hustler

drama

Cool Hand 
Luke

crime
Paul 

Newman
M

George 
Kennedy

M

Jackie 
Gelason

M

Piper 
Laurie

F

instantiate

add causal
dependence

instantiate

add causal
dependence

Movie: 
rating

Movie: 
genre

Movie:
receipts

Table: Movie
rating
genre
receipts
release
budget

Table Description

add causal
dependence

add relations

add relations

Figure 1.1: Relationships between different graphical representations. Adding explicit
relational information to a traditional, table-based data description yields the more
expressive ER diagram, which can then be instantiated (“rolled out”) into a relational
data graph. Adding causal semantics to each of the three yields a Bayesian network,
a DAPER model and a ground graph, respectively.

A schematic representation of the relationships between graph types is depicted

in Figure 1.1. Here, we can clearly see the parallel relationships between different
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representations: Relational data graphs and ground graphs are instantiations of ER

and DAPER, respectively; adding causal dependence to ER and data graphs produce

DAPER and ground graphs.

The details of each type of graph are summarized in Table 1. In general, boxes

represent entities (or types of entities), circles represent attributes, dashed lines rep-

resent relations, and solid lines represent causal dependence. In the sections that

follow, we will examine each in greater detail.

1.1 Graphical models and causality

A small but growing effort in machine learning has focused on causal, rather

than associational, models. In addition to computer science, formal reasoning about

causal structures has roots in several fields; these include philosophy, economics, and

statistics.

There is an active debate over the proper way to define causal dependence (see

Holland [37] and associated comments in the Journal of the American Statistical As-

sociation, for example). Shadish, Cook and Campbell present a definition of causality

that is rooted in experimental design [82], while Rubin provides a framework based

on counterfactual logic [77], often referred to as the “potential outcome approach”. In

the late 1980s and early 1990s, both Pearl [66] and Spirites, Glymour, and Scheines

[85] formulated the “graphical models approach” to studying causal systems. The

differing frameworks are not incompatible, but focus on differing aspects of analysis

[17]. As Greenland and Brumback point out [31], potential outcome models are often

useful for making inferences about individuals with regard to a single treatment and

outcome, while the graphical approach is most suited to characterizing the existence

and direction of the joint causal dynamics for an entire system and population. In

this work, we are primarily focused on learning the structure of joint causal systems
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rather than estimating individual effects, and therefore we adopt the graphical models

perspective. A brief review of this framework is provided below.

The graphical approach to causality has its roots in Bayesian network modeling,

with the added stipulation that the edges of the DAG are oriented to point from

cause to effect. Any variable, whether measured or latent, can be considered both a

cause and effect of disjoint sets of variables, and while it is not always made explicit,

it is assumed that the direction of each edge respects the flow of time (e.g., a person’s

height cannot cause their sex). In addition, we note that causality is inherently

probabilistic in nature. If A is causally related to B, then changing the value of A

changes the probability of B. For example, while it has been shown that smoking is

causally related to certain types of cancer, smoking does not guarantee that cancer

will occur.

A Bayesian network is a form of graphical model that compactly represents the

joint probability distribution of a given set of random variables. At the core of this

formulation is the representation of a probabilistic system as a directed acyclic graph

(DAG). Given a set of variables V that characterize any given data instance, we can

represent the joint probability distribution of V with the directed graph G = V, E.

Given two variables, S, T ∈ V , the directed edge (S, T ) ∈ E represents dependence

between the two variables, and we refer to S as the “parent” variable and T as the

“child.” For a node A, we define par(A) = {S | (S, A) ∈ E}. In addition, we let

desc(A) denote the set of all nodes T such that there exists a directed path from A

to T .

The validity of any conclusions drawn using the graphical models approach hinges

on the assumption of the the Causal Markov Condition, which we briefly describe

here (for a more complete treatment, we refer the reader to Pearl [66] or Scheines

[80]). The Causal Markov Condition states that “A variable X is independent of

every other variable (except X’s effects) conditional on all of its direct causes”[80].
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Symbolically, we denote the incoming edges to vertex X ∈ V as par(X) (“parents”

of X) and all nodes reachable with a directed path as desc(X) (“descendents” of X).

The above can then be written: X ⊥⊥ V \ desc(X) | par(X).

E

C

BA

D

Figure 1.2: A simple Bayesian network.

Given a DAG G and a joint probability distribution P , we say that G and P

are compatible under the Markov condition if we can factor the joint distribution

such that P (A | {G \ A}) = P (A | parents(A)). For example, figure 1.2 depicts a

Bayesian network for a small domain with five variables: V = {A, B, C,D, E}, E =

{(A, C), (B, C), (C, D), (C, E)}. Using the chain rule, we can express the joint distri-

bution P as follows:

P (A, B, C,D, E) = P (A)P (B|A)P (C|A, B)P (D|A, B, C)P (E|A, B, C,D)

The semantics of the network representation allow us to express the above in a far

more compact form, however. Assuming that P and G are compatible, we can express

the joint distribution in its factored form, as dictated by the edges in G:

P (A, B, C,D, E) = P (A)P (B)P (C|A, B)P (D|C)P (E|C)

In the equation above, the conditional probability of each variable is expressed only

in terms of its parents in the DAG. This allows us to describe the system with far fewer

parameters, making both learning and inference more computationally tractable. In

10



the above example, if each variable is binary, then explicitly representing full joint

distribution requires 25 = 32 parameters. By factoring, we can instead represent the

joint with a series of conditional probability distributions (CPDs), where each CPD

represents the distribution of a variable conditioned on its parents. In our example,

the CPDs require 20 + 20 + 22 + 21 + 21 = 9 parameters to represent the conditional

probability distributions of variables A, B, C,D, E, respectively. For a more complete

treatment of Bayesian networks, we refer the reader to Charniak [13], Heckerman [34],

or Jensen [43].

1.1.1 d-separation

As with associational Bayesian networks, the causally interpreted DAG offers a

compact way to represent conditional independence relationships within data. The

mechanism for identifying these relationships is Pearl’s notion of d-separation [66].

The d-separation criteria describe the graphical scenarios that entail conditional in-

dependence relationships in data, and can be derived directly from the Markov condi-

tion [60]. When nodes in a DAG are d-separated, they are conditionally independent;

when they are d-connected, they can be dependent. We briefly review these concepts

below; for a more thorough introduction, see Geiger [25], Scheines [80], or Spirites

[85].

Two sets of nodes U and V are d-connected if there exists an undirected, collider-

free path from some node u in U to some node v in V . “Collider-free” means that

no nodes along the path have two incoming edges that are also part of the path. In

the small graph in Figure 1.3, {A} and {E} are d-separated, since the only path

connecting them (A → D → G ← E) contains a collider (G). {A} and {F} are

d-connected, since there is a collider-free path connecting them (A → D → F ).

For simplicity, we may notate a singleton set as a single variable (e.g., {A} as A).

Symbolically, we express these facts as A ⊥⊥ E (A and E are independent) and A 6⊥⊥ F

11



(A and F not independent). Whether or not a node is considered a collider is with

respect to the path being considered, thus B and C are d-separated by collider E on

path B → E ← C, but B and {G, H} are d-connected via the paths B → E → G

and B → E → H.

Conditioning plays an important role in the definition of d-separation. The paths

mentioned above are valid for the marginal case, where no variables are used for

conditioning. According to the semantics of d-separation, if we condition on a non-

collider, it “blocks” any undirected paths on which it lies, and that path becomes

d-separating rather than d-connecting. For instance, in Figure 1.3 we have A 6⊥⊥ G in

the marginal case due to the existence of path A→ D → G. However, conditioning on

D will block the path connecting A and G, rendering them conditionally independent

(A ⊥⊥ G | D).

Conversely, conditioning on a collider (or any of its descendants) will “unblock”

a path. Marginally, we have F ⊥⊥ H, since the only path connecting them (F ←

D → G ← E → H) contains collider G. Conditioning on G will unblock the path

and render F and H conditionally dependent (F 6⊥⊥ H | G). Likewise, even though

B ⊥⊥ C, we have B 6⊥⊥ C | H. Since H is a descendent of collider E, conditioning on

H will unblock path B → E ← C.

1.1.2 d-separation with determinism

As described above, all the conditional dependence entailed by the DAG must

be probabilistic in order to satisfy the causal faithfulness assumption [85]. However,

with slight modification, the d-separation criteria can be expanded to apply to sys-

tems that include deterministic relationships between variables [25]. We say that a

set of variables W determines X if all variables in X can be computed from some

deterministic function of the variables in W . In the probabilistic case, X and Y are

d-connected if there exists a path such that all colliders (or one of their descendants)

12



G

D E

BA

F H

C

Figure 1.3: Causal DAGs represent conditional independence relationships with d-
separation. Marginally, {A} and {F} are d-connected by the collider-free undirected
path A → D → F , as are {G} and {H} with path G ← E → H. {B} and {C} are
marginally d-separated, since the only path connecting them (B → E ← C) contains
a collider (E). If we condition on {E}, then {G} and {H} become d-separated, but
{B} and {C} become d-connected.

are part of the conditioning set, and all non-colliders are not part of the conditioning

set. When deterministic variables are present, paths can be blocked by unconditioned

non-colliders if they are determined by variables in the conditioning set. In the DAGs

shown here, variables depicted with a gray double ring are determined by their par-

ents. For example, in the network shown in Figure 1.4, {F} is d-separated from {G}

when we condition on {A}, since D is determined by A.

D

G

E

BA

F H

C

Figure 1.4: Graphical model with a deterministic edge (A→ D). When deterministic
relationships are present, a d-connecting path is blocked by non-colliders who are
determined by variables in the conditioning set. Here, F ⊥⊥ G | A. This relationship
differs from the system depicted in Figure 1.3, which had no determinism.
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The notion of d-separation under determinism (sometimes denoted as “D-separation”

with a capitalized D) was pioneered by Geiger [25]. Spirtes et al. [85] expanded

this work to include a class of systems where the deterministic relationships are too

complex to be represented in the DAG (instead, a complete list of deterministic de-

pendencies is generated to accompany the network). In this thesis, we limit our

discussion to the systems discussed by Geiger, where all deterministic dependencies

can be explicitly represented by edges in the DAG.

1.1.3 Ground graphs

Bayesian networks are a compact way of representing the overall dependency struc-

ture for an entire data set. They generalize the probabilistic dependencies between

variables of a given system over all worlds, under the assumption that all instance are

independent and identically distributed (iid). Typically, these instances are repre-

sented by a single table or database view, with one row per instance and one column

per variable. Given a Bayesian network G and a set of data instances D, we can

generate the ground graph—a larger, “rolled out” graphical model which represents

the system over all worlds having the same set of instances, generative process, and

dependence structure. The ground graph is a more specific representation; the worlds

it represents only differ in the actual attribute values associated with each instance.

Figure 1.5 illustrates the rollout process for a data set with five instances and four

variables, resulting in a ground graph consisting of 20 vertices. For a propositional

model, the procedure is simple: For each instance in D (a), we create a variable in the

rolled out model Gg (c) for each variable in the DAG G (b). We draw edges between

vertices in Gg when the corresponding variables in G share an edge.

When generated in this manner, the resulting graph Gg is a valid graphical model,

and the independence relationships between instance-level variables in Gg can be

identified using d-separation. For example, in Figure 1.5c, variable a1 ⊥⊥ d1 | b1.
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Figure 1.5: Given a set of instances (a), graphical models representing their condi-
tional independence relationships (b) can be rolled out to produce a ground graph
representing dependence relationships across worlds (c).

In addition, a1 ⊥⊥ b2, by virtue of the fact that there exists no path (collider-free

or otherwise) between a1 and b2. For the moment, the simple example shown in

Figure 1.5c does not seem to offer any representational power or convenience over

the compact graphical model in 1.5b. However, the ground graph representation will

be important for our discussion of non-iid (relational) domains, where edges in the

ground graph can reach across instances, rather than being limited to connecting

variables of the same instance.

1.1.4 Learning algorithms

Several algorithms exist for learning causal graphical models from data. These

algorithms often divide the learning process into the subtasks of structure learning and

parameter estimation. Structure learning identifies which variables in a system are

causally dependent; parameter estimation quantifies the strength of these associations

by making maximum likelihood estimates of parameters given an assumed functional

form.

Algorithms for structure learning fall into at least two categories. Constraint-based

algorithms, such as the LCD [15] and PC [84], identify constraints on the space of

causal models that are implied by conditional independencies observed in the data.

Alternatively, search-and-score algorithms [10, 16, 34] evaluate the space of possi-
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ble models in terms of a penalized likelihood function, finding the most likely model

given training data. While search-and-score algorithms are often effective at finding

high-likelihood structures, they do not necessarily capture the conditional indepen-

dence relationships that are more suited to causal reasoning [19]. Furthermore, they

typically return a single, maximum-likelihood model rather than a family of related

models that are possible given the data.

The work presented here falls into the category of constraint-based structure learn-

ing under the assumptions outlined in Section 1.1.1. Here, we will examine the PC

algorithm as an exemplary constraint-based approach; however, the applicability of

the techniques presented in this thesis range beyond a single algorithm.

PC further subdivides structure learning into two phases. First, the algorithm

determines the skeleton of the DAG by exploring the space of possible conditional in-

dependencies among variables by using statistical tests for conditional independence.

All pairs of variables that cannot be rendered marginally or conditionally indepen-

dent are then connected with an undirected edge in the skeleton. Once the skeleton

of the DAG is in place, a series of edge orientation rules is applied to convert some

undirected edges into directed edges.

To identify the skeleton, PC starts with a completely connected, undirected graph

G∗ = V, E, with a vertex for each variable in the data, and proceeds as follows:

G← G∗

l← 0

while ∃s ∈ V such that |neigh(s)| ≥ l do

for all s, t ∈ E do

for all Sn ∈ subsl(neigh(s)) do

if s ⊥⊥ t|Sn then

E ← E \ (s, t)

break

l← l + 1
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Where neigh(x) denotes the neighbors of x in the graph, and subsl(X) is the set of

all subsets of X of size l. The intuition behind the PC algorithm is simple: Start with

the assumption that all pairs of variables are dependent, then systematically check for

conditional independence using all possible conditioning sets for each variable pair.

The specifics of the algorithm exploit the fact that, when one pair of variables is found

to be conditionally independent, the number of possible conditioning sets for other

variable pairs is decreased, thus mitigating the computational complexity of a naive

approach. Note that the core of this algorithm depends on the ability to accurately

check for conditional independence, a subject we will visit throughout this thesis.

Edge orientation transforms an undirected causal skeleton by applying a series of

orientation rules and directing edges such that the resulting DAG entails the con-

ditional independence relations defined by d-separation. The literature contains nu-

merous algorithms for directing edges; for the purposes of illustration we discuss the

orientation rules outlined by Meek [44, 58], illustrated graphically in Figure 1.6.

J

I K

J

I K

R1:

J ∉ sep(I, K)

/

J

I K

J
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R2:

/
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I K

R3:

K

I LR4:

R5:

J

/

K

I L

J

K

I L

J

/

K

I L

J

Figure 1.6: Edge orientation rules for constructing a DAG from a causal skeleton.
Dashed lines denote the explicit nonexistence of an edge.

17



The edge orientation algorithm takes a causal skeleton and a set of minimal condi-

tioning sets as input. The conditioning sets are defined over all pairs of nonadjacent

nodes from the skeleton. The function sep(X, Y ) returns the set SXY such that

X ⊥⊥ Y | S. Starting with the skeleton, the rules are applied repeatedly (in order)

until all possible edges have been oriented.

Rule R1, also known as the “collider rule,” states that any time we have two

nonadjacent variables (I and K) that share a neighbor (J), and that neighbor is

not part of their conditioning set, we should orient the edges to form a collider.

Doing otherwise would violate the assumption that I 6⊥⊥ K | J . This rule is applied

exhaustively before all others, after which no new colliders may be created through

the application of subsequent rules. Rule R2 follows directly from this assumption, as

orienting the edge otherwise would create a collider in J . R3 enforces the acyclicity

constraint of the DAG. Rule R4 follows from the fact that orienting an edge from

K to J would create a collider in J upon a subsequent application of R3. Rule R5

follows similar logic, but with two subsequent applications of R3. For a proof of the

correctness of these rules with respect to conditional independence and d-separation,

we refer the reader to Meek [58].

Figure 1.7 shows the application of the edge orientation rules to a simple DAG.

The algorithm starts with the skeleton and conditioning sets for each nonadjacent pair

of variables. First, rule R1 is applied twice to identify colliders C and F . Next, R2 is

applied to orient C → E. Not all edges can be oriented from conditional independence

information, as exemplified by the edge between B and D remaining undirected. No

matter how this edge is directed, the conditional independence relationships among

the variables do not change. Accordingly, none of the rules shown in Figure 1.6 apply.

Sets of models that represent indistinguishable probability distributions in the data

are referred to as Markov equivalent sets.
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Figure 1.7: Application of edge orientation rules to the graph from Figure 1.3. Start-
ing with a skeleton and a set of separating sets (table), edges are oriented through
successive application of the rules shown in Figure 1.6. Since the direction of the edge
between B and D is not identifiable through conditional independence, it cannot be
oriented.

In addition to the causal Markov condition, the correctness of PC hinges on two

additional assumptions that are commonly made about the generative process under-

lying the data. We describe them here, but refer the reader to Pearl [66] or Scheines

[80] for a more thorough explanation.

• Causal Sufficiency asserts that any common causes of variables in V are ex-

plicitly also in V . Note that this does not preclude us from examining systems

in which hidden causes are present (at some level of granularity, there are al-

ways hidden causes behind our data); rather, the causal sufficiency assumption

guarantees that latent causes are not shared among modeled variables.

• Faithfulness states that the only conditional independence relationships that

exist in a data set are those that are explicitly represented in the graph. For

example, faithfulness assumes that two causal pathways between two variables

cannot cancel out to make the variables marginally independent.
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1.2 Relational data representations

Nearly all machine learning algorithms assume that data are composed of inde-

pendent, identically distributed (iid) records. These data are often represented in the

form of a single table, in which each row corresponds to a single entity (or unit) of

interest (person, event, etc.), and each column contains the values of the attributes

associated with that unit. Under the iid assumption, the attribute values for any

one entity provide no information about the values in any other. In other words, the

table exhibits row independence. However, the attribute vectors across instances are

not multivariate iid in the traditional sense, as there may exist dependence between

attributes for a given instance (i.e., they are not column independent). For example,

a data table consisting of heights and weights for randomly selected individuals would

be considered iid—while the values across any given row are dependent (since height

and weight are associated), the values are independent across rows.

In many real-world scenarios, supposedly independent units can exhibit causal

influence on each other, resulting in data that exhibit dependence among instances.

For example, individuals targeted by a survey may communicate, patients in a hospital

may infect each other, and peer groups may encourage like behavior. In addition,

many real-world systems are made up of heterogeneous entity types, and instances

of one type may influence the attributes of another. For example, a manager may

influence employee behavior or record companies may partially control artist output.

In the past decade, a growing effort in machine learning research has focused

on relational data sets that are known to violate the iid assumption in these ways

(for a good overview, see Getoor [28]). In relational data, individual records are not

statistically independent, and information about some records may provide insight

into the values of others. Furthermore, they are not necessarily identically distributed,

as they may be composed of multiple, heterogeneous data types.
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Relational data sets can be represented graphically, with vertices (or nodes) corre-

sponding to entities, and edges (or relationships) representing the connections between

them. For instance, the Yahoo! Music data graph contains relationships between

artists, albums, and songs [73], and the Enron email graph consists of nodes repre-

senting individuals joined by relationships representing their email correspondence

[56]. Bibliographic data sets, such as HEP-TH, consist of scientific papers joined by

citations [57].

In the chapters that follow, we will present several empirical results of analysis

performed on data drawn from Stack Overflow1, a website that allows users to post

questions and answers concerning problems in computer programming. The Stack

Overflow data comprises users, questions, and answers, as illustrated in Figure 1.8.

Users may post new questions or provide answers to existing ones, as well as score

the quality of the questions and answers posted by others. Given the rich relational

structure, the data exhibit dependencies among attributes. For instance, the scores

of questions posted by a common author tend to be associated.

1.2.1 Relational semantics

In this section, we provide a formal definition of the elements of relational data

sets (while not identical, the definitions provided below draw heavily on the work of

Getoor [27] and Heckerman [35]). Relational data sets are made up of set of entities

E, relationships R, and attributes A, defined as follows:

• Entities E represent the statistical units of observation [82], divided into a

mutually exclusive type groups, determined as follows. We define a finite set of

types T = {t0, ..., tn} and the function type : E 7→ T . We define a type group

Et = {e ∈ E | type(e) = t}, thus E = Et0 ∪ Et1 ∪ ... ∪ Etn .

1http://stackoverflow.com

21



User

Question Answer

Figure 1.8: The Stack Overflow data comprises users, questions, and answers, and
are connected by three types of relationships (user-question, user-answer, question-
answer).

• Relationships R = {r ∈ E × E} denote relationships between pairs of nodes.

Formally, R is a binary relation in the mathematical sense, equal to a subset of

the cartesian product of E with itself. We let Rs,t denote relationships between

entities of type s and t, Rs,t = {(a, b) ∈ R | a ∈ Es, b ∈ Et}

• Attributes A = {A0, A1, ...}, a set of mathematical functions mapping entities

or relations to some value. The domain of each function A is one or more type

groups Et (for entity attributes) or the set of relationships Rs,t ⊂ R connecting

nodes of type group Es with Et (for relationship attributes).

In the aforementioned examples, relationships are used to represent some real

world interaction2 between entities. Regardless of domain, the semantic meaning of

2In this work, we use the term “relationship” to describe a connection between entities, and
“dependence” or “association” to denote probabilistic correspondence between the attributes of
those entities.
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Figure 1.9: Data graph for a small relational data set with two entity types. Entities
of type A (a1, ..., a4) have attributes X and Z, while entities of type B (b1, ..., b10)
have attribute Y .

the relationships is the same: Relationships represent a possible dependence between

the attribute values of connected entities (or, perhaps more naturally, the absence of

a relationship guarantees independence). Thus, for all u, v ∈ E, if r = {u, v} ∈ R,

then As(u) and At(v) are possibly dependent for all attributes As and At defined on u

and v, respectively. Additionally, there is possible dependence between As(u), At(v)

and Ar(r) for all attributes defined on relationship r. For this work, we make the

simplifying assumption similar to Xu et al. [92]; that is, causal dependence can only

exist between attributes of entities that share a direct relationship, and that “multi-

hop” influence does not exist without an intermediate variable. When necessary, we

denote attributes and the entities or relationships with which they are associated by

the expression ”entity.attribute”. Thus, for an attribute named ”age” and an entity

named ”person”, person.age would be the full name of the attribute. Where it is clear

from context, we omit the entity designation.

In the Stack Overflow data, we have three entity types (users, questions, answers),

with three sets of relationships (user-question, user-answer, question-answer). Thus,

answer scores may be dependent on attributes of the author who provided them or

the specific question that they are posted to, but not others.
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1.2.2 Data graphs and entity-relationship diagrams

We can represent the entities and relationships in a relational data set using an

undirected graph called a relational data graph. An example of a small data graph

is shown in Figure 1.9. In this example, the data graph G consists of 14 entities

connected with 10 relationships:

E = {a1, a2, a3, a4, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

R = {(a1, b1), (a1, b2), (a1, b3), (a1, b4), (a2, b5),

(a3, b6), (a3, b7), (a4, b8), (a4, b9), (a4, b10)}

A = {Ax : Ea 7→ X, Az : Ea 7→ Z,Ay : Eb 7→ Y, }

Again, causal dependencies are limited to pairs of attributes on the same entity

or to pairs of attributes on entities connected by one or more relationships. In the

data set shown in Figure 1.9, attribute value x1 may be dependent on y4, since their

associated entities a1 and b4 share a relationship. However, x1 and y5 are necessarily

independent, since there is no relationship between a1 and b5.

The above example exhibits a common characteristic of relational data sets: het-

erogeneity of data types. In propositional data, data consist of a single type of entity,

or unit, and its associated attributes. In contrast, relational data can consist of multi-

ple entity types. For example, the Stack Overflow data set consists of users, questions,

and answers, each with different attributes. To compactly represent the different types

in our data and the relational structure between them, we utilize entity-relationship

(ER) diagrams. ER diagrams are commonly used to describe the table structure of

relational databases [70]. Relational database management systems (RDBMS) are

often used to store relational data sets. In a RDBMS, data are stored in tables that

can be queried and exported as tuples using SQL operators. When multiple table

rows contain the same foreign key, their associated data are often nonindependent,

and tables generated by joins performed on foreign keys will be non-iid. In this sense,

foreign keys correspond to the relationships mentioned above.

24



Of course, the above definition of relational data sets is not limited to those that

can be represented by an RDBMS; thus, we use the ER diagram to schematically

represent the link structure between entity types rather than to reflect the table

structure of an RDBMS. For our purposes, we represent each entity type with a plate

(box). Attributes associated with that entity are shown as circles drawn within that

plate, and possible relations between entity types are represented with dashed lines.

Additionally, these lines are annotated with “crow’s foot” notation that indicates

whether the connected entities are related in a one-to-one, one-to-many, or many-to-

many manner.
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Figure 1.10: Entity-relationship diagram (a) and three possible relational data sets
that it describes (b-d).

Figure 1.10a depicts a simple ER diagram for bipartite one-to-many data. For this

data set, each A entity is linked to one or more B entities. Note that the ER diagram

under-specifies the data graph, as the specific relational structure of the data is not

captured. For example, Figures 1.10b-d depict different data sets that are all valid

for the diagram in 1.10a. Thus, while a valid ER diagram can be constructed from
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any data graph, the reverse is not true, as ER id merely a template for the relations

that are actually present.

1.3 Graphical models for relational data

The relational data graphs described above serve a different purpose than the

graphical models discussed in Section 1.1. Bayesian networks represent the depen-

dencies between the attributes of a given data set, while relational data graphs repre-

sent a possible dependency between the attribute values of specific entities in a given

data set. In this section, we demonstrate how to combine these two representations

in order to reason causally with relational data sets.

As we will detail in Section 3.1, statistical tests and algorithms that do not ac-

count for the inter-entity dependencies may be prone to error [38, 41], due to a lack of

causal sufficiency. Conversely, if the dependencies between entities are modeled and

exploited, learning performance can increase dramatically [40, 61, 72]. A key contri-

bution of this research is to demonstrate how the advantage provided by a relational

model representation carries over to causal claims.

1.3.1 DAPER models

ER diagrams summarize relational structure between entities, but do not rep-

resent the dependence structure among the attributes of those entities. Directed

acyclic probability entity relationship (DAPER) models combine the graphical syntax

and semantics of traditional Bayesian networks with the ER representation of link

structure [35]. In the DAPER representation, boxes and diamonds indicate entities

and relationships, respectively. Dotted lines indicate connections between entities and

relationships via primary/foreign keys, and line endings indicate relationship types

(e.g., one-to-many). Circles indicate random variables, connected by a dashed line to

their associated entities and relations. Solid arrows represent directed dependencies
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between attributes, and may connect the attributes of the same entity (intra-entity

edges) or different ones (inter-entity edges). Self-relationships are allowed for domains

where entities of the same type share relations and represent peer-influence on the

same variable. An example DAPER diagram can be found in Figure 1.11a.

Using a rich annotation syntax, the DAPER representation can model a variety

of relational structures and attribute dependencies. In this work, we do not uti-

lize the full expressive power of DAPER and omit some of its graphical conventions

for clarity. For our purposes, variables are drawn inside the entities to which they

correspond, and relationships are represented without an explicit existence variable.

Given this, our notion of a DAPER model is equivalent to a class dependency graph

as defined by Getoor [27]. In addition DAPER models are functionally similar (and

expressively equivalent) to “plate” models found in the graphical modeling literature

(see Heckerman for an of the equivalence of different representations[35]).

A X

B Y

link

(a) (b)

A
X

B
Y

Figure 1.11: DAPER models combine the the structural representation of entity-
relationship diagrams with the probabilistic dependence representation of plate-
structured graphical models. (a) Example of a DAPER model for bipartite data
where X and Y are associated, as presented by Heckerman et al.[35] (b) A simplified
version of the same model, with attributes drawn inside the boxes representing the
entities they are associated with.

While DAPER models capture the generative process of relational data sets, they

are typically not combined with the machinery of d-separation. Furthermore, since

relational structure is represented separately from attribute values, characteristics of

the relational structure (save relationship existence) cannot be used for conditioning,
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limiting the usefulness of the standard DAPER representation for causal reasoning

in relational data.

1.3.2 Ground graphs

The relational structure of the data graph represents constraints on the possi-

ble dependencies between attribute values and thus abstracts the actual dependence

structure. To instantiate this relational structure, we combine the dependence in-

formation in the DAPER model with the instantiated detail of the data graph to

produce a representation called a ground graph. Just as DAPER models combine

graphical model semantics with ER diagrams, ground graphs attach attribute de-

pendence structure to data graphs. In the same way that Bayesian networks for

propositional data sets can be rolled out into an instance-level graphical model of a

propositional data set (as in Figure 1.5), DAPER models can be rolled out to produce

an instance-level graphical model of a relational data set.

Given a data graph G and compatible DAPER model D, the ground graph can

be constructed algorithmically (what follows is equivalent to the rollout procedures

described by Getoor [27] and Heckerman [35]). For each intra-entity DAPER edge

connecting variables P and Q that are associated with the same entity type, draw an

edge in the ground graph between the corresponding attribute values P (u) and Q(u)

for all entities u of the appropriate type. For each inter-entity edge from P to Q,

draw an edge in the ground graph from P (u) to Q(v) for all node pairs u and v that

are connected with a relation in the data graph. Figure 1.12 depicts the ground graph

constructed from a small data graph and accompanying DAPER model. While the

entities and relations are not technically part of the ground graph, we will often depict

them along with the graphical model for clarity. Note that for DAPER models that

contain self-relationships, the resulting ground graph may not be acyclic; in these
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Figure 1.12: The probabilistic ground graph (c) can be constructed by applying a
DAPER model (b) to an appropriate relational data graph (a).

cases, we must incorporate some form of additional constraints to ensure that the

rolled out graph is a valid DAG.

Getoor demonstrated that a rolled out network constructed in this fashion defines

a coherent Bayesian network [27]. In her terminology, a “relational skeleton” (data

graph) combined with an appropriate “class dependency graph” (DAPER) begets an

“instance dependency graph” (ground graph). Given this result, we can examine the

ground graph using d-separation criteria. Getoor also proves that an acyclic DAPER

model will necessarily generate an acyclic ground graph for any suitable data graph,

and that even DAPER models that contain cycles (such as those for unipartite data

sets) can be associated with a well-defined ground graph. Using similar reasoning, we

can show that that d-separation properties can be partially extended to a DAPER

model as well.
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Theorem 1.3.1. Given a DAPER model D and a causally sufficient ground graph

Gg with variables Xi and Yj corresponding to variables X and Y in D. Let Z∗ =

{Z1, Z2, ..., Zn} be a set of variables in Gg such that Z∗ comprises all the variables Zk

in Gg that correspond to one or more variables Z in D. If X 6= Y , and Xi and Yj

are d-connected in Gg when conditioned on Z∗, then the corresponding X and Y will

be d-connected in D when conditioned on Z.

Proof. We can prove this result by contradiction. Assume that for some ground graph

Gg we have a d-connecting path p from Xi to Yj, but no corresponding path in the

DAPER model D. For each edge along p, there is a corresponding edge in D that is

oriented in the same direction. We can construct a d-connecting path pD in D using

these edges, which is a contradiction.

Corollary 1.3.2. Given a DAPER model D and instantiated ground graph Gg. If

variables X and Y are d-separated in D given conditioning set Z, then all correspond-

ing Xi will be d-separated from Yj when conditioned on all Zk.

Proof. This follows directly by contrapositive restatement of Theorem 1.3.1.

1.3.3 Regression-based relational modeling techniques

In the social sciences, data that consist of hierarchical types are often modeled

using mixed effects models [2, 21]. Mixed effects models are a type of generalized

linear regression model where the factors that influence an outcome variable are char-

acterized as random effects, whose parameters (slopes and/or intercepts) are directly

modeled, and fixed effects, whose parameters are not modeled. These models are

subsumed by multilevel models (also known as hierarchical models), where several

“levels” of parameters can are learned simultaneously from data [26, 30]. For ex-

ample, a model of movie receipts might have a parameter governing the influence of

the studio on its success, where the coefficient associated with the studio is itself the

outcome variable in a higher-level model equation.

30



While these models are quite effective at predicting the value of target variables

given a set of input variables, they do not make explicit the direct causal dependence

and conditional independence relationships in the system being studied [85]. Since

they are conditional rather than join probability models, they cannot represent the

types of reasoning about causal dependence exemplified by the skeleton construction

and edge orientation in the PC algorithm. Furthermore, most multilevel methods

assume a fixed hierarchy of influence, or at the very least a regular data structure

(e.g., all employees have exactly one boss, all children have exactly two parents).

1.4 Validity

In this chapter, we have reviewed several pieces of prior work. Causal representa-

tions such as Bayesian networks allow us to probabilistically represent causal systems

and reason about them using d-separation and conditional independence. Addition-

ally, we outlined four complementary relational data representations (ER diagrams,

data graphs, DAPER models, and ground graphs).

In the following chapters we demonstrate how to effectively combine causal se-

mantics with relational data in novel ways, allowing us to draw causal conclusions in

non-iid domains. At the heart of this discussion are the connections between the use

of different models and the implications in terms of different threats to validity. In

this work, we will primarily focus on two such threats. Statistical conclusion validity

refers to the inappropriate use of a test statistic or violation of assumptions such as

iid. In addition, we will outline cases that threaten internal validity, where incorrect

causal conclusions can be drawn from merely associational results. For a more in-

depth discussion of different types of threats to validity, we refer the reader to the

work of Shadish, Cook, and Campbell [82].

First, we introduce the concept of propositionalization, the process of transforming

a relational data set into a form suitable for conditional independence testing.
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CHAPTER 2

PROPOSITIONALIZATION

The chief difficulty of working with relational data is often statistical in nature

rather than representational. In relational domains, we often want to assess the as-

sociation between variables on two different entity types (e.g., studio size and movie

success) using statistical tests of independence that operate on data that can be rep-

resented by a single table. Many tests of association that assume that data instances

are drawn from an iid population, even though data instances are actually drawn from

sets of relational data. For example, the subjects of medical studies are related by

their neighborhoods, hospitals, or workplaces. The undergraduate subjects in social

psychology studies are often related by their courses, majors, or dormitories.

Propositionalization, sometimes called flattening, transforms data from a rela-

tional representation into a propositional one. Many relational learning algorithms

incorporate propositionalization either as a pre-processing step or as an integral part

of their search algorithms [50]. For instance, logic-based systems such as the relational

subgroup discovery algorithm [54] or the LINUS system [51] preprocess a single data

table using predicates defined in first-order logic. The ACORA system [67] utilizes a

rich set of relational aggregations to construct a propositional feature vector that is

then fed into a conventional learning algorithm. Other algorithms for learning prob-

abilistic relational models [23], relational probability trees [63], relational Bayesian

classifiers [64], or structural logistic regression [68] propositionalize on the fly as they

search over the space of structural relationships between attributes. In all cases, the
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∏X,f(Y) (TA  Tlink  TB) ∏X,f(Y)(Γ(idA,X),f,Y(TA  Tlink  TB))

(a) (b) (c)

Figure 2.1: Relational database tables illustrating propositionalization operations (a).
Replication (b) is the result of a three-way INNER JOIN of TA, TB and Tlink. Aggre-
gation (c) is the result of a GROUP BY applied to the same join used in conjunction
with an aggregation function f(). Common functions include SUM, MAX, MIN, and
AVG.

learning algorithms propositionalize relational data prior to testing for marginal or

conditional independence among sets of variables.

2.1 Propositionalization defined

Formally, we define a propositionalization as a mapping from a data graph Gd to

a set of attribute vectors W . Below, we define several terms that will be useful in our

discussion and analysis.

Definition 1. Given a relational data graph Gd = {E, R,A}, we say that Si ⊆ E is

an instance subgraph of Gd if ∀u ∈ Si,∃v ∈ Si such that (u, v) ∈ R.

Definition 2. Let Gd = {E, R,A} be a relational data graph. An attribute map-

ping F is a vector of set functions [f0, f1, ..., fk] such that the domain of each fi is a

multiset of values from the range of some attribute Ai ∈ A.

Definition 3. Let Si be an instance subgraph of a relational data graph Gd = {E, R,A},

and F = [f0, f1, ..., fk] be an attribute mapping of Gd. Let Ax(Si) designate the mul-
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tiset of values of attribute Ax associated with the entities in Si. An instance vector

is a 1× k vector of values Wi = [w0, w1, ..., wk] where wk = fk(Ak(Si)).

Definition 4. Given a relational data graph Gd, a set of instance subgraphs S, and an

attribute mapping F . We define a propositionalization mapping P : Gd, S, F 7→

W as a function mapping Gd to the set of instance vectors constructed by applying F to

the instance subgraphs in S. Furthermore, we say that W is a propositionalization

of Gd if W = P (Gd, S, F ) for some P, S, and F .

Traditionally, propositionalization is defined in terms of functional transforma-

tions of record sets using relational algebra or SQL operations. Below, we briefly

review the propositionalization process using the standard terminology. In addition,

we present a novel definition of propositionalization as a graph sampling operating on

the ground graph. We will demonstrate that while the two definitions are equivalent,

the latter approach is especially useful for examining the validity of samples obtained

after propositionalizing data that are not iid.

2.1.1 Algebraic approach to propositionalization

Two key operations for propositionalization are replication and aggregation. Propo-

sitionalizing simple relational data sets requires only one of these operations, while

propositionalizing more complicated relational data may require several replication

and aggregation steps. To better understand these operations, consider the bipartite

data illustrated in Figure 1.10. Every entity of type A is related to several enti-

ties of type B. Each entity type has a single associated categorical variable (X and

Y, respectively). Figure 2.1a depicts an alternative representation: three relational

database tables corresponding to this data set. These include a table to store IDs and

attributes of each entity type (TA and TB), and one table to hold the relationship

(Tlink).
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Propositionalizing with replication can be illustrated with a two-column projection

of a three-way inner join between TA, TB, and Tlink:

ΠX,Y (TA ./ Tlink ./ TB)

A tabular illustration of this join can be seen in Figure 2.1b. In standard Struc-

tured Query Language (SQL), we would write:

SELECT ta.x, tb.y

FROM ta JOIN tlink ON ta.id=tlink.ida

JOIN tb ON tlink.idb=tb.id

Here, each relation in the data set produces a tuple in the resulting table. Since

nodes with degree greater than one (e.g., A1) participate in several tuples, their

attribute values (in this case, x1) are replicated in several rows.

Propositionalizing with aggregation can be illustrated with the same three-way

inner join between TA, TB, and Tlink. However, in this case, multiple values of Y

corresponding to a single entity A are aggregated (Figure 2.1c). The query uses an

aggregation function f (e.g., SUM, AVG, MIN, or MAX) to operate over sets of

values and produce a single value for the tuple. In SQL, a GROUP BY operator with

a specified aggregation function or functions is applied to the same three-way join as

above:

SELECT ta.x, f(tb.y)

FROM ta JOIN tlink ON ta.id=tlink.ida

JOIN tb ON tlink.idb=tb.id

GROUP BY ta.id, ta.x

In our example, the X values of the group of B entities associated with each A

entity produce a tuple in the target table, as seen in Figure 2.1. The above can be

expressed in relational algebraic form1:

ΠX,f(Y )(Γ(idA,X),f,Y (TA ./ Tlink ./ TB))

1Standard relational algebra lacks a grouping operator; here, we utilize the extended set of
operators as defined by Grefen [32].
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Figure 2.2: Propositionalization can be represented by subgraph sampling from the
data graph. (a) Data graph representation matching the tables shown in Figure 2.1a.
Propositionalization by replication is performed by drawing connected subgraphs
(with replacement) from the data graph. For aggregation (b), the data graph is aug-
mented with aggregated attributes, and subgraphs are sampled from the augmented
graph.

Certainly, the algebraic SQL approach is the most common way for practitioners

to process relational data for statistical analysis. However, as we will demonstrate,

the relational algebra can be quite limiting when it comes to determining whether a

given data set is iid or causally sufficient. Below, we present a novel framework for

defining propositionalization in terms of graph sampling.
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2.1.2 Graphical approach to propositionalization

Propositionalization can be defined as a graphical sampling procedure. Given a

data graph, subgraph sampling can be used to create data instances.In accordance

with Definition 1, only connected subgraphs are sampled, since the attribute values

of entities not connected by a relational path are by definition not associated.

Figure 2.2 depicts the propositionalization procedure from Figure 2.1 graphically.

In Figure 2.2a, we have a data graph with entity types A (a1, ..., a4) and B (b1, ..., b10).

Here, graphical sampling using replication produces ten total instances, one corre-

sponding to each B entity. Since the resulting subgraphs share entities in the data

graph, some entities are duplicated in the propositionalized sample (for instance, the

entity a1 is replicated in four separate subgraphs).

In order to represent propositionalization by aggregation graphically, we perform

a transformation on the data graph prior to sampling. We represent each variable

aggregation with a new variable on the parent entities. When the transformed graph

is sampled and subsequently analyzed, the unaggregated child attributes are ignored.

Figure 2.2b depicts the augmented data graph with an extra variable on each A

entity to represent aggregation f of the y values of the B entities. Note that the

same variable can be aggregated using several functions (e.g. SUM, MAX, etc.),

creating several new parent variables.

2.2 Propositionalization and instance dependence bias

Procedures for testing marginal and conditional independence are central to many

algorithms for machine learning. For example, algorithms for learning the structure of

Bayesian networks (e.g., PC) search over possible conditioning sets to identify pairs

of variables that are conditionally independent [85, 90]. Algorithms that perform

feature selection test whether a new feature is correlated with a dependent variable

conditioned on the existing features [63]. Algorithms for learning association rules

37



evaluate whether new items are unexpectedly correlated with a target item condi-

tioned on the existing items in the rule [83]. In each of these cases, assertions of

marginal and conditional independence are one of the key statistical inferences made

by the algorithm.

Unsurprisingly, inaccurate independence tests can cause serious errors in these

algorithms. When tests incorrectly indicate independence, the algorithms disregard

important predictive features, reducing the accuracy of learned models. When tests

incorrectly infer dependence, algorithms add unnecessary structure to models, in-

creasing the computational complexity of storing and employing those models. Fi-

nally, absent or superfluous statistical dependencies can cause a cascade of incorrect

inferences in algorithms for learning model structure, particularly causal structure.

Prior research by Jensen and Neville has demonstrated that when the underlying

generative process for the data contains relational dependencies—statistical influences

that cross the boundaries of individual entities such that the variables of related

entities are correlated—conventional tests of independence may be inaccurate [38, 41].

Common domains that exhibit relational dependencies include social networks (the

attributes of one person can affect the attributes of their friends), organizational

networks (the attributes of an organization can affect the attributes of its members),

and web pages.

The errors described by Jensen and Neville have their origins in the mismatch

between two data representations: the relational representation of the original data

and the propositional representation required by a conventional test of independence.

A propositional representations carries the assumption that each data instance can

be represented solely by a vector of values, and that these instance vectors are iid.

Relational representations often include multiple entity types and explicitly rep-

resent relationships among instances, and as a result are not iid. When the data are

propositionalized, the resulting data set may not be iid. Jensen and Neville [38] show
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that statistical tests that assume independence among data instances are strongly

biased if the original relational data graph exhibits one-to-many relationships and

strong autocorrelation.

This closely parallels a long history of work in social science that has demon-

strated errors in independence tests when the propositional data are not iid due to

social groups or spatio-temporal relationships [46]. In 1889, Sir Francis Galton crit-

icized some findings by Sir Edward Tylor by pointing out that many of the units

being measured (societies) were not independent. From the proceedings of the Royal

Anthropological Institute:

It was extremely desirable for the sake of those who may wish to study the

evidence for Dr. Tylor’s conclusions, that full information should be given

as to the degree in which the customs of the tribes and races which are

compared together are independent. It might be, that some of the tribes

had derived them from a common source, so that they were duplicate

copies of the same original.

While Galton’s ideas were not expressed in terms of graphs, the issues raised are

familiar. In this context, the tribes or societies being studied are theorized to have

descended from the same larger group. As a result, they should not be considered

independent instances; moreover, doing so may bias findings. In modern social sci-

ences literature, the name “Galton’s problem” is used to denote the phenomenon of

“group effects” causing instance dependence and elevating Type I error [8, 18, 47].

2.2.1 Graphical analysis of iid

Although Jensen and Neville demonstrated that using independence tests naively

can produce serious errors, the work produced neither a clear theoretical framework

for analyzing those errors nor efficient methods for correcting them. Description of

these errors has been informal and based largely on examples, identifying sufficient
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conditions for the effects to occur, but not delineating the full range of situations that

can produce the observed errors.

Here, we show how to use graphical representations to examine the effects of

propositionalization. While equivalent to the more traditional algebraic approach,

the graphical representation will be helpful for examining the independence charac-

teristics of data after propositionalization and their effects on the validity of statistical

tests. Violations of causal assumptions are sometimes hidden by the more compact

DAPER representation, and application of the rules of d-separation to the ground

graph will be useful when evaluating samples produced through propositionalization.

Below, we outline in graphical terms the necessary conditions for a set of instances

to be considered iid. In general, given the Markov assumption of the graph graph,

propositionalization subgraphs will be iid if they do not overlap, and when there is

no path between instances in the ground graph from which they are drawn.

Formally, for a propositionalized data set to be iid, it must consist of an iid

propositionalization of the data graph.

Definition 5. Let W be a propositionalization of some relational data graph Gd with

associated ground graph Gg. W is said to be an iid propositionalization of Gd

if and only if for all instance vectors Wi, Wj ∈ W , for all attributes values wia ∈

Wi, wjb ∈ Wj, we have wia ⊥⊥ wjb given Gg.

Intuitively, for a propositionalization to be independent, there must be no depen-

dence between instance vectors. Note that each element of the instance vectors may

be calculated from several attribute values in the data graph, and that two vector el-

ements will only be independent if all elements of these sets are independent between

instances.

Below, we will examine a graphical representation of iid data using an illustrative

example from the academic publishing domain with three entity types: journals,

papers, and authors. For this example, each journal publishes several papers (one-
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to-many), and each paper is authored by multiple authors (many-to-many). Journal

entities have two attributes: format (F ), which determines the length and number of

pages of a typical paper, and prestige (P ), which measures the impact and notoriety

of the journal. Papers also have two attibutes: length (L), and citation count (C).

Finally, author entities have a single attribute representing their level of happiness

(H). An ER diagram and small data graph for this domain can be found in Figure 2.3.
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Figure 2.3: ER diagram (left) and data graph for academic publishing example. Each
journal entity is connected to one or more paper entities, which are in turn related to
several author entities. Journals have attributes for format (F ), prestige (P ); papers
have attributes for length (L) and citation count (C); authors have a single attribute
that measures their happiness (H).

Below, we detail the two necessary and collectively sufficient graphical conditions

that a propositionalized sample must meet to produce an iid data set: Subgraph sam-

ples must be disjoint, and the attribute values of each instance must be d-separated

from all others. Note that the graphical approach to propositionalization presented

here is an analytical framework and does not change the operational retrieval of data.

In order to ground this work in common practice, we provide SQL code compatible

with a typical RDBMS. Finally, we postpone a discussion of the precise statistical

consequences of a violation of the iid assumption until the following chapter; for the
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time being, we will focus on when and how propositionalization produces data that

are iid, and how this process can be represented graphically.

Condition 1: Instance subgraphs must not overlap

Depending on the unit of interest and method of propositionalization (replication

or aggregation), propositionalized instances drawn from the data graph may over-

lap. Formally, given a ground graph Gg and a propositionalization created from a
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Figure 2.4: Graphical depiction of propositionalization for the academic publishing
domain. Propositionalizing journal-paper using replication produces overlapping in-
stances due to shared journal entities (a). By aggregating instead of replicating, the
overlapping problem is avoided (b); however, aggregated subgraphs will overlap when
data are related in a many-to-many manner (c). Single-entity instances (papers) will
never overlap (d).
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set of subgraph instances S, ∀Si, Sj ∈ S, Si ∩ Sj = ∅. For example, in order to

test dependence between journal prestige P and paper citations C, one might select

journal-paper pairs using replication as illustrated in Figure 2.4a. In SQL:

SELECT journal.prestige, paper.citations

FROM journal JOIN paper ON journal.id=paper.journal id

Clearly, these instances are not iid; since journal entries are replicated over mul-

tiple instances, they are not independent. By aggregating rather than replicating

(allowing us to examine the relationship between P and, for example, AV G(C)), we

can avoid the issue of having overlapping subgraphs (albeit at the expense of sample

size) as shown in Figure 2.4b (note that in the figure, we have omitted the con-

structed aggregation variables for clarity). Recall that in SQL, aggregation requires

the addition of a GROUP BY clause:

SELECT journal.prestige, f(paper.citations)

FROM journal JOIN paper ON journal.id=paper.journal id

GROUP BY journal.id

While aggregation solves the overlapping problem for one-to-many relationships

such as journal-paper, it will not do so for many-to-many relationships such as paper-

author, as depicted in Figure 2.4c. The SQL commands for selecting papers and

authors will be syntactically similar to the one shown above for journals and papers.

However, in the latter case, the output will not be iid. While the graphical depiction

makes the difference between these scenarios plain, the query itself offers no indication

of a possible threat to validity.

Of course, by focusing on a single entity type, we can be sure that no subgraphs

will overlap. For instance, to study the effects of paper length on citation count, a

practitioner might sample only paper entities as instances, as in Figure 2.4d:

SELECT length, citations FROM paper)
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Here, as in (b), the propositionalized instances appear relatively independent, as

they do not share entities between them. However, before we can be sure that they

are iid, we must examine the attribute dependencies of our sample.

Condition 2: Instance subgraph attributes must be d-separated

The lack of overlapping instances as depicted in Figures 2.4b and c is not enough

to guarantee an iid sample. In addition, all attribute values of interest must be d-

separated in the ground graph, rendering our instances independent. That is, for

ground graph Gg and propostionalization instance vectors W , ∀Wi, Wj ∈ W , there

does not exist a d-connecting path U = s, ..., t in Gg such that for some wia ∈ Wi and

wjb ∈ Wj, wia is a function of s and wjb is a function of t. For brevity, when this is

the case we will say that Wi and Wj are d-separated in Gg.

Thus, instance independence relies on both relational structure and attribute de-

pendence together. In some cases, the relational structure alone can guarantee that

this condition is met; since relations are the sole conduit for attribute dependence,

domains in which no relationships exist between instances (e.g., the data shown in

Figure 1.10c) will trivially produce d-separated subgraph samples.

Figure 2.5 depicts DAPER representations and ground graphs for the same re-

lational data structure and unit of interest (papers) under two different genera-

tive models. In 2.5a, the existence of d-connecting paths between instances (e.g.,

p0.L(S) ← j0.F (f0) → p1.L(S)) indicates that the instances are not iid. In 2.5b, we

have the same relational structure, but there is no such path connecting instances, so

our sample is valid, at least in the marginal case. The results for propositionalizing

journal-paper instances like the ones in Figure 2.4b are similar.

Under both models, conditioning on Author.H will d-connect the paper instances

through author objects by activating the path through a collider. While this ef-

fect is clearly illustrated by the graphical representation of propositionalization, the
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traditional algebraic approach may hide it. Consider, for instance, the case where

a practitioner chooses to limit her focus to happy professors. Algebraically, this is

accomplished through the use of an additional join and WHERE clause:

SELECT paper.length, paper.citations)

FROM paper JOIN author paper ON paper.id=author paper.paper id

JOIN author ON author paper.author id=author.id

WHERE author.happiness=TRUE

When used in this manner, an SQL WHERE clause is equivalent to conditioning,

which can radically alter the independence relationships found in data by enabling

paths through colliders. While most practitioners are aware that selecting a subset of

their data will possibly affect the generalizability of their conclusions, the algebraic

approach provides no way of knowing that the tuples drawn from the database are

no longer iid and a threat to statistical conclusion validity.

Theorem 2.2.1. Given a relational data graph Gd, associated ground graph Gg, at-

tribute mapping F , instance subgraphs S, and their corresponding instance vectors

W . If S consists of non-overlapping instances and ∀Wi, Wj ∈ W , Wi and Wj are

d-separated, then W is an iid propositionalization of Gg.

Proof. The proof is trivial by contradiction. Assume that for some ground graph

Gg, we have a set of non-overlapping, d-separated instances W such that W is not

an iid propositionalization of Gg. By the above definition, there must exist some

pair of instances Wi and Wj, such that for some wia ∈ Ri, wjb ∈ Wj, wia 6⊥⊥ wjb.

Therefore, for some attribute values xa, yb in Gg and set functions fa, fb ∈ F , wia =

fa(∗, xa), wjb = fb(∗, yb) and xa 6⊥⊥ yb. Since Si and Sj cannot overlap, we know that

Wi ∩Wj = ∅, and therefore wia 6= wjb, fa(∗, xa) 6= fb(∗, yb), xa 6= yb. Thus, by the

semantics of d-separation, xa and yb must be d-connected in Gg, making wia 6⊥⊥ wjb,

a contradiction.
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Figure 2.5: DAPER models and ground graphs for the propositionalized instance
subgraphs shown in Figure 2.4c. (a) Under this generative model, instances are not
independent due to the existence of d-connecting paths between the attributes of
different instances in the ground graph. (b) Here, there are no such paths, so the set
of paper instances will be independent. Note that if we were to condition on author
happiness H, these instances would become dependent as well due to the activation
of paths through author entities.

In essence, the two graphical conditions outlined above are describing the singu-

lar statistical requirement of row independence for the propositionalized data table.

Child entity variables that are dependent on a common parent entity variable will be
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dependent in the propositionalized table. When overlapping subgraphs are replicated,

some values of the parent variables in the data table will exhibit perfect inter-instance

dependence (they will necessarily have identical values). In both cases, the result is

a set of instances that may exhibit instance dependence bias.

Condition 1 and Condition 2 are equivalent under some conditions, and we can

illustrate this using a simple graph transformation. Figure 2.6 depicts a one-to-many

subset of the publishing domain containing journals and papers. On the left, we have

overlapping propositionalization subgraphs similar to those depicted in Figure 2.4.

On the right, we have a transformed version of the same graph. Here, the prestige

attribute on journals is first propagated to related paper entities. Since this new at-

tribute is a copy, it is deterministically dependent on the parent attribute (recall that

deterministic variables are depicted with a double circle). After this transformation,

sampling paper entities alone (rather than journal-paper pairs) will capture the same

attribute information, but the sampled subgraphs will no longer overlap. However,

due to the deterministic dependence introduced by the transformation procedure,

there will necessarily be a d-connecting path between the constructed attributes on

papers.

Of course, given the causal Markov assumption of the ground graph, any sampled

instances will be independent if their respective Markov blankets (parents, children,

and other parents of children) do not overlap and are disconnected in the data graph.

While valid, this condition is much more restrictive than the two outlined above.

Additionally, in some cases, an examination of the DAPER representation alone will

be sufficient to establish that propositionalization will result in a valid, iid sample.

For example, data sets where relationships between entities are one-to-one will always

produce iid samples. In the case of one-to-many data sets, systems where no child-

entity variables have incoming edges originating from parent-level variables will be
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avoid sampling overlapping subgraphs while still capturing the same attribute in-
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dependence with the source attribute, there will exist a d-connecting path between
child entities.

iid when propositionalized, but those with parent-child attribute dependence may not

be.

Previous work in statistical relational learning has addressed issues of instance

dependence using algorithmic sampling. For example, Jensen and Neville utilize a

resampling procedure to estimate relational feature variance [39], while Koerner and

Wrobel present a method for generalized subgraph sampling in order to obtain un-

biased training/test set splits for training models [49]. While these works do not

consider in bias from the perspective of graphical models and conditional indepen-

dence, the issues raised are similar to those presented here.

2.3 Aggregation and degree disparity

The alternative to replication is propositionalization through aggregation. While

aggregation can avoid instance dependence for one-to-many domains, prior work has

shown that aggregation can also lead to mistaken judgments of dependence. Often,
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algorithms (and practitioners) make the implicit assumption that a measured depen-

dence between a variable X and some aggregation of a variable Y is indicative of an

underlying dependence between X and Y . However, Jensen, Neville, & Hay [41] show

that this apparent attribute dependence can be the result of relational structure alone.

In the presence of degree disparity, aggregation can make uncorrelated variables ap-

pear correlated when those data are propositionalized. Degree disparity occurs when

an attribute on an entity is correlated with the number of relationships to or from

that entity. For instance, chronologically older researchers tend to have authored

more research papers, and persons from certain religious or ethnic backgrounds tend

to have larger numbers of siblings. Again drawing from the movie domain, Jensen

et al. showed that aggregations of randomly generated attributes on actors appear

to be significant predictors of movie success, perhaps due to the fact that successful

movies have (on average) higher numbers of actors listed in the IMDb.

Figure 2.7 depicts an ER diagram and data graph from the publishing domain

(author entities are omitted here for simplicity). Here, each journal entity has a pub-

lication rate (R ∈ {Y early, Monthly}) attribute in addition to the format attribute

F , and paper objects have a length L and citation count C. Perhaps a researcher

wishes to identify which types of journals produce the most well-known papers for a

given time period. He propositionalizes using aggregation as follows:

SELECT journal.rate, MAX(paper.citations)

FROM journal JOIN paper ON journal.id=paper.journal id

GROUP BY journal.rate

This query produces the propositionalized data table depicted in the figure. Ana-

lyzing the statistical dependence in this table might (erroneously) lead to the conclu-

sion that journals that publish yearly produce better papers than those that publish

monthly. However, this observed association is due to the fact that yearly journals

tend to publish more papers in a given issue than monthly ones, and that the MAX ag-

gregator is quite sensitive to degree. Unlike the examples shown above, the subgraphs
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Figure 2.7: Degree disparity occurs when some attribute is associated with the num-
ber of relations for that entity. (Left) ER diagram for journals (with attributes
format F and publication rate R) and papers (with attributes length L and citations
C). (Center) data graph showing propositionalization subgraphs and constructed at-
tribute using MAX aggregator (shaded). In this example, journal issues with yearly
publication rates (R = Y ) tend to have more papers than those that publish monthly
(R = M). (Right) The data table produced by propsitionalization through aggrega-
tion indicates an apparent relationship between R and MAX(C). While there may
be a direct dependence between R and C, the association may be due to the degree
disparity with R combining with the sensitivity of the MAX aggregator to degree.

shown here are iid; however, the aggregation process may introduce a bias estimate

of associations in the data. We postpone a more thorough, graphical treatment of

degree disparity until Chapter 4, where we will examine the path of unexpected de-

pendence on degree using d-separation. For the time being, it is important to note

that the graphical consideration of the aggregation process makes clear the details of

the relational structure that are lost using a purely algebraic, SQL-based approach.

2.4 Discussion

Although the above examples are based on relational data sets where the relations

between entities are explicitly represented as a graph, the issues raised apply to any

machine learning system that assumes an iid sample for statistical decision making.
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The relational representation subsumes the traditional, propositional one, and makes

explicit data interdepedencies that cannot be traced once the data set has been con-

verted to a single table. A lack of explicit relational information does not guarantee

that data instances will be iid; rather, it indicates that we have no way of knowing

whether the instances are iid.
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Figure 2.8: Differing data sets (a, b) may produce the same data table (c) when
propositionalized. Naive learning systems that do not account for relations will mis-
takenly process the data in the same way, even though only one of the data sets
comprises a valid iid sample when propositionalized.

Information about the relational structure of the data is lost during proposition-

alization. Differently structured relational data sets may produce the same propo-

sitionalized data tables, and statistics calculated on such tables will have the same

values. For instance, when propositionalized using replication, the data sets depicted

in Figure 2.8a and b will produce the same table of values. However, the validity of

statistical inferences based on these values depends partially on this lost information.

The data in Figure 2.8b yield an iid sample, the data in Figure 2.8a do not.

However, a naive learning system relying on an RDBMS for data storage will treat

these two data sets identically; moreover, it may not even be able to tell the difference.

For example, association rule learners [1, 59] are often used to discover frequent item

sets from purchasing data. These algorithms assume that purchases are independent,
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whereas a more sophisticated, relational system would take into account that multiple

purchases by the same customer are heavily correlated.

In this chapter we have illustrated the propositionalization process in graphical

terms, and highlighted some of the mechanisms that can lead to two types of bias

associated with propositionalization: instance dependence and degree disparity. The

former is due to a violation of assumptions in traditional statistical analysis, while the

latter comes from an unrepresented interaction between attribute values, relational

structure, and aggregation functions. In the following chapters, we examine the

effects of instance dependence and degree disparity in more statistical detail. We

show how the iid assumption (along with the causal Markov, causal sufficiency, and

faithfulness assumptions) can be met for any data graph using targeted sampling or

by incorporating structural variables. In addition, we demonstrate how to capture the

effects of degree in a graphical model and how to make unbiased causal conclusions

even when degree disparity is present.
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CHAPTER 3

HYPOTHESIS TESTS FOR REPLICATED DATA WITH
INSTANCE DEPENDENCE

As detailed in the previous chapter, propositionalization transforms data from a

relational representation into a propositional one. Many relational learning algorithms

incorporate propositionalization either as a pre-processing step or as an integral part

of their search algorithms [50].

However, the loss of relational information that results from propositionalization

can lead to inaccurate hypothesis tests. In this chapter, we examine those errors in

more detail. Using the principles of d-separation [66], we show how several classes of

generative models can produce the same observed correlations, and thus cause errors

in algorithms that infer a specific generative structure from these correlations.

We present two solutions for conducting accurate hypothesis testing with non-iid

data. The first, link sampling, transforms a bipartite graph in a manner that creates

an iid sample once the graph is propositionalized [71]. Second, we show how to

translate relational models into propositionalized models that capture key aspects of

relational dependence in the form of structural attributes, and we use these enhanced

models to perform novel hypothesis tests of conditional independence [74]. Using

both real and synthetic data, we show how these tests allow algorithms to draw valid

inferences despite conditions that mislead conventional tests.

3.1 Statistical consequences of instance dependence

Prior work has demonstrated that propositionalization with replication can lead

to large increases in Type I errors (falsely inferring statistical dependence). Varieties
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Figure 3.1: When applied to relational data, conventional statistical tests such as χ2

implicitly assume one-to-one relationships (and therefore iid instances) such as those
found in (a). When data are related in a one-to-many manner (b), the conventional
reference distribution may be inappropriate due to the violation of the independence
assumption.

of this effect have been known for more than a century [24], although the conse-

quences of this effect for relational learning algorithms were first identified by Jensen

& Neville [38]. In this work, the authors illustrate the effects of autocorrelation

(non-independence of the values of a single variable across data instances) for re-

lational domains that exhibit high concentrated linkage (one-to-many relationships

with high cardinality). If both are present, even randomly generated attributes on

parent entities may appear significantly associated with autocorrelated attributes on

child entities.

When entities are replicated, attribute values of the tuples associated with each

parent entity are perfectly autocorrelated; that is, there is a deterministic dependence

between the parent attribute values in each entity-based group. For example, in the

data graphs shown in Figure 3.1b, tuples representing subgraphs {a3, b6} and {a3, b7}

will have identical values for attribute X. As we will see below, when there exists

inter-instance dependence among the values for both attributes in a conditional inde-

pendence test, the sampling distribution for a test statistic may differ substantially

from the sampling distribution appropriate for an iid sample. Therefore, while repli-
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cation does not always change the inference that should be drawn from a specific

value of the test statistic, it sets the stage for possible errors by creating groups of

instances with at least one attribute that exhibits inter-instance dependence.

Consider the effect of propositionalization with replication on the one-to-many

data set shown in Figure 3.1b. Each row of the resulting 10-row propositionalized data

set will contain a value for X and Y . Some instances will exhibit perfect dependence

among some X values (since those multiple X values in the propositionalized data

derive from the same X value in the relational data). For some ground graphs,

dependence would also exist among the Y values (for example, due to a latent variable

on A entities that causes values of Y on related B entities), and this would produce

probabilistic inter-instance dependence among Y values in the propositionalized data.

These twin violations of the iid assumption effectively reduce the sample size of a

data set, increasing the variance of scores estimated using that set. This increased

variability of the estimated value of any test statistic [38, 46] for one-to-many data

results in Type I error rates much higher than those expected from independent

instances such as those found 3.1a.

Figure 3.2 depicts the observed distribution of the chi-square statistic along with

its Type I error rate for synthetic data containing two types of entities, A and B,

each of which contains a single variable, X and Y, respectively. We generate 200 A

entities and link each to between 1 and 20 B entities. The level of dependence is

expressed as the probability that any two “sibling” B entities will share the same

Y value, calculated from the class distribution of Y and a parameter governing the

strength of effect (for a data set with no autocorrelation effect, this quantity is equal

to p2 + (1− p)2 for a binary variable with class probabilities p and 1− p). Here, for a

simulation with an autocorrelation level of 0.8 (moderate effect, given an even class

split), 38% of the data sets generated had a chi-square value that was statistically

significant at the α = 0.01 level, quite a bit larger than the expected Type I error
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Figure 3.2: Values of the chi-square statistic are biased for data with instance depen-
dence. (Left) The empirical distribution has much higher variance than the theoret-
ical χ2 with one degree of freedom. (Right) The Type I error rate greatly exceeds
the expectation based on alpha; the bias becomes more severe for higher levels of
dependence.

rate of 1%. As seen in the figure, the higher the level of dependence among Y values,

the more severe the bias.

3.2 Understanding instance dependence bias with graphical

models

The circumstances under which these errors arise can be illustrated using the

ground graph. The problem stems from the fact that the set of instances being

tested for dependence violates the iid assumption, resulting in increased Type I error.

Here, the graphical interpretation of the propositionalization process is especially

informative. Given a set of instances based on subgraph sampling from the data

graph, each subgraph instance must be independent (and, therefore, its variables

d-separated in the ground graph) from all others.

Figure 3.3 depicts several data scenarios for bipartite relational data. For each

scenario, a DAPER model is shown alongside a ground graph that is appropriate to
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that model, along with an empirically derived chi-square distribution for variables

X and Y (each distribution was derived from 2000 synthetic data sets with 100 A

entities, 2500 B entities, and discrete values X, Y ∈ [1, 10]). In all cases, the data

are propositionalized with replication (one instance per B entity). The instance

dependence bias occurs when both X and Y values are autocorrelated, and therefore

non-independent.

Scenario (a) is similar to the one outlined by Jensen and Neville [38]. Here, B.Y

values exhibit autocorrelation resulting from a dependence on the latent variable

A.Z, while A.X is generated independent from Y . When propositionalized, the X

values in the resulting tuples are replicated, resulting in perfect autocorrelation (non-

independence) among tuples sourced from the same A entity. Additionally, there are

clear d-connecting path between several values of Y (e.g., Y1 → Y2, Y8 → Y10). Not

surprisingly, the empirically derived distribution for chi-square is heavily biased.

Case (b) is identical to case (a), but here the values of Y are not autocorrelated.

While the values of X are still non-independent due to replication, there exist no d-

connecting paths between Y values in the ground graph (in fact, there are no causal

paths at all). As a result, the distribution of chi-square is not biased.

The third scenario (c) is the same as case (a) in terms of attribute dependence,

but here the data are one-to-one rather than one-to-many. In this case, neither X

values nor Y values are non-independent, since no replication for X takes place and

no paths exist connecting Y values. Again, the empirically derived distribution is

unbiased.

Scenario (d) depicts a case where B.Y is autocorrelated (stemming from latent

variable A.Z), but the X variable is associated with B entities. Like case (a), there

are d-connecting paths between Y values; however, the propositionalization process

does not replicate X values, so again there is no bias.
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Figure 3.3: DAPER models (left), ground graphs (center), and distributions of the
chi-square statistic (right) for different relational data sets. In scenarios (a) and (e),
values of both X and Y are non-independent (and therefore not d-separated in the
ground graph), resulting in a distribution of the test statistic that does not match
the chi-square reference distribution.
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Figure 3.4: Three possible DAPER models for one-to-many data. In Model H0,
variables X and Y are independent. In Model H1, X influences Y , while in H2, Y is
independent of X but related to a latent variable Z. Data generated by H1 and H2

will exhibit instance dependence when propositionalized with replication.

Finally, case (e) depicts a scenario similar to case (d), except the B.X values

are autocorrelated (via a second latent variable A.W ). As a result, there are d-

connecting paths between both X and Y variables in the ground graph, resulting in

a biased distribution of chi-square.

The situation we described informally in Section 3.1 can be described more for-

mally by the DAPER models in Figure 3.4. Model H0 corresponds to the null hypoth-

esis that X and Y are marginally independent. Model H1 indicates that X causes Y.

Model H2 indicates that Y is caused by a latent variable Z on the same entity as X,

but otherwise is marginally independent of X. The values of Y on different entities

B connected to the same A will be autocorrelated in either of the models H1 or H2.
1

As in the examples in Figure 3.3, model H2 uses a common convention in graphical

models to produce autocorrelation among related entities. The relational structure of

the data indicates that a single entity A will be connected to several entities B. As a

result, the dependence between a variable Z on A and several different instances of a

variable Y on B will induce dependence among the values of Y on related entities B.

This approach is often used in the social sciences to represent a “group effect” [47].

1The models in Figure 3.4 clearly do not exhaust the possible models that could relate these
variables, but are meant to demonstrate that multiple generative models are consistent with the
observed correlations. The full space of models is discussed in more detail in Section 6.2.
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Models in machine learning frequently use this approach to model autocorrelation

among members of latent groups [62] or among topics of related text documents

[56, 76].

According to the theories advanced in prior work [38], independence tests will

frequently indicate that X and Y are marginally dependent when those data are

generated using either model H1 or model H2. In general, given a significant value

of a statistic alone, it is impossible to determine whether model H1 or H2 generated

the data. Whether this distinction is important depends on the domain. However, if

gaining a causal understanding is important, the distinction is crucial to determining

whether manipulating X will change Y [80]. To address the issue of biased hypothesis

tests for relational data, Jensen et al. presented a computationally intensive method

to derive accurate reference distributions using randomization tests [42]. Below, we

outline two new strategies for accurately assessing independence in relational data

sets that are informed by the graphical models described above.

3.3 Link sampling

Link sampling is a novel technique for accurate hypothesis testing in bipartite

relation data [71]. Rather than adjusting the reference distribution, link sampling

works by modifying the calculation of the test statistic itself such that it will be

correctly distributed with a X2 distribution. Recall that the problem identified in

the previous section stemmed from non-independence between attribute values for

the instances used to populate a contingency table. Using link sampling, we can

“enforce” the independence assumption by constructing a contingency table out of

an iid propositionalization of the relational data graph.

To select the set of instances for inclusion in the contingency table, we draw

subgraphs from a modified version of the data graph. This modified data graph

contains an identical set of objects and attributes as the original; however, the set of
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Figure 3.5: Link sampling modifies the data graph such that no entity has degree
greater than one. While this reduces the data available to a hypothesis test, the
transformed graph will produce an iid sample when propositionalized.

relations is a subset of those from the original graph, such that the relations included

are a proper matching (a set of edges which share no common vertices). More formally,

given a relational data graph G = (V, E, A), we construct G′ = (V, E ′, A) such that

∀s, t ∈ E ′, 6 ∃u, v ∈ E ′ : (s = u ∧ t 6= v) ∨ (s 6= u ∧ t = v).

To produce a link matching, we use the randomized greedy matching algorithm

presented by Aronson et al.[4]. While the algorithm as presented seeks to find a

maximal matching, it can be trivially adapted to select a set of independent links of

a given target size (assuming that one exists).

Any propositionalization of the modified graph will be necessarily iid, as any set of

instance subgraphs drawn from the graph will have no common neighbors (and there-

fore no d-connecting paths between them) in the associated ground graph. Since the

independence assumption is no longer violated, the x, y pairs that fill the contingency

table will be independent, and a χ2 statistic calculated from the contingency table

will be distributed with the theoretical X2.
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Figure 3.6: When generated from independent subgraphs through link sampling,
the distribution of χ2 closely matches the theoretical X2 distribution in cases where
observed dependence is due to instance dependence bias (a). In cases where there is
a direct dependence (b), the distribution is unaffected.

The effect of link sampling on the empirical distribution of chi-square is shown

in Figure 3.6. In (a), we have empirical distribution of chi-square with and without

link sampling for model H2, the biased autocorrelation case. Here, the link sampling

procedure removes the bias, and the statistic is distributed as with propositional data.

Figure 3.6b shows the same distributions for the case where there is a direct depen-

dence between X and Y (model H1). In this scenario, the distribution is unaffected

by sampling (for legibility, the strength of effect used to generate plot (b) was greatly

reduced).

The link sampling technique is applicable to any form of relational data, regardless

of relational structure or attribute distribution and dependencies. Of course, the link

sampling procedure greatly reduces the amount of data available to a statistical test.

For bipartite, one-to-many data sets, the available sample size may be reduced by

a factor equal to the average degree of the parent entities. Whether this reduction

in available testing data negatively affects power is domain dependent; certainly, for

suitably large networks (such as those used to produce the plot in Figure 3.6b) it is

not an issue.
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3.4 Novel hypothesis tests with ID variables

The graphical structure of model H1 in Figure 3.4 provides a clear indication of

why X and Y are dependent in data drawn from this model, but model H2 does

not provide any correspondingly clear indication. One reason for this is that the

DAPER model represents data in its relational state, and the results discussed in

Section 3.1 derive from propositionalized data. Propositionalization may introduce

additional dependencies not explicit in the DAPER model. Note that this fact does

not invalidate the claim made by Corollary 1.3.2, which states that d-separation in a

DAPER model guarantees d-separation in the ground graph. Even under model H2,

X and Y are d-separated in the ground graph; they only exhibit dependence in the

replicated propositionalization of the ground graph.

Model H1 Model H2Model H0

A

Z

X

B

ID

Y

A

Z

X

B

ID

Y

A

Z

X

B

ID

Y

Figure 3.7: Propositionalized versions of generative models for non-iid data. The plate
structure is included here for clarity only, and is not part of the graphical model.

Figure 3.7 shows propositionalized models corresponding to DAPER models H1

and H2. The entity-relationship structure is shown in gray for reference only and is

not part of the model. The propositionalized models introduce a new variable: ID .

The ID variable models the replication of the values of the X and Z variables during

propositionalization. In the same way that Z models the autocorrelation among

values of Y , ID models the (perfect) autocorrelation among replicated values of X

and Z variables.
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The ID variable corresponds to the IDA and IDB columns in the relational

database tables depicted in Figure 2.1. The value itself is arbitrary and has no intrin-

sic meaning; although frequently represented as an integer it is a categorical attribute.

Such variables have unbounded cardinality; formally, the “support” of the variable’s

distribution (the smallest closed set whose complement has probability zero) is of in-

finite size. Furthermore, it carries the constraint that no two entities in the relational

data share the same value, although multiple data instances in propositional data can

(and often do) have the same value of ID .

The ID variable deterministically causes every other variable whose values are

replicated during propositionalization since information about an entity’s ID com-

pletely determines the value of any variable associated with that entity. Given this,

the ID attribute is an example of an infinite latent variable as proposed by Xu [92]

(only having perfect predictive ability), or a cluster identifier in the sense used by

Kemp [45]. Leveraging IDs as variables has also been shown to improve inference in

relational learning [67, 51].

Given the propositional models in Figure 3.7, the semantics of d-separation pro-

vides a formal explanation for the results from Section 3.1 [66]. In both models, the

existence of an undirected collider-free path from X to Y corresponds to the observed

correlations between the variables. In Model H1, the path is direct; in Model H2, the

path flows from X ← id → Z → Y. We can block the causal path by condition-

ing on any of the variables along that path. Conditioning on ID will d-separate X

and Y under Model H2 (but not Model H1), allowing us to differentiate between the

two. However, this fact does not provide a feasible statistical test, since holding ID

constant will also hold X constant.

Fortunately, this propositional model suggests another conditional independence

test to differentiate Model H1 from Model H2. If the data were generated by Model H1,

we would expect that ID ⊥⊥ Y | X. Figure 3.8 shows the empirical distributions of
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Figure 3.8: Empirical chi-square distributions for ID , Y. (Left) Data generated under
Model H1 is indistinguishable from data generated by Model H2 as both models create
autocorrelation among Y values (captured here as an association between ID and Y ).
(Right) The effect of conditioning on X, allowing clear discrimination between models.

χ2
ID−Y when conditioned on X. The association between ID and Y disappears when

we condition for Model H1, allowing us to retain the null hypothesis. For data from

Model H2, conditioning on X does not diminish the value of χ2, allowing us to reject

Model H1 in favor of Model H2. Thus, even with a graphical model that relies on a

latent variable (Z), we have a test based only on measured variables that allows us

to differentiate between the two models.

Even though the conditional test between ID and Y is being performed with a

data table generated through a non-iid propositionalization, the test will be unbiased,

as the data instances are conditionally iid given X under Model H2.

Definition 6. Let W be a propositionalization of some relational data graph Gd =

{V, E, A} with associated ground graph Gg. W is said to be a conditionally iid

propositionalization of Gd if and only if ∃C ⊆ A such that ∀Wi, Wj ∈ W , ∀wia ∈

Wi, wjb ∈ Wj, wia ⊥⊥ wjb | C in Gg.

For example, propositionalized data generated under Model H1 is conditionally

iid given X or ID , while propositionalized data for Model H2 is conditionally iid given

Z or ID . Given an iid propositionalization, we can use conditioning to obtain an iid
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Figure 3.9: ER diagram describing the Stack Overflow data set. Users post ques-
tions as well as answer questions from others. Users are awarded badges, while both
questions and answers are given scores based on the number of up and down votes.

set of instances, allowing us to perform hypothesis tests that are free from instance

dependence bias.

3.5 Empirical results

The Stack Overflow data consists of users, questions, and answers. Users may post

new questions or provide answers to existing ones, and may vote (up or down) on the

quality of both questions and answers posted by others. Furthermore, as users use

the system, they are awarded badges designating some accomplishment. For example,

the “Fanatic” badge is awarded to users who visit the site for a hundred days in a

row, while the “Guru” badge is given to users who provide an answer that receives

forty or more votes. An ER diagram describing a simple schema for Stack Overflow

can be seen in Figure 3.9.

We examined the relationship between badge acquisition and answer score (up-

votes minus down-votes). The dataset records activity on the site between February

1 and April 1, 2010. During this time period, there were 237,505 answers provided by

61,625 distinct users. For each of the 43 badge types, we generated a binary attribute

on each user designating whether that badge had been awarded before April 1.

In the Stack Overflow data set, answer scores are heavily autocorrelated through

user; that is, users are fairly consistent in the quality of the posts they provide
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(the Pearson corrected contingency coefficient is 0.75). Thus, in the replication case,

every single badge attribute appeared to be correlated with a discretized answer score

when naively tested. However, as discussed in Section 3.1, the marginal dependence

between badges and score can be explained by different causal mechanisms as depicted

in Figure 3.10. Again, we emphasize that the causal mechanisms in Figure 3.10 do

not exhaust the possible mechanisms. Rather, we use these two specific models to

demonstrate the utility of the tests.

Using the ID of each user, we can differentiate between model H1 and H2 by per-

forming a hypothesis test on User.ID and Answer.score conditioned on User.badge.

The results of these tests are depicted in Table 3.1. In 22 of the 43 cases (shown

in bold), the value of chi-square in the conditional test is not significant, allowing

us to conclude that the relationship between that badge and answer score is not, in

fact, causal, and that the marginal relationship is due to some other factor associated

with users (model H2). For the other badges, the conditional test does produce a

significant value, suggesting a causal relationship (model H1) in the form of a direct

Answer

Score

User

ID

Badge

Answer

Score

User

ID

Badge

H

(a) (b)

Model H1: Model H2:

Figure 3.10: Alternative models that explain the marginal dependence between Stack
Overflow badge awards on user and scores of their answers. In (a), badge awards
have a direct influence on answer score; in (b), the perceived dependence is due
to instance dependence bias brought on by a hidden factor H. The two models
can be differentiated by performing a conditional hypothesis test on ID and Score
conditioned on Badge.
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edge from User.badge to Answer.score. Of course, this conclusion is only valid if

we are certain that there does not exist latent confounders associated with an entity

other than users or answers.

3.6 Conclusion

In the previous chapter, we described the ways in which relational data can be

transformed into propositional form, and how entity replication may produce data

sets that are not iid. In this chapter, we demonstrated the statistical ramifications

of naive hypothesis testing with replicated data. Any time entities that are related

in a one-to-many or many-to-many manner are replicated, we introduce a threat to

statistical conclusion validity in the form of instance dependence bias. To address

this issue, we have introduced the formal framework of the ground graph, as well

as two novel techniques for overcoming instance dependence bias. In the first, we

sample from the data graph in order to produce a propositionalized data table that is

guaranteed to be iid. In the second, we construct ID variables to capture relational

structure, and show how to utilize these variables for unbiased hypothesis testing. Of

course, aggregating rather than replicating, we can (at least in the case of one-to-

many data) avoid the issue of dependent instances altogether. However, as we shall

see in the following chapter, aggregation may introduce a different type of statistical

bias stemming from a common interaction between relational structure and attribute

values.
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Table 3.1: Results of marginal (badge, score) and conditional (ID , score | badge)
hypothesis tests for Stack Overflow (replication). Boldface indicates statistical signif-
icance, while italicized text highlights cases where associations are judged not causal
due to a lack of significance in the conditional test.

Badge χ2
badge,score p-value χ2

ID,score|badge p-value
Autobiographer 4163 0.0000 221663 0.9627
Beta 366 0.0000 228923 0.0000
Citizen Patrol 10232 0.0000 219673 1.0000
Civic Duty 11412 0.0000 218641 1.0000
Cleanup 7635 0.0000 222220 0.8280
Commentator 10894 0.0000 219617 1.0000
Critic 12200 0.0000 218073 1.0000
Disciplined 9723 0.0000 220198 1.0000
Editor 9768 0.0000 218850 1.0000
Electorate 924 0.0000 228595 0.0000
Enlightened 15346 0.0000 216007 1.0000
Enthusiast 12041 0.0000 217621 1.0000
Epic 5007 0.0000 224674 0.0032
Famous Question 1541 0.0000 228424 0.0000
Fanatic 6167 0.0000 222709 0.5843
Favorite Question 1922 0.0000 227859 0.0000
Good Answer 10325 0.0000 219223 1.0000
Good Question 2886 0.0000 227058 0.0000
Great Answer 3187 0.0000 226596 0.0000
Great Question 1462 0.0000 228523 0.0000
Guru 5940 0.0000 223200 0.3007
Legendary 3195 0.0000 226949 0.0000
Mortarboard 15209 0.0000 217677 1.0000
Necromancer 3260 0.0000 225250 0.0002
Nice Answer 14769 0.0000 215927 1.0000
Nice Question 4332 0.0000 225250 0.0002
Notable Question 1280 0.0000 227932 0.0000
Organizer 13232 0.0000 217462 1.0000
Peer Pressure 2517 0.0000 227307 0.0000
Popular Question 1933 0.0000 225966 0.0000
Populist 4514 0.0000 225775 0.0000
Pundit 3448 0.0000 226213 0.0000
Reversal 1499 0.0000 228477 0.0000
Scholar 3274 0.0000 221923 0.9182
Self-Learner 2629 0.0000 226300 0.0000
Stellar Question 1436 0.0000 228434 0.0000
Strunk & White 6219 0.0000 222928 0.4544
Student 3529 0.0000 222361 0.7688
Supporter 9518 0.0000 218409 1.0000
Taxonomist 428 0.0000 229044 0.0000
Teacher 10071 0.0000 215652 1.0000
Tumbleweed 53 0.0000 228639 0.0000
Yearling 3471 0.0000 223583 0.1368
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CHAPTER 4

HYPOTHESIS TESTS FOR AGGREGATED DATA WITH
DEGREE DISPARITY

Degree disparity occurs when an attribute on an entity is statistically associated

with the number of other entities with which it shares a relationship [41]. Degree

disparity combines with some common aggregation functions to produce systemat-

ically higher or lower aggregated values when the cardinality of the input values is

high. Thus, any time relational data are propositionalized using aggregation, the

transformed data table may exhibit degree disparity bias.

For instance, given variability in the values of the underlying variable being ag-

gregated, SUM, MAX, and COUNT will all return systematically higher values given high

cardinality; MIN will produce lower values; and MODE and AVG will produce less extreme

values. When data are propositionalized using these aggregation functions, statisti-

cal dependencies between the values of one attribute and the aggregated values of

another attribute can be erroneously interpreted as dependence between the original

attributes.

Consider the relationship between the age of a professor and the number of ci-

tations on papers she has written. In general, older professors will have higher a

degree (pun not intended) with regard to papers by virtue of having spent more time

publishing. Even in a world where the citation count of a given paper is completely

random, age will appear associated with aggregations of paper citation counts such

as MAX (capturing the number of citations on the most well-cited paper) or SUM (cap-

turing the total number of citations) due to the sensitivity of these aggregations to

degree.
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4.1 Statistical bias in aggregated domains

Figure 4.1 depicts the distribution of z-scores for relational data that exhibit

degree disparity. Each of the different aggregators exhibits a different amount of bias,

though all will clearly cause Type I errors for a two-tailed hypothesis test. Even AVG,

which is centered, has increased variance when compared to the reference distribution.

Also pictured are distributions for identically structured data that do not have degree

disparity. Again, propositionalization erases the relational structure present in the

data, so given the value of a test statistic, it is unclear from the propositionalized data

which of the distributions from Figure 4.1 is the appropriate reference distribution.
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Figure 4.1: Distribution of z-score values for AVG, MAX, MIN, and SUM in a rela-
tional data set with moderate degree disparity. The sampling distributions indicate
dependence even in the absence of dependence in the original data. Here, even though
X and Y are marginally independent, X appears significantly correlated with aggre-
gations of Y.

Figure 4.2 depicts Type I error curves for data with degree disparity using the

SUM and MAX aggregations. As in the case with instance dependence, error rates

are much higher than those expected at the α = 1% level. For data with a moderate

level of degree disparity, the MAX aggregator has an error rate of 15% while SUM is

greater than 70%.

As with the errors associated with replication, degree disparity will be entirely

invisible to an end-user of a RDBMS. When related tables are joined through foreign
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Figure 4.2: Type I error as a function of alpha for MAX (left) and SUM (right)
aggregations under degree disparity. The value of X varies linearly with degree (pa-
rameterized by coefficient βdeg). At the α = 0.01 level, the Type I error rates are 15%
and 70% for MAX and SUM, respectively.

keys over one-to-many or many-to-many relationships, aggregators are specified to

summarize the records in the higher-cardinality table. In doing so, all relational

information is lost, along with any evidence that would enable the detection of degree

disparity bias.

4.2 Graphical models for aggregated data

We can use graphical models to understand and correct the bias introduced by

degree disparity. Figure 4.3 shows three DAPER models representing alternative

generative structures for the situations discussed in Section 4.1. We assume that

degree disparity stems from a direct causal dependence between the variable X and

the probability that one or more relationships exist, affecting the degree variable deg.

Furthermore, we assume that the aggregation function f is sensitive to changes in

degree. Thus, model H2 indicates that the degree of entities A depends on the value

of X.

Model H0 corresponds to the null hypothesis under which X and f(Y ) are marginally

independent. Models H1 and H2 represent data in which X and f(Y ) are correlated.
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Figure 4.3: DAPER models for one-to-many data with degree disparity. Model H0

represents the null hypothesis that X is marginally independent of both Y (and there-
fore, any aggregation f(Y )) and deg, while Model H1 specifies that X has influence
over Y . Model H2 represents data that exhibit degree disparity. Here, the value of X
varies with the number of B entities that each A connects to, but is independent of
the Y values on those entities.

Once again, knowledge of marginal dependence between X and f(Y ) can be used to

reject H0, but it cannot differentiate between H1 and H2.

Rather than explicitly representing link existence, the effects of degree disparity

can be alternatively represented in a graphical model that captures degree in a vari-

able, as in the DAPER models shown in Figure 4.4. Here, the variable deg represents

the number of related entities B (the degree of A). As detailed in Section 2.1.2, to

propositionalize with aggregation, we construct the variable A.f(Y ) to represent the

value produced by aggregating individual B.Y values. In contrast to the DAPER

models in Figure 4.3, when rolled out these models make clear why both models H1

and H2 would exhibit dependence between X and f(Y ). In both cases, a collider-free

undirected path exists between the variables. However, the models differ with respect

to a direct causal dependence between X and Y .

Figure 4.5 further demonstrates the agreement between the independence relation-

ships described by d-separation and empirically observed results. Here, we present

two alternative models similar to model H2 above. In the first (a), there is no de-

pendence between X and degree; in (b), the aggregator used (random selection) is

insensitive to degree. In both cases, there are no collider-free paths connecting X to
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Figure 4.4: DAPER models corresponding to the DAPER models in Figure 4.3,
along with ground graphs and Z-score distributions for X, f(Y ). The effects of
degree disparity are represented by the dependence of the deg on X, coupled with
an aggregation f(Y ) that is sensitive to degree (and therefore dependent on deg).
In both cases there are d-connecting paths in the ground graph connecting X with
f(Y ).

f(Y ), and Z-scores are normally distributed around 0. It is worth mentioning that

the RANDOM aggregator, as shown in Figure 4.5b, is functionally equivalent to the

link sampling technique outlined in Chapter 3. With link sampling, a subgraph is

generated from the original data such that at most a single related entity is included

for each multiply connected entity. Similarly, the RANDOM aggregator selects a sin-

gle attribute value from each one-to-many or many-to-many group. Tests based on

either will be bias-free.

In situations where degree disparity bias is indeed present, the propositional mod-

els suggest a simple test of conditional independence: Conditioning on degree will

d-separate X and f(Y ). Figure 4.6 depicts the empirical distributions of the condi-

tional test for data generated under both models. The data generated under Model H2
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eliminates the degree disparity effects shown in Figure 4.4b.
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Figure 4.6: Conditioning on degree removes bias for statistics based on data with
degree disparity, allowing differentiation from data containing actual association be-
tween X and Y . (a) Empirical distribution of Z-score after conditioning on degree for
data generated under Model H1. (b) Conditional Z-score distribution for data from
model H2.

indicate no significant dependence, while the data under H1 do show significant de-

pendence. Conditioning on degree successfully differentiates between the two models.

4.3 Empirical results

Below, we present empirical results on two real-world domains using the techniques

described above. In the first, we examine an erroneous causal claim made about

scoring order in professional hockey through the lens of degree disparity bias. In
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addition, we examine the errors associated with use of naive hypothesis tests on data

from Stack Overflow.

4.3.1 NHL scoring

A common claim made about professional hockey is that scoring first in a game is

a key to victory [6, 11]. Statistically, the team that scores first tends to win over 60%

of the time. However, the mention of this fact often carries with it an explicit causal

claim; that is, given two evenly matched teams, the one who scores first is going to

win more than 50% of the time due to change in strategy that comes with playing

with a lead or psychological momentum.

We evaluate the validity of this causal claim using the graphical models frame-

work in conjunction with scoring data collected for over eighteen thousand National

Hockey League contests held between 1993 and 2009.1 Our results provide strong

evidence that although scoring first in hockey is strongly correlated with victory, this

association is not, in fact, causal. Furthermore, the erroneous attribution of scoring

first toward winning can be explained as a form of degree disparity, and factored out

using conditional independence tests like the ones described above.

Figure 4.7a depicts an ER diagram for scoring in a hockey game. Each game has

a First and Win attribute that indicate which of the two teams (referred to here as

“Team A” and “Team B”) scores first and eventually wins. Note that some games

may end in a tie, and that in the case of a 0-0 tie, neither team scores first (or, more

precisely, at all). Each goal event is represented by a Goal A or Goal B entity that

carries with it a time T .

Figure 4.7b shows a DAPER model for the scoring domain, with some added

Game attributes. We add a minimum aggregation over the timestamps of the goal

entities. Given these additional attributes, the First variable becomes deterministic

1http://www.hockeyboxscores.com
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Figure 4.7: (a) ER diagram depicting the hockey scoring domain. Each Game entity
is related in a one-to-many manner to Goal A and Goal B entities, which have a
timestamp attribute. (b) DAPER diagram for the hockey scoring domain. The
Game entities carry additional aggregated attributes capturing the minimum goal
time for both Team A and Team B goals, which together determine the value of the
First attribute. The dashed edge, whose existence we wish to evaluate, represents
the causal effect of scoring first on winning.

since the value of First is completely determined by a comparison of min(Ta) and

min(Tb). The question we wish to answer is whether or not scoring first has a direct

effect on Win, represented by a dashed edge with a question mark.

The claim that scoring first leads to victory is represented by the propositional-

ized graphical model shown in Figure 4.8a (for clarity, the min(T ), First, and Win

variables are shown as M , F , and W , respectively). Since game entities and goals are

related in a strict one-to-many relationship, this simple model is adequate to repre-

sent the iid subgraphs that make up the full ground graph after propositionalization

through aggregation.

Given this model, naive use of hypothesis testing seems to validate the model and

the claim. The results of statistical hypothesis for different combinations of variables

are listed in the table in Figure 4.8. Variables Mh and Ma are marginally indepen-

dent, but conditionally associated given F or W . In addition, both are marginally

dependent on F and W , which are in turn marginally dependent on each other.

However, the model depicted in Figure 4.8 fails to capture the structural infor-

mation that is lost during propositionalization. As detailed above, the minimum
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FMa Mb

W

H1:

(a)

association test statistic p-value conclusion
Ma ⊥⊥ F t-test 82.03 < 10−16 reject
Mb ⊥⊥ F t-test 88.66 < 10−16 reject
Ma ⊥⊥ W t-test 34.05 < 10−16 reject
Mb ⊥⊥ W t-test 35.91 < 10−16 reject
Ma ⊥⊥Mb Pearson 0.0001 0.3575 accept

Ma ⊥⊥Mb | F Guo 61.87 < 10−16 reject
Ma ⊥⊥Mb | W Guo 8.33 < 10−16 reject

F ⊥⊥ W χ2 1332.20 < 10−16 reject

(b)

Figure 4.8: (a) Graphical model representing the hypothesis that winning in hockey
(W ) is causally dependent on scoring first (F ), which is deterministically related
to the aggregated minimum scoring times of both teams (Ma, Mb). (b) Results of
hypothesis tests conduceted on 18k NHL hockey contests from 1993-2009

aggregator is sensitive to degree. This sensitivity is illustrated by the density plot in

Figure 4.9. Clearly, the distribution of first goal time differs with degree (r2 = 0.1822,

p < 10−16).

We can capture this effect by incorporating degree variables into the graphical

model, as shown in Figure 4.9. When we include degree in the model, W (representing

the winner of the game) becomes deterministic, as its value derives from a simple

comparison of Dh and Da which capture the degree of Goal entities, i.e., score, of

each team.

Since F and W are both discrete, deterministic variables, we cannot directly verify

the validity of the model with the statistical tests used previously. For instance, we

cannot test for conditional independence between F and W by conditioning on the
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Figure 4.9: (left) Alternative hypothesis for the hockey scoring domain. Here, scoring
first has no causal effect on winning; rather, any perceived dependence relationships
are an effect of degree. (right) Distribution of first goal time as a function of total
goals scored. The vertical lines designate the mean of each density curve.

degree variables, since doing so will hold W constant as well. Likewise, conditioning

on Mh and Ma will hold F constant. Since F and W are categorical, we cannot

d-separate them with a numeric conditioning set composed of Mh and Da (or Ma and

Dh).

We can, however, indirectly evaluate the model using an alternative set of hypoth-

esis tests. According to the model in Figure 4.9, Mh and Da are marginally indepen-

dent, but conditionally dependent given F or W . The NHL data bear this out, as the

r2 value for Mh and Da is 0.0001, (p = 0.1624), with a conditional z-score = 28.0461

when conditioning on W and z-score = −23.448965 when conditioning on F (in both

cases, p < 10−16).

By treating degree as categorical, rather than discrete, we can perform an addi-

tional test on the independence of Mh and Da while conditioning on both W and

Dh. In this case, the model dictates conditional independence, and the data agree
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(z-score = 0.7050, p = 0.4808).2 Furthermore, this allows us to conclude that there

is no d-connecting path between Mh and Da other than the one that flows through

Dh. Consequently, there can be no unknown path connecting Mh (or F ) with Da and

W , providing very strong evidence that there is, indeed, no causal effect on winning

from scoring first in hockey.

4.3.2 Stack Overflow

Since the Stack Overflow data presented in Section 3.5 is related in a one-to-many

manner, it can be propositionalized using aggregation as well as replication. By

aggregating, we eliminate the possibility of instance dependence bias; however, doing

so may introduce error if degree disparity is present. To see if this effect is present

in Stack Overflow, we measured the correlation between the existence of a badge and

an aggregated answer score for each user, using the models from 4.10.

Answer

Score

User

Badge

deg

f(Score)

Answer

Score

User

Badge

deg

f(Score)

(a) (b)

Model H1: Model H2:

Figure 4.10: Augmented models for aggregation in Stack Overflow data. By including
the structural degree variable, we can differentiate the two models from data by
testing for conditional dependence between Badge and Score conditioned on deg.

By conditioning on degree, we can differentiate the cases where marginal depen-

dence is due to degree disparity from those where it is due to a direct causal mecha-

2Though not reported here, the results of hypothesis tests for Ma and Dh are qualitatively similar
and directionally identical to those for Mh and Da.
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nism. Figure 4.11 summarizes the results for the marginal and conditional tests using

each aggregator. For SUM, MAX, and AVG, all 43 badge types have a marginal

dependence with Answer.score; conditioning on degree removes this dependence for

39, 40, and 41 of these, respectively. Curiously, score is marginally dependent on only

3 badges, and conditioning on degree induces a dependence. Table 4.4 lists the full

results for each aggregator and badge type. Note that in the cases presented above,

we considered each badge in isolation in terms of its causal effect on answer score.

SUM MAX MIN AVG
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Figure 4.11: Results of marginal and conditional tests of independence for aggre-
gated Stack Overflow data. The plot shows the number of badge attributes that
are marginally dependent with answer score for different aggregators. Conditioning
on degree removes this dependence for several badge types. In the case of MIN,
conditioning on degree can introduce a dependence.

4.4 Conclusion

We have used the framework of d-separation to provide the first formal explanation

for two previously observed classes of statistical dependencies in relational data. This

explanation applies to continuous and discrete variables and essentially any test of

conditional independence.

Finally, it is worth repeating that many data sets are created in propositional form,

even when their underlying generative processes could more accurately be described
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by a relational representation. Thus, the propositional data sets initially provided

to many learning algorithms are “born” without the information needed to draw

correct inferences about the underlying generative processes that produced them.

Disconcertingly, the effects discussed here apply equally to propositional learning

algorithms when the data they analyze were originally drawn from relational domains.
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Table 4.1: Z-scores for Stack Overflow hypothesis tests (aggregation). Significant
values are in bold. Italicized values indicate that conditioning on degree has changed
the result of the test.

SUM MAX MIN AVG
Badge marg cond marg cond marg cond marg cond
Autobiographer 23.22 -0.56 24.35 16.49 0.06 3.66 25.85 23.55
Beta 4.24 2.89 7.06 6.34 3.55 4.02 10.72 10.45
Citizen Patrol 42.32 11.58 31.63 19.22 -2.84 2.71 27.57 24.15
Civic Duty 47.66 10.78 35.70 21.45 -3.44 2.97 29.83 26.02
Cleanup 42.58 7.49 27.18 13.60 -4.71 1.12 19.73 15.91
Commentator 33.85 -10.32 35.59 22.61 -4.95 0.88 33.42 29.97
Critic 35.29 -3.98 37.26 24.99 -3.38 2.25 36.05 32.78
Disciplined 50.34 26.82 30.12 17.43 -2.07 3.58 20.30 16.65
Editor 28.10 -9.12 30.91 19.99 -2.55 2.38 31.37 28.36
Electorate 21.84 5.61 7.45 0.25 -1.87 1.03 5.56 3.47
Enlightened 54.27 23.08 36.36 21.98 -2.78 3.73 30.95 27.15
Enthusiast 46.45 8.87 36.79 22.71 -4.63 1.69 32.32 28.61
Epic 102.21 58.32 21.77 -4.96 -2.80 8.35 8.41 0.83
Famous Question 12.80 10.26 7.47 4.78 -0.61 0.58 5.49 4.64
Fanatic 46.74 21.81 23.47 10.74 -2.66 2.80 17.63 14.02
Favorite Question 18.61 8.88 13.98 9.11 -1.20 0.96 7.75 6.20
Good Answer 42.54 20.05 31.59 20.66 -0.81 4.20 27.41 24.31
Good Question 21.24 8.92 16.13 10.35 -1.10 1.46 10.75 8.95
Great Answer 24.29 17.59 15.53 10.17 -0.99 1.40 11.41 9.74
Great Question 15.54 15.62 10.25 7.66 0.42 1.65 6.27 5.41
Guru 39.03 27.89 21.94 13.19 -0.12 3.77 16.64 14.03
Legendary 77.08 74.27 14.03 -1.23 -1.21 5.02 4.83 0.39
Mortarboard 60.99 18.13 43.30 26.17 -5.58 2.20 31.09 26.68
Necromancer 27.07 7.17 22.34 14.33 -2.61 0.95 17.58 15.17
Nice Answer 43.54 11.72 40.66 28.41 -1.04 4.75 38.20 34.94
Nice Question 23.76 1.48 19.17 11.18 -1.34 2.16 17.62 15.26
Notable Question 11.68 0.48 11.89 8.02 -1.70 0.03 10.39 9.17
Organizer 43.13 4.61 37.44 23.85 -3.57 2.61 32.12 28.49
Peer Pressure 28.93 -1.11 22.34 12.04 -6.20 -1.83 15.06 12.02
Popular Question 15.59 -2.70 17.49 11.80 -0.76 1.81 17.50 15.76
Populist 38.82 29.42 17.33 8.65 -1.96 1.75 10.66 8.06
Pundit 44.17 41.15 16.65 8.05 -1.20 2.47 10.31 7.74
Reversal 23.84 22.97 7.26 2.60 -1.71 0.21 5.46 4.07
Scholar 19.63 -14.50 23.95 14.86 -1.57 2.48 24.82 22.21
Self-Learner 19.44 3.31 17.69 11.65 -0.97 1.74 15.23 13.37
Stellar Question 16.40 16.37 11.79 9.10 0.04 1.34 6.18 5.26
Strunk&White 52.71 23.06 24.73 10.06 -3.77 2.46 15.80 11.64
Student 19.84 -14.03 23.59 14.48 -1.64 2.40 24.02 21.40
Supporter 26.36 -8.53 31.14 21.01 1.15 5.87 35.59 32.81
Taxonomist 7.59 -0.49 8.25 5.61 0.45 1.65 8.58 7.75
Teacher 26.80 -3.97 32.41 23.03 2.73 7.21 38.21 35.61
Tumbleweed 7.63 -19.77 10.37 4.15 -6.26 -3.73 5.00 3.13
Yearling 18.10 4.40 20.98 15.87 2.93 5.40 25.62 24.04
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CHAPTER 5

RELATIONAL BLOCKING

Conditional independence is a central concept for learning and reasoning with

causal models [66, 85]. Explicit tests for conditional independence are the basic oper-

ators used in many algorithms for learning the structure of such models. These tests

identify conditional independence by explicitly evaluating the impact of conditioning

on specific sets of one or more observed variables.

In this section, we present relational blocking,1 a fundamentally new algorith-

mic operator for learning conditional independence by exploiting relational structure

among data entities [75]. Relational blocking behaves in ways that differ fundamen-

tally from simple conditioning on observed variables. Specifically, it adjusts for sets

of both observed and latent variables when they act as confounders. Yet it does not

induce dependence when these variables are common effects.

Relational blocking formalizes approaches commonly used in the social sciences

[89] and reveals statistical implications of these methods that are both surprising and

useful. Despite the widespread use of blocking in other fields, it has not been used in

algorithms for learning the structure of causal models such as PC [85] or RPC [55].

We describe relational blocking using DAPER models and ground graphs [35], and

we use these formalisms to show how blocking is distinct from simple conditioning.

We demonstrate the effectiveness of relational blocking by showing how it reduces

1The term blocking is overloaded in the statistical sciences. In this paper, blocking refers to
instance grouping, and is distinct from the concept of path blocking found in the graphical models
literature.
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variability and adjusts for entire classes of observed and latent confounders. Finally,

we examine the frequency with which relational blocking can be applied to discover

causal dependencies in data describing social media systems.

5.1 Example

Consider the problem of understanding the operation of Wikipedia, a peer-produced

encyclopedia of general knowledge.2 Wikipedia articles, or pages, are produced collec-

tively by thousands of volunteer users. Pages are created and modified by users, and

users often organize themselves into groups called “projects,” each of which covers a

general topic. Within a project, individual pages are assessed by editors for “quality,”

an objective evaluation of key criteria.

One of the most persistent claims about Wikipedia is that its high quality stems

from the large number of users that collaborate to write each article [48]. We call

this the many-eyes hypothesis : The more users that revise an article, the higher the

quality of that article. If we knew that this association was causal, then we could

increase the quality of an article by directing more users to revise it. However, to

determine that a causal dependence exists between editor count and article quality,

we must eliminate other plausible alternative models that could explain an observed

dependence.

A naive approach to this question would examine a large number of pages at

a given point in time and estimate the dependence between the number of editors

E and the quality of the page Q. This method tests the assumptions encoded in

the graphical model shown in Figure 5.1a. Given this design, the variables are highly

correlated: We sampled twenty random Wikipedia pages from ten projects, and found

that a chi-square test yields χ2=101.83 (n=189, since not all pages had Q and E

2http://www.wikipedia.org
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Figure 5.1: (a) A simple graphical model describes the dependence between the num-
ber of editors E and quality Q of an article, but it does not account for common
causes. (b) A more complex graphical model incorporates latent common causes T
associated with project.

values; DOF=12; p = 2.44× 10−16), and approximately 66% of the variance of page

quality could be attributed to the number of editors. This approach is quite similar

to those conducted by many algorithms in machine learning—it identifies a statistical

association between two variables, but that association is insufficient to establish a

causal dependence. The observed dependence could stem from a common cause, such

as the general topic area T . It is plausible that pages on topics of high interest to

Wikipedians may be edited by a disproportionately large number of users (that is,

T causes E). Additionally, that same interest in topic could drive editors to exert

special care when editing, thereby improving quality (T causes Q). If T is a cause of

both E and Q, then E and Q will be marginally dependent even if their dependence

is not directly causal.

Unfortunately, since topic T is not a measured variable, we cannot account for its

influence on E and Q through simple conditioning. However, since project structure

is based on topic, we can adjust for this potential common cause by blocking. Projects

govern pages that are thematically similar, so blocking on project can factor out the

latent influence of topic. This alternative approach helps to differentiate between the

graphical model shown in Figure 5.1a and the model in Figure 5.1b.

The DAPER model in Figure 5.1a contains only a single entity type and thus

is equivalent to a conventional Bayesian network. However, the DAPER model in

Figure 5.1b shows dependencies that span two entity types in which an instance of
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one entity (Project) typically connects to more than one instance of a second entity

type (Page). A given Project instance is related to several Page instances, each of

which contains an instance of the E variable. Each of those E variables has the same

parent variable T on the given Project instance.

When we use project relations to arrange pages into groups, we find that the

average correlation between editor count and page quality decreases. A Cochran-

Mantel-Haenszel test yields M2=82.33 (n=189; DOF=12; p = 1.48 × 10−12). Al-

though lower, this value is still highly significant, and roughly 53% of the variance

would now be attributed to the number of editors. The effect size has dropped, but

it is still statistically significant.

However, using this approach allows a stronger claim regarding the source of the

association because we have plausibly factored out at least one potential (unmeasured)

common cause. The ability to factor out multiple variables, observed or latent, is a

key benefit of blocking. After ruling out several plausible common causes of variation,

we now have much stronger evidence that the dependence between editor count and

page quality is causal and that the many-eyes hypothesis is valid.

The example above highlights three concepts whose intersection forms the basis

of this work. First, the Wikipedia data set is relational, made up of heterogeneous,

interrelated data instances drawn from a relational network. Second, the question

being investigated is causal. While there is a marginal association between editor

count and quality, we are trying to establish a more powerful claim. Lastly, we are

able to adjust for confounding factors (and draw a stronger causal conclusion) by

using blocking as a complement to traditional conditioning.
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5.2 Background

Most modern machine learning algorithms focus on identifying correlations in

data. In this work, we are concerned with causal relationships between entities and

their associated attributes in relational domains.

The traditional approach in machine learning is to statistically model all possi-

ble common cause variables (e.g., Bayesian network learning [85], RPC [55]). These

techniques determine structure by finding dependencies among variables through sta-

tistical control of restricted sets of parent variables. However, even with a highly

accurate model, algorithms that rely exclusively on conditioning can succumb to var-

ious problems related to the existence of latent or unmeasured variables and low

statistical power.

At its core, blocking is a data grouping strategy used to reduce variation and

factor out common causes. The block design, originating in the agricultural exper-

imental design work of Fisher [20], divides data instances into disjoint groups, or

blocks, according to the value of one or more blocking criteria. Within each block,

confounding factors (often called “nuisance factors”) associated with the blocking

variable are held constant, reducing any variability in the outcome (effect) variable

that is due to these factors. For example, the analysis of a drug trial might block on

the hospital where the treatment was administered, allowing experimenters to control

for any environmental factors associated with the facility.

In a network setting, units can be blocked using network structure as well. Rela-

tional blocking groups entities that share relations with a common neighbor, called

the blocking entity. Blocking in this manner can be used to facilitate causal discovery

in network data sets consisting of entities (e.g., people, events, or places) that share

some type of relationship or action among them. For example, papers written by

common authors, or movies produced by the same studio, may form blocks.

88



The use of relational structure to block by entities rather than attributes can be

thought of as a generalization of the classic twin design, in which pairs of twins are

blocks. For more than a century, researchers have relied on twin data to account for

whole classes of (often unmeasurable) attributes related to family environment and

heredity [9].

Blocking is commonly used in experimental studies; for example, the Randomized

Complete Block Design refers to a configuration where each possible value of the

treatment (cause) variable is paired with each value of the blocking variable to form

the blocks. In the multilevel modeling framework, the attributes of the blocking entity

would be modeled as a “level” of regression parameters [26].

Note that block assignment should not be confused with the notion of experimental

group assignment found in experimental design literature. Experimental groups are

homogeneous with regard to treatment (or lack thereof). In contrast, experimental

blocks contain instances with varying treatments and outcomes while homogenizing

confounding factors that make detecting the relationship between treatment and out-

come more difficult.

Blocking is used less commonly in observational, or quasi-experimental settings.

In contrast to experimental domains, treatment is not explicitly assigned in non-

experimental settings, so factors associated with each block may affect both treatment

and outcome.

Previous work in relational learning provides strong evidence that blocking by net-

work structure will have this effect. Relational autocorrelation, a commonly observed

trait of network data sets, is indicative of an association between network structure

and attributes such that entities sharing common neighbors often share similar at-

tribute values as well [39]. Neville and Jensen exploited this property on unipartite

data using Latent Group Models to model an unmeasured attribute on a “coordi-

nating entities” [62]. Of course, autocorrelation may be the result of differing causal
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mechanisms: When the existence of relationships stems from attributes, it is referred

to as homophily; when the reverse is true, it is called network influence [3, 22]. In

either case, blocks constructed from using network structure exhibit less variability

than the population at large in terms of treatment, outcome, or both.

The benefit of relational blocking is twofold. The first is statistical: By organizing

experimental units into groups such that variability within each block is reduced, we

can improve statistical power. Relational blocks hold constant any attribute associ-

ated with the blocking entity. In this respect, blocking serves the same purpose as

conditioning. However, unlike conditioning, blocking can simultaneously adjust for

the influence of several (even latent) variables. When applied to hierarchical domains

(such as the synthetic domains described in Section 5.3), relational blocking serves a

similar purpose to multilevel modeling, where the influence of factors associated with

a common group or entity is modeled within the appropriate regression equation

associated with each level of the hierarchy [29].

The second benefit relates to causal reasoning. The causal sufficiency assumption

[85] states that any possibly confounding variables are observed. When blocking,

factors that are held constant within each block can be eliminated as possible com-

mon causes of treatment and outcome, enabling stronger claims of causal sufficiency

and pruning the space of alternative causal models. By eliminating entire classes of

potential common causes, including both measured and latent variables, the causal

sufficiency assumption is relaxed, in that confounding factors can be accounted for

even if they are unobserved, assuming that the entities they are associated with are

observable.

In addition, blocking lacks one of the central disadvantages of standard condition-

ing — the potential to induce independence if the conditioning variable is a common

effect, rather than a common cause or a mediating variable in a directed causal chain.

This is a surprising and highly beneficial feature of blocking, and it is one that, to our
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knowledge, is unrecognized in the literature on multi-level models and experimental

design. The next section describes this effect in more detail.
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Z

B
X Y

(d)

IDAZ Z Z Z

Figure 5.2: Different generative models for bipartite one-to-many data. In case (a),
X directly influences Y . In (b), X and Y have a common cause (Z), and blocking and
conditioning will both render them conditionally independent. In (c), blocking and
conditioning are able to factor out the influence of confounder Z, but the two remain
conditionally dependent. Case (d) depicts Z as a common effect of X and Y ; here,
X and Y are rendered dependent when conditioned on Z (Berkson’s paradox), yet
remain independent when Z is held constant through blocking using entities of type
A. In all models, the double circles represent the deterministic dependence between
IDA and Z.

5.3 Blocking versus conditioning

It may be tempting to view blocking merely as a form of conditioning. While the

two serve common purposes—reducing variability and adjusting for common causes—

they do not produce the same statistical results. To illustrate this point, we generate

synthetic bipartite data and compare the results of blocking and conditioning for

different generative models of attribute structure. Each data set consists of entities of

two types, A and B, connected in a one-to-many manner. In all cases, there are 10,000

B entities, with the number of A entities varying between different experiments. Each

A entity carries two attributes, Z and H, with the former considered measured and

the latter latent. The B entities also have two attributes, X and Y , both of which

are measured.

In each experiment, the goal is to assess the dependence between X and Y while

either blocking on entity A or conditioning on variable Z. Note that Z is generated
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as a continuous variable; in each experiment it is discretized to a fixed number of

levels in order to compare the results of blocking and conditioning using the same

hypothesis test (we use Guo’s weighted Pearson’s r correlation [33]). While not

presented here, we found that the results of experiments using partial correlation

with an untransformed Z were qualitatively similar.

To represent blocking with a graphical model, we introduce an identity variable

IDA [74]. The models in Figure 5.2 depict bipartite, one-to-many models with the

identifier variable included. With this framework, we can formally define relational

blocking:

Definition 7. Let A and B be two entity sets in a k-partite network. A block contains

a set of B entities that link to a common A entity. Let ID be the unique identifier of

a block, and let X and Y be two attributes of B. We define Relational blocking

as the process that evaluates the conditional independence of X and Y given ID by

grouping B entities into disjoint blocks.

The directed edge connecting IDA and Z denotes a deterministic dependence

between the two. Certainly, IDA determines Z, since the value of IDA indicates the

value of Z with a simple lookup. The reverse is not true, however, as several A entities

may share the same value of Z while having different identifiers.

Despite being common in real data sets, the consequences of determinism in graph-

ical models are rarely discussed in the machine learning literature. The presence of

deterministic dependence slightly complicates the rules of d-separation.3 The follow-

ing definition is adapted from Spirtes et al. [85], and Geiger [25]:

Definition 8. Let X, Y, and W be three disjoint sets of vertices in DAG G. Let

Det(V) be the set of all variables determined by V. Then, X and Y are d-separated

3Some authors use the term D-separation (with a capital D) to denote d-separation with deter-
minism. In this work, we will not rely on this typographical convention.
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by W if and only if for all undirected paths P between X and Y either (1) ∃v ∈

colliders(P ) such that v ∧ descendants(v) /∈W or (2) ∃v ∈ noncolliders(P ) such that

v ∈ Det(W).

5.3.1 Common causes

The first set of experiments simulate the scenario outlined in the introduction.

Figures 5.2a and 5.2b represent two generative models where X and Y are marginally

dependent, denoted X 6⊥⊥ Y . In the first case, X has direct influence on Y ; in the

second, their marginal dependence is due to a common cause.

Under the framework of d-separation [65], this marginal dependence is evident

from the existence of a collider-free path connecting X and Y in either case. From

data, we can differentiate the two models with a conditional independence test. Con-

ditioning on Z has no effect on the independence relationship between X and Y in

model 5.2a, but interrupts the d-connecting path in model 5.2b, rendering X and Y

conditionally independent: X ⊥⊥ Y | Z.

The data for model 5.2b are generated such that X, Y = βZZ + ε. For all values

of βZ , blocking is comparable to conditioning in terms of Type I error, maintaining

an error level of less than 7% for α = 0.05, with conditioning less than 6%.

This similarity in performance can be explained by the semantics of d-separation

and the observation that, as defined above, blocking is equivalent to conditioning on

IDA. When conditioning on variable Z, data are grouped such that the value of Z

is held constant within each group. Similarly, blocking holds constant the entity A

within each group. In model 5.2b, Z lies on the only d-connecting path between X and

Y . Per the above definition, conditioning on Z or any set of variables that determines

Z will render X and Y conditionally independent. Since IDA fully determines Z,

conditioning on it (that is, blocking) will d-separate X and Y .
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Figure 5.3: Unlike conditioning, blocking does not induce conditional dependence
when holding constant a common effect of two marginally independent variables. The
line labelled “split” indicates a conditioning analysis with statistical power identical
to the blocking analysis.

5.3.2 Common Effects

An additional case is described by the model shown in Figure 5.2d. In this case, X

and Y are marginally independent, while Z is generated such that Z = βX ′+βY ′+ε,

where X ′ and Y ′ are the sums of the values of the X and Y values for each related

B entity. This case presents an example of Berkson’s paradox [7], where condition-

ing on a common effect (i.e., collider) will induce dependence between marginally

independent variables. Here, blocking and conditioning lead to opposite conclusions.

As expected, conditioning on Z does indeed induce dependence between X and Y ;

however, blocking on A does not, even though doing so effectively adjusts for variable

Z as in the conditioning case.

These effects can be seen in Figure 5.3. Conditioning produces the expected result:

As we increase the strength of effect parameter β, conditioning induces a dependence

between X and Y more frequently. Blocking, on the other hand, does not produce

any of the conditional dependence described by Berkson’s paradox. The d-separation

criteria stated above agree with our empirical results—conditioning on the collider Z

creates a d-connecting path, while blocking (conditioning on IDA) does not.
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The differences between blocking and conditioning cannot be attributed to statis-

tical power. For the case presented above, the block size (10 instances) is an order

of magnitude smaller than the conditioning groups (100). To compensate for this

difference, we randomly split each conditioning group into subgroups of 10 instances

(labeled as “split” in Figure 5.3). Even with conditioning groups of equal size to the

blocks, the proportion of significant p-values is unchanged.

These results clearly indicate that blocking and conditioning are fundamentally

different operations. The difference between blocking and conditioning is illustrated

in Figure 5.4. For a small dataset generated under the model in Figure 5.2d, the data

have been stratified into contingency tables for both blocking and conditioning. Even

for this illustrative example, the results of statistical tests can differ, as the p-value

for the conditioning case is 0.009 (indicating significance at the 0.01 level), compared

to 0.033 for blocking (not significant at 0.01).
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Figure 5.4: Blocking and conditioning are distinct operations, as they stratify the
data in different ways. For the above relational data set, conditioning groups the
data into two strata, yielding a combined χ2 value of 9.44 (p=0.009) while blocking
groups the data into three strata, producing a χ2 value of 8.75 (p=0.033).
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Figure 5.5: Models for bipartite data with latent variables. Models (a) and (b) depict
cases where a latent common cause H exerts influence on X and Y . In these cases,
blocking is able to render X and Y conditionally independent, while conditioning is
not. In models (c) and (d), X and Y have both a latent common cause Hc and a
latent common effect He. Here, blocking will distinguish between the two models.

5.3.3 Latent Confounders

Conditioning and blocking do not perform equivalently in the presence of latent

variables. Figures 5.5a and 5.5b depict generative models for data with a latent

variable H acting as a common cause of both X and Y . Since H is unobserved,

conditioning on H is impossible for model 5.5a, while blocking performs as if it is

controlling for an observable variable. In the case of model 5.5b, both a measured

(Z) and latent (H) variable exert influence on X and Y , such that X, Y = βZZ +

βHH + ε. The plot in Figure 5.6 depicts Type I error rate at the α=0.05 level with

βZ held constant at 0.5, and βH varying from 0 to 0.5. Since blocking accounts for

all confounders, it can be used to establish conditional independence in the presence

of unmeasured factors. Thus, in cases where two variables are marginally dependent,

conditioning alone is inadequate for ruling out alternative models such as those in

models 5.5a or 5.5b.

The models depicted in 5.5c and 5.5d show cases where X and Y have both a

latent common cause (Hc) and latent common effect (He). In both cases, X and

Y are marginally dependent. Blocking renders X and Y conditionally independent

for model 5.5c, but not 5.5d. As a result, any finding that X 6⊥⊥ Y | IDA cannot

be “explained away” by the presence of (latent) common effects when blocking (this

property follows directly from the results detailed in Section 5.3.2). Thus, while
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Figure 5.6: The effects of blocking and conditioning differ for data generated under
the models shown in Figure 5.5b. Conditioning can only adjust for measured variable
Z, and is susceptible to high rates of Type I error as the strength of the latent effect
βH increases. Blocking accounts for both H and Z; it is not affected by βH .

blocking can adjust for multiple latent confounders, it introduces no threat to causal

conclusions in the presence of latent common effects.

5.3.4 Power

The small example in Figure 5.4 illustrates another distinction between blocking

and conditioning: Since identifiers and variables are related in a non-injective manner,

blocking necessarily stratifies the data into smaller groups. To investigate the effects

of the smaller groupings on statistical power, we generated synthetic data using the

model found in Figure 5.2a such that Y = βXX + ε. Figure 5.7 depicts statistical

power as a function of effect size, sample size, and block size. In each case, blocking

does slightly decrease statistical power, which is expected given the smaller strata.

However, given the large size of many modern relational data sets such as Wikipedia,

these effects of this decrease are minimal.

5.4 Blocking in Practice

To assess the practical utility of relational blocking, we analyzed two domains

derived from the peer-production systems Wikipedia and Stack Overflow. Each data
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Figure 5.7: Although relational blocking groups the data into smaller strata than
conditioning, there is little effect on statistical power.

set comprised multiple related entity types and attributes. The data schema for each

can be found in Figure 5.8. Blocking was applicable to 80% of the questions identified

by practitioners as the most interesting, and blocking produced substantial changes

in results in 28% of the quantitative assessments of actual causal dependencies.

5.4.1 Wikipedia

Although Wikipedia has been the subject of several recent studies (e.g., Kittur

[48]), we know very little about how it functions, particularly from a causal stand-

point. These aspects make Wikipedia an ideal candidate for studying the applicability

and utility of relational blocking.
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Figure 5.8: Data schemata for Wikipedia and Stack Overflow. Each pair of X and Y
variables on the same entity can be tested for dependence, and related parent enti-
ties can be used for blocking. For example, Wikipedia Page.Quality and Page.Edits
can be blocked through Project or User, while Stack Overflow Question.Score and
Question.Length can only be blocked through User.

Table 5.1: Details of Wikipedia data

Entity Attributes Block Ents.
Page Adopted by Project, Age, Project, User

Assessment, Editors, Edits,
Featured, Importance,
Length Notice, Number of
Links, Protected, Quality,
Views

User Role, Edits, Membership Page, Project
in Project

Edit Size, Vandalism, Minor, Page, User
Reverted

Our version of the data contained User entities and Edit events in addition to

the Pages and Projects discussed in Section 5.1. The details of the entity types and

associated attributes can be found in Table 5.1. In all, there are twenty attributes

that are applied to three target entity types (Projects lack intrinsic attributes of their

own, and are only used as blocking entities). This schema allows for 174 different

relationships apropos to the bipartite models illustrated in Figure 5.2, for which 348

blocking schemes are available (each X, Y attribute pair can be blocked with two

different entities).
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We took a qualitative approach to determining the applicability of relational block-

ing. We surveyed ten people, each with a bachelors or masters degree in Computer

Science, to obtain a sample of interesting causal questions in the Wikipedia domain.

Respondents were given a simple list of attributes and asked to indicate ten pairs

of causes and effects they found compelling for study (attributes were presented in

one of five random orderings to eliminate biases associated with presentation). The

group generated a list of 99 causal discovery tasks (one respondent provided only 9

tasks), 71 of which were unique. Of these, 57 (80%) can be addressed with a sim-

ple relational blocking approach such as the one outlined in Section 5.1. While not

definitive, these results indicate that relational blocking can be readily applied to the

types of problems that interest practitioners.

Table 5.2: Details of Stack Overflow data

Entity Attributes Block Ents.
Question Ans. Count, Mean Ans. User

Score, Mean Ans. Comment
Count, Mean Ans. Length,
Comment Count, Favorite
Count, Has Accepted Ans.,
Length, Score, View Count

Answer Accepted, Comment Count,
Score, Length Question, User

5.4.2 Stack Overflow

In addition to the Wikipedia data set discussed in Section 5.1, we examined data

from Stack Overflow, an online technical resource that allows users to pose questions

as well as answer others’ questions. For our study, we examined dependence between

attributes on Questions (blocking on Users) as well as attributes on Answers (blocking

on Users or Questions), and found a significant change in effect size in 28% of all cases.

The complete list of attributes is found in Table 5.2.
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For each of the 57 same-entity attribute pairs, we assessed their marginal and con-

ditional independence using all available data for the month of March 2010. For pairs

of continuous attributes (e.g., Score, Comment Count), we utilized a blocked Pear-

son’s r statistic [33]; for nominal attributes, we applied a Cochran-Mantel-Haenszel

test. When one attribute was continuous and the other nominal, we discretized the

continuous attribute to five levels using agglomerative clustering. In all cases, exper-

iments involving Question entities had a sample size greater than 50k, while those

involving Answer entities had samples of over 100k. Given these large samples, p-

values for even the smallest effect sizes were significant, so we focused on associations

with marginal effect sizes greater than 0.1 (the effect size for both statistics can be

measured on a scale of 0.0–1.0).

Of the 57 attribute pairs, 20 exhibited a marginal association greater than 0.1. Of

these, 16 (28%) demonstrated a strong reduction in the size of effect when blocking,

suggesting a dependence structure similar to the model found in Figure 5.2c (albeit

with a latent Z). For instance, Question Score and View Count exhibit an effect size

of r2 = 0.51 in the marginal case, but this drops to 0.12 in the conditional case (the

associated z-scores are 214.16 and 59.49, respectively; both p-values are significant

at the 1 × 10−8 level). This result suggests that while Score and View Count are

associated, latent attributes on the Question author (e.g., expertise, writing style)

are a common cause for both and explain most of the variation.

Four attribute pairs exhibited little change in effect size when blocking was applied,

which provides evidence for the model in Figure 5.2a. For instance, the Score of a

provided Answer is highly associated with Accepted status. Authors of Stack Overflow

Questions can optionally “accept” a good Answer from among those provided; since

many choose to accept the one with the highest score, this result is not surprising.
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5.5 Blocking in many-to-many data

In the previous sections, blocking has been applied exclusively to one-to-many

domains. While one-to-many relational data sets form natural, hierarchical blocks,

the technique can be easily extended to many-to-many domains as well. In the many-

to-many case, each block is determined by a set of parent entities rather than a single

parent entity. Figure 5.9 illustrates the process for a bipartite domain consisting of

four blocking entities and ten child entites. Since the set of parents is constant across

each block, the influence of all attribute values (and interactions between them) can

be controlled.
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Figure 5.9: In many-to-many domains, relational blocks are determined by sets of
parent entities rather than a single parent entity.

Figure 5.10 illustrates the effectiveness of relational blocking on synthetic many-

to-many data. For these experiments, “small-world” bipartite graphs were generated

using a version of the stochastic copying model [52] that was adapted for bipartite

data. Each graph is made up of 10k nodes. Parent nodes have a degree uniformly

chosen from [2, 10], and child entities have a degree from [1, 3]. In the common cause

case (a), many-to-many blocking is able to correctly adjust for the influence of parent

attributes at levels comparable to traditional conditioning (albeit with slightly more
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variability). However, since many-to-many blocking divides the data up in to even

smaller blocks than single-parent blocking, statistical power does suffer slightly. The

plot in Figure 5.10b depicts power curves for the case where child variable X has a

direct influence on Y (Y = βX + ε). At lower strengths of effect (β < 0.2), the risk

of committing a Type II error is increased.
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Figure 5.10: (a) Many-to-many blocking is able to adjust for common causes as
effectively as traditional conditioning. (b) Since many-to-many blocking subdivides
the data into small groups, statistical power decreases at low strengths of effect.

5.6 Less is more: Sampling for power

As defined here, relational blocking does not utilize all of the data instances.

When calculating Guo’s weighted Pearson’s r or a 3D χ2, blocks with fewer than

three instances are discarded. In this way, blocking can be though of as a form of

targeted sampling. Traditionally, there exists a tradeoff between sample size and

statistical power [14]. In the relational domain, however, sampling (using fewer data
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instances) may actually increase power. Below, we describe two scenarios where

targeted sampling can be used in this way.

The first scenario is akin to the example presented involving Wikipedia in Sec-

tion 5.1. We’re given a bipartite data set connected in a one-to-many fashion. The

child entities have two associated variables, X and Y , which are marginally associ-

ated. As discussed previously, relational blocking can be used to determine whether

the relationship between X and Y is directly causal, or their association is due to

some latent common cause Z associated with the parent entity. Graphical models

describing these two situations are depicted in Figure 5.11a and b.
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Figure 5.11: Targeted sampling can be used to increase statistical power. (a) and
(b): Graphical models representing one-to-many relational data where X and Y are
causally dependent (a), or marginally associated due to a common cause (b). For
data with an exponential degree distribution (c), power can be increased by only
considering large blocks when performing a conditional test (d).

In the previous sections, if X and Y were found to be conditionally independent

when conditioned on parent entity using blocking, we used that as evidence to con-

clude that the model (b) was the correct model. However, it may be possible that the

causal dependence between X and Y is direct but very weak, and that the blocking

test was unable to disprove the null hypothesis due to insufficient statistical power.
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By “slicing” the data too thinly, the association may be undetectable within any

given block, and therefore undetectable overall.

Figure 5.11 shows the results of using blocking in such a scenario. Here, data are

generated with the model (b), using an exponential degree distribution with a mean

degree of 3, depicted in the degree distribution plot in (c). The dependence between

X and Y is very weak: Y = 0.05X + ε, where X and ε are normally distributed with

mean 0.0 and standard deviation of 1.0. Power curves for samples drawn from a one-

to-many network composed of ∼270k nodes are shown in Figure 5.11d. Since many

of the blocks are small (less than three instances), blocking produces a false negative

rate of over 50% for sample sizes of less than 5000 instances. If we selectively sample,

however, by targeting only large subgraphs, we can increase power dramatically, as

shown by the power curves corresponding to blocking using only blocks with more

than 5 or 10 instances. Thus, by ignoring data instances that are part of small blocks,

we can actually increase power.

A second scenario where targeted sampling can increase statistical power matches

the one discussed in Chapter 3. Again, we have a bipartite, one-to-many relational

data set; however, in this case, the variables of interest are associated with the parent

and child entity, respectively. We generated synthetic graphs of 370 nodes using the

models shown in 5.12a and b along with degree the distribution depicted in Figure

5.11c. For the networks generated under model a, Z = 0.05 ∗AV G(X)+ ε, for model

b, X = 0.05∗Z+ε, where ε is distributed as N(0, 1). In this scenario, both replication

and aggregation are appropriate for propositionalization; results for both methods are

shown in Figure 5.12.

For data generated under the model in Figure 5.12a, the effects of targeted sam-

pling are dramatic for both aggregation (c) and replication (e). Here, each parent

entity may be linked to several child entities. As a result, there may be competing

influence among several X values on a single Z, rendering the association difficult to
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Figure 5.12: The effects of targeted sampling on parent-child attributes are quite
pronounced for data generated under model (a) for both aggregation (c) and repli-
cation (e). Under model (b), the effects are greatly reduced for aggregation (d), and
non-existent for replication (f).

detect. Unlike the scenario presented above, in this case, we can benefit by sampling

only small subgraphs and ignoring larger ones. By doing so, the effects of competing

influence are eliminated, resulting in a substantial increase in statistical power for

equivalent sample sizes.
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The power benefits of targeted sampling for data generated with model the model

in Figure 5.12b are relatively slight in the aggregation case (d), and non-existent for

replication (f). However, it is important to note that targeted sampling does not

decrease power when compared to testing on all the data, so given a case where the

causal direction cannot be established, the use of the technique has substantial upside

with little downside.

Of course, the validity of this technique hinges on the assumption that there is

no degree disparity present; that is, link existence is marginally independent of both

variables of interest. Otherwise, sampling based on degree introduces a potential bias

and conclusions that are invalid for the data as a whole.

5.7 Discussion

In the presence of common causes (such as in data described by the model in

Figure 5.1), blocking serves essentially the same function as simple conditioning. In

both cases, confounding factors are held constant within the block or conditioning

group. Conditional hypothesis tests allow us to evaluate the dependence between

two child entity variables while adjusting for any common causes associated with the

parent entity.

As demonstrated experimentally in Section 5.3.2, the effects of blocking and con-

ditioning are quite different for the common effect case. Conditioning on Z in model

d may render (marginally independent) variables X and Y conditionally dependent.

Blocking on A entities, however, will not result in any conditional dependence. This

result may strike some as non-intuitive, especially given the fact that blocking, as de-

fined above, is algebraically equivalent to conditioning on an ID variable. Below, we

attempt to shed some light on the differences between blocking and conditioning and

provide both an intuitive and theoretical explanation of why these operators behave

differently in the presence of common effects.
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Berkson’s paradox, selection bias, explaining away

The concept of marginally independent events being rendered conditionally depen-

dent given information about a common effect is relevant to data analysis in many

fields, including statistics, artificial intelligence, and economics. The terms “Berk-

son’s Paradox”, “selection bias”, and “explaining away” describe essentially the same

statistical phenomenon, although the context in which each is most commonly used

varies.

Joseph Berkson formulated this idea in terms of binary treatments and outcomes

in a medical setting (hence its subsequent naming) [7]. When performing inference

in graphical models, AI practitioners refer to a decrease in a conditional probability

of an independent causal factor due to information about a shared effect as “explain-

ing away” [78]. For example, the presence of a cat burglar and an earthquake are

marginally independent, but in the presence of an active security alarm, knowledge

that an earthquake has not occurred dramatically increases the probability that a

burglary has occurred. In statistics, “selection bias” refers to situations in which the

population being studied does not accurately reflect the population at large [79]. Thus

given a sample based on a common outcome (e.g., college students, cancer patients,

self-selected survey participants), independent causal factors may appear dependent.

Academic
Ability
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Enroll.

Athletic
AbilityBurglar

Alarm

Earth-
quaketreatment

symptoms

outcome

Z

X Y

Figure 5.13: Examples of common effect cases in different domains. In each, two
marginally independent factors (X and Y ) can be rendered conditionally dependent
when conditioning on a common effect Z.

All of the above scenarios can be described by the simple v-shaped graphical model

in Figure 5.13 below, and the semantics of d-separation agree with empirical results

found in real data: In cases where independent factors X and Y are both causes of
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a third variable Z, conditioning on Z (or sampling based on its value) will render X

and Y (conditionally) dependent.

Berkson’s paradox in relational data

As described above, the effects of Berkson’s paradox are found in relational do-

mains as well. Consider a data set shown in Figure 5.14. In this scenario, conditioning

on common effect Z may induce a conditional dependence between two (marginally

independent) variables X and Y ; that is, X ⊥⊥ Y , yet X 6⊥⊥ Y | Z. It should be noted

that this effect is independent of the method we use for propositionalizing the data:

In the replication case X 6⊥⊥ Y | Z, while in the aggregation case f(X) 6⊥⊥ g(Y ) | Z

for some aggregators f and g. Since blocking is meaningless when aggregations are

used (each grouping will contain only one entity), we will focus exclusively on the

replication case below.
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Figure 5.14: DAPER model graphs and ground graph for the common effect case.
Although X and Y are marginally independent, conditioning on Z will activate a
d-connecting path and may render them conditionally dependent for both replication
or aggregation to propositionalize.

109



Illustrative example

Consider a college lecture course consisting of exactly 2000 students (it is a rather

large class). The lecture hall is divided up into 200 rows of 10 students each (it

is a rather oddly shaped classroom). The students are seated randomly within the

classroom, and each student has two associated binary attributes: S, which signifies

whether he or she is “smart”, and W, whether he or she is “hard-working”. These

two factors are considered independent.

The professor is a believer in the power of collaborative learning, and decides to

divide the class into study groups by row. Examining the relationship between S and

W conditioned on row can be used to factor out confounding factors associated with,

for instance, the position of the row in the classroom or the proximity to distractions.

However, since S and W are intrinsic, unchanging attributes, row membership has no

effect on their values, and since S and W played no part in seating choice, within each

row the values of S and W remain independent. Furthermore, each row is a random

sample of the population at large, with (per the central limit theorem) means that

are normally distributed around the population mean.

The professor decides that each row will complete all assignments as a group, and

the group will receive a single grade G. The grade is a random variable collectively

determined by the values of S and W for each student and follows a normal distribu-

tion (for example, G = Cs + Cw + ε, where Cs and Cw are the counts of the students

with S = True and W = True, respectively). The DAPER model in Figure 5.15

describes this scenario. Each (parent entity) row gets a grade G that is dependent on

attributes S and W of the (child entity) students.

After the first assignment is completed, the professor decides to construct new

study groups by combining different row-based groups. She (perhaps curiously) de-

cides to combine all groups that received the same letter grades on their assignment.

For example, all rows that received an “A” compose a group, all rows that got a “B”
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Figure 5.15: The rules of deterministic d-separation agree with empirically derived
independence relationships. (left) DAPER model describing the classroom example.
(right) Ground graph for the classroom data. While conditioning on G enables a path
from S to W , blocking (conditioning on row R) does not.

compose a new group, etc. After doing so, the professor performs a statistical test

to ascertain the (in)dependence between S and W within each multi-row group, and

finds that the two are in fact dependent!

Contingency tables for a synthetically-generated data set that matches the grade

example are shown in Table 5.3. Note that while only one of the five grade groups

(”F”) exhibits significance at the 0.05-level, the overall CMH test statistic is signifi-

cant at the 0.001 level (CMH = 11.20, p = 0.0008). Also note that since the grades

for each row are normally distributed (with mean letter grade “C”), the grade-based

groups have different sizes.

In the above example, conditioning by row-based groups corresponds to relational

blocking, while the combined grade-based groups correspond to conditioning on the

grade variable G. While conditioning induces a dependence between S and W , block-

ing by rows does not (CMH = 2.67, p = 0.1020). This difference can be explained by

the fact that in the case of blocking, the selection being performed (dividing randomly-
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Grade “A”
S = + S = −

W = + 0 7 7
W = + 24 119 143

24 126 150
χ2 = 1.40, p = 0.2370

Grade “B”
S = + S = −

W = + 9 47 56
W = + 99 295 394

108 342 450
χ2 = 2.20, p = 0.1376

Grade “C”
S = + S = −

W = + 28 73 101
W = + 237 392 429

265 465 730
χ2 = 3.73, p = 0.0534

Grade “D”
S = + S = −

W = + 36 57 93
W = + 150 187 337

156 244 430
χ2 = 1.00, p = 0.3175

Grade “F”
S = + S = −

W = + 27 33 60
W = + 112 68 180

139 101 240
χ2 = 5.48, p = 0.0193

Table 5.3: Contingency tables and chi-square results for each grade group in the
classroom example. While only one group (“F”) shows a significant dependence
between W and S, the data set as a whole is significant when tested with a CMH
statistic (CMH = 11.20, p = 0.0008).

seated students up into rows) is free of bias. Since each row group was selected from

the population without regard to variables S and W , they remain independent within

each row (as they do in the population).

In the conditioning case, however, the grade-based groups are assembled using

biased selection. Here, groups are determined by a row-based grade G, which (by

virtue of the fact that S → G and W → G) means that each group is a biased

sample of the population with regards to S and W . Even though they are composed

of unbiased subgroups (rows), the overall group is a biased sample of the population

with regard to S and W . This fact is clearly illustrated in the bar graphs in Figure 5.16
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Figure 5.16: When row groups are combined according to grade, the new groups
are no longer representative of the overall population. (left) Comparison of relative
attribute distributions for each grade group. (right) Absolute population distributions
for each grade group.

(left), which shows the proportion of students having each combination of attribute

values for each grade group as compared to the overall population. Clearly, the

attribute distribution of each grade-based group does not reflect the population at

large. On the right, we show the absolute distribution within each grade group.

Lastly, the difference between these two operations is born out by the semantics

of d-separation as well. Figure 5.15 depicts the DAPER model and ground graph for

the classroom example. In the latter, conditioning on the collider Z will enable the

path between X and Y . However, conditioning on row (blocking) does not, and S

and W remain (conditionally) independent.

5.8 Conclusions

In this chapter, we have presented relational blocking as a technique to facilitate

learning the structure of causal models. Blocking is similar in function to simple con-

ditioning in its ability to reduce variability and increase statistical power. However,
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unlike conditioning, blocking does not induce dependence when accounting for com-

mon effects. Blocking is able to adjust for whole classes of confounders simultaneously,

whether observed or latent, effectively relaxing the causal sufficiency assumption and

strengthening causal conclusions.

We have illustrated the use of blocking using synthetic data and found our ap-

proach to perform well in terms of Type I and Type II error. Furthermore, by explain-

ing our results using the graphical models framework and d-separation criteria, we

are able to provide a theoretic understanding of a commonly used technique employed

in the social sciences. In addition, we have demonstrated the utility of blocking on

two real world data sets.
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CHAPTER 6

AUTOMATED IDENTIFICATION OF RELATIONAL
MARKOV EQUIVALENCE CLASSES

The propositionalized models presented in prior sections often represent a subset

of the possible causal structures for the data described. Other, possibly more complex

models may also fit the data. For example, models H1 and H2 in Figure 6.1 depict

two of the hypotheses for explaining dependence in replicated data as presented in

Figure 3.7. Using a single test of conditional independence between ID and Y con-

ditioned on X, we were able to differentiate between the two. Models H3 and H4

correspond to alternative hypotheses that also explain an association between X and

Y. Model H3 is identical to model H1, but the direction of causality between X and

Y is reversed. In model H4, Y is causally determined by X as well as a latent variable

Z.

As demonstrated previously, attributes derived from relational structure can be

used to differentiate between causal models with conditional independence tests.

Model H3 can be differentiated from model H1 by testing to see whether ID ⊥⊥ Y | X

holds. However, since Z is a latent variable (and therefore cannot be explicitly in-

cluded in any hypothesis test), models H2 and H4 cannot be differentiated through

hypothesis testing, as the same set of testable conditional independence relationships

hold in each: ID 6⊥⊥ X, ID 6⊥⊥ X | Y , ID 6⊥⊥ Y , ID 6⊥⊥ Y | X, X 6⊥⊥ Y .

Previous work has demonstrated that the semantics of d-separation can be used

to group graphical models that incorporate both latent and measured variables into

equivalence classes, such that each class is defined by a set of conditional independence
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Figure 6.1: Alternative hypotheses (H3, H4) to those presented in Figure 3.7 (H1,
H2). In all four, X and Y are marginally dependent, but the causal structures behind
the associations differ. Given that Z is a latent variable, there are no conditional
independence tests that can differentiate between H2 and H4.

relationships among variables [87, 86, 81]. Models in the same class are said to be

“Markov equivalent,” and cannot be distinguished through conditional independence

tests alone. By examining these equivalence classes, we can clearly see the power of

using relational data for causal learning.

Figure 6.2 depicts two sets of algorithmically-generated1 Markov equivalence classes

for the replicated one-to-many data discussed in Section 3.4. For simplicity, we re-

strict our discussion to models where X ⊥⊥ Z | ID and ID is not directly related to

Y , along with the previous assumption that there is a causal dependence between

ID to X and ID to Z. In addition, the ID variable cannot be used to condition, as

the one-to-many structure of the data will necessarily zero out any test statistic (e.g.,

chi-square, Cochran-Mantel-Haenszel) calculated with X when conditioned on ID .

Also, since Z is latent, it cannot be tested for dependence or used for conditioning.

Given the above constraints, there are nine possible models, seven of which pro-

duce marginal dependence between X and Y . The shaded boxes depict a summary

model for each class. For the summary models, solid directed arrows represent edges

that are common to all models in that class. Undirected arrows represent edges that

1The code used to generate these examples if available from:
https://github.com/mattratt/CausalRelational
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Figure 6.2: D-separation equivalence classes for one-to-many data propositionalized
through replication. Gray boxes contain summary graphs for each class, where solid
lines represent edges shared by all models of the class, dashed lines represent edges
shared by some models, and arrowheads are present where direction is consistent
among the models having the edge. The ⊥ symbol stands for conditional indepen-
dence, while the ↔ symbol stands for the converse.
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exist in each class model, but may differ in direction. Dashed lines represent edges

that exist in some class models but not others, and are directed if the direction is

consistent when it does exist.

The first set of equivalence classes (a) illustrates the possible differentiations be-

tween models when relational structure (as captured by the ID variable) is not avail-

able for hypothesis testing. Here, there is only a single test available (assessing the

marginal dependence of X and Y ), separating the models into two classes. When

relational information is included, however, we can differentiate much more precisely

(b). Here, the models separate into four equivalence classes.

Assuming both causal sufficiency and faithfulness, two aspects of the relationally-

derived classes are worth noting. First, models 2 and 8 (identical to H2 and H4

mentioned above) are indistinguishable through conditional independence testing.

That is, autocorrelation among values of Y on child entities will mask any causal

effect flowing between X and Y . The task of differentiating homophily from influence

in social networks is an ongoing challenge, these classes represent a first step toward

distinguishing between the two effects as well as explaining why they are difficult to

tease apart.

Second, Classes iii and iv constitute a new opportunity for causal edge orientation

in relational data. Using the set of conditional independence relations, we can dis-

tinguish cases where X causes Y from those where Y causes X. Intuitively, a lack of

autocorrelation among Y values (expressed as a marginal independence between ID

and Y ) allows us to conclude that influence flows from Y to X, whereas cases where

X causes Y will create autocorrelation.

For data propositionalized through aggregation, the results are similar. Figures

6.3 and 6.4 depict the classes derived from traditional and relational methods, respec-

tively. For each, we assume that in all models, Y causes the aggregation f(Y ), f(Y )

does not cause any other variable, Y ⊥⊥ deg | X, and X ⊥⊥ f(Y ) | deg. In Figure 6.3,
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Figure 6.3: Markov equivalence classes for one-to-many data propositionalized
through aggregation and separated without the use of relational degree information.
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Figure 6.4: Markov equivalence classes for one-to-many data propositionalized
through aggregation using degree information.
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Figure 6.4: Markov equivalence classes for one-to-many data propositionalized
through aggregation using degree information, cont’d.
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we see that conventional, propositional methods are only able to separate the 26 pos-

sible models into two equivalence classes. By leveraging relational information in the

form of a degree variable, however, we are able to further partition the model space

into eleven separate classes. The relational classes are able to definitively identify the

existence of a causal edge (in terms of existence, rather than direction), as indicated

by the lack of dashed edges in the class summary graphs.

The relational Markov equivalence classes shown above were programmatically

generated. Given a relational schema, each possible DAG is constructed and analyzed

using the d-separation criteria. DAGs are then grouped according to their implied

conditional independence relationships, and the class summary graphs are constructed

by inspecting the edges present across the models of each class.

6.1 Discussion

Traditionally, the rules of d-separation are applied manually, allowing a practi-

tioner to make decisions about the space of hypotheses through inspection alone.

For the simple domains presented above, such automated schema inspection may not

be necessary. However, the space of possible DAGs is exponential in the number

of possible edges, which itself is O(V 2). Thus, for more complex domains, manual

construction is effectively impossible. For instance, the illustrative example schema

involving journals, papers, and authors from Section 2.2.1 produces 1,656 valid DAGs

that partition into 1,124 equivalence classes.

At a higher level, the automated schema analysis technique presented here is clear

demonstration of benefits of relational representations. When relational information

is made available to learning algorithms, they can model data with much greater

specificity than algorithms that rely on attribute data alone. While the addition of

relations adds some amount of complexity to analysis, it can ultimately lessen the

difficulty of the learning task.
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CHAPTER 7

CONCLUSIONS AND THE FUTURE

In the preceding chapters, we attempted to bridge the gap between the fields of

causal discovery and relational learning. We have shown that by incorporating the

formalism of Bayesian networks and d-separation, we can better understand the causal

dynamics of non-iid data sets. In addition, we have demonstrated how to leverage

the expressive power of relational representations to better perform causal discovery.

Below, we review the main contributions of the work.

We have formalized propositionalization as a graphical sampling procedure, and

grounded that in common practice. Traditional relational algebraic approaches and

SQL tend to hide the information that is lost in the transformation process. In

contrast, the graphical approach clearly highlights the mechanics of replication and

aggregation. We use the formalisms of DAPER models and the ground graph to

explain two previously identified pathologies in relational data analysis: instance de-

pendence bias and degree disparity bias. In addition to identifying the circumstances

that can produce two types of biased analysis, we detail the statistical consequences

of each.

Using Bayesian networks augmented with variables to capture relational structure,

we utilize the semantics of d-separation to create new classes of hypotheses tests

that differentiate between models where instance dependence and degree disparity

biases may be present. For replicated domains, we introduce a nominal ID variable

that can be incorporated into conditional independence tests; for aggregated data

tables, we condition on a constructed degree variable to adjust for the sensitivity of
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different aggregators to cardinality. In both cases, we show how the graphical model

formalism both explains the origins of and provides a solution for common pathologies

in relational learning.

We introduce relational blocking, a design that can relax the causal sufficiency as-

sumption for relational domains. We demonstrate the use of blocking empirically and

explain the results theoretically. Our analysis includes a somewhat unexpected (but

theoretically justified) result: While blocking is equivalent to traditional conditioning

in terms of its ability to adjust for common causes, it does not induce conditional

dependence in the presence of common effects.

In addition to clarifying problems in relational learning using causal reasoning and

Bayesian networks, we also demonstrate how relational representations can produce

new techniques for automated causal discovery. The conditional hypothesis tests

presented in Chapters 3 and 4 can be utilized to programmatically construct relational

Markov equivalence classes for relational domains, which in turn can be used to infer

the existence and (in some cases) the direction of causal relationships from data.

Future directions

Of course, the contributions listed above are all starting points for several new

avenues of research. For example, much of the work in this thesis centers around

the use of the ground graph for analysis. However, for some domains, constructing

the ground graph in its entirety may be infeasible. DAPER models, on the other

hand, provide a compact method for describing the relations and dependencies found

in a given data set. However, the rules of d-separation cannot be directly applied

to DAPER. Relational causal analysis could benefit greatly from some sort of hybrid

representation that could be analyzed directly with d-separation and would maintain

the compactness of DAPER. Alternatively, a new set of relational graphical criteria
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could be formulated such that conditional dependence relationships could be read

from a DAPER model directly.

As presented here, the propositionalization process is a somewhat necessary evil.

In order to leverage modern statistical techniques, network data sets must be trans-

formed into a single table format such that much information is lost. In Chapters 3

and 4, we present methods to account for this information loss and adapt traditional

hypothesis testing techniques to relational domains. Rather than change the data

to suit the statistical techniques, it may be possible to modify the latter to suit the

former. For instance, there currently exists no closed-form description of the dis-

tribution of statistics such as χ2 when applied to networks; if we could accurately

calculate the p-values for a given network, many of the techniques described here

would be obsolete.

The use of Markov equivalence classes for edge-orientation is an example of how

the expressiveness of relational data representations can be utilized to differentiate

between causal models. In the statistical relational learning community, much effort

has been spent on differentiating network influence and homophily [3, 53]. It may be

possible to formulate this task from a causal viewpoint, where the difference between

two effects is expressed in terms of edge orientation between attribute and relationship

formation.

Finally, most experimental and analysis design is centered around propositional

representations. Hopefully, the use of relational data representations will proliferate

and more truly relational designs such as blocking will be formulated. Doing so will

enable research in both causal discovery and statistical relational learning to move

forward.
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[54] Lavrač, N., Železnỳ, F., and Flach, P. Rsd: Relational subgroup discovery
through first-order feature construction. Inductive Logic Programming (2003),
pp. 149–165.

129



[55] Maier, M, Taylor, B, Oktay, H, and Jensen, D. Learning causal models of re-
lational domains. In Proceedings of the Twenty-Fourth National Conference on
Artificial Intelligence (2010), pp. 531–538.

[56] McCallum, A., Wang, X., and Corrada-Emmanuel, A. Topic and role discovery
in social networks with experiments on Enron and academic email. Journal of
Artificial Intelligence Research 30, 1 (2007), pp. 249–272.

[57] McGovern, A., Friedland, L., Hay, M., Gallagher, B., Fast, A., Neville, J., and
Jensen, D. Exploiting relational structure to understand publication patterns
in high-energy physics. ACM SIGKDD Explorations Newsletter 5, 2 (2003),
pp. 165–172.

[58] Meek, C. Causal inference and causal explanation with background knowledge. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
(1995), pp. 403–410.

[59] Megiddo, N., and Srikant, R. Discovering predictive association rules. In Pro-
ceedings of the Fourth Internationall Conference on Knowledge Discovery in
Databases (1998), pp. 274–278.

[60] Neapolitan, R.E. Learning Bayesian Networks. Pearson Prentice Hall, Upper
Saddle River, NJ, 2004.

[61] Neville, J., and Jensen, D. Iterative classification in relational data. In Pro-
ceedings of the Workshop on Learning Statistical Models from Relational Data
(2000), pp. 13–20.

[62] Neville, J., and Jensen, D. Leveraging relational autocorrelation with latent
group models. In Proceedings of the Fourth International Workshop on Multi-
Relational Data Mining (2005), ACM, pp. 49–55.

[63] Neville, J., Jensen, D., Friedland, L., and Hay, M. Learning relational proba-
bility trees. In Proceedings of the Ninth International Conference on Knowledge
Discovery and Data Mining (2003), ACM, pp. 625–630.

[64] Neville, J., Jensen, D., Gallagher, B., and Fairgrieve, R. Simple estimators for
relational Bayesian classifiers. In ICDM 2003 (2003), pp. 609–612.

[65] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[66] Pearl, Judea. Causality: Models, Reasoning, and Inference. Cambridge Univer-
sity Press, New York, NY, 2000.

[67] Perlich, C., and Provost, F. Distribution-based aggregation for relational learning
with identifier attributes. Machine Learning 62, 1 (2006), pp. 65–105.

130



[68] Popescul, A., and Ungar, L. Structural logistic regression for link analysis.
In Proceedings of the International Workshop on Multi-Relational Data Mining
(2003), pp. 92–106.

[69] Rabiner, L., and Juang, B. An introduction to hidden markov models. ASSP
Magazine, IEEE 3, 1 (1986), pp. 4–16.

[70] Ramakrishnan, R., and Gehrke, J. Database Management Systems.
Osborne/McGraw-Hill, 2000.

[71] Rattigan, M. J., and Jensen, D. Hypothesis testing methods for relational data.
Tech. Rep. UM-CS-2009-053, University of Massachusetts, 2009.

[72] Rattigan, M. J., Maier, M., and Jensen, D. Exploiting network structure for
active inference in collective classification. In Proceedings of the Seventh IEEE
International Conference on Data Mining Workshops (2007), IEEE, pp. 429–434.

[73] Rattigan, M.J.H. Reidentification of artists and genres in KDD Cup 2011. In
Proceedings of the 2011 Workshop on Information in Networks (2011).

[74] Rattigan, M.J.H., and Jensen, D. Leveraging d-separation for relational data
sets. In 2010 IEEE International Conference on Data Mining (2010), IEEE,
pp. 989–994.

[75] Rattigan, M.J.H., Maier, M., and Jensen, D. Relational blocking for causal
discovery. In Proceedings of the Twenty-Fifth National Conference on Artificial
Intelligence (2011), pp. 145–151.

[76] Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smyth, P. The author-topic
model for authors and documents. In Proceedings of the Twentieth Conference
on Uncertainty in Artificial Intelligence (2004), pp. 487–494.

[77] Rubin, D. B. Estimating causal effects of treatments in randomized and non-
randomized studies. Journal of Educational Psychology 66, 5 (October 1974),
pp. 688–701.

[78] Russell, S.J., and Norvig, P. Artificial intelligence: A Modern Approach. Prentice
Hall, 2010.

[79] Sachs, L., and Reynarowych, Z. Applied Statistics: A Handbook of Techniques,
vol. 707. Springer-Verlag, New York, 1984.

[80] Scheines, R. An introduction to causal inference. Causality in Crisis? (1997),
pp. 185–99.

[81] Scheines, R. The similarity of causal inference in experimental and non-
experimental studies. Philosophy of Science 72, 5 (2005), pp. 927–940.

[82] Shadish, W., Cook, T., and Campbell, D. Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mifflin, Boston, MA, 2002.

131



[83] Silverstein, C., Brin, S., Motwani, R., and Ullman, J. Scalable techniques for
mining causal structures. Data Mining and Knowledge Discovery 4, 2-3 (2000),
pp. 163–192.

[84] Spirtes, P., and Glymour, C. An algorithm for fast recovery of sparse causal
graphs. Social Science Computer Review 9, 1 (1991), pp. 62–72.

[85] Spirtes, P., Glymour, C.N., and Scheines, R. Causation, Prediction, and Search.
The MIT Press, 2001.

[86] Spirtes, P., and Richardson, T. A polynomial time algorithm for determining
DAG equivalence in the presence of latent variables and selection bias. In Proceed-
ings of the Sixth International Workshop on Artificial Intelligence and Statistics
(1996), pp. 489–500.

[87] Spirtes, P., and Verma, T. Equivalence of causal models with latent variables.
Tech. Rep. CMU-Phil33, Carnegie Mellon University, 1992.

[88] Susser, M. Causal Thinking in the Health Sciences: Concepts and Strategies of
Epidemiology. Oxford University Press, 1973.

[89] Trochim, W. The Research Methods Knowledge Base, 2nd Edition.
http://www.socialresearchmethods.net/kb/, October 2006.

[90] Tsamardinos, I., Brown, L.E., and Aliferis, C.F. The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning 65, 1 (2006),
pp. 31–78.

[91] Watts, D.J. Six Degrees: The Science of a Connected Age. WW Norton &
Company, 2004.

[92] Xu, Z., Tresp, V., Yu, K., and Kriegel, H.P. Infinite hidden relational models.
In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial
Intelligence (2006), pp. 544–551.

[93] Zellner, A. Causality and causal laws in economics. Journal of Econometrics 39,
1-2 (1988), pp. 7–21.

132


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	9-2012

	Leveraging Relational Representations for Causal Discovery
	Matthew John Hale Rattigan
	Recommended Citation


	tmp.1355329189.pdf.GiXOU

