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ABSTRACT

DECISION-THEORETIC META-REASONING IN PARTIALLY
OBSERVABLE AND DECENTRALIZED SETTINGS

FEBRUARY 2012

ALAN CARLIN

B.A., CORNELL UNIVERSITY

M.S., TUFTS UNIVERSITY

PhD, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

This thesis examines decentralized meta-reasoning. For a single agent or multiple

agents, it may not be enough for agents to compute correct decisions if they do not

do so in a timely or resource efficient fashion. The utility of agent decisions typically

increases with decision quality, but decreases with computation time. The reasoning

about one’s computation process is referred to as meta-reasoning. Aspects of meta-

reasoning considered in this thesis include the reasoning about how to allocate compu-

tational resources, including when to stop one type of computation and begin another,

and when to stop all computation and report an answer. Given a computational model,

this translates into computing how to schedule the basic computations that solve a prob-

lem. This thesis constructs meta-reasoning strategies for the purposes of monitoring and

control in multi-agent settings, specifically settings that can be modeled by the Decen-

tralized Partially Observable Markov Decision Process (Dec-POMDP). It uses decision

vi



theory to optimize computation for efficiency in time and space in communicative and

non-communicative decentralized settings. Whereas base-level reasoning describes the

optimization of actual agent behaviors, the meta-reasoning strategies produced by this

thesis dynamically optimize the computational resources which lead to the selection of

base-level behaviors.
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CHAPTER 1

INTRODUCTION

This thesis examines decentralized meta-reasoning. For a single agent or multiple

agents, it may not be enough for agents to compute correct decisions if they do not do

so in a timely or resource efficient fashion. Russell and Wefald describe the situation:

“first, real agents have only finite computational power, second, they don’t have all the

time in the world... Typically, the utility of an action will be a decreasing function of

time” [111]. By the time a decision is made the conditions leading up to it may have

changed.

The reasoning about one’s computation process is referred to as “meta-reasoning”.

Aspects of meta-reasoning discussed in this thesis include the reasoning about how to

allocate computational resources, including when to stop one type of computation and

begin another, and when to stop computation and report an answer. Given a compu-

tational model, this translates into computing how to schedule the basic computations

that solve a problem.

This thesis considers meta-reasoning for the purposes of monitoring and control in

multi-agent settings. It examines how computation may be optimized for efficiency in

time and space in these settings. Whereas “base-level” reasoning (sometimes referred

to as “domain-level” or “object-level” reasoning) describes the optimization of actual

agent behaviors, in this thesis meta-reasoning describes the dynamic optimization of

computational resources which leads to the selection of domain-level behaviors. Figure

1.1 shows the Cox and Raja model of a meta-reasoning system [39], which is adopted
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for this thesis. The bottom-left of the figure shows that each agent is capable of Doing

a set of actions. At the object level of reasoning, actions are selected and the results

of actions are perceived. But the reasoning process itself may affect ground-level per-

formance, for example if reasoning is not performed in a timely fashion. Therefore, at

the meta-level, the state of object-level reasoning is monitored, and the meta-reasoning

module may control the reasoning process.1 In a distributed system, the ground-level,

reasoning, and meta-reasoning process is happening among many agents at once. Un-

der the Cox and Raja architecture, agents may coordinate their performance at the meta-

level.

This thesis contributes to three aspects of this monitoring and control of system

components. For each contribution, we apply decision-theory [146] to meta-reasoning.

• The first contribution addresses decentralized meta-reasoning using performance

profiles [40]. Performance profiles define conditional probabilities of the quality

distribution of algorithms over time, and they inform the meta-reasoning compo-

nents of the system. These profiles are formally defined in Section 2.1.4, where

it will be shown that performance profiles have been an area of study for single-

agent meta-reasoning. However despite the single-agent work, there is no cur-

rent model of decentralized meta-reasoning using performance profiles. This the-

sis contributes such a model by extending single-agent models to the multiple

agent case. We introduce the Decentralized monitoring problem (DMP). Further-

more this thesis shows the relationship of the resulting model to the decentralized

Markov Decision Process (Dec-MDP) model.

1If the meta-level process itself requires resources to execute, this may create the need for “meta-meta-
level” reasoning, and so on. However, when the computational overhead of meta-reasoning is small, as
will be the case in this thesis, there is no need for monitoring and control of the meta-level.
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Figure 1.1. Cox and Raja’s representation of distributed meta-reasoning [39].
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• The second contribution develops a strategy to address the complexity of de-

centralized reasoning. We examine the Decentralized Partially Observable De-

cision Process (Dec-POMDP) model, a decentralized model of multi-agent deci-

sion making which is NEXP-hard [17]. In Chapter 2 it will be shown that one

source of the complexity is that each agent must reason over all possible histo-

ries of the other agents, which includes all possible observation sequences that all

agents have made about the environment. This thesis introduces a method called

observation compression, which allows a Dec-POMDP planner to reason over

only a subset of the observations while bounding the loss of information due to

the compression.

• The third contribution involves communication decisions in decentralized mod-

els. Specifically, this thesis examines two models called Dec-MDP-Comm and

Dec-POMDP-Comm, in which agents are able to communicate their current state

(for Dec-MDP-Comm) or observation histories (for Dec-POMDP-Comm). When

deciding on whether to communicate in the Dec-POMDP-Comm model, each

agent must reason about a large number of possible decision-observation se-

quences for the other agents, such reasoning is time and space consuming. This

thesis introduces a compression method for reasoning about communication.

Note: This thesis uses examples and experiments corresponding to two agent

models. The underlying notation and algorithms extend to more than two agents,

except where noted.

The next section of this introduction will review domains where agents must per-

form meta-reasoning. After this, approaches to meta-reasoning will be briefly in-

troduced (and elaborated in Chapter 2). Then, Section 1.3 will briefly review the

approaches in artificial intelligence to handle these challenges. Finally, Section
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1.4 will summarize the organization of this thesis and present the contributions of

this work.

1.1 Illustrative examples

Illustrations of domains that require efficient computation include:

• Games such as chess and Go.

• Medical diagnosis, where timely treatment is necessary.

• Multi-sensor search, where sensors or robots equipped with sensors reason about

how to best obtain data.

Chess and Go are games with 1047 and 10171 states respectively, which have never

been solved completely. Typical matches involve a clock and thus iterative deepening-

based searches in games reason over both the base-level quality of solutions while also

managing time [121]. Medical diagnosis was studied by Horvitz in his work on flex-

ible computation, in order to produce both high quality and timely hypotheses [64].

Additional computation time may result in a better diagnosis, but also a deterioration

of patient condition, these two conflicting demands are weighed against one another.

One multi-agent extension to medical diagnosis is emergency response, where multiple

agents must coordinate to quickly address a disaster [68].

Multi-sensor domains include assistive living scenarios, where sensor networks

are being deployed [53]. Other sensor network initiatives include the Collaborative

Adaptive Sensing of the Atmosphere (CASA) effort and the Automatic Negotiating

Teams (ANTs) project. CASA uses a set of radars to sensing and predicting weather

[6, 79, 158], and ANTs uses a set of radars to track targets over a two dimensional space

[74]. Pursuit-evasion problems typically address situations where sensors are mobile,
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such as on robots. Room clearing, in which robots assist humans in searching a build-

ing, is an active area of research within pursuit-evasion [25].

We use a multi-robot pursuit-evasion example to illustrate the difference between

base-level reasoning and meta-level reasoning. As motivation, we consider an assistive

living scenario. Suppose a team of robot assistants searches for a person’s wallet and

keys, with a separate robot being assigned each task. The search may be decentralized,

as each robot may not be in full communication with its peers. At the base level, each

robot must plan its search, including its movements and its path. Coordination may be

required for some parts of the plan, for instance if one robot needs to lift an object so

that the other robot can search under it.

At the meta-level, each robot may monitor its own planning process. For example, if

planning requires that several areas of several rooms must each be visited, and further-

more if robots plans are independent of each other, this creates an instance of the Trav-

eling Salesman Problem (TSP) for each robot. TSP is known to be NP-complete, and

thus optimal solutions become time consuming as the number of locations increases.

However anytime solutions are possible, for example the tour improvement algorithm

by Lin and Kernighan starts with an initial tour, and then improves it over time [76].

By monitoring the progress of this computation, a robot may decide in the process of

planning that its current route is “good enough”, and that the benefits of continuing to

compute a better route would not justify the additional planning time. Coordination

may be beneficial on the meta-level, for cases where the commencement of one robot’s

plan affects the utility of the other agent’s plan. Recalling the example, a wallet and

keys may be more useful in conjunction than separately. If so, the fact that one robot

has ceased planning to find the wallet and started executing its plan could affect whether

the second robot should also cease planning and start executing its search for the set of

keys.
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This example illustrates the three challenges within multi-agent meta-reasoning ad-

dressed by the contributions of this thesis. First, there is the challenge of representing

the progress and predicted performance of the distributed computation. Given per-

formance profiles of TSP, a suitable representation should describe how the two TSP

problems relate to each other (e.g., one item may have priority, or one robot may

have a more stringent time limit), while allowing for computationally tractable meta-

reasoning. Each agent must decide how to perform its anytime computation, and each

agent must also decide when to stop computation of its search plan and begin execution

of it. Each agent must do this in an environment where the other agents are making sim-

ilar decisions about computation. Second, there is the challenge of partial observability.

It may be the case that each agent is not fully aware of its planning progress. Agents

may observe their planning progress, such as by observing the currently computed tour

quality. However, the quality of the current tour should be relative to the quality of the

optimal tour, which is not known; therefore tour quality is only partially observable.

In a multi-agent environment, finding optimal solutions may become complicated, and

the second challenge is how to mitigate this complexity with respect to the number of

possible observations. The third challenge involves how to reason about the progress

of the other agents (and how to reason about the other agents’ reasoning process) in

a manner that is efficient in both time and space. Optionally, each agent may choose

to monitor computation, of both itself and other agents. If it monitors its own com-

putation, this presents a decision of when to do so. If it monitors the computation of

others, this presents the challenge of defining a communication mechanism to perform

the monitoring, and deciding when to communicate.
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1.2 Representing and making meta-reasoning decisions

This thesis studies the problem representation of, and the solution to, meta-reasoning.

That is, we divide meta-reasoning into two tasks. First, there is the task of modeling the

meta-reasoning process. In advance, a real-world agent should represent its base-level

and computational capabilities in the model. Second, there is the task of producing

meta-reasoning policies, given the model. At computation time, the agent should query

these solution policies to determine how to act next.

Both the modeling and the generation of solutions present challenges, and below we

summarize the challenges relevant to this thesis:

• Model representation: This thesis studies the representation of both multi-agent

and single-agent meta-reasoning. As will be seen, aspects that should be modeled

include:

– Computation options: What is meant by computation? What computational

options does an agent have? In the model, how should an agent select its

computation (or select to stop and decide to act on the current results of its

computation)? (Chapter 3)

– Monitoring options: How do we model uncertainty of computational state?

This includes both uncertainty of current computational state as well as un-

certainty of how this state will change over time. Furthermore how do we

model the ability to monitor computational state to reduce that uncertainty?

(Chapter 3)

– Communication options: How can agents become aware of the progress of

other agent’s computations? (Chapters 3 and 5)
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– Time versus quality trade-off: How does the model account for the real-

world intuition that longer computation time may be undesirable? (Chapters

3 and 4)

– Space versus quality trade-off: How does the model account for the real-

world intuition that the agent may have limited space (memory, etc.) to

perform computation? (Chapter 4)

• Solution methods: This thesis will also study the problem of producing high

quality meta-reasoning policies. Issues regarding the solution policies include:

– Performance guarantees: The meta-level policy should be evaluated with

respect to optimality of both the resulting base-level decisions and the com-

putation sequence. Russell and Subramanian refer to this evaluation as

bounded optimality [110]. (Chapter 3)

– Resource usage: It may be the case that a processor has a finite amount

of memory to work with, in which case a computation sequence may be

evaluated for how it manages this finite memory bound. (Chapter 4)

– Myopia of agents: Each agent must reason in an environment where other

agents are reasoning as well. We refer to a myopic meta-level policy as a

meta-level policy which does not account for the reasoning capabilities of

other agents. (Chapters 3 and 5)

1.3 Meta-reasoning approaches in artificial intelligence

This section briefly describes historical approaches to meta-reasoning; we defer a

detailed discussion of the state-of-the-art to Chapter 2. The idea that computation itself

must be reasoned about was introduced by Herbert Simon in the 1950’s [123]. Simon

distinguishes “substantive rationality” as studied (according to Simon) by economists,
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and which accounts only for goals, from “procedural rationality”, as studied by psy-

chologists, and accounts for cognitive processes [124]. For procedural rationality, com-

puting the rational thing to do may require a large amount of overhead, which can

become prohibitive. This leads to the concept of satisficing (as opposed to optimizing),

or producing solutions that are good enough [123]. I.J. Good distinguished “type I”

from “type II” rationality”, the latter of which weighs the trade-off of solution quality

for deliberation time [52].

Horvitz, Russell, Dean and Boddy, Zilberstein, and others have formalized aspects

of meta-reasoning for single agents in artificial intelligence [111, 110, 63, 65, 19, 156,

55]. The input to these decision theoretic algorithms is a performance profile, or a

description of how an algorithm is expected to perform given an allotment of time or

other computational resources. Computation reflects running the base-level algorithm

for a finite amount of time. The meta-reasoning algorithms compute an expected value

of computation, which specifies the utility of a particular allotment of computational

resources to the agent. Utility is expressed as a function of a computational state, a

domain-level state, and the time. Typically, utility will decrease with time, so the agent

must decide whether to execute its current choice of domain-level action at the current

time, or to continue computation, and thus perhaps choose a better domain-level action,

but executing it at a later time.

Hansen and Zilberstein have accounted for uncertainty (for a single agent) in the

observation of computational progress [55]. They termed their formulation of the meta-

reasoning problem as the “monitoring problem”. In this formulation, the agent reasons

over a conditional performance profile which specifies the probability of a future com-

putational state of progress, given the current state. The agent then decides whether to

stop and take its current solution, continue deliberation, or monitor its current progress,

thus enabling it to exploit the conditional performance profile to make a better decision.
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The result is non-optimal and only applies to a single agent, this thesis will show how

boundedly optimal solutions may be produced for the single agent, and how the work

can be extended to multiple agents.

For multi-agent situations, the single-agent approaches described above may be

used to construct agent behavior by having each agent consider the other (external)

agents as part of the environment, that is, having each agent reason about a world where

the behavior of the other agents is stochastic. Throughout this thesis, we will refer to this

approach as the “myopic approach”. However, the myopic approach may not produce

optimal solutions. External agents do not behave stochastically, instead they reason as

well. The myopic approach may miss opportunities for agents to coordinate. In this

thesis we will consider coordination through base-level actions, meta-level actions, and

also communication.

One approach which does perform meta-reasoning over multiple agents is the work

of Raja and Lesser. Cheng, Raja, and Lesser use an Dec-MDP formulation to monitor

multiple agents [102, 35]. An MDP is created for each Meteorological Command and

Control (MCC) agent of weather radars, to control the heartbeat (time allotment) of

radars as well as to handoff radars between agents. A joint utility function is created

over all agent tasks. Each agent must reason about how to best control its set of radars,

while accounting for the plans of the other agents. A reinforcement learning technique

is used to solve the meta-level problem.

Although it regards base-level computation, a multi-agent approach that is similar

to ours is the decision-theoretic work of Xuan and Lesser. In one work the authors form

contingency plans in a multi-agent environment in which agents make commitments to

other agents to perform enabling actions [155]. Since progress of the contingency plan

may be monitored, the authors note the relation to meta-reasoning.
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A second work by Xuan and Lesser uses decision-theory in order to decompose

multi-agent plans at the base-level [154]. Centralized policies are constructed, and the

corresponding actions are used as a starting point for decentralized policies without

communication. As each agent executes, it accumulates a history (consisting of actions

taken and observations received) and it reasons about the set of possible joint histories

that are possible, given its own observed history and lack of knowledge of the other

agents’ histories. When an agent does not know which action is best to take (because

the action depends on the history of other agents, which it does not know), the agent

considers communication. In order to avoid the complexity involved in tracking the

large number of possible histories, the authors outline three strategies for reducing the

number of possible histories. These strategies include terminating policies after a cer-

tain point in time, merging policy paths together, and localizing policies (that is, only

planning around the most probable histories). The work in this thesis differs from the

work of Xuan in several ways, including (1) Rather than beginning with the centralized

policy, this thesis leverages recent point-based decentralized policies based on the work

of Seuken and Zilberstein [120]. (2) This thesis explicitly reasons about bounding the

joint utility loss caused by history compression. (3) This thesis explicitly reasons about

cost of communication, specifically this thesis reasons about how to construct commu-

nication policies whereby an agent defers communication either to another agent or to

a future time step (thus, possibly saving itself from overcommunication).

From a high level, the approach used in this thesis is to construct non-communicative

policies and then add communication, whereas the work by Xuan and Lesser begins

with fully-communicative policies to construct decentralized policies. The work in this

thesis is complementary to the work of Xuan and Lesser, it may be possible to use the

meta-reasoning contributions of this thesis to augment Xuan and Lesser’s works in two

ways. First, the observation compression methodology developed in this thesis may be
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used to augment Xuan and Lesser’s merging procedures. Second, the work on Dec-

POMDPs with communication in this thesis results in the construction of efficient data

structures and algorithms for tracking agent histories, which could be used to augment

certain belief updates used in Xuan and Lesser’s work.

1.4 This thesis

In this thesis, I utilize formal decision-theoretic models to reason about performance

profiles in both partially observable and decentralized settings, and furthermore I utilize

meta-reasoning methods to limit resource consumption in both time and space. To do

this, I extend the value of computation approach to multi-agent settings in a non-myopic

manner. The contributions of this thesis are as follows:

• Formalization of decentralized monitoring: I formalize the notion of meta-

reasoning in multi-agent settings. I create a problem representation whose inputs

are the performance profiles of multiple algorithms as well as the utility of achiev-

ing joint qualities at a given point in time. The output is a meta-reasoning policy,

so that agents decide when to continue computation, monitor computation, or

stop computation.

• Complexity analysis and solutions to decentralized monitoring: I analyze the

complexity of decentralized monitoring problems where monitoring occurs both

locally and globally. Under certain assumptions, decentralized monitoring is NP-

complete.

• Link between conditional performance profiles and Markov Decision Pro-

cesses: I show how variants of Markov Decision Processes (MDP, POMDP, Dec-

MDP, Dec-POMDP) can be used to represent meta-reasoning problems with per-

formance profiles or conditional performance profiles. Although previous lit-

13



erature has suggested that meta-reasoning may hold the Markov property [55],

that Dec-MDPs may be useful for general meta-reasoning [117, 101], and that

dynamic programming can be used to solve meta-reasoning problems [55], the

formal tie between performance profiles and MDPs has not been fully specified

in terms of the MDP state space, the action space, etc. The reduction in this thesis

allows state-of-the-art MDP, POMDP, and Dec-MDP solvers to be invoked. With-

out them, the current algorithms for reasoning about conditional performance pro-

files are suboptimal when partial observability is added to the MDP framework.

• Nonmyopic algorithms to perform local and global monitoring: I show that

monitoring problems can be formally encoded and solved using modern decision-

theoretic approaches [133, 94], by leveraging recent POMDP algorithms for single-

agent monitoring and bilinear programs for two-agent monitoring problems (a

formulation is described for extending monitoring problems beyond two agents).

For the single-agent case, the new approach outperforms state-of-the-art single-

agent monitoring, and for the two agent case, this presents the first decentralized

algorithm for reasoning about performance profiles.

• Observation compression: I present a meta-reasoning compression method for

limiting the space used by decision makers in decentralized settings. Under par-

tial observable circumstances, this limits agent space requirements from expo-

nential with respect to the number of possible observations it can make, to poly-

nomial. The compression-method is “any-space”, that is, it can be configured

to limit space used to an amount required by the user. The method can also be

made lossless, or alternatively it can bound the loss due to the compression to a

user-desired amount.
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• Decentralized communication under partial observability: I present a method

whereby decentralized agents can determine when to communicate with other

agents in decentralized, partially observable environments with no assumptions

made about independence or dependence of agent observations, rewards, and

transitions. The resulting algorithm operates by compressing possible non-local

histories together based on the expected loss in doing so.

The common thread among the solutions methods is that they each use an expected

value of computation approach. Computation is evaluated in terms of the expected

value it is expected to produce.

The outline of the thesis is as follows:

In Chapter 2 I discuss related approaches to meta-reasoning in the literature in

further detail. Included in the related approaches are single-agent approaches in which

dynamic programming is used to reason about performance profiles, and multi-agent

approaches in which reinforcement learning is used. This chapter contextualizes the

approach used later in this thesis, in which I perform meta-reasoning in multiple agents

using recent decentralized MDP and POMDP-based models.

In Chapter 3 I formalize a distributed meta-reasoning problem under conditions of

both local and global monitoring. The base-level algorithms considered are the class

of standard algorithms whose quality increases over time, such as maximum flow or

traveling salesperson. I analyze the complexity of both local monitoring (where an

agent may monitor the state of its own computation) as well as global monitoring (where

an agent may monitor the state of computation of other agents) of such algorithms,

and I show that under certain conditions where agent computations are independent of

each other, the problem of finding optimal monitoring policies in NP-complete. Then

I produce monitoring policies for several variants of the problem, and I empirically

evaluate the policies.
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In Chapter 4 I focus on a Decentralized POMDP (Dec-POMDP) planner as the

base-level algorithm. Dec-POMDP planners produce coordinated multi-agent policies

in partially observable environments without any transition or observation indepen-

dence. I develop a method of compressing observations together in order to perform

more efficient reasoning with respect to space. This reduces the space requirements of

Dec-POMDP solvers from exponential (with respect to the number of observations) to

polynomial. The compression method computes a loss-bound online, thus compression

can be made either lossless, or it can use a user-specified loss bound. Meta-reasoning is

used to decide on the trade-off of loss bound for plan quality.

In Chapter 5 I consider Dec-MDP and Dec-POMDP policies as the base-level al-

gorithms. Each base-level algorithm executes one agent’s portion of a plan. Meta-

reasoning is used to determine when agents should communicate with each other to

replan. In order to determine when to communicate, agents must reason about the

possible states and observations of other agents. However, the number of possible his-

tories grows doubly-exponentially with respect to the number possible observations of

the other agents. I show how, through efficient data structures, these possible histories

can be compressed together, so as to produce non-myopic joint communication policies

among the agents.

In Chapter 6 I briefly consider an application meta-reasoning when one of the base-

level decision-makers is autonomous and the other is a human. The application consid-

ered is alerting systems for next-generation aircraft. Instead of a stopping and moni-

toring decision, meta-reasoning with a human in the loop involves selecting a stage of

automation. Humans are assumed to have different performance profiles under differ-

ent stages of automation. In order to monitor and predict these performance profiles, a

human pilot model is outlined.
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Base-level Algorithm Meta-level Planner
Chapter 3 Anytime Algorithm Dec-MDP planner
Chapter 4 Dec-POMDP planner Observation compression

Chapter 5 part 1 Dec-MDP policy Communication algorithm
Chapter 5 part 2 Dec-POMDP policy Communication algorithm

Chapter 6 Human Pilot and flightdeck TMDP planner

Table 1.1. Base-level algorithms and Meta-level planners used in this thesis.

Table 1.4 summarizes the base-level algorithms and meta-level planners used in this

thesis.

1.5 Summary

Distributed meta-reasoning is defined in this thesis as the monitoring and control

of distributed systems. This thesis contains three contributions to decentralized meta-

reasoning. First, it builds upon work for the single-agent case that uses performance

profiles in order to develop monitoring and control policies at the meta-level. Second,

it develops an online method (during computation time) of compressing together obser-

vations in the Dec-POMDP model, in order to mitigate the complexity of solving these

models. Third, in a Dec-POMDP model with communication (Dec-POMDP-Comm-

Sync), it develops a method of compressing non-local histories of other agents together,

in order to simplify the decision for each agent of when to communicate.

The next chapter will discuss current state-of-the-art approaches for the challenges

and models associated with these three contributions. It will review complimentary

state-of-the-art approaches, and it will also formalize the approaches that will be ex-

tended for this thesis.
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CHAPTER 2

RELATED WORK

This chapter provides an overview of the work in meta-reasoning in computer sci-

ence and other literatures, as well as the relevant models used for this thesis. Surveys of

the state of the art in meta-reasoning can be found in [7, 39, 117]. This chapter contains

three sections, first on meta-reasoning, next on the Dec-POMDP model, and third on

models of communication between agents. On meta-reasoning, 2.1.1, 2.1.2, and 2.1.3

review in detail the history of approaches to meta-reasoning in the single-agent. Section

2.1.4 introduces the work of Zilberstein for single-agent meta-reasoning, which will be

expanded to the decentralized case for this thesis. We briefly note other existing state-

of-the-art approaches to decentralized meta-reasoning in section 2.1.5 and section 2.1.6.

Section 2.2 will then review POMDP-based models. This will include the definition of

a Dec-POMDP in 2.2.1 and then solution algorithms from the literature, including top-

down, bottom-up, and point-based algorithms. Section 2.3 will provide an overview

of work that has taken place regarding the Dec-POMDP-Comm and similar models of

communication.

The idea that the cost of decision making must be factored into the decision making

process was introduced by Herbert Simon in the 1950’s [123]. Concepts originating

with Simon include bounded rationality, procedural versus substantive rationality, and

satisficing. Bounded rationality refers to limitations in abilities of decision makers, such

as cognitive limitations, memory limitations, and time limitations. Procedural rational-

ity refers to systems that compute the rational thing to do, versus substantive rationality
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which refers to systems that “simply do the rational thing” [110]. Computing the ratio-

nal thing to do may require a large amount of overhead, which can become prohibitive.

This leads to the concept of satisficing (as opposed to optimizing), or producing solu-

tions that are good enough [123].

Russell and Subramanian describe four possible definitions of rational agent behav-

ior [110]:

• Perfect rationality: “A perfectly rational agent always acts to maximize expected

utility given the information it has acquired from the environment.” This notion

corresponds to perfectly rational agents in economics and philosophy.

• Calculative rationality: A calculatively rational agent returns the rational choice,

given the information it had acquired from the environment before deliberation

began.

• Meta-level rationality: A meta-level rational agent optimizes over the “object-

level computations” which select the actions.

• Bounded optimality: A bounded optimal agent behaves “as well as possible given

its computational resources”.

Perfectly rational agents, while desirable, may be impractical to achieve given com-

putational constraints. For example, the time required to compute an optimal agent

action may exceed the time window in which the action must be taken. Calculatively

rational agents reflect typical agents, in fact Russell and Subramanian describe these

agents as “the notion of rationality studied in AI”. In practice, such agents may be of

limited value, as a calculatively rational chess, poker, or Go program would not com-

plete within a lifetime. Meta-level rationality is useful, but the meta-level computa-

tions themselves may take time. Thus, Russell and Subramanian suggest the study of
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bounded optimality. Bounded optimality specifies “optimal programs rather than opti-

mal actions or optimal computation sequences”, and presents the most comprehensive

viewpoint.

This thesis focuses on the latter two levels of rationality. Section 2.1 will describe

the larger frameworks for agent meta-level reasoning, which include how the reasoning

interacts with the selection of actions at the base level. After that, the details of a

particular type of meta-level reasoning, time dependent planning, will be described.

Subsection 2.1.4 will review single-agent techniques to add monitoring and control to

time-dependent plans, this subsection in particular will introduce a notation used later

in the thesis. After this, different decentralized meta-reasoning techniques in artificial

intelligence and other literatures will be surveyed and the section will conclude.

2.1 Frameworks of meta-level reasoning

Two frameworks which describe the interaction of meta-level reasoning with base-

level computation are the meta-reasoning framework of Russell and Wefald [111], and

the flexible computation framework of Horvitz [63, 64, 65, 62]. These frameworks were

developed in the late 1980’s and early 1990’s. Russell and Wefald’s work studied search

algorithms in particular, while Horvitz’s early work was applied to belief networks, the-

orem proving, and graphics rendering. These works defined many of the underlying

concepts which were seen in later works and will be used throughout this thesis, in-

cluding time-separable utility [63, 111], expected value of computation [63, 62], and

bounded optimality itself [111].
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2.1.1 Discrete deliberation scheduling

Russell and Wefald referred to their analysis as “Principles of Metareasoning” [111],

in order to avoid ambiguity this section will use the term ”Discrete deliberation schedul-

ing” as used by Schut and Wooldridge to describe this work [117].

Russell and Wefald describe three models of deliberation, paraphrased below:

• External model: This level analyzes a system as an external observer of the sys-

tem’s internal and external states. There is a default action, and the goal of com-

putation is to refine it.

• Estimated utility model: Agents assign explicit numerical estimates to the utilities

of action outcomes, which are often referred to as evaluation functions. Agents

select the action whose current estimate is the maximum. Deliberation refines the

utility estimates.

• Concrete model: Agent utility estimates are updated by computation. This pro-

vides a specification for how the results of a computation revise the agent’s in-

tended actions.

In order to develop these models, the following notation was used in [111] 2.

• Ei: item i of the set of external actions available to the agent in the

current state.

• Γj: item j of the set of computational actions available to the agent.

• Wk: A world state labeled k. This includes both external and internal

state of the agent.

2Some of the symbols representing variable names have been altered from [111], in order to avoid
notation conflicts with the rest of this thesis.
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• [X]: the world state that results when action X is taken in the current

state, where the X can either be internal or external.

• [X,Wk]: the result of taking action X in the world state Wk.

• U [Wk]: the utility of world state Wk. Russell and Wefald note that

this typically depends on external state only.

• ~Γ: a sequence of computational actions. The notation ~T is used to

refer to a future sequence of computational actions.

• ~Γ.Γj: the sequence of computational actions consisting of the se-

quence ~Γ followed by computational action Γj .

• α: the agent’s current default external action.

The notation specifies both “external actions” and “computational actions”. External

actions are the domain-level actions which are referred to as Doing in figure 1.1. Com-

putational actions specify reasoning actions. The default action, α, is an external ac-

tion. The next sections provide a brief overview of how default actions can be modified

through the use of meta-reasoning actions.

2.1.1.1 External model

In discrete deliberation scheduling, the value of a computational action Γj is the

resulting increase in utility over the default action α that would have been taken.

V (Γj) = U([Γj])− U([α]) (2.1)

Russell and Wefald refer to a “full computation” as a computation which leads to an in-

ternal state which yields an action choice, and a “partial computation” as a computation

which results in an internal state which does not yet yield an action choice. If Γj is a

22



complete computation and αΓj
is the action taken as the result of it, then U [αΓj

, [Γj]])

is substituted for U([Γj]).

U([Γj]) = U [αΓj
, [Γj]]) (2.2)

If Γj is a partial computation, its utility is defined by the expected utility of the base-

level actions which may follow it. Let P (~T ) define the probability that the agent will

perform the computation sequence ~T after Γj .

U([Γj]) =
∑
~T

P (~T )U [α~T , [Γj.
~T ]]) (2.3)

The above says that the value of a computation is the expectation of the base level

action over the possible finishing computations that select it. Using the two expressions

above, an ideal control algorithm would perform two steps in a loop. First, it would

select computations with the highest expected value, until no computation had a positive

expected value. Then it would perform the action α selected by the last computation.

2.1.1.2 Estimated utility model

The model of the previous subsection can be refined to estimate utility. Let ~Γ rep-

resent a series of computations. Since true utility is unknowable and can only be es-

timated, use Û instead of U to reflect a utility estimate, and use a superscript when

helpful to denote that a computation has been performed. Value of computation from

equation 2.1 becomes the following

V̂ (Γj) = Û
~Γ.Γj([Γj])− Û

~Γ.Γj([α]) (2.4)

In this thesis, we examine a special case of utility functions, specifically utility functions

Û of a computation and action that can be split into an intrinsic utility of the action UI

and a cost function C.
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Û([Ei, [Γj]]) = ÛI([Ei])− C(Ei,Γj) (2.5)

More specifically, we examine the case where the intrinsic value is due to the action,

and the cost is due to the time cost TC of computation. This concept is relevant to

flexible computation of Horvitz, as well as throughout this thesis.

Û([Ei, [Γj]]) = ÛI([Ei])− TC(|Γj|) (2.6)

where |Γj| represents the elapsed time for performing computation Γj . In the above,

the cost of performing a computation Γj and then performing an external action Ei at

the end of it is decomposed into the delay associated with Γj , and the utility associated

with Ei.

The value of a computation can then be decomposed:

V̂ ([Γj]) = Û
~Γ.Γj([αΓj

, [Γj]])− Û
~Γ.Γj([α]) (2.7)

= Û
~Γ.Γj

I ([αΓj
])− Û

~Γ.Γj

I ([α])− TC(|Γj|)

= ∆(Γj)− TC(|Γj|)

where

∆(Γj) =Û
~Γ.Γj

I ([αΓj
])− Û

~Γ.Γj

I ([α])

The equality in the last step of 2.7 represents the expected increase of UI (which is

the estimate of the value of the revised action minus the value of the default action α),

minus the expected decrease due to TC.
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2.1.1.3 Summary of discrete deliberation scheduling

In summary, discrete deliberation scheduling provides a formal notation and system

of meta-reasoning over how computation affects base-level decisions. The value of

computation is formalized as having two components, the increase in expected value

of the action, and the negative cost of time. The expected value of the action, in turn,

is specified as the expectation of the new action versus the expectation of the default

action. For partial computations, the expectation of the new action depends on the

resulting choice of action when the computation finishes.

Discrete deliberation scheduling models the base level computation as well as the

meta-reasoning process which supervises it. As a result, the framework is exceptionally

descriptive, but it often becomes computationally intractable to optimize both types of

computations simultaneously. The approach in this thesis will only allow the agent

to select from meta-level computation options, achieving bounded optimal solutions for

this smaller decision space. Subsection 2.1.3 will show how base-level reasoning can be

abstracted into a module that produces an output whose quality depends on its runtime.

The role of meta-reasoning in this thesis is to alter the runtime of this module, but not

to alter its internals.

2.1.2 Flexible computation

The Protos (PROject on computational resources and Tradeoffs) system was de-

signed to explore the use of meta-reasoning to control inference approximation meth-

ods [64]. The resulting work provided many of the foundations of meta-reasoning in

the artificial intelligence community, such as expected value of computation (which was

also seen in discrete deliberation scheduling), separable utility functions, and decision-

theoretic meta-reasoning. These will be described below. Much of the early work on

the Protos system regarded medical scenarios, specifically the use of belief networks in
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order to perform medical diagnosis. The problem of probabilistic inference with belief

networks is NP-hard, and becomes intractable as problems become large [38].

2.1.2.1 Protos architecture and bounded optimality

Protos contains both a reasoning and a meta-reasoning system. The reasoning sys-

tem decides on actions to take at the base level. For example, the authors consider a

medical scenario involving a hypothesis (designated Hj) and an action to take (rep-

resenting a treatment and designated Ai). Hypotheses may correspond to different

diseases, and actions correspond to different treatments. There is uncertainty in the

hypothesis. The expected utility of a treatment is therefore represented by:

eu(Ai, t) =
n∑
j=1

p(Hj|E, ξ)u(AiHj, t) (2.8)

where eu represents the expected utility of the treatment, the function u(AiHj, t)

represents the utility of the treatment on the disease at time t, and the probability func-

tion p(Hj|E, ξ) represents the probability of the disease being present, based on a model

of the world represented in E and ξ.

The result of this analysis produces utility functions such as in figure 2.1. The

endpoints of the solid lines represent the utilities of the treatments on the disease, and

the lines represent the utilities over probability distributions. In the figure shown, we

assume
∑
p(Hj|E, ξ) = 1. In this case, treatment A2 should be undertaken when

P (H1|E, ξ) < p∗, and treatment A1 should be taken otherwise at time t.

However, time t may have an effect on utility. In a similar manner to the work

on discrete deliberation scheduling, Horvitz separates value into two components, the

object-related value described above, and inference-related value which depends on

time [63]. The latter is described as “the expected disutility intrinsically associated with

computation, such as the cost a physician might attribute to the delay of a decision”. As
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Figure 2.1. Flexible computation vectors
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Figure 2.2. Performance profiles. The horizontal axis is computation time and the ver-
tical axis is performance quality. On the left is the profile of an algorithm in the one-shot
improvement class. On the right is an algorithm that shows monotonic improvement.

an example, view the dotted line in figure 2.1. This is the u(A1Hi, t0), where t0 is less

than t. As shown, the value of taking action A1 is higher at an earlier time step.

There is a trade-off of time for decision quality. As discussed above, actions have

higher utility when taken sooner, however, it may be the case that the probability

model p(Hj|E, ξ) will become more accurate with time, leading to better decisions.

Horvitz formally analyzes the trade-off by computing the Expected Value of Computa-

tion (EVC), which is the expected utility of the decision at the current time step sub-

tracted from the expected utility at a future time step. The optimization problem of

computational utility given the assumptions about the problems and the resource con-

straints is referred to as bounded optimality [63].

2.1.3 Time dependent planning

Work on time dependent planning began contemporaneously to the development of

flexible computation. However, instead of deriving from the problem of the refinement

of hypothesis fidelity, early work on time dependent planning focused on how to best

schedule computationally intense responses to varying events on a single processor.
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Dean and Boddy used the term “anytime algorithm” in the 1980’s to describe a class of

algorithms that have three properties [40]:

• They can be preempted with negligible overhead.

• Any algorithm that is preempted at any time will nevertheless return some answer.

• The quality of the returned answers improves as a function of time.

Figure 2.2 portrays performance profiles for different classes of algorithms. For the

one-shot improvement class (which had been the subject of study before the work of

Dean and Boddy), shown on the left, the algorithm will run for a period of time, and

after some amount of time its performance will jump to a high level of quality. By

contrast, for the anytime algorithm shown on the right, performance will improve in a

piecewise monotonically increasing linear manner, and if the algorithm is interrupted,

an intermediate quality will be reported.

Time dependent planning presents a method for scheduling several such anytime

algorithms on a single processor. Time dependent planning problems are formalized as

follows [19]

• A set of time points, T .

• A set of event (or condition) types, C. Each event type is associated with a time

point in T .

• A set of action (or response) types, A.

• A set of decision procedures, D.

• A value function, V (a ∈ A|c ∈ C).
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The agent knows about a set of pending events in C and the time for each event.

Dean and Boddy define a response function for each event c ∈ C which is simply

denoted Response(c), and maps to an action a ∈ A. They also define a value function

V which maps the response to a real value. The total value of the agent’s responses is:

∑
c∈C

V (Response(c)|c) (2.9)

For each event type c there is one decision procedure dp(c) ∈ D along with a

function µc : R → R which inputs the amount of time δ to run the decision procedure,

and returns the expected value of the response to c generated by dp(c) for δ time units.

The decision procedure is run prior to the event for which it computes a response. Let

alloc(δ, dp(c)) be the allocation of δ time units to dp(c). We can then specify

V (Response(c)|c, alloc(δ, dp(c)) (2.10)

as the value of the response given the event c and the allocation of δ time units

to dp(c) to calculate Response(c). We can compute an expectation of the above value

function:

µc(δ) = E(V (Response(c)|c, alloc(δ, dp(c)))) (2.11)

This framework defines a deliberation scheduling problem, the problem of which

decision procedure to invoke at any given time. For the case where slopes of consec-

utive line segments of the quality function are decreasing (i.e. “diminishing returns”),

the scheduling problem can be solved using an algorithm such as in [19], which is

summarized in Algorithm 1.

The algorithm works backwards from the time of the last event. The algorithm is

invoked with t̂ as the current time and the variable t is initialized to be the time of the

last event.

30



Algorithm 1: Deliberation scheduling procedure for time dependent planning
begin

for i = 1 to n do
δi ← 0;

t̂← current time;
t← the (future) time of the last pending event in C;
while t 6= t̂ do

∆← min{t− t̂, t− last(t),minalloc(δi)};
i← argmax{γi(δi)|ci ∈ Λ(t)};
δi ← δi + ∆ ;
t← t−∆;

t← t̂;
for i = 1 to n do

run the ith decision procedure from t until t+ δi.;
t← t+ δi;

end

Let C = {c1, ...cn} be the set events, and let µi be the function describing the

performance profile for the ith decision procedure.

The algorithm starts from the time of the last event and works backwards. Let Λ(t)

be the set of events that occur after time t, that is

Λ(t) = {c|(c ∈ C) & (time(c) ≥ t)} (2.12)

Create a set of variables δi reflecting the amount of allocation to decision procedure

i, and initialize each of these allocations to zero. Also let last(t) be the first time before

t that an event in C occurs that is not in Λ(t). Thus, the algorithm initializes t to the

last event. The algorithm loops backwards until t = t̂, that is, the time being scheduled

equals the current time. In each iteration of the loop, it first computes ∆, the time slice

to be scheduled in this iteration. ∆ represents the amount of time that is currently being

scheduled (thus, in each iteration, the time slice being scheduled is the interval between

t − ∆ and t). ∆ is the minimum of three quantities: (1) The difference between the

current time and t (if ∆ were to exceed this, the algorithm would be scheduling in the
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past). (2) The difference between t and the last event that occurs before t. This assures

that no event occurs in the time slice chosen. (3) The minimum length of the “next”

piece of the piecewise linear function, over each of the decision procedures, based on

their allocations thus far. This assures that no decision procedure changes slope in the

time slice chosen.

Having selected a time slice ∆, the best decision procedure is chosen for the time

slice between t − ∆ and t. Let γi(x) represent the slope of the performance profile

of decision procedure i at x. Thus, γi(δi) represents the slope of decision procedure i

given its current allocation. The decision procedure chosen is the one with the greatest

slope. Next, δi and t are updated to reflect the choice over the time slice, and the loop

iterates.

After the main loop completes, the last loop of the algorithm reschedules the deci-

sion allotments into contiguous segments.

2.1.4 Conditional performance profiles

Zilberstein and Russell formalize the use of conditional performance profiles. The

formalization requires successive definitions, beginning with the performance profiles

from time-dependent planning. The following definitions are quoted from [156].

Definition 2.1. The performance distribution profile of an algorithm A is

a function DA : R+ → Pr(R) that maps computation time to a probability

distribution over the quality of the results.

Definition 2.2. The Conditional Performance Profile (CPP) of an algo-

rithm A is a function CA : R × R+ → Pr(R) that maps quality and com-

putation time to a probability distribution over the quality of the results.
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Throughout the thesis, we will express the CPP as an expression Pr(q̂|q, t), which

is the probability of getting a solution of quality q̂ by running an algorithm for t time

units.

2.1.4.1 Monitoring performance

Hansen and Zilberstein consider the same time-dependent utility functions of Horvitz

[62] and Russell and Wefald [111].

Definition 2.3. A time-dependent utility function U(q,t) represents the utility of a solu-

tion of quality q at time t.

This function can then be used to find an optimal allocation for time. Three ap-

proaches are presented. The simplest approach is to find a fixed running time at the

start of the problem. In the remainder of this section, let Q be a set of possible quality

levels, let q ∈ Q, and let qt ∈ Q be a variable representing a quality level at a time t.

Definition 2.4. Given a time-dependent utility function and a performance profile, an

optimal fixed allocation, t∗, is defined by:

t∗ = argmaxt
∑
q∈Q

Pr(q|t)U(q, t)

where q represents a quality level. The second approach is termed the myopic esti-

mate of the expected value of computation (MEVC). In this approach, the agent keeps

computing until the value of computation is negative.

Definition 2.5. The myopic estimate of the expected value of computation (MEVC) at

time t is:

MEV C(∆t) =
∑
q̂∈Q

Pr(q̂|q,∆t)U(q̂, t+ ∆t)− U(q, t)
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where q and q̂ are quality levels. This myopic approach is optimal when two condi-

tions both hold. First, the MEVC computation itself takes a negligible amount of time.

Second, every time t and quality q with non-positive MEV C implies that MEV C will

also be non-positive for every time t′ > t.

The third approach is to consider the sequential nature of the stopping problem, and

construct a monitoring policy.

Definition 2.6. A monitoring policy π(q, t) is a mapping from time step t and quality

level q to a decision whether to continue the algorithm or stop and act on the currently

available solution.

Monitoring policies in discrete time steps can be constructed through dynamic pro-

gramming, using the following value term with ∆t representing a single time step:

V (q, t) = max
d



if d = stop:

U(q, t),

if d = continue:∑
q t+∆t Pr(q t+∆t|qt,∆t)V (qt+∆t, t+ ∆t)

(2.13)

to determine the following policy:

π(q, t) = argmaxd



if d = stop:

U(q, t),

if d = continue:∑
q t+∆t Pr(q t+∆t|qt,∆t)V (qt+∆t, t+ ∆t)
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However, monitoring may involve overhead, for example gauging the quality of a

solution may require context switching on the part of the processor, queries to disk

drives, or computation. It can be modeled as having a monitoring cost C.

Definition 2.7. A cost-sensitive monitoring policy πc(q, t) is a mapping from time step

t and quality level q into a monitoring decision (∆t,m) such that ∆t represents the

additional amount of time to allocate to the anytime algorithm, and m is a binary

variable that represents whether to monitor at the end of the time allocation or step

without monitoring.

The value function can be modified to account for monitoring.

Vc(q, t) = max
∆t,m



if m = stop:∑
qt+∆t Pr(qt+∆t|qt,∆t)U(qt+∆t, t+ ∆t),

if m = monitor:∑
qt+∆t Pr(qt+∆t|qt,∆t)Vc(qt+∆t, t+ ∆t)− C

(2.14)

The “continue” action is implicitly represented within this function by selecting

∆t > 0.

2.1.4.2 The compilation Problem

A related class of problems which utilize performance profiles has been coined by

Zilberstein and Russell as the compilation problem [156]. This class of problems is

characterized by the presence of multiple anytime algorithms, in which the output of

some of the algorithms may serve as the input to other algorithms. The authors provide

the example of a diagnosis and treatment system, where the output of the diagnosis

anytime algorithms serves as the input to the treatment anytime algorithm.
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Formally, the problem is defined in terms of anytime functions. Let F be a set

of anytime functions and I be a set of input variables. Zilberstein and Russell define

functional expressions as follows [156]:

Definition 2.8. A functional expression over F with input I is:

• An input variable ij ∈ I, or

• An expression f(g1, . . . , gn) where f ∈ F and each gj is a functional expression.

Each functional expression represents a module with a conditional performance pro-

file operating on a set of inputs, which may be input variables or else recursively may

be the output of other functional expressions. The recursive relationship between func-

tional expressions can be represented by either a tree or a directed acyclic graph (DAG).

Solving the compilation problem involves finding an optimal schedule, which is a con-

ditional allocation of time to each of the component algorithms. The problem is NP-

complete, but the authors use the mechanism of local compilation, that is, solving one

programming structure at a time, to produce solutions that are optimal given certain

graph structures and monotonicity assumptions.

2.1.5 Decentralized meta-reasoning

The approaches explored so far have involved meta-reasoning over a single agent.

Other work considers meta-reasoning over multiple agents. Design-to-time scheduling

is an approach to solving problems in domains in which there are soft and hard real-time

deadlines and in which there are multiple solution methods available [47]. It has been

used to schedule discrete methods in a TAEMS (Task Analysis, Environment Model-

ing, and Simulation) environment [41] “with the goal of maximizing the value of the

scheduled computation” [48]. Raja and Lesser also reason about TAEMS, and suggest a

Dec-MDP representation of multiagent meta-reasoning [103] to support the scheduling

of tasks in the network, making the following assumptions:
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Figure 2.3. NetRads topology. Figure extracted from [35]

• Agents are cooperative.

• Agents have goals which have deadlines.

• High-level goals may be partly achieved.

• There is a finite time horizon

The authors use meta-level control to support “decisions on when to accept, delay,

or reject a new task; when it is appropriate to negotiate with another agent; whether to

renegotiate when a negotiation task fails; how much effort to put into scheduling when

reasoning about a new task; and whether to reschedule when actual performance devi-

ates from expected performance”. These higher level task scheduling and negotiation

concerns complement the finer-grained work on conditional performance profiles seen

in previous sections of this chapter as well as in the rest of this thesis.

The authors define a set of features, which together define the system state. Meta-

reasoning decisions take the form of actions, which consist of information gathering

actions, planning and scheduling actions, and coordination actions.
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The text below represents the formal model in [103], for each agent:

• S is the set of states of the agent. The state space consists of the

state of a set of abstract features, which include task status, an envi-

ronmental model specifying probability of task arrival, schedule slack

and other influences on action choice, and performance characteris-

tics.

• A is the set of possible control actions available to the agent.

• P (sj|si, a) is the transition table, which represents probability that the

agent transitions to state sj as a result of taking action a in state si.

• A policy π is a description of the behavior of the agent. It is a mapping

π : S → A which specifies a control action to be taken for each state.

• R(si, a, sj) is the reward obtained in state sj as a consequence of tak-

ing control action a in state si and then executing the domain actions

that follow a.

• Uπ(si) is the utility of state si under policy π.

The Dec-MDP problem is solved through reinforcement learning. Each agent rea-

sons as an MDP and reasons about the Q-values of state-actions.

Q(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a) maxQ(s′, a′) (2.15)

The framework is used for analysis of how to best coordinate a TAEMS network. The

authors note three features of their approach. First, state features are identified to ap-

proximate the system state. This prevents the problem from becoming intractable. Sec-

ond, heuristics are evaluated as a form of meta-level control. Third, the meta-level

Markov Decision Process is solved using reinforcement learning. Although none of
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these features are in common with this thesis, the view of meta-reasoning as Dec-MDP

provides the foundations of the decision theoretic approach used for this thesis.

One successive work by Cheng, Raja, and Lesser used a Dec-MDP representation

and reinforcement learning to control a group of radars [35]. Figure 2.3 shows the radars

as well as their controller agents. The goal is to jointly scan for weather phenomena by

accomplishing tasks. Tasks have types which include storm, rotation, reflectivity, or

velocity, and are also classified as either pinpointing or non-pinpointing. Each task has

a degree of correlation attached to it, reflecting the interdependence of tasks. Radars can

be neighbors if they share overlapping scanning regions. Figure 2.3 shows the network

of radars. Radars connected by a dotted line hold overlapping scanning regions.

The authors created a Dec-MDP where the state space contained features, including

information about self, information about neighbors, and degree of data correlation.

Nodes could take actions to move tasks among the radars or control the heartbeat. The

resulting Dec-MDP was solved using Abdallah and Lesser’s WPL algorithm [1]. The

algorithm moves each policy along the gradient of its Q-value, and it learns faster when

the Q values are higher than the total average reward, and slower if Q values are below.

2.1.6 Decentralized Wald framework

Similar work in decentralized systems has taken place in the communications field.

Although this related work is not the subject of study in this thesis, we briefly use this

section to note the relation. The solution techniques that will be developed in this thesis,

especially in Chapter 3, may be applicable to the communications field, and vice versa.

The Decentralized Wald problem is formalized as follows [139]. Informally, this

problem can be described as involving two sensors, and an object which has two pos-

sible classifications. At each time step, both sensors make an observation about the

object, but each sensor is not aware of the observation of the other. At each step, each
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sensor may choose to continue for another time step (at a cost), or to stop observing and

classify the object. The formal representation follows:

There are two detectors, numbered 1 and 2. The ith detector’s observation yi at time

t is described by

yi(t) = fi(h,w
i
t) (2.16)

where wit for i = 1, 2 are mutually independent i.i.d. sequences and h is a hypothesis.

Define ui as

ui(t) = γi(y
t
i) (2.17)

where γi represents the decision made by detector i and

yti = (yi(1)...yi(t))

and

ui = 0, 1

Also define a joint cost function J(u1, u2, h), with h being the true hypothesis, with

the following rules

J(0, u2, h1) ≥ J(1, u2, h1) (2.18)

J(1, u2, h0) ≥ J(1, u2, h1)

J(1, u2, h0) ≥ J(0, u2, h0)

J(0, u2, h1) ≥ J(0, u2, h0)
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and similar rules for u1. Let τi denote the stopping time of the ith agent. The decen-

tralized Wald problem is

Minimize E(cτ1(γ1) + cτ2(γ2) + J(γ1(yγ1

1 ), γ2(yγ2

2 ), h) (2.19)

The problem is solved approximately, using results from statistical sequential anal-

ysis [147].

2.2 POMDP-based frameworks

In this thesis we study the use of the Partially Observable Markov Decision Process

(POMDP) and its extensions, for meta-level reasoning. The POMDP is an extension

of the single-agent MDP, which is a well-known framework in agent literature [14]. In

an MDP model, an agent is modeled as an entity which exists in a state. The Markov

assumption is made, that state captures all necessary information about the agent’s his-

tory. One special state is designated the start state. Over a series of discrete time steps,

the agent is permitted to select an item from a set of actions at each step. Taking an

action from a state probabilistically results in a change of state. In addition, a reward is

defined for each state-action pair. In a finite-horizon MDP, a small number of steps is

specified, whereas in an infinite-horizon MDP, a discount factor γ ∈ (0, 1) is specified,

and reward is multiplied by γt, where t is the time-step of the rewarded state and action.

An infinite-horizon MDP policy is defined as a mapping from agent state to an action.

A finite-horizon policy maps time and state to an action. For the rest of this proposal,

we will restrict our attention to finite-horizon cases.

The POMDP extends the MDP to account for uncertainty of state [10, 126]. In a

POMDP, the agent receives an observation at each time step, each possible observation

has a given probability. Thus, state is partially observable. A finite-horizon POMDP

policy can be viewed as a mapping from the time step and a belief distribution over

41



states, to an action. An alternative representation is as a mapping from a starting distri-

bution and a subsequent agent history to an action. The two representations are related,

as knowledge of an agent’s history defines the time step and a belief distribution over

states.

Work in the late 1990’s and early 2000’s focused on extending the POMDP to mul-

tiple agents. Early work was conducted by Xuan and Lesser, who focused on the con-

struction of decentralized plans [154], and by Bernstein and Zilberstein, who focused

on complexity analysis of several model variations [17]. The Dec-POMDP or Decen-

tralized Markov Decision Process extends the POMDP to multiple agents [17]. Instead

of single actions at each step, joint actions are taken instead, one for each agent. Instead

of single observations, joint observations are received. However, each agent’s actions

and observations are not necessarily known to the other agents. We will elaborate on

the model and on solution techniques to Decentralized POMDPs in the next subsection.

Bernstein and Zilberstein proved that the Dec-POMDP model is NEXP-hard [17].

This result holds even for the Dec-MDP, a related model in which joint observations

uniquely identify the state. The complexity can be reduced to NP-complete if agents

are transition independent, observation independent, and can fully observe their local

state [51].

There are three other models of note that are similar to the Dec-POMDP, but which

are not described elsewhere in this thesis:

• POSG: The POSG model is the same as the Dec-POMDP model, except each

agent may have its own reward function.

• I-POMDP [49]: This model is similar to the POSG model in that different agents

may have different reward functions. Also, for each agent, the beliefs over other

agent types are included in the state space. Solutions are the optimal policies

which deduce an action, given a belief state about the state and the belief state of
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Figure 2.4. Illustration of the Dec-POMDP model. At each step, each agent takes an
action, the environment transitions, and each agent receives its own observation.

the other agents. An advantage of the I-POMDP over Dec-POMDPs is that they

allow game-theoretic solutions for adversarial games, whereas Dec-POMDPs are

limited to cooperative games. A disadvantage is the increased size of the state

space.

• MTDP, or Multiagent Team Decision Problem [99]: This is a similar model to

Dec-POMDP. Elements represented include a set of agents, a set of world states,

a set of actions for each agent, a probabilistic distribution over successor states, a

joint observation function, a reward function, and a horizon. MTDP is equivalent

to Dec-POMDP, assuming all agents can recall their past histories [118].

2.2.1 Dec-POMDP model

We select the Decentralized Partially Observable Markov Decision Process (Dec-

POMDP) as a model to study in this thesis. The Dec-POMDP model is broad enough

to capture the aspects of multi-agent planning and execution listed earlier. In particular,

a Dec-POMDP is a sequential, multi-agent problem where individual agents receive ob-

servations which correspond to beliefs about the environment. Agents are not aware of
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each other’s observations unless communication takes place. A Dec-POMDP is defined

as follows:

• A set of agents numbered 1..n

• S: the set of domain states.

• b0 ∈ ∆S: the initial belief state distribution.

• A = ×Ai: the set of joint actions, where Ai is the set of actions available to agent

i. At each time step, agents take one joint action a = 〈a1, .., an〉.

• P : the transition function. ∀s, s′ ∈ S, a ∈ A, P (s′|s, a) is the probability of

transitioning to state s′ given the previous state was s and joint action a was

taken by the agents.

• R: the reward function. ∀s ∈ S, a ∈ A,R(s, a) is the immediate reward for

taking joint action a in state s.

• Ω = ×Ωi: the sets of joint observations. Each agent i receives only its own

observation oi ∈ Ωi at each time step. The vector of received observations is

denoted o = 〈o1, .., on〉.

• O, the observation function. It specifies joint observation probability O(o|s′, a),

the joint probability that agents see corresponding observation o ∈ Ω after the

agents took joint action a causing a state transition to s′. Occasionally in this

thesis, the observation function may be specified in terms of the previous state

and the successive state, O(o|s, a, s′).

• T , the horizon, or number of steps, in the problem.

The model unfolds over T stages. At each stage, all agents simultaneously select an

action and receive a reward and observation. The objective is to maximize the expected

sum of joint rewards received.
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Figure 2.5. (a) Two policy trees. (b) The result of a full-backup of the policy trees
shown in part (a) is 24 new trees. Only the trees rooted inA1 are shown. (c) (Referenced
in Chapter 4): The result of running CompressObs and then a partial backup. Here
maxObs = 2 and subpolicies of o2 and o3 are forced to be the same.

2.2.2 POMDP concepts

The following two concepts are used in solution approaches.

belief state: A belief state is a probability distribution over the states. The distribution

must sum to one. Typically, we use the notation b to represent a belief distribution over

states and b(s) to refer to the belief probability of a specific state. b0 is sometimes used

to refer to a belief distribution before the first time step.

policy tree: As stated earlier, an agent policy can be viewed as a mapping from an action

and observation history, to an action. Agent policies will be denoted with π. A tree
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representation of a finite-horizon policy is shown in Figure 2.5 (a). The nodes in the tree

represent actions, and the edges represent observations. A policy is executed by starting

at the root node, and proceeding downwards according to the received observation.

2.2.3 Single agent case

For a single-agent, the Value of a policy tree π in state s, denoted V (π, s), is the

expected reward that will be achieved by executing the policy. It can be recursively

defined as the immediate reward plus the expected reward on future steps. The expected

value on future steps is decomposed into the probability of receiving each observation

from each possible next state, times the value of the policy that will be taken given that

observation. Formally, it is expressed as:

V (π, s) = R(s, aπ) +
∑
s′

P (s′|s, aπ)
∑
o

O(o|s, aπ, s′)V (πo, s
′) (2.20)

where aπ is the action defined at the root of policy π, and πo is the subpolicy of π taken

after observation o.

For a single agent, the function of optimal value over belief state is convex (for an

illustration, see Figure 2.6(a)). Modern single-agent solution approaches are based on

this fact, which can be proved in two steps. First, the value of each policy can be shown

to be a hyperplane over belief state. This follows from the fact that if the value of a

policy is known for two belief states, the value of that policy at belief points between

these two states is a linear combination. Second, the optimal value at a belief state is

value of the maximal policy at that state. Maximization of affine functions is a convex

function.

Point-based algorithms [95, 133] for single-agent POMDPs leverage convexity. A

point-based algorithm proceeds over a series of T steps, at each step the algorithm starts

46



Given DEC-POMDP, horizon T
t=1
Generate horizon-1 policies for each agent.
While t < T

backup each agent to generate policies
prune each agent’s policies
increment t

Table 2.1. Basic bottom-up algorithm

with a set of policies. At the first step this set of policies is the set of actions. Given a set

of policies at step t and a belief state b(s), point-based algorithms find a set of policies at

step t+ 1, each of which contains the step t policies as sub-policies. The distinguishing

characteristic of point-based algorithms is that the maximum value policy is identified

at select belief points, and all other policies are discarded as candidate sub-policies. For

a single-point, the best policy can be found in time |A||Ω||S||Π|, where |Π| is the set of

subpolicies retained from the previous step. The loss due to discarding the remaining

policies is bounded due to convexity.

2.2.4 Dec-POMDP bottom-up approach

For the multi-agent case, Hansen et al. have developed an optimal dynamic pro-

gramming algorithm that prunes many useless policies [54].

Table 2.1 illustrates the basic algorithm. First, a set of horizon-1 policies are con-

structed, to represent the last step of the policy. This is simply the set of actions Ai.

From these horizon-1 policies, horizon-2 policies are constructed, with the horizon-1

policies as subtrees. In bottom-up planning, horizon t+1 trees are trees whose subtrees

are horizon t trees.

A key part of the planning process is to evaluate policies. For the two agent case, a

joint policy value for policies πi and πj at a given state can be written recursively:
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Figure 2.6. Illustration of pruning. (a) The value of a set of vectors at two states s1 and
s2. (b) The result of pruning with ε = 0. Vectors that do not contribute at any belief
state are pruned. (c) Pruning for ε > 0, vectors that do not contribute more than ε are
pruned.

V (πi, πj, s) = R(s, ai, aj) +
∑
s′

P (s′|s, ai, aj)
∑
o1,o2

O(o1, o2|s′, ai, aj)V (πi,o1 , πj,o2 , s
′)

(2.21)

where ai and aj represent the root actions taken in the policy trees of each agent and

V (πi,o1 , πj,o2 , s
′) is the value of continuing in the policy trees based on the observation

that was seen and the resulting state.

During the planning process, each agent must choose policies that have high value

based on any policy the other agent may use. To formalize this, define belief state,

b(s, πj), for an agent as the probability that the system state is s and the other agent will

use policy πj . The value of an agent’s belief is then:

V (b) = max
πi

∑
s,πj

V (πi, πj, s)b(s, πj) (2.22)

which represents the maximum the agent can achieve given its set of policies weighted

by the probability that the true state is s and the other agent uses policy πj . Because
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Given a vector to be pruned, α and an undominated set U
For variables: b(s, πj) and δ
Maximize δ
Such that:

∀i
∑
s,πj

b(s, πj) [α(s, πj)− Ui(s, πj)] ≥ δ

And probability constraint: ∑
s,πj

b(s, πj) = 1

Table 2.2. The two agent linear program for pruning a single vector, α, when compared
to the current undominated set, U . b(s, πj) represents the probability of state s and
policy πj for the other agent. α(s, πj) and Ui(s, πj) represent values of these vectors
given state s and policy πj for the other agent.

the probability distribution of the underlying state depends on the policies of the other

agent and we assume no prior knowledge about the other agent, all policies that may

contribute to this maximum for some policy of the other agent must be retained. Policies

that do not contribute to the maximum may be removed, or pruned. A linear program

can be used to prune policies, and such a linear program is shown in Table 2.2. The

program is visually depicted in Figure 2.6(b). A set U is constructed of policies that

will be retained. This set is initialized to empty. For each policy that is evaluated for

pruning, we associate a hyperplane α with its value function (over states and policies

of other agents), and then an associated value δ is found. δ represents the maximum

contribution of that policy. The linear program seeks to find a belief point for which

the policy represented by α contributes value more than any other member of the set U .

Thus, if δ ≤ 0, the policy does not contribute and can be pruned.

While this method guarantees that an optimal tree will be found, the set of trees

may be very large and many unnecessary trees may be generated along the way. The

pruning may be unhelpful, as even if a single policy of the other agent allows a policy

to minimally contribute, it will not be pruned. Because of this, many Dec-POMDP
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solution techniques require an intractable amount of memory for any but the smallest

problems.

Figure 2.5(b) shows the result of a full-backup where pruning did not eliminate any

policies. Policy Trees P1 and P2 are represented within the squares. A full backup

will generate every possible action and observation sequence. Note that only the new

policies rooted in action A1 are shown. In this case, with 3 possible observations,

3 actions, and two previous policies, a full backup would generate 3 ∗ 23 or 24 new

policies.

Amato, Carlin, and Zilberstein prune additional policy trees through a technique

called epsilon pruning [4]. The technique is shown visually in 2.6(c). At each step,

a full backup is performed just as in [54]. Then the undominated set is iteratively

constructed. A policy is added to the undominated set if there exists a belief state as

well as a policy for the other agents, such that the new policy exceeds the value of

the current undominated set by more than epsilon. The same linear program in Table

2.2 is used for this step, but the policy is only pruned if δ < ε. The epsilon pruning

technique thus produces solutions with an error bound of (n)(ε)(T ), where ε is a user

specified parameter and n is the number of times that epsilon pruning is performed per

horizon step. This works well in domains with a small number of observations. But

in domains with a large number of observations, the number of new policies generated

before pruning will be exponential in the number of observations. This motivates the

development of additional pruning that specifically targets the number of observations.

2.2.4.1 JESP approach

The JESP (Joint Equilibrium Search) algorithm finds an equilibrium of the single-

agent policies [85]. It does so by fixing each of the policies except for one. Then, the

final policy is solved as a POMDP, while considering the other fixed policies as part of
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the environment. This solution may achieve poor results, as the equilibrium point found

may be a local but not global optimum.

2.2.5 Top-down approaches

Another approach is to construct trees from the top-down, starting with the first step.

In the MAA* algorithm, an A* search is constructed of joint policies [138]. The basic

A* search algorithm is typically used in shortest-path problems in which an agent must

plan a route; it must traverse a set of nodes on its way towards a goal, and it is given

distances between pairs of nodes. A* decomposes f(n), the estimated distance from

each node to the goal, into two elements:

f(n) = g(n) + h(n)

where g(n) is the cost of a solution path from the start to node n, and h(n) is a heuristic

estimate of the completion of that function to the goal. The A* algorithm works if the

heuristic never overestimates the distance to the goal. That is, the heuristic is always

either correct or overly optimistic.

In the case of a Dec-POMDP, g(n) can be assigned the value of the first steps of a

policy. This value is computed, thus it is known and exact. Next, a heuristic function

h(n) is constructed which is overly optimistic. For example, the MDP heuristic views

the problem as an MDP, centralized and completely observable. The POMDP heuristic

views the problem as centralized but not completely observable.

Though the heuristics can be computed in a tractable amount of time, one difficulty

with this approach is that the search space, through the set of all possible joint policies,

is large.
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Algorithm 2: The MBDP algorithm
begin

MaxTrees ← max number of trees before backup;
H ← pre-compute heuristic policies for each h ∈ H;
Π1
i ,Π

1
j ← initialize all 1-step policy trees;

for t=1 to T do
Πt+1
i ,Πt+1

j ← fullbackup(Πt
i), fullbackup(Π

t
j);

Selt+1
i , Selt+1

j ← empty;
for k = 1 to maxTrees do

choose h ∈ H and generate belief state b;
for each πi ∈ Πt+1

i do do
evaluate each pair (πi, πj) with respect to b;

add best policy trees to Selt+1
i and Selt+1

j ;
delete those policy trees from Πt+1

i and Πt+1
j ;

Πt+1
i ,Πt+1

j ← Selt+1
i , Selt+1

j ;

select best joint policy tree δT from {ΠT
i ,Π

T
j };

return δT ;
end

2.2.6 MBDP -based planners

The MBDP algorithm combines elements of top-down and bottom-up planning

[120]. The algorithm is somewhat analogous to the single-agent point-based algorithms.

In MBDP , joint policies are generated from the bottom-up. A set of belief points are

selected, just as in the single-agent planners. However, instead of retaining all possi-

ble unpruned policies at each horizon step, only one joint policy is retained for each

selected belief state. The belief states are selected by a similar set of heuristics used in

MAA*.

The number of belief points selected at each step is set to a predefined constant

MaxTrees . At each step, a full backup produces |A|MaxTrees |Ω| new policies. Then

for each selected belief point, the joint policy with the highest value for that belief point

is retained. Policies not retained are pruned. Thus, the number of policies for each

agent is pruned to MaxTrees before the next full backup is performed.
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Algorithm 2 shows the MBDP algorithm. Sets of policy trees are represented by πi

and πj . The sets are initialized to the one-step policy trees. Then, at each step, a set of

new policy trees are generated, based on the trees retained from the previous step. This

set of trees is then pruned. One joint policy is retained for each point considered in the

point-based backup. The process then repeats, up to horizon T .

2.2.6.1 IMBDP

The MBDP algorithm is still exponential in |Ω| due to the large number of policies

generated with each backup. The IMBDP planner attacks this problem by limiting the

number of possible observations to a constant MaxObs [119]. IMBDP selects the most

likely observations from heuristically determined belief states, and its backup step only

generates subpolicy combinations under those observations. This process is termed a

partial backup. Complete policies are then ”filled up” with the missing observations,

by selecting the best available policies for these observations. Thus, for instance if a

partial backup were run for the policies shown in part A of Figure 2.5, and a MaxObs

of two were used, only 12 new policies would be generated, 4 for each root action.

Although this process is quick compared to a full backup, the error is only bounded for

the heuristically selected belief state. The error is given by:

T 2(1− ε)(Rmax −Rmin) (2.23)

where T is the horizon of the problem, ε is the probability of receiving one of the

remaining observations, and R is the reward function. In IMBDP, the probabilities of

these observations are taken into account, but not their values.
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2.2.6.2 Recent work

Recent extensions to MBDP and IMBDP involve quicker searching for optimal joint

policies from each belief point. PBIP [42] involves a search for a distributed subpol-

icy from each belief point, starting from the underlying MMDP (that is, the equivalent

problem if the Dec-POMDP were fully observable and centralized), and then conduct-

ing a search to resolve conflicts. Other recent work involves finding the best joint policy

for each belief point by solving a constraint satisfaction problem [71].

There has been some work on formulating a Dec-POMDP as an integer program

[9]. From the start state, a joint policy is found which maximizes value, which can be

expressed as the sum of the values of immediate reward and expected value of subpoli-

cies. Variables are the policies used by each agent. However, the choice of policies

is subject to a number of constraints, agents must select only one subpolicy for each

observation, for example.

A recent approach of Wu et al. combines MBDP , integer programming, and equi-

librium search [152]. The PBPG algorithm performs a point-based backup and heuris-

tically estimates belief points, as in MBDP . However, it does not perform a space-

consuming full-backup as in MBDP, and it does not discard observations as in IMBDP.

Instead, it finds a policy equilibrium for the point, as in JESP . It fixes policies of all

the agents except for one, and finds the resulting best policy of the remaining agent

by forming solving a linear program. Because the equilibrium is found at each step,

for a variety of points, the algorithm avoids the accumulation of error over multiple

steps as in JESP . Other recent approaches include incremental policy generation which

combines the PBIP algorithm with a state-pruning measure, which eliminates unreach-

able states from evaluation as backup is performed [5]. The GMAA *-Cluster algorithm

performs an A* search while clustering on action-observation histories to speed up the

search.
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2.3 Related work in Dec-POMDP communication

There are numerous communication strategies in the literature, here we provide

an overview. Xuan and Lesser start with Centralized Policies (CPs), which assumes

communication, and use these as the basis to form Decentralized Policies where unnec-

essary communication is eliminated [153]. To decide upon communication, an agent

must reason about whether its own history is ambiguous to other agents. Roth et al. use

this form as reasoning as well for the tell model of communication [106].

Nair et al. integrate communication strategies with the JESP algorithm, and main-

tain computational tractability by forcing communication to occur at least everyK steps

[86]. Mostafa and Lesser analyze domains where agent interactions are limited, and

exploit this structure to create a more tractable problem with limited communication

points [83]. Williamson et al. use KL-divergence of beliefs as an estimate of when

communication is necessary, and use this to shape the reward function [150]. Shen et

al. generate abstractions of information, and use the abstractions to limit the number of

messages that need to be sent [122].

Goldman and Zilberstein introduce the Decentralized Partially Observable Markov

Decision Process with Communication (Dec-POMDP-Comm) model [50]. This ex-

tends the Dec-POMDP model with the following augmentations.

• Σ is an alphabet of messages. σi ∈ Σ denotes an atomic message sent by agent i.

There is also a special null message ε.

• CΣ : Σ → < is the cost of transmitting an atomic message. The cost of sending

the null message is zero.

Agents in this model keep two policies, a local policy and a communication policy.

The local policy is a mapping from observation history and received message history
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to an action. The communication policy is a mapping from observation history and

received message history to a communication choice from the alphabet.

Another model of communication, used in subsequent chapters, is the sync model,

where each message is not specified, but rather a single, special sync capability is as-

sumed, which allows agents to mutually exchange histories. Communication is instan-

taneous; a message is received without delay as soon as it is sent. Also defined is C,

a fixed cost on each step of communicating these synchronization messages. The fixed

cost of C is incurred if any number of agents choose to communicate. Otherwise, if no

agent communicates, they incur no penalty.

Using the sync model, one decision theoretic means of making a communication

decision is to use a Value of Information (VoI) approach. In this type of approach,

each agent individual finds an expectation over the value of joint policies after com-

munication, versus an expectation over the value without communication. However, as

we will see in future sections one weakness of these policies is that they are myopic.

These policies can be perspective of other agents and to make joint communication de-

cisions. They can also be improved by attaching a value to deferred communication,

and weighing that against the value of immediate communication [13].

Becker et al. use a value of information approach under conditions of full local

observability and transition independence, each agent finds an expected value of com-

munication which is computed as the difference between the value of the resulting joint

policy after communication and the value of continuing without communication [13].

These values are used to find a Nash equilibrium among one-step communication poli-

cies. From the Nash equilibrium, multi-step communication policies are constructed

by comparing the value of communicating at the current step, to the value of deferring

communication or not communicating at all.
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CHAPTER 3

MONITORING AND CONTROL OF ANYTIME PROBLEM
SOLVING WITH MULTIPLE AGENTS

This chapter considers multiagent settings in which a group of agents is engaged

in collaborative decision making. Specifically it considers settings with multiple base-

level algorithms, and where each base-level algorithm solves a component of an overall

problem using an anytime algorithm, as defined in Chapter 2.1.3. A meta-reasoning

agent supervises each base-level computation. This chapter extends the work of Hansen

and Zilberstein as described in Chapter 2.1.4 from the single-agent to the multi-agent

case. When the separate anytime algorithms that compose multi-agent base-level rea-

soning are independent of each other, i.e. each meta-reasoning agent can only affect

the utility of local base-level computation, the single-agent methods extend to multi-

ple agents without modification. In this case each agent governs an anytime algorithm,

and meta-reasoning can be achieved through the single-agent monitoring and control

algorithms of Hansen and Zilberstein [55].

This chapter specifically addresses the non-trivial case where utilities are joint util-

ities. However it assumes computation quality of each base-level algorithm remains

independent of the status of the other algorithms (this notion will be formalized in the

next section). This chapter analyzes two aspects of meta-reasoning, the ability to stop

local computation and begin execution, and the ability to monitor computation.

The contributions of this chapter are as follows:

• Formalization of the problem of monitoring and control of multiple anytime al-

gorithms. In the formalization, meta-reasoning agents monitor base-level algo-
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rithm quality and control when to stop base-level reasoning and begin execution.

The formulation depends on whether meta-reasoning agents may monitor perfor-

mance of a local algorithm or whether agents may monitor global performance.

The formulation also depends on whether monitoring is relatively inexpensive, or

whether it has cost. Section 3.1 outlines a taxonomy of problems related to all of

these cases.

• Complexity analysis of several variants of the decentralized monitoring problem.

Section 3.2.1 shows that decentralized monitoring is NP-complete.

• Development of solution algorithms for the decentralized monitoring problem.

Section 3.2.2.2 maps decentralized monitoring to a bilinear formulation, and uti-

lizes the bilinear programming technique of Petrik and Zilberstein in order to

provide solutions [94].

• Analysis of decentralized monitoring algorithms. Section 3.4 provides an em-

pirical analysis of the performance of the resulting algorithm. We find that op-

timal algorithms outperform naive algorithms under circumstances where either

the difference in expected value between stopping and non-stopping is small, or

the utility function is asymmetric.

The theoretical work presented this chapter was first published at AAMAS 2011

[32]. It was also summarized in a talk at the NIPS 2010 workshop “Decision Making

with Multiple Imperfect Decision Makers”, where the talk focused on the relevance of

these concepts to prescriptive decision theory with imperfect participants [157]. The

organizers of this workshop have published a related book, titled “Decision Making

with Imperfect Decision Makers”, which contains extended theory and experiments

[33]. The notation used in these works has been modified to conform with this thesis.
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Figure 3.1. Illustration of a joint computation sequence involving local monitoring.

The outline of the rest of this chapter is as follows: Section 3.1 will formalize the

notion of decentralized monitoring for the cases of both local monitoring (in which a

meta-reasoning agent can monitor a local computation) as well as global monitoring

(in which meta-reasoning agents share the status of all base-level algorithms). Next, in

Section 3.2 the complexity of decentralized monitoring will be analyzed. It will then be

shown how expected value of computation, such as the methods described in Section

2.1, can be used to provide sub-optimal solutions. In Section 3.2.2.2, the bilinear pro-

gramming technique of Petrik and Zilberstein will be utilized to form optimal solutions

for the case of local monitoring. After that, in Section 3.3 the case of global monitor-

ing will be analyzed. Finally, in Section 3.4 empirical results will be provided, and the

algorithms in this chapter will be characterized through the empirical results.
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3.1 The Decentralized monitoring problem

Definition 3.1. The Decentralized Monitoring Problem (DMP) is defined by a tuple

<Ag,Q,A, T, P, U, CL, CG> such that:

• Ag is a set of agents. Each agent supervises an anytime algorithm.

• Q is a set Q1 × Q2 × ... × Qn, where Qi is a set of discrete quality levels for

agent i (we will use the term “quality level”, or just “quality”, interchangeably).

At each step t, we denote the vector of agent qualities by ~q t, or more simply by

~q, whose components are qi ∈ Qi. Components of ~q t are qualities for individual

agents. We denote the quality for agent i at time t by qti .

• ~q 0 ∈ Q is a joint quality at the initial step, known to all agents.

• A = {continue, stop, monitorL, monitorG} is a set of metalevel actions available

to each agent. The actions monitorL and monitorG represent local and global

monitoring, respectively.

• T is a finite horizon representing the maximum number of time steps in the prob-

lem.

• Pi is the quality transition model for the “continue” action for agent i. For all

i, t ∈ {0..T − 2}, qti ∈ Qi, and qt+1
i ∈ Qi, Pi(q

t+1
i |qti) ∈ [0, 1]. Further-

more,
∑

qt+1
i ∈Qi

Pi(q
t+1
i |qti) = 1. We assume that the quality transition models of

any two agents i and j are independent of each other, that is, Pi(qt+1
i |qti , qtj) =

Pi(q
t+1
i |qti).

• U(~q, t) : Q → < is a utility function that maps the value of solving the overall

problem with quality vector ~q at time t to a real number.

• CL and CG are positive costs of the local monitoring and global monitoring ac-

tions respectively.
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Each agent solves a component of the overall problem using an anytime algorithm.

Unless a “stop” action is taken by one of the agents, all the agents continue to deliberate

for up to T time steps. Agents must decide whether to accept the current solution quality

or continue deliberation, which results in a higher expected solution quality for typical

transition models, but protracted deliberation results in decreased utility under typical

utility models where longer computation time is assumed to be less desirable.

At each time step, agents decide which option to take, to continue, stop, or monitor

globally or locally. If all the agents choose to continue, then the time step is incremented

and solution quality transitions according to Pi. However, agents are unaware of the

new quality state determined by the stochastic transitions, unless they monitor. If any

agent chooses to “stop”, then all agents are instructed to cease computation before the

next time step, and the utility U(~q, t) of the current solution is taken as the final utility1.

If an agent chooses to monitor locally, then a cost of CL is subtracted from the utility

U(~q, t) (for each agent that chooses monitorL) and the agent becomes aware of its local

quality at the current time step. If any agent chooses to monitor globally, a single cost

of CG is subtracted from the utility and all agents become aware of all qualities at the

time step. The time step is not incremented after a monitoring action. After an agent

chooses to monitor, it must then choose whether to continue or stop, at the same time

step.

Agents are assumed to know the initial quality vector ~q 0. As stated above, an agent

has no knowledge about quality after the initial step, unless a monitoring action is taken.

The “monitorL” action monitors the local quality; when agent i takes the “monitorL”

action at time t it obtains the value of qti . However, it still does not know any compo-

1One likely implementation would be to send a system-wide interrupt message to begin execution,
and allow each agent to service this event. Although this stopping criterion may seem restrictive, we note
that the bilinear formulation developed in this chapter can be easily modified to represent other types of
stopping criteria depending on user needs.

61



Case Mon. Global/ Number Complexity Model Comments
Cost Local of DMs

1 0 Global 1 Poly MDP Centralized
2 0 Global > 1 Poly MMDP Centralized
3 0 Local 1 Poly MDP Actions are

continue/stop
4 CL Local 1 Poly MDP/POMDP Section 3.2.2.1

5 0 Local > 1 NP-c TI Dec-MDP Theorem 3.1
6 CL Local > 1 NP-c TI Dec-MDP Theorem 3.1
7 CG Global > 1 NP-c Dec-MDP- Theorem 3.1

Comm-Sync

Table 3.1. Different variants of the Distributed Monitoring Problem (DMP).
Global/Local refers to whether the monitoring decision monitors anytime algorithms
running on the local agent, or on all other non-local (global) agents. Number of DM
refers to the number of decision makers. Complexity is denoted with respect to number
of quality levels, for a constant number of agents. Model refers to the model used to
solve the problem, in the section referenced in the comments column.

nent of the qualities of the other agents (denoted ~q t−i). A “monitorG” action results in

communication among all the agents, after which they all obtain the joint quality ~q t.

Since a “stop” action on the part of any individual agent ceases computation for

all agents, this would appear to imply coordination of agent decisions, which in turn

may imply that optimal joint decisions are computationally complex. This motivates an

analysis of complexity of the model. In the next section, we will summarize complexity

results under various conditions, and outline how the complexity can be reduced.

The complexity of the DMP model can vary according to the number of agents per-

forming meta-reasoning, termed decision making agents (DMs), whether monitoring

is local or global, and whether there is a cost attached to monitoring. Table 3.1 sum-

marizes how the problem can be varied along these axes, each case corresponds to a

combination of these parameters. Monitoring cost is considered as either a constant

or zero. When monitoring is local, the cost of global monitoring is assumed to be in-
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finity, and when monitoring is global, the cost of local monitoring is assumed to be 0.

The number of decision makers refers to the number of agents which may make stop-

ping and monitoring decisions. When there is one decision maker, multiple anytime

algorithms run, although only one is permitted to supervise stopping and monitoring

decisions. As the table shows, this often results in a simpler problem, we will see later

in the chapter that these cases have simpler complexity because agents do not need to

coordinate their meta-reasoning.

The first two cases in the table represent cases where global awareness of the quality

level of other agents can be achieved at no cost. In this case, decision making can be

made in a centralized fashion by applying the technique of Section 2.1.4 [55]. The

third and fourth cases represent problems where agents may monitor their own quality,

but cannot monitor the other agents. Section 3.2.2.1 will show that these cases can

be handled through dynamic programming. The fifth, sixth, and seventh cases contain

more than one decision maker. We will show that these problems are reducible to the

Dec-MDP model [17]. Finally, the seventh row contains global monitoring, which we

will show is reducible to Dec-MDP-Comm-Sync [13].

3.1.1 Transition-Independent decentralized MDP

A transition-independent decentralized MDP (sometimes referred to as TI Dec-

MDP) is composed of n cooperative agents, each agent i working on its own local

subproblem that is described by an MDP, 〈Si, Ai,Pi, Ri, T 〉 1 We deliberately use a

notation that overlaps the DMP definition, because as we will see, many of the com-

ponents of the TI Dec-MDP tuple will directly correspond to components of the DMP

1A transition-independent decentralized MDP can be related to the Dec-POMDP model of section
2.2.1, by assuming (1) The problem is fully observable given the joint observations. (2) The state, action,
and transition probabilities are factored by agent and transition independent, as described in the text. For
more detail on the relationship of TI Dec-MDP to Dec-POMDP, see [118]
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definition. In TI Dec-MDP, the local subproblem for agent i is independent of local

subproblems for the other agents. It is also completely observable, but only by agent

i. At each step agent i takes action ai ∈ Ai, transitions from state si ∈ Si to s′i ∈ Si

with probability Pi(s′i|si, ai), and receives reward Ri(s
′
i). All agents are aware of the

transition models of all the other agents (but not necessarily their states or choice of

actions at runtime). The global state of the domain is composed of the local states of

all the agents. T is a finite number of horizon steps of the problem.

A communicative variant of this problem is referred to as Dec-MDP-Comm-Sync.

At each time step, each agent first performs a domain-level action (one that affects its

local MDP) and then a communication choice. The communication choices are simply

communicate or not communicate. If at least one agent chooses to communicate, then

every agent broadcasts its local state to every other agent.

This corresponds to the sync model of communication [154], as it synchronizes the

world view of the agents, providing each agent complete information about the current

world state. The cost of communication is a constant C if at least one agent chooses to

communicate, and it is treated as a negative reward.

An optimal joint policy for this problem is composed of a local policy for each

agent. Each local policy is a mapping from the current local state si ∈ Si, the last

synchronized world state 〈s1...sn〉 ∈ 〈S1...Sn〉, and the time drawn from a set T (whose

elements are between 0 and T ) since the last synchronization, to a domain-level action

and a communication choice, πi : Si × 〈S1...Sn〉 × T → Ai × {yes, no}, where yes

and no refer to decisions to communicate and not to communicate respectively. We

will occasionally refer to domain-level policies and communication policies as separate

entities, which are the mappings to Ai and {yes, no} respectively.

In addition to the individual agents accruing rewards from their local subproblems,

the system also receives reward based on the joint states of the agents. This is captured
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in the global reward functionR : S1× ...×Sn → <. To the extent that the global reward

function depends on past history, the relevant information must be included in the local

states of the agents just as with the local rewards. The goal is to find a joint policy

〈π1...πn〉 that maximizes the global value function V , which is the sum of the expected

rewards from the local subproblems and the expected reward the system receives from

the global reward function.

Let ai denote the domain-level action selected by π(si). The global value function

is:

V (s1...sn) =
n∑
i=1

Ri(si) +R(s1...sn) +
∑
s′1... s

′
n

P(s′1..s
′
n|s1...sn, a1..an)V (s′1...s

′
n) (3.1)

Transitions on the MDPs are independent of each other; we will therefore assume that

without communication P(s′1, ...s
′
n|s1..sn, a1..an) =

∏n
i=1Pi(s′i|si, ai).

The complexity of finding optimal policies for both Dec-MDP with transition in-

dependence, and the Dec-MDP-Comm-Sync classes of problems has been shown to

be NP-complete [51], which is lower than the doubly exponential complexity (NEXP-

hard) of general decentralized decision making. In the next section, we will show how

a DMP problem with local monitoring can be formulated as a transition independent

Dec-MDP, thus maintaining NP-completeness.

3.2 Local monitoring

In this section, we examine the concept of local monitoring and control. That is,

each meta-level agent must decide whether to continue base-level computation, stop

immediately, or to monitor progress at a cost CL, and then decide whether to continue

or stop deliberation and initiate joint execution. The main result in this section will

prove that a DMP with local monitoring decisions can be solved by first converting the
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problem to a transition independent Dec-MDP. Although the termination decision may

seem to imply transition dependence (a “stop” decision by any single agent stops all the

agents), the dependence is eliminated in the construction of Theorem 1.

3.2.1 Complexity of local monitoring

When CL = 0, each agent should choose to monitor locally on every step, since

doing so is free. When CG = ∞, agents should never choose to monitor globally. The

following lemma and theorem shows that even for the simpler case where CL = 0,

CG = ∞, and number of agents is fixed, the problem of finding a joint optimal policy

is NP-complete in the number of quality levels. The termination decision alone, made

by agents with local views of quality, is NP-hard.

Lemma 3.1. The problem of finding an optimal solution for a DMP with a fixed number

of agents |Ag|, CL = 0 and CG =∞ is NP-hard.

Proof. A nearly identical problem to this special-case DMP with zero monitoring cost

is the Team Decision Problem (TDP) introduced by Tsitsiklis and Athans [141]. Un-

fortunately, unlike in the Team Decision Problem, three joint decisions of a two-agent

DMP (when either agent stops, or they both do) contain the same utility. Therefore

we proceed directly to the underlying Decentralized Detection problem upon which the

complexity proof of TDP is established.

We show that the NP-complete Decentralized Detection (DD) problem can be solved

by a three step DMP. The following definition is adopted from [141].

Decentralized Detection: Given finite sets Y1, Y2, a rational probability mass func-

tion z mapping Y1 × Y2 to the set of rational numbers , a partition {A0, A1} of Y1 × Y2.

The goal is to optimize J(γ1, γ2) over the selection of γi : Yi → {0, 1}, i = 1, 2, where

J(γ1, γ2) is given by
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∑
(y1,y2)∈A0

z(y1, y2)γ1(y1)γ2(y2) +
∑

(y1,y2)∈A1

z(y1, y2)(1− γ1(y1)γ2(y2)) (3.2)

Decentralized detection can be polynomially reduced to a three step DMP (Definition 1)

withCL = 0 andCG =∞. The first step is a known joint quality ~q 0. We define a unique

quality level at the second and third step for each yi ∈ Yi. We will denote the quality

level representing yi by qyi. Transition probabilities to the second step are defined by

the probability mass function, Pi(q2
i , q

2
j ) = z(y1, y2). Each agent then monitors (for

zero cost) and is aware of its local quality.

We model the decision of selecting γi = 1 as a decision by agent i to continue,

and of selecting γi = 0 as a decision by agent i to terminate. To accomplish this, the

DMP transition model transitions deterministically to a unique quality at step 3, for

each quality of step 2 of each agent.

Utility on step 3 is defined so that

U(q2
y1, q

2
y2, 2) = 0, U(q3

y1, q
3
y2, 3) = 1 iff (yi, yj) ∈ A0

and

U(q2
y1, q

2
y2, 2) = 1, U(q3

y1, q
3
y2, 3) = 0 iff (y1, y2) ∈ A1

The mapping to DMP is polynomial, as a quality level was created for each member

of the decision sets, for three time steps. It should be clear from this construction that

an optimal continuation policy which maps qyi to a decision to continue or terminate,

can be used to construct γ(yi) in DD. Since DD is NP-complete in the size of the finite

sets, DMP must be at least NP-hard in the number of quality levels.

To show that DMP is in NP, we will reduce to a transition independent Decentralized

MDP (Dec-MDP), a problem which was shown by Goldman and Zilberstein to be NP-

complete [51].
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Figure 3.2. An example of the state space for one of the agents, while running the
Dec-MDP construction of Theorem 1. When the agent continues, only current time is
incremented. When the agent monitors, the agent stochastically transitions to a new
quality state based on its performance profile, the current time increments, and mon-
itoring time is set to the current time. Not shown, when either agent terminates, the
agents get a reward based on the expectation of utility over their performance profiles.

Theorem 3.1. DMP Local Monitoring Complexity:

The problem of finding an optimal solution for a DMP with a fixed number of agents,

CL = k and CG =∞ is NP-complete.

Proof. NP-hardness follows Lemma 1, with k = 0 as a special case. To show NP-

completeness, we show that the problem can be reduced to a transition independent

Dec-MDP. Policies and policy-values for the DMP will correspond to policies and

policy-values for the TI Dec-MDP. The conversion is as follows:

The state space Si for agent i is a tuple < qi, t0, t >, where qi is a quality level

(drawn from Qi), t0 is the time step at which that quality level was monitored, and t is

the number of the current time step. We also define a special “terminal” state for each

agent.
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The action space for all agents is {terminate, continue, monitorL}.

The transitions consist of the following. For the continue action:

P(< qi, t0, t+ 1 > | < qi, t0, t >, continue) = 1

P(< qi, t0, t
′ > | < qi, t0, t >, continue) = 0, ∀t′ 6= t+ 1

P(< qi, t
′
0, t
′ > | < qi, t0, t >, continue) = 0, ∀t′0 6= t0

P(< q′i, t
′
0, t
′ > | < qi, t0, t >, continue) = 0, ∀q′i 6= qi

When the action is to terminate, the agent transitions to the terminal state. Let

P(s′|s, a) be the transition function, recalled from the TI Dec-MDP definition. When

the action is to monitor, we have ∀qi, q′i ∈ Qi :

P(< q′i, t
′
0, t
′ > | < qi, t0, t >,monitor) = 0 if t′ 6= t or t′ 6= t′0.

P(< q′i, t
′
0, t
′ > | < qi, t0, t >,monitor) = P (qt

′

i |q
t0
i ) if t′ = t′0 = t

The reward is defined as zero if all actions choose to continue and as U(~q, t) (from

Definition 1) if one of the agents chooses to terminate and none of the agents are in a

terminal state. Reward is adjusted by −CL for each monitoring action. Superseding

these rules, reward is zero if any agent is in a terminal state.

This reduction is polynomial, as the number of states in the Dec-MDP for agent i

is |Qi|T 2 and the number of actions is 3. The representation is transition-independent,

as the state of each agent does not affect the state of the other agents. Note that when

one agent terminates, the other agents do not enter a terminal state, such a specification
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would violate transition independence. Rather, this notion, that no reward is accumu-

lated once any agent has terminated, is captured by the Reward function. No reward is

received if any of the agents are in a terminal state. Since reward is only received when

one of the agents enters the terminal state, reward is only received once, and the reward

received by the Dec-MDP is the same as the utility received by the DMP.

Figure 3.2 shows a visual representation of the Dec-MDP reduction from a DMP

with local monitoring costs. The state is a tuple consisting of a quality level, the time

at which the quality was monitored, and the current time. The “continue” action in the

first step increments the current time. The “monitor” action increments the monitoring

time to the current time, and probabilistically transitions quality according the transition

probability of the DMP across multiple steps.

An optimal policy for the Dec-MDP produces an optimal policy for the correspond-

ing multi-agent anytime problem. Note that the uncertainty of quality present when an

agent does not monitor is simulated in the MDP. Even though, in an MDP, an agent al-

ways knows its state, in this reduction the transition is not executed until the monitoring

action is taken. Thus, even though an MDP has no local uncertainty, an agent does not

“know” its quality until the monitor action is executed, and thus the local uncertainty of

the multi-agent anytime problem is represented.

3.2.2 Solution methods with local monitoring

3.2.2.1 Myopic solution

We first build a solution that adapts the single-agent approach of Hansen and Zilber-

stein to the multi-agent case [55]. The adaption considers the other agents to be part of

the environment, and thus we name this myopic solution the Greedy approach. Greedy

computation does not take into account the actions of the other agents; we will initiate
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a greedy computation by assuming that the other agents always continue, and that they

will never monitor or terminate. Thus it applies to the case where there is one decision

making agent. We will then build upon this solution to develop a nonmyopic solution

for cases where there is more than one decision maker. For ease of explanation, we will

describe the algorithm from a single agent’s point of view. If there are multiple decision

makers running greedy computation, it should be assumed that each agent is executing

this algorithm simultaneously.

Each agent begins by forming a performance profile for the other agents. We will

use the term Pr (with a subscript, as in Pri, when referring to agent i) as a probability

function assuming only “continue” actions are taken, extending the transition model Pi

(Definition 1) over multiple steps. Furthermore we can derive performance profiles of

multiple agents from the individual agents, using the independence of agent transitions.

For example, in the two agent case we use Pr(~q) as shorthand for Pr(qi)Pr(qj).

Definition 3.2. A dynamic local performance profile of an algorithm, Pri(q′i|qi,∆t),

denotes the probability of agent i getting a solution of quality q′i by continuing the

algorithm for time interval ∆t when the currently available solution has quality qi.

Definition 3.3. A greedy estimate of expected value of computation (MEVC) for agent

i at time t is:

MEVC(qti , t,t+ ∆t) =∑
~q t

∑
~q t+∆t

Pr(~q t|qti , t)Pr(~q t+∆t|~q t,∆t)(U(~q t+∆t, t+ ∆t)− U(~q t, t))

The first probability is the expectation of the current global state, given the local

state, and the second probability is the chance of transition. Thus, MEVC is the dif-

ference between the expected utility level after continuing for ∆t more steps, versus

the expected utility level at present. Both of these terms must be computed based on
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the performance profiles of the other agents, and thus the utilities are summed over all

possible qualities achieved by the other agents. Cost of monitoring, CL, is not included

in the above definition. An agent making a decision must subtract this quantity outside

the MEVC term.

For time-dependent utility functions, the agent faces a choice as to whether to con-

tinue and achieve higher quality in a longer time, or to halt and receive the current

quality with no additional time spent. We call a policy that makes such a decision, a

monitoring policy.

Definition 3.4. A monitoring policy π(qi, t) for agent i is a mapping from time step t

and local quality level qi to a decision whether to continue the algorithm and act on the

currently available solution.

It is possible to construct a stopping rule by creating and optimizing a value function

for each agent. First, create a new local-agent value function Ui such that

Ui(qi, t) =
∑
~q t
−i

Pr(~q t−i)U(< qi, ~q−i >, t)

Next, create a value function using dynamic programming one step at a time:

Vi(qi, t) = max
d



if d = stop:

Ui(qi, t),

if d = continue:∑
q t+∆t
i

Pr(q t+∆t
i |qi)Vi(qi, t+ ∆t)

to determine the following policy:
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πi(qi, t) = argmaxd



if d = stop:

Ui(qi, t),

if d = continue:∑
q t+∆t
i

Pr(q t+∆t
i |qti)Vi(qi, t+ ∆t)

In the above, ∆t is assumed to be one and an agent makes the decision to continue

or stop at every step. A stop action yields an expected utility over the qualities of the

other agents. A continue action yields an expectation over joint qualities at future step

t+∆t. The above definitions exclude the option of monitoring (thus incurring the costs

CL and CG), the choices are merely whether to continue or act. Thus, we must define a

cost-sensitive monitoring policy, which accounts for CL and CG.

Definition 3.5. A cost-sensitive monitoring policy, πi,CL
(qi, t), is a mapping from time

step t and quality level qi (as well as monitoring cost CL) into a monitoring decision

(∆t, d) such that ∆t represents the additional amount of time to allocate to the anytime

algorithm, and d is a binary variable that represents whether to monitor at the end of

this time allocation or to stop without monitoring.

Thus, a cost-sensitive monitoring policy at each step chooses to either blindly con-

tinue, monitor, or terminate. It can be constructed using dynamic programming and the

value function below. The agent chooses ∆t, how many steps to continue blindly, as

well as whether to stop or monitor after. If it stops, it receives utility as an expecta-

tion over the quality levels of the other agent, if it monitors it achieves the value of its

future decisions from that quality level (known from prior computation from dynamic

programming), adjusted by a penalty of CL.
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qt1 = 1 qt1 = 2 qt1 = 3
qt2 = 1 -2 0 -1
qt2 = 2 5 -3 -1
qt2 = 3 -2 -1 1

Table 3.2. An example of a case where greedy termination policy produces a poor
solution. Entries represent the expected utility of continuing for a step.

VCL
(qi, t) = max

∆t,d



if d = stop:∑
q t+∆t
i

Pr(q t+∆t
i |qti)Ui(qi, t+ ∆t)

if d = monitor:∑
q t+∆t
i

Pr(q t+∆t
i |qti)VCL

(qi, t+ ∆t)− CL

A greedy monitoring policy can thus be derived by applying dynamic programming

over one agent. Working backwards, such an algorithm assigns each quality level on

the final step a value, based on its expected utility over possible qualities of the other

agents. Then, continuing to work backwards, it finds the value of the previous step,

which is the max over: (1) the current expected utility over the possible qualities of the

other agents (if it chooses to stop). (2) The expected utility of continuing (if it chooses

to continue). An algorithm to find a cost-sensitive monitoring policy can similarly

find the expectation over each time step with and without monitoring, and compare

the difference to the cost of monitoring.

3.2.2.2 Solution methods: Nonmyopic policy

The greedy solution can be improved upon to coordinate policies among all the

agents. To illustrate, examine Table 3.2. Each entry represents the expected joint utility

of continuing (thus increasing utility but also time cost), minus the expected utility of
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stopping. Assume all entries have equal probability and the local monitoring cost is

zero, and that the value of stopping immediately is zero, and thus the values shown

represent only the value of continuing. Agent 1 would greedily decide to continue if it

is in state qt1 = 1 only, as that is the only column whose summation is positive. Agent

2 would greedily continue if it has achieved quality qt2 = 2, as that is the only row

whose summation is positive. However, this would mean that the agents continue from

all joint quality levels which are bolded. The sum of these levels is negative, and the

agents would do better by selecting to always terminate!

We solve the DMP with CG =∞ optimally by leveraging the bilinear program ap-

proach of Petrik and Zilberstein to solving transition independent Dec-MDPs [94]. The

program is centralized at planning time and decentralized at execution time. We first

convert the problem to the transition independent Dec-MDP model described above.

We prune “impossible” state-actions, for example we prune states where t0 > t, as an

agent cannot have previously monitored in the future. Then we convert the resulting

problem into a bilinear program. A bilinear program can be described by the following

inequalities for the two-agent case (the framework is extensible beyond two agents if

more agent-vectors are added).

maximizex,y r
T
1 x+ xTRy + r2y

subject to B1x = α1

B2y = α2

In our bilinear formulation of a DMP, each component of the vectors x represents

a joint state-action pair for the first agent (similarly, each component of y represents

a state-action for the second agent). Following the construction of Theorem 3.1, each

component of x (and likewise, y) represents a tuple < qt01 , t0, t, a > where q1 represents
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the last quality observed, t0 represents the time at which it was observed, t represents

the current time, and a represents a continue, monitor, or terminate. Thus, the length

of x is 3|Q1|T 2 (assuming no pruning of impossible state-actions). Each entry of x

represents the probability of that state and action occurring upon policy execution.

The vectors r1 and r2 are non-zero for entries corresponding to state-actions that

have non-zero local reward, for agents 1 and 2 respectively. We set these vectors to

zero, indicating no local reward.

The matrix R specifies joint rewards for joint actions, each entry corresponds to the

joint reward of a single state-action in x and y. Thus, entries in R correspond to the

joint utility U(~q, t) of the row and column state, for state-actions where all agents are

not in the final state and any agent terminates. For each entry of R corresponding to a

joint (non-final) state-action where one agent monitors and the other agent continues or

terminates, that entry is adjusted by −CL. Otherwise, joint reward is 0.

α1 and α2 represent the initial state distributions, and B1 and B2 correspond to the

dual formation of the total expected reward MDP [98]. Intuitively, these constraints

are very similar to the classic linear program formulation of maximum flow. Each

constraint represents a state triple, and each constraint assures that the probability of

transitioning to the state (which is the sum of state-actions that transition to it, weighted

by their transition probabilities) matches the probability of taking the outgoing state-

actions (which is the three state-actions corresponding to the state triple). A special

case is the start quality, from which outgoing flow equals 1.

Bilinear programs, like their linear counterparts, can be solved through methods in

the literature [94]. These techniques are beyond the scope of this chapter, one technique

is to alternatingly fix x and y policies and solve for the other as a linear program. Al-

though bilinear problems are NP-complete in general, in practice performance depends

on the number of non-zero entries in R.
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Figure 3.3. Illustration of a joint computation sequence involving global monitoring.

3.3 Global monitoring

Next, we examine the case where meta-level agents can communicate with each

other (i.e., monitor globally). We will analyze the case where CL = 0 and CG =

k, where k is a constant. For ease of description, we describe an on-line approach

to communication. The online approach can be converted to an offline approach by

anticipating all possible contingencies (Chapter 5 will provide more detail). We decide

whether to communicate based on decision theory, agents compute Value of Information

(VoI).

V oI = V ∗(qi, t)− Vsync(qi, t)− CG

where V ∗ represents the expected utility after monitoring, Vsync represents expected

utility without monitoring (see below), and CG is cost of monitoring. In order to sup-

port the computation of Vsync and V ∗, joint policies are produced at each communi-

cation point (or, for the offline algorithm, at all possible joint qualities). We define a

helpful term V ∗(~q, t), (which we will rewrite V ∗(qi, ~q−i, t) to more clearly identify the
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local agent), which is the value of a joint (optimal and non-communicative) policy after

communication and discovery of joint quality ~q, as computed through the methodology

of the last section with CL = 0. From the point of view of agent i, the value after com-

municating can then be viewed as an expectation over the quality of the other agents,

based on their profiles.

V ∗(qi, t) =
∑
~q−i

Pr(~q−i, t)V
∗(qi, ~q−i, t)

Similarly, Vsync is the value attached to quality qi and continuing without communi-

cating. The value of this state-action was computed as part of the local monitoring prob-

lem at the last point of communication (which can be computed, for example, through

the bilinear program of the previous section), we use the subscript “sync” to remind us

that Vsync(qi, t) depends on the policies created and qualities observed at the last point

of communication.

Non-myopic policies require each agent to make a decision as to whether to com-

municate or not at each step, resulting in the construction of a table resembling Table

3.2. We examined this table in a previous section when deciding whether to continue

or stop. The table is used similarly for global monitoring, except the decision made

by each agent is whether to communicate or not to communicate. Communication by

either agent forces both agents to communicate and synchronize knowledge. Entries

represent the joint state, and are incurred if either agent 1 decides to communicate from

the row representing its quality, or agent 2 decides to communicate from the column

representing its local knowledge.

This problem, of deciding whether to communicate after each step, is NP-complete

as well. We will show this by reducing to a transition independent (TI) Dec-MDP-

Comm-Sync [13]. A Dec-MDP-Comm-Sync is a transition independent Dec-MDP with

an additional property: After each step, agents can decide whether to communicate or
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not to communicate. If they do not communicate, agents continue onto the next step as

with a typical transition independent Dec-MDP. If any agent selects to communicate,

then all agents learn the global state. However, a joint cost of CG is assessed for per-

forming the communication. Agents form joint policies at each time of communication.

The portion of the joint policy formed by agent i after step t is denoted πti .

Theorem 3.1. DMP Global Monitoring Complexity: The DMP problem with CL = 0

and CG is a constant, is NP-complete.

Proof. The proof of NP-hardness is similar to Lemma 1.

To show that the problem is in NP, we can reduce the problem to that of finding the

solution of a Dec-MDP-Comm-Sync [13]. We create the following Dec-MDP-Comm-

Sync from a DMP with CL = 0.

• Si is the set Qi ∪ {fi} for agent i, where fi is a new “terminal” state for agent i.

• Ai = {continue, terminate}; the joint action set is
∏

iA
i.

• The transition model:

P(qt+1
i |qti , continue) = P (qt+1

i |qti)

P(qt2i |q
t1
i , continue) = 0,∀(t2 6= t1 + 1)

P(fi|qti , terminate) = 1,∀qti ∈ Qi

• The reward functionR(~q t, ai) = U(~q, t) if ai= terminate for some i; 0 otherwise.

• The reward function is 0 when any agent is in the final state.

• The horizon T is the same as T from the DMP.

• The cost of communication is CG.

The reduction is polynomial as the number of states added is equal to T , and only

one action is added.
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It is straightforward to verify that this reduction is polynomial. Having represented

the DMP problem as a Dec-MDP-Comm-Sync, the task is now to solve this model.

This will be the subject of Chapter 5.

3.4 Empirical analysis

We experimented with two decentralized decision problems involving anytime com-

putation. First we experimented on the Rock Sampling domain, borrowed from the

POMDP planning literature. In this planning problem, two rovers must each form a

plan to sample rocks, maximizing the interesting samples according its preferences.

However, the locations of the rocks are not known until runtime, and thus the base-

level plans cannot be constructed until the rovers are deployed. We selected the HSVI

algorithm for POMDPs as the base-level planning tool [133]. HSVI is an anytime algo-

rithm, the performance improves with time, its error bound is constructed and reported

at runtime. Prior to runtime, the algorithm was simulated 10, 000 times on randomized

Rock Sampling problems, in order to find the performance profile. The resulting profile

held 5 quality levels over 6 time steps.

As a second base-level algorithm, we profiled Max Flow, the Ford Fulkerson so-

lution method for computing maximum flow [45]. This motivating scenario involved

a decentralized maximum flow problem where two entities must each solve a maxi-

mum flow problem in order to supply disparate goods to the customer. To estimate the

transition model P in the DMP, we profiled performance of Ford Fulkerson through

Monte Carlo simulation. The flow network was constructed randomly on each trial,

with each edge capacity in the network drawn from a uniform distribution. Quality lev-

els corresponded to regions containing equal-sized ranges of the current flow. From the

simulation, a 3-dimensional probability table was created, with each layer of the table

corresponding to the time, each row corresponding to a quality at that time, each column
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Problem (Local/Global) Compile Time Solve Time
Max Flow Local 3.5 11.4

Rock Sample Local .13 2.8
Max Flow Global .04 370

Rock Sample Global .01 129

Table 3.3. Timing results in seconds for non-myopic solvers. Compile Time represents
time to compile performance profile into a bilinear problem, Solve Time measures time
taken by the bilinear solver.

representing the quality at the next time step, and the entry representing the transition

probability. We created software to compile a Decentralized MDP from the probability

matrix, as described in the previous sections, and solved the resulting problem using a

bilinear program.

Three parameters of utility were varied with respect to each other: the reward for

increasing quality, a linearly increasing cost of time, and the cost of monitoring. We var-

ied each in order to characterize the local monitoring algorithms described in previous

sections. As a general characteristic, the cost of a time step in the utility function was

a fraction of the benefit of a quality level, and the cost of monitoring was a fraction of

the cost of a time step. This models algorithms whose profiles contain frequent discrete

time steps with small disruptions (such as the cache misses, etc.) caused by monitoring.

Algorithms considered were Continue, an algorithm which continues until the last

time step without performance profiling, Terminate, an algorithm which terminates

as its first decision, and Greedy and Nonmyopic, the greedy and nonmyopic local

monitoring algorithms described previously.

Mean running time for the non-myopic (NM) variant of our algorithms is shown in

Table 3.3. Compile Time represents the time taken to compile a Dec-MDP problem, and

Solve Time represents the time taken to solve it. The Max Flow problem was larger than

the Rock Sample problem (containing more quality levels), thus consumed more time.
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The global formulations, as opposed to the local formulations, required a subproblem

formulation to compute V ∗ at each communication point, and thus more time elapsed.

Figure 3.4 compares the various strategies, and shows the effect of varying the cost

of time on solution quality. Utility functions used to produce this figure were

U(~q, t) = max(qi, qj)− t · TC

for Rock Sampling and

qi + qj − t · TC

for maximum flow, where TC is a parameter representing cost of time. We assume

the problem begins at t = 1, q1 = 0, q2 = 0, so the value of terminating on the first

step is 0 − TC for both problems. As the figure shows, as cost of time decreases, the

Continue strategy becomes closer to optimal, and when cost of time increases, the

Terminate strategy approaches the optimal. Monitoring does not improve utility as

time cost approaches zero or infinity, because the same stopping decisions apply to any

current quality, without monitoring. The need for monitoring occurs in the middle of

the graph, when the stopping decision is unclear.

Table 3.4 compares the Greedy and Nonmyopic strategies for Rock Sampling.

In most cases, a greedy strategy can approximate the best possible local monitoring

strategy rather well. However, the value at TC = .5 suggests that there may be certain

parameters for which decisions of time quality trade-off are more difficult, and a moni-

toring strategy should be more tightly coordinated. Table 3.5 explores this issue further

by varying CL, when TC = .5. The Greedy strategy loses the ability to exploit mon-

itoring quicker, and even when monitoring is inexpensive, the Nonmyopic strategy is

able to make better use of monitoring.

To see why Nonmyopic outperforms Greedy under certain circumstances, we

look more closely at the resulting policies. Table 3.6 shows resulting Nonmyopic
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(a) Rock Sampling

(b) Max Flow

Figure 3.4. Comparison of nonmyopic monitoring strategy to non-monitoring strate-
gies on two different domains. Cost of time is reported in tenths of a quality level.
When the cost of time is low, a strategy to always continue is preferred. When cost of
time is high, a strategy of immediately stopping is preferred. The non-myopic strategy
produces the optimal solution for all costs of time.

Strategy / TC .1 .2 .3 .4 .5 .6 .7 .8 .9
Greedy 2.5 1.9 1.4 .83 .22 -.17 -.57 -.80 -.90

Nonmyopic 2.5 1.9 1.4 .83 .30 -.17 -.57 -.80 -.90

Table 3.4. Performance of Greedy and Nonmyopic strategies for various time costs
for the Rock Sampling domain. CL was fixed at .04.
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Strategy / CL .01 .02 .03 .04 .05 .06 .07 .08
Greedy .33 .30 .28 .22 .22 .22 .22 .22

Nonmyopic .37 .33 .31 .30 .28 .26 .24 .23

Table 3.5. Performance of Greedy and Nonmyopic strategies for various values of
CL on the Rock Sampling domain. Cost of time was fixed at .5

Figure 3.5. Mean number of steps produced until one agent terminates on the Max
Flow problem. As cost of time increases, agents terminate sooner.

Figure 3.6. Number of monitoring actions for the Max Flow problem, versus varying
values of CL.
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(a)
Agent 1

H
HHHHt

qi 1 2 3 4 5 6

1 6
2
3
4
5

Agent 2
1 2M
2
3 0 1M 2 2M 1M 0
4 0 2 0 0 0 0
5 0 1 1 1 1 0

(b)
Agent 1

HH
HHHt

qi 1 2 3 4 5 6

1 1M
2 1 1 0 0 0 0
3
4

Agent 2
1 1M
2 1M 0 1M 1M 1M 0
3 0 1M 2 2M 1M 0
4

(c)
Agent 1

H
HHHHt

qi 1 2 3 4 5 6

1 1
2
3
4

Agent 2
1 1
2
3
4

Table 3.6. Nonmyopic local monitoring policy for Max Flow problem, varying cost
of time. (a) CL = .02 TC = 0.2. (b) CL = .02 TC = 0.6. (c) CL = .02 TC = 1.0. In-
teger entries represent number of time steps to continue, followed by a terminate action.
Integer entries followed by M represent number of time steps to continue, followed by
a monitoring action. Empty entries represent quality levels and times that will never
occur in the policy.

85



(a)
Agent 1

H
HHHHt

qi 1 2 3 4 5 6

1 3M
2
3
4 0 2 0 0 0 0
5

Agent 2
1 3M
2
3
4 0 2 0 0 0 0
5

(b)
Agent 1

HH
HHHt

qi 1 2 3 4 5 6

1 1M
2 1 1 0 0 0 0
3
4

Agent 2
1 1M
2 1 1 0 0 0 0
3
4

(c)
Agent 1

H
HHHHt

qi 1 2 3 4 5 6

1 1
2
3
4

Agent 2
1 1
2
3
4

Table 3.7. Greedy local monitoring policy for Max Flow problem, varying cost of
time. (a) CL = .02 TC = 0.2. (b) CL = .02 TC = 0.6. (c) CL = .02 TC = 1.0. Inte-
ger entries represent number of time steps to continue, followed by a terminate action.
Integer entries followed by M represent number of time steps to continue, followed by
a monitoring action. Empty entries represent quality levels and times that will never
occur in the policy.
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(a)
Agent 1

H
HHHHt

qi 1 2 3 4 5 6

1 1M
2 1 3M 0 0 0 0
3
4
5

Agent 2
1 1M
2 1M 0 1 1 1 1
3 1 0 0 0 0 0
4
5

(b)
Agent 1

HH
HHHt

qi 1 2 3 4 5 6

1 1M
2 1 1 0 0 0 0
3
4

Agent 2
1 2
2
3
4

(c)
Agent 1
Agent 1

HH
HHHt

qi 1 2 3 4 5 6

1 2
2
3
4

Agent 2
1 2
2
3
4

Table 3.8. Nonmyopic local monitoring policy for Max Flow problem, varying CL.
(a) CL = .01 TC = 0.6. (b) CL = .03 TC = 0.6. (c) CL = .05 TC = 0.6. Integer
entries represent number of time steps to continue, followed by a terminate action.
Integer entries followed by M represent number of time steps to continue, followed by
a monitoring action. Empty entries represent quality levels and times that will never
occur in the policy.
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policies on Max Flow at varying costs of time. Table 3.7 shows their Greedy coun-

terparts. In the tables, rows represent time steps and columns represent quality levels.

Entries represent the number of steps to continue. If an entry is denoted in the form

xM , a local monitoring action is performed after continuing for x steps. Otherwise,

the agent terminates after continuing x steps. Blank entries represent quality states that

will not be achieved according to the policies. As suggested earlier, when cost of time

is low, agents tend to continue, and when it is high, agents tend to stop immediately.

To present further detail, Figure 3.5 graphs cost of time versus expected agent stopping

time, for execution of the Nonmyopic policy. As cost of time increases, agent policies

are expected to use fewer time steps.

Similar to the above paragraph, which shows that a higher cost of time results in

agents consuming less time, we also see that a higher cost of monitoring results in

agents monitoring less frequently. Table 3.8 explores this relationship by varying cost

of monitoring for a constant cost of time. As cost of monitoring increases, agents take

fewer monitoring actions.

One item of note is that the nonmyopic policies are often asymmetric, one agent

often continues while the other monitors and terminates. The greedy policies, by con-

trast, produce the same policies for both agents when the reward function is symmetric.

Because greedy policies do not account for the decision-making abilities of the other

agent, neither agent is capable of delegating the stopping decision to the other agent.

This lack of coordination suggests that the Greedy strategy may also underperform as

delegation becomes a larger issue, for instance with asymmetric utility functions.

To illustrate, we experimented on Max Flow utility functions

θq1 + (1− θ)q2 − t · TC,

88



(a) Nonmyopic

(b) Greedy

Figure 3.7. Effect of symmetry on performance with TC = .6. θ represents a sym-
metry parameter, when its value is .5 the problem is fully symmetrical. For nonmyopic
policies, asymmetry increases performance, monitoring decisions can be delegated to
the more knowledgeable agent. Greedy policies are not able to exploit this asymmetry
as well and report lower values overall.

89



(a)

Agent 1
HHH

HHHt
qi 1 2 3 4 5 6

1 3M
2
3
4 0 0 1 1 1 1
5
6

Agent 2
1 1M
2 3 2M 0 0 0 0
3
4 1 1 1 1 0
5
6

(b)

Agent 1
HHH

HHHt
qi 1 2 3 4 5 6

1 1
2
3
4
5
6

Agent 2
1 1M
2 1 1 0 0 0 0
3
4
5
6

Table 3.9. Resulting policies for (a) Nonmyopic and (b) Greedy strategies with
CL = .01, TC = .6, and utility function .1q1 + .9q2 − TC. Integer entries repre-
sent number of time steps to continue, followed by a terminate action. Integer entries
followed by M represent number of time steps to continue, followed by a monitoring
action. Empty entries represent quality levels and times that will never occur in the
policy.
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for varying values of θ. Figure 3.7 shows the effect of an asymmetric utility function

for TC = .6. Nonmyopic policies exploit asymmetry, whereas greedy policies are less

able to. As a result, for CL = .01, whereas nonmyopic performance increased, the

greedy performance decreased with increasing asymmetry, i.e. θ → 0. The resulting

policies are shown in Table 3.9. The first agent has little knowledge about global utility,

and in the nonmyopic case, this agent largely cedes stopping decisions to the second

agent. The first agent will stop never stop before step 4, and usually it will wait until

step 5. The more knowledgeable agent may stop at various points in time. By contrast,

in the greedy case, the first agent completely controls the stopping decision, preventing

the second agent from contributing to the decision with its knowledge.

To summarize, monitoring policies generally outperform fixed stopping criteria.

Furthermore, they even outperform the upper envelope of fixed stopping criteria, for

monitoring costs which are not too high nor too low. Greedy policies often approxi-

mate the optimal nonmyopic policy well, with some exceptions. Exceptions are (1) In

a narrow band of fixed stopping costs. (2) In situations calling for asymmetry in the

policies.

3.5 Extensions

It is also possible to model monitoring with partial observability. Given certain

independence assumptions, it should be possible to extend such models to many agents.

For example, the ND-POMDP model is defined as follows [71].

• S = ×1≤i≤nSi × Su refers to the set of states. Si refers to a local state of agent

i, and Su refers to a set of states that are uncontrollable by any agent. Also let

si ∈ Si and su ∈ Su.

• A = ×1≤i≤nAi refers to a set of actions. Ai refers to the set of actions available to

agent i. Also let ai ∈ Ai.
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• Ω×1≤i≤n Ωn is the joint observation set.

• P (~s′|~s,~a) = Pu(s
′
u|su)Π1≤i≤nPi(s

′
i|si, su, ai) where ~a is the joint action per-

formed in state ~s resulting in state ~s′.

• O(~ω|~s,~a) = Π1≤i≤nOi(ωi|si, su, ai) is the observation function that assumes ob-

servation independence between agents.

• R(~s,~a) = ΣlRl(sl, su, al) is the reward function which is decomposable among

subgroups of agents, each labeled l.

• b0 represents the initial belief point.

A DMP can be reduced to a ND-POMDP with quality states mapping to ND-

POMDP states, monitoring and stopping actions corresponding to the action space,

and utility corresponding to the reward space. The reduction is similar to those already

shown in this chapter. Using ND-POMDP, the DMP model can also be extended. In the

following subsections we summarize some possible extensions.

3.5.1 Partial observability

One aspect modeled by ND-POMDP that is not modeled by the Dec-MDP is partial

observability. That is, the ND-POMDP model can represent the fact that each agent

may have some uncertainty in its estimate of its current local utility. In a representation

of distributed monitoring via ND-POMDP, the observation set Ω contains the set of

possible quality levels and the observation function O represents the chance that each

quality level is observed given the true quality level. An example of a choice of O is a

Gaussian distribution with a mean centered around the true quality level.
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3.5.2 Independent stopping criteria

One aspect of the DMP model that was noted throughout the chapter was that in the

model, one agent stopping causes all the agents to stop and use the current computation.

Using ND-POMDP, it can be shown how this assumption can be relaxed. For each

agent, define an additional state in the state space Si

• sf , a final state that results when agent i chooses a terminate action.

Then define:

Rl(sl, su, ai) = 0 iff sf ∈ sl

Using the modified reward function, each agent will contribute quality to each joint

reward function Rl for which it is a contributing member. However, once the agent

terminates, all the rewards to which the agent contributes are zero. The other agents

may continue, and still add to utility as long as such utility does not depend on the

terminating agent.

3.5.3 Varying cost of time

It is also possible to vary the cost of time using an ND-POMDP model. Let ct be a

variable representing cost of time. This cost of time can be expressed in the members of

set Su. Transitions in Su are determined according to the dynamics of the distribution of

the cost of time. Reward functions depend on the cost of time as shown in the expression

below.

• Rl(sl, (su = ct), ai)

A transition function for the cost of time would be defined as well, i.e. P (c′t|ct, t).

This transition function is independent of the transition function of the quality levels of

the individual agents, qi.
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3.6 Summary

Anytime algorithms effectively gauge the trade-off between time and quality, and

we saw in Chapter 2 that conditional performance profiles formalize this notion. Mon-

itoring these algorithms can be performed in order to aid in the control of base-level

computation. Existing techniques from the literature weigh the trade-off between time,

quality, and monitoring for the single-agent case. Dynamic programming methods pro-

vide a solution method for the single-agent case.

This chapter addressed the multi-agent case. It analyzed several cases involving the

execution of multiple base-level anytime algorithms. When there is only one decision-

maker of stopping time, the single-agent approaches can be extended by defining ex-

pectations over the computational state of the other agents. Computational experiments

demonstrated that in some cases this greedy method is close to optimal for multiple

decision makers as well, but under certain circumstances where the trade-offs are in

balance, the greedy method breaks down and other optimal solution methods should be

used.

There were several contributions of this chapter. First, the problem of monitor-

ing and anytime control was formalized. Second, its complexity was analyzed. This

chapter showed how the multi-agent monitoring problems can be compiled as special

cases of Decentralized Markov Decision Processes. Third, solutions were developed.

This chapter showed that Dec-MDP solvers from the literature can produce efficient

solutions. Fourth, the behavior of the solution was analyzed empirically. Monitoring

policies outperformed fixed stopping criteria. Greedy policies were found to approxi-

mate optimal policies in some cases, but were shown to underperform within a narrow

band of fixed stopping costs and in situations requiring policy asymmetry.

Although we chose to define and analyze the DMP model for simple, clean cases

where all agents stop simultaneously, the concepts in this chapter are easily extended to
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models where agents do not stop simultaneously. The bilinear formulation holds both

local and global rewards, and in our implementation we make use of only the global

reward. When one agent terminates, it forces global reward to be zero thereafter, thus

enforcing a simultaneous stopping rule. However, if local rewards were also assigned,

agents would not need to stop simultaneously. Instead, one agent stopping would stop

global reward, but other agents could continue to achieve local reward. To conclude

the section, we discussed a model that includes this extension as well as several others

including many agents and a variable cost of time.
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CHAPTER 4

OBSERVATION COMPRESSION IN MULTIAGENT SETTINGS

The previous chapter analyzed the trade-off of time for quality in a distributed envi-

ronment. This chapter analyzes the trade-off of space for quality. Specifically, this chap-

ter examines planning for the finite-horizon Decentralized Partially Observable Markov

Decision Process (Dec-POMDP) model, which was introduced and defined in Chapter

2.2.

The architecture of the model is shown in Figure 4.1. Execution is distributed among

multiple agents without communication. At execution time, each agent acts indepen-

dently, the environment transitions in state based on the joint action, and then each agent

receives an observation and chooses its next action. Action selection is based on agent

policy, which is developed at planning time. Planning is centralized and occurs prior to

execution. This chapter develops a meta-reasoning process for the centralized planning

of Dec-POMDP policies.

Specifically, the problem addressed by this chapter is the doubly-exponential growth

of Dec-POMDP policy trees with respect to time horizon. Recall Figure 2.5. At each

time step, a Dec-POMDP policy must specify the subpolicy to be followed after each

observation. If there are |A| possible actions, |Π| possible subpolicies, and |Ω| pos-

sible observations on a given step, the number of possible policies at the next step is

|A||Π||Ω|. If each of these policies is retained as a possible sub-policy for each step, this

makes Dec-POMDP policies doubly-exponential in size, (i.e. after two steps the num-

ber of possible policies is |Π||Ω||Ω| , and so on). The MBDP algorithm prunes the number
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Figure 4.1. Meta-reasoning for a Dec-POMDP.

of policies at each step to a constant, thus reducing complexity to singly-exponential.

However MBDP still produces an exponential number of policies (|A||MaxTrees||Ω|),

on each step before pruning, this term is large when the number of observations |Ω| is

large. This chapter develops an algorithm that generates a bounded number of policies

on each step. It introduces a user-selected parameter MaxObs and reduces the number

of policies generated to |A||MaxTrees||MaxObs|.

In order to reduce the space of policies and policy planning, this chapter introduces

the observation compression (OC) technique for Dec-POMDPs. The observation com-

pression method is loosely inspired by human reasoning processes, which plans for the

most important set of contingencies. The most important set of contingencies may not

always be the most likely set, as the subplan under a rare observation may have a large
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impact on utility. Observation compression categorizes observations into groups, and

finds the best subpolicy for each category.

The contributions of this chapter are as follows.

• Compact representation of policy trees. This chapter introduces a policy tree

representation with bounded size. In the first section of this chapter, we will

formalize this notion to develop a means of making policies more compact, with

limited loss of value from the compression.

• Augmented MBDP planning algorithm. This chapter introduces an augmented

MBDP algorithm which uses the compact representation. The observation com-

pression is represented in its own software module, so it can be combined with

other planning algorithms as well.

The work presented in this chapter was first published AAMAS 2008 [26]. Since

publication, a variety of newer planners have appeared in the literature. The PBIP (Point

Based Incremental Pruning) planner is also based on MBDP , like MBDP-OC it does

not perform a full backup [42]. As opposed to MBDP-OC , PBIP performs a heuristic

search of joint trees at each step, and thus does not perform a backup at all. It would

be possible to combine the heuristic search of PBIP over the compressed observation

sets developed by CompressObs in this chapter. The PBPG (Point-Based Policy Gen-

eration) algorithm is also based on MBDP [152]. Rather than performing a full backup

at each step, PBPG solves a linear program for each belief point, for each agent alter-

nately while fixing the policies of the other agents, and stopping when the policy value

improvement converges. It is possible to perform the observation compression devel-

oped in this chapter before running the linear program, thus running the linear program

on a smaller set of observations. This combination would be most useful for problems

with a very large number of observations.
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Other more recent approaches make use of similar or extended concepts to the obser-

vation compression mentioned in this chapter. Incremental policy generation combines

the PBIP algorithm with a state-pruning measure, which eliminates unreachable states

from evaluation as backup is performed [5]. The GMAA *-Cluster algorithm performs

clustering on action-observation histories rather than just observations as in this chapter.

It is used in the context of a top-down heuristic search over joint policies. Nodes repre-

senting the continuation of these joint policies are merged together when such a merge

can be accomplished losslessly (i.e. when the separate action-observation histories lead

to the same belief point) [89]. The most recent successor algorithm to GMAA * as of

the time of publication of this thesis, called GMAA *-ICE, makes use of this underlying

lossless clustering technique.

In the next section, we will briefly review a similar method in the literature devel-

oped concurrently, the IMBDP planner, which plans for the most likely observations

rather than the most valuable. Next, we will introduce the observation compression

method for both single and multi-agent settings. We will produce an observation com-

pression algorithm, and analyze its theoretical properties. Finally, we will evaluate the

observation compression method empirically, as compared to the IMBDP method of

limiting observations.

4.1 Related work: IMBDP

The IMBDP planner limits the number of possible observations to a constant pa-

rameter MaxObs [119]. IMBDP selects the most likely observations from heuristically

determined belief states, and only backs up policy trees with those observations. This

process is termed a partial backup. Complete policies are then ”filled up” with the miss-

ing observations, by selecting the best available policies for these observations. Thus,

for instance if a partial backup were run for the policies shown in part A of Figure 2.5,
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and a MaxObs of two were used, only 12 new policies would be generated, 4 for each

root action. Although this process is quick compared to a full backup, the error is only

bounded for the heuristically selected belief state. The error is given by:

T 2(1− ε)(Rmax −Rmin)

where T is the horizon of the problem, ε is the probability of receiving one of the

remaining observations, and R is the reward function. In IMBDP , the probabilities of

these observations are taken into account, but not their values.

The defining feature of the IMBDP algorithm is that it only considers the most prob-

able observations. However, it may be the case that many subpolicies have the same

value under the most probable observation branches, whereas the less probable obser-

vations may show great loss in value when the wrong policy is selected. (For example,

consider a robot that spends much of its time waiting to respond to an infrequent cue).

Therefore bounds on loss due to compression are loose in IMBDP .

4.2 Observation compression

This section builds an algorithm to reduce the complexity of the backup process by

merging pairs of observations in each iteration. The algorithm will be called Compres-

sObs . This observation compression method can be used as a tool that can be used

in bottom-up planners to produce compact policies. The MBDP planner is an exam-

ple of a planner that can be augmented by using this algorithm. The MBDP algorithm

augmented by observation compression will be referred to as MBDP -OC.

During the backup process, MBDP -OC operates in a similar manner to IMBDP in

seeking to limit the number of observations and policies considered for backup [120].

Recall that each branch of a new policy tree corresponds to an observation. In contrast

to IMBDP , the partial backup in MBDP-OC seeks to reduce the exponential generation
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of new policies by forcing different branches of the new root policies to contain the

same subtrees. The distinction can be seen in Figure 2.5(c). IMBDP (not shown in the

figure) selects the MaxObs most likely observations, finds all combinations of subpoli-

cies for those, and fills in all remaining observations with a single policy. MBDP-OC

, by contrast, finds MaxObs groups of policies, and in the backup process forces all

observations in the same group to have the same subpolicies. Thus, the key difference

with IMBDP is just before the partial backup. In MBDP-OC , the procedure Compres-

sObs is called to determine how to group the observations. The groupings are stored in

a set Z, where Z is a set of tuples (Zi, εi). Each Zi is a set of observations, and each

εi is an error term associated with observation group Zi. We call the backup procedure

that performs these calculations PartBackup to distinguish it from the partial backup

in IMBDP .

Let MaxTrees be the number of distinct subtrees that the user desires and MaxObs

be the limit on the number of observations. We then have MaxTrees policies before

backup and |A| actions, so we generate |A|MaxTreesMaxObs new policy trees for each

agent at backup. The implementation then follows [120] by selecting the MaxTrees

best policies to retain for the next backup.

4.2.1 Single-agent definitions

We formalize by first presenting definitions for the single agent case, and then ex-

panding these definitions to the multiple agent case. For the single agent case, define:

• π1
i , π

2
i ..... The policy trees for agent i. During the backup process, these policy trees

will become subpolicy subtrees. Throughout this chapter we will often refer to a

generic single subpolicy for agent i as πi.

• {π1
i , π

2
i ...} = Πi. In the context of MBDP , the set Πi has MaxTrees members.
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Algorithm 3: CompressObs(i, b, ai, A−i,Ωi,Ω−i,Πi,Πj,MaxObs)
input : Agent number i, belief state b, root action ai, joint action set A−i, sets of

subpolicies Πi and Π−i, sets of observations Ωi and Ω−i, and observation
limit MaxObs

output: Z, a set of tuples (Zk, εk), where each Zk is a subset of observations
available to agent i, and εk is the error introduced by constructing
observation set Zk

begin
Z ← {({o1}, 0), ({o2}, 0), ...}
for each observation oi ∈ Ωi, each policy πi ∈ Πi, and each π−i ∈ Π−i and
a−i ∈ A−i do

Precompute V (πi|π−i, b, ai, a−i, oi, o−i)
Keep track of best policy π∗i

while |Z| > MaxObs do
(Zx, Zy.πZ)← argmin(Zx,εx)(Zy ,εy)∈Z,πiWL∗(πi|b, ai, Zx ∪ Zy)
ε←WL∗(πZ |b, a, Zx ∪ Zy)
Z ← Z\{Zx, Zy} ∪ (Zx ∪ Zy, ε)

return Z
end

• V (πi|b, ai, oi). The value of following subpolicy πi after taking action ai and receiv-

ing observation oi in belief state b.

• π∗i (b, ai, oi) = argmaxπi∈Πi
V (πi|b, ai, oi). The best subpolicy available, after taking

action ai and receiving observation oi.

• L(πi|b, ai, oi) = V (π∗i |b, ai, oi) − V (πi|b, ai, oi). The value lost if subpolicy πi is

taken instead of the best available subpolicy.

• WL(πi|b, ai, Zx) =
∑

oi∈Zx
O(oi|b, ai)L(πi|b, ai, oi). Extends the loss term above to

(weighted) sets of observations Zx. The loss of following a single policy πi for the

set of (merged) policies in Zx ⊂ Ω. Each loss is weighted by the probability of the

observation.

• WL∗(Πi|b, a, Zx) = minπi∈Πi
WL(πi|b, ai, Zx). The Weighted Loss of following the

best available single policy for the group of policies in Zx.
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The notation above always explicitly specifies (b, ai, oi). For a standard POMDP,

one could have defined a new belief state b′ given that action ai was taken and oi was

observed from belief state b, but this notation would not scale to the multiagent case.

None of these terms consider the immediate reward achieved through action ai in belief

state b. This immediate reward is irrelevant to the compression process, which only

affects the value of subpolicies taken after the observation is received. Thus, the terms

above compute the probabilities of new belief states once action ai is taken and oi is

observed, and they find subpolicy values in the new belief state.

We use standard POMDP methods to evaluate V (πi|b, ai, oi). Since the agent started

at belief state b, took an action ai and received an observation oi, this defines a new

belief state, which we will call b(s′). One can then evaluate πi :

∑
s′

b(s′)V (πi, s
′)

the probability of being in each state times the value of πi for that state. The value of πi

for state s′ is recursively computed.

R(s′, a′i) +
∑
s′′∈S

P (s′′|s′, a′i)
∑
o′i∈Ω

O(o′i|s′′, ai)V (π′i, s
′′)

where a′i is the root action in the policy, and V (π′i, s
′′) is the value of continuing the

policy in state s′.

We use π∗i (b, ai, oi) to denote the subpolicy for agent i with the highest value, given

that action ai was taken from belief state b and then oi was observed.

In the definition of L , the difference

L(πi|b, ai, o) = V (π∗i |b, ai, oi)− V (πi|b, ai, oi)
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is the value lost by choosing a single policy πi (instead of the ideal π∗i ) after receiving

the observation oi. One can then weight the probability of observing oi. The result is a

weighted loss, which is abbreviated WL. This weighted loss can be used to denote the

sum of the values lost by choosing one single policy for a whole group of observations,

rather than the best policy for each observation.

The value of the best single policy for the observations in a set Zx ⊂ Ω is WL∗.

This is the cumulative value lost if we are to group all the observations in Zx together.

4.2.2 Multi-agent definitions

For the multiagent case, the actions become joint actions, and policies become joint

policies. The following makes use of the convention −i to represent the other agents.

When there are more than two agents, the number of joint actions, joint observations,

and joint subpolicies may be exponential in the number of agents.

• V (πi|π−i, b, ai, a−i, oi, o−i) is the value of following joint policy (πi, π−i) after taking

joint action (ai, a−i) and after the agents receive observations oi and o−i in belief state

b.

• π∗i (π−i, b, ai, a−i, oi, o−i) = argmaxπi∈Πi
V (πi|π−i, b, ai, a−i, oi, o−i). When the ar-

guments to π∗i are clear from context, as below, we may just refer to it as π∗i .

• Li(πi|π−i, b, ai, a−i, oi, o−i) = V (π∗i |π−i, b, ai, a−i, oi, o−i)−V (πi|π−i, b, ai, a−i, oi, o−i)

• WLi(πi|b, ai, Zx) =
∑

oi∈Zx
maxa−i∈A−i

∑
o−i∈Ω−i

maxπ−i∈Π−i

O(oi, o−i|b, ai, a−i)Li(πi|π−i, b, ai, a−i, oi, o−i)

• WL∗i (Πi|b, ai, Zx) = minπi∈Πi
WLi(πi|b, ai, Zx)

As seen above, we must consider all possible observations, actions, and policies of

the other agents. The loss term is modified to be a loss for a fixed action, observation,

and subpolicy of the other agent. Similarly, weighted loss terms are modified to sum
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over the observation probabilities of the other agent, and to find the worst-case actions

and subpolicies that the other agent may take based on these observations.

The weighted loss definition means that our algorithm will consider all other poli-

cies of the other agent when deciding which observations to merge. This issue is dis-

cussed further in the conclusion to this chapter.

The observation compression process itself is displayed in Algorithm 3. As the fig-

ure shows, the process can be packaged into a function call, and thus can be seamlessly

integrated with IMBDP , or indeed any policy tree based algorithm. The function seeks

to consider which observations we can merge with a minimum loss of value. Its pa-

rameters include the root action for some new set of policies on agent i. The algorithm

precomputes the value of each of the existing MaxTrees subpolicies, for each observa-

tion and possible policy of the other agents. Possible policies of the other agents include

the set of |A−i| root actions as well as the set of existing subpolicies from the previous

step. After the value for each subpolicy has been determined, the algorithm identifies

the best subpolicy according to its value. This can be used to construct a table of losses

(not explicitly shown in the algorithm, refer to the discussion above), which identifies

the value lost by each subpolicy if the agent should follow that one instead of the best,

given the observation and the policy of the other.

The algorithm weighs this loss of value by the probability of receiving the observa-

tion. For each of the MaxTrees subpolicies of the current agent, it finds the weighted

loss (WL) introduced by using that one subpolicy for the merging of two groups of

observations, which is the sum of the loss for each observation in the group, for all pos-

sible policies of the other agent. Thus the WL∗i (πi|b, a−i, Zx) of the set of observations

Zx is the summation of the weighted losses for all members of the combined set while

using the best possible single policy. The algorithm finds WL∗ for each pair of groups

in Z, and merges the two groups that introduce the smallest amount of loss.
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4.2.3 Observation-compression for meta-reasoning

The compression algorithm iteratively compresses groups of observations. It starts

with |Ωi| observations, and selects two groups of observations to compress together

while minimizing the weighted loss. In the first iteration, each observation in Ωi is

its own group. In successive iterations, it continues to merge groups of observations,

until there are only MaxObs observations left. Note that since the algorithm computes

a loss bound ε for each iteration, it can be easily modified to iterate until a certain loss

threshold is achieved.

4.3 Meta-reasoning in point-based decentralized planning

Algorithm 4 shows how CompressObs may be called within MBDP for the two

agent case (the multi-agent case is similar). Each horizon step begins as in MBDP ,

sets of policies stored in Πi are reduced to size MaxTrees by saving only the best joint

policies in heuristically selected belief points. After this pruning, the CompressObs

algorithm is run. The new sets Πi are constructed using the compressed observation set

Z, rather than by running a full backup as in MBDP .

One further point is that it is possible to compress observations until a loss bound is

exceeded, rather than until there are MaxObs sets left. In CompressObs , this line

while|Z| > MaxObs

would be replaced by this line:

while (loss < threshold)

with “loss” being accumulated from the ε values found just below. CompressObs keeps

an online error bound, as will be shown in the next section.
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Algorithm 4: The MBDP-OC algorithm
begin

MaxTrees ← max number of trees before backup;
H ← pre-compute heuristic policies for each h ∈ H;
T horizon of the Dec-POMDP;
Π1
i ,Π

1
j ← initialize all 1-step policy trees;

for t = 1 to T do
Selt+1

i , Selt+1
j ← empty;

for k = 1 to maxTrees do
choose h ∈ H and generate belief state b;
for each πi ∈ Πt+1

i , πj ∈ Πt+1
j do

evaluate each pair (πi, πj) with respect to b;
add best policy trees to Selt+1

i and Selt+1
j ;

delete those policy trees from Πt+1
i and Πt+1

j ;

for each agent i do
Z ← CompressObs(i, Ai, A−i,Ωi,Ω−i, Sel

t+1
i , Selt+1

−i ,MaxObs);
Πt+1
i = backup(Selt+1

i , Z);

select best joint policy tree δT from {ΠT
i ,Π

T
j };

return δT ;
end

4.4 Complexity analysis

This section discusses the running time and space used by CompressObs , as well as

its error bounds. The analysis in this section is limited to the CompressObs algorithm

itself. Although in this chapter we focus on the example of running CompressObs with

the MBDP planner, it is possible to run CompressObs with an optimal planner or an

epsilon-optimal planner [4, 54]. In the context of an optimal planner, the global error

is bounded by the error of CompressObs itself. When embedded in an MBDP planner,

however, the overall error will also include error produced by the MBDP planner itself

in its selection of belief points.

This section will consider both special cases and the general case when Compres-

sObs is called. In certain special cases, the error introduced by CompressObs is low.

In the general case, a loose online error bound is constructed that depends on the worst
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possible choice of the other agent. The online error bound may be optionally used to

construct algorithms that terminate after its error reaches a predetermined threshold.

The first theorem in this section discusses running time and space for CompressObs .

Theorem 4.1. For the two agent case, the running time of CompressObs is

O(MaxTrees2|A||Ω|4)

, and the space used is O(MaxTrees2|A||Ω3|).

Proof. We examine each component of the algorithm. First, all subpolicy values are

computed and stored. This occurs for each subpolicy of the current agent, for each

subpolicy of the other, for each initial action of the other, and for each observation

vector. This takesO(MaxTrees2|A||Ω3|) time and space. Identifying the best policies is

just a matter of scanning this list. Loss terms can be precomputed in a similar operation,

and again requires O(MaxTrees2|A||Ω3|) time and space. The algorithm then enters

a while loop where it iteratively shrinks |Z| from |Ω| down to MaxObs . There are

(|Ω|−MaxObs) iterations of this. Within the while loop, weighted losses are found and

stored for each pair of groups of observations in Z (that is, for each possible (Zx, Zy),

requiring O(|Ω|2) storage). Each merged group has at most |Ω| observations, and there

are |Z|2 possible pairs, and we know |Z| < |Ω|. Thus there is an order of O(|Ω|4)

computations of WL. We only keep track of the identities of the best groups to merge,

so no additional storage is required. The computation of WL itself looks up joint policy

values previously stored in MBDP . Since WL is referenced for each possible action and

subpolicy of the other agent, and since this occurs in a while loop, the total time spent

finding WL function values, including the while loop, is O(MaxTrees2|A||Ω|4).

This analysis is limited to CompressObs as written in Algorithm 3, which mini-

mizes loss for the worst case policy of the other agent. CompressObs computes online
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error bounds by considering the other agent as a limited adversary, so it computes a

strategy for such an adversary for each observation. In practice, it may not be necessary

to compute around the worst case other agent, and indeed an expectation over the other

agent’s policy may be more accurate than bounding its worst-case.

The following Lemma states that if CompressObs iteratively merges an observation

into larger and larger sets, one can find the total error introduced for this observation by

examining the weighted loss term of last merge. That is, the error does not accumulate.

Lemma 4.1. Suppose that the sets of observations Zx and Zy are merged by the above

algorithm. The total value lost due to the merging of Zx and Zy only depends on the

components of Zx and Zy, not on the value lost during the formation of Zx and Zy.

Proof. The base case is trivial as the observations have not been previously merged.

Note that the value lost due to the observation compression process is the difference

between value of the best available policy and the value of the best possible policy once

the observations are merged. This notion is captured in the definition of the loss term:

L = V (π∗i |πj, b, ai, aj, oi, o−i)− V (πi|πj, b, ai, aj, oi, o−i)

For the inductive case, we find a best policy πi that minimizes the weighted sum of the

loss of all observations oi where oi ∈ Zx ∪ Zy. As the above value difference equation

indicates, the value for each observation only depends on the value of the best possible

policy and the value of the selected policy, and not on previous merges. Therefore the

lemma holds.

Next, a special case is considered where MaxObs is greater than or equal to the

number of MaxTrees . Since MBDP is capable of running with MaxTrees = 3, this

setting is certainly possible and sometimes desirable.
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Proposition 4.1. If WLi(πi|b, ai, Z) = 0, then πi is a best available subpolicy for all

of the observations in ō.

Proof. The definition of WLi(πi|b, ai, Z) = 0 consists of summations and maximums

of terms of form

O(oi|b, ai, a−i)Li(πi|π−i, b, ai, a−i, oi, o−i) = 0.

The loss Li is always non-negative, since by definition of π∗i the value of any policy

given an observation cannot exceed π∗i . Since the observation probability is always non-

negative as well, and the sum of all the terms must be zero, then each individual term

must be zero for the theorem pre-conditions to hold. Thus we do not need to consider

the nonzero observation probabilities. Decomposing Li, we are left with the sum of

several terms of the form:

V (π∗i |π−i, b, ai, a−i, oi, o−i)− V (πi|π−i, b, ai, a−i, oi, o−i)

where πi is the selected policy that makes the theorem pre-conditions hold, and oi is the

observation in that term. Thus for the pre-conditions to hold, πi must equal π∗i in value.

Since πi has the same value as the best available subpolicy for all the observations in

belief state b, for all actions of the other, then πi is a best available subpolicy for policies

rooted in ai, for all of the observations in Z while in belief state b.

The next proposition also considers a special case. For the single-agent case, when

MaxObs is greater than MaxTrees , running observation compression does not lose any

value in an MBDP environment.

Proposition 4.2. When the MBDP-OC algorithm is applied to a POMDP problem, if

MaxObs ≥ MaxTrees , then MBDP-OC constructs the same best available policy tree

as MBDP .
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Proof. The algorithm can be run on a POMDP by considering the problem to be a Dec-

POMDP where other agents are restricted to one policy, action, and observation. MBDP

chooses a belief state b and generates the best policy tree for that belief state. Proving

this proposition equates to proving that with MBDP-OC , the resulting value lost in the

observation compression process is zero for belief state b.

Note that a policy consists of a root action, and each subtree corresponds to an

observation. There are |Ω| subtrees. However, since only MaxTrees policies have been

saved from the previous step, only MaxTrees of these subtrees are unique in the policy

selected by MBDP .This means (|Ω| − MaxTrees) of the subtrees are a duplicate of

some other subtree. Take a subtree under policy branch o, and suppose it is a duplicate

of the subtree under policy branch o′. Clearly π∗i (b, a, {o}) and π∗i (b, a, {o′}) are the

same policy.

Thus we choose this policy for πi in computingWL∗(Πi|b, ai, (i{o}∪{o′})), for any

choice of ai. Since L(π∗i |b, a, o) = L(π∗i |b, a, o′) = 0 and weighted loss cannot be less

than zero, the MBDP-OC algorithm selects o and o′ (or some other pair of observations

whose weighted loss is also zero) for compression and selects π∗i as the subpolicy of the

compressed branch, thereby generating the same policy as MBDP .

Let VMBDP (b, ai) represent the expected reward of the best joint policy for belief

state b after MBDP performs a full backup and produces policy trees rooted in ai for

agent i. Likewise, let VMBDP −OC(b, ai) be the expected value of the best joint policy for

belief state b and trees rooted in ai after MBDP-OC performs a partial backup.

Next, the general class of Dec-POMDP problems is considered. The following the-

orem and corollary shows bounds on the loss of value due to observation compression

when observation compression is used as a sub-module in MBDP .

Theorem 4.2. Let
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error(b, ai) = VMBDP(b, ai)− VMBDP−OC(b, ai).

Then there exists a corresponding policy tree produced by MBDP-OC, rooted in
ai, with sets of observations Z = Z1, Z2... produced by the CompressObs algorithm,
containing sub-policies π1

i ..π
MaxObs
i respectively, such that

error(b, ai) ≤
MaxObs∑
k=1

WL(πki |b, ai, Zk)

Proof. Each πki is the subpolicy that MBDP-OC assigns to the observation branch Zk in

order to minimize the error. The partial backup in MBDP-OC produces all combinations

of assignments of subpolicies for Z1, ...ZMaxObs, thus assuring that π1
i ..π

MaxObs
i must

exist.

For the error term, perform induction on the number of policies and actions available

to the other agents.

• Base Case: when the other agents have just one policy and action available.

Lemma 4.1 shows that the error introduced when CompressObs creates each Zk

is the error introduced when it performed the last merge that created Zk. For

each oi ∈ Zk, fixing the policy of the other agent makes the error introduced

by choosing πki the difference between the best policy it could choose versus the

policy it does choose for each zk,

V (π∗i |(πj, b, ai, a−i, oi, o−i))− V (πki |(πj, b, ai, a−i, oi, o−i)).

The contribution of each oi to the total error is weighted by its probability, and

thus the contribution of πki to total error is

WL(πki |b, ai, Zk),

and since no observation is in two different sets, the total error, error(b, ai), is

the sum of the contributions of the components of Z.
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• Inductive Case: Assume that the theorem holds when the other agents’ policies

are limited to |A| − 1 root actions. Adding another root action choice for another

agent means that are |A| more possible joint actions at the root (since ai is fixed),

and thus |A| more belief states must be considered when analyzing the value of

joint subpolicies. The possible loss of value from MBDP must be analyzed sep-

arately for these belief states. If WL(πki |b, ai, Z) is larger for any of these belief

states than for belief states specified in the inductive hypothesis, then it is the new

error bound and the theorem holds. If not, then by the inductive hypothesis the

theorem holds.

To summarize, adding a subpolicy πk−i to the other agent means WL(πki |b, ai, Z)

may or may not be larger than the weighted losses of existing subpolicies. If it

is larger, it contributes to the maximum weighted loss and the theorem holds. If

not, the inductive hypothesis says that the theorem holds.

Corollary 4.1. Given a belief state b, in the worst case, MBDP-OC loses maxai∈A{error(b, ai)}

per iteration in comparison to MBDP.

Proof. The previous theorem bounds the loss by MBDP-OC in comparison to MBDP

for policy trees rooted in a single action. There is a best joint policy produced by

MBDP-OC , and that joint policy is rooted in an action ai, and the joint expected reward

lost by MBDP-OC versus MBDP for that action is error(b, Zai).

4.5 Experiments

This section compares the CompressObs algorithm used in MBDP-OC against the

partial backup of IMBDP , the previous state-of-the-art algorithm for compressing pol-

icy trees, on benchmark problems.
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Figure 4.2. Box Pushing Domain.

The problem selected was the Cooperative Box Pushing domain [70], presented in

Figure 4.2. In this domain, agents are required to push boxes into a goal area. The

variant we used involves 2 agents, each of which can be located on 4 squares of the

bottom row of a 3x4 matrix, and each agent can have 4 possible orientations (facing

up, down, left or right). There are walls below and to the left of the matrix. In front of

the leftmost and rightmost location are 2 small boxes. A large, 2-square box is in front

of the middle two locations. The agents have 4 available actions, turn left, turn right,

move forward, or stay. Each action has a .9 probability of success. They can receive 5

possible observations of what is in front of them: empty, wall, other agent, small box,

or large box. If an agent moves forward, and a small box is in front of it, the box will be

pushed into the top row. If both agents push the large box at the same time, it is pushed

into the top row. A reward of 10 is received for pushing a small box into the top row,

and a cooperative reward of 100 (50 per agent) is received when both agents push the

large box into the top row at the same time. A penalty of 5 is received for bumping into

a wall or trying to push the large box alone, and a penalty of 6 is received each time it

bumps into the other agent.

Each time a box is pushed forward, the goal state is entered, and the problem resets.

The initial state of the problem is with the agents at coordinates (3,1) and (3,4), facing

upwards. In order to make the problem more challenging, and to enhance the role of
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MaxObs = 2 MaxObs = 3
horizon IMBDP MBDP-OC IMBDP MBDP-OC

1 -.2 -.2 -.2 -.2
5 51.6 69.1 79.1 72.3

10 71.3 88.6 90.9 103.9
20 55.2 127.2 96.0 149.8
50 47.8 221.7 80.8 278.7

100 38.2 350.4 72.8 503.8

Table 4.1. Comparison of IMBDP and MBDP-OC on the Repeated Box Pushing Do-
main with various horizons. The algorithms were run with MaxTrees = 3. Results are
shown for MaxObs = 2 and MaxObs = 3.

observations, we would have the agents transition to a random state when the problem

resets itself. Thus, for instance, agent 1 could find itself facing the back wall and need

to turn around. There are 96 reachable non-goal states since the domain forces agent 1

to be left of agent 2. There are 4 possible goal states which reset the problem.

Experiments were run with parameters MaxTrees = 3 and MaxObs = 2 as well as

MaxObs = 3. Results are displayed in 4.1. IMBDP was run with the same parameters

for comparison. Results show that the value function computed by MBDP-OC produces

improved policies, for both MaxObs = 2 as well as MaxObs = 3. Runtimes are shown

in Table 2. There is a small time penalty for running MBDP-OC . However, the program

still spends the majority of its time in the classic MBDP portion of the algorithm, where

it must evaluate all possible combinations of generated joint policies in all possible

states, in order to pick out the MaxTrees policies to retain for the next step.

The second domain chosen was Meeting in a Grid. We ran on a 3 × 3 instance

of the Meeting in a Grid problem introduced by Bernstein et al. [15]. In the selected

implementation, agents start in opposite corners of a 3 × 3 grid. Each agent can move

either up, down, left, or right. The chance of a successful action was 60%, with a

15% chance of moving in each perpendicular direction, a 5% chance of not moving
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Algorithm MaxObs Time (s)
IMBDP 2 29.9
MBDP-OC 2 31.7
IMBDP 3 459.0
MBDP-OC 3 469.9

Table 4.2. Running time per horizon step for the IMBDP and MBDP-OC algorithms
on the Box Pushing problem. Results are in seconds.

at all, and a 5% chance of moving in the opposite direction. There is an obstacle in

the center square, and the agents cannot move there. Each agent receives observations

as to whether the squares to the left, right, above, or below each agent are blocked.

With the obstacle in the middle, and the grid being blocked at the borders, there are 6

legal combinations of observations. Thus the domain has 6 observations. Observations

are 100 percent reliable. When the agents reach the same square, a reward of 1 is

received, and the problem repeats itself. This domain should be more favorable to

IMBDP, since its weakness, the fact that it chooses a single action and does not explore

the policy space for improbable observations, is not as relevant. In this domain, the

MBDP planners typically pick a square to meet at (they pick this implicitly, through

the policies they choose to retain), and once this is done, there is a clear single choice

of action for each observation in the domain. One hypothesis would have MBDP-OC

not do as well, since it may not be correct to consider the same policies for groups of

observations. MBDP-OC can only be saved by using its value function, to assure that

its merge operations will be as harmless as possible given the likely state. If it can do

this successfully, it can more fully explore the policy space.

Experiments were run with MaxTrees = 3 and MaxObs = 2. Results are shown

in Table 4.3. Indeed the table shows that under this domain, IMBDP was able to attain

more comparable results. Still MBDP-OC held a small value advantage across experi-
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horizon IMBDP MBDP-OC
1 0.0 0.0
5 .41 .47
10 1.01 1.04
20 2.01 2.38
50 5.30 6.38

100 11.6 13.0

Table 4.3. Comparison of IMBDP and MBDP-OC on the 3 × 3 Meeting in a Grid
problem.

ments. Runtime for IMBDP was 76.4 seconds per horizon step, and for MBDP-OC it

was 83.4.

4.6 Summary

This chapter examined meta-reasoning in a decentralized and partially observable

(Dec-POMDP) environment. Dec-POMDP solvers are centralized at planning time and

distributed at execution time. In this chapter, we propose a meta-reasoning mechanism

in order to bound resource consumption in time and space at planning time.

There were two central contributions of this chapter. The first was the contribution

of observation compression as the meta-reasoning mechanism used. Observation com-

pression allows the planner to group observations together for the purposes of planning,

and therefore to limit planning to the different groups of observations rather than each

observation individually. The CompressObs algorithm performs this merge.

The second contribution was an augmented MBDP algorithm which uses the Com-

pressObs algorithm. The resulting algorithm was analyzed both theoretically and empir-

ically. Theoretically, it was shown that CompressObs is guaranteed to run in polynomial

time, and that an online bound for loss can be computed when it is called. Empirically,
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it was shown that using CompressObs outperforms using the most likely observations

only.

The work presented in this chapter was first published AAMAS 2008 [26] as well

as the MSDM workshop in 2008 where it won best paper for that workshop. The for-

mat has been modified for this thesis, and a meta-reasoning element has been added.

Since publication, newer planners have eclipsed the results in a point-based context.

The newer works either (1) achieve their speedup by a means other than observation

compression, and would achieve further speedup if combined with observation com-

pression, or (2) include some variant of observation compression. In the former cat-

egory are PBIP [42], and PBPG [152]. PBIP includes a heuristic search that may be

combined with observation compression, and PBPG constructs a linear program that

could be compressed. In the latter category is GMAA *-ICE, which clusters action-

observation histories when it can be done losslessly [89], in contrast to the algorithms

in this chapter which may be run in a lossless manner but are primarily used to bound

loss. Also in the latter category is incremental policy generation [5], which eliminates

unreachable states from evaluation.

It is possible to use CompressObs with other planners besides MBDP , to reduce the

observations considered in planning. Since CompressObs tracks performance bounds

as it operates, it is also possible to stop compression after a certain error threshold has

been reached rather than to terminate when there are MaxObs groups of observations

left. Future directions of this work may combine the CompressObs algorithm with other

planners in the literature besides MBDP .
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CHAPTER 5

NON-MYOPIC CONTROL OF COMMUNICATION IN
PARTIALLY OBSERVABLE MULTIAGENT SETTINGS

Chapter 3 introduced the problem of global monitoring for multiple agents. It out-

lined how the problem of global monitoring could be reduced to a transition independent

Dec-MDP with communication. This chapter will begin by providing more details on

this problem model and how to solve it. As in Chapter 3, this chapter builds on a value of

information approach to communication. Typically the value of information approach

makes two assumptions which we term the myopic assumptions. First, it approximates

the value of information by assuming that each agent evaluates its information in iso-

lation, without considering the reasoning process of the other agents. Second, a single

step horizon is used in sequential decision making, each agent considers its next imme-

diate action and not its ability to take action after that [111]. This myopic approach has

been used in multi-agent systems with communication [50]. To begin this chapter, it is

shown that the myopic approach biases the system towards overcommunication in Dec-

MDP models, and a method is produced to obviate the bias through planning algorithms

which look ahead and which consider the perspective of all agents in a Dec-MDP. This

provides the details to support global communication as in Chapter 3.

Next, this chapter extends the approach to the partially observable multi-agent set-

ting, specifically the Dec-POMDP model in Chapter 4. Chapter 4 analyzed a partially

observable multi-agent environment where agents could not explicitly communicate.

In this chapter we add communication to the model. We examine an extension to the

Dec-POMDP model called Dec-POMDP-Comm-Sync. The complexity of producing
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optimal plans in this multi-agent, partially observable communication environment has

been shown to be NEXP-hard [17, 118]. Whereas the Dec-MDP model which will be

presented in Section 5.1 assumes transition independence, full local observability on

the part of each agent, and joint full observability on the part of the group of agents,

the Dec-POMDP extension presented in the second half of this chapter does not. As a

consequence, when agents communicate to combine information in a Dec-MDP model,

state becomes known to all agents, whereas in a Dec-POMDP model the combined

information produces a state distribution.

The contributions of this chapter are as follows:

• Evaluation of a 2-agent Dec-MDP model with communication using a bilinear

representation and nonmyopic approach. Section 5.1 will describe the Dec-MDP

model with communication and develop the myopic approach for solving it. Then

it will develop the non-myopic approach which jointly reasons about communi-

cation both in the present and the future. An evaluation is conducted using the

bilinear programming approach as the basis for the developed algorithms [94].

• Examination of the problem of when to communicate in partially observable

multi-agent environments. Section 5.2 produces communication algorithms for

the Dec-POMDP-Comm model. The work for this partially observable model

is similar to the work for the Dec-MDP in that a decision-theoretic approach is

taken. However, this model relaxes the assumptions of joint full observability, full

local observability, and transition and observation independence among agents.

• Establishment of a data structure to efficiently track beliefs over status of other

agents in a communicative Dec-POMDP environment. The State Subtree (SST)

data structure utilized in this chapter can be used by each agent to maintain its

view of the global state and the state of the other agents. The advantages of the
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SST representation, as presented in this chapter, are (1) Maintenance of SSTs is

either lossless or introduces bounded loss, if so desired. (2) SSTs account for

agent communication. (3) SSTs support a merge operation, which allows for a

set of SSTs to be maintained efficiently in space.

It should be noted that the approach in the first part of this chapter, developing the

myopic and non-myopic approaches to Dec-MDPs with communication, was first de-

veloped by Becker, Lesser, and Zilberstein at IAT [12]. The Section 5.1 approach is

largely based on this work; it is based on the later finished work as presented in Becker,

Carlin, Lesser, and Zilberstein [13], which (1) provided the software implementation

for the theory, using a bilinear program as an underlying submodule unlike the original

work, and (2) implemented myopic and non-myopic value of communication compu-

tations to obtain the empirical results depicted in this chapter. The work presented in

Section 5.2 on Dec-POMDP-Comm was first presented by Carlin and Zilberstein at the

MSDM workshop and IAT in 2009 [27].

5.1 Decentralized communication with full local observability

We begin with the model first mentioned in Chapter 3, the transition-independent

decentralized MDP (TI-Dec-MDP) with global sync communication. TI-Dec-MDP is

composed of n cooperative agents, each agent i working on its own local subproblem

that is described by an MDP, 〈Si, Ai,Pi, Ri, T 〉. The local subproblem for agent i is

independent of local subproblems for the other agents. It is also completely observable,

but only by agent i. At each step agent i takes action ai ∈ Ai, transitions from state

si ∈ Si to s′i ∈ Si with probability Pi(s′i|si, ai), and receives reward Ri(s
′
i). All agents

are aware of the transition models of all the other agents (but not necessarily their states

or choice of actions at runtime). The global state of the domain is composed of the local

states of all the agents. T is a finite number of horizon steps of the problem.
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A communicative variant of this problem is referred to as Dec-MDP-Comm-Sync.

At each time step, each agent first performs a domain-level action (one that affects

its local MDP) and then a communication choice. The communication choices are

communicate or not communicate. If at least one agent chooses to communicate, then

every agent broadcasts its local state to every other agent. This synchronizes the world

view of the agents, providing each agent complete information about the current world

state. The cost of communication is CG if at least one agent initiates it, and it is treated

as a negative reward.

An optimal joint policy for this problem is composed of a local domain-level and

communication policy for each agent. Each local policy is a mapping from the cur-

rent local state si ∈ Si, the last synchronized world state 〈s1...sn〉 ∈ 〈S1...Sn〉, and the

time t < T since the last synchronization to a domain-level action and a communica-

tion action, πi : Si × 〈S1...Sn〉 × {0..T} → Ai × {yes, no}. We will occasionally

refer to domain-level policies and communication policies as separate entities, which

are mappings from local state and time to Ai and {yes, no} respectively. In addition

to the individual agents accruing rewards from their local subproblems, the system also

receives reward based on the joint states of the agents. This is captured in the global

domain-level reward function R : S1 × ... × Sn → <. To the extent that the global

reward function depends on past history, the relevant history must be captured within

the current state of the agents. The goal is to find a joint policy 〈π1...πn〉 that maxi-

mizes the global value function V , which is the sum of the expected rewards from the

local subproblems and the expected reward the system receives from the global reward

function.

Let ai denote the domain-level action selected by π(si). The global value function

is:
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V (s1...sn) =
n∑
i=1

Ri(si) +R(s1...sn) +
∑
s′1... s

′
n

P(s′1..s
′
n|s1...sn, a1..an)V (s′1...s

′
n) (5.1)

Transitions on the MDPs are independent of each other; we will therefore assume that

without communication P(s′1, ...s
′
n|s1..sn, a1..an) =

∏n
i=1Pi(s′i|si, ai).

The complexity of finding optimal policies for both the Dec-MDP with transition

independence and the Dec-MDP-Comm-Sync classes of problems has been shown to

be NP-complete [51], which is lower than the doubly exponential complexity (NEXP-

hard) of general decentralized decision making.

5.1.1 Basic myopic approach

Using a myopic algorithm is a common way of dealing with the complexity inher-

ent in finding an optimal solution. We start with a simple algorithm for determining

when the agents should communicate. This algorithm is optimal assuming that com-

munication must be initiated by the current agent (agent i in the following description)

and that the current step is the only time step in which communication is possible. We

denote the agents other than the current local agent with −i. Thus, reordering the agent

numbers so that i = 1, without loss of generality, we refer to the states of the other

agents as s−i = 〈s2...sn〉 ∈ S2 × ... × Sn. While the problems solved in this chapter

are distributed in nature (each agent chooses an action based on its own local view) the

planning algorithm itself computes offline the policies for each agent in a centralized

manner using a fully specified model of the problem. Then, the individual policies are

given to the agents during execution time.

The algorithm works as follows. As long as no communication is initiated, each

agent follows the optimal policy assuming no future communication, which was ob-

tained at planning time using a subroutine such as the Coverage Set Algorithm (CSA)

[11] or a bilinear program [94]. The subroutine takes a Dec-MDP with no communica-
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tion as input, and provides joint-policies as well as their values as its output. At each

state during execution time, agents choose whether to communicate or not by comput-

ing the net value of communication (VoC). If the VoC > 0, then the agent initiates

communication causing all of the agents to broadcast their local states. This synchro-

nizes the local knowledge of all of the agents to the correct world state. The agents then

compute a new optimal policy assuming no future communication, using the synchro-

nized world state as the starting state. The domain-level actions the agents take always

come from this zero-communication policy.

The VoC from agent i’s perspective depends on i’s current local state si, the previ-

ous synchronized world state (or original starting state) 〈s0
i , s

0
−i〉, and the time t since

the last synchronization. It also depends on the optimal joint policy assuming zero

communication that the agents have been following since the previous synchronization,

〈π0
i , π

0
−i〉.

Definition 5.1. The Value of Communication (VoC) is the difference between the ex-

pected value when communicating and the expected value for remaining silent.

VoC
(
si, 〈s0

i , s
0
−i〉, t

)
=
∑
s−i

P (s−i|s0
−i, t, π

0
−i) [V ∗(si, s−i)− CG − V (si, s−i)] , (5.2)

where P (s−i|s0
−i, t, π

0
−i) is agent i’s belief about the current state of all other agents,

V (si, s−i) is the expected value for following the current local policy from the joint

state, and V ∗(si, s−i) − CG is the expected value if the agents communicate now and

follow a new zero communication policy after synchronizing.

The complexity of the VoC depends on the size of the local state space as well as

the number of agents.
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Theorem 5.1. Assume that the optimal joint policy for each joint state can be found in

polynomial time. Computing the Value of Communication can be done in time polyno-

mial in the number of local states and exponential in the number of agents.

Proof. There are four components to computing the VoC that add to the complexity:

• P (s−i|s0
−i, t, π

0
−i) is the t-step transition function for the nonlocal agents. Given

the assumption that these agents will never initiate communication,

P (s−i|s0
−i, t, π

0
−i) =

∑
s′−i

P (s′−i|s0
−i, t− 1, π0

−i)P(s−i|s′−i, π0
−i). (5.3)

This takes O(|S−i|) if the values from t − 1 were cached from a previous call to

VoC and O(|S−i|2) to compute from scratch.

• V (si, s−i) and V ∗(si, s−i) are both expected values (see Definition 5.1). The only

difference is that they assume different domain-level policies. With dynamic pro-

gramming they can be solved in time polynomial in the number of world states,

which is exponential in the number of agents, O(|Si|n).

• Finding the optimal joint policy without communication is assumed to take poly-

nomial time, by hypothesis. For implementation details, see descriptions of the

Coverage Set Algorithm [11] and the bilinear programming algorithm [94].

• When there are n > 2 agents, the summation in the VoC is over all possible

local states of the other agents. The loop, therefore, must be repeated O(|S−i|) =

|S2| × ... × |Sn| times, exponential in the number of agents but run only once for

the local agent.

The net result is a complexity polynomial in the number of local states for the agents

and exponential in the number of agents.
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While in the worst case the VoC computation must run a large number of times,

O(n|S|n+2), in practice the complexity of computation can be reduced for several rea-

sons. First, many of the joint states and times are not reachable. For example, if com-

munication is frequent, then the time since the last communication, t, will remain low.

If communication is infrequent then the number of reachable synchronized world states

〈s0
i , s

0
−i〉 remains low because the world state is only synchronized through commu-

nicating. Second, the value V ∗(si, s−i) − V (si, s−i) is always greater than zero, and

therefore the VoC computation can be terminated early (with a decision to communi-

cate) if the value of communication is found to be greater than CG for a subset of joint

states. Third, when there is overlap in computation between calls to VoC, caching can

reduce the running time.

5.1.2 Implications of the myopic assumption

The myopic assumption allows a simple, straightforward computation of the value

of communication. While this may be a reasonable assumption for the single agent

case, there are additional implications that may not be readily apparent in a multi-agent

setting. We examine these implications by identifying and analyzing two sources of

error in the basic myopic approach, illustrating each with a simple example.

5.1.3 Modeling the other agents

Define the Basic myopic approach as one which in which each agent runs its domain

level policy, uses Definition 5.1 to compute VoC at each step, and communicates if VoC

is greater than zero. Since every agent is following a communication policy based on

computing the value of communication, this approach can lead to error. One implication

that such an approach does not leverage is that when other agents do not communicate,

this is in itself a form of communication. The distribution of states for the other agents
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start 1 2 start 1
2

3

Agent 1 Agent 2
0.5 A
0.5 B 1.0 C 1.0 C

1.0 A

1.0 Bα1 α1

Figure 5.1. A simple example that illustrates how a myopic model for the other agent
introduces error. Agents represent rovers, circles represent sites, letters represent the
possible samples collected at that site, alongside a probability. Both agents move to
site 1 at the first time step, but at the second time step agent 2 has a choice where to
go. Joint reward is 10 if both agents collect an “A” or a “B”. Reward is 1 for every “C”
collected by either agent.

after t steps, P (s−i|s0
−i, t, π

0
−i), changes because the other agents are known to not have

passed through states in which any would have communicated.

Another implication is that at the current step, agent i may not need to initiate com-

munication to acquire valuable information from agent j if j can be relied on to initiate

communication when it has the information. Figure 5.1 illustrates this with a simple

two agent data collection example where agent 1 collects information valuable to agent

2. Suppose both agents represent rovers collecting samples of type A, B, or C. At site

1, agent 1 has an equal chance of collecting an A or a B. If both agents collect A’s or

B’s, the system receives a reward of 10. The system also receives a reward of 1 every

time class C is collected. α1 is the communication point of interest.

The initial zero-communication policy is for agent 2 to collect data from site 2. The

only reason to communicate is if agent 1 collects aB, agent 2 needs to change its policy

to go to site 3. Based on the initial policy, 50% of the time the agents will receive the

maximum reward of 12 and 50% of the time the minimum reward of 2. When agent 1

collects a B, its VoC = −CG + 1.0[12− 2] = −CG + 10. As long as the cost CG < 10,

agent 1 will initiate communication in this case. Agent 2 does not know what agent 1

has collected, so its VoC = −CG + 0.5[12− 12] + 0.5[12− 2] = −CG + 5. When the
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Figure 5.2. Performance comparison of the Basic and Model approaches.

cost of communication CG < 5 agent 2 will communicate because its VoC > 0. Half of

the time this communication is unnecessary because agent 1 had collected an A. When

CG ≥ 5 it is no longer valuable for agent 2 to initiate the communication and the Basic

communication policies are optimal.

The Basic line in Figure 5.2 shows the performance of the basic myopic strategy. As

the cost of communication increases from 4.5 to 5, it exhibits a jump in value. This un-

desirable behavior is caused by error introduced into the VoC by not accounting for the

other agent’s communication policy. This error can be removed from the approximation

by computing an optimal joint communication policy for each step (still assuming no

future communication) instead of an optimal local communication policy.

To compute the optimal joint communication policy for the current step, the agents

must maximize the expected value over all possible world states they could be in. They

do this by creating a table M with rows representing the possible states of agent 1
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1
2s  

2
2s  

3
2s  π1c 

 

 VoC 
1
1s  -1 0 -1  no  -2 
2
1s  4 -1 -1  yes  2 
3
1s  -2 -1 1  no  -2 

        

π2c yes no no     
        

VoC 1 -2 -1     
 

Figure 5.3. A Table M showing the expected gain in value for communicating for each
world state.

and columns representing states of agent 2 for the current step (see Figure 5.3).1 The

elements in the table are the value of communicating in that world state weighted by

the probability that it is the current world state,

Mxy = P
(
s1 = x|s0

1, t, π
0
1

)
P
(
s2 = y|s0

2, t, π
0
2

)
[V ∗ (x, y)− CG − V (x, y)] (5.4)

In Figure 5.3, each row is summed up to construct a communication policy π1c

for the row agent, which indicates which row states to communicate from. Agent 1

only knows its local state or row. Similarly, each column is summed up to construct a

communication policy π2c for the column agent , as agent 2 only knows its local state or

column. The Basic approach represents building a communication policy for each agent

by checking if the sum of a row or column is greater than 0. This strategy double counts

certain elements in the table and can result in choosing a communication policy worse

than not communicating at all! The expected value of a joint communication policy for

one step is the sum of all entries in the table where communication happens (an entry

is only counted once, even if both agents initiate communication). In the example, the

Basic policy given has a value of −1 (sum of the bold entries) because the valuable

1For the multi-agent case, this matrix is a tensor.
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state M2,1 was counted twice for determining the policies (once for each policy), but

only once for determining the value of the table. If agent 2 did not communicate in s1

then the value would be 2. Never communicating (πic = {no, no, no}) will always have

a value of 0.

The best joint communication policy is the joint policy that maximizes the bolded

value of this table. However, there are 2|S1| possible policies for the row agent and 2|S2|

possible policies for the column agent. Thus a brute force strategy which looks for the

optimal joint policy would run in exponential time. However, a hill-climbing algorithm

can find a Nash equilibrium in polynomial time. The Model strategy finds such an

equilibrium by fixing all agent communication strategies in place while optimizing the

remaining agent, then fixing that agent’s strategy and performing the step again until

equilibrium is reached. The line labeled Model in Figure 5.2 shows the performance of

such a strategy, resulting in the best policy for the example in Figure 5.1. Creating the

table costs no more than the original approach since each entry represents a reachable

world state.

The Model approach described in this section is not to be confused with Q-POMDP

[107], which is a technique designed to account for uncertainty of belief state in a mul-

tiagent POMDP. In Q-POMDP, each agent’s environment is partially observable, and

an agent will communicate when it deduces that communicating its state will change

the action of the other agent, much like the Basic approach. It is enhanced to consider

the true joint belief state in partially observable problems, but not the communication

policy of the other agent. In the Model approach described above, each agent accounts

for the state of the other agent as well as its communication policy.
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α1 α1

0.5 A
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1.0 B

1.0 C

Figure 5.4. A simple example that illustrates how delaying communication can improve
the expected value.

5.1.4 Myopic view of the future

The second facet of the myopic assumption is that no agent will communicate in the

future. This introduces error in two ways. The first is due to the greedy nature of the

algorithm. When communicating immediately has a positive value, VoC > 0, the agent

communicates without considering whether the expected value would be even higher if

it waited to communicate until a future step. To compensate, the agents can compute

the value of (possibly) communicating after a 1-step delay:

VoCdelay

(
si, 〈s0

i , s
0
−i〉, t

)
= sums′i

P (s′i|si, π0
i )×max

(
0,VoC

(
s′i, 〈s0

i , s
0
−i〉, t+ 1

))
.

(5.5)

The agent will initiate communication when its VoC > VoCdelay. This does not im-

ply that the agent really will initiate communication in the next step because the same

comparison will be made at that time to later steps. As long as the expected value for

delaying one step is greater than the value of communicating immediately, the agent

will delay communication.

Figure 5.4 illustrates this with a simple example. Suppose again that agents receive

higher reward for collecting the same sample type. If agent 1 collects A at site 1 then

agent 2 should go to site 3, otherwise agent 2 should go to site 4. A similar situation

occurs with agent 2 collecting B at site 2. As with the previous example, two A’s or

two B’s have a reward of 10, and each C adds a reward of 1. α1 and α2 are the two
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Figure 5.5. The expected value and expected amount of communication as a function
of cost.

communication points. The Basic approach will always communicate at both α1 and

α2 when the communication cost is low (See Figure 5.5). When the cost increases to

0.5, the agents will only communicate when they have valuable information. Agent 1

will initiate communication 50% of the time at α1 and agent 2 will initiate 50% of the

time at α2, for a total expected communication of 0.5 + 0.5 = 1.0. The Delay policy,

however, recognizes that waiting a step is beneficial and will only communicate at α2,

which reduces the communication without decreasing the expected reward, yielding a

higher expected value.

When the cost goes above 1, the Model approach realizes that it is more efficient

to have only one agent initiate communication when it has valuable information. This

illustrates that the Model and Delay approaches address different sources of error and

neither dominates the other.
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5.1.5 Model-lookahead approach

This section demonstrates how the Model approach of 5.1.3 and the Delay approach

of 5.1.4 can be merged together and extended to consider further steps into the future.

The basic idea is an algorithm that makes optimal communication decisions within a

lookahead horizon h given fixed domain-level policies based on zero communication.

To start, we introduce two new value functions. V h(si, s−i) is the expected value of

not communicating in the current step, following an optimal communication policy for

the next h steps, and then not communicating again after h steps. V ∗h(si, s−i)− CG is

similar but starts with an immediate communication. When the lookahead horizon is 0

these value functions are equivalent to the single-step value functions from Definition

5.1, V 0(·) = V (·), V ∗0(·) = V ∗(·).

V h(si, s−i) = (5.6)

∑
s′i,s
′
−i∈Comm

P (s′i|si, π0
i )P (s′−i|s−i, π0

−i)
[
R(s′i, s

′
−i) + V ∗h−1(s′i, s

′
−i)− CG

]
+

∑
s′i,s
′
−i∈¬Comm

P (s′i|si, π0
i )P (s′−i|s−i, π0

−i)
[
R(s′i, s

′
−i) + V h−1(s′i, s

′
−i)
]

whereR is the sum of the reward functions,R(s′i, s
′
−i) = Ri(s

′
i)+R−i(s

′
−i)+R(s′i, s

′
−i).

Comm is the set of states in which communication will take place. How it is computed

becomes clear when we transform the equation as follows.

V h(si, s−i) = V (si, s−i) (5.7)

+
∑

s′i,s
′
−i∈Comm

P (s′i|si, π0
i )P (s′−i|s−i, π0

−i)
[
V ∗h−1(s′i, s

′
−i)− CG − V h−1(s′i, s

′
−i)
]
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Figure 5.6. Performance of the Model-Lookahead Approach with lookahead horizon 2.

+
∑
s′i,s
′
−i

P (s′i|si, π0
i )P (s′−i|s−i, π0

−i)
[
V h−1(s′i, s

′
−i)− V (s′i, s

′
−i)
]

The agents must find the set of communication states for the next step that maxi-

mizes V h(si, sj). The next step communication policy only affects the second line of

Equation (5.7), which bears a remarkable similarity to Equation (5.4), except that this is

a recursive function. Thus the same table algorithm can be applied to generate optimal

communication policies over the lookahead horizon.

5.1.6 Experiments

Figure 5.6 illustrates the performance of this approach on a larger problem with 6

time steps. The Coverage Set Algorithm was used to find the underlying communication-

free joint subpolicies [11]. The agents represent Mars rovers traversing sites and col-

lecting data. State reflects the current site of the agent and data at that site, and battery

life (from 0 to 8) remaining to the agent. The first agent’s state and transition matrices

correspond to Figure 5.7. Actions available are Move Left, Move Right, Wait, Quick

Analysis, Detailed Analysis. The effects of Move Left and Move Right for the first
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Figure 5.7. Graphical depiction of a sample decision problem. (left) A partially ordered
list of 5 sites. (right) A decision problem for one site with three potential classes.

agent can be seen on the lefthand side of the figure. The second agent simply moves

from site 0 to sites 1,2, and 3 in a straight line. The righthand side of the figure corre-

sponds to the classes of data available at a specific site. There are 5 classes of possible

data in all, A-E. Each site has a probability distribution over the classes available. A

Quick Analysis determines the class at a site, and a Detailed Analysis actually obtains

the reward. Each agent starts with 8 energy units on its battery. Movement costs one

energy unit, as does a Quick Analysis. A Detailed Analysis costs two energy units.

A reward of 10 is obtained for jointly obtaining classes A-D, while a reward of 1 is

received for obtaining class E.

The Model-Lookahead approach performs significantly better than the original Ba-

sic approach and demonstrates a smooth and monotonic reduction of the expected value

as the cost for communication increases.

Figure 5.8 shows the running time of Model-Lookahead compared to Basic. The Ba-

sic approach took about 11 seconds to generate the entire policy while Model-Lookahead

took 50% longer with a lookahead horizon of 0 due to the added cost of finding the

optimal communication policies of the tables. The worst case complexity of Model-

Lookahead is exponential in the size of the lookahead horizon, but due to caching and

the structure of the problem, in practice this is not always the case. In this example, the
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Figure 5.8. Comparison of the time to compute the policy for the Basic approach versus
the Model-Lookahead approach of various depths.

running time started out with an exponential curve but that changed as the lookahead

horizon approached the number of steps in the problem.

To further test the generality of the approach, we ran experiments on a second do-

main, using the bilinear programming technique to construct the underlying policies

[94]. We also changed some of the characteristics of the domain, allowing actions to

vary in duration as well as in their effects.

The selection of the domain was motivated by mapping scenarios from NASA and

the US Geological Survey [82], whereby data from different imagers can be assimilated.

Suppose our agents are sensors on separate satellites, which scan geographical locations

on different bands. Data is most worthwhile if it gets scanned by both satellites at the

same time. Actions available to the satellites are to Scan the current location or to Wait.

Rewards can be both local and joint, for performing a scan. A joint reward is only

received if the scan is initiated at the same time by both satellites. After a satellite is

done scanning one location, it moves on to the next location. The time taken to perform
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a scan is a distribution. In contrast to the previous examples, the uncertainty in this

domain is with respect to time, rather than with respect to the type of data collected. The

bilinear programming technique used to solve the communication-free subproblems is

newer and faster than the Coverage Set Algorithm. This allowed us to solve larger

problems.

We first converted the state space in this example into a state space appropriate to

the Value of Communication methodology. There are two types of states, the first type

is when the satellite is at a location and can choose to scan or not to scan. This defines

lh states where l is the number of locations, and h is the total horizon of the problem.

To make the domain appropriate for Value of Communication analysis, it is necessary

that each agent have a defined state for each time step. In order to assure this, one can

simply include additional states for the case when a satellite has initiated a scan and is

waiting for it to finish. This is a tuple (s, f, l), where s is the current time, f is the time

at which the action will be finished, and l is the location of the agent when the scan is

finished. Combinations of these tuples introduce lh2 new states. A terminal state is also

added. Thus, the total number of states is lh+ lh2 + 1.

In particular, we chose an example with h = 8 and l = 4. This defined 289 states

for each agent, and 578 state/action pairs. We chose local rewards for the four sites to

be .5, 5, 5, and 10 respectively. There was a shared joint reward of 20 if and only if the

second site was explored by both rovers at the fifth time step, representing an interesting

but time-critical event. The duration of the scan of the first site would always be one

step for the first agent, and a uniform distribution centered at four steps for the second

agent. Successive scans by both agents would take a mean duration of 3 with a standard

deviation of 1.6.

Results are shown in Figure 5.9. The figure shows that–as we observed in the

Rovers domain–following the Basic communication strategy results in overcommuni-
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Figure 5.9. Results on satellite domain, showing the fixed value of no communication,
compared with the values of the Basic strategy, Model with horizon 0, and Model with
horizon 1.

cation. The key to this problem is that there is a large reward for completing all the

scans, and an even larger reward for performing the valuable joint scan of the second

site at step 5. The first satellite needs to choose between completing all the scans it can,

versus waiting and attempting the joint scan.

Under the Basic strategy, the first satellite will overcommunicate after completing

its first scan. The decision on whether communication is beneficial is mostly dependent

on the second agent. If the second agent’s scan terminates quickly, there will be time

to synchronize for a second joint scan, and the agents should communicate in order

to perform it. If it does not, then there is no need to communicate and synchronize.

When the Basic policy is followed, the first satellite merely computes expected value

of communication from its own perspective, without considering the policy of the other

agent, and as a result overcommunication occurs, as described in the previous sections.

The problem is corrected when the Model Lookahead policy with a delay is followed,

which accounts for both the communication policy of the other agent as well as the
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ability to defer communication to future time steps. Model Lookahead consistently

outperforms the Basic communication strategy, except when communication is either

ubiquitous (at Cost = 0), or never useful.

To summarize, the Model Lookahead approach offers a simple but effective way

to overcome the limitations of a naive myopic approach to communication. In two

different domains it produced smooth and monotonous degradation of value as com-

munication cost increases. This approach, however, does have its limitations. Even

when the lookahead horizon is equal to the number of steps in the decision problem,

the policy generated is not guaranteed to be an optimal joint policy. This is because the

domain-level actions taken by the agents are generated assuming no future communica-

tion. Future work will focus on extending this algorithm to allow a larger domain-level

action lookahead horizon.

5.2 Communicating with partial observability

This section adds partial observability to the model of the last section. Each agent

takes an action, receives an observation, and then has the option to initiate communi-

cation before taking the next action. Like the last section, we restrict discussion to the

sync communication model, so the communication language allows transmission of the

agents’ complete action/observation histories before each action. Communication is in-

stantaneous; a message is received without delay as soon as it is sent. A constant CG,

representing a fixed cost on each step of communicating these synchronization mes-

sages, is specified. The fixed cost of CG is incurred if any number of agents chooses

to communicate. Otherwise, if no agent communicates, they incur no penalty. The

problem is NEXP-hard. This is shown by considering the case when communication

is prohibitively expensive, in which case the model becomes a Dec-POMDP with no

communication.
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Since the problem has a finite horizon T , one can use a policy tree to represent

a non-communicative policy of an agent. As seen in previous chapters, in the policy

tree representation nodes represent actions and branches represent observations. Each

agent i follows its own policy tree generated at the last synchronization step, referred

to as π0
i with its first action corresponding to the root at time t = 0, and its last action

corresponding to the leaves. π0
i contains a number of subpolicies, each corresponding

to an observation sequence as the tree is traversed. An observation sequence of a single

agent is referred to as ōi and the resulting subpolicy as πi(ōi). Note that if an agent’s

initial policy and its sequence history of observations are known, one can derive its

sequence of actions. Furthermore, the next sections will show that the local history of

an agent can be combined with Bayesian reasoning on the Dec-POMDP model and the

initial policies of the other agents to form a belief about the histories of other agents.

To summarize, each node of an agent’s policy tree maps to:

• A unique action/observation sequence ōi

• A future local subpolicy rooted at the node πi(ōi)

• A belief about the global state as well as the action/observation histories of the

other agents.

Let b(s) be a belief state, and let s′ be a variable representing a successor state. Let

ai and a−i be the root actions of policies 〈πi, π−i〉. The value of a joint policy tree,

〈πi, π−i〉 at a given belief state is recursively defined as the expected sum of the rewards

of the subpolicy trees. That is, at the base level, the value of one-step policies is the

associated reward:

V (ai, a−i, b(s)) =
∑
s∈S

b(s)R(s, ai, a−i) (5.8)

And the value of multi-step policies is defined:
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V (〈πi, π−i〉, b(s)) =∑
s

b(s)R(s, πi(ε), π−i(ε))+

∑
s,s′,oi,o−i

[
b(s)P (s′|s, ai, a−i)O(oi, o−i|s′, ai, a−i)V (〈πi(oi), π−i(o−i)〉, s′)

]

The above says that the value of the joint policy at b can be decomposed into cases

where the root actions result in a transition to state s′, resulting in observations oi and

o−i.

5.2.1 Solution method

This section develops a method whereby plans and communication strategies are

determined offline and stored for use at runtime. The method begins by pre-computing

optimal joint policies without communication. Any non-communicative Dec-POMDP

planner which generates policy trees (e.g. MBDP ) can be used for this step. It also

pre-computes non-communicative joint policies for (some or all) reachable belief states

of horizons 1...T (more details on this are in the next section), and stores these policies

and their value in a cache. It uses these to construct a cache function for reachable

belief distributions on the global state, and at runtime the cache is accessed by each

agent through a function call:

CACHEi(b(s), t)→ 〈π∗i , π∗−i〉

where i is the identity of the local agent accessing the cache, b(s) is the belief state it

wants to query, h is the depth of the policy and π∗ represents that the policy is specific

to that belief state. Optionally, one can store a mapping of some or all observation
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sequences to communications decisions (if these are not stored, they must then be com-

puted by the agent at execution time).

〈b(s), ōi〉 → {true, false}

where ōi is a vector composed of the observations agent i has made on prior steps.

At execution time, each agent follows its policy and its communications policy. Upon

communication, it retrieves the appropriate policy from the cache (in the case of a cache

miss, it computes the appropriate policy) for the discovered belief state. We note triv-

ially that if agents’ policies are known to each other, then a joint observation sequence

〈ōi, ō−i〉 also determines a unique action history, and a unique b(s) can be constructed

by starting at the initial belief state and performing a belief update as in a POMDP.

Before each action, each agent decides whether to communicate. To do this, it uses

the Value of Communication. Let Pr(s′, ō−i|ōi, 〈πi, π−i〉, b0) represent the probability

of reaching state s′ while the other agents receive observations ō−i after |ōi| steps, given

a starting belief state b0 with policies 〈πi, π−i〉, and local observation sequence ōi. (The

computation of this probability will be deferred to the next section). Let 〈πi, π−i〉 be

the joint policy before communication and 〈π∗i , π∗−i〉 be the joint policy that results from

communication and discovery of a joint belief state.

Definition 5.2. The Value of Communication (VoC) is the difference between the ex-

pected value when communicating and the expected value for remaining silent.

V oC(ōi, 〈πi, π−i〉, b0) =
∑
s′

∑
ō−i

Ps′,ō−i
(V ∗ − C − V )

where
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Ps′,ō−i
= Pr(s′, ō−i|ōi, 〈πi, π−i〉, b0)

V ∗ = V ∗(〈π∗i , π∗−i〉, s′, t)

V = V (〈πi(ōi), π−i(ō−i)〉, s′, t)

bh is the belief distribution at time h given 〈oi, o−i〉 and b0.

To understand the above definition, consider the perspective of agent i. It had syn-

chronized with the other agents at time t = 0 and had jointly entered belief state b0,

it knows that the other agents have been following policies π−i since then, and that it

has observed ōi since synchronization. In order to contemplate the value of remaining

silent, it must consider the joint probability that the other agents’ have observed ō−i,

and that the real current state is s′. If this is the case, it knows that the agents will con-

tinue along subpolicies 〈πi(ōi), π−i(ō−i)〉, and the value of staying silent is the value

of the joint subpolicy from state s. If the agents do communicate, they will combine

observations to form a new joint belief state bt, and they will follow a new joint policy

for the belief state, 〈π∗i , π∗j 〉. The new joint belief state does not affect the fact that the

true state is s′, and so it computes the value of the new joint policy for s′.

For example, consider the multiagent Tiger problem [85]. In this problem, agents

take a joint action of opening either the right or the left door, or they listen for the tiger.

If both agents choose to listen, each agent will then receive its own observation with

some defined probability of error, and because of this probability of error it is possible

that both agents will not receive the same observation. Consider the perspective of

an agent after it has listened and observed Tiger-Left. In order to evaluate the value of

communicating, the agent must consider each scenario that occurs after communication,

one of which is the chance that the other agent has also observed Tiger-Left, that they

use the combined observations to open the door on the right, but that the true state was
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Algorithm 5: Find SSTs at current step
input : Synchronized Belief State b0, Nonlocal joint policies π−i, Local observation

history ōi, Local action history āi, time step t, threshold. A Dec-POMDP tuple
< S,A, P,Ω, O,R >

output : An array of SSTs, each containing the true state, the remaining policies of the
other agents, and a probability

begin
D,D′ ← arrays of StateSubTrees, initialized to empty
for k = 1 to |S| do

D[k]← 〈sk, π−i, b0(sk), false〉
for step = 1 to t do

D′ ← empty
for k = 1 to |D| do

ā−i ← joint action at root of D[k].tree
ai ← āi[t]
oi ← ōi[t]
for each state s′ in S do

for o−i = 1 to |Ω−i| do
SST ← new SST
pSST ←
(D[k].p)P (s′|D[k].s, ai, a−i)O(D[k].s, ai, a−i, oi, o−i, s

′)
if nonmyopic then

for each nonlocal agent j do
Lookup its communication policy
if CACHE〈b0, ōj〉 → true then

Prune this SST

if SST.comm == true then
prune SST

SST.s = s′

SST.p = pSST
SST.Π = D[k].Π.subTrees[o−i]
Add SST to D′

Merge SSTs with equivalent subpolicies
Prune SSTs with p < threshold from D′

Normalize each SST.p in D′

D ← D′

return D
end

Tiger-Right, resulting in a large penalty. Although the possibility of this happening is

small, it will motivate communication if the penalty is large enough.
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5.2.2 Estimating the joint history

This section explains how Pr(s′, ō−i|ōi, 〈πi, π−i〉, b0) is computed. Any such com-

putation must address these features of the Dec-POMDP model which differ from the

Dec-MDP model: (1) the local agent’s history of actions has affected non-local transi-

tion probabilities (2) the other agents have adjusted their actions based on their obser-

vation history, not the true state (3) each local agent only holds its own observations,

not necessarily the observations of the other agents.

Definition 5.3. Let a State SubTree (SST), be a tuple 〈s, π−i, p, comm〉, where s is a

state, π−i is a finite-horizon (joint) policy, p is a probability, and comm is a boolean.

Algorithm 5 shows how Pr(ō−i, s
′|ōi, 〈πi, π−i〉, b0) is estimated. The algorithm

takes as input initial belief state b0, the action and observation histories of the cur-

rent agent i, and the known policies of the other agents at b0. It outputs a set of SSTs

at the current time step, each SST assigns a probability to one world state, composed

of the actual state and the current policy of the other agents. SSTs are computed in a

forward fashion. The set of SSTs is initialized to contain one element for each nonzero

state in b0, with its p being b0(s), its probability of being in that state, and its Π being

the initial joint policy of the other agents. At each time step, the current set of SSTs

is used to generate a new set. Each SST in the new set represents a joint action taken

by the other agents, a joint observation received, and a global state transition from an

old SST, resulting in the new SST’s state and subpolicy. The forward probability pSST

is the probability of the old SST times the probability that the other agents made this

transition, given the local agent’s knowledge of its own action and observation on that

step.

SSTs with the same subpolicy are merged. That is, if two observation histories of

the other agents lead to the same subpolicy, there is no need to distinguish the two cases.
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Formally, if there are two SSTs:

〈s,Π, p1, comm〉 and 〈s,Π, p2, comm〉,

they can be merged into a single SST:

〈s,Π, p1 + p2, comm〉.

This can be particularly useful in practice, if the non-communicative plans were built

by an algorithm based on MBDP , which builds plans where only a limited set of sub-

policies are generated, and different observations lead to the same subpolicy.

In practice, other augmentations may be beneficial to Algorithm 5. (1) The cache

can be smaller and only contain likely decision points. At run-time, when a non-cached

state is encountered, the agent can either initiate an online computation, or it can use

the joint-policy from the least (Manhattan) distant cached belief-state. (2) SSTs can be

generated by sampling from agent histories, rather than direct computation.

The following theorem proves correctness of Algorithm 5.

Theorem 5.2. Suppose agent i calls Algorithm 5 with threshold 0 at time t after ob-

serving ōi, and the algorithm returns a set D of SSTs. Then ∀D[k] ∈ D, if D[k] =

〈s,Π, p, comm〉, then p is the probability that the global state is s and the other agents’

policies on this step are Π at time t.

The theorem is a consequence of the following Lemma.

Lemma 5.1. The problem of constructing set D at time t has an equivalent Hidden

Markov Model (HMM) representation.
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Proof. We can convert the problem of estimating M.p into an HMM, and then solve

using the forward-backward algorithm [108]. Each state of the HMM corresponds to

a global state and an observation history of the other agents (we use the fact that each

joint observation history maps to a specific joint subpolicy such as Π−i). State transi-

tion probabilities of the HMM correspond to state transition probabilities of the Dec-

POMDP, given the local agent’s action histories, times the probability of making the

last observation. The transition probability is zero if the new observation history cannot

follow from the old. That is, a state with an observation history w1w2 cannot transi-

tion to a state with an observation history w2w2w3, but it can transition to a state with

observation history w1w2w3.

Given this transition model, it is can be shown through induction (with the base case

consisting of S when Algorithm 5 is initialized) that the forward computation used to

generate the leaves in the last step of Algorithm 5 are the same as the steps used to

generate the corresponding states in the Hidden Markov Model.

The number of SSTs can grow exponentially in each step, in the worst case. In

practice, however, the number only grows with reachable belief states, and often on

real-world problems only a small number of observations will be possible on each step.

In order to keep the algorithm tractable, the algorithm can optionally prune SSTs with

low probabilities at each step.

5.2.3 Myopic algorithm

Algorithm 6 shows the myopic procedure executed by each agent. Belief state b0

is initialized at the beginning of execution and known to all the agents. Each agent

executes its policy πi one step at a time, adding the received observation oi to its history.

It maintains a set of SSTs via the FindSSTs procedure. For each SST , it finds the

value of not communicating (thus continuing the current policy), versus the value of
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Algorithm 6: Basic Myopic Execution
input : initial belief state b0, joint policy 〈πi, π−i〉
output :
for t = 1 to T do

ai ← πi(ōi);
execute ai;
receive observation oi;
ōi ← ōi + oi;
D ← FindSSTs(bo, π−i, ōi, ai, t);
V = 0;
V ∗ = 0;
∀s, bt(s)← 0;
for k = 1 to|D| do

bt(D[k].s) = bt(D[k].s) +D[k].p;
Sum SSTs to determine belief state bt;
π∗i , π

∗
−i ←MBDP (bt, T − t);

for k = 1 to |D| do
V = V + (D[k].p)V (s, πi(ōi), D[k].Π−i);
V ∗ = V ∗ + (D[k].p)V (s, π∗i (ōi), D[k].Π∗−i);

if V ∗ − V > C then
communicate;
agree on new b0;
πi, π−i ←MBDP (s, T − t);
ōi ← ε;

communicating and finding a new policy. The value of communicating is determined

by calling a planner on the current belief state, the pseudo-code in Algorithm 6 uses the

MBDP planner, but any planner can be used that begins with an initial belief point and

derives a joint policy. The belief point bt is derived from the SST s, each SST contains

a state and a probability, so belief point bt is obtained by summing the probabilities for

each state. All SST s are considered, thus an expected value of communicating and not

communicating is found. If the difference in expected value exceeds the communication

cost, the agent communicates. After communication, agents will construct a new belief

state b0 out of the joint history and find a new optimal joint policy for this belief state.
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5.2.4 Non-myopic reasoning

Algorithm 5 does not take into account the communication policy of the other

agents, nor does it take into account the fact that communication need not be imme-

diate, it may be deferred to future steps. In this section, we discuss how we improve the

algorithm past this myopic assumption. The algorithm can be improved in three ways,

first by using the fact that other agents did not communicate since the last sync, second

by using the fact that other agents can communicate in the present, and finally by using

the fact that communication can be deferred to the future.

5.2.4.1 Other agents in the past

Each agent knows the time of the last communication, and agents share a communi-

cation policy each time they synchronize. Therefore, information can be inferred when

other agents have not communicated since the last synchronization. To do this, we use

the comm field in the SST structure. At planning time, each agent computes VoC given

its possible observation sequences and synchronized belief states. If VoC is positive, it

sets comm to true. The comm value is stored for this history.

As Algorithm 5 is executed, each SST represents one possible observation history

of this agent, and its children represent a continuation of that history. If the comm field

is set to true for a corresponding observation history, this means that the agents would

have communicated at this point. But any agent executing Algorithm 5 knows that

didn’t happen, since no agents have communicated since synchronization. Therefore it

is known that the observation histories represented by such an SST never occurred, and

the SST can be pruned.

5.2.4.2 Non-myopia with respect to other agents

Having modeled the communication strategy of the other agent on past steps, we

turn to modeling the present step. To do this, we construct a tensor. For the two agent
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case, the tensor is a matrix and each row of the matrix corresponds to the SSTs for one

agent, and each column corresponds to the SSTs for the other agent (for the multiagent

case, each dimension represents another agent). Entries in the matrix correspond to the

VoC given the history represented by the corresponding joint history, multiplied by the

probability of that joint history. Each agent has the ability to communicate or not to

communicate given a history. Communicating after a history corresponds to turning a

row (or column, for the other agent) “on” or “off”. The value of a joint communication

strategy is the sum of the “on” values in the matrix. The myopic strategy discussed

in above sections corresponds to turning each row or column on if its entries sum to a

positive number. However, this illustrates the flaw of myopia, it does not maximize the

value of the whole matrix, only its individual rows and columns. Since the row agent

and column agent are not coordinating, they may double count entries. We improve

on this by finding a better joint strategy. The approach is similar to the one described

in [13], except (1) The rows and columns and probabilities correspond to observation

histories, not states. (2) To reduce time of computation, agents can only alter K rows,

where K is a parameter specified by the users. The remaining rows are toggled through

myopic computation. As noted in [13], it takes an exponential amount of time with

respect to the matrix size to find an optimal row/column strategy, but finding a Nash

equilibrium is a reasonable alternative which can be done in polynomial time. Thus, in

our implementation we find a Nash equilibrium.

An example can be found in Figure 5.10. Each entry in the table corresponds to

VoC for a single joint history. Using an agent-myopic strategy, Agent 1 has decided

that it should communicate given the history represented by s2
1, because its VoC of 2

(the sum of its row) is positive, and Agent 2 has decided that it should communicate

from state s1
2, because its VoC of 1 is positive. VoC decisions are shown in the figure

as π1c and π2c. In the figure, all joint-histories that result in communication under a
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myopic strategy are bolded. This strategy double counts certain elements in the table

and can result in choosing a communication policy worse than not communicating at

all. The expected value of a joint communication policy for one step is the sum of

all entries in the table where communication happens. Because we are using the sync

model of communication, an entry is only counted once, even if both agents initiate

communication. This corresponds to all joint-states where communication happens,

weighted by their probability. In the example, the myopic policy has a value of −1,

computed by summing the bold entries. The reason for this negative value is because

the joint history in the first column of the second row was counted twice for determining

the policies (once for each policy), but only once for determining the value of the table.

If agent 2 did not communicate in s1 then the value would be 2. Never communicating

(πic = {no, no, no}) will always have a value of 0.

Creating the table costs no more than the original approach since each entry repre-

sents a reachable joint history. Note that in problems with structure, or where commu-

nication has occurred on a recent step, the number of reachable joint histories is limited.

For larger problems, though, there will be a large number of reachable joint histories,

and in future work we plan on reducing the dimensionality of the matrix while mini-

mizing loss of information. Equilibrium solutions to the reduced matrix problem will

correspond to reasonable joint communication policies.

5.2.4.3 Value of deferring communication

The value of deferring communication to the future can be computed. For a given

SST, the value of delay is the reward achieved by not communicating on the current step,

added to the expected reward after communicating on the next step. The immediate

reward is (SST.p)R(s, a) and it is added to:
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1
2s  

2
2s  

3
2s  π1c 

 

 VoC 
1
1s  -1 0 -1  no  -2 
2
1s  4 -1 -1  yes  2 
3
1s  -2 -1 1  no  -2 

        

π2c yes no no     
        

VoC 1 -2 -1     
 

Figure 5.10. A simple table M showing the expected gain in value for communicating
for the two agent case. Each row represents an agent history for agent 1. The table
represents 3 possible histories for each agent, or 9 belief states overall.

SST.p
∑
s′,o′

P (s′|a, s)O(o′|a, s′)V(〈π∗i (bt+1), π∗−i(bt+1)〉, s′)

where p is the probability associated with the SST, a is the joint action specified by

continuing the current policy of the local agent and the SST, s is the state in the SST,

o′ the next joint observation, and bh+1 is the belief state that would result at the next

step. V is used to represent the fact that VoC must be retrieved for the local agent’s

observation in o′, and if it is positive then V = V ∗ and bh+1 is the belief state that results

from communication while if V is negative, V = V and the joint policy continues. To

compute the value of delaying communication, the computation above is summed for

all SSTs returned by algorithm 5. If the sum is greater than or equal to the value of

communicating on the current step, the agent does not communicate. A new value of

delay will be computed after the next action is executed. Because of this, it is possible

that the decision to postpone communication will cascade across several steps.

5.2.5 Experiments

We considered our algorithm, labeled VoC-NM (Value of Communication - Non-

Myopic), as compared to the algorithms of No Communication (labeled No-Comm),
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horizon Cost No-Comm Periodic VoC-NM
3 0 5.19 12.5 12.5
3 5 5.19 5.46 7.99
3 10 5.19 5.19 6.03
5 0 4.92 26.2 26.2
5 5 4.92 6.3 9.14
5 10 4.92 4.92 5.62
8 0 9.00 41.8 41.8
8 5 9.00 12.3 24.3
8 10 9.00 9.00 10.6

10 0 9.4 53.2 53.2
10 5 9.4 12.87 22.7
10 10 9.4 9.4 11.9

Table 5.1. Comparison of various communication strategies for the Tiger problem.

Full Communication (communicating on every step), Periodic Communication, as well

as the algorithm of Roth et al. For the Periodic strategy, we ran an algorithm which

communicated everyK steps, and we used results from the best value ofK from 1 to the

horizon of the problem. Thus, Periodic will provably outperform No Communication

and Full Communication, so we do not separately list results for full communication.

Our algorithm was implemented as follows: we precomputed values of communication

for each agent for reachable histories at planning time by running a large number of

simulations, and then stored this in a cache. We used a pruning threshold of 0, thus

we did not prune SSTs. We used the IMBDP planner [119] as the non-communicative

submodule for this step. Then we ran a new 100,000 simulations of the non-myopic

algorithm, referencing this cache on each simulation. Since MBDP-based planners

only store a handful of subpolicies for each horizon step (using the same subpolicies

for various branches of the larger policy tree), this choice of planners kept the size of

the cache smaller.
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horizon C=0 C=5 C=10 C=15
3 3.0 .44 0 0
5 5.0 1.4 .92 0
8 8.0 1.9 .79 .02

10 10 2.5 .72 0

Table 5.2. Average number of communications for each run of the VoC-NM strategy on
the Tiger problem. Each row represents results for a different horizon.

horizon Cost No-Comm Periodic VoC-NM
5 0 59.6 78.7 (4.0) 78.7 (4.0)
5 15 59.6 64.3 (1.0) 64.9 (.89)
5 30 59.6 60.3 (1.0) 64.1 (.80)

Table 5.3. Comparison of various communication strategies for the BoxPushing-5
problem. Parentheses show the mean number of communications for each simulation.

Results for the Multiagent Tiger problem [85] on various horizons are shown in Ta-

ble 5.1. Results show that the VoC-NM planner was able to successfully communicate

for both lower and higher costs of communication. We also performed experiments

using the planner from Roth et al. [106], which was available for use with the Tiger do-

main. Note that this planner was not constructed with Cost of Communication in mind;

it develops the policies first and then each agent communicates when it considers the

state of the other agent ambiguous. It also uses the tell model of communication. Thus

we do not present the results side-by-side in the table. Still, it is interesting to compare

[106] as an alternative to VoC-NM. VoC-NM outperformed the Roth et al. planner on all

experiments. On the horizon 10 problem, VoC-NM outperformed the Roth et al. plan-

ner by 11% and 36% respectively on communications costs 5 and 10. The difference

in performance continues to increase as the cost of communication increases. We also

sought to compare to other works in the literature by requesting Comm-MTDP [99] and

Communicative DP-JESP [86]. The former is implemented within a framework which
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evaluates based on input non-communicative policies but does not generate the policies

themselves, and the latter was unavailable for experimentation.

Results for the VoC-NM strategy are more closely examined in Table 5.2. Execution

of the VoC-NM strategy was simulated 100,000 times for each cost of communication

(C). Each entry is the mean number of communications for per simulation, given that

cost of communication. For example, the column C=0 represents a configuration where

there was no cost of communication, and thus the agents communicated at every step.

As expected, the table shows that the expected number of communications decreases as

the cost of communication increases.

Running time for VoC-NM was 9 seconds for the precomputation, and 2 seconds for

the 100, 000 simulated runs after that. We also ran a myopic variant of the VoC planner,

it did not include the algorithm enhancements of Section 4.2. The result across all tests

was an approximately 10% decrease in score at C equal to 5 or 10.

We also ran the larger BoxPushing problem [119] for horizon 5, a problem in which

the value of the generated centralized and decentralized plans only differ by 20. Still,

results similarly show that a VoC-NM methodology outperformed the other strategies

because it communicates less, resulting in a gradual decrease in value as communication

cost gets higher. The time taken for BoxPushing-5 was 4300 seconds at the planning

stage, and then .38 seconds to run each simulation at execution time.

Across all experiments, a simple communication policy such as Periodic can be

adequate when communication cost is low, or when communication points can easily

be picked from the domain. As the cost of communication gets higher, and agents are

motivated to avoid communication if possible, the VoC-NM approach is required. Even

assuming, as we did, that the best period can be determined, a periodic communicator

is forced to either choose to not communicate at all, or else to overcommunicate. This
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was shown as the VoC-NM approach reduced the amount of communication by 10% on

BoxPushing when communication cost was 15, and by 20% when cost was 30.

5.3 Summary

This chapter has presented a general approach for reasoning about costly communi-

cation for both the Dec-MDP and the Dec-POMDP models. For both models, a value of

information approach was used. However, two sources of error were identified within

this approach, which were referred to as myopic assumptions and defined the Basic

approach in this chapter. These sources were, respectively, the inability of a value

of information approach to consider the ability of other agents to communicate, and

the inability of such an approach to consider deferring communication to future steps.

For Dec-MDP, both of these sources of error may lead to overcommunication. The

Model and Delay approaches were developed in order to modify the approach to ad-

dress these issues, and the Model-Lookahead approach combined the features of the

improved approaches. Experiments highlighted situations where the Model-Lookahead

approach outperformed the Basic approach, specifically on problems where the deci-

sion to communicate was borderline. In the experiments shown, expected value in the

Model-Lookahead approach degraded smoothly with value of communication, whereas

in the Basic approach it did not.

The Dec-POMDP framework added partial observability to the problem. This vari-

ant was more challenging, as computations of value after communication became com-

putations of expected value after communication, because even after communication

the environment was partially observable. Furthermore, in Dec-POMDP each agent

receives different partial observations and must reason about the observations of the

other agent, as well as the possible synchronized state of the system after communi-

cation. Still, this chapter showed that computing the value of communication can be
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used effectively to determine the utility of communicating versus the utility of staying

silent. A data structure, the State Subtree (SST), was introduced which allows for ef-

ficient computation of this value. The SST allows for a merging operation which can

reduce computational overhead, and furthermore it was shown that in MBDP -based

planners this merging operation can be used quite frequently. As opposed to previ-

ous approaches, the merging operation can be used to make problems tractable while

bounding loss.
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CHAPTER 6

RELATED APPLICATION: META-REASONING WITH A
HUMAN IN THE LOOP

This chapter presents an application related to the concepts developed in this thesis.

It illustrates how meta-reasoning can be applicable to the domain of air safety, specifi-

cally in-flight alerting systems for pilot decision support. In Chapter 2 and Chapter 3,

we saw how performance profiles can be used to inform meta-reasoning processes in

order to optimize the performance of the base-level decision makers. This chapter ex-

plores the question – what if one of the decision makers is a human? Due to the nature

of the application, the framework in this chapter differs from the previous chapters in

several ways. First, as mentioned, one of the base-level decision-makers is a human.

Second, the meta-reasoning process is co-located with the base-level reasoning process

in one decision maker (the automated aircraft system) but not the other (the human).

Third, time is treated as continuous.

In the work related to Chapters 2 and 3, performance profiles could be obtained

by either using known performance characteristics of the base-level procedure or by

running the procedure a large number of times and accumulating performance statis-

tics. The inclusion of a human decision maker for this task presents a set of research

challenges. The challenges include the estimation of the current state of the human

decision maker as well as the decision of how to best communicate with the human

decision-maker. Communication will be addressed by issuing pilot notifications at vary-

ing stages of automation [91], a concept which is elaborated in this chapter. Each stage

of automation is associated with a pilot performance profile, and the best stage is se-
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lected according to the best profile to use as selected by decision theory, specifically a

Time-Dependent Markov Decision Process (TMDP) model [22]. In order to construct

the performance profiles at each stage of automation, a pilot state model is constructed.

The contributions of this chapter are as follows:

• A design for a meta-reasoning system which allows an automated aircraft system

to cooperate with a pilot system in order to address aircraft hazards.

• A TMDP implementation of a planner which produces plans for the optimal stage

of automation at each given point of time, given the level of aircraft alert and pilot

state model.

• Demonstration software which includes (1) a Bayes network to estimate the sever-

ity of hazards using the evidence of the aircraft alert systems (2) A system devel-

oper interface, which allows the pilot model and Bayesian network to be used in

order to construct performance profiles, which in turn are used to call the TMDP

planner, which selects a stage of automation and thus the interface to the pilot.

• A preliminary pilot model for this system, which allows performance profiles

of the pilot to be constructed. The model specifies how an assessment of pilot

workload can be used to define performance profiles required in order to plan to

issue pilot alerts. It should be noted that this preliminary pilot model contains

several parameters which have yet to be assigned value. Constructing a full pilot

model with parameters is a large research undertaking and the work provided in

this chapter only provides the preliminary foundations. However, it is the goal of

this line of research to identify the set of parameters required in order to construct

pilot performance profiles, so that they can be assigned values in future research.

This work was produced while at a summer internship at Aptima, Inc., for an NRA

(NASA Research Announcement) under the sponsorship of Dr. Kara Latorella at NASA.
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It was conducted under the supervision of Dr. Nathan Schurr at Aptima, who first pro-

posed the system architecture shown in Figure 6.1. The planning portion of this system

was presented at UAI 2010 by Carlin, Schurr, and Marecki [29]. The pilot state model

was first constructed under the supervision of Dr. Amy Alexander as well as Dr. Schurr.

The pilot state model was presented by Carlin, Alexander, and Schurr at the Modeling

and Simulation World Conference and Expo (ModSim 2010) [28]. Details of the visual-

ization were published by Saffell, Alexander, Carlin, Chang, and Schurr in the Interna-

tional Symposium of Aviation Psychology [112]. The research reported in this chapter

is a portion of a larger multi-disciplinary effort. A report of the complete research has

been compiled for NASA by Alexander, Saffell, Alaverdi, Carlin, Chang, Durkee, Gal-

ster, Geiselman, Latorella, Wickens, and Schurr [2], this chapter summarizes the work

presented at UAI and ModSim.

6.1 Background

Next Generation Air Transportation System technologies will introduce new, ad-

vanced sensor technologies into the cockpit. With the introduction of such systems, the

responsibilities of the pilot and the density of air traffic are both expected to dramatically

increase (Joint Planning and Development Office, 2007). As a result, the number of po-

tential hazards and relevant information that must be perceived and processed by the

pilot will grow. This information is likely to come from a variety of sources, requiring

the pilot to integrate this information in order to evaluate hazard potential. Evaluating

hazard potential will depend on the consideration of, and differentiation between, im-

mediate (current) hazards and situations requiring re-planning or coordination (future).

It will also require reasoning under uncertainty, as the actual state of the world needs

to be reasoned from the hazards, and also a plan needs to be constructed for the pilot

and artificial aircraft intelligence to handle the hazards, despite uncertainty as to the
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effectiveness of each, and temporal uncertainty about the duration required to handle

each hazard.

To support these responsibilities, the pilot has a need for an Integrated Alerting and

Notification (IAN) system that will monitor multiple sources of information to evalu-

ate hazard potentials, track multiple potential hazards, provide caution/warning/alerting

(CWA) notifications and context-relevant decision support to the pilot, and determine

the best method of presenting this information to ensure that the information can be

viewed and used efficiently and effectively. There are two broad challenges that need

to be addressed before an IAN system can become operational. First, existing methods

cannot reason under uncertainty about the proposed scale of information and hazards in

such a time-critical environment [97, 129]. Specifically, these methods do not provide a

robust approach for integrating, interpreting, and providing recommendations that can

be generated by the diverse and large set of data expected within the NextGen concept

of operations. Second, the interaction between a human pilot and an automated system

is complex [46] and also uncertain, and the design of an advanced alerting technology

must leverage methods for ensuring effective collaborative performance of the human-

system team.

6.2 ALARMS approach

The ALerting And Reasoning Management System (ALARMS) addresses these

challenges. The ALARMS approach is shown in Figure 6.1. Hazards exist in the real

world, as depicted on the left of the diagram. The sensors on the Flight Deck (current

and NextGen) perceive these hazards. In the first phase of the ALARMS effort, the

hazards and sensor systems were identified. The results of this effort will be described

in the next section. The results of this analysis were used to construct probability ta-

bles for a State Estimation Bayesian Network, labeled ”State Estimation” in the Figure
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Figure 6.1. The ALARMS approach. Hazards in the environment are detected by
aircraft sensors, and pilot state is estimated through Cognitive Work Analysis in the
Human Performance module. A Bayesian Network (State Estimation) weights the sen-
sor output to estimate the hazard state. A Planning module forms a time-sensitive plan
for the pilot and automated system to address these hazards. The result is a plan with
various stages of automation. The ALARMS Interface displays information at the ap-
propriate stage of automation to the pilot.

6.1. The input to the State Estimation Bayesian Network is the alerts issued by the

sensor systems on the aircraft. The output is an estimate of the probability and severity

estimate of the underlying hazards. Once the hazard and pilot state is estimated, the

information is sent to the ALARMS planning module, which will construct a plan to

address the hazards. The Planning module is a TMDP (Time-Dependent Markov Deci-

sion Processes) [22]. The TMDP model can be used to capture both state uncertainty

in the environment as well as duration uncertainty in human (pilot) actions [116]. Its

input is the hazard and pilot states, as well as a Markov model of the effectiveness of the

pilot and automation in handling the hazards, given various levels of alert. Its output is

a time-dependent plan for addressing the alert. The plan is interpreted by the Stages of

Automation module, which interprets the level of automation and decides what level of

alerts and options to send to the pilot. This decision will then be sent to the ALARMS

interface, which displays the information to the pilot.
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This chapter summarizes the UAI and ModSim efforts which report on the phase

of the ALARMS effort corresponding to the “Integrated System User Model” in Fig-

ure 6.1. Other parts of the ALARMS effort are shown in Figure 6.1 as well, and in-

volve modeling and predicting human performance. Through Cognitive Work Analysis

(CWA) [24], ALARMS has focused on allowing the system to predict pilot performance

in an online fashion. This module is labeled “Pilot State” in the figure. Whereas we

will see that the current work involves a primitive model of pilot state which accounts

for the phase of flight, in future work the Pilot State Estimate will be constructed us-

ing techniques from the cognitive sciences literature, resulting in a richer pilot state

space for the Integrated System User Model [73]. Another, orthogonal task, is labeled

“ALARMS Interface” in Figure 6.1. In this task, we are leveraging established human

factors design principles to develop an interface that (1) maximizes pilot performance

in detecting and responding to a diverse set of threats, and (2) is flexible in its integra-

tion with existing NextGen features and the concepts of operations. The interface is

being designed to support various stages of automation [46]. At low stages, decisions

are made almost entirely by the pilot, whereas at high-stages of automation they are

made by the system. At medium stages of automation, decisions are cooperative, for

example the system may pre-compute several options for complex maneuvers, and let

the pilot select from these options.

6.2.1 ALARMS hazard matrix

As the first step in the ALARMS effort, the ALARMS project identified (1) Current

and Next Generation aircraft systems. (2) Aircraft Hazards. (3) The interaction between

systems and hazards. The ALARMS hazard matrix was constructed as a result of this

work, and a small portion of this matrix is shown in Figure 6.2. Each row represents a

tool, technology, or system that can issue an alert in the next generation cockpit. Each
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Figure 6.2. A portion of the ALARMS hazard matrix. Each row represents a different
sensor subsystem (blue rows are aviation systems, green rows are navigation systems),
each column after the Hazards label represents a potential aircraft hazard. Color-coded
entries represent the highest urgency alert that the sensor system may issue.

column represents a potential hazard in the environment. Thus, there is an entry for

each case where a sensor can issue an alert for a given hazard.

As shown in the figure, entries are also color-coded with the labels D/W/C/A (Di-

rective/Warning/Caution/Advisory). These labels, presented in order of decreasing ur-

gency, represent the highest level of alert possible for the sensor/hazard combination.

Thus, entries labeled “A” correspond to systems that will only issue low level advisories

for that given hazard, whereas entries labeled “W”, such as an Adverse Weather hazard

from the Enhanced Ground Proximity Warning System (EGPWS), correspond to sys-

tems that are capable of issuing a more urgent warning. Alert level also corresponds to

the timeframe in which the hazard must be addressed, according to Figure 6.3.

6.2.2 ALARMS Bayesian network

The goal of the ALARMS modeling effort relevant to this thesis is to construct

a plan for handling sensor alerts; however, it is not truly the sensor alerts that must

be handled, it is the underlying hazards which they represent. For example, multiple
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Figure 6.3. Color-coded entries of the hazard matrix represent the level of alert, which
in turn corresponds to the timeframe in which that alert must be addressed.

Figure 6.4. The ALARMS bayesian Network.
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subsystems (such as Vertical Navigation (VNAV) and Cockpit Display of Traffic In-

formation (CDTI)) can issue alerts which relate to an Altitude Deviation hazard. The

ALARMS system should deduce that there may be an Altitude Deviation hazard if ei-

ther of these sensors issue an alert, and the hazard should be more certain and urgent if

both systems issue one.

In order to model the sensor systems, a Bayesian network was built, as shown in

Figure 6.4. Ovals on the right represent hazards, corresponding to the columns of the

ALARMS hazard matrix. Ovals on the left represent hazard alerts from sensors, cor-

responding to the entries in the hazard matrix. Directionality proceeds from right to

left, indicating that hazards cause sensor alerts. However reasoning proceeds from left

to right, the sensor output will act as evidence and the hazard level on the right is de-

duced. Each entry on both sides can exist at several levels (Advisory, Caution, Warning,

Directive), according to the severity of the hazard and the sensor alert.

To construct the network, the GeNIE (Graphical Network Interface) and SMILE

(Structural Modeling, Inference, and Learning Engine) software packages were used,

from the Decision Systems Laboratory at the University of Pittsburgh [43].

6.2.3 TMDP planner

We now recall the TMDP model and then show how the ALARMS planning module

employs it. Time Dependent Markov Decision Processes (TMDPs) [22] assume a finite

set S of discrete states and a finite set A of actions. When action a ∈ A is executed in

state s ∈ S, the process transitions with probability P s,a(s′) to some state s′ ∈ S. The

transition itself is not instantaneous; it consumes t units of time with probability ds,as′ (t)

where ds,as′ ∈ D is a probability density function (a.k.a. action duration distribution)

for a given s, a, s′. Similarly, the reward Rs,a
s′ (t) that the transition provides depends

on s, a, s′ as well as on the time t at which the process enters state s′. (Note, that t in
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Figure 6.5. The pilot state model

ds,as′ (t) is the transition duration whereas t in Rs,a
s′ (t) is the time at which the transition

terminates.) A deterministic TMDP policy π is therefore a mapping S × [0,∆] → A

where ∆ (a.k.a. the deadline) is the earliest point in time after which all the rewards

Rs,a
s′ (t) are zero. Denote by V π(s, t) the total expected reward for following a policy

π from state s at time t. (For a given s, V π(s, t) is often viewed as a continuous value

function over t ∈ [0,∆].) The optimal TMDP policy π∗ thus satisfies V π∗(s, t) ≥

V π(s, t) for all s ∈ S, t ∈ [0,∆] and π 6= π∗.

Let Ψ be the set of alert levels (e.g. “Nominal” (N), “Advisory” (A), “Caution” (C),

“Warning” (W), or “Directive” (D)), Φ be an ordered set of hazards (e.g. “Weather”

(hazard 1), “Altitude Deviation” (hazard 2)) and Ω be a set of autonomy levels (e.g.

“No Autonomy” (0), “Some Autonomy” (1), or “Full Autonomy” (2)). A TMDP in

ALARMS planning module is instantiated as follows:

• States: A state s ∈ S is a mapping from the hazards to their alert levels. That is,

s = (ψφ)φ∈Φ is a vector where ψφ ∈ Ψ is the alert level of hazard φ ∈ Φ. For

example, given three hazards, state s = (N,A,W ) defines that the first hazard is
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at Nominal level, the second hazard is at Advisory level, and the third hazard is

at Warning Level.

• Actions: The actions of the ALARMS system represent the different ways in

which the system displays the information about the hazards on the pilot’s GUI.

In general, the higher the degree of autonomy ωφ ∈ Ω for a hazard φ ∈ Φ, the

less intrusive the way in which the information about hazard φ is presented on

the pilot’s GUI. An action a ∈ A is therefore represented by a vector (ωφ)φ∈Φ.

For example, given three hazards, action a = (1, 3, 2) will mark on the pilot’s

GUI the information about hazard 1 to have high importance (autonomy level 1),

the information about hazard 2 to have no importance (autonomy level 3) and the

information about hazard 3 to have some importance (autonomy level 2). There

is also a special autonomy level 0 reserved for actions that do not address the

hazard at all (the pilot is not informed about a hazard and the automation does

not address it).

• Transitions: ALARMS assumes that all the hazards will eventually be addressed

(their alert levels will return to “Nominal” (N) values) as a result of human or

autonomy actions. That is, for all states s ∈ S and actions a ∈ A, P s,a(s′) = 1

only for s′ = (ψφ)φ∈Φ such that ψφ = N for all φ ∈ Φ. An exception to the above

is when the action is not to address the hazard, in which case the state remains

the same.

• Durations: ALARMS models action duration distributions by assuming that ac-

tions at a high level of automation take place quickly whereas actions at a low

level of automation (i.e. that involve the pilot) have a longer duration. In essence,

an attentive pilot will be more efficient at addressing hazards whereas an inatten-

tive or overburdened pilot will perform poorly. As part of the ALARMS effort,

profiles of pilot performance have been constructed at various phases of flight.
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The phase of flight affects pilot attentiveness, which in turn affects the action

duration distributions. In the next phase of the ALARMS project, we expect to

construct richer models of pilot state, based on Cognitive Work Analysis (CWA).

• Rewards: Reward is achieved for addressing the hazard and transitioning back

to a nominal state. (Each hazard can have a different reward associated with it.)

Actions with a low level of automation (hazards handled by the pilot) accumulate

greater reward, whereas actions taken with a higher level of automation (handled

by the system, without pilot feedback) achieve a lower level of reward. As actions

that provide higher rewards usually take longer to execute, given a time deadline

∆ after which no rewards can be earned, an optimal TMDP policy must often

trade-off high reward actions for their faster, but lower reward counterparts. We

illustrate these trade-offs in the next Section, where optimal TMDP policies are

found using the CPH algorithm [78].

6.3 Application

We constructed an analysis tool to allow the flight deck designer to understand the

behavior of the flight deck for different hazard and pilot states. A picture of the tool

can be seen in Figure 6.6. In the example shown, four sensor systems are considered

(Weather Radar, Ice Protection, VNAV, and CDTI) which provide alerts. Options for

the level of alert (Directive/Warning/Caution/Advisory/None) are configurable through

an .xml file. The systems are run through the Bayesian Network to determine the un-

derlying hazard state. Adjustable sliders allow the user to configure the rewards for

addressing each hazard. (Since the TMDP reward function is defined using rewards

for addressing the actual underlying hazards, instead of the sensor system rewards, the

reward for the hazard is merely the maximum of the connected sensor system rewards).

Phase of Flight can also be selected to determine the pilot state. Clicking the “Run”
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button induces the program to perform two actions: (1) It reads in the Bayes Net (in

.xml format), and finds the underlying hazards by using the user-selected GUI options

as evidence and (2) It builds and solves the underlying TMDP to find an optimal plan

that addresses the hazards, and plots the results.

For our example problems containing four sensors and two hazards, the Bayesian

computation took less than a second, and the CPH solver found the optimal solution in

40.5 seconds. For aircraft deployment, we anticipate producing the TMDP policies for

hazard combinations in advance, and at flight time implementing the resulting policies

through a lookup table.

Figure 6.6 displays the policies for various hazard and pilot states. The horizontal

axes in all the plots mark the time to a deadline (the elapsed time can be viewed as

proceeding from right to left) and the vertical axes represents the expected value (=sum

of expected rewards). Differing actions are plotted in different colors (or can be seen

as a break in the graph for those who read this in black and white). The action with the

largest expected value for a given point in time should be executed if a decision is to be

made at that point in time.

Consider the first plot in Figure 6.6, with two hazards to be addressed: hazard 1

= “Weather” and hazard 2 = “Altitude Deviation”. The TMDP state considered in this

plot is (A,N) which means that the “Weather” hazard is in Advisory mode and the

“Altitude Deviation” hazard is in Nominal mode. As can be seen, when the deadline is

> 5 seconds away, action “L10” (shorthand for “Handle Hazard 1 at automation level 1,

Handle Hazard 2 at automation level 0”) is selected, the pilot is expected to handle the

“Weather” hazard with some importance and the “Altitude Deviation” hazard with no

importance. However, as we approach the deadline, action “L20” is more preferable, as

automation level “2” is expected to act more quickly, thus potentially providing reward
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more quickly. (Note that only the upper envelope, that is the parts of the value functions

that are not dominated by other value functions, is shown in the Figure.)

Subsequent plots in Figure 6.7 show how the optimal TMDP policy changes when

we consider different states. Figure 6.7a shows the optimal policy for a state (C,A).

Notice, that when the deadline is far away, both hazards are assigned to the pilot (au-

tomation level 1, the portion of the curve shown in green). However, as the deadline

nears, the system deduces that there is not sufficient time for the pilot to handle both

hazards. Consequently, the system assigns the less severe hazard (“Altitude Deviation”)

to the automation, shown as the purple portion of the curve on the left of the graph.

Conversely in (Figure 6.7b), when we set a higher relative reward for addressing the

“Altitude Deviation” hazard (seen on the number next to the slider bars on the right),

as the deadline approaches, the system makes the opposite decision. It assigns the

less prioritized (rewarded) hazard (“Weather”) to the automation. On the right of the

application, under “Actions”, we can see that the purple left-portion of the plot now

represents “L21” instead of “L12”. Finally, the last plot in Figure 6.7 shows the ef-

fects of changing the phase of flight on the TMDP policy. By changing the phase of

flight from “Enroute” to “Land”, the assumptions about the pilot state have changed

as well. During the Landing phase, the pilot is assumed to be less efficient than usual

at performing tasks, and thus the value functions are shifted to the right, reflecting the

fact that the action with the higher level of automation is favored farther away from the

deadline than in the graph above it.

6.4 Pilot state model

We model human performance as shown in Figure 6.5. The Output from the mod-

ule is an estimate of expected pilot performance, in terms of duration and quality of

pilot handling of hazards. The Variable of Interest, Workload, is the key parameter
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representative of pilot state that changes over time and directly impacts performance.

The Mediating Variable, Fatigue, influences the relationship. Other variables of interest

(e.g., situation awareness) or mediating variables may be considered in future work. In

environments with task demands, workload affects the mental resources that a pilot can

access to address the demands[148]. Specifically, the effect can be modeled through a

performance resource function, or PRF [90]. When cognitive resources are unavailable

or unused for a task, performance will be diminished. As more resources are dedicated,

performance will improve, until the task becomes limited by data and not resources.

When multiple tasks must be accomplished, such as is the case when a pilot must su-

pervise multiple systems in the cockpit, resource limitation becomes an issue [67]. The

workload of the pilot will define the availability of a pilot’s resources to handle alerts.

It is possible to assess workload as an index, and several criteria have been specified

to compute the index [148, 87]. Among these criteria: a satisfactory workload index

is sensitive to changes in task demands, diagnoses the cause of workload variation, is

selective in that factors that do not affect workload are not included in the index, is

unobtrusive in that the computation of the index does not affect workload itself, and is

reliable. For ALARMS, we identify three factors that predict workload: mental effort,

task demands, and ongoing task performance. We also identify relevant measures of

these factors from the literature.

6.4.1 Mental effort

We follow the literature by specifying mental effort as a contributing factor to work-

load. High levels of performance can be achieved under conditions of normal mental

effort while extremely high mental effort situations tend to result in decreased perfor-

mance. Measures of mental effort include both subjective and physiological measures

[144]. Subjective information in our model includes potential measures such as the
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NASA TLX scale [56], which allows the operator to specify mental demand, physi-

cal demand, temporal demand, performance, effort, and frustration level. The Bedford

Workload scale (Roscoe, 1984), on the other hand, is a decision tree, and the leaves

of the tree provide a workload score on a single dimension. Physiological information

can also be obtained. Examples of potential measures include electroencephalography

(EEG) or heart rate variability (HRV). It has been shown that heart rate can differentiate

between phases of flight (which require different levels of mental effort) for pilots and

co-pilots [21], even when subjective measurements do not.

6.4.2 Task demands

In the prior subsection, mental effort is described as being necessary to accomplish

tasks. The level of effort demanded will depend on the task. Simple tasks will re-

quire smaller amounts of resources, while complex tasks will require a higher degree

of mental effort. Measures of Task Demands include both the complexity of tasks and

the number of tasks. Task complexity can affect workload; specifically, complex tasks

will result in a higher workload. For example, the landing phase of flight produces

higher workload than the Enroute phase [21]. As a second example, more automated

tasks consume fewer resources than less automated ones [115]. Number of tasks affects

workload as well, in two ways. First, the presence of additional tasks adds to workload.

Second, there is a cost to switching among tasks [105]. Thus, the contribution of tasks

to workload exceeds the sum of the tasks complexities.

6.4.3 Ongoing task performance

Workload contributes to the model insofar as it is predictive of pilot performance.

Thus, a well-accepted manner of estimating workload is to examine performance di-

rectly. Potential measurements include Flight Technical Errors, Navigation Errors, and
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Communication Errors. These errors can be measured by the ALARMS system at run-

time.

6.4.4 Interface to ALARMS planner

As shown in Figure 2, Workload affects the duration and quality of pilot actions in

the ALARMS model. This is accomplished by performing a two step process. First,

a workload score is computed from measurements of factors. This is accomplished

through a linear weighting of the factors: Workload = α(ME) + β(TD) + γ(TP )

where ME represents Mental Effort, TD represents Task Demands, and TP represents

Task Performance. α, β, and γ represent linear weights that allow the prioritization of

the factors to be varied. In the second step, the workload score is used to modify the Du-

ration and Reward function of the ALARMS TMDP. We use the Workload estimate to

feed information into the Integrated User Module about the expected capabilities of the

pilot, specifically the expected performance quality and the expected duration of pilot

actions. The effect of Workload varies according to the stage of automation. In Stage 1

of automation, increasing workload in our model will greatly decrease quality and in-

crease duration for high workload conditions as compared to low workload conditions.

In Stage 2, increasing workload will decrease quality and increase duration. In Stage

3, we make the effects negligible. The specific quantities attached to these effects are

parameters in our model. At present, we set quality and duration to halve and double,

respectively, in Stage 1, when workload is changed from Low to High. Similarly we set

quality and duration to decrease and increase 25 percent in Stage 2, and to decrease and

increase 5 percent in Stage 3. Medium workload is currently simulated by interpolating

between the high and low workload conditions.
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6.5 Related work

There are many works on the use of Bayesian networks for diagnosis [8, 23]. The

idea of a time-dependent Markov model was first mentioned in [22]. Progress towards

solving these problems in fast time was made in more recent publications [75, 78].

Systems where MDPs or POMDPs were used for adjustable autonomy include [114,

142]. These works did not allow for error checking or further consideration once an

assignment was made. Furthermore, the state space was very large, not taking advantage

of the TMDP framework, resulting in thousands of states for similarly sized problems.

As the cockpit has grown more complicated, numerous works have been published

studying the effects on pilots. Cognitive Work Analysis has been used in order to model

the effects of varying system states on pilot workload, and the effects of workload on

performance [24]. Much work attempts to study the interaction between the human

pilot and the automated system and include the levels of automation concept [46, 91].

However, these works have not produced algorithms, whereby the assignment of tasks

to pilot and human were varied automatically in a planned manner.
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6.7 Conclusion

In the ALARMS project for NASA, we have developed several components nec-

essary for operation of aircraft in a NextGen environment. First, a study of existing
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systems was conducted, and a matrix correlating aircraft sensor output (both legacy and

NextGen) with real-world hazards was constructed. Second, this matrix was used to

create a Bayesian Network whereby sensor output becomes evidence, and the presence

and severity of real-world hazards is derived. Third, a TMDP model was created; al-

lowing the aircraft sensor system to select the appropriate level of automation which

best addresses hazards in a time-dependent environment. Finally, a demonstration ap-

plication was created, linking the applications and thereby producing automation plans

directly from the simulated sensor output.

Future work will continue in several directions. First, TMDP models will be scaled

to handle not just the use cases from the demonstration application, but the whole

Bayesian network. Second, work from the cognitive sciences literature will be lever-

aged to better estimate the pilot state. Finally, we will develop a user interface based

on levels of automation. Through the combined efforts of hazard state estimation, pilot

state estimation, and human-automation planning, it is our hope to provide a robust,

smooth transition to the Next Generation aircraft cockpit.
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Figure 6.6. The ALARMS application. The top plot shows an Advisory for one hazard,
the bottom plot was generated by changing the Advisory to a Caution (resulting in a
doubling/rescaling of the y-axis).
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(a) Two hazards. The second hazard is handled at a higher level of automation, close to the deadline.

(b) The second hazard reward is increased via the values next to the slider bars, thus now it is handled
by the pilot.

(c) Phase of flight is changed to land. The pilot’s attention is diverted and the graph is shifted right.

Figure 6.7. The ALARMS application
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CHAPTER 7

CONCLUSION

Meta-reasoning continues to be a necessary area of research which is applicable to

any situation in which the cognitive resources available to a decision maker are limited.

This thesis focuses on two particular limitations, time and space. Decentralized meta-

reasoning is necessary when the meta-reasoning process does not occur in one single

location. This thesis has examined the monitoring and control of base-level algorithms,

including when to stop one type of computation and begin another. A decision-theoretic

approach is taken, throughout this thesis an expected value is derived for each computa-

tion, and the computation with the largest expected value is selected. For decentralized

meta-reasoning, a joint or non-myopic computation plan is constructed, as opposed to a

myopic plan which considers the point of view of only one decision-maker. The meta-

reasoning decisions are applied under the Dec-MDP, Dec-POMDP, and Dec-POMDP-

Comm models.

7.1 Summary of contributions

Chapter 3 considered the decentralized monitoring and control of separate base-

level algorithms, each with its own performance profile. It expanded on previous work

in the literature which had considered the monitoring and control of a single algorithm.

First, the problem of decentralized monitoring and control was formalized into the De-

centralized monitoring problem (DMP) and model. The model specifically represented

stopping and monitoring decisions on the part of each meta-reasoning agent. Variants
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of the model were constructed which allowed for either local monitoring of the current

agent or global monitoring of all agents. For local monitoring, a complexity analy-

sis was conducted and the problem of making joint stopping decisions was shown to

be NP-complete through reduction to a transition-independent Dec-MDP model. The

reduction was used to construct a bilinear programming problem from the DMP, thus

allowing solutions to the bilinear program to apply to the DMP. For global monitoring,

the problem was reduced to a Dec-MDP with communication. Experiments were con-

ducted for each variant, to demonstrate how the model can be used to make stopping and

monitoring decisions for base-level algorithms. An empirical evaluation was conducted

in order to evaluate myopic versus coordinated reasoning techniques. Both techniques

were shown to be effective, with the coordinated technique being more effective in cases

where the decision of whether to stop or not (or monitor or not) was particularly close

in expected value, as well as in cases where the contributions of base-level algorithms

to overall utility were asymmetric.

Chapter 4 constructed meta-reasoning capabilities for the Dec-POMDP model, in

which agents execute in distributed fashion but a centralized algorithm produces exe-

cution policies at planning time. A method of observation compression was introduced

which allows a planner to cluster observations together, saving time and space. Obser-

vation compression was produced in a principled manner; observations were grouped

together based on the worst-case expected value loss incurred due to clustering. This

allowed algorithms to be developed for both lossless compression as well as lossy com-

pression with bounds. The observation compression method was combined with point-

based decentralized planning algorithms, producing a more efficient algorithm. The

resulting algorithm was analyzed for complexity in time and space, as well as loss

bounds, which can be computed online. Using these bounds, a planner that conducts

meta-reasoning over the online bounds was produced. After the original development of
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observation compression, more recent algorithms have either included their own form

of compression or can be augmented by observation compression if desired.

Chapter 5 examined meta-reasoning in both Dec-MDP and Dec-POMDP models

with communication. Unlike the model in Chapter 3, this model allowed for full syn-

chronization of state (for Dec-MDP) and belief state (for Dec-POMDP). For both mod-

els, a myopic algorithm was first developed which computes a value of communication

for each agent. These algorithms were evaluated, and it was shown that they could result

in overcommunication. Two improvements were made. First, agents were augmented

to construct joint communication policies rather than single-agent communication poli-

cies. Second, agents computed the value of delaying communication. It was shown that

these two improvements could mitigate the overcommunication problem.

Chapter 6 briefly describes a real-world application of meta-reasoning. In the ap-

plication, one of the base-level decision-makers was a human being, specifically an

airline pilot addressing external hazards. Meta-reasoning took place on the proposed

cockpit automation; this automation would evaluate its own performance profile for

handling the hazards and compare it to the human pilot’s performance profile under

varying stages of automation. A TMDP model was constructed to optimize joint pilot-

machine performance, the input to the model was the performance profiles and the

output was a plan for issuing alerts at the appropriate stage of automation over time. In

order to construct the performance profile of the pilot, a pilot state model was proposed.

7.2 Final thoughts

Before discussing future directions, I would like to discuss thoughts of future obsta-

cles. Both have to do with balance.

First: a year before this thesis was written, two definitions of meta-reasoning were

considered, which I roughly consider to be the “tight” and “loose” definitions. The tight
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definition corresponds to Chapter 3. It involves a well-defined procedure of forming

performance profiles and using decision theory to reason about them. The POMDP-

based models discussed in this thesis (POMDP, Dec-POMDP, etc.) would have all

been used to construct meta-reasoning policies and never base-level policies, unlike

Chapters 4 and 5. Dec-POMDP especially would have been applied to elaborate, non-

independent performance profiles. The loose definition was the one adopted for this

thesis, and is shown in Table 1.4. Dec-POMDP planning was not used as a meta-

reasoning method improved by observation compression, rather Dec-POMDP plan-

ning was the base-level computation and observation compression itself was the meta-

reasoning method. Similarly, making non-myopic communication decisions was de-

picted as a meta-reasoning method.

Second: One item that may not come through in the text is how powerful and effec-

tive the myopic solutions were. In the experiments in Chapter 3, the myopic solutions

were effective except when the decisions were close. But most decisions are not close,

for example it was very clear in most experiments in Chapter 3 when to stop, and when

to continue. In the experiments of Chapter 5, the myopic strategies would often find

very clever (but myopic) ways to produce near-optimal strategies.

An open empirical question is, in my mind, whether the cleverness of the myopic

strategies scales. Or whether it is the case that as problems become more complex, the

myopic strategies fail. I did not find this to be the case in the experiments conducted for

this thesis. As a matter of fact, as problems became more complex, the complex factors

would roughly “offset”, and a quick and dirty method such as the myopic strategies

seemed to suffice.

An open literature question is, in my mind, whether the tight or loose definition

of meta-reasoning scales better. The advantage of the tight definition is that it can

define a set procedure, one can imagine a “performance-profile file format” someday to
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standardize meta-reasoning software. The advantage of the loose definition is that it is

more applicable to more domains.

7.3 Future directions

I would like to take this work in two directions in the future. First, I would apply the

theory of Chapter 3 to more complex distributed applications. The challenge in doing

this lies in identifying useful domains in which such monitoring and control is applica-

ble. Augmenting the theory of Chapter 3 in order to address the compilation problem

in Section 2.1.4.2 will augment this work by allowing it to address problems where the

output of one module links to the input of a separate module. The techniques shown

in Chapter 3 seem like a natural combination for a Hadoop framework and distributed

data mining base-level algorithms.

Specifically, the fulfillment of NASA’s System-Wide Safety and Assurance Tech-

nology (SSAT) project at NASA requires leveraging vast amounts of data into action-

able knowledge. Models such as the Accident Causation Model describe active errors,

latent errors, windows of opportunity, and a causation chain. Each of these concepts

would be better understood by examining the large amounts of “everyday” flight data,

and not just the small amount of data proximal to high-profile incidents. Analysis of

a larger data set of data would provide more examples and thus better opportunity for

machine learning algorithms to reach statistically significant conclusions. The specific

data mining algorithm will depend on the data sets that are available. One data set

which may be available is in the aviation domain and involves FOQA (Flight Opera-

tions Quality Assurance) data, which is maintained in separate databases by separate

airlines and comprehensively records flight data from instruments. Using this data, I

hope to find or confirm previously unknown correlations between the distributed data

(e.g., “aircraft that fly through certain weather experience more part failures within the
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next year”, “flight crews who are overworked tend to miss more landings”, etc.). FOQA

data sets are (1) large, (2) distributed, and (3) heterogeneous, making analysis difficult,

and making them a potential candidate for distributed meta-reasoning.

A second area that I’d like to continue is in the mixed initiative planning in Chapter

6. The model depicted in that chapter is high level, and many of the parameters need

definition. There are three areas that need further work. First, the pilot state model

needs to be further defined, so that its input is unobtrusive measurements and its output

is a performance profile of time and quality distribution. The second is a study of

how separate stages of automation can affect the performance profile. I hope to work

with cognitive scientists in the near future to achieve these augmentations. Third, the

hazards should be addressed one by one, and a model should be defined which inputs

sensor information and outputs a level of alert.
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