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ABSTRACT

SOFTWARE TECHNIQUES TO REDUCE THE ENERGY
CONSUMPTION OF LOW-POWER DEVICES

AT THE LIMITS OF DIGITAL ABSTRACTIONS

FEBRUARY 2013

MASTOOREH (NEGIN) SALAJEGHEH

B.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

M.Sc., CARNEGIE MELLON UNIVERSITY, INI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kevin Fu

My thesis explores the effectiveness of software techniques that bend digital ab-

stractions in order to allow embedded systems to do more with less energy. Re-

cent years have witnessed a proliferation of low-power embedded devices with power

ranges of few milliwatts to microwatts. The capabilities and size of the embedded

systems continue to improve dramatically; however, improvements in battery density

and energy harvesting have failed to mimic a Moore’s law. Thus, energy remains a

formidable bottleneck for low-power embedded systems.

Instead of trying to create hardware with ideal energy proportionality, my disser-

tation evaluates how to use unconventional and probabilistic computing that bends

traditional abstractions and interfaces in order to reduce energy consumption while

protecting program semantics. My thesis considers four methods that unleash energy

vi



otherwise squandered on communication, storage, time keeping, or sensing: 1) CCCP,

which provides an energy-efficient storage alternative to local non-volatile storage by

relying on cryptographic backscatter radio communication, 2) Half-Wits, which re-

duces energy consumption by 30% by allowing operation of embedded systems at

below-spec supply voltages and implementing NOR flash memory error recovery in

firmware rather than strictly in hardware, 3) TARDIS, which exploits the decay prop-

erties of SRAM to estimate the duration of a power failure ranging from seconds to

several hours depending on hardware parameters, and 4) Nonsensors, which allow

operation of analog to digital converters at low voltages without any hardware mod-

ifications to the existing circuitry.
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CHAPTER 1

INTRODUCTION

Recent years have witnessed a proliferation of low-power embedded devices [6, 22,

63, 75] with power ranges of few milliwatts (battery-powered) to microwatts (bat-

teryless) [66]. The capabilities and size of the embedded systems continue to improve

dramatically; however, improvements in battery density and energy harvesting have

failed to mimic a Moore’s law. The battery energy density is the slowest trend in

mobile computing and it does not scale exponentially [93]. Thus, energy remains a

formidable bottleneck for low-power embedded systems. For example, circuits of a

smart lens can be miniaturized enough to be implanted inside an eye [56]; however,

its corresponding batteries are not made small enough for such implantation.

1.1 A Vision for a Cleaner World

Every year in United States alone, more than 3 billion batteries are purchased [4], a

fraction of which is utilized to power embedded systems ranging from smoke detectors

and utility meters to tollway payment transponders and pacemakers. I envision a

future in which fewer chemical batteries are purchased and have landed on the earth

even though the battery-operated devices continue to become computationally more

powerful. Furthermore, batteryless devices are developed and utilized in places that

have not been possible before.

Achieving this vision will require advances on many fronts: improvements in bat-

tery technologies in terms of energy per density, more productive energy harvesting

schemes, better energy-aware programming languages, and new methods to reduce

1



the energy consumption of existing devices. More fundamentally, we would like to

redefine and reexamine design goals and requirements for low-power systems that are

not as well equipped as their more powerful descendants, desktop computers.

1.2 Thesis Overview

Rather than trying to create hardware with ideal energy proportionality, the thesis

of this work is that we can use unconventional and probabilistic computing to bend

traditional abstractions and interfaces in order to reduce energy consumption while

protecting program semantics. In support of my thesis, I have designed and evaluated

four software techniques that allow both battery-powered and batteryless devices to

better exploit their power supplies: The first contribution, CCCP, exploits a passive

radio to provide a less energy-hungry alternative to non-volatile storage. The pri-

mary challenge to this approach was to preserve data privacy and security. My other

two contributions, Half-Wits and nonsensors, make energy consumption proportional

to workload by operating the chip below safety margins while preserving data reli-

ability. Finally, the TARDIS provides an hourglass-like timer which utilizes decay

properties of volatile memory in an unconventional way to provide a secure notion of

time. This timer is not as accurate as a clock but it requires no power to keep time.

Table 1.1 summarizes the techniques and challenges to save energy for each of these

four contributions.

Contribution Technique to Save Energy Research Challenge

CCCP Unconventional Use of Radio Security & Privacy
Half-Wits Probabilistic Storage Reliability
TARDIS Unconventional Use of SRAM Security and Reliability
Nonsensors Probabilistic Sensing Reliability

Table 1.1. My thesis uses unconventional and probabilistic computing that bends
traditional abstractions and interfaces in order to reduce energy consumption while
protecting program semantics.
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1.3 CCCP, Secure Remote Storage for RFID Tags

Research involving low-energy computing systems has long treated radio as an

energy-hungry resource to be used sparingly. This work, CCCP, exploits radio as a

resource to amplify the storage capabilities of batteryless, programmable RFID tags.

The main idea of this work is that a tag can securely use radio communication as a

less energy-intensive alternative to local, flash-based storage. The smaller energy re-

quirements of radio (Figure 1.1) allow the RFID tags either to devote more energy to

computation or to accomplish the same tasks using less energy, which may translate

into a longer operating range. CCCP uses established cryptographic mechanisms to

protect against untrustworthy RFID readers that could attempt to violate the confi-

dentiality, authenticity, integrity, and freshness of the data on a programable RFID

tag. The main challenge in this work is to design an energy-saving remote storage sys-

tem that provides security under the constraints of passive RFID systems. Our exper-

iments show that—despite cryptographic overhead—remote checkpointing consumes

less energy than checkpointing to flash for data sizes above roughly 64 bytes. CCCP

enables secure and flexible remote storage that would otherwise outstrip batteryless

RFID tags’ resources. This work has been published in USENIX Security’09 [109].
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Figure 1.1. Per-component maximum power consumption of two embedded devices.
Radio communication on the WISP requires less power than writes to flash memory.
The relative magnitudes of the power requirements means that a sensor mote favors
shifting storage workloads to local flash memory instead of remote storage via radio,
while a Computational RFID (CRFID) favors radio over flash.
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1.4 Half-Wits, Non-Volatile Storage at Low Voltage

While perfect data integrity is always an appealing target, system design con-

straints (e.g., energy scarcity) are likely to push systems towards execution modes

in which less-than-perfect data integrity is sometimes tolerated, in exchange for im-

proved power, density [86], or speed [15]. To enable energy-proportional computing for

application-specific data, embedded storage systems ought to consider unconventional

hardware-software interfaces that allow applications to provide reliability “hints” to

hardware. This would allow the hardware to perform in a probabilistic manner that

meets the application-level specifications without over-provisioning. The Half-Wits

work shows how to reduce energy consumption by 30% by implementing NOR flash

memory error recovery in firmware rather than strictly in hardware. The energy sav-

ings result from the ability to lower the supply voltage for components that share the

same power rail with the flash memory. This research also indicates that significant

energy savings are possible if application-specific data can tolerate bounded errors.

This work has been published in USENIX FAST [110] and ACM TECS [111].
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Figure 1.2. On a chip, different components have different minimum voltage require-
ments. Ideally, each component would have separate voltage sources and therefore
the energy consumption of the device will be proportional to the workload. In prac-
tice, however, a chip has a single power source due to cost constraints. As a result,
the energy consumption will be proportional to the worst case voltage requirement
regardless of the workload.
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1.5 TARDIS, Secure Notion of Time for Batteryless Devices

Unawareness of time has left smart cards and RFID tags vulnerable to a number

of successful attacks [91, 90, 20, 55]. A batteryless tag does not know about 1) the

amount of time spent by the reader to answer the challenge and 2) the time between

two different queries (Figure 1.3). A batteryless device could mitigate the risks of

brute-force attacks, side-channel attacks, and reverse engineering by throttling its

query response rate. However, the tag has no access to a trustworthy clock to im-

plement throttling. The TARDIS keeps track of time by exploiting SRAM decay

properties. In many ways, TARDIS operation resembles the functioning of an hour-

glass: the un-decayed, decaying, and fully decayed stages of SRAM are analogous

to full, emptying, and empty hourglass states. Our experiments demonstrate that

the TARDIS can measure time ranging from seconds to several hours depending on

hardware parameters Key challenges to implementing a practical TARDIS include

compensating for temperature and handling variation across hardware. This work

has been published in USENIX Security [99].
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Figure 1.3. The tag cannot determine the time between a challenge and a response
or the time between two sessions. The reader could respond to the tag as tardily as
it likes or query the tag as quickly as it wants.
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1.6 Nonsensors, Sensing at Low Voltage

Similar to the non-volatile storage, Analog to Digital Converters (ADCs) require

relatively high voltage to guarantee functionality. For example, Texas Instruments

MSP430F1232 requires the user to provide the ADC with at least 2.2 V to guarantee

functionality while the CPU portion of the chip demands only 1.8 V. Table 1.2 shows

more examples of popular microcontrollers with ADCs that restrict choices for the

CPU voltage supply. This mismatch of voltage requirements causes energy dispropor-

tionality when the ADC and other on-board components share the same power rail.

Nonsensors proposes to operate ADCs at the same voltage level as other embedded

components to reduce the energy consumption of the whole system. To evaluate the

nonsensors, we have designed a logging system that monitors and logs the output of

ADC at low as well as high voltages. We define error as the measurement different of

ADC at low and high voltage. Our preliminary results show that the ADC could work

at voltages lower than specified by the chip manufacturers with introducing negligible

errors (1.30%).

Microcontroller CPU Minimum ADC Minimum Supply Voltage
Voltage Voltage Gap

TI MSP430F1232 [128] 1.8 V 2.2 V 22%
PIC32M [82] 2.5 V 3.0 V 20%
ATmega128L [9] 2.7 V 4.5 V 66%
STM32F103C6 [120] 2.0 V 2.4 V 20%

Table 1.2. The ADC restricts choices for the CPU voltage supply on microcontrollers
because the CPU shares the same power rail as the on-chip ADC.

6



1.7 Summary of Contributions

To unleash energy otherwise squandered on storage, reliability, time keeping, or

sensing, this thesis makes the following contributions:

1. CCCP: A secure remote storage protocol that suits the characteristics and con-

straints of batteryless RFID tags, which can be used in the contexts of execution

checkpointing and external data storage on an untrusted RFID reader infras-

tructure.

2. Half-Wits: A set of algorithms that enable reliable writes to flash memory

while coping with low voltage, and an empirical evaluation that characterizes

the behavior of on-chip flash memory at voltages below minimum levels specified

by manufacturers.

3. TARDIS: Algorithmic building blocks to demonstrate the feasibility of using

SRAM for a trustworthy source of time without power.

4. Nonsensors: Evaluation of operating analog to digital converters at low voltages

without any hardware modifications to the existing circuitry.
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CHAPTER 2

LOW-POWER EMBEDDED SYSTEMS

The focus of this thesis is on low-power devices with scarce energy resources;

whether it is battery or it is harvested energy stored in capacitors. This chapter will

give a brief background on battery-powered embedded systems and intermittently

powered devices—batteryless devices that lose power regularly (e.g., passive RFID

tags). Table 2.1 shows the abbreviations used in this thesis.

2.1 Battery-powered Embedded Systems

Billions of embedded systems ranging from thermostats and utility meters to more

recently-developed sensor motes run on batteries and having a small energy budget

makes energy efficiency a top priority for them. There are many new energy-saving

techniques developed for low-power embedded systems recently. For example, Blaauw

et al. [15] reduce power consumption by lowering the operating voltage of a pipelined

CPU. Certain pipeline stages may produce incorrect computation that require re-

computation, but the errors can be made rare to allow better scalability of power

consumption. In another case, Sorber et al. [118] introduced Eon, an energy-aware

language and runtime system that measured energy harvesting and consumption. Eon

automatically adjusts the device behavior as the energy conditions change.

However, not all embedded systems are taking full advantage of their energy re-

sources. Most systems inherit algorithms from their powerful ancestors without much

tailoring or tuning based on their limited resources. For example, most cryptography

algorithms are designed and developed to perfection based on the assumption that
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Abbreviation Full Name

ADC Analog to Digital Conversion
CCCP Cryptographic Computational Continuation Passing
CPU Central Processing Unit
CRFID Computational RFID
DRV Data Retention Voltage
ECC Error Correction Code
ECG Electrocardiography
EPC Electronic Product Code
GPIO General Purpose Input/Output
RFID Radio Frequency IDentification
SRAM Static Random Access Memory
TARDIS Time And Remanence Decay In SRAM
TI Texas Instruments

Table 2.1. Terminology

resources (memory, power, or time) available to the device are plenty. The choice

of using RC5 [105] as is in a sensor mote [67] could be replaced with encryption

algorithms that are designed with limited resources in mind [18].

Matching energy resources and energy demands remains a challenge for many

battery-powered systems. Pacemakers and Implantable Cardiac Defibrillators often

contain high-capacity lithium-based batteries that last five to seven years [133] which

requires surgery for battery (device) replacement. Many home electronic devices such

as smoke detectors and other sensing devices that use microcontrollers need battery

maintenance very often. Wireless peripherals and game controllers have battery life-

time of months and hours respectively. The short lifetime of everyday electronic

devices states the importance of improving energy efficiency of embedded system.

2.2 Intermittently Powered Systems

Unlike battery-powered devices that assume their energy resource will be avail-

able on orders of months, batteryless system that live on harvested energy expect

energy interruptions every few seconds. We define intermittently powered devices as
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systems that do not rely on constant source of power and faces reboots very regularly.

Examples of devices targeted and experimented within this thesis are RFID tags and

smart cards, both of which rely on Radio Frequency (RF) power.

2.2.1 Computational RFID Tags

Consistent with the usage of RFID terminology, the term Computational RFID

(CRFID) has two meanings: the model under which passively powered computers

operate in concert with an RFID reader infrastructure, and the passively powered

computers themselves. CRFIDs represent a class of programmable, batteryless com-

puters [22, 101]. The small size and low maintenance requirements of CRFIDs make

them especially appealing for adding computational capabilities to contexts in which

placing or maintaining a conventional computer would be infeasible or impossible.

However, CRFID systems require that nearby, actively powered RFID readers pro-

vide energy whenever computation is to occur, a requirement that may not suit all

applications.

The components of a CRFID are: a low-power microcontroller; onboard RAM;

flash memory (on or off the microcontroller); energy harvesting circuitry tuned to a

certain frequency (e.g., 913 MHz for EPC Gen 2 RFID); an antenna; a transistor

between the antenna and the microcontroller to modulate the antenna’s impedance;

a capacitor for storage of harvested energy; one or more analog-to-digital converters;

and optional sensors for physical phenomena such as acceleration, heat, or light.

The first working example of a CRFID is the Wireless Identification and Sensing

Platform, or WISP [112], a prototype device slightly smaller than a postage stamp

(discounting its inches-long antenna). The WISP is built around an off-the-shelf TI

MSP430 microcontroller. Another example of a CRFID is UMass Moo [140], with

a more powerful microcontroller, with additional memory, more pins for controlling

sensors and actuators, and redesigned voltage regulation circuitry.
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2.2.2 Smart Cards

Smart cards which are also known as Integrated Circuit Cards (ICCs) refer to

card-sized devices that contain an integrated circuit. Based on the way smart cards

are powered up, they are considered contact or contactless. Contact smart cards

which are more common than contactless ones, use six pins to communicate the a

card reader. One of the pins is the VCC which should be in contact with the power

pin of the reader. The contactless cards, harvest RF energy using their antenna and

do not need to directly be in contact with the reader.

Although some smart cards are battery-powered, here we are talking about the

ones that rely only on energy received from the reader. For example, contactless

credit cards or transit cards are batteryless. The read time of card which is the equal

to the power-up time is required to be less than 300ms–500ms (acceptable delay by

customers to use a card). The short periods of power-up time makes smart cards

count as intermittently-powered devices.

In addition to energy issues, the security and privacy of smart cards are usually

challenging. Some RFID credit cards are vulnerable to replay attacks because they

lack a notion of time [55]. Oswald et al. [91] recently demonstrated how to extract

the 112-bit key from a MIFARE DESFire contactless smartcard (used by the Clipper

all-in-one transit payment card). The side channel attack required approximately 10

queries/s for 7 hours. An earlier MIFARE classic chip was broken in 2008 by Nohl

et a. [87]. Protecting the security and privacy of batteryless smart cards remains a

challenging problem as long as there is no secure notion of time provided to smart

cards.
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CHAPTER 3

CCCP: SECURE REMOTE STORAGE FOR
COMPUTATIONAL RFID TAGS

Passive RFID tags harvest their operating energy from an interrogating reader,

but constant energy shortfalls severely limit their computational and storage capabil-

ities. In this chapter, I propose Cryptographic Computational Continuation Passing

(CCCP), a mechanism that amplifies programmable passive RFID tags’ capabilities

by exploiting an often overlooked, plentiful resource: low-power radio communica-

tion. While radio communication is more energy intensive than flash memory writes

in many embedded devices, we show that the reverse is true for passive RFID tags.

The main idea of this work is that a CRFID can securely use radio communication

as a less energy-intensive alternative to local, flash-based storage. The smaller energy

requirements of radio allow the CRFID either to devote more energy to computation

or to accomplish the same tasks using less energy, which may translate into a longer

operating range.

CPU
Backscatter 

Radio

Alternative Storage

RFID 
Reader

 Before  After 

Storage

CPU

Storage

Backscatter 
Radio

Figure 3.1. CCCP exploits radio to offer a less energy-expensive alternative to local
non-volatile storage. The main challenge of this work is to preserve the security and
privacy of the tag-to-reader communication.

Security is the major challenge in such remote storage system. Using scant and

fleeting energy, a tag must enforce confidentiality, authenticity, integrity, and data
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freshness while communicating with potentially untrustworthy infrastructure. This

work contribution synthesizes well-known cryptographic and low-power techniques

with a novel flash memory storage strategy, resulting in a secure remote storage

facility for an emerging class of devices.

Evaluation of CCCP consists of energy measurements of a prototype implemen-

tation on the batteryless, MSP430-based Intel WISP platform. Experiments show

that—despite cryptographic overhead—remote checkpointing consumes less energy

than checkpointing to flash for data sizes above roughly 64 bytes. CCCP enables

secure and flexible remote storage that would otherwise outstrip batteryless RFID

tags’ resources.

3.1 Frequent Power Loss on Tags, but Plentiful External Re-

sources

Several key observations motivate the development of secure remote storage for

computational RFIDs.

3.1.1 Frequent loss of power may interrupt computation.

The CRFID model posits computing devices that are primarily powered by RF

energy harvesting, a mechanism that is naturally finicky because of its dependence

on physical conditions. Any change to a CRFID’s physical situation—such as its

position or the introduction of an occluding body—may affect its ability to harvest

energy. Existing systems that use RF harvesting typically counteract the effect of

physical conditions by placing stringent requirements on use. For example, an RFID

transit card reader presented with a card may behave in an undefined way unless

the card is within 1 cm for at least 300 ms, parameters designed to ensure that

the card’s computation finishes while it is still near the reader. CRFID applications

may preclude such a strategy: programs on general-purpose CRFIDs may not offer
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convenient execution time horizons, and communication distances may not be easily

controlled. Without any guarantees of energy availability, it may be unreasonable to

mandate that programs running on CRFIDs complete within a single energy lifecycle.

As an extension of the Mementos system [101], CCCP aims to address the problem of

suspending and resuming computations to facilitate spreading work across multiple

energy lifecycles.

3.1.2 Storing remotely may require less energy than storing locally.

Some amount of onboard nonvolatile memory exists on a CRFID, so an obvi-

ous approach to suspension and resumption is simply to use this local memory for

state storage. However, to implement nonvolatile storage, current microcontrollers

use flash memory, which imports several undesirable properties. While reading from

flash consumes energy comparable to reading from volatile RAM, the other two flash

operations—writing and erasing—require orders of magnitude more energy per da-

tum (Table 3.3). Our measurements of a CRFID prototype reveal that the energy

consumption of storing a datum locally in flash can in fact exceed the energy con-

sumption of transmitting the same datum via backscatter communication.

To illustrate the difference between flash and radio storage on a CRFID and to

show how the relationship is different on a sensor mote, we offer Figure 1.1. The

figure helps explain why designers of mote-based systems choose to minimize radio

communication; similarly, it justifies our exploration of radio-based storage as an

alternative to flash-based storage on CRFIDs.

It should be noted that CCCP, although its primary data storage mechanism is

the communication link between CRFIDs and readers, still requires some flash writes

during storage operations: CCCP maintains a counter in flash to ensure that key ma-

terial is not reused. However, because CCCP employs hole punching (Section 3.2.4.4)

to maintain the counter, the amount of data written for counter updates is small com-
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pared to the amount of data that can be stored at once—small enough not to obviate

the energy advantage of radio-based storage—and counter updates do not frequently

necessitate erasures.

3.1.3 EPC Gen 2 RFID readers are typically not standalone devices.

Rather, they are connected to networks or other systems (for, e.g., control or log-

ging) that can offer computing resources such as storage. The benefit to CRFIDs

that communicate with such a reader infrastructure is access to effectively limitless

storage. Several kilobytes of onboard flash memory is minuscule compared to the

potentially vast amount of storage available to networked RFID readers. While un-

limited external storage is not obviously helpful for saving computational state—a

CRFID cannot save or restore more state than it can hold locally—its usefulness as

general-purpose long-term storage is analogous to the usefulness of networked storage

for PCs.

3.1.4 RFID protocols allow arbitrary payloads.

While the EPC Gen 2 protocol imposes constraints on the transmissions between

RFID tags and RFID readers—for example, the maximum upstream data rate from

tag to reader is 640 Kbps [37]—it also offers sufficient flexibility that CCCP can be

implemented on top. In particular, the Gen 2 protocol permits a reader to issue a Read

command to which a tag can respond with an arbitrary amount of data. Previous

versions of the EPC RFID standard mandated a small response size that would have

imposed severe communication overhead on large upstream transmissions.

CRFID is not married to EPC Gen 2 as an underlying protocol, but the existence

of a widespread RFID reader infrastructure and the availability of commodity reader

hardware makes for easy prototyping.
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3.1.5 Challenges Due to Energy Scarcity

Several energy-related considerations limit the resources available for computation

on CRFIDs, limiting the utility of CRFIDs as a general-purpose computing platform.

Ransford et al. [101] discuss the difficulty of effectively utilizing a storage capaci-

tor and enumerate the drawbacks of using capacitors for energy storage; Buettner

et al. [22] discuss how energy limitations bear on the deployment of a CRFID-based

system. Two key design features of CRFIDs pose energy challenges to a system like

CCCP: first, the voltage and current requirements of flash memory constrain the

design of flash-bearing CRFIDs and limit the portion of a CRFID’s energy lifecycle

that is usable for computation. Second, a CRFID’s reliance on energy harvesting and

backscatter communication means that a CRFID cannot compute or communicate

without reader contact.

3.1.6 Flash memory limitations.

Microcontrollers that incorporate flash typically have separate threshold voltages:

one threshold for computation, and a higher threshold for flash writes and erases.

Because of this difference, flash writes cannot be executed at arbitrary times during

computation on a CRFID; they require sufficient voltage on the storage capacitor.

Without a constant supply of energy, capacitor voltage declines with time and com-

putation, so waiting until the end of a computation to record its output to nonvolatile

memory may be risky.

The size of a CRFID’s storage capacitor imposes another basic limitation. Flash

writes, which owe their durability to a process that effects significant physical changes,

require more current and time (and therefore energy) than much simpler RAM or reg-

ister writes. Per-datum measurements show that, on a WISP’s microcontroller, writ-

ing to flash consumes roughly 400 times as much energy as writing to a register [101].

16



Such outflow from the storage capacitor can dramatically shorten the device’s energy

lifecycles.

3.1.7 Non-autonomous operation.

Backscatter communication involves modulating an antenna’s impedance to reflect

radio waves—an operation that, for the sender, involves merely toggling a transistor

to transmit binary data. Such communication cannot occur without a signal to re-

flect; CRFIDs, like other passive RFIDs, are therefore constrained to communicate

only when a reader within range is transmitting. Computation may occur during

times of radio silence, but only if sufficient energy remains in the CRFID’s storage

capacitor. Unlike battery-powered platforms that can operate autonomously between

beacon messages from other entities, a CRFID may completely lose power between

interactions with an RFID reader. Our experience shows that, lacking a source of har-

vestable energy, the storage capacitor on a WISP (Revision 4.0) can support roughly

one second of steady computation before its voltage falls below the microcontroller’s

operating threshold. Such limitations constrain the design space of applications that

can run on CRFIDs. For example, without autonomy, an application cannot plan to

perform an action at a specific time in the future.

3.1.8 Unsteady energy supply.

A key challenge CRFIDs face is that their supply of energy can be unsteady and

unpredictable, especially under changing physical conditions. RFID readers may not

broadcast continuously or even at regular intervals, and they do not promise any

particular energy delivery schedule to tags. In our experiments, even within inches

of an RFID reader that emitted RF energy at a steady known rate, the voltage on

a CRFID’s storage capacitor did not appear qualitatively easy to predict despite the

fixed conditions. A CRFID’s storage capacitor must buffer a potentially unsteady

supply of RF energy without the ability to predict future energy availability.
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Design goal Approach

Computational progress Checkpointing via radio to untrusted RFID readers
Security: authentication, integrity UHF-based MAC
Security: data freshness Key non-reuse; counter stored by hole punching in

nonvolatile memory
Security: confidentiality Symmetric encryption with keystream precompu-

tation

Table 3.1. CCCP’s design goals and techniques for accomplishing each of them.

3.2 Design of CCCP

CCCP’s primary design goal is to furnish computational RFIDs with a mechanism

for secure outsourced storage that facilitates the suspension and resumption of pro-

grams. This section describes how CCCP is designed to meet that goal and several

others. Refer to Section 3.3 for a discussion of CCCP’s implementation, and refer to

Section 3.4 for an evaluation of CCCP’s design choices and security; in particular,

Section 3.4.3.1 discusses the overhead imposed by cryptographic operations.

Given a chunk of serialized computational state on a CRFID, CCCP sends the

state to the reader infrastructure for storage. (CCCP is designed to work indepen-

dently of the state serialization method, and does not prescribe a specific method.) In

a subsequent energy lifecycle, an RFID reader that establishes communication with

the tag sends back the state, CCCP performs appropriate checks, and the CRFID

resumes computation where it left off. CCCP provides several operating modes that

allow an application designer to increase security—by adding authentication alone,

or authentication and encryption—at the cost of additional per-checkpoint energy

consumption. Table 3.1 describes how CCCP meets each of the goals discussed in

this section.
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3.2.1 Design Goal: Computational Progress on CRFIDs

CCCP remotely checkpoints computational state to make long-running operations

robust against power loss—i.e., to enable their computational progress. We define

computational progress as change of computational state toward a goal (e.g., the

completion of a loop). While CRFIDs are able to finish short computations in a small

number of energy lifecycles (e.g., symmetric-key challenge-response protocols [26, 54]),

the challenges described in Section 2.2.1 make it difficult for a CRFID to guarantee

the computational progress of longer-running computations.

If a CRFID loses power before it completes a computation, all volatile state in-

volved in the computation is lost and must be recomputed in the next cycle. If energy

availability is similarly inadequate in subsequent cycles, the CRFID may never ob-

tain enough energy to finish its computation or even to checkpoint its state to flash

memory. We refer to such vexatious computations as Sisyphean tasks. (Sisyphus was

condemned to roll a large stone up a hill, but was doomed to drop the stone and

repeat hopelessly forever [58].) A major goal of CCCP is to prevent tasks from be-

coming Sisyphean by shifting energy use away from flash operations and toward less

energy-intensive radio communication.

3.2.2 Checkpointing Strategies: Local vs. Remote

We consider two strategies for the nonvolatile storage of serialized checkpointed

state. The first, writing the state to flash memory, involves finding an appropri-

ately sized region of erased flash memory or creating one via erase operations. The

second strategy, using CCCP, requires a CRFID to perform zero or more crypto-

graphic operations (depending on the operating mode) and then transmit the result

via backscatter communication.

The obvious advantage of flash memory is that its proximity to the CRFID makes

it readily accessible. On-chip flash has the further advantage that it may be inac-
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cessible to an attacker. However, the operating requirements of flash are onerous in

many situations. With unlimited energy, a CRFID could use flash freely and avoid

the complexity of a radio protocol such as CCCP. Unfortunately, energy is limited in

ways described elsewhere in this chapter, and several disadvantages of flash memory

diminish its appeal as a store for checkpointed state. The most obvious disadvan-

tage is an imbalance between the requirements for reading and writing. Write and

erase operations require more time and energy per bit than reading (Table 3.3); ad-

ditionally, the minimum voltage and current requirements are higher. For example,

in the case of the MSP430F2274, read operations are supported at the microcon-

troller’s minimum operating voltage of 1.8 V, but write and erase operations require

2.2 V. Finally, flash memory (both NOR and NAND types) generally imposes the

requirement that memory segments be erased before they are written: if a bit ac-

quires a zero value, the entire segment that contains it must be erased for that bit

to return to its default value of 1. Aside from burdening the application programmer

with inconvenience, erase-before-write semantics complicate considerations of energy

requirements. These disadvantages are minor afflictions for higher-powered systems,

but they pose serious challengess to the utility of flash memory on CRFIDs.

Backscatter transmission, since it involves modulating only a single transistor to

encode data, requires significantly less energy than transmission via active radio.

In fact, our measurements (Figure 3.4) show that backscatter transmission of an

authenticated, encrypted state checkpoint (plus a small amount of bookkeeping in

flash) can require less energy than exclusively writing to flash memory, even after

including the energy cost of encrypting and hashing the checkpointed state. Because

of its consistent behavior throughout the microcontroller’s operating voltage range,

backscatter transmission is an especially attractive option when the CRFID receives

radio contact frequently but cannot harvest energy efficiently, in which case writing to

flash may be infeasible because of insufficient energy in the storage capacitor. These

20



circumstances may occur far from the reader, or in the presence of radio occlusions,

or when a computation uses energy quickly as soon as the CRFID wakes up.

Despite its advantages over flash storage and active radio, CCCP’s reliance on

backscatter transmission has drawbacks. Bitrate limitations in the EPC Gen 2 pro-

tocol cause CCCP’s transmissions to require up to twice as much time per datum as

flash storage on some workloads. The best choice of storage strategy depends on an

application’s ability to tolerate delay and the necessity of saving energy.

3.2.3 Threat Model

We define CCCP’s threat model as a superset of the attacks that typically threaten

RFID systems [62]. The most obvious way an attacker can disrupt the operation of a

CRFID is to starve it of energy by jamming, interrupting, or simply never providing

RF energy for the CRFID to harvest. Because they depend entirely on harvestable

energy, CRFIDs cannot defend against such denial-of-service (DoS) attacks, so we

consider these attacks as a problem to be dealt with at a higher system level. We

instead focus on two types of attacks that a CRFID can use its resources to address:

(1) active and passive radio attacks and (2) attacks by an untrusted storage facility.

An adversary may attempt to:

• Eavesdrop on radio communication in both directions between a CRFID and

reader.

• Masquerade as a legitimate RFID reader in order to collect checkpointed state

from CRFIDs. Because CRFIDs do not trust reader infrastructure, such an

attack should allow an attacker to collect only ciphertext.

• Masquerade as a legitimate RFID reader in order to send corrupted data or old

data (e.g., a previous computational state) to the CRFID. Such invalid data

should not trick the CRFID into executing arbitrary or inappropriate code.

• Masquerade as a specific legitimate CRFID in order to retrieve that CRFID’s

stored state from the reader. This state should be useless without access to the
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keystream material that encrypted it—keystream material that is stored in the

legitimate owner’s nonvolatile memory and never transmitted.

We additionally assume that an adversary cannot physically inspect the contents of

a CRFID’s memory.

3.2.4 Secure Storage in CCCP

Because computational RFIDs depend on RFID readers for energy—if a CRFID

is awake, there is probably a reader nearby—readers are a natural choice for storing

information. But a reader trusted to provide energy should not necessarily be trusted

with sensitive information such as checkpointed state.

CCCP involves communication with untrusted reader infrastructure, so we estab-

lish several security goals:

• Authenticity: a CRFID that stores information on external infrastructure will

eventually attempt to retrieve that information, and the authenticity of that in-

formation must be cryptographically guaranteed. Under CCCP, the only party

that ever needs to verify the authenticity of a CRFID’s stored information is

the CRFID itself.

• Integrity: an untrusted reader may attempt to impede a CRFID’s computa-

tional progress by providing data from which the CRFID cannot resume com-

putation (e.g., random junk). While CCCP cannot prevent a denial of service

attack in which a reader provides only junk, it guarantees that CRFIDs will

compute only on data they recognize.

• Data freshness: just as a reader can provide corrupted data instead of usable

data, it can replay old state in an attempt to hinder the computational progress

of a computation. Under CCCP, a CRFID recognizes and rejects old state.

• Confidentiality: in certain applications, the leaking of intermediate computa-

tional state might be a critical security flaw. For other applications, confiden-

tiality may not be necessary.
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3.2.4.1 Keystream Precomputation

Because CCCP’s threat model assumes a powerful adversary that can intercept

all transmissions, CCCP never reuses keystream material when encrypting data or

computing MACs. We use CCCP’s refreshable pool of pseudorandom bits (a circular

buffer in the CRFID’s nonvolatile memory) as a cryptographic keystream to provide

confidentiality and authentication.

CCCP stores keystream material on the CRFID because we assume that the CR-

FID trusts only itself; a CRFID cannot extract trustworthy keystream material from a

reader it does not trust, nor from any observable external phenomenon (which, in our

threat model, an attacker would be able to observe equally well). Because a CRFID

can reserve only finite storage for storage of keystream material, the material must

be periodically refreshed. CCCP opportunistically refreshes the keystream material

with pseudorandom bits, following Algorithm 3.

To provide unique keystream bits to cryptographic operations (encryption and

MAC), CCCP uses an existing implementation [26] of the RC5 block cipher [105] in

counter mode to generate pseudorandom bits and store them to flash. The choice

of a block cipher in counter mode means that the resulting MAC and ciphertext

are secure against a computationally bounded adversary [21]. A stream cipher would

work equally well in principle, but in implementing CCCP, we found that those under

consideration required a large amount of internal read-write state. For example, the

stream cipher ARC4 requires at least 256 bytes of RAM [114], whereas RC5 requires

only an 8-byte counter. The RC5 key schedule is preloaded into flash memory the

first time the device is programmed, and the keystream materials are generated during

periods of excess energy (or power seasons ; see § 3.2.5). One such period of excess

energy is the CRFID’s initial programming, at which time the entire keystream buffer

is filled with keystream bits. To avoid reusing keystream bits, CCCP maintains several
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Variable Description

chkpt counter Counter representing the number of checkpoints completed; used to
calculate the location of the first unused keystream material; updated
each time keystream material is consumed; unary representation

kstr end Pointer to the end of the last chunk of unused keystream bits in
keystream memory; updated during key refreshment

rc5counter Incrementing counter used as an input to RC5 while filling keystream
memory with pseudorandom data; updated during key refreshment

Table 3.2. Variables CCCP stores in nonvolatile memory.

variables in nonvolatile memory. Table 3.2 summarizes the variables CCCP stores in

nonvolatile memory.

3.2.4.2 UHF-based MAC for Authentication and Integrity

CCCP uses a MAC scheme based on universal hash functions (UHF) [25] to

provide authentication and integrity. CCCP constructs the MAC by first hashing

the message and then XORing the 80-bit hash with a precomputed cryptographic

keystream. Because of the resource constraints of CRFIDs, it is critical to use a

scheme that consumes minimal energy, and according to recent literature [16, 38],

UHF-based MACs are potentially an order of magnitude faster than MACs based

on cryptographic hash functions. We chose UMAC [16] as the MAC function after

evaluating several alternatives. Our experiments on WISP (Revision 4.0) CRFIDs

determined that UMAC takes on average 18.38 ms and requires 28.79 µJ of energy

given a 64-byte input.

3.2.4.3 Stream Cipher for Confidentiality

To provide confidentiality, a CRFID simply XORs its computational state with a

precomputed cryptographic keystream. This encryption scheme is low-cost in terms

of computation and energy, but it relies on using each keystream bit at most once.

CCCP ensures that the encryption and MAC functions never reuse keystream bits by
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000001112 (=710)

000010002 (=810)

111111112 (erase)

…111000000001 (=810)

…111100000001 (=710)

(a) Binary counter (b) Unary counter

Figure 3.2. Illustration of hole punching. While incrementing a binary counter (a) in
flash memory may require an energy-intensive erase operation, complemented unary
representation ((b), with the number of zeros, or “holes,” representing the counter
value) allows for incrementing without erasure at a cost of space efficiency.

keeping track of the beginning and end of fresh keystream material in flash memory.

The keystream pool is represented as a circular buffer. The address of the first unused

keystream material is derived from the value of chkpt counter (Table 3.2), and the

last unused keystream material ends just before the address pointed to by kstr end .

If the application using CCCP demands confidentiality at all times, then if CCCP

cannot satisfy a request for unused keystream bits, it pauses its work to generate

more keystream bits. This behavior is inspired by that of the blocking random device

in Linux [51].

3.2.4.4 Hole Punching for Counters Stored in Flash

To avoid reusing keystream material, CCCP maintains a counter (chkpt counter)

from which the address of the first unused keystream bits can be derived. The counter

is stored in flash memory because it is used for state restoration after power loss. How-

ever, incrementing a counter stored in binary representation always requires changing

a 0 bit into a 1 bit (Figure 3.2(a)). On segmented flash memories, changing a single

bit to 1 requires the erasure (setting to 1) of the entire segment that contains it—at

least 128 bytes on the MSP430F2274—before the new value can be written. An ad-

ditional cost that varies among flash cells is that they wear out with repeated erasure

and writing [52].
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Operation Seg. erase Write Read Write

Size (bytes) 128 128 128 2
Energy (µJ) 46.81 56.97 0.64 0.96

Table 3.3. Comparison of energy required for flash operations on an MSP430F2274.
Hole punching often allows CCCP to use a single-word write (2 bytes on the MSP430)
instead of a segment erase when incrementing a complemented unary counter.

To avoid energy-intensive erasures and minimize the energy cost of writing counter

updates, CCCP represents chkpt counter in complemented unary instead of binary.

CCCP interprets the value of such a counter as the number of 0 bits therein. Because

1 bits can be changed to 0 bits without erasure, incrementing a counter requires

a relatively small write, with erasures necessary only if the unary counter must be

extended into unerased memory. We call this technique hole punching after the visual

effect of turning 1 bits into 0 bits. Since chkpt counter is simply incremented at each

remote checkpoint, updating the counter generally requires writing only a single word.

Table 3.3 illustrates the energy cost of erasing an entire segment and the energy cost

of writing a single word.

To minimize the length of the unary chkpt counter ’s representation and to fa-

cilitate simple computation of offsets, CCCP assumes a fixed size for checkpointed

state; in practice an application designer can choose an appropriate value for the fixed

checkpoint size.

3.2.4.5 Extension for Long-Term Storage

Under CCCP, readers can act not only as outsourced storage for computational

state, but also as long-term external storage. Because of their ultra-low-power micro-

controllers, CRFIDs are likely to have only a small amount of flash available for data

storage. Moreover, since flash operations are energy intensive, depending exclusively

on flash memory as a storage medium is undesirable. CCCP could enable a CRFID
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to instead use the reader infrastructure as an external storage facility with effectively

limitless space.

Long-term storage requires a different key management strategy than checkpoint-

ing data. With a temporary checkpointing system, the CRFID needs access only to

the keystream material used to prepare the last checkpoint sent to a reader. However,

in the case of long-term storage, the CRFID may require access to all of the data it

has ever stored on the reader and therefore must remember all of the cryptographic

keys from those stores. To avoid this unrealistic requirement, a potential extension

to CCCP allows the CRFID to generate keys on demand when long-term storage is

required.

There are two operations that CCCP can provide to a CRFID application for this

purpose:

• To satisfy a Store(data) request, CCCP provides a keystream generator in the

form of a block cipher in counter mode; this requires a monotonically increasing

counter in addition to CCCP’s chkpt counter . CCCP XORs the given data with

the generated keystream and then constructs a MAC, then sends the ciphertext

and MAC to the reader for storage. CCCP then sends the counter value back

to the application.

• To satisfy a Retrieve(index ) request, CCCP asks the RFID reader for the

data at the given index. CCCP then generates the same keystream it used

to encrypt the data by passing the index to the block cipher. Finally, CCCP

verifies the MAC provided by the reader and returns the decrypted data to the

application.

3.2.5 Power Seasons

If a CRFID could predict future energy availability, then it would be able to sched-

ule its generation of keystream bits and ensure that it never exhausted its supply of
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pseudorandomness during normal operation. However, because CRFIDs lack auton-

omy and cannot depend on RFID reader infrastructure to provide a steady energy

supply, we roughly classify the energy availability scenarios a CRFID faces into two

seasons. We assume that the general case is a winter season, in which a CRFID

cannot consistently harvest enough energy to perform all of its tasks. During winter,

the CRFID must focus on minimizing checkpoints and wasted energy. The other

season is summer, during which harvested energy is plentiful and the CRFID can

afford to perform energy-intensive operations such as precomputation and storage of

keystream material for later use.

CCCP can identify a summer season if one of two conditions is true. First, the

CRFID may find itself awake with no computations left to complete, for example after

it has finished a sensor reading. Second, the CRFID may find itself communicating

with a reader that does not understand CCCP and simply provides harvestable energy.

3.3 Implementation

The components of CCCP span two environments: CRFIDs and RFID read-

ers. On a CRFID, CCCP accepts data from an application and uses the CRFID’s

backscatter mechanism to ship the data to a reader. The reader (which we consider

as an RFID reader plus a controlling computer) is programmed to participate in the

CCCP protocol and return computational state where necessary. This section de-

scribes the CRFID-side components, the reader-side components, and the protocol

that ties them together.

The CRFID side of CCCP is implemented in the C programming language on

WISP (Revision 4.0) prototypes. At its core are three primary routines, which we

present in pseudocode: Checkpoint (Algorithm 1), Resume (Algorithm 2), and

Key-Refresh (Algorithm 3). Checkpoint and Restore refer to a counter called

chkpt counter from which CCCP derives the address of the first unused keystream
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material. For routines that require radio communication, we borrow radio code from

Intel’s WISP firmware version 1.4. Note that, since a CRFID cannot assume that

a reader is listening at an arbitrary time, the Transmit subroutine waits for an

interrupt indicating that the CRFID has received a go-ahead message from the reader.

Algorithm 1 The Checkpoint routine encrypts, MACs, and transmits a fixed-size
(STATE SIZE , selected by the application designer) chunk of computational state.
〈A, B〉 means the concatenation of A and B with a delimiter in between. 80 bits is the
fixed output size of NH, the hash function used by UMAC. For arithmetic simplicity,
this pseudocode treats the keystream pool as an infinite array.

Checkpoint(state, keystream, chkpt counter)

1 � Compute the (constant) amount of keystream material that will be used in
this invocation

2 chkpt size = STATE SIZE +Length(〈state, chkpt counter〉) + 80 bits
3
4 k ← chkpt counter × chkpt size � keystream[k] holds unused keystream material
5 chkpt counter ← chkpt counter +1 � Update chkpt counter in nonvolatile memory
6
7 C ← state ⊕ keystream[k . . . k + STATE SIZE − 1]
8 � Encrypt state by XORing with keystream material

9 k ← k + STATE SIZE � . . . and advance k
10
11 H ← NH(〈C, k〉, keystream[k . . . k + Length(〈C, k〉)− 1]) � Hash the encrypted state
12 k ← k + Length(〈C, k〉) � . . . and advance k
13
14 M ← H ⊕ keystream[k . . . k + Length(H)− 1] � Construct an 80-bit MAC
15
16 Transmit(C, M) � Note: Transmit blocks until a reader is detected

The RFID reader side of CCCP consists only of code to drive the reader appro-

priately for communication events. Because of the Gen 2 protocol’s complexity, we

have not completely implemented the reader side of the CCCP protocol. Rather

than write a large amount of code for the reader, we chose to use simple control

programs for the reader and inspect the exchanged messages manually, a strategy

that allowed us to concentrate on the more resource-constrained CRFID side of the

system while avoiding porting applications from one proprietary reader to another.

29



Algorithm 2 The Resume routine receives an encrypted checkpoint C and a message
authentication code M from a reader, then restores the computational state of the
CRFID if the received data pass an authenticity test. chkpt counter is the value stored
in nonvolatile memory at the beginning of Checkpoint (Algorithm 1). We assume
that, since k and chkpt counter are both numbers, their in-memory representations
have the same length. As in Algorithm 1, this pseudocode treats the keystream pool
as an infinite array for arithmetic simplicity. 〈A, B〉 means the concatenation of A
and B with a delimiter in between. 80 bits is the fixed output size of NH, the hash
function used by UMAC.

Resume(C, M, keystream, chkpt counter)

1 � Find the first unused keystream material, then backtrack to find the keystream
material Checkpoint used to hash and MAC the ciphertext

2 chkpt size = STATE SIZE +Length(〈C, chkpt counter〉) + 80 bits
3 k ← chkpt counter × chkpt size
4 k ← k − (Length(〈C, k〉) + 80 bits)
5
6 H ← NH(〈C, k〉, keystream[k . . . k + Length(〈C, k〉)− 1]) � Compute the hash
7 k ← k + Length(〈C, k〉) � . . . and advance k to point to the MAC
8
9 if M = H ⊕ keystream[k . . . k + Length(H)− 1] � If the MAC is OK, then. . .

10 then k ← k − (Length(C) + Length(〈C, k〉)) � backtrack further . . .
11 state = C ⊕ keystream[k . . . k + Length(C)− 1] � and decrypt C to get state
12 Restore-State(state)
13 else � Do nothing

(The WISP [Revision 4.0] is nominally compatible with only the Alien ALR-9800 and

Impinj Speedway readers; we chose to use a desktop PC to program these readers

for the sake of simplicity and portability.) A full implementation of the reader side

would properly parse each message received from the CRFID and manage storage for

checkpointed state.

3.3.1 Communication Protocol

The CRFID model places a number of restrictions on communication. The only

communication hardware on a CRFID is a backscatter circuit involving an antenna

and a modulating transistor; an active radio would require significantly more energy.
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Algorithm 3 The Key-Refresh replaces used keystream material with new
keystream material in nonvolatile memory. Unlike in Checkpoint and Resume,
this pseudocode treats the keystream pool as a fixed-size circular buffer. This al-
lows us to treat keystream material between k and kstr end as unused, and the
rest—between kstr end and k—as used. This pseudocode omits two subtleties for
simplicity: first, the routine must not erase keystream material that is waiting to be
used by Resume. Second, because flash erasure affects entire segments at once, the
Erase-Memory-Range routine must sometimes restore data that should not have
been erased.

Key-Refresh(keystream, kstr end , chkpt counter , rc5counter)

1 � Find the first unused keystream in the circular keystream buffer
2 chkpt size = STATE SIZE +(STATE SIZE +Length(〈null , chkpt counter〉)) + 80 bits
3 k ← chkpt counter × chkpt size (mod Length(keystream)/ chkpt size)
4
5 � Erase all used keystream memory, then write pseudorandom data to it
6 Erase-Memory-Range(keystream[kstr end . . . k])
7 i← kstr end
8 while (i < k)
9 do rc5counter ← rc5counter +1 � Update counter in nonvolatile memory

10 keystream[i]← RC5(rc5counter −1) � Write keystream into nonvolatile memory
11 kstr end ← i + 1 � Update kstr end in nonvolatile memory
12 i← i + 1

Since backscatter simply reflects an incoming carrier signal, a prerequisite for com-

munication is that the reader emits an appropriate carrier signal. In our experiments,

we used two different EPC Gen 2-compatible RFID readers that are readily available

as off-the-shelf products; we used no nonstandard reader hardware or antennas.

CCCP’s communication protocol is based on primitives provided by the EPC

Gen 2 RFID protocol (the RFID protocol the WISP understands). Specifically, CCCP

makes use of three EPC Gen 2 commands:

• A reader issues a Query command to a specific tag (in our case, a CRFID).

The Query command comprises a 4-tuple: 〈action, membank, pointer, length〉.

While a conventional RFID tag may require reasonable values for all four tuple

members, a CRFID need examine only the fourth member to learn the maximum
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Figure 3.3. Application-level view of the CCCP protocol. The CRFID sends a
request to checkpoint state while in the presence of a reader, and the reader speci-
fies the maximum size of each message. The CRFID then prepares the checkpoint
and transmits it in a series of appropriately sized messages. The reader stores the
checkpoint data for later retrieval by the CRFID. All messages from the reader to the
CRFID also supply power to the CRFID if the latter is within range.

reply length the reader will accept. The reader can use the other three fields to

encode meta-information such as whether the reader wants to offer checkpointed

state to the CRFID.

• A reader issues a Read command to a specific tag to request an arbitrary amount

of data from an RFID tag’s memory. A CRFID can respond to a coordinated

Read command with a chunk of checkpointed state.

• A reader issues a Write command to send data for storage in a specific tag’s

memory. Because RFID tags tend to have fewer resources even than CRFIDs,

Write commands transmit only a small amount (16 bits) of data. A CRFID can

request a series of Write commands from the reader to retrieve checkpointed

state, then reassemble the results in memory and restore its state from the

checkpoint.

Figure 3.3 gives an overview of CCCP’s message types and their ordering. CCCP

does not require protocol changes to the EPC Gen 2 standard, but it requires that

an RFID reader be controlled by an application that understands CCCP. While a

proprietary radio protocol for CCCP could be more efficient than one built atop an
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existing RFID protocol, a goal of CCCP—inherited from the design goals of the WISP

CRFID—is to maintain compatibility with existing RFID readers.

3.4 System Evaluation

This section justifies our design choices and offers evidence for our previous claims.

We evaluate the security properties of four distinct checkpointing strategies—three

based on CCCP’s radio transmission and one on local flash storage—and describe

how CCCP provides data integrity with or without confidentiality. We describe our

experimental setup and methods, then provide empirical evidence that CCCP’s radio-

based checkpointing requires less energy per checkpoint than a flash-based strategy.

Finally, we characterize the overhead incurred by CCCP’s cryptographic operations

in terms of both energy and the keystream material that they consume.

3.4.1 Security Semantics

CCCP trades the physical security of local storage for the energy savings of remote

storage, but its use of radio communications introduces different security properties.

We consider CCCP’s four operating modes in increasing order of cryptographic com-

plexity. Note that the algorithm listings (Algorithms 1–3) describe the most compu-

tationally intensive operating mode; the other modes involve subsets of its operations.

• Under CCCP’s threat model, storing checkpointed state only in local flash mem-

ory is the most secure option, since it involves no radio transmission at all. How-

ever, for reasons detailed elsewhere in this chapter, writing to flash memory is

not always possible or desirable. We call the flash-only approach Mementos

after the system [101] that inspired CCCP.

• In a mode called CCCP/NoSec, a CRFID sends computational state in plain-

text. Under CCCP’s threat model, CCCP/NoSec allows an attacker to intercept

computational state and trivially recover the information it contains.
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• In a mode called CCCP/Auth, the CRFID computes a message authentication

code (MAC), attaches it to plaintext computational state, and transmits both.

To trick a CRFID into accepting illegitimate state, an attacker must craft a

message that incorporates a MAC that the CRFID can verify. However, since

CCCP’s MAC routine incorporates keystream material that is local to the CR-

FID, the attacker must guess the contents of a chunk of the CRFID’s keystream

memory, which requires brute force under our threat model.

• In a mode called CCCP/AuthConf, CCCP encrypts computational state, com-

putes a MAC, and transmits both (Algorithm 1). As with CCCP/Auth, an

attacker who wants to trick a CRFID into accepting illegitimate state must find

a hash collision; however, part of her colliding input must be a valid encrypted

computational state from which the CRFID would be able to resume. Since

CCCP does not reuse keystream material, the attacker is limited to brute-force

search to find such an encrypted state.

3.4.2 Experimental Setup & Methods

We used a consistent experimental setup to obtain timing and energy measure-

ments for a prototype CRFID. We programmed a WISP with a task (e.g., a flash

write) and set a GPIO pin to toggle immediately before and after the task. We then

charged the WISP’s capacitor to 4.5 V using a DC power supply, disconnected the

power supply so that the storage capacitor was the only source of energy for the WISP,

and observed the task’s execution and storage capacitor’s voltage on an oscilloscope.

We delivered energy directly from a DC power supply when taking measurements

because the alternative, providing an RF energy supply, results in unpredictable and

unsteady charge accumulation, making it difficult to shut off the energy supply at a

precise capacitor voltage.

After watching the GPIO pin signal the beginning and end of the task, we cal-

culated the task’s duration and the corresponding change in the storage capacitor’s
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Figure 3.4. Energy consumption measurements from a WISP (Revision 4.0) proto-
type for all considered checkpointing strategies. Under our experimental method, we
are unable to execute flash writes larger than 256 bytes on current hardware because
larger data sizes exhaust the maximum amount of energy available in a single energy
lifecycle. The average and maximum percent error of the measurements are 5.85%
and 14.08% respectively.

voltage. When an operation completed too quickly to observe clearly on the oscil-

loscope, we repeated it in an unrolled loop and divided our measurements by the

number of repetitions. Finally, we calculated per-bit energy values by subtracting

the baseline energy consumption of the WISP with its MSP430 microcontroller in the

LPM3 low-power (sleep) mode. We subtract the WISP’s baseline energy consump-

tion in order to discount the effects of omnipresent consumers such as RAM and CPU

clocks. For all measurements that we present, we give the average of five trials.

3.4.3 Performance

Figure 3.4 shows that, for data sizes greater than 16 bytes, a checkpoint oper-

ation under CCCP/NoSec requires less energy than a checkpoint to flash. Under

CCCP/AuthConf, which adds encryption and MAC operations, a similar threshold

exists between 64 and 128 bytes. Checkpointing via flash has an additional cost: if

the checkpointing mechanism needs to overwrite existing data (e.g., old checkpoints)

in flash memory, it must erase the corresponding flash segments and potentially re-
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place whatever data it did not overwrite. Even if a flash write does not necessitate

an immediate erasure, it makes less space available in the flash memory and therefore

increases the probability that a long-running application will eventually need to erase

the data it wrote—that is, it incurs an energy debt. In the ideal case, an applica-

tion can pay its energy debt easily if erasures happen to occur only when energy is

abundant—i.e., in summer power seasons. However, since CCCP is designed to ad-

dress scenarios in which energy availability fluctuates, we consider the case in which

each write incurs an energy debt. Factoring in debt, we characterize the energy cost

of a write of size dsize as

Cost∗(write(dsize)) = Cost(seg. erase)× dsize

Size(seg.)

+ Cost(write(dsize)).

In practice, because some erasures will likely occur in summer power seasons and

some in winter power seasons, the energy cost of a flash write of size dsize falls

between Cost(write(dsize)) (the ideal cost) and Cost∗(write(dsize)) (the worst-case

cost), inclusive.

The energy measurements we present in this chpater (e.g., in Figure 3.4) fail in

some cases to strongly support the hypothesis that radio-based checkpointing is con-

sistently less energy intensive than flash-based checkpointing. The imbalance is due

to a missed opportunity for optimization on the WISP prototype. The transistor used

for backscatter modulation on the WISP (Revision 4.0) draws 500 µW of power, far

more than is typical of a comparable mechanism on a conventional RFID tag. Alien’s

Higgs 3, a conventional RFID tag, draws only 15.8 µW of power [7] (total) dur-

ing operation—an order of magnitude difference that supports an alternative design

choice for future CRFIDs.
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3.4.3.1 System Overhead

An application on a CRFID can balance energy consumption against security by

choosing one of CCCP’s operating modes:

• CCCP/NoSec imposes the least overhead because it does not encrypt data or

compute a MAC; it requires no computation and consumes no keystream mate-

rial. However, CCCP/NoSec imposes a time overhead to receive computational

state from a reader at power-up and to transmit new state at checkpoint time.

• CCCP/Auth avoids encryption overhead (like CCCP/NoSec) but requires time,

energy, and keystream bits to compute a MAC over the plaintext checkpoint.

However, it requires no energy or keystream bits for encryption because it does

not encrypt the plaintext checkpoint.

• CCCP/AuthConf offers the most security, since it adds confidentiality to CCCP/Auth,

but the extra security comes at the expense of time, energy, and keystream bits.

In this mode, CCCP encrypts the computational state before computing a MAC

and transmitting both. It requires as much keystream material as the size of

the state plus a constant amount for authentication.

3.5 Applications

The outsourced memory introduced by CCCP expands the design space for ap-

plications on a computational RFID. This section offers some illustrative example

applications.

3.5.1 CRFIDs as low-maintenance sensors.

Consider a cold-chain monitoring application for pharmaceutical supplies, in which

a CRFID carries an attached temperature sensor and stores in flash memory a tem-

perature reading each time it is scanned. To prevent exhaustion of its flash memory,
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the CRFID periodically computes aggregate statistics on, then discards, stored read-

ings. Some statistical computations (e.g., computation of quartiles) require memory-

intensive manipulation of the data set. If the flash memory on the CRFID consid-

erably exceeds the size of RAM, computation of such statistics would require many

writes to flash, an energy-intensive operation. An alternative is to use outsourced

memory for the computation. (In the case of cold-chain monitoring, maintaining pri-

vacy of harvested data with respect to the reader may be unessential, but the integrity

of the statistical computation is important.)

3.5.2 RFID sensor networks.

Recent work [22] describes RFID sensor networks (RSNs) that combine RFID

reader infrastructure with sensor-equipped computational RFIDs. RSNs do not sim-

ply replace traditional sensor networks because of several limitations. First, they

require an infrastructure of readers that provide power to sensor nodes. Second, they

are constrained by the distances (several meters) at which CRFIDs currently operate.

Third, because RFID communication is asymmetric, the nodes of an RSN cannot ex-

change information with each other except through a more powerful reader. However,

there are applications for which short-range networks of batteryless sensors would be

appropriate; Yeager et al. offer several examples [136].

3.5.3 Computational RFIDs as smartcards.

Some passive RFID tags are capable of executing strong cryptographic primitives.

For example, various models of the Mifare DESfire can perform triple-DES or AES,

while other RFID devices can compute elliptic-curve and RSA signatures, such as the

RF360 introduced by Texas Instruments [127]. The RF360 is designed to allow public-

key authentication in RFID-enabled identification documents, such as e-passports.

The RF360 incorporates an MSP430, but also includes a cryptographic co-processor,

and is designed to operate at relatively short range as a high-frequency, ISO 14443
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device. As we show in this chapter, CCCP creates the possibility of a more lightweight

device. Such a “CCCP smartcard” has two notable benefits: (1) a CCCP smartcard

eliminates the cost of cryptography-specific hardware; and (2) a CCCP smartcard

can operate in a mode compatible with EPC Gen 2 and achieve read ranges beyond

those of a high-frequency device like the RF360.

Some smartcards are capable of performing biometric authentication—generally

fingerprint verification. Match-on-card, i.e., verification of the validity of a fingerprint

through computation exclusively within the smartcard, has long stood as a technical

challenge. The U.S. National Institute of Standards and Technology (NIST) recently

conducted an evaluation of a range of such algorithms in contactless cards [35]. CCCP

is a promising tool for expanding the class of radio devices for which match-on-

card is feasible. While CCCP does not follow a strict match-in-device paradigm—

given that it outsources data to a reader—it nonetheless provides comparable security

assurances.

3.5.4 Trusted computing: outsourcing computation via TPMs.

CCCP permits a computational RFID to use external memory via an RFID reader.

It can support an even broader design space if we use CCCP instead for secure

outsourcing not of memory, but of computational tasks.

Trusted platform modules (TPMs) [14, 130] offer support for such outsourcing.

A TPM is a hardware device, standard in the CPUs of modern PCs and servers,

that can provide a secure attestation to the software configuration of the computing

platform on which it operates. Briefly stated, an attestation takes the form of a

digital signature on a digest of the software components loaded onto the device. (An

attestation does not provide assurance against hardware tampering or subversion of

running software.)
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A computational RFID can in principle make use of a TPM-enabled reader—or

platform communicating with the reader—to gain secure access to a more powerful

external computer. The process for such use of a TPM is subtle. The operations

of verifying a TPM attestation and creating a secure session are both cryptographic

operations that require computationally intensive modular exponentiation. Hence the

computational outsourcing process requires CCCP as a bootstrapping mechanism.

3.6 Summary

CRFIDs enable pervasive computing in places where batteries are difficult to main-

tain. However, the high energy necessary to erase and write to flash memory makes

storage difficult without a constant energy source. CCCP extends Mementos [101]

by exploiting the backscatter transmission common on passive RFID systems to re-

motely store checkpoints on an untrusted RFID reader infrastructure. CCCP protects

data with UHF-based MACs, opportunistic precomputation of keystream material for

symmetric cryptography, and hole punching to store a counter used to enforce data

freshness. Our measurements of a prototype implementation of CCCP on the WISP

tag shows that radio-based, remote checkpoints require less energy than local, flash-

based checkpoints—despite the overhead of the cryptography to restore the security

semantics of local, trusted storage. CCCP gives a CRFID increased storage capacity

at low energy cost and enables long-running computations to make progress despite

continual power interruptions that destroy the contents of RAM. Moreover, the ab-

straction provided by CCCP allows application developers to focus on computation

rather than space, energy, and security management. Flash memory generally re-

quires a coarse-grained, high-power erase operation before writing a new value. Our

hole punching technique allows CCCP to partially reuse unerased flash memory, thus

reducing the frequency with which flash memory must be erased.
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CHAPTER 4

HALF-WITS: SOFTWARE TECHNIQUES FOR
NON-VOLATILE EMBEDDED STORAGE AT LOW

VOLTAGES

This work analyzes the stochastic behavior of writing to embedded flash memory

at voltages lower than recommended by a microcontroller’s specifications to reduce

energy consumption. Flash memory integrated within a microcontroller typically

requires the entire chip to operate on a common supply voltage almost double what

the CPU portion requires. Our approach tolerates a lower supply voltage so that

the CPU may operate in a more energy efficient manner. Energy efficient coding

algorithms then cope with flash memory that behaves unpredictably.

The software-only coding algorithms proposed in this work (in-place writes, multiple-

place writes, RS-Berger codes, and slow writes) enable reliable storage at low volt-

ages on unmodified hardware by exploiting the electrically cumulative nature of

half-written data in write-once bits. For a sensor monitoring application using the

MSP430, coding with in-place writes reduces the overall energy consumption by 34%.

In-place writes are competitive when the time spent on low-voltage operations such

as computation are at least four times greater than the time spent on writes to flash

memory. The evaluation of the proposed schemes shows that tightly maintaining the

digital abstraction for storage in embedded flash memory comes at a significant cost

to energy consumption with minimal gain in reliability. We find our techniques most

effective for embedded workloads that have significant duty cycling, rare writes, or

energy harvesting.
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Microcontroller CPU Flash Write
Min. Voltage Min. Voltage

TI MSP430F1232/ 149/ 413 [128] 1.8 V 2.7 V
TI MSP430F2131 [128] 1.8 V 2.2 V
PIC32M [82] 2.3 V 3.0 V
ATmega128L [9] 2.7 V 4.5 V
STM32F103C6 [120] 2.0 V 3.3 V

Table 4.1. Flash memory restricts choices for the CPU voltage supply on microcon-
trollers because the CPU shares the same power rail as the on-chip flash memory.

4.1 Storage on Low-Power Devices: Limitations and Chal-

lenges

While the reliability, low cost, and high storage density of flash memory make

it a natural choice for embedded systems [59], its relatively high voltage requirement

(Table 4.1) introduces challenges for energy-efficient designs aiming to maximize the

system’s effective lifetime (e.g., the run time on a typical battery whose voltage de-

clines over time). Instrumenting the system to operate at a fixed low voltage vl is one

way to reduce power consumption; however, achieving consistently correct results for

flash writes are guaranteed only if vl is higher than a manufacturer-specified threshold.

Moreover, in energy-limited devices that cannot provide a constant supply voltage,

scenarios may arise in which the flash memory is the only part of the circuit whose

operating requirements are not met. In such cases, applications can expect normal

operation when they are not performing flash writes and unpredictable behavior when

they are.

Because embedded flash memory typically shares a common voltage supply with

the CPU (separate power rails are cost prohibitive), a single voltage must be cho-

sen that satisfies different components with different minimum voltage requirements.

Current embedded systems address the voltage limitations of flash memory in one of

the following ways:
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i) A system can choose a high supply voltage sufficient for both reliable writes to

flash memory and reliable CPU operation. This is a common choice for embedded

systems with on-chip flash memory, but causes the CPU to consume more energy

than necessary. For example, the TI MSP430F2131 microcontroller [128] in active

mode consumes almost double the power when operating at 2.2 V instead of 1.8 V.

Its onboard flash memory requires 2.2 V for reliable writes to flash memory.

ii) A system can choose a low supply voltage sufficient for CPU operation, but

insufficient for reliable writes to flash memory. This choice allows the energy source

to last longer and for the CPU to compute more efficiently. An example of such

a system is the Intel WISP [112], a batteryless RFID tag that sets its operating

voltage to 1.8 V—below its onboard flash memory’s 2.2 V specified minimum—to

save power. Flash memory cannot be written on this device. The microcontroller

could use a low-power wireless interface (e.g., RF backscatter) to store data remotely.

Such an approach, however, raises privacy as well as performance concerns [109].

iii) A system can modify hardware to enable dynamic voltage scaling. This ap-

proach requires additional analog circuitry such as voltage regulators and GPIO-

controlled switches. Because many embedded systems are extremely cost sensitive,

this choice is unattractive for high-volume manufacturing with low per-unit profit

margins. An additional 50 cent part on a thermostat control can be cost prohibitive.

Moreover, small changes may necessitate a new PCB layout—upsetting the delicate

supply chain and invalidating stocked inventories of already fabricated PCBs.

4.1.1 Approach

Our approach reduces the operating voltage of the microcontroller to a point

at which the resulting power savings of the CPU portion of the workload exceeds

the power cost of the algorithms for ensuring reliable writes (Figure 4.1). Our low-

power storage scheme benefits from the accumulative property of flash memory by
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Figure 4.1. Operating at a lower voltage and tolerating errors instead of the conven-
tional case of choosing the highest minimum voltage requirement may help decrease
energy consumption. Considering that Energy = voltage2 × time/resistance, de-
creasing voltage decreases the energy consumption quadratically.

repeating writes to the same cell. Each write operation will increase the chance of

success by forcing some number of state transitions. That is, a failed write is still

progress. The technique requires minimal or no hardware modification and also allows

for RFID-scale and small-scale energy harvesting devices to better exploit capacitors

as power supplies. The capacitor provides finite energy and therefore the voltage

decays exponentially. The long tail of the curve provides insufficient voltage for

conventional writes to flash memory, but it is sufficient for reliable storage with our

techniques.

4.1.2 Of Wits and Half-Wits

Rivest and Shamir introduced the notion of write-once bits (Wits) in the context

of coding theory to make write-once storage behave like read-write storage [107]. Bits

in flash memory behave like wits because a programmed bit cannot be reprogrammed

without calling an energy-intensive erase operation to a block of memory much larger

than a single write. We coin the term Half-Wits to refer to wits used in a manner

inconsistent with a manufacturer’s specifications, resulting in stochastic behavior.

Half-Wits in this work are wits of flash memory used below the recommended supply

voltage.
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(a) Writes at 2.0 V
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(b) Writes at 1.9 V
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(c) Writes at 1.8 V

Figure 4.2. As operating voltage decreases, flash-write errors increase. (a) shows
an original ECG signal correctly stored at 2.0 V (despite operating below the rec-
ommended threshold). As the voltage decreases in (b) and further in (c), erroneous
writes (light-colored spikes, height varying according to the magnitude of the error)
become more common. The black line shows the reconstructed signal that includes
the errors.

In examining error rates at low voltage and constructing a system that provides

reliable storage despite errors, our work suggests that it is appropriate to relax previ-

ously assumed constraints and reexamine the costly digital abstractions layered above

on-chip flash memory.

4.2 Behavior of Storage on Half-Wits

Before we can design effective coding algorithms, we must first understand the

behavior of errors on Half-Wits. By tolerating a lower voltage, an energy-limited

embedded device can decrease its power consumption and therefore extend its lifetime

on a finite energy supply1. The minimum operating voltage of embedded devices that

use nonvolatile on-chip storage is usually determined by the requirements of flash

memory. For example, the TI MSP430 microcontroller can operate at 1.8 V, but its

nominal minimum voltage for flash writing and erasure is 2.2 V (Table 4.1). Increasing

1Or because of relaxed requirements, eliminate the need for multiple batteries in series to achieve
a sufficient voltage.
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operating voltage from 1.8 V to 2.2 V causes the CPU to draw about 50% more power

without commensurate gain in clock speed because of the voltage squaring effect.

The cost of lowering voltage below flash memory requirements in order to save

power is the extra work necessary to ensure reliable writes to flash memory. Figure 4.2

shows the result of running a MSP430F2131 at three different voltages—all lower

than the nominal minimum for flash writes—to store electrocardiogram (ECG) data

samples from the PhysioNet database [46] in flash memory. Many medical sensor

networks [74, 76, 116] that provide ECG measurements are energy-limited and use

on-chip flash memory as primary storage.

These graphs support the intuition that flash writes may not be error-free at

low voltages and that there exist voltage levels below the minimum recommended

voltage at which flash writes function correctly. Moreover, a nonzero error rate may

be tolerable for some applications. In the case of ECG data, the cardiac pulse interval

can be recovered from noisy data stored at low voltage. To investigate the behavior

of flash memory at low voltage and determine the factors influencing the error rate,

we performed experiments on an automated testbed.

4.2.1 Experimental Methodology

We use a consistent experimental setup for all of the experiments in this work.

Our choice of test platform is a TI MSP430 [128] microcontroller with on-chip flash

memory. More specifically, we tested two types of TI microcontrollers: MSP430F2131

and MSP430F1232. The MSP430 is common in low-power embedded applications; we

note especially its use in sensor motes [97] and RFID-scale batteryless devices [112,

140]. In our setup, an MSP430 microcontroller runs a test program that involves both

computation and flash operation. We power the microcontroller with an external

power supply held steady at a voltage below the nominal minimum for flash writes.

An external chip captures the contents of flash memory after each experiment.
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Voltage Supply

Figure 4.3. Automated flash memory testbed. A monitoring platform observes
and logs the behavior of the flash memory test platform. The test platform runs
at a voltage controlled by the experimenter, while the monitoring platform runs at
a constant voltage within the manufacturer’s specified voltage. This setup helps to
automate the experiments.

To automate the testing of flash write behavior, we have developed a flash memory

testbed (Figure 4.3). The two major components of the testbed are a test platform and

a connected monitoring platform. The monitoring platform is based on an additional

MSP430 microcontroller. The test platform runs a test program at low voltage. When

the test program completes, the test platform sends the result of the experiment to

the monitoring chip via GPIO pins. The test and monitoring platforms share 8+1

GPIO pins to carry one byte of data and a clock signal. Once the test platform

puts data on its eight data pins, it raises the clock pin. The monitoring chip reads

data from its GPIO pins whenever it detects a rising clock signal and logs the results

in its own flash memory. The monitoring chip runs at a voltage above the nominal

minimum for its own flash writes, thereby storing reliably.

4.2.2 Unreliable, Low-Voltage Flash Memory Writes

The TI MSP430 [128] datasheet states that flash writes at any voltage lower than

the nominal minimum voltage (which is 2.2 V in the case of MSP430F2131) are not

guaranteed to succeed. However, as the graphs in Figure 4.2 show, not all flash writes
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Intended 00001100 00001101 00001110 00010100 00100111 10100100(Binary)
Written 11101101 01011111 11111111 11111111 00101111 10101111

Hamming distance 4 3 5 6 1 3

Table 4.2. Erroneous flash writes at low voltage. Insufficient electrical charge may
result in some bits failing to transition from 1 (the initial state) to 0.

fail at low voltages. On the contrary, in this specific experiment, most of the writes

(95.24% at 1.9 V and 89.88% at 1.8 V) succeed.

In a NOR flash memory, all cells are initialized to 1, and writing data to a byte of

flash memory means setting an appropriate number of bits to 0 by applying electrical

charge to the corresponding flash cells. At low voltage, there may be insufficient

charge to effect a transition to 0, and a flash write may store fewer 0 bits than

requested [94]. To be specific, we define errors as follows: when a byte of data d1 is

written in a flash memory address and then data d2 is read from that address, there

is an error if d1 6= d2. An experiment, explained next, investigates the behavior of

low-voltage flash memory and gives bit-level results.

Using the automated flash testbed explained in Section 4.2.1, the test platform

runs a program that writes numbers {0, · · · , 255} to flash memory, then sends the

contents of its flash memory to the monitoring platform via GPIO pins. Table 4.2

compares the written data and the intended data for cases in which errors occurred.

It demonstrates that, when both are represented as integers, the absolute value of

the stored data is always greater than or equal to the absolute value of the intended

data.

4.2.3 Determining Factors That Affect Error Rates

We consider the following potential factors that may affect the error rate of setting

a bit to 0 in a flash memory at low voltage: voltage level, Hamming weight of the

data, wear-out history, permutation of 0s, and neighbor cells. The effects of each of

these variables are evaluated by designing an experiment to test a hypothesis. All
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Figure 4.4. Flash write error rates decrease as voltage increases. This trend holds
for all the chips we tested, though error rates differ even between chips of the same
model.

the experiments are performed on flash memories with minimal previous usage unless

stated otherwise.

4.2.4 Impact of Voltage Level

Our hypothesis is that the lower a chip’s operating voltage (and that of its on-

chip flash memory), the higher the error rate of flash writes. Figure 4.4 confirms this

hypothesis; moreover, the graph shows that for different chips of exactly the same

type, the error rate can be different even under equivalent voltages.

Experiment: Two MSP430F2131 and two MSP430F1232 microcontrollers run a

program that writes zeros to the data segment of their flash memory. We increased the

microcontroller’s operating voltage in 10-mV steps, and used the monitoring platform

to compute the byte error rates over 50 runs.

4.2.5 Impact of Hamming Weight

In an erased (i.e., having value 1) flash cell, writing a 1 is always error-free because

no change to the cell is necessary. However, setting a cell to 0 might fail if there is

not enough charge accumulated in that cell. Our hypothesis is that the lower the
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Figure 4.5. As the Hamming weight (number of 1s in the binary representation)
of a number increases, the error rate of low-voltage flash writes decline. The data
correspond to a MSP430F2131 running at 1.84 V.

Hamming weight (number of 1s in the binary representation) of a number, the higher

the probability of error when writing that number to flash at low voltage.

Based on per-byte Hamming weight, there are nine equivalence classes of integers

that can be represented in one byte. The weight-8 equivalence class has only one

member, 255, which can always be written to an erased flash cell without error. The

other extreme case is the weight-0 equivalence class, containing only 0s, that requires

all eight bits to transition to 0. Figure 4.5 shows the byte error rate for all nine

equivalence classes, measured in the following experiment.

Experiment: At 1.84 V, a MSP430F2131 runs a program that writes numbers

from the same equivalence class to one block (64 bytes) of flash memory. We used the

monitoring platform to compute the average byte error rate of flash writes for each

of the nine equivalence classes over 50 runs.

Corollary: To exploit the fact that the Hamming weight of a number affects error

rate when written to flash, one can transform numbers into numbers with greater

Hamming weights before writing them to flash memory.
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Figure 4.6. Worn-out flash memory blocks are biased toward ease of writing zeros.
Lighter color represents higher average number of errors over 50 trials. The middle
block has been write/erase cycled 6,000 times. The other two blocks are minimally
used.

4.2.6 Impact of Wear-out History

Flash memory has a limited lifetime (about 105 cycles of erasures) after which

the erase operations fail to reset the bits to 1 reliably. We suspect that the more

flash memory is erased (worn-out), the lower its error rate of setting bits to 0 would

become. This counterintuitive hypothesis is consistent with the notion that flash

erasures (settings bits to 1) become harder with wear-out. Figure 4.6 shows a heat

map of bit error rate for three blocks of flash memory (192 bytes) on an MSP430F2131

microprocessor. Lighter colors in the heat map represent higher error rates. The

disproportionately dark color of the middle block is due to more frequent erasure of

that block compared to the other two blocks.

Experiment: A MSP430F2131 runs a program that writes zeros to all three blocks

of its flash memory. The MSP430 is first worn out such that one block has 6,000

write/erase cycles and two blocks have minimal previous usage. We used the moni-
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toring platform to compute the average error rate for all bits in the three blocks of

memory over 50 trials.

Corollary: Wear-out history affects error rate, so storing data in more than one

location might decrease the error rate, especially if those locations are in different

blocks of memory.

4.2.7 Impact of Permutation of 0s

Two numbers belonging to the same Hamming-weight equivalence class can have

different permutations of 0 bits. We tested to see how the error rate depends on the

permutation of 0s in one byte of data. For example, the numbers 240, 15, 170, and

71 all have four 0s in their binary representation but in different places (240 has 0s

in the right nibble, and 15 has all of its 0s in its left nibble, etc.). The result of the

experiment shows a similar byte error rate with mean of 39.85± 4.29% for numbers

in the same equivalence class. The small standard deviation (4.29%) shows that the

permutation of 0s does not significantly affect the error rate and therefore we do not

consider this to be a factor in our design directions.

Experiment: A MSP430F2131 runs a program that cycles through eight numbers

from the same Hamming-weight equivalence class, writing them to 192 consecutive

bytes of flash memory. We used the monitoring platform to compute the average

error rates for each of the 192 bytes over 50 trials.

4.2.8 Impact of Neighbor Cells

Another factor that might affect the error rate of storage in a flash cell at low volt-

age is the values of neighboring cells. However, our results suggest that a cell’s error

rate does not appear to depend on the values stored in neighboring cells (Figure 4.7).

Experiment: In order to determine if the error rate of a cell is affected by its

neighbor, we consider all numbers from the same Hamming-weight equivalence class

whose two Least Significant Bits (LSBs) are set to either 00 (case 1) or 10 (case 2).
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Figure 4.7. Impact of the neighbor cells on error rate is negligible. The graph
shows that the value of the second LSB does not greatly affect the error rate of the
LSB. The bars show the error rate of the LSB for writing numbers from the same
Hamming-weight equivalence class whose two LSBs are set to either 00 (dark bars)
or to 10 (light bars).

An example of case 1 is number 60 (0b00111100) and an example of case 2 is number

30 (0b00011110). This experiment fixes the Hamming weight variable and changes

the neighbor value of the LSB to be 0 or 1. We deem a write erroneous if the LSB

is not set to 0. The experiment was done for a Hamming weight of four and it was

repeated for five voltage levels in the interval of 1.82 V to 1.84 V with steps of 5 mV.

The error rate for any voltage above 1.84 V was close to 0% and for any voltage below

1.82 was close to 100%. We used the monitoring platform to compute the average

error rates of case 1 and case 2 for each of the voltage levels over 50 trials.

4.2.9 Impact of Temperature

Temperature is another factor that usually affects the performance of electronic

components. We tested to see if the error rate of low-voltage flash writes depends on

the temperature of the chip. The experimental results show that at higher temper-

atures, the error rate decreases. We found that for a TI MSP430F2131 operating at

1.83 V, the error rate is 63% at 25◦C, while the error rate becomes negligible when

the temperature goes up to 39◦C. This result shows that error rate depends on en-

vironmental variables and cannot be assumed constant at a fixed voltage. Moreover,

53



this result indicates that a microcontroller can adjust its configuration of flash writes

based on the temperature to save energy.

Experiment: A MSP430F2131 runs a program that writes zeros to all three blocks

of its flash memory. We used the monitoring platform to compute the average error

rate for all bits in the three blocks of memory over 50 trials at a low temperature

(25◦C) and at a high temperature (39◦C).

4.2.10 Accumulative Memory Behavior

It is helpful to understand a few details of the electrical nature of flash memory in

order to appreciate the expected behavior of conventional digital abstractions when

layered above embedded flash memory. Each flash memory cell is a floating-gate (FG)

transistor made up of a source, drain, control gate, and floating gate. The floating

gate is separated from the source and drain by an insulating oxide layer that makes it

difficult for electrons to travel into or out of the gate. Flash cells rely on this oxide to

maintain logical state in the absence of power, making the memory non-volatile [94].

To write a memory cell (which has an erased value of 1), the control circuitry

applies a high field to the source. The application of this field greatly increases the

probability that electrons in the floating gate will tunnel to the source. If a sufficient

number of electrons tunnel to the source, the cell is subsequently read as a 0. To erase

a cell (that is to restore a 1), the control circuitry applies a high field to both the

source and drain. This field energizes the electrons currently stored near the source,

allowing them to jump the oxide barrier to the floating gate where they are once

again trapped [94].

Not all electrons must transit in order for a write or erase operation to be success-

ful. The operation only needs to change the state of some majority of the electrons

so that subsequent read operations detect sufficient charge to discern the intended

value. Lowering the applied voltage (and thus the field strength) lowers the proba-
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bility of state change for each electron but, as noted earlier, electrons that do transit

will remain in place.

A low-power storage scheme can benefit from this accumulative property by re-

peating writes to the same cell. Each write operation will increase the chance of

success by forcing some number of state transitions. In other words, a failed write is

still progress.

4.3 Design of a Low-Voltage Storage System

This section presents our design for a software system that enables reliable flash

memory writes at low voltage. We first present a model that captures the basic

characteristics and behavior of flash memory. We then set design goals for the model

under consideration. We introduce three methods for reliable flash storage, which we

refer to as in-place writes, multiple-place writes, and RS-Berger codes. Each method

aims to meet our design goals for reliable non-volatile storage.

4.3.1 Modeling Low-Voltage Flash Memory

A NOR flash memory has a set of n cells that are initially set to 1. We represent

the state of the cells by c1, . . . , cn; the value of ci can be 0 or 1. A cell can be set

to 0 using a write operation. The 1 → 0 transition might fail at low voltage while

the 1 → 1 will obviously succeed. Flash memory at low voltage, where errors occur

only in one direction, can be modeled as a Z-channel [69]. Flash memory is a write-

once memory [107] and once a cell is set to 0 (i.e., once it is programmed), it cannot

be changed back to 1 without using an erase operation. In flash memory, cells are

organized by blocks, and an erase operation resets an entire block of cells. Block

erasures are costly in terms of time and energy and they cause wear to flash cells.
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4.3.2 Operations

There are two operations in this model: (1) An update operation that changes a

subset of cells to 0 to represent a value, and (2) A decoding operation that maps cell

states (i.e., memory state) to a value. Updating a variable means changing the values

of c1, . . . , cn to c′1, . . . , c
′
n. Assuming that no erase operation occurs, and therefore no

bits are reset to 1 after being set to 0, we have ∀i ∈ {1, . . . , n}, ci ≥ c′i after an update.

If the update operation is performed when operating voltage is below the nominal

minimum required for flash memory, the update operation may not be error-free.

4.3.3 Design Goals

Our storage techniques, which aim to provide reliable storage for low-power de-

vices, are designed with the following metrics in mind:

• Error rate: The first and foremost design goal is to minimize the error rate to

provide applications with reliable non-volatile storage.

• Energy consumption: The energy consumed to achieve an acceptably low error

rate should not exceed the expected energy savings gained by running at a lower

voltage.

• Delay: We define delay as the difference between the execution time to store

data reliably at a low voltage and to store the same data at a high voltage. The

delay caused by the storage technique should be reasonably small.

4.3.4 Proposed Methods

Toward the design goals discussed previously, we propose methods to deal with

errors caused by using flash memory at low voltage.

4.3.4.1 In-Place Writes

Since the transition of a 1 to a 0 in a NOR flash memory at low voltage is stochastic

rather than guaranteed, the in-place writes method repeats the write of each byte (to

the same memory location) more than once if error occurs, up to a threshold number
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of attempts. Algorithm 4 gives the details for Encode and Decode procedures for

in-place writes. The in-place writes makes an attempt to write a byte into memory,

reads that memory address, and if the read result does not match the attempted write

value, the algorithm makes another attempt to write that value to the same memory

address. The write attempts can be controlled using the threshold .

Algorithm 4 The encoding and decoding algorithms for the in-place writes method
to store data to address by repeating the writes up to a threshold number of attempts
if necessary.

Encode(data, address , threshold)

1 write to flash(data,address)
2 result ← read from flash(address)
3 repeat ← 1
4 while (result 6= data) AND (repeat < threshold)
5 do write to flash(data,address)
6 result ← read from flash(address)
7 repeat ← repeat +1

Decode(address)

1 result ← read from flash(address)
2 return result

The reason in-place writes decrease the error rate is that, as explained in Sec-

tion 4.2.10, each write attempt in the same memory location increases the accumu-

lated charge and therefore raises the probability of storing the intended bit sequence

successfully.

4.3.4.2 Multiple-Place Writes

Another approach to increase the reliability of flash writes at low voltage is to

write a value to more than one location in flash memory if error occurs up to a

threshold number of locations. Later, to retrieve the stored data, the multiple-place

writes method reads the data from the specified address and several other addresses

associated with it, then returns the bitwise AND of all of the stored values. Algo-
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rithm 5 details Encode and Decode procedures of the multiple-place writes method.

The multiple-place writes makes an attempt to write a byte into one memory address,

reads that memory address, and if the read result does not match the attempted write

value, the algorithm makes another attempt to write that value to a different memory

address. The write attempts can be controlled using the threshold .

Algorithm 5 The encoding and decoding algorithms for the multiple-place writes
method to store data to address by repeating the writes up to a threshold number
of locations if necessary. The distance between each of these associated locations is
offset .

Encode(data, addr , threshold , offset)

1 write to flash(data,addr)
2 result ← read from flash(addr)
3 repeat ← 1
4 while (result 6= data) and (repeat < threshold)
5 do phy addr ← addr + (repeat × offset)
6 write to flash(data,phy addr)
7 n result ← read from flash(phy addr)
8 result ← result & n result
9 repeat ← repeat +1

Decode(addr , threshold , offset)

1 for i← 0 to (threshold −1)
2 do phy ← addr + (i × offset)
3 n result ← read from flash(phy)
4 result ← result & n result
5 return result

The multiple-place writes approach can decrease the error rate because: All cells

of flash memory are initially set to 1. An error means that writing a 0 has failed and

a bit cell ci has remained untouched (logical 1) although it was intended to be set to

0. If the cell write in one of the locations has not failed, and cell ci is 0 in at least one

location, getting the AND of the read values from all locations will make cell ci = 0

in the AND result. The case of writing a 1 to a cell does not cause an error since it

means changing a cell from 1 to 1.
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4.3.4.3 RS-Berger Codes

Our third method to provide reliable flash memory at low voltage involves data

coding. We use the concatenation of Reed-Solomon [103] and Berger [13] codes—

which we call RS-Berger codes—to detect and correct errors at read time (Algo-

rithm 6).

Algorithm 6 The encoding and decoding algorithms for RS-Berger codes write
method. t is the maximum number of errors RS-Berger code can correct.

Encode(data1 ,..,N , n)

1 for i← 1 to N
2 do CWi ← RS Encode(datai , n)
3 write to flash(CWi ,addressi)
4 for i← 1 to n
5 do for j ← 1 to N
6 do symi ,j ← CWj(i)
7 chki ← Berger Encode(symi ,(1 ,..,N ))
8 write to flash(chki ,addressN+1 + i -1 )

Decode(addr1 ,..,(N+1 ), n, t)

1 for i← 1 to N
2 do chki ← read from flash(addrN+1+i -1 )
3 for i← 1 to N
4 do CWi ← read from flash(addri)
5 for j ← 1 to n
6 do symi ,j ← CWi(j )
7 errors ← {}
8 for i← 1 to n
9 do err ← Berger Decode(symi ,(1 ,..,N ), chki)

10 if err = 0
11 then errors ← errors ∪{i}
12 if |errors| ≤ t
13 then for i← 1 to N
14 do resulti ← RS Decode(CWi , errors)
15 return result
16 else return “fail to correct errors”

Reed-Solomon is a widely used error-correcting code that can correct twice as

many erasures as errors. There are three parameters (n, k, d) accompanying the Reed-

Solomon (RS) code. The parameter n is the total number of symbols in the codeword,
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Figure 4.8. Structure of the input/output sequence of the Berger code.

and k is the number of information symbols in the codeword, and the parameter d

is the minimum hamming distance of two codewords in the codebook. These three

parameters should satisfy the following conditions: d = n− k + 1.

A (n, k, d)-RS code can correct up to n−k
2

errors and up to n− k erasures. There-

fore, if the locations of errors are known, an RS code’s error-correcting capacity is

improved twofold.

To detect the location of errors and therefore to improve the efficiency of the RS

code, we use a Berger code, an error-detecting code that can detect all asymmetric

errors [13]. As previously mentioned (Section 4.3.1), flash memory at low voltage can

be modeled as a Z-channel for which a Berger code is suitable. A Berger codeword

consists of two parts: k information bits and dlog2(k + 1)e check bits. The check

bits of the Berger codeword represents the number of zeros in the k information bits.

Berger code can detect any number of zero-to-one errors, as long as no one-to-zero

errors occur in the same codeword.

The Berger code can detect all zero-to-one errors, because the number of zeros in

the information-bit component will always be less than the number represented by

the check-bit component.

We use an (N + 1) × n matrix to represent RS-Berger codes (Figure 4.8). This

matrix has N RS codewords, each of which has n symbols. Each symbol (m bits) is
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Figure 4.9. A diagram representing the RS-Berger code. An RS-Berger code is the
concatenation of the Reed Solomon code and a Berger code.

filled in one entry of the matrix. Each column of the matrix, consisting of m × N

bits, supplies the information bits for one Berger code block. After Berger encoding,

the (N + 1)th row records the check bits for the Berger codes.

Figure 4.9 shows how the data are encoded and decoded using our RS-Berger code.

When encoding the data, we first use RS code to generate n codewords (rows of the

matrix) and then we apply a Berger code to compute the check bits for each symbol

for all codewords (each column of the matrix). When decoding data, we first use the

Berger decoder to check whether or not each column is erroneous. If one entry in the

column is erroneous, we consider all the symbols in the column erasures; otherwise,

all the symbols in the column are considered correct. Then, once the error locations

are known, we apply RS decoding to correct the erroneous sequences row by row.

4.4 Evaluation

Our storage techniques are designed for the resource limitations of low-power

devices. In this section, we first evaluate the suitability of the three methods pro-

posed in Section 4.3.4 for low-power devices; we then evaluate the hypothesis that for

CPU-bound workloads, operating at low voltage and managing errors is more energy-

efficient than fixing the operating voltage to the maximum of all the components’

nominal minimum voltages.
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4.4.1 Summary of results:

For a sensor monitoring application that reads 256 data samples from flash mem-

ory, aggregates data, and stores the results in flash memory, use of in-place writes at

1.8 V reduces the energy consumption up to 34% versus running the same application

at 2.2 V (minimum voltage requirement for the flash memory). This sensing appli-

cation models a common workload for both wireless sensor nodes and RFID-scale

devices.

4.4.2 Experimental setup:

We used a consistent experimental setup to measure the energy consumption and

execution time of each program. Using an oscilloscope, we measured the voltage of a

small resistor in series with a MSP430 microcontroller programmed with a task (e.g.,

a flash write). The integration of the current (voltage divided by the resistance) over

the execution time of the task multiplied by the operating voltage of the device gives

the energy consumption of that task (Energy =
∫

I(t) dt× V ). To facilitate precise

identification of the task on the oscilloscope, the microcontroller toggled a GPIO pin

immediately before and after the task.

4.4.3 Comparison of the Proposed Storage Methods

The workload used to measure the performance of each of the proposed methods

is the storage of accelerometer traces—generated using the Intel WISP 4.1’s 10-bit

ADC sensor—to flash memory. The input trace is a series of three-dimensional 16-

bit samples containing ten bits of information. We used a simple data compression

method to store more data in the available flash memory. The compression method

involved reading four samples of data, preparing the first byte of each sample to be

stored in flash memory, then combining the remaining two bits of each sample into

one byte of data. Using this compression scheme, we reduced every four samples

(eight bytes) to five bytes.
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Method V Time (ms) E (µJ) ECR

In-place 1.8 24.16 59 96%
M-place 1.8 25.00 63 84%
RS-B 1.8 334.45 160 0%
In-place 1.9 15.43 38 100%
M-place 1.9 16.85 40̄ 100%
RS-B 1.9 334.73 180 100%

Table 4.3. Performance comparison of the proposed methods at 1.8 V and 1.9 V.
Error Correction Rate (ECR) shows the effectiveness of the methods.

The maximum number of write attempts for both in-place writes and multiple-

place writes methods were set to two. The RS-Berger codes used three codewords

of size 38 bytes (32 bytes data and 6 bytes parity). These settings enable all three

methods to fit their data in 192 bytes of flash memory. Table 4.3 shows the energy

consumption and time taken for the same workload under each method. Both in-place

writes and multiple-place writes consume less energy and finish more quickly at 1.9 V

than at 1.8 V. Both of these methods are feedback-based and repeat writes if they

detect errors. Because there is a lower chance of error at 1.9 V, fewer rewrites are

required than at 1.8 V, so less energy and time are required.

The in-place writes method slightly outperforms the multiple-place writes method

at both voltage levels because its decoding procedure is less CPU-intensive. The In-

place writes method has the best Error Correction Rate (ECR in Table 4.3) of all.

The multiple-place writes method seems to be the most suitable when there are some

memory cells that are hard to program and therefore rewriting in those cells is not

helpful (Figure 4.6 gives an example of such a case). Compared to RS-Berger codes

which always guarantee that a certain number of errors can be corrected, the in-

place writes and multiple-place writes methods are less reliable—they offer no such

guarantees. Therefore, for applications with a hard reliability requirement, RS-Berger
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Figure 4.10. Reliability improvement using in-place writes over five different volt-
ages.

codes may be more suitable if the application knows the error rate in advance and is

willing to incur extra computational costs for RS-Berger encoding and decoding.

4.4.4 Error Correction Rate:

As Table 4.3 illustrates, the two methods that do not use coding—in-place writes

and multiple-place writes—incur similar energy consumption costs. We now compare

the effectiveness of these two approaches with respect to the error correction rate.

Figure 4.10 and Figure 4.11 demonstrate that flash storage reliability improves as

we increase the number of repeated writes/places at five different voltage levels (all

below the nominal minimum voltage for flash writes).

Experiment: Using our automated testbed, the test platform runs a program

that writes zeros to 192 consecutive bytes of flash memory (using in-place writes

and multiple-place writes methods in two different experiments). We increase the

maximum number of repeated writes from one to ten, one unit at a time. The

monitoring platform counts the number of incorrectly stored bytes (those that are

not set to zero after the experiment). The experiment was repeated for five different

voltages (1.86 V–1.90 V).
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Figure 4.12 compares the error rate of the in-place and multiple-place write meth-

ods. We choose the same maximum number of repeated writes for both approaches.

As the graph shows, the in-place writes method improves the error rate more dramat-

ically. We attribute this phenomenon to the fact that electrons accumulate in flash

cells with each programming attempt. Figure 4.12 also allows us to evaluate hybrids

of the in-place writes and multiple-place writes methods. For example, choosing one

place to write the value and repeating the write up to three times (up to three writes

in total) works better than repeating the write up to twice in two places (up to four

writes in total). This graph offers evidence that a pure in-place writes approach works

better than a hybrid approach or a pure multiple-place writes approach. However,

we do not conclude that the in-place writes method always outperforms the multiple-

place writes. A winning case for multiple-place writes is when a flash memory has

unbalanced blocks (different error rates), for example, the chip shown in Figure 4.6.

While the multiple-place writes method requires more space, it could provide a more

reliable storage compared to in-place writes.
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Figure 4.12. The in-place writes method reduces the error rate more effectively
than do the multiple-place writes method or a hybrid of both methods.

4.4.5 Half-Wits Versus Wits in Practice

To evaluate our storage schemes, we consider three test cases representing CPU

operations, flash read operations, and flash write operations.

The RC5 [106] test case, a CPU-only workload, is a commonly used encryption

algorithm that can cope with the resource limitations of low-power devices [27, 67].

RC5 was implemented with a 32-bit word size, 18 rounds, and 16 bytes of secret key.

The retrieve and store test cases are both I/O-bound tasks. One reads and

the other one writes 192 bytes of data from/to flash memory. CPU-bound opera-

tions in these test cases are minimal (essentially only a loop that calls a function to

flash memory). The store program uses in-place writes with a maximum number of

three (re)writes to deal with errors. Because flash read operations are fundamentally

simpler than flash write operations, flash reads are reliable at low voltage.

We run each of the three test cases on a MSP430F2131 microcontroller at four

different voltages that are all in the operating range of this microcontroller (1.8 V–

3.5 V). Two voltage levels are below the recommended threshold for flash memory:

1.8 V and 1.9 V. Two voltage levels are at and above the recommended threshold:

2.2 V and 3.0 V. The microcontroller is set to work at its highest possible clock
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Figure 4.13. Micro-benchmarks: CPU (RC5), read (retrieve), and write (store)
normalized energy consumption measured at four different voltage levels. The energy
has been normalized to the energy consumption of each workload at 3.0 V. Although
the RC5 and retrieve test cases consume less energy at low voltage, this is not the
case for the store test case (a write-intensive application) as the savings due to
running the chip at low voltage do not compensate for the energy cost required to
correct errors.

rate for each voltage level in order to gain the best energy performance. Figure 4.13

compares the normalized average energy consumption over five trials of each test case

at each voltage. The energy has been normalized to the energy consumption of each

workload at 3.0 V. By running at 1.8 V (below the nominal minimum voltage for

flash writes on the MSP430F2131), the microcontroller consumes 48% and 33% less

energy to finish the RC5 and retrieve test cases respectively. However, our storage

schemes do not seem beneficial for flash-write-intensive tasks (the store test case).

To evaluate the end-to-end performance of our storage methods, we have tested

a sensor-monitoring application that is CPU-intensive and can benefit from a low-

voltage storage. This application reads from flash memory 256 accelerometer samples

(each ten bits); computes the maximum, minimum, mean, and standard deviation of

the samples; and stores the aggregate information in flash memory. This monitoring

application is a blend of CPU and I/O, but it is still a CPU-intensive workload.
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Method Clock Rate Energy Time
MHZ µJ ms

In-place, 1.8 V 6 270 151.15
In-place, 1.9 V 6 300 151.32
Standard, 2.2 V 8 410 113.24
Standard, 3.0 V 14 760 64.72

Table 4.4. Energy consumption and execution time for the accelerometer sensor
application. At voltages below the recommended (1.8 V and 1.9 V), in-place writes
method with a threshold of two is used.

Table 4.4 shows that providing the system with a low-voltage storage mechanism via

our methods helps to decrease the task’s total energy consumption by 34%.

4.4.6 Finding a Crossover Point

We can empirically find the point at which the energy saved on computation

compensates for the added cost of repeated flash writes. We compare a workload

executed at 2.2 V to the same one running at 1.8 V using the in-place writes scheme

with the threshold k set to 2. We make the worst-case assumption that all data must

be written to flash twice (i.e., no bits change on the first attempt). The time spent

on flash writes while running at 1.8 V is then twice the time spent when operating at

2.2 V. We also assume that the clock rate of the system is set to the highest specified

for the CPU at each voltage. Specifically, the clock rate would be set to 6 MHz at

1.8 V and to 8 MHz at 2.2 V.

We empirically determined the power consumption of CPU and flash writes with

1.8 V and 2.2 V voltage supplies. PC 1.8 = 1.8 mW , PC 2.2 = 3.4 mW , PF 1.8 =

3.7 mW , and PF 2.2 = 5.8 mW . The variables TC and TF are the time spent in

computation and on flash memory respectively. With these assumptions, we can

write the following inequality to determine whether a given workload is likely to

result in reduced energy consumption:
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Energy1.8 ≤ Energy2.2 ⇒

PC 1.8 × TC 1.8 + PF 1.8 × k × TF 1.8 ≤

PC 2.2 × TC 2.2 + PF 2.2 × TF 2.2 ⇒

PC 1.8 × 8MHz
6MHz

× TC 2.2+PF 1.8 × k × 8MHz
6MHz

× TF 2.2 ≤

PC 2.2 × TC 2.2 + PF 2.2 × TF 2.2

The solution with k = 2 is TC 2.2 ≥ 4 × TF 2.2. Therefore, in-place writes are

competitive over normal flash writes when the time spent on low-voltage operations

like computation is at least four times greater than the time spent on flash writes.

In order to verify the cross-over point with experiments, we ran several tasks with

the percentile usage of 0% to 100% of flash memory. For simplicity, the example treats

flash erase to be close enough in power consumption to flash write to be considered

in the same category. The remainder of the workload is all computation. Energy

is computed for several different distributions of work to prevent any assumptions

about how much time is spent in each state. A one-second task duration is used to

give data in unit time.

4.5 Applications

Most battery-powered and batteryless electronic devices use low-power microcon-

trollers. Any embedded device whose CPU and non-volatile storage share the same

power rail might benefit from our low-voltage storage techniques.

4.5.1 Battery-Powered Electronic Products

We have compiled a list of more than one hundred low-power electronic products

that choose flash memory as their non-volatile storage. By reverse-engineering these

devices, we looked at three characteristics: the microcontroller inside, the use of

flash memory, and the operating voltage. These three characteristics of a device

determine if the power consumption can be reduced by operating the device at a
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Figure 4.14. Energy consumption of TI MSP430 microcontroller for different work-
loads of flash memory. The experimental results verify the calculation of finding the
cross-over point at which in-place writes are competitive over normal flash writes.
The cross-over point is where the time spent on computation is at least four times
greater than the time spent on flash writes.

lower voltage. An example of these devices is a smoke detector [68] which uses a

Microchip PIC16F883 microcontroller [83]. This microcontroller has 4 KB of flash

memory that gets used to store data for legal issues. The flash memory’s nominal

minimum voltage is 4.5 V, while the minimum requirement for the CPU is 2.0 V.

The measured operating voltage of the microcontroller is 4.7 V, which exceeds the

minimum requirements of both the CPU and the flash memory. The high operating

voltage might have been chosen for other purposes in addition to flash memory, but

it is interesting to consider how the chip would behave at lower voltages.

4.5.2 Batteryless RFID-Scale Devices

There is another class of applications which run on batteryless devices that harvest

their energy from a variety of sources—solar [49, 72, 65], kinetic [81], and RF [102, 23].

Energy is a main design constraint for all of these energy-harvesting devices. Most of

these RFID-scale devices run environmental monitoring applications that are CPU

intensive, which makes them ideal for our low-power storage schemes.
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An example of an RFID-scale device is the Intel WISP [112], a batteryless RFID

tag that sets its operating voltage to 1.8 V to save power. Flash memory cannot be

written on this device since the operating voltage is below its onboard flash memory’s

2.2 V specified minimum.

4.6 Improvements and Alternatives

This section describes several complementary ways to further improve the perfor-

mance of our schemes.

4.6.1 Slow Writes

This method is similar to in-place writes in that it tries to accumulate enough

charge in a cell to present a zero bit. However, instead of writing a bit multiple

times, this method writes a bit once but slowly. The extra time allows for more

charge to get stored in a cell. The idea is similar to Dynamic Voltage and Frequency

Scaling (DVFS) methods [32]. Algorithm 7 details the simple Encode and Decode

procedures. One way to improve the slow writes is to choose a frequency level based on

the operating voltage as well as the temperature and then try to adjust the frequency

based on the error rate. If the error rate is too high, the frequency has to be set to a

smaller number to reduce the speed.

Algorithm 7 The encoding and decoding algorithms for the slow writes method to
store data to address by slowing the write threshold number of times.

Encode(data, address , threshold)

1 slow flash clock(threshold)
2 write to flash(data,address)

Decode(address)

1 result ← read from flash(address)
2 return result
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Figure 4.15. Error rate declines when the writes are performed at a lower frequency.
For a voltage level as low as 1.8 V, the average error rate is zero when the writes are
performed at 260 KHz while for 1.9 V (still well below the recommended voltage),
the average error rate is zero even if the memory is used at full speed.

Figure 4.15 shows the error rate of slow writes based on the voltage level and

the speed of the writes. The speed of the writes has been adjusted by tuning the

frequency of the flash memory. For an operating voltage as low as 1.80 V, the average

error rate eventually drops to about zero percent if the speed is slowed down enough

(In the case of this particular chip when the frequency is set to 285 KHz).

Since low-power embedded devices have a limited amount of energy available, sav-

ing power is usually a higher priority than reducing the delay. Slow writes follows

this principle and reduces the speed of the writes in order to reduce the power con-

sumption of the device. Slow writes would be beneficial specially for CPU-intensive

applications in which their frequent use of CPU would cost less power while their rare

flash memory use will be slower.

Experiment: A TI MSP430F2131 microcontroller runs a program that writes ze-

ros to the data segment of its flash memory (192 bytes). We increased the microcon-

troller’s operating voltage in 10-mV steps and increased the frequency of flash writes

from 260 KHz to 1104 KHz. We used the monitoring platform to compute the byte

error rates over 50 runs.
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4.6.2 Hardware

One could add an adjustable voltage regulator [96] and about a dozen other analog

components such that software could toggle a GPIO for discrete dynamic voltage

scaling. A feedback loop that dynamically adjusts a voltage supply could help identify

the minimum voltage at which no write errors are detected, but such boundaries can

vary with temperature and wear-out. Thus, our coding algorithms would remain

helpful to cope with potential errors. Our work seeks to avoid hardware modification

that would require additional components or design changes to a Printed Circuit

Board (PCB) because embedded applications are often cost-sensitive. Changing the

PCB layout may require a manufacturer to flush its supply chain of parts typically

manufactured in high volume. If an inexpensive, software-only approach with minimal

disturbance to manufacturing can lead to significant savings in energy consumption,

then it is hard to financially justify an expensive hardware approach that offers only

comparable performance.

4.6.3 Sign Bits and Storing Complements

As discussed in Section 4.2.3, one of the major factors influencing the error rate is

the Hamming weight of a number. One way to improve the performance of the low-

voltage storage methods is to store numbers with greater Hamming weights (weight

≥ 4) in flash memory. If a number is lightweight (weight < 4), the complement of

the number would be stored and a sign bit would be set for future data access. An

array of sign bits can be stored separately from the data to avoid disturbing word

alignment. A previous work [92] uses a similar technique for multi-level cell (MLC)

flash memories with four levels; their techniques result in a significant decrease of

energy consumption. Figure 4.16 shows that using the sign-bit scheme decreases the

error rate at low voltage for the same ECG data used in Section 4.2. For this specific

example, out of 168 bytes of ECG data, 160 bytes are overweight ; therefore using the
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Figure 4.16. ECG data stored in flash memory at 1.89 V (the same chip from
Figure 4.2) improved by using a sign bit. The light-colored bars show the difference
between the ECG stored at low voltage and the original ECG data.

sign-bit scheme greatly decreased the error rate. The sign-bit approach involves very

lightweight computation (counting the number of ones) and increases the number of

writes by a factor of one-eighth. Therefore, the effect of this improvement on energy

consumption and delay should be comparatively small.

4.6.4 Memory Mapping Table

To exploit the fact that numbers with greater Hamming weights have a lower

probability of error, we can also map the most frequently used numbers in the user’s

data to the heavier numbers. The solution we suggest is to preprocess the data to sort

numbers based on their frequency of use. A simple memory mapping table would map

the most frequent numbers to the heaviest numbers. Such a table could be preloaded

in flash memory so that storing the table would not consume energy at run time. Use

of a memory mapping table would only increase the number of reads and would not

increase the number of writes. Therefore, the energy consumption overhead and the

delay should be smaller than the sign bit method.
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4.6.5 An Ideal, Unrealizable Scheme

We initially tried to set the voltage to a level lower than recommended but high

enough to avoid errors. This method could not be realized for two reasons: finding a

voltage that satisfies this condition requires a large number of experiments per chip—

error rate varies chip by chip (Figure 4.4)– and the error rate of flash writes varies

depending on its lifespan and its environment (Section Section 4.2.3).

4.7 Summary and Future Work

The high voltage requirement of on-chip flash memory is a barrier to reducing the

total energy consumption of low-power devices. This work examines the main factors

affecting the behavior of flash memory at low voltage. Based on our observations of

flash memory behavior at low voltage, we proposed three storage schemes—in-place

writes, multiple-place writes, and RS-Berger codes—that aim to make flash memory

available and reliable at low voltage while tolerating the resource limitations of low-

power devices. Our evaluation shows that in-place writes can save 34% of energy

consumption for a sensing workload on the MSP430 microcontroller. Our storage

techniques enable battery-powered devices to require fewer or smaller batteries or to

become batteryless. Low-voltage storage would also help increase the lifespan and

decrease the manufacturing cost of sensor devices.

Future work includes finding more energy-efficient coding schemes to combat flash

write errors caused by low voltage. Currently, the system cannot take full advantage

of dynamic voltage scaling. Another plan is to introduce benchmarks for the storage

systems of low-power devices. The standard benchmarks used to evaluate the storage

systems designed for desktop computers are not immediately applicable to the low-

power domain.
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CHAPTER 5

TARDIS: SRAM-BASED TIME KEEPING FOR
EMBEDDED DEVICES WITHOUT CLOCKS

Lack of a locally trustworthy clock makes security protocols challenging to imple-

ment on batteryless embedded devices such as contact smartcards, contactless smart-

cards, and RFID tags. A device that knows how much time has elapsed between

queries from an untrusted reader could better protect against attacks that depend on

the existence of a rate-unlimited encryption oracle.

In this chapter, I present the TARDIS (Time and Remanence Decay in SRAM),

a technique to help locally maintain a sense of time elapsed without power and with-

out special-purpose hardware. The TARDIS software computes the expiration state

of a timer by analyzing the decay of existing on-chip SRAM. The TARDIS enables

coarse-grained, hourglass-like timers such that cryptographic software can more de-

liberately decide how to throttle its response rate. Our experiments demonstrate that

the TARDIS can measure time ranging from seconds to several hours depending on

hardware parameters. Key challenges to implementing a practical TARDIS include

compensating for temperature and handling variation across hardware.

This work contributions are (1) the algorithmic building blocks for computing

elapsed time from SRAM decay; (2) characterizing TARDIS behavior under different

temperatures, capacitors, SRAM sizes, and chips; and (3) three proof-of-concept im-

plementations that use the TARDIS to enable privacy-preserving RFID tags, to deter

double swiping of contactless credit cards, and to increase the difficulty of brute-force

attacks against e-passports.



Platform Attack # of Queries

MIFARE Classic Brute-force [43] ≥1,500
MIFARE DESFire Side-channel [91] 250,000
UHF RFID tags Side-channel [90] 200
TI DST Reverse eng. [20, 19] ∼75,000
GSM SIM card Brute-force [45] 150,000

Table 5.1. Practical attacks on intermittently powered devices. These attacks re-
quire repeated interactions between the reader and the device. Throttling the reader’s
attempts to query the device could mitigate the attacks.

5.1 Time Keeping in Intermittently-Powered Devices

Unawareness of time has left smart cards vulnerable to a number of successful

attacks (Table 5.1). For instance, Oswald et al. [91] recently demonstrated how

to extract the 112-bit key from a MIFARE DESFire contactless smartcard (used

by the Clipper all-in-one transit payment card1). The side channel attack required

approximately 10 queries/s for 7 hours. Some RFID credit cards are vulnerable to

replay attacks because they lack a notion of time [55]. Oren and Shamir [90] show

that power analysis attacks on UHF RFID tags can recover the password protecting

a “kill” command with only 200 queries. At USENIX Security 2005, Bono et al. [19]

implemented a brute-force attack against the Texas Instruments Digital Signature

Transponder (DST) used in engine immobilizers and the ExxonMobile SpeedPass
TM

.

The first stage of the attack required approximately 75,000 online “oracle” queries to

recover the proprietary cipher parameters [20].

A batteryless device could mitigate the risks of brute-force attacks, side-channel

attacks, and reverse engineering by throttling its query response rate. However, the

tag has no access to a trustworthy clock to implement throttling. A smartcard does

not know whether the last interrogation was 5 seconds ago or 5 days ago.

1No relation to the Clipper Chip [71].

77



5.1.1 Security Threats Due to Absence of a Trustworthy Sense of Time

A typical secure communication between a reader and a tag is shown in Figure 1.3.

The tag will only respond to the reader’s request if it has authenticated itself by

correctly answering the challenge sent by the tag. Two problems arise in this scheme:

• The tag is unaware of the amount of time spent by the reader to answer the

challenge, so an adversary has an unlimited amount of time to crack a challenge.

• The tag is unaware of the time between two different queries, so an adversary

can send a large number of queries to the tag in a short time space. This can

make various brute-force attacks possible on these devices.

Traditionally, computing devices have either had a direct connection to a reliable

power supply or large batteries that mask disconnections and maintain a constant

supply of power to the circuit. In either case, a reliable sense of time can be provided

using an internal clock. Time measurement errors, due to clock drift or power failures,

can be corrected by synchronizing with a trusted peer or other networked time source.

Current embedded systems address the timekeeping issue in one of the following ways:

1. A system can power a real-time clock (RTC); however, this is not practical on

intermittently powered devices due to their tight energy budget. Even if the

system uses a low-power RTC (e.g., NXP PCF2123 RTC chip [88]), the RTC

component has to be constantly powered (for example, using a battery). This

choice also increases the cost of manufacturing and it does not benefit devices

that are already deployed.

2. A system can keep time by accessing an external device (e.g., an RFID tag

reader) or by secure time synchronization [42, 121]. This option introduces

security concerns and may either require significant infrastructure or severely

limit range and mobility.
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5.1.2 Threat Model and Assumptions

“...if the attack surface includes an awful lot of clocks that you do not

control, then it’s worth some effort to try and make your system not

depend on them anymore.”–Ross Anderson [80]

The primary goal of the adversary in our model is to distort the TARDIS timekeep-

ing. Our threat model considers semi-invasive attacks common to smart cards [43, 91].

We will not discuss attacks such as buffer overflows which are against the systems

that would integrate the TARDIS; we focus on the attacks aimed at the TARDIS it-

self. Our adversarial model considers two classes of attacks: (1) thermal attacks that

use heating and cooling [53] to distort the speed of memory decay; and (2) power-up

attacks that keep the tag partially powered to prevent memory decay.

5.2 The TARDIS Algorithms

The TARDIS exploits SRAM decay during a power-off to estimate time. An

example of the effect of time on SRAM decay in the absence of power is visualized

in Figure 5.2. In this experiment, a 100 × 135 pixel bitmap image of a different

TARDIS [1] was stored into the SRAM of a TI MSP430 microcontroller. The contents

of the memory were read 150, 190, and 210 seconds after the power was disconnected.

The degree of image distortion is a function of the duration of power failure.2

Figure 5.1 shows the general mechanism of the TARDIS. When a tag is powered

up, the TARDIS initializes a region in SRAM cells to 1. Once the power is cut off,

the SRAM cells decay and their value might reset from 1 to 0. The next time the

tag is powered up, the TARDIS tracks the time elapsed after the power loss based

2The 14.6 KB image was too large to fit in memory, and therefore was divided into four pieces
with the experiment repeated for each to get the complete image. The microcontroller was tested in
a circuit shown in Figure 5.5 with a 10 µF capacitor at 26◦C. No block transfer computation was
necessary.
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Figure 5.1. TARDIS estimates time by counting the number of SRAM cells that
have a value of zero in power-up (computes SRAM decay). Initially, a portion of
SRAM cells are set to one (initializes SRAM) and their values decay during power-
off. The dots in the power-off indicate the arbitrary and unpredictable duration of
power-off.

on the percentage of cells remaining 1. Algorithm 8 gives more details about the

implementation of the TARDIS.

measure temperature: To detect and compensate for temperature changes

that could affect the decay rate (Section 5.6), the TARDIS uses the on-board tempera-

ture sensor found on most microcontrollers. The procedure measure temperature

stores inside-the-chip temperature in the flash memory upon power-up. The proce-

dure decay calls the temperature analyze function to decide if the temperature

changes are normal.

time: The TARDIS time procedure returns time and decay . The precision of the

time returned can be derived from the decay . If the memory decay has not started

(decay = 0), the procedure returns {time, 0} meaning that the time duration is less

than time. If the SRAM decay has started but has not finished yet (0 ≤ decay ≤ 50%),

the return value time is an estimate of the elapsed time based on the decay . If the

SRAM decay has finished (decay ' 50%), the return result is {time, 50} meaning

that the time elapsed is greater than time.

estimation: The procedure estimate uses a lookup table filled with entries of

decay, temperature, and time stored in non-volatile memory. This table is computed
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Figure 5.2. Programs without access to a trustworthy clock can determine time
elapsed during a power failure by observing the contents of uninitialized SRAM. These
bitmap images of the TARDIS [1] represent four separate trials of storing the bitmap
in SRAM, creating an open circuit across the voltage supply for the specified time at
26◦C, then immediately returning a normal voltage supply and reading uninitialized
SRAM upon reboot. The architecture of a contactless card is modeled using a 10 µF
capacitor and a diode in series with the MSP430 microcontroller’s voltage supply pin.
The degree of decay is a function of the duration of power failure, enabling hourglass-
like timekeeping precision without power. No TARDIS was harmed or dematerialized
in this experiment.

based on a set of experiments on SRAM in different temperatures. Once the time is

looked up based on the measured decay and the current temperature, the result is

returned as time by the estimate procedure. The pre-compiled lookup table does not

necessarily need to be calibrated for each chip as we have observed that chip-to-chip

variation affects decay only negligibly (Section 5.6).

5.2.1 TARDIS Performance

The two most resource-consuming procedures of the TARDIS are init (initializing

parts of the SRAM as well as measuring and storing the temperature) and decay

(counting the zero bits and measuring the temperature). Table 5.2 shows that energy

consumed in total by these two procedures is about 48.75 µJ and it runs in 15.20 ms.

Our experiments of time and energy measurements are performed on Moo RFID[140]

sensor tags that use an MSP430F2618 microcontroller with 8 KB of memory, and a

10 µF capacitor. A tag is programmed to perform one of the procedures, and the
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Algorithm 8 TARDIS Implementation

init(addr , size)

1 for i ← 1 to size
2 do memory(addr + i −1)← 0xFF
3 temperature ← measure temperature()

decay(addr , size)

1 decay ← count0s(addr , size)
2 � Proc. count0s counts the number of 0s in a byte.
3 if temperature analyze(temperature)
4 � This procedure decides if the temperature changes are expected considering

the history of temperature values stored in flash memory.
5 then return decay
6 else return error

expired(addr , size)

1 � Checks whether SRAM decay has finished.
2 decay ← decay(addr ,size)
3 if (decay ≥ %50× 8× size)
4 then return true
5 else return false

time(addr , size, temperature)

1 � Estimate the passage of time by comparing the percentage of decayed bits to
a precompiled table.

2 decay ← decay(addr ,size)/(8× size)
3 time ← estimate(decay,temperature)
4 return {time, decay}

start and end of the task is marked by toggling a GPIO pin. The tag’s capacitor is

charged up to 4.5 V using a DC power supply and then disconnected from the power

supply so that the capacitor is the only power source for the tag. In the experiments,

the DC power supply is used instead of an RF energy supply because it is difficult

to disconnect the power harvesting at a precise capacitor voltage. We measured the

voltage drop of the capacitor and the GPIO pin toggling using an oscilloscope. The
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Procedure Energy Cost Exec. Time

init 11.53 µJ ± 2.47 2.80 ms± 0.00̄
decay 37.22 µJ ± 9.31 12.40 ms± 1.10

Table 5.2. Overhead of TARDIS init and decay procedures measured for TARDIS
size of 256 bytes.

energy consumption of the task is the difference of energy (1
2
×CV 2) at the start and

end of the task. The reported measurement is the average of ten trials.

5.3 Securing Protocols with the TARDIS

There are many cases where the security of real-world applications has been broken

because the adversary could query the device as many times as required for attack.

Table 5.1 gives a summary of today’s practical attacks on intermittently powered

devices. By integrating the TARDIS, these applications could throttle their response

rates and improve their security.

We discuss six security protocols that could strengthen their defense against

brute-force attacks by using the TARDIS. To demonstrate the ease of integrating

the TARDIS, we have implemented and tested three of these security protocols on

the Moo, a batteryless microcontroller-based RFID tag with sensors but without a

clock [140]. Our prototypes demonstrate the feasibility of the TARDIS and its capa-

bilities in practice.

5.3.1 Sleepy RFID Tags

To preserve the users privacy and prevent traceability, one could use a “kill”

command to permanently deactivate RFID tags on purchased items [62]. However,

killing a tag disables many features that a customer could benefit from after purchase.

For example, smart home appliances (e.g., refrigerators or washing machines) may

no longer interact with related items even though they have RFID tags in them.
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One could temporarily deactivate RFID tags by putting them to “sleep.” However,

lack of a simple and practical method to wake up the tags has made this solution

inconvenient [62]. By providing a secure notion of time, the TARDIS makes it possible

to implement sleepy tags that can sleep temporarily without requiring additional key

PINs or cryptographic solutions. We consider a time resolution on the order of hours

more appropriate for this application.

To extend the sleep time of sleepy tags, one could use a counter along with the

TARDIS as follows: upon power-up, the tag checks the TARDIS timer, and it does

not respond to the reader if the timer has not expired. If the TARDIS timer has

expired, the tag decreases the counter by one and initializes the TARDIS again. This

loop will continue while the counter is not zero. For example, using a counter initially

set to 1000 and a TARDIS resolution time of 10 seconds, the tag could maintain more

than 2 hours of delay. Since the tag exhausts its counter every time it wakes up, the

reader interacting with the tag has to query the tag intermittently.

The TARDIS could prevent yet another attack on Electronic Product Code (EPC)

tags that use “kill” commands. To prevent accidental deactivation of tags, a reader

must issue the right PIN to kill a tag [37]. An adversary could brute-force the PIN

(32 bits for EPC Class1 Gen2 tags). The TARDIS enables the RFID tag to slow

down the unauthorized killing of a tag by increasing the delay between queries and

responses.

5.3.2 Squealing Credit Cards

Today, a consumer cannot determine if her card has been used more than once

in a short period of time unless she receives a receipt. This is because a card cannot

determine the time elapsed between two reads as the card is powered on only when

it communicates with the reader. The TARDIS enables a “time lock” on the card

such that additional reads would be noticed. Thus a consumer could have some
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assurance that after exposing a card to make a purchase, an accidental second read

or an adversary trying to trick the card into responding would be revealed. Squealing

credit cards would work similarly to today’s credit cards, but they are empowered

by the TARDIS to estimate the time between queries and warn the user audibly (a

cloister bell) if a second read is issued to the card too quickly. A time lock of about

one minute can be considered enough for these applications.

5.3.3 Forgiving E-passports

RFID tags are used in e-passports to store holder’s data such as name, date

of birth, biometric ID, and a unique chip ID number. E-passports are protected

with techniques such as the Basic Access Control (BAC) protocol, shielding, and

passive authentication. However, in practice, e-passports are not fully protected. An

adversary can brute-force the BAC key in real time by querying the passport 400

times per minute for a few weeks [11]. Another attack can accurately trace a specific

passport by sending hundreds of queries per minute [33].

To mitigate the effect of brute-force attacks, French e-passports have implemented

a delay mechanism—we imagine using a counter—to throttle the read rate [10]. This

delay increases to 14 seconds after 14 unsuccessful attempts (Figure 5.3) and would

occur even if the passport was removed from the RF field for several days. Once the

tag is presented with an authorized reader, the delay will be enforced and then reset

to zero. The TARDIS provides a time-aware alternative that delays unauthorized

access but ignores the previous false authentication attempts if the passport has

been removed from the reader’s range for an appropriate duration. A time duration

matching the maximum implemented delay (14 seconds for French passports) would

be enough to implement this function.
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Figure 5.3. Measured response time of a 2010-issued French passport [10]. The
passport imposes up to 14 seconds of delay on its responses after unsuccessful execu-
tion. The delay will remain until a correct reading happens even if the passport were
removed from the reader’s field for a long time.

5.3.4 Passback - Double-tap Prevention

In mass transportation and other similar card entry systems, the goal of the

operator is to prevent multiple people from accessing the system simultaneously using

the same card. To achieve this goal, systems are typically connected to a central

database that prevents a card from being used twice in a short time frame.3 Using

the TARDIS, a card could implement delay before permitting re-entry rather than

requiring the system to check a central database.

5.3.5 Resurrecting Duckling

Secure communication in ad-hoc wireless networks faces many obstacles because

of the low computing power and scarce energy resources of these devices. Stajano

et al. [119] proposed a policy in which these devices would transiently accept a new

owner. The devices will later return to an unprogrammed status when the owner no

3Houston METRO system: http://www.ridemetro.org/fareinfo/default.aspx
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longer needs them, they receive a kill command, or another predefined reset condition

is met. Later, others can reclaim and reuse these devices.

For wirelessly powered devices, the TARDIS can provide a sense of time, allowing

them to be “reborn” with a new owner only if there is an extended power outage. A

legitimate user can continue to power the device wirelessly, but if she wishes to transfer

ownership to another entity, she must power it down for a long enough time (defined

by the user). Otherwise, the RFID tag refuses to interact with anyone not possessing

the present cryptographic key. An example of this application is secure pairing for

computational contact lenses [56]. The controller could be cryptographically bound

until power disappears for more than a few minutes. Another use of this application

is to make stealing SIM cards difficult [45]. The card could refuse to boot if it has

been unpowered for a fair amount of time.

5.3.6 Time-out in Authentication Protocols

Because RFID tags rely on a reader as their source of energy, they cannot measure

the delay between a request to the reader and its corresponding response. The tag

ignorance gives the reader virtually unlimited time to process the request and response

in an authentication algorithm. Having unlimited response time enables the adversary

to employ various attacks on the request message with the goal of breaking it. Using

the TARDIS will limit the adversary time frame for a successful attack. An example

of these protocols can be seen in the e-passport BAC protocol where the reader and

passport create a session key for communication. Using The TARDIS would enable

passports to enforce expiration of these keys.

5.4 Implementation and Evaluation

For the implementation of sleepy tags, squealing credit cards, and forgiving e-

passports, we have chosen the Moo, a batteryless microcontroller-based RFID tag.
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Figure 5.4. Our applications are implemented and tested on the Moo RFID sensors
and are remotely powered by a RFID reader (ThingMagic M5 [129]).

We have augmented this tag with a piezo-element [54] so that it can audibly alert the

user to events.

5.4.1 Implementation

We have implemented a TARDIS library that provides the procedures init and

expire listed in Algorithm 8. For the three implemented protocols, a 1-bit preci-

sion of time–whether or not the timer had expired–was enough. The programs used

for all three protocols are similar and are shown in Algorithm 9. The tag was pro-

grammed to call the expire procedure upon power-up; if the timer had expired, it

would respond to the reader and call init; otherwise, the tag would buzz its piezo-

element. In the case of the squealing credit cards protocol the tag was programmed

to respond to the reader after buzzing, but for the two other applications, the tag

stopped communicating with the reader.

We used a ThingMagic reader [129] and its corresponding antenna to query the

tag. When the tag was queried for the first time upon removal from the RF field, it

buzzed. The tag stayed quiet whenever it was queried constantly or too quickly.
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Algorithm 9 An example of TARDIS usage in a protocol.

TARDIS example(addr , size)

1 if expired(addr ,size)
2 then respond to reader()
3 init(addr ,size)
4 else buzz piezo element()

5.4.2 Experimental Setup

To measure the TARDIS resolution time on this platform, we powered up the tag

to 3.0 V using an external power supply and then disconnected it. We observed the

voltage drop over time on an oscilloscope and measured the elapsed time between

loss of power and when SRAM decay has finished.4 We conducted our experiments

on five tags, which use a 10 µF capacitor as its primary power source. The TARDIS

resolution time on average was 12.03 seconds with a standard deviation of 0.11 sec-

onds. A similar tag, which uses 100 mF, yields a TARDIS resolution time of 145.85

seconds. These time measurements are specific to the platform we have chosen for our

experiment. The resolution could potentially be extended to hours using additional

capacitors (Table 5.4).

5.5 Security Analysis

Depending on the application, the adversary may wish either to slow down or to

speed up the expiration of the TARDIS. We discuss four different attacks that try to

distort the TARDIS interpretation of time.

4Our experiments (Section 5.6) have shown that SRAM decay finishes when the tag voltage
reaches 50 mV .
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5.5.1 Cooling Attacks.

An adversary might try to reduce the system’s temperature, aiming to slow down

the memory decay rate. Other works [53] have used this technique to prevent data

decay in DRAM for the purpose of data extraction. Cooling attacks might target

the TARDIS timer in cases where the adversary needs to slow the passage of time.

As explained in Algorithm 8, the TARDIS measures and records a device’s tempera-

ture over time and therefore it can prevent cooling attacks by observing unexpected

temperature changes.

5.5.2 Heating Attacks.

In contrast to cooling attacks, an attacker might need to speed up the TARDIS

timer. For example, someone might try to decrease the delay between queries in order

to speed up brute-force attacks. Similarly to the defense against cooling attacks, the

TARDIS will report an error indicating unexpected temperature changes.

5.5.3 Pulse Attacks.

A more sophisticated attack is a combination of the cooling and heating attacks

such that the temperature would remain the same in the beginning and the end of

the attack. It should be noted that this is not a trivial attack because the adversary

needs to restore the original internal temperature to prevent the thermal sensor from

noticing any difference. A defense against pulse attacks is to implement a thermal

fuse [24] on the chip that will activate when the chip is exposed to a high tempera-

ture. The activation of this fuse will then either notify the TARDIS of temperature

tampering on the next boot-up or possibly prevent the system from booting up at

all.
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5.5.4 Voltage Control Attack.

Another possible attack scenario would be to power up the system wirelessly to a

minimum voltage that is not sufficient for booting up but sufficient for stopping the

memory decay. This would prevent the device from noticing the unauthorized reader

and it would stop the memory from decaying further (see Figure 5.7). The voltage

control attack can freeze the TARDIS timer at a specific time as long as it sustains

the power supply. We imagine that this attack is difficult to implement because of the

inherent design of the readers. Many factors (e.g., distance) affect the voltage received

by the tags and tags are very sensitive to environmental effects. The readers are also

generally designed to flood the targeted environment with energy to provide the tags

in range with more than the maximum required power [135]. Excessive power that

may have been generated by these devices is then filtered out in tags using voltage

regulators. To implement this attack, we imagine the adversary would need to control

the input voltage to the tag with a very high precision. If the tag voltage for any

reason drops, the SRAM will decay irreversibly. At the same time, the adversary

would need to prevent the tags from fully powering up and noticing the unauthorized

reader.

5.6 Factors Affecting SRAM Decay

In our evaluation of the TARDIS, we examine the decay behavior of SRAM and

three factors that have major effects on this behavior. All experiments use the same

circuit (Figure 5.5), and follow the same general procedure.

5.6.1 Experimental Setup

A microcontroller runs a program that sets all available memory bits to 1. The

power is then effectively disconnected for a fixed amount of time (off -time). When

power is reapplied to the chip, the program records the percentage of remaining 1-bits
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Figure 5.5. General circuit used during the experiments. The microcontroller is
held in an environmental chamber to ensure consistent temperature during the tests.
The Data Acquisition (DAQ) unit both provides power to the microcontroller and
records the voltage decay.

to measure memory decay, and then it resets all bits to 1 in preparation for the next

time power is disconnected. A Data Acquisition (DAQ) unit from Agilent (U2541A

series) precisely controls the timing of power-ups and power-downs between 3 and

0 Volts, and also measures the voltage across the microcontroller throughout the

experiment. An inline diode between the power supply and microcontroller models

the diode at the output of the power harvesting circuit in RFIDs; it also prevents

the DAQ from grounding VCC during the off-time when the DAQ is still physically

connected but is not supplying power. In all experiments, microcontrollers from the

TI MSP430 family are used to ensure maximum consistency. The microcontroller used

in all experiments is MSP430F2131 with 256 B of SRAM unless stated otherwise.

In all of the experiments, temperature is controlled by conducting all tests in-

side of a Sun Electronics EC12 Environmental Chamber [122] capable of creating a

thermally stable environment from −184◦C to +315◦C with 0.5◦C precision. We use

an OSXL450 infrared non-contact thermometer [89] with ±2◦C accuracy to verify

that our microcontroller has reached thermal equilibrium within the chamber before

testing. For all the experiments, we have collected at least 10 trials.
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Term Definition

SRAM Decay Change of value in SRAM cells because of power outage
Decay Stage 1 Time before the first SRAM cell decays
Decay Stage 2 Time between the decay of first SRAM cell and last one
Decay Stage 3 Time after the last SRAM cell decays
Ground State The state that will be observed in an SRAM cell upon power-

up, after a very long time without power
DRV Data Retention Voltage, minimum voltage at which each cell

can store a datum
DRV Probability(v) Probability that a randomly chosen cell will have a DRV equal

to v and a written state that is opposite its ground state.

Table 5.3. Definition of the terms used to explain the behavior of SRAM decay and
the theory behind it.

5.6.2 Defining Stages of Decay

Three distinct stages of decay are observed in all experiments. Figure 5.6 illus-

trates the three stages of SRAM decay measured on a TI MSP430F2131 with 256 B of

SRAM and a 10 µF capacitor, at 26◦C. We vary the off -time from 0 to 400 seconds

in 20-second increments. In the first stage, no memory cells have decayed; during

the second stage, a fraction of the cells, but not all, have decayed; by the third stage

the cells have decayed completely (see Table 5.3 for a summary of term definitions).

Observations made during Stages 1 or 3 provide a single bit of coarse information,

indicating only that Stage 2 has not yet begun or else that Stage 2 has already been

completed. Observations made during Stage 2 can provide a more accurate notion of

time based on the percentage of decayed bits.

5.6.3 Decay vs. Voltage

The decay rate of SRAM is expected to depend only on its voltage level (Sec-

tion 5.7). Temperature, SRAM size, and circuit capacitance all affect the rate of

voltage depletion and thus only have secondary effects on memory decay. Our ex-

perimental results (Figure 5.7) for five sets of tests (each at least 10 trials) support
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Figure 5.6. The TARDIS presents a three-stage response pattern according to its
amount of decay. Before 175 seconds, the percentage of bits that retain their 1-value
across a power-off is 100%. For times exceeding 225 seconds, the TARDIS memory
has fully decayed. The decay of memory cells between these two thresholds can
provide us with a more accurate measurement of time during that period. This graph
presents our results measured on a TI MSP430F2131 with 256 B of SRAM and a
10 µF capacitor at 26◦C.

this hypothesis. The same setup as explained before was used and five different

temperatures (one with a 10 mF capacitor and four of them without) were tested.

5.6.4 Impact of Temperature

The work of Skorobogatov [117] shows that low temperature can increase the

remanence time of SRAM, and the work of Halderman et al. [53] similarly shows that

low temperature can extend the remanence time of DRAM. For the TARDIS using

SRAM decay to provide a notion of time, the interesting question is the opposite case

of whether high temperature can decrease remanence. We use the same experimental

setup as before (without using capacitors) to investigate how decay time varies across

five different elevated temperatures (in the range of 28◦C−50◦C). The off-time of the

microcontroller varied from 0 to a maximum of 5 seconds. Figure 5.8 shows that the

decay time is non-zero across all temperatures. This indicates that the TARDIS could
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Figure 5.7. Regardless of temperature, the amount of decay depends almost entirely
on the minimum supply voltage reached during a power-down. The bottom graph
shows the 3-parameter DRV probabilities (Equation A.3) that best predict the ob-
served relationships between decay and minimum supply voltage for each of the three
temperatures. The fit lines in the upper graph show the relationships between decay
and minimum supply voltage that are predicted by these DRV models (Section A).

work at various temperatures as long as changes in the temperature are compensated

for. For the TARDIS, this compensation is done by using temperature sensors which

are available in many of the today’s microcontrollers.5

5.6.5 Impact of Additional Capacitance

Capacitors can greatly extend the resolution time of the TARDIS. In our experi-

ment, we have tested five different capacitors ranging from 10 µF to 10 mF at 26.5◦C.

For this experiment, the capacitors were fully charged in the circuit and their volt-

5According to the TI website, 37% of their microcontrollers are equipped with temperature
sensors.
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Figure 5.8. The duration of SRAM decay is non-zero across all temperatures even
when no capacitor is used. For any given temperature, the duration of SRAM decay
is consistent across trials. Increasing the temperature from 28◦C to 50◦C reduces the
duration of both Stage 1 and Stage 2 decay by approximately 80%.

age decay traces were recorded. These traces were later used in conjunction with

our previous remanence-vs.-decay results (Section 5.6.3) to calculate the time frame

achievable with each capacitor. Table 5.4 summarizes the results for the duration of

TARDIS Stage 1 and 2 based on capacitor size. The voltage decay traces, our con-

version function (DRV Prob.), and the resulting SRAM-decay-over-time graph can

be seen in Figure 5.9.

Results ranging from seconds to days open the path for a wide variety of appli-

cations for the TARDIS, as it can now be tweaked to work in a specific time frame.

Current RFID-scale devices generally use capacitors ranging from tens of picofarads

to tens of microfarads (e.g., [2] [3]). Although a 10 mF capacitor size might be large

compared to the size of today’s transiently powered devices, the progress in capacitors’

size and capacity may very well make their use possible in the near future.
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Figure 5.9. For five different capacitor values, measured supply voltage traces are
combined with a pre-characterized DRV distribution to predict decay as a function
of time. The decaying supply voltages after power is turned off are shown at left.
The known DRV probabilities (Equation A.3) for 26.5◦C are shown at center. Equa-
tion A.4 maps every supply voltage measurement to a predicted decay, thus creating
the memory-decay-vs.-time plots shown at right. The two horizontal lines in the left
image at approximately 150 and 50 mV are the voltages where the first and last bits
of SRAM will respectively decay.

5.6.6 Impact of SRAM Size

Our hypothesis is that SRAM size has an inverse relation with decay time. This

is expected because a larger SRAM will have a larger leakage current and thus will

drain the capacitor more quickly. We tested three different models of MSP430 micro-

controller with SRAM sizes of 256 B, 2 KB, and 8 KB at 28◦C with no capacitor.

The DAQ sweeps off-time from 0 to a maximum of 5 seconds. The experiment results

are consistent with our hypothesis and are shown in Figure 5.10. It should be noted

that SRAM size is not the only difference between these three models, as they also

have slightly different power consumptions.

5.6.7 Impact of Chip Variation

The chip-to-chip variation of the same microcontroller model is not expected to

have a major effect on the TARDIS. We tested three instances of the MSP430F2131

with 256 B of memory and no capacitor at 27◦C. The off-time changes from 0
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Cap. Size Stage 1 (s) Stage 2 (s)

0 µF 1.22e0 8.80e-1
10 µF 1.75e2 5.00e1
100 µF 1.13e3 8.47e2
1000 µF 1.17e4 9.50e3
10000 µF 1.43e5 >5.34e4∗

∗ Test was interrupted.

Table 5.4. Estimated time in Stage 1 and Stage 2 of the TARDIS increases as ca-
pacitor size increases. The experiments are done on a MSP430F2131 microcontroller
at 26.5◦C and an SRAM size of 256 B. Stage 1 is the time after the power failure but
before the SRAM decay. Stage 2 represents the duration of SRAM decay.

to a maximum of 2.5 seconds with increments of 0.2 seconds. The result shown

in Figure 5.11 matches our expectation and shows that changes in decay time due

to chip-to-chip variation are insignificant (notice that no capacitor is used and the

temperature for one of the chips is one degree higher). This result indicates that

TARDIS would work consistently across different chips of the same platform and can

be implemented on a system without concern for chip-to-chip variation.

5.6.8 TARDIS Simulation

We verified the TARDIS mechanism using SPICE simulation of a small SRAM

array of 50 cells; the transistor models are 65 nm PTM, the power pin is connected

to VCC through a D1N4148 diode, and the decoupling capacitor is 70 nF . Each

transistor is assigned a random threshold voltage deviation chosen uniformly from

range ±100 mV . Each line in Figure 5.12 plots the voltage difference across the two

state nodes A and B for a single SRAM cell. Because all state nodes remain between

0V and VCC during the discharge, the differential voltage is roughly enveloped by

±VCC as shaded in grey. A positive differential voltage indicates a stored state of 1

(the written state), and a negative differential is a state of 0. Some of the nodes are

observed to flip state, starting when VCC reaches 200 mV at 0.55 seconds after power

is disconnected. As VCC discharges further, more cells decay by crossing from state
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Figure 5.10. Different microcontrollers within the TI MSP430 family with different
SRAM sizes exhibit different decay times, but follow the same general trend. The
MSP430F2618, MSP430F169, and MSP430F2131 respectively have 8 KB, 2 KB, and
256 B of SRAM.

1 to 0. When VCC is powered again at 1.05 seconds, each cell locks into its current

state by fully charging either A or B and discharging the other; this is observed in

Figure 5.12 as an increase in the magnitude of the differential voltage of each cell.

5.7 Inside an SRAM Cell

Each SRAM cell holds state using two cross-coupled inverters as shown in Fig-

ure 5.13; the access transistors that control reading and writing to the cell are omitted

from the figure. The cross-coupled inverters are powered via connections to the chip’s

power supply node. The two states of the SRAM cell, representing a logical 1 and

logical 0, are symmetrical. In each state, under normal conditions, the voltage of

either A or B is approximately Vcc while the voltage of the other is approximately

0V .
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Figure 5.11. Decay versus time in 3 different instances of the MSP430F2131 mi-
crocontroller at similar temperatures. The durations of Stage 1 and Stage 2 decay
match closely across instances.

5.7.1 Data Retention Voltage

The minimum voltage at which each cell can store either a 0 or 1 is referred to as

the cell’s data retention voltage (DRV) [98]. Since DRV depends on random process

variation, any set of SRAM cells will have a distribution of DRVs. Although the

actual DRV distribution depends on process and design parameters, typical values

fall within the range of 50 mV to 250 mV ; a published design in 0.13 µm has a

distribution of DRVs ranging from 80 mV to 250 mV , and our own analysis in this

work estimates a majority of DRVs to be in the range of 50 mV to 160 mV (Figure

5.7).

5.7.2 Memory Decay Mechanisms

Memory decay occurs in SRAM when a cell loses its state during a power cycle

and subsequently initializes to the opposite state upon restoration of power. Given

that each cell typically favors one power-up state over the other [57, 48], memory

decay can be observed only when the last-written state opposes the favored power-up
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Figure 5.12. The differential voltage of SRAM cells during decay. The envelope of
±VCC is shaded in grey. All cells are in the 1 state when power is first turned off. As
VCC decays, some cells flip from 1 to 0. The cells stabilize when power is restored.
The number of zeros after the restoration of power is used to estimate the duration
of the power outage.

state. We denote the favored power-up state as the ground state, since this is the

value an SRAM cell will take at power-up after a very long time without power. We

say that a cell written with the value opposite its ground state is eligible for memory

decay. Each eligible cell will decay once the supply voltage falls below the cell’s DRV.

Cells that are randomly assigned very low DRVs thus do not decay until the supply

voltage is very low. With sufficient capacitance, it can take days for all eligible cells

to decay.
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Figure 5.13. The state-holding portion of an SRAM cell consists of two cross-coupled
inverters tied to the chip’s power and ground nodes.
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Supply voltage decays according to Equation 5.1, where VCC , ICC , and CCC rep-

resent the supply voltage, current, and capacitance of the power supply node. The

voltage decay is slowed by a large capacitance and low current, and the following

paragraphs explain why both are present in our TARDIS application.

dvCC

dt
=

ICC

CCC

(5.1)

5.7.3 Large Capacitance

The large amount of charge stored on the power supply node is due to the decou-

pling capacitance that designers add between VCC and gnd. During normal operation,

this capacitance serves to stabilize the supply voltage to the functional blocks of the

chip, including SRAM. In some experiments, the time ranges measurable by the

TARDIS are further extended by supplementing the standard decoupling capacitors

with additional explicit capacitance.

5.7.4 Low Leakage Current

The total current ICC comprises the operating current of the microcontroller and

the SRAM’s data-retention current; both currents are functions of the supply voltage.

The current during the voltage decay is shown in Figure 5.14, and explained here:

Immediately after power is disconnected, supply voltages are above 1.4 V and

the microcontroller is operational. The observed current is between 250 µA and

350 µA, consistent with the 250 µA current specified for the lowest-power operating

point (1.8 V with 1 MHz clock) of the MSP430F2131 [126]. The SRAM current is

negligible by comparison. The high current consumption causes the voltage to decay

quickly while the microcontroller remains active.

As the voltage drops below 1.4 V , the microcontroller deactivates and kills all

clocks to enter an ultra-low power RAM-retention mode in an attempt to avoid losing

data. The nominal current consumed in this mode is only the data-retention current,
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Figure 5.14. Supply voltage and current during two power-down events with differ-
ent capacitors. The voltage VCC is measured directly, and the current ICC is calculated
per Equation 5.1 using the measured dVCC

dt
and known capacitor values. The voltage

initially decays rapidly due to the high current draw of the microcontroller. When
VCC reaches 1.40V the microcontroller turns off and ICC drops by several orders of
magnitude, leading to a long and slow voltage decay. At the time when VCC crosses
the horizontal line at 0.09V, approximately half of all eligible cells will have decayed.

specified to be 0.1 µA for the 256 B of SRAM in the MSP430F2131 [126]. In our

observations, ICC is between 0.5 µA and 10 µA during the time that VCC is between

0.5 V and 1.4 V . This current is 1.5−3 orders of magnitude smaller than the current

when the microcontroller is active. With so little current being consumed, the supply

voltage decays very slowly. The current further decreases as the supply voltage drops

into subthreshold, and cells begin to experience memory decay.6

6Note that setting VCC to 0 V during the power-down, instead of leaving it floating, reduces
voltage and memory decay times by at least an order of magnitude [117] by providing a low impedance
leakage path to rapidly drain the capacitance; we have observed this same result in our experiments
as well.
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5.7.5 Impact of Temperature

Increasing the temperature leads to more rapid memory decay for two reasons.

First, increasing the temperature increases the leakage currents that persist through

data-retention mode. Increased leakage currents lead to a faster supply voltage de-

cay, causing the supply voltage to drop below DRVs sooner. Second, temperature

expedites memory decay by increasing the DRV of SRAM cells [98], causing them to

decay at slightly higher supply voltages. Prior work shows a modest 13mV increase

in DRV when temperature increases from 27◦C to 100◦C [98].

5.7.6 Choosing a State to Write

It is possible to increase the maximum observable memory decay by making every

cell eligible for decay. This would be accomplished by characterizing the ground state

of each SRAM cell over many remanence-free trials [48, 57], and then writing each cell

with its non-ground state in order to make its memory decay observable. In contrast

to writing a uniform 1 to all cells, this approach can extract more timing information

from the same collection of SRAM cells. However, this alternative requires storing

the ground states in non-volatile memory (or equivalently storing written states in

non-volatile memory) in order to evaluate whether or not a cell has decayed. Our

approach of writing a uniform 1 to all cells makes it possible to evaluate memory decay

without this overhead simply by evaluating the Hamming Weight of the SRAM state.

5.8 Alternative Approaches

The more general question of how to keep time without a power source is fun-

damental and has numerous applications in security and real-time computing. Tech-

niques for keeping time without power or with very reduced power typically rely on

physical processes with very long time constants. In CMOS, the most obvious process
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with a long time constant is the leakage of charge off of a large capacitor through a

reverse-biased diode or MOSFET in the cut-off region.

An unexplored alternative to the TARDIS is charging a capacitor whenever the

device is active, and checking the capacitor’s voltage at a subsequent power-up to

determine whether the device has been active recently. The power-up measurement

can be performed using an ADC if available, or else by checking whether or not the

remaining voltage is sufficient to register as a logical 1. This approach differs from

the TARDIS in incurring monetary and power costs due to the use of a dedicated

capacitor and dedicated input-output pins for charging the capacitor and sensing its

voltage. Furthermore, the capacitor voltage is still dynamic after power-up, leaving

the measurement sensitive to timing variations caused by interrupts. By comparison,

the TARDIS uses no dedicated capacitor or input-output pins; its measurement ma-

terializes in SRAM at power-up and remains static thereafter until being read and

subsequently overwritten.

The EPC Gen2 protocol [37] requires UHF RFID tags to maintain four floating-

gate based “inventorial flags” used to support short power gaps without losing the

selected/inventoried status. An interesting alternative approach could co-opt these

flags to provide a notion of time; however, the flags only persist between 500ms and

5s across power failures. In comparison, the SRAM-based approach in the TARDIS

has a resolution time from seconds to hours and has a temperature compensation

mechanism. Another advantage of the TARDIS is that it works on any SRAM-based

device regardless of the existence of special circuits to support inventorial flags.

5.9 Summary

A trustworthy source of time on batteryless devices could equip cryptographic

protocols for more deliberate defense against semi-invasive attacks such as differential

power analysis and brute-force attacks. The TARDIS uses remanence decay in SRAM
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to compute the time elapsed during a power outage—ranging from seconds to hours

depending on hardware parameters. The mechanism provides a coarse-grained notion

of time for intermittently powered computers that otherwise have no effective way

of measuring time. Applications using the TARDIS primarily rely on timers with

hourglass-like precision to throttle queries. The TARDIS consists purely of software,

making the mechanism easy to deploy on devices with SRAM. A novel aspect of the

TARDIS is its use of memory decay or data remanence for improved security rather

than attacking security. Without the TARDIS, batteryless devices are unlikely to

give you the time of day.
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CHAPTER 6

FUTURE DIRECTIONS: SENSING AT LOW VOLTAGE

An Analog to Digital Converter (ADC) is one of the on-chip components that re-

quires a relatively high supply voltage. For example, the Texas Instruments MSP430F1232

requires the user to provide the ADC with at least 2.2 V to guarantee functionality.

This voltage requirement hinders the whole system from running at lower voltages if

the power rail is shared among all components on board. Simple calculation suggests

that operating a device at 2.2 V would require about 1.5 times more power than

operating the device at 1.8 V.

We define error as the measurement difference of ADC readings at low and high

voltage. Our preliminary results show that the ADC could work at voltages lower

than specified by the chip manufacturers with introducing negligible errors (1.30%).

We coin the term nonsensor to refer to any sensor used in a manner inconsistent

with a manufacturer’s specifications (e.g., voltages lower than expected), resulting in

stochastic behavior and sometimes generating “nonsense” data.

6.1 Analog to Digital Converter (ADC)

To convert a continuous (analog) quantity to a discrete time presentation in digital

form, Analog to Digital Converters (ADCs) are used. An ADC takes samples to

convert, for example, an input analog voltage to a digital number proportional to

the magnitude of the voltage. The resolution of an ADC is determined based on the

number of distinct values it can output from an analog range. For example, the TI
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MSP430F1232 has an ADC of 10-bit resolution and it can generate 1024 different

levels.

An ADC usually requires higher voltage than the CPU, and if ADC and CPU

share the same power rail, the whole chip has to operate at a higher voltage to satisfy

the ADC requirement. Table 1.2 shows several examples of popular microcontrollers

with ADCs that restrict choices for the CPU voltage supply.

To test the ADC performance at low voltages, we built a logger system both to

automate the experiments and to minimize the effect of experimental setup on the

results. We first introduce our logger systems and then provide the test results.

6.2 Logger System

For the nonsensors experiments, we needed to store the experimental results in a

non-volatile storage. However, as explained before in Chapter 4, on-chip flash memory

requires high voltage and does not work reliably at low voltages needed to test the

nonsensors. We could use the Half-Wits method to log the experimental data in

the on-chip flash memory. However, as the number of in-place writes would not be

the same for different voltages, using Half-Wits might affect the experimental result

(different voltage patterns would be applied and the temperature might change).

To log the experimental results reliably and without interfering with the experi-

ment process, we built two logger systems: one that works with the UMass Moo [140]

(Figure 6.1), and another one for a TI MSP430F1232 (Figure 6.2). In both of the

logger systems, the test subject and the monitor are connected via three pins: clock

signal, data line, and the ground. The logging platform is similar to that of the

FrankenWISP [49] and the one used for Half-Wits (Section 4.2.1).

The test platform runs a test program at a desirable voltage. When the test

program completes, the test platform sends the result of the experiment to the moni-

toring chip via GPIO pins. The test and monitoring platforms share 1+1 GPIO pins
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Figure 6.1. Logging system for voltage measurements.
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Figure 6.2. Logging system for testing temperature. The whole system is tested
inside a thermal chamber.

to carry one bit of data and a clock signal. Once the test platform puts data on

its data pin, it raises the clock pin. The monitoring chip reads data from its GPIO

data pin whenever it detects a rising clock signal and logs the results in its own flash

memory. The monitoring chip runs at a voltage above the nominal minimum for its

own flash writes, thereby storing reliably.

In the case of testing the UMass Moo, we have used a TI MSP430F2131 as a

monitoring platform. The unused GPIO pins 36 and 37 of the UMass Moo were

connected to the P1.0 and P2.4 of the TI MSP430 microcontroller (Figure 6.1).
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For testing temperature, we use a similar experimental setup but instead employ

two TI MSP430F1232 MCUs (Figure 6.2). The two MSP430s (one used as the test

platform, the other one used as the monitor) are connected through GPIO pins 36

and 37.

6.3 Preliminary Results: ADC Measurements at Low Volt-

age

We consider the impact of low voltage on two types of measurements made using

ADC: measuring voltage on one of the capacitors of the UMass moo and measuring

internal temperature of a microcontroller in a controlled environment. The effects on

each of these measurements are evaluated by designing an experiment.

6.3.1 Voltage Sensor

Our hypothesis is that if the voltage being measured is lower than 1.8 V, the

reliability of measurements will not be affected by operating the ADC at low voltage.

Figure 6.3 shows how the operating voltage of a microcontroller can be measured at

low voltages with a similar error percentage as at high voltages; this confirms our

hypothesis. For this experiment, we define error to be the difference between the

voltage measured by the ADC and the one measured by the multimeter. The mean

of the error is 1.30% and 0.71% for low(1.8 V) and high(>2.4 V) voltages respectively.

In this experiment, we talk about three voltages: (1) MCU input voltage, which

is either the output of the voltage regulator and fixed at 1.8 V or the output voltage

of a JTAG going straight to the microcontroller, (2) supply voltage, which is the

input voltage given directly to the system and it is usually supplied using a power

supply, and (3) measured voltage, which is voltage measured across a specific pin.

For example, it could measure the voltage of a specific capacitor in the system.
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Figure 6.3. Voltage measurements at low and high supply voltages using ADC and
a multimeter. The mean of the error (the difference between the voltage measured
using the ADC and the multimeter) is 1.30% and 0.71% for low (1.8 V) and high
(>2.4 V) voltages respectively.

Experiment: A UMass Moo uses its ADC (with 12-bit resolution) to measure the

voltage of a pin named “VSENSE ANALOG”. This pin measures the voltage of ca-

pacitor C10 [140] and it is one third of the MCU input voltage. The experiment

repeats the ADC measurements 500 times and they are all performed on the Moo

with the MCU input voltages of low (1.8 V) and high (> 2.4 V ). The UMass Moo

has a voltage regulator that converts the supply voltage of any value to 1.8 V, which

is lower than the ADC requirement (2.2 V). When the Moo is connected to the JTAG

debugger, the MCU voltage is the same as the supply voltage.

All the measurements performed in the first experiment are sampling a voltage

lower than 1.8 V to verify our first hypothesis. To perform a complete test in a

broader voltage range (for voltages greater than 1.8 V), we have repeated the above

experiment and measured the supply voltage (instead of the voltage of C10 which is

111



2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

1
.8

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

Supply voltage (V)

M
e
a
s
u
re

d
 V

o
lt
a
g
e
 o

n
 o

u
tp

u
t 
(V

)

Figure 6.4. Voltage measurement of the Vout using the ADC operating at 1.8 V.
The ADC cannot measure voltages greater than 2.5 V as the on-chip reference voltage
generator cannot be set to anything higher than 2.5 V.

one third of the supply voltage). In this experiment, the voltage being measured goes

as high as 3.2 V and all the measurements taken are in agreement with the multimeter

and C10 measurements. However, the ADC reference voltage generator goes as high

as 2.5 V and the ADC cannot measure anything higher than 2.5 V; hence the straight

line after the point of 3.6 V on the supply voltage (Figure 6.4).

6.3.2 Internal Temperature Sensor

Most of the microcontrollers have an internal temperature sensor. If the mi-

crocontroller is not sleeping, the internal temperature will increase. This internal

temperature cannot be used to read the ambient temperature and would need an

external temperature sensor.

Our hypothesis is that the temperature measurements will be taken reliably at

voltages as low as 1.8 V. This is because even temperatures as high as 80◦C will
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Figure 6.5. Measured temperature at different operating voltages. The temperature
has been raised from 30◦C to 60◦C.

correspond to a voltage lower than 1.8 V. As Figure 6.5 shows, the temperature

sensor functions at low voltages similar to that at high voltages.

Experiment: A TI MSP430F1232 microcontroller runs a program that uses the

ADC and the internal temperature sensor to take temperature measurements. This

program takes 100 temperature samples with about 5 ms of delay between two con-

secutive measurements. Once, the sample is ready, the microcontroller sends the

sample to another microcontroller (monitor) to log the result. The ADC returns a

12-bit value which makes the test microcontroller send the monitor 2 bytes at a time.

The experiment is performed in a thermal chamber that allows for controlling the

temperature. The thermal chamber increases the temperature from 30◦C to 60◦C in

about 2 minutes. The experiment is done at voltages in the range of 1.8 V—3.0 V.

One important note about this graph is that even though the surrounding temper-

ature is changing from 30◦C to 60◦C, the internal temperature of the MCU does not

change as quickly. Moreover, after each experiment, we waited for the environment

to cool down and return to 30◦C. However, the starting point is not exactly the same

for all voltages as we could only measure the environmental temperature.
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6.4 Applications and coordination with Half-Wits

Battery-powered and batteryless devices needing to minimize their energy con-

sumption could operate at a lower voltage and still take reliable ADC measurements.

All applications that can benefit from the Half-Wits, if they use ADC for any reason,

can also benefit from the nonsensors. Moreover, sensor applications that transmit

data in real time and do not store data in the on-chip flash memory would also

benefit from nonsensors.

The nonsensors work complements the Half-Wits work, as it allows yet another

on-chip component to operate at a lower voltage. For example, consider the case of a

sensor mote or a smoke detector. Both of these examples take a sensor measurement

and then store the result in on-chip non-volatile storage. Both of the components,

ADC and the on-chip flash memory, require high voltage to operate; however, a

combination of Half-Wits and nonsensors allows the device to operate at 1.8 V and

reduce its energy consumption.

6.5 Future Directions

The preliminary results of nonsensors show that the on-board ADC of the TI

MSP430 microcontrollers can be operated at low voltages without losing much preci-

sion. This allows existing MCUs to operate at low voltage and save energy without

any hardware modifications. However, the extendibility of this work has to be con-

firmed for other types of ADCs that are assigned a separate power rail or external

sensors sampled by ADCs.

6.5.1 Operating External ADCs and Sensors at Low Voltages:

Even though in many existing MCUs, the CPU and ADC share the same power

line, we would like to extend the nonsensors to ADCs with an independent power rail.
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Min. Voltage Typical Voltage
Sensor Requirement Requirement

Sensirion Humidity Sensor SHT1X 2.4 3.0
Infineon Analog Absolute Pressure Sensor 4.5 5.0
TI Temperature Sensor LM20 2.4 2.4

Table 6.1. Sensors usually are required to operate at a high supply voltage.

This makes nonsensors extendable to future microcontrollers that allow each on-chip

component have its own power rail.

Many sensors used in low-power devices require high voltages to operate reliably.

Table 6.1 presents a few examples of sensors typically used in sensor nodes or other

low-power devices. So far, we have only tested the ADC on the microcontroller. If the

same results can be confirmed on other sensors, the energy consumption of low-power

devices can be reduced.

6.5.2 Comparison of Nonsensors with Hardware Alternatives:

There are numerous works on designing low-voltage ADCs that trade off low-

voltage or low-power with precision. Mortezapour et al. [85] proposed a 1-V, 8-bit,

50-kS/s successive approximation ADC and more recently Chow et al. [34] proposed a

similar ADC with about 10-bit precision. Chang et al. [29] designed a 1.4 V 10-bit 25-

MS/s ADC. While the research on designing ADCs has proposed low-voltage and low-

power alternatives, the current microcontrollers are still using ADCs with high voltage

requirements. Nonsensors could fill the gap between existing and future devices and

provide current systems with a software solution to reduce energy consumption.

6.5.3 Nonsensors under fluctuating voltage:

While the operating voltage of most battery-powered devices is fixed in small time

intervals, the batteryless devices suffer from fluctuating voltage due to changes in en-
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ergy harvesting conditions. For the class of batteryless devices such as computational

RFID tags, we need to evaluate the functionality of nonsensors. We could use a device

called Ekho [141], designed and developed at UMass, to reproduce the same voltage

trace of a Intel WISP [112] or UMass Moo [140]. A series of experiments need be

conducted to get samples from a nonsensor while the voltage is constantly changing.

As the operating voltage of the system is low, we can use another microcontroller

(running at a high voltage), to log the experimental results. Similar to the auto-

mated experimental setup in the Half-Wits project, the two microcontrollers would

use data and clock signals.

6.5.4 Nonsensors on more platforms:

Our preliminary experiments show that the ADC on the TI MSP430s can be

used at lower voltages than recommended. However, we would like to examine the

extendibility of nonsensors over different platforms. This step is necessary to show

that our methods can cover most of the applications running on a diverse set of low-

power products. Our previous study revealed that the most popular microcontrollers

(apart from TI) in low-power products are from Microchip, ST, and ARM. Setting up

the experiments for different microcontrollers requires learning about different IDEs,

compilers, programmers, and debuggers. However, we will be reusing the same setup

as for the Half-Wits and TARDIS projects. In all three projects, our goal is to show

that the results are not platform-dependent.

6.6 Summary

The high voltage requirement of an on-chip ADC is a barrier to reducing the

total energy consumption of low-power devices. This work examines the influence

of operating voltage on the reliability of ADCs. Based on our observations on mea-

suring voltage and temperature, the reliability of an ADC is not affected noticeably.
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Moreover, there are many applications that do not require a high precision in their

sensor readings. The nonsensors would allow such applications to reduce their energy

consumption by operating at a lower voltage.
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CHAPTER 7

RELATED WORK

CCCP extends research on secure and energy-efficient storage for RFID tags.

Section 7.1 discusses previous work on power-aware cryptography and storage for

RFID tags. The Half-Wits work relates to storage for low-power systems, energy

proportionality, and coding schemes (Section 7.2). TARDIS provides a secure notion

of time for intermittently-powered devices by relying on SRAM decay properties.

The last section of this chapter (Section 7.3) describes how other low-power or secure

timers relate to TARDIS.

7.1 Secure Storage for Computational RFID Tags

Several other systems share design goals with CCCP. The following sections dis-

cuss systems that aim to either improve energy efficiency of batteryless RFID systems

or to enhance security of storage.

7.1.1 Power-Aware Cryptography:

Several systems share CCCP’s goal of exploiting properties of RFID systems to

enhance security and privacy. For instance, Shamir’s SQUASH hash algorithm [115]

exploits the underutilized radio link between a tag and a reader to reduce the amount

of cryptographic computation necessary on a tag. While number-theoretic hash func-

tions typically require significant computational resources for modular arithmetic, the

SQUASH function eliminates costly modular reductions and produces large (unre-

duced) hash outputs that a tag can send directly to a reader. Tags can thus use
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the SQUASH function to engage in secure challenge-response protocols with minimal

computational resources on the tag. The scheme is provably as one-way as Rabin

encryption. Like SQUASH, CCCP exploits the relatively low cost of radio commu-

nication between a tag and a reader to increase security. While SQUASH increases

radio communication to reduce computation, CCCP increases radio communication

to reduce writes to flash memory. CCCP shares some goals with power-aware encryp-

tion systems such as that proposed by Chandramouli et al. [28]. Both systems are

designed to consume little energy while offering the security of well-known crypto-

graphic primitives and both are motivated by a study of power profiling results, but

they have different goals. Chandramouli et al. focus on deriving an energy consump-

tion model and establishing a relationship between energy consumption and security,

and they offer an encryption scheme that might allow CCCP to consume less energy

during its precomputation of keystream bits. However, CCCP’s opportunistic pre-

computation occurs during periods of abundant energy, when the choice of encryption

scheme is not of the utmost importance. CCCP’s precomputation allows it to use

time- and energy-efficient XOR operations at checkpoint time, when energy is low;

an alternative encryption scheme would have to save time or energy over simple XOR

operations to be useful when energy consumption matters.

7.1.2 Secure File Systems:

CCCP uses cryptographic techniques from past work on secure file systems and

secure content distribution. CFS [17], the SFS read-only file system [40], and Plu-

tus [64] investigated how to provide secure storage layered on various degrees of

untrusted infrastructure. The key generation techniques in secure file systems help

CCCP to precompute keystream materials during power seasons. While scalability

and throughput are the main challenges in such file systems, CCCP primarily ad-

dresses energy and memory constraints. The semantics of CCCP storage are similar
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to the semantics of secure file systems. None of the systems explicitly and directly

prevent denial of service. Storing information on untrusted RFID readers trades off

the gain in storage capacity and energy conservation versus the risk of losing data due

to compromise or destruction of the external storage. To mitigate the risk against

denial of service, CCCP could choose to replicate data as do secure file systems.

7.1.3 Batteryless RFID Systems:

CCCP is closely related to Mementos [102] in that both systems provide check-

pointing of program execution on CRFIDs. Whereas Mementos relies purely on flash

memory and focuses on finding optimal checkpoint frequencies via static and dynamic

analysis, CCCP relies primarily on untrusted remote storage via radio and focuses on

low-power cryptographic protections to ensure that remotely stored data is as secure

as if it were stored locally. CCCP provides secure storage for CRFIDs, and CRFIDs

are closely related to existing passively powered RFID tags conforming to the EPC

Gen 2 standard [37]. At times the RFID and sensor world fuse together. Buettner

et al. [22] propose RFID sensor networks (RSNs) as a replacement for wireless sensor

networks in applications where batteries are inconvenient, and the authors describe

RSNs built on WISP CRFIDs. However, the RSN work does not consider remote

storage options for CRFIDs.

7.1.4 Storage-Centric Sensor Networks:

CCCP shares a number of properties with systems built for sensor networks.

Storage-centric sensor networks [36, 78] have focused on reducing radio communica-

tion and increasing writes to flash memory to conserve energy. One of our motivating

observations is that this relationship is inverted in the CRFID model: CCCP reduces

writes to flash memory in favor of increasing radio communication. Performing cryp-

tography is hard on both a CRFID and its elder cousin the sensor mote. Previous

systems, such as SPINS [95] and TinySec [67] for sensor networks, have faced design
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choices similar to CCCP’s. SPINS and TinySec use RC5 because of its small code

size and efficiency, but the battery-powered platform underlying these systems dif-

fers in fundamental ways from batteryless computational RFIDs. For a side-by-side

comparison of such embedded systems, see Table 1 of Chae et al. [26].

7.2 Non-Volatile Embedded Storage at Low Voltages

Half-Wits reduces the energy consumption of low-power systems with embedded

flash memory by making energy proportional to the workload. This section starts

with works related to energy proportionality. The rest of this section discusses work

on storage for low-power devices and error correction schemes.

7.2.1 Energy proportionality:

Our approaches share the philosophy that energy consumption should scale pro-

portionally to utilization or error rates rather than proportional to a worst-case sce-

nario. Blaauw et al. [15] reduce power consumption by lowering the operating voltage

of a pipelined CPU. Certain pipeline stages may produce incorrect computation that

require recomputation, but the errors can be made rare to allow better scalability of

power consumption. Misailovic et al. [84] demonstrate that the programs whose loops

performs fewer iterations cause tolerable errors while their execution time becomes

shorter. Weddle et al. [134] introduce PARAID, a scheme that scales power based

on the user demand while maintaining the reliability of the system. Their present

work also tries to scale power based on the utilization of flash memory without losing

storage reliability. Our approaches share this philosophy of scaling performance with

utilization. Our performance metric is energy consumption, writes to flash memory

represent our utilization, and energy-efficient error correction is our coping mecha-

nism.
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7.2.2 Storage for Low-Power Embedded Devices:

Recent research focuses on optimizing use of off-chip flash memory. Off-chip mem-

ory allows for special features and larger memories than found on microcontrollers,

but introduces additional costs for components. Microhash [137] is a memory index

structure tailored for sensor devices with a large external flash memory. Mathur et

al. [79] perform an extensive study of available flash memory candidates for sensor

devices and demonstrate that an off-chip parallel NAND flash memory decreases the

energy consumption of storage. Considering the off-chip NAND flash memory as the

best candidate for sensor devices, Agrawal et al. [5] propose a method that allows

sensor devices to exploit their flash memory while adapting to different amount of

RAM. However, our storage schemes are designed for already deployed low-power

devices that use on-chip flash memory. Moreover, while devices at the scale of sensor

nodes might switch to block-grained, large off-chip flash memory, RFID-scale plat-

forms might not benefit from this transition because of their challenging resource

limitations to drive I/O.

7.2.3 Error Correction Codes for Storage:

Most previously published flash error correction codes [30, 41, 47] are designed

for NAND flash memory. Chen et al. [31] mention that NOR flash normally does not

require error correction. These techniques consider neither the asymmetry in low-

voltage flash memory nor the resource limitations of low-power embedded devices.

Many previous codes [12, 60, 139, 124] leverage the fact that each cell of MLC flash

memory represents more than one bit of information. But the fact that single-level

cells (SLC) are more suitable for embedded devices, in addition to the occurrence of

errors in low-voltage conditions, requires a reconsideration of these codes for SLCs

at low voltage. Zemor et al. [138] introduce error-correcting WOM codes for flash

memory. They suggest codes that are able to correct up to one error when the flash
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memory is given enough voltage. This work does not account for errors that occur

at low voltage. Godard et al. [44] propose hierarchical code correction and reliability

management for NOR flash memory. This work considers on-chip ECCs such as

Hamming and parity codes to correct the errors in NOR flash memory.

7.3 Time Keeping for Intermittently-Powered Devices:

TARDIS extends research on security of intermittently-powered devices by relying

on SRAM decay properties. The following sections discuss security of RFID tags,

secure and low-power timers, and memory remanence.

7.3.1 RFID Security and Privacy:

The inability of intermittently powered devices to control their response rates has

made them susceptible to various attacks. An RFID tag could be easily “killed”

by exhausting all possible 32-bit “kill” keys. Such unsafe “kill” commands could be

replaced with a “sleep” command [62]; however, lack of a timer to wake up the tag in

time has made the use of the “sleep” command inconvenient. The key to e-passports

can be discovered in real time by brute-force attacks [11]. The attack could be slowed

down if the e-passport had a trustworthy notion of time. The minimalist model [61]

offered for RFID tags assumes a scheme that enforces a low query-response rate. This

model could be implemented using the TARDIS.

7.3.2 Secure Timers:

To acquire a trustworthy notion of time, multiple sources of time can be used to

increase the security level of a timer [108]; but this requires the device to interact

actively with more than one source of time, which is not practical for RFID tags that

use passive radio communication. The same issues prevent us from using the Lamport

clock and other similar mechanisms that provide order in distributed systems [70].
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This inability to acquire secure time precludes the use of many cryptographic proto-

cols, including timed-release cryptography [77, 104].

7.3.3 Ultra-low Power Clocks:

With the rise of pervasive computing come a need for low-power clocks and coun-

ters. Two example applications for low-power clocks are timestamping secure trans-

actions and controlling when a device should wake from a sleep state. The lack of

a rechargeable power source in some pervasive platforms requires ultra-low power

consumption. Low voltage and subthreshold designs have been used to minimize

power consumption of digital circuits since the 1970s [123]. Circuits in wristwatches

combine analog components and small digital designs to operate at hundreds of

nW [132]. A counter designed for smart cards uses adiabatic logic to operate at

14KHz while consuming 11nW of power [125]. A gate-leakage-based oscillator im-

plements a temperature-invariant clock that operates at sub-Hz frequencies while

consuming 1pW at 300mV [73]. A TI-recommended technique [100] for the MSP430

is to charge a dedicated external capacitor from the microcontroller while in a low-

power sleep mode with clocks deactivated; the microcontroller is triggered to wake

up when the capacitor voltage surpasses a threshold. But all of these solutions, while

very low-power, still require a constant supply voltage and hence a power source in

the form of a battery or a persistently charged storage capacitor. However, embedded

systems without reliable power and exotic low-power timers may still benefit from the

ability to estimate time elapsed since power-down.

7.3.4 Attacks Based on Memory Remanence:

Processes with long time constants can also raise security concerns by allowing

data to be read from supposedly erased memory cells. Drowsy caches [39] provide a

good background on the electrical aspects of data retention. Gutmann stated that

older SRAM cells can retain stored state for days without power [50]. Gutmann
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also suggest exposing the device to higher temperatures to decrease the retention

time. Anderson and Kuhn first proposed attacks based on low-temperature SRAM

data remanence [8]. Experimental data demonstrating low-temperature data rema-

nence on a variety of SRAMs is provided by Skorobogatov [117], who also shows

that remanence is increased when the supply during power-down is left floating in-

stead of grounded. More recent freezing attacks have been demonstrated on a 90nm

technology SRAM [131], as well as on DRAM [53]. Data remanence also imposes a

fundamental limit on the throughput of true random numbers that can be generated

using power-up SRAM state as an entropy source [113]. The TARDIS, in finding

a constructive use for remanence and decay, can thus be seen as a counterpoint to

the attacks discussed in this section. The TARDIS is the first constructive method

that takes advantage of SRAM remanence to increase the security and privacy of

intermittently powered devices.

125



CHAPTER 8

CONCLUSION

The thesis of this work is that we can use unconventional and probabilistic com-

puting that bends traditional abstractions and interfaces in order to reduce energy

consumption while protecting program semantics. Designing methods that improve

the energy efficiency of low-power devices faces a major challenge: protecting program

semantics and preserving system performance while improving energy efficiency. The

functionality, reliability, security, and other performance metrics of a system must

not be sacrificed for the sake of reducing energy consumption.

In this thesis I propose four methods to reduce the energy consumption of low-

power devices: 1) CCCP, which provides an energy-efficient storage alternative to

local non-volatile storage by relying on cryptographic backscatter radio communica-

tion, 2) Half-Wits, which allows for operating the system at lower voltages in order to

reduce energy consumption while it maintains storage reliability using software-only

coding algorithms, 3) TARDIS, which exploits the decay properties of SRAM to esti-

mate the duration of a power failure and provides a secure notion of time to systems

without clocks, 4) Nonsensors, which allows for operating analog to digital converters

at low voltages in order to reduce energy consumption of the whole system.

I have evaluated the energy savings of my proposed techniques through experi-

ments on actual low-power devices. The results show that sometimes tightly main-

taining the digital abstraction for embedded systems comes at a significant cost to

energy consumption with minimal gain in reliability. Moreover, it is possible to use
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the available resources opportunistically to provide less energy hungry alternatives to

low-power systems.
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APPENDIX A

MODEL OF DECAY PROBABILITIES

Knowing the DRV distribution of a collection of SRAM cells makes it possible

to predict the amount of memory decay that will result from reaching any known

minimum supply voltage during a power cycle. We propose a simple and intuitive

3-parameter (α, µ, σ) model to characterize the DRV distribution. We chose the

parameters such that the model predictions agree with empirical data relating memory

decay to minimum supply voltage.

Cells eligible for memory decay after being written with a value of 1 are those

with a ground state of 0. We use g = 0 to denote cells with a 0 ground state, and

use α to denote the fraction of cells with this ground state; α is therefore the largest

fraction of cells that can decay after writing a 1 to all cells.

Pr(g = 0) = α (A.1)

Among cells that are eligible for memory decay, we assume that DRVs are normally

distributed with mean µ and standard deviation σ (Equation A.2).

DRV | (g = 0) ∼ N
(

µ, σ2
)

(A.2)

The probability of a randomly selected cell being eligible for memory decay and

having DRV = v is given by Equation A.3. This is an α-scaled instance of the

PDF of a normally distributed random variable, and we refer to this as the “DRV

probability” of voltage v.

128



Pr ((g = 0) ∧ (DRV = v)) =
α

σ
√

2π
e−(v−µ)2/(2σ2) (A.3)

If the minimum voltage of a power cycle is known, then the 3-parameter model

can predict the memory decay. The cells that will decay are eligible cells with a

DRV that is above the minimum supply voltage reached during the power cycle. A

closed-form equation for predicting the memory decay from the minimum voltage and

model parameters is then given by Equation A.4; this equation is 1 minus the CDF

of a normally distributed random variable, scaled by α.

DPRED(vmin, α, µ, σ) = α



1−
1 + erf

(

vmin−µ

σ
√

2

)

2



 (A.4)

A 3-parameter model is evaluated according to how well its predicted memory

decay matches empirical data. The evaluation is performed using a set of n observa-

tions 〈v0, D(v0)〉, 〈v1, D(v1)〉, . . . , 〈vn−1, D(vn−1)〉; each observation is a measurement

of the minimum supply voltage reached during a power cycle, and the memory decay

observed across that power cycle. The prediction error of any model is defined ac-

cording to Equation A.5. We initially use the set of measurements to find the model

parameters that minimize the prediction error (see Figure 5.7).

ERR(α, µ, σ) =
n−1
∑

i=0

(DPRED (vi, α, µ, σ)−D (vi))
2 (A.5)

After measurements are used to fit the model parameters to empirical data, the

model is subsequently used to predict memory-decay-vs.-time curves from voltage-

vs.-time measurements (see Figure 5.9).
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