
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

Fall 2014

ADAPTIVE STEP-SIZES FOR
REINFORCEMENT LEARNING
William C. Dabney
Computer Sciences

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Artificial Intelligence and Robotics Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Dabney, William C., "ADAPTIVE STEP-SIZES FOR REINFORCEMENT LEARNING" (2014). Doctoral Dissertations. 173.
https://scholarworks.umass.edu/dissertations_2/173

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/173?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ADAPTIVE STEP-SIZES FOR REINFORCEMENT
LEARNING

A Dissertation Presented

by

WILLIAM DABNEY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2014

Computer Science

c© Copyright by William Dabney 2014

All Rights Reserved

ADAPTIVE STEP-SIZES FOR REINFORCEMENT
LEARNING

A Dissertation Presented

by

WILLIAM DABNEY

Approved as to style and content by:

Andrew G. Barto, Chair

Sridhar Mahadevan, Member

Benjamin Marlin, Member

Hari Jagannathan Balasubramanian, Member

Lori A. Clarke, Chair
Computer Science

for our shared quest

ACKNOWLEDGMENTS

The journey from an initial interest in research to completing a PhD is a long and

challenging one. Sometimes an idea works out well, and sometimes it leads nowhere.

All of the uncertainty can be the greatest challenge of the whole process. I was

very fortunate to share my time in graduate school with people who have made the

uncertainty tolerable and shared with me some of the best times of my life.

From an early age I was fascinated by the idea of artificial intelligence (AI). My

early attempts were encouraged by my parents, Bill Dabney and Cathy Barnum,

but received their biggest boost from two early influences. First, from my step-dad,

Tom Barnum, who guided me through the idea of creating an intelligent program

that would improve its play at the 20-questions game. He posed questions to my

12 year-old mind and left me to play with Visual Basic on his computer in order to

sort out the answers for myself. As a result I created a simple decision-tree learning

algorithm that played 20-questions and improved when it guessed wrong. The second

big influence came immediately afterwards when I sold the program to my sister,

Catie, for $10. Of course, having a copyright lawyer as a mother, this soon erupted

into a licensing dispute. There were many lessons learned that week.

No teacher from my childhood had the foundational and long-lasting impact on

my intellectual development that Tom provided by continually presenting interesting

problems and asking hard questions. My mother, Cathy, recognized my potential

and defended me against an early science teacher who was more concerned with

bureaucracy than with learning. Thank you for protecting my love of learning from

being snuffed out early on. My father and step-mother, Bill and Dorothy Dabney,

have always shown pride and support in every way I could have asked for.

v

It was not until Amy McGovern’s undergraduate AI course at the University of

Oklahoma that I received a formal introduction to the field. I owe a huge debt to Dr.

McGovern for teaching the class with such obvious enthusiasm and for giving us all far

more than could be digested in a single semester. Through her undergraduate AI class

I was able to join Dr. McGovern’s research experiences for undergraduates program

where I got my first taste of research and learned about reinforcement learning. These

early experiences were instrumental in developing my excitement for research, and

taught me how fun the whole process could be.

When I came to UMass for graduate school it was to work with my advisor Andy

Barto. From reading the book written by Andy and his first PhD student I was, and

still am, certain that reinforcement learning is the most interesting and promising

area of research in artificial intelligence. I expected a brilliant super-star of the field

with ego to match, but I was only half right. Andy is an exceptional advisor for his

ability to quickly digest new ideas, ask incredibly challenging questions, and guide

research contributions away from the incremental and toward the fundamental. He

does all of this while maintaining an incredibly down-to-earth personality and humble

demeanor that made me feel safe in sharing my less than brilliant ideas and questions.

Thank you Andy, you have changed my life and shown me the best example of the

type of researcher I aim to become.

I have always had a fondness for math, not arithmetic which I continue to fumble

on a daily basis, but the elegance and power of symbolic reasoning found in mathe-

matics. Sridhar Mahadevan has an ability to communicate mathematically beyond

anyone I have ever met. He has thoroughly challenged me both in his courses and in

our research collaborations. He has made me a better researcher and strengthened

my mathematically maturity greatly.

While in graduate school I have worked with a couple of other professors outside

my research area that have left a lasting impact on me. Robert Moll taught me

vi

important lessons about teaching computer science to new students. James Allen

helped to expose me to new areas of computer science research that have greatly

expanded my knowledge about topics outside of machine learning. And, while not a

professor, Leeanne Leclerc has my undying gratitude because without her constant

help I would have never made it through graduate school.

A PhD is a somewhat solitary process. It is your research and you are the expert on

it. But fortunately for my own sanity and intellectual growth I have shared graduate

school with a group of good friends and excellent researchers. George Konidaris

has been like a second advisor to me. He has masterfully played the part of the

senior graduate student and mentor, imparting apt advice and was always available

to discuss my research ideas and frustrations. Forgive the fatalism, but George is a

man destined to be a great research professor. He already is, in all but title. Philip

Thomas has been a good friend and great research collaborator. He writes with

clarity and has the greatest of mathematical integrity. Thank you for showing me

that research collaboration can be fun and produce fantastic results. Scott Niekum

somehow managed to make graduate school feel fun and exciting while producing

work faster than should be humanly possible. His lightening fast rate of progress did

more than most to motivate me to graduate sooner rather than later.

The Autonomous Learning Lab is the group of students I would have chosen to

work and socialize with even if we did not share so many research interests. My fellow

graduate students had a profound impact on my work and my ability to work. They

made my thinking and my research better. There are many more that deserve thanks,

but research has given me a bias for brevity. Reducing any of these relationships to

a few sentences is so absurd, but it would require an entire dissertation to go into all

the ways in which these amazing characters have shaped my life.

Colin Barringer’s influence on me certainly skews toward the social, and through

him I met one of my closest friends, JP Bracey. Both of whom have helped me live

vii

a fuller life while pursuing my PhD. I had the great fortune of living with incredible

roommates for much of my time at UMass. TJ Brunette and I shared great adventure

rock climbing in Sunderland. Danilla Musante kept me honest with myself. Lauri,

Hanna, and Amanda of the neuroscience department brought me great friendships

and a healthy dose of insanity, thank you so much. In particular, thank you Lauri

Kurdziel for being such a good friend and introducing me to West Coast Swing. Blair

Lyonev I have so much to thank you for, but here let me say thank you for bringing

me to tears with your writing.

My favorite part of teaching has always been to walk through concepts one-on-one

and get to watch understanding and skill grow in one mind. Although I cannot take

credit for teaching her much of anything, I did get to see that process in Presley

Pizzo and it was amazing to watch. I may be acknowledging too many friends and

not enough collaboration, but that is perhaps indicative of having learned more in

my hours socializing than in my hours working.

When I first visited UMass Gene Novark, in his characteristic style, tried to dispel

my rosy expectations for graduate school. When that did not work he gave me a

glass of bourbon and sent me back to Oklahoma. Even though his and others’ stern

warnings did not deter me, I learned something important from that first impression

of UMass: graduate school is harder than you expect, but you can get through it

while having fun with the help of good friends. Good friends and good bourbon.

viii

ABSTRACT

ADAPTIVE STEP-SIZES FOR REINFORCEMENT
LEARNING

SEPTEMBER 2014

WILLIAM DABNEY

B.Sc. Computer Science, UNIVERSITY OF OKLAHOMA

B.Sc. Mathematics, UNIVERSITY OF OKLAHOMA

M.Sc. Computer Science, UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

The central theme motivating this dissertation is the desire to develop reinforce-

ment learning algorithms that “just work” regardless of the domain in which they are

applied. The largest impediment to this goal is the sensitivity of reinforcement learn-

ing algorithms to the step-size parameter used to rescale incremental updates. Adap-

tive step-size algorithms attempt to reduce this sensitivity or eliminate the step-size

parameter entirely by automatically adjusting the step size throughout the learning

process. Such algorithms provide an alternative to the standard “guess-and-check”

methods used to find parameters known as parameter tuning.

However, the problems with parameter tuning are currently masked by the way

experiments are conducted and presented. In this dissertation we seek algorithms that

ix

perform well over a broad subset of reinforcement learning problems with minimal

parameter tuning. To accomplish this we begin by addressing the limitations of

current empirical methods in reinforcement learning and propose improvements with

benefits far outside the area of adaptive step-sizes.

In order to study adaptive step-sizes in reinforcement learning we show that the

general form of the adaptive step-size problem is a combination of two dissociable

problems (adaptive scalar step-size and update whitening). We then derive new

parameter-free adaptive scalar step-size algorithms for the reinforcement learning

algorithm Sarsa(λ) and use our improved empirical methods to conduct a thorough

experimental study of step-size algorithms in reinforcement learning. Our adaptive

algorithms (VES and PARL2) both eliminate the need for a tunable step-size pa-

rameter and perform at least as well as Sarsa(λ) with an optimized step-size value.

We conclude by developing natural temporal difference algorithms that provide an

approximate solution to the update whitening problem and improve performance over

their non-natural counterparts.

x

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . ix

LIST OF TABLES . xv

LIST OF FIGURES . xvi

CHAPTER

1. INTRODUCTION . 1

1.1 Contributions . 3

2. BACKGROUND AND RELATED WORK . 5

2.1 Reinforcement Learning . 5

2.1.1 Function Approximation . 7
2.1.2 Policy Iteration . 8
2.1.3 Optimistic Approximate Policy Iteration . 9
2.1.4 Policy Gradient . 11
2.1.5 Natural Actor-Critic (NAC) . 12

2.2 Adaptive Step-Sizes . 14

2.2.1 Matrix-Valued Step Sizes . 15
2.2.2 Vector-Valued Step Sizes . 17
2.2.3 Scalar Step Sizes . 20

2.2.3.1 Convergence Conditions . 20
2.2.3.2 Deterministic Step-Size Schedules 21
2.2.3.3 Line Search Methods . 22
2.2.3.4 Meta Optimization of Step Size . 25

2.3 Adaptive Step-Sizes in Reinforcement Learning . 27

xi

2.3.1 Adaptive Step-Sizes for Policy Evaluation . 28
2.3.2 Adaptive Step-Sizes for Online Control . 30

2.4 Summary . 31

3. EVALUATION METHODS FOR REINFORCEMENT
LEARNING . 33

3.1 Introduction . 33

3.1.1 Demonstration vs. Experimentation . 35

3.2 Current Methods of Evaluating Reinforcement Learning
Algorithms . 36

3.2.1 Learning Curves . 36
3.2.2 Parameter Tuning . 39
3.2.3 Multiple Domains . 41

3.3 Meaningful Empirical Methods . 42

3.3.1 Background and Desired Properties . 42
3.3.2 Failure Rate: Quantifying when things fall apart 45
3.3.3 Reward Received . 46
3.3.4 Difficulty and Impact of Parameter Tuning 51
3.3.5 Importance of Multiple Domains . 58
3.3.6 Comparing Reinforcement Learning Algorithms 60

3.4 Experiments with Proposed Methods . 62

3.4.1 Use In Practice (In the Presence of Page Limits and
Deadlines) . 62

3.4.2 Case Study: Sarsa(λ) With and Without an Adaptive Step
Size . 64

3.4.3 Case Study: LSPI, NAC, and Sarsa(λ) . 65

3.5 Conclusion . 66

4. ADAPTIVE SCALAR STEP SIZES FOR REINFORCEMENT
LEARNING . 70

4.1 Introduction . 70
4.2 Update Whitening and Adaptive Scalar Step Sizes 73
4.3 Adaptive Scalar Step Sizes for Sarsa(λ) . 80

4.3.1 Stochastic Gradient Descent Methods . 80
4.3.2 Variance Estimating Step Sizes for Sarsa(λ) (VES) 85

xii

4.3.3 Passive-Aggressive Updates for Reinforcement Learning
(PARL) . 90

4.4 Algorithms for Comparison . 96

4.4.1 Deterministic Step-Size Schedules . 96
4.4.2 Adaptive Step Sizes . 97

4.5 Empirical Results . 99

4.5.1 Deterministic Step-Size Schedules . 100
4.5.2 Stochastic Gradient Descent Methods for Step Sizes 102
4.5.3 Variance Estimation Method for Step Sizes 104
4.5.4 Passive-Aggressive Method for Step Sizes . 104
4.5.5 Finite MDPs and HL(λ) . 106
4.5.6 Overview . 106

4.6 Conclusion . 111

5. NATURAL TEMPORAL DIFFERENCE LEARNING 116

5.1 Introduction . 116
5.2 Residual Gradient . 117
5.3 Natural Residual Gradient . 119
5.4 Algorithms . 123

5.4.1 Quadratic Computational Complexity . 123
5.4.2 Linear Computational Complexity . 123
5.4.3 Extensions . 125

5.5 Experimental Results . 126

5.5.1 Mountain Car . 128
5.5.2 Cart Pole Balancing . 129
5.5.3 Visual Tic-Tac-Toe . 130
5.5.4 Acrobot . 132

5.6 Discussion . 134
5.7 Conclusion . 136

6. CONCLUSION . 138

6.1 Future Work . 139

APPENDIX: FUNCTION APPROXIMATION DETAILS 141

xiii

BIBLIOGRAPHY . 142

xiv

LIST OF TABLES

Table Page

3.1 Observations about the behavior of an RL algorithm 43

3.2 Failure thresholds on discounted return (estimated over 3000
trials) . 47

3.3 RL Benchmark: Our proposed set of benchmark MDPs, with (6)
discrete state problems and (9) continuous state problems. 59

A.1 Fourier basis order used for continuous MDPs . 141

xv

LIST OF FIGURES

Figure Page

2.1 The Reinforcement Learning problem setting [Sutton and Barto,
1998b]. 6

3.1 Comparing two algorithms (A and B), on Mountain Car and a
modified Mountain Car, illustrating possible ceiling effects
obscuring results. Learning curves for each algorithm are averages
over 30 runs. 37

3.2 Frequency histograms over empirical studies contained by RL
research papers (NIPS, ICML, and AAAI 2013). 42

3.3 Selection of domains used in recent RL research papers 43

3.4 Histogram of undiscounted return (Total Reward) compared with
discounted return (γ = 0.9999) on Mountain Car. Optimal
policies achieve a total reward of about −120, and an
undiscounted return of about −119. 50

3.5 Average policy percentile as dependent variable for Sarsa(λ) and
Q-Learning on Mountain Car. 52

3.6 Discounted return as dependent variable for Sarsa(λ) and Q-Learning
on Mountain Car . 53

3.7 Difficulty and impact of parameter tuning for Sarsa(λ) and
Q-Learning on Mountain Car. Expected max policy percentile
(µn) shown by lines and standard error (σn) shown by error
bars. 55

3.8 Learning curves and Learn-Evaluate partition generated by
Equation 3.4 . 57

3.9 Empirical discounted return distributions for randomly sampled
fixed-policies. 63

3.10 Sarsa(λ) with and without an adaptive step size. 67

xvi

3.11 Sarsa(λ) with and without an adaptive step size on individual
domains. 68

3.12 Case study of Sarsa(λ), LSPI, and NAC averaged over RL
Benchmark. 69

4.1 Aggressive step-size regions. 93

4.2 Deterministic step-size schedules and Sarsa(λ), averaged over the RL
Benchmark set. 101

4.3 SGD adaptive step sizes and Sarsa(λ), averaged over the RL
Benchmark set. 103

4.4 VES and Sarsa(λ), averaged over the RL Benchmark set. 105

4.5 Passive-aggressive step sizes (PARL) and Sarsa(λ), averaged over the
RL Benchmark set. 107

4.6 Performance with optimized parameters of VES, PARL2, PARL3 and
Sarsa(λ). 108

4.7 HL(λ), PARL2 and Sarsa(λ), averaged over the finite MDPs in the
RL Benchmark set. 109

4.8 Adaptive step-size algorithms with Sarsa(λ), averaged over RL
Benchmark set of domains. 110

4.9 Adaptive step-size algorithms with Sarsa(λ), on Acrobot. 113

4.10 Adaptive step-size algorithms with Sarsa(λ), on HIV Treatment. 114

4.11 Adaptive step-size algorithms with Sarsa(λ), on Finite Track Cart
Pole Balancing. 115

5.1 Q-space denotes the space of possible Q functions, while θ and
h-space denote two different weight spaces. The circles denote
different locations in θ and h-space that correspond to the same Q
function. The blue and red arrows denote possible directions that
a non-covariant algorithm might attempt to change the weight
vector, which correspond to different directions in Q-space. The
purple arrow denotes the update direction that a covariant
algorithm might produce, regardless of the parameterization of
Q. 119

xvii

5.2 Mountain Car (Residual Gradient) . 128

5.3 Mountain Car (Sarsa(λ)) . 129

5.4 Cart Pole (Residual Gradient). Same legend as Figure 5.2 130

5.5 Cart Pole (Sarsa(λ)) . 131

5.6 Visual Tic-Tac-Toe Experiments . 132

5.7 Acrobot Experiments (TDC) . 133

5.8 Visual Tic-Tac-Toe example letters . 134

xviii

CHAPTER 1

INTRODUCTION

Reinforcement learning (RL) provides a framework for learning in sequential de-

cision making problems [Sutton and Barto, 1998a]. Within this framework an agent

interacts with the environment by taking actions and observing the consequences of

those actions. The RL problem is to learn what actions to take based upon delayed

feedback provided by a reward function. The interactions between agent and environ-

ment are often modeled as a Markov Decision Process (MDP) which defines a domain

in which an RL algorithm may be used. The RL algorithm provides the intelligence

of the agent. The agent’s ability to adapt to the conditions of the domain and learn

actions which maximize reward is controlled by the RL algorithm.

The central theme motivating this dissertation is the desire to develop RL algo-

rithms that “just work” regardless of the domain in which they are applied. How-

ever, the No Free Lunch Theorem provides some important perspective and sanity

here [Wolpert and Macready, 1997]. We cannot expect any learning algorithm to be

equally effective over all possible RL domains. The use of tunable algorithm param-

eters allows the learning process to be biased in a domain-dependent way, partially

off-setting the consequences of the no free lunch theorem. The process for choosing

these parameter values is best described as “guess and check”, a process commonly

known as parameter tuning. Parameter tuning involves guessing a value for the dif-

ferent tunable parameters and running the learning algorithm to check how well it

performs.

1

Evaluating an RL algorithm without evaluating its parameter tuning process pro-

vides an occluded and biased measure of the algorithm’s performance. We propose

that the concept of ecological optimality is the most appropriate paradigm in which

to evaluate the parameter tuning process of an RL algorithm. Under this paradigm

we seek an algorithm that performs well with minimal parameter tuning on a broad

set of domains. This set of domains should be representative of the types of problems

we wish to solve. In Chapter 3 we provide evidence supporting this claim and present

an improved set of empirical methods for RL that facilitate research into ecologically

optimal RL algorithms.

The step-size parameter controls the rate at which new information is accumu-

lated by the learning algorithm and is among the most pervasive tunable parameters

in machine learning. An adaptive step-size for RL algorithms which automatically

adjusts the step-size value during the learning process would provide a significant step

towards eliminating the need for parameter tuning. RL algorithms are often more

sensitive to the value of the step-size parameter than to any other parameter and the

choice of step-size parameter can profoundly affect the performance of the learning

algorithm. Research on step sizes is dominated by contributions from the fields of

convex optimization and stochastic approximation, but many of the assumptions and

requirements of these fields do not transfer to the RL setting.

Recent research into adaptive step sizes has focused on the development of matrix

and vector value adaptive step sizes [Duchi et al., 2011b, Schaul et al., 2012, Ross et al.,

2013]. Whereas the scalar step-size we have discussed so far scales the magnitude of

updates performed by an algorithm, matrix value step-sizes both scale the magnitude

and modify the direction of updates. However, a matrix-valued adaptive step-size

solves the combination of two problems: the adaptive scalar step-size problem and

the update whitening problem. Informally, the update whitening problem is to adjust

2

the direction of updates to correct for approximation errors caused by minimizing a

linear approximation of the loss function.

In the remainder of Chapter 4 we derive novel adaptive scalar step-size algorithms

for RL and bring to bear our newly developed empirical methods to perform a thor-

ough study of adaptive step-sizes in RL in general and adaptive step-size algorithms

in particular. Finally, in Chapter 5 we develop and present the Natural Temporal Dif-

ference Learning class of algorithms which approximately solve the update whitening

problem in action-value based RL. First, we will review some background informa-

tion on RL and adaptive step-sizes in Chapter 2, and in Chapter 3 we introduce an

improved set of empirical methods for RL which are used in later chapters.

1.1 Contributions

This dissertation makes the following contributions towards the problems dis-

cussed above:

1. Empirical methods for RL. We begin by motivating the need for these methods

with a review of recently published work in RL and illustrate the limitations

of current practices. Our proposed set of methods allow for more informative

experimental results and make the evaluation of parameter tuning explicit.

2. Parameter-free adaptive scalar step-sizes for RL. Chapter 4 presents our deriva-

tion of three parameter-free algorithms for the adaptive scalar step-size problem

and a thorough empirical study of their behavior.

3. Natural Temporal Difference Learning. Chapter 5 presents a class of algorithms

for approximately solving the update whitening problem for action-value based

RL.

Together these contributions advance the study of the adaptive step-size problem

in RL; beginning with the empirical methods needed, continuing to the definition of

3

the adaptive scalar step-size and update whitening problems, and concluding with

the derivation and evaluation of adaptive algorithms for these two problems.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we review the two areas at the heart of this work: reinforcement

learning and adaptive step sizes. We cover important background material for each

topic and review related work on adaptive step sizes. Both areas have an extensive

body of research surrounding them, but research into adaptive step-sizes for RL is

relatively rare.

2.1 Reinforcement Learning

Consider the sequential decision making setting shown in Figure 2.1. In this setting

the agent interacts with an environment. At each time step t the agent observes the

current state st and a reward signal rt. The agent then takes an action at and the

time step increments by one. The environment in turn produces new state, st+1, and

reward signal, rt+1. The reward rt+1 provides evaluative feedback on the desirability

of the action at leading to state st+1. A mapping from states to actions is referred

to as a policy, and is denoted by π. Policies may be deterministic, always resulting

in the same action in a given state such as π(s) = a, or stochastic shown with

a ∼ π(s), taking different actions based on a probability distribution conditioned on

the state. The Reinforcement Learning (RL) problem faced by the agent is to learn

a policy that maximizes the sum of discounted rewards, where a discount factor γ

encodes the trade-off between maximizing immediate reward versus long-term reward.

Alternately, the problem may also be specified in terms of maximizing the average

reward, but we focus on the discounted setting.

5

Agent

Environment

action
at

reward signal
rt

state
st

Figure 2.1: The Reinforcement Learning problem setting [Sutton and Barto, 1998b].

Classically, this agent-environment interaction is defined by a Markov Decision

Process (MDP) [Bellman, 1957]. An MDP is defined by the tuple (S,A, R, P, ρ0, γ),

with state set S, action set A, reward function R : S ×A × S → R, discount factor

γ ∈ [0, 1], and transition probabilities P . For any two states s, s′ ∈ S, and action

a ∈ A, P (s′|s, a) gives the probability of transitioning into state s′ after taking action

a in state s.

When the agent-environment interactions can be broken into independent sub-

sequences the MDP is said to be episodic, whereas when this is not the case and

interactions form an on-going uninterrupted process, the MDP is said to be contin-

uing. The start state (continuing), or the first state of each episode (episodic), is

sampled from the probability distribution ρ0. When the state of the environment is

only partially observable by the agent then the interaction is a Partially Observable

MDP (POMDP) [Lovejoy, 1991]. When the state set is finite the interaction is said

to be a finite MDP, and when the state set is a continuous space, such as a subset of

Rn, then the interaction is said to be a continuous MDP. Similarly, a MDP may be

classified as having a finite or continuous action set. In the case of continuous MDPs

the transition probabilities are given by a probability density function and P (s′|s, a)

should be interpreted as the probability of transitioning into a small neighborhood

around state s′ after taking action a in state s.

6

The agent attempts to select actions that maximize the expected sum of dis-

counted rewards, also referred to as the expected discounted return:

E[Rt] = E[
∞∑

i=0

γirt+i+1].

The expected discounted return from state s when following policy π is given

by the state-value function V π(s), which can also be expressed recursively with the

Bellman equation:

V π(s) = Eπ[Rt | st = s] = Eπ[rt+1 + γV π(st+1) | st = s].

Similarly, the action-value function gives the expected discounted return of taking

action a from state s and following policy π afterward:

Qπ(s, a) = Eπ[Rt | st = s, at = a] = Eπ[rt+1 + γQπ(st+1, at+1) | st = s, at = a].

From this basic overview of the RL problem, we now turn to a brief review of RL

algorithms relevant our work.

2.1.1 Function Approximation

RL algorithms often involve estimating the state-value or action-value functions

of some policy. Such an estimation problem involves the use of some form of function

approximation. A function approximation is a mapping from parameter vectors, also

referred to as weight vectors, to functions. The weights of the function approximation

are adjusted by the RL algorithm to better approximate some target function.

For finite MDPs with small state and action sets a common choice of function

approximation is tabular, that is, every state-action pair is represented independently

in a look-up table. Tabular function approximation is a special case of linear function

7

approximation, where the function output is given by a linear combination of basis

functions which map inputs to real numbers. The weights of the linear combination

are the tunable parameters of the function approximation (i.e. the weight vector).

We denote by Qw the action-value function approximation with weight vector

w ∈ Rn where Qw(s, a) gives the approximate action-value for state s and action a.

The gradient of Qw(s, a) with respect to its parameters, w, is the vector of partial

derivatives with respect to each of the n parameters (weights): ∇Qw(s, a) ≡ ∂Qw(s,a)
∂w

≡
[
∂Qw(s,a)
∂w0

, · · · , ∂Qw(s,a)
∂wn−1

]
.

2.1.2 Policy Iteration

The policy improvement theorem [Sutton and Barto, 1998b], states that for any

pair of deterministic policies π, π′,

Qπ(s, π′(s)) ≥ V π(s), ∀s ∈ S =⇒ V π′(s) ≥ V π(s), ∀s ∈ S.

Definition 2.1. The greedy policy with respect to an action-value function, Q :

S ×A → R, chooses any action a in state s such that a = arg maxa′∈AQ(s, a′).

By implication, let π be any deterministic policy with action-value function Qπ,

then the greedy policy with respect to Qπ will be a policy improvement in the sense

of the above inequality. This motivates the policy iteration algorithm (Algorithm 1)

which generates a sequence of policies such that each policy is greedy with respect

to the preceding policy’s action-value function [Howard, 1960]. At each iteration

policy iteration first performs policy evaluation to find the action-value function of

the current policy, followed by policy improvement, which produces the greedy policy

with respect to this action-value function. When policy iteration over deterministic

policies is applied to finite MDPs the sequence of policies generated is guaranteed to

converge to an optimal policy π∗, such that for all policies π: V π∗(s) ≥ V π(s), ∀s ∈ S.

8

This result requires that at each iteration the action-value function be computed

exactly.

Algorithm 1 Policy Iteration

Initialize initial policy π0 arbitrarily
for t = 0, 1, 2, . . . do

Qwt+1(s, a) = Qπt(s, a), ∀s, a . Policy Evaluation
πt+1 = arg max

π
Es∼dπ ,a∼π

[
Qwt+1(s, a)

]
. Policy Improvement

end for

When the action-value function can only be represented approximately, such as

in the case of continuous MDPs, the guaranteed policy convergence no longer holds.

Bertsekas and Tsitsiklis [1996] proved that if the approximation errors are bounded

on each iteration approximate policy iteration produces a sequence of policies with

state-value functions that converge to a region around the optimal state-value func-

tion. Least-Squares Policy Iteration (LSPI) is an approximate policy iteration algo-

rithm that uses the method of least-squares to compute the approximate action-value

function from a set of examples generated under the current policy [Lagoudakis and

Parr, 2001, 2003].

2.1.3 Optimistic Approximate Policy Iteration

Optimistic approximate policy iteration extends approximate policy iteration to

allow the policy improvement step to be performed before policy evaluation has fully

converged [Tsitsiklis, 2003]. The Sarsa(λ) algorithm—so named because its update

depends on the tuple (s, a, r, s′, a′) where s, s′ ∈ S, a, a′ ∈ A, and r = R(s, a, s′)—can

be interpreted as an optimistic approximate policy iteration algorithm. Sarsa(λ),

given by Algorithm 2, may also be understood as a Temporal Difference (TD) learning

bootstrapping algorithm [Sutton and Barto, 1998b]. That is, it uses the current

action-value estimates Qt to estimate the λ-return:

9

Rλ
t = (1− λ)

∞∑

n=1

λn−1R
(n)
t , where

R
(n)
t =

n∑

i=1

γi−1rt+i + γnQt(st+n, at+n).

Minimizing the error between Qt and Rλ
t , while treating the λ-return as an inde-

pendent random variable, leads to the Sarsa(λ) algorithm and the concept of eligibility

traces [Sutton and Barto, 1998b]. An eligibility trace is the exponentially decaying

credit assigned to past states and actions for the reward received on the current

time step. The parameter λ represents the eligibility trace decay rate. As λ → 1

the λ-return approaches an estimate of the expected discounted return computed

through Monte Carlo rollouts of the policy, whereas when λ = 0 the λ-return error,

Rλ
t −Qt(st, at), becomes equivalent to the one-step Bellman error:

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at).

Algorithm 2 Sarsa(λ)

Given MDP M = (S,A, P, ρ0, R, γ), and policy class π
Initialize λ ∈ [0, 1), {αt ∈ (0, 1]}∞t=0, w0 = 0

s0 ∼ ρ0(·), a0 ∼ π(s0;w0)
for t = 0, 1, 2 . . . do

πt = π(wt)
rt+1 ∼ R(· | st, at), st+1 ∼ P (· | st, at), at+1 ∼ πt(st+1)

. Sarsa(λ) Update
δt = rt + γQwt(st+1, at+1)−Qwt(st, at)

et = γλet−1 +
∂Qwt (st,at)

∂w

wt+1 = wt + αtδtet
end for

Sarsa(λ) plays a central role in this dissertation. Although the methods could be

readily applied to a variety of related algorithms we focus on Sarsa(λ) because it is a

simple algorithm with few parameters and works well in practice. In particular, notice

that Sarsa(λ) requires parameters λ, the eligibility decay rate, {αt}∞t=0, a sequence of

10

scalar valued step sizes, and a policy class π. Throughout this work we will use the

ε-greedy policy class wherever Sarsa(λ) is involved. The ε-greedy policy, over action-

value function Qt, takes a random action with probability ε and otherwise follows the

greedy policy:

πε(s, a;Qt) =





1− ε(|A| − 1)

|A| if a = arg maxQt(s, ·)

ε

|A| otherwise.

Performing intelligent exploration is a large and active area of research in RL

[Dearden et al., 1999, Strens, 2000, Duff, 2003, Şimşek and Barto, 2006, Asmuth et al.,

2009]. However, despite its simplicity, we use ε-greedy to avoid adding additional

complexity to our studies and because of its widespread use in the field.

2.1.4 Policy Gradient

Policy iteration and related methods such as Sarsa(λ) attempt to minimize value

function error for the current policy, and then update the policy greedily with respect

to that value function. In a sense, this is an indirect method of finding an optimal

policy, whereas a direct method would be to use stochastic gradient ascent to directly

maximize the expected discounted return with respect to the policy.1

Let πθ be a differentiable policy parameterized by weight vector θ and let R(πθ,M)

be the expected discounted return under policy πθ on MDP M :

R(πθ,M) = Eπθ [
∞∑

t=0

γtrt+1 | s0 ∼ ρ0(·),M]. (2.1)

1This is a false dichotomy that is only accurate at the high level in which these algorithms are
typically considered. The two methods, policy iteration and policy gradient, appear to be intricately
related as primal/dual problems. However, a full exposition on this research direction is off-topic
for this work.

11

Further, let dπ be the long term steady-state distribution over states when following

fixed policy π. The policy gradient theorem [Sutton et al., 2000] states that for MDP

M :

∂R(πθ,M)

∂θ
= Es∼dπ ,a∼πθ(s)

[
∂πθ(s, a)

∂θ
Qπ(s, a)

]
. (2.2)

That is, for a sufficiently small step size α, θ + α∂R(πθ,M)
∂θ

will result in an improved

policy with higher expected discounted return. However, in this form the action-

value function, Qπ, must be known exactly. Sutton et al. [2000] further proved that

if compatible function approximation is used, then the policy gradient theorem holds

for fw : S × A → R used to approximate Qπ. The function approximation fw,

parameterized by weight vector w ∈ Rn, is compatible when:

∂fw(s, a)

∂w
=
∂πθ
∂θ

1

πθ(s, a)
. (2.3)

This fundamental result of policy gradients helps to explain the actor-critic framework

which has many features in common with the policy iteration algorithms previously

discussed. In actor-critic algorithms the agent is explicitly divided into two compo-

nents: the actor implements a policy, and the critic which estimates the action-value

function used to evaluate and update the policy.

2.1.5 Natural Actor-Critic (NAC)

Around the same time that the policy gradient theorems were published another

method was introduced to the optimization and machine learning research commu-

nities. Amari and Douglas [1998a] proposed that instead of assuming a Euclidean

distance metric when performing gradient descent (ascent) a more appropriate dis-

tance metric may be the Riemannian metric. Suppose the space of weight vectors

12

exists on a Riemannian manifold such that measuring distance between any two vec-

tors, w and w + δw with Riemannian metric tensor G(w) is given by:

d2(w,w + δw) = δw>G(w)δw. (2.4)

The natural gradient descent update, for minimizing a loss function J (wt), is the

application of steepest descent on a Riemannian manifold:

wt+1 = wt − αtG−1(wt)
∂J (wt)

∂w
. (2.5)

In addition to significantly improving the convergence speeds of stochastic gradient

descent, natural gradients were shown to be asymptotically Fisher efficient and in

some cases could be estimated without the computational cost of explicitly inverting

a matrix [Amari, 1998]. This means that, under assumptions typical for stochastic

optimization, the variance of the algorithm attains the Cramér-Rao bound in the

limit (i.e. is a minimum variance unbiased estimator).

When natural gradients were finally applied to the policy gradient algorithm the

policy gradient theorem for function approximation became especially important.

When using compatible function approximation the natural policy gradient reduces

to the weight vector of the action-value function estimate under the current policy

[Kakade, 2002]. The use of natural gradients with policy gradient and actor-critic

algorithms led to many variations on the theme [Peters and Schaal, 2008, Bhatna-

gar et al., 2009, Thomas, 2012]. These are commonly referred to as Natural Policy

Gradient (NPG) and Natural Actor-Critic (NAC) algorithms.

When using NAC in experiments we will use NAC-LSTD, which uses the method

of least-squares to estimate the action-value function [Peters and Schaal, 2008]. Ad-

ditionally, we will use the soft-max policy for any experiments involving NAC. The

13

soft-max policy with respect to action-value function Qw, parameterized by weight

vector w ∈ Rn, is given by:

πτ (s, a;Qw) =
eQw(s,a)/τ

∑

b∈A

eQw(s,b)/τ
. (2.6)

The parameter τ > 0 biases the policy to be more stochastic (τ > 1) or less stochastic

(τ < 1), where less stochastic means more likely to follow a greedy policy.

2.2 Adaptive Step-Sizes

The general problem of choosing a step size, or an adaptive step-size algorithm, is

an important aspect in many methods for optimization. As such there is an abundance

of research into adaptive step-size algorithms in a variety of different settings. This

dissertation is focused on a much narrower problem, step-sizes in RL algorithms, but

because little work has focused on methods solely for RL we will review work on the

more general problem of step sizes in methods for unconstrained minimization before

discussing more closely related work on adaptive step-sizes for RL.

Let J : Rn → R be a loss function over weight vectors, w ∈ Rn, and let A be

an incremental algorithm. Given a sequence of step sizes {αt}∞t=0, for each step t

algorithm A produces update direction 4wt ∈ Rn seeking to minimize J (wt+1) with:

wt+1 = wt − αt4wt. (2.7)

If J (wt) is differentiable then 4wt = −∇J (wt) + ξt is a noisy descent direction,

where noise term ξt ∈ Rn is mean zero with finite variance and the gradient ∇J (w) ≡
[
∂J (w)
∂w0

, · · · , ∂J (w)
∂wn−1

]
is the vector of partial derivatives. Then, the sequence of weight

vectors {wt}∞t=0 is dependent upon the sequence of step sizes {αt}∞t=0. The adaptive

step-size problem is to generate a sequence of step sizes {αt}∞t=0, where αt > 0 ∀t,

which minimize the loss incurred by the learning algorithm at each step t.

14

With this general form in place, the rest of the chapter separates existing methods

into three categories based on the form the step size takes: matrix, vector or scalar.

The matrix-valued adaptive step size αt ∈ Rn×n is restricted to be a positive definite

matrix. The vector-valued adaptive step size and the scalar adaptive step size are

both special cases of this form. A vector-valued step size forms a diagonal matrix

with positive entries whereas a scalar step size is a positive multiple of the identity

matrix. Following this we discuss the current state-of-the-art in adaptive step sizes

for RL.

2.2.1 Matrix-Valued Step Sizes

When J is differentiable and 4wt is a noisy descent direction then matrix-valued

step sizes are equivalent to performing steepest descent with the quadratic norm

‖ · ‖α−1
t

, or with a change of coordinates given by multiplication by the matrix α−1
t

[Boyd and Vandenberghe, 2004]. The choice of αt impacts the condition number of the

problem, so that successful algorithms will tend to compute matrices that give lower

condition numbers to the transformed problem. The condition number of a function

is a measure of how much the function value changes due to small perturbations of

the input value. For matrices this corresponds to how much the inverse of the matrix

is affected by small perturbations to the matrix. For an optimization problem the

condition number is for the loss function, which in some cases is equivalent to the

condition number of a related matrix.

When the loss function is twice differentiable, J ∈ C2, and the descent direction

is noiseless, then choosing αt = H−1(wt), where H(wt) = ∇2J (wt) is the Hessian of

the loss function at wt, results in Equation 2.7 becoming Newton’s method (Newton-

Raphson method). If the loss function is not quadratic in w then the use of a scalar

step size is still required: αt = α̃tH
−1(wt) with α̃t ∈ (0, 1]. However, if J is quadratic,

then Newton’s method with a step size of 1 is guaranteed to converge in one step.

15

Furthermore, in the often used case of J (w) = ‖Aw − b‖2
2, where A ∈ Rn×m and

b ∈ Rm, Newton’s method is equivalent to the standard linear least squares solution:

wt+1 = wt +H−1(wt)4wt

= (ATA)−1AT b.

Applying this same method, but updating H−1 recursively using the matrix in-

version lemma [Woodbury, 1950, Hager, 1989],

[A+BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1,

yields the recursive least squares algorithm [Kushner and Yin, 2003]. The recursion

is due to maintaining the current inverse matrix A−1 and updating its value directly.

Finally, when αt is chosen to be the inverse of an appropriate Riemannian met-

ric tensor at wt, Equation 2.7 becomes the update equation for a natural gradient

algorithm [Amari and Douglas, 1998b]. As previously discussed, natural gradients

have been applied to yield improvements in performance in a variety of optimization

settings, including the use of policy gradients for RL [Amari, 2000, Kakade, 2001].

When these matrix-inversion methods for step sizes have access to the true Hessian

of the loss function, in the case of Newton’s method, or the true metric tensor,

in the case of Natural Gradients, they vastly outperform other methods discussed

below. However, when these matrices must be estimated from experience, or imperfect

estimates are used, it has been shown that much faster adaptive step-size methods

can actually outperform some of them [Sutton, 1992a]. An additional drawback to

the matrix-valued step-size methods are that they all require at least quadratic time

and space complexity per step to compute the adaptive step size.

The closely related AdaGrad algorithm provides an adaptive proximal function

for subgradient methods [Duchi et al., 2011b]. The full matrix version of AdaGrad

16

produces an αt equal to the un-normalized matrix square root of that produced by

natural gradients. A vector-valued version of AdaGrad results from assuming this

matrix is diagonal and, given scalar step size α̃t, yields the step size at time t for each

dimension i:

αt,i =
α̃t√∑t

k=04w2
k,i

. (2.8)

It bears repeating that the matrix-valued adaptive algorithms discussed above

generally require an additional tunable scalar step size. The reason is that matrix

and vector-valued adaptive step-size methods change both the direction and mag-

nitude of updates given some assumptions about the loss function. However, such

methods are often applied in settings where the assumptions do not hold exactly and

an additional scalar (step size) is used to limit the magnitude of updates. For exam-

ple, Newton’s method gives a matrix-valued step size for deterministic optimization

problems. When the loss function is quadratic both the direction and magnitude pro-

vided by Newton’s method are optimal, but when the loss function is not quadratic a

tunable step size must be used to rescale the magnitude of the update. The differences

between adjusting the update direction and rescaling its magnitude are conflated by

matrix and vector-valued step-size methods that do not use an additional scalar step

size. These differences will become particularly relevant in Chapter 4.

2.2.2 Vector-Valued Step Sizes

This section deals with vector-valued adaptive step-size methods, that is, those in

which αt is a diagonal matrix. We begin by covering the RProp algorithm for training

Artificial Neural Networks with Backpropagation [Riedmiller and Braun, 1993], and

then cover several algorithms that are all special cases of a general class of adaptive

step-size methods based upon the use of stochastic gradient descent.

The RProp algorithm is a heuristic method for choosing between two fixed step

sizes, η+ > 1 and η− < 1. For each weight update, if the derivative with respect to

17

that weight has changed sign from the last iteration to the current iteration then the

update is performed with η−, otherwise the update is performed with η+. Thus, if αt,i

gives the ith component of the step-size vector at step t, then the RProp algorithm

produces:

αt,i =





η+ if sign(4wt−1,i) = sign(4wt,i)

η− if sign(4wt−1,i) 6= sign(4wt,i).
(2.9)

While very simple, RProp performs well in practice for training feedforward neural

networks [Riedmiller, 1994]. The intuition behind RProp, shared by many adaptive

step-size algorithms, is that if the update direction changes sign then the previous

update has overshot the local optimum and a smaller step size should be used.

Next, we turn to a class of methods that take a meta-optimization approach to

incrementally find the best step size. The general approach is to take the derivative

of J (wt) with respect to the step sizes αt,i and to do so in such a way as to take into

account the incremental dependencies between steps of gradient descent. Schraudolph

[1999] gives the generalized algorithm for this class of methods as

αt+1 = αte
µ4wtht (2.10)

ht+1 = ht + αt+1(4wt −H(wt)ht). (2.11)

When the Hessian is replaced by a diagonal approximation, H(wt) ≈ Diag(4w2
t), the

result is the Incremental Delta-Bar-Delta (IDBD) algorithm [Sutton, 1992b, Jacobs,

1988]. With some additional modification to prevent divergence this also produces

the Autostep algorithm [Mahmood et al., 2012b]. Another variant, ELK1, is obtained

by treating the optimization problem as a normalized LMS problem, taking the same

approximation of the Hessian, and wrapping the predictions in a sigmoid function

[Schraudolph, 1999]. Among these variants Autostep has been shown to perform the

best in two idealized supervised learning tasks, and to have outperformed recursive

least squares on the same problems [Mahmood et al., 2012b]. Autostep differs from

18

IDBD in two ways. First, the exponents in Equation 2.10 are normalized by a running

estimate of their maximum value for each dimension in order to prevent updates from

getting too large. This is done by replacing ht in Equation 2.10 with ht
vt

, where xt,i

is the input value in the ith dimension of the linear function approximation at step t

and:

vt+1,i ← max(|4wt,iht,i|, vt,i + (1/τ)αix
2
t,i(|4wt,iht,i| − vt,i)).

Second, after Equation 2.10 is computed, each step size is divided by the maximum

between unity and the step-size weighted square of the inputs,

max(α>t+1x
2
t , 1).

This is to prevent the step sizes from getting large enough to cause function approx-

imation divergence. Also, notice that the momentum term used to train multilayer

feed-forward neural networks with back propagation can be considered a type of

adaptive step size related to the above algorithms that retain information from past

descent directions to adapt the current update.

Finally, the variance-based stochastic gradient descent (vSGD) algorithm is a

recently published vector-valued adaptive step-size algorithm for stochastic gradient

descent (SGD) on noisy quadratic loss functions [Schaul et al., 2012]. The derivation

of vSGD assumes the loss function is given by an expectation over noisy quadratic

instantaneous loss functions:

J (wt) = Ej∼P [Jj(wt)] . (2.12)

Here, P denotes the sampling distribution over training examples. Additionally,

the Hessian of Jj(wt) and the covariance matrix Σ of the mean-zero noise are both

19

assumed to be diagonal matrices, with hi = E[Hj
i,i] where Hj is the Hessian of Jj.

Under these assumptions the vSGD adaptive step size is:

αt,i =
1

hi

E[4wi]2
E[4w2

i]
. (2.13)

2.2.3 Scalar Step Sizes

Now, consider adaptive step-size methods in which αt = α̃tI, where α̃t ∈ R+

and I is the identity matrix. There has been more research into step-size methods

of this form, in part because it is trivial to guarantee that the resulting update is

a descent direction and because convergence analysis of these algorithms is more

tractable. Additionally, the results of these methods and the analysis of them leads

to interesting questions about what it means to be an optimal step size. We start by

reviewing the conditions used in convergence analysis of step-size algorithms. With

that foundation in place we consider deterministic back off strategies that are not

adaptive, then a variety of exact and approximate line search methods, and finally

meta-optimization step-size methods. Meta-optimization methods are distinguished

from line search in that they do not find the optimal step size at each iteration

but instead apply a meta-optimization algorithm to incrementally move towards the

optimal step size.

2.2.3.1 Convergence Conditions

Given standard regularity assumptions it has been shown that Equation 2.7 [Kush-

ner and Yin, 2003], with scalar step sizes, will converge with probability one (w.p.1)

when αt ≥ 0 and
∞∑

t=0

αt =∞,
∞∑

t=0

α2
t <∞. (2.14)

These conditions are often used to prove a step-size algorithm’s convergence, or cited

to indicate the required form of the step sizes used by an algorithm. However, con-

vergence in the limit can still be very slow, and convergence rates for some algorithms

20

will be discussed below. Many line search methods use the following inequalities as

a means to indicate when a sufficient decrease in the loss function will be satisfied.

The Wolfe conditions are satisfied by αt whenever:

J (wt + αt4wt) ≤ J (wt) + c1αt4wTt ∇J (wt) (2.15)

4wTt ∇J (wt + αt4wt) ≥ c24wTt ∇J (wt), (2.16)

where 0 < c1 < c2 < 1 [Wolfe, 1969]. Equation 2.15 is also referred to as the Armijo-

Goldstein inequality. An improvement to the Wolfe conditions are given by the strong

Wolfe conditions [Nocedal and Wright, 2006], which replace Equation 2.16 with

|4wTt ∇J (wt + αt4wt)| ≤ −c2|4wTt ∇J (wt)|. (2.17)

2.2.3.2 Deterministic Step-Size Schedules

A deterministic step-size schedule is a step-size algorithm that does not adapt

but instead generates a predetermined sequence of decreasing step sizes. By far

the most common step-size method used in practice is to choose a fixed step size,

αt = α ∈ (0, 1], ∀t ≥ 0. This can be viewed as an adaptive step-size algorithm with

one parameter, α, no assumptions placed on the loss function, but correspondingly no

convergence guarantees. In fact, one can construct problems for which any fixed step

size will perform arbitrarily poorly. For example, Simao and Powell [2009] studied

an inventory management problem where the occurrence of rare events causes a fixed

step size to be either too large for common events or too small for rare events.

The step-size schedule αt = 1/t has been proven to be the best linear unbiased

estimator of the true mean
∑t−1

i=04wi/t [George and Powell, 2006b], in the sense

that it provides a minimum variance unbiased estimator for stationary data. While

this is an interesting theoretical result it does not apply to the RL context because

changes to the policy cause the data to come from a non-stationary distribution. It

21

does however meet the convergence conditions from Equation 2.14. This step size is

the simplest case of the Generalized Harmonic Step-size (GHS) [George and Powell,

2006b]:

αt = α0
a

a+ t− 1
, (2.18)

where α0 ∈ (0, 1] and a ∈ R+ are meta parameters. While the performance of GHS is

very sensitive to these parameter values, with tuning it can perform comparably with

much more sophisticated methods, even out performing the bias adjusted Kalman fil-

ter [Ryzhov et al., 2012]. McClain’s formula can be seen as a combination of constant

and 1/t decaying step sizes:

αt =





α0 if t = 0

αt−1

1+αt−1−a if t ≥ 1.
(2.19)

Initially it will perform similarly to 1/t, but will eventually converge to the constant

step size a [George and Powell, 2006b].

The last deterministic step size we consider is the Search Then Converge (STC)

algorithm [Darken and Moody, 1990],

αt = α0

1 + c
α0

t
N

1 + c
α0

t
N

+N t2

N2

, (2.20)

where α0 ∈ (0, 1] is an initial step size, N ∈ N is the threshold past which the

step sizes begin to converge, and c ∈ R+ scales the rate of convergence. The STC

algorithm behaves as its name suggests, early on step sizes are fairly large, and as t

becomes larger than N the algorithm begins to converge with c/t.

2.2.3.3 Line Search Methods

Line search methods attempt to find the optimal step size at each step by searching

along the line {wt + αt4wt|αt ∈ R+} [Boyd and Vandenberghe, 2004]. Exact line

22

search methods attempt to solve the minimization problem:

αt = arg min
α≥0

J (wt + α4wt).

Inexact line search methods try to find an approximate solution to this problem. All

of the methods considered in this section assume that J is convex and differentiable.

Backtracking line search [Boyd and Vandenberghe, 2004], Algorithm 3, starts

with αt = 1 and then multiplicatively reduces it by a factor β until some convergence

conditions are satisfied. Typically the Wolfe or strong Wolfe conditions are used to

ensure sufficient decrease in J (wt).

Algorithm 3 Backtracking line search

c1 ∈ (0, 0.5), β ∈ (0, 1)
αt = 1
while J (wt + αt4wt) > J (wt) + αtc1∇J (wt)

T4wt do
αt = βαt

end while

We can also perform an exact line search using Newton’s method with respect to

αt [Wen et al., 2012], given by Algorithm 4. This approach performs well compared

with other line search methods on a variety of deterministic multivariate functions

[Wen et al., 2012].

Algorithm 4 Newton-like exact line search

i = 1
ai = ai−1 − ∂J (wt)/∂α

∂2J (wt)/∂2α

while ‖ai − ai−1‖ ≥ ε do
i = i+ 1
ai = ai−1 − ∂J (wt)/∂α

∂2J (wt)/∂2α

end while
αt = ai

When the loss function is quadratic the exact line search problem has a closed

form solution:

αt =
4wᵀ

t4wt
4wᵀ

tH(wt)4wt
. (2.21)

23

Many researchers have noticed that this “locally optimal” step size tends to over-

shoot the best value in terms of minimizing sample complexity resulting in slower

convergence rates [Yuan, 2008]. Barzilai and Borwein [1988] found a closed form

solution to the exact line search problem over a modified loss function . Specifically,

they seek to minimize ‖st−1 − αtyt−1‖2, where sk−1 = wt −wt−1 and yt−1 = 4wt−1 −

4wt, and to make αt quasi-Newton-like with α−1
t st−1 = yt−1. This yields the BB step

size

αt =
sTt−1yt−1

‖yt−1‖2
2

.

For a quadratic loss function over two variables the BB step size with 4wt =

−∇J (wt) was shown to converge R-superlinearly with R-order of
√

2 [Barzilai and

Borwein, 1988, Yuan, 2008]. For more than two variables only linear convergence

rates have been proven, but in practice the BB step size often converges superlinearly

[Yuan, 2008].

These results are surprising because the optimal step size found by exact line

search methods has only been proven to converge linearly, and this matches the results

in practice. An explanation is given by Akaike [1959], who proved that the iterates

wt converge into an alternating pattern of directions which are in a two-dimensional

subspace, even when4wt is high dimensional. This gives a theoretical explanation for

the often observed zig-zagging convergence pattern observed with these algorithms.

The BB step size is able to achieve its super linear convergence rates by preventing

this degeneration of the gradient updates into a two-dimensional subspace. Yuan

[2008] presents a new step-size based upon the BB step size and gives an empirical

method for estimating what Yuan [2008] calls the decreasing together property which

measures how well the algorithm stays outside of the degenerate two-dimensional

subspace. The method given by Yuan [2008] has the same convergence guarantees,

and like the BB step size is able to avoid the descent directions from sinking into the

lower dimensional subspace:

24

αt =





α∗t if mod(t, 3) 6= 0

αYt if mod(t, 3) = 0, where

α∗t = arg min
α
J (wt + α4wt), using some line search method

αYt =
2

[
√

(1/α∗t−1 − 1/α∗t)
2 + 4‖4wt‖2

2/‖st−1‖2
2] + 1/α∗t−1 + 1/α∗t

.

2.2.3.4 Meta Optimization of Step Size

We now turn to methods that apply a meta-optimization algorithm to find the

optimal step size, and in this sense they can be viewed as incremental alternatives to

the line search methods just discussed. Many algorithms in this section are based on

measuring the correlation between successive descent directions (gradient vectors).

The simplest such method, RProp, has already been discussed as a vector-valued

adaptive step size. RProp examines the correlation of each dimension independently.

Kesten’s rule is a closely related meta-optimization method, given by:

αt = α0
a

b+Kt

, where

Kt =





t if t = 1, 2

Kt−1 + 1 if n > 2 and 4wTt 4wt−1 < 0

Kt−1 if n > 2 and 4wTt 4wt−1 ≥ 0,

where α0 ∈ (0, 1] and a, b ∈ R+ are positive constant parameters [Kesten, 1958].

Kesten’s rule is tunable with parameters (α0, a, b), and decreases the step size when-

ever the dot product between the current update and the previous update is negative.

This fits with the general intuition, shared among these algorithms, that the correla-

tion of the updates becoming negative indicates that the step size should be smaller

because either the process is near the optimal solution or the process is diverging.

However, note that Kesten’s rule is a non-increasing step-size algorithm.

25

Magoulas et al. [2001] propose a related step-size algorithm based on the correla-

tion of the updates:

αt+1 = αt +K4wTt 4wt−1,

where K ∈ (0, 1] is the meta step-size parameter, with K = 1 used for experiments

by the authors. This algorithm performed well compared with other adaptive and

batch methods for training a feedforward neural network, and converged faster than

other methods considered [Magoulas et al., 2001]. However, it is clear that the choice

of initial step size, α0, plays a large role in this algorithm’s performance.

Mirozahmedov and Uryasev’s (1983) rule [George and Powell, 2006b], takes this

same concept but uses an exponential update which allows the step size to increase

and decrease based upon the correlation of the updates. For constant parameters

a, δ ∈ R+, Mirozahmedov and Uryasev’s (1983) rule is given by:

αt = αt−1e
(a4wTt 4wt−1−δ)αt−1 .

Next, we look at a straightforward application of stochastic gradient descent as

a meta-optimization method for the step size. Kushner and Yin [2003], give the

stochastic gradient adaptive (SGA) algorithm for step sizes assuming that 4wt =

φt(yt − φTt wt),

αt+1 = Π[αt + µ4wTt Vt], (2.22)

Vt+1 = Vt − αtφtφTt Vt +4wt, (2.23)

V0 = 0, (2.24)

where µ ≥ 0 is a meta step-size parameter and Π[·] is some projection onto the

acceptable set of step sizes. The projection used by Kushner and Yin [2003] was a

truncation to the range [α−, α+], where 0 < µ� α−.

26

LeCun et al. claim that the optimal learning rate is the inverse of the largest eigen-

value of the Hessian [Lecun et al., 1993]. Such an approach is also tightly connected to

the variations on Equation 2.11. They present an iterative method for estimating the

largest eigenvalue of the Hessian in linear time per step given parameters γ, α ∈ (0, 1):

Ψ−1 = random normalized vector in Rn, (2.25)

Ψt = (1− γ)Ψt−1 +
γ

α
(∇J (wt + α

Ψ

‖Ψ‖)−∇J (wt)), (2.26)

αt =
1

‖Ψt‖
. (2.27)

When used to train a 2-layer feedforward neural network on the NIST database of

handwritten digits the adaptive step-size algorithm converged to a step size that was

equal to the fixed step size that resulted in the lowest mean squared error [Lecun

et al., 1993].

2.3 Adaptive Step-Sizes in Reinforcement Learning

The adaptive step-size problem for RL presents additional challenges not typically

present in stochastic optimization. Online reinforcement learning of policies is a

fundamentally non-stationary problem. As the policy changes, so too does both the

action-value function and the distribution over states visited by the agent. Moreover,

the rate at which the problem changes is inherently tied to the learning process

itself. Early on, the policy, action-values, and state visitation distribution will all

change rapidly, presenting a highly non-stationary problem. As the policy improves

the problem will generally become more stationary. Another complication comes

from the loss function minimized by RL algorithms. For example, Sarsa(λ) does not

minimize any stationary loss function, and thus we must take care when attempting

to apply or derive adaptive step-size methods to such algorithms.

27

Existing research into adaptive step-sizes for RL is peculiarly limited. The existing

methods can be divided into two classes: adaptive step-sizes for policy evaluation

(stationary policy) and adaptive step-sizes for online control learning. The first is

a simpler problem because the policy is held fixed, eliminating the problem of non-

stationarity. The second is the focus of this dissertation and provides an adaptive

step-size for algorithms such as Sarsa(λ) or policy gradient in which the policy itself

is changing throughout the learning process.

2.3.1 Adaptive Step-Sizes for Policy Evaluation

Both IDBD and Autostep were derived for policy evaluation with a fixed policy

[Sutton, 1992b, Mahmood et al., 2012b]. The remaining two methods were derived

explicitly for approximate dynamic programming and approximate value iteration re-

spectively. First, the Optimal Step-size Algorithm (OSA) [George and Powell, 2006b],

also known as the bias-adjusted Kalman filter, begins by using McClain’s formula to

give a meta-step-size for estimating the mean error and mean-squared error:

vt =
vt−1

1 + vt−1 − v̄
(2.28)

β̄t = (1− vt)β̄t−1 + vt(4wt − wt) (2.29)

δ̄t = (1− vt)δ̄t−1 + vt(4wt − wt)2. (2.30)

These estimates are then used to compute the step size for step t:

(σ̄t)
2 =

δ̄t − (β̄t)
2

1 + λ̄t−1

, (2.31)

αt =





α0 if t = 0

1− (σ̄t)2

δ̄t
if t > 0.

(2.32)

Then the variance estimate λ̄t and value-function weights wt are updated by:

28

λ̄t =





(αt)
2 if t = 0

(1− αt)2λ̄t−1 + (αt)
2 if t > 0,

(2.33)

wt = (1− αt)wt−1 + αt4wt. (2.34)

This algorithm uses vt as a meta-step size, with v−1 its initial value and v̄ the target

meta-step-size value, which is updated following McClain’s rule. George and Powell

[2006b], give results comparing error percentages of OSA with the STC and 1/t step-

size methods. These results are for estimating value functions in two RL domains

and show that OSA is able to lower prediction error faster and to smaller asymptotic

values than the other methods. The first domain is a simplified batch replenishment

problem in which the agent must order products to meet varying demands. The

second domain is called nomadic trucker, which is very similar to the classic RL Taxi

domain [Dietterich, 1998].

The Optimal Step-size for Approximate Value Iteration (OSAVI) algorithm ex-

tends the ideas of OSA to the approximate value iteration setting by removing the

assumption of sequential independence [Ryzhov et al., 2012]. OSAVI has no tunable

parameters, and outperformed McClain’s rule, the Harmonic step size, and OSA in

its ability to minimize value function approximation error. The only exception was a

highly tuned Harmonic step size that was able to perform equivalently well on one of

the simpler domains considered.

The OSA and OSAVI algorithms follow an approach taken by vSGD, and used

in Chapter 4, in which the step size is derived with respect to the expected value of

some unknown variables and standard stochastic approximation methods are used to

estimate the value of these variables.

29

2.3.2 Adaptive Step-Sizes for Online Control

Recently there have been efforts towards an adaptive step-size for policy gradi-

ent algorithms [Matsubara et al., 2010, Pirotta et al., 2013]. The adaptive natural

policy gradient (aNPG) algorithm normalizes natural policy gradient updates by the

squared Mahalanobis norm of the policy gradient with respect to the Riemannian

metric tensor, but it requires an additional tunable scalar step size [Matsubara et al.,

2010]. This research is asking the same important questions as addressed in this dis-

sertation. However, our focus is on the optimistic approximate policy iteration class

of algorithms, specifically Sarsa(λ), while their work is on policy gradient algorithms.

Perhaps the only existing work on this particular topic is Hutter and Legg’s (2008)

HL(λ) algorithm. HL(λ) is a parameter-free adaptive step-size algorithm for tempo-

ral difference (TD) learning, with a similarly named version for online control learn-

ing with Sarsa(λ). The intuition behind the algorithm comes from observing that

TD-learning is essentially propagating information backward through recently visited

state-actions. The algorithm maintains a visitation count for every state-action pair

and the authors derived the optimal step size in terms of these visitation counts and

the eligibility traces [Hutter and Legg, 2008]. HL(λ) is only applicable to finite MDPs,

and the derivation uses the squared λ-return error loss function. Recall that this is

the same loss function which motivates the derivation of Sarsa(λ). The HL(λ) step

size is computed by:

30

δi,j =





1 if i = j

0 otherwise,
(2.35)

N t+1
s = λN t

s + δst+1,s (2.36)

Et+1
s = λγEt

s + δst+1,s (2.37)

Rt+1
s = λRt

s + λEt
srt (2.38)

αt =
1

N t
st+1
− γEt

st+1

N t
st+1

N t
s

. (2.39)

HL(λ) was able to outperform TD(λ) with a hand-tuned fixed step size on a

random 50 state MDP and a 21 state non-stationary MDP. HLS(λ), the extension of

HL(λ) to action-value functions, was able to outperform Sarsa(λ) with a hand-tuned

fixed step size on the Windy Gridworld domain [Hutter and Legg, 2008]. When

using HL(λ) in experiments we will exclusively use HLS(λ). HL(λ) is one of the few

parameter-free adaptive step-size algorithms, but it should be noted that the optimal

values for the λ parameter tend to differ substantially between it and the non-adaptive

algorithms upon which it is based.

2.4 Summary

While there is an extensive body of research on adaptive step-size algorithms, the

vast majority of the work focuses on the stationary and unconstrained optimization

context and is not directly applicable to RL. The research on adaptive step-sizes for

RL has clear areas that demand further study. Specifically, adaptive step sizes derived

in terms of expected values of measurable values are a promising direction that has

not been very well explored outside of finite MDPs. On the other hand, there has

been an abundance of research into adaptive step-size algorithms that rely primarily

on estimating the diagonal of the Hessian matrix and using this in some form as the

step size. Unfortunately, these methods have the drawback of squaring the condition

31

number of the meta-optimization problem and thus require careful parameter tuning

or special heuristics to prevent divergence.

32

CHAPTER 3

EVALUATION METHODS FOR REINFORCEMENT
LEARNING

In studying the adaptive step-size problem for RL we seek to improve empirical

performance of RL algorithms while eliminating a tunable parameter. However, cur-

rent methods for evaluating RL algorithms give such an occluded perspective on the

performance of algorithms that the benefits of eliminating tunable parameters can-

not be empirically verified. Therefore, as a prerequisite to any study of adaptive step

sizes one must address the issue of empirical methods in RL and how to go about

evaluating RL algorithms. Our contributions in this chapter are an illustration of the

limitations of current practices and a proposed set of methods for conducting and

presenting experiments that provide more informative measures of the performance

of RL algorithms.

3.1 Introduction

RL is studied and used in a variety of ways and for a variety of purposes. Arguably

one of the most fundamental objectives in the study of RL is that of optimal control,

learning to control an unknown system in order to maximize a measure of long term

reward, where the reward function encodes aspects of the agent’s desired performance.

In this chapter, we are concerned with the empirical evaluation and comparison of RL

algorithms for optimal control based entirely on their observed behavior on suites of

problems. That is, we take an empirical view of evaluating RL algorithms and thus

do not concern ourselves with internal (to the agent) measures of learning progress,

but instead rely only on what is observable externally for any online RL algorithm.

33

Not all researchers or users of RL will care about this topic. For those whose uses

for RL are restricted to the minimization of the value function error, perhaps for the

purposes of learning predictive features [Modayil et al., 2012], these methods are not

for you. Similarly, this chapter is not intended for the many researchers for whom the

most relevant evaluation criterion for RL algorithms is fidelity to biology. However,

for any reader using or studying RL algorithms who would prefer an algorithm that

achieves higher reward rather than lower, and for whom optimal control is primary

among objectives, this chapter proposes a new set of evaluation methods and shows

why current standard practices can lead to spurious conclusions.

Due to the continued growth of the field of RL the number of algorithms has

increased to the point where an individual researcher cannot experiment with all

of them. Similarly, a non-researcher is likely to be overwhelmed by the number of

potential methods available for use. To facilitate the decision of which algorithms to

invest time in, the field needs methods that thoroughly and accurately describe the

performance of algorithms. Unfortunately, the methods currently in widespread use

for evaluating RL algorithms do not accomplish these goals.

The field of supervised learning has moved through the same problem of having

common evaluation practices that distorted, instead of elucidating, the performance

characteristics of learning algorithms. Cohen [1995], for instance, observed that out of

a survey of 150 papers published in the Proceedings of the Eighth National Conference

on Artificial Intelligence (1990), “only 42 percent had suggested a program had run

on multiple examples; just 30 percent demonstrated their performance in some way.”

Such limited empirical studies limit the progress of a research field and make applying

a particular algorithm a frustrating and uncertain process.

By way of comparison, we have done a survey of recently published RL research

papers in top conferences (NIPS, ICML, and AAAI 2013) and found that, out of 40

papers on RL, 23% contained no empirical results or evaluations. Although this in

34

itself is only evidence of a strong theoretical component to the RL research community,

we found that among those papers that reported empirical results a small minority of

them did so with rigorous experimental methods. Empirical studies in these papers

tended to be fairly disjointed from one another and difficult to compare due to a lack

of hypothesis testing and standardized benchmarking domains or procedures.

3.1.1 Demonstration vs. Experimentation

Empirical methods are questions posed to and answered by nature. The questions

one seeks to answer must necessarily inform the methods one uses. The first question

about any new algorithm will often be “Does it work?” The answer to this question

can be given by a demonstration of the algorithm. A demonstration does not re-

quire statistical significance, nor a large number of trials. Instead, a demonstration is

practical proof that an algorithm does work in a particular example. Demonstrations

answer this question with broad strokes, “yes”, “no”, “not very well”. A demonstra-

tion does not tell us how well an algorithm works on average for a particular domain,

nor does it provide any information about how well the algorithm will work on dif-

ferent domains. Those questions are answered, or at least informed, by experiments.

In this chapter we study the question “How well does an algorithm work?”, and

later the question “Does algorithm A work better than algorithm B?”, by analyzing

the failure rate, policy percentile, and difficulty/impact of parameter tuning on some

set of domains. These empirical methods are designed for experimental use to make

the questions clearer and to make arriving at answers by interpreting the data less

error prone. Some interesting domains are currently too computationally intensive to

use for experimental purposes in short timeframes. Such domains may still provide

interesting demonstrations, but cannot reasonably be used to answer our quantitative

questions.

35

If the goal is to study RL algorithms and their behavior, then one must be equiped

with the tools of scientific inquiry and empirical observation. We first review current

standard practices in evaluating RL algorithms, then discuss their limitations, and

give examples that illustrate how these limitations can lead to spurious results. Next,

we propose a set of empirical methods for evaluating and comparing RL algorithms

and explain the motivation for each. Finally, we discuss how these methods can be

used in practice and demonstrate their use in two case studies.

3.2 Current Methods of Evaluating Reinforcement Learning

Algorithms

3.2.1 Learning Curves

At present the standard way that empirical results are presented for RL algorithms

is through the use of learning curves. Typically, figures show the total discounted,

undiscounted, or average reward versus number of time steps, episodes, or CPU time

used for training. These curves attempt to capture two important aspects of the

learning algorithm’s behavior: (1) how quickly (measured by time steps, episodes

or CPU time) the algorithm improves performance, and (2) the total discounted,

undiscounted, or average reward achieved by the final policy after the algorithm has

been fully trained.

One well known improvement to the standard learning curve is the use of error

bars to indicate confidence intervals, or alternately the standard error of the sample

returns. Out of the surveyed papers containing empirical studies, only 42% included

any form of error bars or otherwise gave information about the variance of an algo-

rithm’s performance. Another related and well known method that is rarely used in

practice (7%) is hypothesis testing on the results shown in the learning curves. These

two methods allow a reader to gauge the significance of the experimental results

presented. Without them learning curves themselves are much less informative.

36

0 5 10 15 20
Episodes

700

600

500

400

300

200

100

R
e
w

a
rd

Mountain Car Evaluation Example

A
B
Optimal

(a) Mountain Car

0 5 10 15 20
Episodes

5000

4000

3000

2000

1000

0

R
e
w

a
rd

Mountain Car (Modified) Evaluation Example

A
B
Optimal

(b) Modified Mountain Car

Figure 3.1: Comparing two algorithms (A and B), on Mountain Car and a modified
Mountain Car, illustrating possible ceiling effects obscuring results. Learning curves
for each algorithm are averages over 30 runs.

These methods may help determine when the differences in performance are signif-

icant, but when the algorithms being compared all learn near-optimal policies ceiling

effects can further hamper effective comparisons. A ceiling effect is when algorithms

come close to reaching the maximum expected performance possible for some domain,

making it impossible to determine if two algorithms perform significantly differently

[Cohen, 1995]. The existence of ceiling effects becomes much harder to identify when

the performance of an optimal policy is unknown. Only 10% of the papers surveyed

compared the performance of algorithms with an estimate of an optimal policy’s

performance.

For example, consider Figure 3.1a which shows a comparison of two RL algorithms

on the standard Mountain Car domain (used in 5% of papers surveyed). Here we have

included a line indicating the expected discounted reward of the optimal policy, but

such a line is rarely shown in practice. Observe that both algorithms learn policies

that are very close to optimal, but that algorithm A appears to perform better than

algorithm B. As is, this would often be presented as evidence in support of algorithm

37

A’s superiority. However, the difference is not significant at any reasonable threshold

(p > 0.3). Results like this have been used as evidence for A’s superiority, but in

fact the current experiment provides no such evidence in favor of either algorithm. It

fundamentally tells us nothing.

That said, considering how close both algorithms’ performances are to optimal it

is possible that there are ceiling effects at work. The theoretical performance of an

optimal policy is the performance (e.g. discounted return) when an optimal action

is taken at every step, and as such gives a least upper bound on the performance of

any policy. However, this upper bound may be overly optimistic and unachievable

in practice when an agent uses function approximation and/or exploratory actions.

When either of these are used the best achievable performance of an RL agent may be

much lower than the theoretical upper bound, making ceiling effects more challenging

to identify.

Consider what happens if we modify the Mountain Car domain in order to make

it more challenging. Many changes to the domain could have this effect, but for this

example we lower the maximum velocity in the direction of the goal and add noise to

the transition and reward functions. Figure 3.1b shows the results on this modified

domain. There is now a significant difference in performance on average between

the algorithms (p < 0.001), and interestingly algorithm B turns out to yield superior

performance.

What this example illustrates is that standard practices for using learning curves

can obscure the relative performance of algorithms and lead to incorrect conclusions.

Even going with the extra step of hypothesis testing, this methodology can be hand-

icapped by ceiling effects due to the domain choice.

38

3.2.2 Parameter Tuning

Parameter tuning is the dirty secret of RL research. Often the process used for

parameter tuning is never mentioned. 87% of the papers with empirical results in

our survey gave no mention to how parameters were chosen. Unfortunately, the

way parameter tuning is performed and reported in RL publications is almost as

uninformative as providing no information to begin with. Two methodologies are

commonly used for parameter tuning and for presenting the results of tuning in RL

research papers.

The first approach is to manually test each algorithm with a relatively small

collection of parameter values and report the best results found.1 This can introduce

an unintended bias in an algorithm’s favor because researchers have more insight when

selecting parameter values for methods with which they are familiar. Additionally,

this manual optimization does not provide information about the behavior of the

algorithm for any but a small number of parameter values. It is unlikely that the

results from this small number of samples reveals an algorithm’s true performance.

This method is generally referred to as hand tuning of the parameters and was seen

in 10% of the surveyed papers.

The second approach is to perform a large parameter optimization procedure

for each algorithm and to report the best results found. This approach does not

accurately capture the difficulty of finding good parameter values. For instance, it

could be that finding good parameter values is more difficult than finding an optimal

policy. It also provides no information about the performance of the algorithm using

1For our purposes parameter values refer to the values that control the behavior of the algorithm,
and not to the values the algorithm controls such as the weights of a function approximator. For
example, the step size, eligibility trace decay rate, and exploration rate are common parameters
whose values control the behavior of the RL algorithm. These are sometimes referred to as hyper-
parameters in other contexts.

39

any but the best parameter values. We refer to this method as meta-optimization of

the parameters, and it was seen in 7% of the surveyed papers.2

The fundamental problem with both approaches is that the sensitivity of the

algorithm to its parameter values is ignored. In the first approach this results in

biased evaluations. In the second approach it causes only the combination of the RL

algorithm and parameter optimization to be evaluated, which allows the parameter

optimization to compensate for weaknesses in the RL algorithm.

To make the point clearer consider the following example: We have developed

a new RL algorithm, evolutionary Sarsa, which is identical to Sarsa(λ), with one

exception. The initial action-values are made to be tunable hyper-parameters so as to

simulate some bias provided by evolution. Using the meta-optimization approach to

parameter tuning the difficulty of finding these initial values is entirely hidden. Given

that the parameter optimization is not treated as part of the algorithm, evolutionary

Sarsa appears to consistently outperform Sarsa(λ) and often appears to find a near-

optimal policy within a couple of episodes. With the current methods for performing

and presenting experiments on RL algorithms one might incorrectly conclude that

evolutionary Sarsa is an incredible breakthrough. This is an extreme case, but to

a lesser degree this is precisely what happens with current methods in RL. Some

researchers provide the parameter values used, but this does not change the fact that

the view of the performance of the algorithms is still biased and occluded.

Recall the experimental results in Figure 3.1b comparing algorithms A and B on

a modified version of Mountain Car. We concluded that algorithm B is the preferred

algorithm, but like many researchers we did not present information about the param-

eter tuning process used for each algorithm. In fact, the results shown for algorithm

A are for the best parameters found out of 10 configurations tried by hand, and the

2One paper used hand tuning for one algorithm and a meta-optimization method for another.

40

results shown for algorithm B are for the best parameters found out of a randomized

parameter search that considered 100, 000 different configurations. With this new

information, are we still confident that algorithm B is superior to algorithm A?

3.2.3 Multiple Domains

Of the research papers surveyed that contain empirical results, almost half con-

tain only a single domain (45%). In general, across RL research papers the number

of domains considered in each paper is far too low to make real claims about the

generalization of the reported behavior (see Figure 3.2a). Additionally, we observed

that there is no commonly used set of benchmarks that are present in most papers,

making direct comparison of results in different papers nearly impossible. As one can

infer from Figure 3.3, which shows how many papers in which the most frequently

used domains appeared, the likelihood of any two papers containing empirical results

for the same domain is very small. On the one hand, it is promising to see a variety

of different RL domains being used in research. But on the other hand, without some

overlap in domains comparing research results requires independently implementing

each algorithm in question.

The importance of evaluating algorithms on multiple domains may be made clearer

by adopting the language of supervised learning. When a trained classifier is evaluated

on a test set we assume that the test set is a representative sample from an underlying

population, and we assume that the accuracy we care about is with respect to that

population. In RL, experimental domains comprises the test set upon which we

evaluate the learning algorithm. Consider how much information is obtained with a

test set containing three examples. No matter how interesting these few examples

may be, it is very unlikely that they are a representative sample of the underlying

population of interest. Similarly, few would argue that any three domains in Figure 3.3

provide a representative sample of the population of control tasks for which we want

41

1 2 3 4 5
Number of Domains

0

2

4

6

8

10

12

14

P
a
p
e
r

C
o
u
n
t

Histogram of Number of Domains Used for Evaluation

(a) Number of domains used

1 2 3 4 5 6 7
Number of Algorithms

0

1

2

3

4

5

6

7

8

9

P
a
p
e
r

C
o
u
n
t

Histogram of Number of Algorithms Evaluated

(b) Number of algorithms compared

Figure 3.2: Frequency histograms over empirical studies contained by RL research
papers (NIPS, ICML, and AAAI 2013).

RL to be effective. Another way to view this is in the framework of predictive power.

If one observes superior performance of an algorithm on three domains (e.g., Mountain

Car, Cart Pole, and GridWorld) how well can one predict the performance on a fourth

domain drawn randomly from the remaining domains in the table? How about for

some new previously unstudied control problem? To what degree does this vary

depending on the set of domains used for evaluation? The use of multiple domains in

RL experiments is absolutely vital to accurately evaluate an algorithm’s performance.

Moreover, there must be a variety of domains in every experiment for empirical results

to be predictive of performance in general.

3.3 Meaningful Empirical Methods

3.3.1 Background and Desired Properties

Here we propose empirical methods for use in RL research that address the issues

discussed above. We approach this by asking two questions. First, what aspects of

the algorithm’s behavior should be measured? Second, how should the measurements

be compared across different algorithms?

42

Domain #
Grid World 3
Cart Pole 3
Chain MDP 3
Box Pushing (POMDP) 3
Tiger (POMDP) 2
Recycling (POMDP) 2
Planar Swimming 2
Mountain Car 2
Elevator Control 2
Inventory Control 2

Domain #
7-Link Reaching 1
BlackJack 1
DAS1 1
Frogger 1
Helicopter Hover 1
Hidden Fork (POMDP) 1
HIV Treatment 1
Pinball 1
Sys-Admin 1
Tag 1

Figure 3.3: Selection of domains used in recent RL research papers

Dependent Independent

State visitation Time step
Actions selected Episodes
Reward received CPU Time
Memory used Parameters evaluated

Table 3.1: Observations about the behavior of an RL algorithm

As mentioned earlier, this chapter focuses on empirically evaluating the behavior

of an algorithm, and not on any intermediate aspect such as the value function error.

With this restriction, the set of possible observations that can be made about the

algorithm’s behavior with respect to a domain is limited to those listed in Table 3.1.

These are simply the raw observable events and how they are measured is what really

matters. The dependent (observable) variables in Table 3.1 are affected by the agent’s

behavior and can be measured with respect to variables that are independent of the

agent’s behavior. For example, one measurement of state visitation is the number of

states visited per episode, which in a shortest-path problem measures the quality of

the learned policy.

An experiment performed for exploratory purposes might consider measurements

such as the state-visitation trace. Because our focus is on choosing which algorithm

43

to use, or which algorithm to invest time in implementing, we focus on measuring how

well an algorithm achieves the principle RL objective, that of accumulating reward.

Thus, we primarily focus on the dependent variable of reward received with respect to

the different independent variables. Even with this restriction (to only one of the four

dependent variables), there are many possible measurements. To motivate this choice

we propose some high-level aspects of performance that we would like to capture.

1. Failure rate. When, and how often, does the algorithm perform no better than

random? (worst case behaviors)

2. Optimized learning speed. When using optimized parameters, how quickly does

the algorithm improve the rate at which it accrues reward?

3. Asymptotic policy performance. What is the policy performance after the al-

gorithm has received ample training and parameter optimization? (best case

behaviors)

4. Difficulty of parameter tuning. How hard is it to find parameters for the algo-

rithm that achieve good performance?

5. Impact of parameter tuning. How much does performance improve when pa-

rameter tuning is used? (best vs. average case)

6. Generalization and variation over domains. How well does the algorithm’s

performance generalize across several domains?

Additionally, methods should not be easily biased by researchers’ familiarity with

their own algorithms (e.g., knowing a tight range for the parameter values for their

own algorithms, but not others). That is, measurements should be objective. In

the next section we present methods for measuring these aspects of an algorithm’s

performance. We then present methods for comparing two or more RL algorithms

44

that aid in making predictions about which algorithm will perform better on untested

domains.

3.3.2 Failure Rate: Quantifying when things fall apart

Judging by research publications, one could easily come to the conclusion that

studying when and how algorithms fail to perform well has no research value. How-

ever, this would be a terribly mistaken conclusion. One of the principle pursuits

of scientific research is to explain variance in observation [Cohen, 1995]. Failure of

a learning algorithm dramatically increases variance in reward received, and thus

provides an important measurement for any empirical study.

We consider a run of an algorithm as failed if the algorithm receives, on average,

no more reward than the uniform random policy, or if the algorithm crashes (e.g.,

due to function approximation divergence). In such cases the learning algorithm fails

to provide any advantage over a random policy.

Then the failure rate of an algorithm on a domain is the probability of the al-

gorithm failing on that domain when algorithm parameters are drawn uniformly at

random from the predefined ranges.

Definition 3.1. The parameter space, Φ, is a possibly infinite set of parameter vectors

of length d.

Definition 3.2. For some MDP M , a history of length T is a sequence of state,

action, reward tuples, (st, at, rt)}T−1
t=0 to which M assigns a non-zero probability. The

set of all possible histories on M is denoted H(M).

Definition 3.3. Let M be an MDP with action set A. An algorithm is a function

mapping histories to actions in M and is denoted by the tuple (A,Φ), where Φ is a

parameter space and A is a function such that for any φ ∈ Φ, Aφ : H(M)→ A.

Definition 3.4. Let U indicate the uniform random policy that selects actions with

equal probability. For any algorithm (A,Φ) and MDP M , denote by R(Aφ,M) the

45

random variable given by the discounted return achieved by Aφ on M . The failure

threshold for M is the expected discounted return of the uniform random policy:

FM = E[R(U,M)].

The failure rate, Prφ∈Φ(R(Aφ,M) ≤ FM), is the probability that the algorithm, with

parameters drawn randomly from Φ, achieves a discounted return on M that is no

greater than the expected discounted return of the uniform random policy.

Analyzing the variation of the failure rate across multiple domains may provide ad-

ditional insight into an RL algorithm’s behavior. As an illustrative example, Table 3.2

gives the failure threshold for some common RL domains. Computing the failure rate

of an algorithm requires running a large randomized parameter search and counting

the number of times the discounted return falls below the failure threshold. In prac-

tice the failure threshold can also be used during parameter tuning to cut short trials

that are unsalvageable.

3.3.3 Reward Received

Measuring the reward received using learning curves, which express information

about both learning speed and asymptotic policy performance with tuned parameters,

is currently the most common method used to report on RL experiments. However,

as we showed previously, the way learning curves are frequently used makes them

substantially less informative. In this section, we propose the policy percentile trans-

formation of the reward received which produces more informative learning curves

with intuitive interpretations and is compatible with the long established practice of

using error bars and hypothesis testing.

We first turn to the issue of whether to show discounted or undiscounted return.

The discount factor is generally considered to be part of the domain specification, as

46

Domain Failure Threshold Standard Error

50-Chain 0.180775 ±0.0022
Acrobot −2095 ±25
BicycleRiding 1.38858× 10−3 ±6.3939× 10−9

BlackJack −2.79 ±0.02
BlocksWorld 0.9374 ±0.0006
CliffWalk −1.004 ±0.0007
Cart Pole (Balance, 1-pole) 33.46 ±0.12
Cart Pole (Balance, 2-poles) 14.97 ±0.065
Cart Pole (Swing Up) 3.593 ±0.004
GridWorld 10x10 0.3189 ±0.004
HIV Treatment 1.9× 106 ±1.4912× 104

MountainCar −41875 ±1198
PuddleWorld −9483 ±119
Planar Swimmer −1636.77 ±0.545
SysAdmin 71.78 ±0.35

Table 3.2: Failure thresholds on discounted return (estimated over 3000 trials)

it determines which policies are optimal. However, it is quite common to see different

discount factors used for the same domain, and this value is sometimes treated as

an additional parameter of the algorithm. This confuses the problem of maximizing

discounted return with maximizing undiscounted return using a discount factor to

bootstrap the process. Smaller discount factors are known to accelerate convergence

in some situations [Bertsekas and Tsitsiklis, 1996]. Therefore, an algorithm could

conceivably use a smaller discount factor to bootstrap the learning process or as an

approximation for solving the harder (larger discount factor) problem. This is akin to

making simplifying assumptions that may not hold in practice. However, performance

should be reported with respect to the original problem and not the approximation

used in its solution.

Like many other issues, this confusion makes reproducing and comparing research

results much more challenging. We stick with the view that the discount factor is

a parameter of the domain, and thus should be seen as fixed from the agent’s or

47

meta-optimization’s perspective. Therefore, in the domain specification one should

endeavor to always provide the fixed discount factor used, and to be consistent with

that value over all experiments.

We have chosen to focus on the objective of maximizing discounted return, but

some algorithms instead attempt to maximize the average reward. This is com-

pletely consistent with the arguments we present, but the average reward objective

presents a different optimization problem than the discounted return objective. The

two problems can be related through the concept of Blackwell optimality. A policy π

is Blackwell optimal if there exists γ0 ∈ (0, 1) such that π is optimal for all discount

factors γ ∈ (γ0, 1), and every Blackwell optimal policy is also optimal for the average

reward objective [Blackwell, 1965, Hordijk and Yushkevich, 2002].

With this in mind, the only consistent choice for reporting reward received is to do

so with respect to the discounted return of the MDP because doing otherwise reports

performance on a problem different from the one being used for learning. However,

for discount factors less than one, the difference between policies may become most

apparent only after many time steps, and the use of discounted return makes these

differences much harder to discern. For example, if the goal is t steps away then the

difference between an optimal policy and a pessimal one shrinks with γt−1.

One way to view this is to consider the set of all possible stationary policies for

an MDP M . Let ΠM denote this set. RL can be viewed as an optimization problem

over this set of policies with respect to the discounted return. If all policies result in

the same discounted return, then the optimization problem is trivial because every

policy is optimal. In contrast, a very challenging problem is one in which the vast

majority of policies offer very low discounted return and very few policies achieve

near-optimal discounted return. Thinking along these lines one may start to think

of an MDP in terms of the distribution of discounted returns over the set of possible

policies. The shape of this distribution would reveal, to some degree, the difficulty

48

of the MDP. There are of course still other aspects that affect the difficulty of the

learning problem, such as the state and action space dimensionality, the smoothness

of the optimal value function, and the sensitivity of the learning problem to changes

in the MDP.

Figure 3.4 shows histograms of undiscounted and discounted (γ = 0.9999) returns

for the uniform random policy for the Mountain Car domain. Undiscounted return

is simply the sum of rewards. The difference in discount factors has a substantial

impact on the distribution of returns and similarly affects the mean of that distribu-

tion. In Mountain Car the undiscounted returns form an approximately log-normal

distribution, and the use of a discount factor causes all episodes of length greater

than 1000 to appear to be of similar value. This is simply the nature of a discount

factor, which affects the RL problem being solved. However, in both cases what one

looks for in an RL algorithm is the ability to move the policy towards the far right

end of the distribution, to find a policy in the top percentile of all possible policies.

We can make this concept more concrete with the following definition:

Definition 3.5. Let M be an MDP with a set of possible policies ΠM . Then, the

policy percentile of a policy π ∈ ΠM is the probability that a policy sampled from

ΠM will obtain lower expected discounted return than achieved by π. Let FΠM be

the cumulative distribution function of discounted returns over policies ΠM , and let

R(π,M) be the expected discounted return of the fixed policy π on M . Then the policy

percentile of π on M is given by:

ρ(π,M) = FΠM (R(π,M)). (3.1)

We propose the use of an algorithm’s expected policy percentile as the dependent

variable, replacing discounted or undiscounted return, in learning curves. The first

advantage, which we have motivated thus far, is that the policy percentile is easier to

49

Figure 3.4: Histogram of undiscounted return (Total Reward) compared with dis-
counted return (γ = 0.9999) on Mountain Car. Optimal policies achieve a total
reward of about −120, and an undiscounted return of about −119.

interpret as a measure of a policy’s performance, and the differences between policies

are not obscured when the actual returns differ by small amounts due to a smaller

discount factor. Another benefit is that policy percentile implicitly conveys the same

information as when an optimal policy and a baseline policy are shown for comparison

purposes. This has the effect of making ceiling effects more apparent and producing a

measure of performance relative to the difficulty of the domain. The policy percentile

provides a measure whose scale is independent of the domain and that inherently

takes into account one of the difficulties of learning the MDP. One way to think

50

about this is that this measure normalizes performance with respect to a baseline

algorithm, which is random policy search.

Figure 3.5 gives an example showing the policy percentile of Sarsa(λ) and Q-

Learning on Mountain Car (γ = 1.0). Compare this example with Figure 3.6, which

shows the learning curve for discounted return for the same experiment. Standard

error, shown with error bars, can be computed easily because the policy percentile

is monotonically increasing with discounted return. Notice that for the first episode

the difference in discounted returns corresponds to a difference of 0.005 in policy

percentile, whereas the much smaller gap in discounted returns at episode 8 results in

an even larger difference in policy percentile. This is because it is much harder to find

policies that are near optimal than those that are far from optimal. Thus, for policies

far from optimal the policy percentile contracts the distance between two learning

curves and for near-optimal policies it expands this distance. This is controlled by

the empirical cumulative distribution over discounted returns for each domain so

that the policy percentile transforms discounted returns based on the difficulty of the

domain.

3.3.4 Difficulty and Impact of Parameter Tuning

Parameter tuning is the meta-optimization of the parameter vector of an algorithm

with respect to some objective function. Reports of empirical results, such as those

shown in the previous section, are really presenting results for the combination of

some meta-optimization process and the learning algorithm. The pervasive problem

throughout RL research is that the meta-optimization step is rarely acknowledged or

discussed in any way. This fundamentally discredits the experimental results because

the unspecified meta-optimization step can mask differences in the RL algorithms.

If the meta-optimization method is not specified then it becomes much harder

to use an algorithm for new domains or for variations on existing experiments. The

51

0 2 4 6 8 10 12 14 16 18
Episodes

0.970

0.975

0.980

0.985

0.990

0.995

1.000
M

e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (MountainCar)

QLearning(λ)

Sarsa(λ)

Figure 3.5: Average policy percentile as dependent variable for Sarsa(λ) and Q-
Learning on Mountain Car.

method for meta-optimization must be precisely defined. If hand tuning, or any

other interactive human-guided method, is used as the meta-optimization method

then the results will be biased by the researcher’s familiarity with, and understand-

ing of, the algorithms under consideration. The meta-optimization method must be

automatic and objective. If only the final result of the meta-optimization process is

reported then no information about the difficulty of the process, the impact of pa-

rameter tuning, the sensitivity of the algorithm with respect to its parameters, nor

the average-case performance is communicated. Finally, if only a small number of pa-

rameter vectors are considered then neither the researcher nor the audience is given

any information about the expected performance of the algorithm over the parameter

52

0 2 4 6 8 10 12 14 16 18
Episodes

550

500

450

400

350

300

250

200

150

100
M

e
a
n

 D
is

co
u

n
te

d
 R

e
tu

rn

Optimized Discounted Return (MountainCar)

QLearning(λ)

Sarsa(λ)

Figure 3.6: Discounted return as dependent variable for Sarsa(λ) and Q-Learning on
Mountain Car

space. Current standard practices provide high variance and highly-biased estimates

of the performance of algorithms.

We propose the following methods for measuring the difficulty and impact of

parameter tuning:

1. Precisely define the learning algorithm, including an explicit definition of the

parameter space.

2. Describe the meta-optimization algorithm used and the objective function it

attempts to maximize.

3. Run the meta-optimization procedure K times, recording the objective function

value for every parameter vector evaluated. Each meta-optimization procedure

53

evaluates N parameter vectors, thus producing N ×K total parameter evalua-

tions.

4. Report the average and standard error of the objective function over the K runs

of the meta-optimization for the best parameter vector found so far against the

number of parameter vectors evaluated in the run. That is, for the independent

variable Parameters Evaluated, 0 ≤ n ≤ N − 1, report µn and σn given by

µn =
1

K

K∑

k=1

max
0≤i≤n

fk(i), (3.2)

σn =
1

K

√√√√
K∑

k=1

(max
0≤i≤n

fk(i)− µn)2, (3.3)

where fk(i) is the objective function value for the ith parameter vector evaluated

during the kth run of the meta-optimization procedure.

The results from the above procedure can be reported easily in a table, or by a

learning curve with error bars. For example, we used a randomized parameter search

meta-optimization for Sarsa(λ) and Q-Learning on Mountain Car3, with K = 50

runs of length N = 120. This means we ran fifty independent randomized parameter

searches for each algorithm on the Mountain Car domain. Each randomized parame-

ter search sampled 120 different parameter vectors and evaluated the algorithm with

each using the domain.

In Figure 3.7 we give the results of applying the above procedure. In addition

to those already discussed, other useful details can be read from this figure. The

y-intercept of each curve, the starting value for average policy percentile, gives an

estimate of the average policy percentile of each algorithm if parameter vectors were

3Sarsa(λ) and Q-Learning share the same parameter space. We used ε-greedy policies and the
following parameter space: α ∈ (0, 1], λ ∈ [0, 1], and ε ∈ [0, 1). Both algorithms used a Fourier basis
order 3 for function approximation. Mountain Car’s discount factor was γ = 1.0.

54

100 101 102

Parameter Evaluations

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000
E

xp
e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (MountainCar)

QLearning(λ)

Sarsa(λ)

Figure 3.7: Difficulty and impact of parameter tuning for Sarsa(λ) and Q-Learning
on Mountain Car. Expected max policy percentile (µn) shown by lines and standard
error (σn) shown by error bars.

chosen randomly. This provides a measure of the average case performance of each

algorithm. The difference between the final policy percentile and this initial value is

the impact of parameter tuning, which shows how much an algorithm benefits from

parameter tuning. The difficulty of parameter tuning is shown by the rate at which

each curve increases toward its maximum. The difficulty and impact of parameter

tuning curves provide a more complete picture of the performance characteristics of

an algorithm.

The above procedure requires a scalar valued objective function, but running an

RL algorithm produces a sequence of discounted returns. If each evaluation runs for

E episodes, then the sequence is of length E. Any choice of objective function must

55

transform this sequence of values into a single scalar, and in doing so expresses some

trade-off between final policy performance and learning speed. On the one extreme of

this spectrum is an objective function that averages over all episodes and on the other

extreme is an objective function that returns only the discounted return of the last

episode. We propose to break the sequence of discounted returns into two phases:

the learning phase and the evaluation phase. The learning phase is characterized

by an approximately increasing discounted return and the evaluation phase by an

approximately constant discounted return.

The objective function we propose for meta-optimization of RL algorithms: (1)

converts the sequence of discounted returns into a sequence of policy percentiles,

(2) automatically partitions the sequence into a learning phase and an evaluation

phase, and (3) returns the average policy percentile of the evaluation phase. The

assumption that makes this automatic partitioning possible is that the learning phase

is best approximated by a line through the first episode’s policy percentile and that

the evaluation phase is best approximated by its mean. Therefore, finding such a

partitioning is equivalent to minimizing the squared error of the two approximations.

Let ρi denote the policy percentile for episode i. Then, the learning-evaluation

partition is defined by the episode number n∗ that produces the lowest sum-squared

error:

n∗ = arg min
2≤n<E−1

[
min
β∈R

n∑

i=0

(ρi − ρ0 − βi)2 + (E − n)V ar({ρi}Ei=n)

]
. (3.4)

The error term in red gives the sum-squared error of approximating the learning-

phase with a line through the first episode’s value and the error term in blue gives

the sum-squared error of approximating the evaluation-phase with its mean. Given

this partitioning procedure, the objective function we propose is given by:

fk(i) =
1

E − n∗
E∑

j=n∗

ρj. (3.5)

56

0 5 10 15 20

Episode

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

P
o
lic

y
 P

e
rc

e
n
ti

le

Learning Curve

Learn-Evaluate Partition

(a) Typical behavior of a tuned RL algorithm

0 5 10 15 20

Episode

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

P
o
lic

y
 P

e
rc

e
n
ti

le

Learning Curve

Learn-Evaluate Partition

(b) High to low variance in evaluation

0 5 10 15 20

Episode

0.992

0.994

0.996

0.998

1.000

P
o
lic

y
 P

e
rc

e
n
ti

le

Learning Curve

Learn-Evaluate Partition

(c) High variance in evaluation, possibly due
to numerical instabilities or too large a step
size.

0 5 10 15 20

Episode

0.992

0.994

0.996

0.998

1.000

P
o
lic

y
 P

e
rc

e
n
ti

le

Learning Curve

Learn-Evaluate Partition

(d) Slow learning behavior, likely due to too
small a step size or too few episodes for this
domain.

Figure 3.8: Learning curves and Learn-Evaluate partition generated by Equation 3.4

This objective function gives the mean policy percentile over the last (E − n∗)

episodes, where n∗ is selected so that these remaining episodes are better approxi-

mated by a constant mean than by inclusion in a linear approximation of the initial

learning speed. This formulation captures the essential separation of an RL algo-

rithm’s performance into an initial phase dominated by the learning speed (repre-

sented by the slope of the line between ρ0 and ρn∗), and the behavior of the algorithm

once it has leveled out. Figure 3.8 gives some representative examples of the parti-

tioning this method finds between the learning phase and the evaluation phase of a

RL algorithm’s execution.

57

3.3.5 Importance of Multiple Domains

Two main reasons motivate studying the behavior of RL agents on an MDP M .

The first reason is to solve M itself and the second reason is because M is a repre-

sentative MDP from a class of interest. In other words, one may study the behavior

of an algorithm on M because controlling M is the end goal, or one may study an

algorithm’s behavior on M as a means to measure some other variable.

Typically it is this second purpose for which RL research papers study behavior on

an MDP, and the variable they seek to measure is the performance of an algorithm

on a class or a subset of MDPs. When an algorithm is demonstrated on a single

problem the only thing one knows is that “it works” (to a certain extent) on that

particular problem. There is little information about how effective the algorithm will

be if applied to any other MDP. This is why reporting empirical results over multiple

domains is important.

Imagine each MDP as a point in an infinite dimensional space. Each MDP on

which an algorithm is studied provides a measurement at one point in that space.

There is no hope of testing an algorithm on every MDP, nor even on a spanning

subset, but the more numerous and varied the set of MDPs used for experiments

the more meaningful results will be and the more confident one can be in drawing

conclusions.

Already a large number of MDPs have been studied in RL publications, and

while designing interesting and challenging new domains should be encouraged, there

already are enough to begin to construct sets of benchmark MDPs. Individually

these MDPs are not interesting for the purposes of demonstration, but used together

they begin to provide a detailed image of the performance characteristics of an RL

algorithm. The use of benchmark datasets has become commonplace in the field

of supervised learning, making comparisons between different algorithms much more

58

Domain State Space Discount (γ) Source

50-Chain Discrete 0.9 [Lagoudakis and Parr, 2001]
BlocksWorld Discrete 1.0 [Geramifard et al., 2011]
BlackJack Discrete 1.0 [Sutton and Barto, 1998a]
GridWorld 10x10 Discrete 1.0 [Sutton and Barto, 1998a]
SysAdmin Discrete 0.95 [Guestrin et al., 2003]
CliffWalk Discrete 1.0 [Sutton and Barto, 1998a]

Acrobot Continuous 1.0 [Sutton and Barto, 1998a]
Bicycle (with shaping rewards) Continuous 0.8 [Lagoudakis and Parr, 2001]
Cart Pole (Balance, 1-pole) Continuous 0.95 [Lagoudakis and Parr, 2001]
Cart Pole (Balance, 2-poles) Continuous 0.99 [Wieland, 1991]
Cart Pole (Swing Up) Continuous 0.95
HIV Treatment Continuous 0.98 [Ernst et al., 2006]
Mountain Car Continuous 1.0 [Sutton and Barto, 1998a]
Planar Swimming Continuous 0.98 [Tassa et al., 2007]
Puddle World Continuous 1.0 [Sutton, 1996]

Table 3.3: RL Benchmark: Our proposed set of benchmark MDPs, with (6) discrete
state problems and (9) continuous state problems.

straightforward. By contrast, it is rarely possible to directly compare published RL

results of different papers because the sets of domains are unlikely to overlap.

Table 3.3 gives our proposed set of benchmark MDP domains. The benchmark

domains contain some of the most frequently used MDPs in the RL literature, all

have state sets with fairly modest dimensionality, and there is a range of difficulties

(from very easy to moderately hard). An important property of all these domains

is that they are not computationally intensive to simulate, which allows for more

thorough empirical studies. That is not to say that this list is comprehensive and

that research would not benefit from additional domains as well as from real world

applications. The list is heavily biased toward the types of problems considered in

this thesis. Additional benchmark sets should be devised with the aim of measuring

performance on the class of continuous action MDPs, skill learning domains, and

59

high-dimensional continuous-state MDPs. Each such benchmark set would provide

useful insight into the behavior of the applicable RL algorithms.

3.3.6 Comparing Reinforcement Learning Algorithms

Of course multiple learning curves corresponding to different algorithms can be

included in the same figure for visual comparison. However, when the number of

domains becomes larger doing this for every domain individually becomes problem-

atic. This can still be done for a few particularly informative domains, but in the

case of our proposed set of benchmark MDPs a better approach is to use a single

visualization by giving learning curves for each algorithm formed by averaging over

all domains in the benchmark set. This may be supplemented by paired hypothesis

testing to compare algorithms over multiple domains.

We use Cohen’s (1995) randomized paired sample hypothesis test, given by Algo-

rithm 5. The test is applied to two samples, each sample corresponding to a treatment

of one of the two algorithms. For our purposes each treatment sample is a scalar eval-

uation of an algorithm on a particular MDP. We use three such evaluations in this

dissertation. The first two apply to the learning curves with optimized parameters

and are the learning speed and evaluation policy percentile given by the learn-evaluate

partitioning of a learning curve. The third is applied to the parameter tuning curves

and is a quadratically weighted average of the means computed in Equation 3.2:

∑N
i=0(N − i)2µi∑N
i=0(N − i)2

. (3.6)

This expresses our stated bias in favor of minimal parameter tuning and strong average

case performance.

We use two different statistics with the hypothesis test and these three evaluations.

The first, fµ(A,B) =
∑N

i=1
ai−bi
N

where ai ∈ A, bi ∈ B, corresponds to a randomized

version of the paired sample t test. The second, fσ(A,B) = var(A)
var(B)

where var(A) and

60

var(B) are the variances of samples A and B, tests if the two algorithms have equal

variance in performance over multiple MDPs. More precisely, the null hypothesis for

fµ is that there is no difference in the mean performance between algorithms A and

B over the set of MDPs. The null hypothesis for fσ is that the algorithms are equally

variable. Notice that for fσ one needs to subtract the mean over samples for A and

B before applying the hypothesis test so that each set of paired samples are mean

zero. Additionally, we are testing if the variance of A is greater than the variance of

B, and it is for this reason that var(A) appears in the numerator. If the test is to be

reversed the numerator and denominator must also be switched [Cohen, 1995].

Algorithm 5 Randomized Paired Samples Hypothesis Test

Let f(A,B) be a statistic on paired samples A and B,
and let Fθ∗ be the empirical cumulative distribution function over θ∗.

input: Paired samples A and B of size N .

θ = f(A,B) . Compute statistic for original paired sets of samples
for k = 1, . . . , K do

for i = 1, . . . , N do
if random() ≤ 0.5 then . Randomly swap set membership

A∗i , B
∗
i = Bi, Ai

else
A∗i , B

∗
i = Ai, Bi

end if
end for
θ∗[k] = f(A∗, B∗) . Compute statistic for randomized paired samples

end for
return Fθ∗(θ)

A final detail remains before these methods can be put into practice. The above

hypothesis tests are based on samples of the algorithms’ performances on a set of

MDPs. An obvious choice for the set of MDPs is a benchmark set such as those

previously discussed (Table 3.3). As for the sample of performance we could use

discounted return, but in addition to the reasons already discussed there is another

reason that policy percentile is particularly well suited for use in this case. Unlike

61

discounted return, policy percentiles are on a uniform scale across all domains. This

is particularly useful here because the range of returns among MDPs can vary sub-

stantially, making comparisons such as those discussed in this section less meaningful

because we would be comparing samples that come from completely different ranges.

3.4 Experiments with Proposed Methods

3.4.1 Use In Practice (In the Presence of Page Limits and Deadlines)

There are two limitations with these proposed procedures. First, the parameter

meta-optimization procedure is inherently time consuming. Second, the procedure

produces enough experimental results to fill many pages with just learning curve

figures. However, the computational burden can be somewhat reduced, and because

of the use of policy percentiles so too can the number of figures. The following

suggestions may allow the proposed meta-optimization procedure to be run despite

constraints on resources:

• Cut off all trials once the failure threshold is reached.

• The empirical cumulative distribution of discounted return need only be com-

puted once per domain.

• Define the parameter space wisely, and bias sampling appropriately (e.g. step

sizes sampled from a log-normal distribution with negative mean).

• Keep the number of parameters evaluated per meta-optimization, N , within

reason. If one algorithm is particularly sensitive to parameter values consider

running only that algorithm with large values of N .

• The learn-evaluate partition objective function is robust to different episode

increments and can be used when the discounted return is stored for only a

spanning subset of the episodes. If disk space is a limiting factor this can be

used to overcome the limitation.

62

0 200 400 600 800 1000
Discounted Return

10-6

10-5

10-4

10-3

10-2

10-1

F
re

q
u

e
n

cy

Discounted Returns (FiniteCartPoleBalance)

(a) Cart Pole Balance

16000 15000 14000 13000 12000 11000 10000 9000 8000
Discounted Return

10-7

10-6

10-5

10-4

10-3

10-2

F
re

q
u

e
n

cy

Discounted Returns (Swimmer)

(b) Swimmer

Figure 3.9: Empirical discounted return distributions for randomly sampled fixed-
policies.

63

Additionally, the empirical distribution of discounted returns is usually well be-

haved outside of the failure threshold (see Figure 3.9), but is rarely normal. This

means that when sampling policy performance is expensive an estimated model of

the distribution may provide a suitable solution.

One important aspect not covered is the need for modular, reusable, software

libraries of RL domains and algorithms. To this end, we use the domain implemen-

tations from the RLPy project [Geramifard et al., 2013].

The RL Benchmark set contains 15 MDPs and so produces twice as many fig-

ures when used with the proposed procedure (one for learning curves and one for

parameter-tuning performance). For each domain we may give the learning curve

showing the average policy percentile with optimized parameters as well as the pa-

rameter tuning figure that shows the difficulty and impact of the meta-optimization

procedure. However, as previously mentioned, the use of policy percentile provides a

measure whose scale is independent of the domain. To reduce the number of figures

one can report the average over the entire RL Benchmark set instead of for each

domain. This can be done for both the learning curve and parameter tuning figures,

and shows how well an algorithm performs averaged over the entire set of domains.

Finally, individual domains may be featured to discuss interesting cases in which an

algorithm does particularly well or poorly.

3.4.2 Case Study: Sarsa(λ) With and Without an Adaptive Step Size

In this case study we compare Sarsa(λ) with and without an adaptive step size.

The adaptive step-size algorithm used is not particularly important for our purposes,

but we use the PARL2 algorithm introduced in Chapter 4. For this study we used

K = 4 independent randomized searches of length N = 100 over the parameter val-

ues for both algorithms. The two algorithms have the same parameter spaces except

that PARL2 does not have a tunable step size, and thus has one fewer parameter.

64

Figure 3.10a shows the learning curves of the two algorithms using optimized param-

eters, and is an average over 30 runs. The error bars show that the differences are not

statistically significant, but the adaptive step-size algorithm appears to learn slightly

faster. Both figures are averages over the RL Benchmark set. Figure 3.10b shows

the results of the meta-optimization procedure. The adaptive step-size algorithm

has fewer parameters to tune and gives better performance on average than Sarsa(λ)

when parameter values are chosen randomly. However, after parameter tuning both

algorithms reach similar objective function values.

Although the average performance of the two algorithms is very similar they each

perform differently for some individual domains. On the BlackJack domain (Fig-

ure 3.11a) Sarsa(λ) out performs the adaptive step-size method both during param-

eter tuning and with optimized parameters. The discounted returns for BlackJack

are high variance, which might explain why this particular adaptive algorithm does

poorly in this case. However, in the HIV Treatment domain (Figure 3.11b) the adap-

tive step-size algorithm is far superior to Sarsa(λ).

3.4.3 Case Study: LSPI, NAC, and Sarsa(λ)

We now turn to a comparison of three RL algorithms: Sarsa(λ), Natural Actor-

Critic (NAC), and Least-Squares Policy Iteration (LSPI). We introduced all three of

these algorithms in Chapter 2, but did not discuss their parameters in depth. NAC,

as we have implemented it, takes six parameters, three of which control the frequency

of updates and at what rate past information is discarded. LSPI has the advantage of

not requiring a step-size parameter, but takes five parameters. Sarsa(λ) has only three

parameters. Thus, NAC and LSPI have much larger parameter spaces than Sarsa(λ).

Figure 3.12a shows the parameter tuning curve for these three algorithms and clearly

illustrates the consequences of such a large parameter space. If we ran the meta-

optimization procedure for much larger number of evaluations, such as N = 10000,

65

then we expect that both LSPI and NAC would come to out-perform Sarsa(λ) on

most domains.

However, as Figure 3.12b shows, given only modest amounts of parameter tuning

Sarsa(λ) significantly out-performs both algorithms. Specifically, we can say that

over the RL Benchmark set Sarsa(λ)’s mean policy percentile after parameter tuning

is greater than that of NAC’s (p > 0.005) and LSPI’s (p > 0.01). LSPI is known to

perform particularly well on the Bicycle Riding task [Lagoudakis and Parr, 2003], but

is also known to be somewhat sensitive to the parameter values. Although we used

the same discount factor as Lagoudakis and Parr [2003] none of the parameter val-

ues found during meta-optimization performed nearly as well as previously reported

results. If instead we hand tune parameter values for NAC or LSPI we observe the

same level of performance reported by others. We must conclude that these two al-

gorithms are much more sensitive to parameter values than Sarsa(λ) and are only

competitive when extensive parameter tuning is performed or the practitioner has

expert knowledge of the algorithms in question.

3.5 Conclusion

The empirical methods regularly used in RL impede research progress by masking

the performance of the RL algorithms with the unreported parameter tuning process

used to achieve the reported results. We have shown, both in general and with

concrete examples, the negative effects of current practices and how they might lead

to erroneous conclusions. We further motivated the work with the results of a survey

of empirical methods used in RL conference papers during the preceding year which

support our claim that current practices are insufficient. We then proposed a set of

experimental methods for performing studies on RL algorithms as well as reporting

the results of those studies. Finally, we demonstrated their use in two case studies

comparing some well known RL algorithms.

66

0 100 200 300 400 500 600 700 800 900
Episodes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

PARL2
Sarsa(λ)

(a) Performance with optimized parameters averaged over RL Benchmark set
of domains.

100 101 102

Parameter Evaluations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

PARL2
Sarsa(λ)

(b) Difficulty and Impact of parameter tuning.

Figure 3.10: Sarsa(λ) with and without an adaptive step size.

67

100 101 102

Parameter Evaluations

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (BlackJack)

PARL2
Sarsa(λ)

(a) Parameter tuning curves on the BlackJack domain

0 10 20 30 40 50 60 70 80 90
Episodes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (HIVTreatment)

PARL2
Sarsa(λ)

(b) Learning curves on the HIV Treatment domain.

Figure 3.11: Sarsa(λ) with and without an adaptive step size on individual domains.

68

100 101 102

Parameter Evaluations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

NAC
LSPI
Sarsa(λ)

(a) Difficulty and Impact of parameter tuning.

0 100 200 300 400 500 600 700 800 900
Episodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

NAC
LSPI
Sarsa(λ)

(b) Performance with optimized parameters averaged over RL Benchmark set
of domains.

Figure 3.12: Case study of Sarsa(λ), LSPI, and NAC averaged over RL Benchmark.

69

CHAPTER 4

ADAPTIVE SCALAR STEP SIZES FOR
REINFORCEMENT LEARNING

This chapter focuses on the adaptive scalar step-size problem for RL. Our primary

contributions the derivations of three parameter-free adaptive scalar step-size algo-

rithms for RL. Additionally, we perform an empirical study of deterministic step-size

schedules and adaptive step-size algorithms in RL that is far more comprehensive

than any other in the field.

4.1 Introduction

Online reinforcement learning (RL) algorithms, such as Sarsa(λ), maintain an

approximate action-value function and at each time step update the approximation

toward some locally optimal solution. How far the approximation weights are moved

in this direction is determined by the step size. In this way, the step size directly

controls how quickly or slowly an algorithm incorporates new information.

Most RL algorithms are highly sensitive to the choice of step-size value because

the RL problem is inherently non-stationary—as policies improve the distributions

over states and rewards change—and because effective values can vary dramatically

across domains and function approximation methods.

Let J : Rn → R be a loss function over weight vectors w ∈ Rn, and A be an

incremental algorithm. Given a sequence of step sizes {αt}∞t=0, A produces update

70

directions 4wt ∈ Rn intended to minimize J (wt) and produce the sequence of pa-

rameter vectors defined by:

wt+1 = wt − αt4wt.

The adaptive step-size problem is to generate a sequence of step sizes {αt}∞t=0, where

αt > 0 ∀t, which minimize the loss incurred by the learning algorithm. The adaptive

step-size problem for RL restricts the problem to the set of RL algorithms and their

associated loss functions. Ideally RL algorithms would minimize a loss function rep-

resenting the policy’s distance to a locally optimal policy. Policy gradient algorithms

can be viewed as minimizing such a loss function, but these methods can only be

applied to differentiable policies. Another approach is to minimize a loss function

that indirectly leads to a locally optimal policy. For example, a commonly used loss

function in RL is the mean-squared Bellman error (MSBE):

JMSBE(wt) =
1

2
Es∼dπ ,a∼π [r + γQwt(s

′, a′)−Qwt(s, a)]
2
.

For finite MDPs the Bellman optimality principle says that if a policy achieves zero

MSBE then the policy is optimal [Sutton and Barto, 1998a]. Thus, the MSBE loss

function can be used to indirectly optimize the policy with respect to an approximate

value-function.

A number of choices can be made within this framework that result in different

adaptive step sizes, but each choice comes with a particular set of assumptions placed

on the sequence of step sizes, the loss function, and the algorithm. For example, if the

assumptions are that the optimal sequence of step sizes is constant over time, αt ≡ α∗0

∀t ∈ N, that the loss function is MSBE, and if the agent’s algorithm uses linear

function approximation, then stochastic gradient descent may be used to generate a

sequence of step sizes which converges to α∗0. In this chapter we explore some of the

possible avenues for deriving an adaptive scalar step size for action-value based RL,

each motivated by some set of assumptions about the problem.

71

Chapter 2 reviewed a variety of the adaptive step-size methods available for

stochastic gradient descent, and noted the fact that few methods have been explic-

itly designed for use in RL. Although the methods in this chapter may be extended

to other algorithms, it is assumed that the RL algorithm is Sarsa(λ) and that the

step sizes are positive scalars. Sarsa(λ) is used because it is a simple algorithm that

often performs competitively with state-of-the-art methods after suitable parameter

tuning.

We consider three fundamentally different approaches for the derivation of an

adaptive step size. The first, which is most closely related to Incremental Delta-Bar-

Delta (IDBD) [Sutton, 1992b], assumes that there is some unknown, fixed, locally

optimal step size and uses stochastic gradient descent (SGD) to improve the current

step size incrementally in that direction. The second, which is a generalization of

the vSGD adaptive step-size algorithm [Schaul et al., 2012], solves the optimal step-

size problem with respect to estimated expected values that take into account the

variance of the Sarsa(λ) updates. The final approach was inspired by the passive

aggressive algorithm for online learning [Crammer et al., 2006]. Our approach starts

by finding the step size that aggressively minimizes the squared Bellman error of the

current transition and uses this to create a passive aggressive adaptive step size upper

bounded by this aggressive step size.

While this chapter focuses on scalar step sizes, some methods can be extended

to the case of vector-valued step sizes. We argue in favor of the separability of the

adaptive scalar step size from the correction of the update direction. We then derive

adaptive scalar step-size algorithms for RL and provide an empirical study of the

three adaptive step-size methods compared with each other and with a variety of

existing step-size schedules and adaptive algorithms.

72

4.2 Update Whitening and Adaptive Scalar Step Sizes

The step size is classically assumed to be a positive-real-scalar value, but recent

research has also focused on vector-valued step sizes [Duchi et al., 2011b, Schaul

et al., 2012, Ross et al., 2013]. Vector-valued step sizes do more than simply scale

the magnitude of an update, they also change the direction of the update in the same

way as positive definite matrix-valued step sizes. Although these developments in

adaptive vector-valued step sizes are recent, the concept of matrix-valued step sizes is

far from being a recent development and is central to work on quasi-Newton methods

in convex optimization. However, adaptive vector-valued step-size methods attempt

to modify the update direction without the need for an additional scalar step size.

We claim that these two problems, despite often being treated simultaneously,

can be solved sequentially very effectively. The two problems are the adaptive scalar

step-size problem and the update whitening problem, which attempts to correct for

differences of scale, variability and higher order effects of the loss function. The main

result of this section derives the optimal step size for any given whitening matrix. We

now proceed to define the update whitening problem.

Definition 4.1. For matrix G ∈ Rn×n, G � 0 indicates that G is a positive definite

matrix.

Assumption 4.1. The loss function J : Rn → R is continuously differentiable with

respect to parameters w ∈ Rn.

Definition 4.2. Let ξ be either a deterministic approximation error vector or a mean-

zero noise vector with bounded variance, then for loss function J satisfying Assump-

tion 4.1 a descent direction at w is given by:

4w = −∇J (w) + ξ.

73

Definition 4.3. Let A ∈ Rn×n be a square matrix. Then the matrix norm ‖A‖ is

assumed to be the operator norm:

‖A‖ = sup{‖Ax‖‖x‖ | x ∈ Rn}. (4.1)

If A is invertible then the condition number of A is given by:

κ(A) = ‖A‖‖A−1‖. (4.2)

Definition 4.4. Let J : Rn → R be a continuously differentiable function over

parameters w ∈ Rn. Taylor’s theorem gives the following equivalence [Sun and Yuan,

2006]:

J (w +4w) = J (w) +∇J (w)>4w +R2(w +4w), where (4.3)

R2(w +4w) = 4w>D2J (w +4w)4w, with (4.4)

D2J (w +4w) =
1

2

∫ 1

0

(1− t)∇2J (w + t4w)dt. (4.5)

Definition 4.5. Given a loss function satisfying Assumption 4.1 and descent direc-

tion 4w, the update whitening problem, for ε > 0, is to find G−1 ∈ Rn×n, with

G−1 � 0 and ‖G−1‖ ≤ 1, solving:

min
G−1
J (w +G−14w),

such that R2(w +G−14w) = ε.

We write the whitened update of 4w as 4̂w = G−14w.

The update whitening problem is motivated by considering the derivation for

stochastic gradient descent, which minimizes the Taylor expansion of J (w + 4w)

74

around w. The error between J (w +4w) and this approximation is given by Equa-

tion 4.4. When J is continuously differentiable, Taylor’s Theorem gives an exact

equation for R2 in terms of the average curvature of the function, but upper bounds

on the approximation error can be achieved under milder assumptions.

The idea behind the update whitening problem is to produce an update direction,

4̂w = G−14w, that minimizes the loss function while measuring the size of the

update in terms of the approximation error from Equation 4.4. This has the result

of producing updates that are in a sense more efficient, in that they minimize the

loss as quickly as possible relative to the local uncertainty in the gradient direction,

where this uncertainty may be due to a deterministic approximation error or additive

mean-zero noise.

Doing so requires making smoothness assumptions on the loss function. The

simplest case is observed when J is quadratic and noise-free. Then, the Hessian of

J is constant and Newton’s Method gives an exact solution to the update whitening

problem. This is the ideal case of reducing the condition number to unity, but in

general an exact solution will not be available, and some error due to higher order

effects and variance in the gradient estimates will remain. In this case, the full

update w + 4̂w is not guaranteed to minimize the loss function, and a scalar step

size α must be introduced to keep w+ α4̂w within a neighborhood containing small

approximation errors.

Many existing methods can be seen as solving the update whitening problem under

varying assumptions. Whitening data refers to the common practice used to produce

uncorrelated data with variance one. Preconditioning of optimization problems [Boyd

and Vandenberghe, 2004], and whitening the data before applying a machine learning

algorithm, are a commonly used techniques for improving the performance of existing

methods. These can be seen as the analogous problem in the batch learning setting.

Slow feature analysis is closely related, but adds the additional requirement of pro-

75

ducing zero mean updates [Wiskott and Sejnowski, 2002]. AdaGrad is an adaptive

vector-valued step-size algorithm which approximately solves the update whitening

problem by assuming that the update directions are already uncorrelated [Duchi et al.,

2011a].

Yang and Laaksonen [2008] explored the connections between the whitened update

and the natural gradient. In doing so they also proved that the whitened update

maximizes the local change in information. Natural gradients, introduced by Amari

[1998], are another approximate solution to the update whitening problem which

avoid the use of matrix square roots used by Yang and Laaksonen [2008].

Le Roux et al. [2007] have shown that the natural gradient is the update direction

which minimizes the probability that the generalization error will increase. Aside

from the theoretical guarantees of natural gradients, they have also been shown to

substantially improve performance of online stochastic gradient descent algorithms.

A full discussion of the benefits and procedures for the update whitening problem

is beyond the scope of this chapter. However, we now establish some particularly

useful aspects of the problem that will aid in the proof of Theorem 4.1. Using the

above motivation for the use of a scalar step size, Theorem 4.1 gives conditions on

the scalar step size required for convergence when update whitening is used to change

the descent direction.

Assumption 4.2. The matrix G−1
t ∈ Rn×n gives an approximate solution to the

update whitening problem at time t such that:

(a) G−1
t exists and is the inverse of the matrix Gt (invertible)

(b) G−1
t � 0 (positive definite)

(c) ‖G−1
t ‖ ≤ 1 (contraction)

(d) ∀t : κ(G−1
t) ≤ 1

c1
for some positive constant c1 > 0 (bounded condition number)

76

Theorem 4.1. Let J be a loss function satisfying Assumption 4.1 with parameter

vector wt ∈ Rn, descent direction 4wt, and 4̂wt = G−1
t 4wt for matrix G−1

t satisfying

Assumption 4.2.

Then the optimal scalar step size is given by:

α∗t = −∇J (wt)
>4̂wt

R2(wt + 4̂wt)
, ∀t ∈ {t : t ∈ N, ‖∇J (wt)‖ > 0}. (4.6)

Furthermore, the sequence {wt}∞t=0 converges with probability one to a local opti-

mum w∗ when one exists and if the step-size sequence satisfies:

αt < 2α∗t , ∀t ∈ {t : t ∈ N, ‖∇J (wt)‖ > 0}. (4.7)

Proof. Begin with the Taylor expansion of J (wt + 4̂wt) around wt and step size αt

minimizing J (wt + 4̂wt),

J (wt + αt4̂wt) = J (w) + αt∇J (w)>4̂w +
1

2
α2
tR2(w + 4̂w),

J (wt + αt4̂wt)− J (w) = αt∇J (w)>4̂w +
1

2
α2
tR2(w + 4̂w), (4.8)

αt∇J (w)>4̂w +
1

2
α2
tR2(w + 4̂w) < 0,

1

2
αtR2(w + 4̂w) < −∇J (w)>4̂wt,

αt < −2
∇J (wt)

>4̂wt
R2(w + 4̂w)

.

This proves the upper bound. Then, taking the derivative of Equation 4.8 with

respect to αt and solving for αt, gives the result for the optimal scalar step size.

What remains is to prove that satisfying the above bound guarantees convergence.

Bertsekas and Tsitsiklis [2000] established convergence of stochastic gradient de-

scent with modified update directions under general conditions. Specifically, Bert-

sekas and Tsitsiklis’s (2000) proof establishes in our case that the sequence of param-

eter vectors will converge with probability one if the following hold:

77

(a)
∑∞

t=0 αt =∞ and
∑∞

t=0 α
2
t <∞.

(b) For positive scalars c1 and c2:

c1‖∇J (wt)‖2 ≤ −∇J (wt)
>G−1

t ∇J (wt), (4.9)

‖G−1
t ∇J (wt)‖ ≤ c2‖∇J (wt)‖. (4.10)

(c) ξt is either a deterministic error satisfying for positive scalars p and q,

‖G−1
t ξt‖ ≤ αt(q + p‖∇J (wt)‖), ∀t, (4.11)

or is a stochastic error satisfying for positive scalar A,

E[ξt] = 0, E[‖ξt‖2] ≤ A(1 + ‖∇J (wt)‖2). (4.12)

Condition (a) is the standard assumption on step sizes, required for convergence in

stochastic approximation algorithms. Theorem 2.2.4 of Sun and Yuan [2006] proves

this condition for our form of step size on quadratic functions. In our case the

quadratic term is R2(w + 4̂w) so that their proof is applicable and condition (a)

holds. Condition (b) is implied by our assumption that G−1
t is a contraction operator

(‖G−1
t ‖ ≤ 1) and that the condition number of G−1

t is bounded from above:

1 ≥ ‖G−1
t ‖,

= sup{‖G
−1
t x‖
‖x‖ | x ∈ Rn},

≥ ‖G
−1
t ∇J (wt)‖
‖∇J (wt)‖

,

=⇒ ∇J (wt) ≥ ‖G−1
t ∇J (wt)‖,

∴ c2 = 1.

78

By the Min-Max theorem, where λmin and λmax are the minimum and maximum

eigenvalues of G−1
t respectively,

λmin ≤
x>G−1

t x

‖x‖2
≤ λmax, ∀x ∈ Rn \ {0}. (4.13)

Therefore, let c1 = λmin which is bounded away from zero by our assumption that

G−1
t is a contraction operator with bounded condition number.

Finally, it is easy to see that condition (c) will hold for the whitened update

4̂wt as long as the condition holds for the original update 4wt with error ξt. That

is, if ξt conforms to the assumptions required for convergence in the usual case of

stochastic gradient descent, then ξt also satisfies condition (c) in the case of whitened

updates. If ξt is a deterministic error then this holds trivially because G−1
t is a

contraction operator and therefore ‖G−1
t ξt‖ ≤ ‖ξt‖. The same property can also be

used for stochastic errors: E[‖G−1
t ξt‖2] ≤ E[‖ξt‖2]. Thus, the conditions for gradient

convergence are satisfied, completing our proof.

Theorem 4.1 has previously been proven under more restrictive assumptions, but

a better understanding of the role of scalar step sizes is obtained by considering

the general case. Without additional assumptions placed upon the loss function,

R2(w+4w) is the average rate at which the gradient may change between the points

w and 4w. Take, for example, the Cauchy step size:

αt =
‖∇J (wt)‖2

∇J (wt)>H(wt)∇J (wt)
.

The Cauchy step size is, in some sense, optimal. Specifically, it is locally optimal

if there is no noise and the Hessian at wt is assumed to be a good approximation

to the average Hessian between wt and wt − ∇J (wt). However, although this step

size is always below the upper bound required to ensure convergence it is not always

79

exact causing the Cauchy step size to frequently over-shoot the true optimal step size.

This is due to the error in the approximation formed by the assumptions on the loss

function and the Taylor expansion.

4.3 Adaptive Scalar Step Sizes for Sarsa(λ)

Recall from Chapter 2, the algorithm for Sarsa(λ) with function approximation

Qw and parameterized policy π. Modifying this algorithm to allow for a generic

adaptive step size, with initialization (InitStepSize) and implementation (StepSize)

functions gives Algorithm 6. All of the adaptive step-size algorithms in this chapter

are presented with pseudo-code implementations of the two functions referenced by

Algorithm 6. This pseudo-code does not show the details of how internal variables are

maintained for each algorithm, but the reader may interpret local variable assignments

within a function as persistent variables internal to a particular adaptive step-size

algorithm. Any tunable parameters required by an adaptive step-size algorithm will

be specified in the initialization function. We use a tabular representation for action-

value functions on all finite MDPs and linear function approximation with a Fourier

basis on all continuous MDPs [Konidaris et al., 2012]. Table A.1 in the appendix

gives the basis order used by all algorithms for each domain.

4.3.1 Stochastic Gradient Descent Methods

In this section we derive adaptive step-size algorithms SID (Algorithm 7) and

NOSID (Algorithm 8) using stochastic gradient descent (SGD). The first step in

applying SGD to the scalar adaptive step-size problem for Sarsa(λ) is to determine

what loss function Sarsa(λ) minimizes. When λ = 1, Sarsa(λ) minimizes the squared

error from the Monte Carlo returns, in which case it becomes a stochastic gradient

descent algorithm. However, when λ < 1, Sarsa(λ) no longer follows the stochastic

gradient of any stationary loss function.

80

Algorithm 6 Sarsa(λ) with Adaptive Step Size

Given MDP M = (S,A, P, p, R, γ), and parameterized policy π
Initialize λ ∈ [0, 1), w0 = 0

InitStepSize(· · ·)
s0 ∼ p(·), a0 ∼ π(s0;w0)
for t = 0, 1, 2 . . . do

πt = π(wt)
rt+1 ∼ R(· | st, at), st+1 ∼ P (· | st, at), at+1 ∼ πt(st+1)

. Sarsa(λ) Update
δt = rt + γQwt(st+1, at+1)−Qwt(st, at)

et = γλet−1 +
∂Qwt (st,at)

∂w

αt = StepSize(· · ·)
wt+1 = wt + αtδtet

end for

Following the derivation for TD(λ), recall that the corrected n-step discounted

return at time step t is given by the random variable

R
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnQt+n−1(st+n, at+n).

From this, the λ-return is given by:

Rλ
t = (1− λ)

∞∑

n=1

λn−1R
(n)
t .

We can derive the Sarsa(λ) update using the sum-squared error between the λ-

return, and the current action-value function, Qt−1(st, at) [Sutton and Barto, 1998a].

First, we simplify the λ-return error,

Rλ
t −Qt−1(st, at) = −Qt−1(st, at) +(1− λ)

∞∑

n=1

λn−1R
(n)
t , (4.14)

= −Qt−1(st, at) + (1− λ)λ0[rt+1 + γQt(st+1, at+1)]

+ (1− λ)λ1[rt+1 + γrt+2 + γ2Qt+1(st+2, at+2)]

+ · · · .

81

This summation can be decomposed by separating out the individual rewards. For

example, pulling out the first column of rewards gives:

(1− λ)
∞∑

n=1

λn−1rt+1 = rt+1(1− λ)
∞∑

n=1

λn−1 = rt+1(1− λ)
1

1− λ = rt+1.

This can be repeated for each reward column, although each time it is repeated an

additional power of γ is included so that in general, for column i ≥ 1,

(1− λ)
∞∑

n=i

λn−1γi−1rt+i = (γλ)i−1rt+i(1− λ)
∞∑

n=1

λn−1 = (γλ)i−1rt+i.

Summing over all reward columns gives

∞∑

n=1

(γλ)n−1rt+n. (4.15)

The remaining column in Equation 4.14 consists of action-value functions and can be

simplified as

−Qt−1(st, at) + (1− λ)
∞∑

n=1

λn−1γnQt+n−1(st+n, at+n)

= −Qt−1(st, at) +
∞∑

n=1

[
λn−1γnQt+n−1(st+n, at+n)− (γλ)nQt+n−1(st+n, at+n)

]
,

= −Qt−1(st, at) +
∞∑

n=1

(γλ)n−1 [γQt+n−1(st+n, at+n)−Qt+n−1(st+n, at+n)] ,

=
∞∑

n=1

(γλ)n−1 [γQt+n−1(st+n, at+n)−Qt+n−2(st+n−1, at+n−1)] . (4.16)

Combining Equations 4.15 & 4.16 gives:

∞∑

n=1

(γλ)n−1 [rt+n + γQt+n−1(st+n, at+n)−Qt+n−2(st+n−1, at+n−1)] =
∞∑

n=1

(γλ)n−1δt+n−1,

=
∞∑

k=t

(γλ)k−tδk.

82

This establishes an equivalence for the λ-return error that we can now use. Next,

we take the derivative of the sum-squared λ-return error, Jλ(w), with respect to the

action-value function weights w,

Jλ(w) =
1

2

∞∑

t=0

[Rλ
t −Qw(st, at)]

2, (4.17)

∂

∂w
Jλ(w) =

∞∑

t=0

∂[Rλ
t −Qt−1(st, at)]

∂w
[Rλ

t −Qt−1(st, at)],

= −
∞∑

t=0

∂Qt−1(st, at)

∂w

∞∑

k=t

(γλ)k−tδk,

= −
∞∑

t=0

∞∑

k=t

(γλ)k−tδk
∂Qt−1(st, at

∂w
,

= −
∞∑

k=0

k∑

t=0

(γλ)k−tδk
∂Qt−1(st, at)

∂w
,

= −
∞∑

t=0

δt

t∑

k=0

(γλ)t−k
∂Qk−1(sk, ak)

∂w
,

= −
∞∑

t=0

δtet.

This produces the Sarsa(λ) update with eligibility traces (see Algorithm 6). The

stochastic gradient methods for the scalar adaptive step-size problem take Equa-

tion 4.17 as the loss function and assume the existence of a locally optimal constant

step-size sequence. Additionally, we use an exponential form for the step size, eαt , for

both algorithms (SID and NOSID). This is fundamentally the same approach as taken

by IDBD and Autostep [Mahmood et al., 2012a], except that IDBD and Autostep

produce vector-valued step sizes and do not take into account the effects of eligibility

traces. All of these SGD based adaptive step-size algorithms are extensions of, and

approximations to, algorithms discussed in Chapter 2. They can be seen as extensions

of the stochastic gradient adaptive (SGA) algorithm and as approximations to the

general meta-optimization approach of Schraudolph [1999].

83

We derive the scalar IDBD step size for Sarsa(λ) (SID, Algorithm 7) by building

upon the derivation of Sarsa(λ), and assuming that the optimal sequence of step sizes

is constant or varies slowly over time. Such an assumption allows the use of stochastic

gradient descent to incrementally move the current step size toward an unknown local

optimum. Begin by taking the derivative of the loss function in Equation 4.17, at

time step t, with respect to the step size:

∂

∂α
Jλ(wt) =

∂

∂wt
Jλ(wt)

∂wt
∂α

,

= −
∞∑

t=0

δte
T
t

∂wt
∂α

,

= −
∞∑

t=0

δte
T
t h(t), (4.18)

where h(t) = ∂wt
∂α

is found by:

h(t+ 1) =
∂

∂α
[wt + eαδtet] ,

=
∂wt
∂α

+ eαδtet + eαeTt
∂δt
∂α

,

= h(t) + eαδtet + eαet

[
∂δt
∂wt

T

h(t)

]
,

= h(t) + eαδtet + eαet

[
γ
∂Qwt(st+1, at+1)

∂w
− ∂Qwt(st, at)

∂w

]T
h(t),

= (1 + eαet4φTt)h(t) + eαδtet, where (4.19)

4φt =

[
γ
∂Qwt(st+1, at+1)

∂w
− ∂Qwt(st, at)

∂w

]
.

Equations 4.18 and 4.19 together yield SID, given in Algorithm 7. The benefits of

this approach are that the step size is fully adaptable and is able to increase or decrease

as needed to minimize the squared λ-return error. Such methods are particularly

robust in the presence of noise, however this comes at the cost of introducing a

parameter—the meta-step size, β0 ∈ (0, 1], is the step size used by stochastic gradient

84

Algorithm 7 Scalar Incremental Delta-Bar-Delta for Sarsa(λ) (SID)

function InitSID(α0, β0, d = size(w0))
h = zeros(d)
α = α0

β = β0

end function
function SID(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

α = α + βδte
T
t h

h = (1 + eαet4φTt)h+ eαδtet
return eα

end function

descent to optimize the step size eαt . Aside from this, there is another caveat to

consider. Using stochastic gradient descent to optimize the step size requires the

assumption of the existence of constant-valued locally optimal step-size sequences.

That is, a sequence in which all entries share the same value. This can be extended

to allow α∗ to vary slowly over time, but does not allow for substantially different step

sizes from one time step to the next. This assumption may not be true in general, and

when violated can lead to worsening performance and even function approximation

divergence.

Autostep extends the original IDBD algorithm to reduce its sensitivity to the

meta-step-size parameter [Mahmood et al., 2012a]. Their approach is an attempt to

dynamically normalize the updates to the step size, but also introduces a second new

parameter which adjusts the horizon of the normalization. A more principled solution

can be found by using the online normalization approach of Ross et al. [2013]. Thus,

the Normalized Scalar IDBD (NOSID, Algorithm 8) algorithm is an extension to SID

inspired by Autostep, but using the normalized online learning algorithm adapted for

a scalar step size. NOSID also requires a meta-step-size parameter, β0 ∈ (0, 1].

4.3.2 Variance Estimating Step Sizes for Sarsa(λ) (VES)

The Variance Estimating Step-Size algorithm (VES) builds upon the derivation of

the variance-based SGD (vSGD) algorithm [Schaul et al., 2012]. Recently, Ranganath

85

Algorithm 8 Normalized Scalar Incremental Delta-Bar-Delta for Sarsa(λ) (NOSID)

function InitNOSID(α0, β0, d = size(w0))
h, s = zeros(d)
α = α0

β = β0

N = 0
end function
function NOSID(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

for i = 0, 1, . . . , size(s) do
if |4φt[i]| > s[i] then

s[i] = |4φt[i]|
end if

end for
N = N + ‖4φt‖2

‖s‖2

α = α + β t
Ns2

δte
T
t h

α = Min(α, 0)
M = Max(−exp(α)4φ>t et, 1.0)
α = α− logM
h = (1 + eαet4φTt)h+ eαδtet
return eα

end function

et al. [2013] derived an adaptive scalar step size for stochastic variational inference.

These two methods are actually identical with respect to the adaptive step size,

but provide different methods for adaptively correcting the update direction of the

stochastic gradient update. vSGD assumes the loss function is an expectation over

quadratic losses:

J (w) = Ej∼P [
1

2
(w − ŵj)THj(w − ŵj)], (4.20)

where both the instantaneous Hessian, Hj, and the covariance matrix of the per sam-

ple optima, Cov(ŵj, ŵj), are diagonal matrices. By comparison, Ranganath et al.

[2013] assume that they are taking the natural gradient, and the loss function is

quadratic with a Hessian equal to the identity matrix. Thus, without making the dis-

tinction explicit, Ranganath et al. [2013] have done as we propose and split their algo-

rithm into an adaptive scalar step size and an update whitening procedure, through

the use of natural gradients.

86

Although the derivations are substantially different and VES includes improve-

ments that allow it to be parameter-free, VES and vSGD use fundamentally the

same approach. Thus, VES should be considered as vSGD applied to reinforcement

learning with both practical and theoretical improvements. vSGD uses a slow start

heuristic to initialize the expected value estimates. If this procedure is run for too

short a time or the overestimation factor C is not chosen well, then the memory size

estimation, τ , will sometimes collapse toward unity and be unable to change once

that value is reached.1 This has a catastrophic effect on the algorithm overall and

tends to result in function approximation divergence. VES eliminates the need for

this heuristic and its accompanying parameter completely, and as a result the mem-

ory size estimation is more robust. The result is a parameter-free adaptive step-size

algorithm, although the other Sarsa(λ) parameters remain.

We derive VES under the assumption that the optimal step-size sequence, {αt}∞t=0,

as well as the loss function being minimized may be non-stationary. To approach this

much harder version of the adaptive step-size problem requires assuming that the loss

function can be expressed as a sum of noisy quadratic loss functions. For this reason,

we use the loss function given by the error from the LSTD(λ) solution. Finally, the

step size is derived in terms of expected values that are never fully observed, and

must instead be estimated.

We begin by considering the derivation of the Least Squares Temporal Difference

learning (LSTD) algorithm [Bradtke and Barto, 1996, Boyan, 1999, Geramifard et al.,

2007]. Let µt(wt) be the expected update for Sarsa(λ) at time step t, and assume the

action-value function approximation is linear with ∂Qw(st,at)
∂w

= φt,

1Schaul et al. [2012] suggest using C = d/10 as a rule of thumb and while this works well
in supervised learning, experiments suggest that the setting is not particularly robust in the RL
setting.

87

µt(wt) = Et[δjej],

= Et[ej(rj+1 + γQwt(sj+1, aj+1)−Qwt(sj, aj))],

= Et[ej(rj+1 + [γφj+1 − φj]Twt)],

= Et[ej(rj+1 − [φj − γφj+1]Twt)],

= Et[ejrj+1]− Et[ej(φj − γφj+1)T]wt,

= bt − Atwt,

where bt = Et[ejrj+1] and At = Et[ej(φj − γφj+1)T]. The LSTD solution is given by

w∗t = A−1
t bt. (4.21)

Then, notice the error between the current weight vector and the LSTD solution is

w∗t − wt = A−1
t bt − wt,

= A−1
t µt(wt),

=> µt(wt) = A(w∗t − wt),

= Et[wt − ŵt],

where wt − ŵt is some per step noisy estimate of the update direction towards the

LSTD solution. Then the loss function for LSTD can be expressed by:

JLSTD(wt) = (w∗t − wt)TA2
t (w

∗
t − wt). (4.22)

With this form of loss function and the incorrect assumption that A2
t is diagonal,

the same derivation as Schaul et al. [2012] may be used. Instead, we work under

the assumption that the adaptive scalar step-size and update whitening problems can

be performed sequentially. Assume that the whitened update is used, then the loss

88

function to be minimized by the adaptive step-size algorithm becomes J (wt+1) =

‖wt+1 − w∗t ‖2, where wt+1 = wt + αt4̂wt and 4̂wt is the whitened update. This

approach can be viewed as choosing the step size such that the resulting update

minimizes the distance from the LSTD solution. First, take the expected value of the

next step loss, J (wt+1),

E[J (wt+1)|wt, αt] = E[‖wt+1 − w∗t ‖2|wt, αt],

= E[‖(1 + αt)wt − (αtŵt + w∗t)‖2],

= (1 + αt)
2‖wt‖2 − 2(1 + αt)

2wTt w
∗
t

+ (1 + αt)
2‖w∗t ‖2 + α2

tE[‖ŵt − w∗t ‖2],

= (1 + αt)
2‖wt − w∗t ‖2 + α2

tE[‖ŵt − w∗t ‖2],

= (1− αt)2‖w∗t − wt‖2 + α2
tV ar(ŵt). (4.23)

Setting the derivative with respect to αt of Equation 4.23 equal to zero and solving

for αt gives the adaptive step-size solution,

0 =
∂

∂αt
E[J (wt+1)|wt, αt],

= 2(1− αt)‖w∗t − wt‖2 + 2αtV ar(ŵt),

=⇒ αt =
‖w∗t − wt‖2

‖w∗t − wt‖2 + V ar(ŵt)
. (4.24)

Finally, we substitute in the expected value of the whitened update to get the adaptive

scalar step size in terms of estimated expected values,

αt =
‖Ej[4̂wj]‖2

Ej[‖4̂wj‖2]
. (4.25)

This adaptive step size still leaves two questions to be answered before a practical

implementation is reached. First, how are the expected values estimated? This is

89

particularly important in RL because the distribution over states and actions varies

as the agent moves towards an increasingly optimal policy. Second, what update

whitening method is used? The latter is the subject of the next chapter, which studies

the Natural Temporal Difference Learning (NaTD) class of algorithms. However,

for now we simply use a scalar approximation, G−1
t ≈ E[‖4φt‖2]. Estimating the

expected values is done with an extension to the adaptive sliding window method

proposed by Schaul et al. [2012]. Together these give Algorithm 9.

Algorithm 9 Variance Estimating Step Sizes for Sarsa(λ) (VES)

function InitVES(d = size(w0))
v = zeros(d)
g, h, τ, τ0 = 1.0, 1.0, 2.0, 1.0

end function
function VES(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

v = v + 1
τ
(‖δtet‖2 − v)

g = g + 1
τ
(δtet − g)

h = h+ 1
τ
(‖4φt‖2 − h)

α = Min(‖g‖
2

vh
, 1.0)

τ0 = τ0 + α2

τ = (1− ‖g‖2
v

)τ + τ0

return α
end function

4.3.3 Passive-Aggressive Updates for Reinforcement Learning (PARL)

The final approach we study in this chapter is found by first deriving a step size

that minimizes the one-step squared Bellman error. Such a step size aggressively

minimizes the loss (squared Bellman error) of the current transition without regard

for how this affects the loss on past or future transitions. By contrast, a passive

update would have a step size at or near zero. The idea of switching or scaling

between passive and aggressive updates is inspired by the work of Crammer et al.

[2006] on passive-aggressive algorithms for online learning.

90

The Passive-Aggressive Reinforcement Learning (PARL) algorithms share a com-

mon set of assumptions. The first assumption is that the loss function is the imme-

diate squared Bellman error:

Jδ(wt) =
1

2
[rt+1 + γQw(st+1, at+1)−Qw(st, at)]

2 |w=wt+αtδtet . (4.26)

The second assumption is that the sequence of step sizes is unconstrained other than

requiring αt ∈ (0, 1], ∀t. The third assumption is that the function approximation

method is linear. This approach finds the step size that aggressively minimizes Equa-

tion 4.26 by setting the derivative with respect to α to zero:

0 =
∂

∂α
Jδ(wt),

=
∂

∂α

[
1

2
(rt+1 +4φTt (wt + αδtet))

2

]
,

=
∂

∂α

1

2
δ2
t (1 + α4φTt et)2,

= δ2
t (1 + α4φTt et)(4φTt et),

=⇒ αt =
−1

eTt 4φt
. (4.27)

It is trivial to verify that if using this step size to update the weights, wt, the

Bellman error on the current transitions, rt+1 +4φTt wt+1, will vanish. However, in

practice this may be undesirable for a number of reasons. The resulting step size

may be negative when the eligibility traces happen to be aligned with the residual

gradient, in which case the step size will go negative and the weights will move in the

opposite direction from what Sarsa(λ)’s update requires.

The situation can be better understood by considering an alternate objective func-

tion, the ratio of the post-update squared Bellman error to the pre-update squared

91

Bellman error, and bounding this between zero and one. Let δ′t = rt+1+γQwt+1(st+1, at+1)−

Qwt+1(st, at), then assume that:

0 ≤
(
δ′t
δt

)2

< 1. (4.28)

Then we expand this inequality by substituting in the definitions for δt and δ′t:

(
δ′t
δt

)2

= (1 + α4φTt et)2,

=⇒ 0 ≤ 1 + 2αeTt 4φt + α2(eTt 4φt)2 < 1.

By considering the right inequality, 1+2αeTt 4φt+α2(eTt 4φt)2 < 1, as a quadratic

equation in α with solutions

α =
−2

eTt 4φt
, or α = 0.

It is clear that there exists a region depending on the value of eTt 4φt in which the

step size will result in lower squared Bellman error on the current transition. These

regions are depicted in Figure 4.1, which shows that when eTt 4φt < 0 the region is

(0, 2/|eTt 4φt|) and when eTt 4φt > 0 the region is (−2/|eTt 4φt|, 0).

Each transition provides a different aggressive step-size region which contains only

positive or only negative step sizes. The immediate application of this observation and

step-size rule yields an algorithm that updates with the aggressive step size (Equa-

tion 4.27) if eTt 4φt < 0, and otherwise makes no update (i.e., behaves passively).

However, this seems particularly wasteful from the perspective of efficient use of ex-

periences. Instead of making no update at all, one might choose to make a very small

update. This leads to the first passive aggressive algorithm for RL (PARL1, Algo-

rithm 10), which in place of making no update instead uses the smallest aggressive

step size observed so far.

92

By considering the right inequality, 1+2↵eT
t 4�t+↵2(eT

t 4�t)
2 < 1, as a quadratic

equation in ↵ with solutions

↵ =
�2

eT
t 4�t

, or ↵ = 0,

we can see that there is a region, depending upon the value of eT
t 4�t, in which the

step-size will result in lower squared Bellman error on the current transition. These
regions are shown in Figure ??, which shows that when eT

t 4�t < 0 the region is
(0, 2/|eT

t 4�t|) and when eT
t 4�t > 0 the region is (�2/|eT

t 4�t|, 0).

1.4 Discussion

1.5 Empirical Results

The online Passive-Aggressive (PA) algorithms for regression with linear function
approximation use of the ✏-insensitive hinge loss function and are equivalent to doing
stochastic gradient descent with an adaptive scalar step-size algorithm [Crammer
et al., 2006]. The adaptive step-size in this case is set to aggressively update the weight
vector wt+1 to satisfy L(wt+1; (xt, yt)) = 0 when the loss function L(wt+1; (xt, yt)) is
positive, and otherwise it behaves passively by using a step-size of zero. The ✏-
insensitive hinge loss is given by

L(w; (x, y)) =

⇢
0 |wT x� y|  ✏
|wT x� y| � ✏ otherwise.

(1.78)

The resulting update takes the form

wt+1 = wt + sign(yt � wT x)↵tL(wt; (xt, yt))xt, (1.79)

where ↵t is given by

↵t =
1

kxtk2
, (PA) (1.80)

↵t = min

⇢
C

L(wt; (xt, yt))
,

1

kxtk2
�

, (PA-I) (1.81)

↵t =
1

kxtk2 + 1
2C

, (PA-II) (1.82)

where C > 0 is the aggressiveness parameter.
Crammer et al. [2006] prove bounds on the cumulative squared loss of PA of the

form
TX

t=1

L(wt; (xt, yt))
2  kuk2R2, (1.83)

where the authors assume kxtk  R for all t, and that the problem is perfectly
separable with optimal weight vector u 2 Rn.

10

By considering the right inequality, 1+2↵eT
t 4�t+↵2(eT

t 4�t)
2 < 1, as a quadratic

equation in ↵ with solutions

↵ =
�2

eT
t 4�t

, or ↵ = 0,

we can see that there is a region, depending upon the value of eT
t 4�t, in which the

step-size will result in lower squared Bellman error on the current transition. These
regions are shown in Figure ??, which shows that when eT

t 4�t < 0 the region is
(0, 2/|eT

t 4�t|) and when eT
t 4�t > 0 the region is (�2/|eT

t 4�t|, 0).

1.4 Discussion

1.5 Empirical Results

The online Passive-Aggressive (PA) algorithms for regression with linear function
approximation use of the ✏-insensitive hinge loss function and are equivalent to doing
stochastic gradient descent with an adaptive scalar step-size algorithm [Crammer
et al., 2006]. The adaptive step-size in this case is set to aggressively update the weight
vector wt+1 to satisfy L(wt+1; (xt, yt)) = 0 when the loss function L(wt+1; (xt, yt)) is
positive, and otherwise it behaves passively by using a step-size of zero. The ✏-
insensitive hinge loss is given by

L(w; (x, y)) =

⇢
0 |wT x� y|  ✏
|wT x� y| � ✏ otherwise.

(1.78)

The resulting update takes the form

wt+1 = wt + sign(yt � wT x)↵tL(wt; (xt, yt))xt, (1.79)

where ↵t is given by

↵t =
1

kxtk2
, (PA) (1.80)

↵t = min

⇢
C

L(wt; (xt, yt))
,

1

kxtk2
�

, (PA-I) (1.81)

↵t =
1

kxtk2 + 1
2C

, (PA-II) (1.82)

where C > 0 is the aggressiveness parameter.
Crammer et al. [2006] prove bounds on the cumulative squared loss of PA of the

form
TX

t=1

L(wt; (xt, yt))
2  kuk2R2, (1.83)

where the authors assume kxtk  R for all t, and that the problem is perfectly
separable with optimal weight vector u 2 Rn.

10

By considering the right inequality, 1+2↵eT
t 4�t+↵2(eT

t 4�t)
2 < 1, as a quadratic

equation in ↵ with solutions

↵ =
�2

eT
t 4�t

, or ↵ = 0,

we can see that there is a region, depending upon the value of eT
t 4�t, in which the

step-size will result in lower squared Bellman error on the current transition. These
regions are shown in Figure 1.1, which shows that when eT

t 4�t < 0 the region is
(0, 2/|eT

t 4�t|) and when eT
t 4�t > 0 the region is (�2/|eT

t 4�t|, 0).

By considering the right inequality, 1+2↵eT
t 4�t+↵2(eT

t 4�t)
2 < 1, as a quadratic

equation in ↵ with solutions

↵ =
�2

eT
t 4�t

, or ↵ = 0,

we can see that there is a region, depending upon the value of eT
t 4�t, in which the

step-size will result in lower squared Bellman error on the current transition. These
regions are shown in Figure ??, which shows that when eT

t 4�t < 0 the region is
(0, 2/|eT

t 4�t|) and when eT
t 4�t > 0 the region is (�2/|eT

t 4�t|, 0).

1.4 Discussion

1.5 Empirical Results

The online Passive-Aggressive (PA) algorithms for regression with linear function
approximation use of the ✏-insensitive hinge loss function and are equivalent to doing
stochastic gradient descent with an adaptive scalar step-size algorithm [Crammer
et al., 2006]. The adaptive step-size in this case is set to aggressively update the weight
vector wt+1 to satisfy L(wt+1; (xt, yt)) = 0 when the loss function L(wt+1; (xt, yt)) is
positive, and otherwise it behaves passively by using a step-size of zero. The ✏-
insensitive hinge loss is given by

L(w; (x, y)) =

⇢
0 |wT x� y|  ✏
|wT x� y| � ✏ otherwise.

(1.78)

The resulting update takes the form

wt+1 = wt + sign(yt � wT x)↵tL(wt; (xt, yt))xt, (1.79)

where ↵t is given by

↵t =
1

kxtk2
, (PA) (1.80)

↵t = min

⇢
C

L(wt; (xt, yt))
,

1

kxtk2
�

, (PA-I) (1.81)

↵t =
1

kxtk2 + 1
2C

, (PA-II) (1.82)

where C > 0 is the aggressiveness parameter.
Crammer et al. [2006] prove bounds on the cumulative squared loss of PA of the

form
TX

t=1

L(wt; (xt, yt))
2  kuk2R2, (1.83)

where the authors assume kxtk  R for all t, and that the problem is perfectly
separable with optimal weight vector u 2 Rn.

10

By considering the right inequality, 1+2↵eT
t 4�t+↵2(eT

t 4�t)
2 < 1, as a quadratic

equation in ↵ with solutions

↵ =
�2

eT
t 4�t

, or ↵ = 0,

we can see that there is a region, depending upon the value of eT
t 4�t, in which the

step-size will result in lower squared Bellman error on the current transition. These
regions are shown in Figure ??, which shows that when eT

t 4�t < 0 the region is
(0, 2/|eT

t 4�t|) and when eT
t 4�t > 0 the region is (�2/|eT

t 4�t|, 0).

1.4 Discussion

1.5 Empirical Results

The online Passive-Aggressive (PA) algorithms for regression with linear function
approximation use of the ✏-insensitive hinge loss function and are equivalent to doing
stochastic gradient descent with an adaptive scalar step-size algorithm [Crammer
et al., 2006]. The adaptive step-size in this case is set to aggressively update the weight
vector wt+1 to satisfy L(wt+1; (xt, yt)) = 0 when the loss function L(wt+1; (xt, yt)) is
positive, and otherwise it behaves passively by using a step-size of zero. The ✏-
insensitive hinge loss is given by

L(w; (x, y)) =

⇢
0 |wT x� y|  ✏
|wT x� y| � ✏ otherwise.

(1.78)

The resulting update takes the form

wt+1 = wt + sign(yt � wT x)↵tL(wt; (xt, yt))xt, (1.79)

where ↵t is given by

↵t =
1

kxtk2
, (PA) (1.80)

↵t = min

⇢
C

L(wt; (xt, yt))
,

1

kxtk2
�

, (PA-I) (1.81)

↵t =
1

kxtk2 + 1
2C

, (PA-II) (1.82)

where C > 0 is the aggressiveness parameter.
Crammer et al. [2006] prove bounds on the cumulative squared loss of PA of the

form
TX

t=1

L(wt; (xt, yt))
2  kuk2R2, (1.83)

where the authors assume kxtk  R for all t, and that the problem is perfectly
separable with optimal weight vector u 2 Rn.

10

Figure 1.1: Aggressive update regions defined by the inequalities with respect to
step-size.

1.4 Discussion

1.5 Empirical Results

The online Passive-Aggressive (PA) algorithms for regression with linear function
approximation use of the ✏-insensitive hinge loss function and are equivalent to doing
stochastic gradient descent with an adaptive scalar step-size algorithm [Crammer
et al., 2006]. The adaptive step-size in this case is set to aggressively update the weight
vector wt+1 to satisfy L(wt+1; (xt, yt)) = 0 when the loss function L(wt+1; (xt, yt)) is
positive, and otherwise it behaves passively by using a step-size of zero. The ✏-
insensitive hinge loss is given by

L(w; (x, y)) =

⇢
0 |wT x� y|  ✏
|wT x� y| � ✏ otherwise.

(1.78)

The resulting update takes the form

wt+1 = wt + sign(yt � wT x)↵tL(wt; (xt, yt))xt, (1.79)

10

Figure 4.1: Aggressive step-size regions.

However, sometimes the aggressive step size is absurdly large, and while it cor-

rectly minimizes the immediate loss it will sometimes do so too aggressively resulting

in a phenomenon which may be described as divergent over-fitting. Divergent over-

fitting is when each training example is fit perfectly, resulting in zero loss on that

example, but also fitting any noise in the example. This tends to produce large

weights and ever increasing errors on subsequent examples. When this happens re-

peatedly the magnitude of the weights continue to increase until eventually reaching

the floating point precision limit and causing function approximation divergence. One

solution is to require that the adaptive algorithm become increasingly passive over

time. That is, as training continues and the current weights encode more informa-

93

Algorithm 10 Passive-Aggressive RL for Sarsa(λ) (PARL1)

function InitPARL1(d = size(w0))
α = 1.0
α̂ = 1.0

end function
function PARL1(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

if eTt 4φt < 0 then
α = −1

eTt 4φt
else

α = α̂
end if
α̂ = Min(α̂, α)
return α

end function

tion, require that the step size is non-increasing while still ensuring that on any given

update the step size is within the aggressive region. Doing so produces the novel

adaptive step-size algorithm PARL2 (Algorithm 11).

Algorithm 11 Passive-Aggressive RL for Sarsa(λ) (PARL2)

function InitPARL2(d = size(w0))
α = 1.0

end function
function PARL2(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

if eTt 4φt < 0 then
α = Min(α, −1

eTt 4φt
)

end if
return α

end function

PARL2 produces a sequence of non-increasing step sizes. However, in the presence

of high variance rewards the step size could be driven down early on without any

way to later increase. This could lead to slower learning speeds if the aggressive

region is underestimated early-on in the agent’s lifetime. Instead, an algorithm may

dynamically shift between more aggressive or more passive updates.

This dynamic rescaling is motivated by considering the case where 0 < −e>t 4φt ≤

1, which corresponds to aggressive step sizes greater than one. This is equivalent to

94

when the angle between the the Sarsa(λ) update and the residual gradient is within

[0◦, 90◦). As the angle between the two updates goes to zero, it becomes increasingly

appropriate to use an adaptive step size suited for the Residual Gradient update. The

aggressive step size for Residual Gradient is 1
‖4φt‖2 , which follows directly from the

derivation of the online passive aggressive algorithm [Crammer et al., 2006]. However,

even as the angle between the two updates may go to zero, the magnitudes of the two

updates can still differ. Instead, averaging the two takes this into account and gives

2(‖4φt‖2 + ‖4et‖2)−1. These two approaches are combined to provide an adaptive

step size that dynamically rescales the aggressive step size, assuming e>t 4φt < 0,

αt =
1

−e>t φt + (1/2) [‖4φt‖2 + ‖4et‖2]
,

=
2

−2e>t φt + ‖4φt‖2 + ‖4et‖2
.

Simplifying the expression gives the adaptive step-size algorithm PARL3 (Algo-

rithm 12),

αt =
2

‖et −4φt‖2
. (4.29)

Algorithm 12 Passive-Aggressive RL for Sarsa(λ) (PARL3)

function InitPARL3(d = size(w0))
α = 1.0
α̂ = 1.0

end function
function PARL3(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

if eTt 4φt < 0 then
α = 2

‖et−4φt‖2
else

α = α̂
end if
α̂ = Min(α̂, α)
return α

end function

95

All three passive aggressive algorithms have the advantage of not requiring any

tunable parameters. However, as previously mentioned, PARL1 can produce diver-

gent sequences. For this reason PARL1 is not used in the empirical studies and is

included only for illustrative purposes.

4.4 Algorithms for Comparison

For all experiments the Sarsa(λ) algorithm was used while varying the way step

sizes are generated. When a fixed scalar step-size parameter was used this is referred

to as Sarsa(λ), while other variants are denoted by the name of the step-size algorithm.

These methods are also compared to three deterministic step-size schedules, and two

existing adaptive step-size algorithms.

4.4.1 Deterministic Step-Size Schedules

The first of the deterministic schedules is the Generalized Harmonic Step Size

(GHC, Algorithm 13) [George and Powell, 2006a], and requires parameters α0 ∈ (0, 1],

an initial step size, and τ ∈ N, which affects the rate at which the step sizes decay.

This is the general form of the often referenced 1/t step-size schedule.

Algorithm 13 Generalized Harmonic Step Size (GHC)

function InitGHC(α0, τ)
α0 = α0

τ = τ
end function
function GHC(t)

return α0
τ

τ+t−1

end function

The second step-size schedule is Search Then Converge (STC, Algorithm 14)

[Darken and Moody, 1992]. STC takes parameters α0, an initial step size, c > 0

and τ ∈ N. When t is large relative to τ the step size decreases at the rate of c/t,

while using a larger step size when t is small relative to τ .

96

Algorithm 14 Search Then Converge (STC)

function InitSTC(α0, τ , c)
α0 = α0

τ = τ
c = c

end function
function GHC(t)

return α0

1+ ct
α0τ

1+ ct
α0τ

+ t2

τ

end function

The third step-size schedule used for comparison, called Boyan’s step size, was

designed for RL algorithms and is due to Geramifard et al. [2007]. Boyan’s step size

is given by Algorithm 15 with parameters α0, the initial step size, N0 a parameter

affecting the rate at which the step size decays, and where “Episode#” denotes which

episode number the algorithm is on (starting with 1).

Algorithm 15 Boyan’s Step Size (Boyan)

function InitBoyan(α0, N0)
α0 = α0

N0 = N0

end function
function Boyan(t)

return α0
N0+1

N0+(Episode#)1.1

end function

4.4.2 Adaptive Step Sizes

Empirical comparisons are also given for two existing adaptive step-size algorithms

for RL (Autostep and HL(λ)). Autostep [Mahmood et al., 2012a], as previously

discussed, is an extension to the adaptive vector-valued step-size algorithm IDBD,

and attempts to reduce parameter sensitivity by using normalized stochastic gradient

descent to incrementally improve the step size.

The SGD adaptive scalar step-size algorithms presented earlier are the same fun-

damental approach as Autostep, but with differences in the loss function and how

97

normalization is done. Both the SGD adaptive step sizes and Autostep require addi-

tional parameters in the form of a meta-step size, and in the case of Autostep a second

new parameter which affects the normalization procedure. Mahmood et al. [2012a]

find that the optimized values for these parameters are constant across the problems

they consider (µ = 0.01 and τ = 10000). Autostep is given by Algorithm 16.2 How-

ever, their research focused exclusively on prediction problems and these parameter

values do not generalize well to the control learning setting studied in this chapter.

Thus, these two parameters both required tuning for each domain shown.

Algorithm 16 Autostep

function InitAutostep(α0, µ, τ , d = size(w0))
h, v = zeros(d)
α = ones(d) ∗ α0

µ = µ
τ = τ

end function
function Autostep(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

v = Max(|δteth|, v + 1
τ
α ∗ e2

t (|δtet| − v))
for i = 0, 1, . . . , d do

if v[i]! = 0 then

α[i] = α[i]e
µδtet[i]
v[i]

end if
end for
M = Max(α>(et)

2, 1.0)
α = α

M

h = h ∗ (1.0− α ∗ e2
t) + αδtet

return α
end function

HL(λ) [Hutter and Legg, 2007], previously discussed in the background chapter,

was derived as a parameter-free optimal step size for Sarsa(λ) on finite state MDPs

and is given by Algorithm 17. HL(λ) is only used for comparisons on finite state

MDPs in the RL Benchmark.

2Autostep does not explicitly account for eligibility traces, but the parameter tuning was allowed
to vary the value λ ∈ [0, 1) and showed improved performance for non-zero values.

98

Algorithm 17 HL(λ)

function InitHL(d = size(w0))
N = ones(d)

end function
function HL(δt, et,4φt =

[
γ
∂Qwt (st+1,at+1)

∂w
− ∂Qwt (st,at)

∂w

]
)

α(s, st+1) = 1
Nt
st+1
−γetst+1

Nt
st+1

Nt
s

N t+1
s = λN t

s + δst+1,s, where δs,s′ is the Kronecker delta.
return α

end function

4.5 Empirical Results

We used the methods given in Chapter 3 to produce the following empirical results.

Specifically, for each of the fifteen MDPs in the RL Benchmark set, we ran K = 5

independent randomized parameter optimizations of lengthN = 100. Each parameter

evaluation was an average over 5 runs and, once found, optimized parameter values

were then evaluated for a total of M = 30 runs.

The figures provided show two things. First, the average policy percentile and

standard error for each algorithm using optimized parameter values and averaged

over M runs. These figures are titled with “Optimized Policy Percentile” followed by

the set of MDPs the results are averaged over. Second, the average maximum policy

percentile and standard error for each algorithm over the K parameter optimizations.

These figures are titled with “Parameter Tuning”, and are similarly followed by the

set of MDPs over which the results are averaged. Generally this is the RL Benchmark

set, although we also give results for individual domains when they provide interesting

insights into the algorithms. Finally, due to the large number of algorithms involved

in the study, we break the results into sections that are restricted to comparing related

algorithms.

99

4.5.1 Deterministic Step-Size Schedules

We begin by comparing the deterministic step-size schedules for Sarsa(λ) with a

fixed step-size. Figure 4.2a shows the performance with optimized parameter values

and Figure 4.2b shows the difficulty and impact of the parameter tuning process.

The Search-Then-Converge (STC) step-size schedule shows a large improvement, on

average, over the other methods, but is simultaneously one of the most difficult to

properly optimize.

100

0 100 200 300 400 500 600 700 800 900
Episodes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

GHC
Sarsa(λ)

Boyan

STC

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

GHC
Sarsa(λ)

Boyan

STC

(b) Difficulty and Impact of parameter tuning

Figure 4.2: Deterministic step-size schedules and Sarsa(λ), averaged over the RL
Benchmark set.

101

By comparison, Boyan’s step-size schedule has the best average case performance

when parameters are selected randomly, and provides the simplest parameter meta-

optimization problem. Considering the MDPs separately, there were a handful in

which one method or the other resulted in statistically significantly higher policy

percentiles, but none had a statistically significant advantage when averaged over the

entire RL Benchmark set.

4.5.2 Stochastic Gradient Descent Methods for Step Sizes

We next turn to the SGD based methods for adaptive step sizes, shown in Fig-

ure 4.3. The methods derived in this chapter are also compared with Autostep, which

produces vector-valued step sizes, and is fairly consistently among the best perform-

ing algorithms in this set. It is interesting to notice that the normalized algorithm,

NOSID, does not confer any improvement in performance when averaged over the en-

tire RL Benchmark set. However, on a few of the individual MDPs NOSID is among

the best, and on the HIV Treatment domain in particular it is able to overcome the

high variance rewards while SID diverges. The HIV Treatment domain is useful for

testing how algorithms react to especially large reward signals. SID uses an exponen-

tial form for the step size which often results in overflows on this domain when the

updates are not normalized carefully.

While the more complex NOSID algorithm does confer significant advantages on

some problems, the cost of the complexity outweighs the benefits when measured over

the whole benchmark set. We can view these results as a baseline for adaptive step

sizes on RL Benchmark. SID is due to the application of SGA to RL, NOSID is a

normalized version of the same, and we include Autostep to show how these methods

may be expected to perform when combined with an approximate update whitening

algorithm.

102

0 100 200 300 400 500 600 700 800 900
Episodes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

SID
Sarsa(λ)

NOSID
Autostep

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.5

0.6

0.7

0.8

0.9

1.0

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

SID
Sarsa(λ)

NOSID
Autostep

(b) Difficulty and Impact of parameter tuning

Figure 4.3: SGD adaptive step sizes and Sarsa(λ), averaged over the RL Benchmark
set.

103

4.5.3 Variance Estimation Method for Step Sizes

In Figures 4.4 we compare the performance of Sarsa(λ) with a fixed step size

with the performance of VES. VES has no tunable step-size parameter performs at

least as well over the RL Benchmark as Sarsa(λ) with optimized parameter values.

More importantly, Figure 4.4b shows that VES is much less difficult to parameter

tune. Unlike in the case of SID and NOSID, which showed greater difficulty, VES

eliminates the step-size parameter entirely, leaving only the other Sarsa(λ) parameters

(λ and ε) as tunable parameters.

4.5.4 Passive-Aggressive Method for Step Sizes

Figure 4.5 shows two of the passive aggressive algorithms for RL (PARL2 and

PARL3) compared with Sarsa(λ). Recall that PARL3 uses less aggressive step sizes

in general, but generates a step-size sequence that can change freely within (0, 1]

whereas PARL2 can only generate non-increasing sequences of step sizes. Like VES

both of these algorithms eliminate the step size as a tunable parameter. From the

performance on the entire domain set we can say that PARL2 suffers no loss in

performance compared with Sarsa(λ). However, this is not the full story.

PARL2, PARL3, and VES all completely eliminate the need for step-size tuning,

but all three appear to under-perform on discrete state MDPs. Not that they do

poorly, but Sarsa(λ) does better than would be expected from results on continuous

MDPs. The reason is that in finite MDPs we do not use any function approximation

in our experiments and each update can be made exactly. This means that much

larger step sizes can be used without causing divergence, which in turn speeds up

the learning process. These adaptive step size algorithms are, in essence, being too

cautious in the finite MDP case while Sarsa(λ) can be tuned to use much larger step

sizes. The effect in either direction is small but noticeable enough to be seen in

104

0 100 200 300 400 500 600 700 800 900
Episodes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

Sarsa(λ)

VES

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

Sarsa(λ)

VES

(b) Difficulty and Impact of parameter tuning

Figure 4.4: VES and Sarsa(λ), averaged over the RL Benchmark set.

105

Figure 4.6 which shows performance averaged over only the continuous state MDPs

in RL Benchmark.

PARL2 appears to perform better that Sarsa(λ) throughout most of the RL Bench-

mark set, while PARL3 performs slightly worse on average. Both adaptive algorithms

are significantly easier to parameter tune than Sarsa(λ) due to eliminating the tunable

step size without introducing any other parameters.

4.5.5 Finite MDPs and HL(λ)

Figure 4.7a shows the performance for HL(λ), PARL2 and Sarsa(λ) after param-

eter tuning on the finite MDPs in RL Benchmark. We can see that Sarsa(λ) does

appear to perform better relative to the adaptive step sizes than in Figure 4.6 where

only continuous MDPs are used. However, we were surprised to find that HL(λ),

which is an optimal step size derived for finite MDPs and Sarsa(λ) suffers the same

performance gap as PARL2. We expected this to happen only for the adaptive al-

gorithms that allow more general forms of function approximation. Note that these

differences are well within margins for error and so are not statistically significant.

However, these results lead us to believe that the observed differences may be char-

acteristic of adaptive step sizes in general.

4.5.6 Overview

Figure 4.8 shows a comparison over the RL Benchmark set of Sarsa(λ) with the

top performing algorithms from each sub-group. Two results become immediately

clear. First, there is some advantage to be obtained by including even approximate

solutions to the update whitening problem which can be seen by Autostep’s higher

performance. This is promising as the next chapter focuses on addressing this problem

in a principled manner. Second, PARL2 and VES, which both entirely eliminate the

step-size parameter, perform at least as well as the highly optimized Sarsa(λ) and the

106

0 100 200 300 400 500 600 700 800 900
Episodes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

PARL2
Sarsa(λ)

PARL3

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

PARL2
Sarsa(λ)

PARL3

(b) Difficulty and Impact of parameter tuning

Figure 4.5: Passive-aggressive step sizes (PARL) and Sarsa(λ), averaged over the RL
Benchmark set.

107

0 50 100 150 200 250 300 350 400 450
Episodes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

PARL2
Sarsa(λ)

VES
PARL3

Figure 4.6: Performance with optimized parameters of VES, PARL2, PARL3 and
Sarsa(λ).

108

0 100 200 300 400 500 600 700 800 900
Episodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

PARL2
Sarsa(λ)

HL(λ)

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

PARL2
Sarsa(λ)

HL(λ)

(b) Difficulty and Impact of parameter tuning

Figure 4.7: HL(λ), PARL2 and Sarsa(λ), averaged over the finite MDPs in the RL
Benchmark set.

109

0 100 200 300 400 500 600 700 800 900
Episodes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (RL Benchmarks)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (RL Benchmarks)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(b) Difficulty and Impact of parameter tuning

Figure 4.8: Adaptive step-size algorithms with Sarsa(λ), averaged over RL Benchmark
set of domains.

110

parameter tuning difficulties (Figure 4.8b) make it clear that these two algorithms

present a much simpler parameter tuning problem.

By considering the performance on individual domains some interesting charac-

teristics of the adaptive algorithms become apparent. Figure 4.9 shows the same set

of algorithms compared on the Acrobot domain alone. We observe that in Figure 4.9a

the behavior of PARL2 and VES are fundamentally different. PARL2 is very aggres-

sive with its updates early on, whereas VES is initially slower to improve but then

rapidly overtakes the other algorithms and finds a policy that performs very near op-

timal. In Figure 4.9b a concrete instance of the difficulty of parameter tuning shows

that, for Acrobot, VES and PARL2 learn near-optimal policies on average with the

remaining parameters chosen randomly. A very similar narrative plays out on the

HIV Treatment domain, shown in Figure 4.10, and the single-pole Cart Pole Balanc-

ing MDP, shown in Figure 4.11. We note in particular for single pole balancing the

two algorithms that are free of any tunable step size immediately find a near-optimal

policy. Something interesting is happening here. The empirical distribution over

discounted returns for this domain (Chapter 3, Figure 3.9a) shows that it is much

easier to find near-optimal policies than one would expect. It appears that the two

parameter-free step-size algorithms are able to take advantage of this in some way.

4.6 Conclusion

We used three different approaches to derive adaptive step-size algorithms for the

Sarsa(λ) algorithm. While SID and NOSID are based upon IDBD, and VES closely

related to vSGD, the PARL algorithms are entirely novel. Furthermore, VES can be

seen as a novel extension of the vSGD algorithm which eliminates parameters as well

as the need to assume a diagonal Hessian. Finally, we presented the results of an

empirical study over these newly derived algorithms as well as many existing step-

size schedules and adaptive algorithms. This very large study showed that two of our

111

adaptive step-size algorithms (VES and PARL2) perform particularly well and both

completely eliminate the need of a tunable step-size parameter. These two algorithms

are also entirely different in interesting ways and we used their behavior on individual

MDPs to illustrate these differences.

112

0 5 10 15 20 25 30 35 40 45
Episodes

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (Acrobot)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (Acrobot)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(b) Difficulty and Impact of parameter tuning

Figure 4.9: Adaptive step-size algorithms with Sarsa(λ), on Acrobot.

113

0 10 20 30 40 50 60 70 80 90
Episodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (HIVTreatment)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (HIVTreatment)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(b) Difficulty and Impact of parameter tuning

Figure 4.10: Adaptive step-size algorithms with Sarsa(λ), on HIV Treatment.

114

0 10 20 30 40 50 60 70 80 90
Episodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n

 P
o
li

cy
 P

e
rc

e
n

ti
le

Optimized Policy Percentile (FiniteCartPoleBalance)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(a) Performance with optimized parameters

100 101 102

Parameter Evaluations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
xp

e
ct

e
d

 M
a
x

P
o
li

cy
 P

e
rc

e
n

ti
le

Parameter Tuning (FiniteCartPoleBalance)

PARL2
Sarsa(λ)

VES
Boyan

Autostep

(b) Difficulty and Impact of parameter tuning

Figure 4.11: Adaptive step-size algorithms with Sarsa(λ), on Finite Track Cart Pole
Balancing.

115

CHAPTER 5

NATURAL TEMPORAL DIFFERENCE LEARNING

In this chapter we investigate the application of natural gradient descent to RL al-

gorithms based on the Bellman error. This combination is interesting because natural

gradient descent is one method of approximately solving the update whitening prob-

lem and is invariant to the parameterization of the value function. This invariance

property means that natural gradient descent adapts its update directions to cor-

rect for poorly conditioned representations. We present and analyze quadratic and

linear time natural temporal difference learning algorithms, and prove that they are

covariant. Covariance guarantees that, when smooth maps between function approx-

imations exist, the update direction generated by our learning algorithm is invariant

with respect to the function approximation representation. That is, the direction of

change in function space does not depend on our choice of representation for suitably

small step sizes. We conclude with experiments suggesting that the natural algo-

rithms can match or outperform their non-natural counterparts using linear function

approximation and drastically improve upon their non-natural counterparts when

using non-linear function approximation. Our fundamental contribution is the con-

struction and theoretical analysis of the class of natural temporal difference learning

algorithms.

5.1 Introduction

Much recent research has focused on reinforcement learning (RL) problems with

continuous actions. For these problems, a significant leap in performance occurred

116

when Kakade [2002] suggested the application of natural gradients [Amari, 1998]

to policy gradient algorithms. This suggestion has resulted in many successful pol-

icy search algorithms based on natural gradients [Morimura et al., 2005, Peters and

Schaal, 2008, Bhatnagar et al., 2009, Degris et al., 2012].

Despite the successful applications of natural gradients to RL in the context of

policy search, it has not been applied to Bellman-error based algorithms like residual

gradient and Sarsa(λ), which are the de facto algorithms for problems with discrete

action sets. A common complaint is that these Bellman-error based algorithms learn

slowly when using function approximation. Natural gradients are a quasi-Newton

approach that is known to speed up gradient descent, and thus the synthesis of

natural gradients with TD has the potential to improve upon this drawback of RL.

Additionally, we show that the natural TD methods are covariant, which makes them

more robust to the choice of representation than ordinary TD methods.

In this chapter we provide simple quadratic-time natural temporal difference learn-

ing algorithms, show how the idea of compatible function approximation can be lever-

aged to achieve linear time complexity, and prove that our algorithms are covariant.

We conclude with empirical comparisons between the natural and non-natural algo-

rithms on three canonical domains (mountain car, cart-pole balancing, and acrobot)

and one novel challenging domain (playing Tic-tac-toe using handwritten letters as

input).

5.2 Residual Gradient

The residual gradient (RG) algorithm is the direct application of stochastic gra-

dient descent to the problem of minimizing the mean-squared Bellman error (MSBE)

[Baird, 1995]. It is given by the following update equations:

117

δt = rt + γQθt(st+1, at+1)−Qθt(st, at), (5.1)

θt+1 = θt − αtδt
∂δt
∂θ

, (5.2)

where Qθt : S × A → R is a function approximator with weight vector θt. Residual

gradient only follows unbiased estimates of the gradient of the MSBE if it uses double

sampling or when the domain has deterministic state transitions [Sutton and Barto,

1998a]. When using residual gradient we will evaluate using standard RL domains

with deterministic transitions, so the above formulation of RG is unbiased.

One significant drawback of residual gradient is that it is not covariant. Consider

the algorithm at two different levels, as depicted in Figure 5.1. At one level we can

consider how it moves through the space of possible Q functions. At another level, we

can consider how it moves through two different weight spaces, each corresponding

to a different representation of Q. Although these two representations may produce

different update directions in weight space, we would expect a good algorithm to

result in both representations producing the same update direction in the space of Q

functions.1

Such an algorithm would be called covariant. Because residual gradient is not

covariant, the choice of how to represent Qθ influences the direction that RG moves

in the space of Q functions. Other temporal difference (TD) learning algorithms like

Sarsa(λ) and TDC [Sutton et al., 2009] are also not covariant. Natural gradients can

be viewed as a way to correct the direction of an update to account for a particu-

lar parameterization.2 Although natural gradients do not always result in covariant

updates, they frequently do [Bagnell and Schneider, 2003].

1For technical correctness, we must assume that both representations can represent the same set
of Q functions.

2Parameterization refers to the form of the loss function and action-value approximation with
respect to weight vectors, and is not to be confused with the tunable parameter space.

118

Q - space

()Q s a ()Q

θ - space h - space

(,)Q s a





(,)hQ s a
h




Figure 5.1: Q-space denotes the space of possible Q functions, while θ and h-space
denote two different weight spaces. The circles denote different locations in θ and
h-space that correspond to the same Q function. The blue and red arrows denote
possible directions that a non-covariant algorithm might attempt to change the weight
vector, which correspond to different directions in Q-space. The purple arrow denotes
the update direction that a covariant algorithm might produce, regardless of the
parameterization of Q.

Formally, consider the direction of steepest ascent of a function L(θ), where L :

Rn → R. If we assume that θ resides in Euclidean space, then the gradient, ∇L(θ),

gives the direction of steepest ascent. However, if we assume that θ resides in a

Riemannian space with metric tensor G(θ), then the direction of steepest ascent is

given by G(θ)−1∇L(θ) [Amari, 1998].

5.3 Natural Residual Gradient

In this section we describe how natural gradient descent can be applied to the

residual gradient algorithm. The natural RG update is

θt+1 = θt + αtG(θt)
−1δtgt, (5.3)

where G(θt) is the metric tensor for the parameter space and

119

gt =
∂Qθt(st, at)

∂θ
− γ ∂Qθt(st+1, at+1)

∂θ
.

In most RL applications of natural gradients, the metric tensor is used to cor-

rect for the parameterization of a probability distribution. In these cases the Fisher

information matrix is a natural choice for the metric tensor [Amari and Douglas,

1998a]. However, we are using natural gradients to correct for the parameterization

of an action-value function, which is not a distribution. For a related application,

Amari [1998] suggests a transformation of a parameterized function to a parame-

terized probability distribution. Using this transformation, the Fisher information

matrix is

G(θt) = E
[
δ2
t gtg

ᵀ
t

]
. (5.4)

We will now prove that the class of metric tensors to which Equation 5.4 belongs all

result in covariant gradient algorithms. The following theorem and its proof closely

follow and extend the foundations laid by Bagnell and Schneider [2003] and later

clarified by Peters and Schaal [2008] when proving that the natural policy gradient is

covariant. No algorithm can be covariant for all parameterizations. Thus, constraints

on the parameterized functions that we consider are required.

Property 5.1. Functions g : Φ×X → R, and h : Θ×X → R are two instantaneous

loss functions over set X parameterized by φ ∈ Φ and θ ∈ Θ respectively. These

correspond to the loss functions ĝ(φ) = Ex∈X [g(φ, x)] and ĥ(θ) = Ex∈X [h(θ, x)]. For

brevity, hereafter, we suppress the x inputs to g and h. Assume that there exists a

differentiable function, Ψ : Φ→ Θ, such that for some φ ∈ Φ, we have g(φ) = h(Ψ(φ))

and the Jacobian of Ψ is full rank.

Definition 5.1. Algorithm A is covariant if, for all g, h, Ψ, and φ satisfying Property

1,

g(φ+ ∆φ) = h(Ψ(φ) + ∆θ), (5.5)

where φ+ ∆φ and Ψ(φ) + ∆θ are the parameters after an update of algorithm A.

120

Lemma 5.1. An algorithm A is covariant for sufficiently small step-sizes if

∆θ =
∂Ψ(φ)

∂φ
∆φ. (5.6)

Proof. Let JΨ(φ) be the Jacobian of Ψ(φ), i.e., JΨ(φ) = ∂Ψ(φ)
∂φ

. As such, it maps tangent

vectors of h to tangent vectors of g, such that

∂g(φ)

∂φ
= JΨ(φ)

∂h(Ψ(φ))

∂Ψ(φ)
, (5.7)

when g(φ) = h(Ψ(φ)), as JΨ(φ) is a tangent map [Lee, 2003, p. 63].

Taking the first order Taylor expansion of both sides of (5.5), we obtain

h(Ψ(φ)) +∂h(Ψ(φ))ᵀ

∂Ψ(φ)
∆θ

+ O(‖∆θ‖2)

=
g(φ) +∂g(φ)ᵀ

∂φ
∆φ

+O(‖∆φ‖2).

For small step-sizes, α > 0, the squared norms become negligible, and because g(φ) =

h(Ψ(φ)), this simplifies to

∂h(Ψ(φ))ᵀ

∂Ψ(φ)
∆θ =

∂g(φ)ᵀ

∂φ
∆φ,

=

(
JΨ(φ)

∂h(Ψ(φ))

∂Ψ(φ)

)ᵀ

∆φ,

=
∂h(Ψ(φ))ᵀ

∂Ψ(φ)
Jᵀ

Ψ(φ)∆φ. (5.8)

Notice that (5.8) is satisfied by ∆θ = Jᵀ
Ψ(φ)∆φ, and thus if this equality holds then A

is covariant.

Theorem 5.1. The natural gradient update ∆θ = −G−1
θ ∇h(θ) is covariant when the

metric tensor Gθ is given by

Gθ = E
x∈X

[
∂h(θ)

∂θ

∂h(θ)ᵀ

∂θ

]
. (5.9)

121

Proof. First, notice that the metric tensor Gφ is equivalent to Gθ with JΨ(φ) twice as

a factor:

Gφ = E
x∈X

[
∂g(φ)

∂φ

∂g(φ)ᵀ

∂φ

]
,

= E
x∈X

[
(JΨ(φ)

∂h(Ψ(φ))

∂θ
)(JΨ(φ)

∂h(Ψ(φ))

∂θ
)ᵀ
]
,

= E
x∈X

[
JΨ(φ)

∂h(Ψ(φ))

∂θ

∂h(Ψ(φ))

∂θ

ᵀ

Jᵀ
Ψ(φ)

]
,

= JΨ(φ) E
x∈X

[
∂h(Ψ(φ))

∂θ

∂h(Ψ(φ))

∂θ

ᵀ]
Jᵀ

Ψ(φ),

= JΨ(φ)GθJ
ᵀ
Ψ(φ). (5.10)

We show that the right hand side of (5.6) is equal to the left, which, by Lemma

1, implies that the natural gradient update is covariant.

Jᵀ
Ψ(φ)∆φ = Jᵀ

Ψ(φ)αG
−1
φ ∇g(φ),

= Jᵀ
Ψ(φ)αG

+
φ∇g(φ), (5.11)

= αJᵀ
Ψ(φ)

(
JΨ(φ)GθJ

ᵀ
Ψ(φ)

)+

JΨ(φ)∇h(Ψ(φ)),

= αJᵀ
Ψ(φ)(J

ᵀ
Ψ(φ))

+G+
θ J

+
Ψ(φ)JΨ(φ)∇h(Ψ(φ)).

Since JΨ(φ) is full rank, J+
Ψ(φ) is a left inverse, and thus

Jᵀ
Ψ(φ)∆φ = αG−1

θ ∇h(Ψ(φ)),

= ∆θ.

Notice that, unlike the proof that the natural actor-critic using LSTD is covariant

[Peters and Schaal, 2008], our proof does not assume that JΨ(φ) is square. Our proof

is therefore more general, since it allows |φ| ≥ |θ|.

122

5.4 Algorithms

5.4.1 Quadratic Computational Complexity

A straightforward implementation of the natural residual gradient algorithm would

maintain an estimate of G(θ) and compute G(θ)−1 at each time step. Due to the

matrix inversion, this näıve algorithm has per-time-step computational complexity

O(|θ|3), where we ignore the complexity of differentiating Qθ. This can be improved

to O(|θ|2) using the Sherman-Morrison formula to maintain an estimate of G(θt)
−1

directly. The resulting quadratic time natural algorithm is given by Algorithm 18,

where {αt} is a step size schedule satisfying
∑∞

t=0 αt =∞ and
∑∞

t=0 α
2
t <∞.

Algorithm 18 Natural Residual Gradient

Initialize G−1
0 = I, θ0 = 0

δt = rt + γQθt(st+1, at+1)−Qθt(st, at)

gt =
(
∂Qθt (st,at)

∂θ
− γ ∂Qθt (st+1,at+1)

∂θ

)

G−1
t = G−1

t−1 −
δ2tG

−1
t−1gtg

ᵀ
tG
−1
t−1

1+δ2t g
ᵀ
tG
−1
t−1gt

θt+1 = θt + αtδtG
−1
t gt

5.4.2 Linear Computational Complexity

To achieve linear computational complexity, we leverage the idea of compatible

function approximation.3 We begin by estimating the TD-error, δt, with a linear

function approximator wᵀ(δtgt), where w are the weights of the linear function ap-

proximator and δtgt are the compatible features. Specifically, we search for a w that

is a local minimum of the loss function L:

L(w) = E
[
(1− δtwᵀgt)

2] . (5.12)

3The compatible features that we present are compatible with Qθ, whereas the compatible fea-
tures originally defined by Sutton et al. [2000] are compatible with a parameterized policy. Although
related, these two types of compatible features are not the same.

123

At a local minimum of L, ∂L(w)/∂w = 0, so

E [(1− δtwᵀgt) δtgt] =0, (5.13)

=⇒ E [δtgt] =E
[
δ2
t gtg

ᵀ
t

]
w. (5.14)

Notice that the left hand side of Eq. 5.14 is the expected update to θt in the non-

natural algorithms. We can therefore write the expected update to θt as

θt+1 = θt + αtE [δtgt] = θt + αtE
[
δ2
t gtg

ᵀ
t

]
w. (5.15)

Therefore the expected natural residual gradient update is

θt+1 =θt + αtG(θ)−1E [δtgt] , (5.16)

=θt + αtw. (5.17)

The challenge remains that locally optimal w must be attained. For this we

propose a two-timescale approach identical to that of Bhatnagar et al. [2009]. That

is, we perform stochastic gradient descent on L(w) using a step size schedule {βt}

that decays faster than the step size schedule {αt} for updates to θt. The resulting

linear-complexity two-timescale natural algorithm is given by Algorithm 19.

Algorithm 19 Natural Linear-Time Residual Gradient

Initialize w0 = 0, θ0 = 0
δt = rt + γQθt(st+1, at+1)−Qθt(st, at)

gt =
∂Qθt (st,at)

∂θ
− γ ∂Qθt (st+1,at+1)

∂θ

wt+1 = wt + βt (1− δtwᵀ
t gt) δtgt

θt+1 = θt + αtwt+1

The convergence properties of these two-timescale algorithms have been well stud-

ied and have been shown to converge under appropriate assumptions [Bhatnagar et al.,

124

2009, Kushner and Yin, 2003]. To summarize, with certain smoothness assumptions,

if

∞∑

t=0

αt =
∞∑

t=0

βt =∞;
∞∑

t=0

α2
t ,

∞∑

t=0

β2
t <∞; βt = o(αt),

then, since βt → 0 faster than αt, θt converges as though it was following the true

expected natural gradient. As a result, the linear complexity algorithms maintain the

convergence guarantees of their non-natural counterparts.

Unfortunately, unlike compatible function approximation for natural policy gradi-

ent algorithms [Bhatnagar et al., 2009], it is not clear how a useful baseline could be

added to the stochastic gradient descent updates of w. The baseline, b, would have

to satisfy E [bδtgt] = 0, which is not even satisfied by a constant non-zero b.

5.4.3 Extensions

The metric tensor that we derived for RG can be applied to other similar algo-

rithms. For example, Sarsa(λ) is not a gradient method, however in many ways it is

similar to residual gradient. We therefore propose the use of G(θ), derived for RG,

with Sarsa(λ). Although not as principled as its use with RG, in both cases it corrects

for the curvature of the squared Bellman error and the parameterization of Q. This

straightforward extension gives us the algorithm for Natural Sarsa(λ) (Algorithm 20),

and a linear time Natural Sarsa(λ) algorithm can be defined similar to Algorithm 19.

Algorithm 20 Natural Sarsa(λ)

Initialize G−1
0 = I, e0 = 0, θ0 = 0

δt = rt + γQθt(st+1, at+1)−Qθt(st, at)

gt =
∂Qθt (st,at)

∂θ

et = γλet−1 + gt

G−1
t = G−1

t−1 −
δ2tG

−1
t−1gtg

ᵀ
tG
−1
t−1

1+δ2t g
ᵀ
tG
−1
t−1gt

θt+1 = θt + αtδtG
−1
t et

125

Another temporal difference learning algorithm which is closely related to residual

gradient is the TDC algorithm [Sutton et al., 2009]. TDC is a linear time gradient

descent algorithm for TD-learning with linear function approximation, and supports

off-policy learning.

The TDC algorithm is given by,

θt+1 = θt + αtδtφt − αtγφt+1(φᵀ
twt), (5.18)

wt+1 = wt + βt(δt − φᵀ
twt)φt, (5.19)

where φt =
∂Qθt (st,at)

∂θ
are basis functions of the linear function approximation. TDC

minimizes the mean squared projected Bellman error (MSPBE) using a projection

operator that minimizes the value function approximation error. With a different

projection operator the same derivation results in the standard residual gradient

algorithm. Applying the TD metric tensor we get Natural TDC (Algorithm 21).

Algorithm 21 Natural TDC

Initialize G−1
0 = I, θ0 = 0, w0 = 0

δt = rt + γQθt(st+1, at+1)−Qθt(st, at)
gt = φt − γφt+1

G−1
t = G−1

t−1 −
δ2tG

−1
t−1gtg

ᵀ
tG
−1
t−1

1+δ2t g
ᵀ
tG
−1
t−1gt

θt+1 = θt + αtG
−1
t (δtφt − γφt+1(φᵀ

twt))
wt+1 = wt + βt(δt − φᵀ

twt)φt

5.5 Experimental Results

Our goal with these experiments is to show that natural TD methods improve

upon their non-natural counterparts, not to promote one TD method over another.

We focus our experiments on comparing the quadratic and linear time natural vari-

ants of temporal different learning algorithms with the original TD algorithms they

build upon. To evaluate the performance of natural residual gradient and natural

126

Sarsa(λ), we performed experiments on two canonical domains: mountain car and

cart-pole balancing, as well as one new challenging domain that we call visual Tic-

tac-toe. We used an ε-greedy policy for all TD-learning algorithms. TDC is not a

control algorithm, and thus to evaluate the performance of natural TDC we generate

experience from a fixed policy in the acrobot domain and measure the mean squared

error (MSE) of the learned value function compared with Monte Carlo rollouts of the

fixed policy.

For mountain car, cart-pole balancing, and acrobot we used linear function approx-

imation with a third-order Fourier basis [Konidaris et al., 2012]. On visual Tic-tac-toe

we used a fully-connected feed-forward artificial neural network with one hidden layer

of 20 nodes. This allows us to show the benefits of natural gradients when the value

function parameterization is non-linear and more complex. We optimized the al-

gorithm parameters for all experiments using a randomized search as suggested by

Bergstra and Bengio [2012]. We selected the parameters that resulted in the largest

mean discounted return over 20 episodes for mountain car, 50 episodes for cart-pole

balancing, and 100, 000 episodes for visual tic-tac-toe. Each parameter set was tested

10 times and the performance averaged.

For mountain car and cart pole each algorithm’s performance is an average over 50

and 30 trials respectively, with standard deviations shown in the shaded regions. For

visual tic-tac-toe and acrobot, algorithm performance is averaged over 10 trials, again

with standard deviations shown by the shaded regions. For the Sarsa(λ) experiments

we include results for Natural Actor-Critic [Peters and Schaal, 2008], to provide a

comparison with another approach to applying natural gradients to reinforcement

learning. However, for these experiments we do not include the standard deviations

because they make the figures much harder to read. We used a soft-max policy with

Natural Actor-Critic (NAC).

127

Figure 5.2: Mountain Car (Residual Gradient)

5.5.1 Mountain Car

Mountain car is a simple simulation of an underpowered car stuck in a valley; full

details of the domain can be found in the work of Sutton and Barto [1998a]. Figures

5.2 and 5.3 give the results for each algorithm on mountain car. The linear time

natural residual gradient and Sarsa(λ) algorithms take longer to learn good policies

than the quadratic time natural algorithms. One reason for the slower initial learning

of the linear algorithms is that they must first build up an estimate of the w vector

before updates to the action-value function weights become meaningful. Out of all the

algorithms we found that the quadratic time Natural Sarsa(λ) algorithm performed

the best in mountain car, reaching the best policy after just two episodes.

128

Figure 5.3: Mountain Car (Sarsa(λ))

5.5.2 Cart Pole Balancing

Cart pole balancing simulates a cart on a short one dimensional track with a pole

attached with a rotational hinge, and is also referred to as the inverted pendulum

problem. There are many varieties of the cart pole balancing domain, and we refer

the reader to Barto et al. [1983] for complete details. Figures 5.4 and 5.5 give the

results for each algorithm on cart pole balancing. In the cart pole balancing domain

the two quadratic algorithms, Natural Sarsa(λ) and Natural RG perform the best.

Again, the linear algorithm, takes a slower start as it builds up an estimate of w, but

converges well above the non-natural algorithms and very close to the quadratic ones.

Natural Sarsa(λ) reaches a near optimal policy within the first couple of episodes, and

129

Figure 5.4: Cart Pole (Residual Gradient). Same legend as Figure 5.2

compares favorably with the heavily optimized Sarsa(λ), which does not even reach

the same level of performance after 100 episodes.

5.5.3 Visual Tic-Tac-Toe

Visual Tic-Tac-Toe is a novel challenging decision problem in which the agent

plays Tic-tac-toe (Noughts and crosses) against an opponent that makes random

legal moves. The game board is a 3× 3 grid of handwritten letters (X, O, and B for

blank) from the UCI Letter Recognition Data Set [Slate, 1991], examples of which

are shown in Figure 5.8. At every step of the episode, each letter of the game board

is drawn randomly with replacement from the set of available handwritten letters

(787 X’s, 753 O’s, and 766 B’s). Thus, it is easily possible for the agent to never

130

Figure 5.5: Cart Pole (Sarsa(λ))

see the same handwritten “X”, “O”, or “B” letter in a given episode. The agent’s

state features are the 16 integer valued attributes for each of the letters on the board.

Details of the data set and the attributes can be found in the UCI repository.

There are nine possible actions available to the agent, but attempting to play on a

non-blank square is considered an illegal move and results in the agent losing its turn.

This is particularly challenging because blank squares are marked by a “B”, making

recognizing legal moves challenging in and of itself. The opponent only plays legal

moves, but chooses randomly among them. The reward for winning is 100, −100 for

losing, and 0 otherwise.

Figure 5.6 gives the results comparing Natural-LT Sarsa and Sarsa(λ) on the

visual Tic-tac-toe domain using the artificial neural network described previously.

131

Figure 5.6: Visual Tic-Tac-Toe Experiments

These results show linear natural Sarsa(λ) in a setting where it is able to account for

the shape of a more complex value function parameterization, and thus confer greater

improvement in convergence speed over non-natural algorithms. We do not compare

quadratic time algorithms due to computational limits.

5.5.4 Acrobot

Acrobot is another commonly studied RL task in which the agent controls a two-

link under actuated robot by applying torque to the lower joint with the goal of

raising the top of the lower link above a certain point. See Sutton and Barto [1998a]

for a full specification of the domain and its equations of motion. To evaluate the

off-policy Natural TDC algorithm we first generated a fixed policy by online training

132

Figure 5.7: Acrobot Experiments (TDC)

of a hand tuned Sarsa(λ) agent for 200 episodes. We then trained TDC and Natural

TDC for 10000 episodes in acrobot following the previously learned fixed policy. We

evaluated an algorithm’s learned value function every 100 episodes by sampling states

and actions randomly and computing the true expected undiscounted return using

Monte Carlo rollouts following the fixed policy. Figure 5.7 shows the MSE between

the learned values and the true expected return.

Natural TDC clearly out performs TDC, and in this experiment converged to

much lower MSE. Additionally, we found TDC to be sensitive to the step-sizes used,

and saw that Natural TDC was much less sensitive to these parameters. These results

show that the benefits of natural temporal difference learning, already observed in

the context of control learning, extend to TD-learning for value function estimation

as well.

133

164 P.W. FREY AND D.J. SLATE

A A2fAAaaA dA
BB B BBB D
CC C Cc cccc (I
aPP F F FFF

Ssg sSJa5
Xx rXxXXzf2

Figure 1. Examples of the character images generated by "warping" parameters.

to right at all vertical positions within the box. This measure distinguishes between
letters like " W " or " M " and letters like ' T ' or "L."

14. The sum of the vertical positions of edges encountered as measured in 13 above. This
feature will give a higher value if there are more edges at the top of the box, as in
the letter "Y."

164 P.W. FREY AND D.J. SLATE

A A2fAAaaA dA
BB B BBB D
CC C Cc cccc (I
aPP F F FFF

Ssg sSJa5
Xx rXxXXzf2

Figure 1. Examples of the character images generated by "warping" parameters.

to right at all vertical positions within the box. This measure distinguishes between
letters like " W " or " M " and letters like ' T ' or "L."

14. The sum of the vertical positions of edges encountered as measured in 13 above. This
feature will give a higher value if there are more edges at the top of the box, as in
the letter "Y."

Figure 5.8: Visual Tic-Tac-Toe example letters

5.6 Discussion

Natural temporal difference learning provides one approach for solving the up-

date whitening problem discussed in Chapter 4. The natural gradient approach to

this problem is motivated both theoretically and empirically. From the theoretical

perspective natural gradients have been shown to minimize the probability of increas-

ing the generalization error, and in Theorem 5.1 we prove that natural TD updates are

covariant. Empirically, natural gradients have been greatly successful at improving

performance of supervised learning with neural networks and RL policy gradient algo-

rithms. Our derivation and study of natural gradients for action-value TD algorithms

such as RG and Sarsa(λ) show greatly improved performance over the non-natural

versions of the same algorithms.

The work in Chapter 4 suggests that there may be deeper connections between our

explicitly formulated natural TD algorithm and algorithms such as IDBD and Au-

tostep which conflate the problems of adaptive scalar step-size and update whitening.

We hinted at this connection in Chapter 2, but can now make the connection precise.

We begin with the linear time algorithm for natural TD, and abstract away which

update direction is being used. Let 4wt be the non-natural update direction com-

puted by either RG or Sarsa(λ). The linear time natural TD algorithm computes the

expected natural gradient with:

134

wt+1 = wt + βt (1− wᵀ
t4wt)4wt.

The algorithms we presented in this chapter then update the action-values in the

direction of the expected natural gradient. Compare this with the update equation

used by IDBD, Autostep, and generally any of the SGD adaptive step-size methods

for ht ≈ ∂θt
∂α

. If we take 4wt = δtxt, then the general form of this update is:

ht+1 = (I − αxtxᵀt)ht + αδtxt.

If a better approximate to the Hessian at time t is available then xtx
ᵀ
t may be

replaced to improve the estimate. However, we can see that if the expected natural

gradient update is written similarly we get:

wt+1 = (I − βt4wt4wt)wt + βt4wt.

The difference is illustrative of an interesting approximation. If we assume inde-

pendence between δt and the vector xt the connection is made exact:

E[Ht] = E[4wt],

= E[δ2
t xtx

ᵀ
t],

= E[δ2
t]E[xtx

ᵀ
t],

=⇒ ht ∝ wt.

When this assumption holds the approximation will lower the variance of our estima-

tion of the expected natural gradient. We will complete this analysis by examining

how the adaptive step-size algorithms use the expected natural gradient once it is

computed. In the case of SID and NOSID, the step-size αt is moved in the direction

135

of 4wᵀ
t ht. This is reminiscent of the adaptive step-size algorithms discussed in Chap-

ter 2 which increase the step-size when the update direction is consistent and decrease

it when it changes signs. In this case, our adaptive step-size algorithms increase the

step-size when the update direction is approximately in the direction of the expected

natural gradient, and decrease it when the directions are opposed. Similarly, the

vector value adaptive step-size algorithms IDBD and Autostep move the step-size on

dimension i in the direction of 4wt,iht,i.

From this analysis we conclude that the vector value adaptive step-size algorithms

(IDBD and Autostep) are approximately solving the update whitening problem as

well as the scalar adaptive step-size problem. Additionally, the generally strong per-

formance of Autostep, after parameter tuning, suggests that the approximation of

assuming independent Bellman errors may work well with natural TD in general.

5.7 Conclusion

We have presented the natural residual gradient algorithm and proved that it is

covariant. We suggested that the temporal difference learning metric tensor, derived

for natural residual gradient, can be used to create other natural temporal difference

learning algorithms like natural Sarsa(λ) and natural TDC. The resulting algorithms

begin with the identity matrix as their estimate of the (inverse) metric tensor. This

means that before an estimate of the (inverse) metric tensor has been formed, they

still provide meaningful updates—they follow estimates of the non-natural gradient.

We showed how the concept of compatible function approximation can be lever-

aged to create linear-time natural residual gradient and natural Sarsa(λ) algorithms.

However, unlike the quadratic-time variants, these linear-time variants do not pro-

vide meaningful updates until the natural gradient has been estimated. As a result,

learning is initially slower using the linear-time algorithms.

136

In our empirical studies, the natural variants of all three algorithms outperformed

their non-natural counterparts on all three domains. Additionally, the quadratic-time

variants learn faster initially, as expected. Lastly, we showed empirically that the ben-

efits of natural gradients are amplified when using non-linear function approximation.

137

CHAPTER 6

CONCLUSION

In seeking to develop adaptive step-size algorithms for RL this dissertation has

brought up challenging topics not frequently discussed in the field. Inherent in the

goal of creating an adaptive step-size algorithm is a bias against designing algorithms

which require problem specific customization. Despite this common preference the

standard practices surrounding empirical methods in RL have been precisely those

which hamper attempts to fulfill it. With the concept of ecological optimality in mind

we proposed an improved set of empirical methods for conducting and presenting RL

research and showed how they may be used to evaluate and compare RL algorithms.

We introduced a transformation of the performance measure from discounted re-

turn to policy percentile. While the discounted return is difficult to interpret and has

a scale that is domain dependent, the policy percentile is easily interpreted, has a

scale independent of the domain, and measures the benefits of performing RL as op-

posed to randomly guessing policies. We proposed a procedure for running parameter

tuning and reporting the difficulty and impact of the the parameter tuning process for

a given RL algorithm. We completed the set of empirical methods with a discussion

of methods for hypothesis testing in RL and proposing a broad set of RL domains

(RL Benchmark) to be used for experiments.

Now equipped with the tools for inquiry we turned toward the adaptive step-

size problem within the context of RL. Based upon a separability assumption we

derived new adaptive scalar step-sizes for RL and used our new empirical methods

to evaluate their performance. In particular we developed three new parameter-free

138

adaptive step-size algorithms: VES, PARL2, and PARL3. Our large experimental

study revealed that these methods work as well as Sarsa(λ) with a tunable step-size

parameter, but that they tend to out perform the original algorithm on continuous

MDPs and slightly under perform on finite MDPs. This is a result of the difference

between approximate and exact updates and suggests that in the case of finite MDPs

an algorithm, such as HL(λ), designed under this assumption may be preferable.

From the perspective of ecological optimality, VES and PARL2 out perform all other

algorithms considered as they both perform well with minimal parameter tuning on

the entire range of domains contained in RL Benchmark.

Finally, we turned to the update whitening problem and used the method of natu-

ral gradients to derive an algorithm for solving this problem approximately. The natu-

ral algorithms generally out performed their non-natural counter parts on the smaller

set of domains used for evaluation. We concluded the study of natural temporal dif-

ference learning with an analysis of the vector valued adaptive step-size algorithms

IDBD and Autostep in terms of our newly derived linear-time natural algorithms and

found that they are closely related.

6.1 Future Work

Two important contributions of this thesis in terms of future work they encourage

are the improved empirical methods for RL and the scalar step-size derivations under

the separability assumption. The first provides a higher standard for experimental

results in RL and strongly argues against the common practice of reporting results

without evaluating the parameter tuning process used to generate them. Following

these proposed methods has the potential to lead to better RL algorithms and more

reproducible research results. The second contribution shows that future research may

not need to solve both the adaptive scalar step-size and update whitening problem

simultaneously. Instead, if we can prove this separability assumption holds, then it

139

frees us to explore each problem separately and to later combine them to form new

and more robust RL algorithms.

This also suggests that the future work naturally following from this dissertation is

to combine the natural TD algorithms with one of the parameter-free adaptive scalar

step-sizes. This is fairly straight forward in the case of the quadratic time algorithms

as they have a single tunable step-size parameter which may be readily replaced by an

adaptive algorithm such as VES. However, the linear-time natural TD algorithms are

two-timescale algorithms and require two step-sizes. Some preliminary exploration

of the problem shows that in this case we can replace one of these step-sizes with

an adaptive algorithm without much difficulty, but that to replace both requires a

fundamentally different approach than any existing methods. The problem is that

the two step-sizes are inherently co-dependent, and they must be solved with this in

mind.

140

APPENDIX

FUNCTION APPROXIMATION DETAILS

Domain Fourier Basis Order

Acrobot 3
BicycleRiding 3
Cart Pole (Balance, 1-pole) 3
Cart Pole (Balance, 2-poles) 3
Cart Pole (Swing Up) 5
HIV Treatment 3
MountainCar 3
PuddleWorld 3
Planar Swimmer 9 (decoupled)

Table A.1: Fourier basis order used for continuous MDPs

141

BIBLIOGRAPHY

Hirotugu Akaike. On a successive transformation of probability distribution
and its application to the analysis of the optimum gradient method. An-
nals of the Institute of Statistical Mathematics, 11(1):1–16, 1959. URL
http://www.springerlink.com/index/L210170141677V14.pdf.

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10:
251–276, 1998.

S. Amari and S. Douglas. Why natural gradient? In Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP
’98), volume 2, pages 1213–1216, 1998a.

S. Amari and S.C. Douglas. Why natural gradient? In Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and Signal Processing, 1998,
volume 2, pages 1213–1216 vol.2, 1998b. doi: 10.1109/ICASSP.1998.675489.

Shun-ichi Amari. Natural gradient works efficiently in learning. 2000.

John Asmuth, Lihong Li, Michael L Littman, Ali Nouri, and David Wingate. A
bayesian sampling approach to exploration in reinforcement learning. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 19–
26. AUAI Press, 2009.

J. A. Bagnell and J. Schneider. Covariant policy search. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 1019–1024, 2003.

L. Baird. Residual algorithms: reinforcement learning with function approximation.
In Proceedings of the Twelfth International Conference on Machine Learning, 1995.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13(5):834–846, 1983.

Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient
methods. IMA Journal of Numerical Analysis, 8(1):141–148, 1988. URL
http://imajna.oxfordjournals.org/content/8/1/141.short.

Richard Bellman. A markovian decision process. Journal of Mathematical Mechanics,
6:679–684, 1957.

142

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. In
Journal of Machine Learning Research, 2012.

Dimitri P. Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

Dimitri P Bertsekas and John N Tsitsiklis. Gradient convergence in gradient methods
with errors. SIAM Journal on Optimization, 10(3):627–642, 2000.

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic
algorithms. Automatica, 45(11):2471–2482, 2009.

David Blackwell. Discounted dynamic programming. The Annals of Mathematical
Statistics, pages 226–235, 1965.

J. Boyan. Least-squares temporal difference learning. In Proceedings of the Sixteenth
International Conference on Machine Learning, pages 49–56, 1999.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004. ISBN 0521833787.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal
difference learning. Machine Learning, 22(1-3):33–57, 1996.

Paul R Cohen. Empirical methods for artificial intelligence, volume 139. MIT press
Cambridge, 1995.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.
Online passive-aggressive algorithms. The Journal of Machine Learning Research,
7:551–585, 2006.

Christian Darken and John Moody. Note on learning rate schedules for stochas-
tic optimization. In Proceedings of the 1990 conference on Advances in neu-
ral information processing systems 3, NIPS-3, pages 832–838, San Francisco,
CA, USA, 1990. Morgan Kaufmann Publishers Inc. ISBN 1-55860-184-8. URL
http://dl.acm.org/citation.cfm?id=118850.119956.

Christian Darken and John Moody. Towards faster stochastic gradient search. Ad-
vances in Neural Information Processing Systems 4, 1992.

Richard Dearden, Nir Friedman, and David Andre. Model based bayesian exploration.
In Proceedings of the fifteenth Conference on Uncertainty in Artificial Intelligence,
pages 150–159. Morgan Kaufmann Publishers Inc., 1999.

T. Degris, P. M. Pilarski, and R. S. Sutton. Model-free reinforcement learning with
continuous action in practice. In Proceedings of the 2012 American Control Con-
ference, 2012.

143

Thomas G. Dietterich. The MAXQ method for hierarchical reinforcement learning. In
Proceedings of the fifteenth international conference on machine learning, volume 8,
1998.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 2011a.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research,
12:2121–2159, 2011b.

Michael Duff. Design for an optimal probe. In ICML, pages 131–138, 2003.

Damien Ernst, G-B Stan, Jorge Gonçalves, and Louis Wehenkel. Clinical data based
optimal sti strategies for hiv: a reinforcement learning approach. In Decision and
Control, 2006 45th IEEE Conference on, pages 667–672. IEEE, 2006.

Abraham P. George and Warren B. Powell. Adaptive stepsizes for recursive estimation
with applications in approximate dynamic programming. Machine Learning, 65:
167–198, 2006a.

Abraham P. George and Warren B. Powell. Adaptive stepsizes for recursive estimation
with applications in approximate dynamic programming. Mach. Learn., 65(1):
167–198, October 2006b. ISSN 0885-6125. doi: 10.1007/s10994-006-8365-9. URL
http://dx.doi.org/10.1007/s10994-006-8365-9.

Alborz Geramifard, Michael Bowling, Martin Zinkevich, and Richard S Sutton. il-
std: Eligibility traces and convergence analysis. Advances in Neural Information
Processing Systems, 19:441, 2007.

Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan How.
Online discovery of feature dependencies. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 881–888, 2011.

Alborz Geramifard, Robert H Klein, Christoph Dann, William Dabney, and
Jonathan P How. RLPy: The Reinforcement Learning Library for Education and
Research. http://acl.mit.edu/RLPy, 2013.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient
solution algorithms for factored mdps. J. Artif. Intell. Res.(JAIR), 19:399–468,
2003.

William W. Hager. Updating the inverse of a ma-
trix. SIAM REVIEW, 31:221—239, 1989. URL
http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.115.3334.

Arie Hordijk and Alexander A Yushkevich. Blackwell optimality. In Handbook of
Markov decision processes, pages 231–267. Springer, 2002.

144

Ronald Howard. Dynamic programming and Markov processes. MIT Press, Cam-
bridge, MA, 1960.

Marcus Hutter and Shane Legg. Temporal difference updating without a learning
rate. Advances in Neural Information Processing Systems, 2007.

Marcus Hutter and Shane Legg. Temporal difference updating without a learning
rate. arXiv:0810.5631, October 2008. URL http://arxiv.org/abs/0810.5631.
Advances in Neural Information Processing Systems 20 (NIPS 2008) pages 705-712.

Robert A. Jacobs. Increased rates of convergence through learning rate adaptation.
Neural networks, 1(4):295–307, 1988.

S. Kakade. A natural policy gradient. In Advances in Neural Information Processing
Systems, volume 14, pages 1531–1538, 2002.

Sham Kakade. A Natural Policy Gradient. 2001.

Harry Kesten. Accelerated stochastic approximation. The An-
nals of Mathematical Statistics, 29(1):41–59, March 1958.
ISSN 0003-4851. doi: 10.1214/aoms/1177706705. URL
http://projecteuclid.org/euclid.aoms/1177706705. Mathematical Reviews
number (MathSciNet): MR93851; Zentralblatt MATH identifier: 0087.13404.

G. D. Konidaris, S. R. Kuindersma, R. A. Grupen, and A. G. Barto. Robot learning
from demonstration by constructing skill trees. volume 31, pages 360–375, 2012.

Harold J. Kushner and George Yin. Stochastic Approximation and Recursive Algo-
rithms and Applications. Springer, July 2003. ISBN 9780387008943.

M. Lagoudakis and R. Parr. Model-free least-squares policy iteration. In Neural
Information Processing Systems: Natural and Synthetic, pages 1547–1554, 2001.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal
of Machine Learning Research, 4:1107–1149, 2003.

Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online
natural gradient algorithm. In NIPS, 2007.

Yann Lecun, Patrice Y. Simard, and Barak Pearlmutter. Automatic learning rate
maximization by on-line estimation of the hessian’s eigenvectors. In Advances in
Neural Information Processing Systems, pages 156–163. Morgan Kaufmann, 1993.

John M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

William S Lovejoy. A survey of algorithmic methods for partially observed markov
decision processes. Annals of Operations Research, 28(1):47–65, 1991.

145

G. D. Magoulas, V. P. Plagianakos, and M. N. Vrahatis. Adaptive step-
size algorithms for on-line training of neural networks. 2001. URL
http://www.math.upatras.gr/ vpp/pdf/a-4.pdf.

Ashique Rupam Mahmood, Richard S. Sutton, Thomas Degris, and Patrick M. Pi-
larski. Tuning-free step-size adaptation. International Conference on Acoustics,
Speech, and Signal Processing, 2012a.

Ashique Rupam Mahmood, Richard S. Sutton, Thomas Degris, and Patrick M. Pi-
larski. Tuning-free step-size adaptation. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 2121–2124, 2012b.

Takamitsu Matsubara, Tetsuro Morimura, and Jun Morimoto. Adaptive step-size pol-
icy gradients with average reward metric. Journal of Machine Learning Research-
Proceedings Track, 13:285–298, 2010.

F Mirozahmedov and S.P. Uryasev. Adaptive stepsize regula-
tion for stochastic optimization algorithm. In Zurnal vicisl.
mat. i. mat. fiz., volume 23(6), pages 1314–1325, 1983. URL
http://130.203.133.150/showciting;jsessionid=C42DBE672C7A869A5EF97307369C1801?cid=4682235.

Joseph Modayil, Adam White, and Richard S Sutton. Multi-timescale nexting in
a reinforcement learning robot. In From Animals to Animats 12, pages 299–309.
Springer, 2012.

T. Morimura, E. Uchibe, and K. Doya. Utilizing the natural gradient in temporal
difference reinforcement learning with eligibility traces. In International Symposium
on Information Geometry and its Application, pages 256–263, 2005.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, 2nd edition,
July 2006. ISBN 0387303030.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71:1180–1190, 2008.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Adaptive step-size for policy
gradient methods. In Advances in Neural Information Processing Systems, pages
1394–1402, 2013.

Rajesh Ranganath, Chong Wang, Blei David, and Eric Xing. An adaptive learning
rate for stochastic variational inference. In Proceedings of The 30th International
Conference on Machine Learning, pages 298–306, 2013.

Martin Riedmiller. Rprop - Description and Implementation Details. 1994.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In IEEE INTERNATIONAL CON-
FERENCE ON NEURAL NETWORKS, pages 586–591, 1993.

146

Stéphane Ross, Paul Mineiro, and John Langford. Normalized online learning. arXiv
preprint arXiv:1305.6646, 2013.

Ilya O. Ryzhov, Peter I. Frazier, and Warren B. Powell. A new optimal step size for
approximate dynamic programming. 2012.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates.
arXiv:1206.1106, June 2012. URL http://arxiv.org/abs/1206.1106.

Nicol N. Schraudolph. Online learning with adaptive local step
sizes. In Neural Nets—WIRN Vietri-99: Proceedings of the 11th
Italian Workshop on Neural Nets, pages 151–156, 1999. URL
http://cnl.salk.edu/ schraudo/pubs/Schraudolph99c.pdf.

Hugo Simao and Warren Powell. Approximate dynamic programming for management
of high-value spare parts. Journal of Manufacturing Technology Management, 20
(2):147–160, February 2009. ISSN 1741-038X. doi: 10.1108/17410380910929592.
URL http://www.emeraldinsight.com/journals.htm?articleid=1770975.

Özgür Şimşek and Andrew G Barto. An intrinsic reward mechanism for efficient ex-
ploration. In Proceedings of the 23rd international conference on Machine learning,
pages 833–840. ACM, 2006.

D. Slate. UCI machine learning repository, 1991. URL
http://archive.ics.uci.edu/ml.

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, pages
943–950, 2000.

Wenyu Sun and Ya-Xiang Yuan. Optimization theory and methods: nonlinear pro-
gramming, volume 1. springer, 2006.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998a.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998b.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems 12, pages 1057–1063, 2000.

Richard Sutton. Gain adaptation beats least squares? In In Proceedings of the 7th
Yale Workshop on Adaptive and Learning Systems, pages 161–166, 1992a.

Richard S. Sutton. Adapting bias by gradient descent: An incre-
mental version of delta-bar-delta. In Proceedings of the National
Conference on Artificial Intelligence, pages 171–171, 1992b. URL
http://rlai.cs.ualberta.ca/ sutton/papers/sutton-92a-remastered.pdf.

147

Richard S. Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. Neural Information Processing Systems 8, pages 1038–
1044, 1996.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver,
Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-
difference learning with linear function approximation. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 993–1000. ACM,
2009.

Yuval Tassa, Tom Erez, and William D Smart. Receding horizon differential dynamic
programming. In NIPS, 2007.

P. S. Thomas. Bias in natural actor-critic algorithms. Technical Report UM-CS-2012-
018, Department of Computer Science, University of Massachusetts at Amherst,
October 2012.

John N Tsitsiklis. On the convergence of optimistic policy iteration. The Journal of
Machine Learning Research, 3:59–72, 2003.

Goh Khang Wen, Mustafa Mamat, Ismail bin Mohd, and Yosza Das-
ril. A novel of step size selection procedures for steepest descent
method. Applied Mathematical Sciences, 6(51):2507–2518, 2012. URL
http://www.m-hikari.com/ams/ams-2012/ams-49-52-2012/mamatAMS49-52-2012-2.pdf.

Alexis P Wieland. Evolving neural network controllers for unstable systems. In Neural
Networks, 1991., IJCNN-91-Seattle International Joint Conference on, volume 2,
pages 667–673. IEEE, 1991.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised
learning of invariances. Neural computation, 14(4):715–770, 2002.

Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969. URL http://epubs.siam.org/doi/abs/10.1137/1011036.

David H Wolpert and William G Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

Max Woodbury. Inverting modified matrices. Princeton University, 1950.

Zhirong Yang and Jorma Laaksonen. Principal whitened gradient for information
geometry. Neural Networks, 21(2):232–240, 2008.

Ya-xiang Yuan. Step-sizes for the gradient method. AMS IP STUD-
IES IN ADVANCED MATHEMATICS, 42(2):785, 2008. URL
ftp://159.226.92.9/pub/yyx/papers/p0504.pdf.

148

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	Fall 2014

	ADAPTIVE STEP-SIZES FOR REINFORCEMENT LEARNING
	William C. Dabney
	Recommended Citation

	tmp.1409328152.pdf.7Y_l1

