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ABSTRACT

OPTIMIZING LINEAR QUERIES UNDER
DIFFERENTIAL PRIVACY

SEPTEMBER, 2013

CHAO LI

B.Sc., PEKING UNIVERSITY

M.Math, UNIVERSITY OF WATERLOO

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Gerome Miklau

Private data analysis on statistical data has been addressed by many recent lit-

eratures. The goal of such analysis is to measure statistical properties of a database

without revealing information of individuals who participate in the database. Dif-

ferential privacy is a rigorous privacy definition that protects individual information

using output perturbation: a differentially private algorithm produces statistically

indistinguishable outputs no matter whether the database contains a tuple corre-

sponding to an individual or not.

It is straightforward to construct differentially private algorithms for many com-

mon tasks and there are published algorithms to support various tasks under differen-

tial privacy. However methods to design error-optimal algorithms for most non-trivial

tasks are still unknown. In particular, we are interested in error-optimal algorithms
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for sets of linear queries. A linear query is a sum of counts of tuples that satisfy a cer-

tain condition, which covers the scope of many aggregation tasks including count, sum

and histogram. We present the matrix mechanism, a novel mechanism for answering

sets of linear queries under differential privacy. The matrix mechanism makes a clear

distinction between a set of queries submitted by users, called the query workload,

and an alternative set of queries to be answered under differential privacy, called the

query strategy. The answer to the query workload can then be computed using the

answer to the query strategy. Given a query workload, the query strategy determines

the distribution of the output noise and the power of the matrix mechanism comes

from adaptively choosing a query strategy that minimizes the output noise.

Our analyses also provide a theoretical measure to the quality of different strate-

gies for a given workload. This measure is then used in accurate and approximate

formulations to the optimization problem that outputs the error-optimal strategy. We

present a lower bound of error to answer each workload under the matrix mechanism.

The bound reveals that the hardness of a query workload is related to the spectral

properties of the workload when it is represented in matrix form. In addition, we

design an approximate algorithm, which generates strategies generated by our a out

perform state-of-art mechanisms over (ε, δ)-differential privacy. Those strategies lead
to more accurate data analysis while preserving a rigorous privacy guarantee. More-

over, we also combine the matrix mechanism with a novel data-dependent algorithm,

which achieves differential privacy by adding noise that is adapted to the input data

and to the given query workload.
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CHAPTER 1

INTRODUCTION

1.1 Private data analysis on statistical databases

Statistical data is widely collected and analyzed in various fields such as statis-

tics, computer science, economics, psychology and so on. Many statistical databases

involve sensitive personal information which should not be revealed during data an-

alyzing and publishing. The naive approach, which simply removes identifiers from

the database, can not protect personal information and is vulnerable when partial

information is publicly available [10, 55].

Sophisticated private query answering techniques have been developed to reduce

potential privacy breaches. Though there are different privacy models that define

the behavior of adversaries and basic privacy requirements, those techniques can be

categorized into three groups [58]: local perturbation, in which the information has

been modified before being submitted to the statistical database; data publishing, in

which a synthetic database that is based on the original database is published; output

perturbation, in which the query answers are modified before returned to users.

Local perturbation has been studied in [7, 28]. The problem of local perturbation is

that there is no fine grained control on privacy and the noise from different individuals

accumulates when the analysis relates to multiple individuals.

One famous data publishing approach in privacy data analysis is k-anonymity

introduced by Sweeney et al. [63]. K-anonymity is a syntactically private mechanism

that has been widely accepted by data publishers and analyzers. In k-anonymity,

the attributes of a table are separated into two groups: quasi identifiers and sensitive

1



attributes. The idea of k-anonymity is to group the values of quasi identifiers so that

each group of quasi identifiers is associated with at least k different tuples. Several

papers discussed and improved the theory of k-anonymity [50, 48, 66, 68]. However,

there are still three major drawbacks in k-anonymity. First, in practice, there is

no clear distinction between quasi identifiers and sensitive attributes. For example,

the address attribute can be a quasi identifier in a database of patients but may be

sensitive in a location tracking database. In addition, with k-anonymity, it is difficult

to prevent an adversary from indicating whether a user participates in the database.

Such information sometimes is highly sensitive (e.g. a database of certain diseases).

Lastly, there is actually no theoretical guarantee on the effect of k-anonymity and

later literatures [48, 50, 31] demonstrated several attacks under which k-anonymity

and its variations are vulnerable.

Dwork et al. [25, 26] introduced differential privacy, which is a rigorous privacy

definition that protects individual information using output perturbation: a differ-

entially private algorithm produces statistically indistinguishable outputs no matter

whether the database contains a tuple corresponding to an individual or not. Further-

more, differential privacy makes no assumption on the prior knowledge of adversaries

and provides privacy guarantee even if the adversary knows all but one tuple in the

table. It is straightforward to construct differentially private algorithms for many

common tasks and there are published algorithms to support various tasks under

differential privacy, as summarized in [22, 23, 24]. Systems that answer queries un-

der differential privacy have also been designed, such as PINQ[53], Airavat[61] and

GUPT[54]. However methods to design error-optimal algorithms for most non-trivial

tasks are still unknown. In many cases, the optimal error to answer a set of queries

with a certain privacy guarantee under differential privacy can be greatly impacted

by the choices of the mechanisms to answer those queries.
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1.2 Answering linear queries under differential privacy

One of the most widely studied categories of queries under differential privacy

is linear queries. A linear query is a sum of counts of tuples that satisfy a certain

condition, which covers the scope of many aggregation tasks including count, sum

and histogram. To answer one single linear counting query under differential privacy,

the Laplace mechanism has been proved [32] to be the mechanism that introduces

the least amount of noise. However, the best mechanism that answers multiple linear

counting queries simultaneously is remain unknown. Many have pointed out that

using the Laplace mechanism to answer each query in a set independently introduces

more noise than it is needed in many scenarios. It hence calls for more sophisticated

mechanisms to answer set of linear counting queries under differential privacy with

low noise.

Recently, a number of related approaches have been proposed which improve on

the Laplace mechanism, sometimes allowing for low error where only unacceptably

high error was possible before. They each embody a basic (but perhaps counter-

intuitive) principle: better results are possible when you don’t ask for what you want.

The earliest example of this approach focuses on workloads consisting of sets of

k-way marginals, for which Barak et al. answer a set of Fourier basis queries using

the Laplace mechanism, and then derive the desired marginals [9]. For workloads

consisting of all range-count queries over an ordered domain, two approaches have

been proposed. Xiao et al. [70] first answer a set of wavelet basis queries, while Hay

et al. [40] use a hierarchical set of counting queries which recursively decompose the

domain. For workloads consisting of sets of marginals, Ding et al. [19] propose a

method for selecting an alternative set of marginals, from which the desired counts

can be derived. However, those approaches only support one type of query sets and

can not be generalized to arbitrary set of linear counting queries.
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All approaches mentioned above, as well as the Laplace mechanism, share one

important property: the queries they answer only depend on the domain properties

and the input queries, and are independent of the concrete tuples in the database.

Those approaches are hence called data-independent approaches. Meanwhile, another

research trend in answering linear counting queries under differential privacy is data-

aware approaches, which take the underlying database into consideration. Early works

either synthesizes a database [14] or maintain samples of possible databases [60],

which may not be applicable in practice. More practical algorithms are emerging

most recently [38, 73, 6, 17, 72, 67, 37]. Compared with other data-independent

works related with the matrix mechanism, the amount of noise introduced by those

data-aware algorithms either largely depend on the underlying database: they can

sometimes do much better than data-independent works while do much worse in other

cases. or do not take significant advantage of the properties of underlying databases.

Furthermore, many of those works just aim to generate a database and the input

query sets are largely ignored.

1.3 Contributions

We present the matrix mechanism, a novel mechanism for answering sets of lin-

ear queries under differential privacy. Our mechanism works as an improvement to

any differentially privacy mechanism. In general, the matrix mechanism builds an

alternative set of queries and uses the answer to the alternative query set to derive

the answer to the input query set. The matrix mechanism makes a clear distinc-

tion between a set of queries submitted by users, called the query workload, and an

alternative set of queries to be answered under differential privacy, called the query

strategy. The answer to the query workload can then be computed using the answer

to the query strategy. The power of the mechanism then yields to the flexibility

in the choice of query strategies that leads to low noisy answers to different query
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workloads. The matrix mechanism covers those approaches that improve the Laplace

mechanism [9, 70, 40, 19], as well as mechanisms that work on other differentially

private mechanisms [39]. To avoid the limitation of previous approaches, we present

an efficient algorithm that creates a truly adaptive solution to answer any set of linear

counting queries with low error, relieving the user of the burden of choosing among

mechanisms or carefully analyzing their query workloads. The strategies generated

by our approximate algorithm out perform state-of-art mechanisms [9, 70, 40, 19]

over (ε, δ)-differential privacy.
In addition, we provide a thorough error analysis under the matrix mechanism, and

formulate the noise of the matrix mechanism in a closed form. The analytic formula of

noise leads to a much easier comparison among many algorithms: it is not necessary

to run repeated experiments on concrete databases. It can also be used in accurate

and approximate formulations to the optimization problem that outputs the error-

optimal strategy. Furthermore, with the analyses in the matrix mechanism, we also

characterize the “hardness” of a query workload by lower bounding the minimum noise

of the workload under the matrix mechanism. Our bound is tight or almost tight on

many commonly interested sets of queries and serves as a more comprehensive measure

on the “hardness” of a query workload than the basic differential privacy measurement

on the query workload [25, 26] or the information theoretical measurement of it [14].

To take the advantage of both the input query set and the underlying database, we

further design a mechanism by combining the matrix mechanism with a novel data-

dependent algorithm. To our knowledge, our mechanism is the first data-dependent

mechanism that provides significant improvement on databases with easy-to-exploit

properties yet does not break-down on databases with complex distributions.
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CHAPTER 2

BACKGROUND

The content of this chapter serves as the foundation of all our discussions in the

remaining chapters of this dissertation. In this chapter, we first formally define the

concept of linear queries and workloads we are working on, as well as the vector

or matrix representation of the query or query set. An introduction to differential

privacy is also included in the chapter, consisting of basic definitions and mechanisms

in differential privacy. We also cover the linear algebra fundamentals at the end of

this chapter.

2.1 Background: linear queries and query workloads

The matrix mechanism is designed to answer a set of linear queries. A linear

query is an aggregation query over a single relation that can be expressed as a linear

combination of a set of database counts . In this section, we first describe the repre-

sentation of a relational table as a vector of counts. We then describe linear queries,

represented as a vector of coefficients, and a workload of linear queries, represented

as a matrix. Lastly, we show that the matrix representation of a set of linear queries

is not unique.

2.1.1 Data domain and cell lists

We consider a database instance I of a single-table relational schema R(A) with
attributes A = {A1,A2, . . . ,Am}. The domain dom(Ai) of an attribute Ai may be

discrete or continuous, finite or infinite, ordered or unordered. The set of all tuples
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that may exist in I is the cross-product of the domains of attributes in A: dom(A) =
dom(A1) × dom(A2) × ⋯ × dom(Am). The database instance is encoded as a vector

of cell counts, each counting the number of tuples included in a distinct subset of the

domain.

Definition 2.1 (Cell and Cell List). A cell is a non-empty subset of dom(A). A cell

list Φ = φ1, φ2 . . . φn is an ordered list of mutually-exclusive cells: ∀i, j φi ∩ φj = ∅.
We do not require that the cells in a cell list cover dom(A). For a specified cell

list, a relational table can be represented in the form of a data vector consisting of a

non-negative integer for each cell.

Definition 2.2 (Data vector). Given instance I and cell list Φ = φ1, φ2 . . . φn, the

vector representation of I using Φ, denoted x(I,Φ), is the length-n column vector

consisting of a non-negative integer for each cell, i.e the ith entry in x(I,Φ) is ∣I ∩φi∣.
When I and Φ are clear from the context, we denote the data vector simply by x.

Example 2.1. Consider a relational schema R = (name, gradyear, gender, gpa) de-
scribing students. Fig. 2.1(a) shows a sample instance of this relation. Fig. 2.1(b)

shows a cell list based on gender (Male or Female), and gradyear (2011,2012,2013

or 2014). Fig. 2.1(c) shows the data vector that results from the instance and the

cell list. Note that the sum of the counts in the data vector does not equal the total

number of tuples in the instance because the cells happen not to cover the entire active

domain of gradyear.

A common case is to define a cell list by partitioning dom(A) according to a single

ordered attribute. In this case, the data vector would describe a one-dimensional

histogram. The main criterion for selecting a cell list for a given schema is that the

cells can be used to express the queries of the intended workload. This can be done

in multiple ways and we return to the choice of cell lists later in this section.
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Name Gradyear Gender Gpa

Alice 2012 F 3.8
Bob 2011 M 3.1

Charlie 2014 M 3.6
Dave 2014 M 3.3
Evelyn 2013 F 3.9
Frank 2011 M 3.2
Gary 2015 M 3.5

(a) Instance of relation R

φ1 ∶ - R(∗,2011,M,∗)

φ2 ∶ - R(∗,2011, F,∗)
φ3 ∶ - R(∗,2012,M,∗)

φ4 ∶ - R(∗,2012, F,∗)
φ5 ∶ - R(∗,2013,M,∗)

φ6 ∶ - R(∗,2013, F,∗)
φ7 ∶ - R(∗,2014,M,∗)

φ8 ∶ - R(∗,2014, F,∗)
(b) Cell list Φ

x1: 2
x2: 0
x3: 0
x4: 1
x5: 0
x6: 1
x7: 2
x8: 0
(c) x

Figure 2.1. For schema R = (name, gradyear, gender, gpa) (a) shows a sample
instance. A cell list consisting of 8 cells described in terms of the tuples that match
conditions on gradyear and gender is shown in (b). The database vector, shown in
(c), accordingly consists of 8 counts.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 -1 -1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(a) Query matrix W

w1: Students of any gender with gradyear ∈ [2011,2014]
w2: Students with gradyear ∈ [2011,2012]
w3: Female students with gradyear ∈ [2011,2012]
w4: Male students with gradyear ∈ [2011,2012]
w5: Difference between 2013 grads and 2014 grads

(b) Five linear queries

w1x = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 6
w2x = x1 + x2 + x3 + x4 = 3
w3x = x2 + x4 = 1
w4x = x1 + x3 = 2
w5x = x5 + x6 − x7 − x8 = -1

(c) The evaluation of Wx

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1
1 1 1 1 0 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 0 0 0 1 -1 -1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(d) Query matrix W′

Figure 2.2. (a) A query matrix W consisting of five linear queries; (b) The
description of the queries in W using the cell list Φ in Fig 2.1; (c) The evaluation of
W on x; (d) A semantically equivalent query matrix W′ expressed w.r.t. a reduced
cell list (columns 5 and 6 in W have been combined to get W′).
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2.1.2 Linear queries

A linear query computes a linear combination of the counts in the data vector x.

Definition 2.3 (Linear query). A linear query is a length-n row vector w = [w1 . . . wn]
with each wi ∈ R. The answer to a linear query w on x is the dot product wx =
w1x1 + ⋅ ⋅ ⋅ +wnxn.

Linear queries can express a variety of common aggregation queries. We refer to

a linear query whose coefficients are exclusively zero or one as a predicate counting

query, since it computes the number of tuples satisfying a predicate defined by the

disjunction of the cells corresponding to query coefficients of one. For an ordered

attribute domain, a range-count query is a special case of a predicate counting query

whose non-zero coefficients form a contiguous range. Range count queries have a

natural extension to multi-dimensional range count queries. Multi-dimensional range

count queries are a versatile class: histograms, data cubes, marginal queries, and

group-by queries are all sets of one-dimensional or multi-dimensional range count

queries.

Even so, we do not restrict our attention only to linear queries with zero or

one coefficients. With other coefficients, linear queries can compute differences (e.g.

query w5 in Fig. 2.2(b)) and can express aggregate queries that are not, strictly

speaking, counting queries. For example, referring to the cell list in Fig. 2.1, the

average graduation year of male students graduating between 2011 and 2014 can be

computed as (2011x1 + 2012x3 + 2013x5 + 2014x7)/4.
We will consider query workloads that consist of sets of linear queries, organized

into the rows of a query matrix.

Definition 2.4 (Query matrix). A query matrix is a collection of m linear queries,

arranged by rows to form an m × n matrix.
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If W is an m×n query matrix, the evaluation of W results in a length-m column

vector of query answers, which can be computed as the matrix product Wx.

Example 2.2. Fig. 2.2 shows a query matrix representing a workload of five linear

queries, along with the meaning of the queries using the cell list in Fig. 2.1(b). The

queries are evaluated by computing Wx, as shown in Fig. 2.2(c).

2.1.3 Representing query workloads in matrix form

Later in the paper we will assume that an analyst has decided on a workload of

queries of interest, selected a cell list, and represented the workload as a query matrix.

The workload query matrix is the main input to our algorithms. We describe next

a few guidelines and subtleties involved in representing a query workload in matrix

form.

The matrix mechanism can be seen as automatically optimizing the workload to

reduce error. As a result, the analyst does not have to think carefully about the

workings of the privacy mechanism when representing the workload. In particular,

the analyst need not try to reduce the sensitivity of the workload or avoid redundancy

of queries. In fact, the analyst should include in the workload all queries of interest,

even if some queries could be computed from others in the workload. As a concrete

example, in Fig. 2.2(b), w4 can be computed as (w2 − w3), but it is nevertheless

included in the workload. This reflects our assumption that we wish to simultane-

ously answer all given workload queries with minimum aggregate error, treating each

equally. The analyst may, however, choose to scale individual rows of the workload

by a positive scalar value. This has the effect of increasing the importance of the

query and reducing the error of that query relative to total error of the workload.

After deciding on the workload queries, the next step is to select an appropriate

cell list that can support the workload queries. If each attribute domain is finite,

then it is possible to fully represent instance I by defining the (finite) vector x with

10



one cell for every element of dom(A). Then x is a bit vector of size ∣dom(A)∣ with
nonzero counts for each tuple present in I. This is also a vector representation of

the full contingency table built from I. (Note that if the schema contains infinite

attribute domains, they would typically be partitioned into finite regions of sufficient

granularity to support the desired queries.)

Selecting the cell list in this manner allows a wide range of desired queries to be

supported. But it is often inefficient, since the size x vector grows exponentially with

the sizes of the attribute domains, and ineffective, since the base counts are typically

too small to be estimated very accurately. Alternatively, it may be sufficient to

partially represent I by the cell counts in x, for example by focusing on a subset of

the attributes of A that are relevant to a specialized set of queries and/or a subset of

the attribute domains (as in Example 2.1).

When representing a workload as a matrix, the order of workload queries are deter-

mined by the order of rows of the matrix. However, semantically, a workload means a

set of queries, in which there is no specific orders amount those queries. Therefore the

order of rows in a matrix does not semantically change its corresponding workload. In

addition, there will always be many feasible choices for the cell list supporting a given

workload. We formalize this using a notion of semantically equivalent workloads.

Definition 2.5 (Workload semantic equivalence). Workload W over cell list Φ is

semantically equivalent to workload W′ over cell list Φ′, denoted (W,Φ) ≡ (W′,Φ′),
if there is a permutation matrix P such that for every instance I, Wx(I,Φ) =
PW′x(I,Φ′).
Example 2.3. Observe in Fig. 2.2 that columns 5 and 6 of workload W are identical.

With respect to the example workload, positions 5 and 6 of the data vector are either

both ignored, or are summed together. It follows that cells φ5 and φ6 can be combined

and the query matrix altered by dropping one of the columns and that these operations

will not modify the semantics of the workload. More precisely, (W,Φ) ≡ (W′,Φ′)
11



where Φ′ is derived from Φ as follows. The first four cells in Φ′ are equal to those of

Φ, cell φ′5 = φ5 ∨ φ6, φ′6 = φ7, and φ′7 = φ8. Observe that W′ results from removing

column 6 from W.

The following proposition shows that semantic equivalence can be characterized by

considering a small set of semantic-preserving operations over cell lists and workload

matrices.

Proposition 2.1. For workload W over cell list Φ and a workload W′ over cell list

Φ′, (W,Φ) ≡ (W′,Φ′) if and only if W′ and Φ′ result from a sequence of one or more

of the following operations:

1. Permutation: apply permutation µ to the rows of W, or the cells of Φ and the

columns of W.

2. Cell union: if W contains two columns with identical coefficients, form W′ by

removing one of the columns and replacing the cells by their union.

3. Cell division: for any column Wi of W and corresponding cell φi of Φ, construct

Φ′ by replacing condition φi with φi1 and φi2 where φi1∪φi2 = φi and φi1∩φi2 = ∅.
Then associate cell φi1 and φi2 with the column of coefficientsWi (i.e., two copies

of Wi will appear in W′).

4. Add irrelevant cells: add a new cell to Φ and a corresponding column to W

whose coefficients are all zeros.

5. Remove irrelevant cells: if W contains a column of zeros, remove it along with

its associated cell in Φ.

The definition below is introduced to prove Proposition 2.1.

Definition 2.6 (Minimized workload). Given a workload W, the minimized workload

of W is defined as the workload W′ that combines all duplicate columns in W and

removes all zero columns from W.
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Proof. The adequacy of the conditions in Proposition 2.1 is easy to be verified. Here

we prove the necessity of those conditions.

Given W1 over Φ1 and W2 over Φ2 such that (W1,Φ1) ≡ (W2,Φ2). As it is

defined in Definition 2.5, there exists a permutation matrix P such that W1x(I,Φ1) =
PW2x(I,Φ2) for any instance I. Noticing the row permutation is a part of the

Permutation operation in Proposition 2.1, it is sufficient to consider the case that

P = I.
Consider the minimized workload W′

1 of W1 and its corresponding cell condition

Φ′1 such that (W′
1,Φ

′
1) ≡ (W1,Φ1). Apply the same process to W2 to get its min-

imized workload W′
2 such that (W′

2,Φ
′
2) ≡ (W2,Φ2). According to Definition 2.5,

(W′
1,Φ

′
1) must be semantically equivalent to (W′

2,Φ
′
2).

First of all, ⋁φ∈Φ′
1
φ = ⋁φ∈Φ′

2
φ. Otherwise, without loss of generality, assume

⋁φ∈Φ′
1
φ is not a subset of ⋁φ∈Φ′

2
φ and let

I0 = {t∣φ(t) ∧ (¬φ′(t)) is True, ∀φ ∈ Φ′1, ∀φ′ ∈ Φ′2}.
Then I0 ≠ ∅ and W′

1x(I0,Φ′1) ≠ W′
2x(I0,Φ′2) = 0, which contradicts with the fact

that (W′
1,Φ

′
1) ≡ (W′

2,Φ
′
2).

In addition, for any i, j such that φi ∈ Φ′1 and φ′j ∈ Φ′2 such that φi ∧ φ′j ≠ ∅. Let

Wi be the column of W′
1 corresponding to φi and W ′

j be the column of W′
2 corre-

sponding to φ′j. Wi must be equal to W ′
j . Otherwise, let I1 = {t∣φi(t)∧φ′j(t) is True}

and W′
1x(I1,Φ′1) = ∣I1∣Wi ≠ W′

2x(I1,Φ′2) = ∣I1∣W ′
j , which leads to a contradiction.

Moreover, since neither W′
1 nor W′

2 contains duplicate columns, any cell conditions

in Φ′1 other than φi is disjoint with φ′j and any cell conditions in Φ′2 other than φ′j is

disjoint with φi. Therefore φi = φ′j, otherwise ⋁φ∈Φ′1 φ ≠ ⋁φ∈Φ′2 φ.
Above all, we know there must exist a permutation µ to the cells of Φ′1 and

the columns of W′
1 that gets us (W′

2,Φ
′
2). Thus (W1,Φ1) can be transformed into

(W2,Φ2) with the operations in Prop 2.1.
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We will show later in the paper that many aspects of the performance of our

algorithms are independent of the cell list used and the particular query matrix that

results. Most importantly, the optimal error achievable for a workload is the same

for any semantically-equivalent workload matrix. However, in terms of efficiency, it is

beneficial to represent a workload with the smallest possible set of cells. The number

of cells in the cell list, n, (which is also the number of columns in the workload

matrix) is a key parameter in the computational complexity of the algorithms to

come. Fortunately, using Prop. 2.1, it is straightforward to create the smallest cell

list for a given workload of interest. After starting with any feasible representation

of the workload, we can repeatedly apply steps (2) and (5), in any order.

2.2 Differential privacy

Informally, a randomized algorithm is differentially private if it produces statis-

tically close outputs whether or not any one individual’s record is present in the

database. Two instances I and I ′ are neighbors, denoted nbrs(I, I ′) if they differ by

at most one record, i.e., if ∣(I − I ′) ∪ (I ′ − I)∣ = 1.
Definition 2.7 (Differential privacy). A randomized algorithm K is (ε, δ)-differ-
entially private if for any instances I, I ′ such that nbrs(I, I ′), and any subset of

outputs S ⊆ Range(K), the following holds:

Pr[K(I) ∈ S] ≤ exp(ε) × Pr[K(I ′) ∈ S] + δ,

where the probability is taken over the randomness of the K.

If an algorithm satisfies the definition above for δ = 0, then it is ε-differentially

private. When δ > 0 the privacy standard is sometimes referred to as approximate

differential privacy.
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Both ε and (ε, δ)-differential privacy can be satisfied by algorithms that add ran-

dom noise to query answers. The magnitude of the required noise is determined by

the privacy parameters, ε and/or δ, and the sensitivity of the set of queries: the

maximum change in a vector of query answers over any two neighboring databases.

The two privacy definitions differ, however, in the measurement of sensitivity and in

their noise distributions. Standard ε-differential privacy can be achieved by adding

Laplace noise calibrated to the L1 sensitivity of the queries [26]. Approximate (ε, δ)-
differential privacy can be achieved by adding Gaussian noise calibrated to the L2

sensitivity of the queries [25, 51].

Since our query workloads are represented as matrices, we describe the sensitivity

of a workload matrix as a matrix norm. Recall that, for any cell list Φ, cells are

always disjoint and x(I,Φ) is the vector representation of I using Φ. Since neighboring

databases I and I ′ differ in exactly one tuple, it follows that the corresponding vectors

x(I,Φ) and x(I ′,Φ) differ in at most one component, by at most one.

In the propositions below, cols(W) is the set of column vectors Wi of W. For a

query matrix W, the L1 sensitivity is the maximum L1 norm of the columns of W,

which is defined as the sum of absolute values of entries in one column.

Proposition 2.2 (L1 Query matrix sensitivity). For any cell list Φ, the L1 sensitivity

of a query matrix W using cell list Φ is denoted ∥W∥1 and defined as:

∆̄W
def= max

I,I′∈nbrs(I,I′)
∥Wx(I,Φ) −Wx(I ′,Φ)∥1 = max

Wi∈cols(W)
∥Wi∥1

Similarly, the L2 sensitivity ofW is equal to the maximum L2 norm of the columns

of W, which is defined as the square root of sum of squares of entries in one column.
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Proposition 2.3 (L2 Query matrix sensitivity). For any cell list Φ, the L2 sensitivity

of a query matrix W using cell list Φ is denoted ∣∣W∣∣2 and defined as:

¯̄∆W
def= max

I,I′∈nbrs(I,I′)
∣∣Wx(I,Φ) −Wx(I ′,Φ)∣∣2 = max

Wi∈cols(W)
∣∣Wi∣∣2

It is clear from the above propositions that the sensitivity of a query matrix is in

fact independent of any cell list that accompanies it and our notation reflects this.

Further, we occasionally use ∆W to represent the sensitivity when the context does

not specify whether it is L1 or L2 sensitivity.

Example 2.4. Figure 2.3 shows three query matrices, over an unspecified cell list of

size four, which we use as a running example. I4 is the identity matrix of size four.

This matrix consists of four queries, each asking for an individual element of the data

vector x. H4 contains seven queries, which represent a binary hierarchy of sums: the

first row is the sum of the elements of x, the second and third rows each sum one half

of x, and the last four rows return individual elements of x. Y4 is the matrix of the

Haar wavelet. It can also be seen as a hierarchical set of queries: the first row is the

total sum, the second row computes the difference between sums in two halves of x,

and the last two rows return differences between smaller partitions of x.

The sensitivity of each of the query matrices in Figure 2.3 is: ∆̄I4 = 1 and ∆̄H4
=

∆̄Y4
= 3; ¯̄∆I4 = 1 and ¯̄∆H4

= ¯̄∆Y4
= √3. A change by one in any component xi will

change the query answer I4x by exactly one under both L1 and L2, but will change

H4x and Y4x by 3 under L1 and
√
3 under L2 since each xi contributes to three

predicate queries in both H4 and Y4.

The following propositions describe, in vector form, the standard mechanisms for

answering a set of queries under ε-differential privacy and (ε, δ)-differential privacy.
The Laplace mechanism [25, 22] achieves ε-differential privacy by adding Laplace

noise calibrated to the L1 sensitivity of the input queries. We use Laplace(b)m to
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

I4 H4 Y4

Figure 2.3. Query matrices with dom = {1,2,3,4}. Each is full rank. I4 returns
each unit count. H4 computes seven sums, hierarchically partitioning the domain.
W4 is based on the Haar wavelet.

denote a column vector consisting of m independent samples drawn from a Laplace

distribution with mean 0 and scale b.

Proposition 2.4 (Laplace mechanism). Given an m × n query matrix W, the ran-

domized algorithm L that outputs the following vector is ε-differentially private:

L(W,x) =Wx + Laplace(b)m

where b = ∆̄W/ε.
The Gaussian mechanism [51] achieves (ε, δ)-differential privacy by adding Gaus-

sian noise calibrated to the L2 sensitivity. We use Normal(σ)m to denote a column

vector consisting of m independent samples drawn from a Gaussian distribution with

mean 0 and scale σ.

Proposition 2.5. (Gaussian mechanism [25, 51]) Given an m × n query matrix

W, the randomized algorithm G that outputs the following vector is (ε, δ)-differentially
private:

G(W,x) =Wx +Normal(σ)m
where σ = ¯̄∆W

√
2 ln(2/δ)/ε.
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Recall that Wx is a vector consisting of the true answers to each query in W. The

algorithms above add independent Laplace noise (scaled by ∆̄W and ε) or Gaussian

noise (scaled by ¯̄∆W, ε, and δ) to each query answer. Thus both L(W,x) and

G(W,x) are length-m column vectors containing a noisy answer for each linear query

in W.

2.3 Linear algebra fundamentals

Most of our discussions and analyses base on linear algebra operations. In this sec-

tion, we summarize the concepts and results in linear algebra that are used throughout

the dissertation.

In the dissertation, we use the standard notation of linear algebra and employ

standard techniques of matrix analysis. We use diag(d1, . . . dn) to indicate the n × n

diagonal matrix with scalars di on the diagonal and 0m×n to indicate a matrix of zeroes

with m rows and n columns. Recall that for a matrix A, AT is its transpose, A−1 is

its inverse. We say A is symmetric if AT =A and orthogonal if AT =A−1. The rank

of a matrix A, rank(A), is defined as the size of the largest set of linearly independent

rows (or equivalently columns) of A. We say a matrix is full row (column) rank if

its rank is equal to the number of its rows (columns). In particular A−1 exists if and

only if A is a square matrix with full rank.

If matrix A is a square matrix, the trace of A, denoted as trace(A), is the sum

of entries on the main diagonal if A. The trace of a matrix has a very important

property: it is invariant under cyclic permutations, i.e, if matrix A1 has m columns

and matrix A3 has m rows,

trace(A1A2A3) = trace(A3A1A2).
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Another concept that is related with trace is the Frobenius norm. The Frobenius

norm of A is denoted as ∣∣A∣∣F and defined as
√
trace(ATA), or, equivalently, the

square root of the squared sum of all entries in A.

As a powerful tool in matrix analysis, matrix decomposition is extensively used

in the dissertation. We focus on two decompositions: eigenvalue decomposition and

singular value decomposition. Given a matrix A, the eigenvalue decomposition of A

always exists when A is symmetric. It can be written as the form of A = QDQT

where Q is an orthogonal matrix whose columns are eigenvectors of A and D is

a diagonal matrix whose diagonal entries are eigenvalues of A. The singular value

decomposition of A always exists and is in form of A = QDPT where Q and P are

orthogonal matrices and D is a diagonal matrix padding with columns or rows of 0s.

We will also rely on the notion of the positive semidefinite matrix. A symmetric

square matrix A is called positive semidefinite, denoted as A ⪰ 0, if for any vector x,

xTAx ≥ 0. In particular, for any matrix A, ATA ⪰ 0. Here we present two equivalent

conditions to positive semidefinite.

Proposition 2.6. Given an n × n symmetric matrix A, both of the following condi-

tions are equivalent with A ⪰ 0.
(i) All the eigenvalues of A are non-negative.

(ii) For any 1 ≤ i1 < . . . < ik ≤ n, the determinant of the matrix that consists of

the intersection of the ith1 , . . . , i
th
k rows and ith1 , . . . , i

th
k columns of matrix A is

non-negative.

In addition, we consider a generalization of matrix inverse, called the Moore-

Penrose pseudoinverse, which is defined as following.

Definition 2.8. (Moore-Penrose Pseudoinverse [11]) Given a m × n matrix

A, a matrix A+ is the Moore-Penrose pseudoinverse of A if it satisfies each of the

following:
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AA+A =A, A+AA+ =A+, (AA+)T =AA+, (A+A)T =A+A.

The Moore-Penrose pseudoinverse is unique and can be computed with the singu-

lar value decomposition of a matrix.

Proposition 2.7 ([11]). Given an n × n diagonal matrix D0, D+0 = {d′ij} is an n × n

diagonal matrix such that

d′ij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 dij = 0
1
dij

dij ≠ 0
For an m×n matrix D consists of a diagonal matrix D0 padding with columns (rows)

of 0s, D+ is an n ×m consists of the diagonal matrix D+0 with rows (columns) of 0s.

Given a matrix A with singular value decomposition A =QDPT , A+ = PD+QT .

When A has full column rank, A+ = (ATA)−1AT . We include some important

properties of the Moore-Penrose pseudoinverse in the following proposition.

Proposition 2.8. ([11]) The Moore-Penrose pseudoinverse satisfies the following

properties:

1. Given any matrix A, there exists a unique matrix that is the Moore-Penrose

pseudoinverse of A.

2. Given a vector y, we have ∣∣y −Ax∣∣2 ≥ ∣∣y −AA+y∣∣2 for any vector x.

3. For any satisfiable linear system BA = W, WA+ is a solution to the linear

system and ∣∣WA+∣∣F ≤ ∣∣B∣∣F for any solution B to the linear system.
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CHAPTER 3

MATRIX MECHANISM

This chapter covers the matrix mechanism, a novel mechanism that answers a

group of linear queries under differential privacy. Central to our approach is the idea

that “what you ask is different from what you want”, which relies on the distinction

between a query strategy and a query workload, both of which are sets of linear

queries. A query workload is a set of queries that is originally submitted to the

mechanism. Though a query workload can be answered directly with Laplace or

Gaussian mechanism, the noise required may be more than necessary due to the

linear dependency among the queries in the query workload. The matrix mechanism,

instead, submits an alternative set of linear queries, called query strategy, whose

answer can later be used to derive the answer to the query workload with linear

combinations.

The matrix mechanism is a general framework that can applied to any differentially

private mechanism. It is particularly powerful when the underlying differentially

private mechanisms add i.i.d noise that is independent of the input database. Many

works in differential privacy before or parallel with the matrix mechanism can actually

be viewed as special instances of the matrix mechanism [19, 40, 70, 39, 9].

In this chapter, we formally define the matrix mechanism, and follow with a thor-

ough error analysis that provides analytic formula of error under the matrix mecha-

nism. Our error formula theoretically explains the experimental results in many of

works above and show that many those experimental results can be acquired theo-

retically independent of any concrete database. As an example, a case study that
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analyzes algorithms in [40, 70] using the matrix mechanism is also included in this

chapter. Furthermore, we formulate the corresponding optimization problems to find

the strategy that minimize the error of a given workload. The matrix mechanism

with non-negativity constraint is briefly discussed at the end of this chapter.

3.1 The matrix mechanism

A linear query w can be answered directly with the Laplace or Gaussian mech-

anism. Under ε-differential privacy, it has also been proven [32] that the amount of

noise added by the Laplace mechanism is optimal. However, when answering a batch

of linear queries simultaneously, the noise required by either the Laplace or Gaussian

mechanism may be more than necessary due to the linear dependency among the

queries in the query workload. Alternatively, previous works derive the answer for

the workload from the noisy answer of a selected subset [40, 19]. In addition, other

works [9, 70] apply manually designed linear transformations to the data vector, and

add Laplace or Gaussian noise on the transformed domain. An estimated data vec-

tor can be generated by the inverse transformation and the workload queries can be

answered by the estimated data vector.

The idea of the matrix mechanism is more general compared with past works.

The matrix mechanism submits an alternative set of linear queries, called the query

strategy, whose answer can later be used to derive the answer to the query workload

using linear combinations. Such a query strategy can be a subset of the query work-

load, queries of linear transformation, or an arbitrary set of linear queries that can

represent the query workload using linear combinations.

In this section we present the formal basis for the derivation process. We define the

set of queries whose estimates can be derived and we provide optimal mechanisms

for deriving estimates. In the remainder of this dissertation, we use W and A to
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denote the query workload and query strategy as well as their representation matrices,

respectively.

Given a query strategy A and its noisy answer from any differentially private

algorithm, in order to answer a query workload W with the answer to A, each query

w in W should be expressible as a linear combination of queries in A:

Definition 3.1 (A workload supported by a strategy). Given a query workload W

and a query strategy A, we say A supports W if each query in W can be expressed as

a linear combination of queries in A. In other words, there exists a solution matrix

X to the linear system W =XA.

To derive the answer to W, one needs to solve linear system W = XA. Noticing

that there maybe multiple solutions to the linear system, we take the advantage of the

uniqueness of the Moore-penrose pseudoinverse of matrix A and express the answer

to W as following:

Definition 3.2 (Estimate the answer of W using A). Let A be a query strategy that

supports W and ŷ be the noise answers to A. Then the noisy answer to W is defined

as WA+ŷ, where A+ is the Moore-penrose pseudoinverse of matrix A.

Example 3.1. Recall the cell conditions and queries in Figure 2.1. Let the query

workload be W1 = {q2,q3,q4}. Then query strategy A1 = {q1,q5} does not support

W since it can not represent q2, q3 or q4. A2 = {q3,q4} supports W1 and

WA+2 = ⎡⎢⎢⎢⎢⎣
1 1
1 0
0 1

⎤⎥⎥⎥⎥⎦ .
In such case, the answer to W1 can be uniquely computed from the answer to A2,

without any further assumption to the data vector x.

Now we introduce the matrix mechanism. Given any differentially private algo-

rithm K that answers linear queries, the matrix mechanism can be considered as an
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Figure 3.1. Query answering using the matrix mechanismMK,A.

enhancement mechanism to K. With the supporting query strategy A, the matrix

mechanism is denoted asMK,A.

Definition 3.3 (Matrix Mechanism). Given an m × n workload matrix W, a p × n

strategy matrix A that supports W and a differentially private algorithm K(A,x) that
answers A with a given database instance x. The matrix mechanism MK,A outputs

the following vector:

MK,A(W,x) =WA+K(A,x). (3.1)

Figure 3.1 illustrates the process of query answering using the matrix mechanism

MK,A. When it comes a query workload W, the matrix mechanism chooses a query

strategy A that supports W, answers A with the differentially private algorithm K

and outputs the derived answer to W using the answer to A. The power of the

matrix mechanism comes from the potential that the query strategy A can be more

carefully designed to be answered under differential privacy. In addition, the matrix

mechanism inherits the privacy and unbiased property of K.

Proposition 3.1. The matrix mechanism MK,A shares the same privacy guarantee

with K and is unbiased if K is unbiased.

Proof. According to Eqn (3.1), the matrix mechanism can be considered as a post

process on K(A,x) and hence share the same privacy guarantee with K(A,x). In

addition, noticing WA+A =W,

E[MK,A(A,x)] = E[WA+K(A,x)] =WA+E[K(A,x)] =WA+Ax =Wx.
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In general, Eqn. (3.1) is valid with any differentially private mechanism K. The

choice of K impatcs the hardness of error analysis and the complexity of find a query

strategy A to minimize error on a given workload W. Here we are interested in a

differentially private algorithm K that satisfies three properties: 1) K(W,x) achieves
differential privacy by adding noise to Wx; 2) the distribution of noise added is

independent with W and x; 3) the standard deviation of noise added is linearly

scaled up with ∆W and is independent with x. Analytically, such mechanism K can

be represented into the following form:

K(W,x) =Wx +∆Wb̃, (3.2)

where b̃ is a vector of i.i.d random variables that does not depend on W or x. Many

data independent differentially private mechanisms based on adding noise can be rep-

resented in the form of Eqn. (3.2), such as the Laplace mechanism [25, 26], Gaussian

mechanism[51, 26], the Geometric mechanism [32], and the K-Norm mechanism [39].

Proposition 3.2. When K has the form of Eqn (3.2), the matrix mechanism can be

presented as:.

MK,A(W,x) =Wx +WA+∆Ab̃. (3.3)

In the rest of this dissertation, we focus on the matrix mechanism with the form

of Eqn. (3.3). In particular, we use ε-matrix mechanism to denote the case in which K

is the Laplace mechanism, and (ε, δ)-matrix mechanism to denote the case in which

K is the Gaussian mechanism.

According to Proposition 2.8, since entries of ∆Ab̃ are generated from i.i.d random

distributions, WA+ is the min-variance estimation to the noisy answer of A.

Proposition 3.3. When K has the form of Eqn (3.2), the matrix mechanismMK,A

produces the min-variance estimator to Wx given K(A,x).
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Given the noisy answer toA, there are multiple ways to estimate the answer toW.

[76] applies matrix decomposition on W and claims to solve a matrix B to minimize

the square error of answeringW. As Prop. 3.3 indicates, their solution matrix B must

be exactly the same as WA+. On the other hand, in [75], a fixed “recovery” matrix

R is used regardless of the noisy distribution of b̃A, which, according to Prop. 3.3, is

suboptimal.

3.2 Analyzing the error of the matrix mechanism

The error introduced using the matrix mechanism is impacted by two factors: the

noise from the differentially private mechanism K and the linear combinations that

generate the answer to the query workload W from the answer to the query strategy

A. We analyze the error of the matrix mechanism in this section and further derive

a closed form expression with given K, W and A. We also studied the equivalent

query workloads and query strategies under the matrix mechanism.

3.2.1 Error of the matrix mechanism

Given a query w and a query strategy A that supports w, the error of answering

w using the matrix mechanismMK,A is defined as the mean square error (variance)

of the estimated answer to w.

Definition 3.4 (Error of a single query). Let x be the database instance and A be a

query strategy. Given a single query w that A supports, the error of answer w using

the matrix mechanism MK,A is:

ErrorK,A(w) = E[(wx −wK(A,x))2].

For a query workload W that A supports, the total error of answering W using the

matrix mechanism MK,A is:
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TotalErrorK,A(W) = ∑
w∈W

E[(wx −wA+K(A,x))2].

With a query strategy A, the following proposition describes how to compute the

error of answering a query w or a query workload W that is supported by A using

the matrix mechanismMK,A.

Proposition 3.4. Let A be a query strategy. Given a query w that A supports, the

error of answering w using the matrix mechanism MK,A is:

ErrorK,A(w) = P (K)∆2
A∣∣wA+∣∣2F . (3.4)

For a query workload W that A supports, the total error of answering W using the

matrix mechanism MK,A is:

TotalErrorK,A(W) = P (K)∆2
A∣∣WA+∣∣2F . (3.5)

Here P (K) is a constant determined by K and independent with W, A and x.

Proof. Recall that K(A,x) =Ax+∆Ab̃ and the entires of b̃ are i.i.d random variables.

Let b̃ = (b1, . . . , bn). According to Definition 3.4, the error of answer w using the

matrix mechanismMK,A is:

ErrorK,A(w) = E[(wx −wA+K(A,x))2] = E[(wx −wA+(Ax +∆Ab̃))2]
= E[(wA+∆Ab̃)2]
= Var(wA+∆Ab̃)
= Var(b1)∆2

A∣∣wA+∣∣2F .
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Therefore, for a given query workload W,

TotalErrorK,A(W) = ∑
w∈W

E[(wx −wA+K(A,x))2
= Var(b1) ∑

w∈W

∆2
A∣∣wA+∣∣22

= Var(b1)∆2
A∣∣WA+∣∣2F .

Let P (K) = Var(b1), and recall that b̃ only depends on K. P (K) is dependent with
W, A and x.

Since we only consider the matrix mechanism based on the data independent differ-

entially private algorithm, the results in Proposition 3.4 do not contain the database

instance x as well. Recall the parameter P (K) is a constant that determined by the

specific private algorithm K. In particular, P (K) = 2/ε2 and P (K) = 2 log(1/δ)/ε2
when K is Laplace mechanism and Gaussian mechanism, respectively. Moreover, the

computation of ∆A is also determined by the choice of K: it can either be the max-

imum L1 or L2 norm of the columns of A depending on whether K satisfies ε- or

(ε, δ)-differential privacy, respectively.
Notice that a query strategy A impacts both Eqn. (3.4) and (3.5) in two ways:

through ∆A and ∣∣WA+∣∣F . The former determines the cost of querying A using K

and the later reflects the difficulty of computing the answer to W from the answer

to A. To lower the error, an ideal query strategy A should have low sensitivity while

being as similar to W as possible. Here let us consider two extreme cases to those

requirements. The first case is A = I, in which the sensitivity is as low as 1. However,

if the queries in W are biased towards some cells or some of their combinations, the

value of ∣∣WA+∣∣F can be very large and hence lead to large noise. The other case is

A =W, in which A and W are exactly the same. In such case ∣∣WA+∣∣F = rank(W),
which is small, but the strategy performs badly if ∆W is high. In many practical cases,
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the best strategy is the one that achieves a proper balance between the sensitivity

and the similarity to W.

3.2.2 Total error equivalent workloads

For two distinct queries w1 and w2, one can verify that the query strategy A =
[ w1

2w2
] supports w1 and w2 and guarantees ErrorA(w1) ≠ ErrorA(w2). Therefore,

there are no two queries that have the same error on all query strategies that support

both of them. However, there exist pairs of query workloads whose total error are

the same for all of their commonly supporting query strategies. Such workloads are

defined as total error equivalent workloads.

Definition 3.5. Two query workloads W1 and W2 are called total error equivalent,

if for any query strategy A that supports both W1 and W2,TotalErrorA(W1) =
TotalErrorA(W2).

Analysing Eqn. (3.5) leads to the following condition of total error equivalent.

Proposition 3.5. Given two query workloads W1 and W2 where W1 has at least

as naby queries as W1. W1 and W2 are total error equivalent, if and only if there

exists an orthogonal matrix Q such that W1 =QW2 or W1 =Q [W2

0
] if W1 has more

queries than W2.

Proof. (⇐): When W1 = QW2 or W1 = Q [W2

0
] if W1 has more queries than W2,

we have WT
1 W1 =WT

2 W2. Notice that

∣∣WA+∣∣2F = trace(WT (ATA)+W) = trace(WTW(ATA)+),

for any query strategy A that supports both W1 and W2, TotalErrorA(W1) =
TotalErrorA(W2).
(⇒): IfWT

1 W1 ≠WT
2 W2, consider the eigenvalue decomposition ofWT

1 W1−WT
2 W2 =
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QDQT and d1, . . . , dn be the diagonal entries of D. Without loss of generality, as-

sume d1 ≠ 0 and let D′ = diag(d′1, . . . , d′n) where d′1 = √∣d1∣/√∣d2∣ + . . . + ∣dn∣ + 1 and

d′2 = . . . = d′n = 1. Let query strategy A = D′QT . A supports W1 and W2 since it is

full rank. Moreover,

∣∣W1A
+∣∣2F − ∣∣W2A

+∣∣2F = trace(WT
1 (ATA)+W1) − trace(WT

2 (ATA)+W2)
= trace(WT

1 W1(ATA)+) − trace(WT
2 W2(ATA)+)

= trace((WT
1 W1 −W

T
2 W2)(ATA)+)

= d1∣d1∣ (∣d2∣ + . . . + ∣dn∣ + 1) + d2 + . . . + dn ≠ 0.

When WT
1 W1 =WT

2 W2, there exists singular value decompositions W1 = Q1D1PT

and Q2D2PT , where the non-zero entries of D1 and D2 are the same. Thus, let

Q0 =Q1QT
2 orQ0 =Q1 [Q2 0

0 I
] ifW1 has more queries thanW2, andW1 =Q0W2.

Noticing that any query strategy that supportsW will supportQW for any matrix

Q, the conclusion of Proposition 3.5 also indicates that the total error equivalent

workloads share the same set of supporting strategies.

3.2.3 Equivalence between query strategies

In both Eqn. (3.4) and (3.5), the error is computed by ∆A and a Frobenius norm

term ∣∣wA+∣∣2F and ∣∣WA+∣∣2F , respectively. According to the definition of the Frobenius

norm,

∣∣wA+∣∣2F = trace(wA+(wA+)T ) = trace(w(ATA)+w),
∣∣WA+∣∣2F = trace(WA+(WA+)T ) = trace(W(ATA)+WT ).

The righthand side of both equations above share a common term (ATA)+, which we

call an error profile.
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Definition 3.6. Given a query strategy A, the matrix (ATA)+ is called the error

profile of the query strategy A.

When the matrix mechanism is instantiated with A, its error profile characterizes

the distribution of the error of answering queries under the matrix mechanism: the

diagonal entries contains the variance of error for each cell and the off-diagonal en-

tries encodes the covariance of error between cells. We hence define the equivalence

between query strategies according to their error profiles and the error of answering

different workloads using those strategies.

Definition 3.7 (Profile Equivalence between query strategies). Given two query

strategies A1 and A2. We say that A1 and A2 are profile equivalent if there exists a

non-zero constant c such that

(AT
1A1)+ = c(AT

2A2)+.

The profile equivalent strategies are independent og the choice of K. We also

consider strategies equivalence, which depends on whether K satisfies ε- or (ε, δ)-
differential privacy.

Definition 3.8 (Equivalence between strategies). Given two query strategies A1 and

A2, We say that A1 and A2 are equivalent under K if they support the same sets of

queries and for any query w that their support, ErrorK,A1
(w) = ErrorK,A2

(w).
Example 3.2. Figure 3.2 contains three query strategies H′4, H

′′
4 and Y4 that are

profile equivalent. In particular, under ε-differentially private mechanisms (e.g. the

Laplace mechanism), H′4 and Y4 are equivalent but not equivalent with H′′4 .

Besides the definition, there are other equivalent conditions for the profile equiv-

alence, based on strategy matrices and their transformations.
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0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
0 0 1 1
√
2 0 0 0

0
√
2 0 0

0 0
√
2 0

0 0 0
√
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H′4 H′′4 Y4

Figure 3.2. Profile equivalent strategies with dom = {1,2,3,4}.

Proposition 3.6. Given two query strategies A1 and A2, where A1 has at least as

many rows as A2. All of the following conditions are equivalent:

(i) A1 and A2 are profile equivalent;

(ii) There exists a non-zero constant c such that AT
1A1 = c ⋅AT

2A2;

(iii) There exists a non-zero constant c and an orthogonal matrix Q such that A1 =
c ⋅QA2 or A1 = c ⋅Q [A2

0
] if A1 has more rows than A2;

Proof. (i) ⇔ (ii): According to the definition of the profile equivalent, (AT
1A1)+ =

c ⋅AT
2A2)+. Take the Moore-Penrose pseudoinverse to both sides of the equation and

we have AT
1A1 = 1

c
⋅AT

2A2.

(ii) ⇒ (iii): Since AT
1A1 = c ⋅AT

2A2, there exists singular value decompositions of

A1 = Q1D1PT
1 and A2 = Q2D2PT

2 such that P1 = P2 and the diagonal entries of D1

is equal to
√
c times the diagonal entries of D2. If A1 has more rows than A2, the

matrix Q =Q1 [QT
2

0

0 I
] is the orthogonal matrix such that A1 = √c ⋅Q [A2

0
].

(iii) ⇒ (ii): AT
1A1 = c2 ⋅AT

2Q
TQA2 = c2 ⋅AT

2A2.

The conditions in Proposition 3.6 imply that the profile equivalent strategies sup-

port the same set of queries. In addition, for each query they support, the ratio

between the error introduced by those strategies is consistent.
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Corollary 3.1. Given two query strategies A1 and A2 that are profile equivalent.

For any query W, A1 supports W if and only if A2 supports W. Furthermore,

there exists a non-zero constant c such that given a differentially private algorithm

K, for any workload query W that A1 and A2 support, TotalErrorK,A1
(W) =

c ⋅TotalErrorK,A2
(W).

Proof. Given a query workload W, if A1 supports W, there exists a matrix X such

that W = XA1. According to Proposition 3.6(iii), A1 and A2 are profile equivalent

if and only if there exists a non-zero constant c and a orthogonal matrix Q such that

A1 = c ⋅QA2. Then c ⋅XQ satisfies W = c ⋅XQA2 and therefore A2 supports W as

well.

The definition of profile equivalent indicates that there is a constant c′ such that

(AT
1A1)+ = c′ ⋅ (AT

2A2)+. Thus for any query workload that A1 supports:

TotalErrorK,A1
(W )

TotalErrorK,A2
(W ) = ∆2

A1
∣∣WA+1∣∣2F

∆2
A2
∣∣WA+2∣∣2F

= ∆2
A1

trace(W(AT
1A1)+WT )

∆2
A2

trace(W(AT
2A2)+WT ) = c′∆

2
A1

∆2
A2

,

where the ratio is a value that is independent with W.

The following proposition reveals that the strategy equivalence is a special case of

profile equivalence with an extra constraint.

Proposition 3.7. Two query strategies A1 and A2 are equivalent if they are profile

equivalent and

∆2
A1
(AT

1A1)+ =∆2
A2
(AT

2A2)+,
In particular, A1 and c ⋅A1 are equivalent for any non-zero scalar c.
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Proof. (⇐): If A1 and A2 are profile equivalent, Corollary 3.1 indicates that they

support the same set of query workloads. Furthermore, one can verify that for any

workload query that A1 and A2 support,

∆2
A1
∣∣WA+1∣∣2F =∆2

A1
trace(WT (AT

1A1)+W)
=∆2

A2
trace(WT (AT

2A2)+W)
=∆2

A2
∣∣WA+2∣∣2F .

(⇒): First we prove that AT
1A1 and AT

2A2 have same eigenvectors. Otherwise, let Q0

be the matrix whose rows are orthogonal eigenvectors that are shared by A1 and A2,

Q1 be the matrix whose rows are orthogonal eigenvectors of A1 that are supported

by A1 and not eigenvectors of A2 and Q2 be the matrix whose rows are orthogonal

eigenvectors of A2 that are supported by A2 and are not eigenvectors of A1. In

addition, let D1 be the diagonal matrix whose diagonal entries are the eigenvalues

of AT
1A1 corresponding to the rows of Q1 and let D2 be the diagonal matrix whose

diagonal entries are the eigenvalues of AT
2A2 corresponding to the rows of Q2.

Noticing that the spanning space of Q1 contains all vectors that are supported

by A1 and are orthogonal to all vectors in Q0 and so does the spanning space of Q2.

Recall the equivalent query strategies support the same set of queries, the rows in Q1

and Q2 are actually two orthogonal basis to the same subspace. There hence exists

an orthogonal matrix Q such that Q1 =QQ2. For any vector v, vQ1 is a query that

A1 supports and
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ErrorK,A1
(vQ1) = P (K)∆2

A1
∣∣vQ1A

+
1∣∣2F

= P (K)∆2
A1

trace(vQ1(AT
1A1)+QT

1 v
T )

= P (K)∆2
A1

vD−11 vT ,

ErrorK,A2
(vQ1) = P (K)∆2

A2
∣∣vQ1A

+
2∣∣2F

= P (K)∆2
A2

trace(vQQ2(AT
2A2)+QT

2Q
TvT )

= P (K)∆2
A2

vQD−12 QTvT .

Since A1 and A2 are equivalent, ErrorK,A1
(vQ1) = ErrorK,A2

(vQ1) for any v,

which is equivalent to for any v,

ErrorK,A1
(vQ1) −ErrorK,A2

(vQ1) = P (K)v(∆2
A1

D−11 −∆
2
A2

QD−12 QT )vT = 0.

Thus ∆2
A1

D−11 = ∆2
A2

QD−12 QT and we can consider Q(∆2
A2

D−12 )QT is an eigenvalue

decomposition of matrix ∆2
A1

D−11 . Recall Q1 = QQ2 and none of the rows of Q1

belongs to Q2. Therefore there is no columns in Q that consists one entry equal to

1 and all other entries equal to 0, which indicates all diagonal entries of D−12 should

be equal. However, in such case, the rows of Q1 will be eigenvectors of AT
2A2, which

leads to a contradiction and we knownAT
1A1 andAT

2A2 must have same eigenvectors.

In addition, given an eigenvector u of AT
1A1 and AT

2A2 that A1 and A2 support.

Let AT
1A1uT = ξ1uT and AT

2A2uT = ξ2uT . Since A1 and A2 support u, ξ1 ≠ 0 and

ξ2 ≠ 0. Furthermore,
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ErrorA1
(u) = P (K)∆2

A1
∣∣uA+1∣∣2F

=∆2
A1

trace(u(AT
1A1)+uT ) = ∆2

A1
∣∣u∣∣22
ξ1

,

ErrorA2
(u) = P (K)∆2

A2
∣∣uA+2∣∣2F

=∆2
A2

trace(u(AT
2A2)+uT ) = ∆2

A2
∣∣u∣∣22
ξ2

,

Since ErrorA1
(u) = ErrorA2

(u), ∆2
A1
ξ2 = ∆2

A2
ξ1. Noticing it is true for all pairs

of corresponding eigenvalues of AT
1A1 and AT

2A2, we have

∆2
A2
(AT

1A1) =∆2
A1
(AT

2A2).

According to Corollary 3.1, A1 and A2 are profile equivalent and

∆2
A1
(AT

1A1)+ =∆2
A2
(AT

2A2)+.

Proposition 3.8. Given a differentially private algorithm K, If ∆A = ¯̄∆A, all profile

equivalent query strategies are equivalent.

Proof. Noticing that ¯̄∆2
A is equal to the largest diagonal entry of matrix ATA, given

two query strategies A1 and A2 that are profile equivalent, by definition there exists

a constant c such that (AT
1A1)+ = c ⋅ (AT

2A2)+. Then c ⋅AT
1A1 =AT

2A2 and c ⋅ ¯̄∆2
A1
=

¯̄∆2
A2

. Substitute those values into Eqn. (3.5) and we know TotalErrorK,A1
(W) =

TotalErrorK,A2
(W) for any query workload W that A1 and A2 support.
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3.3 Application: analyzing Hn and Yn using the matrix mech-

anism

In this section we use our techniques to analyze and improve existing approaches.

We analyze two techniques proposed recently [70, 40]. Both strategies can be seen

as instances of the matrix mechanism, each using different query strategies designed

to support a workload consisting of all range queries. Although both techniques can

support multidimensional range queries, we focus our analysis on one dimensional

range queries, i.e. interval queries with respect to a total order over dom(B).
We will show that the seemingly distinct approaches have remarkably similar

behavior: they have low (but not minimal) sensitivity, and they are highly accurate for

range queries but much worse for other types of queries. We describe these techniques

briefly and how they can each be represented in matrix form.

In the hierarchical scheme proposed in [40], the query strategy can be envisioned

as a recursive partitioning of the domain. We consider the simple case of a binary

partitioning, although higher branching factors were considered in [40]. First we ask

for the total sum over the whole domain, and then ask for the count of each half of

the domain, and so on, terminating with counts of individual elements of the domain.

For a domain of size n (assumed for simplicity to be a power of 2), this results in a

query strategy consisting of 2n − 1 rows. We represent this strategy as matrix Hn,

and H4 in Fig. 2.3 is a small instance of it.

In the wavelet scheme, proposed in [70], query strategies are based on the Haar

wavelet. For one dimensional range queries, the technique can also be envisioned as a

hierarchical scheme, asking the total query, then asking for the difference between the

left half and right half of the domain, continuing to recurse, asking for the difference in

counts between each binary partition of the domain at each step. Though presented

differently in [70], we prove later in this section the equivalence of that construction

with our formulation Yn. This results in n queries—fewer than the hierarchical
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scheme of [40]. The matrix corresponding to this strategy is the matrix of the Haar

wavelet transform, denoted Yn, and Y4 in Fig. 2.3 is a small instance of it.

Thus Hn is a rectangular (2n − 1) × n strategy, with answers derived using the

linear regression technique, and Yn is an n × n strategy with answers derived by

inverting the strategy matrix. As suggested by the examples in earlier sections, these

seemingly different techniques exhibit similar behavior. We analyze them in detail

below, proving new bounds on the error for each technique, and proving new results

about their relationship to one another. We also include In in the analysis, which

is the strategy represented by the dimension n identity matrix, which asks for each

individual count.

3.3.1 Representing the Haar wavelet technique

The representationYn is different from the original presentation in Xiao et al. [70].

The following theorem shows the equivalence of both representations.

Proposition 3.9 (Equivalence of Haar wavelet representations). Let x̂Haar denote the

estimate derived from the Haar wavelet approach of Xiao et al. [70]. Let x̂Yn
denote

the estimate from asking query Wn. Then x̂Haar and x̂Yn
are equal in distribution,

i.e., Pr[x̂Haar ≤ x] = Pr[x̂Yn
≤ x] for any vector x.

Proof. Given vector x, the Haar wavelet is defined in terms of a binary tree over x

such that the leaves of the tree are x.

Each node in the tree is associated with a coefficient. Coefficient ci is defined as

ci = (aL−aR)/2 where aL (aR) is the average of the leaves in the left (right) subtree of

ci. Each ci is associated with a weight W(ci) which is equal to the number of leaves

in subtree rooted at ci. (In addition, there is a coefficient c0 that is the equal to the

average of x and W(c0) = n).
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An equivalent definition for ci is ci = ∑nj=1 xjzi(j) where for i > 0,

zi(j) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/W(ci), if j is in the left subtree of ci

−1/W(ci), if j is in the right subtree of ci

0, otherwise

For i = 0, then zi(j) is equal to 1/W(c0) for all j.
Let A be a matrix where aij = zi(j). The ith row of A corresponds to coefficient

ci. Since there are n coefficients, A is an n × n matrix.

The approach of [70] computes the following yHaar = Ax + E where E is an n × 1

vector such that each Ei is an independent sample from a Laplace distribution with

scale bi = 1+logn

εW(ci)
. Observe that E can be equivalently represented as:

E =R−1 (1 + logn
ε

) b̃

where R is an n × n diagonal matrix with rii = W(ci). The estimate for x is then

equal to:

x̂Haar =A−1yHaar = x +A−1E
= x +A−1R−1 (1 + logn

ε
) b̃

= x + (RA)−1 (1 + logn
ε

) b̃

We now describe an equivalent approach based on the matrix Yn. Observe that

Yn =RA. The sensitivity of Yn is ∆Yn
= 1+ logn. Using the matrix mechanism, the

estimate x̂Yn
is:
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x̂Yn
=Yn

−1 (Ynx + (∆Yn

ε
)b̃))

= x +Yn
−1∆Yn

ε
b̃

= x + (RA)−1 (1 + logn
ε

) b̃

3.3.2 Similarity between Hn and Yn

Though represented differently, Hn and Yn are actually very similar strategies

under the matrix mechanism. In particular, a strategy matrix that is equivalent to

Yn can be achieved by removing the query of total sum and adding identity queries

on each cell.

Theorem 3.1. Let n be a power of 2, denoted as n = 2k. Let H′n be the matrix that

remove the row of all 1s from matrix [Hn

In
]. Then H′n and W are equivalent strategies

under both ε- and (ε, δ)-differential privacy.
Proof. Noticing H′n has the same L1 and L2 sensitivity with Yn, it is sufficient to

proof H′n
TH′n =YT

nYn, which is equivalent to prove HT
nHn =YT

nYn + 1n×n − In.

Recall n = 2k, and we will prove the conclusion by induction on k. When k = 1,

HT
2H2 =

⎡⎢⎢⎢⎢⎢⎢⎣
2 1

1 2

⎤⎥⎥⎥⎥⎥⎥⎦
,

YT
2 Y2 =

⎡⎢⎢⎢⎢⎢⎢⎣
2 0

0 2

⎤⎥⎥⎥⎥⎥⎥⎦
.

Assume the conclusion is correct for k − 1. Since
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) H4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 1
2 3 1 1
1 1 3 2
1 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(b) HT

4
H4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(c) H′

4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(d) Y4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 0
1 3 0 0
0 0 3 1
0 0 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(e) H′

4

T
H′

4
,

YT

4
Y4

Figure 3.3. The strategy matrices H4, H′4 and Y4.

H2k =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11×2k−1 11×2k−1

H2k−1 0

0 H2k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y2k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y2k−1

11×2k−1

0

−11×2k−1

Y2k−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

one can verify that HT
2k
H2k =YT

2k
Y2k + 12k×2k − I2k .

Example 3.3. Figure 3.3 contains the strategy matrices H4, H′4 and Y4, which

reveals the relationship among those matrices. Adding I4 to H4 and removing the row

of all 1s yields H′4. In addition, we can see that H′4 and Y4 are equivalent strategies

under both ε- and (ε, δ)- differentially private mechanisms.

It follows from the similarity of Hn and Yn that the error profiles are asymptoti-

cally equivalent to one another. We thus prove a close equivalence between the error

of the two techniques:
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Corollary 3.2. For any linear counting query w and differentially private mechanism

K,

1

2
ErrorK,Y(w) ≤ ErrorK,H(w) ≤ 2ErrorK,Y(w).

Proof. According to Theorem 3.1, let H′n be the matrix that remove the row of all

1s from matrix [Hn

In
]. Since H′n and Yn are equivalent strategies under both ε- and

(ε, δ)- differentially private mechanisms, it is sufficient to prove that for any linear

counting query w,

1

2
ErrorK,H′n(w) ≤ ErrorK,Hn

(w) ≤ 2ErrorK,H′n(w).

Let v =wH+n, and v′ be a vector such that

v′i =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 1 ≤ i ≤ 2
vi−1 3 ≤ i ≤ 2n
0 2n + 1 ≤ i ≤ 3n

.

One can verify that v′H′n = vHn =w. Since

∣∣wH′n
+∣∣F ≤ ∣∣v′∣∣F ≤ 2∣∣v∣∣F = ∣∣wH+n∣∣F ,

noticing that ∆̄Hn
= ∆̄H′n

and ¯̄∆Hn
= ¯̄∆H′n

, ErrorK,H′n(w) ≤ 2ErrorK,Hn
(w).

On the other hand, H′n contains two copies of queries In, which is equivalent to

reduce the error on those queries by a factor of 2. Noticing all other queries in H′n

are contained in Hn, we have ErrorK,Hn
(w) ≤ 2ErrorK,H′n(w).

3.3.3 Error analysis for In,Hn and Yn

In this part we analyze the error for two specific workloads of interest. We focus

on two typical workloads: WR, the set of all range queries, and W01, which includes
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(a) Use Hn as the strategy ma-
trix

(b) Use Yn as the strategy ma-
trix

(c) Use In as the strategy ma-
trix

Figure 3.4. Error of answering queries in WR under the Laplace mechanism with
n = 512, ε = 1.
arbitrary predicate queries, since it consists of all linear 0-1 queries. Note that at-

tempting to use either of these workloads as strategies leads to high sensitivity: the

sensitivity ofWR is O(n2) while the sensitivity ofW01 is O(2n). Here we consider the
total error as well as the maximum error under the matrix mechanism, and the later

one is defined as the worst case error of a single query and denoted as MaxError.

In the original papers describing Hn and Yn [40, 70], both techniques are shown

to have worst case error bounded under ε-differential privacy by O(log3 n) on WR.

Both papers resort to experimental analysis to understand the distribution of total

error across the class of range queries. We note that our results allow the error for

any query to be analyzed analytically.

Example 3.4. Figure 3.4 demonstrates error of answering queries in WR under the

Laplace mechanism with n = 512 and ε = 1 using strategy matrices Wn, Yn and In,

respectively.

Next we summarize the total error and the maximum error for these strategies.

The following results tighten known bounds for WR, and establish new bounds for

W01 with the ε-differential privacy.
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Theorem 3.2 (Error and Maximum Error). The total error and the maximum er-

ror on workloads WR and W01 using strategies Hn,Yn, and In under the ε-matrix

mechanism is given by:

TotalError Hn Yn In

WR Θ(n2 log3 n/ε2) Θ(n2 log3 n/ε2) Θ(n3/ε2)
W01 Θ(n2n log2 n/ε2) Θ(n2n log2 n/ε2) Θ(n2n/ε2)

MaxError Hn Yn In

WR Θ(log3 n/ε2) Θ(log3 n/ε2) Θ(n/ε2)
W01 Θ(n log2 n/ε2) Θ(n log2 n/ε2) Θ(n/ε2)

Proof. Since Wn and Hn are asymptotically equivalent, we can derive the error

bounds for either. We analyze the error of Wn. Let n = 2k+1, consider the range

query [2k − 1
3
(4⌊k−12 ⌋+1 − 1),2k + 1

3
(4⌊k−12 ⌋+1 − 1)]. The error of this query is Θ(log3 n),

which follows from algebraic manipulation of Equation 3.5, facilitated by knowing the

eigen decomposition of (WT
nWn)+. Since Xiao et al. [70] have already shown that the

worst case error of Wn is O(log3 n), we know the maximum error of answering any

query in WR is Θ(log3 n).
Moreover, it follows from algebraic manipulation that the error of answering any

query w where the number of non-zero entries is 1 is O(log2 n). Therefore the error

of any 0-1 query is O(n log2 n). Consider the query (0,1,0,1, . . . ,0,1): it can can

be shown to have error Θ(n log2 n). Therefore the maximum error of answering any

query in W01 is Θ(n log2 n).
Recall that when K is the Laplace mechanism,

TotalErrorA(W) = 2

ε2
∆̄2

A∣∣WA+∣∣2F .
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Total error of workloads WR, W01 can be computed by applying the equation above

to strategies Hn,Wn and In.

Given a strategy matrixA, the only differences in computing the an error of answer

any query w with A under the ε- and (ε, δ)-matrix mechanism are the sensitivity and

the constant P (K). Therefore the total error and the maximum error of the strategies

above under the (ε, δ)-differential privacycan be proved in exactly the same way as

Theorem 3.2.

Theorem 3.3 (Error and Maximum Error). The total error and the maximum error

on workloads WR and W01 using strategies Hn,Yn, and In under the (ε, δ)-matrix

mechanism is given by:

TotalError Hn Yn In

WR Θ(n2 log2 n log(1/δ)/ε2) Θ(n2 log2 n log(1/δ)/ε2) Θ(n3 log(1/δ)/ε2)
W01 Θ(n2n logn log(1/δ)/ε2) Θ(n2n logn log(1/δ)/ε2) Θ(n2n log(1/δ)/ε2)

MaxError Hn Yn In

WR Θ(log2 n log(1/δ)/ε2) Θ(log2 n log(1/δ)/ε2) Θ(n log(1/δ)/ε2)
W01 Θ(n logn log(1/δ)/ε2) Θ(n logn log(1/δ)/ε2) Θ(n log(1/δ)/ε2)

3.4 Optimization

As it is mentioned above, the matrix mechanism enhances the differentially pri-

vate algorithm K by choosing a fine tuned query strategy A. The core to the matrix

mechanism is to determine an appropriate query strategy A for a given query work-

load W. In this section, we present techniques that generate optimal or approximate

strategies for given workloads under the matrix mechanism as well as a heuristic that

enhances existing strategies. We first demonstrate our main problem as following.
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Program 3.4.1 Minimizing the Total Error under ε-Differential Privacy

Given: W ∈ R
m×n

Minimize: u1 + u2 + . . . + um

Subject to: For i ∈ [m] ∶wi is the i-th row of W.

[
X wT

i

wi ui
] ⪰ 0 (3.6)

∆̄A ≤ 1 (3.7)

rank([
Im′ A

AT X
]) =m′ (3.8)

Problem 3.1 (MinError). Given a query workload W and a differentially private

algorithm K, find a query strategy A that supports W and minimizes TotalErrorK,A(W).
Noticing that both W and −W support W but 0 = W + (−W) does not, the

MinError problem is a non-convex problem. In this section, we will formulate the

MinError problem as a semidefinite program with rank constraint, which is a non-

convex variation of the semidefinite program. We then discuss the problem in two

cases corresponding to the differential private guarantee of K. A general technique

that can be used to improve a query strategy is also provided in the later section. We

also show that two semantically equivalent workloads yield the same minimum total

error at the end of this section.

3.4.1 Formulating the MinError Problem

Here we show that MinError problem under ε-differential privacy can be ex-

pressed as a semidefinite program with rank constraints. While rank constraints

make the semidefinite program non-convex, there are algorithms that can solve such

problems by iteratively solving a pair of related semidefinite programs.

Theorem 3.4. Given an m×n workload W, Program 3.4.1 is a semidefinite program

with rank constraint whose solution is the tuple (A,u,X) and the m′ × n strategy A

minimizes TotalErrorK,A(W) among all m′ × n strategies.
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Proof. To prove that the output strategy A of Program 3.4.1 is an optimal m′ × n

strategy to the MinError problem, one need to show that the solution of Pro-

gram 3.4.1 supports W and the optimization goal of Program 3.4.1 is equivalent with

the MinError problem.

The semidefinite condition in (3.6) is important, which guarantees that there exists

a matrix A′ such that A′TA′ = X, A′ supports wi and ui ≥ ∣∣wiA′
+∣∣2F . According

to the properties of positive semidefinite matrices, its a symmetric matrix with non-

negative eigenvalues. Let X = PΣPT be an eigenvalue decomposition of matrix X.

Consider matrix

Y =
⎡⎢⎢⎢⎢⎢⎢⎣
PT 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

X wT
i

wi ui

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
P 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

Σ (wiP)T
wiP ui

⎤⎥⎥⎥⎥⎥⎥⎦
,

(3.6) holds if and only if Y ⪰ 0. Since Σ is a diagonal matrix, if its jth diagonal

entry is 0, the jth entry of wiP must be 0 as well. Otherwise, Y can not be pos-

itive semidefinite no matter what value ui is. Recall the diagonal entries of Σ are

eigenvalues of X and hence be non-negative. Let D be the diagonal matrix whose

diagonal entries are the square roots of diagonal entries of Σ. We know D supports

wiP. Then A′ =DPT supports wi and A′TA′ =X. In addition, let Y′ be the matrix

that is constructed by removing all 0 columns and rows from Y. For any wi that is

supported by A′, Y ⪰ 0 is equivalent to ∣Y′∣ ≥ 0. The expansion of ∣Y′∣ implies that

the determinant non-negative if and only if ui ≥ ∣∣wiA′
+∣∣2F . Since the goal of the opti-

mization problem is to minimize the sum of ui, when the optimal case is achieved, we

must have ui = ∣∣wiA′
+∣∣2F =wi(A′TA′)+wT

i =wiX+wT
i . Furthermore, (3.8) guarantees

that X =ATA, and hence ui = ∣∣wiA+∣∣2F .
According to Proposition 3.7, apply a non-zero scalar c to a query strategy A

leads to its equivalent strategy. Therefore the condition (3.7) does not limit the scope

of query strategies to be considered since any query strategy has equivalent strategies
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with sensitivity no more than 1. This constraint is as well a convex constraint since

the sensitivity of A is convex for both ε- and (ε, δ)-differential privacy. Noticing

∣∣wi(c ⋅A)+∣∣F = ∣∣wiA+∣∣F /c < ∣∣wiA+∣∣F for any c > 1, ∆̄A must be 1 in the optimal

case.

Above all, any solution to Program 3.4.1 supports W. When the optimal case is

achieved, ∆̄A = 1 and ui = ∣∣wiA+∣∣2F = ∆̄2
A∣∣wiA+∣∣2F = P (K)ErrorK,A(wi). There-

fore the goal of the optimization, minimizing ∑mi=1 ui, is equivalent to minimizing

∑mi=1ErrorK,A(wi) = TotalErrorK,A(W).
Theorem 3.4 provides the best strategy to the MinError problem with at most

m′ queries. If the optimal strategy has m′′ < m′ queries, then Program 3.4.1 will

return an m′ × n matrix with m′ −m′′ rows of 0s. In addition, if the workload only

contains queries with coefficients in {−1,0,1}, we can show that n2 is upper bound

on the number of queries in the optimal strategy [45].

In addition, since Program 3.4.1 encodes the error of each query wi in query

workload W, we can actually use other convex function of u1, . . . , um to take the

place of u1 + . . .+um in the optimization goal. One variation to the optimization goal

is maxi ui, under which the result from Program 3.4.1 becomes the query strategy

that minimizes the maximum error of all queries in W.

Dattorro [18] shows that solving a semidefinite program with rank constraints can

be converted into solving two semidefinite programs iteratively. The convergence fol-

lows the widely used trace heuristic for rank minimization. We are not aware of results

that quantify the number of iterations that are required for convergence. However,

notice it takes O(n4) time to solve a semidefinite program with an n×n semidefinite

constraint matrix and in Program 3.4.1, there are m semidefinite constraint matrices

with size m + n, which can be represented as a semidefinite constraint matrix with

size m(m + n). Thus, the complexity of solving our semidefinite program with rank

constraints is at least O(m4(m + n)4).
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Program 3.4.2 Minimizing the Total Error with K under (ε, δ)-differential privacy
Given: W ∈ Rm×n.

Minimize: u1 + u2 + . . . + um.

Subject to: For i ∈ [m] ∶wi is the i-th row of W.

[ X wT
i

wi ui
] ⪰ 0

Xii ≤ 1, i ∈ [n].

The difficulty of Program 3.4.1 comes from the rank constraint (3.8), which is used

to connect ATA and A since we need ATA to compute ∣∣wiA+∣∣2F and A to compute

∆̄A. However, when K bases on (ε, δ)-differential privacy, ¯̄∆A can be computed

directly from ATA. In such case, A is not necessary in the optimization problem and

the rank constraint can be removed. The optimization problem can then be reduced

to a semidefinite program, which can be solved in polynomial time.

Theorem 3.5. Given an m×n workload W, Program 3.4.2 is a semidefinite program

whose solution is the tuple (X,u) and any m′ × n strategy A such that X = ATA

minimizes TotalErrorK,A(W) among all strategies.

3.4.2 Approximation to the MinError Problem under ε-Differential Pri-

vacy

Though the MinError problem can be formulated as Program 3.4.1. Solving the

optimization problem under ε-differential privacy is intractable. Hence, we demon-

strate two heuristics that can be used to approximate the solution to the MinError

problem. Both of the approaches give a bound to the sensitivity so that the rank

constraint can then be removed from the optimization formulation.

49



3.4.2.1 L2 approximation

The first idea is straightforward. Recall that under (ε, δ)-differential privacy, sen-
sitivity can be computed from ATA directly, which leads to a simpler optimization

problem, Program 3.4.2. If we can bound ∆̄A with ¯̄∆A, we can take advantage of the

semidefinite programming under (ε, δ)-differential privacy.
According to the basic property of L norms, for any vector u of dimension n,

∣∣u∣∣2 ≤ ∥u∥1 ≤ √n∣∣u∣∣2. Therefore we can bound the approximation rate of using

Program 3.4.2.

Theorem 3.6. Given a workload W, let A be the optimal solution given by Pro-

gram 3.4.1 and A′ be an optimal solution given by Program 3.4.2. Then with any

differentially private algorithm K under the ε-matrix mechanism,

TotalErrorK,A′(W) ≤ nTotalErrorK,A(W).

3.4.2.2 Singular value bound approximation

We can also bound ∆̄A using its geometric properties. Recall that the matrix

A can be reperesented by its singular value decomposition A = QADAPT
A. Let us

consider the geometry explanation of ∆̄A, which is the radius of the minimum L1

ball that cover all column vectors of A. In such case, the column vectors of A lay on

ellipsoid

ψA ∶ x
T (AAT )+x = 1.

Let ∆̄ψA
denote radius of the minimum L1 ball that covers the ellipsoid ψA. Observe

that all column vectors of A are contained in ψA, which indicates ∆̄A ≤ ∆̄ψA
. The

minimum sensitivity that can be achieved by the strategies that are profile equivalent

to A can be bounded by:

min
B ∶BTB=ATA

∆̄B ≤ min
B ∶BTB=ATA

∆̄ψB
.
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The query strategy B that is profile equivalent to A and has the minimum ∆̄ψB
is

given by the theorem below.

Theorem 3.7. Given a strategy matrix A with singular value decomposition A =
QADAPT

A.

argmin
B ∶BTB=ATA

∆̄ψB
=DAP

T
A,

min
B ∶BtB=AtA

∆̄ψB
= ∣∣A∣∣F ≤ √n∆̄A. (3.9)

To prove of Theorem 3.7, tangent hyperplanes of ψA need to be formulated, as it

is in the following lemma.

Lemma 1. Given an ellipsoid defined by xTΨx = 1 and a vector u, uTw = √uTΨ+u
is a tangent hyperplane of the ellipsoid.

Proof. For any point y on the ellipsoid, the tangent hyperplane of the ellipsoid on y

is yTΨx = 1. Consider a tangent hyperplane of the ellipsoid: uTx = c, where c is an
unknown constant, and there exists a point x0 on the ellipsoid such that xT0Ψ = uT

c
.

Therefore x0 = Ψ+u
c
. Noticing xT0Ψx0 = 1, we know

1 = xT0Ψx0 = (1
c
uTΨ+)Ψ(1

c
Ψ+u) = 1

c2
uTΨ+u.

Therefore c = √uTΨ+u.
Proof. to Theorem. 3.7: According to the definition of sensitivity under ε-differential

privacy, for any strategy B, the ellipsoid ψB must tangent with the diamond ∣∣x∣∣1 =
∆̄ψB

. With out lose of generality, let us assume it is tangent to the hyperplane

(1, . . . ,1)x = ∆̄ψB
and (a1, . . . , an)x ≤ ∆̄ψB

, here ai = 1,−1. Let B = QBDAPT
A be
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the singular value decomposition of B and let Ψ′ = (BBT )+ = {ψ′ij} to simplify the

notation. According to Lemma 1,

(1, . . . ,1)Ψ′(1, . . . ,1)T ≥ (a1, . . . , an)Ψ′(a1, . . . , an)T .
In particular,

(1, . . . ,1)Ψ′(1, . . . ,1)T ≥ (−1,1,1, . . . ,1)Ψ′(−1,1,1, . . . ,1)T ,
which means ψ′12 +ψ

′
13 + . . .+ψ

′
1n = ∑ni=1ψ′1i −ψ′11 ≥ 0. Similarly, we can show for any j

we have ∑ni=1ψ′ji −ψ′jj ≥ 0. Therefore
(1, . . . ,1)Ψ′(1, . . . ,1)T =∑

i

∑
j

ψ′ij =∑
j

ψ′jj +∑
j

(∑
i

ψ′ji −ψ
′
jj)

≥∑
j

ψ′jj = trace(Ψ′) = ∣∣(BBT )+∣∣2F = ∣∣(BTB)+∣∣2F = ∣∣(DT
ADA)+∣∣2F

The equal sign can be achieved when ψ′ij = 0 for all i ≠ j, which means Ψ′ is a

diagonal matrix and then QB = I. Therefore,
B =DAP

T
A

∆̄ψB
= √(1, . . . ,1)Ψ′+(1, . . . ,1)T = √(1, . . . ,1)DADT

A(1, . . . ,1)T
= √trace(ATA) = ∣∣A∣∣F ≤ √n ¯̄∆A ≤ √n∆̄A

Using the singular value bound in Theorem 3.7 to substitute for the L1 sensitivity,

the minError problem can be converted to the following approximation problem.

Problem 3.2 (Singular value bound approximation). Given a workload matrix W,

find the strategy A that minimizes ∣∣A∣∣2F ∣∣WA+∣∣2F .
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The singular value bound approximation has a closed-form solution.

Theorem 3.8. Let W be the workload matrix with singular value decomposition

W = QWDWPT
W and ξ1, . . . , ξn be its singular values. The optimal solution to

the singular value approximation A = c ⋅ QADAPA satisfies PA = PW and DA =
diag(√ξ1, . . . ,√ξn).
Proof. Recall the optimization goal of Problem 3.2:

∣∣A∣∣2F ∣∣WA+∣∣2F = ∣∣DA∣∣2F ∣∣DWPWPT
AD

+
A∣∣2F ≥ n

∑
i=1

∣∣Dpi∣∣22 ≥ ∣∣D∣∣2F ,

Here pi is the ith column of matrix PWPT
A and two inequality signs base on Cauchy-

Schwardz inequality. In order to have the equal sign satisfied in the first the in-

equalities, we need the diagonal entries D2
A to be equal to the diagonal entries of

c ⋅DWPWPT
A for a constant c. In addition, PWPT

A must be I to make the equal sign

of the second inequality. Since PW is an orthogonal matrix, PA = PW. Then we

have D2
A =DW and DA = diag(√ξ1, . . . ,√ξn), where ξ1, . . . , ξn are singular values of

W.

The solution of A in Theorem 3.8 is very similar to the idea of matching the shape

of W, which is equivalent to have PA to PW and DA be DW. Here we use a slightly

different DA so as to find a balance between the shape of A and ∆̄A, which also

provides an guaranteed error bound based on Theorem 3.7.

Theorem 3.9. Given a differentially private algorithm K over ε-differential privacy

and a workload W, let A be the optimal solution to the minError problem over K

and A′ be the optimal solution to the singular value bound approximation. Then

TotalErrorK,A′(W) ≤ nTotalErrorK,A(W).
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3.4.2.3 Minimizing sensitivity under ε-differential privacy

Above we presented two approximation approaches to produce heuristic query

strategies under ε-differential privacy. Noticing both of the approaches bound ∆̄A

with some properties that can be determined by ATA: the L2 approximation relies

on ¯̄∆A, which is the square root of the largest diagonal entry of ATA, and the sin-

gular value bound uses the squares of singular values of A, which are the eigenvalues

of ATA. Therefore, each of those approximations only determine an error profile

and any query strategies with this error profile satisfies the approximation condi-

tion. A further refinement to those approximations is to find the query strategy with

minimized sensitivity among all query strategies that have the given error profile.

Problem 3.3. Given a error profile M, find the query matrix A whose error profile

is M and has the minimum sensitivity under ε-differential privacy.

Besides refining the result of the approximations as above, Problem 3.3 is also

important in case that the user has certain error distribution in mind that specifies

an error profile. Unfortunately, similar to the MinError problem, Problem 3.3 is

non-convex as well. Problem 3.3 can also be formulated as a semidefinite program

with rank constraint, as stated below.

Theorem 3.10. Given an error profile M, Program 3.4.3 is a semidefinite program

with rank constraint that outputs an m×n matrix A such that (ATA)+ =M with ∆̄A

minimized.

3.4.3 Augmentation Heuristic

We formalize below the following intuition that applies to the matrix mechanism:

as far as the error profile is concerned, additional noisy query answers can never

detract from query accuracy as they must have some information content useful to

one or more queries. Therefore if A′ is a query strategy obtained by augmenting the

query strategy A with additional rows, ∣∣WA′+∣∣F ≤ ∣∣WA′+∣∣F .
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Program 3.4.3 Minimizing the sensitivity under ε-differential privacy

Given: M ∈ Rn×n.

Minimize: r.

Subject to: ∆̄A ≤ r;
rank([ In A

AT M+
]) = n.

Theorem 3.11. (Augmenting a strategy) Let A be a query strategy and con-

sider a new strategy A′ obtained from A by adding the additional rows of strategy B,

so that A′ = [AB ]. For any workload W that A supports, A′ supports W and

∣∣WA′+∣∣F ≤ ∣∣WA+∣∣F .
Further, ∣∣WA′+∣∣F = ∣∣WA+∣∣F if and only if WA′+ = [WA+

0 ].
Proof. Since A supports W, A′ supports W as well. Noticing padding WA+ with

some 0s gives a solution to equationXA′ =W, according to Proposition 2.8, ∣∣WA′+∣∣F ≤
∣∣WA+∣∣F .

Let w1, . . . ,wm be rows of W. Noticing that

∣∣WA+∣∣F = m

∑
i=1

∣∣wiA
+∣∣F ;

∣∣WA′+∣∣F = m

∑
i=1

∣∣wiA
′+∣∣F ;

∣∣wiA
′+∣∣F ≤ ∣∣wiA

+∣∣F , i = 1, . . . ,m.
Therefore ∣∣WA′+∣∣F = ∣∣WA+∣∣F if and only if ∣∣wiA′

+∣∣F = ∣∣wiA+∣∣F for all i = 1, . . . ,m.

Thus it is sufficient to consider the condition that ∣∣wA′+∣∣F = ∣∣wA+∣∣F for a single

query w that A supports.

Given two distinct solutions x1 and x2 to equation xA′ = w. If ∣∣x1∣∣F = ∣∣x2∣∣F ,
noticing Frobenius norm is convex, we have ∣∣(x1 + x2)/2∣∣F < ∣∣x1∣∣F = ∣∣x2∣∣F . Since
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(x1 +x2)/2 is also a solution to equation xA′ =w. Therefore the solution of xA′ =w
with minimized Frobenius norm is unique and ∣∣wA′+∣∣F = ∣∣wA+∣∣F if and only if wA′+

is equal to wA+ padding with 0s.

This improvement in the error profile may have a cost—namely, augmenting A

with strategy Bmay lead to a strategyA′ with greater sensitivity thanA. A heuristic

that follows from Theorem 3.11 is to augment strategy A only by completing deficient

columns, that is, by adding rows with non-zero entries only in columns whose absolute

column sums are less the sensitivity of A. In this case the augmentation does not

increase sensitivity and is guaranteed to strictly improve accuracy for any query with

a non-zero coefficient in an augmented column.

Our techniques could also be used to reason formally about augmentations that

do incur a sensitivity cost. We leave this as future work, as it is relevant primarily to

an interactive differentially private mechanism which is not our focus here.

3.4.4 The MinError Problem over Semantic Equivalent Workloads

Intuitively, since semantic equivalent workloads only differ in their representations,

answering them should introduce exactly the same amount of error. Here we formally

prove that this intuition also holds under the matrix mechanism.

Theorem 3.12. Given a workload W1 over a list of cell conditions Φ1 and a workload

W2 and a list of cell conditions Φ2 such that (W1,Φ1) = (W2,Φ2), minATotalErrorK,A(W1) =
minATotalErrorK,A(W2) for any differentially private algorithm K.

Proof. By symmetry, it is sufficient to prove that for any strategy A1 that supports

W1, there exists a strategyA2 such thatA2 supportsW2 andTotalErrorK,A1
(W1) ≥

TotalErrorK,A2
(W2). As it is described in Proposition 2.1, there are five opera-

tions to generate semantic equivalent workloads. Then we can prove that such A2

exists for each of the five operations.

56



If W2 can be get by permute the column of W1, there exists permutation matrices

P andQ such thatW2 = PW1Q. ThenA1Q supportsW2 andTotalErrorK,A1
(W1) =

TotalErrorK,A2
(W2) for any K.

If W2 can be get by split one of the columns of W1, without loss of generality,

we assume that W2 is generated by split the last column of W1 in to two columns.

Let A2 be the matrix that is generated by applying the same split to the strategy

matrix A1. Then it is clear that W1A+1A2 = W2.Therefore A2 supports W2 and

TotalErrorK,A1
(W1) = TotalErrorK,A2

(W2) for any K.
If W2 can be get by combine two of the columns of W1 with the same entries,

we assume that the last two columns of W1 have the same entries and removing one

of them gives us W2. Let A2 be the matrix that is generated by removing the last

column of A2. Then W1A+1A2 = W2 and A2 hence supports W2. Noticing that

∆A2
≤∆A1

for any K, TotalErrorK,A1
(W1) ≥ TotalErrorK,A2

(W2) for any K.
If W2 can be get by add columns of 0s to W1, let A2 be the matrix that is

generated by adding corresponding columns of 0s to A1. Then W1A+1A2 =W2. Thus

A2 supports W2 and TotalErrorK,A1
(W1) = TotalErrorK,A2

(W2) for any K.
If W2 can be get by remove columns of 0s to W1, let A2 be the matrix that is gen-

erated by removing corresponding columns of 0s to A1. Then W1A+1A2 =W2 and A2

hence supports W2. Noticing that ∆A2
≤ ∆A1

for any K, TotalErrorK,A1
(W1) ≥

TotalErrorK,A2
(W2) for any K.

Noticing that we actually do not consider cell conditions during the proof of

Theorem 3.12, two workloads W1 and W2 have the minimum total error if they can

be converted to each other with the matrix operations mentioned in Proposition 2.1.

3.5 The matrix mechanism with non-negativity constraints

As stated in Section 3.1, we only consider the matrix mechanismMK,A with data

independent K so that MK,A is independent to the data vector x as well. Conse-
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quently,MK,A has no constraints on its estimated answer to any workload W. Since

the entries of data vector x count the number of tuples that satisfies certain cell con-

ditions and hence cannot be negative, an answer to W is valid only if there exists a

non-negative data vector x̂ such that Wx̂ agrees with the given answer.

Using the matrix mechanism directly cannot guarantee the non-negative con-

straint on x̂. In this section, we discuss enhancements to the matrix mechanism

to cope with non-negative constraints. We consider the approach of rounding en-

tries up to 0, non-negative least square estimation as well as a hybrid approach that

takes the advantage of both methods. In addition, we also include some experimental

comparison between those method over real world databases.

3.5.1 The Rounding Up Approach

Given a query strategy A with answer ŷ, recall that the derived solution to a

workload W supported by A is WA+ŷ. This answer further implies that there is an

estimate x̂ to the underlying data vector such that Wx̂ =WA+ŷ. It is clear that A+ŷ

is one possible solution to x̂.

With an estimate of the underlying data set x̂, the most straightforward method

to guarantee the non-negativity is to round up the negative results to 0, which can be

applied to either WA+ŷ or A+ŷ. Rounding up the negative entries in A+ŷ actually

gives an non-negative estimate to the underlying data vector, which can then be

used to compute the answer to the query workload W. However, by rounding up

A+ŷ we lose the information contained in the negative estimates of positive query

answers. For example, if an noisy estimate to a non-negative count x1 is −10, there

is a higher probability for x1 to be 0 then the another non-negative count x2 with a

noisy estimate to 0. Such distinction has been lost if both x1 and x2 are rounded up

to 0.
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Since rounding leads to information loss, to ensure that most information is pre-

served, we should round up the result at the very last step, which means to round up

WA+ŷ. The limitation to this approach is that it only works on queries whose entries

are either all non-negative or non-positive. In addition, even if we round the answers

to those queries to 0, there is no guarantee that there exists a non-negative data

vector x̂ such that Wx̂ is equal our answer to W. In order to deal this problem, we

can publish the α-confidence intervals to each query in W along with their answers.

For queries with all non-negative or non-positive queries, their confidence interval can

also be rounded up. Then with a probability of at least α, the true answer to W is

contained in those confidence intervals.

3.5.2 Non-negative Least Square and a Hybrid Approach

Another approach to satisfy the non-negativity constraint is to add the constraint

into the process of deriving the answer to W from the answer to A. Such a con-

straint can be achieved by considering non-negative least square estimator, a special

constrained form of least square estimator to compute a non-negative estimate x̂ to

the data vector and use it to generate the answer to W, whose optimization formu-

lation is as following.

Given: A ∈ Rm×n,y ∈ Rm.

Minimize: ∣∣Ax − y∣∣22.
Subject to: x ≥ 0.

Though intuitively the non-negative least square estimator should provide a better

estimate towards the true answer to W, it still works poorly when the query strategy

A contains non-overlapping queries. The extreme case is that when A = In, using

non-negative least square estimator is equivalent to rounding up x̂, which, as stated

above, loss information and leads to a bad estimator to answer to W. Furthermore,
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Figure 3.5. Error comparison between the non-negative least square estimator and
the hybrid estimator.

computing the α-confidence interval for a non-negative least square estimator is not

as straightforward as it is for a least square estimator. [64] demonstrated an algorithm

to compute the α-confidence interval for a non-negative least square estimator, but it

is computationally more complicated and will produce larger confidence interval than

for a least square estimator.

In order to address the weakness of the non-negative least square estimator, recall

that we defer the round up before the output and we can apply the same method

to the non-negative least square estimator. Here we proposed a hybrid approach

that combines the least square and non-negative least square method. The major

idea that instead of applying non-negative least square to estimate an x̂ from ŷ, we

first estimate the answer to W by WA+ŷ, the least square method and then solve

a non-negative least square on WA+ŷ to solve an x̂. The answer to W can then be

computed with x̂. Wx̂ and the α-confidence interval of the least square estimator

can be send back to user for further analysis.
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3.5.3 Experimental Results

Here we compare the effect of different estimator experimentally. The experiment

includes the least square estimator, the non-negative least squares (NNLS) estimator

and the hybrid estimator and uses the Adult[8] dataset aggregated to 512 cells. Three

different strategies are considered: the hierarchical (Hn), the wavelet (Yn) and the

identity (In) strategies. The results are shown in Figure 3.5, where the error is

reported as the ratio to the total squared error using the least square estimator. The

K is set to be the Laplace mechanism and ε is varied from 0.001 to 1.

The figure demonstrates that, the hybrid estimator has comparable error as the

non-negative least square estimator when the strategy is Hn or Yn, and is much

better than the least square estimator for ε < 1. When the strategy is In and the

non-negative least square performs badly, the hybrid estimator can be as good as the

least square estimator.
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CHAPTER 4

BOUNDING THE ERROR IN THE MATRIX
MECHANISM

As it is analyzed in the previous chapter, it is computationally difficult to find a

strategy that minimize the error, both for ε- and (ε, δ)-differential privacy. Therefore
the goal of this chapter is to develop tools that can explain what we informally term

the error complexity of a given workload, which should measure, for fixed privacy

parameters, the accuracy with which we can simultaneously answer all queries in the

workload.

Such tools can help us to answer a number of natural questions that arise in

the context of private synthetic data generation. Why is it possible to answer one

set of queries more accurately than another? What properties of the queries, or of

their relationship to one another, influence this? Can lower error be achieved by

specializing the query set more closely to the task at hand? Does the combination

of multiple users’ workloads severely impact the accuracy possible for the combined

workload?

Naive approaches to understanding the “hardness” of a query workload are unsat-

isfying. For example, one may naturally expect that the larger the number of queries

in the workload, the larger the error in simultaneously answering them. Yet the num-

ber of queries in a workload is usually an inadequate measure of its hardness. Query

workload sensitivity [26] is another natural approach. Sensitivity measures the maxi-

mum change in all query answers due to an insertion or deletion of a single database

record. Basic differentially private mechanisms (e.g. the Laplace mechanism) add
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noise to each query in proportion to sensitivity, and in such cases sensitivity does in

fact determine error rates. But the matrix mechanism can reduce error when answer-

ing multiple queries (with no cost to privacy), so that sensitivity alone fails to be a

reliable measure.

In this chapter we seek a better understanding of workload error complexity by

reasoning formally about the minimum error achievable for a workload, regardless of

the underlying database. We pursue this goal in the context of a class differentially

private algorithms: namely those that are instances of the matrix mechanism. In

particular, to measure the hardness of a query workload, we present a lower bound on

the error of answering this workload under the matrix mechanism. We primarily focus

on the lower bound and its analyses under (ε, δ)-differential privacy. We demonstrate

that our bound is tight in theory or almost tight empirically on many commonly

considered workloads. The extended analysis on this bound connects the error of the

matrix mechanism with the other error bounds on database-dependent mechanisms.

At the end of this chapter, we also present how our bound will change along with

operations of query workloads.

4.1 Equivalence and containment for workloads

First we develop a notion of equivalence and containment of workloads with respect

to error. We will verify that the error bounds presented in the next section satisfy

these relationships in most cases.

The special form of the expression for total error in Prop. 3.4 means that there are

many workloads that are equivalent from the standpoint of error. For two workloads

W1 and W2, if WT
1 W1 =WT

2 W2, then any strategy A that can represent the queries

of W1 can also represent the queries of W2, and vice versa. In addition, WT
1 W1 =

WT
2 W2 implies ∣∣W1A+∣∣2F = ∣∣W2A+∣∣2F for any strategy A. We therefore define the

following notion of equivalence of two workloads:
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Definition 4.1 (Workload Equivalence). An m1 × n1 workload W1 and an m2 × n

workload W2 are equivalent, denoted W1 ≡W2, if WT
1 W1 =WT

2 W2.

Note that the concept of equivalent workloads is different from the concept seman-

tic equivalent workloads. The semantic equivalent compares pairs (W,Φ) of a given

workloads and their associated cell conditions and two semantically equivalent pairs

are means that those pairs are different representations of the same set of queries.

Equivalent workloads, however, are not necessarily the same set of queries. We call

them equivalent since they have the same set of supporting strategies and the same

error for any give strategy.

The following conditions on pairs of workloads imply that they have equivalent

minimum error:

Proposition 4.1 (Equivalence Conditions). Given an m1 × n1 workload W1 and an

m2×n2 workload W2, each of the following conditions implies that MinErrorK(W1) =
MinErrorK(W2):
(i) W1 ≡W2

(ii) W1 =QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.

(v) W2 results from the column projection of W1 on all of its nonzero columns.

Proof. (i): If W1 ≡W2, for any strategy A,

∣∣W1A
+∣∣2F = trace((A+)TWT

1 W1A
+)

= trace((A+)TWT
2 W2A

+) = ∣∣W2A
+∣∣2F .

Therefore MinErrorK(W1) =MinErrorK(W2).
(ii): It is equivalent with (i).
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(iii): It is a special case of (ii) where Q is a permutation matrix.

(iv): Let P be the permutation matrix such that W1P =W2. For any strategy A on

W1, AP is a strategy of W2 and TotalErrorK,A(W1) = TotalErrorK,AP(W2).
(v): Since (iv) is true, we can assume W1 = [W2,0]. For any strategy matrix A2 on

W2, A1 = [A2,0] is a strategy on W1 and

∣∣W1A
+
1∣∣2F = trace(A+1(A+1)TWT

1 W1)
= trace([A+2,0]T [A+2,0][W2,0]T [W2,0])
= trace((A+2)TWT

2 W2A
+
2) = ∣∣W2A

+
2∣∣2F .

For any strategy A1 on W1 there is a strategy on W2 with equal or smaller error

formed by deleting corresponding columns from A2.

It follows from this proposition that MinError is row and column representation

independent, and behaves well under the projection of extraneous columns.

Defining a notion of containment for workload matrices is more complex than

simple inclusion of rows. Even if the rows of W1 are not present in W2, it could be

that W1 is in fact contained in W2 when expressed using an alternate basis. The

following definition considers this possibility:

Definition 4.2 (Workload Containment). An m1 × n workload W1 is contained in

an m2×n workload W2, denoted W1 ⊆W2, if there exists a W′
2 ≡W2 where the rows

of W1 are contained in W′
2.

The following proposition shows two conditions that imply inequality of error

among workloads:

Proposition 4.2 (Error inequality). Given an m1 ×n1 workload W1 and an m2 ×n2

workload W2, each of the following conditions implies that

MinErrorK(W1) ≤MinErrorK(W2) ∶
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(i) W1 ⊆W2

(ii) W1 is a column projection of W2.

Proof. For (i), let W′
2 ≡W2 such that W′

2 contains all rows of W1. According to

Prop. 4.1 (iii), we can assume W′
2 = [W1

W3
]. For any strategy A on W2, since A is also

a strategy on W′
2, A can represent all queries in W1 as well. Thus A is a strategy

on W1. In addition,

ErrorK,A(W2)
= P (K)∆2

A∣∣W2A
+∣∣2F

= P (K)∆2
A∣∣W′

2A
+∣∣2F

= P (K)∆2
A(∣∣W1A

+∣∣2F + ∣∣W3A
+∣∣2F )

= ErrorA(W1) +ErrorA(W3) ≥ ErrorA(W1).
Therefore, MinErrorK(W1) ≤MinErrorK(W2).

For (ii), given a strategy A2 on W2, let A1 be a column projection of A2 using the

same projection that generatesW1 fromW2. According to the construction ofA1 and

W1, sinceW2 =W2A+2A2, we haveW2A+2A1 =W1. Therefore according to Prop. 2.8,

∣∣W2A+2∣∣F ≥ ∣∣W1A+1∣∣F . Furthermore, since ∆A2
≥ ∆A1

, we know ErrorK,A2
(W2) ≥

ErrorK,A1
(W1).

4.2 The singular value bound

In this section we state and prove our main result: a lower bound onMinError(W),
the optimal error of a workloadW under the matrix mechanism with K satisfies (ε, δ)-
differential privacy. The bound shows that the hardness of a workload is a function

of its eigenvalues. We describe the measure and its properties in Section 4.2.1 and

prove that it is a lower bound in Section 4.2.2. In Section 4.2.3 we briefly discuss the

challenge of adapting this bound to ε-differential privacy.
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4.2.1 The singular value bound

We first present the simplest form of our bound, which is based on computing the

square of the sum of eigenvalues of the workload matrix:

Definition 4.3 (Singular Value Bound). Given an m × n workload W, its sin-

gular value bound, denoted svdb(W), is:
svdb(W) = 1

n
(λ1 + . . . + λn)2,

where λ1, . . . , λn are the singular values of W.

The following theorem guarantees that the singular value bound is a valid lower

bound to the minimal error of a workload. The proof is presented in detail in

Sec. 4.2.2.

Theorem 4.1. Given an m × n workload W,

MinError(W) ≥ P (K)svdb(W).
In the rest of dissertation, we refer to svdb(W) as the “SVD bound”. For any

workload W, the SVD bound is determined by WTW and can be computed directly

from it (which can be more efficient):

Proposition 4.3. Given n × n matrix WTW.

svdb(W) = 1

n
( n∑
i=1

√
di)2.

where d1, . . . , dn are the eigenvalues of WTW.

The SVD bound satisfies equivalence properties analogous to (i), (ii), (iii), and (iv)

in Prop. 4.1 and inequality (i) in Prop. 4.2. However, it does not satisfy properties

related to column projection, as shown in the following counter-example.
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Example 4.1. Consider a 2 × n workload W consisting of queries [1,0, . . . ,0] and
[t, t, . . . , t]. Let µ be the column projection w.r.t. the first cell condition of W. When

n > 8 and t < 1/8, svdb(W) < svdb(µ(W)).
According to Prop 4.2, column projections reduce the minimum error. Therefore,

the SVD bound on any column projection of W also constitutes a lower bound for

the minimum error of W. Because of this we extend the simple SVD bound in the

following way. Recall that Un is the set of all column projections.

Definition 4.4. Given an m×n workload W and U ⊆ Un. The singular value bound

of W w.r.t. U , denoted by svdbU(W) is defined as

svdbU(W) =max
µ∈U

svdb(µ(W)).

In particular, if U = Un, we call this bound the supreme singular value bound, denoted

svdb(W).
According to Prop. 4.2 and Thm. 4.1, for any U ⊆ Un, svdbU(W) provides a lower

bound on MinError(W).
Corollary 4.1. Given an m × n workload W, and for any U ⊆ Un

MinErrorK(W) ≥max
µ∈U

MinErrorK(µ(W))
≥ P (K)svdbU(W).

The supreme SVD bound satisfies all of the error equivalence and containment

properties, analogous to those of Prop. 4.1 and Prop. 4.2, as stated below.

Theorem 4.2. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, the

following conditions imply that svdb(W1) = svdb(W2):
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(i) W1 ≡W2

(ii) W1 =QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.

(v) W2 results from column projection of W1 on all of its nonzero columns.

Proof. (i) (ii) (iii): Since any one of those conditions leads to WT
1 W1 = WT

2 W2,

according to Prop. 4.3, svdb(W1) = svdb(W2).
(iv): Given a workload W1, it is sufficient to prove that the singular values of

W1 are column representation independent. Let W2 be a matrix resulting from

a permutation of the columns of W1 and P be the permutation matrix such that

W1P = W2. If a singular value decomposition of W1 is W1 = QWΛWPW, then

the decomposition of W2 is W2 = QWΛWPWP. Since PWP is still an orthogonal

matrix, W2 = QWΛWPWP is a singular value decomposition of W2. Therefore the

singular values of W2 are exactly the same as the singular values of W1.

(v): Since W2 is a column projection of W1, svdb(W1) ≥ svdb(W2) by defi-

nition. In addition, for any matrix with columns of zeroes, removing thse columns

will not impact the non-zero singular values of the matrix. Therefore projecting

those columns out will reduce the total number of singular values but not their sum.

Therefore projecting out all zero columns from W1 will not decrease svdb(W1),
which indicates svdb(W1) = svdb(W2).
Theorem 4.3. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, the

following conditions imply that svdb(W1) ≤ svdb(W2):
(i) W1 ⊆W2

(ii) W1 is a column projection of W2.

To prove Thm. 4.3, the following property of matrices is needed.
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Lemma 2. Let D be a diagonal matrix with non-negative diagonal entries and P be

an orthogonal matrix whose columns are p1,p2, . . . ,pn.

trace(D) ≤ n

∑
i=1

∣∣Dpi∣∣2.

Proof. Use di to denote the diagonal entries of D and pij to denote the entries in P.

Noticing that ∑nj=1 p2ji = 1, we have

∣∣Dpi∣∣2 =
;<<= n

∑
j=1

p2jid
2
j ≥ n

∑
j=1

p2jidj.

Therefore, since ∑nj=1 p2ij = 1,
n

∑
i=1

∣∣Dpi∣∣2 ≥ n

∑
i=1

n

∑
j=1

p2jidj = n

∑
j=1

( n∑
i=1

p2ji)dj = trace(D).

Proof of Thm. 4.3. Since (ii) is naturally satisfied according to the definition of

svdb(W), it is sufficient to prove (i). Here we prove this is true even for the SVD

bound so that it is also true for the supreme SVD bound.

Given W1 ⊆ W2, according to the definition, there exists a workload W′
2 such

that W′
2 ≡W2 and W′

2 contains all the queries of W1. Then W′
2 has the following

form:

W′
2 =
⎡⎢⎢⎢⎢⎢⎢⎣
W1

W3

⎤⎥⎥⎥⎥⎥⎥⎦
.

Then

WT
2 W2 −W

T
1 W1 = W′

2
TW′

2 −W
T
1 W1

= WT
3 W3 ⪰ 0
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Let W1 = Q1Λ1P1 and W2 = Q2Λ2P2 be the singular value decomposition of W1

and W2, respectively. Then

WT
2 W2 −W

T
1 W1 ⪰ 0 ⇔ PT

2Λ
2
2P2 −P

T
1Λ

2
1P1 ⪰ 0

⇔ Λ2
2 −P2P

T
1Λ

2
1P1P

T
2 ⪰ 0

⇒ ∀ i, λi ≥ ∣∣Λ1pi∣∣2,

where λi is the i-th diagonal entry of Λ2 and pi is the i-th column vector of P1PT
2 .

The inequality in the last row based on the property that the diagonal entries of any

positive semidefinite matrix are non-negative. Therefore, according to Lemma 2,

trace(Λ2) = n

∑
i=1

λi ≥ n

∑
i=1

∣∣Λ1pi∣∣2 ≥ trace(Λ1). (4.1)

While Theorems 4.2 and 4.3 show that svdb(W) matches all the properties of

MinError(W), we often wish to avoid considering all possible column projections

as required in the computation of svdb(W). In many cases, using svdb(W) as our
lower bound provides good results. In other cases, we can choose an appropriate set

of column projections to get a good approximation to the supreme SVD bound. We

provide empirical evidence for this in the following example, along with an application

of our bound to range and predicate workloads which have been studied in prior

work. The bound allows us to evaluate, for the first time, how well existing solutions

approximate the minimum achievable error under (ε, δ)-differential privacy.
Example 4.2. In Table 4.1 we consider three workloads, each consisting of all multi-

dimensional range queries for a different dimension set, along with a workload of

all predicate queries. We report svdb(W) and its ratio with svdbU(W) where U
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Example Workload, W svdb(W) svdbU (W)
Error, as ratio to P (K)svdb(W)

Identity Hierarchical Wavelet Eigen Design

AllRange(2048) 3.034 × 107 1.001 47.25 1.776 1.545 1.028

AllRange(64,32) 2.261 × 107 1.000 12.11 2.996 1.899 1.107

AllRange(2,2,2,2,2,2,2,2,2,2) 5.242 × 105 1.000 2.000 2.000 2.000 1.000

AllPredicate(1024) 4.885 × 10156 1.000 1.884 3.464 6.292 1.000

Table 4.1. Four example workloads, their singular value bounds, and their error
rates under common strategies and strategies proposed in prior work using Gaussian
mechanism.

contains projections onto all possible ranges over the domain, showing that they are

virtually indistinguishable.

We also compute the actual error introduced by several well-known strategies: the

identity strategy, the hierarchical strategy [40], and the wavelet strategy [70], as well

as a strategy generated by the Eigen-design mechanism [46]. These results reveal the

quality of these approaches by their ratio to svdb(W). For example, from the table we

conclude that the Eigen-design mechanism and wavelet strategies have error at most

1.5 to 3 times the optimal for range workloads, but perform worse on the predicate

queries. The identity strategy is far from optimal on low dimensional range queries,

but better on high dimensional range queries and predicate queries.

4.2.2 Proof of the SVD bound

We now describe the proof of Theorem 4.1. The key to the proof is an important

property of the optimal strategy for the (ε, δ)-matrix mechanism. As shown in Lemma

3, among the optimal strategies for a workload W, there is always a strategy A that

has the same sensitivity for every cell condition (i.e. in every column). We use AW

to denote the set that contains all strategies that satisfy WA+A =W and have the

same sensitivity for every cell condition.

Recall that the L2 sensitivity of strategy A (Prop. 2.3) is the maximum L2 column

norm of A. The square of the sensitivity is also equal to the maximum diagonal entry

of ATA. By using Lemma 3, the sensitivity of A can instead be computed in terms

of the trace of the matrix ATA and minimizing the error of W with this alternative

72



expression of the sensitivity leads to the SVD bounds. Ultimately, to achieve the

SVD bounds, a strategy A must simultaneously (i) minimize the error of W with

the sensitivity computed in terms of the trace(ATA), and (ii) have A ∈ AW. Such

a strategy may not exist for every possible W and therefore the SVD bounds only

serve as lower bounds to the minimal error of W.

Lemma 3. Given a workload W, there exists a strategy A ∈ AW such that ErrorK,A(W) =
MinErrorK(W).
Proof. For any workload W, the problem of finding a strategy that minimizes the

total error of W can be formulated as a SDP problem [45]. Therefore the optimal

strategy that minimizes the total error of W always exists. Let A′ be an optimal

strategy on workload W. We now construct a matrix A from A′ such that A ∈ AW.

Let d1, . . . , dn denote the diagonal entries of matrix ∆2
AI −A

′TA′, i.e. d1, . . . , dn is

the difference between each diagonal entry of A′TA′ and the maximal diagonal entry

of A′TA′. Since d1, . . . , dn ≥ 0, let D be the diagonal matrix whose diagonal entries

are
√
d1, . . . ,

√
dn, and A = [A′

D
]. Then A is a strategy matrix such that the diagonal

entries of ATA are all the same. Let B = [A′+,0]. Then WBA = WA′+A′ = W.

According to Prop. 2.8, ∣∣WA+∣∣F ≤ ∣∣WB∣∣F . Recall ¯̄∆A = ¯̄∆A′ , we have,

ErrorK,A(W) = P (K) ¯̄∆2
A∣∣WA+∣∣2F

≤ P (K) ¯̄∆2
A∣∣WB∣∣2F

= P (K) ¯̄∆2
A′ ∣∣WA′+∣∣2F

= ErrorK,A′(W) =MinErrorK(W).

Therefore ErrorK,A(W) =MinErrorK(W) and A is an optimal strategy for work-

load W.

Theorem 4.1 can hence be proved using the Lem. 2 and 3.
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Proof. For a given workload W, according to Lemma 3, it has an optimal strategy

matrix A ∈ AW, whose sensitivity can then be computed as ¯̄∆2
A = 1

n
∣∣A∣∣2F .

Let W =QWΛWPW and A =QAΛAPA be the singular decomposition of W and

A, respectively. We have:

min
A∶WA+A=W

¯̄∆2
A∣∣WA+∣∣2F

= min
A∈AW

1

n
∣∣A∣∣2F ∣∣WA+∣∣2F

= 1

n
min

(ΛAPA)∈AW

∣∣ΛA∣∣2F ∣∣ΛWPWPT
AΛ

+
A∣∣2F

≥ 1

n
min

ΛA,PA

ΛWΛ+
A
Λ=

A
ΛW

∣∣ΛA∣∣2F ∣∣ΛWPWPT
AΛ

+
A∣∣2F (4.2)

≥ 1

n
min
PA

( n∑
i=1

∣∣ΛWpi∣∣2)2 (4.3)

≥ 1

n
( n∑
i=1

λi)2, (4.4)

where pi is the i-th column of matrix PWPT
A, the inequality in (4.3) is based on the

Cauchy-Schwarz inequality and the inequality in (4.4) comes from Lemma 2.

The equal sign in (4.3) is satisfied if and only if ΛA ∝
√
ΛW. Therefore to

achieve equality in (4.3) and (4.4) simultaneously, we need A ∝ Q
√
ΛWPW for any

orthogonal matrix Q. Moreover, (4.2) is true if and only if A ∈ AW, which may not

be satisfied when A ∝ Q
√
ΛWPW, therefore the SVD bound only gives an lower

bound to the minimum total error.

Intuitively, the SVD bound is based on the assumption that the error can be

evenly distributed to all the cells, which may not be achievable in all the cases. The

supreme SVD bound considers only the case that the error can be evenly distributed

to some of the cells and therefore may be tighter than the SVD bound.
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4.2.3 Bounding MinErrorK(W) under ε-differential privacy
The SVD bound is defined for K under (ε, δ)-differential privacy, so it is natural

to consider extending these results to ε-differential privacy. When K bases on ε-

differential privacy, the sensitivity of A as the largest L1 norm of the columns of

A. For any vector, its L1 norm is always greater than or equal to its L2 norm.

Given a workload W and a strategy matrix A, P (K) ¯̄∆2
A∣∣WA+∣∣2F provides a lower

bound to ErrorK,A(W) under the ε-differential privacy. Therefore, error under the
ε-differential privacy is also bounded below by svdb(W).

When the number of queries in a workload is no more than the domain size,

Bhaskara et al. [12] presented the following lower bound of error for any data-

independent ε-differential privacy mechanism.

Theorem 4.4 ([12]). Given an m × n workload W with m ≤ n, let convex body

K = WBn
1 , where Bm

1 is the m-dimensional L1 ball. Let P1, . . . ,Pt be projection

operators to a collection of t mutually orthogonal subspaces of Rm of dimension

m1, . . . ,mt respectively. Then the error of answering W under any data-independent

ε-differentially private mechanism must be at least

max
P1,...,Pt

Ω(∑
i

m3
i

ε2
Volmi

(PiK)2/mi) ,
where Volmi

(PiK) is the volume of the convex body PiK in mi dimensional space.

In particular, when Pi are the projections to the singular vectors of W, we can

formulate the bound above using singular values of W.

Corollary 4.2. Given an m × n workload W with m ≤ n, the error of answering W

under any data-independent ε-differentially private mechanism must be at least

Ω( n

∑
i

λ2i
ε2
) ,

where λ1, . . . , λn are singular values of W.
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When m ≤ n, we can compare the lower bound in Corollary 4.2 with the SVD

bound under the ε-differential privacy. It is clear that the bound in Corollary 4.2

is tighter unless all singular values of W are equal. When m > n, the quality of

the SVD bound under the ε-differential privacy is not yet known. The discussion on

the tightness and looseness of the SVD bound in the next section is based on the

(ε, δ)-matrix mechanism and cannot be directly extended to the ε-differential privacy.

4.3 Analysis of the SVD bound

In this section, we analyze the accuracy of the SVD bound as an approximation of

the minimum error for a workload. We study the sufficient and necessary conditions

under which the SVD bound is tight. In addition, we show the minimum error is equal

to the bound over a specific class of workloads called variable-agnostic workloads and

then generalize the result to the widely-studied class of data cube workloads. For

both classes, strategies that achieve the minimum error can be constructed, as a

by-product of the proof of the SVD bound.

We then show that the bound may be loose, underestimating the minimal error

for some workloads. The worst case of looseness of the SVD bound is presented in

Section 4.3.2, along with a formal estimate of the quality of the bound. We conclude

this section with an example demonstrating empirically that error rates close to the

lower bound can be achieved for workloads consisting of multi-dimensional range

queries.

4.3.1 The tightness of the SVD bound

The circumstances under which the SVD bound is tight arise directly from in-

spection of the proof presented in Sec. 4.2.2. In particular, we noted the conditions

that make the inequalities in equations (4.2), (4.3) and (4.4) actually equal. Those

conditions are equivalent to a straightforward property of WTW:
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Theorem 4.5. Given workload W, svdb(W) is tight if and only if the diagonal

entries of
√
WTW are all equal.

Proof. Recall that the SVD bound is tight if and only if (4.2), (4.3) and (4.4) takes

equal sign simultaneously. The conditions that make all three inequalities to have

equal sign is A ∝ Q
√
ΛWPW and A ∈ AW, which is equivalent to the case that the

diagonal entries of PT
WΛWPW are all the same. In addition, PT

WΛWPW = √WTW

and we have the theorem proved.

The condition in Thm 4.5 can be satisfied by many matrices. In particular, given

a matrix W ∈ Rm×n with singular value decomposition on complex domain W =
QWΛWPW where PW is the matrix of discrete Fourier transformation. The SVD

bound is tight on W.

Definition 4.5. The discrete Fourier transformation (DFT) on a domain with size

n can be represented as the following matrix:

Ωn =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

1 ω . . . ωn−1

⋮ ⋮ ⋱ ⋮

1 ωn−1 . . . ω(n−1)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ω is the primitive nth root of unity.

Theorem 4.6. Given a matrix W ∈ Rm×n. If W = QWΛWΩn is a singular value

decomposition of W in the complex domain. The SVD bound is tight on W.

Proof. Since W ∈ Rm×n, WTW =WHW, where H denotes the conjugate transpose

of a matrix in the complex domain. Hence

WTW =WHW =ΩH
n (ΛH

WΛW)Ωn
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is an eigenvalue decomposition of WTW in the complex domain. Since WTW is also

diagonalizable in the real domain, and according to the uniqueness of the set of the

eigenvalues, we have

WTW = PT
W(ΛH

WΛW)PW

as an eigenvalue decomposition of WTW in the real domain. Let P′ be a the unitary

matrix in the complex domain such that P′PW =Ωn. Then

P′H(ΛH
WΛW)P′ = ΛH

WΛW. (4.5)

Represent ΛH
WΛW as

ΛH
WΛW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1I

µ2I

⋱

µkI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where µ1 ≠ µ2 ≠ . . . ≠ µk. (4.5) holds if and only if P′ is a block diagonal matrix

P′ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P′1

P′2

⋱

P′k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the shape of block P′i and the diagonal block corresponding to µi is the same.

In addition, noticing that whether (4.5) does not depend on the concrete values of

µ1, . . . , µk, (4.5) also implies P′H
√
ΛH

WΛWP′ = √ΛH
WΛW. Therefore, consider the

eigenvalue decomposition of
√
WTW:

√
WTW = PT

W

√
ΛH

WΛWPW = PT
WP′H

√
ΛH

WΛWP′PW =ΩH
n

√
ΛH

WΛWΩn.
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Let λ1, . . . , λn be the diagonal entries of the matrix
√
ΛH

WΛW, then the ith diagonal

entry of the matrix
√
WTW is:

1

n
[1 ω̄i−1 . . . ω̄(i−1)(n−1)]√ΛH

WΛW

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ωi−1

⋮

ω(i−1)(n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

n

n−1

∑
j=0

λjω̄
(i−1)jω(i−1)j = 1

n

n−1

∑
j=0

λj.

Hence all diagonal entries of
√
WTW are the same and the SVD bound is tight on

W according to Thm. 4.5.

Workloads of convolution queries is a class of commonly interested workloads

whose are Ωn. Supporting such kind of queries and its applications under differential

privacy has been extensively discussed in [29].

Definition 4.6 ([29]). The matrix of circular convolution queries is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 . . . hn−1

hn−1 h0 . . . hn−2

⋮ ⋮ ⋱ ⋮

h1 h2 . . . h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

.

The decomposition of the circular convolution matrix has been given in [34], which

guarantees the tightness of the SVD bound on workloads of circular convolutions.

Theorem 4.7 ([34]). Any circular convolution matrix has an eigenvalue decomposi-

tion in the complex domain and the corresponding matrix of eigenvectors is Ωn.

Corollary 4.3. The SVD bound is tight for any circular convolution workload W.

79



Another special class of workloads, called variable-agnostic workloads, in which

the queries on each cell are fully symmetric and swapping any two cells does not

change WTW.

Definition 4.7 (Variable-agnostic workload). A workload W is variable-agnostic if

WTW is unchanged when we swap any two columns of W.

For any variable-agnostic workload W, WTW has the following special form: for

some constants a and b such that a > b, all diagonal entries of WTW are equal to a

and the remaining entries of WTW are equal to b.

The following theorem shows that any variable-agnostic workload W satisfies the

condition in Thm 4.5. Furthermore, we also demonstrate the closed form expression

of the SVD bound in case that n is a power of 2.

Theorem 4.8. The SVD bound is tight for any variable-agnostic workload W. In

addition, when n = 2k for any nonnegative integer k, svdb(W) = 1
n
(√a + (n − 1)b +

(n − 1)√a − b)2, where a is the value of diagonal entries of WTW and b is the value

of off-diagonal entries of WTW.

Proof. Noticing that WTW is a circular convolution matrix so that Ωn is a matrix

of eigenvectors of WTW, and hence it is a matrix of singular vectors of W. Thus,

according to Thm. 4.6, the SVD bound is tight on W. Furthermore, WTW has the

following special form:

WTW =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
a b . . . b

b a . . . b

⋮ ⋮ ⋱ ⋮

b b . . . a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where a > b. One can verify that a + (n − 1)b is an eigenvalue of WTW with order 1

and a − b is an eigenvalue of WTW with order n − 1.

As a concrete example, the workload AllPredicate(n) is variable-agnostic, and
therefore we can construct its optimal strategy and compute the error rate directly.
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Corollary 4.4. The SVD bound is tight for the workload AllPredicate(n). In

addition, when n = 2k for any nonnegative integer k, svdb(AllPredicate(n)) =
2n−2

n
(n − 1 +√n + 1)2.
For variable-agnostic workloads, using a naive strategy like the identity matrix

or the workload itself results in total error equal to na and the ratio by which the

error is reduced using the strategy in Thm. 4.8 is approximately 1− b
a
. In the case of

AllPredicate(n), the ratio is at least as low as 0.5, which occurs when n is very

large.

Another family of workloads for which the SVD bound is tight are those consisting

of sets of data cube queries [33]. A data cube workload consists of one or more cuboids,

each of which contains all aggregation queries on all possible values of the cross-

product of a set of attributes. It has already been shown in [29] that the workload

of one cuboid is a convolution workload and hence the SVD bound is tight. Here

we consider the case that the data cube contains more than one cuboids and each

cuboid can have its own weight, so that higher weighted queries will be estimated

more accurately than lower weighted ones.

Theorem 4.9. The SVD bound is tight for any weighted data cube workload W.

Proof. Let us induct on the number of attributes d in the database. When d = 1,

there are only two cuboids, the cuboid asks for the sum of all the cells and the cuboid

asks for all the individual cells. Consider the workload W that weight the first cuboid

w1 and the second cuboid w2, one can compute that

WTW =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
w2
1 +w

2
2 w2

1 . . . w2
1

w2
1 w2

1 +w
2
2 . . . w2

1

⋮ ⋮ ⋱ ⋮

w2
1 w2

1 . . . w2
1 +w

2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

which is a variable agnostic workload. Therefore, according to Thm 4.8, svdb(W)
is tight.
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If the SVD bound is tight when d = d0, consider the case that d = d0 + 1. Given

a data cube workload W. The cuboids in the data cube can be separated into two

groups: the first group is the cuboids that aggregate on the last attribute; the second

group is the cuboids that do not aggregate on the last attribute. Let W1 be the

projection of the cuboids in the first group on the first d0 attributes and W2 be the

projection of the cuboids in the first group on the first d0 attributes. We can represent

W using W1 and W2:

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1 W1 . . . W1

W2 0 . . . 0
0 W2 . . . 0
⋮ ⋮ ⋱ ⋮

0 0 . . . W2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the number of W1 blocks and W2 blocks are the number of values in the

last attribute, denoted as n0. Let Q1, Q2 be the orthogonal matrices such that

Q1W1 = √WT
1 W1 and Q2W1 = √WT

2 W2. Let

Q =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Q1 0 . . . 0
0 Q2 . . . 0
⋮ ⋮ ⋱ 0
0 0 . . . Q2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and then

QW =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√

WT
1 W1

√

WT
1 W1 . . .

√

WT
1 W1

√

WT
2 W2 0 . . . 0

0
√

WT
2 W2 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . .
√

WT
2 W2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

One can verify that

√
WTW = √WTQTQW =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
W3 W4 . . . W4

W4 W3 . . . W4

⋮ ⋮ ⋱ ⋮

W4 W4 . . . W3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where

W3 = 1

n0

((n0 − 1)√WT
1 W1 +

√
WT

1 W1 + n0WT
2 W2),

W4 = 1

n0

(−√WT
1 W1 +

√
WT

1 W1 + n0WT
2 W2).
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Noticing that both W1 and [ W1
√
n0W2

] are data cube workloads on d0 attributes, ac-

cording to the induction assumptions, both
√
WT

1 W1 and
√
WT

1 W1 + n0WT
2 W2 are

symmetric matrices whose diagonal entries are all the same, respectively. Thus W3

and W4 are also symmetric matrices whose diagonal entries are all the same, respec-

tively. Then
√
WTW is a symmetric matrices whose diagonal entries are all the same

and then the SVD bound is tight on W.

Data cube workloads (a special case of marginal workloads) have been studied

by the differential privacy community in both theory and practice [9, 19, 42]. Barak

et al. [9] use the Fourier basis as a strategy for workloads consisting of marginals

while Ding et al. [19] proposed an approximation algorithm for data cube workloads.

Thm. 4.9 shows that under (ε, δ)-differential privacy we can now directly compute the

optimal strategy, obviating the need to use an approximation algorithm or blindly

relying on the Fourier basis for workloads of this type. The result in [42], however,

involves data-dependent techniques and the comparison between [42] to the SVD

bound relies on a thorough analysis of the spectral properties of data cube workloads,

which is a direction of future work.

4.3.2 The looseness of the SVD bound

The SVD bound can also underestimate the minimum error when the workload is

highly skewed. For example, the SVD bound does not work well when the sensitivity

of one column in the workload is overwhelmingly larger than others. Recall the

workload in Example 4.1, when t → 0, the SVD bound will underestimate the total

error by a factor of n. This is caused by the underestimate of the sensitivity of A

considered in equation (4.2) in the proof of Thm. 4.1.

Since the proof of Thm. 4.1 constructs a concrete strategy, one way to measure

the looseness of the SVD bound is to estimate its ratio to the actual error introduced

by this strategy. Note that the sensitivity of the strategy is the only part of the SVD
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bound that is underestimated. The square of the sensitivity is the maximum diagonal

entry of matrix ATA, rather than the estimate given by trace(ATA)/n. The ratio

between the actual sensitivity and the estimated sensitivity bounds the looseness of

the SVD bound, as shown by the following theorem.

Theorem 4.10. Given an m×n workload W. Let d0 be the maximum diagonal entry

of
√
WTW.

MinErrorK(W) ≤ nd0P (K)svdb(W)
trace(√WTW) .

Proof.

MinErrorK(W) ≤ ErrorK,A(W)
= nd0P (K)svdb(W)

Trace(√WTW) .

According to Thm. 4.10, the approximate ratio of the SVD bound corresponds

to the ratio between d0, the largest diagonal entry of
√
WTW and the trace of√

WTW, which is equal to the sum of all singular values of W. This ratio, although

upper-bounded by the ratio between the largest singular value of W and the sum

of all singular values of W, is much closer to 1 than the ratio between singular

values. As a consequence, the skewness in singular values does not always lead to

a bad approximation ratio for the SVD bound. For example, for variable-agnostic

workloads, the largest singular value can be arbitrarily larger than the rest of the

singular values, while the SVD bound is tight. Instead, the cases where the SVD

bound has high approximation ratio, such as the one in Example 4.1, are due to the

skewness of singular value of W and the particular distribution of singular vectors.

The supreme SVD bound can help us to avoid some of these worst cases, but there

is no guarantee of the quality of the bound with more sophisticated cases.
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Nevertheless, for many common workloads, empirical evidence suggests that the

SVD bound is quite close to the minimal error. The following example provides a

comparison between the SVD bound and achievable error for a few common work-

loads.

Example 4.3. Returning to Table 4.1, we observe empirical evidence that for range

and predicate workloads, there are strategies that come quite close to the SVD bound.

The last column of Table 4.1 lists the error for the Eigen-design mechanism [46],

which attempts to find approximately optimal strategies for any given workload by

computing optimal weights for the eigenvectors of the workload. This algorithm is

able to find a strategy whose error is within a factor of 1.028 and 1.107 of optimal for

AllRange(2048) and AllRange(64,32), respectively.

4.4 Comparison of mechanisms

The matrix mechanism is a data-independent mechanism: the noise distribution

(and therefore error) depends only on the workload and not on the particular input

data. This makes it possible to process the workload once and apply the mechanism

efficiently to any dataset. On the other hand, data-independent mechanisms lack the

flexibility to exploit specific properties of individual datasets. In this section, we use

the SVD bound to compare the error bounds of the matrix mechanism with error

bounds of other mechanisms that are data-dependent.

4.4.1 Asymptotic estimation of the SVD bound

Before the comparison, we first convert the SVD bound into an error measure that

can be directly related to other bounds in the literature. We assume all queries in

the workload have sensitivity at most one and estimate the SVD bound as a function

of the domain size n and the number of queries m. Recall that the error in previous

sections is defined as the total mean squared error of the queries. We introduce a new
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measure of error which bounds the maximum absolute error of the workload queries

by α with high probability (controlled by β).

Definition 4.8 ((α,β)-Accurate [35]).Given a workload W, an algorithm K is (α,β)-
accurate if, for any uniformly drawn data vector x, with a probability of at least 1−β,

maxq∈W ∣K(q,x) − qx∣ ≤ α.
Since the SVD bound measures total error (rather than max error), here we modify

the (α,β)-accuracy by bounding the root mean squared error of the workload.

Definition 4.9 (RMS-(α,β)-Accurate). Given a workload W, an algorithm K is

RMS-(α,β)-accurate if, for any uniformly drawn data vector x, with a probability of

at least 1 − β,
√∑q∈W ∣∣K(q,x) − qx∣∣2/∣W∣ ≤ α.

Theorem 4.11. Given an m × n workload W, if the

svdb(W) is asymptotically tight, then there exists a strategy under which the matrix

mechanism is RMS-(α,β)-accurate, where

α = O⎛⎜⎝
√
min(m,n)√log(2/δ) log(√π/2/β)

ε

⎞⎟⎠ .

Proof. Given a workload W. Let λ1, . . . , λmin(m,n) be the non-zero singular values of

W.

(λ1 + . . . + λmin(m,n))2 ≤min(m,n)(λ21 + . . . + λ2min(m,n))
=min(m,n)∣∣W∣∣2F
≤min(m,n)mn

Therefore

svdb(W) ≤min(m,n)m.
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Noticing svdb(W) is estimating the L2 error of m queries and the error is Gaussian

random noise. Take the average of the svdb(W), consider the error estimator for

Gaussian random variable with mean m and standard deviation σ:

P(∣X −m∣ > tσ) ≤ √2√
πt

exp(−t2
2
),

and we have the bound proved.

Recall the discussion in Sec. 4.3.1 indicates that the SVD bound is tight or almost

tight for many common workloads. Thus, it is reasonable to compare the asymptotic

estimate of the SVD bound to the error introduced by other mechanisms.

4.4.2 Comparison of error bounds

Here we compare our SVD bound with other error bounds from data-dependent

mechanisms. We include four competitors each representing fundamentally different

mechanisms. The median mechanism [59] discards candidate data vectors that are

inconsistent with historical query answers. The multiplicative weights mechanism

(MW) [37] and the iterative database construction method (IDC) [35] repeatedly up-

date an estimated data vector according to query answers. The boosting method [27]

maintains a distribution of queries according to the quality of their answers and re-

peatedly samples queries from the distribution so as to improve their answers. The

(α,β)-accuracy under (ε, δ)-differential privacy for the median and the multiplicative

weight mechanism follows the result in [35].

Table 4.2 summarizes error bounds of different data dependent approaches. In

particular, the comparison is over (ε, exp(−t))-differential privacy and (α, exp(−t))-
accuracy.

The workload W we considered contains m queries with sensitivity no larger than 1.

The database is of size N , which means the sum of all xi’s in the data vector is N .
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Mechanism α

1 Median [59] O (

√

N(logn logm)1/4
√

t(logm+t)
√
ε

)

2 MW [37] O (

√

N(logn)1/4
√

t(logm+t)
√
ε

)

3 IDC [35] O (
(nN)1/4

√

t(logm+t)
√
ε

)

4 Boosting [27] Õ (
√
N logn⋅t3/2 log3/2m

ε
)

5 SVDB O (

√

min(m,n)⋅t

ε
)

Table 4.2. For t ≥ 2, bounds on the α required to achieve (ε, exp(−t))-differential
privacy and accuracy measures of: (α, exp(−t))-accuracy (mechanisms 1-4); RMS-(α, exp(−t))-accuracy (mechanism 5).

Observing the values of α in Table 4.2, the matrix mechanism has a greater depen-

dence on ε compared with the median, the multiplicative weights and the iterative

database construction methods. In addition, since the matrix mechanism is data-

independent, it cannot take advantage of the input dataset so that it always assumes

n = N . However, when N is sufficiently large (Θ(n)) andm = O(n), the SVD bound is

smaller than the error of the Boosting method and can outperform other competitors

when m = Ω(exp(t/ε)).
4.4.3 Data-dependency and the matrix mechanism

Although the techniques of the matrix mechanism are data-independent, they can

be deployed in a data-dependent way, blurring the distinction between mechanism

types. The differentially private domain compression technique [49] may be applied

to reduce the domain size n to Θ(N) with an additional O(logn) noise, which suggests

a method for improving the error dependency of the matrix mechanism on n.

Further, the optimal strategy matrix used in the matrix mechanism represents the

fundamental building blocks of the workload and the matrix mechanism reduces error

by using the strategy queries as differentially private observations, instead of the work-

load queries. Recent data-dependent approaches can benefit from the same approach.
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In fact, [38] selects Fourier basis vectors adaptively in a data dependent manner, but

could benefit from selecting from a more efficient strategy matrix. Therefore, the

SVDB bound can serve as a baseline accuracy measure, which may be improved by

data-dependent query selection.

4.5 Complexity of random workloads

The tightness of the SVD bound on different workloads has already been demon-

strated experimentally in Tab. 4.1 and theoretically in Sec. 4.3.1. Most of those

analyses focus on all queries from one certain category, such as all range queries or

all marginal queries on some attributes. However, many realistic workloads may not

contain all but only a subset of queries from one category and it is hence important

to discuss the complexity and the quality of the SVD bound on a sampled subset

of a workload. In this section, we focus on the complexity sets of random sampled

queries of a given workload. In particular, we compare the SVD bound and the error

of strategies generated by the Eigen Design algorithm[46] on different subsets of all

1-dimensional range queries and marginal queries.

4.5.1 The cell simplified SVD bound

Recall the workload matrix in Example 4.1

W =
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0

t t . . . t

⎤⎥⎥⎥⎥⎥⎥⎦
.

In this query matrix, the second to the last cell of the domain are in the same query

with the same weight. Now let us consider an alternative group of cells which contains

two cells: x1 and x2 + . . . + xn and an alternative workload

W′ =
⎡⎢⎢⎢⎢⎢⎢⎣
1 0

t t

⎤⎥⎥⎥⎥⎥⎥⎦
.
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Answers to the workloadW′ on the new group of cells are exactly the same as answers

to the workload W on the original group of cells. Furthermore, it is clear that add

cells that are not participated in any queries will not impact the answers to the

workload as well. Hence we propose the following enhancement of the SVD bound.

Definition 4.10 (Cell Simplified SVD Bound). Given a workload W, let the workload

matrix W′ be its minimized workload. The cell simplified SVD bound of W, denoted

as svdb+(W), is computed by

svdb+(W) = svdb(W′).

The cell simplified SVD bound is not guaranteed to be larger than the SVD bound,

as the following example.

Example 4.4. Given the workload

W =
⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1

0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

svdb(W) = 2.61 and svdb+(W) = 2.5.
However, the cell simplified SVD bound can still benefit when the workload con-

sists of small number of randomly sampled range queries or marginal queries, which

will be shown in the experiments in the next section.

4.5.2 An empirical study on the complexity of random workloads

In this section, we use some experimental results to present the complexity of ran-

dom workloads with different sizes. We generate workloads of random range queries

on 1-dimensional domain of size 1024 (524800 different queries) and random marginal

queries on 10-dimensional domain 2 × 2 × . . . × 2 (59049 different queries). For each
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(b) Per query error on random marginal work-
loads

Figure 4.1. Per query error on random range workloads on 1d domain [1024] and
random marginal workloads on 10d domain [2, . . . ,2]

sampled workload, we compare the error of the Eigen Design algorithm, the SVD

bound and the cell simplified SVD bound. Since the number of queries are different

among different sampled workloads, we record the average per query error to draw a

fair comparison among different workloads.

Fig. 4.1 contains the experimental results on both random range queries and ran-

dom marginal queries. The x-axis is the percentage of the queries that are sampled

and the y-axis is the average per query error, both of which are in logarithm scale.

One observes that the average per query error converges very fast in both cases. Fur-

thermore, estimated error from the SVD bound is almost identical to the error from

the Eigen Design algorithm when the average per query error converges. Therefore,

it indicates that a relatively small subset of queries (1% for range queries and 10%

for marginal queries) has almost the same complexity as the entire query set.

In addition, the cell simplified SVD bound estimates error better than the SVD

bound on both random range queries and random marginal workloads when the num-

ber of queries is small. On workloads of random range queries (Fig. 5.1(a)), the

simplified SVD bound is significantly better than the SVD bound up to about 100
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queries. On workloads of random marginal queries (Fig. 5.2(a)), the simplified SVD

bound is significantly better than the SVD bound up to about 1000 queries. Since

most of the marginal queries cover small number of cells, there are lots of 0 columns

in the workload matrix that the cell simplified SVD bound can take the advantage

of. In general, the cell simplified SVD bound provides error bounds that is close to

the error from the Eigen Design algorithm for most cases.

4.6 An algebra for workloads

In this section we briefly discuss the relationship between workload operations

and the SVD bound. We define basic operators of negation-free relational algebra,

union and crossproduct, on workloads and show how our error measure behaves in

the presence of these operators. Many common workloads are the result of combining

simpler workloads using these operators. Thus, the following results can be used to

save computation of the SVD bound. In particular, for the crossproduct operation,

the computation time for the SVD bound of the crossproduct of two workloads with

size m1 × n1 and m2 × n2 can be reduced from O(min(m1m2, n1n2)m1m2n1n2) to

O(min(m1, n1)m1n1 +min(m2, n2)m2n2).
4.6.1 Union

The union operation on workloads has the standard meaning for rows of the

workload matrix:

Definition 4.11 (Union). Given an m1 × n workload W1 and an m2 × n workload

W2 over the same n cell conditions. W1 ∪W2 is the union of W1 and W2, the

workload consisting of the rows of both W1 and W2, without duplicates.

The relationship between the SVD bounds of workloads and their unions can be

bounded:
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Theorem 4.12. Given an m1 × n workload W1 and an m2 × n workload W2 on the

same set of n cell conditions.

√
svdb(W1) +√svdb(W2) ≥ √svdb(W1 ∪W2);√
svdb(W1) +√svdb(W2) ≥ √svdb(W1 ∪W2).

The proofs of union is related to the relationship between singular values of ma-

trices and their sum, as stated in the proposition below.

Proposition 4.4 ([30]). Given two n × n matrices W1 and W2 with singular values

µ1, µ2, . . . , µn and λ1, λ2, . . . , λn respectively. Let φ1, φ2, . . . , φn be the singular values

of W1 +W2, then
n

∑
i=1

µi +
n

∑
i=1

λi ≥ n

∑
i=1

φi.

For any m × n matrix W, there always exists an n × n matrix W′ such that the

nonzero singular values of W and W′ are all the same. Theorem 4.4 holds even if

both W1 and W2 are m × n matrices, which leads to the relationship between the

SVD bounds of two workloads and their sum.

Proof. Let W =W1∪W2. Expand W1, W2 to two (m1+m2)×n matrices as follows:

W′
1 =
⎡⎢⎢⎢⎢⎢⎢⎣
W1

0

⎤⎥⎥⎥⎥⎥⎥⎦
, W′

2 =
⎡⎢⎢⎢⎢⎢⎢⎣

0

W2

⎤⎥⎥⎥⎥⎥⎥⎦
.

Since W′
1 and W′

2 have the same singular values as W1 and W2, respectively,

svdb(W′
1) = svdb(W1), svdb(W′

2) = svdb(W2). Furthermore, since

W′
1 +W

′
2 =
⎡⎢⎢⎢⎢⎢⎢⎣
W1

W2

⎤⎥⎥⎥⎥⎥⎥⎦
⊇W,
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svdb svdb

W1 ∪W2

√

svdb(W1) +
√

svdb(W2) ≥

√

svdb(W1 ∪W2)

√

svdb(W1) +
√

svdb(W2) ≥

√

svdb(W1 ∪W2)

W1 ×W2 svdb(W1)svdb(W2) = svdb(W1 ×W2) svdb(W1)svdb(W2) ≤ svdb(W1 ×W2)

Predicate Workloads

W1 ∧W2 svdb(W1)svdb(W2) = svdb(W1 ∧W2) svdb(W1)svdb(W2) ≤ svdb(W1 ∧W2)

Table 4.3. Algebra operators and relations for the simple and supreme singular value
bounds.

according to Prop. 4.4, the sum of the singular values of W′
1 and W′

2 is larger than

or equal to the sum of singular values W. Therefore, with Thm. 4.3 and Prop. 4.4,

√
svdb(W1) +√svdb(W2)

= √svdb(W′
1) +√svdb(W′

2) ≥ √svdb(W).
For the case of svdb, notice that for any projection µ,

√
svdb(µ(W1)) +√svdb(µ(W2)) ≥ √µ(svdb(W)).

Consider all projections and we have the result proved.

4.6.2 Workload combination

Given two workloads over distinct sets of cell conditions, we can combine them to

form a workload over the crossproduct of the individual cell conditions. This is most

commonly used to combine workloads defined over distinct sets of attributes B1 and

B2 to get a workload defined over B1∪B2. When we pair individual predicate queries,

it is equivalent to pair them conjunctively.

Definition 4.12 (Workload combination). Given an m1 × n1 workload W1 defined

by cell conditions Φ = φ1 . . . φn1
and an m2 × n2 workload W2 defined by distinct

cell conditions Ψ = ψ1 . . . ψn2
, a new combined workload W is defined over cell con-

ditions {φi ∧ ψj ∣ φi ∈ Φ, ψj ∈ Ψ}. For each w1 = (w1,1, . . . , wn1,1) ∈ W1 and w2 =
(w1,2, . . . , wn2,2) ∈W2, there is a query w ∈W accordingly:
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• (Crossproduct) If the entry of w related to each cell condition φi ∧ ψj is

w1,i ⋅w2,j, W is called the crossproduct of W1 and W2, denoted as W1 ×W2.

• (Conjunction) If both W1 and W2 consist of predicate queries and the entry

of w related to each cell condition φi ∧ ψj is w1,i ∧ w2,j, then W is called the

conjunction of W1 and W2, denoted as W1 ∧W2.

The next theorem describes the singular value bound for the crossproduct of work-

loads:

Theorem 4.13. Given an m1×n1 workload W1 and an m2×n2 workload W2 defined

on two distinct sets of cell conditions:

svdb(W1 ×W2) = svdb(W1)svdb(W2)
svdb(W1 ×W2) ≥ svdb(W1)svdb(W2)

Proof. The property of crossproduct can be proved by constructing a proper repre-

sentation to the resulting workload.

Let w1 and w2 be queries in W1 and W2, respectively and W = W1 ×W2.

Consider the vector representation of w1 and w2: w1 = [w11, w12, . . . , w1n1
]T , w2 =

[w21, w22, . . . , w2n2
]T . The crossproduct of w1 and w2, denoted as w can be rep-

resented as an n1 by n2 matrix, whose (i, j) entry is equal to w1iw2j. In another

word,

w =w1w
T
2 .

We can the represent w as a vector, denoted as w′, which is a 1 × n1n2 vector that

contains entries in w row by row. Therefore,

w′ = [w11w2, w12w2, . . . , w1nw2]T .
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More generally, using W1
ij to denote the (i, j) entry in W1, W can be represented as

the following matrix:

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
11W2 w1

12W2 . . . w1
1n1

W2

w1
21W2 w1

22W2 . . . w1
2n1

W2

⋮ ⋮ ⋱ ⋮

w1
n1W2 w1

n2W2 . . . w1
m1n1

W2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let v1, v2 be the eigenvectors ofWT
1 W1,WT

2 W2 with eigenvalues λ1, λ2, respectively.

Let the vector representation of v1 be v1 = [v1n, v2n, . . . , v1n]T . Consider the following
vector

v = [v11v2, v12v2, . . . , v1nv2]T ,
According to block matrix multiplication,

WTWv = WT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ni=1w1
1iv1iW2v2

∑ni=1w1
2iv1iW2v2

⋮

∑ni=1w1
m1i
v1iW2v2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1v11λ2v2

λ1v12λ2v2

⋮

λ1v1nλ2v2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= λ1λ2v.

Thus v is an eigenvector of WTW with eigenvalue λ1λ2. Since WT
1 W1 and WT

2 W

have n1 and n2 orthogonal eigenvectors, respectively, we can find n1n2 orthogonal

eigenvectors with this method. Noticing WTW only has n1n2 eigenvalues, the eigen-
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values of those n1n2 eigenvectors are all the eigenvalues of WTW. Let λ11, . . . , λ1n

be the eigenvalues of WT
1 W1 and λ21, . . . , λ2n be the eigenvalues of WT

2 W2.

svdb(W) = 1

n1n2

( ∑
1≤i≤n1,1≤j≤n2

√
λ1iλ2j)2

= 1

n1

( n1

∑
i=1

√
λ1i)2 ⋅ 1

n2

( n2

∑
i=1

√
λ2i)2

= svdb(W1)svdb(W2).
Though we use a specific rule above to represent the query cross products as query

vectors, according to Theorem 4.2, the SVD bound is independent of the rule of

representation. Thus we have the theorem proved in arbitrary cases.

For the case of svdb, since for any projection µ1 on W1 and µ2 on W2, µ1 × µ2

is a projection on W. On the another hand, there are projections on W that can

not be represented as a crossproduct of a projection on W1 and a projection on W2.

Therefore

svdb(W1)svdb(W2) =max
µ1

svdb(µ1(W1))max
µ2

svdb(µ2(W2))
=max
µ1,µ2

svdb((µ1 × µ2)(W))
≤max

µ
svdb(µ(W)) = svdb(W).

The conjunction of predicate queries is a special case of crossproduct, Thus, ap-

plying Theorem 4.13 to predicate workloads we have:

Corollary 4.5. Given an m1 × n1 workload W1 and an m2 × n2 workload W2, both

of which consist of predicate queries.

svdb(W1 ∧W2) = svdb(W1)svdb(W2);
svdb(W1 ∧W2) ≥ svdb(W1)svdb(W2).
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CHAPTER 5

AN EFFICIENT ALGORITHM UNDER THE MATRIX
MECHANISM

The matrix mechanism makes clear that nearly any set of strategy queries can be

used in this manner to answer a workload. Effective strategies have lower sensitivity

than the workload, and are such that the workload queries can be concisely repre-

sented in terms of the strategy queries. In this chapter, we continue this line of work

in order to create a truly adaptive mechanism that can answer a wide range of work-

loads with low error. The key to such a mechanism is strategy selection: the problem

of computing the set of strategy queries that minimizes error for a given workload.

Unfortunately, as it is discussed in Chapter 3, exact solutions to the strategy selection

problem are infeasible in practice. One of our main contributions is an approxima-

tion algorithm capable of efficiently computing a nearly optimal strategy in O(n4)
time (where n is the number of individual counting queries required to express the

workload). The result is a mechanism that adapts the noise distribution to the set of

queries of interest, relieving the user of the burden of choosing among mechanisms or

carefully analyzing their workload.

Our main algorithm focuses on (ε, δ)-differential privacy1 and is inspired by the

statistical problem of optimal experimental design [15, 57], we formulate the strat-

egy selection problem as a convex optimization problem which chooses n coefficients

to serve as weights for a fixed set of design queries. Moreover, we show that the

1Our algorithm can also be adapted to ε-differential privacy, but it is less efficient, appears to be
less effective, and is significantly harder to analyze. (Please see Sec. 5.1.5.)
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eigenvectors of the workload (when represented in matrix form) capture the essential

building blocks required for near-optimal strategies and are therefore a very effective

choice for the design queries underlying the above optimization problem.

Our mechanism is also significantly more general than prior work. It can be

applied to any workload of linear counting queries: a much larger class of queries

than marginals or range queries. In addition, the algorithm avoids a subtle limitation

of some previous approaches [40, 70, 19] in which achieving promised error rates

depends on finding a proper representation for the workload.

5.1 An algorithm for efficient strategy selection

In this section we present an approximation algorithm for the strategy selection

problem, prove its approximation rate and other properties, and discuss adapting the

algorithm to ε-differential privacy. Below, we denote the optimal strategy under the

matrix mechanism for a given workload W as OptStrat(W).
5.1.1 Optimal query weighting

The main difficulty in solving OptStrat(W) is computing (subject to complex

constraints) all n2 entries of a strategy matrix. To simplify the problem, we take

inspiration from the related problem of optimal experimental design [57].

Consider a scientist who wishes to estimate the value of n unknown variables

as accurately as possible. The variables cannot be observed directly, but only by

running one or more of a fixed set of feasible experiments, each of which returns a

linear combination of the variables. The experiments suffer from observational error,

but those errors are assumed independent, and it follows that the least square method

can be used to estimate the unknown variables once the results of the experiments are

collected. Each experiment has an associated cost (which may represent time, effort,

or financial expense) and the scientist has a fixed budget. The optimal experimental
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design is the subset (or weighted subset) of feasible experiments offering the best

estimate of the unknown variables and with a cost less than the budget constraint.

There is an immediate analogy to the problem of strategy selection: our strategy

queries are like experiments that provide partial information about the unknown

data vector x, and the final result will be computed using the least square method.

However, in our setting, we are permitted to ask any query, with a cost (arising from

the increase in sensitivity) which impacts the added noise. In addition, our goal is

to minimize the sum of variances of the given workload queries, while experimental

design always minimizes the error of the individual variables (i.e. the error metric in

experimental design is equivalent to our problem only if W is the identity matrix).

Despite these important differences, we adopt from experimental design the idea

to limit the selection of our strategy to weighted combinations of a set of design

queries that are fixed ahead of time. Naturally, design queries with a weight of

zero are omitted. For a set of design queries Q, the following problem, denoted

OptStratQ(W), selects the set of weights which minimizes the total error for W.

Problem 5.1 (Approximate Strategy Selection). Let W be a workload and Q =
{q1, . . .qk} the design queries. For weights Λ = (λ1 . . . λk) ∈ Rk, let matrix AΛ,Q =
[λ1q, . . . , λkqk]T . Choose weights Λ0 ∈ Rk such that:

ErrorK,AΛ0,Q
(W) =minΛ∈RkErrorK,AΛ,Q

(W). (5.1)

The solution to this problem only approximates the truly optimal strategy since it

is limited to selecting a strategy that is a weighted combination of the design queries.

But OptStratQ(W) can be computed much more efficiently than OptStrat(W).
To do so, we describe OptStratQ(W) as a semi-definite program [15], a special

form of convex optimization in which a linear objective function is minimized over

the cone of positive semidefinite matrices. Below, ○ is the Hadamard (entry-wise)
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product of two matrices, and for symmetric matrix Q, Q ⪰ 0 denotes that Q is

positive semidefinite, which means xTQx ≥ 0 for any vector x.

Program 5.1.1 Optimal Query Weighting

Given: c1, . . . , cn, Q = [q1, . . . ,qn].
Choose: u1, . . . , un, v1, . . . , vn.

Mimimize: c1v1 + . . . + cnvn.

Subject to: [ ui 1
1 vi

] ⪰ 0, i = 1, . . . , n.
(Q ○Q)Tu ≤ 1.

Theorem 5.1. Given a workload W and a set of design queries Q = {q1, . . .qn}, let
c1, . . . , cn be the squared L2 norms of the columns of matrix WQ+. If the output of Pro-

gram 5.1.1 is u1, . . . , un then setting Λ = {√u1 . . .√un} achieves OptStratQ(W).
Proof. (Sketch) To solve Problem 5.1, notice that applying a scalar to λ1, . . . , λn will

not change the value of ErrorK,A(Λ,Q)(W). Thus we can constrain the sensitivity of

the strategy to be 1. Then the problem is equivalent to minimizing c1/λ21 + . . .+ cn/λ2n
with the constraint that the sensitivity of the strategy is 1. In Program 5.1.1, uivi ≥ 1
and the smaller vi leads to smaller minimization goal. Thus the semidefinite con-

straints guarantee that vi = 1/ui and the inequality constraints require the sensitivity

to be 1 for any optimal solution.

Algorithms for efficiently solving semidefinite programs have received considerable

attention recently [15]. Using standard algorithms, Program 5.1.1 can be solved in

O(n∣Q∣3) time. Recall that the complexity of computing OptStrat(W) is O(n8).
Thus, Program 5.1.1 offers an efficiency improvement as long as ∣Q∣ = O(n2). This

provides a target size for selecting the design set, which we turn to next.
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5.1.2 Choosing the design queries

The potential of the above approach depends on finding a set of design queries,

Q, that is concise (containing no more than n2, and preferably n, queries) and also

expressive (so that near-optimal solutions can be expressed as weighted combinations

of its elements).

One straightforward idea is to adopt as the design queries one of the proposed

strategy matrices from prior work. These are good strategy matrices for specific

workloads such as the set of all range queries (wavelet or hierarchical strategy) or

sets of low order marginals (the Fourier strategy). Choosing one of these for Q would

guarantee that OptStratQ(W) produces a solution that improves upon the error

of using that strategy. Unfortunately these strategies are not sufficiently expressive

for workloads very different from their target workloads.

Another possibility is to use the workload itself as the set of design queries, but

there are two difficulties with this. First, there is no guarantee that a workload in-

cludes within it the components from which a high quality strategy may be formed,

especially if the workload only contains a small set of queries. The workloads of all

range and all predicate queries are in fact sufficiently expressive (e.g. both the hier-

archical strategy and a strategy equivalent to wavelet can be constructed by applying

weights to the set of all range queries). But this leads to the second issue: these

workloads, and others that serve important applications, are too large and fail to

meet our conciseness requirement.

To avoid these pitfalls, we will derive the design set from the given workload

W by applying tools of spectral analysis. Intuitively this is a good choice because

the eigenvectors of a matrix often capture its most important properties. We will

also show in the next section that this choice aids in the theoretical analysis of the

approximation ratio because it allows us to relate the output of OptStratQ(W) to
a lower bound on error that is a function of the workload eigenvalues.
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Recall that the key part of the expression for Eqn. (3.5) in Prop. 3.4 is ∣∣WA+∣∣2F ,
which can also be represented as

∣∣WA+∣∣2F = trace(WTW(ATA)+).
Notice that the workload occurs only in the form of WTW. It follows that there are

many workloads with equivalent total error because it is easy to construct a matrix

W0 such that WT
0 W0 =WTW by letting W0 = QW for any orthogonal matrix Q.

This suggests that, as far as total error under the matrix mechanism is concerned,

the essential properties of the workload are reflected by WTW. This motivates the

following definition of eigen-queries of a workload, which we will use as our design

set.

Definition 5.1 (Eigen-queries of a workload). Given a workload W, consider the

eigen-decomposition of WTW into WTW =QTDQ, where Q is an orthogonal matrix

and D is a diagonal matrix. The eigen-queries of W are the rows of Q (i.e. the

eigenvectors of WTW).

Choosing the eigen-queries of W as the design set meets our conciseness re-

quirement because there are never more than n eigen-queries. Thus Program 5.1.1,

OptStratQ(W), has complexity O(n4), which is O(n4) times faster than solving

OptStrat(W). We also find that the eigen-queries meet our expressiveness objec-

tive. We will show this next by proving a bound on the approximation ratio. In Sec.

5.2 we propose techniques that exploit the fact that using subsets of the eigen-queries

retain much of the expressiveness and increase efficiency. And in Section 5.3, we show

experimentally that weighted eigen-queries allow for near-optimal strategies, and also

that the eigen-queries outperform other natural alternatives for the design set.

5.1.3 The Eigen-Design algorithm

It remains to define the complete Eigen-Design algorithm, which is Program 5.1.2:
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Program 5.1.2 The Eigen-Design Algorithm

Input: Workload matrix W.
Output: Strategy matrix A.
1: Compute the eigenvalue decomposition of WTW = QTDQ, where D =
diag(σ1, . . . , σn) and set Q =Q.

2: Compute weights λ1, . . . , λn by solving Program 5.1.1 for above Q and with ci = σi,
i ∈ [1..n].

3: Construct matrix A′ = ΛQ where Λ = diag(λ1, . . . , λn).
4: Let m11, . . . ,mnn be the L2 norm of columns of A′ and define D′ =
diag(maxi{√m2

ii −m
2
11}, . . . ,maxi{√m2

ii −m
2
nn}).

5: return A = [A′
D′
].

The algorithm performs the decomposition of WTW to derive the design queries

(Step 1), and solves OptStratQ(W) using the eigen-queries as the design set (Step

2). The matrix A′ that is constructed in Step 3 is a candidate strategy but may have

one or more columns whose norm is less than the sensitivity. In this case, it is possible

to add queries, completing columns, without raising the sensitivity (Step 4 and 5).

These additional queries can only provide more information about the database, and

hence reduce error.

5.1.4 Analysis of the Eigen-Design algorithm

We now consider the accuracy and generality of the eigen-design algorithm, show-

ing a bound on the worst-case approximation rate and that the accuracy of the algo-

rithm is robust with respect to the representation of the input workload.

Approximation Rate

To bound the approximation rate, we rely on the error bound presented in the

previous chapter. The existence of this bound does not imply an algorithm for achiev-

ing it, but it is a useful tool for understanding theoretically and experimentally the

quality of the strategies produced by OptStrat(W) using the eigenvalues of W.

Recall how the singular value bound is proved. Let Al be the strategy that is

defined by weighting the eigen queries of W by
√
σ1, . . . ,

√
σn. The singular value
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bound comes from underestimating the sensitivity of Al using
√
trace(AT

l Al)/n. In

practice, though the singular value bound may not be achieved since there is a gap

between the sensitivity of Al and
√
trace(AT

l Al)/n, the idea of weighting the eigen

queries can be combined with the experimental design method to find good strategies

to W.

Notice the strategy Al is contained in the possible solutions of Program 5.1.2.

Thus the approximation ratio of Program 5.1.2 can be estimated by using the tightness

and looseness results of the singular value bound.

Theorem 5.2. Program 5.1.2 achieves the optimal solution whenever the singular

value bound is tight. In addition, the strategy given by Program 5.1.2 approximates

MinErrorK(W) within a ratio of nd0/trace(√WTW), where d0 is the largest diag-

onal entry of the matrix
√
WTW.

This theorem shows that the approximation ratio of applying Program 5.1.2 to a

workload W can be bounded by analyzing the eigenvalues of matrix WTW.

In practice, the ratio between the error of the eigen strategies and the optimal

error is much smaller for a wide range of common workloads. In the experiments

in Sec. 5.3, the largest ratio is at most 1.6 and in a number of cases the ratio is

essentially equal to 1, modulo numerical imprecision.

Representation Independence

We say that the Eigen-Design algorithm is representation independent because

its output is invariant for semantically equivalent workloads and error equivalent

workloads. Recall that the logical semantics of a workload matrix W depends on its

cell conditions and the semantic equivalent workloads are defined as Definition 2.5.

Naturally, we hope for a mechanism with equal error for any two semantically-

equivalent representations of a workload. Some prior approaches do not have this

property. For example, the wavelet and hierarchical strategies exploit the locality
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present in the canonical representation of range queries. An alternative matrix rep-

resentation of the range queries may result in significantly larger error.

As it is pointed out in Proposition 2.1, semantic equivalent workloads can be

generated by different operations, including splitting a cell condition, and merging

cell conditions with same queries. Those two operations will impact the performance

of the Eigen-Design algorithm. However, if we run the Eigen-Design algorithm on the

minimized workload of the input workload W, it does not suffer from this pitfall:

Proposition 5.1 (Semantic equivalence). Let W1 and W2 be two semantically-

equivalent workloads whose minimized workloads are W′
1 and W′

2, respectively. Sup-

pose Prog. 5.1.2 computes strategy A1 on workload W′
1 and A2 on workload W′

2.

Then ErrorK,A1
(W′

1) = ErrorK,A2
(W′

2).
Proof. For any two semantically-equivalent workload matrices W1 and W2, there

exist transformation matrices T1 and T2 such that W′
1 = T1W′

2T2 where T1 per-

forms row swaps and T2 performs a sequence of column swaps, column duplica-

tions, or duplicate column elimination. Because T1 is actually an orthogonal matrix,

W′T
2W

′
2 = (T1W′

2)T (T1W′
2). In addition, the operations on T2 do not change the

nonzero of eigenvalues of W′T
2W and using QT2 instead of Q in Program 5.1.1 does

not change the inequality constraint w.r.t. those xi that have non-zero eigenval-

ues. Therefore, Program 5.1.1 computes semantically-equivalent strategies AT2 and

A for W′
1 and W′

2, respectively, and the final step in Program 5.1.2 will leave the

strategies semantically-equivalent as well. Thus A1 = A2T2 and ErrorK,A1
(W′

1) =
ErrorK,A2

(W′
2).

A related issue arises for two workloads that may be semantically different, but

can be shown to have equivalent error. Since W appears as WTW in the expression

for total error of a workload, it follows that, for any orthogonal matrix Q, workload

QW has error equal to W under any strategy. And in particular, any two such
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workloads have equal minimum error. The Eigen-Design algorithm always finds the

same strategies for any two error-equivalent workloads:

Proposition 5.2 (Error equivalence). Let W1 and W2 be two error-equivalent work-

loads (i.e. W1 =QW2 for some orthogonal Q) and suppose Program 5.1.2 computes

strategy A1 on workload W1 and A2 on workload W2. Then ErrorK,A1
(W1) =

ErrorK,A2
(W2)

This result follows from the fact that the input to Program 5.1.1 uses the eigen-

vectors of WTW, and therefore operates identically on equivalent workloads.

Optimizing for Relative Error

The discussion above is about workload error, an absolute measure of error. Our

adaptive approach can also be used to find strategies offering low relative error. How-

ever, these are two fundamentally different optimization objectives and a single strat-

egy matrix will not, in general, satisfy both.

One major difference between computing absolute error and relative error is the

impact of the L2 norm of a query vector. According to Proposition 3.4, the query error

of w under strategy A is proportional to the L2 norm of w. Therefore a scaled query

kw has k times larger query error compared with w, and thus a query with higher

L2 norm contributes more to workload error. But because the relative error does not

change with the L2 norm of the query, using strategies optimized for workload error

will not lead to optimal relative error.

Because the matrix mechanism is a data-independent mechanism, it is not possible

to optimize for relative error directly. If the distribution of the target dataset were

known, we could scale each query by its weighted L2 norm, where the weight on

each cell is proportional to the inverse of its probability. This scaling will optimize

towards relative error by neutralizing the fact that the designed strategies are biased

towards high norm queries. Since the underlying distribution is typically unknown, we
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introduce a heuristic scaling, prior to applying the Eigen-Design algorithm, in which

each query is normalized to make its L2 norm 1. This is equivalent to assuming a

uniform distribution over the cells. In Sec 5.3, we show that, for two real datasets,

this approach results in significantly lower relative error than competing techniques.

5.1.5 Application to ε-differential privacy

There are a number of challenges to applying the optimally weighted design ap-

proach under ε-differential privacy. Recall, once again, the formula for total error from

Prop. 3.4: P (K)∆2
A∣∣WA+∣∣2F . To move to ε-differential privacy, only the sensitivity

term changes, from L2 to L1: P (K)∆̄2
A∣∣WA+∣∣2F . In the former case, the sensitivity

term ¯̄∆A is uniquely determined by ATA. But in the latter case, computing a near-

optimal ATA is not enough, because ∆̄A remains undetermined and is itself hard to

optimize. As a result, it is more challenging to represent the optimal query weighting

as a convex optimization problem. Below we present its formal encoding in a special

case that Q contains no more than n queries, but note that the resulting problem is

also less efficient because we can no longer rely on second order cone programming.

Program 5.1.3 Optimal Query Weighting under ε-Differential Privacy

Given: c1, . . . , cn, Q = [q1, . . . ,qn].
Choose: u1, . . . , un, v1, . . . , vn.

Mimimize: c1v1 + . . . + cnvn.

Subject to: − log(u2
ivi) ≤ 0, i = 1, . . . , n.(Q ○Q)Tu ≤ 1.

Theorem 5.3. Given a workload W and a set of design queries Q = {q1, . . .qn}, let
c1, . . . , cn be the squared L2 norms of the columns of matrix WQ+. If the output of

Program 5.1.3 is u1, . . . , un then setting Λ = {u1 . . . un} achieves OptStratQ(W).
Theorem 5.3 can be proved in exactly the same way as Theorem 5.1.
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Furthermore, there does not seem to be a universally good design set: the eigen-

queries do not outperform other bases, in general, because they characterize only the

properties of WTW but do not account for the L1 sensitivity. We can nevertheless

still use our algorithm to improve existing strategies. For example, using the Wavelet

basis in the algorithm can improve its performance on all range and random range

queries by a factor of 1.2 and 2.3, respectively; using the Fourier basis can improve

its performance on low order marginals by a factor of 2.7.

Lastly, we do not know of an analogue of Theorem 4.1 providing a guaranteed

error bound for the ε-differential privacy to verify the quality of the output.

These challenges motivate our choice to focus on (ε, δ)-differential privacy. While

the two privacy guarantees are strictly-speaking incomparable, for conservative set-

tings of δ, a user may be indifferent between the two. It is then possible to show that

the asymptotic error rates for many workloads are roughly comparable between the

two models.

5.2 Complexity and optimizations

We focus next on methods to further reduce the complexity of approximate strat-

egy selection. We first analyze the complexity of the strategy selection algorithm and

show that it can be solved more efficiently for low rank workloads, with no impact

on the quality of the solution. Then we propose two approaches which can signifi-

cantly speed up strategy selection by reducing the size of the input to Program 5.1.2.

Intuitively, both approaches perform strategy selection over a summary of the work-

load that is constructed from its most significant eigenvectors, potentially sacrificing

fidelity of the solution. We evaluate the latter two techniques in Sec 5.3.4.
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5.2.1 Complexity analysis

The rank of workload matrix W, denoted by rank(W), is the size of the largest

linearly-independent subset of the rows (or, equivalently, columns). When rank(W)
equals its maximum value, n, we say thatW has full rank, which implies that accurate

answers to the workload queries in W uniquely determine every cell count in x. The

complexity of the strategy selection algorithm can be broken into three parts: com-

puting the eigenvectors and eigenvalues of matrix WTW, solving the optimization

problem, and constructing the strategy. If an eigenvalue is equal to zero, the eigen-

value and its corresponding eigenvectors are not actually involved the optimization

and strategy construction, so they can be omitted in practice. Since the number of

nonzero eigenvalues of WTW is equal to rank(W), the complexity of Programs 5.1.2

is O(nm rank(W) + n rank(W)3).
The complexity analysis above indicates that its efficiency can be significantly

improved when rank(W) ≪ n. For example, the rank of low order marginal workloads

can be bounded by the number of queries in the workload. Suppose a low-order

marginal workload is defined on a k-dimensional space of cell conditions, each of

which has size d. If the workload only contains one-way marginals, the complexity of

solving Program 5.1.2 over this workload is bounded by O(k3d3+k). If the workload

consists of one and two-way marginals the complexity is O(k6dk+6). Both of these

bounds are much smaller than O(d4k).
5.2.2 Workload reduction approaches

Next we propose two approaches which allow us to reduce the number of variables

in the optimization problem. Both are inspired by principal component analysis

(PCA), in which a matrix is characterized by the so-called principal eigenvectors,

which are the eigenvectors associated with the largest eigenvalues.
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In our case, recall that we cannot ignore the non-principal eigenvectors since the

rank of the strategy matrix A cannot be lower than the workload matrix W. Instead,

we either compute separately the weights for the principal and remaining eigenvectors,

or we choose the same weights for all the remaining eigenvectors.

5.2.2.1 Eigen-Query separation

In eigen-query separation, we partition the eigen-queries into groups of a speci-

fied size according to their corresponding eigenvalues. Treating one group at a time,

Program 5.1.1 is executed to determine the optimal weights just for the eigenvectors

of that group. After the individual group optimizations are finished, another opti-

mization can be used to calculate the best factor to be applied to all queries in each

group. If the group size is large, all of the principal eigenvectors may be contained in

one group, in which case the most important weights will be computed precisely.

The complexity of eigen-query separation depends on the group division. No-

tice that during the optimization of each group, the convex optimization problem is

equivalent to setting all eigenvalues of excluded eigenvectors to zero. Analogous to

the discussion of low rank workloads, letting the size of group be ng, the complexity of

solving the optimization problem over each group is O(nn3
g). Similarly, the time com-

plexity to combine all the groups is O(n(n/ng)3), and therefore O(n2n3
g + n(n/ng)3)

in total. Asymptotically, the complexity of eigen-query separation is minimized when

ng = O(n1/3). Then the complexity of the entire process is O(n3), the same as the

cost of standard matrix multiplication.

5.2.2.2 Principal vector optimization

In the principal vector optimization we use a subset of the k most important

eigenvectors as the design set, computing the optimal weights as usual. Instead

of ignoring the less important eigenvectors (as is typical in PCA) we simply use a

single common weight for each of the excluded vectors that have non-zero eigenvalues.

111



The number of variables in the convex optimization is reduced to k + 1 so that the

time complexity is reduced to O(nk3). Experimentally we find that good results are

possible with as few as 10% of the eigenvectors.

In Sec. 5.3.4 we show that both of the above approaches can improve execution

time by two orders of magnitude with modest impact on solution quality. Extending

our theoretical bound on the approximation rate to these approaches is an interesting

direction for future work.

5.3 Experimental evaluation

The empirical evaluation of our mechanism has three objectives: (i.) to measure

solution quality of the Eigen-Design algorithm using both absolute and relative error;

(ii.) to measure the trade-off between speed-up and solution quality of our two perfor-

mance optimizations; and (iii.) to measure the effectiveness of using the eigen-queries

as the design set. Experimental conclusions are presented in Sec. 5.3.6.

5.3.1 Experimental setup

Recall that total error is an absolute error measure based on root mean square

error. Total error can be analytically computed using Prop. 3.4, and this is precisely

the error that will be witnessed when running repeated trials and computing the

mean deviation. Further, total error is independent of the true counts in data vector

x. That is, it is independent of the input data. These facts hold for all instances

of the matrix mechanism, and therefore for each of the competing techniques we

consider below. Therefore, when evaluating this absolute error measure, we do not

perform repeated trials with samples of random noise nor do we use any datasets.

In addition, all measures of workload error include the same factor P (ε, δ), so that

changing the privacy parameters impacts each method with the same factor, leaving
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the ratio of their error the same. Consequently, for total error, we simply fix ε = 0.5
and δ = 0.0001.

For total error, all error measurements are purely a function of the workload,

reflecting the hardness of simultaneously answering a set of queries under differential

privacy. In addition, these error rates can be compared directly with the lower bound

as Theorem 4.1, reflecting a bound on the approximation rate. (This lower bound is

not known to be achievable for all workloads, but nevertheless informs the quality of

the eigen-strategy and its competitors.)

We also evaluate the relative error rates achievable using our algorithm by com-

puting the strategy that minimizes absolute error on a scaled workload, as described

in Sec. 5.1.4. Of course, the relative error rates reported in experiments are always

for the original input workload. In these experiments we vary the value of ε, for a

fixed δ = 0.0001, and consider two real datasets. The first dataset is the US individual

census data in the past five years[62], which are aggregated on age, occupation and

income. The second is the Adult dataset[8], in which tuples are weight-aggregated

on age, work, education and income. The size and dimensions of the datasets are:

Dataset Dimension # Tuples
US Census 8 × 16 × 16 15M

Adult 8 × 8 × 16 × 2 33K

Table 5.1. The size and dimensions of the datasets

All experiments are executed on a quad-core 3.16GHz Intel CPU with 8 GB mem-

ory. Our Python implementation extends publicly-available code for the matrix mech-

anism [2] and also uses the dsdp solver [5] in the cvxopt [1] package. In addition, in

order to present a more straightforward comparison between the total error and the

relative error. Throughout the experiments, we present the square root of the total

error, called the workload error instead of the total error.
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5.3.2 Competing approaches

We compare the Eigen-Design strategy with the following four alternatives. Al-

though originally proposed in the context of ε-differential privacy, each is easily

adapted to (ε, δ)-differential privacy and the shift generally improves the relationship

to the optimal error rate (with the exception of the Fourier strategy, noted below).

- Fourier is designed for workloads consisting of all k-way marginals, for given k [9].

The strategy transforms the cell counts with the Fourier transformation and

computes the marginals from the Fourier parameters. When the workload is

not full rank, the unnecessary queries of the Fourier basis are removed from

the strategy to reduce sensitivity. The effectiveness of the Fourier strategy is

somewhat reduced under (ε, δ)-differential privacy because dropping unneces-

sary queries results in a smaller sensitivity reduction using L2.

- DataCube is an adaptive method that supports marginal workloads [19]. We

implemented the BMAX algorithm, which chooses a subset of input marginals

so as to minimize the maximum error when answering the input workload. To

adapt the algorithm to (ε, δ)-differential privacy, sensitivity is measured under

L2 instead of L1.

- Wavelet supports multi-dimensional range workloads by applying the Haar wavelet

transformation to each dimension [70]. When using ε-differential privacy, Xiao

et al. also introduced a hybrid algorithm that uses the identity strategy on

dimensions with small size. This optimization is unnecessary under (ε, δ)-
differential privacy: the hybrid algorithm does not lead to smaller error when

sensitivity is measured under L2.

- Hierarchical aims to answer workloads of range queries using a binary tree struc-

ture of queries: the first query is the sum of all cells and the rest of the queries

recursively divide the first query into parts [40]. We test binary hierarchical
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strategies (although higher orders are possible). The strategy in [40] supports

one dimensional range workloads, but is adapted to multiple dimensions in a

manner analogous to Wavelet [70].

We do not compare with the error of the standard Gaussian mechanism, which, for

the workloads considered, is far worse than all alternatives. Prior works [40, 70, 19]

compared the error rates of their approaches with the identity strategy. We omit this

explicit comparison, since the identity is always within the space of possible strategies

the Eigen-Design could choose, but is not competitive.

5.3.3 Error of the Eigen-Design Algorithm

We now measure the improvement in absolute and relative error offered by the

Eigen-Design algorithm along with its approximation to optimal absolute error. Be-

low we refer to the strategy produced by the Eigen-Design algorithm, for a given

workload, as the eigen-strategy. We consider three classes of workloads, beginning

with workloads of range queries, then workloads of marginals, and then some alter-

native workloads designed to test the adaptivity of the mechanism.

5.3.3.1 Workloads of range queries

Figure 5.1 contain experiments on workloads of all range queries and random

range queries. The random ranges are sampled with the two-step sampling method in

[70]. Here the eigen-strategies are compared with Hierarchical and Wavelet strategy.

The figures are in log scale, except Figure. 5.1(a) on all range queries. The results

show that the eigen-design strategies reduce error by a factor of 1.2 to 2.1 in workload

error and 1.3 to 1.5 in relative error compared to the best competing strategies. In

addition, for workload error, the eigen-design strategy is within a factor of 1.3 to the

lower bound.
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(b) Relative errors on range queries

Figure 5.1. Absolute and relative error for the Eigen-Design algorithm and com-
petitors, for range workloads, on 2048 cells. “Lower Bound” is a bound on the best
possible error achievable by any strategy.

5.3.3.2 Workloads of marginals

Figure 5.2 contain experiments on workloads of 2-way marginal queries and ran-

dom marginal queries, in which the random marginals are sampled with the sampling

method in [19]. Here the eigen-strategies are compared with Fourier and DataCube.

The figures are in linear scale for workload error and log scale for relative error. The

results show that the eigen-design strategies reduce error by a factor of 1.3 to 2.2 com-

pared to the best competing strategies in workload error, and by a factor of 1.1 to

2.7 in relative error. In addition, the error of eigen-design strategies match the lower

bound of workload error, indicating that our algorithm found an optimal strategy

with respect to workload error.
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(b) Relative errors on marginal queries

Figure 5.2. Absolute and relative error for the Eigen-Design algorithm and com-
petitors, for marginal workloads, on 2048 cells. “Lower Bound” is a bound on the best
possible error achievable by any strategy.

5.3.3.3 Alternative workloads

To demonstrate that our mechanism is adaptive over a variety of workloads, we

also include other workloads that have not been studied in prior work. First we show

that our mechanism adapts to semantically equivalent workloads, in which we repeat

the experiment on range workload but randomly permute the order of cell conditions.

The justification for this experiment comes from the fact that the user may wish

to answer queries in which the order of the cell conditions is not obvious, such as

predicate queries over categorial attributes.

In addition, we run experiments on three other workloads: the range marginals

workload, the cumulative distribution (CDF) workload, and uniformly sampled pred-

icate queries. The range marginals workload is important because most data analyses
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Workload
Error Ratio

Best/Worst Competitor
Err Type Best/Worst Bound

1D Range (Permuted)
workload 9.62/13.16 0.99 Wav./Hier.
relative 1.51/2.43 - Wav./Hier.

1Way Range Marginal
workload 1.30/7.69 0.98 D.Cube/Four.
relative 1.36/4.93 - D.Cube/Four.

2Way Range Marginal
workload 1.63/3.23 0.95 Hier./Four.
relative 1.81/2.38 - Wav./D.Cube

1D CDF
workload 1.01/1.01 0.80 Wav./Hier.
relative 0.46/0.54 - Wav./Hier.

Predicate
workload 1.39/1.94 1.00 Wav./Four.
relative 1.42/3.55 - Four./Hier.

Table 5.2. The factor of error reduced for the Eigen-Design algorithm w.r.t. the
best/worst competitors strategies and the theoretical bound, for alternative work-
loads, on 2048 cells.

using marginals do not simply use individual counts, but also aggregate counts. If

this is the case, simply computing the marginals workload privately is the wrong

approach because error accumulates for aggregations. Last, the CDF workload is a

highly-skewed set of one-dimensional range queries where the sensitivity in the first

cell is n, decreasing linearly to 1 for the last cell.

We summarize the experimental results on alternative workloads in Table 5.2.

For relative errors, due to space constraints, we only present results on US census

data with ε = 0.5 and δ = 0.0001. We present, for each workload, the error reduction

factor achieved by our algorithm compared to the best and worst competing approach,

whose name is shown in the last column of the table. (Datacube is only considered

for range marginals and Fourier is not considered on permuted range and CDF.) In

addition, for workload error, we also include the ratio to the error lower bound.

The results show that the eigen-strategy can reduce workload error by as much

as 13 times (on permuted range queries) and relative error by as much as 5 times

(on one-way range marginals). The workload error of competing strategies is heavily

impacted by the permutation but the relative errors are not as bad since queries
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Figure 5.3. Quality and efficiency of approximation methods on 8192 cell conditions

of individual cells and small ranges dominate the workload, which do not change

too much under permutation. On all workloads but one, the eigen-strategy beats

every competitor by at least a factor of 1.3, and is very close to—or achieves—the

theoretical error lower bound. The only exception is the CDF workload, in which the

eigen-strategy is only a bit better than the competitor for workload error and worse

(than Hierarchical and Wavelet) for relative error. Overall, the results for workload

and relative error are largely similar for range marginals and the predicate workload.

5.3.4 Performance optimizations

Figure 5.3 illustrates the trade-off between computational speed-up and solution

quality for the eigen-separation and principal vector performance optimizations de-

scribed in Section 5.2. We only present results with workload errors here (the results

with relative error are similar or even better). Error and computation time are plot-

ted together using two y-axes: the left axis measures average per query error and the
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Figure 5.4. Comparison of design queries

right axis measures execution time in seconds. The baselines for error are the lower

bound and the best competing technique.

The running time of using the standard Eigen-Design algorithm can be estimated

from the running time of the principal vector method, which is more than an order

of magnitude larger than the principal vector method with 25% of the eigenvectors.

Both methods can reduce the running time by two orders of magnitude while the

error they introduced is less than 12% over the lower bound. For the eigen-separation

method, the computation in each group takes more time with larger group sizes

while the computation of merging groups takes more time with smaller group sizes.

Theoretically, the best choice for group size of the eigen-separation method is n1/3,

which is closest to 16 in this case. Using eigen-query separation with a group size of

16, the error is 5% higher on all range queries and 11% higher on all marginal queries.

Using the principal vectors optimization with 6% of the eigenvectors, the error is 10%

higher on all range queries and the same as the optimal on all marginal queries.

According to the results, the eigen-separation performs better on range queries

while the principal vectors method is better on marginals. In either case, the perfor-

mance improvements still produce results that are significantly better than competing

techniques.
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5.3.5 The Choice of design queries

To evaluate our claim in Section 5.1.2 that eigen-queries are an effective choice for

the design queries we compare strategies computed by Program 5.1.1 using the eigen-

queries, the Wavelet matrix and Fourier matrix as the design queries. Since using the

eigen-queries introduces the same error to semantically equivalent workloads, we also

empirically verify this property on other sets of designed queries. Figure 5.4 shows

the results of those comparisons over two structured workloads considered above, as

well as the same workloads with the order of the cell conditions permuted.

The results show that using the Fourier or the Wavelet strategy as the set of

design queries introduces 20% more error over all one dimensional range queries and

achieves the same error on two-way marginals. However these design queries cannot

maintain their performance for workloads represented under a permutation of the

cell conditions: they are worse than the eigen-queries by more than 4 times over the

permuted one-dimensional range queries.

5.3.6 Experimental conclusions

The experimental results show that, for the workloads specifically targeted by

competing techniques, those techniques achieve error that is not too far from optimal

(usually a factor of about 1.2 to 3.4 times the lower bound on error). But for broader

classes or workloads, or ad hoc subsets of structured workloads, existing techniques

are limited and the adaptivity of the Eigen-Design can improve relative or absolute

error by a larger factor. We have confirmed the versatility of our algorithm, as it

improves on all competing techniques for virtually every workload considered. The

one exception is the highly skewed CDF workload. The lowest error strategy we

are aware of for this workload is produced by our design algorithm, but with an

alternative basis.
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CHAPTER 6

COMBINING THE MATRIX MECHANISM WITH
DATA-AWARE MECHANISMS

Existing approaches for batch query answering broadly fall into two categories:

data-independent mechanisms and data-dependent mechanisms. Data-independent

mechanisms achieve the privacy condition by adding random noise that is independent

of the input database. In previous chapters, we focus on the matrix mechanism

with data-independent differentially private mechanisms. In this case, the matrix

mechanism exploits properties of the workload to achieve greater accuracy, but the

noise distribution (and therefore the error) is always fixed for all input databases.

Data-dependent mechanisms add noise that is customized to properties of the

input database, producing different error rates on different input databases. In some

cases, this can result in significantly lower error than data-independent approaches.

These mechanisms typically need to use a portion of the privacy budget to learn

about the data or the quality of a current estimate of the data. They then use the

remaining privacy budget to privately answer the desired queries. In most cases, these

approaches do not exploit workload.

A comparison of state-of-the-art mechanisms in each category reveals that each

has advantages, depending on the “complexity” or “hardness” of the input database.

If the database is viewed as a histogram, databases with large uniformly-distributed

regions can be exploited by these algorithms allowing the data-dependent mechanisms

to outperform data-independent competitors. But on more complex datasets, e.g.

those with many regions of density, data-dependent mechanisms break down.
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Consider a workload of random range queries and a dataset derived from an IP-

level network trace. The state-of-the-art data-dependent mechanism Multiplicative

Weights and Exponential Mechanism (MWEM) [38] can achieve 60.12 average per-

query error when ε = 0.1. The matrix mechanism using the wavelet basis as its query

strategy offers per-query error of 196.6, for the same ε, a factor of 3.27 worse. But

other datasets have properties that are difficult to exploit. On a dataset based on the

HEP-PH citation network, the same workload evaluated by the MWEM algorithm has

average per-query error of 722.3 with ε = 0.1, while the error of the matrix mechanism

with the same query strategy is still 196.6 for this workload, a factor of 3.67 better.

Such a large variation in the relative performance of mechanisms across data sets

is a major limitation of current approaches. This is especially true because it is

typically necessary to select a mechanism without seeing the data.

As described in Chapter 3, the matrix mechanism can be applied to any differ-

entially private mechanism. However, applying the matrix mechanism to a data-

dependent algorithm leads to much more complicated error analysis and our results

in previous chapters are no longer be valid. In this chapter, we seek an alternative

way to combine the matrix mechanism with a novel data-dependent algorithm, to

form a novel 2-stage mechanism:

- The error of our mechanism is better by a factor up to 6.86 compared with

the best state-of-art mechanisms on databases with large uniformly-distributed

regions, and is comparable with state-of-art data-independent mechanisms on

datasets that have properties that are difficult to exploit.

- We present an efficient algorithm in the first stage that partitions the domain

into uniform regions. Compared with other differentially private partitioning

algorithms, our algorithm generates much better partitions and runs in time

that is only quasilinear in the size of the domain.
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- We design a new, efficient algorithm in the second stage that adaptively dis-

tributes a privacy budget to ask a hierarchy of range queries of varying granu-

larity. Unlike existing hierarchical strategies, our method allows a non-uniform

budget distribution across queries of the same granularity, which we show leads

to a strategy that is more finely tuned to the workload, and thus more accurate,

than existing techniques.

To our knowledge, our mechanism is the first data-aware mechanism that provides

significant improvement on databases with easy-to-exploit properties yet does not

break-down on databases with complex distributions. Such property indicates that

our mechanism can be successfully deployed without guessing about properties of the

input database.

The rest of this chapter is organized as follows. We review notations in Sec. 6.1.

An overview of the algorithm is presented in Sec. 6.2. The partitioning algorithm is

presented in Sec. 6.3, and the bucket count estimating algorithm is included in Sec 6.4.

We extensively compare our algorithm with state-of-the-art competing mechanisms

in Sec. 6.5.

6.1 Histogram

In this section we review the concept of histogram. A histogram on x is a partition

of [1, n] into non-overlapping intervals, called buckets, along with a summary statistic

for each bucket. We denote a histogram by (B, s) with B a set of buckets B =
{b1 . . . bk} and s a set of corresponding statistics s = s1 . . . sk. Each bi is described by

an interval [j1, j2] and the set of intervals covers [1, n] and all intervals are disjoint.

We define the length ∣bi∣ of bucket bi to be j2 − j1 + 1.

We associate a summary statistic with each of the k buckets in a histogram. One

way to do this is to treat the bucket intervals as range queries and evaluate them on

x. We denote this true statistic for bucket bi by bi(x) and we use B(x) to denote
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the vector for true bucket counts. In other cases, the summary statistics are noisy

estimates of B(x), denoted s = s1 . . . sk.
Throughout the paper we use the uniform expansion of a histogram B with k

buckets. It is a data vector of length n derived from B by assuming uniformity for

counts that fall within bucket ranges.

Definition 6.1. Let expand be a function that takes a histogram H = (B, s) with
buckets B = {b1 . . . bk} and statistics s = s1 . . . sk, and uniformly expands it. Thus,

expand(B, s) outputs an n-length vector y defined as:

yj = st(j)∣bt(j)∣
where t(j) is the function that maps position j to the index of the unique bucket in

B that contains position j for j ∈ [1, n].
In our algorithms, both the choice of a histogram and the value of the histogram

statistics have the potential to leak sensitive information about x. Both must be

computed by a differentially private algorithm. Suppose that a differentially private

algorithm returns histogram H = (B, s) where the statistics have noise added for

privacy. We use x̂ to denote the uniform expansion of H, i.e., x̂ = expand(B, s).
Since the vector x̂ is a differentially private estimate for x, we can use it to estimate

answer any query w as w(x̂).
We are interested in how accurately x̂ approximates x. The absolute error of

x̂ is defined as ∥x − x̂∥1. We are primarily interested in measuring the accuracy in

terms of the answers to the workload queries. We define average error as the average

L1 error in the workload answers: 1
m
∥W(x) −W(x̂)∥1. Our theoretical analysis

considers expected error, where the expectation is taken over the randomness of x̂.

For instance, E ∥x − x̂∥1 denotes expected absolute error.
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Figure 6.1. Overview and example execution for the DAWA mechanism.

6.2 Algorithm overview

We give an overview to our new mechanism and an example below.

TheData-Aware/Workload-Aware (DAWA) mechanism is an ε-differentially-private

algorithm that takes as input a workload of range queries, W, and a database, x,

represented as a vector of counts. The output is an estimate x̂ of x, where the noise

added to achieve privacy is adapted to the input data and to the workload. The

DAWA algorithm consists of the following three steps, the first two of which require

private interactions with the database. To ensure that the overall algorithm satisfies

ε-differential privacy, we split the total ε budget into ε1 and ε2 such that ε1 + ε2 = ε
and use these two portions of the budget on the respective stages of the algorithm.

Step 1: private partitioning

The first step selects a partition of the domain that fits the input database. We

describe (in Sec. 6.3) a novel differentially private algorithm that uses ε1 budget to

select a partition such that within each partition bucket, the dataset is approximately

uniform. This notion of uniformity is later formalized as a cost function but the basic

intuition is that if a region is uniform, then there is no benefit in using a limited

privacy budget to ask queries at a finer granularity than these regions—the signal is
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too small to overcome the noise. The output of this step is B, a partition of x into k

buckets, without counts for the buckets.

Step 2: private bucket count estimation

Given the partitionB, the second step derives noisy estimates of the bucket counts.

Rather than simply adding Laplace noise to the bucket counts, we use a workload-

aware method. Conceptually, we re-express the workload over the new domain defined

by the partition B, with the buckets in the partition taking the place of x. Then we

have a well-studied problem of selecting unbiased measurements (i.e. linear functions

of the bucket counts) in a manner that is optimized for the workload. This problem

has received considerable attention in past work [45, 19, 17, 46, 76, 75]. We use

the basic framework of the matrix mechanism [45], but we propose a new algorithm

(described in Sec. 6.4) for efficiently approximating the optimal measurements for

the workload.

Given the selected measurements, we then use the ε2 privacy budget and Laplace

noise to privately answer the measurement queries, followed by least-squares inference

to derive the output of this step, a noisy estimate s for the buckets in B.

Step 3: uniform expansion

In the last step we derive an estimate for the n components of x from the k

components of the histogram (B, s). This is done by assuming uniformity: the count

si for each bucket bi is spread uniformly amongst each position of x that is contained

in bi. The result is the estimate x̂ for x. Strictly speaking, any range query can be

computed from x̂, but the noise is tuned to provide accuracy for precisely the queries

in the workload.

The following example illustrates a sample execution of the DAWA algorithm.

Example 6.1. For n = 10, Fig. 6.1 shows graphically a sample data vector x =
(2,3,8,1,0,2,0,4,2,4).
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• A possible output of Step 1 is B = {b1, b2, b3, b4} where b1 = [1,2], b2 = [3,3],
b3 = [4,7], and b4 = [8,10]. This need not be the optimal partition, as defined in

Sec. 6.3, because the partition selection is randomized. For the sample database

x in the figure, the true bucket counts for the partition would be (5,8,3,10).
• The result from Step 2 is a set of noisy bucket counts, s = (6.3,7.1,3.6,8.4).
• Step 3 then constructs x̂ by assuming a uniform distribution for values within

each bucket. The final output,

x̂ = (3.15,3.15,7.1, .9, .9, .9, .9,2.8,2.8,2.8)
is shown graphically in Fig. 6.1(c).

The novelty of our approach consists of splitting the overall private estimation

problem into two phases: Step 1, which is data-dependent, and Step 2, which is

workload-aware. Our main technical contributions are an effective and efficient private

solution to the optimization problem underlying Step 1, and an effective and efficient

solution to the optimization problem underlying Step 2. We also extend our methods

to two-dimensional workloads using spatial decomposition techniques.

A number of recently-proposed methods [6, 71, 17, 74] share commonalities with

one or more parts of our mechanism. But each omits or simplifies an important step

and/or they use sub-optimal methods for solving related subproblems. In Sec. 6.5,

an extensive experimental evaluation shows that the DAWA algorithm achieves lower

error than all competitors on nearly every database and setting of ε tested, often by

a significant margin.

6.3 Private partitioning

This section describes the partitioning phase of our algorithm. The output of this

stage of the algorithm is a partition B. In Section 6.3.1, we motivate the problem

128



and argue that the quality of a partition depends on the data. We then describe our

differentially private algorithm for finding a good partition in Section 6.3.2.

This stage of the algorithm is not tuned to the workload of queries and instead

tries to select buckets such that after statistics have been computed for the buckets

and the histogram is uniformly expanded, the resulting x̂ is as close to x as possible.

6.3.1 Cost of a partition

Recall that after the partition B = {b1 . . . bk} has been selected, statistics are

computed for each bucket. The statistic is the total count for that bucket plus random

noise to ensure privacy; thus, si = bi(x)+Zi where Zi is a random variable representing

the noise. Once the statistics have been computed, they are uniformly expanded into

x̂ = expand(B, s), which is an estimate for x. If bucket bi spans the interval [j1, j2]
we use j ∈ bi to denote j ∈ [j1, j2]. After applying uniform expansion, the resulting

estimate for xj for any j ∈ bi is:
x̂j = bi(x)∣bi∣ + Zi∣bi∣ (6.1)

Equation (6.1) reveals that the accuracy of this estimate depends on two factors.

First, the bucket size determines the scale of the noise. A fixed amount of noise is

added to the bucket, so larger buckets have less noise per individual x̂j. The second

factor is the degree of uniformity within the bucket—i.e., how close each xj is to the

mean value of the bucket bi(x)

∣bi∣
. The more uniform the data values in the bucket, the

more accurate the estimate x̂j.

We can translate these observations about x̂j into a bound on the expected error

of x̂. The bound depends on the amount the bucket deviates from being perfectly

uniform. For a given bucket bi, let dev be a function that measures the total absolute

deviation:

dev(x, bi) = ∑
j∈bi

∣xj − bi(x)∣bi∣ ∣ (6.2)
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The bound on the expected error of x̂ is in terms of deviation and the error due

to added noise.

Proposition 6.1. Given histogram H = (B, s) where ∣B∣ = k and for i = 1 . . . k, si =
bi(x) +Zi where Zi is a random variable. The uniform expansion, x̂ = expand(B, s),
has expected error of at most,

E ∥x̂ − x∥1 ≤ k

∑
i=1

dev(x, bi) + k

∑
i=1

E∣Zi∣ (6.3)

The proof of this bound follows from (6.1) and the fact that ∣a+ b∣ ≤ ∣a∣+ ∣b∣. Proof
of a similar result is given in Acs et al. [6].

Proposition 6.1 reveals that the expected error of a histogram can be decomposed

into two components: (a) approximation error due to approximating each xj in the

interval by the mean value bi(x)

∣bi∣
and (b) perturbation error due to the addition of

random noise. The perturbation component is phrased in terms of random variables

Zi, which are not fully determined until the second stage of our algorithm. For

the moment, let’s make the simplifying assumption that Zi ∼ Laplace(1/ε2). Then,

∑ki=1E∣Zi∣ would simplify to k/ε2. Thus, to decrease perturbation error, we want as

few buckets as possible; to decrease approximation error, we want buckets that are as

close to uniform as possible. The optimal choice is going to depend on the uniformity

of the particular dataset x. (It also depends on ε2 as smaller ε2 increases perturbation

error and makes deviation within the bucket relatively more tolerable.)

This analysis motivates our strategy for selecting a partition we will use Proposi-

tion 6.1 as the basis for a cost function and then find the partition with least cost.

Definition 6.2 (Cost of partition). Given a partition of the domain into buckets

B = {b1, . . . , bk}, the cost of this partition is

pcost(x,B) = k

∑
i=1

dev(x, bi) + k/ε2 (6.4)
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This cost function is based on the simplifying assumption that Zi ∼ Laplace(1/ε2).
In fact, in our algorithm, the random variable Zi is a weighted combination of Laplace

random variables, where the weights are tuned to the workload in the second stage of

the algorithm. Although we do not know the weights until the second stage completes,

we do know that the weights are selected in such a way that E∣Zi∣ ≥ 1/ε2. The

implication is that our choice of cost function is conservative in the sense that it will

lead to a partition that is more fine grained than the partition that would have been

selected with full knowledge of the noise distribution selected in the second stage.

Example 6.2. Recall the partition B = {b1, b2, b3, b4} in Fig. 6.1 and assume ε2 = 1.0.
• b1 = [1,2], b1(x)

∣b1∣
= 5

2
, dev(x, b1) = 1

2
+ 1

2
= 1

• b2 = [3,3], b2(x)

∣b2∣
= 8

1
, dev(x, b2) = 0

• b3 = [4,7], b3(x)

∣b3∣
= 3

4
, dev(x, b3) = 1

4
+ 3

4
+ 5

4
+ 3

4
= 3

• b4 = [8,10], b4(x)

∣b4∣
= 10

3
, dev(x, b4) = 2

3
+ 4

3
+ 2

3
= 22

3

Therefore, pcost(x,B) = 62
3
+ 4/ε2 = 102

3
. In comparison, the cost of partitioning x

as a single bucket [1,10] leads to a deviation of 17.2 and total pcost of 18.2. Thus

B is a lower cost partition and intuitively it captures the structure of x which has

four regions of roughly uniform density. But note that with a more stringent privacy

budget of ε2 = 0.1, the single-bucket partition would have lower cost. When ε2 = 0.1,
the amount of noise added to the statistics will be on the order of ±10. With this much

noise, differences between the counts in x is too small to make it worth partitioning.

Given this cost function, we can now formally state the problem that the first

stage of the algorithm aims to solve.
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Problem 6.1 (Least Cost Partition Problem). The least cost partition problem is to

find the partition that minimizes the following objective:

minimize
B⊆B

pcost(I,B)
subject to ∀ b, b′ ∈ B, b ∩ b′ = ∅

⋃
b∈B

b = [1, n]
where B is the set of all possible intervals B = {[i, j] ∣ 1 ≤ i ≤ j ≤ n} and the constraints

ensure that the collection of buckets B partitions [1,n].

The next section describes our algorithm for solving this optimization problem in

a differentially private manner.

6.3.2 Finding a least cost partition

Since partition cost is data-dependent, we cannot solve Problem 6.1 exactly with-

out violating privacy. Instead, we must introduce sufficient randomness to ensure

differential privacy. Although it is theoretically possible to solve this problem using

the exponential mechanism, in which a partition is sampled with probability propor-

tional to − ε
2∆pcost

pcost(I,B), this approach is impractical as it requires enumerating

all 2n−1 possible partitions.

Our approach is much more efficient and almost as simple. Our main contribution

is in showing that this simple approach is in fact differentially private. In terms of

computational efficiency, the main bottleneck is computing the partition cost. By

storing intermediate results in a balanced tree, we show that we can achieve a runtime

of O(n2 logn). We can even further reduce the runtime to O(n log2 n) by considering

only partitions whose interval lengths are a power a two. Experiments in Section 6.5

suggest that this approximation has very little cost in terms of solution quality.

Our approach is based on the observation that the cost of a partition decomposes

into a cost per bucket.
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Definition 6.3. Let bcost ∶ Zn
≥0×℘([1, n])→ R≥0 be a function that measures the cost

of an individual bucket. For bucket b, the bucket cost is

bcost(x, b) = dev(x, b) + 1/ε2.

For any B, the partition cost is simply the sum of the bucket costs: pcost(x,B) =
∑b∈B bcost(x, b). Since the partition cost is a sum of individual bucket costs, to solve

Problem 6.1, the only interaction with the private database necessary is in computing

the cost of each individual bucket.

Our algorithm, which is shown in Algorithm 6.3.1, has three simple steps. First,

it computes the cost for all possible buckets. There are at most O(n2) buckets and at

most O(n logn) buckets if we restrict to buckets whose length is a power of two. The

most obvious way to do this would require O(n) time per bucket but, as described

later, AllCosts is more efficient requiring only O(logn) time per bucket. Second,

the algorithm adds noise to these costs. In the third and final step, it finds the

partition with the least noisy cost. The LeastCostPartition takes the noisy costs

and computes the least cost partition using dynamic programming, much like classical

algorithms for v-optimal histograms [41].

We analyze the algorithm along three key dimensions: privacy, accuracy, and

computational efficiency.

6.3.2.1 Privacy

The proof of privacy is a main challenge. Analyzing the privacy requires some

subtlety in the sense that the noise by itself is not enough to guarantee privacy. To

be precise, publishing the noisy costs of all buckets would violate differential privacy

(unless the scale of the noise was inflated to be Ω(n)). However, when the actual

noisy costs are kept secret and the only published output is the partition with the least

(noisy) cost, then a small amount of noise is sufficient to ensure privacy. The noise
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Program 6.3.1 Private partition for intervals and L1 cost function

procedure Private Partition(I, ε1, ε2)
// Let B be the set of all intervals on [1, n]
// Compute cost bcost(x, b) for all b ∈ B
cost←AllCosts(I, ε2)
// Add noise to each bucket cost
for b ∈ B do

cost[b]← cost[b] + Laplace(2∆bcost/ε1)
end for

// Find B with lowest total cost based on noisy bucket costs
// stored in cost
B← LeastCostPartition(B, cost)
return B

end procedure

is proportional to the sensitivity of computing bucket cost, but it is straightforward

to show that ∆̄bcost ≤ 2.
Theorem 6.1. Algorithm 6.3.1 is ε1-differentially private.

The intuition behind the privacy guarantee is similar to the intuition behind the

exponential mechanism’s privacy. The exponential mechanism secretly scores each

item in a set of items, and then publishes the “best” item, where the best is selected

in a noisy way. Our algorithm publishes the “best” partition, but keeps secret the

noisy scores that were used to determine the best. In both cases, what matters is

the the probability that a particular item is selected as the best, and this probability

changes only slightly when the database changes by a tuple. Although the intuition

is the same, the analysis in the proof is quite different.

Before giving the proof of Theorem 6.1, we first state two lemmas.

Lemma 4. Let Z be a Laplace random variable with scale λ. For any z and any

constant c > 0, we have

P (Z < z − c) ≥ e−c/λP (Z < z)
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Lemma 5. For any neighboring databases I0, I1 and any H, the cost of H can differ

by at most ∆̄c:

∆̄c +∑
j∈H

c(I1,Bj) ≥ +∑
j∈H

c(I0,Bj)
Proof. I1 and I0 differ by one record. There is exactly one bucket Bi in H that covers

that record and the score of that bucket can increase by at most ∆̄c.

Proof of Theorem 6.1. For convenience of the proof, we change the notation slightly.

First, we index the set B. Let B = {B1, . . . ,BM} where M = ∣B∣. We can think of

a histogram H as simply a subset of [1,M], corresponding to a selection of buckets

from B. Formally, H = {i1, . . . , ik} is a histogram if for all i, i′ ∈H, we have Bi∩Bi′ = ∅
and ⋃i∈H Bi = Nn. Let H be the set of all possible histograms that can be formed

from B.

Second, let Z = (Z1, . . . , ZM) where for each i ∈ [1,M], the random variable

Zi ∼ Laplace(λ) represents the noise added to the bucket cost for bucket Bi. Let

z = (z1, . . . , zM) ∈ RM denote a possible outcome (an assignment of Z). We use z−i as

shorthand for (z1, . . . , zi−1, zi+1, . . . , zn).
Using this new notation, we observe that Algorithm 6.3.1, when run on input I,

will output histogram H if and only if it is the histogram with the lowest noisy cost:

∑
j∈H

c(I,Bj) +Zj < min
H′∈H−{H}

{∑
k∈H′

c(I,Bk) +Zk}

Let I0, I1 be any pair of neighboring databases and let H ∈ H be any output of

the algorithm. It suffices to prove

P (A(I0) =H)
P (A(I1) =H) ≤ eε

where A(I) denotes the algorithm running on input I and the probability distribution

is over random variables Z.
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Since H defines a collection of disjoint buckets, there must be at most one i ∈ H
where c(I0,Bi) ≠ c(I1,Bi). (If the cost of H is the same on both databases, let i be

any i ∈ H.) We will now derive an expression for the probability that H is selected

that focuses on the effect of Zi, the random noise added to the cost of bucket Bi. To

focus on Bi, it will be convenient to partition the space of possible histograms into

those that include bucket Bi and those that do not. Let H+ = {H ∣H ∈H and i ∈H}
and let H− =H −H+.

We wish to define the set of outcomes z ∈ RM that cause H to be selected. H will

be selected if and only if (a) H is the least cost histogram in H+ and (b) H has lower

cost than any histogram in H−. We examine these two conditions in turn.

For condition (a), observe that all histograms in H+ use bucket Bi, thus whether

(a) holds is independent of the outcome of Zi since it has the same effect on the scores

of all H ′ ∈ H+. Let φ ∶ Zn
≥0 × R

M−1 → {true, false} be a predicate that is true if and

only if the assignment of z−i makes H the least cost histogram among H+.

φ(I,z−i)
= ∑
j∈H−{i}

c(I,Bj) + zj < min
H′∈H+−{H}

⎧⎪⎪⎨⎪⎪⎩ ∑
k∈H′−{i}

c(I,Bk) + zk⎫⎪⎪⎬⎪⎪⎭
Since I0 and I1 only differ in the score assigned to bucket Bi, φ(I0,z−i) = φ(I1,z−i)
for all z−i ∈ RM−1.

For condition (b), let ψ ∶ Zn
≥0 × R

M → {true, false} be a predicate that is true if

and only if the assignment of z makes H a lower cost histogram than any histogram

in H−. A key insight is that if we fix z−i, then H will have lower cost provided that

zi is small enough.
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ψ(I,z)
= ∑
j∈H

c(I,Bj) + zj < min
H′∈H−

{∑
k∈H′

c(I,Bk) + zk}
= zi < min

H′∈H−
{∑
k∈H′

c(I,Bk) + zk} −∑
j∈H

c(I,Bj) − ∑
`∈H−{i}

z`

= zi < C(I,z−i)

The upper bound C(I,z−i) depends on the database. Given Lemma 5, we can say

that for neighboring databases I0 and I1,

C(I1,z−i) ≥ C(I0,z−i) −∆c

because the score of the minimum cost histogram in H− could decrease by at most

∆c and the cost of H could increase by at most ∆c.

We can now express the probability that the algorithm on input I outputs H

in terms of φ and ψ. Let fZ (respectively fZ) denote the density function for a

multivariate (respectively univariate) Laplace random variable.

P (A(I) =H) = P (φ(I,Z−i) ∧ψ(I,Z))
= ∫ I [φ(I,z−i) ∧ψ(I,z)]fZ(z)dz
= ∫ I [φ(I,z−i)]fZ−i(z−i) (∫ I [ψ(I,z)]fZi

(zi)dzi)dz−i
= ∫ I [φ(I,z−i)]fZ−i(z−i)P (Zi < C(I,z−i))dz−i

Since P (Zi < C) decreases with decreasing C, we have for neighboring databases I0

and I1 and any z−i ∈ RM−1 that
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P (Zi < C(I1,z−i))
≥ P (Zi < C(I0,z−i) − 2∆̄c)
≥ e−2∆̄c/λP (Zi < C(I0,z−i)) (by Lemma 4)

In addition, we observed earlier that φ(I0,z−i) = φ(I1,z−i) for all z−i ∈ RM−1. There-

fore, we can express a lower bound for P (A(I1) =H) strictly in terms of I0:

P (A(I1) =H)
≥ ∫ I [φ(I0,z−i)]fZ−i(z−i)e−2∆̄c/λP (Zi < C(I0,z−i))dz−i

which implies that

P (A(I0) =H)
P (A(I1) =H) ≤ e2∆̄c/λ = eε

since, according the algorithm description, λ = 2∆̄c/ε.
Remark In Algorithm 6.3.1 we can reduce the noise from 2∆bcost to ∆bcost plus

the sensitivity of the particular bucket. The benefit is a reduction in noise (by at

most a factor of 2) for some buckets. This optimization is used in the experiments.

6.3.2.2 Accuracy

Accuracy is measured in terms of the difference in cost between the selected par-

tition and the optimal choice (ignoring privacy).

Definition 6.4 (Useful approximation). A randomized algorithm is a (t, δ)-approximation

if with probability at least 1 − δ, the algorithm returns a solution with cost at most

OPT + t where OPT is the cost of the least cost solution.

We give the following bound on the accuracy of this algorithm.
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Theorem 6.2. Algorithm 6.3.1 is a (t, δ)-approximation with

t = 4∆c n log(∣B∣/δ)
ε

In addition to a theoretical analysis, we do an extensive empirical evaluation in

Section 6.5.

6.3.2.3 Efficiency

The runtime of Algorithm 6.3.1 is O(n2 logn). The runtime can be reduced to

O(n log2 n) by considering only buckets whose lengths are a power of 2.

The dynamic program that computes the least cost partition is efficient, requiring

time linear in n and the number of buckets. The computationally challenging part

is computing bucket costs (Definition 6.2). When compared to computing costs for

a v-optimal histogram (which is based on an L2 metric), computing the costs for the

L1 metric used in this paper is more complicated because the cost can not be easily

decomposed into sum and sum of squares terms.

To simplify the computation, the key idea is to remove the absolute values so

that the computation can be decomposed to partial sums of xj. For bucket bi, let

I+ = {j ∣ j ∈ bi and xj ≥ bi(x)

∣bi∣
} and I− = bi − I+. We can simplify dev(x, bi) as follows:

dev(x, bi) = ∑
j∈bi

∣xj − bi(x)∣bi∣ ∣
= ∑
j∈I+
(xj − bi(x)∣bi∣ ) + ∑j∈I− (

bi(x)∣bi∣ − xj)
= 2∑

j∈I+
(xj − bi(x)∣bi∣ )

= 2∑
j∈I+

xj − ∣I+∣ ⋅ bi(x)∣bi∣
For bucket bi, the total deviation can be computed knowing only ∣I+∣, the number

of xj who are larger than bi(x)

∣bi∣
, and the sum of xj for j ∈ I+. Those quantities can
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be efficiently computed using a binary search tree of xj1 , . . . , xj2 . Each node t in the

tree records a value (xt). In addition, each node t stores the sum of all values in its

subtree (Σt), and the number of nodes in its subtree (ct). For any constant a, we can

then compute ∑t∈T,xt≥a(xt − a) via binary search.

To compute the bucket costs for all intervals with length `, we can dynamically

update the search tree. After the cost for interval [j, j + `] has been computed, we

can update the tree to compute interval [j + 1, j + `+ 1] by removing xj from the tree

and adding xj+`+1. By using a balanced binary search tree, computing all intervals

of size ` requires only O(n logn) time. If we want to compute all intervals, then the

total runtime is O(n2 logn), but if we restrict to intervals whose length is a power of

two, then the total runtime is O(n log2 n).
This restriction on the length of the intervals is an approximation that has the

potential to exclude the optimal solution. Empirically, we find that the big gain in

efficiency does not lead to significant losses in accuracy: the algorithm remains almost

as accurate as when it uses all intervals, and is always more accurate than competing

techniques (Section 6.5.3). Furthermore, reducing the runtime to O(n log2 n) makes

it feasible to run on larger datasets.

6.4 Private bucket count estimation

Given the partition B = {b1, . . . , bk} determined by Step 1, it remains to privately

estimate counts for each bucket, using budget ε2. Thus the goal of this stage is to

produce s = s1 . . . sk. Naive solutions like adding Laplace noise to each bucket count

result in high error for many workloads. In this section, we show how to adapt

the existing framework of the matrix mechanism [45] to create a workload-adaptive

algorithm for computing the bucket counts. Within this framework, we describe a

novel greedy algorithm for minimizing error of the workload queries.
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6.4.1 Transformation to the bucket domain

The first challenge in adapting to the workload is thatW is expressed as queries on

x whereas we ultimately must answer these queries using only the k statistics for the

buckets in B. Recall that the statistics will be uniformly expanded into an estimate

x̂, thus, any query can be answered after applying uniform expansion. However, we

can equivalently transform the workload W into a new workload Ŵ that consists of

queries on s. We describe this next.

Given a vector of statistics s = s1 . . . sk for the corresponding buckets B, an esti-

mate for the data vector x can be constructed by uniform expansion x̂ = expand(B, s):

x̂i = sj∣bj ∣ , i ∈ bj.

Given a query q = (q1, . . . , qn) on x, an estimated answer to q, q(x̂), is computed as

q(x̂) = k

∑
j=1

∑
i∈bj

qi
sj∣bj ∣ =

k

∑
j=1

⎛⎝∑i∈bj
qi∣bj ∣
⎞⎠ sj. (6.5)

According to equation (6.5), query q on x̂ can be converted to a query on s, as

described in the following proposition.

Proposition 6.2. Let q̂ = (q̂1, . . . , q̂k) where

q̂j =∑
i∈bj

qi∣bj ∣ .

Evaluating the q on the uniform expansion of s is the same as evaluating the q̂ over

s directly—i.e., q(x̂) = q̂(s).
According to Proposition 6.2, given a workload W on x, each of its queries can

be converted to a query of s. We can then have a workload Ŵ on s such that the

answers to W on the uniform expansion of s is the same as answer to Ŵ over s. The
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perturbation error of answering W is equivalent to the L1 error of answering Ŵ on

s. Therefore, instead of working on W and x, this stage of the algorithm focuses on

estimating Ŵ over s with the least error. In addition, since s is constructed by a

data-aware histogram, this stage of the algorithm is data-independent.

Our approach relies on the matrix mechanism [45], which provides a framework to

answer a batch of linear queries (i.e. a workload). Instead of answering the workload

directly, the matrix mechanism poses another set of queries, called the query strategy,

and uses the Laplace mechanism to obtain noisy answers. These noisy answers can

then be used to derive an estimated data vector using ordinary least squares. The

answers to the workload can then be computed form the estimated data vector. Key

to the matrix mechanism is to find a query strategy, which is not necessarily the same

as the workload, so as to minimize the mean square error of answering the workload.

In general, finding the query strategy that minimizes the error under the matrix

mechanisms yields high complexity optimization problems [45, 76]. Hence we adapt an

idea from prior work [46, 75]: fix the strategy to one that is well-suited for anticipated

workloads, but then adjust the privacy budget so as to maximize accuracy on the

specific workload. Essentially, queries in the strategy that play a significant role

in answering the workload are given more weight. Since our anticipated workload is

range queries, we adopt a hierarchical query strategy, similar to prior work [17, 40, 70].

The given query strategy is a hierarchy of queries, denoted as Y , which is a tree

with branching factor t on s. Each node in the tree represents an interval query on

s. Each leaf is a query of the respective entry in s. For each level of the tree, interval

queries of every t nodes in the level are aggregated, and the aggregated query becomes

their parent node in the upper level. Noticing that the number of nodes in each level

may not be a multiple of t, the last nodes of each level is allowed to have less than t

children. This aggregating process is repeated to create more levels until the topmost

level only has one node, whose interval is the entire domain.
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Figure 6.2. Budget allocation for the third level with ε = 1. λ = 0.3 at the top left
node, and λ = 0.5 at the top right node.

Our goal is to minimize the mean squared error of answering the workload by

answering queries in Y with different privacy budgets. Although this goal is similar

the goal of prior work [46, 75], their methods impose additional constraints that do

not apply in our setting: either requiring the number of queries in the strategy to be

no more than the size of the domain [46], or requiring the privacy budget to be equal

for all queries on the same level [75].

6.4.2 Privacy budget allocation on the hierarchy

Let the privacy budget assigned to each interval query q in Y is represented by

εq. We say a budget allocation satisfies privacy constraints if

∑
q(i)≠0,q∈Y

εq ≤ ε2, i = 1, . . . , k, (6.6)

which means the accumulated privacy budget on any path from on Y from a leaf to

the root is bounded by ε2.

Since the answer of each query q̂(s) is a linear combination of entries in s, q̂ can

also be written as a vector q̂ such that q̂(s) = q̂sT . Similarly, we can write a workload
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Ŵ as a matrix Ŵ, and the query hierarchy Y as a matrix Y, where each row of

Ŵ and Y is the vector form of a query in Ŵ and Y , respectively. Given a budget

distribution, DY,ε is the diagonal matrix whose diagonal entries are the privacy budget

of each query in Y .

According to the matrix mechanism, the mean squared error of answering Ŵ using

Y is

∣∣Ŵ(D2
Y,εY

T )+∣∣2F = trace(ŴTŴ(YTD2
Y,εY)−1). (6.7)

The goal of this stage of our algorithm, the optimal budget allocation problem, is

defined as below.

Problem 6.2 (Optimal Budget Allocation Problem). The optimal budget allocation

problem is to find an εq for each query q ∈ Y so as to minimize the following objective

function:

minimize trace(ŴTŴ(YTD2
Y,εY)−1)

subject to ∑
q(i)≠0,q∈Y

εq ≤ ε2, i = 1, . . . , k.
Computing the optimal solution to Problem 6.2 appears difficult since equa-

tion (6.7) is non-convex. Instead of pursuing an optimal solution, we solve the problem

approximately using the following greedy algorithm. The algorithm initially assigns

all privacy budget to the leaves of Y , and determines the privacy budget of other

queries in Y in a bottom-up manner. For each level of the tree, the algorithm chooses

a λq ∈ [0,1] for each query q at this level. The privacy budget is then reallocated as

follows: for each query q at this level, the privacy budget on each of its descendent q′

is reduced from εq′ to (1 − λq)εq′ and the privacy budget on q is εq = λqε2. The value

of λq is chosen to minimize Equation (6.7) after the budget reallocation. Notice that

the new budget allocation still satisfies the privacy constraint in equation (6.6).

Example 6.3. An example of the budget reallocation is shown in Figure 6.2, in which

two different λ are chosen for two nodes (queries) at the third level.

144



When the algorithm terminates, every query has been assigned a privacy budget.

Then each query in the tree is asked using the Laplace mechanism with that query’s

allocated budget. After that, any inconsistencies among those noisy query answers

are resolved using the ordinary least squares.

6.4.3 Efficient algorithm for budget allocation

In this section, we present how to efficiently perform the budget allocation de-

scribed in the previous section. To simplify the presentation, we always assume the

branching factor t = 2, though the discussion is valid for any branching factor.

For each interval query q ∈ Y , let [i, j] be the corresponding interval of q. Use Ŵq

to denote the matrix consisting of the ith to jth column of Ŵ, and Yq to denote the

matrix consisting of the ith to jth column of the matrix of queries in the subtree of

rooted at q. Let Dq,ε be the diagonal matrix whose diagonal entries are ε′q for all q
′

in the subtree rooted at q. For each query q ∈ Y that is not on a leaf of Y , let q1, q2

be queries of its child nodes.

For each query q ∈ Y that is not on a leaf of Y , according to the construction of

Y , q = q1 + q2. Hence Ŵq = [Ŵq1 Ŵq2]. Furthermore, since the queries in the subtree

of q are the union of queries in the subtree of q1, q2, as well as query q itself, for a

given λq,

Dq,ε = [ λqε (1−λq)Dq1,ε

(1−λq)Dq2,ε

] .
When choosing a λq, due to the fact that the privacy budgets on all ancestors of

q in Y are 0 at this moment, the matrix YTD2
Y,εY becomes a block diagonal matrix,

and YT
q D

2
q,εYq is one of its blocks. Therefore, the choice of λq only depends on Ŵq

and Yq, which means λq can be determined locally, by minimizing

trace(ŴT
q Ŵq(YT

q D
2
q,εYq)−1). (6.8)
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One of the problems of choosing λq using equation (6.8) is that it is biased towards

q and λq is larger than required. When deciding the privacy budget on a query q ∈ Y ,

the privacy budgets on all the ancestors of q are 0. Hence the budget distribution is

based on the assumption that all queries that contain q are answered by q, which is

not true after some of ancestors of q are assigned non-zero budget allocations.

In order to reduce this bias, a heuristic decay factor µ is introduced to control the

impact of q on queries that need to be answered with q. The following matrix is used

in equation (6.8) to take the place of ŴT
q Ŵq:

µŴT
q Ŵq + (1 − µ) [ ŴT

q1
Ŵq1

ŴT
q2

Ŵq2

] . (6.9)

As it is mentioned above, the bias of equation (6.8) comes from the assumption that

the privacy budgets on all the ancestors of q are 0. Hence there will be less bias when

q is more close to the root of Y . In our implementation, µ is set to be t−
l
2 where t

is the branching factor of Y and l is the depth of q in Y . Our algorithm is then to

minimize the following quantity instead of equation (6.8).

trace((t− l
2ŴT

q Ŵq + (1 − t− l
2 ) [ ŴT

q1
Ŵq1

ŴT
q2

Ŵq2

]) (YT
q D

2
q,εYq)−1) . (6.10)

In equation (6.10), (YT
q D

2
q,εYq)−1 needs to be recomputed for each λq. Hence

it is important to compute (YT
q D

2
q,εYq)−1 efficiently. Let Mq,ε = YT

q D
2
q,εYq, and its

inverse can be computed incrementally from M−1
q1,ε

and M−1
q2,ε

:

M−1
q,ε = 1(1 − λq)2 ([M

−1
q1,ε

M−1
q2,ε
]

−
λ2q(1 − λq)2 + λ2q1T (M−1

q1,ε
+M−1

q2,ε
)1 [M

−1
q1,ε

M−1
q2,ε
]11T [M−1

q1,ε

M−1
q2,ε
]T) .

Here 1 is the column vector with all entries equal to 1. Therefore, with the following

quantities given,
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Program 6.4.1 Estimating bucket counts s.

procedure BucketCountEstimator(B, W , x, ε2)
Given workload W and buckets B, transform workload to Ŵ
Let Y be a tree of queries over buckets
Allocate all privacy budget ε2 to leaves of Y .
for all q ∈ Y , from bottom to top do

Compute eq, aq, a′q, dq.
Numerically find λq that minimizing Equation (6.11).
Compute Dq,ε according to λq.

Compute M−1
q,ε and trace(ŴT

q ŴqM−1
q,ε) according to λq.

end for
For each q ∈ Y , let εq be the corresponding entry of Dq,ε.
Let y be the vector of q(B(x)) + Laplace(1/εq) for all q ∈ Y .
return s =M−1

q,ε(DY,εY)Ty
end procedure

eq = trace(ŴT
q Ŵq [M−1

q1,ε

M−1
q2,ε
])

= trace(ŴT
q1
Ŵq1M

−1
q1,ε
) + trace(ŴT

q2
Ŵq2M

−1
q2,ε
),

aq = ∥Ŵq [M−1
q1,ε

M−1
q2,ε
]1∥2

2

,

a′q = ∣∣Ŵq1M
−1
q1,ε

1∣∣22 + ∣∣Ŵq2M
−1
q2,ε

1∣∣22,
dq = 1T (M−1

q1,ε
+M−1

q2,ε
)1,

Equation (6.10) can be computed as:

trace((t− l
2ŴT

q Ŵq + (1 − t− l
2 ) [ ŴT

q1
Ŵq1

ŴT
q2

Ŵq2

])M−1
q,ε)

= 1(1 − λq)2
⎛⎝eq − t

− l
2aq + (1 − t− l

2 )a′q(1 − λq)2 + λ2qdq λ2q
⎞⎠ , (6.11)

for any λq in O(1) time.

The entire process of computing bucket statistics is summarized in Algorithm 6.4.1.

Theorem 6.3. Algorithm 6.4.1 is ε2-differentially private.

Proof. Since the only step in Algorithm 6.4.1 is computing y, it is sufficient to prove

that the computation of y satisfies ε2-differential privacy. Recall the budget distribu-
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tion in each loop of Algorithm 6.4.1 satisfies the constraint in equation (6.6). Hence,

after the budget allocation, the maximum sum of the privacy budget in a path from

a leaf of Y to the root of Y is at most ε2. Moreover, for any queries in q ∈ Y , ∆(q) = 1
since each q queries the sum over some entries of B(x). Given the parallel and the

sequential composition properties of differential privacy, a simple inductive argument

shows that the tree of Laplace mechanism invocations is ε2-differentially private.

Theorem 6.4. Algorithm 6.4.1 takes O(mk log k + k2) time. In the worst case, k =
O(n), and Algorithm 6.4.1 takes O(mn logn + n2) time.

Proof. Recall [i, j] is used to denote the interval that corresponding to q. Incremen-

tally computing eq, aq, a′q, dq, M
−1
q,ε and tr(Ws

q
TWs

qM
−1
q,ε) takes O(1), O(m(j− i+1)+

(j − i + 1)2), O((j − i + 1)2), O((j − i + 1)2), O((j − i + 1)2) and O(1), respectively.
The intermediate results in Algorithm 6.4.1 can also accelerate the least square

process. Since we have already computedM−1
q,ε in the loop of Algorithm 6.4.1, applying

the ordinary least square method (the last step of Algorithm 6.4.1) only takes O(k2)
time instead of O(k3) time in general cases. Summing the costs together proves the

theorem.

6.5 Experimental evaluation

The performance of DAWA is evaluated in this section. We start with a com-

parison to recently-proposed algorithms and evaluate each on multiple datasets and

workloads (Section 6.5.2). We then examine the effectiveness of each of the two main

steps of our algorithm (Sections 6.5.3 & 6.5.4). Finally, we also consider an exten-

sion of our technique to two-dimensional spatial data and compare it against the

state-of-the-art for that setting (Section 6.5.5).
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6.5.1 Experimental setup

In the experiments that follow, the primary metric for evaluation is the average

L1 error per query for answering the given workload queries1. Most workloads we

use are generated randomly (as described below). Each experimental configuration is

repeated on 5 random workloads with 3 trials for each workload. The results reported

are the average across workloads and trials. The random workloads are generated once

and used for all experiments.

The privacy budget in DAWA is set as ε1 = 0.25ε and ε2 = 0.75ε. Unless otherwise
specified, the first step of DAWA constructs a partition using intervals whose lengths

must be a power of 2, an approximation that is described in Section 6.3. For the

second step of the algorithm, the branching factor of the query tree is set to 2.

6.5.1.1 Datasets

There are seven different 1-dimensional datasets considered in our experiments.

Although these datasets are publicly available, many of them describe a kind of data

that could be potentially sensitive, including financial, medical, social, and search

data. Adult is derived from U.S. Census data [8]: the histogram is built on the

“capital loss” attribute, which is the same attribute used in [38]. Income is based

on the IPUMS American community survey data from 2001-2011; the histogram

attribute is personal income [62]. Medical Cost is a histogram of personal medical

expenses based on a national home and hospice care survey from 2007 [65]. Nettrace

is derived from an IP-level network trace collected at the gateway router of a major

university. The histogram attribute is the IP address of internal hosts and so the

histogram reports the number of external connections made by each internal host

during the trace [40]. Search Logs is a dataset extracted from search query logs that

1This error measurement is different with previous chapters, since the algorithms are no longer
instances of the matrix mechanism and are tuned to have better performance with L1 error.
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reports the frequency of the search term “Obama” over time (from 2004 to 2010) [40].

Furthermore, we consider two temporal datasets derived from two different kinds of

network data. HepPh is a citation network among high energy physics pre-prints on

arXiv and Patent is a citation network among a subset of US patents [3]. These last

datasets describe public data but serve as a proxy for social network data, which

can be highly sensitive. For both datasets, the histogram reports the number of

new incoming links at each time stamp. To eliminate the impact of domain size in

comparing the “hardness” of different datasets, all datasets above are aggregated so

that the domain size n is 4096.

6.5.1.2 Query workloads

We run experiments on four different kinds of workloads. The identity workload

consists of all unit-length intervals [1,1], [2,2], . . . , [n,n]. The uniform interval work-

load samples 2000 interval queries uniformly at random. In addition, workloads that

are not uniformly distributed over the domain are also included. The clustered inter-

val workload first samples five numbers uniformly from [1, n] to represent five cluster

centers. For each cluster, 400 interval queries are sampled as follows: the left and

right boundaries of each interval are sampled from the left and right halves, respec-

tively, of a normal distribution with a standard deviation 256. The large clustered

interval workload is generated in the same way but the standard deviation is 1024.

6.5.1.3 Competing algorithms

We compare DAWA with six competing algorithms. The following two are data-

independent:

- Identity [26] uses the Laplace mechanism to release noisy counts for the individual

unit-length intervals.
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- Privelet [70] applies the Haar wavelet transform to the original data, adds Laplace

noise to the wavelet coefficients and transforms the noisy coefficients back.

When compared to identity, Privelet has been shown to achieve lower error

on large interval queries.

We also compare with the following four data-dependent algorithms.

- MWEM [38] uses the exponential mechanism and multiplicative weights to iter-

atively refine an estimate of the data. A key parameter in the algorithm is the

number of iterations T , which controls the number of measurements taken and

has a significant impact on performance. Since an optimal strategy for selecting

T is unknown, we empirically search for the best T on each dataset. We set

T to the value in {10,20, . . . ,190,200} that achieves the lowest error when the

workload is uniform intervals and ε = 0.1. We use that T for all experiments on

that dataset. Tuning T to the dataset benefits MWEM and results in higher

accuracy than if T were fixed or set by a differentially private procedure.

- EFPA [6] is a method that applies a Fourier transform and then selects a subset

of the Fourier coefficients using the exponential mechanism. Noisy coefficients

are obtained and an estimate for the original dataset is computed via an inverse

Fourier transformation.

- P-HP [6] uses the exponential mechanism to recursively bisect the domain into

subintervals. The algorithm is designed to find a partition with minimal cost,

where cost is defined exactly as in this paper (Definition 6.2).

StructureFirst [74] is motivated by classical work in V-optimal histograms. It is

designed to construct a partition of the domain into k bins (where k is fixed)

such that the variance within each bin is minimized. Rather than compute a
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Nettrace Adult Medical Cost Search Logs Income Patents HepPh

22 29 20 500 1537 1870 2168

Table 6.1. Number of buckets in the optimal partition for each dataset when ε = 0.1.
(a) Smallest ratio across datasets

ε Identity Privelet MWEM EFPA P-HP S. First

0.01 2.04 1.00 2.65 0.88 2.20 0.86
0.05 2.27 1.11 3.00 3.20 1.98 1.01
0.1 2.00 0.98 2.54 3.84 1.81 0.82
0.5 2.06 1.01 3.39 3.60 1.25 0.89

(b) Largest ratio across datasets

ε Identity Privelet MWEM EFPA P-HP S.First

0.01 26.42 12.93 17.00 18.94 7.09 10.85
0.05 22.97 11.24 19.14 43.58 17.57 9.77
0.1 20.85 10.20 22.54 41.09 31.41 8.32
0.5 25.47 12.46 68.75 43.69 138.14 10.89

Table 6.2. Ratio of algorithm error to DAWA error, for each competing algorithm
and ε setting on uniform intervals : (a) smallest ratio observed across datasets; (b)
largest ratio across datasets.

single statistic for each bin, it instead takes multiple measurements at varying

granularity, using a hierarchical strategy.2

Among the algorithms introduced above, MWEM is the only algorithm that is also

workload-aware. We use code from the original authors for EFPA, P-HP, and Struc-

tureFirst; we implemented the other algorithms based on the pseudocode described

in the paper.

6.5.2 Accuracy on interval workloads

Figure 6.3 presents the main error comparison of all algorithms on workloads of

uniform intervals across a range of datasets and settings of ε. The y-axis is the

2The other algorithms from Xu et al. [74] take more than 20 hours to complete a single trial.
Therefore, they are not included.
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Figure 6.3. Average absolute error on the uniform intervals workload across
multiple datasets. The privacy budget ranges from ε = 0.01 (top) to ε = 0.5 (bottom).

average error per query presented on a logarithmic scale. The datasets appear along

the x-axis (in an order discussed below).

While data-independent algorithms like Privelet and Identity offer constant error

across datasets, the error of data-dependent algorithms can vary significantly.3 For

3StructureFirst is an exception to this trend, as its observed performance is almost totally in-
dependent of the dataset. The reason is that the algorithm chooses a partition based on a scoring
function that has high sensitivity. Thus, the partition selection phase of its algorithm is very noisy
and its choice of partition is close to random.
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some datasets, data-dependent algorithms can be much more accurate. For example,

on Nettrace with ε = 0.01, all of the data-dependent algorithms have lower error

than the best data-independent algorithm (Privelet). For this dataset, the error of

DAWA is at least an order of magnitude lower than Privelet. These results suggest

the potential power of data-dependence.

There are other datasets, however, where the competing data-dependent algo-

rithms appear to break down. In the figure, the datasets are ordered by the cost of an

optimal partition (i.e., an optimal solution to Step 1 of our algorithm) when ε2 = 0.1.
This order appears to correlate with “hardness.” Datasets on the left have low par-

tition cost and appear to be relatively “easy,” presumably because data-dependent

algorithms are able to exploit uniformities in the data. However, as one moves to

the right, the optimal partition cost increases and the datasets appear to get more

difficult. It is on many of the “harder” datasets where competing data-dependent

algorithms suffer: their error is larger than even a simple baseline approach like Iden-

tity.

In contrast, DAWA does not break down when the dataset is no longer “easy.”

On the moderately difficult dataset Search Logs, DAWA is the only data-dependent

algorithm that outperforms data-independent algorithms. On the “hardest” datasets,

its performance is comparable to data independent techniques like Privelet. DAWA

comes close to achieving the best of both worlds: it offers very significant improvement

on easier datasets, but even on hard datasets achieves roughly the same performance

as data-independent techniques.

For the same workload, datasets, and algorithms, Table 6.2 reports the perfor-

mance of DAWA relative to other algorithms. Each cell in the table reports the ratio

of algorithm error to DAWA error. Table 6.2(a) reports the smallest ratio achieved

over all datasets—i.e., how close the competing algorithm comes to matching, or in

some cases beating, the performance of DAWA . Table 6.2(b) reports the largest ra-
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Figure 6.4. Cost of partitions selected by various algorithms with ε = 0.1.

tio achieved—i.e., how much worse the competing algorithm can be on some dataset.

Table 6.2(b) reveals that the error of every competing algorithm is at least 7.09 times

larger than that DAWA on one dataset.

Table 6.2(a) reveals that DAWA is sometimes less accurate than another algo-

rithm, but only moderately so. This occurs on the “hardest” datasets, Patents and

HepPh, where DAWA has error that is at most 1
0.82
≈ 22% higher than other ap-

proaches. On these hard datasets, the optimal partition has thousands of buckets

(see Table 6.1), indicating that it is highly non-uniform. On non-uniform data, the

first stage of the DAWA algorithm spends ε1 of the privacy budget only to select a

partition that is similar to the base buckets. Despite the fact that the first stage of

the algorithm does not help much on “hard” datasets, DAWA is still able to perform

almost as well as the best data-independent technique, in contrast to the other data

dependent strategies which perform poorly on such “hard” datasets.

In addition to uniform interval workload, we also ran experiments on the other

three types of workloads. The performance of DAWA relative to its competitors is

qualitatively similar to the performance on uniform interval workload shown above.
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6.5.3 Effectiveness of partition selection

In addition to the strong performance of DAWA shown above, we would like to

verify the effectiveness of our solutions in each of the main steps of the algorithm.

Recall that the first step of DAWA is to generate a differentially private partition

of the domain using Algorithm 6.3.1. Here we evaluate the effectiveness of this first

step by comparing the cost of the partition found by the algorithm to the cost of the

optimal solution. The optimal solution is computed by solving Problem 6.1 directly,

ignoring privacy considerations. In addition, we compare our algorithm to P-HP,

which is also designed to solve Problem 6.1. To facilitate a fair comparison, for this

experiment each algorithm spends all of its privacy budget on selecting the partition.

The results are shown in Figure 6.4 for ε = 0.1. DAWA-all is the DAWA algorithm

in which the partition is selected by considering all possible intervals. DAWA-subset

computes the partition using the subset of intervals whose lengths are a power of two.

As the figure shows, the partition of DAWA-all is close to optimal. The cost of the

partition of DAWA-subset is sometimes higher than that of DAWA-all especially on

“easier” datasets. Generally, however, DAWA-subset performs similarly to DAWA-all

. This suggests that the gain in efficiency that comes from only considering a subset

of the intervals does not come at the expense of lost utility.

The cost of the partition selected by P-HP, is almost as low as the cost of the

DAWA-subset partition on the Adult and Medical Cost datasets, but is orders of

magnitude larger on other datasets (on Income and Patents it is at least 1.6×106). This

provides empirical evidence that Algorithm 6.3.1 is a much more accurate algorithm

than the recursive bisection approach of P-HP. The results with ε ∈ {0.01,0.05,0.5}
are similar and hence omitted.
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Figure 6.5. A comparison of alternative algorithms for the second step of DAWA
across different workloads, with ε = 0.1.

6.5.4 Effectiveness of adapting to workload

The second stage of DAWA designs a query strategy that is tuned to the workload,

as described by Algorithm 6.4.1. Here we evaluate the effectiveness of this algorithm

by comparing its performance with some alternative strategies. Two alternative ways

to allocate the privacy budget on Y are considered: all queries have the same privacy

budget (Uniform); the privacy budget decreases geometrically from leaves to root

(Geometric) based on the approach described in [17]. The Laplace mechanism is

also included as an alternative choice for the second stage. Among the alternative

algorithms, Geometric Y is designed to answer uniform interval workloads, and the

Laplace mechanism is known to be the optimal data-independent mechanism for the

identity workload.
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Figure 6.6. Average error answering query workloads on spatial data. Each workload
is a batch of random rectangle queries of a given (x, y) shape.

The results are shown in Figure 6.5. Average error is measured across three

datasets that span the range of difficulty: Nettrace (“easy” with the lowest partition

cost), Search Logs (“moderate”), and HepPh (“hard”). In these experiments, ε =
0.1. The original DAWA performs very well on all cases. In particular, it always

outperforms Geometric on uniform interval workload and performs exactly same as

the Laplace mechanism on identity workload. In the later case, we witness that the

greedy algorithm in the second step outputs the initial budget allocation, which is

exactly same as the Laplace mechanism.
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6.5.5 Case study: spatial data workloads

Lastly, we evaluate an extension to our main algorithm to compute histograms over

two dimensional spatial data. We use an experimental setup that is almost identical

to previous work [17]; differences are highlighted below. The dataset describes the

geographic coordinates (latitude and longitude) of road intersections across a wide

region in the western U.S [4]. The frequency of road intersections serves as a proxy

for human population. Over this region, we generate a workload of random rectangle

queries of four different shapes: (1,1), (5,5), (10,10), and (15,0.2) where shape (x, y)
is a rectangle that covers x degrees of longitude and y degrees of latitude.

We compare with algorithms from [17] and other recently published techniques.

- QuadTree [17] is a quadtree created over the domain where the privacy budget

is allocated with weights that decrease geometrically from leaf to root.

- HybridTree [17] is a hybrid strategy that combines a differentially private kd-

tree and at higher levels with a quadtree on lower levels with parameters set as

described in [17].

- DPCube [72] obtains bin counts using the Laplace mechanism and then con-

structs a kd-tree based on those noisy counts.

For the above algorithms, we use code obtained from the authors. Also included in the

study is MWEM (previously described). Among these algorithms, only QuadTree is

data-independent and only MWEM is workload-aware. Since some algorithms expect

discrete domains as input, we discretize the domain by partitioning the space into

the finest granularity used by the QuadTree, whose height is 10 [17]. Thus, both

longitude and latitude are split evenly into 210 bins.

To extend the DAWA algorithm to two dimensional data, we use a Hilbert curve

of order 20 to convert the 210 × 210 grid into a 1-dimensional domain with size 220. In
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case the query region only partially covers some bins in the discretized domain, the

query answer is estimated by assuming uniformity within each bin.

Figure 6.6 shows the results. Although DAWA is designed for interval workloads

on 1-dimensional data, it performs as well or better than algorithms that were specif-

ically designed to support rectangular range queries on 2-dimensional data. The

performance gap between DAWA and its competitors increases as ε decreases. These

results suggest that DAWA can work well even when the workload does not consist

of interval queries. It may be possible to achieve even greater accuracy by extending

the DAWA algorithm to operate directly on two-dimensional data. We leave this as

future work.
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CHAPTER 7

RELATED WORK

7.1 Private data analysis

The most straightforward idea in private data analysis is to remove the attributes

that can directly identify each individual from each table, which was used in several

releases of sensitive data. Barbaro et al. proposed an attack to the published AOL

search log [10], where the partial information in search logs is used to re-identify an

individual. Further, Narayanan et al. successfully identified an individual from the

Netflix contest dataset [55] by joining the released information of Netflix users to the

public accessible IMDB database.

To prevent linkage attacks, Sweeney et al. [63] presented k-anonymity, which

divides the attributes into two groups: quasi-identifiers and sensitive information.

Quasi-identifiers are defined as attributes that might be publicly available and can be

used to partially identify one individual. The idea of k-anonymity is to guarantee that

each quasi-identifier is shared by at least k tuples. However, there are cases that k-

anonymized datasets leak private information. Many followup works on k-anonymity

pointed out potential privacy leaks in previous works and proposed more sophisti-

cated solutions. Machanavajjhala et al. presented l-diversity [50], which enforces the

sensitive attributes in each of the k-anonymized group has at least l different values.

M -invariance [68] and t-closeness [48], presented by Xiao et al. and Li. et al, respec-

tively improve l-diversity by imposing more constraints to the distribution of values

of sensitive attributes within each k-anonymized group. In addition, Xiao et al also
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introduced a new algorithm, Anatomy [69], that can be used to create a published

database that satisfies any variation of k-anonymity.

Though there is no theoretical privacy guarantee with k-anonymity, the idea is

widely accepted in many applications. Ganta et al. proposed an attack with auxiliary

information that can be applied to all variation of k-anonymous above [31]. However,

there are still more attempts to further improve k-anonymity and provide stronger

privacy guarantee, such as β-likeness [16].

Other privacy definitions rely on the randomness of the output of algorithms.

Dinur and Nissim [20] studied the least amount of perturbation to be added to query

answers to avoid blatant non-privacy. Evfimievski et al. defined privacy by bound-

ing the difference between the prior and posterior belief of adversaries. Blum et al.

presented the SuLQ framework, which provides a privacy definition that can work

against adversaries with arbitrary amount of auxiliary information. Differential pri-

vacy is presented in [26, 25] and draws lots of attentions since it has been introduced.

Several systems are designed [54, 61, 52] to convert non-private programs into differ-

entially private ones. A summary of recent theoretical works under differential privacy

can be found in [24]. Recently, criticisms on differential privacy are also emerging

[36, 43]. Kifer and Machanavajjhala also proposed a more general privacy framework

in [44].

7.2 Linear query answering under differential privacy

There are two different types of approaches that answers linear queries under

differential privacy. One is data-independent approaches, where the entire query

answering process does not change with different input datasets. The existing data-

independent approaches are either instances of the matrix mechanism or the matrix

mechanism with some variation. Furthermore, we are not aware any data-independent

approaches that work interactively with the database. The other one is data-aware

162



approaches, where the query answering process is determined by the underlying

database. Such approaches including both batch processing approaches, where all

queries are answered at once and interactive approaches, where further queries can

depends on answers of previous queries.

7.2.1 Data-independent approaches

The original work on the matrix mechanism is first introduced in [45]. It presents

the error formula as well as the optimization problems. Originally, the matrix mech-

anism focuses mainly on ε-differential privacy, although (ε, δ)-differential privacy was

also considered briefly. In addition, the original work also analyzes two prior tech-

niques specifically tailored to range queries. The first uses a wavelet transformation

[70]; the second uses a hierarchical set of queries followed by inference [40]. The anal-

yses via the matrix mechanism indicate that those two techniques, though seemingly

different, are actually very similar to each other. Further analyses also demonstrate

that even though those techniques have much lower noise than the Laplace mecha-

nism, none of them minimizes the amount of noise needed.

Meanwhile, other works that designed algorithms that answer marginal queries can

also be considered as instances of the matrix mechanism. Each of those works designs

special strategies for a specific class of workloads. Barak et al.[9] studied answering

low order marginal queries using subsets of Fourier basis; Ding et al.[19] considered

a special collection of marginal queries, called data cubes, which are answered by a

subset of all data cube queries selected via a greedy algorithm. The algorithm adapts

a known approximation algorithm for the subset sum problem and cannot be applied

to general linear queries.

As follow up works to the matrix mechanism, we presented an adaptive algorithm

that generates strategies for any workload under (ε, δ)-differential privacy in [46].

The algorithm generates different strategies by weighting queries that consist of the
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singular vectors of the query workload. An empirical study demonstrates that the

strategies produced by this algorithm outperform previously designed algorithms on

various workloads [70, 40, 9, 19]. The case of supporting low-rank workloads under

ε-differential privacy are discussed by Yuan et al. in [76], which introduces lower

error than [70, 40] when the number of queries is much smaller than the size of the

domain. In order to avoid the hardness of solving the optimization problem under

the matrix mechanism, [75] demonstrated an approach that has the similar form of

the matrix mechanism, but relies on a fixed “recovery” matrix instead of the least

square inference as the last step of the matrix mechanism. Such simplification leads

to a much easier optimization formulation, though inference with the recovery matrix

introduces more noise than inference with the least squares.

7.2.2 Data-aware approaches

Other works discuss algorithms whose query answering process is related to the

underlying databases. Many of practical data-aware approaches are compared with

DAWA in Chapter 6, which are all non-interactive approaches. Close to our work in

Chapter 6, the P-HP [6] algorithm uses the same score function to choose a partition

of the 1-dimensional domain. The algorithm differentially privately and recursively

bisects the domain into small regions, which leads to an accumulated privacy budget

cost from all levels of the recursion. In addition, the greedy bisection may lead to a

suboptimal partition, and the algorithm is hence outperformed by our approach in

experiments. Xu et al. [74] proposes an alternative approach (StructureFirst) where

the number of partitions, k, is fixed and the algorithm aims to select a partition with

minimum expected squared error (L2), as opposed to the approach used here which is

based on absolute error (L1). We find that fixing k is disadvantageous as the optimal

k is data-dependent, varying by orders of magnitude across different datasets. In

addition, squared error has very high sensitivity, requiring a large amount noise to
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guarantee privacy and therefore resulting partitions do not capture the structure of

the data very well. In addition, neither P-HP nor StrucureFirst tries to combine

the dynamic strategy selection as our algorithm. There is another algorithm in [6]

that dynamically chooses the granularity in a Fourier transformation based on the

underlying database. Beyond 1-dimensional databases, linear query answering on

2-dimensional databases is studied in [17, 72], which create differentially private KD-

trees. An alternative approach is presented in [13, 49], which, instead of perturbing

the query answers, output a noisy compression of the database so as to support any

kind of queries.

Further, there are more data-aware approaches from the theory community. Those

approaches are both data-aware and interactive, and lead to smaller error than the

matrix mechanism over sparse databases by analyzing the properties of the underlying

database. Many of those theoretical approaches have been compared to the bound

on the matrix mechanism in Chapter 4.4. The median mechanism [59] maintained a

set of database instances that consist with historical query answers. The new query

is either answered by the maintained set of the databases or by the original database,

determined in a differentially private method. Dwork et al. [27] samples linear queries

in each step and modifies the sample distribution with the new query answers. In

[37, 35], the authors recursively update the estimated data vector to reduce the error

on linear queries. In each of those algorithms, asymptotical error bounds are provided.

More generally, Dwork et al. provide an error bound using an arbitrary differentially

private mechanism [21] but not specifically for linear counting queries. Theoretically,

those approaches have better dependency on privacy parameters and many not be

applicable in practical.
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7.2.3 Error bounds

The general error lower bound under the matrix mechanism was introduced in [47].

In recent work, Nikolov et al. [56] propose an algorithm whose error is within a ratio

of O(log2 rank(W) log(1/δ)) to the optimal error under any data-independent (ε, δ)-
differentially private mechanism (not limited to instances of the matrix mechanism).

Their algorithm is in fact a special case of the matrix mechanism, so this approxi-

mation ratio also bounds the ratio between the error lower bound under the matrix

mechanism and the minimum achievable error of all possible data-independent (ε, δ)-
differential private mechanisms. On ε-differential privacy, Hardt et al. [39] present

a lower bound on error for low rank workloads. Similar to the SVD bound, this

geometric bound can also be represented as a function of the singular values of the

workload. The authors also provide a mechanism that is close to the lower bound on

random matrices with high probability. Since the mechanism in the paper is a special

case of the matrix mechanism, the result also indicates that the matrix mechanism

can provide small enough error on such random matrices. In addition, this bound is

not directly comparable with the SVD bound since it bounds the mean absolute error

rather than mean squared error in the SVD bound.

Blum et al. [14] describe a very general mechanism for synthetic data release, in

which error rates are related to the VC dimension of the workload. However, for

many workloads of linear queries, VC dimension is too coarse-grained to provide a

useful measure of workload error complexity. For example, the VC dimension for

any workload of d-dimensional range queries that can not be embedded into (d − 1)-
dimensional spaces is always d + 1, despite the fact that such workloads could have

very different achievable error rates. Lower and upper bounds on answering all k-way

marginals with a data dependent mechanism are discussed in [42]. Though it is clear

that the SVD bound is tight in the case of all k-way marginals (since it is a special
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case of data cube) comparison with [42] requires a careful analysis of the singular

values of workloads of k-way marginals and is a direction for future investigation.
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CHAPTER 8

DISCUSSION AND CONCLUSION

Differential privacy draws a great amount of interest since it provides a promising

privacy guarantee in theory. However, the original literature of differential privacy

only provides high level ideas of the mechanism design and a mechanism (Laplace

mechanism) that only works well for single query answering. With the query workload

and the query strategy separated, the matrix mechanism takes the advantages of

the correlation between queries to generate high quality query answers with limited

privacy budget. In addition, the theoretical error analysis in the matrix mechanism

makes it is possible to compare quality of different query strategies accurately without

running experiments on concrete databases. As many proposed techniques [29, 47, 46,

76, 9, 70, 40, 19] can be formulated as instances of matrix mechanism with specific

query strategies, the matrix mechanism allows a uniform analysis and comparison

between all of those techniques.

We also discuss the optimal strategy that supports a certain workload under the

matrix mechanism and show it can be computed by iteratively solving a pair of

semidefinite programs. In order to cope with the high complexity of the original opti-

mization formulation, we further proposed an approximated algorithm that generates

strategies by weighting a set of designing queries, which produces strategies that

outperform state-of-art mechanisms under (ε, δ)-differential privacy. Moreover, we

present an error lower bound under the matrix mechanism, which characteristics the

hardness of a workload using its spectral properties. Our error bound is proven to be

tight in many cases under (ε, δ)-differential privacy and is shown empirically close to
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tight on many other commonly studied workloads. In addition, we design a data- and

workload-aware algorithm for answering range queries under differential privacy. The

algorithm first partitions the domain into approximately uniform regions and then

estimates counts in each region using measurements of varying granularity that are

tuned to the workload queries. Experimental results indicate our algorithm outper-

forms state-of-arts data-dependent algorithms, and is no worse than data-independent

algorithms when other data-dependent algorithms yield to high error.

However, many questions are still open under the matrix mechanism and its data-

dependent generalization. The first important direction is better algorithms and

further analyses to the matrix mechanism under ε-differential privacy. Under (ε, δ)-
differential privacy, past works have already designed an efficient workload adaptive

algorithm [46], presented an almost tight error lower bound [47], and connected the

error of the matrix mechanism to the error of any data-independent differentially

private algorithms [56]. But there are no such general results under ε-differential

privacy: the existing algorithms only work for specific workloads, the lower bound

on the matrix mechanism is not as tight, and the connection to the general data-

independent algorithms only existing on random matrices [39].

In addition, more researches on data-dependent algorithms under differential pri-

vacy is also an very important future direction. The power of data-dependent al-

gorithms under differential privacy has already been shown in our experiments, but

our current algorithm only works for 1-dimensional range queries. Existing algo-

rithms for more general cases (e.g. MWEM) is shown to be not as good on many

cases. Moreover, our experimental results indicate that some databases are signifi-

cantly “easier” than other databases according to the performance of data-dependent

algorithms. Formulate a measurement on the hardness of datasets or the hardness

of datasets under a given workload is crucial for us understand the effectiveness of

future differentially private algorithms.

169



BIBLIOGRAPHY

[1] http://abel.ee.ucla.edu/cvxopt/.

[2] http://dbgroup.cs.umass.edu/code/.

[3] http://snap.stanford.edu.

[4] http://www.census.gov/geo/maps-data/data/tiger.html.

[5] http://www.mcs.anl.gov/hs/software/dsdp/.
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