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ABSTRACT

DESIGNING EFFICIENT AND ACCURATE BEHAVIOR-AWARE
MOBILE SYSTEMS

SEPTEMBER 2014

ABHINAV PARATE

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY KANPUR

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Deepak Ganesan

The proliferation of sensors on smartphones, tablets and wearables has led to a plethora

of behavior classification algorithms designed to sense various aspects of individual user’s

behavior such as daily habits, activity, physiology, mobility, sleep, emotional and social

contexts. This ability to sense and understand behaviors of mobile users will drive the

next generation of mobile applications providing services based on the users’ behavioral

patterns. In this thesis, we investigate ways in which we can enhance and utilize the un-

derstanding of user behaviors in such applications. In particular, we focus on identifying

the key challenges in the following three aspects of behavior-aware applications: detec-

tion, understanding, and prediction of user behaviors; and present systems and techniques

developed to address these challenges.

In the first part of this thesis, we demonstrate the utility of wristbands equipped with

inertial sensors in real-time detection of health-related behaviors such as smoking and eat-

viii



ing. Our approach detects these behaviors in a passive manner without any explicit user

interaction and does not require use of any cumbersome device. Our results show that

we can detect smoking with 95% accuracy, 91% precision and 81% recall in the natural

environment.

In the second part of the thesis, we design a context-query engine for sensing multiple

user contexts continuously, accurately and efficiently on mobile devices; the key necessity

for understanding and analyzing behaviors. Our context-query engine performs informa-

tion fusion of contexts for an individual user to enable optimizations like i) energy-efficient

sensing, and ii) accurate context inference while minimizing the privacy risks associated

with the leakage of sensitive contexts to third party applications. We show that our context-

query engine can improve accuracy of a context classifier by up to 42% and reduce the

number of classifiers required to observe the user state by 33%.

Finally, in the third part of the thesis, we demonstrate the utility of predicting app

usage behavior, in improving the freshness of mobile apps such as Facebook that present

users with the latest content fetched from remote servers. We present an app prediction

algorithm that utilizes user contexts to predict the app a user is likely to use and pre-fetches

the data over the network for the predicted app. We show that our proposed algorithm

delivers application content to the user that is on an average fresh within 3 minutes. An

implementation of our algorithm is available as a widget in the Google Play Store that

shows shortcuts for the predicted apps; and has now been downloaded and installed on

more than 50,000 devices.
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CHAPTER 1

INTRODUCTION

Definition (User Context). The term user context is used in the area of mobile computing

to refer to the state of the user of a mobile device and the environment surrounding it.

We have entered a new age of mobile computing where context awareness on mobile

devices will play a big role in providing services targeting the behavior of mobile users. A

new class of mobile applications will provide behavior-aware services such as serendipitous

recommender systems that recommend activities based on an individual’s behavior, health

applications that intervene and provide well-timed feedback to encourage users to adopt a

healthy lifestyle, applications that show information and contents of interest at appropriate

times based on the user behavioral patterns, and mobile operating systems that optimize

their resource consumption by predicting workloads based on the user behavioral patterns.

Google Now [5], an example of such a behavior-aware application, utilizes user contexts

and the mobility behavior of the user, to show driving directions to the likely places of

interest to the user at opportune moments.

There are many benefits to reap from behavior-aware applications, but the develop-

ment of this class of applications is not free of challenges. The most fundamental challenge

comes from the resource-constrained nature of the mobile devices on which these applica-

tions sense user contexts for behavior-awareness. The challenges posed by the limited

battery life and the limited computational power available on the mobile devices are only a

few of the many challenges that needs to be addressed for behavior awareness. This thesis

identifies the key challenges in behavior-awareness, and presents new methods and systems

developed to address these challenges.
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1.1 Behavior-Aware Applications

Behavior-aware applications may have a variety of goals; we can broadly categorize

these applications based on the following three goals:

1. detecting a user behavior,

2. understanding a user behavior, and

3. predicting a user behavior.

In this section, we elaborate these three aspects of behavior-aware applications, namely

behavior detection, behavior understanding and behavior prediction. We will see that

each of these three aspects of behavior-awareness, relies on the context awareness or the

ability to sense user contexts on mobile devices.

1.1.1 Behavior Detection

Being able to detect a user behavior is an important requirement for the behavior-aware

applications. A variety of machine learning techniques exist in the literature that detects

user behaviors on mobile devices using the inbuilt sensors (e.g. accelerometer, gyroscope),

or using wearable accessories such as fitness monitors (Fitbit [3], UP by Jawbone [8]), heart

monitors (Zephyr BioHarness [192]), and others that communicate with mobile devices via

bluetooth. These techniques extract behavior information from the continuous stream of

data sampled from the sensors.

Recent advances in the context-awareness research have shown that mobile devices and

wearable sensors can be used to detect contexts capturing various aspects of an individ-

ual user’s behavior. These behavioral contexts include physical activities (e.g. walking,

driving, running, talking) [106, 151], emotional or affective contexts (e.g. stress, mood)

[104, 142], social contexts (e.g. user is with friends, is with colleagues or is in a party)

[31, 169], sleep behavior [82, 83], addictive behavior (e.g. smoking, cocaine) [12, 126]

and so on.
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Behavior detection has been most popular in applications that detect specific user be-

haviors such as physical activities or the sleep behavior; and present users with their daily

diary containing a timeline of the observed behaviors throughout the day, or presenting a

summary of the duration for each type of detected behavior e.g. time spent walking, run-

ning, standing, and sitting during the day. For example, SleepBot [167] and Moves [120]

are popular daily behavior logging applications available on Android operating system that

logs user’s sleeping behavior and physical activities respectively. Many users utilize such

applications to monitor their behaviors, and use the observations to improve their lifestyle.

1.1.2 Behavior Understanding

The main advantage of context-awareness on mobile devices is that it presents us with

a rich source of information about an individual user and its surroundings. We can sense

various behavioral contexts as well as the contexts that reflect the environment surrounding

the user. By logging all these user contexts, we can analyze the logged data to improve our

understanding of user behaviors. We can learn how behavioral contexts relate with each

other in space and time, how certain behaviors are influenced by the environmental factors,

and what are the causes or the factors that lead a user to a specific behavior. A variety

of data analysis and mining techniques such as clustering, association rule mining, tem-

poral rule mining and linear regression can be applied over the logged contextual data for

analyzing and understanding user behaviors. This contextual data opens up many interest-

ing opportunities such as in a health domain where mobile health applications can identify

as well as monitor factors leading an individual to health conditions like stress, smoking

or drug-use. Applications that analyze user behaviors may implement their own behavior

detection algorithms or may rely on third-party context-sensing APIs [13, 40, 80, 106] to

capture various user contexts. An example of such an application is BeWell+ [91] that an-

alyzes sleeping behavior, physical activities and social interaction behavior throughout the
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day to compute the overall well-being score for an individual user. BeWell+ application

implements its own algorithms for detecting various behavior contexts.

1.1.3 Behavior Prediction

The third aspect of the behavior-awareness is the ability to predict when certain be-

haviors will occur. This prediction capability will drive the next generation of smart ap-

plications such as smart recommender systems that recommend movies and places to visit

based on the predicted user behavior, mobile operating systems that optimize resource con-

sumption by predicting a workload based on user’s device usage behaviors, applications

that show targeted advertisements and contents of interest to the users, health applications

for real-time interventions to prevent a user from engaging in a harmful behavior such as

smoking, and so on. The most well-known example of a behavior-predicting application

is Google Now [5], a proactive and intelligent personal assistant system developed for An-

droid mobile devices. Google Now system observes user’s mobility behavior to predict

the user’s next likely location and presents a card to the user containing information about

traffic conditions to this location.

In order to realize the many benefits of behavior predictions, it is important that the

applications predict the behaviors of interest with high accuracy. Since not all the users

have the same behavioral patterns, personalization i.e. adapting the prediction mechanism

for each individual user is important for the accurate behavior prediction. Moreover, user

contexts play an important role in accurate behavior prediction as the user behaviors are

often influenced by a variety of user contexts. For instance, an individual user’s smoking

behavior depends on the user’s social contexts. We might observe that some individual

user smokes a cigarette when the user is either alone or when the user is with specific set of

friends, but never smokes when the user is with family members. Consequentially, behavior

prediction mechanisms may benefit from the behavior understanding where the contexts

identified as factors leading to a target behavior, can be used in prediction.

4



1.2 Challenges

In this section, we give a high-level overview of the challenges that must be addressed

in order to build the categories of behavior-aware applications identified in the previous

section.

1.2.1 Challenges in Behavior Detection

Behavior detection is often done using classification algorithms that operate over a

stream of sensor data to detect if a user is engaged in a certain behavior. Developing a

behavior classification mechanism that achieves high accuracy requires a lot of efforts,

starting from selecting the sensing modalities appropriate for the target behavior to be de-

tected, to developing a classification algorithm to execute on resource-constrained mobile

devices. First, the process of collecting labeled data in the real-world settings, required

for evaluating and/or training a classification mechanism, is a time-consuming process re-

quiring hours of manual efforts and data cleaning. Next, noise present in the raw sensor

data presents another challenge and requires developing techniques to remove this noise

from the data. But most importantly, the biggest challenge is identifying the discriminative

set of features that can distinguish the behavior of interest from many confounding similar

behaviors observed in the real world settings. The final challenge in the behavior classi-

fication is posed by the resource-constrained nature of the mobile device that requires the

classification mechanism to have a low system overhead. Being able to efficiently execute

the classification mechanism on mobile devices, is crucial due to the limited computing

resources and limited energy available on these devices.

The approaches used in addressing the above-mentioned challenges are closely tied to

the behavior being studied and the sensor modalities being used for detection. For instance,

the cigarette smoking behavior can be detected using various sensing modalities such as a

wearable chest-band that measures the expansion of the chest during respiratory cycles,

or a wearable wristband equipped with inertial sensors (accelerometer and gyroscope) that
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tracks wrist movements in a 3D space. Due to the dissimilar nature of these sensing modal-

ities, the noise characteristics observed in its signals differ significantly. Hence, differ-

ent noise reduction techniques are required to remove the noise from the sensor signals.

Similarly, the set of discriminative features differs with the choice of sensing modalities.

Moreover, the list of activities that confound with the cigarette smoking behavior for these

sensing modalities differ as well. Physical activities like running that result in deep inhala-

tions and exhalations, conversation and stress are the confounding activities when using a

chest-band as the sensing modality; whereas with a wristband as the sensing modality, the

list of confounders include eating, drinking, and other hand-to-mouth gestures.

The difference in approaches may also arise due to the dissimilar nature of the behaviors

being studied while using the same sensing modality. For example, a wristband equipped

with accelerometer can be used to detect walking as well as smoking behavior. While

walking detection utilizes the features that capture periodicity in signals (e.g. zero crossing

rate), whereas smoking detection requires spatio-temporal features such as the vertical dis-

placement and the average speed of the wrist during the smoking gestures. Thus, achieving

the goal of high accuracy in behavior detection requires approaches that are specific to the

domain of the behavior being detected.

1.2.2 Challenges in Behavior Understanding

The key requirement to understand or to analyze a specific behavior of interest is

the ability to sense a variety of user contexts continuously and simultaneously. This re-

quirement is not just limited to the learning stage, and must be met during the applica-

tion/monitoring stage as well. During the monitoring stage, multiple contexts identified as

factors ( or causes) during the learning stage need to be sensed continuously in order to take

appropriate actions when indicated by the observed user state. The continuous sensing of

user contexts faces several challenges in a resource-constrained mobile environment. First,

the mobile devices lack the computational power required to continuously execute all the
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classification algorithms that extract high-level context information from the sensor data.

Some of the classification mechanisms that operate over high-frequency data such as audio,

can consume significant computation resources on the mobile device making it infeasible to

run over an extended period of time. Moreover, the power required to continuously sample

sensor data and to execute computations can quickly deplete the battery life of the mobile

device and thus, degrading the mobile user experience. Another important challenge here is

that many of the classification mechanisms are not always accurate. Using inaccurate clas-

sified outputs to learn the causes can lead to learning incorrect relations and causes. As a

consequence, the applications that use the learnt relations and causes to take certain actions

useful to the user, may take actions that are either incorrect or are executed at inappropriate

times.

1.2.3 Challenges in Behavior Prediction

Similar to behavior classification mechanisms, the predictions mechanisms for a user

behavior are required to achieve high accuracy. It is because an incorrect prediction or

failure to predict a certain behavior, can have significant costs associated with it. How-

ever, the problem of behavior prediction becomes more challenging due to the fact that

an individual user’s pattern of behavior can change over time. As a result, the prediction

mechanism is required to learn and adapt quickly to the changing behavioral patterns over

time. Another important challenge comes from the fact that many applications that utilize

these predictions are time-critical in nature. In other words, it is not sufficient to predict

“what” behavior will happen next but “when” that behavior will happen is also an impor-

tant information for this class of applications. For instance, in the health domain, predicting

“when” a user is likely to smoke can be critical for real-time interventions to prevent the

user from smoking.

This is worthwhile to note that addressing the above-mentioned challenges requires ap-

proaches that depend on the type of behavior being predicted. This is because the user
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contexts useful in behavior prediction and the temporal behavioral patterns differ for var-

ious types of behaviors. For example, predicting the smoking behavior is very different

from predicting the user behavior that the user is going to check the email application on

the phone.

1.3 Problems

The space of challenges in designing robust, efficient, and accurate behavior-aware

applications is vast, and the specifics depend on the application being studied. For example,

the challenges in detecting behavior depends on the detection goal (smoking, drug use,

etc) and the choice of sensor modality (accelerometer, microphone, etc). Similarly, the

challenges in other aspects of behavior-awareness depend on the problem. In this section,

we instantiate these challenges in three applications that we address in this thesis, one for

each of the three areas outlined in the previous section.

1.3.1 Detecting Gesture-based Behaviors Using Wrist-worn Devices

In a recent market trend, we are increasingly seeing new wearable wrist-worn devices

such as Fitbit wristband [3], UP wristband by Jawbone [8], Samsung Galaxy Gear [154],

that come equipped with inertial sensors. The focus of these devices has been on recog-

nizing few standard activities like walking, driving, biking, sitting, running and standing.

However, inertial sensors available on these devices can be used to recognize behaviors be-

yond the list of standard activities. In particular, inertial sensors specifically 9-axis inertial

measurement unit (IMU), can capture rich information about the natural hand gestures per-

formed by a user in a day-to-day life. The natural hand gestures are useful in recognizing

health behaviors such as smoking, eating, drinking and various types of physical exercises.

These behaviors provide valuable information pertaining to the users’ well-being and can

play an important role in health applications such as smoking cessation, monitoring over-

eating or binge-eating and monitoring fitness regime. In contrast to the physical activities
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like walking and biking, these behaviors are relatively uncommon and happens only a few

times a day and sometimes for a short duration of few minutes. Thus, it is important that

the algorithm that detects these behaviors should have high accuracy; the algorithm should

detect most of the instances of these behaviors (high recall) and should have only few false

positives (high precision). This identifies our first problem that we address in this the-

sis “How can we leverage wrist-worn devices equipped with inertial sensors to accurately

sense behaviors based on wrist movements?”

The biggest challenge in behavior sensing using wrist-worn devices is that a typical

user performs hundreds of hand-gestures in a day and many of these gestures have arm

movement patterns similar to the behaviors we need to distinguish. Moreover, gestures

for eating, smoking and drinking are all hand-to-mouth gestures and may have similar

repetitive patterns. Another important challenge comes from our aim to design a passive

gesture tracking system that should detect gestures without any explicit information given

by the user regarding the type of activity being performed. This is in contrast to typical

gesture recognition systems such as Nintendo-Wii where a user signals the beginning of a

gesture.

1.3.2 Understanding Behavior in a Resource-constrained Mobile Environment

A lot of research in the recent years has focused on an independent analysis of a single

behavioral context such as physical activity, user’s emotional state, sleeping behavior or

user’s social interactions. We argue that instead of looking at the various contexts indepen-

dently, we can learn spatio-temporal correlations that exist across these contexts; and lever-

age these correlations to i) gain insights about an individual user, and ii) enable system opti-

mizations such as reduced energy consumption and improved accuracy in context-sensing.

These optimizations have benefits particularly for the behavior understanding and analysis

applications that require simultaneous and continuous sensing of multiple user contexts. In

addition to behavior analysis, the ability to continuously sense multiple contexts accurately
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and efficiently is of utmost importance for supporting contextualized services on resource-

constrained mobile devices. We address the challenges in achieving accurate continuous

context-sensing on mobile devices in the second problem of this thesis “How can we im-

prove continuous context sensing performance?” Our goal is to improve the two perfor-

mance metrics, namely, energy-efficiency and accuracy of the context-inference algorithms

(or classifiers) used in observing user contexts. The intuition behind this problem is that the

user contexts capture various aspects of an individual user’s habits, behaviors, surroundings

and physiology all of which are inter-linked and hence, user contexts are correlated across

space and time. Consequentially, we can improve energy-efficiency in context-sensing by

sensing only fewer contexts and inferring contexts that are implied by the correlations. At

the same time, accuracy of the individual context-inference algorithms/classifiers can be

improved by correcting the outputs of the context-inference algorithms if the outputs are

inconsistent with the correlations. For example, if a context-inference algorithm falsely

detects that the user is “driving” while the user is in “office”, we can correct the output of

the algorithm to “not driving”.

While there are benefits to reap, there are number of challenges that we must address.

The first challenge is how to model the correlations across contexts over time. The context-

relationship model we choose should be able to take into account that the output of the

context-inference algorithms (or classifiers) are not always accurate and have an uncer-

tainty associated with it. The second challenge is how to learn the context-relationship

model for an individual user. Learning a unique model for each individual user can be ben-

eficial because the interaction between user contexts is personalized in nature. The third

and a practical challenge is minimizing privacy risks for a user who may be concerned

about leakage of a sensitive user context to a third party application by leveraging the

context-relationship model. The final challenge is that the system overhead in combining

and inferring contexts from a relationship model should not be high. We should be able to

infer contexts and ensure privacy in real-time on a mobile device.
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1.3.3 Predicting App Usage Behavior for Improved Experience with Mobile Apps

The third problem we address in this thesis is “How can we predict user’s app usage

behavior and utilize the predictions to improve the user experience with mobile apps?” In

particular, we focus on a class of mobile apps that shows useful dynamic content to the user,

obtained from the web. Here, our goal is to improve the freshness of the dynamic content

in the mobile apps such that user finds up-to-date content whenever an app is launched. To

achieve this goal, an app prediction algorithm that utilizes user contexts can be very useful.

It is because user contexts often provide a helpful clue to predict what app will be used by a

user in a given context. These clues can be used to refresh the content for the predicted app

prior to its use by the user. However, one of the requirements from the prediction algorithm

is that the algorithm should be light-weight, that is, the algorithm should be able to execute

and train itself on off-the-shelf phones. This is because prediction algorithms require long

temporal history of user data to train an accurate predictor; and this data, consisting of user

contexts, can be privacy-sensitive in nature. As a result, users might prefer an algorithm that

trains itself on the device and not on the remote server in the cloud. Moreover, an algorithm

that has a low system overhead during its execution stage, will have a low impact on the

overall performance of the phone. However, the low system overhead requirement means

that the prediction algorithm cannot rely on user contexts that are expensive to obtain, for

instance, location from a GPS sensor.

To address this problem, we first need to answer what user contexts are useful in pre-

dicting the app likely to be used. Apart from this, the main challenge in addressing this

problem is that an individual user’s app usage behavior changes over time as new apps

are installed on the device. Thus, an algorithm that predicts the app that is likely to be

used next, should be able to adapt quickly to the changing user behavior. The second chal-

lenge is the time-critical nature of the problem i.e. the algorithm should be able to predict

“when” an app is likely to be used as the freshness of the dynamic content depends on the

well-timed update of the content. Finally, the algorithm should judiciously use the net-
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work bandwidth in refreshing the predicted applications. It is because network bandwidth

is a precious resource and costs money to the user. Wasteful or too frequent refreshes can

quickly consume the network bandwidth permitted by the user’s cellular data plan.

1.4 Thesis Statement

Our thesis is that we can

• sense behavioral contexts like smoking and eating with high recall and precision,

using wrist-worn devices equipped with inertial sensors.

• support behavior understanding and analysis applications by leveraging correlations

across user contexts to reduce energy-requirements in continuous context-sensing

and to improve the accuracy of context-inference algorithms.

• improve user experience with mobile apps by using contexts to predict app usage

behavior and to decide when to refresh an app’s content so that the user is presented

with the freshest content.

Table 1.1. Thesis overview

Question Answer Chapters

How can we leverage wrist-worn RisQ: A mobile solution Chapter 3
devices equipped with inertial sensors for hand-gesture based
to accurately sense behaviors? behavior recognition.

How to make continuous CQue: A context-query engine Chapter 4
context-inference energy-efficient exploiting context correlations.
and accurate on mobile devices?

How to predict user’s app usage PREPP: An app prediction Chapter 5
behavior to improve user experience algorithm for refreshing apps.
with mobile applications?
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1.5 Thesis Overview

In this thesis, we address three key research questions. We answer one question in each

part of the thesis and describe the systems we have developed as a solution. Table 1.1

gives an overview of this thesis summarizing the questions and the systems we developed

in response. Next, we give an overview of the systems described in this thesis.

1.5.1 RisQ: Gesture Recognition with Inertial Sensors

In the first part of this thesis, we focus on building a passive gesture recognition sys-

tem for mobile devices that can recognize hand-to-mouth gestures like smoking and eating

using wrist-worn devices. We employ wristbands equipped with inertial sensors to detect

hand-to-mouth gestures. The ability to detect hand-to-mouth gestures can be useful in mea-

suring the contextual factors that influence harmful behaviors like smoking or binge-eating.

This can further enable the use of mobile devices as a platform of choice for intervention-

based strategies to prevent a user from relapsing to the harmful behavior.

In Chapter 3, we design RisQ, a mobile solution that leverages a wristband containing a

9-axis inertial measurements unit to capture person’s arm movements, and a data processing

pipeline to accurately detect the gestures like smoking and to measure the duration of the

smoking sessions in real-time. RisQ explores the use of arm-trajectory computed using

data from the inertial measurements unit to extract a set of features that can distinguish

between hand-to-mouth gestures like smoking, eating and drinking. Also, we present a

method that leverages multiple inertial sensors placed on a person’s body together with 3D

animation of a person’s arm to aid in labeled data collection in the real-world settings. This

approach reduces the number of self-reports a user is required to provide as labels for the

various behaviors. The RisQ data processing pipeline along with the data collection method

enables ubiquitous and non-intrusive data collection and gesture recognition on the mobile

devices.
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Figure 1.1. An example of Dynamic Bayesian Network showing correlations among con-
texts. The static correlations are represented by edges between contexts at the same times-
tamp whereas temporal correlations are represented by dashed edges between contexts
across two timestamps.

1.5.2 CQue: Context Query Engine

In the second part of the thesis we argue that there is a need for an inference layer over

the context-inference algorithms (or classifiers) that fuses the outputs of several context-

inference algorithms to learn deeper insights into an individual’s habitual patterns and as-

sociated correlations between contexts, thereby enabling new system optimizations and

opportunities.

In Chapter 4, we design CQue, a dynamic bayesian network based layer that operates

over classifiers for individual contexts, observes relationships across these outputs across

time, and identifies opportunities for improving energy-efficiency and accuracy by taking

advantage of these relations. In addition, such a layer provides insights into privacy leakage

that might occur when seemingly innocuous contexts revealed to different mobile applica-

tions may be combined to reveal more information than originally intended. The main

advantage of CQue is that the decision of “what” sensors to use and “when” to use is made

by the CQue context query engine while ensuring optimal performance and minimizing the

leakage of privacy sensitive context.

14



Figure 1.1 shows an example of dynamic bayesian network representing correlations

among social, location, physical activity and health contexts. It models static correlations

among contexts such as “at home” context implies that user is likely to be “stationary”. It

also models temporal consistency of contexts. An example of a temporal consistency is: a

user who is “stationary” now is likely to be in the same state in the near future.

1.5.3 PREPP: Predictive Practical Prefetch

In the third part of the thesis, we focus on improving the user experience by increasing

the responsiveness of the mobile applications via faster launch and initialization of the

applications with the content fetched prior to its use by the user, based on the app usage

behavior predictions.

In Chapter 5, we present PREPP, a system that predicts the application likely to be

used by a user, prelaunches the predicted application and prefetches the application data

over the network to present up-to-date content to the user. PREPP has an app prediction

model that uses the last set of apps used by the user and the time of day as the contextual

features useful in predicting the next likely app to be used. In addition, PREPP has a

temporal model that estimates the appropriate time when the predicted app is likely to be

used. Together, these two models enable PREPP to prefetch the application data over the

network in a cost-aware manner such that a user is delivered the significantly fresh content

while keeping the network bandwidth cost bounded. This increases the responsiveness of

the mobile apps as the apps are already initialized and are ready with the up-to-date data.

1.6 Thesis Contributions

We now summarize the main contributions of this thesis.

1.6.1 Research Contributions

• First, we develop RisQ a data processing pipeline for gesture-based behavior recogni-

tion on mobile devices using a wristband equipped with inertial sensors. We identify
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a set of discriminative features that can classify hand-to-mouth gestures like smok-

ing and eating. We present a probabilistic model that analyzes sequences of hand-to-

mouth gestures and infers which gestures are part of a smoking session. We demon-

strate that RisQ can be used for accurate smoking behavior detection in ubiquitous

settings.

• Next, we study the problem of accurate and energy-efficient context-sensing while

reducing the privacy risks. Our contribution is CQue, a context-query engine that

provides mobile applications with a query interface to obtain more accurate context

classification while remaining agnostic of what classifiers and sensors are used and

when these are used, and provides user with a way to specify what context they

wish to keep private, and only allow information that has low privacy leakage to

be revealed. We show that fusion of individual context classifier outputs by CQue

can improve accuracy and reduce the energy requirements in continuous sensing of

multiple user contexts.

• Finally, we design PREPP that improves the responsiveness of the mobile applica-

tions by predicting the application use, prelaunching and prefetching the application

data over the network. We develop an app prediction model and a temporal model

that has a low training overhead, adapts to changing app usage patterns and provides

app usage predictions with high accuracy without using power-hungry contexts.

1.6.2 System Contributions

In addition to the research contributions, we developed various libraries and tools that

are now available in public domain.

• mStream Data Processing Library This Java library implements data processing

pipelines for various sensor modalities like ECG, accelerometer, electrodermal ac-

tivity and inertial measurements unit. This library can be used to execute on Android

devices as well as on web-servers.
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• mCrowdViz Data Visualization and Data Processing Tool mCrowdViz is a web-

based interactive application, enabling users to visualize and interact with the sensor

data. This application integrates mStream data processing library to enable sensor

data processing on the web-server and to visualize the output of the various stages in

the data processing pipeline.

• AppKicker Widget AppKicker [16] is an Android widget available in Google Play

Store. This widget implements the app prediction algorithm developed in PREPP

to show the dynamic list of predicted applications as shortcuts to a user. This has

several other prediction algorithms to choose from like Least Recently Used, Most

Recently Used, and so on.

• Gesture Monitor App This is an Android application for data collection from a

variety of external sensors including Invensense inertial measurements unit, Zephyr

Bioharness chest band for ECG signals and Affectiva Q-sensor for electrodermal

activity.

• APPM API This library provides an implementation of app prediction algorithm

developed in PREPP. This can be used to predict next-likely event and compute

likelihood of an event to occur within a some time-interval.

1.7 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 gives background and related

work in the area of context-aware mobile systems and performance optimizations. In Chap-

ter 3, we present a gesture recognition algorithm to detect smoking gestures and sessions

in real-time on mobile devices using a wearable inertial sensor. In Chapter 4, we present

CQue a dynamic bayesian network model for information fusion across context classifiers

to improve accuracy and reduce the energy consumption in context sensing. Chapter 5

presents an app prediction model and a temporal model for prefetching application data
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and prelaunching mobile applications to improve the responsiveness of the applications.

We conclude with Chapter 6 which presents the summary of the thesis and discusses some

future research directions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents a high level survey of literature related to the area of context-

aware mobile computing to set the stage for our contributions. More detailed related work

sections are also provided in the remaining chapters.

In this chapter, we first look at the classification mechanisms available to sense a variety

of user contexts on phone. Next, we give an overview of the works relevant in the area of

modeling correlations across user contexts. Lastly, we present a survey of techniques used

for performance optimizations in context-sensing and network data access.

2.1 Context-aware Mobile Systems

In this section, we present state-of-the-art context-aware mobile systems with focus on

the context inference mechanisms that can be used to extract high-level user contexts from

the sensor data streams. The set of user contexts studied in the literature can be divided

into following four broad categories with some overlap: i) physical activities, ii) health and

behavior contexts, iii) ambient environment, and iv) semantic locations. In the following,

we look at the related work for user contexts in each category.

2.1.1 Physical Activities

This category of user contexts deals with recognizing a phone user’s activity i.e. ‘what

a user is doing?’. Activity recognition is often done using inertial sensors such as ac-

celerometer and gyroscope and has been used to detect a wide array of human activities

such as walking, standing, sitting, driving, running and so on [21, 36, 151, 188]. Apart
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from the inertial sensors, sensors such as electrocardiograph sensor, heart-rate monitor, mi-

crophone and proximity sensors can be used in activity recognition. Lu et al [106] used

microphone to detect a wider range of activities like typing, brushing teeth, washing and

clapping. Rahman et al [150] showed use of respiratory signals collected from a wearable

band worn around a user’s chest to detect whether the user is speaking, listening or quiet.

Lester et al [95, 96] and Annavaram et al [15] used multimodal sensing to recognize activi-

ties such as sitting, jogging, etc. to measure physical fitness. Annavaram et al [15] showed

that using additional sensors such as heart-rate monitor is beneficial in discriminating sim-

ilar activities such as sitting and lying down which are otherwise difficult to discriminate

using a single accelerometer. Lester et al [95, 96] showed that a wearable device contain-

ing multi-modal sensors placed on a single body location, can be used for robust activity

recognition. They reported high accuracy for activity recognition independent of the wear-

able device placement. Quwaider et al [146] used relative proximity between strategically

placed sensors on a body to monitor body postures and physical activities. They showed

that proximity sensors are better than accelerometer in detecting and discriminating seden-

tary activities like sitting and standing. Logan et al [102] studied activity recognition in the

context of instrumented smart homes using infra-red motion detectors to detect activities

like using a computer, watching a TV and dish-washing. Ganti et al [67] presented a wear-

able personal monitoring service embedded in user garments containing accelerometer and

GPS sensors. They used Hidden Markov models for recognizing activities such as walking

with an umbrella and eating with a fork and knife. Lymberopoulos et al [107] focused

on extracting spatio-temporal physical activity patterns in an instrumented smart-home to

create an spatio-temporal activity model for a person.

While activity recognition has been studied widely, there are significant challenges in

achieving high accuracy across users. A part of the challenge comes from the fact that

there exist variations across users performing the same set of activities. To address this

challenge, Lane et al [92] introduced community similarity networks that incorporates
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inter-person similarity measure to identify groups of similar users, and then crowd-source

sensor data from these groups to personalize the activity classifiers for the users in the same

group. Zhao et al [194] and Stikic et al [171] explored semi-supervised approach with ac-

tive learning to improve the activity classification performance whereas Lester et al [97]

used multi-modal sensing (accelerometer, audio, light, pressure, temperature, humidity) to

improve the classification accuracy by capturing temporal regularities and smoothness of

activities using Hidden-Markov models.

2.1.2 Health and Behavior Contexts

With the increasing availability of on-body wearable sensors that communicate with

smartphones, sensing health and behavior contexts has gained a lot of attention from the

research community. For example, wearable chest-bands that monitor physiological signals

such as heart rate, ECG signals and breathing waveforms have been used to detect smoking

behavior [12, 103], infer psychological stress level experienced by a user [142], detect

cocaine use among addicts [126] and to observe sleep behavior [82]. Audio and visual

cues have been shown to be useful in detecting behaviors such as emotions, mood, stress

and well-being [75, 83, 93, 104, 147, 158]. Sensors that measure physiological signals

such as skin conductance, skin temperature and heart rate are found to be more suitable for

recognizing emotions or human affects. Various prototypes have been built that use these

signals [2, 140] for various purposes such as recognizing stress [155], predicting user’s

response and rating for a movie [166] and detecting convulsive seizures [143]. Lane et al

[91] developed ‘BeWell’ mobile application that captures three health behaviors, namely

sleep, physical activity and social interaction on smartphones, and provides feedback to the

users for their general well-being.

2.1.3 Ambient Environment

Context-awareness research is not limited to sensing a user’s personal contexts but also

includes sensing the user’s surrounding environment and other people around the user. The
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ability to sense the surrounding environment provides us with a greater understanding of

how a user interacts with the surrounding environment. This has great applications in health

and recommendation systems where the user behavior is influenced by the surroundings.

User’s social contexts such as with friends, surrounded by people in a restaurant, in a party,

in a meeting with colleagues fall in this category of ambient environment contexts. A va-

riety of approaches detect the ambient environment based on the signatures found in the

sound signals [105, 109, 110, 139, 169]. These works demonstrate that the environmental

noise provides a rich source of contextual information can be used for recognizing a wide

range of auditory scenes such as in a bus, in a car, in a subway train, at church, at a bar,

in a lecture, bathroom, in a meeting, car turning signal, listening music, running water

faucet and so on. In addition to these contexts, there have been efforts to monitor potholes

in the city using phone’s accelerometer and GPS [7, 58, 118], to monitor road traffic con-

ditions [88, 118] and braking detection [118]. PEIR [124] is a participatory sensing system

that uses location data sampled from the smartphones to estimate the environmental im-

pact and exposure. This system integrates external sources of information such as weather

and traffic to calculate environmental impact and exposure. Typical ambient context-aware

systems such as CenceMe [31] and EmotionSense [149] leverage a wide range of sensing

modalities such as bluetooth, ambient light sensor, compass, microphone, accelerometer

and location to detect a particular ambient context. METIS context-sensing platform [148]

utilizes sensors embedded in the external infrastructure in addition to the sensors avail-

able on phones. The METIS system dynamically decides whether the sensing should be

offloaded to the infrastructure or should be executed on the phone while considering the

power consumption, accuracy and mobility of the user. On the other hand, CenceMe [31]

and Common-Sense [56] achieve reduction in power consumption via participatory sensing

where the users of the system share their sensed data with others.
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2.1.4 Semantic Locations

The ability to sense a phone’s geographic location using GPS on phone has resulted

in a large number of apps that provide location-based services such as finding places of

interests in the vicinity (e.g. Urban Spoon [9], Yelp [190] ), getting driving directions to the

place of interest (e.g. Google Maps [4]), sharing current location address with friends (e.g.

Foursquare [65], Facebook [59]) and so on. In addition to GPS-based global localization,

there have been efforts towards indoor localization where the goal is to find the location of

a user carrying a phone within a building. The indoor localization techniques can be based

on using FM [35], bluetooth [22, 42], sound and ambient light [18], WiFi [161, 162] or a

combination of various sensors [183].

More recent research efforts have been towards converting raw location coordinates to

semantic locations that are more meaningful to the user. These semantic locations are cru-

cial for supporting easier location search and recommendation services that recommend

semantic places such as near-by restaurants and movie theaters. Reverse geocoding is a

popular technique where raw coordinates obtained using GPS sensor are converted into a

human-readable address or name of the place. Reverse geocoding is used by social net-

working applications such as Facebook [59] and Foursquare [65] that allows users to share

their semantic locations/places by checking-in via mobile applications. Ye et al [189] uti-

lized the check-in behavior of the users to automatically annotate all the recorded places

with category tags or semantic annotations relevant to those places. Other approaches

[33, 101, 119] used traces of GPS data obtained from a large number of approaches to

cluster GPS data and extract semantic locations from it in an unsupervised manner. Sur-

roundSense [18] and CenceMe [31] extracted semantic locations using a variety of sensing

modalities including sound, ambient light, WiFi, GPS, bluetooth and so on.
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2.2 Relationship Modeling

In this section, we look at the related work in the area of modeling correlations across

random variables. The ability to model correlations is particularly useful in context-awareness

research as correlations across user contexts can help us gain insights into an individual

user behavior and provide an understanding of how this user interacts with the surrounding

environment. Our work on modeling context-relationships, builds upon the most relevant

works in the area of sensor data networks and probabilistic databases. In the following, we

give an high level overview of these works.

2.2.1 Graphical Models for Sensor Data Acquisition

There exists a substantial amount of work that leverages spatial and temporal models of

correlations between distributed sensor sources to optimize sampling and communication

in a sensor network [38, 52, 53, 98, 116]. For example, BBQ [53] uses a Dynamic Bayesian

Network [50, 66] that is a special class of graphical model, to select minimum number of

sensor nodes for data acquisition such that it can answer range queries within query-desired

confidence bounds. Meliou et al [116] extended this work to sensor network routing where

a query can be answered with desired confidence bounds while traversing the minimum

number of nodes in a network spanning tree. Graphical models are also used in [52],

which explored the problem of answering range queries while minimizing the energy cost

of sampling sensors, and in [38], where sensors use models to reduce the communication

costs by transmitting samples to a base station only when the ground truth is significantly

different from the prediction made by the model.

Dynamic Bayesian Networks Dynamic bayesian networks (DBNs) [50] have found

significant applications in modelling of stochastic temporal processes and in active and

dynamic information fusion. In [68], the authors used DBN learned from experts for de-

tecting human speaker from audio and visual cues. Choudhury et al [37] extended this

work by proposing an algorithm that boosts the process of learning the DBN structure and

24



its parameters to improve the classification accuracy. Zhang et al [193] used DBN in the

multi-sensor fusion problem to actively select the most relevant set of sensors for decision

making. Forbes et al [64] looked at the problem of driving an autonomous vehicle requir-

ing dynamic decision making where the DBNs were used to maintain the current belief

state about the vehicle’s world. The ability of the DBN to model temporal consistency had

been used in forecasting [47], for example, sleep apnea [46]. In [23], authors used DBN

for temporal modeling of emotional speech and to recognize the emotion. Nodelman et al

[129] addressed the limitation of DBN that it cannot be used to model processes that evolve

at different time granularities and present a continuous-time variation of DBNs. Most of

these works rely on the ability of the DBN to maintain the current belief state of the world

and use it in decision-making.

2.2.2 Graphical Models in Probabilistic Databases

A second related area is probabilistic database systems, which provide a way to store

data with the associated uncertainty and allow querying over this uncertain data. An

instance of a probabilistic database gives the probability distribution on all the certain

database instances called possible worlds [48]. Prior work in this domain proposed to allow

each tuple in the database to have an associated probability of belonging to the database

[25, 48], and to extend this approach to model correlations across attributes and relations

[160, 182]. The probabilistic models used in [25, 48] are based on restrictive assumptions

that cannot be used to model complex relations as observed in user contextual information.

PrDB [160] used Bayesian Networks as a compact way of representing the joint proba-

bility distribution of random variables and can be used to combine uncertain data from

independent sources to compute posterior probabilities and give better estimates on uncer-

tainty. BayesStore [182] used a similar approach, and defined query operators in prob-

abilistic settings as well as algorithms for Select-From-Where queries. Gupta et al [72]

used an undirected graphical model called Conditional Random Fields [90] in probabilistic
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database to store and query the results of information extraction from the text documents.

However, these systems were not designed for processing time-series of observations and

do not model the temporal relationships. In general, the query processing systems over

databases or streams have an inherent assumption that the source of information is fixed

and reliable i.e. data is always available at all timestamps for all the relations or streams.

As opposed to this, in context-sensing on phones, the number of streams providing data

can change because the number of context classifiers undergoing execution may change

due to energy constraints or sensor unavailability. Unlike work in probabilistic databases,

context-sensing environment on phone also needs to control the components in the context

processing pipeline, and decides when to switch on classifiers, and sensors, to ensure that

queries are answered with required accuracy and delay while minimizing energy consump-

tion. In contrast, work on probabilistic databases largely assumes that the sources of data

cannot be controlled.

2.3 Performance Optimization

In this section, we look at the related work in the area of performance optimization. We

focus on two lines of related works: i) optimization of context sensing performance, and ii)

optimization of network access performance on mobile devices.

2.3.1 Optimizing Context Sensing Performance

In popular mobile operating systems like Android and iOS, the support for context-

sensing had been limited to providing an interface [14] to the application developers that

allows the mobile applications to sample data from various sensors available on the phone.

The task of sensing and inferring contexts from the sensor data is left to the application

developers. This approach has an adverse impact on the performance of mobile operat-

ing systems as context-sensing consumes precious resources such as CPU cycles, network

bandwidth and energy on phones. The recent trend has been towards building context sens-
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ing engines [40, 62, 106, 185] that provide context query interface to the app developers

resulting in a clear separation between app development and context-sensing. This separa-

tion has the advantage that limited resources available on the phones can be managed more

efficiently by the context-sensing engine while maintaining the balance between energy,

latency and accuracy of context-sensing [40]. The energy efficiency in context-sensing is

achieved by sharing the computational pipeline across contexts [40, 62, 106] and by of-

floading some of the computations to the cloud at opportune moments [40]. Acquisitional

Context Engine (ACE) proposed by Nath et al [127] supports continuous context-aware

applications by exploiting correlations across contexts to reduce energy consumption in

sensing. ACE exploits context correlations to use already observed contexts to infer con-

texts that are correlated with the observed contexts, without requiring any additional sensor

data.

Chu et al [39] argued for the integration of context-awareness in the mobile operating

system itself as an OS can more effectively manage resources required for context-sensing.

Moreover, this has an additional benefit of enhanced privacy as mobile apps are no longer

required to sample raw sensor data and all the sensor data processing is delegated to the

operating system. In recent developments, popular mobile operating systems like Android

and iOS have now integrated activity recognition in the OS and provide an API to the app

developers to receive phone users’ activity updates. Both Android’s activity recognition

API [13] and iOS’ Core Motion API [80] support detection of following activities: in

vehicle, on bicycle, on foot, still and unknown. In addition, Android OS now provides

logical sensors for step detection and counting steps during walking [14].

Apart from the works that optimize resource usage at a high-level of context-sensing

pipelines, optimizations at the physical sensor level have been proposed [24, 63, 78, 136]

to increase the execution time of the wearable physiological sensors that operate on small

wearable-batteries. A common optimization used to increase battery life is to perform duty

cycling [136] where a sensor regularly alternates between on and off states. Compressive
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sensing [152, 174, 175] had been used to save energy in sampling sensor data by recovering

a sparse signal from under-sampled measurements. Hua et al [78] proposed using “just-in-

time” sampling to extend the sensor’s battery life where the sensor is turned on at the most

informative moments, based on the predictive mechanisms.

2.3.2 Optimizing Network Access Performance

The network connectivity (WiFi, 3G, LTE) on mobile devices have made these devices

the indispensable accessories in our daily life with access to real-time dynamic content.

However, increasing reliance on network connectivity for instant information comes at a

cost of increased network latency and increased energy consumption in phones. Prefetching

is a popular technique that has been used to address these challenges where some network

content of interest to the user, is predicted and fetched over the network prior to its use by

the user. Thus, reducing the latency observed by the user in accessing a network resource.

Prefetch is not a new concept and has a long history in systems research. Prefetch-

ing has been used widely in areas such as databases [49, 131, 168, 180] and filesystems

[32, 71, 89, 94, 111, 121, 137]. Early works in databases and file systems research used

prefetching to reduce the latency in accessing pages from the hard disk by loading the

pages into memory before the pages were accessed. These approaches [61, 114, 115, 168]

exploited the sequential nature of page reads by the file systems and the databases, to

prefetch sequential pages into memory. As a consequence, these approaches have lim-

ited benefits for the class of applications where page reads are not sequential. To address

this limitation, two distinct lines of research works were proposed in the literature. First,

there are approaches that proposed informed prefetching where the applications themselves

provide prefetching hints to the operating system in order to achieve efficient prefetching

[32, 137, 121]. On the other hand, another line of works focused on algorithms to dis-

cover file access patterns and use these patterns to predict and prefetch pages in memory

[71, 89, 94, 111]. Kistler et al [85] used prefetching in the context of distributed file sys-
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tems to improve latency in accessing files and to maintain availability in case of network

disruptions.

In a more relevant research domain of web-browsing on desktops, prefetching and

caching have been in use for a long time in desktop web-browsers to reduce the web-page

load times [10, 84, 112, 125, 130]. Modern web browsers such as Mozilla Firefox [122]

support the use of explicit prefetching hints provided in the webpages to prefetch and cache

the content [123]. However, the desktop based approaches are not directly applicable to the

resource-constrained mobile execution environment as the resource constraints of network

bandwidth and energy are not applicable to the desktop browsers. Moreover, user behavior

on a desktop is considerably distinct from the mobile user behavior where the web access

happens not only through the browser but also through a variety of mobile apps. This mo-

bile user behavior is also determined by the location of the user as observed by Yan et al

[186].

Prediction by Partial Match (PPM) [41, 117] is a Markov-model based prediction tech-

nique where Markov models of various orders are used to predict the next likely event

to occur. A number of PPM-based approaches have been shown to give good results for

prefetching and caching in the desktop browser environment [20, 45, 54, 60, 125]. Similar

to other approaches for desktop browsing, these approaches do not take into account the

resource limitations of the mobile environment but more importantly, these approaches do

not take freshness of the prefetched-content into account. In other words, these approaches

assume that the cached content does not go stale. This assumption does not hold true in the

mobile environment where users seek the latest information and the information loses its

value as the time passes.

In the area of mobile computing, a lot of network data prefetch-based strategies have

been proposed in the literature to tackle the resource limitations and the network-latency

issues [19, 51, 77, 108, 123, 145]. Higgins et al [77] argued for informed prefetch with

support in mobile OS enabling third-party applications to provide explicit hints to exe-
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cute prefetch. Lymberopoulos et al [108] proposed exploiting the spatiotemporal signa-

tures associated with mobile web-browsing to predict and prefetch dynamic web-content,

to achieve low web-access time and lower energy consumption. Qian et al [145] profiled

third party applications’ (e.g. Pandora music streaming app) and analyzed its data prefetch

pattern to optimize the energy consumption in network data prefetch. Balasubramanian et

al [19] observed that a lot of energy is wasted in 3G tail-time and developed a protocol to

batch network prefetches across applications to amortize the tail energy costs. Deng et al

[51] showed that energy consumption can be reduced by 66% in a 3G network by learn-

ing the traffic patterns to predict network activity, and make mobile device’s radio state

transition between active and idle state based on the predictions.

Timeliness of prefetch in mobile systems has been addressed in [17, 173, 177]. These

are subscription-based approaches where a client/user subscribes to the web content of

interest and the client gets updated in a timely manner while optimizing energy consump-

tion and network usage incurred in the updates. Armstrong et al [17] proposed use of an

edge proxy server that polls for the updates in contents of interest and pushes the updates

to the client in batches to save energy. Similar approach is used in Android OS where

the content-generating servers for mobile apps, push updates and notifications via Google

Cloud Messaging Service [69]. The main benefit of this approach is that a mobile client

is required to maintain a single persistent network connection with the Cloud messaging

service instead of maintaining one connection per mobile app. Recently, iOS mobile oper-

ating system introduced background app refresh [79] where the operating system schedules

an app to prefetch data at appropriate times. iOS determines the appropriate time to refresh

an app by learning user’s app usage patterns based on the location and the time of day

contexts. However, to reduce the impact on battery life, these refreshes are scheduled only

when the iOS device is connected to WiFi, plugged into a power source or when it is being

actively used. Auto-update system proposed by Vartiainen et al [177] runs a low-priority

daemon service on the client that manages periodic fetching of the contents of interest to
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the user. The decision to fetch content is made based on the high-level profile selected by

the user where each profile is associated with policies on content-fetching.
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CHAPTER 3

RISQ: RECOGNIZING NATURAL HAND GESTURES WITH
INERTIAL SENSORS ON A WRISTBAND

The ubiquity of mobile phones and the increasing availability of wearable sensors have

sparked the interest of the research community to use mobile devices as a platform for

health monitoring applications. In this chapter, we present RisQ, a mobile solution that

leverages a wristband containing a 9-axis inertial measurement unit to capture changes in

the orientation of a person’s arm, and a machine learning pipeline that processes this data to

accurately detect hand gesture-based behaviors, namely, smoking and eating in real-time.

Our key innovations are four-fold: a) an arm trajectory-based method that extracts candi-

date hand-to-mouth gestures, b) a set of trajectory-based features to distinguish smoking

gestures from confounding gestures including eating and drinking, c) a probabilistic model

that analyzes sequences of hand-to-mouth gestures and infers which gestures are part of in-

dividual smoking sessions, and d) a method that leverages multiple IMUs placed on a per-

son’s body together with 3D animation of a person’s arm to reduce burden of self-reports

for labeled data collection. Our experiments show that our gesture recognition algorithm

can detect smoking gestures with high accuracy (95.7%), precision (91%) and recall (81%).

We also report a user study that demonstrates that we can accurately detect the number of

smoking sessions with very few false positives over the period of a day, and that we can

reliably extract the beginning and the end of smoking session periods.

3.1 Introduction

Tobacco use remains the single largest preventable cause of death and disease in the

United States and worldwide. According to CDC estimates, cigarette smoking kills more
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than 440,000 Americans each year, either through cancer, heart disease, stroke, or lung

diseases. It also increases the chances of other serious illnesses, such as diabetes [1]. In

addition, smoking-related illness in the United States costs $96 billion in medical costs

and $97 billion in lost productivity each year. The numbers are more alarming worldwide,

where tobacco use is increasing rapidly in low- and middle-income countries. In fact, it

is estimated that there are about a billion smokers worldwide, with more than 80% in the

low and middle-income countries. Of these, about 6 million die through smoking-related

causes each year.

At the heart of addressing this scourge is early detection and timely treatment. Several

smoking cessation programs have been developed that show that intervening at opportune

moments can help a person quit smoking. In theory, continuous sensing using the mobile

phone and wearables has the potential to enable such informed and timely interventions

both by observing the evolution of a patient’s smoking pattern over time, as well as mea-

suring contextual factors that influence smoking (environment, social interactions, stress,

etc). However, the first step towards such methods is the ability to detect smoking events

in real-world settings, a goal that has proven elusive.

We argue that there is a dire need for a simple and reliable smoking detector that has

high sensitivity and specificity, and is easy to wear on a day-to-day basis. Existing methods

fall short on one or more of these axes. A sensitive detector for smoking is a tomography

meter (e.g. CReSS monitor [43]). However, the user needs to attach the tomography device

to the cigarette prior to smoking. This is both burdensome and can change the underlying

smoking behavior. A recent alternative is to use the deep respiration cycles associated

with inhalation and exhalation of smoke, which can be detected by a respiration chest

band (mPuff [12] and Sazonov et al [103]). Unfortunately chest bands are cumbersome

to wear for long periods and therefore have limited appeal beyond clinical trials. Other

wearables that have been previously proposed include RF-based proximity sensors worn

on the collar and wrist to detect when the hand is in the vicinity of the mouth, but this is not
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robust to confounders [156]. One promising approach is to embed a sensor in a cigarette

lighter which detects whenever the lighter is lit [157]. Unfortunately this approach does

not provide information about individual puffs and its duration, which is particularly useful

for determining the degree of nicotine intake across subjects [74, 76].

Our work relies on a wristband embedded with a single, low-power 9-axis inertial mea-

surement unit (IMU) that fuses information from an accelerometer, gyroscope, and com-

pass to provide 3D orientation of the wrist. IMUs are easy to integrate with wrist-worn

wearables, many of which already have accelerometers embedded for calorie or activity

tracking. In the rest of this section, we present the background of inertial measurement

units and next describe the various challenges in robustly recognizing smoking gestures

from the orientation data obtained from an IMU.

3.1.1 Background

3.1.1.1 Inertial measurement unit

The Inertial Measurement Unit (IMU) is an electronic device consisting of 3-axis ac-

celerometer, 3-axis gyroscope and 3-axis magnetometer. IMU has an on-board processor

that fuses the output of these three sensors to compute the orientation of the device in a 3D

world (absolute) coordinate system defined by y-axis pointing towards the magnetic north,

z-axis pointing perpendicular to the ground in the direction opposite to the earth’s gravity

and x-axis pointing to the geographical east. We use the Invensense MPU-9150 IMU for

our experimental study. This sensor outputs the 3D orientation of a device in the form of a

quaternion.

3.1.1.2 Quaternions

Quaternions are convenient mathematical entities for representing orientations and ro-

tations of objects in three dimensions. Quaternions have found a great applicability in

robotics, computer graphics, and computer vision communities due to the ease in calcula-

tions for performing rotations of objects in 3D space.
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Figure 3.1. Illustration of a rotation operation performed on an arm using a quaternion.
Top: 3D arm and its initial reference frame. A quaternion rotates the arm about a rotation
axis (shown in cyan). Bottom: rotated arm and its updated reference frame.

Formally, a quaternion is defined using a scalar component qs and a 3D vector (qx, qy, qz).

We write a quaternion q as follows:

q = qs + qxî+ qy ĵ + qzk̂

where î, ĵ and k̂ are imaginary basis elements, each of which squares to −1. A quaternion

q is said to be a unit quaternion if its magnitude |q| given by
√

(q2
s + q2

x + q2
y + q2

z) is

equal to one. 3D rotations can be compactly represented with unit quaternions. Given a

3D rotation defined through a unit vector 〈x, y, z〉 representing the axis of rotation, and an

angle θ representing the amount of rotation about the axis, the corresponding quaternion

representing this rotation is defined as:

q = cos θ
2

+ x sin θ
2
î+ y sin θ

2
ĵ + z sin θ

2
k̂

It can be shown that a point p in 3D space with coordinates {px, py, pz} can be rotated

using a quaternion with the following formula:

p′ = q · p · q−1
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where p is written as pxî + py ĵ + pzk̂, and q−1 is the so-called conjugate quaternion of q,

which is expressed as:

q−1 = cos θ
2
− x sin θ

2
î− y sin θ

2
ĵ − z sin θ

2
k̂

It is straightforward to see that a quaternion not only represents a 3D rotation, but can

also represent the 3D orientation of an object. Given an initial orientation of a 3D object

defined by its initial frame of reference, the quaternion q rotates the object yielding a new

orientation (see Figure 3.1).

Figure 3.2 shows time series of the first two components of the quaternion data for var-

ious hand-to-mouth gestures, namely smoking, eating and drinking. In this figure, we can

observe distinct characteristics that can be useful in distinguishing these gestures of differ-

ent types. However, there are many challenges in robustly recognizing smoking gestures

from quaternion data as described next.

3.1.2 Challenges

The central challenge that we face is that we need to detect and recognize a smoking

gesture from a plethora of other gestures that a user performs each day. While recogni-

tion of intentional gestures from inertial sensors is commonplace in gaming devices (e.g.

Nintendo Wii), there are several challenges in achieving our goal in a natural setting.

3.1.2.1 Signal variation due to orientation changes

The first challenge is that the signal from the inertial sensor varies significantly depend-

ing on the user’s body orientation. Thus, if the user changes his/her body orientation while

smoking, the orientation output of the sensor will change. An example is shown in Fig-

ure 3.3, where a 180◦ change in the user’s body orientation completely changes the signal.

However, we still need to detect the beginning and end of a smoking gesture despite the

unknown user’s body orientation. Note that this problem is not present in gesture recogni-
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(a) Smoking when standing still
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(b) Smoking when walking
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(c) Eating with a spoon
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(d) Drinking from a cup

Figure 3.2. Illustration of IMU signals for various hand-to-mouth gestures. (a) & (b)
Smoking gestures are characterized by a quick change in orientation when taking a cigarette
towards the mouth and a long dwell time while taking a “smoking puff”. (c) In contrast,
eating gestures are characterized by a slow change when taking a spoonful of food towards
the mouth and a very short dwell time. (d) The orientation pattern of drinking gestures
(from a cup) lies in between the other two gestures with a relatively moderate rate of ori-
entation change and a relatively lower dwell time compared to smoking gestures.

tion systems designed for user interaction, such as the Nintendo Wii. This is because a user

typically faces a fixed direction during the interaction. In addition, the user can consciously

adjust the gesture so that it is recognized by the system.

3.1.2.2 Detecting smoking gestures

A second challenge is that a smoking gesture needs to be detected without any explicit

information given by the user regarding the beginning and end of a smoking session. De-

vices such as the Nintendo Wii address this problem by having the user press a button,
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thereby explicitly providing information about the beginning and end of the gesture. Other

gesture recognition systems such as the Bite-Counter [55] use a similar method: they as-

sume that the user presses a button prior to an eating session. In contrast, we wish to avoid

any user interaction altogether, and instead design a passive gesture tracking system. Thus,

we aim at designing methods that distinguish a smoking gesture from a huge number of

different gestures that a user can perform using his/her hands.
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Figure 3.3. IMU signals for the smoking gesture in Figure 3.2(a) when the user changes
facing direction by 180◦. The characteristic patterns observed in IMU signals change with
the user’s orientation.

3.1.2.3 Concurrent activity while smoking

A third challenge is that the user might smoke while performing a concurrent activity.

Concurrent activities can modify the characteristic patterns of smoking gestures and further

complicate our problem. For example, Figure 3.2 shows how a smoking gesture looks

when the user is stationary (Figure 3.2a) against when the user is walking (Figure 3.2b).

We can see that smoking gestures have a few bumps when the user walks, in addition to the

distortions at the beginning and end of the gesture where the user brings the cigarette down

and continues walking by swinging his/her hand. Similarly, the user might be conversing
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with a friend while smoking, or might perform other activities while sitting or standing.

All such concurrent activities also complicate the smoking gesture recognition problem.

3.1.2.4 Confounding gestures

A fourth challenge is that many other gestures have arm movement patterns similar

to smoking. For example, a user can perform several isolated gestures each day that in-

volve raising the hand towards the mouth and bringing it back down similarly to smoking

gestures. In particular, eating and drinking activities not only have similar hand-to-mouth

gestures, but also involve repeated sequences of these gestures, as in smoking. Figure 3.2

shows an example of an eating gesture. Visually, there are differences in the pattern of

eating compared to smoking. However, designing an algorithm that robustly distinguishes

smoking from other confounding gestures across different users is particularly challenging.

3.1.2.5 Labeling smoking puffs

In order to recognize smoking gestures robustly, we design a method based on super-

vised classification. However, to train such a classifier, we need training data in the form of

fine-grained labels for the beginning and end of each gesture. Many existing approaches for

obtaining such labeled data are not feasible or have drawbacks: a) requesting self-reports

from the users is impractical, since users cannot possibly label each smoking puff manu-

ally while smoking: such an approach would force the users to change their gestures from

smoking to interacting with a device to create these self-reports, b) video capture of the

smoking session for post-facto annotation is restrictive, since it requires the user to always

face the camera, and c) having an observer annotate each smoking puff is cumbersome

and not scalable. Thus, one particular challenge is how to enable fine-grained labeled data

collection while limiting the burden on participants.
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3.1.3 Contributions

The key innovation of our work is the ability to recognize sequences of hand gestures

that correspond to smoking sessions “in the wild”. This involves a sensing pipeline with

several important aspects: a) we detect candidate hand-to-mouth gestures by continuously

tracking and segmenting the 3D trajectory of a user’s hand, b) we extract discriminative

trajectory-based features that can distinguish a smoking gesture from a variety of other

confounding gestures like eating and drinking, c) we design a probabilistic model based on

a random forest classifier and a Conditional Random Field that analyze sequences of hand-

to-mouth gestures based on their extracted features, and accurately outputs the beginning

and end of smoking sessions. Finally, (d) in order to train the classifier and Conditional

Random Field, we also propose a simple method to gather training labeled data “in the

wild”: we ask subjects to wear two IMUs, one on the elbow and one on the wrist, which

allows us to build 3D animations of arm movements that can be easily labeled by a third

party without compromising the subject’s privacy. The only limited burden on the subject

is to specify coarse time windows where smoking occurred to verify that we detect gestures

within the correct periods of time. Each module in this whole pipeline addresses challenges

specific to our problem domain, and we present several new ideas and algorithms.

Our results show that we can detect smoking gestures with 95.7% accuracy and 91%

precision. In addition, we can detect smoking session time boundaries reliably: the error in

the estimated duration of a smoking session is less than a minute. Finally, we demonstrate

with a user study that we can accurately detect the number of users’ smoking sessions in

the period of a day with only few false positives (less than two in our study). In all, we

think that RisQ is a very promising approach for use in smoking cessation and intervention.
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3.2 Related Work

In this section, we describe the three areas of related work — gesture recognition in

computer vision, gesture recognition and motion capture using wearable inertial sensors,

and smoking detection using special-purpose devices.

3.2.1 Computer Vision

This line of research deal with the problem of gesture detection and recognition using a

camera. The camera is used to track a person and the motion of the arm. This gives the co-

ordinates of various points on the body that can be used as features for gesture recognition.

Yang et al. [187] used Hidden Markov Models (HMM) for segmenting and identifying the

set of gestures for human-robot interaction. Elmezain et al. [57] proposed a method to use

Conditional Random Fields to separate gestures from non-gestures without needing to train

for non-gestures. Wang et al. [184] combined HMMs with CRFs in a Hidden Conditional

Random Field that can be used as a single gesture class detector or a multi-way gesture

classifier. All these methods employ similar machine learning formulations, however, rec-

ognizing arms accurately in images or video is prone to errors due to occlusions, clothing,

illumination changes and other errors in pose tracking from 2D images. These computer

vision methods also assume that the user is always expected to turn towards the camera.

Yin et al. [191] use HMMs for gesture recognition but it requires a use of special glove to

enable the tracking of the arm in a cluttered background.

3.2.2 Wearable Sensors

The advances in wearable sensors technology has generated a lot of interest in gesture

recognition and other novel uses of these sensors. Vlasic et al. [181] proposed a full body

motion capture system using inertial sensors. Such systems are useful to capture a person’s

full body motion, but require several such sensors, acoustic sensors, careful calibration and

initial body pose estimates. Agrawal et al. [11] proposed PhonePoint Pen to enable users

to use a mobile phone as a pen to write in the air using an accelerometer in the phone. This
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work identifies six basic strokes in the English characters that are essentially straight lines

and two half-circles. These strokes are identified using correlation with the ideal strokes.

uWave [100] uses a dynamic time warping (DTW) technique to recognize gestures from

the accelerometer present in Nintendo Wii. DTW is used to match a temporal sequence

with a given template, when the number of templates is small. Chen et al. [34] use a 6-

axis inertial sensor to track interactive gestures and rely on push-to-gesture mechanism to

spot the gesture segment. All these approaches detect “control” gestures that have little

variations across users. Dong et al. [55] proposed Bite Counter to detect food bites in an

eating session using a gyroscope. This approach requires a user to press a button to indicate

the start and the end of an eating session. We compared this with our approach and found it

to be less useful for smoking detection. Varkey et al. [176] train two SVMs: first to detect a

high-level activity in a window of inertial sensor data and another to detect micro-activities

within a window. They evaluated their approach for smoking detection using a synthetic

dataset provided by non-smokers who imitated the smoking gestures. Their approach for

recognizing puffs relies on detecting two consecutive micro-activites ‘arm moving up’ and

‘arm moving down’. They showed that the cumulative misclassification for micro-activity

detection within smoking sessions is around 20%. This approach can lead to a significant

error in estimating the number of puffs and the puff duration and may perform worse if the

data from confounding gestures is included. This work has not been evaluated for data in

the wild and it is unclear if this approach can be used to detect smoking session boundaries

reliably.

3.2.3 Smoking Detection

A sensitive detector for smoking is a tomography meter (e.g. CReSS monitor [43]).

However, the user needs to attach the tomography device to the cigarette prior to smoking.

This is both burdensome and can change the underlying smoking behavior. A recent al-

ternative is to use the deep respiration cycles associated with inhalation and exhalation of
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smoke, which can be detected by a respiration chest band (mPuff [12] and Sazonov et al

[103]). Unfortunately chest bands are cumbersome to wear for long periods and therefore

have limited appeal beyond clinical trials. Other wearables that have been previously pro-

posed include RF-based proximity sensors worn on the collar and wrist to detect when the

hand is in the vicinity of the mouth, but this is not robust to confounders [156]. One promis-

ing approach is to embed a sensor in a cigarette lighter which detects whenever the lighter

is lit [157]. This does not provide information about individual puffs, which is particularly

useful for determining the degree of nicotine intake across subjects [74].

3.3 System Overview

In this section, we provide an overview of the RisQ computational pipeline that recog-

nizes smoking gestures and sessions. We also overview the training data collection method-

ology we used to obtain fine-grained labeled data for the purpose of training our supervised

classification method.

3.3.1 Computational Pipeline

Figure 3.4 gives an overview of the computational pipeline that we use for detecting

smoking gestures and sessions. At the lowest layer of the pipeline is the extraction of

quaternion data from the single wrist-worn 9-axis IMU.

The second layer in the pipeline is the segmentation layer that extracts segments con-

taining candidate gestures from the raw sensor data and filters out extraneous data. The

intuition behind the segmentation process is that, while performing a hand gesture, humans

start from “a rest position” in which the arm is relaxed, then move their arm, and finally

the arm falls back to another, possibly different rest position. Thus, the gestures tend to

lie in segments between these resting positions. The segmentation layer accomplishes the

segment extraction by computing the spatio-temporal trajectory taken by the wrist using

quaternion data and tracking rest positions. Based on the computed trajectory, at each time
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Figure 3.4. RisQ: Quaternion data processing pipeline

step it computes the distance of the wrist from rest positions, and identifies segments us-

ing a peak-valley detection algorithm. The output of this layer are the extracted segments

containing candidate hand gestures.

In the third layer of our pipeline, our method computes a feature vector for each seg-

ment, consisting of features that can discriminate hand-to-mouth gestures corresponding to

smoking from a large number of other hand-to-mouth gesture candidates. We then use a

supervised classifier, called Random Forests [29, 44], that outputs the probability for the
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type of gesture (“smoking”, “eating” or “other” gesture) based on the extracted features for

each segment individually.

The top-most layer in the processing pipeline is a session detection layer that identifies

whole sessions (“smoking”, “eating”, or “other”) based on the Random Forest classifier

outputs and the segment features. The key intuition behind this layer is that each smoking

session involves a continuous sequence of smoking gestures, and is unlikely to contain ges-

tures from other activities. We use a probabilistic model based on a Conditional Random

Field (CRF) [90] that captures probabilistic dependencies between the type of gestures con-

tained in consecutive segments. In particular, it has the advantage of filtering out spurious

classification outputs of the lower layer and robustly detecting the beginning and end of

smoking sessions.

While the focus of this chapter is on recognizing smoking gestures and sessions, our

approach can be tailored to other instances of repetitive gestures. In §3.6.3, we use eating

sessions to train our method, and we find that it performs considerably better than state-of-

art eating detectors that use inertial sensors.

3.3.2 Labeled Data Collection

We use a novel data collection methodology to obtain fine-grained gesture labeled data

from participants for training our method. Our data collection framework consists of two

tools: (i) a logging application and (ii) a 3D visualization and labeling tool. The logging

application collects data from on-body IMU sensors placed on the user’s wrist and upper

arm. Since our goal is to reduce the burden of labeling for the user and avoid interfering

with his gestures, our logging application provides a simple user-interface to log events on

his mobile phone. This helps us identify time windows that require fine-grained labeling of

the smoking or eating gestures. The 3D visualization and labeling tool produces 3D hand

animations from the logged sensor data and provides an interface for fine-grained labeling

of the gestures, such as “smoking a puff” or “taking a bite of food”. The type of gestures
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can be easily labeled by other users in these animated sequences. Unlike video recording,

our visualization tool allows users to see and label gestures from any viewing angle they

prefer.

3.4 Gesture Detection and Recognition

In this section, we describe how we detect and label hand-to-mouth gestures when the

user wears the single IMU on his wristband. The first step in our data processing pipeline is

to partition the quaternion time-series obtained from the IMU into segments such that each

segment contains a gesture (§3.4.1). The second step is to extract some features that can be

used to discriminate different types of gestures (§3.4.2). The last step is to recognize the

detected gestures and extract smoking sessions (§3.4.3).

3.4.1 Gesture Detection

In order to detect a gesture, it is essential that we segment the time series of quater-

nions into segments, such that each segment contains a complete gesture. The problem of

correctly segmenting sequences of quaternions presents a number of challenges. First, the

segmentation should extract segments representing the entire gesture duration. Otherwise

characteristic features that are useful in classifying a gesture will be lost. Moreover, the

extracted segments should not be much longer than the gesture, otherwise the computed

features related to the gesture will be inaccurate. Another fundamental challenge is that

the characteristic patterns observed in a time series of quaternions are dependent on the

orientation of the person’s body performing the gesture. For example, the pattern observed

for a gesture when the person is lying on a bed is very different from the pattern observed

when he is standing. The problem gets further complicated due to the large number of vari-

ations in the gestures observed for the same activity, within and across users, making the

variability of characteristic patterns extremely high. An additional challenge comes from
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the huge number of all possible gestures and possibly confounding gestures performed by

humans throughout their daily life.

The intuition behind our segmentation approach is the observation that the humans tend

to perform a gesture starting from an initial rest body pose, and then ending the gesture in

another, possibly different, rest pose. This observation holds true for the hand-to-mouth

gestures we intend to identify. For example, a person may start a smoking gesture by

having his hand lie on an armrest of a chair, then move his hands towards his mouth, then

back to the armrest of the chair or the top of a table. Alternatively, the arm might end up

being straight, hanging from the body. In general, the beginning and end rest poses are

not necessarily stationary and are not necessarily identical. In the following sections, we

describe our segmentation approach based on continuous tracking of the rest positions of

the fore-arm and computing the spatio-temporal trajectory of the wrist in 3D space.

3.4.1.1 Relative trajectory computation

Our first step towards identifying hand-to-mouth gestures is computing the spatio-

temporal trajectory of the hand from the stream of quaternion data. The main challenge

here is that trajectory is affected by body motion and orientation. For example, a smoking

gesture when a person is walking takes a much longer path in 3D space compared to the

same gesture performed when the person stands at one place. Similarly, a smoking gesture

could be affected by any changes to the pose of the user’s body while smoking.

The key insight in our approach is that we care less about the absolute trajectory of

the hand in 3D space. We care more about the trajectory of the hand relative to a body

joint, such as the shoulder joint. Such a relative trajectory would not depend on the orien-

tation of the person’s body, and every smoking gesture should result in roughly isomorphic

trajectories with similar shape characteristics.

While such a relative trajectory would be easy to compute if the individual also had an

IMU close to the shoulder, the fact that we only have a single wrist-worn IMU complicates
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Figure 3.5. Wrist trajectories for smoking gestures. Figure (a) shows a noisy trajectory for
a smoking puff gesture and the smooth trajectory (green curve) obtained after curve-fitting.
Figure (b) shows trajectories for two consecutive puffs while standing still. These two
trajectories are well-aligned for the isomorphic gestures. Figure (c) shows the trajectory for
a smoking puff gesture when the user is walking, computed from acceleration data (blue
curve) and quaternion data (brown curve). The acceleration-based trajectory is significantly
elongated and distorted when the user is walking, while holding the cigarette in his mouth.
The quaternion-based trajectory instead is computed relatively to the elbow and is free of
such motion artifacts.

the problem. To address this, we make a simplifying assumption that the position of the

elbow remains stationary (the shoulder joint does not rotate) while the gesture is being

performed. Specifically we compute the trajectory of the wrist relative to a stationary

elbow, assuming that the wrist is in a fixed, unit distance away from it. We find that the

above assumptions have little influence in our trajectory computation, since hand-to-mouth

gestures primarily involve rotating the elbow and not moving the upper arm.

More formally, given a time sequence of quaternions (q1, q2, . . . , qn), we can compute

the trajectory taken by the wrist by computing the position of the wrist for each time step t
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(t = 1...n). The position of the wrist w at time t in the elbow’s frame of reference F can

be computed as follows:

w = qt ·w0 · q−1
t (3.1)

where w0 = 0̂i + 1ĵ + 0k̂ (i.e., has coordinates
[
0 1 0

]
) represents the position of

the wrist in the device’s local coordinates based on the assumption that the length of the

forearm of person has unit length. This assumption also works in our favor as the com-

puted trajectories are independent of the particular variations of the arm length across the

population.

Due to this approximating nature of the computed trajectory and the continuous shifts

in the elbow position, the wrist trajectory does not always appear smooth. Thus, we smooth

the trajectory by fitting a curve using cubic B-splines. Figure 3.5(a) shows a sample trajec-

tory for a smoking puff gesture before and after the smoothing operation.

3.4.1.2 IMU vs accelerometer

One question that is worth asking at this point is whether we really need a 9-axis IMU

that provides quaternion data (by fusing information from the accelerometer, gyroscope,

and compass) to compute trajectories, or whether we can do the same with a single ac-

celerometer. Figure 3.5(b) shows two smoothed sample trajectories taken for two con-

secutive cigarette puffs while standing still. These trajectories are computed relative to

the elbow and align well as the gestures are isomorphic. In Figure 3.5(c), we show the

accelerometer-based and quaternion-based trajectories for the smoking gesture when the

user is walking. We see that the accelerometer-based trajectory in this case appears longer.

This is because it is relative to the starting point in world coordinates. On the other hand,

the trajectory computed using quaternions is relative to the elbow has similar characteristics

to trajectories observed when standing still.
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3.4.1.3 Segment extraction

Our segmentation procedure is based on the observation that humans tend to keep their

hands in rest positions and any gesture starts from one rest position and terminates at an-

other rest position. The key challenge is determining these rest positions in a continuous

stream of wrist movement. The rest positions need not be the same across gestures (e.g.

rest position while sitting and smoking would be different from standing and smoking).

Even the beginning rest position for a single smoking puff might be different from the final

rest position, since there can be many positions where the human arm is “relaxed”.

Our segment extraction method involves three stages:

• First, our segment extraction method continuously tracks the rest position from which

a current hand gesture started. To detect the rest position, the trajectory is traced

according to short sliding time windows (e.g. 10 seconds). Within each window, po-

sitions where the wrist velocity is very low are computed. If one or more candidates

exist, then we compute the centroid of these low velocity points as the “rest point”.

Thus, we can now annotate each point in each trajectory trace with the most recent

point corresponding to the rest position for which the hand gesture started.

• Second, we compute the spatial distance of each point in the trajectory from the most

recent rest point. For any hand-to-mouth gesture, we expect that the distance from

the rest point should increase rapidly, plateau for a short period, and then return to

the next rest point.

• Third, we use a peak detector to detect peaks and troughs in the distance time series

obtained from the previous stage, and look for a tell-tale trough-peak-trough pat-

tern that is typical of a hand-to-mouth gesture. To filter false positives from either

tiny hand movements or very long gestures, we use a relatively loose threshold for

distance separation between trough and peak, as well as the expected duration of
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a typical smoking puff. At this point, the segment extraction pipeline provides the

trough-peak-trough segment to the next level of the classification pipeline.

3.4.2 Segment Feature Extraction

Table 3.1. Feature set extracted for a segment containing a gesture. The table describes
each feature type and gives the count of features used for each type.

Feature Set
Duration Features

Duration 4
Total gesture duration, and duration for the ascending, descending, and
the stationary stage.

Velocity Features

Speed 6
Mean, max and variance of the wrist speed. We compute these for the
ascending and the descending stages.

Displacement Features

distZ 2
Vertical displacement of the wrist during the ascending and
descending stage.

distXY 2
Horizontal displacement of the wrist during the ascending and
descending stage. This is computed on a plane parallel to the ground.

dist 2
Net displacement between the rest position and the peak position.
This is computed for the ascending and the descending stage.

Angle Features
roll

4
Median and maximum angular velocity about the axis of the arm.

velocity We compute 2 features each for the ascending and the descending
stage.

roll 2
Net angular change about the axis of the arm during the ascending
and the descending stage.

pitch 12

Angle between the arm and the direction of the gravity (pitch angle).
We compute the pitch angle at the peak during the ascending and
descending stage. Also, we obtain 9 decile features from the pitch
distribution for the ascending stage. We compute the median pitch
angle for the descending stage.

In order to recognize the type of gesture in each segment, we need to compute features

that can discriminate different types of gestures. The feature extraction procedure is based

on the observation that a hand-to-mouth gesture can be divided into three stages: i) an

“ascending” stage that corresponds to the trough to peak movement when the hand goes

towards the mouth, ii) a “stationary” stage that corresponds to the period where the hand

stays near the peak (close to mouth), and iii) a “descending” stage where the hand goes
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from peak to trough i.e. back to the rest position. These three sub-segments are useful for

extracting features as we describe below.

Table 3.1 shows the set of features computed for each segment. The following para-

graphs describe the features we compute from the smoothed spatio-temporal trajectory and

the quaternion information:

• Duration features. These features measure the time duration of the segment contain-

ing the gesture and the durations of the three stages within the segment: ascending,

descending and stationary.

• Velocity features. Second, we use the computed positions of the wrist at each time

step to compute the instantaneous velocity of the wrist for the ascending and the

descending stages. We compute the average speed, the maximum speed and the

variance in speed for both ascending and the descending stages giving us six features.

• Displacement features. These features measure the displacement of the wrist dur-

ing the ascending and the descending stages of the wrist motion. We measure the

vertical displacement, displacement on the plane parallel to the ground and the net

displacement at the end of each stage as features.

• Angle features. From the orientation information, we can compute the roll compo-

nent of the rotation about the axis of the arm. This is computed by converting the

quaternions into Tait-Bryan angles. We call the rate of change in the angle of the

rotation along the axis of the arm “roll velocity”. We compute the median and the

maximum of instantaneous roll velocities and use them as features. Also, we com-

pute the net roll angle as the feature. We extract these 3 features for the ascending

and the descending stage. Next, we compute “pitch” that measures the angle between

the vector along the arm and the direction of the gravity. We use pitch angle at the

peak point of the ascending and the descending stages as features. Next, using the

distribution of pitch angles observed at each time step for the ascending stage, we
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compute 9 values that give the 10th, 20th, ..., 100th percentile values as the features.

For the descending stage, we use median pitch as a feature.

3.4.3 Gesture Recognition

After extracting segments that contain individual gestures, the next step in our pipeline

is to recognize each gesture contained in each segment. The input to this step is a set of

segments with their features and the output is a set of labels representing the type of gesture

(e.g. “smoking”, “eating”, or “other” depending on available labels).

Labeling segments poses a number of challenges. First, there is no simple mapping

between the duration, velocity, displacement and angular features and the labels. For ex-

ample, if the duration of the gesture is more than a particular threshold, we cannot infer

that the gesture is a “smoking puff” with total certainty. It might be the case that the user

instead drinks slowly from a cup. Therefore, we have to also consider other features: for

example, smoking is likely to also be strongly correlated with certain ranges of arm twist-

ing angles, wrist velocities, horizontal and vertical displacements and so on. Manually

constructing a mathematical formula that detects all smoking gestures based on features

is very hard. Noise in the trajectory features make things worse, thus we need to adopt a

probabilistic method that outputs the probability of assigning each label to each segment.

In the following paragraph, we describe a probabilistic classifier for recognizing each in-

dividual gesture. Unfortunately, classifying each gesture independently from all the others

in a sequence of segments does not seem to work very well. For example, a sequence

of gestures might be labeled as {smoking, smoking, eating, smoking, smoking}. How-

ever, it is very unlikely that the user interrupts and intermixes gestures in a small period

of time. Such noisy labelings can easily occur due to feature noise and large deviation of

wrist trajectories from the ones in our training data. Thus, we employ a probabilistic model

that takes as input the probabilistic output of the classifier for each individual segment, and

additionally examines how likely is for successive segments to have the same or different
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label. Based on this probabilistic model, we estimate the most likely joint labeling of all

segments together. We describe this probabilistic model later in this section.

3.4.3.1 Individual classification of gestures

To build a mapping from segment features to segment labels, we observe that the type

of gestures is likely to be correlated with certain value ranges of segment features extracted

in the previous section. For this reason, we use a classifier that has a form of a decision

tree. A decision tree contains a set of nodes and at each node, the value of an individual

feature is compared to a threshold. Then depending on whether the feature of the segment

has a smaller or larger value than the threshold, the classifier examines the left or right child

node, which in turn examines the value of another feature. When a leaf node is reached,

the decision tree outputs a probability based on how many segments in our training data

had the same set of splits while traversing the tree.

The thresholds and feature choices at each node of the tree are automatically con-

structed from the training data during an offline stage. The best choice of features and

thresholds are selected to maximize the confidence of predictions [44].

Unfortunately, fitting a single decision tree in the training data results in poor perfor-

mance. The reason is that a single set of splits yields predictions that are suited only for

segments whose features are very similar to the ones of the training segments. A popular

alternative is to build an ensemble of decision trees: each decision tree is fitted to small

different random subsets of the training data. This leads to decorrelating the individual

tree predictions and, in turn, results in improved generalization and robustness [44]. This

ensemble of decision trees is called random forest classifier. The output of the random

classifier is the probability of assigning a label to each segment, computed as the average

of the probabilities outputted by the individual decision trees.
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3.4.3.2 Joint classification of gestures

As we explained in the beginning of the section, classifying each segment indepen-

dently from all the others in a sequence of segments yields noisy label predictions. Instead,

we classify all segments jointly by using the output of the random forest and also consid-

ering that consecutive segments in a sequence are more likely to have the same rather than

different label.

Given a sequence of k = 1...K segments, we introduce a random variable Ck for

each segment representing the type of gesture contained in the segment. We express

the joint probability of assigning a sequence of labels to all the random variables C =

{C1, C2, ..., CK} of the segments given their features x = {x1,x2, ...,xK} as follows:

P (C|x) =
1

Z(x)

∏
k

φ(Ck,xk)
∏
k,k+1

ψ(Ck, Ck+1)

The unary factors φ(Ck, Xk) assess the consistency of each individual segment to each

label based on the random forest classifier. The pairwise factors ψ(Ck, Ck+1) assess the

consistency of each pair of consecutive segments to their labels. The denominator Z(x)

serves as a normalization constant for each input sequence to ensure that the sum of prob-

abilities over all possible label assignments is equal to 1. The type of this model is known

as Conditional Random Field [90] in the literature of machine learning.

In our implementation, the unary factors have the following form:

φ(Ck = l,xk) = exp(θlfl(xk) + θl0)

where fl(xk) are the probabilistic outputs of the random forest classifier for each label

l = {smoking, eating, other}. The parameters {θl, θl,0} re-scale the probabilities of the

random forest classifier, and are learned from the training data. The exp function ensures

that the final result will lie in the interval [0, 1] (i.e., will also be a probability) after apply-
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ing the normalization constant, as typically done in logistic regression and log-linear CRF

models [172].

The pairwise factors evaluate how likely is to assign pairs of labels in consecutive seg-

ments and are expressed as:

ψ(Ck = l, Ck+1 = l′) = exp(θl,l′)

The parameters θl,l′ are also learned from the training data. The learned parameters turn

out to favor the same label for consecutive segments, as expected.

3.4.3.3 Parameter learning

It is extremely hard to hand-tune the parameters θ = {θl, θl,0, θl,l′} in the above prob-

abilistic model. Instead, the model parameters are learned such that they maximize the

likelihood of the training sequences. Specifically, the parameters are estimated to maxi-

mize the following objective function [86]:

L({λk}) =
N∑
n=1

log(P (C[n] | x[n]))− µ||θ||2

where the first term expresses the log likelihood of the training sequences given their fea-

tures. The second term is a regularization term that penalizes large values in the parameters.

Such large values would favor over-fitting of the parameters to the training dataset, and are

less likely to generalize to new data. The parameter µ is selected through cross-validation.

The objective function is maximized using the L-BFGS method [99] which is a pop-

ular optimization method for solving unconstrained optimization problems. The objective

function is convex function, thus, a unique maximum exists [86].
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3.4.3.4 Inference

Given a sequence of segments, we estimate the most likely joint assignment of labels to

the segments based on the above model. From the assigned labels, we can simply extract the

different gesture sessions by tracking when the label changes in the sequence of segments.

Inference is performed with the technique known as max-product belief propagation

[86], which yields the most likely sequence labeling in this type of model. The complexity

of the evaluating the unary and pairwise terms, as well as executing belief propagation is

linear in the number of segments, thus the labelings can be predicted very efficiently.

(a) (b) (c)

Figure 3.6. Smoking gesture visualization using sensor data obtained from the two IMUs
placed on the upper arm and the wrist.

3.5 Labeled Data Collection

In this section, we describe the framework used to capture ground truth data in uncon-

trolled environment settings with a low labeling overhead for the user, and the dataset that

we obtained through this approach. The main idea is to have the subject wear two inertial

sensors, one at the wrist, and one at the elbow, and segment the data post-facto through a

3D visualization tool. We note that the use of two sensors is used only for gathering train-

ing data. During actual usage of RisQ (i.e., during testing), the user always wear a single

IMU on a wristband, which is more practical, user-friendly, and less costly.
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3.5.1 Labeling Framework

3.5.1.1 Sensors

We use Invensense MPU-9150 IMU to obtain orientation data sampled at 50Hz. We

fit a user with a wristband and an armband, each containing an IMU device and use a

mobile app to log the sensor data on the phone. Our goal is to reconstruct the hand gestures

performed by a user using the logged data.

3.5.1.2 Constructing hand gesture

A human arm consists of an upper arm and a forearm. The upper arm is connected to

the shoulder, and is connected with the forearm at the elbow. The forearm extends from

the elbow to the wrist. For constructing the hand motion, we assume that the orientation

is uniform for the entire forearm and the entire upper arm. This assumption is simplistic

as the orientation of the forearm close to the elbow can be different from the orientation of

the wrist but this assumption enables us to reconstruct a fairly accurate hand motion with

fewer sensors.

In order to reconstruct the hand motion, we use a digital model of a 3D human skele-

ton in a polygon mesh format (Figure 3.6). The 3D model consists of skeletal limbs that

that can be oriented independently by applying the orientation information in the form of

quaternions to the shoulder and elbow joints of the skeleton. The orientations given by

the quaternions are applied to the skeleton hierarchically as in skeleton-based animation

methods commonly used in computer graphics applications. Given that we log the sensor

data at 50Hz, we render the 3D model at 50 frames per seconds where we draw a new pose

of the 3D model every frame to enable real-time playback. Rendering is implemented in

Processing 2, a popular library used in computer graphics.

3.5.1.3 Labeling

Using the 3D animation and visualization method described above, we can now mark

the start and the end of a gesture like a cigarette puff. However, manually visualizing
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and marking the gesture for hours of data can be a time-consuming exercise, and in the

absence of any additional information, it is difficult to distinguish smoking or eating from

any confounding gestures that may look similar. To address this, we ask the participating

users in the data collection to mark the beginning and the end of the smoking and eating

periods using a mobile app. For fine-grained gesture labeling, we limited our efforts to the

marked periods.

3.5.2 Gesture Dataset

Our dataset consists of IMU data collected for over 32 hours from 15 volunteers for

over 20 smoking sessions, 15 eating sessions, 6 drinking sessions, and a variety of other

gestures. Users typically wear sensors for several hours, therefore, our dataset contains

many potential confounding gestures. Of this data, we had to discard a few smoking and

eating sessions due to interruptions and extreme noise in the data. This left us with 28 hours

of data, containing 17 smoking sessions and 10 eating sessions. Overall these sessions

include 369 smoking puffs and 252 food bites. The data included users performing several

concurrent activities including smoking while standing alone, smoking in a group while

having a conversation, smoking using a hand-rolled cigarette and smoking while walking

around.

We used our 3D visualization and labeling tool to hand-label the start and end of each

smoking puff within the smoking periods reported by the participants. There are a few

instances when defining a precise start or a precise end of a gesture is not possible. Since

our focus is on detecting a smoking puff, any interval that begins at least 1 second prior to

the puff and ends after at least 1 second of the puff is valid for training our algorithm.

3.6 Evaluation

Our evaluation has three parts. We start with evaluating how well we detect individual

smoking gestures (taking smoking “puffs”) and whole smoking sessions. Then, we com-
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pare our results against prior work that detects wrist gestures and smoking behavior. Fi-

nally, we include a user study for which we implemented the full computational pipeline on

a mobile phone, and demonstrate the effectiveness of CQue for recognizing users’ smoking

sessions in real-time.

3.6.1 Recognizing Smoking Sessions

The ultimate goal of our work is to detect smoking sessions accurately so that we can

track: a) how many times a user smoked each day, b) the length of each smoking session,

and c) how many puffs they took during each session.

First, we look at how many smoking sessions were identified correctly by RisQ. We ran

a leave-one-out cross-validation experiment where we leave a single smoking session for

testing, and use rest of the data for training. We repeat this procedure for each smoking

session in our dataset described in §3.5. At each time, we evaluate the output of max-

product belief propagation in our CRF.

RisQ detected 15 complete sessions out of the 17 sessions in our dataset— it missed 2

smoking sessions for two users who had gestures largely different from other users.

RisQ is also able determine the duration of smoking sessions. Table 3.2 shows the re-

sults of this experiment. The average ground-truth session duration in this set up was 326.2

seconds. We observe an average error of 65.7 seconds in our session duration estimate for

the 17 smoking sessions in our leave-one-out cross-validation experiment. We note that

when we exclude the two undetected sessions, the average error is reduced to 26.22 sec-

onds. The errors are caused due to the approximate estimates of the beginning and end

time-stamps of each session.

Table 3.2. Errors in session duration estimates using our CRF.

Statistic Avg ± Std. Dev.
Duration of smoking sessions 326.21±19.65 s

Error in estimation 65.7±30.6 s
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Table 3.3. Performance metrics for smoking puff detection obtained using 10-fold cross-
validation evaluation with i) Random Forests classifier (RF), ii) Conditional Random Fields
(CRF) with Random Forests. CRF reduces 75.83% of the number of false positives gener-
ated by RF, thus improving precision.

Performance Metrics
Accuracy Recall Precision False-positive rate

Random Forests 93.00% 0.85 0.72 0.023
CRF 95.74% 0.81 0.91 0.005

3.6.2 Recognizing Smoking Gestures

We examine now how well we can recognize individual hand-to-mouth smoking ges-

tures that correspond to each smoking puff in a session. Since the total number of smoking

gestures is sufficiently large in our dataset (369 “smoking puffs”, 252 “food bites” and 4976

other gestures), we perform a 10-fold cross-validation experiment here: we split the ges-

tures into 10 groups (folds), and of the 10 folds, a single fold is retained for testing, and the

remaining 9 are used for training. Then we repeat for each test fold.

First, we evaluate how well individual smoking gestures can be detected by the Random

Forest (RF) classifier which examines each segment independently of the others. Then we

evaluate the performance of the CRF that infers the type of gesture for each segment by

considering the probabilistic dependencies of the segment labels in a sequence.

3.6.2.1 Gesture detection performance

Table 3.3 shows the performance metrics for 10-fold cross-validation for smoking puff

gesture detection using i) the RF classifier , and ii) CRF. We see that the RF classifier gives

93% accuracy in gesture recognition, and a moderate precision value of 0.72 in detecting

smoking gestures. The observed precision value is only moderate because a small fraction

of 5,228 non-smoking gestures in our dataset gets falsely classified as smoking gestures.

The CRF significantly improves the performance by reducing the number of false positives

by 75.83%. This results in a much higher precision value of 0.91 in detecting smoking
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gestures, and overall 95.74% accuracy in overall gesture recognition. The CRF only causes

a slight decrease in recall from 0.85 to 0.81.
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Figure 3.7. Precision & Recall versus False Positive rate, while adjusting the cost function
of the Random Forest (RF) classifier during training. A small increase in false positive rate
reduces precision of the RF classifier but the CRF improves the precision dramatically.

3.6.2.2 Optimizing performance

We now examine how we can optimize the precision and recall for smoking gesture

detection by tuning our method. While training the RF classifier, we use a cost function

that adds a penalty for missing a training smoking gesture. When this penalty is increased,

it increases recall for the smoking gestures, although it also increases the number of false

positives. Figure 3.7 shows the change in precision and recall obtained using RF versus

CRF as this penalty increases. We can make two observations here: first, a false positive

rate as small as 0.05 results in a significant drop in precision (0.6) of the RF classifier. This

is because of the large number of non-smoking hand gestures. Second, the CRF cleans up

the mis-classifications of the RF classifier to improve precision. Figure 3.7 shows that this

improvement can be as high as 0.53. However, this improvement comes at a cost of drop in
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recall, as CRF smooths out some of the true gestures. We can see that the best performance

is achieved for a false positive rate of 0.023.
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Figure 3.8. “Leave-one-user-out” evaluation results. The CRF improves precision over
the RF classifier. Occasionally the CRF smooths out puffs correctly detected by the RF
classifier resulting in a slightly lower recall.

3.6.2.3 Generalization across subjects

We now examine whether our method can successfully detect gestures for a user by

using training data only from other users. In other words, we examine how well our method

generalizes to new users’ data not included during training. For this experiment, we test

the smoking gesture detection for each of 14 smokers, given training data from the other 13

in our dataset. Figure 3.8 shows precision and recall in this “leave-one-user-out” scenario

using the Random Forest classifier and the CRF. The precision and recall of our method

are high on average which indicates that our method is able to generalize to new users. In

particular, the CRF improves precision, but it may occasionally filter out correctly detected

puffs. This happens if the user’s gestures and their temporal distribution is largely different

from what is observed in the training. This suggests the it is better to acquire training data

from a variety of users.
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Table 3.4. Eating gesture detection using Bite-counter [55] for cases: i) within eating
sessions when it is known that user is having a meal, and ii) when session information is
not available.

Eating Sessions All data
Recall Precision Recall Precision

Bite-Counter 0.60 0.57 0.65 0.03
RF 0.92 0.78 0.69 0.64

CRF N/A N/A 0.64 0.78

Table 3.5. Smoking gesture detection using Bite-counter [55] for cases: i) within smoking
sessions when it is known that user is smoking, and ii) when session information is not
available.

In-Sessions All data
Recall Precision Recall Precision

Bite-Counter 0.60 0.71 0.73 0.05
RF 0.97 0.95 0.85 0.72

CRF N/A N/A 0.81 0.91

3.6.3 Comparison #1: Bite Counter

Our first comparison examines a different IMU-based gesture recognition technique,

and the benefits of using our computational pipeline.

Bite-Counter [55] is a state-of-art method to detect eating bites while having a meal

using angular velocity from a gyroscope worn on the wrist. The intuition is that the angular

velocity about the axis along the wrist increases above an empirically observed threshold

(T1) while taking a bite and drops below another threshold (T2) after taking the bite. Also,

there is a minimum time-lapsed (T3) between these two threshold-crossing events while

eating food, and a threshold on the time interval between two consecutive bites (T4). Thus,

this algorithm requires searching for the values of these four parameters: {T1, T2, T3, T4}

that have the best score. The score is given by 4
7
× precision+3

7
×recall. One caveat is

that the Bite-Counter algorithm knows when an eating session is in progress since the user

presses a button, whereas RisQ requires no such information.
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3.6.3.1 Eating gesture detection

For a fair comparison, we first look exclusively at eating sessions in our dataset, and

train RisQ to detect eating gestures using the same feature set and approach that we used for

smoking. For this purpose, we labeled the bite gestures in 10 of the eating sessions in our

dataset. Table 3.4 shows the results for two cases — one where we examine eating gesture

detection within known eating sessions (case for which Bite-Counter is optimized), and

one where we look across the entire data that includes all types of gestures. For evaluation

limited to eating sessions, we only use the Random Forest classifier, and excluded CRF as

we do not need to detect sessions. Even when only looking within the eating sessions, we

see that RisQ has substantially higher precision and recall (21% improvement in precision

and 32% improvement in recall). We suspect that our benefits are primarily due to the

use of more robust trajectory-based features rather than just the wrist rotation, and the use

of the Random Forest classifier as opposed to simple thresholds. As might be expected,

when the eating sessions are not known a priori, the performance of Bite-Counter drops

substantially. Bite-Counter still has good recall, but the precision is extremely low (0.03)

i.e., the algorithm is generating a huge number of mis-classifications since it is picking up

a substantial fraction of cases where the wrist is rotated, and detecting them as a bite.

We must note here that RisQ was not designed to detect eating behavior in the first

place. Thus, it is possible that with more careful exploration of features, the detection of

eating gestures can improve. However, the fact that it performs better even without such

tuning demonstrates the broader potential of our approach for gestures other than smoking.

3.6.3.2 Smoking gesture detection

Just as RisQ can be re-trained to detect eating gestures, Bite-Counter can be re-trained

to detect smoking gestures by looking for wrist rotations that are representative of smoking.

We use the methodology in [55] to learn appropriate parameters for Bite-Counter if it were
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used for detection smoking gestures. Table 3.5 shows the comparative results. The results

clearly show that RisQ perform much better than Bite-counter.

3.6.4 Comparison #2: mPuff

We now turn to an alternate approach for detecting smoking gestures using a respira-

tion chest band: mPuff [12]. Although the results are on different datasets, mPuff reports

precision of 91%, true positive rate of 83% and false positive rate of 8%. Our results are

similar for precision, and better for other metrics.

To directly compare these methods, we collected several hours of data from the Zephyr

Bioharness Chestband for respiration data and the wrist-worn IMUs. Our dataset was cap-

tured in the wild, and has several smoking sessions in addition to other activities such as

drinking, driving, walking, working on a computer, and so on.

We used the approach suggested in mPuff, which suggests a list of features and the use

of an SVM classifier for training the parameters. However, there was substantial noise in

the breathing dataset due to other concurrent activities (walking, driving, etc), as a result of

which many breathing waveforms had to be discarded prior to training the classifier. The

results of training using the clean breathing waveforms were unsuccessful, and we got low

precision/recall numbers using mPuff. The results using RisQ instead were similar to those

shown earlier.

While further exploration is needed for a quantitative comparison, we highlight that

dealing with noise and confounders is a challenge no matter what sensor modality is used

for detecting behaviors such as smoking. The fact that RisQ works well despite the con-

founders is one of its major strengths.

3.6.5 User Study in the Wild

Our final study looks at the entire computational pipeline learnt using the dataset de-

scribed in §3.5, and executed in real time for new users.
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Figure 3.9. Smoking monitor mobile app and an IMU-equipped wristband.

3.6.5.1 Android-based implementation

Our Android-based implementation for the user study comprises of a wearable wrist-

band with an IMU and bluetooth that continuously streams quaternions at a rate of 50 Hz

to an Android phone. The RisQ computational pipeline for real-time smoking session de-

tection is executed on the phone. Our application generates notifications when it detects

that a smoking session is in progress and prompts the user to confirm if the detection is

correct. Apart from smoking detection, our application also acts as a logging app to record

data from the IMU worn by a user and to record ground truth events like the beginning and

the end of a smoking session.

The complete UI of the mobile application and an IMU equipped wristband are shown

in Figure 3.9. The main interface of the app has a set of UI buttons that can be used by a

user to report smoking events as well as confounding events like drinking and eating. A

user can use this to report the session boundaries using before, during and after the session
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events. In addition, the UI has a tab to view the events previously reported by the user. A

user can use this interface to correct the reported event times or to delete a report if there

was an error in submitting reports.

The complete gesture recognition pipeline has been implemented in Java. This pipeline

detects smoking gestures every 20 seconds in the the buffered sensor data. The classi-

fication is done using a Random Forest classification model, learnt using the Weka data

mining software [73]. The classification outputs are then buffered for a minute and used in

forming a CRF model to detect a smoking session in progress. The inference using CRF is

done every minute, thus there is an average latency of 30 seconds in detecting the start of a

smoking session.

3.6.5.2 User study

We recruited 4 users for this study. The users wore the IMU-fitted wristband for four

hours per day for three days. We asked these users to always carry the phone with our

mobile application installed. To record the ground truth information, we ask users to re-

port the rough start and the end time for their smoking sessions using our app. Also, our

app prompted these users whenever it detected smoking and the users could respond by

confirming yes or no. Our goal was to check how well our algorithm would work if it

were integrated into a real-world intervention algorithm that a therapist might use, such as

a phone call or text message.

Table 3.6. Summary of user study results obtained for 4 subjects for 3 days. Table shows
average recall and precision in smoking session detection using RisQ for 4 subjects.

User
Number of Performance Metrics
Sessions Recall Precision

S1 9 1.00 0.69
S2 13 0.77 0.77
S3 3 1.00 0.75
S4 5 1.00 1.00
All 30 0.90 0.77
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Figure 3.10. User study results for 4 subjects for 3 days. Figures show the following
information for each subject and each day: i) ground-truth count of the smoking sessions,
ii) number of sessions detected correctly i.e. true positives, and iii) number of falsely
detected sessions i.e. false positives. The results show that we rarely missed a session and
had only a few false detections (0-2) per day.

Figure 3.10 shows the actual number of sessions, number of sessions detected by the

mobile app correctly and the number of sessions falsely detected for the four users. We see

that the number of sessions varied between 1 to 5 in a day for the period that the mobile

app was running. Of all the 30 reported smoking sessions, we missed only 3 sessions. The

number of false session detections was low and less than or equal to 2 per day. Table 3.6

gives the overall summary of results for the 4 subjects. We observed an average recall and

precision to be 0.90 and 0.77 respectively. In our informal exit interviews with the users,

they reported no discomfort from the small number of false alarms that was raised by RisQ.
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In summary, the user study provides strong evidence of the effectiveness of our technique

in recognizing smoking sessions across users in real-world scenarios.

Table 3.7. System overhead measured on a Galaxy Nexus phone

Statistic Value
Time for segmentation 92.34±6.85 ms (52-134ms)
Time for feature extraction 79.88±5.30 ms (9-227ms)
Time for CRF Inference 5.89±2.50 ms (1-23ms)
Memory 12-20 MB
Binary Size 1.7 MB

3.6.6 Microbenchmarks

We finalized our evaluation with a brief benchmark of our real-time implementation of

RisQ and its power consumption characteristics.

3.6.6.1 Implementation benchmarks

We first demonstrate that our mobile app has a low system overhead. Table 3.7 shows

the summary of the execution overhead of the smoking detection pipeline measured on

Samsung Galaxy Nexus device running Android 4.3 OS. The execution of the three stages

in the pipeline: segment extraction, feature vector extraction and session detection using the

CRF take an average time of 92.34 ms, 79.88 ms and 6 ms respectively. These overheads

are incurred every 20 seconds for segmentation and feature extraction and once in a minute

for the CRF inference. The memory requirement to execute our app is modest and varies

between 12-20 MB. Users running our application for the user study did not find our app

to impact the performance of their phones in their daily usage.

Table 3.8. Specifications for Invensense MPU-9150 IMU

Operating Voltage 2.4-3.6 V
Operating Current 4.25 mA
(accel,gyro,compass)
Streaming Data rate 1150 bytes/s
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3.6.6.2 Power consumption

Table 3.8 gives the performance metrics for the operation of Invensense MPU-9150

IMU that we used in our user study. This device comes with a 110mAh battery that pro-

vides up to 4 hours of bluetooth streaming of quaternion data sampled at 50Hz. The limited

execution time of the device is due to the bluetooth communication overhead that requires

an operating current of 50 mA when active. In comparison, the operating currents required

for execution of accelerometer, compass (sampled at 8Hz) and gyroscope sensors are 140

µA, 350 µA and 3.6 mA respectively. The execution time can be increased to 12 hours by

using a larger battery that fits the form factor of a wristband. This can be increased further

by reducing the sampling rate and by switching off the compass. The performance of our

approach is not impacted by the lack of compass as the compass is primarily used to correct

the drift accumulated around the yaw-axis. Since we extract orientation-independent fea-

tures for short duration gestures, the impact of the small drift on the features is negligible.

3.7 Conclusion

Mobile phones can play a major role in detecting and preventing harmful user behavior,

such as smoking. In this chapter, we tackle the problem of recognizing smoking behavior

using a wristband equipped with a single 9-axis inertial sensor and a mobile phone appli-

cation. Our results demonstrate that we can accurately detect smoking gestures in the wild.

While we focus on smoking gesture recognition in this paper, we also have preliminary

experiments that indicate that our pipeline can be used for detecting other behaviors such

as eating. This could be also useful for preventing harmful eating patterns that can lead to

obesity. In the future, we plan to improve our trajectory extraction procedure, enrich our

method with more trajectory features, and investigate more complex probabilistic models

for recognizing different types of users’ gestures and behavioral patterns.
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CHAPTER 4

CQUE: LEVERAGING GRAPHICAL MODELS TO IMPROVE
ACCURACY AND REDUCE PRIVACY RISKS OF MOBILE

SENSING

The proliferation of sensors on mobile phones and wearables has led to a plethora of

context classifiers designed to sense the individual’s context. We argue that a key miss-

ing piece in mobile inference is a layer that fuses the outputs of several classifiers to learn

deeper insights into an individual’s habitual patterns and associated correlations between

contexts, thereby enabling new systems optimizations and opportunities. In this chapter,

we design CQue, a dynamic bayesian network that operates over classifiers for individual

contexts, observes relations across these outputs across time, and identifies opportunities

for improving energy-efficiency and accuracy by taking advantage of relations. In addi-

tion, such a layer provides insights into privacy leakage that might occur when seemingly

innocuous user context revealed to different applications on a phone may be combined to

reveal more information than originally intended. In terms of system architecture, our key

contribution is a clean separation between the detection layer and the fusion layer, enabling

classifiers to solely focus on detecting the context, and leverage temporal smoothing and

fusion mechanisms to further boost performance by just connecting to our higher-level in-

ference engine. To applications and users, CQue provides a query interface, allowing a)

applications to obtain more accurate context results while remaining agnostic of what clas-

sifiers/sensors are used and when, and b) users to specify what contexts they wish to keep

private, and only allow information that has low leakage with the private context to be re-

vealed. We implemented CQue in Android, and our results show that CQue can i) improve

activity classification accuracy up to 42%, ii) reduce energy consumption in classifying
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social, location and activity contexts with high accuracy(>90%) by reducing the number

of required classifiers by at least 33%, and iii) effectively detect and suppress contexts that

reveal private information.

4.1 Introduction

The past decade has seen unprecedented growth in sensor-rich mobile phones and wear-

able accessories such as fitness monitors, sleep monitors, heart monitors and others. With

the proliferation of such devices, there has been significant emphasis on techniques to draw

higher-level inferences from continuous sensor data as we move around in our day-to-day

lives. Research has shown that several aspects of our behavior can be inferred including

physical activity, sleep behavior, social context, movement patterns, emotional or affective

context, and mental disorders, with varying degrees of accuracy.

The growing landscape of high-level inferences presents an interesting opportunity: can

we combine these inferences to obtain deeper insights into individual behavior? Intuition

suggests that the outputs of individual inference algorithms must be correlated across space

and time; after all, they sense various dimensions of an individual’s habits, behaviors and

physiology all of which are inter-linked. As a simple example, take the case of an indi-

vidual’s mobility patterns and how much of it can be inferred without using any location

sensor such as GPS, cell tower or WiFi. Location is often correlated to social context —

the fact that phones of colleagues are in proximity (detected via bluetooth) can indicate

that the likely location is the workplace whereas the fact that a family member’s phone is

nearby means that one is likely at home. Similarly, location relates to activity context —

a user may be more sedentary at work than at other times during the day, therefore one

could infer that the most likely location is the workplace by observing the level of activ-

ity. More broadly, almost all inferences are related in one way or another — studies have

shown that sleep (or lack of it) affects our mood and productivity, social interactions influ-
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ence our emotional context, addictive behavior is correlated to specific locations and social

interactions, and so on

The existence of a rich interaction graph between inferences presents an opportunity

and a challenge. On one hand, a model of the relations across the different inferences

can be leveraged to gain insights into individual behavior, thereby enabling new systems

optimization opportunities. For example, a high level inference framework might observe

relations between semantic location and activity levels, and learn that an individual has

mostly sedentary behavior at the workplace. This provides two opportunities to optimize

inference of the location context, “work”: a) energy-efficiency can be improved by relying

primarily on activity inference rather than expensive GPS, and b) accuracy can be improved

when there is significant error (e.g. indoor settings) by fusing it with activity levels.

On the other hand, the ability to leverage relations across inferences comes with a steep

price tag — loss of privacy. A mobile application that purports to merely be using the

accelerometer to detect activity levels may indeed be inferring your location. More dis-

turbing is the possibility that a single application developer may have several applications,

one that monitors sensors for activity level, and perhaps another that uses bluetooth, which

may be leveraged in conjunction to reveal much more than from the seemingly innocuous

individual applications. Compounding this issue is the fact that we do not have tools that

allow us to reason about how much of privacy exposure occurs from revealing seemingly

innocuous sensor data if the adversary were to have a good model of the relations across

contexts.

In this chapter, we present a mobile “big data” inference framework, CQue, that takes

as input streams of inferences from diverse on-body and smartphone-based sensors, and

provides a unified way for exploiting and exploring relations across these inferences. CQue

can be used in several ways: a) an inference algorithm can leverage CQue to improve

accuracy and/or energy-efficiency, while remaining agnostic of how this is achieved, b)

a user can issue “what if” queries that explore the extent of privacy leakage of sensitive
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information that might be possible if certain sensor data were revealed to one or more

applications, and c) a user can specify privacy policies to provide a first order protection

against privacy leakage of sensitive information to the untrusted applications.

In terms of system architecture, the key benefit of CQue is that it separates detection

from fusion. Existing classifiers are largely designed in a stovepipe manner to address a

specific context sensing goal as best as possible. While they start with detection of the

specific activity (e.g. conversation, walking, etc), real-world vagaries often result in spuri-

ous state transitions due to several confounding factors. To address these issues, classifiers

often rely on other sensor sources that can identify confounders and reduce errors. CQue

provides a clean separation between the detection layer and the fusion layer — in this way,

a classifier can be designed to just focus on detecting the phenomena of interest, and lever-

age fusion mechanisms to further boost performance by just hooking into CQue.

To users and applications, CQue offers a simple context querying interface with sup-

port for several types of queries. A “context query” can request different contexts, while

optionally specifying constraints such as confidence requirements and delay bounds. For

example, a query might request sedentary activity context with 90% certainty and a max-

imum notification delay of two minutes. CQue uses the query constraints to reason about

how to duty-cycle inference algorithms, and how much temporal history to leverage to im-

prove accuracy and confidence. A “what if” query provides a measure of potential leakage

of sensitive information if applications were allowed access to specific sensor sources. For

example, a query can request the expected leakage of “home” location context if an ap-

plication had access to accelerometer and bluetooth data. Internally, CQue would execute

such a query by providing a measure of the correlation between the outputs of inference al-

gorithms that operate on accelerometer and bluetooth data, and the specific location context

that the user does not wish to reveal. Finally, through privacy policies, a user can specify

a context as private that should not be revealed, and suppress the non-private contexts in

real-time that can be used to infer private context using correlations among these contexts.
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A user can specify this policy specific to an application or a group of applications that can

potentially collude.

Our results show that:

• CQue can answer context queries with high confidence by performing fusion of in-

formation from multiple context-inference algorithms and can improve accuracy up

to 42% over standard context-inference algorithms.

• When energy is limited, CQue can lower execution costs for multiple context queries

by exploiting context relations to run fewer inference algorithms. If energy is plenti-

ful, CQue can decide what context algorithms in addition to the query set should be

executed to improve accuracy.

• CQue is effective in assessing privacy risks and provides privacy while ensuring high

utility to the applications.

The rest of the chapter is organized as follows. §4.2 describes the prior work done in

the related research areas. In §4.3, we provide an high-level overview of the CQue query

engine along with the description of how a context query can be specified in our framework.

In §4.4.1, we describe the relationship model used by CQue. Rest of §4.4 describes the

components of CQue query engine in detail that are responsible for optimizing multiple

context queries and addressing privacy. We describe the experimental evaluation of CQue

in §4.6 respectively. We discuss possible extensions of this work in §4.7. Finally, the

conclusions are provided in §4.8.

4.2 Related Work

In this section, we describe three areas of related work — model-driven sensor data

acquisition, context inference for mobile phones, and privacy in temporal data.
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4.2.1 Graphical models for sensor data acquisition

There has been substantial work on leveraging spatial and temporal models of corre-

lations between distributed sensor sources to optimize sampling and communication in a

sensor network [38, 52, 53, 98, 116]. For example, BBQ [53] uses a Dynamic Bayesian

Network to select the minimum number of sensor nodes for data acquisition such that it

can answer range queries within query-desired confidence bounds. Meliou et al [116] ex-

tended this work to sensor network routing where a query can be answered with desired

confidence bounds while traversing the minimum number of nodes in a network spanning

tree. Graphical models are also used in [52], which explored the problem of answering

range queries while minimizing the energy cost of sampling sensors, and in [38], where

sensors use models to reduce the communication costs by transmitting samples to a base

station only when the ground truth is significantly different from the prediction made by

the model. The similarities with prior efforts are only in that they leverage DBNs — we use

DBNs in a novel application context which is for real-time inference on a mobile phone to

enable energy-accuracy-delay tradeoffs and protect privacy.

4.2.2 Context-Sensing

Our work is closest to ACE [127] that proposed a context sensing engine that exploits

relationships among contexts to infer an energy-expensive context from a cheaper context.

The central difference between ACE and CQue is that the former uses Association Rule

Mining to learn rules among contexts (e.g. Driving ⇒ ¬At Home), but such mining ap-

proaches cannot take a context classifier’s uncertainty into account. The ability to take

uncertainty into account is critical when using classifiers that operate on raw sensor data

— for example, if a classifier may detect Driving with a low confidence, say 0.7, GPS may

detect At Home with an error radius of 100m, and so on. In these cases, the rules would

assume perfect context information whereas CQue would use the uncertainty in inferring

the relations. Thus, a probabilistic approach is strictly superior to a rule based one.
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Also related to CQue are efforts to develop a context-sensing engine for phones that can

be used by applications to request contexts [62, 40, 106]. The Jigsaw context sensing engine

[106] comprises of a set of sensing pipelines for accelerometer, microphone and GPS. More

recently, Kobe [40] proposed a context querying engine for mobile phones that can be used

to plugin different classifiers, and that balances energy consumption, latency and accuracy

of the classifiers by offloading computation to the cloud. Unlike these approaches, CQue

can leverage probabilistic relations across contexts.

CQue is complementary to prior work on context sensing engines which have largely

explored optimizations of individual classifiers (e.g. [21, 97, 106, 151]). CQue allows

individual classifiers to be easily integrated without worrying about how to leverage other

contexts to improve performance and efficiency.

4.2.3 Privacy in temporal data

There has been some work in addressing privacy where the adversary is aware of the

temporal correlations [70, 135, 144]. MaskIT [70] presents a privacy-preserving mecha-

nism to filter a stream of contexts that can be used to answer context queries requested

by the phone applications. It presents two privacy checks to decide when a user context

can be released while providing privacy guarantees against an adversary knowing temporal

correlations modeled as a Hidden Markov model(HMM) of user contexts.

Our goal in this work is not to to prove privacy guarantees or design new privacy met-

rics, rather our argument is that the use of DBN enables considerably more flexible privacy

policies in comparison with an HMM-based approach. When MaskIT identifies that a pri-

vacy breach might occur, it suppresses all contexts at that time without considering which

subset of them might contribute to the breach. In contrast, CQue enables more fine-grained

reasoning of which specific context(s) lead to a privacy breach such that only that informa-

tion can be suppressed.
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4.3 CQue Overview

Dynamic Bayesian Network

Sensors

Query Set
Q1: (drive | accel+gyro), (walk | accel+gyro), (stationary| accel+gyro)
Q2: (with friends | bluetooth), (with spouse | bluetooth)
Q3: (at-office | wifi+gps,120s,0.9)

Query Interface

Fitness App Do not 
Disturb App

Movie Recommender
App

Q1 Q2 Q3

Dynamic Query Execution Engine
(cost- accuracy - privacy optimization)

offload dynamic 
plan evaluation 
to cloud

offload DBN
learning to 
cloud

user privacy 
settings

Walking S2
H2 Driving AtHomeS1

H1
S3
H3

Figure 4.1. High-level overview of the framework describing the workflow

The CQue framework has been designed with the goal of providing an easy-to-use

abstraction to application developers and end users, both for exploiting correlations across

inference to improve energy-efficiency and accuracy, as well as to use these correlations

to ascertain privacy leakage or contextual insights. This goal is accomplished using a high

level query language and an underlying execution environment running as a service on the

phone. In the following, we provide an high-level overview of the CQue framework.
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4.3.1 Context Query Interface

At the top level of CQue are applications that issue context queries using a high-level

declarative query language. CQue provides a simple query language for the applications to

request contexts. Consider the following three queries:

Q1. (drive | accel+gyro+gps, 240s, 0.8)
Q2. (home? | accel+gyro)
Q3. (home? | with friends)

The first query requests the context drive, and includes three other optional fields. The

keywords accel, gyro and gps suggest that any combination of classifiers that use those

sensors may be used in answering the query (to ensure that the app only uses sensors for

which it has approval from the user). These keywords could also refer to other inferences,

if the application needs more explicit control over other contexts that should be fused.

Finally, the query can also replace this with a ‘*’ which would let CQue automatically

choose sensors and classifiers to optimize the system. The value ‘240s’ in the query is the

delay tolerance and denotes that the application can tolerate the maximum delay of 240

seconds for each record in the query response. The query processor uses this delay window

to improve the confidence in the output context value. The query can also provide a value

for confidence threshold in the range [0.0−1.0]. In the above example, the query processor

will output context as soon as it reaches confidence of ‘0.8’, provided it is within the delay

tolerance period. If confidence values associated with the context output are lower than the

query-desired confidence threshold, the context is reported as ‘unknown’.

The next two queries marked by ’?’ are privacy queries and provide a measure of

information gain in queried context ”home” if any inference algorithm operating over ac-

celerometer and gyroscope sensors were used (Q2) or if with friends inference algorithm

was used (Q3). In turn, this measure provides a privacy score, an indicator of privacy leak-

age. Note that in providing a privacy score, CQue is limited to using inference algorithms

that are available in its library.
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4.3.2 CQue Architecture

The central tenet of CQue is an architectural separation between the fusion mechanisms

that inference algorithms use to improve performance. Our design employs a cleaner, lay-

ered architecture where any classifier can simply hook into CQue, and leverage temporal

consistency and context fusion mechanisms to improve performance. CQue models tempo-

ral consistency with a time-series of previous observations, and uses active learning mech-

anisms to automatically determine when user input is needed to improve this model. CQue

also automatically determines the relationships between a classifier output and all other

observations from other classifiers/sensors that it has access to, and determines when and

how to use additional observations to improve accuracy. In short, it can make the process

of designing a new inference algorithm a lot easier for a designer.

In contrast to the stovepipe approach, our design separates these components into a

cleaner, layered architecture where any classifier can simply hook into CQue, and lever-

age temporal consistency and context fusion mechanisms to improve performance. CQue

models temporal consistency with a time-series of previous observations, and uses active

learning mechanisms to automatically determine when user input is needed to improve this

model. CQue also automatically determines the relationships between a classifier output

and all other observations from other classifiers/sensors that it has access to, and determines

when and how to use additional observations to improve accuracy. In short, it can make the

process of designing a new inference algorithm a lot easier for a designer.

4.3.3 Execution Environment

The execution environment of CQue is shown in Figure 4.1 and consists of following

core components: (i) a graphical model, namely, Dynamic Bayesian Network, and (ii) a

query processor. The Dynamic Bayesian Network (DBN) is the at the core of CQue and

plays an important role in making various decisions during query processing. The DBN

provides a model of the relationships across multiple contexts for the phone user and keeps
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track of the time-series of observations for various contexts. It then uses context relation-

ships to boost confidence in observations made by individual classifiers or to correct them.

The second component is a query processor which is responsible for interaction with appli-

cations including receiving context queries and generating the responses to the queries. In

addition, depending on the current state of the DBN and the time-series of observations, the

query processor needs to determine which context-inference algorithms should be executed

such that it can provide best answers for the queries within the specified constraints. These

decisions are made by the query processor at every time step during execution. As shown

in Figure 4.1, the result of these decisions are the signals S1, S2, ..., Sn indicating which

context-algorithms be executed. Finally, upon observing the output of selected context-

inference algorithms, query processor enforces user-specified privacy policies (defined in

§4.4.2) by deciding a maximal set of queried contexts whose values can be released to the

applications without violating the privacy policies.

In addition to the query execution, the query processor is responsible for sampling

human-provided context values during the learning phase of the DBN. Such human input

can be minimized through active learning to only obtain input at appropriate times to im-

prove the structure of the DBN. These human inputs shown as signals H1, H2, ..., Hn in

Figure 4.1 are provided to the context-inference algorithms that can use it to retrain them-

selves to personalize for the phone user.

4.4 The Execution Environment

The execution environment of CQue is responsible for i) modeling and learning the

relationships across contexts, ii) multi-query optimization such that uncertainty in queried

contexts is minimized while operating within the budget and delay constraints of a query,

and iii) executing privacy queries and enforcing privacy policies. In the following, we

describe each component of the execution environment in detail.
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4.4.1 Inference Framework

Time t-1 Time t

X3,t-1 X3,t

X2,t-1 X2,t

X1,t-1 X1,t

Figure 4.2. An example of a 2-step Dynamic Bayesian Network. The nodes in the graph
model the set of random variables X = {X1, X2, X3}.

The core learning framework in CQue is a Dynamic Bayesian network (DBN), which is

a class of Bayesian networks that can represent a time-series of random variables to model

temporal consistency. A DBN can describe both temporal and static relationships among

random variables at different time instances. This model is represented as a directed acyclic

graph consisting of nodes corresponding to each random variable at each time instance.

The static dependencies across random variables at time instance t are represented by edges

connecting nodes corresponding to these random variables. The temporal dependencies are

represented by transition edges connecting nodes at time instance t− 1 with nodes at time

instance t. Each node in this graph has a conditional probability table (CPT) describing

dependencies on its parent nodes. Figure 4.2 shows an example of 2-step DBN for two time

slices which can be unrolled to accommodate a time-series of any length by duplicating

the time-slices and transition edges (We note that a Hidden Markov Model is a simplest

Dynamic Bayesian Network that models and relates states of a single random variable over

adjacent time steps.). We use notation X to denote the set of random variables. We use Xt

to denote set of nodes representing random variables X at time instance t and use X1...t

as short notation to describe time series of nodes X1, ...,Xt. With this notation, the joint

probability distribution for a time series of nodes is given by

Pr(X1...t) = Pr(X1)
t∏
t=2

Pr(Xt|Xt−1)
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In the above equation, probability Pr(Xt|Xt−1) is computed using the DBN.

4.4.1.1 DBN model for CQue

In CQue, we have three types of DBN nodes — sensors, classifier-provided context, and

real-world context. The goal of the DBN is to model relationships across real-world con-

texts while taking into account the uncertainty associated with the classifier-provided con-

texts. A key challenge in constructing a DBN model is ensuring computational tractability

on a mobile phone since the execution time for probabilistic inference is exponential in the

number of variables in a chain in DBN. Thus, to optimize execution cost, we need to reduce

the computational overhead incurred by adding classifiers and sensor nodes to the DBN.

To illustrate the tradeoffs, we consider two possible DBN models for CQue. Fig-

ure 4.3(a) shows one model where the set of sensor nodes S at the lowest level determine

the state of the classifiers C, which in turn generate the probability distribution of the values

for current state of the real world X. The distribution of X is then given by conditional prob-

ability Pr(X|C = c) where c is the classifier state. This model is efficient when classifiers

(C) are observed i.e. switched on, since the contexts in real world (X) are conditionally in-

dependent of the sensors (S) given the state of the classifiers C. In this case, computing the

probability for X does not require iteration over possible states of S; in other words, sensor

nodes can be ignored. However, if some classifier node Ci is not observed then the proba-

bilistic inference of corresponding real-world node Xi may require evaluating probability

over a chain of classifier and sensor variables connecting Ci to some observed classifier

variable Cj or some observed sensor variable Sk. Thus, our first model is computationally

cheap if classifiers are observed, and expensive when they are switched off.

An alternative model is shown in figure 4.3(b). This model assumes that the current

state of the classifier nodes C is affected not only by the sensors but also by the current state

of the real world. The advantage of this model is that when a classifier, Ci is turned off,
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Figure 4.3. Various models for including sensors and classifiers in a time-slice of DBN
for real world contexts. a) A simple model for 2 contexts where sensor nodes S determine
classifier state C and the classifier generates probability distribution for the states of real
world X. b) A slight variation of earlier model with arrows between classifier nodes C and
real world context nodes X reversed. In this model, the classifier state is determined by
both sensors and the real world. c) A model separating DBN from the layer of sensors and
classifiers. In this model, the classifiers provide virtual evidences to the DBN.

contexts in real world (X) are conditionally independent of sensors that are solely connected

to Ci, hence these sensor nodes can be ignored in the inference. However, we need to

learn joint probability distributions of X, C and S for each individual, which will require

significantly more labels from the individual. Hence, this model is cheap computationally

but expensive in terms of human labels required for training.

To address the limitations of these models, we construct an approximation of the above

schemes where classifiers and sensors are separated from the DBN into a different layer.

Figure 4.3(c) shows an example where classifiers provide the probability of a context
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through observation nodes called virtual evidences, O, to the DBN. The uncertainty in evi-

dence is accounted in these observation nodes using Pearl’s method [138]. In this method,

for some context Xi and corresponding observation node Oi, if L(x) gives the likelihood

of classifier stating that Xi = x if Xi is actually in state x and if L(x) gives the likelihood

of a classifier stating that Xi = x if Xi is not in state x, then the conditional probabilities

for observation node Oi given the current state for real world context Xi satisfies:

Pr(Oi = x|Xi = x) : Pr(Oi = x|Xi 6= x) = L(x) : L(x)

With these conditional probabilities and given a series of virtual evidences O1...t, we can
compute the joint probabilities for time series of real world contexts X1...t as follows:

Pr(X1...t,O1...t) = Pr(X1|O1)
t∏
t=2

Pr(Xt|Xt−1)Pr(Ot|Xt)

This model has several benefits: a) it is computationally cheap both when classifiers are

turned on or off since it avoids the complexity of modeling sensor and classifier variables in

the DBN itself, b) it requires no additional human labels for modeling these variables while

training the DBN, and c) it can easily be extended to handle multiple classifier implemen-

tations for the same context without changing the DBN structure. The main benefit of this

model is that the classifiers can be treated as black boxes, and we do not need to assume

knowledge of what sensors they utilize, what sampling rates they use, how they duty-cycle

sensors to save energy, and what features are extracted in the classifiers.

4.4.1.2 DBN usage in CQue

The output of the DBN is used in several ways by CQue.

1. Filtering/Smoothing Most of the contexts that we observe in the real world have

some temporal consistency i.e they last for some time period. Such temporal relation-

ships can be used to correct intermittent misclassifications made by context-inference

algorithms. Since a DBN models temporal consistency with the time-series of previ-

ous observations, a DBN can correct the current output and reduce the probability of
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a context taking an incorrect value. Apart from the temporal consistency, a misclas-

sification can be corrected using relationships with other contexts if the observations

are available for them.

2. HindSight The previous case described using history to correct output at the current

time. Similarly, a DBN can be used to improve the confidences in historical observa-

tions, which perhaps had low confidence. Future observations with high confidence

can be used to improve the confidence of previous observations. This capability can

be exploited when queries specify a higher delay tolerance threshold.

3. Value of Information The DBN can also be used to assess the value of a context-

inference algorithm. Value of information (VOI) is defined as the expected gain in

certainty for the random variables in DBN if an additional observation is made. This

is useful for the query processor, which can decide what context observation can

provide highest utility.

4.4.2 Query Processor

The query processor is responsible for i) multi-query optimization i.e. achieving the

confidence requirements of context queries while operating within query constraints, ii)

execution of privacy leakage queries, and iii) enforcement of user-defined privacy policies.

Multi-query optimization in CQue raises following challenges: a) how to choose the infer-

ence algorithms to execute given the budget?, and b) how to handle different delay tolerance

requirements of queries? In addition, privacy queries and policies require us to answer: a)

how to execute privacy queries?, and how to enforce privacy policies? We address these

question in the rest of this section.

4.4.2.1 Which inferences to execute given a budget?

The CQue query processor needs to execute the set of inference algorithms that pro-

vides maximum value of information (VOI) for the queried contexts within the budget
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constraints. The budget is typically in the form of energy since inference algorithms con-

sume energy, but in cases where the user is interrupted to provide labels, the budget may

be the number of interruptions allowed per day.

Due to the relationships across contexts, the set providing maximum VOI may be larger

than the query set as some contexts that are not part of the query set may be useful to

improve the inference accuracy for contexts that are in the query set. Similarly, this set can

be smaller than the query set if some of the queried contexts are strongly implied by other

contexts in the query. In addition, the set of inferences that provides the maximum VOI

can change over time, depending on the user’s current context as well as dynamics in the

user’s behavior patterns. In this section, we describe an adaptive approach to deciding the

set of inferences that need to be executed to satisfy query demands while remaining within

the budget.

The problem of selecting the optimal set of context-algorithms to execute given a bud-

get and the set of queries can be formalized as follows. Let Q be the set of context queries,

let Et−1 be the set of context classifiers undergoing execution currently and v be the corre-

sponding classifier outputs. Let F(Q,E,Et−1, v) be the utility function giving the VOI of

the contexts, E, for the query set whereE is the subset of observation nodes O in the DBN.

Let C(E) give the cost of executing algorithms for contexts in E. If B is the maximum

budget, then our goal can be defined as identifying a set Et i.e. the set of context classifiers

to be executed next such that:

Et = arg max
E⊆Ot:C(E)≤B

F(Q,E,Et−1, v) (4.1)

Since our goal is to have high certainty for query set Q, we consider the information gain

for query set Q (also called VOI) as the utility function which is given by:

F(Q,E,Et−1, v) = H(Q|Et−1 = v)−H(Q|E,Et−1 = v) (4.2)
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where H(.) is the entropy function. We must note that computing optimal-set of classifiers

to be executed at the next iteration is an NP-hard problem[87]. We solve this optimization

problem using a greedy approach as described in Algorithm 1. The results by Nemhauser

et al. [128] and Krause et al. [87] have shown that a greedy algorithm provides a solution

within the constant factor (1− 1
e
) of the optimal solution for a general bayesian network.

Our extension of optimization problem to the DBN does not change the results as long

as we select nodes Et from a set S such that the nodes corresponding to S in DBN are inde-

pendent to each other given the query set Q. In a DBN, we select Et from a set of observa-

tion nodes Ot where each observation node is connected to the DBN only through a parent

hidden node. Hence, any path between any two observation nodes is always blocked by

one of the parent hidden nodes. Thus, any two observation nodes in DBN are d-separated

[153] and hence, independent of each other.

We note that Algorithm 1 gives near-optimal solution when each classifier is assigned

a unit cost. In a specific scenario, there may be several considerations in determining the

cost, which depends on the cost of sensing, processing, or obtaining human input. If the

resulting costs are non-uniform in nature, we refer the readers to an algorithm as described

in [87].

Algorithm 1 Compute Optimal Set
Input: Budget k; query set Q; set Ot from DBN;
utility function F ; previous observed set Et−1 and corresponding set of classifier outputs v; Cost
function C.
Output: Set of observations E ⊆ Ot

Let E = φ
for i = 1 to k do
o∗ = arg maxo∈Ot\E F(Q,E ∪ {o}, Et−1, v)
E = E ∪ {o∗}

end for
return E
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4.4.2.2 How to handle delay requirements of queries?

In CQue, we unroll the DBN such that it can accommodate a series of observations of

length W . At each time-step, we slide the DBN window over observations such that the

oldest observations are dropped and the latest observations are added to the DBN. As a

result of this sliding window, any context observation resides in DBN for exactly W time-

steps. Hence, we can compute the probability for queried contexts W times, corresponding

to having 0, 1, 2, ...,W − 1 observations from the future. This allows our framework to

answer a query with a delay upto W − 1 time-steps. Our framework can use this delay

period in three cases: i) if the sequence of historical observations have low confidence

resulting in low confidence for the latest observation, ii) if the sequence of historical obser-

vations have fluctuating values for the contexts indicating low confidence in the output of

context inference algorithms, and iii) if the latest observation is different from the histori-

cal observations. In the first two cases, we wait for the future observations and hope that

these observations are consistent and have high confidence. If this happens, we boost the

probability of queried context in hindsight. In the third case where the latest observation

is different from the historical observations, it can happen either because of intermittent

misclassification by the classifier or because the context value has actually changed. Any

future observation can help in distinguishing these cases and improve the certainty in the

context.

4.4.2.3 How to execute privacy queries?

Unlike queries that request current state of an individual, privacy queries look for ag-

gregate information regarding the mutual information shared between a context and sensor

data or other contexts available in CQue. In our framework, we provide two types of pri-

vacy queries: i) user specifies a query context, Q and wants to know information revealed

about the queried context from a specified list of sensors (S) and contexts (C); and ii) user

specifies a query context Q and wants to know ranked list of contexts along with a pri-
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vacy score that indicates how much information is revealed by a ranked context about the

queried context. Thus, these queries help user understand how much information can be

revealed about certain context from other contexts. Together, these two query types enable

users to make a decision regarding their own privacy.

For the first query type, given a user specified sensor list S we identify context clas-

sifiers CS that can execute given sensors S. In addition to S, user can provide a set of

contexts C. Now, we want to have an uncertainty measure in queried context Q if contexts

in C ′ = C ∪CS are observed. We use a normalized variant of mutual information based on

information theory that gives a distance metric between Q and C ′ and is given as follows :

D(Q|C ′) = 1− H(Q)−H(Q|C ′)
H(Q)

This metric takes value 1 if Q is independent of C ′ and takes value 0 if Q is fully deter-

mined by C ′. We use this measure as a privacy score where a higher score indicates less

information leakage.

For the second query type, a user is interested in identifying ordered list of contexts that

reveal most information about queried contextQ. For each context c supported in CQue, we

use privacy score D(Q|c) as described above to measure information leaked about queried

context Q. We rank contexts based on this metric.

4.4.2.4 How to enforce privacy policies?

As described in §4.2, one of the benefits of CQue is that the DBN provides in-depth

and real-time information about correlations between different context outputs in contrast

with HMMs and other techniques that have been leveraged in prior work. Our focus is not

on identifying the best privacy exposure policy or proving its privacy properties; rather it

is to demonstrate that CQue can be used to develop such methods.

To demonstrate these benefits, CQue supports a privacy policy that can suppress context

values that leads to change in confidence or the probabilistic belief about a private context
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greater than threshold δ. Such a policy can provide greater privacy control than a simpler

policy that just blocks a specific private context from being revealed. In CQue, a user can

define these policies specific to a potential adversarial entity where this entity can be an

application or a group of applications or all the applications on the user’s phone. A policy

for a group of applications can be useful to protect against information collusion among

these applications in a group.

In CQue, we assume a strong adversary having access to the user’s DBN. Now, we en-

force user policy by using the DBN to calculate the confidence or the posterior probability

for the private context using the output for the set of contexts, requested by the adversarial

entity, as observations in DBN. Also, we compute prior probability for the private context

without using any observations in the DBN. If the difference between posterior probability

and the prior probability is greater than δ, then we suppress the value of the context that

causes the maximum change in probabilities. If the change in probabilities is still high with

the remaining context outputs, we repeat the process of removing context value that causes

maximum change until we reach the threshold limit δ. We release the remaining contexts

to the adversarial entity.

4.4.3 Learning the Graphical Model

Now, we describe the challenges involved in learning the DBN model for the phone

user. There are two challenges in learning the DBN: a) how to learn structure without

executing all sensors and context inference algorithms continuously on the phone since

this consumes significant energy, and b) how to minimize interruptions of the phone user

to obtain ground truth labels for learning.

4.4.3.1 Using context relationship hints

The learning process can degrade user experience due to the energy cost of running

several context inference algorithms concurrently on the phone. While it is possible to

randomly sample a few contexts at a time, this can slow down the learning process as the
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random approach may not always sample related contexts together. To perform efficient

sampling and facilitate faster learning of personalized relationships, we maintain, for each

context, a list of contexts to be sampled together that may possibly have soft relationships.

The soft relationships may or may not hold for individual users and it does not necessarily

result in edges in DBN connecting softly-related contexts. As it may not be possible to

envision all the soft relationships, we still perform random sampling and bias the sampling

for contexts that seem to be related.

While the use of soft relationships can address the efficient sampling problem, we can

speed up the learning process and parameter estimation in DBN by the use of hints that

can be provided by the context-inference algorithm developers. A context developer can

include hints for each context that identify positive causes and negative causes for it. As an

example, driving is a direct positive cause for user’s location being on street whereas user’s

location being at home is a negative cause for on street. These hints can be directly utilized

in setting the parameters for relationships that are true for a majority of users.

4.4.3.2 Minimizing human-provided labels

One of the challenges in learning the dynamic bayesian network is that we do not have

access to ground truth for contexts. While ground truth can be obtained by having the

user provide ground truth for an initial training period, we wish to minimize interruptions

and hence use this option sparingly. Instead, we can sample the contexts inferred by the

algorithms along with the confidence value associated with the output. The inferred context

values provide us with the partial observations of the underlying Markovian process. We

use the Structural EM algorithm described in [66] to learn the structure of the DBN from

the partial observations. In this algorithm, the structure of the DBN is improved iteratively

until the MDL score of the structureB given a training data setD converges. Let us suppose

a structure B consisting of n random variables X1, ..., Xn. We use the notation xi and Πxi

to denote an assignment for Xi and its parent set Pa(Xi) respectively. Also, N(xi,Πxi
)
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denotes number of instances in the training data D where Xi = xi and Pa(Xi) = Πxi
.

Let N be the total number of instances in training data. Then, the MDL score for a DBN

structure B given data set D is given as:∑
i

{ ∑
xi,Πxi

E[N(xi,Πxi)|D] log θ(xi,Πxi)−
logN

2 #(Xi,Pa(Xi)
}

where θ(xi,Πxi
) = E[N(xi)|D]

E[N(xi,Πxi )|D]
and #(Xi,Pa(Xi) is the number of parameters needed

to represent Pr(Xi|Pa(Xi)). We need to take expected counts as we have access to only

partial observations. We simplify the learning process by first learning the static network

of the DBN followed by learning the transition edges of the network. This process is

suboptimal in nature but it has been shown in practice to yield parameters estimates close

to optimal.

While learning the DBN without any human input is ideal, this can lead to errors partic-

ularly if the training and test context distributions are very different. Thus, there is a need

for at least some corrective human input. We randomly sample human input for a small

fraction of contexts in-order to correct DBN parameters, and assign these human-provided

contexts higher weight over the instances obtained using context-inference algorithms.

4.4.4 Classifier Personalization

So far, our discussion has assumed that the underlying context classifiers are black-

boxes i.e. they do not expose their internal behavior or allow changes. Thus, the DBN is

limited to the context output and uncertainty provided by the classifiers. A natural question

is whether we can do better if we were able provide feedback from the DBN to the classifier

in-order to improve its performance further.

In CQue, any human input provided to the DBN can not only be used to correct DBN

parameters, but also be used to personalize the classifiers. A classifier personalized for an

individual user is beneficial as it provides higher classification accuracy and better uncer-

tainty estimates. The use of personalized classifiers also benefits the DBN — with per-

sonalized classifiers, the correct DBN parameters can be learnt using fewer future human
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input resulting in shorter training period. CQue provides an API to the developers of con-

text classifiers to receive human-provided labels that can be leveraged for personalization.

4.5 Implementation

We now describe the implementation of CQue on Android smartphones running An-

droid OS version 2.2 or higher.

4.5.1 Inference Engine

The CQue inference engine is designed to run in real-time on a mobile phone to avoid

any delays incurred in accessing the cloud. The query processor maintains a model of a

DBN that is personalized to the phone user. This model is stored as a file in an XMLBIF

format which is an interchange format that is recognized by most bayesian inference soft-

wares. In our implementation, we use the well known variable-elimination algorithm’s

implementation for probabilistic inference provided by the Java Bayes package [6]. One

downside is that accurate inference using variable-elimination can take exponential time

in the number of variables in the bayesian network. While this was not an issue for the

number of contexts in our current implementation, this may be a bottleneck as the number

of contexts increase. Future implementations of CQue will use fast approximate inference

algorithms such as importance sampling and MCMC simulation to optimize inference per-

formance on the phone [153].

4.5.2 Query Planning

As discussed in §4.4.2, CQue uses a dynamic query plan where the decision regarding

what contexts to execute given a certain energy budget is periodically re-visited to capture

dynamics in the incoming context stream. Such dynamic adaptation can be expensive to

perform on the phone since it depends on the number of contexts in the DBN. So, for

infrequent plan evaluation or if the size of the DBN is small, our implementation performs

such planning on the phone, but otherwise offloads the computation to the cloud.
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4.5.3 DBN Learning

While the execution engine can execute on a mobile phone, learning the DBN is more

computationally intensive and requires cloud support. We implemented the DBN learning

algorithm using partial observations by modifying the WEKA package [73]. CQue offloads

the process of learning the DBN to the cloud by sending the appropriate context instances

to the server at the end of each day. The DBN is learnt at the end of every day in the cloud

and is sent back to the CQue framework in XMLBIF format. Over time, the frequency

of updating the DBN reduces as its structure and parameters stabilize. Also, to facilitate

faster learning of DBN parameters, we maintain a configuration file that provides initial

parameter estimates for the DBN, based on average numbers from a general population.

The configuration file has entries for each context containing a list of positive and negative

causes for it along with the conditional probability. For example, the negative cause list for

the context at office looks like: at home,0.99; at store,0.85; at restaurant,0.93; driving,1.0.

4.5.4 Query Processor

We implemented the context engine as a background service running on android phones.

This service is responsible for activating context-inference algorithms and appropriate sen-

sors, and providing the context values generated by the algorithms to the query processor.

Communication between the query processor and the context engine uses Android IPC.

Our implementation currently supports semantic location contexts, social contexts and ac-

tivity contexts: a) Activity contexts: walking, driving and stationary, b) Social contexts:

with friends, with colleagues and alone, and c) Location contexts: at restaurant, at home,

at office, at store and on street.

Our implementation uses decision-tree classifiers for activity recognition. We used

well-known set of features extracted from the 3-axis accelerometer and gyroscope read-

ings. The following features were computed for accelerometer readings along each of the

three axis: mean, standard deviation, mean-crossing rate, energy given as normalized sum
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of squared discrete FFT component, peak frequency in FFT and peak energy. In addition,

we computed correlation between each pair of axes. The gyroscope readings were used to

compute mean and standard deviation of angular velocity around each of the three axis. For

classifying social and location contexts, we used a user-provided mapping from bluetooth

devices to the social context and a mapping from WiFi access points to the correspond-

ing semantic location (either user provided or using publicly available databases). Unlike

activity contexts, the classified social and location contexts have higher confidence associ-

ated with them. While we restricted ourselves to the above contexts due to the nature of

our datasets, our architecture is general is designed to accommodate other context-engines

that may be added by practitioners.

4.5.5 User Interface

The CQue framework provides an interface to the user to specify an energy budget and

preferences for interruption (during training) and privacy. The energy budget can be speci-

fied as a fraction of a full battery that may be used for running CQue and a battery threshold

below which CQue should be stopped. For interruption preferences, a user can specify the

total interrupts permitted per day while training the DBN. For privacy preferences, a user

can select private contexts, select a level of protection against adversary from low, medium

and high where these values map to values for threshold for change in adversarial confi-

dence δ = 0.4, δ = 0.25 and δ = 0.05 respectively. Additionally, user can select the

applications for which these preferences apply.

4.6 Experimental Results

In this section, we describe the set of experiments performed to evaluate our frame-

work. We first describe the data sets and the evaluation metrics used for the experimental

evaluation. Next, we present our analysis of privacy for various contexts.We then look at

the energy-accuracy tradeoffs and demonstrate the benefits of using DBN over context-
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classifiers using a set of experiments, and conclude with an evaluation of how various

parameters such as delay, and interruption budget impact results.

4.6.1 Data Sets and Evaluation Metrics

4.6.1.1 Datasets

In order to conduct our experiments, we used following two datasets:

1. Reality Mining Dataset: This data set contains data collected continuously for 100

students and staff at MIT over academic year 2004-2005. The duration of user traces

varied from 30 days to 269 days. In our evaluation, we used data from 37 users who

had data for at least 10 weeks.

2. Activity Dataset: While the reality mining dataset has rich multi-sensor data, it relies

on self-reports for activity classification, hence it does not allow us to understand

how accuracy of activity classifiers can be improved through the use of CQue. To

address this, we collected a trace of user contexts for two weeks from seven users.

Each of the seven users provided about 50 context labels per day and contributed

raw data from the following sensors: accelerometer, gyroscope, compass, bluetooth,

WiFi and GPS. Since there could be labeling error, we corrected activity context

information using GPS information and manual correction at the end of each day.

All users providing data were graduate students. We used data from four users to

train the activity classifiers. For testing, we used these classifiers to classify activities

for the remaining three users. For each user in the test set, we divided their data into

two weeks — in the first week, a personalized user-specific DBN is trained using

the outputs of the classifier algorithms, and a few human labels obtained from the

ground-truth set (depending on the interruption limits, and label selection scheme),

and the data in the second week is used to evaluate CQue.

98



4.6.1.2 Set of contexts

In both the datasets, we have a set of contexts that includes location contexts like at

home, at office, on street and three activity contexts, namely, walking, driving and station-

ary. For social contexts, we use the groups of bluetooth devices in the close proximity of

a user as the social context. In Activity dataset, we have these groups explicitly labeled

as friends, colleagues, roommates, spouse whereas in Reality mining dataset, we do not

have explicit labels but we identify these groups as group-1, group-2 and so on. For each

context, the corresponding classifier outputs true or false value along with the confidence

value associated with the classification output. We use these values as input in DBN.

4.6.1.3 Evaluation metrics

We use three performance metrics in our evaluation: 1) Accuracy, which is computed as

the fraction of these contexts that are correctly classified, 2) Confidence, or the probability

of the most likely value for the context provided by the DBN, and 3) F-Measure which

gives the harmonic mean of recall and precision (higher score is better). Recall for a

context is computed as the ratio of number of times the context was correctly classified as

true to the total number of times the context was actually true in the data. Precision for a

context is given as the ratio of number of times the context was correctly classified as true

to the total number of times the context was classified as true.

4.6.2 Cost-Accuracy Tradeoffs using DBN

One of the benefits of a DBN is that it allows a tradeoff cost for accuracy — by un-

derstanding the relations across different contexts, an inference algorithm can be turned

off to reduce overhead. While the “cost” can be different depending on the sensing and

communication needs of the inference algorithm, or the burden of user input, we use a sim-

plistic model where we assume that all classifiers have equal cost. This model provides an

intuitive understanding of the cost-accuracy tradeoffs.
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Figure 4.4. Effect of varying number of executing context classifiers when number of
queries (≥ 6) is higher than the number of executing contexts. The figure shows aggregate
accuracy and F-measure over 37 users for static and dynamic plan execution.

• Classifiers < Queries We first look at the case where the system runs fewer clas-

sifiers than the number of queries and exploits the context-relationships to answer

context queries for which there are no observations coming from the classifier. This

case demonstrates that the DBN can be used to answer the context queries in expec-

tation which is not possible otherwise using classifiers alone. We evaluate this model

using the Reality Mining dataset.

In this experiment, we consider all the contexts that we support to be in the query

set. The number of queried contexts varied between 6 to 11 for the 37 users in the

Reality Mining dataset. We then vary the budget such that it can execute between 1

to 5 classifiers. Based on the budget, the set of classifiers are chosen that can provide

maximum information gain as described in §4.4.2.

Figure 4.4 shows the accuracy and F-measure averaged over 37 users as the number

of classifiers increases. We see that both these metrics improve as we increase the

number of classifiers, and even with two classifiers executing, we get fairly good
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accuracy and F-measure. Thus, significant benefits can be obtained with only a small

number of classifiers by leveraging a DBN model of the relations across contexts.

It might seem surprising that very high accuracy can be achieved even with a single

classifier. In fact, this is because most contexts have biased distribution (e.g. the

stationary state is true (> 90%) of the time), hence high accuracy can be achieved

by just using the model in expectation with no classifiers executing! But this gives

poor recall, precision and consequently the F-measure is low, and more context input

is required to improve these metrics. Figure 4.4 shows that DBN achieves 75% F-

measure and 94% accuracy using only 4 classifiers resulting in at least 33% cost

reduction.

Figure 4.4 also compares the use of a dynamic plan where the query plan is re-

evaluated every 20 minutes vs a static plan where the query plan is evaluated once.

The dynamic plan provides better accuracy and F-measure than static plan across the

board. This is because the dynamic plan selects appropriate set of classifiers using

value of information provided by the observed classifier outputs in real-time whereas

static plan selects the set of classifiers without considering the real-time classifier

outputs.

• Classifiers > Queries We now look at the benefits of using a DBN when the number

of classifers that execute are greater than the number of queries. We use the Activity

dataset in this study, since we have raw data for activity inferences, which are typi-

cally the contexts with highest inaccuracy. We look at the performance for the three

activity contexts (walking, driving and stationary), which have highest uncertainty.

We compare two mechanisms: a) using just the activity recognition classifiers, and b)

using all the context classifiers with DBN. We show results for three representative

users in the dataset.
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Figure 4.5. Accuracy and F-Measure for various activity classes for Classifier only mech-
anism and gain provided by Classifier+DBN mechanism on data from 3 users. Results
show that using the DBN is beneficial in most cases, except in the case of rarely occurring
contexts.

Figure 4.5(a) shows that accuracy is worst when we use only classifiers alone, and the

use of DBN improves improve accuracy significantly. The improvement in accuracy

by using DBN for users U1 and U2 is above 24% for both stationary and driving con-

texts. Improvements are small for walking activity (2%) since DBN neither observed

any context strongly related with walking nor the temporal consistency. This was

because walking was a rare context and rarely lasted for longer than a few minutes.

Figure 4.5 (b) shows F-measure for various classes. We see that this metric generally

improves since the main role of the DBN is to correct the outputs provided by the

classifiers and hence, improve recall and precision. Since the DBN performs correc-

tions using the temporal consistency, the recall value for a certain context may drop

if the context is rarely seen and lasts for a very short duration. In our traces, we ob-

served that the walking activity was infrequent. In such a case, if the classifier does

not generate output with high confidence the DBN can smooth out the walking con-

text resulting in reduced recall but higher precision. As a result, F-measure does not

see significant gain. In contrast, the driving context though rarely seen as compared
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to stationary lasts longer and hence, sees improvement in recall and hence, improves

F-measure.

4.6.3 Evaluating Privacy
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Figure 4.6. Cumulative distribution of privacy scores for cross-context pairs in i) Real-
ity Mining dataset (RM), and ii) Activity dataset(AD). From the distribution of privacy
scores, we can conclude that there is significant cross-context privacy leakage in Activity
dataset whereas no such leakage is observed in Reality Mining dataset. This emphasizes
the importance of personalized DBN to evaluate privacy for a user.

In this section, we evaluate two aspects of how CQue can be useful in dealing with

privacy breaches due to correlations across contexts.

4.6.3.1 Location-social relations

In our first experiment, we look at a two sensor scenario and understand the correlations

between these contexts across different datasets. Recall that location is obtained through

GPS and social interactions through bluetooth. We use CQue to understand how a privacy

breach can occur for a privacy-sensitive context through indirect observations. Here, we

assume a strong adversary that has access to the personalized DBN for a user. Potentially,
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Table 4.1. Cross-context privacy leakage in location and social contexts for i) Reality
Mining dataset(RM), and ii) Activity dataset(AD). For activity dataset, we see significant
increase in accuracy for all the location contexts when all the social contexts are observed
and vice versa. For reality mining dataset, accuracies do not change with cross-context
observations.

(a) Privacy leakage in All Location Contexts

Metric
Observation

None All social
contexts

Accuracy (RM) 73.9±3.0 74.81±2.73
Accuracy (AD) 61.11±5.55 88.9±6.26

(b) Privacy leakage in All Social Contexts

Metric
Observation

None All location
contexts

Accuracy (RM) 73.86±2.9 74.18±2.82
Accuracy (AD) 64.01±15.29 87.3±5.94

this is possible if various apps on a phone that observe different contexts decide to collude

and combine their data to generate a complete DBN.

Given such an adversary, a privacy-sensitive context can be inferred by observing one

or more other contexts. Using our privacy score, we can rank contexts in the decreasing

order of its capability to infer privacy-sensitive context. In this experiment, we look two

scenarios: a) all cases where we use one location context as a private context (p) and a social

context o as observation, and b) the reverse scenario where a social context are private and

location is observed. We evaluate privacy score D(p|o) for each pair 〈p, o〉 of contexts.

Figure 4.6 gives distribution of privacy scores for these scenarios for the Reality Mining

and Activity Datasets.

The results are interesting — we see that there is considerably higher correlation across

location and social context in the case of the activity dataset than in the reality mining data.

This is also reflected in Table 4.1, which shows the accuracy of inferring location/social

contexts only based on the prior distribution of these contexts v.s. observing the other

context. The results show that there is only a small change in the case of the RM dataset,
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but the accuracy increases by more than 25% in the case of the AD dataset. In other words,

an adversary would be able to infer an individual’s location with substantial accuracy if

they only had access to the bluetooth information on the AD dataset. Our explanation for

these results is that bluetooth usage is far more prevalent in recent times, therefore the

correlations have increased. Overall, our results show that CQue can be used to provide

intuition about the correlations across contexts, thereby enabling more informed decision

about what to expose.
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Figure 4.7. Fraction of data that can be released to prevent change in adversarial confidence
greater than δ for a private context at home.

4.6.3.2 Suppression policy for privacy

In our second experiment, we look at how CQue can be used to implement a real-

time suppression policy for protecting privacy. Our policy is intended to be representative

and illustrate how the DBN may be used, and we make no formal claims regarding its

privacy properties. In our experiment, the user can define a policy that permits releasing

a maximal set of context observations such that the change in adversarial confidence for

private context upon observing this set is less than threshold δ. As a result, some of the
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non-private contexts can be suppressed in real-time to control the change in adversarial

confidence. Thus, it results in lower utility for the applications seeking contexts. Figure

4.7 gives an example showing the fraction of context data that can be released as a result of

this suppression for various values of δ where we chose at home as the private context and

rest of the contexts as queries. A smaller value of δ results in much tighter privacy control

but releases too few contexts.

Table 4.2 shows the fraction of data suppressed in context of each category: social,

location, and activity for value of threshold δ ∈ {0.1, 0.4}. In this case, we choose at

friend’s place as a private context available in Activity dataset. We can see that CQue

suppresses in an intelligent manner where it suppresses highly correlated social context

more frequently than the less correlated location or activity contexts. If we were to use

a mechanism like MaskIT [70], it would suppress every context at the same level. Since

CQue releases more contexts, it results in higher utility for the applications and the users

who use these applications.

In conjunction, these experiments demonstrate the potential use of CQue both for un-

derstanding privacy implications of releasing a context, as well as to implement privacy

policies that leverage relations across contexts.

Table 4.2. Table showing fraction of data suppressed in contexts of each category to prevent
change in adversarial confidence greater than δ for a private context at friend’s place.

Threshold Social Location Activity
δ Context Context Context

0.4 27.67% 13.99% 17.52%
0.1 26.81% 16.01% 17.35%

4.6.4 DBN with Personalized Classifiers

While all our previous results have assumed classifiers to be black-box code that cannot

be modified, we now look at the case where we can personalize the classifiers using the

human input obtained by the DBN during its learning phase. This feature leverages the fact
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Figure 4.8. ROC curves for activity classes obtained using i) a non-personalized classifier,
ii) a personalized classifier, and iii) DBN with a personalized classifier

that contexts like user activity can see significant benefit with personalization as there are

differences across individuals.

In our experiment, we personalize the classifiers for activity contexts in AD dataset

by training it with additional user-specific labels obtained from the user’s data for training

DBN i.e. the first week of user’s trace. Figure 4.8 gives ROC curves for each activity

class for both personalized and non-personalized classifiers. The ROC curve shows the

performance of the classification mechanism when the discrimination threshold is varied.

A classification mechanism with a larger area under the ROC curve indicates that it is a

better mechanism. In figure 4.8, it can be seen that the personalized classifier tends to have

larger area under the ROC curve compared to the non-personalized classifiers. Moreover,

the area under ROC curve for DBN is always larger than the area for either of the classifier-

based schemes. Except for walking which has a small operating region where the classifier

107



performs better than DBN, the DBN clearly dominates the classifiers over all operating

regions in the ROC. This shows that classifier personalization together with a DBN can

provide the best method to improve accuracy.
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Figure 4.9. Effect of delay on confidence distribution, as we increase delay-tolerance for
queries from zero to three minutes. We consider all the query results that had conf< 0.98
when DBN was used with 0 delay in response (35% of the results), and show how summary
statistics for this group improves as we increase the delay-tolerance for the queries from 0
to 3. The columns in the graph show the range of confidence between the 1st quartile and
the 3rd quartile, the black bars give the 2nd quartile or the median confidence whereas the
blue circular dots give the mean confidence observed.

4.6.5 Impact of Delay

The delay tolerance period provided by queries provides a tuning knob that can influ-

ence results provided by the query engine. In this experimental setup, we study the impact

of increasing value of this parameter on activity contexts in AD dataset. In general, when-

ever the DBN observes a change in context value output by the classifiers, the confidence

of the DBN may drop. This confidence improves with more observations obtained in the

future. Thus, the main role of using a delay-tolerance period is to improve confidence in the

DBN output. Figure 4.9 shows the distribution of confidence when delay-tolerance is in-
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creased. Apart from boosting confidence, the use of a delay-tolerance window reduces the

intermittent misclassifications by the classifiers. We observe that a delay-tolerance period

of three minutes identifies 44 additional misclassifications.

4.6.6 Implementation Benchmarks
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Figure 4.10. Time to generate a dynamic plan selecting best k classifiers where k varies
from 1 to 4. The query set consists of all the contexts available in a DBN. The figure shows
the variation in time as the number of contexts in a DBN, N is varied from 5 to10. The
plan evaluation time increases linearly in k and exponentially in N .

We benchmark our implementation on Samsung Galaxy Nexus phone running Android

OS version 4.1.2. This device has 700MB RAM and 1.2 GHz dual-core processor. In this

evaluation, we look at the following two metrics: i) inference time i.e. the time required to

make a probabilistic inference about a context given a set of evidences from the classifiers,

and ii) plan evaluation time i.e. the time required to generate a dynamic plan for a given

set of queries. All experiments are done using the Reality Mining dataset.

• Inference Time Since the computational complexity of an accurate inference algo-

rithm to infer a context is exponential in number of parent nodes for the context in
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DBN, the actual required time for probabilistic inference varies from context to con-

text and from user to user due to variations in the personalized DBN model structure.

Thus, we measure inference time using traces from multiple users with varying size

of the DBN model. In this experiment, we select one context as a query and use rest

of the contexts as observations. We repeat this experiment for all the available con-

texts for each user. The user traces consisted of 5-11 contexts. Upon evaluation on

Galaxy Nexus phone, we observed an average inference time across all the contexts

and the users to be 9.31± 0.71ms. Also, the fastest context had an average inference

time of 2.13ms for a user trace consisting of 7 contexts whereas the slowest context

had an average inference time of 21ms for a user with DBN model consisting of 11

contexts.

• Plan Evaluation time We evaluate plan evaluation time on Galaxy Nexus phone

for multiple user traces consisting of 5-11 contexts. In this evaluation, we set all

the contexts as queries and measure time to generate dynamic plan selecting best

k classifiers where k = 1, 2, 3, 4. We note that the time complexity of generating

dynamic plan with best k classifiers is linear in k and exponential in N where N is

the number of contexts in the DBN. We show the results in Figure 4.10. From the

figure, we can see that the plan evaluation time increases quickly with the number of

contexts in DBN and requires more than a minute to evaluate best 4 classifiers for a

DBN consisting 10 contexts. This might still be practical if we generate a plan only

when the set of queries change, which might be infrequent. However, if the plan

is re-evaluated every few minutes, this approach quickly becomes infeasible. This

problem can be addressed in two ways: i) using an approximate inference algorithm

with better time complexity, which is part of our ongoing work, or ii) evaluating

the plan in the cloud when its complexity exceeds a certain threshold. Of course,

dynamic plan evaluation on the cloud has the overhead of data transfer of the current
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classifier outputs with the appropriate confidence values. However, the DBN model

itself is not required to be sent to the cloud as it is already trained on the cloud.

4.7 Discussion

In our results, we have demonstrated the utility of CQue framework for energy-efficient

and accurate continuous sensing of user context while understanding the privacy impli-

cations. In this section, we discuss potential opportunities for improvement and various

interesting questions posed by our framework for further exploration.

• Feature-level DBN structure Our current implementation of the DBN supports fu-

sion of high-level categorical contexts that are the outputs of classifiers. While this is

beneficial in that we can take advantage of extensive work on the design of individual

activity or behavior classifiers, the downside is that if a classifier outputs inaccurate

uncertainty estimates, we may have incorrect inferences that can impact the accuracy

of all the related contexts. One way to address this issue may be to use both categor-

ical contexts from classifiers as well as low-level signal features extracted from the

sensor data (e.g. spectral features, mean, variance, etc), and to use combination of

these different inputs towards information fusion for context inference.

• Privacy leakage We have touched upon the issue of privacy leakage by leveraging

correlations across contexts, but CQue does not capture all possible attacks that can

use multi-sensor inference techniques. The privacy leak detection in CQue for a

sensitive context is based on a model of adversary who is aware of the context rela-

tionships in DBN, but it is possible to have an undetected privacy leak if there are

relationships that cannot be modeled by the DBN. For example, the DBN can model

and evaluate privacy leakage over a short window ofW adjacent time steps but it can-

not detect privacy leaks before W time steps. A powerful adversary with alternative

long-term models may still be able to execute privacy attacks. Thus, much work re-
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mains before we fully understand how to effectively understand the extent of privacy

leakage that is possible using sophisticated multi-sensor inference techniques.

• Duty-cycling classifiers One question that we have not fully explored is the inter-

action between duty-cycled classifiers and the DBN. Several techniques have been

proposed to leverage temporal consistency in classifiers for duty-cycling i.e. if the

context value is not expected to change for some time period, then reduce the sam-

pling rate of the sensor. CQue does not currently take advantage of such approaches

to duty-cycle classifiers. One method to incorporate such approaches is to use the

last observed classifier output as evidence in DBN for next few time-steps while the

classifier is inactive. Another interesting question is whether the DBN can be used

to learn the duty-cycle for each classifier. Intuitively, if the current state of DBN in-

dicates that some context, say c, is unlikely to change soon then we can have a lower

duty-cycle for context c where its classifier will remain inactive for a long time.

• DBN learning time How much training data is needed to fully learn an accurate

DBN structure? Although one week of trace proved to be sufficient to learn good

structures in our experiments, it might not be the case in general since there may be

some longer-range patterns that cannot be captured, and the patterns may change over

time. To answer this question, we need larger-scale datasets across more individuals

that can help us understand how to learn the DBN effectively across a population

while limiting burden to provide labels, as well as the learning period.

4.8 Conclusions

Context awareness distinguishes smartphones from traditional computing platforms and

can play a key role in creating smart mobile applications. We argue that user contexts across

several dimensions are correlated, and if we can learn these correlations in a personalized

manner, we can leverage it to improve performance as well as understand the privacy im-
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plications of revealing seemingly unrelated contexts. In this chapter, we described our con-

text querying framework, CQue, that exploits probabilistic relationships across contexts

for each individual user to improve energy-efficiency, accuracy and reliability of context

sensing, as well as the ability to understand privacy implications.

The ability to understand relations across contexts can have far-reaching consequences.

A growing area of healthcare is personalized behavioral monitoring using smartphones and

on-body sensors, where behavioral scientists seek to understand relations between addic-

tive or unhealthy behavior, and the individual’s state in the real world (activities, social

interactions, location, etc) . Our work can enable such understanding, and is a step towards

a “big data inference toolkit” for mobile sensing.
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CHAPTER 5

PREPP: PRACTICAL PREDICTION AND PREFETCH FOR
FASTER ACCESS TO APPLICATIONS ON MOBILE DEVICES

Mobile phones have evolved from communication devices to indispensable accessories

with access to real-time content. The increasing reliance on dynamic content comes at the

cost of increased latency to pull the content from the Internet before the user can start using

it. While prior work has explored parts of this problem, they ignore the bandwidth costs

of prefetching, incur significant training overhead, need several sensors to be turned on,

and do not consider practical systems issues that arise from the limited background pro-

cessing capability supported by mobile operating systems. In this chapter, we make app

prefetch practical on mobile phones. Our contributions are two-fold. First, we design an

app prediction algorithm, APPM, that requires no prior training, adapts to usage dynamics,

predicts not only which app will be used next but also when it will be used, and provides

high accuracy without requiring additional sensor context. Second, we perform parallel

prefetch on screen unlock, a mechanism that leverages the benefits of prediction while op-

erating within the constraints of mobile operating systems. Our experiments are conducted

on long-term traces, live deployments on the Android Play Market with installs on more

than 50,000 phones, and user studies, and show that we outperform prior approaches to

predicting app usage, while also providing practical ways to prefetch application content

on mobile phones.

5.1 Introduction

The success of smartphones has resulted in an explosive increase in the number of

apps available in app marketplaces. Currently, Apple’s iOS app store and Google’s play
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store both have more than 1,000,000 apps available while the Window Phone app store

is catching up with more than 200,000 available apps. Among the most popular apps in

the marketplace are real-time content-driven applications such as News, Email, Facebook,

Twitter, and others that provide timely information to users.

While the utility provided by installed apps has made the smartphone an indispensable

companion to users, it comes with a new set of user experience challenges. Mobile phones

are largely used during idle times in between real-world tasks, and users want information

instantly during these periods. Yet, the reality is that delays in refreshing popular apps like

Email, Facebook, Twitter, News and Weather that rely on network connectivity to download

app content is often of the order of seconds or tens of seconds. The fickle nature of cellular

connectivity means that these apps can have highly variable wait times before the content

is displayed to the user. Prior work has shown that the top apps available in the market

have an average network latency greater than 11 seconds [186]. In short, we face a dire

challenge — app loading times are increasing as apps fetch more content from the cloud,

and the cellular data networks continue to play catch up with these trends.

There have been several prior efforts at tackling the increase in app usage latency, but

ultimately they fall short of addressing a plethora of practical considerations. First, prior

work ignores the freshness of loading predicted apps — for example, Email may be pre-

dicted to be the next application to be used, but should new emails be prefetched now or an

hour later? Second, several past efforts propose to modify either the mobile OS or apps in

order to speed up launch time [164, 186] — these methods lack easy deployability through

app stores or require modifications of 3rd party app source code. Third, prior approaches

propose to use contextual data such as location to improve prediction accuracy. However,

users are often reluctant to install apps that require contextual information, in particular

location context, diminishing the broader appeal of such methods. Fourth, prediction meth-

ods proposed in prior work often have high training requirements (several weeks of data),

but users expect system adaptation within days, not weeks.
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In response, we have developed PREPP1, a preeminently practical approach to prefetch.

By practical, we mean that the two major facets inherent to fast app launch — App Pre-

diction, and Prefetch Execution — have been designed for performance on today’s stock

mobile devices with users seeing immediate launch time speedups. At the core of our

system, we have two models. The first is App Prediction by Partial Match (APPM), a

prediction model that adaptively learns the probability distribution of the apps to be used

next and requires no privacy-sensitive or power-hungry contextual information like loca-

tion. The second model is a Time Till Usage (TTU) temporal model that utilizes the learnt

distribution of time spent before app use to estimate appropriate time for prefetch in a band-

width cost-aware manner – an aspect which is of key importance for prefetching dynamic

application content.

The outputs of the prediction and TTU models are combined in PREPP to dynamically

decide when to prefetch app content, thereby delivering significant fresh content with low

energy overhead, while requiring neither app nor OS modifications. We are able to accom-

plish this by designing PREPP to take advantage of app foreground-background execution

semantics that are common across mobile OSs while operating within their constraints.

We use a combination of a deployment in the Android app store with 7,630 active users,

controlled user study with 22 participants, trace-based analysis and micro-benchmarks of

an Android smartphone to show that PREPP:

• Reaches over 80% accuracy when predicting a top 5 ranking for the next app to be

used. In fact, we perform better than widely used approaches such as MRU, as well

as previous technical proposals [164, 186] while requiring neither privacy-sensitive

location information nor offline training time.

• Delivers content to the user that is on average fresh within 3 minutes, and even up to

1.5 minutes fresh on average for some users.

1Predictive Practical Prefetch
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• Causes negligible additional energy expenditure.

5.2 Background and Shortcomings

In this section, we outline three drawbacks of existing systems that we address in this

work.
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Figure 5.1. Cumulative number of distinct apps used by a representative user and the
number of distinct apps used each day by the same user over a period of 382 days.

1. Slow User Adaptation. Approaches that use prediction-based strategies have suf-

fered from prediction model training cold-start: once a user starts to use the system,

it has taken as long as 3-6 weeks of data collection before meaningful predictions can

be made [186]. Unfortunately, for mobile systems where time and attention spans are

limited, users expect benefits within days, not weeks, particularly since app usage

patterns continually change over time. For example, long-term traces of app usage

(e.g. LiveLab iPhone usage dataset [163]) show that users download more than one

hundred apps each year, and use them only for a few weeks or months. Figure 5.1

plots how app usage varies over the course of a year for a representative user in the
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RiceLabs iPhone usage dataset [163]. Clearly, the cumulative number of distinct

apps increases over the period of a year, motivating the need to adapt. Therefore,

prediction systems that require lengthy training periods are not suitable.

2. Lack of Freshness. Prior work only answers the question of which application will

be used next and not when it will be used. Predicting when an application will be

used is particularly important when optimizing freshness of prefetched application

content. For example, Email may be predicted to be the next application to be used,

but should it be prefetched now or an hour later? Prefetching content frequently

would incur bandwidth and energy overhead, and infrequently would result in stale

content. Therefore, temporal prediction is an important missing piece for cost-aware

prefetch.

3. Ease of Deployability. Mobile OSs have unique constraints that make it difficult

to implement a practical prefetch system. Hence existing approaches either propose

modifications to mobile OSs [186], or modifications to the app source to prefetch

content [77]. However, this hurts their deployability — even with an open source

system like Android, manufacturers often lock down the OS bootloader such that

unsigned OS changes are not installable. Similarly, a potential approach that aimed

to modify only the server push decision algorithm would also lack deployability be-

cause push notification infrastructure is under OS vendor control [81] and is not

accessible for modification. Finally, approaches that propose to modify only apps

are challenged with the necessity for access to and modification of 3rd party app

source [77]. These constraints from the OS and Apps are unlikely to change anytime

soon. While modifications to the OS or apps represent useful design alternatives,

a key question that has remained unanswered is whether it is possible to design an

easily deployable, store-compatible prefetching system for mobile devices.
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5.3 Requirements

Our goal is to design PREPP, a practical prediction and prefetch system that satisfies

the following key requirements:

• PREPP should require a small training overhead, and be able to converge to high

accuracy within a small number of days of use, while adapting to changing usage

patterns and applications quickly.

• PREPP should maximize freshness for applications that need to update their content,

while minimizing the resource overhead incurred in terms of network access and

energy cost.

• PREPP should work on unmodified off-the-shelf phones and bring speedups to exist-

ing apps, thereby making it immediately deployable to mobile app stores, installable

on current mobile OSs and usable by all mobile users.

The next three sections address these requirements.

5.4 PREPP System Design

The problem that we solve in PREPP can be defined as follows: given a sequence of

content-based apps that a user has used, and the times when the user has used them, can

we prefetch content in a timely manner while keeping the overall network prefetch costs

low. This high-level problem can be divided into three sub-problems: a) can we accurately

predict what app is going to be used next? b) can we predict when that app is going to be

used next? and c) can we decide when to prefetch to maximize freshness while keeping

network access costs bounded? We describe next the three key system components in

PREPP that accomplish these goals.
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5.4.1 App Prediction Algorithm

The problem of app prediction is as follows: given the app usage sequence for an

individual, can we predict what app the user is likely to use next? Intuitively, this problem

has parallels with text compression, where the preceding character sequence can be used

to determine the most likely next character, which in turn can be leveraged to compress the

text. (For example, a character following the sequence natio in English language is highly

likely to be n). Similarly, one can view each app as a “character” and the sequence of app

usages as a character stream, and apply text compression techniques to our problem. We

now look at what text compression algorithm to leverage, and how to adapt it to our needs.

One of the widely used methods in text compression is Prediction by Partial Match

(PPM) [41]. At a high level, PPM operates by scanning character sequences, and building

up a variable-length Markov-based predictor on the fly. PPM uses the longest preceding

character sequence to compute the conditional probability distribution for the following

character. To compute this conditional probability distribution, PPM maintains frequencies

for characters that have been seen before in all prefix-sequences that have occurred before,

up to some maximum order, where order is the length of the prefix. For example, PPM

with order 3 maintains frequencies for all prefixes of length 3, 2, 1, and 0 as shown in

Table 5.1. To predict what character is likely to appear next in the stream, PPM computes

the conditional probability for each character given the highest order node having a non-

zero frequency for the character and scales it using weights, with weights being highest for

the longest prefix, since longer matches often provide more precise contexts for character

prediction.

Since PPM is designed for text compression rather than app usage patterns, we need to

address some of the differences between these two cases. The main difference is that in text

prediction, the longest prefix is often the most relevant, whereas in app usage, both long

and short prefixes can be highly informative. For example, we found that in some cases,
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Table 5.1. Example of PPM nodes for current context sio in string
“sionofionsionofofioroforofsiotofsio”. Nodes for prefixes sio, io, o and empty se-
quence φ along with character frequencies, sum of frequencies for characters in node that
are not present in higher order node (Tm), PPM weights wm =

∏3
i=m+1

1
Ti+1

and APPM
weights given by the prediction accuracy observed for the node are shown.

Order prefix
character frequency

Tm
PPM APPM

n t r f s o wm wm
3 sio 2 1 3 1 0.5
2 io 3 1 1 1 1

4
0.5

1 o 3 1 2 6 6 1
4.2

0.64
0 φ 3 1 2 6 4 12 16 1

4.2.7
0.38

a user tends to strongly favor recently used items whereas in other cases, a user exhibits

highly sequential app usage behavior.

We address this issue by allowing the prediction accuracy from the different orders

in PPM determine how they are weighted. Thus, we do not make strong assumptions

about what length prefixes are likely to be useful, and instead let the empirical accuracies

from prior predictions dictate which nodes are favored. With accuracy-driven weights, we

compute weighted sum of the outputs of predictions from each of the prefix nodes. In

this manner, APPM’s vocabulary is personalized to each user, and can learn their preferred

patterns over time. Table 5.1 shows an example scenario where APPM weights are given

by accuracy obtained using the top-2 predictions for each node.

In summary, APPM is an appealing app prediction algorithm that satisfies our key re-

quirements: (1) it has low training overhead — incremental training requires O(1) oper-

ations that involve a simple increment of counts, (2) it continuously adapts to changes in

the sequence’s character distribution by discounting older history, and (3) it learns what

prefixes are likely to be more useful for prediction and places its bets appropriately.

5.4.2 Temporal Modeling

One of the limitations of prior work on app prediction is that it does not consider fresh-

ness, i.e. how recently an application’s content was prefetched prior to an application use.
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Figure 5.2. The cumulative probability distribution of Email to be launched as the next app
as a function of time till usage, obtained for a representative user.

Consider the following naı̈ve prefetch example — every time CQue predicts that Email will

be used as the next app, prefetch Email. This has high freshness if Email is used immedi-

ately but has poor freshness if the user opens Email an hour later. An alternative might be

to prefetch Email every, say 10 minutes, until the user opens Email. But this suffers from

high network access overhead if the delay is of the order of an hour or more. Clearly, if we

want to optimize cost, we need to first predict when an app is likely to be opened next.

The question we are addressing here is: If we have just opened an app, and if we know

that the next app to be used is e, what is the probability that e will be used in time interval

∆t from the current time (denoted p(TTU ≤ ∆t|nextapp = e), where TTU , time till

usage for nextapp, is the time that elapses between the current time and when the nextapp

is used). Note that we only need to evaluate this probability every time an app is used (we

refer to this as an app-change event), since no additional information is available between

app usage events.

To answer this, we learn the conditional cumulative distribution function (CDF)FTTU |nextapp=e

for an app e from the app usage history. Given an app usage history [app1, ..., appn] where
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appj is the jth app used and launched at time tj , we can learn the conditional CDF using

the distribution of all durations (tj−tj−1) such that appj = e. Figure 5.2 shows an example

of the conditional CDF obtained for a representative user where nextapp being modeled is

Email. The conditional CDF is computed from a user trace of app usages obtained from

LiveLab iPhone usage dataset [163].

5.4.3 Decision Engine

Our decision engine executes on each app-change event and utilizes the prediction

model and the temporal model to decide when to prefetch an app such that it balances

the need to improve freshness, while at the same time limits the network bandwidth costs

associated with frequently connecting to a server and downloading the data from it. The

output of the decision engine is the time ∆t we should wait from the app-change event to

execute prefetch.

Recall that our prediction model predicts what app is going to be used next and the

temporal model predicts when some app will be used assuming it knows what app will be

used next. Our decision fuses the uncertainty in what and uncertainty in conditional when

to get the joint estimate of the probability of some target app nextapp to be used next within

some time interval(∆t). Let us denote this probability using pfetch. Now, if we choose to

prefetch after time ∆t has elapsed, then with probability 1 − pfetch, the next app will be

used after prefetch and will see a freshness benefit of ∆t, and with probability pfetch, the

next app is opened prior to prefetch and it will see no benefits in freshness. If we select

a small value for pfetch, it has two effects: a) more apps are prefetched since even apps

that are predicted to be opened next with low probability will qualify for prefetch, and b)

∆t will be smaller and hence, we will typically prefetch apps quickly. This means higher

bandwidth cost and apps used a while later see less prefetch benefit. On the other hand, a

higher value of pfetch means fewer app prefetches and longer ∆t and hence, we prefetch
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less frequently but the fewer target app usages that benefit from it see better freshness due

to larger ∆t benefit.

Thus, the key question for the decision engine is how to choose pfetch to balance fresh-

ness and bandwidth cost. To address this, we set a target bandwidth cost for each app, and

learn from history the largest possible value of pfetch that would have been within the target

cost while ensuring the least missed opportunities. This learning is not expensive since we

only need to make a decision upon each app change event, which restricts our search space.

We now present our intuition in a more formal manner.

5.4.3.1 Algorithm

Our prediction model can be used to compute the probability p(nextapp = e) and

our temporal model gives us the probability of nextapp = e being used within time ∆t

conditioned on e being the next app. This probability is provided using the conditional

cumulative distribution function FTTU |nextapp=e(∆t). The decision engine fuses these two

outputs multiplicatively to obtain a cumulative distribution function (FTTU(∆t)) that can

be used to compute the probability of e being used as the next app within the time interval

∆t.

FTTU(∆t) = p(nextapp = e)× FTTU |nextapp=e(∆t)

Once the distribution function FTTU is known, we need to choose a threshold pfetch that

balances freshness and cost as described earlier. We define network bandwidth cost (C) as

the multiplicative factor of the rate of use of the target app. Thus, if a target app is used

N times then the number of prefetches can be at most N × C. Given such a cost C and

app usage history, we can estimate the appropriate value for pfetch to limit the cost to C.

The detailed description of our algorithm can be found in Algorithm 2, but intuitively, if

there are N occurrences of nextapp in the user’s history, the multiplicative cost is C and

we know the probability values attained by the joint distribution function FTTU just before
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each app-change event in the history, we pick the NCth largest probability value as pfetch

since it results in exactly NC prefetches on the historical trace.

Algorithm 2 Compute Time To Prefetch
1: Input: Network Bandwidth Cost C; TTU distribution function for target app FTTU ; TTU

probability history d[1...L]; Count of target app in user’s history N .
2: Output: Time to wait for prefetch ∆t.
3: Sort d in decreasing order.
4: p = d[Ne ∗ C] i.e. NCth highest TTU probability.
5: ∆t = F−1

TTU (p).
6: return ∆t

5.5 Trace-driven Evaluation

In this section, we evaluate the benefits of our techniques using long-term app usage

traces provided by the LiveLab project at Rice University [163]. This dataset consists of

traces for thirty four volunteers collected on iPhone 3GS for a period of up to fourteen

months. We look at the app-usage traces from this dataset, which provide the start time

and the duration of each app usage observed on the phone. In addition, we use location

traces to obtain the location where apps are used. Since location traces are obtained at a

coarse granularity compared to app usage data, we interpolate location information to find

the missing location information for app usage data. In all, we have 576,491 records of app

use across 14 months.

Table 5.2. Freshness obtained using APPM when varying bandwidth budget. APPM w/
TTU model delivers better freshness, especially for low bandwidth budgets. Three quartiles
of observed freshness values for Facebook app are shown at varying bandwidth budgets of
2x, 4x and 8x (Evaluated on 34 users from LiveLab dataset).

Cost Algorithm Freshness(in secs)
25-%ile 50-%ile 75-%ile

2x
APPM w/o TTU model 83 383 1966
APPM w/ TTU model 68 286 1334

4x
APPM w/o TTU model 41 190 928
APPM w/ TTU model 37 155 691

8x
APPM w/o TTU model 26 111 506
APPM w/ TTU model 26 104 452
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Figure 5.3. Freshness observed using i) No prefetching (NOOP) ii) Previously proposed
scheme (Falcon), and iii) our APPM prefetch algorithm. While the previous scheme im-
proves median Email and Facebook freshness to 7 and 8 minutes, respectively, APPM
further improves freshness to 3 minutes at the same bandwidth cost.

5.5.1 Prefetch Effectiveness

We evaluate the effectiveness of our prefetch algorithm and compare it with Falcon [186]

which is the only other known scheme for app prefetch. Figure 5.3 shows the results for

two heavily used apps that can leverage prefetch, Email and Facebook. Since Falcon can-

not control the bandwidth costs, for a fair comparison, we evaluate our APPM+TTU model

based prefetch scheme using the same bandwidth cost as observed in Falcon. The median

freshness (i.e. the time period between the latest network data fetch and the time of actual

app use) with the Falcon scheme is near 8 minutes for both the apps. Our scheme improves

freshness by reducing median freshness to 3 minutes. Note that for the ‘No prefetching’

case, we computed freshness as the time elapsed since last use of the app assuming that the

app is refreshed by a user upon each use.

In addition, we evaluate the effectiveness of temporal modeling in our scheme by com-

paring it against a APPM-based scheme which prefetches on app-change events whenever

the probability of the target app predicted by APPM algorithm is above a certain threshold.

The threshold value in this scheme is determined by the bandwidth cost. Table 5.2 shows

the benefits of using TTU model in 3 quartiles of observed freshness in Facebook app for
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various costs. We see that the benefits are significant, particularly at low bandwidth costs.

The median freshness improves by 25% for 2× and 4× cost, demonstrating the benefit of

incorporating TTU into the algorithm.

Table 5.3. Aggregate prediction accuracy over all users obtained using APPM with and
without various contexts. Additional contexts like Time of Day and Location provide only
a marginal improvement in accuracy.

Context Used Prediction Accuracy
None 80.85%
Location 81.10%
Time of Day 81.23%
Location, Time of Day 81.35%

5.5.2 Utility of location context

As described earlier, several prior efforts at predicting application usage have pointed

out that location context is very useful [164, 178, 186]. Yet, obtaining location is often

undesirable due to user privacy concerns as well as energy overhead. Therefore, we inves-

tigate the actual utility of location data and whether we can forgo it. Interestingly, we find

that app prefixes largely subsume the need for explicit location.

To understand whether location contexts improve prediction accuracy, we design a

multi-context version of APPM which includes a different predictor for each location con-

text (e.g. home, workplace, etc), and one for each time-segment of the day (e.g. morning,

afternoon, etc). Given several context-specific predictors, we compute a weighted combi-

nation of these models to predict the next application. Table 5.3 shows the performance of

a single predictor that does not use any context, as well as predictors that use additional

contexts. The benefits of additional context is surprisingly small, a puzzling observation

given observations made in prior work. A closer look at app usage patterns in different

location contexts provides an interesting explanation. As it turns out, “contextual” infor-

mation is partially captured by the app sequences that are used only in a specific context

e.g. Angry Birds at home. We further validated this by looking at the distribution of loca-
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tion contexts for each prefix used by APPM for a representative user who had 14 semantic

locations ( Figure 5.4). We observed an 80th-percentile entropy of 2.0 bits indicating that

a large number of app prefixes have location information encoded in them. If the prefixes

had no correlation with location, then the entropy would be close to 3.8 bits corresponding

to the 14 semantic locations.
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Figure 5.4. CDF of entropies observed in locations for each app prefix for a representative
user. This user had 14 semantic locations that should result in a maximum entropy of
log2 14 = 3.807. The 80%-percentile entropy of 2.0 indicates that large number of app
prefixes have location information encoded in it.

Table 5.4. Comparison of APPM with previous app prediction algorithms when making
Top-5 predictions. APPM performs better than schemes using location and time context.

(a) Predicting all apps in the user traces

Algorithm Prediction Accuracy
MFU 48.81±1.08 %
2-NB 74.87±1.60 %
3-NB 78.81±1.34 %

APPM 80.85±1.23 %

(b) Predicting follower apps in the user traces

Algorithm Prediction Accuracy
Falcon 70.16±1.56 %
APPM 74.37±1.41 %
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5.5.3 Prediction Evaluation

Tables 5.4(a) and 5.4(b) present a comparison of prefix-only CQue against previously

proposed prediction techniques including: a) Falcon, which uses location and time contexts

[186], b) 2-NB: a Naive-Bayes prediction model that uses location and time-of-day as

features [178], c) 3-NB: a Naive-Bayes prediction model that uses location, time-of-day

and previous-app-used as features [27], and d) a strawman Most Frequently Used (MFU)

algorithm.

Table 5.4(a) compares prefix-only APPM against all schemes except Falcon, and Ta-

ble 5.4(b) compares against Falcon. We separated these results because Falcon only pre-

dicts occurrences of apps that follow the first app used upon unlocking the screen. The

results show that the prefix-only version of APPM performs just as well as algorithms that

use additional contexts including location.

5.6 Practical Prefetch Considerations

Mobile operating systems such as Android, iOS and Windows Phone support a set of

runtime semantics distinct from their desktop OS counterparts. A central challenge in the

design of a practical prefetching system is managing the limitations posed by these mobile

operating systems. While the remainder of our discussion centers around Android, the

design decisions are in fact standard to modern mobile OSs, and apply to iOS and Windows

Phone as well.

5.6.1 Addressing Android constraints

Android places several constraints on the scheduling and resource usage of foreground

and background threads and processes. The constraints that directly impact the design of

prefetch mechanisms are two-fold. First, main threads are not scheduled when the device

enters the standby state (which occurs either due to an idle activity timeout or an explicit

user button toggle). This means that main threads can only run when the device is active.
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Second, apps are restricted from performing networking activities on the main thread as

it can make an app unresponsive if there is slow or no network connectivity. Thus, the

standard model is that apps fetch network data by spawning background threads from the

main thread.

We examined the behavior of several apps that could be potential prefetch candidates

and found that all of them rely on the main thread to be active to fetch content or load state.

For example, Facebook and Email rely on network fetch and initiate background threads

for network calls from the main thread when the app is opened and appears on the screen.

Thus, it was clear that we could not initiate prefetch during times that the device was turned

off, leaving us with the times that the device was actually unlocked and in use.

A closer look at applications that require content refresh reveals that they often auto-

refresh upon opening the app and/or upon re-starting the app. This means that once auto-

refresh is triggered by the main thread, the asynchronous network fetch task is created and

the app can be pushed to the background. Thus, we only needed to bring the app to the

foreground for the small amount of time that it needed to initiate auto-refresh. An empirical

study of the minimum amount of time needed for an app to be brought to the foreground

showed that it ranges from 200ms for apps like Email to up to 1 second for Facebook. Note

that even if auto-sync is turned off for an application, it is possible to kill and re-start an

app, at which time it automatically updates its content.

5.6.2 Minimizing disruptiveness to user

Next, we ask what is the most suitable time for prefetch such that it is minimally disrup-

tive to user experience. During periods when the device is actively used, three opportunities

present themselves: a) when the screen is unlocked and before an application is started, b)

transition times between usage of applications in the same session, and c) between an app

being closed and the phone being turned off. While all three are viable, we find that the

most convenient option is prefetch upon screen unlock since it allows us to prefetch imme-
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diately prior to a user opening an app. Our approach uses k-step prediction, where APPM

predicts which apps to prefetch among the next k applications that were going to be used.

Previous work has analyzed typical session lengths and found that these are typically short

[186], therefore a two-step prediction is sufficient for deciding which apps to prefetch upon

screen unlock.

5.6.3 Minimizing energy overhead

The energy consumption in executing prefetch is another consideration that impacts our

design. Prior work has shown that data transfer using cellular incurs a tail-energy overhead

as the phone’s radio remains in active mode for another 10-20 seconds after data transfer

is complete [51]. Therefore, batching transfer can provide energy savings in the range

62-75% for 3G networks. We leverage this insight to reduce prefetch cost by executing a

number of prefetches in parallel. In PREPP, two-step look ahead allows us to merge all the

prefetches that are scheduled to execute within 30 seconds of each other and execute them

in parallel.

5.7 Practical UI Considerations

Users not only want the right app to start quickly, they also want to find the right app

quickly from amongst the many they have installed. In response, we employ APPM predic-

tions for a second purpose: deciding which app shortcuts to display to users on an adaptive

shortcut menu.

The idea of adaptive shortcut menus for smartphones has existed for some time [26,

30, 179]. Our approach is a synthesize of the best practices from this line of work, in light

of the practical UI constraints imposed by a representative commodity OS, Android. In

addition, our use of APPM with its ability to operate without training means that our adap-

tive shortcut menu adapts much more quickly than previous menus. The PREPP adaptive
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shortcut menu design addresses the following user-facing questions: when, where and what

to display.

• Where: While it is possible to supplant the Android shell with a non-standard shell,

such a change would significantly limit potential users because users seldom install

new shells. Moreover, recent studies have found that too much home screen dynam-

icism leaves users feeling confused and out of control [164]. Instead, users prefer

split menus [159] that augment rather than replace their existing distinct icon ar-

rangements [28]. Therefore, our adaptive shortcut menu is presented as an Android

widget which can be added to an existing home screen palette.

• When: Just like apps, a widget’s main thread is only scheduled when they are in the

foreground. Therefore, a widget’s opportunities to execute are the same as mentioned

for apps in Section 5.6. Since APPM predictions can be made very efficiently (as

shown in Section 5.9), we opt to have the adaptive shortcut menu update upon unlock

and between app transitions. As a result, users always see a very adaptive prediction

of upcoming apps.

• What: Figure 5.5 shows a screenshot of our PREPP adaptive shortcut menu Android

prototype. Shortcut icons for the top five predicted apps are shown, and the user can

click on any of them to jump directly to it with immediate prelaunch speedup. In

addition, a timer beneath each shortcut indicating time since prefetch informs users

about content freshness.

5.8 Implementation

To implement the APPM algorithm on Android, we ported the PPMII implementation

from D. Shkarin et al. [165] in C++, and modified it to implement our ranking scheme

for predictions. Since Android apps are written in Java, we implemented a Java wrapper
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around this code using Java Native Interface so that other components implemented in Java

can interact seamlessly with the predictor.

In addition to prefetching content automatically, we also integrate a dynamic home

screen widget that leverages predictions from APPM to allow users to quickly find apps

among the many that they have installed. The idea of adaptive shortcut menus for smart-

phones has existed for some time [26, 30, 164, 179]. Our PREPP widget builds on prior

work, with the change that we update the widget not only when the device is unlocked, but

also when the user returns to his homescreen after closing an app. This provides the user

with a higher degree of adaptiveness.

Figure 5.5 shows a screenshot of our PREPP adaptive shortcut menu Android proto-

type. Shortcut icons for the top five predicted apps are shown, and the user can click on

any of them to launch it directly. In addition, a timer beneath each shortcut indicating time

since prefetch informs users about content freshness.

Since a user may have sensitive apps like banking applications or apps that use privacy-

sensitive information like location upon start, we do not prefetch any app by default. In-

stead, we provide users with an interface to select the apps they want to prefetch. This

interface provides users with a greater control regarding which apps get prefetched.

5.9 Experimental Evaluation

In this section, we present an evaluation of our implementation through two user stud-

ies. We first describe our controlled user study where we evaluate benefits of prefetch

in detail. Next, we describe our experiences deploying our prediction algorithm part of

PREPP to Google Play Store and study its impact on real users in the wild. Finally, we

conclude with benchmarks characterizing system overhead for our implementation.
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Figure 5.5. PREPP’s adaptive shortcut menu placed on the homescreen as a widget.

5.9.1 Controlled User Study

In order to perform a detailed evaluation of the prefetch benefits from PREPP, we

conducted a user study2 consisting of 22 users. Of these 22 users, 6 users used PREPP for

at least two weeks, segmented as follows: (1) one week of control data with no prefetch,

and (2) one week of data with prefetch active, and the multiplicative bandwidth cost C set

to 2. The remaining 16 users had a control and test period of 3 days and 4 days respectively.

Recall that PREPP performs prefetch by bringing an app to the foreground for a brief period

upon unlocking the phone screen. To make users unaware of whether it was the control or

experimental period, apps were brought to the foreground during the control period without

actually performing any content fetch activity. Note that for the controlled user study, we

disabled the adaptive shortcut menu shown in Figure 5.5.

The primary metric for evaluating the benefit of prefetch during app usage is the in-

crease in freshness of content. Content freshness reflects how recently content was retrieved

at time of use, and is measured as the time between prefetch and app usage.

2Study conducted with appropriate IRB approval
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Figure 5.6. Prefetch using APPM algorithm achieves better content freshness than 15-
minutes polling at a fraction of cost (number of polls were 3.58× number of prefetches).
The median freshness improves from 1955s (no prefetch) to 247s with polling and to 162s
with prefetch.

Figure 5.6 shows distributions of freshness observed for all users during the control

period with no prefetching and the test period with active prefetching. Also, we show the

distribution that can be achieved via 15-minutes polling for the test period as polling is

the most popular way of refreshing app content on phones. We see substantial freshness

benefits across the board, with an order of magnitude improvements across all three quar-

tiles. The median freshness improves from 32.6 minutes to 4.1 minutes with polling and

to 2.7 minutes with prefetch. Most importantly, the number of polls during test period are

3.58× the number of prefetches. Thus, APPM achieves better freshness than polling at

a much smaller cost. Also, the median freshness with prefetch for 16 users with 3-days

control period and 6 users with 7-days control period are 3.6 minutes and 2.06 minutes

respectively.

Additionally, we measure prefetch effectiveness using precision i.e. the fraction of

prefetches that were followed by a respective app usage and recall i.e. the fraction of app

usages that were preceded by a respective prefetch. The average precision and recall values
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Figure 5.7. APPM yields high accuracy and adapts quickly to usage of new apps.

observed for all the users are 22.12% and 46.87% respectively. In contrast, 15-minutes

polling has 3.82% precision and 28.97% recall.

5.9.1.1 Prediction Accuracy and Adaptivity

We now show that APPM requires very little training and adapts rapidly to changing

user behavior. Figure 5.7 shows the time-series trend for a representative user — the bar

graph below shows the number of unique apps seen by APPM over time, and the upper bar

graph shows APPM’s accuracy on those days based on top-5 predictions.

The results suggest two interesting conclusions. First, we see that accuracy with top-

5 predictions is extremely high (95%) even on the first day, and our average prediction

accuracy is 81.89±3.9%, both of which are very high. Second, we see that APPM adapts

well to usage dynamics — for example, we see that on day 4, the user invokes a large

number of new apps that are previously unseen by APPM, As a result, prediction accuracy

drops for the day, but rapidly improves again on day 5. We see similar fluctuations between

day 7 to day 10 where new apps are used. These results validate the adaptive capability of

APPM
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5.9.2 User Study in the Wild

Next, we study PREPP in the wild, and specifically focus on the prediction perfor-

mance. We packaged the adaptive shortcut menu widget with APPM prediction and other

state of the art prediction algorithms and released them as a standalone download — called

AppKicker3 — on the Google Play Store.

5.9.2.1 Methodology

We compared APPM with two other prediction algorithms: i) Most Recently Used

(MRU), which is used by all major mobile platforms to show MRU app shortcuts; and

ii) Sequential (SEQ), which uses only the previously used app to predict the next app, as

suggested by previous work [27, 164].

We used a within-subject A/B/C design to test and compare the different prediction

strategies; whenever a new prediction is requested, we randomly choose one of APPM,

MRU or SEQ for prediction. We tracked how users interacted with the icon menu with

each prediction algorithm. However, our evaluation is limited in that we cannot know what

other icons users have on their home screens. For example, we might recommend apps that

the user has already pinned to his home screen, or we might not catch app launches that the

user initiates outside of our launcher widget.

5.9.2.2 Results

At the current time, the widget has been installed more than 50,000 times and has

more than 7,630 active users.4 Note that both PREPP installation and participation in the

research study are voluntary. As soon as a user starts PREPP, we present a research study

disclaimer and offer opt-in consent. Following the Two Buttons Approach [141], users can

decline from contributing data but still use the application. For a fair comparison of the

3http://goo.gl/wZO0C

4According to Android Developer Console
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Figure 5.8. APPM yields better click-through rates for more highly ranked apps.

different prediction algorithms, we report results for the top 100 users as ranked by click

volume. These users had a median of 112.5 clicks (min 62, max 1,807). This resulted in

16,991 clicks in total.

Figure 5.8 shows the click-through rate as a function of the prediction algorithm’s rank-

ing. APPM yields a click-through rate of 38.1% on its top ranked app, whereas MRU and

SEQ produce only 27.7% and 35.4% respectively. Similarly, APPM outperforms other

prediction algorithms at other ranked positions as well. APPM’s more accurate predictions

and better app rankings result in more opportunities for effective prefetch.

5.10 Microbenchmarks

5.10.1 System Overhead

We measure the system overhead of our implementation on the Samsung Galaxy Nexus

Phone. Table 5.5 shows the overhead summary of PREPP. Using APPM for prediction

and prefetch decision requires less than 250µs and 5ms respectively. This overhead is

sufficiently low that a prefetch upon unlock is not an issue. The memory requirement of

6.5MB is modest and remains stable during execution. This suffices for running all required
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background services, keeping statistics for prediction in memory, and keeping uplink state

to collect user trace.

Table 5.5. System overhead

Binary Size 0.96MB
Memory 6.5MB
Time for prediction <250µs
Time for prefetch decision <5ms

5.10.2 Data Overhead

In this evaluation, we define two categories of apps that can use prefetching and evaluate

the data overhead. We use data overhead observed for each app to set the app-specific

multiplicative bandwidth cost C to be used by the decision engine.

5.10.2.1 Persistent data apps

In this category of apps, when refreshed, the apps fetch all the new-arrived data since it

was last updated and save the data locally for later retrieval. Example of such apps include

Email, Dropbox and Evernote. The data usage in these apps is proportional to the size of

payload being fetched. These apps can fetch their payload in one or more prefetches but the

actual cost of payload fetch remains independent of the number of prefetches. However,

each prefetch incurs a constant overhead that is needed for the synchronization protocol and

makes multiple prefetches expensive to execute. We can compute this constant overhead by

observing the total data usage as we increase the payload size linearly. By fitting straight

lines to these observations, we can solve for the constant. Using this, we estimate constant

overhead to be 8447 bytes for the Email app and 2659 bytes for Gmail app.

5.10.2.2 Live feed apps

This category of apps receives the latest feed from the server. In contrast to Email app,

these apps do not fetch all the new feeds since the last update but only the most recent ones.
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Figure 5.9. Data usage per refresh for popular apps.

Example of these apps include Facebook, News and Weather, BBC news, etc. Depending

on the nature of feed, the size of the feed can be near constant (e.g. live game scores) or it

can vary significantly (e.g. Facebook where the number of images and the amount of text

in a feed vary). While most of these apps will discard the previous feed upon refresh and

fetch the feed again, there are a few apps like Flipboard that fetch only the change in feed

since the last update. Overall, the data overhead in these apps is equal to the data used in

receiving the new feed. Figure 5.9 shows average data usage for popular apps observed at

various times of day.

5.10.3 Energy Consumption in 3G

We now compare energy consumption for refreshing app content in i) prefetch scheme,

and ii) manual refresh. We note that a user refreshes app by opening each app in a se-

quence. In contrast, our prefetch scheme identifies all the apps that need to be refreshed

as soon as the phone is unlocked and starts fetching content for all the identified apps in

parallel. Consequentially, the power consumption characteristics are different for prefetch

and manual refresh. Now, we show that our prefetch scheme using parallel fetches reduces

140



the energy overhead per app-prefetch, and can save energy up to 47% in comparison to

manual refresh if the app predictions are accurate.
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Figure 5.10. Power consumption characteristics for fetching network data shown for
3 apps: Google+, Play Magazines and News & Weather. Google+ has highest data
usage(>300KB) whereas News has the least data usage(<10KB). Figure 5.10(d) gives
characteristics when all these 3 apps are fetched in parallel.

Figures 5.10(a)-5.10(c) show power consumption characteristics of network data-fetch

for 3 distinct apps on a 3G network with different levels of data usage. Also, Figure 5.10(d)

shows power characteristics when data is fetched for all these 3 apps in parallel. We mea-

sured this using Monsoon Power monitor on Galaxy Nexus phones running on AT&T’s 3G

network. In these figures, the first phase with high power consumption is the data transfer

phase, followed by a period called the tail up to 17s in length when there is no data transfer

but the power consumed remains above 1000mW. In the end, we see a baseline power of

783mW required to keep the screen and cpu running on the phone. It is easy to see that
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Table 5.6. Energy consumed in parallel fetch vs sequential fetch of content for 3 distinct
apps. Parallel fetch saves 39.34% and 47.14% energy in data transfer phase and total re-
spectively.

Energy Consumption(in µAh)
Data Transfer Phase Total

Sequential 2320.04 3547.25
Parallel 1407.31 1875.00

parallel fetch has an advantage over sequential fetch as it incurs an energy overhead of 1 tail

instead of 3 tails in the worst case for a sequential fetch. Apart from energy consumed in

the tail, the energy consumed during the data transfer phase in parallel fetch is smaller than

the total energy consumed in all the data transfer phases of sequential fetch of all the apps.

Table 5.6 shows the average energy consumed in parallel and sequential fetch obtained over

several runs. In this computation, we subtract the baseline power to accurately estimate the

energy consumption for network fetch. We see that the parallel fetch uses 47.14% less

energy than sequential fetch. Thus, if apps are predicted accurately, our prefetch scheme

can potentially save energy. But if the predictions are inaccurate, energy in prefetch can

go waste. In the worst case, the energy consumption of 1875µAh for prefetching 3 apps in

parallel accounts for 0.13% of the 1400mAh battery available on the Galaxy Nexus phone.

This overhead is further reduced if upon unlocking the phone, a user starts some app that

connects to the network to fetch data or an advertisement or if some widget initiates a net-

work connection. This is because a prefetch will occur in parallel with a user-initiated or a

widget-initiated fetch.

5.11 Related Work

PREPP relates to three distinct lines of prior work:

• App Prediction: In the wake of increasing availability of apps in phone’s app stores,

a number of algorithms have been proposed for utilizing contextual information in

app usage prediction. Verkasalo et al. [178] found that location and time of day are
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the most useful contexts in app usage prediction. The study by Böhmer et al. [27]

showed that in addition to location and time contexts, the last app used by a user is

a useful predictor for the next app. Yan et al. [186] proposed Falcon that uses the

first app opened upon phone unlocking to predict the following apps. Most recently,

Shin et al. [164] analyzed a variety of contextual information like accelerometer,

WiFi, SMS, GPS, last used app, etc. to build app-specific naive-bayes predictors

by selecting the best set of contextual features for each app. In contrast to all these

works, our APPM algorithm does not use any of power-hungry or privacy-sensitive

contexts but utilizes only the history of sequence of app usages in prediction, and

does not require a long training period unlike previous efforts.

• Mobile Web Content Prefetch: Prefetching in mobile phones has recently received

attention from the research community [19, 77, 186]. Higgins et al. [77] argue for an

OS-supported API for prefetch where third party apps are expected to provide hints

to execute prefetch. Such a model for prefetch requires modification of third party

apps to learn the temporal model. In contrast, PREPP does not require any modifi-

cation of the OS or third party apps. Yet, PREPP is complementary to this work in

that APPM can provide hints to a potential OS-supported API on behalf of legacy

third party apps. FALCON [186] considers prefetch under a fixed energy budget,

but requires extensive modification of the OS and some apps, requires long training

periods, and does not offer as accurate prediction as PREPP. Balasubramania et al.

[19] proposed the TailEnder protocol that minimizes energy usage while prefetching

and meeting user-specified delay tolerance. However, they do not take usage behav-

ior into account, performing prefetch even when a user is unlikely to use apps. In

the non-mobile case, browsers have utilized content prefetching and caching for re-

ducing page load times [10], but were not targeted for interoperatibility with mobile

apps nor OSs.
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• Adaptive Shortcut Menus: Bridle and McCreath [30] investigated injecting short-

cuts such as calling a specific person into users’ smartphone menus. Shortcuts in-

cluded common tasks such as calling a specific person or sending a specific text

message. They found that a dual approach presenting frequently used communica-

tion options mixed with Naı̈ve Bayes-filtered options worked best. Vetek et al. [179]

extended this approach with automatically generated context-aware menus based on

unsupervised learning. St. Amant et al. [170] investigate the optimization of hier-

archical text-based menus for cell phones that can be traversed by keyboards input.

Based on their findings they propose options for optimizing menu structures that re-

sult in reducing traversal time, e.g. by putting commonly used items higher in the

hierarchy. Their approach for menu redesign results in a time saving of 30% in sim-

ulation studies. Also Matsui and Yamanda [113] present an algorithm for optimizing

the menu structure for hierarchical menus on mobile devices. In their experiment

they minimize menu item selection time by changing menu structures. Böehmer et

al. investigated the impact of context on users’ icon arrangements [26], and found

that when given a chance to arrange their icons according to context, users place

icons associated with a context in prominent positions. While informative as a set of

guidelines, none of the preceding work takes into account the design considerations

for adaptive shortcut menus presented in Section 5.7, and hence are not complete

solutions to the task of reducing visual app search time.

5.12 Conclusion

Mobile apps now serve a dazzling array of functions, but are becoming increasingly

complex and reliant on network connectivity to provide up-to-date content and rich in-

teraction. For mobile users where seconds of sluggish loading can dissuade many users,

PREPP mitigates long network content retrieval times by accurately predicting which apps

will be used, and prefetching their app content to improve the user experience. Moreover,
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PREPP’s careful design, cognizant of the constraints posed by commodity OSs, has al-

lowed us to implement, evaluate and deploy a PREPP prototype on commodity Android

devices. Through a combination of a controlled user study and a study “in the wild” of

the prediction algorithm, we show that we can accurately predict app usage, and deliver

system-level speedups even without modification to current OSs and apps.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Thesis Summary

This thesis has explored the problems and challenges in three aspects of behavior-aware

applications: behavior detection, behavior understanding and behavior prediction. This

thesis presented the design and implementation of systems and techniques for addressing

challenges in these three aspects of behavior-aware applications. These systems and tech-

niques have been developed to work on off-the-shelf smartphones. We have evaluated our

systems and techniques by using data collected from real users and also by conducting real

user studies.

• RisQ: Gesture Recognition System In Chapter 3, we described the use of mobile

devices as a platform to detect health behavior contexts namely, smoking a cigarette.

Our mobile application called RisQ, uses a wristband equipped with inertial sensors

to accurately count the number of cigarette puffs taken by a user and to identify

the smoking session boundaries reliably. Our experimental evaluation done using

data collected from users showed that we can detect natural gestures like eating and

smoking with high accuracy and precision. The user studies conducted to evaluate

the RisQ data processing pipeline showed that RisQ can detect smoking gestures in

real-time with high precision and recall and can be used for real-time interventions.

This work has appeared in the Proceeding of MobiSys 2014 [133].

• CQue: Context Query Engine In Chapter 4, we presented a CQue, a context-query

engine that improves the accuracy and energy consumption characteristics of context
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inference algorithms through information fusion and reduces the privacy risks asso-

ciated with context-aware mobile applications. CQue supports continuous context-

sensing on a limited energy budget enabling behavior analysis over a stream of user

contexts data. CQue provides a query interface to the mobile applications, enabling

applications to obtain accurate context results while remaining agnostic of “what”

classifiers and sensors to execute and “when” to execute. Our experimental evalu-

ation using real user traces confirms the benefits of CQue in context-sensing. This

work has appeared in the Proceedings of MobiSys 2013 conference [134].

• PREPP: Predictive Prefetch System In Chapter 5, we discussed the design and im-

plementation of a practical prefetch system called PREPP that improves the respon-

siveness of the mobile applications by keeping the application data fresh through

network data fetch at appropriate times determined by the app usage behavior. Our

system utilizes Markov-model based prediction algorithm to predict app usage be-

havior and a temporal model to prefetch the data for the predicted apps in a cost-

aware manner such that the network costs in keeping app content fresh is bounded.

Our evaluation using user studies showed the effectiveness of PREPP’s modeling

techniques in achieving high freshness for mobile apps with a low data and energy

overhead. This work has appeared in the Proceedings of UbiComp 2013 [132].

6.2 Future Work

While this thesis presented novel techniques for building energy-efficient, accurate and

responsive behavior-aware mobile systems, there are new research directions that opened

up from the work described in this dissertation. In this section, we identify and describe a

few feasible directions of future research in context-aware mobile computing.

• Natural Gesture Recognition Our evaluation of RisQ data processing pipeline showed

promising results for detecting gestures like smoking and eating. An interesting ex-
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tension of this approach is to detect a broad range of natural hand gestures such as

various types of exercises performed in a gymnasium, drinking, typing on a com-

puter, etc. We anticipate that this extension will require a new segmentation ap-

proach to identify segments containing a gesture, and also require use of other sens-

ing modalities like accelerometer to extract features relevant to different types of

gestures. Another interesting direction for this work is to use more than one iner-

tial measurements unit (IMU) on the human body to detect activities based on body

postures. Data fusion from more than one IMUs can add capabilities to discriminate

between various gestures and activities that look similar under features derived from

a single IMU.

• Context Query Engine Our work on CQue, context-query engine opens up several

avenues of future research. First, our current model of Dynamic Bayesian Network

(DBN) can be extended to include low-level signal features extracted from the sen-

sor data for information fusion in order to further improve the accuracy of context-

inference. Second, an interesting extension of this work involves incorporating sen-

sors embedded in the external environment. Being able to use sensors available from

the public infrastructure can reduce the energy requirements in sensing on the mo-

bile device. Another interesting research question to explore is how can we use a

Dynamic Bayesian Network model to decide when to duty-cycle classifiers. Intu-

itively, the state of DBN can tell us which context is unlikely to change in the near

future and we can use this information to have a lower duty cycle ratio for the specific

context. Finally, there is a need to explore how to reduce the time required to learn

the DBN structure. A related question to this problem that remains to be explored is:

how to decide which context labels to get from a human user in order to reduce the

learning time while minimizing the number of labels required.
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• Predictive Prelaunch for Responsive Mobile Applications Our work on predictive

prefetch showed that our prediction model can predict the next mobile application a

user is likely to use with high accuracy. This prediction model can be used by the

mobile operating system to decide which mobile applications to pre-load and keep in

memory so that the applications can be launched quickly by the user. One limitation

of our prediction model is that it only utilizes the last sequence of apps used and the

time of day information to make predictions. However, mobile operating systems

now provide many more signals and contexts that can be useful in improving the app

predictions. For instance, many applications in Android OS now post notifications

with audible sounds to grab a user’s attention. These notifications often lead users

to launch mobile applications via the shortcuts embedded in the notification itself.

Integration of such signals in the prediction model is a promising direction that can

improve the accuracy of the model and in turn, improve the responsiveness of the

mobile applications.
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Gernot. Falling asleep with angry birds, facebook and kindle: A large scale study
on mobile application usage. In Proceedings of the 13th International Conference
on Human Computer Interaction with Mobile Devices and Services (New York, NY,
USA, 2011), MobileHCI ’11, ACM, pp. 47–56.
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