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ABSTRACT

PRIVACY-PRESERVING SANITIZATION IN DATA
SHARING

SEPTEMBER 2014

WENTIAN LU

B.S., NANJING UNIVERSITY

M.S., NANJING UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Gerome Miklau

In the era of big data, the prospect of analyzing, monitoring and investigating all

sources of data starts to stand out in every aspect of our life. The benefit of such

practices becomes concrete only when analysts or investigators have the information

shared from data owners. However, privacy is one of the main barriers that disrupt the

sharing behavior, due to the fear of disclosing sensitive information. This dissertation

describes data sanitization methods that disguise the sensitive information before

sharing a dataset and our criteria are always protecting privacy while preserving

utility as much as possible.

In particular, we provide solutions for tasks that require different types of shared

data. In the case of sharing partial content of a dataset, we consider the problem

of releasing a database under retention restrictions such that the auditing job can

v



still be carried out. While obeying a retention policy often results in the wholesale

destruction of the audit log in existing solutions, our framework allows to expire data

at a fine granularity and supports audit queries on a database with incompleteness.

Secondly, in the case of sharing the entire dataset, we solve the problem of untrusted

system evaluation using released database synthesis under differential privacy. Our

synthetic database accurately preserves the core performance measures of a given

query workload, and satisfies differential privacy with crucial extensions to multi-

relation databases. Lastly, in the case of sharing derived information from the data

source, we focus on distributing results of network modeling under differential privacy.

Our mechanism can safely output estimated parameters of the exponential random

graph model, by employing a decomposition of the estimation problem into two steps:

getting private sufficient statistics first and then estimating the model parameters. We

show that our privacy mechanism provides provably less error than common baselines

and our redesigned estimation algorithm offers better accuracy.
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CHAPTER 1

INTRODUCTION

With the emergence of mobile devices, internet and social networks, vast numbers

of documents and datasets are maintained by companies from a range of industries

such as healthcare, insurance and information technology. These datasets are highly

valuable as they contain information about persons. Not surprisingly, there is in-

creasing need from governments, researchers and even the inside of enterprises that

requests access to the data for monitoring, understanding and analyzing purpose.

However, privacy concerns could be one of the main barriers that disrupt such be-

haviors. So the question of how to share these data but still preserve privacy is an

important and realistic problem in the real world.

Researchers in the privacy community propose mechanisms to share information

from various data sources while preventing the disclosure of the sensitive parts. The

sensitive information could either be explicitly specified by a declarative language,

e.g., access control [85], or indicated by the semantics of privacy definition, e.g.,

differential privacy [23]. Before sharing a dataset that contains sensitive information,

the process of data sanitization disguises sensitive information and replace it with

non-identifiable values.

1.1 Problem setting

A typical scenario of data sharing involves two parties: data owner and data

consumer, where data owner shares the data and data consumer consumes data, as
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Figure 1.1: A typical scenario of data sharing

shown in Figure 1.1. For data owners, they need two clearly defined objects, data

source and privacy requirement.

Data source is the actual target of sanitization, which is the first thing that should

be decided. A precise definition of data source helps to further investigate potential

threats and possible methods for manipulating the data later. In the real world,

there is a wide range of data sources in a sanitization process, e.g., text documents,

relational databases and social networks.

The purpose of sanitization is to protect sensitive information from being dis-

closed. The privacy requirement defines the sensitive contents of the current data.

Without suitable insight of sensitive information, people cannot illustrate or prove

the correctness of a sanitized output. A clear definition of sensitive contents will also

help to understand the underlying sanitizing algorithms when end users look for a

particular technique on their data sets. In the literature, there are several commonly

accepted definition for sensitive information. For example, for tabular data, access

control [85] pins down sensitive information by predefined tables or views; differential

privacy [23] treats each individual’s existence as a sensitive object.

For a data consumer, we assume that the only way to access the data source is

through a sanitization interface, as shown in Figure 1.1. As there is no restrictions on

how shared data can be used, our major focus is to guarantee the released data satisfy

privacy requirements, event though a data consumer could be potentially malicious.
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The most challenging part is designing a proper method for sanitizing data. Good

sanitization should always care about utility, otherwise we can just release an empty

dataset which prevents any information leakage. If we consider the potential analysis

applied on the shared data, the output of sanitization should ease the future compu-

tation and do as much as possible to reduce the damage to the utility. So the key of

sanitizing algorithms is to achieve as much utility as we can, while still guaranteeing

the correctness of privacy protection.

The output of sanitization process, shared data, could be either homogenous or

heterogeneous to the data source. We say the output is homogenous when the shared

data is syntactically close to the data source, meaning that both are represented by

one data model so that queries can be answered with both data in a similar way.

Consider the case when the data source is a relational database. As long as the

shared data are tables under the relational data model, they are homogenous as the

well-established query evaluation techniques can be applied on the shared data. In

this thesis, we study two problems that aim for releasing homogenous data, sharing

partial contents of the data source and sharing the entire data source. On the other

hand, the output of sanitizing process could be fundamentally different from the data

source, where the typical operations on the shared data are distinct from operations

on the data source. In such cases, we say the shared data are derived or heterogeneous.

An example is to release the estimated power law exponent from the degree sequence

of a network. In this thesis, we solve one problem with the goal of releasing derived

data from a network.

1.2 Overview of contributions

1.2.1 Sharing partial data

Chapter 3 addresses the data sanitization problem when a data owner is sharing

partial contents of the data source. In particular, the privacy requirement demands
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Figure 1.2: Auditing a database with retention policies

protection of a subset of information in the data source, while the rest is safe for

releasing.

We consider the scenario of auditing the changes to a database, where auditors

(data consumers) submit audit queries and inquire about what happened to the

database, when it happened and who did it. But an accurate audit log is an his-

torical record of the past that can also pose a serious threat to privacy. In many

domains, retention policies are introduced to govern how long data can be preserved

by an institution. Data owners often adopt their own policies for the purpose of

limiting retention and removing sensitive data after a period of time to avoid unin-

tended release. Our goal is to audit a database system in the presence of retention

restrictions. As explained in Figure 1.2, in the sanitization-based approach, an audit

log is sanitized with the enforcement of retention policies while data consumers are

restricted to submit audit queries to the shared sanitized data.

Though the goal of sanitizing is to limit the conflicts between private information

(limited retention) and sharing information (insensitive database changes), unfortu-

nately, existing mechanisms for auditing and managing historical records have few

capabilities for managing the balance between these two objectives. Obeying a reten-

tion policy often means the wholesale destruction of the audit log.

In Chapter 3, we will illustrate the importance of our framework that properly

models the data source, which allows expressive privacy requirement specification and

efficient data sanitization. An effective data model not only defines the data semantics
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eid name dept sal from to

101 Bob Sales 10 0 200

101 Bob Mgmt 10 200 300

101 Bob Mgmt 15 300 now

201 Chris HR 8 0 300

Table 1.1: Data source: relational data model with temporal information

eid name dept sal from to

101 Bob Sales sx 0 200

101 Bob Mgmt sx 200 300

101 Bob Mgmt 15 300 now

201 Chris HR 8 0 300

Table 1.2: Sanitized data under retention policies

after sanitization but also determines the scope of manipulation on the data. In our

work, we propose a relational data model that can deal with historical information

and incompleteness, which supports temporal-based operations and uncertainty in the

query results. To be precise about private information and retain as much utility as

possible, it is important that the privacy requirement is specified in a flexible way. We

propose a rule-based expressive language for data owners to define retention policies

at the granularity of attributes. Under retention policies, the audit history is partially

incomplete. Thus, audit queries on the protected history can include imprecise results

and our challenge is to solve the problem of representing and computing such imprecise

answers over incomplete databases. Chapter 3 illustrates that the combination of

data model and policy language is the strong basis for auditing purpose. Despite of

removal of information, our query answering system in many cases enables an auditor

to monitor the record of actions taken on the database.

Example 1.1. Table 1.1 is a transaction-time table that represents the complete

data history of the table, where the from and to columns is the active period of each

tuple in the database.
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Figure 1.3: Sharing private synthetic database

Now consider two different retention polices. One is to hide attribute values while

revealing the existence of the tuple, e.g., hiding Bob’s salary between time 0 and

300. The other is to completely remove the tuple, e.g., removing the record of all

employees in the HR department between time 0 and 300. The resulting sanitized

table (Table 1.2) will have data deleted, particularly, removed tuples (in gray) and

substituted variables (in bold). In Chapter 3, we discuss in detail the correctness

of this sanitization process and the problem of how to answer audit queries with

sanitized tables.

This work appeared in the proceedings of the International Conference on Very

Large Data Bases, 2008 [67], the International Conference on Data Engineering, 2009

[68], and in the International Journal on Very Large Data Bases, 2013 [69].

1.2.2 Sharing the whole dataset

Chapter 4 addresses the data sanitization problem when data owners want to share

the whole dataset. In particular, we offer solutions of generating private synthetic

datasets.

We consider the scenario when database evaluation tasks should be outsourced to

untrusted data consumers, where a typical evaluation task is to assess the performance

of a given SQL query workload. There is a strong need in industry for synthetic

databases, as resorting to common benchmark databases (e.g. a TPC benchmark)
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doesn’t help. Because benchmarks target the common case, they often cannot reflect

particular properties that may significantly impact performance for a given enterprise.

The data source in this problem is a standard relational database and the privacy

requirement is to protect every individual in the data source, i.e., the shared synthetic

database should not disclose information of any individual who involves in the data.

To meet the privacy goal, we adopt another privacy standard, differential privacy,

which guarantees that data consumers cannot distinguish the existence of any person

from sanitized data. In fact, differential privacy allows us to enforce more rigorous

sanitization and provide a provably private solution. In Figure 1.3, data owners

share the database synthesis under differential privacy and data consumers conduct

performance evaluation using given query workloads.

Chapter 4 describes a novel and fundamentally different approach compared to

Chapter 3, which is called model-based database synthesis. Our framework first selects

a set of queries that serve as the model of database. From the model, we can compute

the statistics of database by answering those selected queries. We then sanitize the

statistics. Finally, we sample databases using sanitized statistics and release them.

The whole process is proved to satisfy differential privacy, and our experiments show

that the shared synthetic database preserves core performance properties of given

query workloads.

Our work is a novel combination of research into private data release and syn-

thetic database generation. Generating private synthetic data is a common goal of

privacy research, but existing techniques do not support complex relational schemas

and have not targeted our specific utility goal: accurate system testing and evalua-

tion. Likewise, generating synthetic relational data is a common goal of relational

database research. Privacy concerns are often mentioned as one motivation for the

use of synthetic databases, however the vast majority of database generation ap-

proaches [2, 7, 13, 48, 65] do not offer any formal privacy guarantees. Instead, they
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Figure 1.4: Sharing exponential random graph estimation under differential privacy

often rely merely on the fact that data is generated from aggregate statistics about

the database. Unfortunately, this does not imply that the synthetic data is safe to

release. For example, Arasu et al [2] acknowledge the privacy issues of releasing car-

dinality information during data generation. One exception is the work of Wu et

al. [113], in which cell suppression and perturbation are used to offer some protec-

tion against disclosures, but this method cannot satisfy differential privacy and is

susceptible to the previously-documented attacks on anonymization schemes.

To achieve differential privacy, we extend its definition to multiple tables by re-

defining the core concepts. This is a crucial extension for our framework and is useful

beyond the present work.

This work appeared in the proceedings of the International Conference on Data

Engineering, 2014 [70].

1.2.3 Sharing derived data

Chapter 5 addresses a sanitization problem when the shared information is derived

and heterogeneous from the data source.

We consider the scenario of social network analysis under differential privacy,

where data consumers are demanding the results of computation on graph-structured

data. While differentially private algorithms for computing basic graph properties

have been proposed, graph modeling tasks that are common to the data mining
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community can not yet be carried out privately. In Chapter 5, we study for the

first time the differentially private use of the classic exponential random graph model

(ERGM [71]), the most promising and central of social network analysis [19, 28, 25]

in recent years. Technically, ERGM describes a parametric statistical model over

graphs, and one of most important tasks in modeling practices is to find the best

parameters for the observed data source.

A common paradigm that implements differential privacy is output perturbation,

i.e., adding noise to the output of computation, while the amount of noise should be

carefully adjusted with regard to the properties of the computation. As the shared

data in this situation are the parameters of ERGM, a straightforward idea for san-

itizing under differential privacy is to execute output perturbation, as illustrated in

Figure 1.4. One precomputes parameters (box with dashed boundaries) using stan-

dard ERGM algorithms and then add proper noise before sharing them. However,

due to internal complexity of ERGM itself, such methods are generally not feasible.

To be specific, we are facing the case that either the amount of noise required for

differential privacy is extremely hard to compute, or direct noise is so large that

perturbed result doesn’t make any sense any more.

Our solution in Chapter 5 takes a different approach, employing a decomposition

of estimation process into two steps: getting private sufficient statistics first and then

estimating the model parameters. The estimation process, a Bayesian based method,

is carefully designed, such that the particular noise added into sufficient statistics

will be leveraged in the process but still preserves privacy. Compared to Figure 1.4,

we save the step for estimating non-private parameters for ERGM (box with dashed

boundaries). We consider recent specifications of ERGMs and show that our privacy

mechanism offers provably less error than comparable methods. We also illustrate

better accuracy by using our redesigned estimation algorithm in the experiments.
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1.3 Thesis organization

Chapter 2 reviews the background knowledge related to privacy-preserving data

sanitization, including access control, managing incompleteness with historical data

and differential privacy. Each of Chapter 3, Chapter 4 and Chapter 5 focuses on the

work related to a particular aspect of contributions discussed in previous sections.

These chapters also include detailed discussion of problem settings, contributions,

solutions and experiments. Chapter 6 concludes with the review of contributions and

future work.
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CHAPTER 2

BACKGROUND

This chapter provides discussions of background information for this thesis work.

We start with access control techniques in database systems, as the problem in Chap-

ter 3 has a similar privacy setting. In both cases, sensitive information is enforced by

policies and query answers are generated with compositions of those enforcements.

We next review works that focus on managing incompleteness in a temporal database,

for the purpose of defining data source in Chapter 3. Last, we discuss a strong and

rigorous privacy definition, differential privacy, which is the privacy requirement for

Chapter 4 and 5.

2.1 Access control

Access control [85] is the classical technique in database systems to limit the data

access of users. The control is implemented by granting users certain access rights

(such as read, modify and delete) on predefined objects. In SQL, this is implemented

using GRANT command. An example that grants read privilege to user Ann on object

Salary is as follows:

GRANT select ON Salary TO Ann

The object Salary could either be a base table or a view. In database systems,

a view is essentially a virtual table defined by a query. For example, the view Salary

contains grades from Sales department, generated from the following query:
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CREATE VIEW Salary (name, salary) AS

SELECT name, salary

FROM Employee

WHERE dept = ’Sales’

Queries submitted from clients will have to pass the permission check. If there

is not sufficient access privilege, the query will be denied. In database systems,

control policies are typically enforced by administrators, who is a trusted party to

data owners.

Fine-grained access control As the traditional access control are executed at

table-level, there is growing needs for fine-grained control at row-level or even cell-

level. One of the major motivations is privacy protection. Lower level controls have

the ability of protecting individual information across tuples and cells in the database.

For example, the teacher will allow each student to access his own grade in the Grades

table. So consider student Ann attempts a read as

SELECT salary

FROM Employee

The database system actually executes:

SELECT salary

FROM Employee

WHERE name = ’Ann’

In general, a fine-grained access control system is implemented in two steps.

Firstly, users specify rules using a policy-defining language. Secondly, the database

enforces those rules when answering queries. Several commercial databases provide

solutions for fine-grained access control, such as Virtual Private Database (VPD) in

Oracle [81] and label-based framework in DB2 [87].

Recently, Wang et. al. [108] proposes a set of theoretical terms that are formal-

ized to guarantee the correctness of the enforcement of fine-grain policies. They are
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secrecy, soundness and maximality. A mechanism is secure when the query answers

do not reveal any information that should be protected by policies. Soundness means

the query answers under access control are consistent with answers when no access

control is presented. Maximality requires that query evaluation returns as much in-

formation as possible. These terms also serve as the basis for our sanitization process

in Chapter 3.

2.2 Managing incompleteness with data history

To support retention policies, a database should not only contain current data

but also historical information. Such history is usually recognized as temporal data,

and database that facilitates managing and operating time-oriented information is

called temporal or transaction-time database. In fact, transaction-time databases

have been studied extensively by the research community including work on query

languages and logical foundations [17, 30, 103], implementation techniques [53, 66,

96], techniques for accommodating time in standard databases [92, 101], as well as

implemented extensions to existing systems [102]. Jensen studied querying backlog

relations to monitor changes to a database [52].

On the other hand, when enforcing retention policies, a common method is re-

moving expired tuples or attributes, which could potentially generate a database with

incomplete history. With the absence of time information, incomplete information

also has a long history in databases [9, 37, 51].

When managing retention policies, a data model that handles both temporal data

and incompleteness is necessary. Though both areas have been studied extensively,

incomplete temporal databases have attracted less attention. The data models of

Gadia [31] and Koubarakis [58] establish the foundations of this area.

Gadia’s model [31] The model of temporal incompleteness presented by Gadia et

al. allows for uncertainty about values, as we do, but also represents certain values
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whose active period is uncertain. By combining the different kinds of incomplete

information, the model can represent the known and unknown values of an object

where its existence could be clear or not.

In Gadia’s model, each cell in a table is defined as a set of temporal assignments,

i.e., a constant associated with different active time period. For example, the cell

of Bob’s salary is {10[0, 100], 12[101, 200]}, which means Bob’s salary was 10 from

time 0 to 100 and then 12 from 101 to 200. To represent uncertainty, each cell

(temporal assignments) is assigned with two temporal periods, l and u. l represents

the time period that we are sure it exists, while we are also sure the value beyond

u definitely does not exists. Therefore, Bob’s salary is noted as a triple (x, l, u),

where x ={10[0, 100], 12[101, 200]}, l = [0, 150], and u = [0, 300]. The semantics is as

follows:

• [0, 150]: we know for sure Bob’s salary is 10 before time 100 and 12 after that.

• [151, 200]: we are not sure whether Bob’s salary exists, but if it exists it should

be 12.

• [201, 300]: we are not sure existence of Bob’s salary and its value.

• [301, now]: we are sure Bob’s salary does not exist.

Koubarakis’ model [58] Koubarakis proposed a constraint-based incomplete

temporal data model, which integrates global and local inequality constraints on

the occurrence time of an event. With constraints only on temporal information, it

supports indefinite instants. An indefinite instant is a very general kind of instant

that includes indeterminate instants, instants with disjoint sets of possible chronons,

and instants with incompletely specified upper and lower supports.
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Bus Time Condition

bus1 x 10 ≤ xl, xr ≤ 15

For example, in the above table, the scheduled time of bus1 is represented as

variable x = [xl, xr]. The starting time of x, xl is unknown, but limited to a value at

least 10. Similarly, the ending time xr, uncertain either, but must be at most 15.

In fact, Koubarakis’ model can model more complicated scenarios, e.g., we can say

this event a happens between time 0 and occurrence of event b, but we do not know

its exact time. Such information related to event ordering is not allowed in Gadia’s

model. However, unlike Gadia’s model, without variables in traditional attributes,

we cannot represent the information that allows attribute values to be unknown in

the (possible and certain) active period of that tuple.

2.3 Differential privacy

When querying a database, differential privacy protects individuals by restricting

the impact on the output of any individual opts in or out the database, such that an

intruder cannot tell whether any particular individual is in the dataset. Differential

privacy [23] is traditionally defined over a tabular based database x consisting of

records, each of which describes an individual. Two databases that differ by one

record are called neighbors. Formally, we say an algorithm is differentially private if

distributions of outputs on neighboring databases are unchanged.

Definition 2.1 (Differential Privacy [23]). Let x and x′ be neighboring databases

and K be any algorithm. For any subset of outputs O ⊆ Range(K), the following

holds:

Pr[K(x) ∈ O] ≤ exp(ε)× Pr[K(x′) ∈ O] + δ
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If δ = 0, K is standard ε-differentially private. Otherwise, K is relaxed (ε, δ)-

differentially private.

Differential privacy provides a well-founded means for protecting individual tuples

in a table while releasing reasonably accurate aggregate properties of the entire table.

It is robust against attackers with background knowledge about the database, the

major weakness of access control type of protection. Achieving differential privacy

usually requires perturbing statistics computed from the true database. The input

privacy parameter ε (and δ if using the relaxed definition) are non-negative and are

used to measure the degree of privacy protection. Smaller ε means better privacy as

exp(ε) is close to one.

2.3.1 Differentially private mechanisms

Differential privacy can be achieved by adding noise to the output of algorithms

according to the privacy parameters (ε and δ) and the query sensitivity.

Global sensitivity and Laplace mechanism The global sensitivity of a query

is the maximum possible difference in the output when evaluating the query on two

neighboring graphs. E.g., the query asking for the size of a table has global sensitivity

1, because adding or removing one tuple changes the size by one. Let Lap(b) be a

Laplace random variable with mean 0 and scale b.

Definition 2.2 (Laplace mechanism [25]). Given query f on input x, the following

algorithm K(f, x) is ε-differentially private:

K(f, x) = f(x) + Lap(GSf/ε)

where global sensitivity

GSf = max
∀x1,x2 neighbors

|f(x1)− f(x2)|
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An important property of differential privacy is that post-processing a noisy, dif-

ferentially private output using any algorithm that does not access the original data

cannot alter the privacy guarantee. Past research has shown that post-processing the

noisy output can, however, have significant impact on utility. In addition, compo-

sition rules for differential privacy allow us to compute the ε privacy standard that

results from the combined release of multiple query answers or releases. Precisely, if

each release is εi-differential privacy, the combined is then
∑

i εi-differential privacy.

Gaussian mechanism Correspondingly, a similar noise adding mechanism is avail-

able for the relaxed (ε, δ)-differential privacy. Slightly different, the global sensitivity

is based on L2 distance between output on two neighboring inputs and the noise is

generated from Gaussian distribution. Let Normal(σ) be a Normal random variable

with mean 0 and scale σ.

Definition 2.3 (Gaussian Mechanism [23, 73]). Given query f on input x, the fol-

lowing algorithm K(f, x) is (ε, δ)-differentially private:

K(f, x) = f(x) +Normal(
GSf

√
2 ln(2/δ)

ε
)

where global sensitivity

GSf = max
∀x1,x2 neighbors

||f(x1)− f(x2)||2

2.3.2 Differential privacy for graph data

The above definition of differential privacy applies on tabular data, where protec-

tion of individuals naturally nails down to each record in a database. When adapting

differential privacy to graph data, such concept of “individual” is no longer obvious,

because network contains not only major entities (nodes) but also their relationship
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(edges). In tabular data, differential privacy relies on the precise definition of neigh-

bors, adding or removing single record. In graph data, we can simulate the idea but

with carefully selected “record”.

If the neighbors are restricted to graphs by adding or removing single edge, we

call it edge differential privacy [45]. Intuitively, edge differential privacy protects rela-

tionship among nodes in a graph, where the attacker cannot identify the existence of

edges from output. Alternatively, node differential privacy [45] is another interpreta-

tion when the neighboring graphs consider inserting or deleting single node. Though

node differential privacy is more desirable, as we can assume the “individuals” in a

graph match better with nodes, it is usually infeasible in real application. This is

because the global sensitivity associated with node differential privacy is usually too

large for noise calibration. For instance, the number of edges in a graph, can change

from n to 0 in node differential privacy if there is a single node connects every others.

A compromise for that is k-edge differential piracy [45] where a group of k edges are

protected and usually mechanisms designed for edge differential privacy can be easily

adjusted to it. In Chapter 5, we follow the edge differential privacy, as it is the most

common interpretations in the literature [45,55,83,90,109].
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CHAPTER 3

AUDITING A DATABASE WITH RETENTION
RESTRICTIONS

This chapter describes a framework for auditing the changes to a database system,

which is sanitized in the presence of retention restrictions. We consider a historical

data model and propose three kinds of rules for selectively obscuring or preserving

sensitive data from the record of the past. We then address the problem of answering

audit query on the incomplete data.

3.1 Introduction

Auditing the changes to a database is critical for identifying malicious behavior,

maintaining data quality, and improving system performance. But an accurate audit

log is an historical record of the past that can also pose a serious threat to privacy.

In many domains, retention policies govern how long data can be preserved by an

institution. Regulations mandate the disposal of past data and require strict reten-

tion periods to be observed. For example, the Fair Credit Reporting Act limits the

retention, by credit reporting agencies, of personal financial records. In addition,

institutions and companies often adopt their own policies limiting retention, choos-

ing to remove sensitive data after a period of time to avoid its unintended release,

or to avoid disclosure that could be forced by subpeona. Failure to dispose of the

expired data can result in serious consequences and is often viewed as an institutional

risk [112]. At the same time, other forces may require the preservation of records,

for example when ongoing litigation makes removal of data unlawful. Institutions are
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increasingly recognizing that a consistently enforced retention policy reduces their

legal risk by ensuring that electronic data is handled properly [62].

Limited retention conflicts with the goals of accurate auditing, analysis, and pre-

diction based on past history. This conflict is evident in the guidelines for record

keeping published by a records management trade group [3], which include princi-

ples of data availability and data retention along with data disposal. Data own-

ers thus have to carefully balance the need for accurate auditing with the privacy

goals of retention policies. An emerging industry has begun to address the needs

of these institutions, building systems that offer varying combinations of records

and document management, archiving, eDiscovery, retention, and compliance ser-

vices [26, 39, 80, 84, 91, 118, 119] . Unfortunately, existing mechanisms for auditing

and managing historical records have few capabilities for managing the balance be-

tween these two objectives. Obeying a retention policy often means the wholesale

destruction of the audit log.

In this chapter we propose a framework for auditing the changes to a database

system in the presence of retention restrictions. We consider an historical data model

and propose two kinds of rules for selectively removing or obscuring sensitive data

from the record of the past. Despite the removal of information, it is often still

possible for an auditor to monitor the record of actions taken on the database.

3.1.1 Applications

The tension between audit analyses and retention restrictions is present in a broad

range of industries where sensitive records are managed, including financial services,

healthcare, insurance, technology, education, telecommunications, and others. For

example, financial legislation mandates limited retention periods for personal credit

reports, including special treatment of negative credit events which are purged from

records separately from other events. Search engines are not governed by legislation
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in the U.S. but many elect to sanitize their search logs after 9 months. Logs are gen-

erally not disposed of completely, but certain fields are removed to reduce identifying

information and to resist subpoenas and court orders.

Healthcare databases store sensitive information about patients, physicians, test

results, diagnoses, billing details, and hospital procedures. State and federal laws

specify record retention time frames that may depend on whether a patient is en-

rolled in medicare or medicaid, whether the patient is a minor, whether the medical

procedure involves immunization, or on the statute of limitations for medical mal-

practice claims. At the same time, after mandated retention periods have passed,

physicians may have discretion about how or when to dispose of records, or whether

to partially sanitize records to remove personally identifiable data or sensitive di-

agnoses, while still permitting historical analysis. For example, we will define the

operation of redaction on fields in a record. This could be applied to the diagnosis

field of medical records while still permitting an analysis of a physician’s consistency

of diagnosis based on test results.

As another example, the office of information technology in a university is re-

sponsible for maintaining and monitoring network services for faculty, students, and

staff. Network logs may contain information about machines, network connections,

web browsing history, search engine requests, and/or file transfers, where users are

identified by IP address or login name. Internal auditing may include analyzing logs

for evidence of security vulnerabilities with the university. Researchers within the

university may wish to perform traffic analysis on network logs. Lastly, external

authorities such as the RIAA may request log data pertaining to specified users or

specified content. In this setting, retention restrictions arise from privacy protections

of individuals using the network. Some logs that are retained for network security

purposes may be subject to removal of identifiers or sensitive content like web ad-

dresses. In addition, information technology staff reportedly prefer the timely removal
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of some network logs so that they do not have to bear the cost of inquiries by external

authorities.

Next we provide an overview of the motivation and contributions of this work through

the following detailed example over a simple employment database. The schema and

queries serve as a running example in later sections.

3.1.2 Example Scenario

We begin with a database consisting of tables belonging to a client schema. Clients

interact with the database by submitting queries and updates, always on the current

snapshot. In the running example used throughout this chapter, the client schema

consists of a single table, S, describing employees:

S(eid, name, department, salary)

The auditor is responsible for monitoring access to the database and tracking

down malicious actions after they have occurred. Auditors typically inquire about

what happened to the database, when it happened, and who did it.1 To enable the

auditor to query the state of the database over time, the system maintains an audit

log table, LS, for each table S in the client schema. Each modifying operation, issued

by a client on S, is recorded in LS along with additional audit fields describing the

time of modification, the type of modification (insert, update, delete), and any other

fields possibly of interest to the auditor. Table 3.1 shows an audit log table including

audit fields recording the name of the issuing client and their IP address.

The audit log can easily be converted to an alternative transaction-time represen-

tation. Table 3.2 shows such a table, denoted TS. It represents the complete data

1We are concerned here with auditing modifications only. We do not audit queries that read from
the database.
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history of the table, recording, in the from and to columns, the active period of each

tuple in the database. Throughout the chapter we will use both the log-based and

transaction-time representations as they each have benefits for expressing queries and

defining concepts.

These historical tables can support a variety of queries of interest to the auditor.

Some simple examples include:

A1. Return all employees who earned a salary of 10 at some point in time.

A2. Return the clients who updated Bob’s salary, and the time of update.

A3. Return the clients who updated any employee’s dept, and the time of update.

A4. Return the time periods when Bob earns a salary of 10.

Some audit queries are conventional queries over a transaction-time data model (such

as A1, A4). Others ask specifically about changes, and reference the special audit

fields contained in the audit log (such as A2, A3).

The compliance officer is a trusted entity, responsible for enforcing data retention

restrictions arising from privacy regulations or institutional policies. These policies

are typically non-negotiable – they must be respected by all users of the system, in-

cluding the auditor. We propose two kinds of declarative retention rules for limiting

the lifetime of data. The compliance officer is also responsible for enforcing preser-

vation rules, which reflect requirements to keep certain data items in the database.

Notably, these policies are expressed in terms of TS, the transaction time table de-

scribing the data history. This is the most natural choice because retention policies

refer only to the client schema, and to the notion of time.

Our first retention rule is called redaction. When redaction is applied to an

attribute value, it removes the value but does not hide its existence. For example,

a redaction rule may say: Hide Bob’s salary between time 0 and 250. The second
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client IP time type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales 10

Jack 2.1.1 100 upd 101 - - 12

Kate 3.1.1 200 upd 101 - Mgmt -

Kate 4.1.1 300 upd 101 - - 15

Jack 1.1.1 0 ins 201 Chris HR 8

Jack 2.1.1 300 upd 201 - Mgmt 10

Kate 4.1.1 500 del 201 - - -

Table 3.1: The audit log LS describing the history of operations performed on a
client table with schema S(eid,name,dept,salary). Columns client and IP are audit
fields.

eid name dept sal from to

101 Bob Sales 10 0 100

101 Bob Sales 12 100 200

101 Bob Mgmt 12 200 300

101 Bob Mgmt 15 300 now

201 Chris HR 8 0 300

201 Chris Mgmt 10 300 500

Table 3.2: The transaction-time table TS describing the data history of the client
table. It is derived from the audit log in Table 3.1.

operation, called expunction, is more extreme. When a tuple is expunged, it is

completely removed, along with all evidence of its existence. For example, an ex-

punction rule may say: Remove the record of all employees in the HR department

between time 0 and 300. We believe these rules are sufficiently expressive for practi-

cal applications, allowing users to selectively choose related data items, which could

be tuples, selected tuples, or individual attribute values [76]. We also support a basic

rule for preservation, which takes priority over the removal rules above, ensuring

that specified records are not altered or removed.
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eid name dept sal from to

101 Bob Sales sx 0 100

101 Bob Sales sy 100 200

101 Bob Mgmt sy 200 250

101 Bob Mgmt 12 250 300

101 Bob Mgmt 15 300 now

201 Chris HR 8 0 300

201 Chris Mgmt 10 300 500

Table 3.3: The transaction time table, transformed under the following retention poli-
cies: RedactS(name = Bob, {salary}, [0, 250]) and ExpungeS(dept = HR, [0, 300]).
(The gray row has been deleted.)

Applying a set of retention rules transforms the stored history of the database.2

Table 3.3 shows a new transaction-time table, the result of applying the retention

rules to the table TS. In applying the redaction rule, salary values have been replaced

with variables (sx, sy). Instead of suppression with NULLs, we use variables to

support more accurate auditing by retaining more information, as different values

are suppressed to different variables. Also note that there is an extra row in Table

3.3 because the time interval [200,300] in the original data has been split into two

intervals: [200,250], in which Bob’s salary is hidden, and [250,300], in which Bob’s

salary can be revealed to be 12. In applying the expunction rule, Chris’s membership

in the HR department has been removed from the history: he is now only in the

Mgmt department from time 300 to 500. For illustration purposes, the expunged row

is included in Table 3.3, but displayed with a gray background.

A main goal of this chapter is provide a proper semantics for audit queries in the

presence of retention policies. Because the transformed history has tuples removed

by expunction and values obscured by redaction, the answers to audit queries may

2As a practical matter, retention rules may be applied physically, altering storage of the table,
or logically, in which access is restricted but hidden data is still physically stored. Sec. 3.8 provides
further detail.
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be uncertain or, in some cases, provide false information. We reconsider the previous

audit queries under retention restrictions:

A1. Return all employees who earned a salary of 10 at some point in time.

This query is a straightforward selection on the transaction-time table. On the

original data in Table 3.2 the answer to this query is {Bob, Chris}. On Table

3.3, under the retention policy, the answer to this query includes Chris as a

certain answer. However, Bob is only a possible answer because the predicate

depends on the unknown value of variables sx and sy. Our implemented system

returns both answers, labeled appropriately as possible or certain.

A2. Return the clients who updated Bob’s salary, and the time of update.

The answer to this query on the original data is {(Jack, 100), (Kate, 300)}. The

transformed history in Table 3.3 shows that Bob’s salary definitely changed at

time 100 (from sx to sy) and at time 300 (from 12 to 15). In addition, it may

have changed at time 250 (from sy to 12), depending on the unknown value

of variable sy. (Note that the uncertainty about this change is crucial – if it

is possible to deduce that the change did not occur, then it is clear that Bob’s

salary was indeed 12 between 250 and 300, and the retention policy is violated.)

In order to fully answer the query, we must use the audit log to get the names

of the clients who issued the update. Jack and Kate performed the updates at

time 100 and 300, respectively, so the certain answers to this query are: {(Jack,

100), (Kate, 300)}. A subtlety here is how to return the possible answer for the

update at 250, since there is no known client that performed that update. The

possible answer that could be returned is: (NULL,250), but not if it reveals

that this is a fake update.

A3. Return the clients who updated any employee’s dept, and the time of update.
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The answer to this query on the original data is {(Kate, 200), (Jack, 300)},

which can easily be computed from the original audit log LS. In the transformed

history in Table 3.3 we find evidence of only one update to the department field,

at time 200. This is a result of the expunction policy that removed Chris’ record

from time 0 to 300. Thus, the answer to this query under the retention policy

is {(Kate, 200)} and the record of Jack’s update is lost.

Notice that the answer to query A3 is incorrect: a tuple that is in the true answer

(i.e. with respect to the original data) is omitted from the new answer. From the

auditor’s perspective this is a worse outcome than that of A1 and A2 where the

true answer is one of the possible answers. One of the goals of our framework is to

provide answers to audit queries that, while possibly imprecise, do not lead to false

conclusions. Also note that in reasoning about the answers to queries A2 and A3 we

referred to the transformed transaction-time table and used it to infer actions that

were performed on the database. Later in the chapter we make this process explicit

by computing a sanitized audit log, consistent with the retention policies, that can

be queried directly.

The answer to an audit query under retention rules usually consists of two parts:

certain tuples and possible tuples. Such results are uncertain answers, because they

are computed on a history with incompleteness introduced by applying retention

rules. On the contrary, querying the original history without retention rules returns

a real answer. Intuitively, each uncertain answer represents a set of real answers,

each of which is returned by the query over some original history that is consistent

with the transformed history under the retention policies. In the case of A1, the

uncertain result could represent two real answers. One is {Chris} when A1 is executed

over the history where neither sx nor sy is 10 and the other is {Chris,Bob} when

either sx or sy is 10. Similarly, if the uncertain result of A1 contains two possible

tuples, say, Bob and Ann, we have four real answers represented, {Chris}, {Chris,
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Bob},{Chris, Ann} and {Chris, Bob, Ann}. Here we simply assume the existence of

each possible tuple in a real answer is independent of others, and thus we have four

different ways of choosing two possible tuples. We propose the Tuple-Independent

model (TI) for answering audit queries under retention policies, and define the

semantics of uncertain answers returned by TI under this independence assumption.

Later we will show, due to this assumption and the extended relational algebra, that

there is no extra cost to decide certain and possible tuples of the query results since

they are efficiently computed during query evaluation. Thus TI guarantees efficiency

and this fact serves as a major advantage of the TI model, along with it simplicity.

However, the independence assumption is not always correct and thus the information

delivered by the uncertain answer is not precise, as demonstrated by the following

query A4. To solve this problem, we introduce a more sophisticated model, the Tuple-

Correlated model (TC), which does not rely on an independence assumption and

gives precise interpretations of uncertain answers.

A4. Return the time periods when Bob earns a salary of 10.

The answer to this query on the original data is {(0,100)}, which can easily be

computed from the original audit log LS. In the transformed history in Table

3.3, our result is {(0,100),(100,200),(200,250)} and all are possible answers due

to the unknown value of two variables sx and sy. When using TI, we assume

the three periods are independent of each other and therefore we could interpret

them as eight different real answers. However, a closer look will tell us such

an assumption is invalid. (100,200) and (200,250) are correlated because they

are bound to the same variable sy. (0,100) is also not independent of either

(100,200) or (200,250) because sx and sy are correlated: they are not equal

(recall that they represent distinct values). In fact, this uncertain result only

represents three different real answers. If sx equals 10, then (0,100) is the

output; if sy equals 10, then (100,200) and (200,250) is the output; finally
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if neither sx nor sy is 10, then the output is empty. For a more accurate

representation we use the TC model which can maintain the correlations among

three time periods. Instead of indicating “certain” or “possible” directly for each

tuple, TC records extra information in the form of conditions associated with

each tuple. The example above may be represented as:

(0, 100) : sx = 10,

(100, 200) : sy = 10,

(200, 250) : sy = 10

Because all three equations are satisfiable, we have three possible tuples. Tu-

ples (100,200) and (200,250) occur together, or not at all, depending on the

assignment to sy.

Query A4 demonstrates that there are cases where the independence assumption

fails and thus the TI model is incapable of representing the result accurately. Our TC

model abandons the independence assumption and is able to provide accurate answers

by recording equalities and inequalities of variables. We use this extra information

to decide certain and possible tuples. From the auditors’ perspective, the ability to

calculate the correlation is important and delivers more valuable information. For

instance, given a possible suspect Alice, if the auditor has some external information

in Alice’s favor, the TC model can help to answer questions like “Who remains a

suspect if I assume Alice is not a suspect?” Our system (using either the TI or

TC models) returns uncertain answers which reflect the unavoidable imprecision of

carrying out an audit task in the presence of a partially removed history. In the

absence of our techniques, a conventional system would be unlikely to produce valid

query answers at all.
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We use the term expressiveness to measure the ability to precisely represent the

set of correct answers. TC is strictly more expressive than TI because it can interpret

the uncertain answer of A4 but TI can’t. After analyzing their expressiveness and

investigating other alternatives later in this chapter, we conclude that the combination

of TI and TC meet the needs of our application. We will see that the cost of TC’s

expressiveness is the decreased efficiency of deciding which tuples are certain and

which are possible.

In summary, the main contributions of this chapter are:

• We propose declarative rules for expressing retention restrictions over an his-

torical data model. (Section 3.4)

• We define the tuple-independent model (TI) for answering audit queries in the

presence of retention restrictions and we analyze the impact of retention policies

on the accuracy of audit queries. (Section 3.5)

• We present the tuple-correlated model (TC) for answering audit queries. Tuple

level correlations are captured by additional conditions appended to each tuple.

We define the extended relational algebra for TC. We compare the expressive-

ness of TI and TC and prove that TC is a complete data model meaning that it

can represent any possible set of answers. (Section 3.6) We show the advantages

of TI and TC in comparison to other models.

• We discuss the complexity of deciding whether tuples are possible or certain in

Section 3.7. In TI, this is given explicitly by an extra column. In TC, deciding

that a tuple is possible is NP-complete and deciding that it is certain is coNP-

complete. However, for a large subclass of instances, we show that efficient

scheduling algorithms can determine possiblility in P.

• We implement our framework via extensions to Postgres, showing that uncertain

answers can be computed efficiently over both models. (Section 3.8)
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• We demonstrate (through simulation on sample data) that useful auditing can

be performed in the presence of retention restrictions, despite uncertain answers.

The study of the impact of retention policies on the accuracy of query results

under TI and TC shows cases where TC can significantly improve accuracy over

TI. (Section 3.9)

We describe our threat model, in Section 3.2, and our data model and queries, in

Section 3.3. We distinguish our contributions from related work in Section 3.10.

3.2 Threat Model & Security Objectives

3.2.1 Adversaries

Our threat model focuses on two major categories of adversary: auditors and

external authorities.

An auditor is an authenticated user of the system who is permitted to ask queries

about past events in the database. We use the single term auditor to refer to either an

entity external to the enterprise who is authorized to perform audit tasks, or a user

internal to the enterprise who wishes to compute analytics or monitor changes in the

database. We assume auditors are not capable of subverting standard authentication

procedures or access controls imposed by the compliance officer. In our framework,

this means that the auditor is restricted to the sanitized data history only.

An external authority is an entity, such as a legislative body, a governmental in-

stitution, or a legal authority, capable of issuing audit queries that the enterprise

is compelled to answer using all information available in the database. An external

authority is not restricted by access controls imposed by the compliance officer. How-

ever, information that is physically removed from the data history will no longer be

available to anyone, even the external authority. In addition, the external authority

can issue a data hold to the compliance officer, preventing the compliance officer from

removing specified data from the history.
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3.2.2 Threats and Security Objectives

Data Disclosure The primary threat we address is unintended disclosure of the

data history. When the compliance officer intends to protect portions of the data

history through one or more retention policies, but that data history is nevertheless

exposed to an auditor or external authority, then data disclosure has occurred. For

example, in our motivating scenario, if Bob’s salary is not appropriately sanitized by

Policy 1, the answer to Query A1 may have Bob as a certain answer, resulting in a

compromise of Bob’s privacy.

Maintenance of data holds We assume that if an external authority issues a

data hold for a portion of the data history, the enterprise is required to retain that

history for later audit queries by the external authority. Failure to comply with

this requirement may result in significant liability for the enterprise, so we consider

maintenance of data holds an important security property of our framework.

We consider avoiding data disclosure and respecting data holds as non-negotiable

requirements of our framework, treating these as hard constraints that must be met.

Subject to these constraints, we desire to provide the best utility and availability

possible for auditing. In the best case, audit answers are precise. If they are not

precise, the auditor may be faced with uncertainty about the actual audit query

answer, but we nevertheless insist that answers be sound, so that they do not lead to

false conclusions. These assumptions favor compliance over auditing, and imply that

some retention policies established by the compliance officer may not allow accurate

auditing for some auditing queries. It is possible for the compliance officer to detect

the interaction between a retention policy and audit query (see discussion in Sec.

3.4.3).

There are other enterprise security threats that are not the primary focus of this

work. We assume that conventional methods are used to prohibit database clients

from altering the data history or log in any manner other than through inserts,
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updates, and deletes on the current snapshot. We also assume that the compliance

officer is trusted to implement policies correctly: we do not defend against the threat

posed by an untrusted compliance officer intentionally altering the log. Such threats

have received considerable attention elsewhere [28,43,44,80,91,96,104]. Lastly, while

external authorities are capable of accessing any data stored by the enterprise, we

assume they cannot carry out a full forensic examination of the enterprise system to

reveal further data remnants that may be retained. Such threats have been considered

by prior work [105] and we assume suitable countermeasures are employed.

3.2.3 Achieving security objectives

The retention policies described in this chapter have a single well-defined semantics

(described in Sec 3.4). But applying the retention policies to the data history can be

done in one of two ways: physically or logically. Logical implementation addresses the

threat of data disclosure only with respect to auditors, but not external authorities.

An advantage of logical implementation is that it is easy to modify or re-apply the

retention policy, and because data is not physically removed, logical application never

conflicts with data hold requirements. Physical implementation, in which redaction

and expunction result in physical removal of data, is more secure, addressing the

threat of data disclosure for both auditors and external authorities.

3.3 Data Model and Audit Queries

In this section we describe our data model, based on backlog and transaction-time

databases [52,53], and our language for expressing audit queries.

3.3.1 Data model

Let (S1, . . . , Sk) be the client schema. We refer to each relation Si as a regular

relation to distinguish it from transaction-time relations defined below. tuples(Si) is
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the set of all tuples that could occur in Si (i.e., the cross-product of the attribute

domains).

Audit Log

An audit log is a complete record of the operations on a client table over time, and

we maintain an audit log table LS for each table S of the client schema. Each row

in LS represents a transaction modifying a tuple of S. Table 3.1 shows an example

audit log table. In general, the schema of LS is:

(〈audit-fields〉, ttime, type, 〈client-fields-from-S〉)

The audit fields may contain an arbitrary set of attributes describing facts about

the transaction. In our examples, the audit fields record the name of the issuing client

and their IP address, but in general they may include many other fields describing the

context of the operation. ttime is a time stamp, from a totally-ordered time domain

T , reflecting the commit time of the transaction. We assume each transaction receives

a unique time stamp. The type field describes the modification as an insert, update,

or delete. The fields of the client schema describe the changes in data values. If the

transaction is an insert, each attribute value is included; for updates, only modified

values are included, with unchanged attributes set to NULL; for deletes, all attribute

values are NULL. This description of an audit log is essentially a backlog database [53]

with the addition of audit fields.

We assume that each audit record refers to a unique tuple, identified by the key

of the client table. In practice, a transaction may affect multiple tuples. If necessary,

this relationship can be recorded in a statement-id, relating the changes to tuples

made by a statement. Without loss of generality we omit this.
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Transaction-time relation

A transaction-time relation (a t-relation for short) represents the sequence of

states of a relation in the client schema. Formally, a t-relation over S is a subset of

tuples(S)× T . A tuple (p1, . . . , pn, t) ∈ TS represents the fact that tuple (p1, . . . , pn)

is active at time instant t. In examples (and our implementation) we use the common

representation for t-relations in which (p1, . . . , pn, from,→) means that (p1, . . . , pn)

holds at each instant t, for from ≤ t ≤→. Table 3.2 is an example of a t-relation.

Audit log versus T-relation

Given an audit log table LS, a unique t-relation can be computed from it in a

straightforward way by executing each statement. After a modification, the values of

a tuple are active until the time instant of the next operation modifying that tuple.

We use exec to indicate this procedure, and we define TS to be exec(LS) for each S

in the client schema.

It is also possible to reverse this procedure, computing an audit log from a t-

relation (although no audit fields will be included). This procedure, denoted exec−1,

computes initial insertion transactions at the time instant a new tuple is created,

subsequent update transactions at the instant of each change to a tuple, and (for

tuples that are no longer active) deletion transactions. Notice that computing an

audit log from TS will reproduce a table similar to LS but with the audit fields

removed: Πttime,type,S(LS) = exec−1(TS).

The audit log LS and the t-relation TS represent similar information. As a practi-

cal matter it is not necessary to maintain both. However, in the formal development

presented here, each representation serves an important purpose. We will see in the

next section that retention policies are defined in terms of TS, and can be applied

directly to TS. But TS does not include audit fields. We will also reconstruct an au-

35



dit log from the protected TS in order to make explicit the possible inferences about

changes to the database.

3.3.2 Audit queries

A variety of interesting audit queries can be expressed over TS and LS. LS is

a regular relation, but queries over t-relation TS may use extended relation algebra

operators to cope with transaction-time. We omit a formal description of these op-

erators, which can be found in the literature [17, 30], and instead present examples

highlighting their features.

The example audit queries from Section 3.1.2 are expressed as follows on TS or

LS:

A1. Return all employees who earned a salary of 10 at some point in time. Πname(σsal=10(TS))

A2. Return the clients who updated Bob’s salary, and the time of update.

Πclient,ttime(σtype=upd∧name=Bob∧sal 6=NULL(LS))

A3. Return the clients who updated any employee’s dept, and the time of update.

Πclient,ttime(σtype=upd∧dept6=NULL(LS))

A4. Return all the time periods when Bob earns a salary of 10. Πfrom,to(σsal=10(TS))

Conventional joins on t-relations are possible, as well as joins between a t-relation

and regular relation. For example, our audit log LS can be joined with TS on the

ttime attribute. In addition, we can use concurrent cross-product (denoted ×�) or

concurrent join (denoted ./�) as binary operators on t-relations that combine tuples

active at common time periods. The following additional example query includes a

concurrent self join on TS:
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client IP ttime type eid name dept sal

Jack 1.1.1 0 ins 101 Bob Sales sx
Jack 2.1.1 100 upd 101 - - sy
Kate 3.1.1 200 upd 101 - Mgmt -

NULL NULL 250 upd 101 - - 12
Kate 4.1.1 300 upd 101 - - 15

NULL NULL 300 ins 201 Chris Mgmt 10
Kate 4.1.1 500 del 201 - - -

Table 3.4: A sanitized audit log, P (LS), transformed under the retention policies of
Section 3.1.2 and Example 3.5.

A5. Return all employees who worked in the same department as Bob at the same

time.

Πname(σname′=Bob(TS ./
�
dept=dept′ T

′
S))

Finally, the time-slice operator restricts a t-relation to a specified interval in time.

For the interval [m,n], it can be defined as: τm..n(R) = R×�{〈m,n〉} where {〈m,n〉} is

a singleton t-relation without user-defined attributes. The result of applying the time-

slice operator is a t-relation. A regular relation representing the snapshot database

at time m can be written as π
S−{from,to} (τm..m(TS)).

3.4 Describing and Applying Retention Policies

In this section, we define the semantics of our redaction, expunction, and preser-

vation rules, and discuss how they are applied to the stored history. When the imple-

mentation respects the semantics of these rules, the threats and security properties

in Sec. 3.2 will be satisfied.

3.4.1 Retention policy definitions

Retention policies are used to restrict access to tuples or attribute values in one

or more historical states of the database. The need for retention policies arises from

the sensitivity of data items in the client schema. Thus it is most natural to express
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retention policies in terms of the t-relation, TS, which describes states of the client

relation as it evolves through time. We define our retention policies formally below

as transformations on TS.

Our first retention operation is called redaction. It suppresses attribute values in

tuples for a specified time period. Redaction is useful because it hides sensitive data

values, but preserves the history of modification of the tuple. Our second retention

operation is called expunction. An expunged tuple is removed from history, and the

historical record is modified accordingly to hide its existence.

These two operators serve different purposes as they enact value removal in the

case of redaction, and existence removal in the other. Expunction is a more extreme

operation because it does not merely suppress information, but changes the historical

record in ways that can substantially change answers to audit queries. We believe

that a variety of privacy policies can be satisfied through the use of redaction policies

alone, which will lead to more accurate auditing.

In the definitions that follow, a Boolean condition φ, on client relation S, is a

Boolean combination of comparisons S.A θ c, or S.A θ S.B, for any θ ∈ {=, 6=, <,≤

, >,≥}.

Definition 3.1 (Expunction Rule). An expunction rule, over a client table S, is

denoted E = ExpungeS(φ, [u, v]) where φ is a Boolean condition on attributes of S,

and [u, v] is a time interval (u, v ∈ T , and u ≤ v).

An expunction rule asserts that all tuples matching condition φ should be removed

from a specified interval in time. When an expunction rule E is applied to a t-relation

TS, the intended result is a new t-relation. Denoted E(TS), this new t-relation consists

of all facts from TS except those that satisfy φ and have time field in [u, v]:

Definition 3.2 (Expunction Rule Application). For a client relation S, let TS be a

t-relation over S, and

38



E = ExpungeS(φ, [u, v])

be an expunction rule. The application of E to TS, denoted E(TS), is a new t-relation

with the same schema: E(TS) = TS − {x ∈ TS | φ(x) ∧ x.t ∈ [u, v]}

Unlike expunction, a redaction rule does not remove tuples from the historical

record. Instead, a redaction rule asserts that the values of certain attributes should

be suppressed in all tuples that match condition φ and are active during a specified

time interval.

Definition 3.3 (Redaction Rule). A redaction rule, over client table S, is denoted

R = RedactS(φ,A, [u, v]) where φ is a Boolean condition on attributes of S, A is a

subset of the columns in S, and [u, v] is a time interval (u, v ∈ T , and u ≤ v).

When a redaction rule R is applied to a t-relation TS, the intended result is

a new t-relation, denoted R(TS), in which some attribute values have been sup-

pressed. To formalize R(TS) we use a suppression function supp(x,A) which re-

places attributes of A in the transaction-time tuple x with variables. For example, if

x = (101, Bob, Sales, 10, 300) then supp(x, {dept, salary}) = (101,Bob,dx, sx, 300).

We assume that suppressions of distinct values always use distinct variable names,

and that all instances of a value are replaced by the same variable.

Definition 3.4 (Redaction Rule Application). For a client relation S, let TS be a

t-relation over S, and R = RedactS(φ, A, [s, t]) be a redaction rule. The application

of R to TS, denoted R(TS), is a new t-relation with the same schema:

R(TS) = {supp(x,A) | x ∈ TS, φ(x), x.t ∈ [u, v]} ∪

{x | x ∈ TS,¬φ(x) ∨ x.t 6∈ [u, v]}

39



We assume for simplicity that A does not contain the key for table S. If the

key for R is sensitive, and subject to retention policies, a surrogate non-sensitive key

attribute can be introduced to the schema. This means that even if all attributes of

the schema are redacted, the history of changes to a tuple is still preserved.

Having applied a redaction policy, the resulting table R(TS) is formally an in-

complete t-relation. It is a representation of a set of possible worlds, each resulting

from a different substitution of distinct values for the variables introduced by the

suppression of attributes. We define incomplete relations formally in Section 3.5.

Retention policy composition

Retention rules can be combined to form composite retention policies. A set of

redaction rules is combined by hiding any attribute value that satisfies the selection

condition and time-period of any individual redaction rule. A set of expunction

rules is combined by removing all tuples satisfying any individual expunction rule.

Expunction rules take precedence over redaction rules: a tuple satisfying both an

expunction and redaction rule will be removed rather than suppressed.

Example 3.5. In Section 3.1.2, we described informally two retention policies. The

redaction rule that hides Bob’s salary between time 0 and 250 is written formally

as R = RedactS( name=‘Bob’, sal, [0, 250]). The expunction rule that removes the

record of all employees in the HR department between time 0 and 300 is written E =

ExpungeS(dept=‘HR’, [0, 300]). Table 3.3 is the t-relation that results from applying

both E and R to the original table TS shown in Table 3.2.

Suppression by Variables vs. NULLs

The choice to use variables instead of NULL values for cell suppression allows for

improved audit accuracy but can sacrifice confidentiality because it reveals when two

redacted values are identical. For example, suppose Bob’s salary was 10 at time x

but is later redacted. If Bob has the right to access both his and other employees’
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information, he may find Jack’s salary at time y is equal to his redacted salary at

time x, allowing him to infer that Jack has salary 10 at time y, in violation of the

redaction policy.

Nevertheless, we believe this is a worthwhile trade-off and we show in Section 3.9

that the use of variables can substantially increase auditing accuracy for some queries.

Our framework can easily be adapted to a suppression function using NULL values.

3.4.2 Sanitizing the audit log

Consider a policy P consisting of redaction and expunction rules. According to

the definitions above, we apply the policy to TS to get the t-relation P(TS). As

we have seen in the examples of Section 3.1.2, the answers to audit queries are not

determined completely by the table P(TS). For one, the audit fields in LS are not

present. We must use LS in combination with P(TS) to answer queries that reference

the audit fields. In addition, the operations applied to the database need to be

inferred from P(TS) which represents just the history of database states. In order

to combine audit field information, and to make explicit the changes to the database

that are implied by P(TS), we compute a sanitized log consistent with P(TS). This

new log is denoted P(LS) and has the property that running it results in P(TS), that

is: exec(P(LS)) = P(TS). The auditor, and other users, will have access to both

P(TS) and the sanitized audit log. Together we refer to these as the sanitized history.

The relationship between the audit log and transaction-time tables in our framework

is illustrated in Figure 3.1.

When computing the sanitized history, we hope to satisfy the following properties.

• A sanitized history is secret if it respects the semantics of the policy, hiding

tuples and values appropriately. This means it is not possible to infer from the

protected history anything that is not present in P(TS) (the defined meaning).
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TS P(TS)

Original Data
Data Under 

Retention Restrictions

P(LS)

exec exec
-1

Policy

Application

Figure 3.1: Illustration of the relationships between original history (LS and TS) and
the history under retention policy P . P (TS) is defined directly, while P (LS) is the
sanitized log derived from P (TS) and including audit fields from LS.

This property defines the fundamentals of preventing data disclosure (in Section

2).

• A sanitized history is sound if it omits information, but does not lead to false

answers to audit queries. This property is ensured for all queries if the possible

worlds implied by P(TS) include the original history. In that case, the true an-

swer to any audit query must be a possible answer under retention restrictions.

This property is essential for data utility (in Section 2) and it provides the basis

for answering queries precisely.

Note that for any redaction rule R and expunction rule E , R(TS) and E(TS) are

secret by definition. The challenge to secrecy comes from integrating LS. Also note

that expunction policies necessarily violate soundness. Because an expunction policy

changes history by removing records, it produces false answers to audit queries.

Definition 3.6 (Sanitized Log). Let P be a retention policy consisting of redaction

rules, expunction rules, or both, and let P(TS) be the (possibly incomplete) t-relation

that results from applying P to TS. The sanitized log under P is denoted P(LS) and

is defined as follows:
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1. Treating any variables present in P(TS) as concrete data values, compute the

audit log table exec−1(P(TS))

2. Let L0
S = Π〈audit-fields〉,ttime(LS)

3. P(LS) = L0
S ./=ttime exec−1(P(TS))

This procedure first uses the exec−1 to compute an audit log from P(TS). Then

we extract the audit fields and time column from the original audit log. This table,

L0
S, is then joined with exec−1(P(TS)). We use a right outer join to preserve tuples in

exec−1(P(TS)) which may not have a match in L0
S. This occurs when the application

of a redaction policy splits the active interval of one or more records. It suggests that

an update operation occurred in the history, but the time instant of this update does

not match any update in the original audit log.

Example 3.7. Table 3.4 is the sanitized audit log computed according to the above

definition, for the policy described in Example 3.5.

Note that Definition 3.6 is not itself an attractive strategy for computing the

sanitized log. We describe our implementation of policy application in Section 3.8.

In addition, we will see below that policies can be “applied” logically, in which case

P(LS) need not be materialized.

3.4.3 Retention policy analysis

We can show the following properties of the sanitized log.

Proposition 3.1. Let LS be an audit log, TS the t-relation derived from it, and let P

be a retention policy consisting of a set of redaction rules R1 . . . Rn where each Ri =

RedactS( φi, Ai, [ui, vi]).

• The computation of P(LS) is sound.

43



• The computation of P(LS) is secret iff

ui, vi ∈ Πttime(LS) for all i.

Proof. (Sketch) Soundness follows from that fact that P(TS) is sound, and the fact

that P(LS) is consistent with P(TS), in the sense that exec(P(LS)) = P(TS). It

follows that the original history is one possible world of P(LS). If the condition ui, vi ∈

Πttime(LS) fails, then there are dangling tuples in the join described in Definition 3.6.

The absence of audit fields leaks information and violates secrecy. If the condition

holds then there are no dangling tuples. Secrecy follows from the fact that R(LS) is

consistent with R(TS) and uses only the projection, L0
S, of LS.

The sanitized log from Example 3.7 and Table 3.4 demonstrate the problems that

result from arbitrary redaction intervals. These policies split intervals and suggest

phantom updates that cannot be convincingly represented in the log. The failure of

secrecy appears not to be merely an artifact of the semantics of redaction, but instead

a fundamental difficulty in presenting an audit log that is consistent with a redacted

data history. It is possible that secrecy could be achieved by introducing additional

uncertainty about phantom modifications, but this entails a more powerful model of

incompleteness, potentially sacrificing efficiency, and degrading audit query accuracy.

Further investigation is a topic of future work.

As a practical matter, to avoid sacrificing secrecy for redaction rules, the desired

time interval [u, v] of each redaction rule can be shifted, either forward or backward,

to the time of the nearest modification (to any field) in the log.

Policy/Query Independence

It is possible to decide statically, for a given policy and audit query, whether the

query answer will be unaffected by the policy. This problem is closely related to the

study of view independence of updates [10, 11]. Here the audit query occupies the
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place of the view. Our retention policies can be considered deletions (in the case of

expunction) or updates (in the case of redaction). Known results provide sufficient

conditions for determining policy-query independence in our framework.

3.4.4 Supporting preservation rules

Redaction and expunction are removal rules. They implicitly indicate the seman-

tics of data holds: the system only removes information that satisfies removal rules,

and retains the rest. Thus, when there is a litigation hold, we change the existing

removal rules accordingly to prevent unwanted deletion. However, a specific preser-

vation rule may provide more flexibility for compliance officers. Our framework is

able to support tuple-level preservation rules. A preservation rule tells the system to

retain all tuples matching the conditions in ψ for a specified interval of time.

Definition 3.8 (Preservation Rule). A preservation rule, over a client table S, is

denoted H = PresrvS(ψ, [u, v]) where ψ is a Boolean condition on attributes of S,

and [u, v] is a time interval (u, v ∈ T , and u ≤ v).

When a preservation rule alone is applied to a t-relation, the t-relation is un-

changed. When a preservation rule and a removal rule are applied together, the

process of generating the new t-relation should ensure that those tuples matching the

preservation rule are always retained, taking priority over the removal rule. To main-

tain data holds (described in Section 2), preservation rules must be applied correctly.

Definition 3.9 (Preservation Rule Application). For a client relation S, let TS be a t-

relation over S, and P be the current set of removal rules (expunction and redaction).

If a preservation rule H = PresrvS(ψ, [u, v]) is added to P to get P+ = P ∪{H}, then

we generate a new set of removal rules, P ′, from P by transforming each condition

p.φ for p ∈ P into p.φ ∧ (¬ψ ∨ (p.t 6∈ [u, v])) where p.t is the specified time period

in original rule p. If P+(TS) denotes the application of all the rules, we then have:

P+(TS) = P ′(TS)
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The definition above defines the semantics of integrating preservation rules by

logically transforming the original removal rules. It follows from the definition that

preservation rules take precedence over removal rules. Further, the properties of

removal rules and sanitization processes defined earlier in this section hold also for

policies that include preservation rules.

3.4.5 Physical vs. logical policy application

The discussion above has implicitly suggested the physical application of retention

policies to the audit log and derived transaction-time table, in which record removal

and attribute suppression are reflected in the storage system. Physical sanitization

is appropriate when it is necessary to defend against external authorities as well as

auditors, or when privacy policies mandate direct removal of data.

An alternative is logical removal, in which the audit log is not physically changed.

Instead, a logical view is computed which is consistent with the retention policy.

Logical sanitization can support multiple distinct retention policies that can be as-

sociated with users or groups of users, in a manner very similar to an access control

policy, which physical deletion is unable to support. Under logical log sanitization,

our retention policies can be seen as a combination of fine-grained and view-based

access control over a transaction-time database.

By the semantics of preservation rules, we always physically enforce them. This

fact applies to all preservation rules with no exceptions. But whether to logically

enforce them is a choice made by compliance officers. For example, if preservation

rules are the requirements of external authorities, the compliance officer first prevents

physical deletion of the related tuples to maintain the data hold. At the same time, if

he thinks that these preservation rules are beyond the auditor’s accessibility, he will

probably choose to ignore them in the logical application, which means allowing logical

deletion of the tuples matching these preservation rules. By doing this, the system
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provides better privacy guarantees while still satisfying data holds. Alternatively, the

compliance officer can add a data hold purely for the sake of preserving information of

interest to auditors. In this case, he will enforce the preservation rule both physically

and logically. But one should be warned that in this circumstance data could also be

exposed to external authorities and thus data disclosure is not prevented with respect

to them.

Based on the discussion above, we believe a hybrid method of history sanitization,

instead of purely physical or logical application, would better accommodate common

scenarios. Assume P is the set of rules defined on the database, containing preserva-

tion rulesH and removal rulesR. The compliance officer can adopt a hybrid approach

as follows. Physical application is always executed on all preservation rules H since

it does not prevent logical application of these rules later. Physical application on

removal rules should be carefully chosen as logical sanitization is not available for

them subsequently. So the officer selects a subset consisting of important removal

rules R1 ⊆ R for physical sanitization. Next, in the logical application step, for each

group of users/auditors, he decides what information to retain for them and enforces

a corresponding subset of preservation rules H1 ∈ H. For removal rules, he decides

what to be deleted logically for each group of users/auditors, and enforces a proper

subset of non-physically-applied removal rules R2 ⊆ R−R1.

In Section 3.8 we describe the implementation of our policies both physically

(using an update program that transforms stored tables), and logically (by rewriting

incoming audit queries to return answers in accordance with the stated policy).

3.5 Audit Queries under Retention Restrictions: A Tuple-

independent Model

Under a retention policy that includes a redaction rule, audit queries must be eval-

uated over tables containing variables in place of some concrete values, i.e., this table
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contains incomplete information or uncertainty. In this section we discuss the tuple-

independent model (TI), using techniques for querying incomplete information [51]

to describe precisely the answers to audit queries under retention policies. The major

benefit of TI is that there is no additional cost of deciding certain and possible tuples

because extended relational operators can compute and label each tuple explicitly on

the fly.

3.5.1 Incompleteness in relations and t-relations

Both regular relations and transaction-time relations can be incomplete. There

are two main features that distinguish an incomplete relation from a concrete relation.

The first is the presence of variables in attribute values. The second is a status column,

included in the schema of every incomplete relation. The status column is C when

the tuple is certain to exist in the relation, and P when the tuple may possibly exist.

Under a retention policy P , the inputs to our audit queries are the audit log table

P(LS) and t-relation P(TS). Both tables may be incomplete, since they may contain

variables. In addition, each of their tuples is understood to have a status of certain.

In general, audit query answers will include both possible and certain tuples.

An incomplete relation represents a set of possible relations. Let R be a relation

schema (regular or transaction-time) and let IR be an incomplete relation over R.

Also let IR = IpR ∪ IcR where IcR are the certain tuples and IpR are the possible tuples.

If V is the set of variables appearing in R, and f is a one-to-one function from the

variables V into the domain of R, then a possible world consists of the certain tuples

under f , plus any subset of possible tuples under f . Thus, the set of possible worlds

represented by IR, denoted rep(IR), is defined as:

rep(IR) = {f(IcR) ∪X | f ∈ F,X ⊆ f(IpR)}
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where F is the set of all one-to-one functions that assign values in the relevant domains

to variables in V and f(IR) is the relation after replacing variables according to f .

Recall that in our framework, variables only appear in attributes of the client

schema – not in time stamps. Extending the definition of t-relation from Section

3.3, an incomplete t-relation over S is a set of tuples(S) × T × {P,C}. A tuple

(p1, . . . , pn, t, u) ∈ IS represents the fact that tuple (p1, . . . , pn) is certainly active at

time instant t (if u = C) or possibly active at time instant t (if u = P). Incomplete

t-relations can also be represented as tuples (p1,. . . , pn, from,→, u) which means that

(p1, . . . , pn) has status u at each instant t, for from ≤ t ≤→.

3.5.2 Extended relational algebra on incomplete relations

Next we define the extended relational algebra operators on incomplete relations.

The semantics of these operators is similar to the model of relational incompleteness

presented by Biskup [9], but includes extensions for transaction-time. Naturally, these

operators return incomplete relations, inheriting variables from the input relations

and computing the status field appropriately for output tuples. We provide definitions

of selection, cross-product, concurrent cross-product, and set difference. Join and

concurrent-join are derived from these, and projection, union, and the time-slice

operator are defined in a standard way.

Selection

Let IR be an incomplete relation, and E be a selection condition that is the Boolean

combination of comparisons of the form R.x = c (for constant c) or R.x = R.y. Com-

parisons can evaluate to P, C, or False. If the arguments are two different constants,

or two different variables, the comparison evaluates to False. The comparison of a

variable with a constant evaluates to P. If the arguments are identical variables, or

identical constants, the comparison evaluates to the status value for the tuple. The
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Boolean combination of terms is evaluated using the rules of three-valued logic where

P is interpreted as Unknown, and C is interpreted as True.

Tuples are included in the output of the selection operator if their status evaluates

to either P or C. When the condition E has evaluated to P under the comparison

of a variable with a constant, this variable binding needs to be applied to the output

tuple. Formally we have:

σE(IR) = {〈f(r.∗), E(r)〉 | r ∈ IR, E(r) = P ∨ E(r) = C}

The tuples returned have all non-status attributes (denoted r.∗) with variables re-

placed under mapping f , and a new status field E(r).

Example 3.10. Consider the selection condition R.a = 100 ∧ R.b = R.c. On the

input relation {〈dx, dy, 9, C〉}, the selection operation will return {〈100, 9, 9, P 〉}.

Cartesian product

If IR and IS are two incomplete relations over schema R and S, the cartesian

product IR × IS is defined as:

IR × IS = {〈r.∗, s.∗, status〉 | r ∈ IR, s ∈ IS}

where status is set to r.status ∧ s.status.

Concurrent cartesian product

If IR and IS are two incomplete t-relations over schema R and S, the concurrent

cartesian product IR × IS is defined as:

IR ×� IS = {〈r.∗, s.∗, from, to, status〉 | r ∈ IR, s ∈ IS,

[r.from, r.to] ∩ [s.from, s.to] 6= ∅}
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where status is set to r.status ∧ s.status, from = max( r.from, s.from), to =

min(r.to, s.to).

Duplicate Elimination

Duplicates (on the non-status columns of a table) can arise as a result of projection

or union, as well as selection and join (because of the substitution for variables). If a

tuple is both possible and certain, it is only necessary to preserve the certain version

of the tuple. In general, duplicates on the non-status columns are eliminated by

preserving a single tuple with a status value equal to the disjunction of all duplicates’

status values. That is, it will be C if at least one duplicate had status C.

Set Difference

If IR and IS are two incomplete relations, then in computing IR − IS, the tuple

〈r.∗, status〉 will be removed from IR only when there exists a tuple 〈s.∗,C〉 ∈ IS

where r.∗ and s.∗ shares the same value or variables on each attribute. Otherwise,

write 〈r.∗,P〉 into result when there exists a tuple 〈s.∗, status〉 ∈ IS where evaluation

of r.A = s.A (described in operator Selection section) is P or C for all attributes A

in the client schema. The rest of the tuples in IR that do not match the two cases

above will remain unchanged in the result. When IR and IS are t-relations, we must

expand the temporal intervals into instants (according to our definition of t-relation),

execute the set difference, and finally coalesce them back into intervals.

Example 3.11. Recall from Section 3.1.2 that audit query A1 returns all employees

who earned a salary of 10 at some point in time, and can be written Πname(σsal=10(TS)).

On the incomplete t-relation shown in Table 3.3 (for which the omitted status column

is uniformly C) we have the intermediate result of σsal=10(TS):
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eid name dept sal from to status

101 Bob Sales 10 0 100 P

101 Bob Sales 10 100 200 P

101 Bob Mgmt 10 200 250 P

201 Chris Mgmt 10 300 500 C

and the final result of Πname(σsal=10(TS)):

name status

Bob P

Chris C

3.6 Audit Queries under Retention Restrictions: A Tuple-

Correlated Model

As we have seen, in the query A4 of the motivating scenario, TI is incapable of

representing answers accurately due to the failure of the tuple independence assump-

tion. In such cases, the P and C status is no longer enough to preserve a precise

result. In this section, we introduce a tuple-correlated model (TC) for the purpose

of more accurate auditing. TC achieves greater accuracy by maintaining correlations

among tuples explicitly. It appends additional conditions to each tuple during query

processing, instead of simply using “possible” and “certain” indicators. We will define

the TC model and its relational algebra operations. Also we will show the benefit

in terms of the expressiveness. However, the extra conditions make checking certain

and possible tuples more complicated (remember in TI there is no additional cost

for that) and we will discuss that in Section 3.7. Comparison with other models is

investigated in Section 3.6.4.
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3.6.1 Representing incompleteness

In the TC model we associate the schema with an extra column cond. cond

represents a conjunction of clauses, where each clause is a variable-variable or variable-

constant comparison, e.g., X < Y and Z > 5. Consider a database D consisting of

relations over schemas R1, R2, . . .. Each schema Ri = {Ai1, Ai2, . . . , Aij, cond}. Let

A =
⋃
Aij. We define a function h : A → T to classify each attribute into some

data type, where T is the set of all data types. In TC, all the values (variables) in

the same column have the same data type, and values (variables) are only allowed to

compare with those of the same type. For example, attributes salary and bonus are

of the same type and are comparable.

Side conditions η(D) (or η(IR)) are defined for database D (or relation IR, the

incomplete relation over schema R). η(D) (or η(IR)) is a conjunction of inequalities

which captures the distinctness among variables of the same type. The definition

of the side condition conforms to the semantics of retention policies, and captures

constraints that apply to all the tuples, in contrast to tuple-level conditions in the

cond column. v(D) (or v(IR)) represents all the variables involved in D (or IR).

For each variable x, dom(x) represents the domain of the variable. Usually when a

variable is corresponding to some attribute, dom(x) is the domain of that attribute.

Example 3.12 illustrates a relation r in TC.

Example 3.12. r=

name sal cond

Bob x x < 50

Chris y true

η(r) = {x 6= y}, v(r) = {x, y}, 0 ≤ dom(x) = dom(y) ≤ 100

An assignment for database D is a mapping from all variables in v(D) to their

domains, i.e., ∀x ∈ v(D), f(x) ∈ dom(x). An assignment f for database D is qualified
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when f |= η(D). A set of tuples S is a possible world represented by D if and only if

there is a qualified assignment f for D and S is equal to the set of tuples when we

replace all variables with values in D, i.e., f(D) = S. Thus, the set of possible worlds

represented by database D, denoted rep(D), is defined as:

rep(D) = {f(D) | f |= η(D)}

Example 3.13. For the database in Example 3.12,

f = {〈x, 10〉, 〈y, 20〉}

is a qualified assignment, therefore the possible world represented by f is f(r) =

name sal

Bob 10

Chris 20

TC vs. TI. TI allows variables but no tuple-level local conditions. The implicit

constraint on distinctness of variables in TI is written explicitly by the side condition

in TC. Another difference is that in TC you can specify domains of variables, while

in TI variables are always assumed to have infinite domains in order to simplify the

constraints.

TC vs. c-table. In a general c-table (conditional table) [51], each tuple is

associated with a condition, which is a Boolean combination of equalities. A TC

table can be viewed as an extended c-table with general local inequalities and special

global conditions, as the side condition plus explicitly claimed variable domains can

be written as global condition in a c-table. In our application, the side conditions

are usually from retention policies and tuple-level conditions are generated by queries,

thus TC separates the two distinct types of constraints.
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3.6.2 Extended relational algebra

We now describe a slightly different extended relational algebra compared to TI

(Section 3.5.2), since we have to incorporate conditions in the query evaluation. The

semantics of relational operators are defined as follows. Let IR, JR and IS be tables

in database D. Note that the side condition of D remains unchanged after query

evaluation.

ΠA(IR) = {〈r.A, r.cond〉 | r ∈ IR}

σE(IR) = {〈r.∗, r.cond ∧ E(r)〉 | r ∈ IR}

IR × IS = {〈r.∗, s.∗, r.cond ∧ s.cond〉 | r ∈ IR, s ∈ IS}

IR ×� IS = {〈r.∗, s.∗, from, to, r.cond ∧ s.cond〉 |

r ∈ IR, s ∈ IS, [r.from, r.to] ∩ [s.from, s.to]

6= ∅} where from = max(r.from, s.from),

to = min(r.to, s.to)

IR ∪ JR = {〈t.∗, t.cond〉 | t ∈ IR ∨ t ∈ JR}

In projection (Π), we always preserve the cond column in the result. For those

duplicates with the same non-cond attribute values but no cond formula, we could

combine them into a single tuple by taking the disjunction of all cond formulas. In

TC, we choose not to do this in order to keep each formula succinct. This does not

change the semantics of queries and relations. In selection (σ), we return all non-cond

attribute values (denoted as r.∗) and extend the cond column by a conjunction with

the selecting condition E, which itself is a conjunction. If the selection condition is

E = E1 ∪ E2, we will execute two selection operations followed by a union opera-

tion. Cross product (×) is defined by combining tuples in two inputs and taking the

conjunction of their cond columns. Concurrent cross product (×�) is computed in a
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similar way as in TI model, plus the process on cond columns as in a normal cross

product defined above.

3.6.3 Expressiveness

In the context of incomplete databases, expressiveness measures the ability to

represent sets of possible worlds. A data model is said to be complete [93] when it

can represent any set of possible worlds. TI is not complete because it is impossible to

represent a set of possible worlds in which two possible tuples are mutually exclusive,

as shown in query A4 in the motivating scenario. However, TC is complete.

Theorem 3.2. TC is a complete data model, i.e., any set of possible worlds can be

represented by a TC table.

Proof. Assume we have any set of possible worlds W = {r1, r2, . . . , rn}. Now we

construct a table R in TC: we generate a new relation by adding each tuple in every

possible world, as well as distinguishing them by appending cond condition z = i

for the ith possible world. Variable z has dom(z) ∈ [1, n]. Therefore, any qualified

assignment f(z) = i will only associate with the ith possible world. It is obvious that

the relation R represents the exactly same set of possible worlds of W .

We say that model A is at most as expressive as model B (A � B) if for any

relation a in A there exists some relation b in B such that rep(a) = rep(b) where

rep() denotes the set of possible worlds represented by the relation. A is as expressive

as B if and only if A � B ∧ B � A. From the theorem above and the fact that TI

cannot capture tuple correlations, we have the following corollary.

Corollary 3.3. TC is more expressive than TI, i.e., TI � TC and TC 6� TI.

3.6.4 Comparison with Other Models

Our approach combines methods from the uncertain database and temporal database

communities. Some known models (Gadia [31] and Koubarakis [58]) provide a foun-
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dation for this area. A recent model U-relation [1] for uncertain databases is efficient

and expressive. Although it is not designed for temporal databases, we can extend

the relations with time information, such as from and to columns, to answer audit

queries under retention policies. Next we are going to compare TI and TC with these

models and show the advantages of TI and TC.

Gadia’s model [31] It is surprising that by only using nulls instead of variables

in TI (Let’s call it TInull), the extra status column helps us gain the same expressive

power as Gadia’s model (proof omitted here). This fact highlights our model TI,

because Gadia’s model is not in the normal form of the relational database and is

difficult to implement.

Example 3.14. Here is an example where Table 3.5 in Gadia’s model and its equiv-

alent representation Table 3.6 in TInull.

name dept sal

Bob [0,100] Sales [10,30) 10 [10,40)
Mgmt [30,55) 12 [40,45)

[0,50] [0,50] [0,50]
[0,100] [0,100] [0,100]

Table 3.5: A table in Gadia’s model

name dept sal from to status

Bob NULL NULL 0 10 C
Bob Sales 10 10 30 C
Bob Mgmt 10 30 40 C
Bob Mgmt 12 40 45 C
Bob Mgmt NULL 45 50 C
Bob Mgmt NULL 50 55 P
Bob NULL NULL 55 100 P

Table 3.6: The equivalent table in TInull

U-relation [1] U-relation is a c-table styled data model for incomplete databases.

Every relation (named U-relation) is a restricted c-table, in which the global condition
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is always “true”, variables are only allowed in the condition column and the local

condition must be a conjunction of formula x = a where x is a variable and a is a

constant. Each possible world is defined by a total function f : V → N, where V

is the set of variables appeared in the table. The variables in U-relations are used

for two purposes: representing possible worlds by valuation and encoding correlation

between tuples. U-relation is a complete data model, as our TC model, capable of

representing any set of possible worlds.

Consider utilizing this model for audit queries under retention policies. We should

enumerate all the possible assignments of each variable and list each of them as one

tuple in U-relation, e.g., the tuple (Bob, x, true) in TC that tells us Bob has a salary

x will be split into 10 tuples if the domain size of x is 10. In the query evaluation, we

also need to modify the semantics of operators in order to guarantee the distinctness

property among variables. For example, when joining two tables, the query processing

matches the tuples that satisfy the join condition and then takes extra effort to filter

out the inconsistent combinations. The join operation in U-relation is defined as

R ./ϕ S = R ./ϕ∧ω S where ω-condition is used to remove inconsistent tuples, i.e.,

one variable in two tuples is assigned with two different values. To make this join

operation working in our model, we need to rewrite the ω-condition to additionally

exclude the cases when two distinct variables are assigned with the same value. Let

C be the set of conditions in each tuple in the form of “variable = value”. And ↔

can be read “if and only if”.

ω =
∧

c1∈R.C,c2∈S.C

(c1.var = c2.var ↔ c1.val = c2.val)

The main advantage of U-relation is its simple representation and efficient imple-

mentation (incorporating state-of-art relational database systems). However, when

our variables tend to have large domain size, you can not avoid listing all of those

possible values by simple equations attached to each tuple in U-relation. In TC, there
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are variables in the attributes, as well as variables only existed in the cond column.

Moreover, inequalities and equalities are both allowed for cond formula. Such richness

enables TC to represent uncertainty in a concise form. The vertical decomposition

(attribute-level uncertainty) in U-relation has no conflict with the semantics of TC

and it is possible to incorporate for further succinct representation.

Koubarakis’ model [58] Koubarakis proposed a constraint-based incomplete

temporal data model, which integrates global and local inequality constraints on

the occurrence time of an event. With constraints only on temporal information, it

supports indefinite instants. For example, we can say this event a happens between

time 0 and occurence of event b, but we do not know its exact time. Such information

related to event ordering is not allowed in Gadia’s model. However, unlike Gadia’s

model, without variables in traditional attributes, we cannot represent the informa-

tion that allows attribute values to be unknown in the (possible and certain) active

period of that tuple. We basically do not allow incompleteness in temporal columns

for both TI and TC, which simplifies the computation by avoiding complicated event

ordering problems in the query processing. We believe that Koubarakis’ model has

the potential for building a more powerful system, and we save this as our future

topic.

3.7 Complexity

For the TI model, as we have seen, certain and possible tuples are decided by the

status column. However, we will show the problem of checking if a given tuple in TC

is possible is NP-complete in Theorem 3.4. And Theorem 3.7 states that deciding

a certain tuple is coNP-complete. However, we show in Theorem 3.5 and 3.6 that

for a large subclass of instances, the possibility problem is in polynomial time. The

certainty problem remains hard even within subclasses, therefore we use an exhaustive

search with heuristics to compute certain tuples.
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3.7.1 Deciding possible tuples

Given a TC table, there are usually tuples whose cond formulas are unsatisfiable,

which means their existence is impossible. Computing possible tuples is the process

of eliminating those unsatisfiable tuples. We begin with the definition of database

satisfiability and possible tuples.

Definition 3.15. A databaseD in TC is satisfiable when it has a qualified assignment.

It is clear satisfiability ofD is decided by checking satisfiability of η(D) ∧∧x∈v(D) dom(x),

where η(D) is the side condition of the database which indicates the distinctness

among variables of the same type and
∧
x∈v(D) dom(x) defines all of the variable do-

mains in D.

Definition 3.16. A tuple t is a possible tuple in database D when there exists a

qualified assignment f such that f |= t.cond.

Recall that a qualified assignment f of database D satisfies ∀x ∈ v(D), f(x) ∈

dom(x) and f |= η(D). Thus, it is easy to see that deciding possibility of the tuple t

is equivalent to the satisfiability problem of the following formula:

ψ(t) = t.cond ∧ η(D) ∧
∧

x∈v(D)

dom(x)

Of course the satisifiability of database D is a necessary condition for the satis-

fiability of any of its tuples. When we know that D is satisfiable, we can simplify

the above condition ψ(t) by replacing D with the current tuple t, i.e., t.cond∧ η(t)∧∧
x∈v(t) dom(x). Here η(t)∧ ∧x∈v(t) dom(x) are side conditions and domains only re-

lated to variables involved in t.cond. The simplified ψ(t) is equivalent to the original

one when database D is satisfiable: assignments to variables not in t.cond will not

change the satisfiability of tuple t. For simplicity we assume that all of the variables

in t.cond have the same type.
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Theorem 3.4. Given a database D in TC, and tuple t ∈ D, deciding whether t is a

possible tuple is NP-complete.

The proof is a reduction from the clique problem, which is known to be NP-hard.

We next show that two natural restrictions of the satisfiability problem can be

solved in polynomial time. We avoid the richness of constraints that leads to the

above NP completeness by restricting the kind of constraints that can occur at the

same time, namely we do not allow constraints to simultaneously express ordering,

e.g, X < Y , and distinctness from a given constant, e.g. X 6= C. Recall that distinct

variables are required to take distinct values. The two subclasses of TC corresponding

to these restrictions are named TC< and TC 6=.

Theorem 3.5. Given a database D in TC<, and tuple t ∈ D, deciding whether t is

a possible tuple is in P.

Proof. We first rewrite the ψ(t) as an H-representation of tuple t, Ht, consisting of

two different sets of inequalities Ht,1 and Ht,2. 1) Ht,1: inequalities like X < Y .

Since inequality X < Y is equivalent to X ≤ Y − 1, we only need < to represent

the relationship between variables (X 6= Y is implicit since we have X and Y the

same type). These inequalities define a topological ordering of variables. 2) Ht,2:

inequalities like X ∈ [XL, XR]. The lower bound of X is noted as XL while XR is

the upper bound. To compute the lower and upper bound of each variable, we take

advantage of the transitive property of<-relationship. For example, ifX > 5∧Y > X,

we have Y > X > 5 and because X 6= Y we further have Y L = 7. That is, if X < Y ,

Y L will be updated to max(Y L, XL+1) and XR is updated to min(XR, Y R−1). This

can be done by selecting variables in a topological ordering and inverse topological

ordering.

It is clear that the H-representation Ht is equivalent to ψ(t). Now we are ready

to create a scheduling problem such that there are n unit-time jobs (n equals the
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number of variables in Ht) with release times (XLs in Ht,2), deadline times (XRs in

Ht,2) and arbitrary precedence constraints (defined by Ht,1). It is easy to see finding

a feasible schedule for this problem is equivalent to our tuple satisfiability in TC<.

Since computing Ht is in P and finding a feasible schedule for this problem is in P [59]

, the tuple satisfiability can be solved in polynomial time.

Theorem 3.6. Given a database D in TC 6=, and tuple t ∈ D, deciding whether t is

a possible tuple is in P.

Proof. Consider the H-representation of ψ(t), different from Ht in TC<, we will have

an empty Ht,1 since there is no variable comparison and each variable has a union

of sets of intervals in Ht,2, instead of a single interval as in TC<. For example,

X > 1 ∧ X < 10 ∧ X 6= 5 will result in X ∈ [2, 4] ∪ [6, 9]. Now we are ready

to create a scheduling problem such that there are n unit-time jobs (n equals the

number of variables in Ht) with multiple release and deadline times (defined by the

intervals in H2). It is easy to see that finding a feasible schedule for this problem is

equivalent to our tuple satisfiability in TC6=. Since computing Ht is in P and finding

a feasible schedule for this problem is in P [97], the tuple satisfiability can be solved

in polynomial time.

Remark 1 Recall that we simplify tuple satisfiability by assuming the database is

satisfiable. Actually database satisfiability is a special case of Theorem 3.6 because

the satisfiability of formula
∧
x∈v(D) dom(x) ∧ η(D) does not contain inequalities like

X < Y . Thus, deciding database satisfiability can be done in polynomial time. In

addition, when uncertainty is generated by applying retention policies defined in this

chapter, the database is always satisfiable.

Remark 2 Consider the subclass TC= 6= consisting of TC restricted to conditions of

the form X 6= C and X = C in t.cond∧∧x∈v(t) dom(x). Such conditions are common
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for variables in enumerative domains in which there is no ordering among values, e.g.,

department type. Recall that TC6= allows all kinds of variable-constant comparisons,

but not variable-variable comparisons. Since TC=6= is a special case of TC6=, we could

use the algorithm for TC6=. Nevertheless, we can do it faster using an alternative

method. Since there is no ordering among variables and constants, all variables in

t.cond are treated equally. We can randomly pick one variable X and assign it a

qualified constant C such that C has not been assigned to other variables and X 6= C

does not exist. If all variables are assignable, then it is satisfiable, otherwise it is not.

Remark 3 When there are multiple variable types for tuple t, we classify inequalities

by data types. As long as the constraints concerning each distinct data type fall

entirely in TC< or TC6=, we can always compute possible tuples in polynomial time.

For example, t.cond ≡ Xsal < Ysal, Zdept 6= ’HR’ where Xsal < Ysal is in TC< (the

salary type) and Zdept is in TC6= (the department type).

Remark 4 A combination of TC< and TC 6= provides adequate expressiveness for

our purposes. TC< is well-designed for ordered domains (e.g., integer domains like

salary) and TC6= is suitable for unordered domains (e.g., enumerative domains like

department). If we consider the WHERE clauses of the TPC-H queries, each can be

represented in TC< and TC6= under any of our retention policies. This suggests that

in many cases NP-hardness is not a practical problem. Nevertheless, when the general

TC model cannot be avoided, we have to search the space for satisfiable assignments,

and the complexity bound is exponential in the number of variables, n, which is

bounded by a property of the schema. Variables are generated by redaction policies

and n cannot exceed the number of columns belonging to the same data type, thus

we expect to see n very small. In the TPC-H workload, n cannot be larger than ten.

With this small number of variables, complexity exponential in n will be feasible and

add very limited additional burden when compared to TC< and TC 6=.
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3.7.2 Deciding certain tuples

A tuple is certain when it occurs in every possible world represented by the

database.

Definition 3.17. Suppose we are given a database D, and the set of possible worlds

represented by D, W = {f1(D), f2(D), . . .} where F = {f1, f2, . . .} is the set of all

qualified assignments for D. A tuple t is certain iff it exists in every possible world

fi(D), for any fi ∈ F .

As each possible world contains only constants, we can infer that a certain tuple

contains no variables. In addition, if a tuple exists in every possible world, its cond

formula should be always satisfiable for all qualified assignments. To compute the

certain tuples in a TC table, we have a two-step process. First, we compute the

certain v-tuples. A certain v-tuple is a relaxed version of a certain tuple, meaning

its cond formula is always satisfiable but it could have variables in some columns.

We merge tuples with the same non-cond column into a new tuple t and generate

the new t.cond formula by making a disjunction of all the cond formulas. Then if

f(t.cond) = true for every qualified assignment f , t is a certain v-tuple. Second, we

transform certain v-tuples to certain tuples. Obviously, a certain v-tuple is a certain

tuple when it does not contain variables. When t has a variable on attribute A, it can

be transformed to a certain tuple if and only if there are another |dom(A)|−1 certain

v-tuples with different variables of A. In other words, there are at least |dom(A)|

certain v-tuples with distinct variables of A, therefore, by distinctness of variables of

the same data type, each corresponds to a certain tuple. When the size of database is

unbounded, the difficulty of the first step dominates, since step two can be computed

efficiently.

Theorem 3.7. For each variant of the TC model discussed above, namely TC, TC<,

TC6= and TC=6=, the tuple certainty problem is coNP-complete.
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X1 X2 X3 X12 X13 X23 X4 X14
f =

A qualified assignment

Xv ∈ [1, 8], Xv "= 4, 5, 6
Xij ∈ [4, 8], Xij "= 7
Xi < Xij, Xj < Xij

v = {1, 2, 3, 4}
〈i, j〉 = {〈1, 2〉, 〈1, 3〉,

〈1, 4〉, 〈2, 3〉}

(a) (b)

(c)

Figure 3.2: Reduction from clique problem to tuple satisfiability problem in TCall.

The proof involves reductions from the 3DNF tautology problem to prove the

coNP-completeness for the TC classes.

We can do an exhaustive search to detect certain tuples by a backtracking method.

We choose a variable, assign a value, and then simplify the formula, recursively check-

ing if it is still a certain tuple. Assume a variable’s valid intervals consists of the union

of all intervals in which the variable could find a qualified assignment that makes at

least one of the conditions in cond true. One necessary condition for a certain tuple

is that each variable should have its valid intervals equal to its domain. Thus, in each

recursive step, if any variable has a smaller valid interval than the domain, the tuple

is not a certain tuple. This heuristic will help to eliminate non-certain tuples quickly.

The worst case complexity of calculating certain tuples is primarily determined by

a term exponential in the number of variables n. Similar to our discussion in Remark

4 about possible tuples, n tends to be a small number. Thus, in practical cases, e.g.

for schemas like TPC-H, the overhead added here is limited.

3.7.3 Proof of the Theorems of TC

Here we finish the proofs of the theorems for TC in Section 3.7.
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Proof of Theorem 3.4

Proof. The problem is in NP because given an assignment, we can verify in polynomial

time whether t’s formula is evaluated to True. Now we are going to generate a

reduction from the clique problem to show it is NP-complete. Consider an instance

of clique problem: a graph G = (V,E) and k = 3. Let V = {1, . . . , n} and m = |E|,

we build a tuple t that consists of n+m variables: Xi : i ∈ V ; Xij : (i, j) ∈ E. These

variables must take distinct values in the range [1, n+m]. Furthermore we will write

inequalities so that the first k values are taken by vertex variables Xis and the next(
k
2

)
values are taken by edge variables, and the next n−k values are taken by the rest

of vertex variables. Furthermore, we will write inequalities requiring that for each

edge (i, j), Xi < Xij. Thus the conditions of the inequalities will be satisfiable iff G

has a k clique. Formally we define t.cond as follows,

• For each vertex i in V , we create a vertex variable Xi s.t. Xi ∈ [1, n + m] and

Xi 6= k + a for all 0 < a ≤ k(k − 1)/2

• For each edge (i, j) in E, we create a edge variable Xij s.t. Xi < Xij, Xj < Xij,

Xij ∈ [k + 1, n+m], and Xij 6= k + k(k − 1)/2 + b for all 0 < b ≤ n− k.

An example of the reduction on one small example is shown in Figure 3.2. It

is clear this reduction is polynomially bounded. To prove the correctness of the

reduction, we will see the tuple is satisfiable if and only if G has a k-sized clique.

When there is a k-sized clique in G, we can always find a qualified assignment that

makes the tuple satisfiable. From 1 to n + m, we put the variables into slots by the

following order: k vertex variables in the clique,
(
k
2

)
edge variables in the clique, n−k

vertex variables and rest of edge variables. Consider the case k-sized clique does not

exist in G. By construction, slots from k + 1 to k + k(k − 1)/2 are only allowed

for edge variables. Since there are less than
(
k
2

)
edges connected among any set of k

vertices, at least one of these slots is empty. With domain size equal to the number
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of variables, we can conclude the tuple is not satisfiable. Therefore the reduction is

correct and the theorem holds.

Proof of Theorem 3.7

Proof. All the problems are in coNP because given an assignment in polynomial time

you can verify the tuple is not a certain tuple when t’s formula is evaluated to False.

To prove coNP-completeness, we construct a reduction from 3TAUT – the 3DNF

tautology problem, which is known to be coNP-complete. For any 3DNF instance A

with n variables, we will construct a table T in TC. The relation is a set of single-

column tuples. Each tuple has a value 100 and the number of tuples is equal to the

number of clauses in A. We create n variables with the same type for relation T and

a mapping f from variables in A to variables in T . Each variable in T has an index

associated with it, i.e. from x1 to xn. Variables in relation T have domain [1, n+ 1].

Each tuple corresponds to a clause, and add an inequality xi ≤ i (xi > i) in the cond

column for each positive literal (negative literal). Consider

A ≡ (x̄ ∧ y ∧ z) ∨ (x ∧ ȳ ∧ w̄)

we construct the T with variables x1, x2, x3 and x4.

value cond

100 x1 > 1, x2 ≤ 2, x3 ≤ 3

100 x1 ≤ 1, x2 > 2, x4 > 4

η(D) ≡ x1 6= x2 6= x3 6= x4

dom(xi) = [1, 5]

It is clear the construction is polynomially bounded. Now we prove the correct-

ness of reduction. 1) If A is not a tautology, there must exist an assignment to the
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variables in A such that none of clause can be evaluated True. Assume the assign-

ment is {a1, . . . , an} where ai = 0 or 1. We build a qualified assignment {b1, . . . , bn}

to variables in T , where bi = i if ai = 1 and bi = i + 1 if ai = 0. {b1, . . . , bn} will

not make any tuple’s condition true, otherwise the corresponding clause in A will also

become true under assignment {a1, . . . , an}, which is a contradiction. 2) If tuple 〈100〉

is not a certain tuple, i.e., there must exist some qualified assignment to variables

in T such that none of tuple’s conditions is true under this assignment. Assume the

assignment is {b1, . . . , bn} where bi ∈ [1, n+ 1]. We build an assignment {a1, . . . , an}

to variables in A, where ai = 1 if bi ≤ i and ai = 0 if bi > i. Similarly, {a1, . . . , an}

will not be valid to any clause, otherwise the corresponding tuple’s condition will be

true by assigning {b1, . . . , bn}. Therefore, the reduction is correct and polynomially

bounded. The T relation created here only has variable-constant comparisons and

no 6= operator in cond column, so it is an instance of TC, TC< and TC 6=. So coNP-

hardness holds for all of three different classifications. In addition, for TC=6= we could

have another reduction from 3DNF tautology problem. Consider the same formula

A as above, we construct a table T in TC=6= and the correctness of reduction can be

proved similarly.

value cond

100 x1 6= 1, x2 = 2, x3 = 3

100 x1 = 1, x2 6= 2, x4 6= 4

η(D) ≡ x1 6= x2 6= x3 6= x4

dom(xi) = [1, 4]

Moreover, since T in our construction only has one type of variable, deciding

certain tuples with variables of multiple types is also coNP-complete.
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3.8 Implementation

The implementation of our framework translates our historical data model into

standard relations in Postgres. Our goal is to show the practical feasibility of our

framework. We optimize our implementation using commonly-available indexing

strategies and query rewriting techniques. A fully optimized implementation might

make use of techniques specifically designed for transaction-time data, but these

are beyond the scope of our prototype. Note the earlier implementation described

in [67,68] only includes the TI model.

As a performance optimization, both the audit log and the transaction-time tables

are stored in our implementation. As noted earlier, the transaction-time tables are

redundant since they can be computed from the audit log. However, materializing

these tables and maintaining them upon changes to the log eases query expression

and evaluation for some audit queries. The efficiency gains seem well worth the space

overhead which is roughly double that of storing the audit log alone. The time stamp

fields from and to are combined into one attribute named trange, which is stored as

an interval type (actually a one-dimensional cube data type in Postgres). Utilizing

the cube data type simplifies the expression of the concurrent join, and we also use an

available R-tree implementation. In TI, status is represented as a Boolean value. In

TC, we split the conjunction in the cond formula and put each inequality (or equality)

into a text value column.

Recall that the application of policies can be executed either physically or logically

(see the discussion in Section 3.4.5). In the remainder of the section we discuss the

physical application of retention policies followed by query evaluation on physically

sanitized datasets. Then we describe the logical application of policies. Lastly we

discuss the computation of possible and certain tuples.
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3.8.1 The physical application of retention policies

The application of retention policies is implemented by transforming the input

rules into a set of update operations on the original t-relation and possibly the audit

log. Inconsistencies may arise if the subsequent application of new policy rules touches

the previously sanitized attributes [4, 98]. For example, one policy p1 removes the

department information and the other policy p2 hides employees’ salary in the HR

department. Applying p1 first will result in a different sanitized history than if p1

is applied second. In this example, p2 will remove nothing if p1 is already applied,

however, the sanitized history will be different if p1 is applied first. To avoid this,

we assume we have all the policy rules at the time of policy application. Policy

application for all rules is accomplished in one-pass scanning of the table, sanitizing

each tuple against all rules, which guarantees that all the conditions in the rules are

fully evaluated on the current tuple before removing any values from that tuple. For

example, if an employee is in the HR department, both his salary and department

information will be deleted when we have p1 and p2.

Redaction is implemented by replacing values with variables. As described pre-

viously, variables here preserve equality even after redaction. That is to say, the

relationship between value and variable is a strict one-to-one mapping. In our cur-

rent implementation, we use a cryptographic hash function. Specifically, each data

type has a distinct hash function, which allows consistent variable assignments on

the same values even across multiple tables. Remember that we define the data type

when introducing TC in Section 3.6 and this concept can also be applied on TI. As

a data type only relates to the comparability and does nothing with the domain,

another benefit of utilizing a hash function for each data type is to enable comparison

of variables that belong to different attributes, e.g., comparing salary and bonus.

Since the policies are specified over t-relations, a policy P with an arbitrary time

condition [u, v] may require a split of update intervals causing phantom updates in
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the sanitized log (as demonstrated from Example 3.7 and Table 3.4), which results in

residual disclosure and false conclusions in query evaluation (meaning audit answers

will no longer be sound). To avoid this, we adjust the redaction period to the nearest

modification period of any field. However, this method might be too restrictive and

hinders periodic policy application, especially when the nearest modification period

is much longer than that required by the retention policies. To favor practicality

and periodic application but still achieve no residual disclosure and soundness, one

possible approach is to impose a system-wide “soft” limitation of the active period of

time for each tuple. As a tuple’s active period is defined as to−from, the requirement

ensures that no tuple is going to stay in the current snapshot of the database longer

than the limit roughly. For example, if Bob’s salary remains unchanged for about one

year, which reaches the limit of a tuple’s active life time, the system will input a new

tuple with the same salary starting from some randomly selected date and archive

the old tuple in the history. In the log table, all audit fields of the new tuple are

copied from the last update. Thus, we can align the time with finer granularity and

apply policies periodically. This randomly cyclic strategy preserves the soundness of

query answering as long as we treat the system’s behaviors as true updates of the

history. Moreover, by assigning consistent variables on the same values, auditors can

still correctly monitor the changes to values.

3.8.2 Audit query evaluation

Next we implement in SQL the semantics of extended relational operators over

incomplete relations for both TI and TC. The basic strategy is to rewrite SELECT-

FROM-WHERE blocks to accommodate incompleteness.

The TI model. To get uncertain answers for any given user query, the query

evaluator runs over the rewritten version of that query. During query processing, it
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retains tuples whose status column evaluates to either P or C on the original WHERE

clause, and eliminates all others. Then it computes the correct trange (if necessary),

the status column, and appropriate values of variable bindings for the query results.

In the following algorithm, the function isvari(x) tests if x is a variable. onevari(x, y)

returns true only when one of x and y is a variable. binds(x, y) represents the value

bindings, described in Section 3.5. It outputs x if x is a constant, otherwise it out-

puts y. In addition, to simplify the representation, we assume that the WHERE

clause of the user query is always a conjunction of multiple condition expressions.

If there are attributes appearing in two conditions connected by the OR operator,

e.g., sal=10 OR sal=20, we can break the query into parts and later combine their

results. The algorithm for rewriting user queries is as follows:

1. WHERE clause: rewrite each condition by the following rules. T.A stands for

attribute A in table T . θ ∈ {=, 6=, <,≤, >,≥}. c, c1 and c2 are constants.

A θ c ⇒ (A θ c OR isvari(A)) (3.1)

Let Z ≡ (A θ B OR onevari(A,B))

A θ B

⇒ Z (if θ ∈ {=,≤,≥}) (3.2)

⇒ Z AND A ! = B (if θ ∈ {<,>}) (3.3)

if exists T1.A = c1 and T2.A = c2 (c1 6= c2)

⇒ append T1.A ! = T2.A (3.4)

The general idea of rewriting a condition is to allow the query processing to

keep not only those tuples satisfying the condition but also those that could

possibly satisfy the condition when variables are involved. Rule (1) tells the

query evaluator that when A is a variable it will also retain the tuple. When
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comparing two attributes A and B, by rule (2), the answer is yes when AθB

is true, or one of them is a variable. If both of them are variables and the

comparison is < or >, we additionally make sure they are two different variables,

by rule (3). Similarly, in rule (4), the same attribute in different tables is

compared with different concrete values. Finally we also add conditions on

trange when necessary.

2. SELECT clause: for each column A in the original SELECT clause, we rewrite

it by the following rules. Assume W is the original WHERE clause.

If A is status : (3.5)

⇒ (W AND T.status) AS status

Elseif A ∈ W and exists T.A = c :

⇒ c AS A (3.6)

Elseif A ∈ W and exists T1.A = T2.A :

⇒ binds(T1.A, T2.A) AS A (3.7)

Else ⇒ A (3.8)

To calculate the status column, as shown by rule (5) above, put the original

WHERE clause into SELECT clause, and add a conjunction of related status columns

to the term. Rule (6) ensures the concrete value is returned if there is an equality

condition on that column. We must rewrite those columns when they appear in both

the SELECT list and some equality expression in the WHERE clause, in order to

make sure query evaluation returns the concrete value as shown in rule (6), or the

correct variable bindings for the selection as shown in rule (7). Finally, compute the

correct trange value if necessary (i.e., for concurrent join).

Example 3.18. The following is an example query on complete table emp:
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SELECT name, t1.dept, t2.sal

FROM emp AS t1, emp AS t2

WHERE t1.dept=t2.dept AND

t1.sal=100 AND t2.sal=200

The algorithm above will produce the following rewritten query if emp is incom-
plete:

SELECT name, binds(t1.dept,t2.dept) AS t1.dept,

200 AS t2.sal, (t1.dept=t2.dept AND

t1.sal=100 AND t2.sal=200 AND

t1.status AND t2.status) AS status

FORM emp t1, emp t2

WHERE (t1.dept=t2.dept

OR onevari(t1.dept, t2.dept))

AND (t1.sal=100 OR isvari(t1.sal))

AND (t2.sal=200 OR isvari(t2.sal))

AND t1.sal!=t2.sal

We first apply rule (1) and (4) to generate the AND-terms in the new query

since there are t1.sal = 100 and t2.sal = 200. Rule (2) is also applied on t1.dept

= t2.dept. Rule (8) keeps name in the selection list. We have 200 AS t2.sal and

binds... AS t1.dept by rule (6) and (7). Finally, we use rule (5) to calculate status

column in the selection list.

As discussed in Section 3.5, duplicates may arise in the result of operations such

as union, projection and join. The duplicate elimination process can be achieved by

grouping on all non-status columns and then aggregating the (boolean) status column

using bitwise OR.

The TC model. We apply a similar rewriting process as we used in TI. The

difference is how to generate cond formulas in the result and eliminate unsatisfiable

tuples.

Example 3.19. Given a query asking for employees whose bonus is more than his

salary, we rewrite it as follows:

SELECT name,

CASE WHEN isvari(sal) or isvari(bonus)

THEN ’[money]’|| sal ||’<’|| bonus
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ELSE NULL

END AS cond_1

FROM emp

WHERE (salary<bonus OR onevari(sal, bonus))

AND salary != bonus AND

check_sat(cond, array[

’[money]’|| sal ||’<’|| bonus])

In the SELECT clause we insert a case statement to output cond formulas with

each condition recorded in a single column. In the example, as shown in the SELECT

clause above, we refer to it as cond 1. Because the query is comparing salary with

bonus, the condition only exists in the result when at least one of them is a variable.

For example, if salary is z and bonus is 10, by the CASE statement, the produced in-

equality will be [money] z<10, because salary and bonus both belong to the data type

“money”. The number of inequalities generated, which is the number of CASE state-

ments needed, is determined by the length of the original WHERE clause. (Actually

we could reduce the size of the original WHERE clause by the process of computing

the H-representation described in the proof of Theorem 3.5 and 3.6 when we treat

each attribute name in the WHERE clause as a variable).

In the WHERE clause, as the last step before results are passed to the SELECT

clause, a customized function check sat is called to check tuple satisfiability by in-

puting two parameters: the current cond formula and inequalities formed by the

condition in the original WHERE clause.

3.8.3 Logical policy implementation

The implementation above is based on the physical removal of expired information.

We can also implement policies logically, or virtually, without altering the stored

contents of the database. A query Q is not evaluated on the underlying database

directly, but is first composed with the policy P to generate a rewritten query QP .

The rewritten query can be evaluated safely on the base relations and produces a

result equivalent to evaluating P on a physically altered database.
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Figure 3.3: Performance of the five queries. For each query, the bars from left to
right represent the execution time on different models. “physical”/“logical” means
policy application is implemented physically or logically . “w/” or “w/o cond” decides
whether the result will contain condition formulas.

For simplicity, we assume that the redaction policies satisfy the condition in Propo-

sition 3.1 of Section 3.4.3, so that their application is sound and secret. Generally the

composition will begin by adopting the rewriting algorithm in the previous subsec-

tion. Attributes appearing in either the SELECT or WHERE clause are called critical

attributes. A redaction rule is relevant to Q when its redaction attribute list shares

some attribute with Q’s critical attributes. In addition to the rewriting process in

the previous subsection, we also make the following changes:

1. FROM clause: for each table, add a case statement modification based on its

relevant redaction rules.

2. WHERE clause: for any expunction rules (φ, [u, v]), add conjunction of not (φ∧

trange overlap [u, v]).

Note that the case statement modification is inspired by similar work in [60], but

we change the semantics from NULLs to variables.
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3.8.4 Improving query evaluation in TC

In Section 3.7, we discussed how to decide possible and certain tuples given a TC

table. Consider an incomplete history D generated by the application of retention

policies, and suppose we wish to compute possible and certain tuples of query q over

D. Since D has no cond column, the conditions in the results will only be introduced

by q’s WHERE clause. In fact, the size of the WHERE clause might be reduced by

computing its H-representation, described in the proof of Theorem 3.5 and 3.6. Each

H-representation Ht contains two sets of inequalities: Ht,1, inequalities like X < Y

and Ht,2, inequalities like X ∈ [XL, XR]. The size of Ht,1 is bounded by O(n2) and

the size of Ht,2 is bounded by O(n + c) where n is the number of column names in

q and c is the number of 6=-inequalities. So if there are few or no 6=-inequalities in

q, the size of WHERE clause (the number of inequalities introduced by q) is usually

very limited when the number of columns in the database D is small.

In TC, possible tuples can be checked during query processing and certain tuples

are computed as a separate step after query evaluation is finished. To improve the

performance, we may be able to take advantage of static analysis on the original query

before rewriting and executing it on the database system. A simple example is that

if a query q has only =-comparisons, its possible tuples are the same under TI and

TC. Moreover, if this q also contains only columns not touched by retention rules,

which means returned results are always complete, TI and TC result in the same set

of certain tuples.

It is also possible to predetermine the satisfiability of results for some queries.

Consider the WHERE clause as a formula. We first replace each attribute name with

a different variable of that data type. If there exists equality between two variables

x = y, we replace all occurrences of y with x (this is important because of the

distinctness among variables of the same type). Now it is obvious the result is an

empty set (no possible tuples) if this formula is not satisfiable. When this formula is
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a tautology (for any qualified assignment), and all the columns in the WHERE clause

are removed together by redaction policies, then all possible tuples in the result are

certain v-tuples. (Recall that certain v-tuples are tuples with variables and an empty

cond column, defined in Section 3.7.2.)

3.9 Evaluation

In this section we study the performance of query processing in our framework

and evaluate the impact of retention policies on the accuracy of query results. Our

experiments address the following key questions:

Performance. We assess the performance overhead of evaluating audit queries

using both physical and logical policy application on TI and TC.

Accuracy of uncertain answers. We study the impact of retention policies on

the accuracy of query results under TI and TC. Over sample data, we measure the

precision and recall of query answers as a function of the selectivity of redaction

policies. We characterize the cases where accurate auditing can be achieved under

retention restrictions. And we show that TC can improve the accuracy significantly

over TI in some cases. We also compare the accuracy with suppression only using

NULLs. Using NULLs is a common solution in relational database research such as

fine-grained access control [60]. However, variables can hide values while preserv-

ing more information about changes. We show that the extra information kept by

variables significantly increases the accuracy of audit query answers.

3.9.1 Experimental setup

In all our experiments we use Postgres 8.3 running on an Intel Core2 machine with

2.26GHz CPU and 4Gb memory. Our datasets are synthetically-generated histories

based on our example client schema S(eid,name,dept,sal,bonus). Here sal and bonus

have the same data type which allows comparing between them.
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We generated our history with an initial set of employees that grows slowly over

time through periodic insertions. We apply a random sequence of independent up-

dates to attributes throughout the lifetime of individuals. Thus the total tuples in

the t-relation and log is closely approximated by the product of two parameters: the

initial number of employees (the original snapshot size) and the average number of

versions of each employee tuple (the history length). We measure the query execution

time by reporting the average of 10 runs with the largest and smallest runs omitted.

3.9.2 Performance

We use three redaction policies3 and five queries in our experiments. They are:

R1: (HideSal) Redact salary values for a set of departments ds1 before a specified time

t1.

R2: (HideBonus) Redact bonus values for a set of departments ds2 before a specified

time t2.

R3: (HideDept) Redact department values in a specified time period p1.

Q1: (GetAll) Return the whole emp table.

Q2: (GetEmp1) Return employees who are in department d1 and have salary m1.

Q3: (GetEmp2) Return employees’ information where salary is less than m2 and bonus

is larger than m3.

Q4: (GetCowker1) Return all employees who worked in the same department as a

specific employee e at the same time.

3We do not consider expunction and preservation rules since they will simply remove or preserve
tuples and change the size of the history.
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Q5: (GetCowker2) Return all employees who earned more bonus than their salary and

worked in the same department with a given employee e, at same period of

time, as long as the returned employees have a smaller salary than e, but a

larger bonus than e.

We measure the execution time of each query under physical and logical imple-

mentation of TI and TC models. For the TC model, we also consider the case of

returning results with and without cond formulas. The baseline (original) is the time

to compute the audit query without the retention policy, that is, on the original ta-

bles. In GetEmp1, d1 is in the set ds1, and thus there is uncertainty in the answers due

to HideSal and HideDept. Note that GetAll has no WHERE clause and GetEmp1 and

GetCowker1 only contain =-comparison, therefore they can be answered accurately by

TI model and thus a satisfiability check by function call in the database system is not

necessary in TC. In GetEmp2, we set m2 < m3, e.g., m2 = 10 and m3 = 40. Consider

an employee has the same salary and bonus, both redacted to variable x. Then he

will not be a qualified result for GetEmp2, because x < 10 ∧ x > 40 is unsatisfiable.

GetCowker2 has a more sophisticated situation. So rewriting GetEmp2 and GetCowker2

in the TI model can not produce results accurately. Only the TC model is able to

answer these two queries properly. The execution time on a history (roughly one

million tuples) with 10000 initial employees (snapshot size) and 100 versions for each

one (history length) is illustrated by Figure 3.3. Generally, we find that evaluating

queries under retention restrictions has a modest overhead, to be expected from the

added clauses in the queries and the fact that result sizes are increased because of

uncertain tuples.

In the TC model, the online satisfiability check is implemented as a function in

the plpython language in PostgreSQL. To estimate the overhead of the function call

in PostgreSQL, we create a fake satisfiability check function in plpython which does

nothing but returns a True value and insert it into GetAll’s WHERE clause in TC. As
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GetAll returns all one million tuples, the system will execute the fake function on each

of them, which results in a lot of the extra cost for TC model. Considering this cost is

introduced by the system and the size of result, we consider this overhead acceptable.

It would be possible to reduce this overhead by using more efficient native language

of the database system.

Since GetEmp1 and GetCowker1 only contain equality comparisons, checking tuple

satisfiability is not needed and the only difference between TI and TC is the way

they generate status and cond columns. As expected, the performance is very close

between these two models for both physical and logical implementations. GetEmp2 and

GetCowker2 add an extra cost of checking tuple satisfiability. Each tuple of GetEmp2’s

result has a condition consisting of at most two comparisons. In GetCowker2, there are

at most four variables and the size of the WHERE clause is about eight. For these

two queries, Figure 3.3 shows that computing possible (satisfiable) tuples in TC adds

a modest extra cost to TI when we take into consideration the cost of the system

call discussed above. When TC does not include the cond column in the result, the

performance is closer to TI.

In addition, the logical solution is uniformly slower than the physical because of

the more complex queries required when policies are composed with queries. Another

reason is the lack of indexes. When a query is logically rewritten, the only usable

index is the one built on ttime column. A possible optimization is only integrating

relevant policies into query rewriting, e.g., in GetCowker1, redaction rules for removing

two salary columns can be omitted from logical queries.

It is worth noting that the certain tuples alone can be computed more quickly than

the original result in TI [68]. This is because, given the rewritten query, computing

certain tuples can ignore variables and the certain tuple set returned tends to be

smaller than the true result. In TC, computing certain tuples is a separate step after
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Figure 3.4: Result relationship in Venn Diagram: The answer space is I (the largest
box) and the original answer are O (shaded box), the certain tuples in our model are
Ac, the possible tuples is Ap (both are boxes with dotted-line).

query evaluation is done and the execution time could be slow, depending on the

complexity of formulas and the number of duplicates.

3.9.3 Accuracy of uncertain answers

Next we evaluate experimentally the accuracy of audit query answers under re-

tention policies. We demonstrate the cases that TC and TI are at the same level of

accuracy and the cases when TC improves upon TI. Over the original data, an audit

query can be considered to partition the set of all feasible query answers (determined

by the active domain) into qualified tuples and disqualified tuples. Under retention

restrictions, an audit query partitions the set of feasible answers into certain tuples,

possible tuples, and disqualified tuples.

Our first measurement of accuracy considers the distribution of answers as a func-

tion of the selectivity of the redaction policies. The second measurement is the pre-

cision and recall of our answers with respect to the original answers. Assume the

answer space is I and the original answer is O. The certain tuples in our model are

Ac, the possible tuples are Ap. For simplicity we assume no variables in the possible

tuples. Intuitively, we want to know how large O∩Ac (Fig 3.4(a)) is in proportion to
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Figure 3.5: Accuracy of uncertain answers. We measure the accuracy (Y-axis) in
terms of the removal rate of values in the history (X-axis) defined by redaction rules.
In (a) and (b), we use the redaction rules defined in the previous section. (c) is
performed under a rule that removes only salary. (d), (e) and (f) have the same
redaction rule that deletes salary and bonus together.

O and Ac. Formally, the precision of certain tuples is defined by O∩Ac

Ac
and the recall

of certain tuples is defined by O∩Ac

O
.

We can also define precision and recall of the disqualified tuples, which may be rel-

evant to auditors since they might have value in an investigation. Then I−O contains

the disqualified tuples in the original answers and I−Ac−Ap is the set of disqualified

tuples computed in the incomplete history. The precision of disqualified tuples is
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defined (I−Ac−Ap)∩(I−O)

I−O and recall of disqualified tuples is defined (I−Ac−Ap)∩(I−O)

I−Ac−Ap
. If

we consider sound and secret retention policies, as described in Section 3.4, then the

precision of certain and disqualified tuples is always equal to 1, shown in Fig 3.4(b),

because the soundness (Proposition 3.1) guarantees Ac ⊆ O and O ⊆ Ac ∪ Ap.

The first experiment is performed on GetCowker1 in the previous section (the con-

current self-join). The query answers in TI and TC will have exactly the same set

of possible and certain tuples, although they will differ in the way they represent the

condition. The answer distribution and recall are shown in Figure 3.5(a) and 3.5(b).

At the beginning, there are no possible answers against the original history, and thus

the recall of the certain and disqualified tuples is 1. When there are values removed

by retention rules, possible answers are introduced. The percentage of possible tuples

and the recall of the certain and disqualified tuples all have an inflection point as the

selectivity goes up. This is because, when the removal rate is low, fewer variables

are introduced so we can retain a high recall. When the rate increases, the number

of variables increases and the recall decreases. On the other hand, when the rate is

extremely high, the incomplete history is mostly replaced with variables on the join

attribute: department. We will get high recall since the equivalence among variables

can be inferred accurately, e.g., two employees both working in HR department re-

sult in the same variable x in their department attribute. Therefore, there are fewer

possible answers and we get very high accuracy when all the department information

is removed, similar to the answers under the original history.

There are also many queries where TC can obtain much greater accuracy. Figure

3.5(c) and 3.5(d) show the difference in recall of disqualified tuples for TI and TC

given two queries. (We omit the answer distribution figures here.) Since possible

tuples in the uncertain results are always coming from the disqualified tuples in orig-

inal results, these two figures actually illustrate the difference in size of the possible

(satisfiable) tuples. That is, TI will output more tuples which should be unsatisfi-
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able and eliminated. In Figure 3.5(c), we remove history by deleting salary values.

When salary is replaced with a variable X, the cond condition in the result will be

bonus < X < 10, i.e., the tuple is possible only when bonus is less than 10. In TI, this

fact cannot be captured. Therefore, when the number of removed salary attributes

increases, the size of possible tuples grows and finally all the tuples are possible when

the removal rate reaches 100%. However, in the case of TC, the size increases linearly

because salary and bonus are generated randomly and the probability of bonus less

than 10 is independent of the removal of salary. In Figure 3.5(d), the WHERE clause

in the query is an unsatisfiable formula. Thus, no matter how we redact salary or

bonus individually or jointly, TC will always return an empty result (as does the query

over the original history) while TI increases quickly when we remove more. Note that

when all of the salary and bonus attributes are redacted, TI does not return all the

tuples because it eliminates the tuple where salary and bonus are replaced with the

same variable. In fact, we can actually use the static analysis discussed in Section

3.8.4 for TI to avoid this but we can do nothing for the case of Figure 3.5(c).

Figure 3.5(e) and 3.5(f) show the recall of certain tuples for two different queries.

In Figure 3.5(e), with condition salary < bonus, a certain tuple in TC has conditions

such as X < Y ∨ Y < X, or X < 10 ∨ 8 < X after merging tuples with identical

non-cond columns. Thus, we can expect a smooth reduction when the removal rate

increases. The result shows ten thousand certain tuples in the original history and

half of the tuples in the case when all of the salary and bonus are redacted. For TI,

the size of the certain tuples is decreasing in proportion to increasing redaction and

ending at 0. In Figure 3.5(f), according to discussion in Section 3.8.4, the WHERE

clause becomes a tautology when salary and bonus are redacted jointly. In this case,

TC can capture the full semantics of the query no matter how much salary and bonus

is removed. As expected, TI’s result becomes worse when more salary and bonus is

removed.
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Figure 3.6: Compare the accuracy of query results between suppression with variables
and suppression with NULLs, measured by the recall of certain and disqualified tuples.

Suppression using variables v. NULLs In our final experiments we apply redac-

tion policies with a suppression function that uses NULL values instead of variables.

Recall that using nulls in TI, called TInull, has the same expressive power as Gadia’s

model [31] for incomplete temporal databases. Figure 3.6 shows the recall of certain

and disqualified tuples on GetEmp2 (with condition on an early employee) compared

with the variable solution. Variables significantly outperform NULLs. For example,

with a selectivity of 25% the recall of certain tuples is 97% using variables, but just

56% using NULLs. This is because any two tuples with NULL on the join column will

produce a possible output tuple. With distinct variable assignments, only identical

variables will result in an output tuple.

3.10 Related Work

Retention policies and problems of expiring historical data have been studied in a

variety of contexts. Garcia-Molina et al. considered expiring tuples from materialized

views in a data warehouse [33]. An administrator can declaratively request to remove

tuples from a view, and the system will remove as much information as possible as
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long as it does not impact views referencing the original view. Toman proposed tech-

niques for automatically expiring data in a historical data warehouse while preserving

answers to a fixed set of queries [107]. Skyt et al. consider vacuuming a temporal

database [98]. Policies remove entire tuples, and the authors are concerned with

the correctness of vacuum specifications, and mitigating actions to handle queries

referencing missing information. The above works differ from ours because they do

not consider cell-level removal, do not view the resulting database as an incomplete

history from which possible answers can be derived, and do not consider an audit

log accompanying the history. Ataullah et al. [4] considered retention restrictions on

complex business records, which they describe by logical views over relations. They

define protective and destructive policies, and reduce a number of retention problems

to well-studied relational view problems.

A number of authors have considered maintaining data integrity and preventing

deletion in the context of auditing. Hasan and Winslett [43] considered the case when

requested information is subject to a litigation hold and they addressed the threat

of an untrustworthy process vacuuming expired records. Their solution uses write-

once read-many (WORM) storage and extra auditing actions for enforcement of a

litigation hold, instead of relying on a DBMS. In [44], they proposed a transaction

log architecture to ensure that database contents are long-term immutable. Both of

these solutions are complementary to our framework when considering the institution

itself as an adversary. In a different setting, Perez and Moreau consider the problem

of securing provenance-based audits [82] by protecting the integrity of provenance

information. Fabbri et. al. [28] detect unauthorized access by re-executing a log of

past operations. Encrypting audit logs has also been widely studied in the literature

[94, 104, 110] with the goal of maintaining the confidentiality and integrity of log

records.
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Our redaction policies (especially when implemented logically) are related to fine-

grained access control rules. Wang et al. [108] studied the correctness of query answers

under cell-level access control policies, and made an important connection between

that problem and models of incomplete information. To our knowledge there is little

work on access control over time-varying data. Research into temporal access control

models [5] refers to access rights that change over time, not the problem of negotiating

access to data with a time dimension.

When computing possible tuples in TC, efficiently solving the satisfiability prob-

lem of conjunctive inequalities is essential. Generally, the complexity depends on

the domain of variables (dense or sparse) which is determined by the corresponding

column in the schema, supported operators (=, <,>,≤,≥, 6=), form of conditions (X

op Y , X op C or more general linear inequalities) and type of formulas (conjunc-

tive or disjunctive). In [89], the authors proved the general satisfiability problem

for conjunctive inequalities is NP-hard. Restricted versions, such as eliminating 6=

and only considering the real domain can be solved efficiently in linear time [40].

For disjunctive inequalities, Hochbaum [47] proved that even 2I-SAT is NP-complete,

when considering linear inequalities. 2I-SAT only allows at most two inequalities per

clause. The distinctness among variables in TC distinguishes our problem from all of

the above.

The scheduling problem has a close relationship to our TC model. The “jobs”

in the scheduling problem correspond to variables in TC. The distinctness among

variables guarantees that each job will start at a different time on a single machine.

TC< and TC 6= can be solved by efficient scheduling algorithms [59,97]. It is possible

that other scheduling solutions are applicable to TC and its variants.
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CHAPTER 4

SHARING PRIVATE SYNTHETIC DATABASE

This chapter addresses the problem of sharing a synthetic database under dif-

ferential privacy. Our database synthesis, though private, preserves the core perfor-

mance metrics for a given query workload. The solution proposed is a model-based

method, where we first select a model of database, then sanitize the statistics com-

puted from the model, finally release synthetic databases that are sampled from the

private statistics. To perturb the statistics, this chapter also describes the crucial

extension of differential privacy to support multi-relation databases.

4.1 Introduction

Assessing the performance of database technologies depends critically on test

databases and sample query workloads. A database vendor or researcher who has

designed a novel database feature needs to evaluate the performance of her technol-

ogy in the context of a real enterprise in order to measure performance gains. This

applies broadly to new storage architectures, new query optimization strategies, new

cardinality estimation methods, new physical or logical designs, new algorithms for

automated index selection, etc.

This system evaluation would ideally be carried out using the actual data and

query workloads used by the enterprise. Unfortunately, the actual data is often un-

available to the evaluator because privacy, security, and competitiveness concerns

prevent the enterprise from releasing their data. The evaluator could resort to com-

mon benchmark databases (e.g. a TPC benchmark), which have been designed to
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capture common properties of popular application domains. But because benchmarks

target the common case, they often cannot reflect particular properties that may sig-

nificantly impact performance for a given enterprise. Researchers have also proposed

a number of database generation techniques [2, 8, 13, 48, 65, 106] that are able to cre-

ate databases with specific characteristics. For example, when testing cardinality

estimation methods, it is typically important to manipulate the skew of attribute

distributions in test data. But without access to real databases and workloads, they

can only guess at meaningful parameter settings for database generators. A final al-

ternative is to employ techniques for synthesizing databases that match a given true

database [2, 7, 27]. Unfortunately, none of these approaches provide a guarantee of

privacy and, in fact, many of them produce output that can easily lead to serious

privacy leaks.

The goal of our work is to safely support accurate performance analysis by po-

tentially untrusted evaluators. We describe techniques for synthesizing, in a provably

private manner, a relational database instance that matches the performance prop-

erties of the original database, especially with respect to a given target workload of

SQL queries. The private synthetic data sets can be safely released to a vendor or

researcher, and are designed to preserve core performance properties of queries such

as IO counts, results sizes, and execution times.

Our approach is based on model-based database synthesis, as illustrated in Figure

4.1. We consider the owner of a sensitive database instance D, which conforms to

schema S, along with a workload W containing queries commonly executed over the

database. An untrusted evaluator would ideally like to carry out performance analysis

using each of S, D, and W , but is prevented from doing so by privacy concerns. We

obfuscate the schema by transforming S into an isomorphic schema S ′, and likewise

transform W into W ′ by re-expressing queries in W in terms of the new schema S ′.
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Figure 4.1: Our Approach: the owner selects (procedure of box 1, Section 4.3) a model
Q (rounded box 2) given schema and workload. A model contains a set of carefully
chosen queries, and their answers (statistics) can be calculated with instance (D).
The owner now perturbs (procedure of box 3, Section 4.5) the statistics to get a
differentially private Q′ (rounded box 4). With the release of Q′, the analyst can
create/sample (procedure of box 5, Section 4.6) one or more synthetic instances.

We then provide a method for the owner to select, based on the schema and

workload, a set of queries that serve as a model Q of the database D. Using this

model and the dataset, a set of statistics are calculated and then perturbed so that

it satisfies the formal standard of differential privacy. The perturbed results, Q′, can

be safely released to the evaluator and any computation using Q′ will not weaken

the privacy guarantee. Finally, the analyst, in possession of S ′, W ′, and Q′, can

generate a synthetic database instance consistent with the schema and statistics.

There are typically many instances consistent with Q′, so the analyst can generate

many alternative database instances by sampling. An appealing by-product of our

approach is that the analyst can also choose to generate scaled-up synthetic databases

to evaluate performance on larger, statistically-similar instances.

Contributions

We achieve the goals of untrusted system evaluation through the following con-

tributions. First, we extend differential privacy to multiple tables, re-defining the

concept of neighboring databases and sensitivity. This is a crucial extension for our

framework and also useful beyond the present work. Next we propose a novel algo-

rithm for selecting the queries that constitute the model Q, where we must balance
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descriptive power with accuracy achievable under the privacy condition. After pri-

vately estimating the selected model statistics to produce Q′ we then propose an

efficient method for consistently sampling from Q′ to generate a privacy-preserving

synthetic instance of the database. Lastly, we assess the accuracy of our techniques

for a range of performance metrics. We compare the value of these metrics for the

true database, synthetic data generated from non-private models, and synthetic data

generated from private models. We conclude that the distortion due to privacy is

modest and that important performance properties are retained in the output.

4.2 Preliminaries

In this section we describe our data model, queries, the definition of differential

privacy, and the primary privacy mechanism we apply.

4.2.1 Data model and queries

We consider a database D that is an instance of schema S = {R1, R2, . . .}. Sys-

tem evaluation is performed with respect to a workload of queries W consisting of

SQL queries. A table R = (A1, A2, . . .) in S contains key attributes and non-key

attributes, where the key attributes may be primary or foreign keys. Throughout the

chapter, we focus on workload queries involving joins only on key attributes. This

assumption is also accepted by the literature (e.g. [2]) and it actually covers a wide

range of applications, including TPC-H benchmark. However, we claim that our pri-

vacy definition and mechanism is not restricted to such queries. We represent the

schema S as a directed graph GS, where each table is then a node and edges are

drawn from Ri to Rj when Rj contains a foreign key reference to a key attribute in

Ri. An example schema graph for TPC-H is shown in Figure 4.2, containing relations

R(region), N(nation), C(customer), O(orders), L(lineitem), P(part), S(supplier) and

PS(partsupp). We limit our attention to schemas with acyclic schema graphs.
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Figure 4.2: The schema of TPC-H represented as a directed graph.

A counting query q is an aggregate query that returns the number of tuples satis-

fying one or more predicates. A counting query may involve a single table or multiple

tables joined by their keys and foreign-keys. We refer to the relationship among tables

involved in the query as its signature, denoted by v(q). Counting queries are written

in relational algebra, as in the following examples:

q1 : |σC.gender=M(C)|

q2 : |σC.gender=M(C ./ O)|

These two counting queries return the number of male customers and the number of

orders from male customers, respectively. The signature of q1 is v(q1) = C and the

signature of q2 is v(q2) = C ./ O.

The model Q of the owner’s database, shown in Fig. 4.1 and described in detail in

the next section, is defined by a set of counting queries derived from the workload. We

refer to this set of counting queries as the model queries. Note that while the model

queries are restricted to counting queries, the workload may contain more general

queries.

4.2.2 The differential privacy guarantee

An algorithm is differentially private if its output is statistically close on two

database inputs that differ by one record. Recall in Section 2.3, we introduce the
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formal definition of differential privacy and basic methods that implement it, such

as Laplace mechanism. Achieving differential privacy requires perturbing statistics

computed from the true database. This perturbation protects against disclosures that

can result from releasing exact statistics about the original database, as is done by

existing database synthesis techniques [2, 7, 27].

In Section 4.4 we extend differential privacy to complex schemas with multiple

tables by focusing on a protected entity and the entity’s relationships. However, we

note that even under this extension, differential privacy does not offer protection

for the population. In our setting, the differential guarantee (which applies to the

model Q of D) means that we reveal very little about protected entities and their

relationships. But it does not prevent the release of accurate aggregates for the pop-

ulation (and in fact we require reasonably accurate aggregates in order to capture

the properties of D). In some settings, these aggregate query answers may not be

acceptable to release. For example, the average revenue for a company or the to-

tal number of customers may be sensitive values, even when the individual records

contributing to these aggregates remain protected. In domains where population ag-

gregates are highly sensitive, accurate and private database synthesis is likely to be

impossible. Nevertheless, we believe there are a wide range of applications in which

the primarily concern is the sensitivity of individual entities for which our techniques

provide strong privacy. Practical examples are requirements of working with medical

information [29], location data [18] and network traces [72].

The models of the database we consider are defined (in the next section) by sets

of counting queries over D. To release a differentially-private model to the evaluator,

we must produce private answers to a large and potentially complex set of counting

queries. The standard mechanisms (the Laplace for ε-differential privacy and Gaus-

sian (ε, δ)-differential privacy) are quite effective at answering single queries, but can

be highly sub-optimal for the large sets of queries we consider. Intuitively, one rea-
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son for this is that the counting queries in our models may overlap, leading to high

sensitivity and high per-query error.

Improved methods for answering sets of counting queries have received consider-

able attention from the research community recently [19,21, 42,46,63, 115–117]. Our

goal is framework for database generation that is agnostic to any particular privacy

mechanism. Thus choose to adapt the recent work by Li et al [64], based on the

matrix mechanism [63], for answering multiple linear counting queries with low er-

ror. This technique offers an adaptive mechanism which adds noise customized to

the set of counting queries required by the model. The adaptive method works best

for (ε, δ)-differential privacy (achieving error rates that are very close to a theoretical

lower bound for mechanisms of this form) and we therefore focus our experiments on

the mechanism satisfying this relaxed version of differential privacy.

We emphasize that our framework is largely independent of a particular mecha-

nism used to derive the private model. This means that, in the future, better utility

could be achieved using our framework as privacy techniques advance.

4.3 Deriving a model from a query workload

In this section we describe the process for deriving a statistical model of the input

database, and in particular, a model which is specialized to a given set of workload

queries. The challenge is selecting a model that captures properties of the database

relevant to performance evaluation while at the same time allowing for accurate release

under differential privacy. We restrict our attention to classical relational database

systems and workloads of SQL queries.

4.3.1 Extracting counting queries

The selected model will be defined by a set of counting queries. We select count-

ing queries relevant to a given workload of SQL queries by considering intermediate
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operations in the query evaluation process, similar to Arasu et al [2]. Ideally, the

synthetic database sampled should produce similar executions when running each

workload query. The cardinality of each intermediate operator output are called an

intermediate count. Since a modern query optimizer uses table statistics to generate

query plans, if our model gathers all the intermediate counts of query trees, i.e., the

size of intermediate results on each node of the query tree, the optimizer will utilize

the same table statistics as the original databases to produce query plans.

The intermediate counts are represented as counting queries, and they are inde-

pendent of the data instance, DBMS and physical organization of data. Let w be

a single workload query. Γ(w) is the set of statistics (counting queries) that can be

extracted from any possible query tree of w. With v(w) as the signature of w and

|v(w)| as the number of tables in the signature, we can describe Γ(w) as follows:

Γ(w) = {Γ0(w),Γ1(w),Γ2(w), . . . ,Γ|v(w)|(w)}

Each Γi(w) is the set of all counting queries over an i-way join of a subset of tables

in v(w). In fact, each item in Γi(w) represents the size of the intermediate result of

a node that involves an i-way join, thus each counting query can be mapped to a

node in some query tree. In particular, Γ0(w) contains counting queries for the size

of each table in v(w). For a multi-query workload W , we let m = maxw∈W (|v(w)|),

and Γi(W ) =
⋃
w∈W Γi(w), and define:

Γ(W ) =
⋃

i=0,1,..,m

Γi(W )

Example 4.1. Assume a workload W = {w1, w2} consisting of two queries:

w1 : σC.gender=M∧O.year=2010(C ./ O)

w2 : σC.age=40(C)
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Figure 4.3: Possible query trees for σC.gender=M∧O.amount>100(C ./ O)

Γ(w1) includes intermediate counts up to the 2-way join and Γ(w2) includes counts

over a single table. The set of intermediate counts of w1 is derived from the four

possible query trees (Figure 4.3). Thus, Γ(W ) is the union of following:

Γ0(W ) : |C|, |O|

Γ1(W ) : |σC.gender=M(C)|, |σO.year=2010(O)|,

|σC.age=40(O)|

Γ2(W ) : |σC.gender=M(C ./ O)|, |σO.year=2010(C ./ O)|,

|σC.gender=M∧O.year=2010(C ./ O)|

To select a good query plan, the query optimizer will estimate the number of rows

retrieved by the query using stored statistics on the data distribution. Although we

do not directly measure the data distribution on all attributes, the counting queries

we extract as model statistics represent a rough approximation of this, namely those

statistics relevant to the queries in the workload of interest.

4.3.2 A spectrum of models

Next we define a spectrum of models, each derived from the workload. While the

most descriptive model would likely be preferred in the absence of privacy concerns,

in our setting, a more descriptive model can ultimately be less effective because more

distortion must be applied to satisfy the privacy condition.

The most descriptive model is a Saturated Model (SM) that contains all inter-

mediate counts (counting queries) of any possible query tree. SM gathers the most
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information from the workload, but its size grows quickly as the workload becomes

larger, particularly when multiway joins are involved. Moreover, SM will typically

contain many related counting queries, resulting in high sensitivity, and requiring

significant noise in the perturbation step. Therefore, we identify a number of simpler

models. The idea is to quantify proper correlation among tables using intermediate

counts, which is generally identified as Correlation of i-Table Model, shortened as

CiTM, where i ∈ N.

The C1TM model considers just intermediate counts within a single table, which

are the set of all counting queries corresponding to leaf nodes in a query tree. The

C2TM model includes up to 2-way cross-table correlations, consisting of the inter-

mediate counts in a query tree from the leaves and their parents. In general, there

exist models that include up to the i-way cross-table relationships. For comparison

purposes, we also consider a Null Model (NM), reflecting only of the size of each

relation and containing nothing about the workload. For a set of workload queries

W , these models can be formally described as follows:

QSM = Γ(W )

QCiTM = Γ0(W ) ∪ Γ1(W ) ∪ . . . ∪ Γi(W )

QNM = Γ0(W )

With Γ(W ), we are able to define a family of models, by putting together ar-

bitrary Γi(W ). Selecting a model is complex because greater descriptive power in

a model generally means it has a higher privacy cost and therefore demands greater

perturbation for a fixed setting of the privacy parameters. We will show in the follow-

ing sections that the amount of perturbation required by a model can be calculated

directly and we evaluate the impact of distortion on performance testing in the ex-

perimental evaluation.
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nation pop
USA 200

Canada 100

name N_nation age
Ann USA 30
Bob Canada 45
Chris USA 59

id C_name date
1 Ann Mon
2 Ann Tues
3 Bob Wed
4 Bob Thur
5 Chris Fri

name age N_nation N_pop
Ann 30 USA 200
Bob 45 Canada 100
Chris 59 USA 200

Nation

Customer

Orders

id C_name date
1 Ann Mon
2 Ann Tues
3 Bob Wed
4 Bob Thur
5 Chris Fri

OrdersCustomer

nation pop
USA 200

name N_nation age
Ann USA 30
Chirs USA 59

id C_name date
1 Ann Mon
2 Ann Tues
5 Chris Fri

name age N_nation N_pop
Ann 30 USA 200
Chris 59 USA 200

Nation

Customer

Orders

id C_name date
1 Ann Mon
2 Ann Tues
5 Chris Fri

OrdersCustomer
join Nation and Customer

normalize c(D)

delete customer Bob

normalize c(D0)

join Nation and Customer

delete customer Bob

Figure 4.4: An example of neighboring multi-relation databases for schema S =
{N,C,O}. D and D′ are neighbors because collapsed instances c(D) and c(D′) are
neighbors where c(D′) is generated by a cascading deletion of customer Bob from c(D).
Note that Canada is missing from D′ as Bob is the only customer from Canada.

4.4 Differential privacy for multiple-relation databases

In this section we extend the standard definition of differential privacy from a

single relation to multiple relations. The original differential guarantee protects indi-

viduals in a single-relation database by requiring statistically close outputs on neigh-

boring databases that differ on a single tuple. Using such a notion of neighboring

databases in the context of a multi-relation database is insufficient because an individ-

ual’s sensitive information will be represented in multiple tables. Considering TPC-H

as an example, each customer is associated with multiple orders. Under single-table

differential privacy, a query reporting the average order amount for a customer may

reveal the fact that a customer has an extremely high number of orders due to insuf-

ficient noise. A similar issue has been identified by Kifer et al [57]. However, since a

general schema may have complicated relationships among relations, defining differ-

ential privacy for multiple relations is not straightforward. We will show below that

even the calculation of query sensitivity requires careful consideration. The PINQ

system [74] also deals with this problem, but instead of proposing a direct solution, it

uses a modified non-standard semantics of join which is not applicable in our scenario.

In the following, we first generalize the notion of neighboring databases, focusing

on a single protected entity but accounting for tables related by key/foreign-key rela-
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tionships. We then discuss the calculation of query sensitivity and the calculation of

sensitivity for the queries that make up a model.

4.4.1 Multi-relation neighboring databases

We assume that a single table is identified as the primary protected entity in the

schema. In TPC-H , we choose the customer table as the protected entity (relation

C). We then seek to protect each customer’s data, including their participation across

multiple relations connected by key/foreign-key constraints. To do so, we consider

the following categorization of tables based on a schema graph.

1) Relations that are ancestors of the protected entity represent properties of the

entity that happen to be stored in separate relations. These should be protected along

with attributes in the tuples of the protected entity table. For example, table N is

an ancestor of C in the graph defined by the TPC-H schema and stores a customers’

nationality, which should be protected.

2) Relations that are descendants of the protected entity represent a set-valued

property of the entity that should be protected. For example, O and L are descendants

of C. In the order table O, there are multiple orders associated with each customer

which deserve protection. Removing one customer should result in a cascading dele-

tion of tuples from descendant relations, e.g., deleting the multiple associated orders

from O.

3) Ancestors of the protected entity’s descendants (but not direct ancestors) can

be viewed as properties of the items represented by entity’s descendants. E.g., when

protecting lineitem L as a set-valued property of customers, each lineitem’s supplier,

stored in S, should also be protected.

To formalize neighboring databases in multiple relations, we introduce a partially

denormalized version of D, c(D), generated by repeatedly performing pairwise joins

on key and foreign keys until the database contains only the protected relation R
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and its descendants (see Figure 4.4 for an example). We say c(D) is reversible, if

the normalization of c(D) results in the original D. Consider a relation X’s primary

key is referenced by Y ’s foreign key, X → Y , we say this relationship satisfies an

inclusion constraint if each of X’s keys are referenced at least once in Y . If inclusion

constraints are held among all of the pairs of tables that are being joined during the

creation of c(D), reversibility is then guaranteed, giving us the ability of rebuilding

the original database.

Definition 4.2 (Neighboring databases). Let D and D′ be instances of schema S

such that their partially denormalized versions c(D) and c(D′) are reversible. D and

D′ are neighbors if c(D) is generated by cascade deleting some tuple in c(D) from

database c(D′), or vice versa.

Definition 4.2 completes our definition of neighboring databases for multi-relation

databases, where denormalized databases help to take care of cascading deletion start-

ing from the protected entity, and reversibility helps to maintain consistency on all

other tables that are not involved in the cascading process.

Example 4.3. Suppose we have a simplified TPC-H schema S = {N,C,O} with

N→ C→ O. Figure 4.4 demonstrates two example neighboring databases and their

collapsed versions, and the relationship between these two versions.

Remark. The assumption of reversibility simplifies the definition of neighboring

databases, but is not a requirement.

4.4.2 Query sensitivity

We turn next to computing the sensitivity of queries, which is the maximum

change in a query answer for two neighboring databases. We first calculate ∆q under

single table differential privacy by viewing signature v(q) as a virtually materialized

single table and therefore the difference between neighbors is one. Under multi-
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relation differential privacy, v(q) in neighbors can differ by more than one, thus the

sensitivity of q should be augmented a factor of that difference (the df value):

∆q · df(v(q)) (4.1)

From this point forward, without additional notation, ∆ always refers to the

sensitivity in multi-relation differential privacy, as single-relation differential privacy

is just a special case with df value equal to 1 for every table.

The key of computing sensitivity under multi-relation differential privacy is to

calculate the df value. We begin by considering a single-table counting query, where

the signature is always a single relation, say X. It is obvious that df(X) is one if X

is the protected entity table, but for other tables this number is not constant, as one

customer could potentially match as many orders as possible so df value of O table

could be as large as its size.

We address this issue by assuming a bound on the join frequency across tables. We

refer to this as a propagation constraint, K(X, Y ), defined as the maximum number

of times that each primary key in table X can be referenced in table Y for the

key/foreign-key relationshipX → Y . With a fixed schema, the propagation constraint

is the only variation to decide a query’s sensitivity. A given propagation constraint

K indicates that differential privacy fully protects the individual/entity that has join

frequency smaller than K. Those with frequency larger than K, will be partially

protected. Therefore, with consideration of utility, we also choose K as large as

possible. When K is equal to the maximum join frequency, all tuples in X are

protected.

Algorithm 4.1 computes the df value for each table, assuming R is the protected

entity for schema graph GS. We use desc(R) to refer to the set of all descendants of

R.
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Algorithm 4.1 Compute df value

1: for X in topological order of GS do
2: if X == R then df(X) = 1
3: else if X ∈ desc(R) then
4: df(X) =

∑
Y→X K(Y,X)df(Y )

5: else df(X) = 0

6: for X in reverse topological order of GS do
7: df(X) = df(X) +

∑
X→Y [df(Y )−K(X, Y )df(X)]

return all df values

R N C O

L

S

PSP

1 k1

k1k2k1k2

k1k2 + 1

k1k2

k1k2 + 1

k1k2

Figure 4.5: Difference (df value) between neighboring TPC-H instances.

Example 4.4. Let C be the protected table and K(C,O) = k1, K(O, L) = k2. As

shown in Fig. 4.5, df(C) = 1. If each customer associates with at most k1 orders,

df(O) is 1 ∗ k1 = k1. Similarly, df(L) = k1k2. Then we begin the round of reverse

topological order. We pick the PS table, since it is the only table with all of its

children (L) computed. If k1k2 lineitems are deleted in L, there are at most k1k2

tuples deleted in PS (an upper bound for all cases). Thus, df(PS) = k1k2. After

that, we consider P and S. df(N) = df(S) + df(C) because deleted tuples in S and C

could refer to different nations. At last, we calculate df(R).

Now we consider the case that a counting query’s signature involves joins of multi-

ple tables. As the join operation propagates the primary-key table into the foreign-key

table, the maximum difference after the join is just the df value of the foreign key

table, given by the following equation for a 2-way join:
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df(X ./ Y ) = df(Y ) if X → Y

For example, in Figure 4.5, df(N ./ C) = df(C) = 1, since the removal of one tuple

in the customer table will cause at most one nation to be deleted in the nation

table. We do not consider deletions propagated from S, because they do not influence

the join on N and C. Generally, if there are multiple tables joined (i.e. more than

two) in the signature of a query, we repeatedly apply this equation, and the df

value is always equal to the last referenced table if there is only one such table.

If the signature of a query is not sequential (e.g., C ./ O ./ L) or snowflake (e.g.,

(P ./ (S ./ PS)), its overall df is the sum of df values on each of last referenced table,

such as df(S ./ N ./ C) = df(S) + df(C). Moreover, the definition of neighboring

databases proposed in Section 4.4.1 is indeed independent of queries, which means

with proper modification to the methods discussed above (e.g., knowing propagation

factors for non-key attributes), we can calculate the sensitivity for queries that beyond

key-key joins. We omit them from the discussion here.

4.5 Model Perturbation

Given a selected model Q, our next goal is to perturb the true query answers

of the model to satisfy multi-relational differential privacy. A simple approach is to

calculate the sensitivity of the whole model and then add noise calibrated to the

sensitivity. However, in the case of multi-relations, this method would add more

noise than strictly necessary to satisfy the privacy criterion, and would hurt utility.

Instead we invoke privacy mechanisms multiple times, the challenges are to generate

an optimal mechanism composition and budget allocation, and effectively deal with

data representation for multi-relation correlations. In this section, we propose a

framework for resolving these challenges.
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4.5.1 General framework for working with multi-relations

We apply a data vector based representation for databases and queries to help

deploy the perturbation process. In our framework, each table is encoded as a data

vector. A data vector x consists of cell counts, which are the counts of tuples that

satisfy a set of disjoint cell conditions (Figure 4.6(b)). Essentially, a data vec-

tor is similar to a multi-dimensional histogram, containing a set of dimensions, e.g.,

dim(x) = {age, gender}. Note that the dimensions do not need to contain all at-

tributes of a table. Using data vector x, a counting query q can be expressed as

|x| coefficients and all counting queries are combined as a query matrix Q with each

row as one query. E.g., Q (Figure 4.6(c)) is the query matrix containing the three

counting queries of Figure 4.6(a) based on x in Figure 4.6(b). The true answers to the

counting queries are computed as the matrix product of Q and x. Thus, the Gaussian

mechanism for the single-table database, which adds Gaussian noise calibrated to the

L2 sensitivity (noted as ∆) to achieve (ε, δ)-differential privacy [23], can be defined

as:

Definition 4.5 (Gaussian Mechanism). Assume Q contains d queries, the following

randomized algorithm G provides (ε, δ)-differential privacy on input database D. Here

the sensitivity ∆Q is equal to the maximum L2 norm of a column.

G(Q, D) = Q(D) + Normal(
∆Q

√
2 ln(2/δ)

ε
)d

With multiple relations, it is not possible to construct a single data vector and

format all the model queries. Instead, the general framework is that we encode a

multi-relation database into a set of data vectors X = {x1,x2, . . . xn} and thus a

model Q can be represented as n query matrices Q = {Q1, Q2, . . . ,Qn}. Since there

is no direct privacy mechanism designed for multiple relations, we invoke a single-table

mechanism multiple times under mechanism composition with a properly distributed
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the privacy budget. We call such a mechanism a unit mechanism. A simple example

is to set the unit mechanism to be Gaussian mechanism and run it on each (x,Q)

pairs, under both sequential and parallel composition rules.

The first problem of this composition framework is the choice of data vectors

because there is more than one way to represent X . Although we always have logically

equivalent representations of the model queries, the choice of X can impact answer

consistency. Consider a model with two counting queries q1 = |O| and q2 = |C ./ O|,

represented by two different data vectors encoding O and C ./ O without common

dimensions. When applying a unit mechanism on each of them, independent noise

will be added and the perturbed answers will not necessarily be the same. This is an

inconsistent state because these two queries are actually equivalent if a foreign key

constraint holds. As the perturbation of each (x,Q) is independent, the data vector

representation does not depend on the unit mechanism used in the framework.

The other problem is to distribute the privacy budget efficiently. Data vectors

may come from tables with different df values in terms of sensitivity calculation

(Section 4.4.2), thus simply splitting the privacy budget evenly among invocations

does not always give the minimal error under composition. Other than the choice of

data vector representation, each choice of unit mechanism needs a particular budget

allocation plan to optimize the perturbation error. For example, the Laplace and

Gaussian mechanism have different budget allocation in our framework.

4.5.2 Choice of data vectors

Inconsistency from noisy answers arises because there is shared information among

data vectors. In the example above, two data vectors share common total counts. The

solution is to build data vectors that always contain all key/foreign-key relationships

of ancestors. We refer to them as denormalized data vectors, where attributes in

ancestors are viewed as simple properties of the current relation. For example, for
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q1: number of customers
q2: number of male

customers
q3: difference between young

and old customers

(a) Counting queries

x cell condition
2 age≤40, gender=M
1 age≤40, gender=F
2 age>40, gender=M
1 age>40, gender=F

(b) data vector x of customer table1 1 1 1
1 0 1 0
1 1 −1 −1

 ·


2
1
1
2

 =

6
3
0


(c) The counting queries from (a) represented as a matrix Q based on x. The
answers to Q are Qx.

Figure 4.6: An example of counting queries and a data vector.

relation O, with ancestors R,N and C, we build a data vector based on the joined

result of R ./ N ./ C ./ O. We do this for each relation in the database and now

the two queries in the example above will be represented using the data vector on O

and consistency is maintained after perturbation. Under this scheme, when merging

two data vectors, correspondent model queries can be transformed automatically,

essentially summing over the extra dimensions in the expanded data vector.

Example 4.6. Consider the saturated model for workload queries W in Example

4.1 (Section 4.3.1). A consistent representation can be built with two data vectors

xC and xO, where dim(xC) = {C.age,C.gender} and dim(xO) = {C.gender,O.year}.

These two vectors contain all ancestor relationships, but skip unnecessary columns

to minimize the size of the vectors, e.g., xO does not include C.age as no model

queries related to xO apply conditions on it. For model query transformation, look

at |σC.gender=M(C)|, a model query in the C1TM model. By introducing xC, it will be

rewritten to sum up all male ages in the xC, that is |σC.gender=M,C.age=∗(C)|.

4.5.3 Minimizing perturbation error

Now we state our algorithm for budget allocation. A standard choice for the

unit mechanism would be Laplace or Gaussian mechanism, both of which can fit
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well in our framework when finding a best budget distribution plan is not difficult.

To illustrate that our framework is independent of unit mechanisms, we employ the

more advanced matrix mechanism [63]. Although it requires more dedicated design

for budget allocation, we can reach much lower perturbation error. (In fact, the

allocation algorithm for the matrix mechanism is an extended version of the allocation

for Gaussian mechanism.)

4.5.3.1 The matrix mechanism

Under single-relation differential privacy, we can formally define the matrix mech-

anism as follows, where the key difference is that a new query set (the strategy, A) is

answered with the Gaussian mechanism and then the desired queries Q are derived

from it:

Definition 4.7 (Matrix Mechanism). [63] Let A be a query strategy matrix and

A+ = (AtA)−1At, the pseudo-inverse of A. The randomized algorithm MA offers

(ε, δ)-differential privacy.

MA(Q,x) = QA+G(A,x)

Intuitively, answering the strategy queries privately and then deriving the desired

workload queries leads to greater accuracy when the workload queries have high

sensitivity caused by many overlapping queries. The error of query estimates in the

matrix mechanism is measured by the mean squared error, determined by Q and

strategy A (independent of x). The total error is given by the following equation:

Err(Q,A) =
2 ln(2/δ)

ε2
∆2

A trace(Q(AtA)
−1

Qt) (4.2)

The main challenge of the matrix mechanism is choosing a good strategy for the

given queries Q and we rely on the algorithm in [64] to compute an approximately
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optimal strategy for any given Q. So in our multi-relation framework, multiple runs

of matrix mechanism will need a series of strategies A = {A1,A2, . . . ,An} matched

with data vectors X and Q.

4.5.3.2 Sensitivity and composition rules

The sensitivity for a single Q or strategy matrix A is its maximum L2 norm of

a column, multiplied by the df value of the query signature. In general, the total

sensitivity of multiple matrices may not be equal to the summation of each of them,

i.e. ∆2
Q ≤

∑
Q∈Q∆2

Q. This is due to the possible correlation among query matrices.

In fact, calculation of the exact sensitivity relies on searching for a proper series of

columns across each query matrix that maximize the sum of the square of L2 norms.

We omit the detailed discussion on sensitivity computation here, as we are always

safe to use the upper bound as the sensitivity. In addition, in matrix mechanism,

an optimal strategy matrix will always maximize the L2 norm on each column [64],

meaning all the columns have the same norm. Thus, each matrix contributes its

full ability in the overall sensitivity of A, which means it reaches the upper bound

∆2
A =

∑
i ∆

2
Ai

. However, note this equation does not hold for a general case of

multiple query matrices.

An important part of our framework is to have certain composition rules for the

unit mechanisms. We use the following sequential and parallel composition rules,

originally proposed for the Laplace and Gaussian mechanisms [23, 73, 74], also apply

to the matrix mechanism, for the first time.

Proposition 4.1 (Sequential composition). If each matrix mechanism MAi
, operat-

ing on workload Qi and data vector xi, provides (εi, δi)-differential privacy, sequential

application of MAi
on each workload in Q satisfies (

∑
εi,
∑
δi)-differential privacy.
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Proposition 4.2 (Parallel composition). If each matrix mechanism MAi
uses the

overall sensitivity for all strategy matrices ∆A to answer Qi over xi, combination of

all MAi
satisfies (ε, δ)-differential privacy.

Using these two composition rules, we partition Q into multiple disjoint sub-

sets/groups, such that the union of these sets equals Q, and then apply Proposi-

tion 4.2 inside each group and Proposition 4.1 across groups. Note that A is also

partitioned in the same way. All strategy matrices in one group will get a unified

privacy budget assigned to that group. Let I be the set of all partitions for Q. Two

extreme partitions are the fully split one Is with only single-sized groups (applying

Proposition 4.1 only) and the fully joined one Ij with one group that contains all

query matrices (applying Proposition 4.2 only).

4.5.3.3 Error for a partition

The total error of applying privacy mechanism M on partition I is the sum of

errors from each group g ∈ I. Let ErrGM(g, εg, δg) be the error of group g given

privacy budget εg and δg. So the minimum total error of partition I, MinErrM(I),

is

MinErrM(I) = min
∑

group g∈I

ErrGM(g, εg, δg) (4.3)

From Equation (4.2), the total error of applying matrix mechanism on one query

matrix is ErrM = 2 ln(2/δ)/ε2∆2
Ab, where the trace value b = tr(Q(AtA)

−1
Qt). Let

∆g(A) be the sensitivity of group g’s strategy matrices.

ErrGM(g, εg, δg) =
∑
i∈g

2 ln(2/δg)

ε2g
∆2
g(A) bi

=
2 ln(2/δg)

ε2g
(
∑
i∈g

∆2
Ai

)(
∑
i∈g

bi) (4.4)
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To calculate MinErrM(I), we apply Lagrange multiplier to solve the optimization

problem with objective function Equation (4.3) and two equality constraints
∑

g εg = ε

and
∑

g δg = δ, which gives us the following results:

MinErrM(I) =
2

ε2

( ∑
group g∈I

3

√
ln(

2

δg
) · bgcg

)3

(4.5)

Here, the group trace value, bg, is defined as
∑

Qi,Ai∈g tr(Qi (Ai
tAi)

−1
Qt
i). Group

sensitivity factor, cg =
∑

Ai∈g ∆2
Ai

. The distribution of δ among groups satisfies

the condition that for any two groups g, g′ ∈ I,
3
√
bgcg

δg ln2/3(2/δg)
=

3
√
bg′cg′

δg′ ln
2/3(2/δg′ )

, from

which we can solve δg for each group. Then the distribution of ε is therefore εg =

ε 3
√

ln(2/δg)bgcg/Z, where Z =
∑

g∈I
3
√

ln(2/δg)bgcg.

Example 4.8. Let a model Q with three matrices be partitioned into two groups

as {(Q1,Q2), (Q3)}. Suppose the trace values b = [1, 10, 1000] and sensitivity of

strategies are all equal to 1. Under (1, 0.01)-matrix mechanism, the distribution of ε

and δ {0.23, 0.77} and {0.002, 0.008}, gives us the minimum error of this partition.

This means, we run matrix mechanism on Q1 and Q2 each with privacy budget

(0.23, 0.002) and Q3 with budget (0.77, 0.008).

4.5.3.4 Choosing an optimal partition

The next step is to choose a partition I that minimizes MinErrM(I) over all

valid partitions I. As the total number of partitions is exponential in n, a naive

search algorithm will cost exponential time to find the optimal partition. We propose

a heuristic algorithm limiting searching a polynomial space based on the following

observation.

Consider a model with only two query matrices. It is easy to find out that parallel

composition is better and reaches the most advantage when b1/c1 = b2/c2, where

group trace value bi and group sensitivity factor ci are defined in Equation (4.5).
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x1 cell condition
0 C.age≤40
3 C.age>40

(a) xC

x2 cell condition
9 O.year=2010,C.age≤40
2 O.year=2010,C.age>40
7 O.year=2011,C.age≤40
6 O.year=2011,C.age>40

(b) xO

Figure 4.7: Non-realizable data vectors as xC indicates no customer is younger than
40 while xO shows there must be some.

Assume φ is the angle between vectors (b1, c1) and (b2, c2) in a 2-dimensional space,

this means φ = 0. Sequential composition only benefits when φ is large. When

coming to n-sized model, we can apply the similar idea: we keep elements in each

group close to each other (smaller φ) and large difference across groups (bigger φ).

We say partition I of a set is a refinement of a partition I ′ of the same set, if

every element of I is a subset of some element of I ′, noted as I � I ′. This means

elements in I ′ can be obtained by combine some elements in I. In such cases, we

say I is finer than I ′ and I ′ is coarser than I. E.g., consider the fully split partition

Is and fully joined partition Ij, we have Is � Ij. In fact, (I,�) defines a complete

lattice. We use csr(I) to denote all partitions that one-step coarser than I, meaning

each of which is generated by merging exactly two groups in I. The algorithm is to

start from Is, and search the space of csr(I) for the current best partition I at each

step and stops when all partitions in csr(I) are worse than I. This procedure reduces

the exponential search space to O(n3) where n is the number of query matrices and

our simulation shows it always approaches the optimal partition.

4.6 Sampling synthetic databases

The private, noisy answers to the model queries, generated using the techniques of

the last section, are not sufficient for carrying out performance evaluation. It remains

to generate a complete synthetic database instance from the perturbed model. The
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major challenge results from the fact that a model with perturbed data vectors might

not be realizable: it is possible that there is no database instance that conforms with

the perturbed model statistics. An example is illustrated in Figure 4.7. The idea

of consistent data vectors discussed in Section 4.5.2 is only a necessary condition for

realizability. Realizability depends on a proper relationship across different data vec-

tors. Unfortunately, existing sampling techniques are designed only for unperturbed,

realizable models.

To address this challenge, we propose a two-step approach: first we calculate a

realizable model and then sample from it using standard methods proposed from

literature (e.g. [2]). Note that these steps use the private perturbed model as input

and make no further use of the original database. As a result, there is no impact on

the privacy guarantee.

Realizable model

A perturbed model may fail to be realizable largely because the perturbation

process does not respect key-foreign key relationships. Intuitively, when you sample

from a realizable model, each cell in any data vector should have sufficiently high

counts to allow propagation to each of its direct descendants.

Formally, let x[ψ] denote the summation of the cell counts in a data vector x

that satisfy the condition ψ. For example, in Figure 4.7, xO[O.year=2011]=7+6=13.

Define Cs
r = dim(xr) ∩ dim(xs), the set of common dimensions between two data

vectors xs and xr. We also use Es
r to represent the dimensions that belong to

dim(xs) − dim(xr) and at the same time are attributes of table r or r’s ancestors.

In Figure 4.7, CO
C = {C.age}. If dim(xO) also includes N.nation, EO

C = {N.nation}

because the dimension N.nation is not in xC and is an attribute of N, an ancestor of

C.
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Theorem 4.3. Assume R and S are any two tables such that S ∈ desc(R) and let

xr and xs be their corresponding data vectors. Cs
r and Es

r are defined as above. A

model is realizable if: ∀c ∈ dom(Cs
r ),

xr[C
s
r = c] ≥

∑
e∈dom(Es

r)

d 1

K(R, S)
· xs[Cs

r = c, Es
r = e]e

In Figure 4.7, the violation happens because

xC[C.age ≤ 40] 6≥ d 1

K(C,O)
· xO[C.age ≤ 40]e

In the theorem above, we use propagation constraints defined in Section 4.4.1 to

restrict the propagation behavior. In the context of privacy, the information of K is

possibly treated as sensitive information of the original dataset and the data owner

could choose not to disclose it to the third party. So from their perspective, they are

going to later sample synthetic databases with the assumption that K is infinity. Or

the owner could also release the perturbed version of K.

To calibrate the data vectors and make it realizable, we should make changes to

cell counts if necessary. An inference process that minimizes the L2 distance of all

cell counts can then be represented as a quadratic program with least squares as

the objective function. However, in real applications, data vectors could be high

dimensional with millions of entries, in which case, standard quadratic programming

inference could be quite expensive. We design a linear-time approximation which

works quite well in our application (See Section 4.7.3). The idea is that whenever the

inequality in Theorem 4.3 is violated, we choose to increase minimally the cell counts

on the left side of the inequality. To calibrate all data vectors into a realizable state,

we test each pair of data vectors in reverse topological order of the schema graph.
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4.7 Evaluation

In this section, we implement the modeling and sampling methods proposed in the

previous sections and evaluate the accuracy of performance evaluation on synthetic

data. We build various models for a given workload, perturb the models, sample a

set of synthetic databases, and finally run the original workload on both the original

and synthetic databases. The primary goal of the experiments is to compare the

accuracy, w.r.t. performance evaluation of the workload, of the non-private and

private synthetic databases.

4.7.1 Experimental setup

Datasets and workload We use two datasets conforming to the TPC-H schema,

the uniform TPC-H generator1 with scale factor 1 and the skewed TPC-H (denoted

sTPC-H ) generator [15], which generates non-uniform columns distributions from a

Zipfian distribution, where the Zipf value (z) is set to 1.25. The workload queries

are generated from TPC-H query blueprints 1, 3, 6 and 10 with various parameters

substitution, which are queries involving up to 4-way joins on primary keys and foreign

keys.

Neighboring databases definition We assume the customer table C is the pro-

tected entity. For this schema, we only need to constrain the propagation to C’s

descendants, K(C,O) and K(O, L). In both datasets, propagation from O to L is uni-

formly distributed from 1 to 7. By definition of our neighboring databases, a single

counting query on Lineitem of TPC-H then has sensitivity 41 ∗ 7 = 287. It is obvious

that the strongest privacy guarantee is offered when the propagation constraint K

is set as large as the maximum. Since the maximum propagation between C and O

in sTPC-H is 15935, the sensitivity of the same query is 15935 ∗ 7. This is indeed

1http://www.tpc.org/tpch/
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the unavoidable case when conservative propagation constraints will be too big to

maintain a reasonable level of perturbation. Thus using the modified K is one way

to avoid bad utility while still providing strong protection to the vast majority of

participants in the database. In addition, we also want to show a fair comparison

between TPC-H and sTPC-H , so K(C,O) is set to 41 and K(O, L) is set to 7 for both

datasets. In sTPC-H, 99.764% of customers have 41 orders or less, so setting K to 41

means 99.764% of customers have full protection.

We set ε = 1, 0.1 and δ = 0.01. According to Equation (4.2), changing δ from

0.01 to 0.001 has a factor of 1.43. Thus, they are equivalent to ε = 1.19, 0.119 and

δ = 0.001.

4.7.2 Modeling

We implement the model family described in Section 4.3.2. The null model (NM)

serves as a baseline approach because it does not depend on the workload. Table

4.1 shows details about the models. For example, we see an enormous jump in data

vectors’ size for more complex models. Our algorithm has three phases: selecting a

strategy, distributing the privacy budget and adding noise. We want to emphasize

that the cost for strategy selection is incurred only once for each workload of queries,

independent of a particular database or setting of epsilon. Once this cost is incurred,

generating perturbed data for any database instance or setting of the privacy parame-

ters is efficient, and we therefore consider the overall cost of the algorithm acceptable.

For example, in our experiments, even though we sample synthetic databases based

on both datasets, and run experiments under multiple choices of ε, we only run the

strategy selection step once for C3TM. Later steps of distributing the privacy budget

and performing actual perturbation run in approximately 20 seconds, even for C3TM

with 106 cells in its data vectors. Figure 4.8 tells that our budget allocation algorithm

can reach much lower total error than simply splitting budget evenly.
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4.7.3 Sampling

The sampling process involves two steps: realization and sampling. We apply

the approximated realization introduced in Section 4.6, avoiding expensive quadric

programming. In the last row of Table 4.1 we show the L1 distance on data vectors

before and after realization, which is basically negligible compared to the size of

database. The running time of realization is less than a couple of seconds for all

models.

NM C1TM C2TM C3TM
# model queries 8 250 338 463

size of data vectors 101 103 105 106

modeling time (sec) 5 262 760 3009
changes after realization 1 17 45 60

Table 4.1: Detailed information about models

4.7.4 Utility

To assess the utility of the framework, we run workload queries with synthetic

databases and measure the performance metrics of by comparing them with execution

using the original databases. We use PostgreSQL, and observe two measures: 1)

Estimated cost. The optimizer uses statistics of databases to decide a best query

plan, and estimates the running time. 2) Running time, which is actual execution

time. Note that these two metrics are not necessarily correlated even in modern

DBMS.

Model error In the absence of privacy, we apply standard sampling to generate

synthetic databases from unperturbed models and run evaluation tasks on them.

The error between the collected measurements from these synthetic instances and the

true measurements from the original databases is called model error, which helps us

to understand the quality of the selected models. We measure the model error of each

metric P by its relative error. Let Po and Ps be the value of P on the original database
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Figure 4.11: Detailed model error and perturbation error of workload running
time based on query complexity

and the synthetic database respectively. The relative error of P is r(P ) = |Ps−Po|
Po

. The

results are summarized in the first column of Figure 4.9, “non-private”, where each

bar and its error bar represents “mean ± standard error” of the relative error. We

find that all models outperform the baseline model NM significantly, illustrating that

the models are effective and that customizing the model to the workload is important.

As expected, high-level models (C3TM and C2TM) are better than low-level ones.
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Perturbation error Next we want to evaluate the accuracy of performance metrics

for databases synthesized using the perturbed private models. We refer to this as

perturbation error, which includes model error and the additional distortion of the

privacy mechanism. The results, shown in Figure 4.9, are presented in terms of ε in the

second and third column. With ε = 1, our models can handle noise easily, maintaining

very small lost of performance compared to non-private case. With ε = 0.1, noise

becomes more influential. We see obvious increase of both metrics across all models.

Because the estimated cost reflects how query planner sees the table statistics and the

simpler models add less distortion to model queries, they suffer less from low budget.

For actual running time, we see only C2TM can stay in sub-20% for both metrics at

ε = 0.1.

Utility breakdown Our model series are constructed by stacking up more cross

table correlations, so we’d like to differentiate the performance with joins, i.e. no-

join, joining two tables and joining 3 or more tables. The breakdown on running time

metric is illustrated in Figure 4.11 (We don’t show results for estimated cost, because

error is much smaller there in all cases.) Note that, in the non-private case, C1TM

matches only non-join queries, C2TM can do up to 2-way joins, and C3TM works for

up to 3-way joins, all of which are demonstrated in the first column. It turns out that

C1TM is not capable of dealing with high joins, especially for the skewed database

source. At ε = 1, both C2TM and C3TM shows modest distortion, consistent with

their overall performance from Figure 4.9. At ε = 0.1, C2TM is marginally better

than C3TM, across all queries. This is because C3TM’s noise level at ε = 0.1 finally

ruins the benefit of having more information. Overall, C2TM and C3TM are good

for ε = 1 and C2TM works best for ε = 0.1 but only marginally better than C3TM.

Better utility by changing protection percentage At the beginning of this

section, we discuss that the strongest privacy is guaranteed when setting propagation
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to its maximum value, where 100% of customers is fully protected. However, large

propagation increases the sensitivity and thus noise. If reducing the percentage of

customers being protected is allowed, we get better utility. E.g., in Figure 4.10, we

can almost achieve half perturbation error for C2TM when only fully protecting 90%

of customers from sTPC-H .

Outside workload The model-and-sample approach is tailored for particular work-

loads. The benefit of having synthetic databases is to allow users to run those queries

the way they want without privacy budget concerns, e.g., using different DBMS sys-

tems. Besides well-modeled workload queries, it is generally interesting to see the

performance of outside queries. However, arbitrary queries might not work correctly.

E.g., if workload queries do not touch customer’s age, none of models will have in-

formation for that. Querying customer’s age is nothing more than getting randomly

generated numbers between 1 and 100. To test outside queries, we randomly com-

bines modeled attributes from any models into multi-joins. Given the size of models

and data vectors, this still represents a big space of outside queries. We generate

20 queries, ranging from no joins to 4-way joins, and repeat the evaluation process

above. The performance of no-join and 2-way join queries can match up the utility of

given workload, if not worse, with all privacy budgets. For queries containing more

than three joins, the result becomes unpredictable. However, it is mostly model error

that damages the utility, and we do not see much extra distortion from perturbation

error.

4.8 Related Work

There have been many proposed methods for synthesizing relational databases [2,

7, 8, 13,38,48,65,106]. Privacy is a commonly-cited motivation [2, 106]. Yet only one

paper actually specifies a privacy condition for generated data [113] and that condition

is based on anonymization approaches that lack rigorous gaurantees and may be
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vulnerable to a range of attacks demonstrated by the anonymization community. In

addition, they do not provide a detailed evaluation of utility, so a comparison with

our proposal is difficult.

Among the many works on database synthesis (without privacy), the classical

method is to sample databases to derive the data distribution and underlying attribute

correlations. Synthesis of the database is then workload-independent [13, 38, 48, 106]

(i.e., intended to support any set of queries considered) or workload-aware [2,8,65] (tai-

lored to a specific workload of interest). We argue that the workload-aware approach

is better for database synthesis, since workload-independent approaches may main-

tain irrelevant information for particular applications, as Seltzer et al. [95] observed.

From the perspective of differential privacy, supporting arbitrary workloads requires

more noise and results in lower utility. Our modeling method, based on counting

queries extracted from workloads, is carefully adapted to the given workload. Many

researchers [8, 13] have used cardinality statistics for (non-privately) synthesizing a

database. In addition, the idea of building a probabilistic model for a database [34]

can potentially improve the accuracy of query estimation.

Differential privacy [25] has been one of the most popular privacy definitions in

recent years. Generating differentially private synthetic datasets has been a common

goal, but only for single-table schemas [46, 114, 115, 117]. Existing results show that

in order to achieve accurate results, the data must be targeted to a constrained set of

workload queries. Recent work from Li et al. [63,64] proposed matrix mechanism that

is able to compute optimal noise on a set of correlated queries and we extend that

to work in a multi-relation setting. The techniques in this chapter are a significant

extension to preliminary work [41]. The PINQ framework [74] discusses privacy for

multi-relation schemas. However, the protected entity and neighboring databases are

not clearly defined and the semantics of the join operation is modified. Lastly, Rastogi
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et al [86] consider queries with joins and show that certain limiting assumptions about

the adversary can result in improved utility under a model of adversarial privacy.
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CHAPTER 5

SHARING PRIVATE EXPONENTIAL RANDOM GRAPH
ESTIMATION

This chapter considers how to share estimated parameters of exponential random

graph model (ERGM [71]) under differential privacy. As adding direct noise to those

parameters of ERGM is not practical, we suggest a two-step solution. Firstly, the

perturbation algorithm transforms the sufficient statistics of given ERGM into private

version. Secondly, a specially designed parameter estimation process calculates the

best parameter using private statistics.

5.1 Introduction

The explosion in the collection of networked data has fueled researchers’ interest

in modeling networks and predicting their behavior. However, for important applica-

tion areas such as disease transmission, network vulnerability assessment, and fraud

detection (among others), networks contain sensitive information about individuals

and their relationships. It is difficult for institutions to release network data and

it remains difficult for researchers to acquire data in many important application

domains.

Recently, a rigorous privacy standard, differential privacy [25] was proposed that

allows for formal bounds on the disclosure about individuals that may result from

computations on sensitive data. Differential privacy provides each participant in a

dataset with a strong guarantee and makes no assumptions about the prior knowledge

of attackers.
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Since its introduction, differentially private algorithms have been developed for a

wide range of data mining and analysis tasks, for both tabular data and networked

data. For networks, existing work has focused on algorithms for accurately releasing

common graph statistics under differential privacy [45, 55, 79, 83, 90, 109]. However,

graph statistics are only one aspect of social network analysis and are often most

useful in conjunction with some paradigm for modeling structural features of graphs.

Privately modeling graph data has only rarely been explored by researchers; we are

aware only of work using the Kronecker model [61] under differential privacy [75].

In this work, we study the differentially private use of the classic exponential ran-

dom graph model (ERGM) [71, 88, 100]. ERGMs are a powerful statistical modeling

tool that allows analysts to analyze a network’s social structure and formation pro-

cess. In social science and related fields ERGMs have been successfully applied to

many scenarios, such as co-sponsorship networks [20], friendship networks [36], and

corporate and inter-organizational networks [71].

Our goal is to accurately support parameter estimation for ERGMs under dif-

ferential privacy, focusing on a specific set of model parameters of recent interest to

researchers: the alternating statistics. These sophisticated statistics represent more

structural information than traditional star and triangle counts, and have been shown

to lead to much better modeling results [36,49,88,100].

Our adaptation of differential privacy to graphs protects relationships of individ-

uals by limiting the influence on the output of any single relationship (edge) that is

created or removed from the network.1 A standard algorithm that implements this

idea is the Laplace mechanism [25], which adds random noise to the output. The

amount of noise required is related to the maximum difference in the output due to a

1This is one of the most common interpretations of differential privacy for graphs, called edge
differential privacy [45]. Node differential privacy is stronger, but often hurts utility. Our results for
edge-differential privacy can easily be extended to k-edge privacy to protect multiple edges.
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single edge addition or removal for any possible network (this is the global sensitivity

of the function producing the output). For ERGM estimation, this requires calcu-

lating the exact change in the ERGM parameter estimates as a result of changing

an edge. Unfortunately, the global sensitivity for most ERGM parameters is either

hard to compute in general, or too high, so that using noise calibrated to the global

sensitivity is not acceptable.

To overcome this obstacle, we decompose private ERGM estimation into two sep-

arate steps. We first privately compute the sufficient statistics for ERGM estimation

(typically the model statistics required by model description) and then estimate the

parameters using only these sufficient statistics. Since the estimation process uses

only the differentially-private statistics, and there is no additional access to the orig-

inal graph, the output of estimation is also differentially private. In practice, the

estimation algorithm is executed either on the server side (by the data owner) or

on the client side (by the analyst). In either case, it does not violate the privacy

condition to release both the statistics and the derived ERGM parameters.

Challenges arise in both steps of our approach. While prior work has proposed

mechanisms for various graph statistics, common ERGM models use unique statistics,

e.g., alternating graph statistics [100], which are a complex aggregation of a series

of basic graph statistics. We describe new approaches for privately computing these

statistics. The second parameter estimation step could be implemented using stan-

dard methods [14,99] while treating the privately-computed statistics as if they were

the true statistics. Instead, we propose a novel parameter estimation method based

on Bayesian inference, which considers the noise distribution from which the private

statistics are drawn and produces more accurate parameter estimates.

Contributions

• In Section 5.3, we describe (ε, δ)-differentially private algorithms for estimating two

key statistics: alternating k-triangle and alternating k-twopath. The algorithms add
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noise proportional to a high-likelihood bound on the local sensitivity of the statistics.

Unlike global sensitivity, local sensitivity is determined by the current graph instead of

worst-case graphs and can be much lower. Our algorithms use a technique formalized

in [55] and inspired by the Propose-Test-Release approach [24].

• We describe a new Bayesian method for ERGM parameter estimation (in Section

5.4) that is designed for the noisy sufficient statistics produced by a differentially

private algorithm. While it is possible to use a standard algorithm for estimation,

our inference takes the unknown network as a hidden variable and can result in

estimates with lower error.

• We study a set of ERGM models based on model terms consisting of alternating

graph statistics [100] (in Section 5.5). Our experiments on both synthetic and real

graphs show that our techniques significantly reduce noise over baseline approaches.

5.2 Background

5.2.1 Exponential random graph model (ERGM)

A graph G = (V,E) is defined as a set of nodes V and relationships E : V × V →

{0, 1}. A common representation of a graph is as an adjacency matrix x, where

xij ∈ {0, 1} indicating whether there is an edge from node i to j. Let f(·) define a

vector of graph statistics called the model terms ; the concrete values of f(x) are the

model statistics. Formally, the ERGM with parameter vector θ defines a probability

distribution over graphs in the space X (typically the set of all simple graphs with n

vertices):

p(x|θ) =
exp(θ · f(x))

Zθ
(5.1)

Zθ is a normalizing constant to make p(x) a true probability distribution, param-

eterized by θ. If x0 is the observed graph and X represents the random variable
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defined by the distribution above, our goal is to tune the parameter vector θ, s.t. the

expected value of f(X) is equal to observed statistics, meaning Eθ(f(X)) = f(x0),

which intuitively puts the observed graph in the “center” of space of possible graphs

implied by the model. For example, the simplest ERGM uses the number of edges as

the only model term. If m0 is the total number of edges in x0, the θ, which enables

the expected number of edges of ERGM equal to m0, is given by [78]:

θ = log
m0(

n
2

)
−m0

(5.2)

Estimating θ The optimal θ maximizes the likelihood of x0 given θ [78], i.e.,

arg maxθ p(x0|θ). Unfortunately, most ERGMs do not have an analytical or closed-

form estimate for the optimal θ. Thus, numerical solutions are proposed in the lit-

erature, such as Markov chain monte carlo maximum likelihood estimation [99] and

Bayesian inference [14]. An interesting property of these inference methods is that the

algorithm does not require access to the input graph itself, i.e., the sufficient statistics

for the parameter estimation are just the model statistics. This feature enables us to

decompose the private inference problem into two steps, allowing analysts to see only

the sufficient statistics.

Alternating statistics A model term is usually a counting query of a specific graph

pattern. Common patterns include triangles, stars and loops [71]. Recent research

has introduced alternating statistics for k-star, k-triangle and k-twopath, which can

represent structural properties of a graph better than traditional star and triangle

counts [100]. Many works have explored these statistics since they were proposed,

and they are an active and promising form of ERGM [36, 49, 88, 100]. Our work is

focused on these alternating statistics (defined precisely in Section 5.3) which have

not been studied before under differential privacy. A wide variety of other model
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terms are used with ERGMs; our general approach is compatible with other terms

but they are beyond the scope of this work.

5.2.2 Differential privacy

In Chapter 2, we introduced differential privacy and Laplace mechanism. In this

chapter, our database is a graph describing relationships among individuals. Our

purpose is to protect relationships among individuals so we adapt differential privacy,

following [45, 55, 83, 90, 109], by defining a neighboring graph as a graph that differs

by one edge.

Local sensitivity and its smooth bound

Recall that differential privacy can be achieved by adding Laplace noise to the

output of algorithms according to privacy parameters and query’s global sensitivity.

The global sensitivity of a query is the maximum possible difference in the output

when evaluating the query on two neighboring graphs.

Some common graph analyses have high global sensitivity, requiring the Laplace

mechanism to add enormous amounts of noise. For example, consider the simplest

ERGM model above where θ is calculated by (5.2). On a graph where m0 = 0 or a

graph where m0 =
(
n
2

)
, θ can change drastically with the addition or deletion of one

edge. In other words, the global sensitivity is very high for this function. But the

fact is that most real graphs are nothing like these extremes. Thus, by only focusing

on the input graph’s neighbors, the local sensitivity [79] can be much smaller.

Definition 5.1 (Local sensitivity [79]). Given query f and graph x, local sensitivity

LSf (x)

LSf (x) = max
x,x′neighbors

|f(x)− f(x′)|

However, one cannot achieve differential privacy by adding noise proportional to

the local sensitivity because local sensitivity itself could disclose information. The
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authors of [79] proposed using a smooth upper bound on the local sensitivity, the

smooth sensitivity. Intuitively, smooth sensitivity tries to “smooth” out the difference

between local sensitivities of two neighbors, so that it is itself not sensitive. Let d(x, x′)

be the distance between two graphs, i.e. the number of edges in which they differ:

Definition 5.2 (Smooth bound and smooth sensitivity [79]). Function Sf : X ⇒ R

defines a β-smooth bound of local sensitivity on query f if

∀x : Sf (x) ≥ LSf (x)

∀x, x′ neighbors : Sf (x) ≤ exp(β)Sf (x
′)

The β-smooth sensitivity of f is a β-smooth bound, and

SSf,β(x) = max
x′
{LSf (x′) · exp (−βd(x, x′))}

Calculating the smooth sensitivity for a function may be easy (in cases like the

median of a list of numbers [79]) but could be quite difficult for other functions,

requiring complex proofs and nontrivial algorithms [55]. Even though smooth sensi-

tivity may provide tight bound for local sensitivity, we show that it is NP-hard for

two alternating statistics commonly used in ERGMs.

5.3 Perturbing model statistics

In this section we provide methods for privately computing alternating graph

statistics. In Sec. 5.3.1 we define three alternating statistics and show that one of

them (alternating k-star) has a constant global sensitivity. This means the Laplace

mechanism to be applied with relatively small error. However, alternating k-triangle

and alternating k-twopath both have high global sensitivity. In Sec 5.3.2 we show

that we cannot resort to smooth sensitivity, as calculating the smooth sensitivity
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is NP-hard in both cases. To address this challenge, we adapt a technique which

calibrates noise to a private, high-likelihood upper bound on the local sensitivity [55].

That bound is produced using the global sensitivity of the local sensitivity function. If,

however, the global sensitivity of that function is high, the technique can be repeatedly

applied, using a high-likelihood bound on the local sensitivity of the local sensitivity

function. We describe these “first-order” and “second-order” algorithms in Sec 5.3.2

and then analyze the local sensitivity of alternating k-triangle and alternating k-

twopath in Sec. 5.3.3.

5.3.1 Alternating graph statistics

The three alternating graph statistics, alternating k-star, alternating k-triangle

and alternating k-twopath, are essentially complex aggregations of traditional k-star,

k-triangle and k-twopath statistics. Instead of considering a vector of k terms, the

alternating statistics aggregate over the terms but enforce alternating signs between

each consecutive term, to weaken the correlation among different terms and effectively

reduce the weight on higher terms near k.

Alternating k-star The k-star is a counting query of a star pattern in the graph,

where each star contains k edges, i.e., Sk =
∑

i

(
di
k

)
where di is the degree of node i.

Definition 5.3 (Alternating k-star [100]). With parameter λ ≥ 1, alternating k-star

S is defined as

S(x;λ) = S2 −
S3

λ
+ . . .+ (−1)n−1

Sn−1
λn−3

The λ parameter here is a good way to control the geometrical weights on all

k-stars.

Alternating k-triangle A k-triangle is a graph pattern in which k triangles share

a common edge. The k-triangle query asks for the total number of k-triangles in

the graph. Define the shared partner matrix C, where each entry (i, j) in C is the
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count of shared partners between nodes i and j, mathematically Cij(x) =
∑

l xilxlj.

Formally, k-triangle Tk is defined:

Tk =
∑
i<j

xij

(
Cij
k

)
(k ≥ 2), and T1 =

1

3

∑
i<j

xijCij

Alternating k-triangle is defined similarly as alternating k-star, using parameter λ:

Definition 5.4 (Alternating k-triangle [100]). With parameter λ ≥ 1, alternating

k-triangle T is:

T (x;λ) = 3T1 −
T2
λ

+
T3
λ2
− . . .+

(−1

λ

)n−3
Tn−2

Alternating k-twopath A k-twopath graph pattern is very similar to k-triangle,

except it does not require the shared edge required by the k-triangle statistic. Using

the shared partners matrix C above, the counting query for k-twopath Uk is:

Uk =
∑
i<j

(
Cij
k

)
(k 6= 2), and U2 =

1

2

∑
i<j

(
Cij
2

)

And alternating k-twopath is:

Definition 5.5 (Alternating k-twopath [100]). With parameter λ ≥ 1, alternating

k-twopath U is

U(x;λ) = U1 −
2

λ
U2 +

n−2∑
k=3

(−1

λ

)k−1
Uk

Alternating k-star S is the only statistic that can be readily solved using existing

privacy mechanisms. Because the degree sequence is a sufficient statistic for S, one

natural approach is to use the mechanism described by Hay et al [45] to compute a

private degree sequence from x, and then use it to compute S by Eq. (5.3). But, in
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fact, it can be shown that the global sensitivity of S is at most 2λ. Thus, Laplace

noise may be a better choice (λ is usually set to a small integer in practice). We make

empirical comparisons between these methods in Section 5.5.

Lemma 5.1. The global sensitivity of alternating k-star is at most 2λ.

5.3.2 Bounding local sensitivity

Because the global sensitivity of alternating k-triangle and k-twopath can be as

large as O(n), we would like to use a method which adds noise scaled to the local

sensitivity or a quantity close to the local sensitivity. One approach is to compute

a smooth bound on the local sensitivity, however, the following lemma shows the

NP-hardness of computing such a bound for these two statistics:

Lemma 5.2. Computing the smooth sensitivity for both alternating k-triangle and

alternating k-twopath is NP-hard.

We therefore employ a technique inspired by the Propose-Test-Release framework

[24], and formalized by Karwa et al [55], where it was used to estimate k-triangles.

The technique first computes a private over-estimate of the local sensitivity, one

that is higher than the local sensitivity with high probability. That becomes a safe

sensitivity value for calibrating Laplace noise, however, the result satisfies only the

weaker notion of (ε, δ)-differential privacy.

Let f(x) be the sensitive function/query. We use LSf,1(x) to denote the local

sensitivity of f , which is a function of the input graph x.

Algorithm 5.1 Local sensitivity bounding algorithm (First order)

Require: input graph x, query f and ε, δ
1: a = ln(1/δ)

ε

2: ỹ1 = LSf,1(x) + Lap(GS(LSf,1(x))/ε) + a · GS(LSf,1(x))
3: ỹ = f(x) + Lap(ỹ1/ε)
4: return ỹ, ỹ1
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In Algorithm 5.1, ỹ1 is the private bound on the local sensitivity, computed by

adding scaled noise to LSf,1(x), as well a positive offset, so that the bound is higher

than LSf,1(x) with high probability. Notice that the scale of the noise is determined

by the global sensitivity of the local sensitivity, GS(LSf,1(x)).

If GS(LSf,1(x)) is large, it may cause ỹ1 to be a significant over-estimate of LSf,1(x).

We can repeat this approach by using a safe upper bound of the local sensitivity

of LSf,1(x), as presented below. Thus, Algorithm 5.1 bounds the first-order local

sensitivity and the following algorithm bounds the second-order local sensitivity.

Algorithm 5.2 Local sensitivity bounding algorithm (Second order)

Require: input graph x, query f and ε, δ
1: a = ln(1/δ)

ε

2: ỹ2 = LSf,2(x) + Lap(GS(LSf,2(x))/ε) + a · GS(LSf,2(x))
3: ỹ1 = LSf,1(x) + Lap(ỹ2/ε) + a · ỹ2
4: ỹ = f(x) + Lap(ỹ1/ε)
5: return ỹ, ỹ1, ỹ2

Theorem 5.3. Algorithm 5.1 is (2ε, 1
2
eεδ)-differential privacy. Algorithm 5.2 is

(3ε, 1
2
eεδ + 1

2
e2εδ)-differential privacy.

The proof of Theorem 5.3 relies on the Lemma 4.4 from [55], as we restate it as

follows:

Lemma 5.4. If M is (ε1, δ1)-differentially private, and Pr[M(x) ≥ LSf (x)] > 1− δ2
for all x, the following A which returns a pair of values,

A(x) = (M(x), Lap(M(x)/ε2) )

is (ε1 + ε2, δ1 + eε1δ2)-differentially private.
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Proof of Theorem 5.3. In Algorithm 5.1, ỹ1 is ε-differentially private as it is based on

Laplace mechanism and post-processing (adding positive offset). Let g1 = GS(LSf,1(x)).

If the sampled Laplace noise in line 2 is b,

Pr[ỹ1 ≤ LSf,1(x)] = Pr[b ≤ −ag1]

=

∫ −ag1
−∞

1

2g1/ε
exp(−|x|ε/g1) dx

=
1

2
exp(−ag1 ∗ ε/g1) =

δ

2

So, Pr[ỹ1 ≥ LSf,1(x)] > 1 − δ/2. By applying Lemma 5.4, the Algorithm 5.1 is

(ε+ ε, 0 + eε δ
2
)-differential privacy, which is (2ε, 1

2
eεδ)-differential privacy.

In Algorithm 5.2, both ỹ1 and ỹ2 are ε-differentially private. Similarly, Pr[ỹ2 ≥

LSf,2(x)] > 1 − δ/2. As above, by applying Lemma 5.4, ỹ1 is (2ε, 1
2
eεδ)-differential

privacy. Furthermore, applying Lemma 5.4 one more time, the final ỹ is (2ε+ε, 1
2
eεδ+

e2ε δ
2
)-differential privacy, which is (3ε, 1

2
eεδ + 1

2
e2εδ)-differential privacy.

The step of replacing the global sensitivity by a high-likelihood bound on the local

sensitivity can be repeatedly applied to form more complex higher order algorithms.

However, each additional bounding step requires splitting the privacy budget and the

combined effects of repeatedly over-estimating higher order sensitivities may diminish

utility. For the two alternating statistics we consider, and the datasets we tested on,

we found that first order and second order is sufficient.

Error analysis

Definition 5.6. Y0, Y1, . . . , Yn is a random variable chain, when the following condi-

tion is satisfied: for any i ∈ [0, n−2], Yi is conditionally independent of Yi+2, Yi+3, . . . Yn

given Yi+1.
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From conditional independence, an important property of random variable chain

is the following:

Pr(Yi|Yi+1, Yi+2, . . . , Yn) = Pr(Yi|Yi+1)

It is easy to see that ỹ, ỹ1, . . . is actually a random variable chain. We use mean

squared error (MSE) as the measurement of error. In Algorithm 5.1 and 5.2, MSE of

ỹ can be written as E[(ỹ− f(x))2] = V[ỹ] + (E[ỹ]− f(x))2. Since ỹ is always unbiased

(Laplace noise in the last step with mean zero), MSE = V[ỹ].

Without knowing the true value of the local sensitivities, it is quite hard to com-

pute the MSE. That is to say, we cannot compute the error like we do for the Laplace

mechanism, since the noise in the latter is independent of input graph x. But, by

exploring properties of the random variable chain, it is possible to utilize the follow-

ing Lemma as a closed form calculation tool for MSE. In fact, we extend law of total

expectation/variance [111].

Lemma 5.5. Y0, Y1, . . . , Yn is a random variable chain. Write
⊔
n,i E[·] as a shortcut

for EYn [EYn−1|Yn [. . .EYi|Yi+1
[·]]]. Then

E[Y0] =
⊔
n,0

E[Y0]

V[Y0] =
⊔
n,1

E[ V
Y0|Y1

[Y0]]

+
n−2∑
i=2

(⊔
n,i

E[ V
Yi−1|Yi

[
⊔
i−2,0

E[Y0]]]

)
+ V

Yn
[
⊔
n−1,0

E[Y0]]

Applying Lemma 5.5 , one can calculate MSE of Algorithm 5.1 and 5.2. Such

error measurement can serve an evaluation tool for privacy researchers when working

with our algorithms. From the perspectives of data owners, the analytic result of

MSE can help them to decide between Algorithm 5.1 and 5.2, i.e., with fixed privacy

parameters, selecting the algorithm with less error (more utility).
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5.3.3 Alternating k-triangle and k-twopath

Now we apply the idea of local sensitivity bounding to alternating k-triangle and

alternating k-twopath. Let β = 1 − 1/λ. By binomial coefficients, we can rewrite

alternating k-triangle T (x;λ) as

T (x;λ) = λ
∑
i<j

xij
{

1− βCij
}

(5.3)

Lemma 5.6. Set C ′iv = Civ − xij and C ′vj = Cvj − xij. Let Nij be all shared partners

of node i and j and Cmax = maxi<j Cij. The local sensitivity of T is

LST,1(x) = max
i<j

λ
{

1− βCij
}

+
∑
v∈Nij

{
βC
′
iv + βC

′
vj

}
(5.4)

≤ λ+ 2Cmax (5.5)

As Cmax has global sensitivity 1, LST,1 has global sensitivity at most 2. So we can

construct a first-order local sensitivity bound using LST,1 = λ + 2Cmax to compute

private alternating k-triangle.

For alternating k-twopath U(x;λ), we can rewrite it as

U(x;λ) = λ
∑
i<j

{
1− βCij

}
(5.6)

Lemma 5.7. Let Ni be the set of neighbors of node i and dmax be the maximum

degree. Set C ′iv = Civ − xij and C ′vj = Cvj − xij. We have local sensitivity
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LSU,1(x) = max
i<j

 ∑
v∈Ni,v 6=j

βC
′
vj +

∑
v∈Nj ,v 6=i

βC
′
iv

 (5.7)

≤ 2dmax (5.8)

LSU,2(x) ≤ max(4, 1 + Cmax)

λ
(5.9)

From Lemma 5.7 above, (5.8) has global sensitivity 2, since dmax will change by at

most 1 by adding or removing an edge. (5.9) has global sensitivity 1/λ for Cmax > 3.

Therefore, we can construct either first-order or second-order bound. Note that (5.7)

is the exact local sensitivity of alternating k-twopath, but we cannot bound it in

Algorithm 5.1 as (5.7)’s global sensitivity is not clear. Instead we use (5.8). When

applying Algorithm 5.2, (5.7) is the local sensitivity to be bounded at Line 4, as by

that step the higher order (second-order) local sensitivity (5.9) has already be safely

bounded. We will compare the resulting error empirically in Section 5.5.

5.4 ERGM parameter estimation

The parameter estimation step in our workflow takes the private sufficient statis-

tics ỹ from the previous perturbation step and finds the best parameter vector θ. As

stated above, this step is essentially post-processing a differentially private output,

so the output θ is also differentially private. In this section, we discuss different ways

of estimating θ given ỹ.

5.4.1 Standard estimation

Current estimation techniques [14, 99] provide a baseline solution for parameter

estimation with private statistics. As these procedures essentially only need access to

model statistics, our sufficient statistics in ỹ take the place of the true model terms.

The semantics is now to search for θ that defines a probability distribution on graphs

with expected model statistics equal to ỹ. Intuitively, the utility of this method
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depends on the amount of noise added into y0 and how θ reacts to those changes in

y0.

Prior to applying standard estimation, we post-process ỹ to cope with some of the

difficulties of the perturbed model statistics. As the output of perturbed ỹ might not

be graphical (i.e., no graph has statistics equal to ỹ), standard estimation may fail to

converge. We propose generating a graph that has the closest statistics to ỹ and use

the statistics from that graph to replace ỹ, in order to avoid non-converging situations

and to potentially remove noise from ỹ simultaneously. We use simulated annealing

for this purpose and, in practice, we often see big improvements in the accuracy of

estimates.

5.4.2 Bayesian inference

Standard estimation is the direct way of post-processing ỹ, but since we know the

distribution of the noise added to ỹ, we can “guess” the true values and incorporate

them into the estimation algorithm. This idea naturally fits into Bayesian inference

based post-processing. While based on earlier work [14] on Bayesian inference for

non-private estimation, our method deals with the extra hidden variable of graph x

in our setting. And later we will see, by introducing the unknown x, our method can

utilize more information from private statistics, such as the local sensitivity bounds.

In particular, we search for θ given ỹ, represented as the posterior distribution of

ERGM parameter θ:

p(θ|ỹ) ∝ p(ỹ|θ)p(θ) =
∑
x

p(ỹ|x)p(x|θ)p(θ)

=
∑
x

p(ỹ|x)q(x; θ)p(θ)/Zθ (5.10)

where x is our guess about x0, but the fact is that we need to summarize over all

possible x to get to the posterior. In (5.10), p(ỹ|x) is the privacy distribution, de-

fined by the differential privacy mechanism applied on sufficient statistics. p(x|θ) is
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the ERGM distribution, as shown in (5.1) and q(x; θ) represents the unnormalized

distribution.

q(x; θ) = exp(θ · f(x)) (5.11)

The probability distribution (5.10) is hard to calculate or even sample from di-

rectly due to summarization over all graphs and normalizing constant Zθ. Using the

exchange algorithm [77], we introduce extra variables x, θ′ and x′ to bypass the dif-

ficult terms (5.10). By carefully choosing the probability distribution of these new

random variables, the posterior distribution is now augmented as shown in (5.12).

The key is that the marginal posterior distribution for θ in (5.12) is equivalent to

(5.10). Thus, if we are able to sample from the distribution in (5.12), the marginal

posterior distribution for θ can be obtained by summarizing over all samples.

p(θ, x, θ′, x′|ỹ) ∝ p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′) (5.12)

θ′ is sampled from proposal distribution p(θ′|θ), where, for a given θ, a new θ′ can be

proposed according to p(θ′|θ). A common choice is a multivariate normal distribution

or a multivariate t distribution, with mean equal to θ. x, x′ are sampled graphs under

the ERGM with parameter θ and θ′.

Algorithm 5.3 ERGM parameter estimation with private model statistics

Require: ỹ, initial θ, x
1: for i in 1 to T do
2: Sample θ′ ∼ p(θ′|θ)
3: Sample x′ ∼ p(x′|θ′)
4: Replace θ with θ′ and x with x′, with probability min(1, H) //H

by (5.13) below

5: return samples of θ.
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A MCMC based sampling process for (5.12) is shown in Algorithm 5.3. In partic-

ular, the initial input θ and x could be any parameters and any graph. In Line 3, we

need a separated MCMC chain to sample x′ ∼ p(x′|θ′). In such MCMC algorithms,

at each iteration, we propose adding or removing edges in the current state of graph,

calculate the new model statistics, compare the probability of new state xnew to that

of old state xold, and with probability p(xnew|θ′)/p(xold|θ′) the change is accepted.

This process should be run long enough so that final sample x′ is truly from p(x′|θ′).

H in Line 4 is the ratio of accepting the exchange, computed by comparing the

probability before and after exchange. That is, we exchange θ with θ′ and x with x′

in (5.12) and calculate the ratio. Then the complex terms are cancelled out and each

remaining term is easy to compute.

H =
p(ỹ|x′)p(x′|θ′)p(θ′)p(θ|θ′)p(x|θ)
p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
p(ỹ|x′)p(θ′)p(θ|θ′)
p(ỹ|x)p(θ)p(θ′|θ) (5.13)

In practice, Algorithm 5.3 usually results in low acceptance rates in the exchange

step in Line 4 and thus long mixing times for the MCMC process. We now propose

to separate that last step, isolating simultaneously updated θ and x into two different

steps, as shown in Algorithm 5.4, which improves the acceptance rate significantly.

Algorithm 5.4 Improved ERGM parameter estimation with private model statistics

Require: ỹ, initial θ, x
1: for i in 1 to T do
2: Sample θ′ ∼ p(θ′|θ)
3: Sample x′ ∼ p(x′|θ′)
4: Exchange θ with θ′, with probability min(1, H1) //H1 by (5.14) below
5: Replace x with x′, with probability min(1, H2) //H2 by (5.15) below

6: return samples of θ.

H1 and H2 in Algorithm 5.4 are defined as follows.
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H1 =
p(ỹ|x)p(x|θ′)p(θ′)p(θ|θ′)p(x′|θ)
p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
q(x; θ′)p(θ′)p(θ|θ′)q(x′; θ)
q(x; θ)p(θ)p(θ′|θ)q(x′; θ′) (5.14)

H2 =
p(ỹ|x′)p(x′|θ)p(θ)p(θ′|θ)p(x|θ′)
p(ỹ|x)p(x|θ)p(θ)p(θ′|θ)p(x′|θ′)

=
p(ỹ|x′)q(x′; θ)q(x; θ′)

p(ỹ|x)q(x; θ)q(x′; θ′)
(5.15)

The correctness of Algorithm 5.4 can be proved briefly in terms of a component-

wise Metropolis-Hasting algorithm, with hybrid Gibbs updating steps. In each itera-

tion, θ′ and x′ (Line 2 and 3) are drawn based on full conditional distribution, so the

updating probability is always 1. In Line 4 and 5, we update θ and x with Hasting

ratios. Although we may end up updating θ′ and x′ more times in a iteration, we still

get to the detailed balance in MCMC [32].

When applying Algorithm 5.4 to real ERGM models, the key is correctly comput-

ing H1 and H2. Everything in H1 is independent of the privacy mechanism used for

the model terms. In H2, the ratio of privacy distribution p(ỹ|x′)
p(ỹ|x) is mechanism depen-

dent. Here, we illustrate the cases for both Laplace mechanism and local sensitivity

bounding algorithms.

Example 5.7 (Laplace mechanism). If the Laplace mechanism is applied on all

model terms (fi for i-th model term) independently, and ỹ, ε and GS are the vectors

of private statistics, privacy parameters and global sensitivities respectively, p(ỹ|x) is

then:

p(ỹ|x) ∝ exp

(
−
∑
i

|ỹi − fi(x)|εi/GSi
)

(5.16)
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Assume we use a symmetric proposal distribution for θ, i.e., p(θ′|θ) = p(θ|θ′). With

Algorithm 5.4, ratio H1 and H2 can be written as (after taking logarithm)

logH1 = log
p(θ′)

p(θ)
+ (θ − θ′) · (f(x′)− f(x)) (5.17)

logH2 = (θ − θ′) · (f(x′)− f(x)) +∑
i

εi
GSi

(|ỹi − fi(x)| − |ỹi − fi(x′)|) (5.18)

Example 5.8 (Local sensitivity bounding). Assume a single model term and first-

order local sensitivity bounding (multiple model terms and second order can be ad-

justed accordingly), and privacy parameter ε and δ is the input for Algorithm 5.1.

Let a = ln(1/δ)/ε.

In the process of MCMC, for current sampled graph x, we write l1 as the local

sensitivity on x and g1 as the global sensitivity of local sensitivity. The first-order local

sensitivity bounding (Algorithm 5.1) returns ỹ, ỹ1 for the observed graph. p(ỹ, ỹ1|x)

can be represented as follows by omitting terms that will be cancelled out later in

calculating p(ỹ,ỹ1|x′)
p(ỹ,ỹ1|x) .

p(ỹ, ỹ1|x) = p(ỹ|x, ỹ1)p(ỹ1|g1, l1)

∝ exp

(
−|ỹ − f(x)|

ỹ1/ε
− |ỹ1 − l1 − ag1|

g1/ε

)
(5.19)

Calculation of p(ỹ, ỹ1|x) deals with not only the private version of local sensitivity ỹ1,

but also more statistics from the sampled graph in each iteration of MCMC (local

sensitivity l1). Recall in the standard estimation, none of them is incorporated in

the process. In the next section, we empirically show that such extra information
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Figure 5.1: Perturbation error on alter-
nating k-star on synthetic graphs. Left:
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Figure 5.2: Perturbation error for
alternating k-triangle. Left: p =
log(n)/n. Right: p = 0.1. Trend lines
for LS are non-private.

can benefit the estimation. As in the example above, assume a symmetric proposal

distribution. With Algorithm 5.4, ratio H1 is the same as (5.17). H2 is:

logH2 = (θ − θ′) · (f(x′)− f(x)) +
|ỹ − f(x)| − |ỹ − f(x′)|

ỹ1/ε

+
|ỹ1 − l1 − ag1| − |ỹ1 − l′1 − ag1|

g1/ε
(5.20)

Releasing θ In Algorithm 5.3 and 5.4, we use multiple sampled θ to represent

the marginal distribution on θ. A straightforward way to generate a single instance

of estimated θ is to calculate the average of those samples. However, in practice,

we found that marginal maximum a posterior (MMAP) could give analysts better

estimates instead. Formally, MMAP of θ is defined as argmax
θ

p(θ|ỹ). A fast method

we apply is reusing the samples of θ from Algorithm 5.4, and performing approximate

MMAP estimation by histogram or density estimation. More sophisticated solutions

will require further expanding (5.12) before MCMC sampling [22,54].

5.5 Evaluation

Our evaluation has two goals. First we assess the perturbation error of our privacy

mechanisms, particularly the Laplace mechanism on alternating k-star and the local

144



103
103.5
104
104.5
105
105.5

102

102.5

103

200 400 600 800 1000 200 400 600 800 1000
Nodes

R
M
SE

2-LSB

1-LSB

LS

(1) p = 0.1, ε = 0.1 (2) p = 0.1, ε = 1

101.5
102
102.5
103
103.5
104

101.6
101.8
102
102.2
102.4

200 400 600 800 1000 200 400 600 800 1000
Nodes

Lo
ca

l s
en

s 2-LSB

1-LSB

Local sens

(3) p = 0.1, ε = 0.1 (4) p = 0.1, ε = 1
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nating k-twopath.

sensitivity bounding algorithms on alternating k-triangle and k-twopath. Second,

we evaluate the ERGM parameter estimation with private statistics using different

approaches proposed in Section 5.4. All our experiments are run on Linux servers with

Intel Xeon CPU and 8GB memory. In the experiments, we differ privacy parameters

ε and δ. Note that, whenever we clarify a value for ε or δ, it always means the overall

budget of the entire perturbation process.

5.5.1 Perturbation error

Our datasets include synthetic and real graphs. Synthetic graphs are generated

using a random graph model, G(n, p), where parameters n and p control the size of

graph and the probability of two nodes connecting, respectively. We iterate from

n = 100 to n = 1000 in steps of 100. p is set to log(n)/n for relatively sparse

graphs and then moved to 0.1 and higher. Though we only report the sparse case
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and p = 0.1, results for larger p agree with the conclusions. Error measurement is

root mean square error (RMSE).

Alternating k-star

As described in Section 5.3.1, we can apply the Laplace mechanism (LAP) directly or

compute the degree distribution privately first, by isotonic regression (ISO) from [45]

and use it as a sufficient statistic for alternating k-star. Figure 5.1 shows the error of

the two methods by varying p and λ, with different settings of ε = 1, 0.1, listed in the

legend text. As we do not have analytical RMSE for the ISO case, it is calculated

from 100 independent perturbations. We clearly see LAP significantly outperforms

ISO, even when λ = 10 at both ε settings (and recall that the global sensitivity is

2λ). For the rest of this section, if not stated, we set λ = 2 as it is the value normally

recommended [71] and usually plays a minor part in the workflow.

Alternating k-triangle

The first-order local sensitivity bounding algorithm is applied here while setting ε to

1 and 0.1 and fixing δ = 0.01. In Figure 5.2, we use “LSB” to represent Algorithm

1. For comparison purposes, we plot the non-private noisy output resulting from

adding Laplace noise based on true local sensitivity, marked as “LS” in Figure 5.2.

We find that LSB can add modest error when compared to this non-private baseline,

especially when the privacy budget ε is relatively large.
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Alternating k-twopath

We discussed in Section 5.3.3 how a first-order or second-order local sensitivity bound

can be applied to alternating k-twopath. We present these results in Figure 5.3, by

distinguishing them as “1-LSB” and “2-LSB”. We find that for our test cases with

random graphs, 1-LSB is consistantly better than 2-LSB, illustrated by RMSE in the

left two subfigures. Referring to Sec. 5.3.3, recall that in 1-LSB we bound (5.8) while

in 2-LSB we bound eqrefeq:ktwop1 by using bounded (5.9). If (5.7) and (5.9) are not

small enough compared to (5.8), the fact that we split the budget of privacy one more

time will outweigh the gain. In the right two subfigures of Figure 5.3, we plot the

true local sensitivity and the expected values of private, bounded local sensitivity for

both LSB algorithms. We see that 1-LSB results in a bound that is close to the true

value but that 2-LSB results in a significant over-estimate, especially with a smaller

ε = 0.1. Although 1-LSB is superior across our tested networks, it remains possible

that 2-LSB could outperform 1-LSB for particular input graphs or large ε and λ.

Real graphs

For real graphs, we consider several collected networks from the SNAP collection2 to

determine if our alternating statistics can be perturbed in a “meaningful” way, i.e.,

small relative noise that doesn’t destroy utility. Our metric is relative RMSE, which

is RMSE divided by the true statistic. As shown in Figure 5.4, with ε = 0.1, all three

alternating statistics (with shortened names: astar, atri, atwop) are estimated with

low relative error. In particular, error for alternating k-star is between 10−3 and 10−4,

alternating k-triangle at 10−1 and alternating k-twopath at 10−2.

2http://snap.stanford.edu
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Network nodes edges astar atri atwop

dolphins 62 159 418.1 177.5 705.4
lesmis 77 254 756.4 426.4 1565.5
polbooks 105 441 1355.4 715.5 2817.5
adjnoun 112 425 1292.9 452.1 3801.0
football 115 613 1992.4 922.3 3675.3

Table 5.1: Real networks for ERGM parameter estimation

Model Model terms Perturbation mech

M1 edges, astar LAP, LAP
M2 edges, atri LAP, 1-LSB
M3 edges, atwop LAP, 1-LSB

Table 5.2: Model descriptions

M1 M2 M3
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Figure 5.5: Parameter estimation with private statistics. Every four bars, from left
to right, are θ1, θ1, θ2, θ2.
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5.5.2 ERGM parameter estimation

For the evaluation of ERGM parameter estimation, we want to compare the al-

gorithms in Section 5.4. In practice, the data owner will only perturb each statistic

once and then release it to the analysts. As the perturbation is a randomized process,

our goal is to understand how good our estimation algorithm is on average. So for

each graph and each model description, we perturb the statistics N = 50 times and

run the estimation algorithm on each perturbation, finally measuring their quality

by RMSE with respect to estimates in the non-private case,
√

1/N
∑

i∈[1,N ](θ̂i − θ)2,

where θ is the “true” value, calculated from the non-private estimation algorithm

from [50] or [14], θ̂i is θ from i-th perturbation.

As mentioned in [14], the estimation using the Bayesian technique has general

scalability issues, where it becomes very slow for any graphs beyond a few hundred

of nodes. Moreover such time cost also varies with the model terms, e.g., alternating

k-twopath takes much more time than the other two alternating statistics, as calcu-

lation of the acceptance ratio in MCMC sampling of x ∼ p(x|θ) is more complicated.

Therefore, here we focus on smaller graphs, and this is the common practice for

many ERGM works such as [14, 20, 71]. Our test networks3 include dolphins, lesmis,

polbooks, adjnoun and football. Detailed facts are listed in Table 5.1. We fix ε = 0.5

and δ = 0.01.

We experimented with three models, each of which corresponds to one of the

alternating statistics, with the purpose of testing estimation by isolating other factors.

We include the count of edges as a shared term in all models, as it is very common

in ERGM applications. As shown in Table 5.2, each model contains two terms, with

correspondingly two parameters, θ = (θ1, θ2). The estimation algorithms will be

standard estimation (STD) and Bayesian inference (BINF). In all cases, the privacy

3http://www-personal.umich.edu/˜mejn/netdata/
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budget is distributed evenly in a way such that each generation of noise uses same

share of the overall ε. In Figure 5.5, each graph is represented with 4 bars, showing

θ1 of STD, θ1 of BINF, θ2 of STD, θ2 of BINF. In M1 and M2, we see a significant

improvement of θ from STD to BINF. Especially in M2, BINF limits all errors to

around 5 or smaller where STD can go up much higher. We believe this is because

BINF can utilize the extra information presented by the local sensitivity bound as

shown in Example 5.8. In M3, compared to the other models, we see that parameters

of the model is quite insensitive to the changes due to perturbation, i.e., all graphs

show much lower errors even under STD. In such situation, theoretically, there is not

much room left for the improvement from BINF. This is illustrated in our experiment

by showing comparable performance from both methods on M3. In general, we think

BINF can improve the accuracy of parameter estimation significantly by leveraging

the privacy distribution, while at the same time, the amount of benefit will vary

depending on intrinsic properties of the model.

5.6 Related work

Differential privacy [25] has been actively studied in many sub-areas of computer

science. Although the original focus was mainly on tabular data, the definition can

be adapted to graph data [45] as well as other data models. Most research into

differentially private analysis of graphs has focused on releasing graph statistics, e.g.,

degree sequence [45], triangle/star [55,79], joint degree distribution/assortativity [83,

90] and clustering coefficient [109]. For modeling graphs privately, we are aware

only of a private Kronecker graph modeling approach under differential privacy [75].

While our work relies on obtaining good private statistics, the ultimate goal is to

allow ERGM modeling under differential privacy.

All of these works, including ours, protect relationships, i.e. they support edge-

differential privacy. A stronger standard is to protect individuals, where neighbors
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are defined by changing a single node. Recently, researchers have developed some

mechanisms for calculating private graph statistics under node differential privacy [12,

16,56].

Parameter estimation for ERGMs has also evolved from pseudo likelihood es-

timation (MPLE) [6], to Monte Carlo maximum likelihood (MC-MLE) [35] to re-

cent stochastic approximation [99] and Bayesian inference [14]. These advances have

helped ERGMs become central to social network analysis with many successful ap-

plications [71].
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CHAPTER 6

CONCLUSION

This dissertation has addressed the challenges of sanitizing data for privacy pur-

pose in the context of data sharing. Although we are looking at problems with various

data sources, from tabular data to graph data, and various privacy requirements, from

polices based privacy protection to differential privacy, we keep our discipline of de-

signing a sanitization process consistent: protecting privacy while preserving as much

utility as possible.

6.1 Review of contributions

In Chapter 3, we have presented a framework for limiting access to historical

data, while still permitting auditing. Our redaction rules hide values but preserve

information about the lifetime of tuples in a database, allowing an auditor to get

accurate answers from the historical record despite the information removed by re-

tention restrictions. We demonstrated that our techniques have a modest performance

overhead, even when implemented using a standard relational system, and that the

uncertainty introduced by sample retention policies is acceptable. By proposing two

different models, we allow users to tune the system between accuracy and perfor-

mance: TI gives you better performance but less accuracy while TC offers improved

accuracy for audit queries under sanitized histories, at the expense of increased query

processing complexity.

Chapter 4 has addressed untrusted analysts running accurate performance evalua-

tion tasks without compromising privacy. Our method releases a differentially private
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model of the database, allowing an analyst to sample synthetic databases consistent

with the model. To achieve this we re-define differential privacy for multi-relations,

and present novel techniques for selecting the model, perturbing statistics and sam-

pling databases. To our knowledge, our framework is the only method for generating

test databases while providing a rigorous guarantee of privacy for individuals in the

database.

Chapter 5 has addressed estimating parameters for the exponential random graph

model under differential privacy. Our solution decomposes the process into two steps:

releasing private statistics first and running estimation second. The local sensitivity-

based mechanism can offer lower error than common baselines. The redesigned

Bayesian inference based parameter estimation is flexible and more accurate than

standard methods. For future work, improving scalability is an interesting direction

and the advance of technique in this area can both benefit our work and ERGM

estimation in general.

6.2 Future directions

Auditing with more power We assume that retention policies are non-negotiable

in Chapter 3, despite the auditors’ interest in analysis tasks. This assumption could

be reconsidered in the future work by prioritizing auditing accuracy, at the potential

cost of retention policy secrecy. In addition, a compelling extension to our sanitization

model could use generalization or summarization of values instead of redaction. This

would impose some cost to confidentiality, but may significantly improve auditing

capabilities. Currently, our preservation rules consist of tuple-level specifications. In

the future we would like to integrate more complex view-based preservation rules, such

as those considered by [4, 43], or rules targeting specific attribute values. We would

like to investigate alternatives for supporting the periodic application of retention

policies as a database evolves. And we would like to evaluate our system using data
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histories based on well-known benchmark databases such as TPC-H, or using real

data sets and workloads, as well as explore other physical organizations that could

lead to improved performance.

Differential privacy in multi-table databases Our framework in Chapter 4

can be deployed using other differentially-private mechanisms, thus a natural future

direction is to compare the utility achievable with different mechanisms. In addition, a

side effect of protecting an entity in our multi-relation scenario is that the descendant

entities are also protected. So it is interesting is to expand multi-relation differential

privacy if general multiple entities need to be protected. We also hope our notion

of multi-relation differential privacy, instead of bonded to key relationship, can be

interpreted with general correlation among attributes.

Modeling graph under differential privacy Modeling graph under differential

privacy is usually considered a more difficult problem than simply releasing private

graph statistics. Our work in Chapter 5 is one of pioneered attempt in the area. In

the future, we’d like to understand this problem in a bigger picture by considering

more modeling techniques.
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