
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

5-2013

Elastic Resource Management in Cloud
Computing Platforms
Upendra Sharma
University of Massachusetts Amherst, upendra.sharma@us.ibm.com

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Sharma, Upendra, "Elastic Resource Management in Cloud Computing Platforms" (2013). Open Access Dissertations. 763.
https://scholarworks.umass.edu/open_access_dissertations/763

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/763?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ELASTIC RESOURCE MANAGEMENT IN CLOUD COMPUTING

PLATFORMS

A Dissertation Presented

by

UPENDRA SHARMA

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2013

Computer Science

c© Copyright by Upendra Sharma 2013

All Rights Reserved

ELASTIC RESOURCE MANAGEMENT IN CLOUD COMPUTING

PLATFORMS

A Dissertation Presented

by

UPENDRA SHARMA

Approved as to style and content by:

Prashant Shenoy, Chair

Don Towsley, Member

Arun Venkatramani, Member

Michael Zink, Member

Sambit Sahu, Member

Lori A. Clarke, Department Chair

Computer Science

Dedicated to my Gurus ...

ACKNOWLEDGMENTS

I would like to take this opportunity to express my heart felt thanks to my respected PhD

advisor Prof. Prashant Shenoy without whose patience and guidance the doctorate would

have remained a dream. I have learnt a great deal from him, starting from conducting

systems research to things like time management, patience and tolerance.

Next, I am deeply indebted to Dr. Sambit Sahu who has been my mentor for the last

four years. I have closely worked with him since the beginning of my graduate career. His

guidance and invaluable comments have led me to finish my PhD work in a timely fashion.

I am very grateful to Prof. Don Towsley from whom I learnt a great lot, specifically about

queueing theory and in general about the method of conducting research. I am grateful to

my other committee members, Prof. Arun Venkatramani, and Prof. Michael Zink, for their

valuable inputs during the course of PhD. I also want to thank my collaborator Dr. Anees

Shaikh for all his help, guidance and motivation during the early part of my PhD and also

during my internships at IBM Watson.

I would like to thank my colleagues Rahul Singh, Tim Woods, Emmanuel Cecchet

and Tian Guo with whom I have worked on several research projects. Rahul and I have

developed a system that performs dynamic capacity planning and provisioning taking into

account the non-stationarity in the workload mix. Emmanuel, Rahul and I have designed

and developed Dolly, a virtualization driven database replication system. Tian, Tim and I

developed Seagull, a system for cloud bursting applications from a private cloud to public

and back.

I am very grateful to my buddy Rahul Singh for all the help he gave me during the

course of PhD as well as for all the stimulating and thought provoking discussions either in

v

the cubicle or over the tea sessions. I am also grateful to other members of the LASS group,

particularly to Navin Sharma, Himanshu Agarwal and Akshat Kumar with whom I have

spent countless hours discussing a range of topics from philosophy to technical research.

I also want to thank Jeremy Gummeson, Aditya Mishra and Gaul Niv with whom I have

had numerous philosophical and technical discussions over tea and coffee. I am indebted

to Tyler Trafford for his assistance in managing the machines used in my work, to Leeanne

Leclerc for all the help in keeping my department and graduate school requirements on

track, and to Karren Sacco for handling all administrative work; with their help all the non-

research problems never looked like problems. My time in Amherst was made enjoyable

by the incredible group of friends I developed over the years. Specifically, I am grateful

to Siddharth Srivastav, Parthasarthi Valluri, Kshitij Neroorkar and Lokesh and also their

families for the fun filled sessions of racquet ball, squash, badminton and various other

social gatherings.

I am deeply obliged to my parents, my sister Shruti and brother in law Saurabh for

patiently motivating me to pursue PhD and all the other assistance since the beginning; I

also thank my adorable younger brother Subodh for always being there when needed and

also for being a patient listener. I want to thank my old friends from India who motivated

me to pursue PhD, my fellows from IBM India Research Lab for all the good time I had

with them during their visits to US and during my home trips.

Last but not the least, I want to express my heartfelt thanks to my dear wife Ruchita,

who has helped, supported and motivated me throughout the course of PhD. This journey

would have been impossible without her patience and sacrifice.

vi

ABSTRACT

ELASTIC RESOURCE MANAGEMENT IN CLOUD COMPUTING

PLATFORMS

MAY 2013

UPENDRA SHARMA

B.S., BOMBAY UNIVERSITY, MUMBAI, INDIA

M.S., INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, INDIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy

Large scale enterprise applications are known to observe dynamic workload; provi-

sioning correct capacity for these applications remains an important and challenging prob-

lem. Predicting high variability fluctuations in workload or the peak workload is diffi-

cult; erroneous predictions often lead to under-utilized systems or in some situations cause

temporarily outage of an otherwise well provisioned web-site. Consequently, rather than

provisioning server capacity to handle infrequent peak workloads, an alternate approach

of dynamically provisioning capacity on-the-fly in response to workload fluctuations has

become popular.

Cloud platforms are particularly suited for such applications due to their ability to provi-

sion capacity when needed and charge for usage on pay-per-use basis. Cloud environments

enable elastic provisioning by providing a variety of hardware configurations as well as

mechanisms to add or remove server capacity.

vii

The first part of this thesis presents Kingfisher, a cost-aware system that provides a

generalized provisioning framework for supporting elasticity in the cloud by (i) leverag-

ing multiple mechanisms to reduce the time to transition to new configurations, and (ii)

optimizing the selection of a virtual server configuration that minimize cost.

Majority of these enterprise applications, deployed as web applications, are distributed

or replicated with a multi-tier architecture. SLAs for such applications are often expressed

as a high percentile of a performance metric, for e.g. 99 percentile of end to end response

time is less than 1 sec. In the second part of this thesis I present a model driven tech-

nique which provisions a multi-tier application for such an SLA and is targeted for cloud

platforms.

Enterprises critically depend on these applications and often own large IT infrastructure

to support the regular operation of these applications. However, provisioning for a peak

load or for high percentile of response time could be prohibitively expensive. Thus there

is a need of hybrid cloud model, where the enterprise uses its own private resources for

the majority of its computing, but then “bursts” into the cloud when local resources are

insufficient. I discuss a new system, namely Seagull, which performs dynamic provisioning

over a hybrid cloud model by enabling cloud bursting.

Finally, I describe a methodology to model the configuration patterns (i.e deployment

topologies) of different control plane services of a cloud management system itself. I

present a generic methodology, based on empirical profiling, which provides initial deploy-

ment configuration of a control plane service and also a mechanism which iteratively ad-

justs the configuration to avoid violation of control plane’s Service Level Objective (SLO).

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xv

LIST OF FIGURES . xvi

CHAPTER

1. INTRODUCTION . 1

1.1 Background and Motivation . 2

1.2 Thesis Contributions . 3

1.2.1 Contribution Summary . 3

1.2.2 Cost Aware Elasticity in Cloud . 4

1.2.3 Elastic Provisioning for the Tail . 4

1.2.4 Cloud Bursting . 5

1.2.5 Flexible Adaptive Control Plane for Private Clouds 6

1.3 Thesis Outline . 6

2. RELATED WORK . 8

2.1 Cloud Computing . 8

2.2 Dynamic Resource Provisioning . 10

2.3 Hybrid cloud . 11

3. COST-AWARE ELASTICITY IN THE CLOUD . 13

3.1 Introduction . 13

3.2 Cloud Background and Problem Statement . 16

3.2.1 Initial Provisioning . 18

ix

3.2.2 Subsequent provisioning . 18

3.3 Cost-aware Elasticity Algorithms . 19

3.3.1 When to provision? . 19

3.3.2 Infrastructure Cost-aware Provisioning . 20

3.3.2.1 Step 1. Empirical Determination of Server

Capacities. 20

3.3.2.2 Step 2. Determining Server Configurations. 21

3.3.3 Transition Cost-aware Provisioning . 22

3.3.4 An ILP-based Elasticity Algorithm . 23

3.4 Kingfisher System Implementation . 26

3.4.1 Monitoring engine . 26

3.4.2 Workload Forecasting . 27

3.4.3 Capacity planner . 27

3.4.4 Orchestration engine . 28

3.5 Experimental Study for Elasticity: Methodology and Setup 28

3.5.1 Cost-aware elasticity mechanisms . 28

3.5.2 Experimental Testbed and Workload . 29

3.5.3 Profiling Server Capacities . 30

3.6 Evaluation on a Private Cloud . 30

3.6.1 Cost-aware versus Cost-oblivious Provisioning 31

3.6.2 Benefits of adding Migration mechanism . 33

3.6.3 Transition cost-aware Provisioning . 35

3.6.4 Impact of the Pricing Model . 36

3.7 Evaluation on Public Cloud: Amazon EC2 . 38

3.7.1 Determining Transition Costs in EC2 . 39

3.7.2 Infrastructure-cost aware Provisioning . 41

3.7.3 Transition-cost aware Provisioning . 41

3.8 Related Work . 43

3.9 Concluding Remarks . 44

4. ELASTIC PROVISIONING OF MULTI-TIER CLOUD APPLICATIONS

USING STATISTICAL BOUNDS ON SOJOURN TIME 45

4.1 Introduction . 46

x

4.1.1 Research Contributions . 47

4.2 Background and Problem Formulation . 49

4.2.1 Multi-tier Application . 49

4.2.2 Cloud Platforms . 50

4.2.3 Problem Formulation . 50

4.3 Application Model . 51

4.4 Estimating End-to-end Response Times . 52

4.4.1 Approximate Response Time Distribution . 53

4.4.2 Approximate Service Time Distribution . 53

4.4.2.1 EM algorithm for estimating mixture parameters 54

4.4.2.2 Algorithm for approximating service-time

distribution . 55

4.4.3 Approximate Application Response Time Distribution 56

4.5 Finding Near optimal Homogeneous Configuration . 58

4.5.1 Computing the Application Configuration . 59

4.6 Cost Efficient Heterogenous Configuration . 60

4.6.1 Hybrid server . 60

4.6.2 Heterogeneous configuration . 61

4.6.3 Searching for a new hybrid-configuration . 61

4.7 Experimental Evaluation . 62

4.7.1 Multi-tier Application Simulator . 63

4.7.2 Service Time Approximation . 64

4.7.3 Response Time Approximation . 65

4.7.4 Provisioning in a Homogenous Setup . 66

4.7.5 Effect of Variability of Service Time . 68

4.7.6 Cost Efficient Server Configuration in a Multiple Server-type

Environment . 69

4.8 Evaluation on Private Cloud . 71

4.8.1 Private Cloud Setup . 71

4.8.1.1 Web Application . 71

4.8.1.2 Private Cloud . 72

4.8.1.3 Profiling servers for web server tier . 72

xi

4.8.1.4 Profiling servers for database server tier 73

4.8.2 Percentile Based Capacity Provisioning on Private Cloud 73

4.9 Related work . 74

4.10 Conclusion . 76

5. SEAGULL: INTELLIGENT CLOUD BURSTING FOR ENTERPRISE

APPLICATIONS . 77

5.1 Introduction . 77

5.2 Background and Problem Statement . 79

5.2.1 Cloud Bursting Background . 79

5.2.2 System Model and Problem Statement . 81

5.2.3 Problem definition and formulation . 82

5.3 Seagull Design: Bursting to the Cloud . 84

5.3.1 Intelligent Placement Algorithm . 84

5.3.1.1 Threshold based triggers . 85

5.3.1.2 Use local resources first when possible 85

5.3.1.3 Move the cheapest applications first . 86

5.3.2 Opportunistic Precopying . 88

5.4 Cloud Migration . 89

5.4.1 Supporting Live Migration . 91

5.5 System Overview and Implementation . 91

5.5.1 Cloud Management Layer . 91

5.5.2 Precopier . 92

5.5.3 Monitoring . 92

5.5.4 Metadata Manager . 93

5.5.5 Workload Forecaster . 93

5.5.6 Burst Manager . 93

5.6 Experimental Setup and Evaluation . 94

5.6.1 Application appliances . 95

5.6.2 Migration and Precopying Tools . 95

5.6.2.1 Burst Operation Time Costs . 96

5.6.2.2 Performance Impact of Precopying . 96

xii

5.6.2.3 Migration Downtime . 97

5.6.3 Placement and Precopying Algorithms . 98

5.6.3.1 Placement Decisions . 98

5.6.3.2 Cost Efficiency . 101

5.6.3.3 Precopying Efficiency . 102

5.6.3.4 System Scalability . 105

5.6.4 Multiple Overload Scaling . 105

5.7 Related Work . 107

5.8 Conclusions . 108

6. FLEXIBLE ADAPTIVE CONTROL PLANE FOR PRIVATE

CLOUDS . 109

6.1 Background and Problem Description . 109

6.1.1 Background: Private Cloud . 110

6.1.2 Problem Formulation . 110

6.1.2.1 Dynamic Provisioning . 112

6.1.2.2 System Model . 113

6.2 Capacity Model and Empirical Profiling . 113

6.2.1 Analytical model . 114

6.2.1.1 Formalizing the problem . 115

6.2.2 Workload Estimation . 116

6.2.3 Provisioning Algorithm . 117

6.3 Dynamic Reconfiguration . 118

6.4 Prototype Design and Implementation . 119

6.4.1 System Model . 120

6.4.2 Private cloud management system . 121

6.4.3 Empirical profiling . 122

6.5 Case Study: Monitoring Subsystem . 124

6.5.1 Experimental Setup . 125

6.5.1.1 SLO metric . 126

xiii

6.5.2 Empirical Profiling and Capacity Estimation . 126

6.5.2.1 Single Node Configuration . 126

6.5.2.2 Federated configuration . 128

6.5.3 Adaptation of Monitoring Subsystem Model . 130

6.6 Case Study: Messaging Subsystem . 133

6.6.1 OpenStack Messaging Subsystem . 134

6.6.2 Workload Simulator . 136

6.6.3 Experimental Setup . 137

6.6.4 Empirical Profiling and Capacity Estimation . 137

6.6.4.1 Single Node Configuration . 138

6.6.4.2 Cluster Configuration . 139

6.7 Related Work . 141

6.7.1 Cloud Benchmarking . 141

6.7.2 System Performance Modeling . 141

6.8 Conclusion and Future Work . 142

7. SUMMARY AND FUTURE WORK . 143

7.1 Thesis Summary . 143

7.1.1 Cost Aware elasticity . 143

7.1.2 Planning for the Tail . 143

7.1.3 Hybrid Cloud . 144

7.1.4 Flexible Adaptive Control Plane for Private Clouds 144

7.2 Future Work . 144

BIBLIOGRAPHY . 146

xiv

LIST OF TABLES

Table Page

3.1 Cloud server configurations and their prices. For EC2, 1 ECU= 1.2 GHz

Xeon or Optron circa 2007. 17

3.2 Provisioning with different pricing models . 38

3.3 Measurements and Provisioning on EC2 . 40

4.1 Homogeneous configuration suggested by the three schemes and their

provisioning errors. Note that, unlike the positive error, negative value

of ε is not an SLA violation. 68

4.2 Heterogeneous configuration suggested by the three schemes and

provisioning error of each scheme. Note that a negative ε only means

over-provisioning and is not an SLA violation . 70

4.3 Homogenous and heterogeneous provisioning decisions. Note that a -ve

εour only means that the system is over-provisioned and thus SLA will

not be violated . 74

5.1 Average client response time (ms) comparison for TPC-W in Shopping

Mode . 98

5.2 Application Details . 102

6.1 Empirical capacity of federated monitoring configuration deployed as a

tree of depth of two; monitoring node on an m2.xlarge instance

type. 131

xv

LIST OF FIGURES

Figure Page

3.1 Architecture of our Kingfisher prototype . 25

3.2 Profiling server instances for private and public cloud . 31

3.3 Cost-aware versus cost-oblivious provisioning . 32

3.4 Benefits of using replication and migration in a unified provisioning

approach. 33

3.5 Application Performance during cost-aware and cost-oblivious

provisioning for large-jump workload. 34

3.6 Comparison of a transition-cost aware system with a transition-cost

oblivious system. Solid lines denote a configuration change, while

dotted lines indicate no change. 36

3.7 Workload and Response Times of a transition-cost aware system with a

transition-cost oblivious system. 37

3.8 Comparison of a transition-cost aware system with a transition-cost

oblivious system. 42

4.1 Topological configuration of a typical replicated two-tier web

application . 49

4.2 Multi-tier application model . 51

4.3 Multi-tier application model . 59

4.4 Functional block diagram of heterogeneous configuration algorithm 60

4.5 Figure shows the log log plot of 20,000 data points sampled from

lognormal distribution with Cv = 100; the simulated CDF is shown in

red and approximate in blue. 65

xvi

4.6 Figure shows the CDF plot of actual response time distribution in red and

approximated using our approach in blue for a heavy-tailed

service-time distribution with µ = 50 and cv = 10 . 66

4.7 Variation in provisioning error with cv . 69

5.1 Hybrid clouds can utilize cheaper private resources the majority of the

time and burst to the cloud only during periods of peak demand,

providing lower cost than exclusively private or public cloud based

solutions. 80

5.2 Seagull architecture . 84

5.3 Seagull Cloud Bursting Procedure . 90

5.4 Impact of size of application on cloud bursting operation 96

5.5 CDF of client response time with heavy workload. 97

5.6 The naı̈ve approach uses only one migration, immediately moving A from

h0 to the cloud. Seagull initially avoids any cloud costs by rebalancing

locally, and is able to move back from the cloud sooner than the naı̈ve

approach. 99

5.7 Seagull uses local, live migrations at t1, and benefits from reverse

pre-copying at t3, substantially reducing the time spent at each stage

compared to naı̈vely cloud bursting at t1 and restarting instances at t2
and t3. 100

5.8 Comparison of average cost of cloudbursting with optimal 101

5.9 Intelligent precopying reduces total cost and data transferred by over 45%

compared to the naı̈ve algorithm. 104

5.10 Precopying causes a marginal increase in cost, but a dramatic reduction in

burst time. 104

5.11 Scalability of the algorithm. 105

5.12 (a) The initial set up of local data center. (b) The average CPU utilization

of Application A and B over 80 minutes experiment. (c) Detail

information of each application in the local data center. 107

6.1 An example private cloud . 110

xvii

6.2 Clustering and Federated approaches . 112

6.3 Intuition of SLO violation curve . 114

6.4 Logical architecture of the prototype . 120

6.5 Example initial configurations; grey nodes represent control plane service

nodes and the white nodes are its clients . 123

6.6 Data loss in a single node configuration . 127

6.7 Empirical and estimated capacities of single node monitoring

configuration with monitoring node on an m2.xlarge instance

type. 128

6.8 Data loss in a federated configuration . 130

6.9 Dynamic scaling and adaptation of capacity rule . 133

6.10 OpenStack Nova components . 135

6.11 Memory utilization and average message latency observed in a single node

configuration of RabbitMQ . 139

6.12 Various cluster configurations and their empirically estimated

capacity. 140

xviii

CHAPTER 1

INTRODUCTION

The cloud computing paradigm has become very popular primarily because of prolif-

eration of on-demand web applications, commoditization and virtualization of compute as

well as storage technology and pay as you go pricing model. Various kinds of cloud com-

puting paradigms have gained foothold, namely Infrastructure as a Service (IaaS), Platform

as a Service (PaaS) and Software as a Service (SaaS). Each of these computing paradigms

are fast evolving with new higher level services, for e.g. monitoring, auto scaling etc.

Cloud management systems behind these services face a formidable challenge of building

an elastic resource management system for meeting service SLA while efficiently manag-

ing the underlying infrastructure. Administrators of enterprise web applications also face

the same challenge even if they are are leveraging cloud computing platforms underneath.

This thesis discusses challenges in making these large systems elastic in a cloud computing

environment and presents solution-systems for the same.

What is Elasticity? The concept of elasticity has its origin in physics, where a material

is called elastic if it regains its original shape when the subjected stress is reduced to zero.

A more abstract definition of elasticity is found in economics [43], where it is defined as

a ratio of percentage change in one variable, say y, to percentage change in another, say

x. It is also understood as a measure of responsiveness of y with respect to change in

x. From a cloud-computing point of view, elasticity is the responsiveness of quantified

system-capacity (i.e. capacity of a system either in terms of resources allocated or in terms

or number of requests serviced) with respect to its workload change.

1

1.1 Background and Motivation

Enterprise web applications often sprawl over a very large Infrastructure Technology

(IT) resource. The performance management system of such enterprise applications re-

quires elastic scaling of allocated IT resources, in accordance to the application workload.

To be able to support elasticity, enterprises either own dedicated datacenters or rent infras-

tructure in commercial datacenters. In either of the cases there is a dedicated management

service which understands the enterprise application’s elasticity needs and translates into

lower level IT requirements; on the other hand there is a data center management service,

which manages data center’s physical resource to satisfy the application’s resource require-

ments. Many owners of large scale data centers employ their datacenter management ser-

vice to create an application hosting platform and rent infrastructure to multiple applica-

tions (or customers). Cloud computing platform refers to such a hosting platform that rents

data center resources and also offers programmatically consumable resource management

and monitoring services to the end consumers.

Clouds have become popular IT delivery platforms as they offer benefits like elastic-

ity, low operational cost, and ease of IT management. But managing elasticity of a large

distributed system (such as a large enterprise web application or the cloud management

system itself) is a very challenging task. IT administrators of such large distributed system

need to constantly manage its capacity to avoid SLA violations as the workload supported

by such a system is often very dynamic. The dynamic demand for resources, complexity of

enterprise applications and management systems, coupled with heterogeneity of resources

in a cloud environment and their non-linear pricing result in many challenging distributed

systems and resource management problems.

In addition to this multiple similar cloud computing platforms by different service

providers have opened up the possibility of hybrid cloud platforms, which can leverage

services across multiple cloud platforms. This raises new challenges in making an enter-

prise application elastic.

2

This thesis investigates the problems of elastic provisioning of enterprise applications

and also that of cloud platforms in a cloud computing environment. I propose autonomic

systems/solutions that minimize the impact of management operations on enterprise appli-

cations both in terms of cost and time, while adhering to a specified Service Level Objective

(SLO).

1.2 Thesis Contributions

This thesis focuses on problems concerning elasticity (or dynamic resource manage-

ment) of enterprise applications as well as that of cloud management systems. Various

aspects of elasticity studied in this thesis are not new research problems by themselves,

but addressing them in a cloud computing context brings in new challenges. In each case,

I propose novel solutions that combine various cloud-environment specific methods with

modeling and optimization techniques to build intelligent systems which achieve elasticity

with minimal impact on application’s performance SLAs.

1.2.1 Contribution Summary

The key systems and contributions of this thesis are:

• Cost aware elasticity in cloud: An approach for supporting elasticity in the cloud

in a cost effective manner. It accounts for the resource cost as well as the opera-

tional/transition cost – i.e. cost of reconfiguring an application – while computing

the application reconfiguration steps.

• Provisioning for the tail: A queueing model driven approach for computing provi-

sioning capacity of multi-tier cloud applications so as to achieve an SLA, which is

expressed as a percentile bound on the end to end response time.

• Cloud bursting: A system to facilitate the use of hybrid cloud platforms for an ap-

plication hosting environment by determining which applications can be transitioned

3

into the cloud most economically, and automating the process of transitioning at the

proper time. It optimizes the deployment of applications into the cloud thereby low-

ering the bursting time from hours to minutes.

• Flexible control plane services: A system, based on hybrid approach of empirical

profiling and modeling, for deciding architectural configurations of control plane

services of a private cloud management system.

These systems address a variety of challenges in providing elasticity to applications in

single as well as hybrid cloud environments.

1.2.2 Cost Aware Elasticity in Cloud

Cloud environments enable elastic provisioning by providing a variety of server config-

urations as well as mechanisms to add or remove server capacity. This provides flexibility

to the customer but also makes the decision process challenging. Non-linear pricing of

compute resources in cloud and dependence of transition cost, of elasticity mechanisms,

on the application configuration increases the complexity of the problem.

I propose a generalized provisioning framework for supporting elasticity in the cloud,

which is able to account for pricing differences of various resource configurations to sug-

gest the most economic solution to an application. It can also account for the transition

latency of available elasticity mechanisms to find a solution that will minimize transition

overhead. Because the overheads of different elasticity mechanisms are largely dependent

on the available cloud interfaces and implementation, evaluation on a real cloud platform

is crucial. Hence, I demonstrate the effectiveness of the system through an experimental

evaluation in both private and public clouds, which provide different elasticity methods.

1.2.3 Elastic Provisioning for the Tail

Enterprise web applications are known to observe highly variable workload and provi-

sioning correct capacity for these applications is a challenging problem. Administrators,

4

because of high variability in load and response times, prefer SLA expressed for the peak

workload or for a very high percentile of the response time distribution – for instance at

Amazon the service SLAs are measured and expressed at the 99.9th percentile of the dis-

tribution [32]. Provisioning for a SLA expressed as a high percentile of response time

distribution is a challenging problem. The problem becomes even more complex because

of i) multi-tiered nature of modern enterprise web applications, ii) hardware heterogeneity

of cloud platforms, and iii) non-linear pricing in cloud platforms.

In this thesis, I present a new model driven provisioning approach targeted for cloud

platforms. My approach focuses on i.) allocating capacity based on peak (high percentile)

of the workload, ii) taking a holistic view of the entire multi-tier application by consider-

ing bounds on on end to end response times while making provisioning decisions and iii)

accounting for cloud server configs and pricing models when determining the most cost

effective config to provision a certain amount of capacity.

1.2.4 Cloud Bursting

Enterprises often have significant investments in their own IT data centers that house

compute and storage systems for their applications. But provisioning applications for peak

workload is very expensive and wasteful as they are infrequent. Rather than incurring

capital expenditures for additional server capacity to handle infrequent workload peaks, a

hybrid model has emerged where an enterprise leverages its local IT infrastructure for the

majority of its computing needs, and supplements it with public cloud resources whenever

local resources are stressed (a.k.a. cloud bursting)

Commercial and open-source virtualization tools are beginning to support basic cloud

bursting functionalities but their primary focus is on the underlying enabling mechanisms.

These systems leave significant policy decisions in the hands of system administrators, who

must manually determine when to invoke cloud bursting and which applications to “burst”.

5

In this thesis I have developed Seagull, a system to alleviate the above challenges.

It automatically detects when local infrastructure is becoming overloaded, decides which

applications can be migrated to the cloud at lowest cost, and then performs the migrations

needed to dynamically expand capacity as efficiently as possible. By automating these

processes, Seagull is able to respond quickly and efficiently to workload spikes.

1.2.5 Flexible Adaptive Control Plane for Private Clouds

Enterprises with existing IT infrastructure are beginning to employ private clouds to

manage their infrastructure. Often the early deployments of private clouds are small and

they eventually observe a demand of scaling to a large infrastructure. This poses a huge

challenge to the private cloud administrators as individual control plane components need

to support a larger scale deployment without violating control plane specific Service Level

Objectives (SLOs). I identify the challenge as a three pronged problem; i) framework for

dynamic scaling of control plane services ii) identifying configuration patterns for each ser-

vices and, iii) dynamic reconfiguration of services to address demand specific changes. In

this thesis, I present a virtualization-based approach to address the issue of dynamic scaling

of control plane components and present a generic two step solution, based on empirical

profiling, for finding a suitable configuration for any control plane service. Finally, we

demonstrate the efficacy of the approach on two important control plane services, namely

messaging and monitoring, on a prototype developed on OpenStack.

1.3 Thesis Outline

Chapter 2 provides background on cloud platforms and dynamic provisioning to set

the context of my work. Chapter 3 describes Kingfisher, a cost aware auto scaling system

for clouds. Chapter 4 describes a technique to compute correct provisioning for multi-

tier cloud applications when the SLA is expressed as a threshold on a high percentile of

end to end response time. Chapter 5 discusses Seagull, a system which performs dynamic

6

provisioning on hybrid cloud platforms by enabling cloud bursting and its proposed future

work. Chapter 6 presents the work on scaling the control plane services of a private cloud

management service. Finally, Chapter 7 concludes with status of completed work and lists

remaining milestones for this thesis.

7

CHAPTER 2

RELATED WORK

This chapter presents a survey of literature relevant to the area of dynamic provisioning

and monitoring to set the perspective for our contributions. Each chapter presents a more

detailed related work relevant to the chapters.

2.1 Cloud Computing

Cloud computing refers to the software services delivered to end users over the internet

as well as the backend hardware and systems software supporting them [5]. Vendors (or

systems) which provide cloud computing to end consumers can be partitioned into three

broad classes based on the level of abstraction exposed to the consumer, namely Software

as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

Software as a Service (SaaS) refers to a model where a high level functionality (i.e an

application) is delivered as a service over the internet [89]; SalesForce, Google Apps are

some of the commercial SaaS offerings. The idea is to expose interfaces to an application

software (like a spread-sheet or an HR-management solution etc). The challenge is of

maintenance and management of the software are hidden from the client.

Platform as a service (PaaS) is a model where an application execution platform for

a specific programing language is made available to the consumers, for instance a JVM

platform for executing various Java APIs. PaaS providers often enforce a structure on the

applications which they support on their platform. This limits the freedom of the platform

consumer (i.e. an application developer) but helps in making various platform management

8

problems tractable. Chohan et al. in [25] outline the design and implementation of App-

scale, an open source PaaS for Java; it is an effort to replicate the PaaS offering provided by

Google AppEngine. Microsoft Windows Azure, Google AppEngine, Force.com, Heroku

are some of the commercial PaaS offerrings.

Infrastructure as a Service (IaaS) model, essentially, refers to a facility that provisions

compute, storage and network resources and charges the customers for the provisioned

resources per-unit time. Nurmi et al. in [72] discuss the basic principles of such systems

and provide details of Eucalyptus, an open source software for IaaS. OpenNebula [74],

and OpenStack [79] are two popular open source IaaS platforms, while Amazon EC2,

NewServers, Simple Storage Service (S3) are some of the examples of commercial IaaS

platforms.

Vendors of these cloud computing offerings face challenges of IT infrastructure capac-

ity planning, installation and management to meet the application performance guarantees

of software systems (or services) running on top of them. These challenges are intensified

by the massive scale of backend data centers, and unpredictable workload dynamics. Some

of the key research challenges in the area of cloud computing are: i) resource and per-

formance management, ii) energy management, iii) security and privacy and iv) business

resiliency.

Cloud computing platforms offer very low cost services due to economies of scale.

Thus the first technical challenge is to architect a large, efficient, modular and reliable

datacenter. The trend is to use less reliable but cheaper commodity hardware for the dat-

acenter, which is managed by efficient and redundant infrastructure management software

system [46, 3, 56].

An infrastructure management software system, thus, is the most important component

for cloud computing vendors as it provides all the necessary reliability and efficiency. Ef-

ficient resource management is of prime importance to cloud vendors as it enables them

to reduce costs without violating Service Level Agreements (SLAs). Current cloud man-

9

agement systems are extensively using virtualization technologies [70] to increase resource

utilization [22, 34, 37, 53]. Virtualization also offers performance isolation between mul-

tiple instances running on the same hardware [112, 63, 45]. The majority of resource

management solutions are implemented in different management layers stacked on top of

the abstractions exposed by the hypervisors, which enable virtualization [18].

Large data centers also require considerable amount of energy for its running as well

as cooling, and this is one of the very important concerns from environmental as well as

monetary point of view; research is being pursued under the umbrella of green computing

for better solutions of power and workload management and in data centers [19, 106, 84].

Security and data lock-in are viewed as primary barriers to the faster adoption of cloud

computing by enterprises [65, 82]. Although many cloud computing security problems are

not new, but they require new solutions in terms of mechanisms [23, 100] and research is

being aggressively pursued to find new solutions.

This thesis focuses on the resource and performance management of Infrastructure as a

service cloud platforms. The problems have been formulated from both cloud computing

client as well as service provider’s perspective.

2.2 Dynamic Resource Provisioning

The problem of dynamically varying the resource allocation according to the workload

variation such that a system is able to meet its SLA targets is called dynamic resource

provisioning. It has become an important area of research and product development for the

past few years. Armbrust et al. [6] specifically list resource elasticity as one of the key

opportunities in cloud computing.

Virtualization technologies like Xen [8], KVM [59], VMWare [113] have played a

significant role in aiding to dynamic management of server resources by using techniques

of predictable allocation of processor [37, 53] disk bandwidth [51] and network bandwidth

[22, 41]. Supplementing these are the virtual machine and data migration technologies,

10

which migrate workloads between servers [44, 92]. Resource management at the level of

large data centers leverage these virtualization and migration technologies to manage and

balance load across data center [117, 115]. In this thesis we use the virtualization tools for

VM provisioning and migration either directly or indirectly via a private cloud management

system, like OpenNebula or OpenStack.

Elastic scaling of application capacity, deployed in data centers or private clouds has

been a topic of considerable current interest. There is an extensive body of work on dy-

namic provisioning of web applications in data centers; several projects have adopted an

empirical approach of estimating SLO violations [94, 125, 92] and performing elastic scal-

ing of applications, while other efforts have used a wide variety of analytic models of

both applications and underlying IT infrastructure. A large number of researchers have

used queueing theory tools to develop performance models [86, 107, 36, 104, 99, 10, 103],

while others have leveraged classical feedback control theory or machine learning in their

work [60, 81, 1, 58, 21]. In this thesis we have leveraged both empirical as well as mod-

eling techniques to construct intelligent autoscaling systems, but unlike other research ef-

forts, our work accounts for the non-linear pricing as well as the heterogeneity of cloud

platforms.

2.3 Hybrid cloud

A hybrid cloud model is where the cloud management system transparently supple-

ments local infrastructure with computing capacity from external cloud environment. It

is increasingly common for businesses and service providers to own multiple data centers

so managing resources across data centers is an increasingly challenging [97, 87, 14]. We

believe that as data centers become connected by increasingly high bandwidth links, auto-

mated resource management techniques will naturally expand to include cross data center

management approaches like cloud bursting (i.e. transitioning applications across clouds).

The idea of hybrid clouds was proposed by Amazon’s Jeff Barr as a way to allow enter-

11

prises, who already own significant amounts of IT infrastructure to still make use of the

cloud during periods of high demand [27]. Researchers have been investigating the poten-

tial economic savings by using cloud bursting in specific domains such as medical image

processing [57] and publishing [55]. Cloud bursting generally assumes that a private data

center is connected to a public cloud, producing what is known as a hybrid-cloud. Hy-

brid clouds have become a popular service offering for hosting and data center companies

[79, 74, 111], and also have been the subject of research [62, 96] but their primary focus is

on the underlying enabling mechanisms. My work in this thesis uses some of the low level

migration technologies available in the open cloud platforms to create necessary migration

tools in a hybrid cloud and builds an autonomic system to address the problem of overload

in a private cloud environment.

12

CHAPTER 3

COST-AWARE ELASTICITY IN THE CLOUD

Cloud computing enables application providers to allocate resources purely on-demand.

This ability to allocate resources on an as-needed basis which we refer to as elasticity, can

yield significant cost savings, but also raises new challenges for the application providers,

particularly in an Infrastructure as a Service (IaaS) cloud. In this chapter we present King-

fisher, a cost-aware system that provides efficient support for elasticity in the cloud by (i)

leveraging multiple mechanisms to reduce the time to transition to new configurations, and

(ii) optimizing the selection of a virtual server configuration that minimizes the cost.

3.1 Introduction

Cloud computing is very attractive because of its usage-based pricing model – orga-

nizations only pay for the resources that are actually used, and can flexibly increase or

decrease the resource capacity allocated to them at any time. This elasticity provided by

Cloud computing can yield significant cost savings when compared to the traditional ap-

proach of maintaining an expensive IT infrastructure that is provisioned for peak usage

– organizations can instead simply rent capacity, and grow and shrink it as the workload

changes.

Cloud environments enable flexible, elastic provisioning by supporting a variety of

hardware configurations and mechanisms to add or remove server capacity. However this

flexibility also raises new challenges for application providers: (i) given several available

resource configurations for a particular workload, which one to choose, and (ii) how best

to transition from one resource configuration to another to handle changes in workload.

13

The first decision arises from the availability of a number of server configurations, each

with a different amounts of virtual CPU cores, memory, and disk space to satisfy the same

resource requirements. The array of available hardware configurations leads to a number of

different ways to configure a typical multi-tier Web application. Further, these server con-

figurations are typically not priced linearly with server capacity. For instance, a quad-core

server may not be four times as expensive as a single-core server. As shown in Table 3.1,

depending on the exact configuration, the price per core of a server may be higher or lower

than the cost of a single-core system, and a careful choice of configuration may lower the

total infrastructure cost. The second decision arises when adding more server capacity to

accommodate an increase in the application request volume, for example. There is a similar

array of choices in determining the new resource configuration (e.g., adding a new replica

or move the application to a larger server), as well as different costs or overheads based on

the mechanism used to make the transition to the new target configuration.

This chapter, we present a new approach for dynamically provisioning virtual server

capacity that exploits pricing models and elasticity mechanisms to select resource config-

urations and transition strategies that optimize the incurred cost. In this chapter makes the

following contributions:

• Cost-aware elasticity. We present Kingfisher, a cost-aware system that integrates

multiple elasticity mechanisms such as replication and migration and computes both

a cost-optimized configuration for the desired capacity as well as a plan for transi-

tioning the application from its current setup to its new configuration. Kingfisher’s

algorithms can take into account price differentials in the per-core cost of different

server types to minimize the infrastructure cost of provisioning a certain capacity.

Kingfisher also minimizes the time to add extra capacity using different elasticity

mechanisms (we call this time as transition cost). We formulate our provisioning

problem as an integer linear program (ILP) to account for both infrastructure and

transition cost for deriving appropriate elasticity decisions.

14

• Prototype implementation and experimentation on public and private clouds.

We implement a prototype of the Kingfisher cloud provisioning engine, using the

OpenNebula cloud toolkit [75], that incorporates our optimizations, and evaluate its

efficacy on both a private laboratory-based Xen cloud and the public Amazon EC2

cloud. Our experimental results (i) demonstrate that cost-aware elasticity can reduce

infrastructure costs by 24% , and by 35% in EC2 in comparison to cost-oblivious

provisioning approaches, (ii) demonstrate that integrating multiple mechanisms such

as migration and replication into a unified approach can double the cost savings,

and (iii) demonstrate how our transition-aware approach can be employed to quickly

provision capacity in scenarios where an application workload surges unexpectedly.

In our experiments, we observed transition time improvements of 2x in the private

cloud and up to 6x in EC2 using transition-aware elasticity.

• The Case for Cost-aware Elasticity: While there has been significant research on

dynamic capacity provisioning for data center applications, there are three key differ-

ences between prior work and capacity provisioning in the cloud. First, some of prior

work on dynamic provisioning has been cloud provider centric, where the data center

provider attempts to maximize resource utilization by dynamically allocating a set of

servers across hosted applications with varying workload demands (and attempts to

statistically multiplex as many applications as possible on the data center). In con-

trast, the problem articulated in this chapter requires a customer-centric view, where

each customer (“application provider”) individually optimizes their capacity needs

by choosing the best server configuration that matches their needs. Cloud provider

centric approaches attempt to maximize revenue while meeting an application’s SLA

in the face of fluctuating workloads, while a customer-centric approach attempts to

minimize the cost of renting servers while meeting the application’s SLA.

Second, the prior work on dynamic provisioning has not been cost-aware. By being

cost-oblivious, prior approaches assume that so long as the desired capacity is allo-

15

cated to the application, the choice of exact hardware configuration is immaterial.

That is, the unit cost per core is assumed to be identical, making an N -core system

equivalent, from a provisioning perspective, to an N -core systems with single cores.

In the cloud context, however, the choice of the configuration matters, since pricing

per core is not uniform. Hence, Kingfisher must take server infrastructure costs into

account during provisioning.

Third, much of the prior work on provisioning has employed replication as the pri-

mary means to increase an application’s capacity. The application is assumed to be

replicable, and workload increases are handled by adding additional server instances

to the application’s pool of servers. An alternative method for capacity provision-

ing is to employ migration, where an application and its data are migrated to larger

capacity server (e.g., a server with more cores) to handle workload growth. As we

will show in this chapter, Kingfisher considers both replication and migration when

choosing the best method of transition the application from one capacity configura-

tion to another.

3.2 Cloud Background and Problem Statement

Consider a cloud computing platform that offers N heterogeneous server configurations

for rent, each with a different rental cost (infrastructure cost). The pricing of servers is

assumed to be arbitrary. Thus, the pricing can be convex, where the cost per-core increases

sub-linearly with the number of cores, or concave where more the cost of more capable

servers increases super-linearly with the number of cores, or arbitrary where some other

pricing formula is employed. As noted in Table 3.1, both the EC2 cloud and the NewServer

(NS) cloud platform employ a convex function for their most popular choices (e.g., small,

medium, large) and the pricing model becomes arbitrary when the “high-CPU” or “fast

CPU” configurations are taken into account.

16

Amazon EC2 Cloud Platform

Server size Configuration Cost/hr $/core

Small 1 ECU, 1.7GB RAM, 160GB disk $0.085 $0.085

Large 4 ECUs, 7.5GB RAM, 850GB disk $0.34 $0.085

Med-Fast 5 ECUs, 1.7GB RAM, 350GB disk $0.17 $0.034

XLarge 8 ECUs, 15GB RAM, 1.7TB disk $0.68 $0.085

XLarge-Fast 20 ECUs, 7GB RAM, 1.7TB disk $0.68 $0.034

New Server’s NS Cloud Platform

Small 1-core 2.8GHz, 1 GB RAM, 36GB disk $0.11 $0.11

Medium 2-core 3.2 GHz, 2 GB RAM, 146GB disk $0.17 $0.085

Large 4-core 2.0GHz, 4GB RAM, 250 GB disk $0.25 $0.063

Fast 4 core 3.0 GHz, 4 GB RAM, 600GB disk $0.53 $0.133

Jumbo 8 core 2.0GHz, 8GB RAM, 1TB disk $0.60 $0.075

Table 3.1: Cloud server configurations and their prices. For EC2, 1 ECU= 1.2 GHz Xeon

or Optron circa 2007.

We assume that these servers can be allocated or deallocated on-demand by a customer

for her application. From an application standpoint, these capacity changes can be made

either via replication—by adding or removing replicas—or via migration—by moving the

application to a larger or a smaller server. If a specific cloud platform exposes a subset of

these mechanisms (e.g., the EC2 cloud does not presently support live migration), then our

approach must take these constraints into account when provisioning resources. We assume

that an application is distributed with k interacting components (e.g., k tiers in multi-tier

applications); each tier has an SLA associated with it that must be met by provisioning

sufficient capacity to service that tier’s workload.

Given such a cloud platform, the goal of our work is to develop a system that sup-

ports elasticity for applications by (i) choosing the most cost-effective elasticity mecha-

nism (e.g., replication, migration) when adding or removing capacity, and (ii) choosing

the most cost-effective server configuration. The elasticity problem arises both when ini-

tially provisioning/deploying an application in the cloud as well as during any subsequent

reconfiguration.

17

3.2.1 Initial Provisioning

Assuming an application with k independent components/tiers, let λi denote the peak

estimated workload seen at tier i. Then, the initial deployment problem is one of deter-

mining how many cloud servers to provision for each tier and of what type such that the

infrastructure cost is minimized and a peak workload of λi can be sustained at each tier

while meeting per-tier response time SLAs. Since the desired capacity can be satisfied

using multiple hardware configurations, the goal is to choose the cheapest configuration

that meets the needs of each tier. We compute the initial configuration and deploy the

application.

3.2.2 Subsequent provisioning

Once an application has been deployed on the cloud, its workload demands may change

over time—due to incremental growth or sudden change in popularity. In such cases, the

application will need to be reconfigured by dynamically increasing (or decreasing) the ca-

pacity at each tier. The problem of subsequent re-provisioning is one where, given a certain

server configuration that is already in use, we must determine a new configuration that spec-

ifies how many cloud servers and of what types to use for each tier to sustain the new peak

workloads of λ′
i at tier i. Furthermore, we must also specify a plan for morphing each tier

from its current configuration to the new configuration using mechanisms such as resizing,

migration or replication. Thus, for subsequent provisioning decisions, we are interested

in minimizing two types of costs: (i) the infrastructure cost of the servers, and (ii) the

transition cost, defined as the latency, to move the current to the new configuration.

Depending on the scenario, a customer may be interested in optimizing the infrastruc-

ture cost, the transition cost or some combination of the two. For instance, steady growth

in workload volume can be handled by computing a new configuration that minimizes the

infrastructure cost of servers. In contrast, a sudden surge in workload—caused by a flash

crowd—will require additional capacity to be brought online as quickly as possible. In this

18

scenario, it is more important to reduce the latency to bring additional capacity online even

if it implies choosing a configuration that incurs a somewhat higher infrastructure cost.

Such a transition cost aware approach must consider different configurations that offer the

same capacities and pick the one that offers the fastest migration path.

3.3 Cost-aware Elasticity Algorithms

Any dynamic provisioning algorithm involves two steps: (i) when to invoke the pro-

visioning algorithm, and (ii) how to provision capacity so as to minimize infrastructure or

transition cost.

3.3.1 When to provision?

The provisioning algorithm can be triggered in a proactive or a reactive manner. A

proactive approach uses workload forecasting techniques to determine when the future

workload will exceed currently provisioned capacity and invokes the algorithm to allocate

additional servers before this capacity is exceeded [49]. In contrast a reactive approach

uses thresholds on resource utilization or on SLA violations to trigger the need for addi-

tional capacity. A combination of predictive and reactive approach is also employed to

handle prediction inaccuracy and also to avoid oscillations in provisioned capacity due to

oscillations1 in workload [104]. The issue of proactive or reactive invocation is orthogonal

to that of cost-aware provisioning, and hence we choose perfect forecaster, i.e. a forecaster

that knows the workload in advance. Next we discuss how to provision for optimizing

infrastructure/transition cost.

1Inaccurate workload prediction can lead to a rapid oscillation of the workload forecast between its in-

crease and decrease.

19

3.3.2 Infrastructure Cost-aware Provisioning

Given the estimated peak workload λ1,λ2, . . .λk that must be sustained at each tier, the

goal of our approach is to compute which type of cloud server to use and how many at each

tier so as to minimize infrastructure cost; the provisioned servers must have the collective

capacity to service at least λi request/s at tier i while meeting tier’s response time SLAs.

Our cost-aware provisioning algorithm involves two steps: (1) for each type of cloud

server, compute the maximum request rate that the server can service at each tier, and (2)

given these server capacities, compute a least-cost combination of servers that have an

aggregate capacity of at least λi.

3.3.2.1 Step 1. Empirical Determination of Server Capacities.

For each server configuration supported by the cloud platform (e.g., small, medium,

large), we must first determine the maximum request rate that each configuration can sus-

tain for this application. This information is used in the subsequent step by our provision-

ing algorithm to determine how many servers of a particular type will needed to service the

peak workload λi. Clearly, the maximum request rate (i.e., the server capacity) depends on

the nature of the application, its workload mix and the server type.

One possible approach for estimating the maximum workload that can be serviced by

a particular server type is to employ queuing theory [103], where the server is modeled as

a queuing system and queuing theoretic results are used to derive a relationship between

the request rate, service times of requests, and the response time SLA. This approach can

not account for software artifacts that limit the application capacity from scaling with the

number of cores, causing the queuing-based model to overestimate the capacity of multi-

core systems.

To overcome this drawback, we employ a systems approach that uses empirical profiling—

Kingfisher estimates the maximum server capacity by running the application on different

hardware configurations, subjecting them to gradually increasing workloads, and determin-

20

ing the point where the server saturates. Such an empirical approach is more accurate since

capacities are computed using actual measurements on real hardware and can account for

software artifacts since the actual application behavior is used when estimating capacities.

The approach, however, requires an application provider to carefully set up and profile the

application on various hardware configurations supported by the cloud platform, and such

profiling is more involved than the simple measurements required by the queuing approach.

We note, however, that a system such as JustRunIt [125] that can clone virtual machines and

run the cloned application on a sandboxed server can be exploited to reduce the overheads

of such an empirical approach. Once the maximum request rates of the various servers

supported by the cloud platform have been determined, this information is subsequently

used by the provisioning algorithm.

3.3.2.2 Step 2. Determining Server Configurations.

Consider a cloud platform with M different types of servers (e.g., small, medium,

large). Let Cj and pj denote that capacity (maximum request rate) and the infrastructure

cost of server type j. Let λ denote the peak workload request rate for which capacity needs

to be provisioned at a tier. The problem of infrastructure cost-aware provisioning is stated

as

minimize
M
∑

j=1

njpj, (3.1)

such that
M
∑

j=1

njCj ≥ λ, (3.2)

where nj denotes the number of servers of each type that is chosen. This optimization

problem can be formulated and solved as an integer linear program, as discussed later

in this section. The ILP solution yields (n1, n2, . . . , nM) — which tells the application

provider how many servers of each type should be chosen for the application tier. Notice

that the ILP can handle both the capacity increase and capacity decrease.

21

3.3.3 Transition Cost-aware Provisioning

While our infrastructure cost-aware provisioning algorithm minimizes recurring infras-

tructure costs, it does not account for (or optimize) the transition latency to move from the

old configuration to the new—a factor that depends on the size of the application’s disk

and/or memory state. In many cases, this latency is important, especially when additional

capacity needs to be added to the application quickly (e.g., during a flash crowd).

To be able to handle such scenarios, the provisioning approach must be able to estimate

the latency of using different provisioning mechanisms, such as replication, migration and

resizing. By taking into account the latency of such mechanisms, a configuration that

minimizes such overheads is chosen. We estimate the overhead of these mechanisms as

follows:

• Local resizing: Local resizing involves using the hypervisor API on a machine to

modify the resource allocation of a virtual machine (e.g., to give it more RAM or

to allocate it additional cores or CPU shares). This can be done efficiently with

minimal overheads (the latency is on the order of tens of milliseconds). Hence, local

resizing is always the most desirable option to scale a VM’s capacity. However, since

the physical server may lack sufficient idle capacity for resizing, the algorithm must

frequently resort to other options.

• Replication: Starting up a new instance (replica) of an application tier involves copy-

ing the machine image of the OS/application from central storage to the disk on the

new server, starting up the OS and the application replica, and reconfiguring the ap-

plication to make it aware of the new replica. The latency can be estimated as D
r
+ b,

where D is the size of the disk image, r is the network bandwidth available for the

copy operation and b is a constant representing the OS and application startup time.

• Live migration: Live migration of a virtual machine from one server to another in-

volves copying the memory state of the VM to a new server while the application is

22

running (memory pages that are dirtied during the copy phase are iteratively resent).

Typically live migration mechanisms assume that the disk state of the VM is main-

tained on a shared file system. Hence, the latency of the live migration is w · R
r

, where

R is the size of the VM’s RAM, r is the network bandwidth available for the copy

operation, and w is a constant that captures the mean number of times a memory page

is (re)sent over the network (due to dirtying of pages during the migration process).

• Shutdown-migrate. While live migration is a implemented in most popular hypervi-

sors such as Xen and VMware, some public clouds such as Amazon’s EC2 do not

currently expose this option. Migration can be “simulated” in a public cloud by sus-

pending the application, converting its disk state into a new machine image, copying

the machine image to a new server and restarting the image on the new machine.

Since the disk state may need to be copied twice, once to construct a new machine

image and then to copy the machine image to the new server2, the latency of this

approach is 2D
r
+ b.

The transition-aware approach then attempts to minimize this overhead by preferring

mechanisms that incur the lower copying overheads (and hence, lower latencies). Like

before, this can be stated and solved as an ILP optimization problem as discussed next.

3.3.4 An ILP-based Elasticity Algorithm

Both infrastructure and transition cost-aware provisioning problems can be stated using

the following integer linear program (ILP). Let M denote the number of server types sup-

ported by the cloud platform; Let pj denote the infrastructure cost3 for server type j and let

Cj denotes its maximum capacity. Let λ denote the peak workload for which the applica-

2In Amazon’s EC2, the disk state must be uploaded to its S3 storage system as a machine image and then

copied over to the new server, resulting in two copy operations

3Price changes are handled currently by updating the pricing parameters and recomputing the provisioning

solution.

23

tion needs to be provisioned, and let N denote the maximum number of servers that could

be needed to satisfy λ (any large number can be chosen as N). Let T denote the number

of the provisioning mechanisms supported by the platforms (e.g., replication, migration,

resizing). Then the objective function for minimizing infrastructure cost is

min
N
∑

i=1

M
∑

j=1

T
∑

k=1

pjxijk (3.3)

subject to the constraints

N
∑

i=1

M
∑

j=1

T
∑

k=1

xijkCj ≥ λ (3.4)

M
∑

j=1

T
∑

k=1

xijk = 1, ∀i (3.5)

The terms xijk is an integer variable in the ILP that can take values of 0 or 1; A value of

1 indicates that server i is transformed into server-type j using a provisioning mechanism

k (e.g., replicate or migrate); a value of 0 indicates that that option was not chosen by the

ILP. The output of the ILP is set of values xijk that denotes which server types are chosen

and also specifies a plan for transitioning for each server i to the new server type j using

method k (replicate. migrate etc). If this is the first time the application is being deployed

onto the cloud, the current configuration is empty; for subsequent (re)provisioning, the

plan specifies how the current configuration is to be morphed into the new configuration

(e.g., using replication, migration etc); note that the cost, pj , in (3.3), is independent of the

mechanism k, which means that all reconfiguration mechanisms are considered equal as

long as they provide the same final capacity. However, this formulation becomes useful in

capturing the transition cost as described below.

The ILP for transition-aware provisioning is identical to the previous one except for

the optimization criteria which must minimize the transition cost rather than infrastructure

cost, and thus Equation (3.3) changes to:

24

Workload

Forecaster

Capacity

Planner

Monitoring

Engine

Orchestration

Engine

OpenNebula

Cloud

Manager

SMALL

MEDIUM

LARGE

Private
Cloud

SMALL

MEDIUM

LARGE
Public
Cloud

X-LARGE

Ganglia

Figure 3.1: Architecture of our Kingfisher prototype

min
N
∑

i=1

M
∑

j=1

T
∑

k=1

mijkxijk. (3.6)

Here mijk is the cost of transforming server i to server-type j using mechanism k. This

cost is estimated using the mechanism-models mentioned in section 3.3.3 that capture the

overhead of replication, live migration etc4. Like before, xijk ∈ {0, 1} indicate whether the

final solution will employ technique k to transition server i to server type j.

Although for a small problem (with nodes less than 10) a perfect solution can be ob-

tained by solving the above formed ILP, as the size of the problem increases finding the

optimal solution becomes hard. We have implemented a greedy-type heuristic with a worst

case bound of 2 for an approximate solution of the above ILP [31]. The basic idea of the

heuristic is to sort xi,j,k in increasing order of pj/Cj and then find the smallest list of xi,j,k’s

which satisfy Eq. (3.4). Once an xi′,j′,k′ has been chosen for a particular i = i′, we skip the

remaining xi′,j,k; this ensures that we satisfy the constraint in Eq. (3.5).

25

3.4 Kingfisher System Implementation

We have implemented a prototype of Kingfisher, a system that supports elasticity in

today’s public and private cloud computing platforms. Kingfisher presently supports both

Amazon’s EC2 public cloud and Xen-based private clouds. Kingfisher combines an application-

centric provisioning engine with a cloud management platform. It assumes a virtualized

cloud platform and provides support for virtual machine (VM) deployment, VM image

management, in conjunction with elastic provisioning. Kingfisher uses a modified version

of the OpenNebula toolkit to implement its cloud management mechanisms—e.g., to de-

ploy/undeploy VMs on a set of servers in a private-cloud, create/terminate instances on

Amazon’s EC2, and to reconfigure applications with more or less capacity. We use the

XML-RPC APIs exposed by OpenNebula deploy, terminate, or reconfigure servers allo-

cated to an application.

The architecture of Kingfisher and its relationship to the cloud orchestration framework

is shown in Figure 3.1. We briefly describe below the key components of our architcture,

the details are given in [91].

3.4.1 Monitoring engine

Our monitoring engine tracks application-workload and system resources. The moni-

toring data is stored in a round-robin database5 [78]. We have implemented our monitoring

engine by enhancing Ganglia [40]. Each VM image is pre-configured with the reporting

agent; thus, when new virtual machines are dynamically deployed, the Ganglia server au-

tomatically recognizes new servers and begins to monitor them without the need for any

additional configuration. In scenarios where the cloud platform provides monitoring ca-

4Using the model of mechanisms described in section 3.3.3, we pre-compute a matrix, say M ′ =
[m′

ijk]i,j=1...M ;k=1...K , which represents the cost of migration from server-type i to server-type j using

mechanism k. We use M ′ to compute mi,j,k of (3.6)

5In a round-robin database (RRD) time-series data like network bandwidth, temperatures, CPU load etc.

is stored. The data is stored in a way that system storage footprint remains constant over time. This avoids

resource expensive purge jobs and reduces complexity

26

pabilities (e.g., Amazon EC2 CloudWatch), our monitoring engine can directly query the

cloud platform APIs, rather than Ganglia databases, to obtain these metrics.

3.4.2 Workload Forecasting

The workload forecasting component in Kingfisher uses the workload statistics gath-

ered by the monitoring engine to derive estimates of future workloads. We use the open-

source R statistical package to forecast workloads. In our experiments (in Section 3.5), we

focus on evaluating the cost benefits of Kingfisher, hence we assume a perfectly accurate

forecaster but any other forecaster can be seamlessly used in its place.

3.4.3 Capacity planner

The capacity planner is at the heart of Kingfisher’s provisioning engine. It implements

our ILP-based algorithm for optimizing the infrastructure cost for an application or the

transition cost of moving to a new configuration. We employ an lpsolve, an open-source

LP solver that is invoked via a JNI interface from Kingfisher.

Our ILP-based planner requires several inputs before it can begin computing cost-

optimized configuration for an applications. First, the various types of servers supported

by the cloud platform and their infrastructure prices need to be specified. Second, all provi-

sioning mechanisms supported by the cloud platform (e.g., migration, replication etc) must

be specified, and a model for estimating the cost/overhead of each mechanism must also be

specified. Finally, the empirically derived application capacities for each server hardware

type must be specified.

Given these configuration parameters, Kingfisher’s planner can be invoked by specify-

ing (i) the tier-specific peak request rate λ for which capacity must be provisioned, (ii) the

current configuration for the application, which can be empty if this is the initial deploy-

ment of the application, and (iii) the optimization objective, which can be infrastructure

cost or transition cost.

27

3.4.4 Orchestration engine

Once an initial or new configuration has been computed, Kingfisher’s orchestration

engine instantiates the configuration using the transition plan. This component uses the

interfaces exposed by the cloud management platform to resize VMs, startup new instances,

or migrate existing VMs. The orchestration engine merely specifies the server type to

use (e.g., small, medium, large) for each configuration step, and leaves the problem of

placement of these VMs onto physical servers to the cloud manager. Thus, the management

platform (OpenNebula or EC2) is assumed to track which physical servers are available to

create a VM of the desired type for the application. Migrations were implemented by the

VM-manipulation capabilities provided by the underlying hypervisor or by EC2.

3.5 Experimental Study for Elasticity: Methodology and Setup

In our experimental investigation for cost-aware elasticity, we consider two environ-

ments: (i) Private Cloud - a setup based on our prototype design in a lab setting, and (ii)

Public Cloud - conducting our study on Amazon EC2 with some adaptation of our proto-

type. We conduct experiments with a number of mechanisms for achieving elasticity in the

cloud, starting with cost-awareness with replication, and adding migration and transition-

cost awareness. Our goal is to understand whether these mechanisms can further improve

cost-aware elasticity support beyond the traditional replication-only approach. Our evalua-

tion metrics are the overall infrastructure cost of the virtual servers supporting the applica-

tion deployment, the cost in terms of latency to change or scale the configuration, and the

latency to achieve target application response time after a configuration change.

3.5.1 Cost-aware elasticity mechanisms

We conducted following experiments to study the impact of mechanisms of elasticity

on cost:

28

• Cost-aware vs Cost-oblivious with Replication: First, we consider replication-only

as the method for supporting elasticity - the typical method that is available in pub-

lic clouds to support elasticity. Here we compare between resource cost-oblivious

(CO-R) and cost-aware (CA-R) approaches to illustrate the benefit of cost-aware ap-

proaches.

• Migration: Second, we introduce migration in addition to replication as the means

for supporting elasticity to investigate benefit from such additional mechanisms be-

yond base level replication based elasticity6. We refer them as CA-RM and CO-RM.

• Transition cost-aware: Third, we account for transition cost, defined as the time

taken to execute the configuration change to understand its effect on supporting elas-

ticity. We compare the transition cost aware (TA-RM) and transition-cost oblivious

(TO-RM) approach to explicitly account for such costs as part of elasticity study.

3.5.2 Experimental Testbed and Workload

For the private cloud, leveraging the prototype we discussed earlier, we use a laboratory-

based cloud system built on virtualized Xen/Linux-based cluster, while our evaluation on

the public cloud uses Amazon’s EC2. We use the java implementation of TPCW [101]

for our experiments. TPC-W is a multi-tier web benchmark that represents an e-commerce

web application comprising of a Tomcat application tier and a mysql database tier. The

workload used to trigger the provisioning the algorithm was browsing mix of the TPC-W

specification; that was generated using TPC-W clients. We have tested each approach on

two types of workload patterns: 1) smoothly increasing workload (small-jump workload)

2) Sharply increasing workload (large-jump workload).

6We implemented the migration of a server-instance to another instance using the live-migration, vcpu-

set and mem-set facilities of Xen to perform migration. Live-migration migrates a virtual machine (server-

instance) to a new host-machine (which has more CPU and MEM), while vcpu-set and mem-set change the

number of virtual-cpus and memory of the virtual-machine.

29

3.5.3 Profiling Server Capacities

Earlier, we have argued that real-world applications will not scale linearly with the

number of cores due to software artifacts and differences in processor hardware across

different systems. As our decision algorithms will have to determine the amount of resource

required to meet the desired application level performance, we resort to empirical profiling

to determine the application’s capacity on each server type.

We configured TPC-W with both tiers in a single VM, and ran this VM on various

server instances of both private and public cloud. In the case of public cloud we used the

following EC2 server instances: m1.small (S), c1.medium (M), m1.Large (L), c1.xlarge

(XL) and m1.xlarge (XLM); these instances have 1, 4, 8, 5 and 20 EC2 compute units

(ECUs), respectively. On the private cloud, it was not possible to have instances equivalent

to those of public cloud, nonetheless, we created 1, 2 and 4 core systems; we refer to single-

core system as “small” dual-core as “medium” while the quad-core as “large”. In each

case, we gradually increased the workload seen by the TPC-W application until the server

saturated and began dropping requests. Fig. 3.2a plots the empirically derived capacities

for various multi-core configurations on our Intel and AMD systems on our private cloud. It

is quite apparent that server configurations on each processor have a very different capacity

and in both cases they scale non-linearly. Fig. 3.2b plots the derived capacities for various

EC2-instances.

3.6 Evaluation on a Private Cloud

Our private cloud platform is built on two types of servers: 8-core 2GHz AMD Opteron

2350 servers and 4-core 2.4 GHz Intel Xeon X3220 systems. All machines run Xen 3.3 and

Linux 2.6.18 (64bit kernel). Our platform is assumed to support small and large servers,

comprising 1, 2 and 4 cores, respectively. These are constructed by deploying a Xen VM on

the above servers and dedicating the corresponding number of cores to the VM (by pinning

the VM’s VCPUs to the cores).

30

(a) Non-linear scaling of TPC-W on Intel and

AMD servers

(b) Non-linear scaling behavior of TPC-W on

EC2-instances

Figure 3.2: Profiling server instances for private and public cloud

We created a virtual appliance of TPC-W on CentOS 5.2. We have used a modified

version Tomcat-5.5.27 as the servlet container and mysql-5.0.45 as the backend database-

server; our modified Tomcat server logs the service time of each request, in addition to other

default per-request statistics. We also created a dispatcher appliance using the HAProxy

load balancer; the dispatcher is used to distribute and load balance across all TPC-W repli-

cas.

3.6.1 Cost-aware versus Cost-oblivious Provisioning

We first compare the cost-aware approach to a cost-oblivious approach (which ignores

infrastructure costs when provisioning servers) in a restricted setting where only “replica-

tion” is used to modify the deployment. We denote these two approaches as CA-R (cost-

aware with replication) and CO-R (cost-oblivious with replication). In these experiments,

for simplicity we used two types of server-classes, small and large, with the NS-cloud plat-

form’s pricing model, detailed in Table-3.1. We increase the request rate (λ) from 35 to

210 req/s. Fig. 3.3a depicts the server configurations chosen by the CA-R and CO-R ap-

proaches (and the resulting infrastructure cost) when the workload increases sharply in a

few large steps. We see that, even for this relatively small deployment, cost-aware shows

up to 12% reduced infrastructure cost for the same provisioned capacity.

31

S

S S S S

S S S S S S

Time

W
o
rk

lo
a
d
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d
)

35

140

210

t1 t2 t4 t5t3

R

R

$0.11

$0.44

$0.66

$0.36

CO-R

CA-R
R

S

S L

L

$0.58

S

S S

R

$0.11

(a) large-jump workload

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

W
o
rk

lo
a
d
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d
)

Time

35

105

140

210

70

175

t1 t2 t4 t5t3

R

R

R

R

R

R
R

R

R

R
$0.11

$0.22

$0.33

$0.44

$0.55

$0.66

CO-R

CA-R

$0.11
$0.22

$0.33

$0.44

$0.55

$0.66

(b) small-jump workload

Figure 3.3: Cost-aware versus cost-oblivious provisioning

32

If the workload increases more steadily, as shown in Fig. 3.3b, both approaches choose

identical configurations, i.e., an increasing number of small servers. With replication as the

only elasticity mechanism, and slowly increasing workload, the cost-aware approach is not

able to find opportunities for further cost improvement.

3.6.2 Benefits of adding Migration mechanism

S

S

L

L

L

Time

W
o
rk

lo
a
d
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d
)

t1 t2 t4 t5t3

S S S

S

R

CO-RM

CA-RM
$0.11

$0.33

$0.44

$0.66

$0.50

$0.36

$0.25

35

105

140

210
S S S

R

R

M

M

S S S S S S

L

SR

$0.11

(a) large-jump workload

S

S

S S

S S S

S

W
o
rk

lo
a
d
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d
)

Time

L

S

L

S S

L

t1 t2 t4 t5t3

R

R

R

R
R

M

R

$0.11

$0.22

$0.33

$0.44

$0.66

$0.22

$0.25

$0.36

$0.47

$0.5

CO-RM

CA-RM

35

105

140

210

70

175

S S

S S S

S S S

L S

M

M

S S S S S

$0.55

S

L

SR

$0.11

(b) small-jump workload

Figure 3.4: Benefits of using replication and migration in a unified provisioning approach.

We next consider the benefit of the cost-aware approach compared to cost-oblivious

when migration is added as an additional elasticity mechanism to allow relocation of an

application to a more cost-effective server configuration. By enabling both mechanisms to

modify the deployment, our provisioning algorithms are able to consider a larger set of fea-

sible configurations, which can yield higher savings in the infrastructure cost. Figure 3.4a

compares the two approaches as the workload grows in large jumps. The cost-aware ap-

33

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600 700
 0

 500

 1000

 1500

 2000

L
a
m

b
d
a
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

i-
s
e
c
)

time (5 sec)

lambda
response-time

(a) Cost Oblivious

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350
 0

 500

 1000

 1500

 2000

L
a
m

b
d
a
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

i-
s
e
c
)

time (5 sec)

lambda
response-time

(b) Cost Aware

Figure 3.5: Application Performance during cost-aware and cost-oblivious provisioning for

large-jump workload.

proach (CA-RM) shows a benefit as high as 24% over cost-oblivious (CO-RM), twice the

relative benefit as with using replication-based elasticity alone. For the steadily growing

workload, shown in Figure 3.4b, the cost-aware algorithm shows a similar benefit over

cost-oblivious. Recall that with replication alone, the cost-aware approach produced an

equivalent solution as cost-oblivious for the slowly increasing workload – in this case, by

adding the migration mechanism, cost-aware provisioning is able to improve the infrastruc-

ture cost by 24%. Though the cost-oblivious approach uses both migration and replication

as well, its choices are frequently more expensive than those of the cost-aware approach.

Figure 3.5 shows the changing request-rate applied to the TPC-W application, and the

corresponding average response-time during the experiments. By leveraging migration

elasticity, the CA-RM approach is able to be much more responsive to provisioning re-

34

quests. For example, for the first large increase in workload, CA-RM chose a migration

while CO-RM selected 2 replications, hence cost-aware finished the task in 10 sec as op-

posed to 1000 sec for cost-oblivious. This is because live-migration copies only the RAM-

image of the VM, which is an order of magnitude faster than copying the disk image in

replication.

3.6.3 Transition cost-aware Provisioning

Our experiments thus far have focused on optimizing infrastructure cost and have ig-

nored the overhead of transitioning the application deployment from one configuration to

another. By making elasticity decisions based on the time overhead of various options,

Kingfisher’s transition cost-aware approach can quickly provision additional capacity in

the cloud when the workload surges suddenly. However, by focusing on rapid reconfigura-

tion, transition cost-aware provisioning may not produce the minimal infrastructure cost.

To demonstrate the benefits of our approach, we increased the TPC-W application

workload in a series of large steps. At each step, we invoked Kingfisher’s transition cost-

aware provisioning and compared the decisions made by this approach with its infrastruc-

ture cost-aware provisioning method (i.e., which ignores the transition cost when making

decisions). We assumed a cloud platform with two server types, small (S) and large (L),

with infrastructure costs of $0.11 and $0.25 per hour, respectively (as in Table-3.1).

Figure 3.6 shows that the transition and infrastructure costs resulting from the chosen

configuration after each workload step (i.e., from 35 req/s to 175 req/s). The transition

cost-aware approach is able to pick lower transition time configurations, while the other

approach opts for a lower infrastructure cost configuration but takes an order of magnitude

more time. For example, when the workload increases from 140 to 175 req/s, the transition

cost-oblivious approach performs a replication requiring 458s, while transition cost-aware

opts for migration to a large server which requires 7 seconds, but results in a slightly higher

infrastructure cost. Over the course of the experiment, the figure shows that transition cost-

35

oblivious chooses replication twice, while transition cost-aware replicates once, resulting

in a much quicker response at the expense of some added infrastructure cost.

Figure 3.7(a) and (b) show the applied workload on the TPC-W application and the

average response time as the workload increases. Between 150 and 200 seconds the work-

load increases to 175 req/s and, after a small spike in response time corresponding to the

migration to a large server, the transition cost-aware solution settles to the target response

time. In contrast, in (a) the transition cost-oblivious approach take significantly longer to

reach the desired response time as the replication operation proceeds.

The experiment demonstrates that since copying memory state during live migration

incurs lower latencies than copying disk images during replication live migration may be

preferred, whenever feasible, to reduce transition costs. However, migration is not always

feasible (e.g., if the application is already on the largest possible server) and replication

may be needed in such cases.

S

L

S

L L449

8-s

R

458-s

M

$0.5$0.47$0.35$0.1

S

S

R

L

35 140 175 210req/s

(a) Transition-cost oblivious

S L L

L L

35 140 175 210

449

$0.5$0.35$0.1

S

R
L

$0.5

7

M

req/s

(b) Transition-cost aware

Figure 3.6: Comparison of a transition-cost aware system with a transition-cost oblivious

system. Solid lines denote a configuration change, while dotted lines indicate no change.

3.6.4 Impact of the Pricing Model

Prior experiments have assumed a convex pricing model where the cost-per-core de-

creases as the number of cores increases. Since our ILP can handle arbitrary pricing mod-

els, we demonstrate how different pricing models can impact the choice of the configura-

tion.

36

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300
 0

 500

 1000

 1500

 2000

L
a
m

b
d
a
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

i-
s
e
c
)

time (5 sec)

lambda
response-time

(a) Transition-cost Oblivious

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250
 0

 500

 1000

 1500

 2000

L
a
m

b
d
a
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

i-
s
e
c
)

time (5 sec)

lambda
response-time

(b) Transition-cost Aware

Figure 3.7: Workload and Response Times of a transition-cost aware system with a

transition-cost oblivious system.

We consider the TPC-W application and wish to deploy it on a cloud platform with dif-

ferent initial capacities (workload, and corresponding required capacity, is increased from λ

to 6λ). We assume that the cloud supports three types of servers, small, medium and large.

For comparison, we also show the results of the cost-oblivious approach, which always

chooses small servers regardless of the pricing model. First, we assume a convex pricing

model, which resembles those employed in current clouds. In this case, larger servers have

lower cost-per-core, causing our approach to prefer medium and large servers over small

ones, when possible. Next, we employ concave pricing model, where the cost-per-core

increases for larger systems. In this case, since the small server has the cheapest price per

code, our cost-aware approach uses only small servers to provision capacity, effectively

choosing the same configuration as cost-oblivious. Finally, we choose an arbitrary pricing

37

model, where the medium server is the cheapest, and the large server is the next cheapest

on a cost-per-core basis. This causes our approach to prefer medium servers when possible

and occasionally some large server instances.

Provisioning Algorithm λ 3λ 4λ 5λ 6λ

Convex pricing model (S=0.11,M=0.15,L=0.25)

Cost Aware S 2M M,L 2L 4M

Cost Oblivious S 3S 4S 5S 6S

Concave pricing model (S=0.11,M=0.24,L=0.5)

Cost Aware S 3S 4S 5S 6S

Arbitrary pricing model (S=0.11,M=0.15,L=0.44)

Cost Aware S 2M S,2M 2S,2M 4M

Table 3.2: Provisioning with different pricing models

3.7 Evaluation on Public Cloud: Amazon EC2

In this section we conduct our experimental evaluation on public cloud using Amazon

EC2. We compare cost-aware with cost-oblivious elasticity methods for both infrastructure

and transition costs. We need careful examination of the migration support in Amazon EC2

as the steps and the associated costs are quite different based on whether image provisioning

is based on EBS or instance-store based [38]. We compare three different scenarios for

transition cost-aware approach - these differ in the way the transition cost is accounted as

well as the storage is used for image provisioning.

Note that Amazon EC2 supports eight EC2-instance types [38]. We have used 5 of these

server-types of EC2, namely S, M, L, XL and XLC, each of which are profiled offline and

the results are shown in Fig. 3.2b. EC2 allows creation of instances of each of these server

types; these instances can be created either from instance-store or from EBS-volume snap-

shots, where an EBS-volume is a persistent storage. Amazon offers snapshoting capability

on these EBS-volumes and these snapshots can be used to create new EC2-instances.

38

3.7.1 Determining Transition Costs in EC2

Kingfisher’s transition-aware provisioning method needs to accurately account for the

overheads of different replication / migration mechanisms available in EC2. We conducted

a sequence of experiments to empirically determine these costs that we require for King-

fisher provisioning step.

We determine the transition costs for both EBS and instance-store based provisioning

approach as the associated process and costs are quite different. EC2 provides two mech-

anisms from starting up a new new replica: (1) using an EBS-volume image (2) using the

instance-store. Unlike private cloud, which supports live migration, the EC2 system sup-

ports only shutdown-and-migrate on EBS-volume based instances, while on instance-store

based EC2-instances it only supports replication. Nevertheless, it is possible to simulate a

migrate operation for instance-store based instances (i.e. those created using instance store)

in two different ways. If the application does not maintain any state on its local disk (e.g.,

if the persistent state is stored on the S3 and on a separate EBS-volume, which is mounted

on EC2-instance during instance-creation time), then we can emulate migration by starting

a new instance on a larger server (via replication) and simply shutting down the old server

and attaching the disk state to the new server (called replicate-shutdown). In contrast, if the

state of the local disk needs to be migrated as well, then a shutdown-copy-migrate operation

can be performed, where an application is shutdown, a machine image of its disk state is

created and uploaded to S3, and a new replica is started with this image; on EBS-snapshot

based instances, one can stop the instance and restart it as a different EC2-instance; we call

this as stop-and-start operation.

In order to capture the cost of each of the provisioning operation, we break down the

each operation into its component steps and capture the cost of each of the component steps.

The shutdown-copy-migrate option, in a non-EBS volume instance involves following five

steps 1.) copy the complete disk-image 2.) compress it 3.) uploading it onto S3 4.) register

39

it as an AMI7 5.) create an instance using this new AMI. Table 3.3(a) shows the time

taken to complete each component steps for different size-images. Note that the total time

is linearly varying with the size of compressed image. Similarly for EBS, there are three

distinct steps. Table 3.3(b) depicts the time it takes to take a snapshot of volume which

contains data which cannot be compressed any-further. The time to take the snapshot of an

EBS volume can also be modeled as a linear function of size of compressed image size. As

shown in 3.3c, the time it takes to boot an instance from EBS-snapshot is nearly constant–

our measured average value is 85 sec The average instance registration time is 7 sec. The

replicate-shutdown option incurs a similar overhead as that of a pure replicate operation. In

our experiments we have used the time to be 800 sec (since our instance gets compressed to

3GB). Finally, the stop-and-start operation is estimated to have mean overhead of 65 sec.

Volume

Size

(GB)

Compressed

Image

(GB)

Snapshot upload

time(s)

boot

time

(s)

10 1.22 675 175 190

10 1.60 710 210 246.5

10 2.34 927 310 345

10 2.99 1160 314 407.1

10 3.08 1308 435 424

10 3.54 1466 490 494.3

(a) Time measurements of steps involved in

shutdown-copy-migrate operation

Volume

Size (GB)

Used

Space

Compressed

Image

(GB)

Zone Snapshot

time

10 2 2 us-east-1a 491

10 4 4 us-east-1a 915

10 6 6 us-east-1a 2064

10 8 8 us-east-

1b

2596

(b) Time Measurements of taking snapshot of an EBS vol-

ume

Volume

Size (GB)

Used-up

space

Zone Startup

Time (s)

10 5 us-east-1a 82.7

10 6 us-east-1a 84

10 7 us-east-1a 82

10 8 us-east-1b 85.7

10 9 us-east-1a 88

(c) Time measurements of start-up time of an im-

age from EBS-volume

Policy λ 2λ 3λ 6λ
CO-RM 4S(.34) S,L (.425) 2L (.68) 3L,2S (1.19)

CA-RM 4S (.34) 2M (.34) S,2M (.425) 4M,S (.765)

TA-RM-1 4S (.34) 2S,M (.34) S,2M (.425) XL,L,M (1.19)

TA-RM-2 4S (.34) 2S,M (.34) S,2M (.425) S,4M (0.765)

TA-RM-3 4S (.34) 2S,M (.34) S,2M (.425) 3M,L (0.85)

(d) Provisioning with different methods (λ = 35). Choice of

provisioning mechanism for each transition, i.e. from λ →
2λ, 2λ → 3λ and 3λ → 6λ, are described in section 3.7.3

Table 3.3: Measurements and Provisioning on EC2

7An Amazon Machine Image (AMI) is a virtual machine image which is used by EC2 to create server

instances

40

3.7.2 Infrastructure-cost aware Provisioning

To evaluate the efficacy of Kingfisher in taking infrastructure and transition costs into

account, we repeated our TPC-W experiment on the public EC2 cloud. We assume an

initial configuration of four small servers serving an initial workload of λ = 35. The

infrastructure cost of servers is summarized in Table 3.1 and transition cost is discussed

above. Like before we varied the workload in steps and Table 3.3(d) depicts the configura-

tions generated by the cost-oblivious and Kingfisher’s cost-aware methods. The cost-aware

(CA-RM) method is able to provision the same capacities at 35% lower cost.

3.7.3 Transition-cost aware Provisioning

Using the empirically determined transition costs, we next evaluate transition cost-

aware elastic provisioning. We consider three transition cost scenarios based on usage

pattern and constraints in EC2: (i) TA-RM-1, which only takes into account the number of

transitions and cost of each transition and also the infrastructure cost of final configuration;

(ii) TA-RM-2: that considers transition costs and final infrastructure costs for non-EBS in-

stances in EC2, and (iii) TA-RM-3 that distinguishes between 32-bit small EC2 instances,

and 64-bit larger EC2 instances, and assumes that 32-bit and 64-bit applications are not

mixed across the corresponding server types.

As shown in Table 3.3(d), when workload jumps to 2λ, TA-RM-* chooses to perform

only one stop-and-start operation as opposed to two chosen by CA-RM; notice that both

configurations have the same dollar cost however CA-RM policy tries to maximize capac-

ity, while TA-RM-* schemes minimize the number of reconfigurations. When the workload

increases from 2λ to 3λ, the CA-RM method resorts to replication, while the TA-RM-*

chooses the faster stop-and-start provisioning. In the final step, CA-RM chooses to per-

form two replications, however, TA-RM-1 initiates two stop-and-start operations for faster

provisioning. Since TA-RM-2 provisions non-EBS instances, it chose the faster replication

41

option (over the slower shutdown-copy-migrate). TA-RM-3, on the other-hand, performs a

stop-and-start from S to M instances and then initiates another replication.

Figure 3.8 show the result of provisioning experiment conducted using Kingfisher for

TA-RM-3 scheme. Figure 3.8a and Figure 3.8c show the response-times of the of the

corresponding configurations, indicating the responsiveness of the system using the end-

to-end response time of the configuration under workload. The benefit of transition-cost

aware approach is apparent from Figure 3.8b,3.8d: in the first and last step it approximately

takes the same time8, however in the second jump the transition-cost aware system achieves

the new configuration in 60 sec as opposed to 382 sec.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250
 0

 200

 400

 600

 800

 1000

L
a
m

b
d
a
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

i-
s
e
c
)

time (5 sec)

lambda
response-time

(a) Transition-cost oblivious

M M

M

35 70 105 210

$0.425$0.34$0.34

M

M

$0.765

S
R 382

M

M

M

S

R

R

353

343

S

S

S

S X

X

M 55

M 62

M 48

(b) Transition cost oblivious provisioning

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300
 0

 200

 400

 600

 800

 1000

L
a
m

b
d
a
 (

re
q
u
e
s
ts

 p
e
r

s
e
c
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

i-
s
e
c
)

time (5 sec)

lambda
response-time

(c) Transition-cost aware

S

M

M

M

35 70 105 210

$0.425$0.34$0.34

S

$0.85

M

R

275

M

S

S

S

S

M
40

M

S

X L

M 55

M 60

(d) Transition cost-aware provisioning

Figure 3.8: Comparison of a transition-cost aware system with a transition-cost oblivious

system.

8The large variation in similar operations is because the copy operation is dependent on the load on the

backend network and disk systems of EC2

42

3.8 Related Work

This chapter focuses on optimizing the use of elasticity mechanisms and is applicable in

commercial cloud service offerings (exemplified by Amazon EC2 and others) and cluster

management systems such as OpenNebula or Eucalyptus. In particular, this study is the

first work to propose cost-aware provisioning in a cloud, along with algorithms to optimize

how additional mechanisms beyond replication can be leveraged to support elasticity.

There is a significant amount of related work, however, in the area of dynamic ca-

pacity provisioning in data centers, grids, or compute clusters, starting with earlier work

such as [39] and [20]. Much of this work is platform-centric, while our work considers

a customer-centric view of provisioning and resource optimization. Other work has con-

sidered migration as a means of dynamic provisioning [42], while we consider replication

with different types of migrations and assign cost to each of them. There is also an ex-

tensive body of work on dynamic provisioning of web applications using analytic models

[104, 99, 122, 126]. Classical feedback control theory has also been used to model the

bottleneck tier for providing performance guarantees for web applications [1, 107]. The

approach in [107] formulates the application tier server provisioning as a profit maximiza-

tion problem and models application servers as M/G/1/PS queueing systems. The work

in [103] provides a model-driven approach for adapting resources for a multi-tier applica-

tion. Finally, machine learning techniques have also been used for provisioning, such as

the k-nearest neighbor approach to provision the database tier [21].

In contrast to these efforts, our work automates the process of characterizing the work-

load mix and uses empirical models as a basis for provisioning system capacity. Further,

while I employ analytic models of infrastructure and transition costs, my approach involves

full prototype implementation and experiments on an actual Linux cluster.

43

3.9 Concluding Remarks

Since today’s cloud platforms offer a plethora of different server configurations for rent

and price them differently on a cost-per-core basis, we argued that these pricing differ-

entials can be exploited by an application provider to minimize the infrastructure cost of

provisioning a certain capacity. We proposed a new cost-aware provisioning approach for

cloud applications that can optimize either the infrastructure cost for provisioning a certain

capacity or the transition cost of reconfiguring an application’s current capacity. Our ap-

proach exploits both replication and migration to dynamically provision capacity and uses

an integer linear program formulation to optimize cost. We prototyped a cloud provision-

ing engine, using OpenNebula, that implements our approach and evaluated its efficacy

on a laboratory-based Xen cloud. Our experiments demonstrated the cost benefits of our

approach over prior cost-oblivious approaches and the benefits of unifying both replication

and migration-based provisioning into a single approach. We also presented a case study

of how our approach can be employed in a public cloud such as Amazon EC2. In future

we plan to extend kingfisher by integrating it with systems which employ queuing theory

based model for capacity estimation for provisioning on cloud.

44

CHAPTER 4

ELASTIC PROVISIONING OF MULTI-TIER CLOUD

APPLICATIONS USING STATISTICAL BOUNDS ON SOJOURN

TIME

Web applications use a tiered architecture to afford dynamic scaling of capacity ac-

cording to the workload. How tiers are provisioned is not only critical for providing a

compelling user experience but is also critical for provider’s profit margin. It becomes even

more significant in a cloud kind of environment, which adopts a usage based pricing model.

Traditional provisioning algorithms either provision for average response time or assume

knowledge of per tier response-time and provision for the same. Tier wise response times

cannot be predicted in advance. On the other hand average response time is not a very

useful QoS metric as service providers are often more interested in the percentile bound on

end to end response time. In the previous chapter we addressed the problem of cost aware

elastic provisioning of an application on a cloud platform, when the application SLA is

expressed on the average response time. In this chapter we present a simple and effective

approach for resource provisioning to achieve a percentile bound on the end to end re-

sponse time of a multi-tier application. We first model the multi-tier application as an open

tandem network of M/G/1-PS queues and develop a method that produces a near optimal

application configuration, i.e, number of servers at each tier, to meet the percentile bound

in a homogeneous server environment – using a single type of server. We then extend our

solution to a K-server case and our technique demonstrates a good accuracy, independent

of the variability of service-times.

45

4.1 Introduction

Enterprise applications are known to observe dynamic workload and provisioning cor-

rect capacity for these applications remains an important and challenging problem. High

workload variability is caused by a variety of reasons, such as flash crowds, short term

sustained surges, or long-term fluctuations based on change in business or underlying IT

infrastructure etc. Predicting these workload fluctuations or the peak workload is challeng-

ing. Erroneous predictions often lead to under-utilized systems or in some situations cause

temporarily outage of an otherwise well provisioned web-site; e.g. in November 2000

Amazon.com site suffered a forty-minute outage due to overload. Consequently, rather

than provisioning server capacity to handle infrequent (and hard to predict) peak work-

loads, an alternate approach of dynamically provisioning capacity on-the-fly in response to

workload fluctuations has become popular. Dynamic provisioning is especially well suited

to the cloud due to the ability of cloud platforms to provision capacity when needed and

charge for usage on pay-per-use basis.

Numerous efforts that have addressed the issue of dynamic provisioning of server ca-

pacity to distributed applications [36, 66, 104, 103] . These efforts fall into two categories

- proactive, where a model of the application is used to compute the capacity needed to

service a particular workload at a certain performance level and reactive, where additional

capacity is allocated after a workload spike arrives and causes significant performance

degradation.

In the case of proactive approaches, application models have been derived to predict

how much capacity is needed to provide a certain mean response time for a given work-

load [103, 104]. However, typical service level agreement (SLAs) for the application are

specified in terms of the worst case (or peak) response times [32] (e.g. 99% of the requests

should see no more than a 1-sec response time). Consequently, there is a mismatch between

the provisioning models which allocate capacity for a target mean response, time and the

46

SLA, which dictates that the capacity should be allocated based on a high percentile (peak)

response time.

Second, many enterprise applications possess a multi-tier architecture. Typically SLAs

are specified on an end-to-end basis for the entire application. The few provisioning efforts

that focus on allocating capacity for the tail of the work translate the end-to-end SLA to a

per-tier one [104]; provisioning for per-tier SLA can result in large errors in provisioning

the capacity if the tier response time estimates are incorrect.

Third, most provisioning techniques to-date are cost oblivious – they determine how

much server capacity to allocate but do not consider the cost of allocating the server ca-

pacity. In a cloud platform, different server configurations are available at different prices.

Server capacity does not scale linearly across configurations and nor does the price. Since

multiple combinations of servers can provision a certain capacity C for an application, a

cloud specific provisioning scheme must take the cloud costs into account when making

provisioning decisions.

In this chapter I present a new model driven provisioning approach targeted to cloud

platforms. The approach focuses on i.) allocating capacity based on peak (high percentile)

of the workload, ii) takes a holistic view of the entire multi-tier application by considering

bounds on on end to end response times while making provisioning decisions and iii) takes

cloud server configs and pricing models when determining the most cost effective config to

provision a certain amount of capacity.

4.1.1 Research Contributions

This chapter makes the following contributions:

• Cost aware provisioning subject to a percentile response time SLA. I present an

algorithm for resource provisioning for a multi-tier cloud application, subject to an

SLA expressed in terms of high percentile of end to end response time, that mini-

47

mizes the total cost of compute resources required by the application. The formula-

tion models the application as an open tandem queue network of M/G/1-PS queues.

• Service time and response-time approximations. I present an approximation of

the response time distribution of the M/G/1 processor sharing queue based on the

distribution of conditional expected response times given the service times and show

it to be accurate for the purposes. In addition, I present a new service time character-

ization based on a mixture of shifted exponential distributions.

• Cost-efficient configuration with heterogeneous servers subject to percentile SLA.

I extend the above approach to account for the presence of multiple types of servers

with different costs and computational capabilities. This is achieved by formulating

an integer optimization problem with the constraint that per-tier capacity should be

at least as much as that computed by the queueing theoretic model.

• Prototype implementation and experimentation. I have implemented an analyti-

cal model in MATLAB and tested it using a multi-tier application, i.e. java imple-

mentation of TPC-W, over a private cloud. For comparison, we also implemented

a baseline case using M/M/K-FCFS queues. The experimental results show that the

approach is able to provision the application to meet the SLA specified on 99 per-

centile of end-to-end response time with less than 3% provisioning error, while the

baseline techniques provisioned with an error as large as 140%. In the case of hetero-

geneous provisioning, the approach shows, as high as, 81% savings in server cost as

compared to that of the corresponding optimal homogeneous configuration. In case

of private cloud experiments we found that heterogeneous approach showed around

11% cost saving (using Amazon EC2 pricing) over homogenous configurations.

48

4.2 Background and Problem Formulation

In this section, we present the system model and a high level problem description. We

describe the SLA performance metric, and thereafter formulate the provisioning problem

that we address in this work.

4.2.1 Multi-tier Application

Modern large scale web applications are developed as multiple tiers for reasons per-

taining to scalability. A multi-tier architecture offers flexibility for development as well as

deployment of applications. Each application tier, typically, provides a specific function-

ality and the various tiers form a processing pipeline. In a typical multi-tier application

various tiers participate in the processing of an incoming request; each of the participating

tier receives partially processed requests from the previous tier and feeds these requests

into the next tier after local processing (see Figure 4.1). The tiers are replicated to scale

according to the processing demand; a load balancer is used to distribute the load over all

replicas of such a tier. Figure 4.1 depicts a two-tier application where both tiers are repli-

cated. This is a commonly employed architecture by e-commerce web applications where,

both, web-server and database tiers are clustered to scale up according to increase in the

incoming workload.

Server n1

server1
server1

Load

Balancer

server1

Replicated Tier -1

(Java Tier)

Server n2

server1
server1

Load

Balancer
server1

Replicated Tier -2

(DB Tier)

λ
HTTP Load Blancer TCP Load Blancer

Client n

server1
server1
Client 1

Remote Web Client

Figure 4.1: Topological configuration of a typical replicated two-tier web application

We assume that each tier is placed on a dedicated server and that replicating a tier

essentially means replicating the server. Each clustered tier is also assumed to employ

a protocol-session aware load balancer responsible for distributing requests to replicas in

that tier. We assume that the each tier’s capacity (number of servers), can be varied dy-

49

namically without disturbing the application’s normal functioning, and that each tier can

be independently provisioned for capacity.

4.2.2 Cloud Platforms

Cloud computing has emerged as a new IT delivery model. The Infrastructure as a Ser-

vice (IaaS) cloud-model is being seriously evaluated by enterprises to deploy their web ap-

plications that support dynamic capacity resizing. In this model, an organization/client can

rent remote compute and storage resources to host networked applications and resources

can be dynamically added or removed on an as-needed basis. We consider a cloud com-

puting platform that allows compute servers to run hosted applications. We assume that

the platform offers N heterogeneous server configurations for rent, each with a different

rental-cost and configuration.

We assume that the cloud platform has an infinite pool of servers and that servers can

be provisioned by invoking server-instance creation APIs; servers may be requested and

terminated at any time and billing is based on the amount of time for which each server is

used (e.g., based on the number of hours for which each server is used). We also assume

that the cloud platform employs virtualization—each physical server is assumed to run

a hypervisor that controls the allocation of physical resources on the machine and offers

performance isolation to each of its virtual servers.

4.2.3 Problem Formulation

Let N and M denote the number of tiers and server-types respectively. Let tier j be

jointly served by
∑M

i=1 nij servers, where nij denotes the number of servers of type i present

at tier j. Let nj = [n1j, n2j, . . . nMj] be a vector representing the server configuration of

tier j and p = [p1, p2, . . . pM], where pk denotes the cost of a server of type k. Let T be the

end-to-end response time of requests to the multi-tier application and FT (t) be its CDF, i.e.

50

FT (t) = P (T ≤ t). Then for a given percentile bound θ, and response-time threshold TD,

the cost minimization problem becomes:

minimize

N
∑

j=1

M
∑

i=1

nijpi, (4.1)

subject to the constraint

FT (TD) ≥ θ. (4.2)

It should be noted that FT , also depends on nij , since nij specifies the application configu-

ration that determines the end-to-end response time of the application. In the next section

we present a model of a multi-tier application which enables us to capture the effect of nij

on FT .

4.3 Application Model

In this section we model the multi-tier application as a network of queues. Our first

model of multi-tier application is a chain of tiers where each tier is modeled as single

M/G/1-PS queue (see Figure 4.2). Each tier carries out a specific function, for instance, a

web-application server or a database server etc. In this work we assume single customer

class.

T1 T2 Tn...

λ1 λ2 λn

µnµ1 µ2

λD =

Figure 4.2: Multi-tier application model

Let Ai denote the ith tier of the application, λi the average arrival rate of incoming

requests at the ith tier, and µi the average service rate ∀i = 1 . . . N . We define the total

response time of a request as the time between when it enters the first tier and the time

when it leaves the last tier. Note that different λi for each tier handles the case where one

tier issues multiple requests to the lower tier.

51

Let Tj be a random variable representing the response time for tier j, then the end-to-

end response time of a request is

T =
N
∑

j=1

Tj. (4.3)

Let fT (t) be the probability density function (PDF) of the response time T and LT (s) =

L(fT (t)) be the Laplace transform of the PDF of response time T then

LT (s) =
N
∏

j=1

LTj
(s), (4.4)

where LTj
(s) is the Laplace transform of the PDF of Tj . Thus the PDF of end-to-end

response time, fT (t), can be computed by taking the Laplace inverse of (4.4)

fT (t) = L−1

(

N
∏

j=1

LTj
(s)

)

. (4.5)

To solve (4.5) we require the PDF of the random variable Tj . Unfortunately there are

no exact formulas for response time distributions of an M/G/1-PS queue. We, therefore,

present an approximation for the same in the next section.

4.4 Estimating End-to-end Response Times

In this section we describe our approach to estimate the PDF of end-to-end response

time of a chain of M/G/1-PS queues. In order to do that we estimate the PDF of response

time of a single M/G/1-PS queue and then leverage (4.5) to compute the end to end response

time.

Section 4.4.1 describes our method of approximating the response time distribution

of a M/G/1-PS queue. The result depends of the definition of the PDF of service-time

distribution of the queue and we describe a mechanism to approximate the same for any

real-life system in section 4.4.2. Section 4.4.3 provides a closed form equation of the end-

to-end response time of the chain of queues.

52

4.4.1 Approximate Response Time Distribution

The exact form of the response time distribution for the M/G/1-PS is not generally

known [120]. Thus we approximate it with the expected conditional response time distri-

bution as described below. Let T denote the job response time, and X its service time; then

the expected conditional response time, conditioned on the service time being x is

τ = E[T |X = x] =
x

1− ρ
, (4.6)

where ρ = λ/µ is the average load.

We approximate T by τ . Since τ is a function of X ,

Fτ (t) = P [τ ≤ t] = P [X
1−ρ

≤ t] = P [X ≤ t(1− ρ)],

FT (t) ≈ Fτ (t) = FX(t(1− ρ)), (4.7)

It has been observed in real-life systems that job service time distributions exhibit heavy

tailed behavior [30]. Heavy tailed distributions have very high variance; high variance in

service time distribution of jobs makes it a dominant factor in determining the behavior

of response time distribution. Approximation proposed in (4.7) captures the variability of

service time and will be particularly useful in such situations. We discuss the impact of

variability of service time in section 4.7 and demonstrate that our approach shows signifi-

cant improvement.

4.4.2 Approximate Service Time Distribution

In real systems, like computer clusters and web servers, there is a strong evidence that

job service times are highly variable [30]. Some heavy tailed distributions do not have a

closed-form Laplace transforms, e.g., the Pareto distribution, while those possessing con-

venient Laplace transforms might lead to an intractable complex function after undergoing

an N th order convolution in (4.4). We, thus, need a distribution function, which can closely

53

approximate a service time distribution observed by a real world application and leads to an

easily invertible Laplace transform even after undergoing higher order convolutions. In this

section we describe such a distribution function and also present an algorithm to approxi-

mate the service time distribution from the service-time histogram; service time histograms

can be easily collected from the server either through logs or through off-line profiling.

We express the service time distribution as a mixture of K shifted exponentials, as

shown in (4.8). The motivation behind this is two fold: i.) the web application workload

is a mix of different job types [67, 24]. Capturing the service time distribution as sum

of shifted exponentials, essentially, means that job-size of each job-type is exponentially

distributed but each job-type has a different mean job-size. ii.) The formulation leads to a

Laplace transform that is easy to invert.

Formally, we want to fit a mixture of shifted exponentials,

fX(x) =
K
∑

k=1

αk1{x ≥ tk}µke
−µk(x−tk), x ≥ 0 (4.8)

to data x1, x2, . . . , xn, where 1{P} is one if predicate P is true and zero otherwise. This

involves inferring the number of shifted exponentials, K, the shifts of each exponential,

{tk}, the mix proportion of the shifted exponential, {αk}, and their average rates {µk}

from the data. Let us begin by assuming that K and t1, . . . , tK are already known. In other

words we want to find the best fit for {µk} and {αk}; we perform maximum likelihood

estimation using the expectation-maximization algorithm (EM).

4.4.2.1 EM algorithm for estimating mixture parameters

Suppose we know which shifted exponential distribution each observation xi belongs

to, in other words suppose we have yi ∈ {1, . . . , K} available to us where yi ∈ {1 . . . K}

represents the particular shifted exponential distribution. Then the parameter values that

maximize the log likelihood function can be computed as:

54

αk =
1

n

n
∑

i=1

1{yi = k}/n, k = 1, . . . , K (4.9)

1/µk =

∑n

i=1 1{yi = k}xi
∑n

i=1 1{yi = k}
, k = 1, . . . , K (4.10)

EM is an iterative algorithm that infers yi as needed. Suppose µ
j
k and α

j
k are the estimates

at the end of the j-th iteration. The next iteration consists of an expectation step followed

by a maximization step as given below.

Expectation. Let yi,k denote the probability (expectation) that sample xi belongs to the k-th

shifted exponential. It is given as

yi,k = P [Yi = k|X = xi]

=
α
j
k1{xi ≥ t

j
k}µke

−µ
j
k
(xi−t

j
k
)

∑K

l=1(α
j
l1{xi ≥ t

j
l }µle

−µ
j
l
(xi−t

j
l
))

(4.11)

∀i = i, . . . , n and k = 1, . . . K. Note that yi,k = 0 when xi < t
j
k.

Maximization. Having computed yi,k, we now update our estimates of αk and µk. This is

done by using modified versions of (4.9) and (4.10).

α
j+1
k =

1

n

n
∑

i=1

yi,k, k = 1, . . . , K (4.12)

1/µj+1
k =

∑n

i=1 yi,kxi
∑n

i=1 yi,k
, k = 1, . . . , K (4.13)

This is referred to as the maximization step because the above estimates maximize the

likelihood given the current values of {yi,k}.

These steps are repeated until the parameters converge; {α0
k} and {µ0

k} are the initial

values, which can be computed as mentioned in the section below.

4.4.2.2 Algorithm for approximating service-time distribution

We use an iterative approach to determine the best number of exponentials K, and then

determine tk, µ
0
k, and α0

k, to initialize the EM algorithm, (4.11), (4.12) and (4.13).

55

The basic idea underlying the algorithm, as outlined in as mentioned in [67], is to iter-

atively run a k-means clustering algorithm for every value of k = 1 . . . Kmax and compute

the following three metrics1: coefficient of variation2 of intra-cluster distance (Cintra), coef-

ficient of variation of inter-cluster distance (Cinter), and ratio of intra-cluster to inter-cluster

coefficient of variation (βcv). The value of βcv drops as number of clusters increase and

will be minimum (i.e. zero) when number of clusters is equal to the total number of points.

We find that K, where the rate of decrease of βcv falls below a threshold (or the slope goes

above a negative threshold value).

Having computed K, and the cluster centers ek, we compute initial estimates of the

mean service rate {µ0
k} and mixture fraction (α0

k) as follows:

µ0
k =

1

ek − tk
, α0

k =
number of points in cluster

total number of points
. (4.14)

We set the shifts to be equidistant from from two neighboring cluster centers, i.e., ti =

(µi−1+µi)/(2µi−1µi), ∀i = 2 . . . K. However, t1 = 0, i.e., the shift for the first exponential

is zero (details of the algorithm can be found in [90].

4.4.3 Approximate Application Response Time Distribution

The PDF of the end to end response time of N -tier application is obtained using (4.8)

and (4.7) in (4.5) as

fτ (t) = L−1

N
∏

j=1

Kj
∑

k=1

αjkµ
′
jke

−st′j

(s+ µ′
jk)

 , (4.15)

where for each tier j = 1, . . . , N , service times are modeled as mixtures of Kj shifted

exponentials and their density functions are expressed using (4.8); we rewrite the result for

the jth tier for the sake of completeness:

1the metrics are computed as mentioned in [67]

2Coefficient of variation or variation coefficient is defined as a ratio of the standard deviation to the mean,

i.e. Cv = σ/µ;

56

fXj
(x) =

Kj
∑

k=1

αjk1{x ≥ tjk}µjke
−µjk(x−tjk). (4.16)

After inverting (4.15), the final expression of fτ (t) takes the following form:

fτ (t) =

K1
∑

i1=1

. . .

KN
∑

iN=1

(

1{t ≥ t′}
∏N

j=1 αjijµ
′
jij

×

∑N

l=1 rle
−µ′

lil
(t−t′)

)

, (4.17)

where µ′
jij

= µjij(1− ρj), t
′ =

∑N

j=1 tj,ij/(1− ρj), and rl = 1/
(

∏N

k #=l(µ
′
kik

− µ′
lil
)
)

.

Note that αjij and µjij are the parameters of the kth shifted exponential of the jth-tier

(as shown in (4.16)); ρj is the average utilization of the jth tier, and rj is the jth residue,

where j = 1, . . . , N .

Note that the expression in (4.15) does not involve higher order poles3 because none of

the rates µlil is ever equals any of the µjij . This becomes especially helpful in inverting

the Laplace transform as absence of higher order terms in denominator leads to a simple

computation of partial fractions.

The final expression of fτ (t) in (4.17) is, essentially, a product of sums of the shifted

exponentials, which is easily readable in (4.15). This means that the fτ (t) will be expressed,

in total, by
∏N

j=1 Kj terms; for example let Kj = a, ∀j = 1 . . . N , then fτ (t) will be

expressed as a sum of aN terms. It is easy to see that number of terms grow exponentially

with number of tiers. Fortunately, real life systems do not have more than three or at most

four tiers and thus fτ (t) is easily computable.

3If for some l, j, µlil = µjij , we slightly perturb the starting µ0
lil

for tier-l by adding a small random

number and re-run the EM algorithm for that tier-l

57

4.5 Finding Near optimal Homogeneous Configuration

In this section we present a solution to the the resource optimization problem, as ex-

pressed by (4.1) and (4.2), but with only one type of server, M = 1 (homogeneous setting).

We substitute the approximate response time of an M/G/1-PS queue, i.e. fτ (t) as shown

in (4.17), in (4.2) to obtain:

Fτ (TD) =
∑K1

i1=1 . . .
∑KN

iN=1

(

1{TD ≥ t′}
∏N

j=1 αjijµ
′
jij

∑N

l=1
rl(1−e

−µ′
lil

(TD−t′)
)

µ′

lil

)

≥ θ, (4.18)

where µ′
jkj

and rj are the same as in (4.17) while t′ =
∑N

j=1 tj,ij/(1− ρj).

Thus the problem of minimizing (4.1) reduces to the problem of maximizing ρj (∀j =

1, . . . , N) such that Fτ (TD) ≥ θ, where Fτ (TD) is given by (4.18). As this is an N -

dimensional non-linear maximization problem, it is not easy to solve. However, the prob-

lem complexity is significantly reduced by assuming same utilization at each tier4, i.e.,

ρ1 = ρ2 = . . . = ρN = ρ.

It should be noted that it is desirable to have a balanced utilization at each tier in real-life

systems. In practice, administrators often use a rule of thumb to bound the max utilization

of servers of all tiers to avoid performance problems and outages [80].

Consequently, (4.18) reduces to an inequality in a single variable, namely ρ.

Fτ (TD) =
∑K1

i1=1 . . .
∑KN

iN=1

(

1{TD ≥ t′}
∏N

j=1 αjijµjij

∑N

l=1

r′
l
(1−e

−µ′

lil
(TD−t′)

)

µlil

)

≥ θ, (4.19)

4The constraint reduces the solution search space and thus the final solution is not guaranteed to be an

optimal solution as it could result into a slightly over-provisioned system.

58

where, t′ =
∑N

j=1 tj,ij/(1− ρ), and r′l = 1/
∏N

k #=n(µkik − µlil). We solve for the maximum

value of ρ, say ρ∗, by numerically solving (4.19) as an equality.

4.5.1 Computing the Application Configuration

In practice, large scale applications have each of their tier replicated for scalability as

depicted in Figure 4.3. The idea is to be able to handle increasing number of requests

while conforming to the SLA. In an ideal situation an application-tier’s ability to process

the number of requests increases linearly with number of its replicas, which means that

if an application or application-tier with a single replica had a service rate of µ then K

replica version of application-tier will have a request rate of Kµ. We have assumed a linear

scaling in this work but that is not a limitation and any kind of scaling function can used

in the technique to obtain the number of replicas at each application-tier. We have used

replicas and servers interchangeably because we have assumed dedicated hosting model.

T1 T2 Tn
T1 T2 Tn
T1 T2 Tn
A1 A2 An...

λ1 λ2 λn

µnµ1 µ2

λD =

Figure 4.3: Multi-tier application model

We use ρ∗ to compute the number of servers at each tier, i.e. nij . In the homogenous

setup i = 1 and thus we solve for nj, j = 1 . . . N . Let λj and µj be arrival and service

rates respectively, at tier j then nj = *λj/(ζρ
∗µj)+, where ζ is the scale factor, which can

be chosen heuristically and

µj =

Kj
∑

i=1

αji

(1 + µjitji)e
−µjitji

µji

. (4.20)

The pseudo code of the algorithm for finding the application configuration in homoge-

nous setup is outlined in [90].

59

4.6 Cost Efficient Heterogenous Configuration

We extend the solution approach described in Section 4.5 to be able to generate a cost

efficient configuration in a heterogenous setting.

The basic idea underlying our approach is to greedily search for a low cost configura-

tion which has a high utilization. At a high level the algorithm is iterative involving the

following three steps at each iteration: 1.) creating a single hybrid-server from a given

hybrid-configuration for each tier, 2.) solve the homogeneous configuration problem for

the hybrid-server, 3.) translate the solution for hybrid-server into a heterogenous configu-

ration, and the iterations are used to search for new hybird-configuration with lower cost

and higher utilization. Figure 4.4 shows the block diagrammatic representation of the cost

effective heterogeneous configuration algorithm.

Model

Hybrid

Config

Model

Cost

Comparator

ρn

Heterogeneous

Config

Hybrid

Server Hetero

Config

Generator
βji

ILP

1

2

3

4

Accept

NO

YES

Figure 4.4: Functional block diagram of heterogeneous configuration algorithm

4.6.1 Hybrid server

Inorder to reuse our methodology for finding the near optimal number of servers in ho-

mogeneous setting, it is imperative that we approximate each hybrid configuration at each

tier by a single server; we call it a hybrid-server. We construct the service time distribution

of the hybid-server for each tier as a proportional mixture of the service time distribu-

tions of the servers involved in the heterogeneous configuration. Let n = {ni} denote the

hybrid-configuration where ni, i = 1, . . . ,M , is the number of servers of type i. Then the

hybrid-server’s service-time distribution function for tier-j is expressed as

60

f ′
j =

M
∑

m=1

βjmfjm, (4.21)

where fjm is the service-time probability density function (PDF) of the mth-server-type at

jth-tier and f ′
j is the PDF of the hybrid-server for tier-j; βjm is the mixing proportion of

the component server m for tier-j and is computed using the formula

βjm =
nmµjm

∑M

j=1 nmµjm

. (4.22)

We explain our procedure of creating a hybrid-server with the following example: sup-

pose we have two servers, say s1 and s2, with corresponding average service rates at tier-j

as µj1 = 50 and µj2 = 100, respectively. We construct a single hybrid-server, say sh,

by proportionally mixing the component shifted-exponentials of each s1 and s2. Let the

configuration be one-server of each type, i.e. n = [1, 1]; then the mixing proportions using

(4.22) is βj1 = 1/3 and βj2 = 2/3, and the final service-time distribution of the hybrid-

server for the jth tier is f ′
j =

(

fj1
3
+

2fj2
3

)

.

4.6.2 Heterogeneous configuration

Once we obtain the optimal configuration for a given hybrid-server, and given workload

and percentile, we translate this solution configuration to the corresponding heterogenous

server configuration; this is done by reversing the steps of creating the hybrid-server. Let

us assume that the servers are indexed in increasing order of their average service rate; i.e.

µ1 ≤ µ2 ≤ . . . ≤ µM ; let n′
j be the number of hybrid-servers at tier-j, then the number of

servers of type-i for tier-j is nji = βjin
′
j/(µi/µ1).

4.6.3 Searching for a new hybrid-configuration

The cost of the new heterogenous configuration, computed in the step above, is eval-

uated using the prices of the servers. If the cost is less than that of the current solution

61

configuration, then this new configuration is accepted else it is dropped. The new config-

uration is again fed to the model, and its utilization ρ∗ is evaluated for the desired arrival

rate λD. We then try to search for a new hybrid-configuration which has higher utiliza-

tion but lower cost then the current-configuration; the new utilization ρn = (ρmax + ρl)/2,

where ρmax is maximum utilization of the hybrid-server and ρl = ρ∗. The new hybrid

configuration is searched for using the following ILP solved for each tier:

minimize
M
∑

i=1

njipi, (4.23)

subject to the constraint
M
∑

i=1

njiµji > λD/ρn. (4.24)

Note that if the currently suggested configuration is not accepted we continue to search

for higher ρ∗. The algorithm stops when ρn− ρmax is less than a pre-decided threshold; the

pseudo code is outlined in [90].

4.7 Experimental Evaluation

In this section we demonstrate the efficacy of our approach. We have implemented our

analytical method using MATLAB R©. For solving the ILP, we have used lpsolve version

5.5.2.0 and have used mxlpsolve MATLAB Interface version 5.5.0.6 for calling lpsolve

from within the MATLAB environment.

We begin by showing the effectiveness of the service-time approximation algorithm on

lognormal5 distribution with different coefficient of variations (Cv). Thereafter we evalu-

ate the goodness of the approximation of the response-time distribution for a 1-tier and a

2-tier system by comparing the response times computed using (4.17) with those obtained

using a multi-tier application-simulator described below. Finally we do a case-study of

5PDF of a log normal distribution is expressed as f(x, µ,σ) = 1
xσ

√
2π
e−((ln(x)−µ)/(

√
2σ))2 , where mean

is eµ+σ
2/2

62

provisioning of a two-tier application for a SLA specified as a threshold on the 99th per-

centile of response time. We evaluate the effectiveness of our approach by computing the

99 percentile of response times obtained using a two-tier application-simulator configured

according to the capacity decisions provided by our approach; note that the simulator de-

picts an ideal version of a multi-tier application which we analytically model as a chain

of M/G/1-PS queues. We also evaluate the effectiveness of our approach, using a metric

called provisioning error (described in Section 4.7.4), by comparing against the two other

baseline approaches, which model the multi-tier application as an open tandem network of

M/M/K-FCFS queues.

4.7.1 Multi-tier Application Simulator

We implemented a simulator for the PS queue in MATLAB R©. It takes as input an array

of request arrival instants and size of each request (in terms of service time) and outputs

the request departure instants. We used this queue simulator to simulate a multi-tiered

application by feeding the output of first queue to the input of the next queue.

To simulate an application with replicated tiers, we have implemented a loadbalancer,

as shown in Figure 4.1, which takes the incoming requests from the previous tier and dis-

tributes it to the next tier according to a specific load distribution policy. It also does the

necessary book-keeping to track each request across various tiers for computing the end-to-

end response time. We have implemented a random loadbalancing policy, i.e. loadbalancer

distributes the requests at random but ensures that each server gets the same load, i.e. ρ∗

as computed in section 4.5. We have assumed an ideal loadbalancer, which means that

it introduces no queueing and processing delay. Note that this is not a limitation of our

approach, as our approach can easily account for loadbalancer by considering it as another

tier and its capacity can also be computed, which is often needed in a real setup.

63

4.7.2 Service Time Approximation

We have implemented the EM algorithm (in MATLAB) for finding the parameters of

mixture of shifted exponentials, namely αi, µi in (4.8), using the E and M steps mentioned

in Section 4.4.2.1. The shifts and initial values of parameters are estimated using the al-

gorithm outlined in Section 4.4.2.2. We use MATLAB’s implementation of KMeans and

have kept Kmax = 20 in all our experiments, which means that we search for the number of

shifted exponents from 3 till 20. We evaluate the accuracy of CDF approximation using rel-

ative percentage error defined as ε(x) = (Faprx(x)− Fsim(x))/(Fsim(x)), where Faprx(x)

and Fsim(x) are the values of approximate and actual CDFs, respectively, evaluated at x.

To evaluate the effectiveness of our approach in approximating highly variable distri-

bution, we approximated the PDF a log-normal distribution with same mean rate of 20

but with a coefficient of variation of 100 (Cv = 100); it was expressed using 10 shifted

exponentials. Figure 4.5a shows the CCDF of the actual distribution in red while our ap-

proximated distribution is shown in blue.

The CCDF in Figure 4.5 highlight the approximation of the tail of the distribution by

plotting the 1 − F (x) in a log log scale. We observed that the approximation shows a

relatively high error at low percentiles (as high as 21%) but displays low errors at the tail,

with errors less than 1% at 95 percentile. This is because, that at low percentiles the number

of exponentials available to approximate the distribution are less but as we approach the tail

of the distribution a large number of exponentials contribute towards the approximation of

the PDF and thus we observe much greater accuracy.

Another aspect of our algorithm is K, i.e. the number of exponentials required to

approximate a distribution. We conducted a large number of experiments on various data

sets with Cv ranging from 1 to 100. In our experiments we found that K its average values

starts at 14 for Cv = 1 and slightly decreases to an average value of 10 for Cv = 100. It

should be noted that we are testing our approximation scheme for a smooth distribution

function, but the scheme has been designed keeping a web application in vision, which has

64

only a limited number of request types at each tier and our approach is tuned to estimate

this number as K.

(a) Lognormal with Cv = 100

Figure 4.5: Figure shows the log log plot of 20,000 data points sampled from lognormal

distribution with Cv = 100; the simulated CDF is shown in red and approximate in blue.

In summary, the service time approximation approach offers very low errors, i.e. less

than 1%, in estimating the tail of a distribution.

4.7.3 Response Time Approximation

In this section we describe the effectiveness of our approach of approximating the end

to end response time of an application modeled as a chain of M/G/1-PS queues.

We evaluated the goodness of the response-time approximation we compare the re-

sponse time computed by our approach with that obtained from the simulator described

above. We show the results for for a 2-tier setup by plotting the response time CDFs for

our approximation and simulation. We have sampled service times from a lognormal dis-

tribution with a Cv = 10.

We generate the workload which has exponential inter-arrival times with λ = 25 and

service times sampled from a lognormal distribution with µ = 50 at each tier. The simu-

lation results are considered exact since the simulation model is an exact representation of

the queueing network under study.

65

(a) CDF RT of 2-tier app

Figure 4.6: Figure shows the CDF plot of actual response time distribution in red and

approximated using our approach in blue for a heavy-tailed service-time distribution with

µ = 50 and cv = 10

The approximated response time, using our approach, exhibits high accuracy, as can

be seen from Figure 4.6. The jagged tail of simulation result is because of less number of

data points.

4.7.4 Provisioning in a Homogenous Setup

In this section we evaluate the effectiveness of our approach, outlined in section-4.5, in

finding the homogenous configuration for a two-tier application, where each tier is repli-

cated using same type of servers.

For a given SLA, expressed as a cutoff threshold TD on the 99th percentile of end to

en response time, we fix a service time distribution and for different arrival rates compute

the number of servers required at each tier of the application. We, then, run the replicated

application simulator with these number of servers and obtain the end to end response

time distribution for the provisioned application. To evaluate the goodness of provisioning

decisions made, we define a metric called provisioning error, which essentially calculates

the error in the 99th percentile response time observed from the simulator, i.e. Tscheme, and

TD. Formally, εscheme = (Tscheme − TD) ∗ 100/TD. To do a comparative evaluation of our

66

technique, we have implemented two baseline provisioning algorithms based on M/M/1-

FCFS queues, namely per-tier-exp and end-to-end-exp. The schemes are described below:

• per-tier-exp (pte) : In this scheme we assume the knowledge of average proportion

of time spent by a request at each tier. In other words, let T be the total time spent

by a request in the system and Ti be the time spent at tier i; then, pte assumes the

knowledge of E[δi], where δi = Ti/T . We model each tier as an M/M/K-FCFS

queue and again approximate multiple servers by a single server, thus each tier can

be approximated by an M/M/1-FCFS queue. For this system the response time is

exponentially distributed with parameter µ(1 − ρ). Finally, as in Section 4.5, for

each tier j, we solve for ρ∗ with TD = δjT and compute nj = *λj/(ρ
∗µj)+

• end-to-end-exp (ete): We developed this scheme completely along the lines of our

scheme, however assuming an M/M/K-FCFS queue based model instead of an M/G/K-

PS queue based model. The corresponding version of (4.19) is:

FT (t
′) =

N
∑

j=1

rj(1− e−µ′

jt
′

) ≥ θ, (4.25)

where t′ = TD, rj = 1/
∏N

k #=j(µ
′
k − µ′

j) and µ′
j = µj(1 − ρ). The provisioning

algorithm for homogenous setting is outlined in [90].

We ran the experiment with TD = 0.4s, µ = 50 and Cv = 3. We increased the workload

from λ = 40 rps to 240 rps and for each λ we computed application capacity using each of

the three algorithms. For pte we used δ1 = δ2 = 0.5. The results are shown in Table 4.1.

A Positive value of ε means that some or all of the tiers of the application were provi-

sioned with fewer servers than required (we call it under-provisioning); however, a negative

value means the opposite (we call it over-provisioning). Thus a positive ε is an SLA viola-

tion, while a negative ε is not. However, a negative ε does suggests a possibility of finding

a more cost efficient solution. Note that our scheme reports a worst case provisioning error

67

λ % εour % εete % εpte Configour Configete Configpte
40 -3.63 16 15.2 [3;3] [2;2] [2;2]

80 -6.17 48.1 27.9 [5;5] [3;3] [4;3]

120 -0.235 94.3 38.5 [8;7] [4;4] [5;5]

160 -2.25 91.6 49.9 [9;9] [5;5] [6;6]

200 -2.17 140 40.7 [12;12] [6;6] [8;8]

240 2.57 91.3 53.7 [15;15] [8;8] [9;9]

Table 4.1: Homogeneous configuration suggested by the three schemes and their provision-

ing errors. Note that, unlike the positive error, negative value of ε is not an SLA violation.

of 2.57% as opposed to the worst case under-provisioning of 140% by ete and 53.7% by

pte.

In summary: for a single server type scenario (i.e. homogeneous setup), application

provisioned by our scheme reports worst case provisioning error of 2.57%, while the base-

line approaches shows as high as 140% provisioning error

4.7.5 Effect of Variability of Service Time

In this section we evaluate the effect of variability of service-time distribution on three

provisioning schemes, namely ours, pte and ete.

For a fixed λ = 160, we computed the capacity of the two tier application, in a ho-

mogenous setting, using all the three schemes. We obtained the service times for both the

tiers by sampling from a lognormal distribution with a fixed µ of 50 rps, while a varying

the standard deviation σ. We vary σ so that we can control Cv, ranging from 1 to 10.

The computed capacities, by each of the schemes, were again tested using the application-

simulator. Their percentage provisioning errors were computed and plotted in Figure 4.7.

Figure 4.7, shows that percentage provisioning error for ete and pte increases as a func-

tion of Cv, while maintaining the average service-rate constant, as opposed to our scheme,

which shows a worst case provisioning error of 11%. The main reason behind this is that

both ete and pte schemes are unable to capture the tail of the service-time distribution and

thus cause severe under-provisioning.

68

Figure 4.7: Variation in provisioning error with cv

Thus we conclude that our scheme captures the tail of service-time distribution and is

able to provision for the 99-percentile capacity with a max provisioning error less than

11% as opposed to other schemes which severely under-provision the capacity with the

max-provisioning error of 196 %

4.7.6 Cost Efficient Server Configuration in a Multiple Server-type Environment

Here we demonstrate the effectiveness of our heterogenous provisioning algorithm in

finding a cost-efficient solution when multiple types of servers are available. We have kept

the time threshold TD = 0.4-sec and varied the desired load from λ = 40-rps to λ = 240-

rps. We have considered four types of servers, namely small (S), medium (M), large (L),

and extra-large (XL), with their corresponding average service rates being 50, 100, 150 and

200 rps, respectively. The coefficient of variation of service times for requests at each of

the tiers is Cv = 9.

We assume linear pricing as depicted in Table 4.2a. The results of provisioning al-

gorithms in homogenous and heterogenous settings are shown in Table 4.2b. We call

69

ServerType Small Medium Large XLarge

Price 0.02 0.04 0.06 0.08

(a) server prices

λ % εhomo % εhetro Confighomo Confighetro %Saving

40 1.63 -40.9 [9;9] [0 1 0 0;0 1 0 0] 77.78

80 1.01 -35.7 [17;15] [0 0 0 1;0 0 1 0] 78.13

120 1.16 -22.9 [26;23] [0 0 2 0;0 1 1 0] 77.55

160 1.06 -23.5 [34;30] [0 0 1 1;0 0 2 0] 79.69

200 1.09 -21.5 [43;47] [0 0 3 0;0 1 2 0] 81.11

240 1.04 -9.82 [51;45] [0 0 2 1;0 0 3 0] 80.21

(b) 99-percentile provisioning and cost benefit

Table 4.2: Heterogeneous configuration suggested by the three schemes and provisioning

error of each scheme. Note that a negative ε only means over-provisioning and is not an

SLA violation

the computed capacity configurations in the homogenous and heterogeneous settings as

Confighomo and Confighetro, respectively. Only the “small” server-types were used in

Confighomo, while all the available server types we used to obtain Confighetro. As in pre-

vious evaluations, we again test the computed configuration using the multi-tier application

simulator.

Each configuration is N × M dimensional matrix depicting the number of servers of

each type; each row j depicts the configuration of the jth tier, while each column tells the

number of servers for each type: for e.g. Confighomo = [9; 9] means 9-small servers at

both the tiers, while Confighetro = [0 1 0 0;0 1 0 0] means 0-small, 1-Medium, 0-large and

0-x-large server at both the tiers. The “%Cost Saving” is computed as a percentage of cost

of homogenous configuration, i.e.
Cost(Confighomo)−Cost(Confighetro)

Cost(Confighomo)
.

We make following important observations: 1) the percentage provisioning error for the

heterogeneous scheme is as low as −41%, which means that not-only is this configuration

cost-efficient but it also provides low average response-times (because negative provision-

ing error means the system is probably over-provisioned). The small positive error in the

case of homogeneous configurations is because of approximation used in section 4.5.1 and

70

can be easily corrected by setting ζ < 1, i.e. a sublinear scaling. 2) it is better to use larger

servers that fit the same cost and average service-rate; in other words its better to use a

small number of large servers instead of a large number of small servers.

In summary, it is better to use a small number of large servers instead of a large number

of small servers for high percentile provisioning ii) Cost efficient heterogenous algorithm

offers server configurations with cost savings as high as 81% and also offer a configura-

tions with lower average response-times.

4.8 Evaluation on Private Cloud

In this section we describe an experimental investigation for provisioning for a per-

centile SLA in a private cloud setup. Our goal is to evaluate our provisioning algorithm

under situations which are typical to multi-tier web applications deployed in a datacenter

or private/public cloud environment.

4.8.1 Private Cloud Setup

In this section we provide the necessary details of our experimental testbed, i.e private

cloud, and necessary steps before we can perform server provisioning.

4.8.1.1 Web Application

We used TPC-W for our experiments. TPC-W is a multi-tier transactional web bench-

mark that represents an e-commerce web application – an online bookstore – comprising of

a web server tier and a database tier. It simulates the activities of a retail store website using

14 different type of pages for web interactions; each of these pages are created dynamically

by the web server using differing amounts of data stored in the database tables. TPC-W

benchmark defines three different mixes of web interactions, namely browsing, shopping

and ordering, each varying the ratio of inventory browsing related web pages and ordering

related web pages. It applies the workload mixes via remote browser emulator (RBE).

71

We used the Java implementation of TPC-W [15]. The web application has following

two-tiers: i.) Web server tier based on Apache Tomcat servlet container 5.5.26 ii.) database

tier based on MySQL 5.0.77. We deployed each of the tiers on separate dedicated servers.

We performed round robin load balancing between replicas of web server tier using a ded-

icated loadbalancer server on HAProxy [47] on a server as a dedicated load balancer. We

used round robin load balancing at the database tier by setting up a master-slave replica-

tion configuration of MySQL servers; we instrumented TPC-W to use the replication aware

MySQL JDBC connector version 3.1.12.

4.8.1.2 Private Cloud

We constructed private cloud using OpenNebula [75] on Xen/linux-based cluster con-

sisting of two types of servers: 8-core 2GHz AMD Opteron 2350 servers and 4-core 2.4

GHz Intel Xeon X3220 systems. All machines run Xen 3.3 and Linux 2.6.18 (64bit kernel).

Our platform is assumed to support small and large servers, comprising 1 and 4 cores, re-

spectively. These are constructed by deploying a Xen VM on the above mentioned servers

and dedicating the corresponding number of cores to the VM (by pinning the VM’s VCPUs

to the cores)

4.8.1.3 Profiling servers for web server tier

For profiling the servers for the first tier, i.e. web-server tier, we instrumented Tomcat

such that it reports per-request service times, along with the other default stats. We profile

each server type (e.g. small and large) by provisioning an instance of that server-type and

deploying the first tier of TPC-W on it. We then connect it to an already installed TPC-W

database installed on a large server type instance. We then issue the browsing workload

using the TPC-W clients (i.e. RBEs) for a duration of 35 mins and collect the service times

from the tomcat server logs.

72

4.8.1.4 Profiling servers for database server tier

Profiling the servers for the second tier of TPC-W (i.e. the database tier) was in two

steps: firstly, we collect the 35-min query logs from MySQL server, executing the TPC-W

workload; then for each server type we slowly replay each of the SQL query and record

their execution time as service times.

4.8.2 Percentile Based Capacity Provisioning on Private Cloud

Given λD and TD, we outline the high level steps required to compute application ca-

pacities for both homogenous and heterogenous setup. In both the cases we assume to

require an SLA where 99th percentile of the end-to-end response time must be less than 0.5

seconds. We follow the following sequence of steps

Step 1: Estimating service time distributions: We use the service times collected during

the offline profiling step and use the service time approximation algorithm – as outlined in

[90].

Step 2: Estimating capacity in a homogenous/Heterogenous setup: We used the single

core virtual machines (i.e. small) in our homogenous setup. Load across multiple web-

server replicas was distributed using a HAProxy based load-balancer, however, in the case

of database tier, we used the master-slave setup. In this setup all the wites are sent to the

master, whereas the reads are load-balanced.

We test our approach for both homogenous and heterogeneous environment. For ho-

mogenous setup, we choose small server type for this case and assume TD = 0.5sec. To

test the provisioning setup for large change in workload, we varied λD from 15 rps to 90

rps. For each λD, using our approach, we computed server capacities for each of the tier of

TPC-W. We ran the setup for 35-mins and in the end we collected the end-to-end response

times from the first tier (i.e. web-server tier). We ran our heterogeneous provisioning algo-

rithm on the same setup and found that it gave a different configuration, only for λD = 90.

Table 4.3a provides the details of the final configuration and also the 99th-percentile of the

73

end-to-end response time details of the experiment. We compute the percentage provision-

ing error, εour, as mentioned in 4.7.4.

λD 99th % % εour Configour
15 0.361 -27.8 [1;1]

30 0.459 -8.2 [1;2]

45 0.488 -2.4 [1;3]

90 0.512 2.4 [2;7]

90 0.46 -8.0 [2,0;2,1]

(a) Server Provisioning

Server Type small large

Prices ($) 0.085 0.34

(b) Server prices

Table 4.3: Homogenous and heterogeneous provisioning decisions. Note that a -ve εour
only means that the system is over-provisioned and thus SLA will not be violated

We found that server provisioning by our approach keeps provisioning error below 3%.

The positive 2.4% error at λ = 90 for homogenous setup could be because database tier

does not scale linearly as the master database server gets overloaded by replicating the

updates to each of the 6 slaves. We see that the server provisioning for the heterogenous

environment, is not only 11.11% cheaper than the corresponding homogenous server setup

but also has a lower 99th response time.

In summary, our algorithm effectively accurately captures the service time distributions

and provisions the two-tier implementation of TPC-W with the worst provisioning error of

3%. Also, we, again, find that its better to use bigger server for high percentile provision-

ing.

4.9 Related work

A number of efforts have modeled internet applications. Modeling single tier has got-

ten much of the attention. Doyle et al. propose a queuing model for static content [36],

Menasce uses a queuing model to model the web servers [66], while Abdelzaher et al. in

[1] use classical feedback control theory to model the bottleneck tier for providing perfor-

mance guarantees for web applications serving static content, while Chen et al. in [21] use

a machine learning technique for provisioning the database tier.

74

Ranjan et al. [86] use a G/G/N queuing model to compute the number of servers neces-

sary to maintain a target utilization level. This strategy is shown to be effective for sudden

increases in request arrival rate. Other efforts have employed M/G/1 queuing models in

conjunction with offline profiling to model service delay and predict performance [99] but

they do not provision for response time percentile and neither do they address the problem

in heterogenous environment. The approach in [107] formulates the application tier server

provisioning as a profit maximization problem and models application servers as M/G/1/PS

queuing systems; the approach only considers the impact of different number of end-clients

(and thus, request volumes)

Benanni et al. in [10] employ approximate mean-value analysis (MVA) to develop

an online provisioning technique for multiple request classes. Urgaonkar et al. in [103]

develop a queuing network model for multi-tier Internet applications having request classes

with differentiated QoS. Zhang et. al. [121] use a multi-class model to capture the dynamics

of workload by employing a fixed set of 14 predefined transactions-types and leverage it to

predict the performance of a multi-tier system.

There has been some work for finding the pdf of response time, for e.g. Muppula et

al. in [68] derive the response time for a closed queuing network using pteri-nets and

sojourn time distribution was calculated for large Markov chains in [48]. The approach

leads to an inversion of a complex Laplace transform. Xiong et al. in [118] perform the

provisioning of a multi-station setup for a given percentile bound. The model the system

as a open tandem network of M/M/1-FCFS queues and compute the response time PDF by

numerical inversion of its Laplace transform; they assume that each station is serviced by

same type of servers.

In contrast to these efforts, our work automatically characterizes service time distribu-

tion as a mixture of shifted exponentials and leverages this to estimate the response time

distribution. The estimated distribution is used to estimate the capacity of the system which

assists in finding a near optimal solution to the provisioning problem in homogeneous en-

75

vironment. Further, while most of these efforts have focused on a single server type en-

vironment (i.e. homogeneous), we extend our approach for a cloud specific heterogenous

environment as well. We developed a full prototype implementation and our experiments

were conducted on an actual private cloud.

4.10 Conclusion

Multi-tier architecture is a preferred architecture for enterprise web applications and

high response time percentile provisioning is more meaningful than mean response time

based ones. We present an approach of optimizing server allocation for a multi-tier appli-

cation to achieve a percentile bound on the end to end response time. We model the appli-

cation as an open tandem network of queues and model each tier as an M/G/1-PS queue.

We have developed an approximate model to compute the response time distribution and

have also developed a technique to estimate the service time distribution from the service

time histograms. We have developed an algorithm to compute per tier server allocation of

the application and in a homogenous setup. We also have extended the homogenous setup

solution to solve the server allocation problem in a heterogenous setup. We have tested

the efficacy of our approach using a multi-tier application simulator and also compared

it against two other baseline approaches developed using models based on M/M/K-FCFS

queue. We have demonstrated superior performance of our approach as compared to the

baseline approaches. Our experiments indicated that its better to use small number of large

servers than large number of small servers. Finally we tested our approach using the multi-

tier implementation of TPC-W benchmark over private cloud created using Xen over Linux.

76

CHAPTER 5

SEAGULL: INTELLIGENT CLOUD BURSTING FOR

ENTERPRISE APPLICATIONS

The high cost of provisioning resources to meet peak application demands has led to the

widespread adoption of pay-as-you-go cloud computing services to handle workload fluc-

tuations. In the previous chapters we have addressed elasticity of a multi-tier application

assuming that cloud has infinite capacity. But in the case of private clouds, the in-house IT

infrastructure is limited and often enterprises employ a hybrid cloud model where the en-

terprise uses its own private resources for the majority of its computing, but then “bursts”

into the cloud when local resources are insufficient. However, current commercial tools

rely on the system administrator’s knowledge to answer key questions about when a cloud

burst is needed and which applications must be moved. In this chapter we describe Seag-

ull, a system designed to facilitate cloud bursting by determining which applications can

be transitioned into the cloud most economically, and automating the movement process at

the proper time.

5.1 Introduction

Many medium and large enterprises have significant current investments in IT data

centers that house compute and storage systems. This IT infrastructure is often sufficient for

the majority of their computing needs, while offering greater control and lower operating

costs than the cloud. However, workload spikes in hosted enterprise applications, both

planned and unexpected, can sometimes drive the resource needs of enterprise applications

above the level of resources available locally. Rather than incurring capital expenditures for

77

additional server capacity to solely handle such infrequent workload peaks, a hybrid model

has emerged where an enterprise leverages its local IT infrastructure for the majority of

its computing needs, and supplements with cloud resources whenever local resources are

stressed.

This hybrid technique, which is referred to as “cloud bursting”, allows the enterprise to

expand its capacity as needed while making efficient use of its existing resources. While

commercial and open-source virtualization tools are beginning to support basic cloud burst-

ing functionalities [79, 74, 111], the primary focus has been on the underlying mechanisms

to enable the transition of virtual machines between locations. These systems leave signifi-

cant policy decisions in the hands of system administrators, who must manually determine

when to invoke cloud bursting and which applications to “burst”.

Manually performing these steps requires individual administrators to have significant

knowledge of the data center applications. As a result, manual decision making may lead

to poor choices in terms of minimizing cloud costs or reducing downtime during the transi-

tion. One of the insights of our work is that rather than naı̈vely moving an overloaded appli-

cation to the cloud, it is sometimes be cheaper and faster to move different applications and

then assign the freed-up server resources to the overloaded application. Judiciously mak-

ing these choices manually is difficult especially when there are a large number of diverse

applications in the data center and different cloud platform pricing models.

Typically, cloud bursting assumes that both local and cloud data centers employ virtu-

alization. Bursting an application to the cloud involves copying its virtual disk image and

any application data. Since this disk state may be large, consisting of tens or hundreds of

gigabytes, a pure on demand migration to the cloud may require hours to copy this large

amount of data. A second insight of our work is that periodic background precopying of

virtual disk snapshots of candidate applications can significantly reduce the cloud burst-

ing latency–since only the incremental delta of the disk state needs to be transferred to

78

reconstruct the disk image in the cloud. Our work also examines the impact of judiciously

choosing the candidate set of applications for such precopying.

We have developed Seagull to alleviate the above challenges; Seagull automatically de-

tects when local infrastructure is becoming overloaded, decides which applications can be

moved to the cloud at lowest cost, and then performs the migrations needed to dynamically

expand capacity as efficiently as possible. By automating these processes, Seagull is able

to respond quickly and efficiently to workload spikes.

We make several contributions in this work: (i) a placement algorithm that determines

which applications should be moved to minimize cost; (ii) a precopying algorithm that

decides which applications should be proactively replicated to the cloud to enable much

faster VM migrations; (iii) a prototype of Seagull using a Xen-based local data center and

the Amazon EC2 cloud platform, and (iv) a detailed experimental evaluation of Seagull

for different applications. Seagull supports live and non-live migration to enable cloud

bursting and we show Seagull’s placement algorithm can make intelligent decisions about

which applications to move, lowering the cost of resolving an overloaded large scale data

center by over 45%. We also demonstrate that our precopying algorithm can dramatically

lower the time needed to move applications into the cloud while incurring only a small cost

to retain replicated state in the cloud.

5.2 Background and Problem Statement

This section provides background information on existing cloud bursting tools and the

types of applications which they can be used with. We then detail the challenges faced by

a cloud bursting management system and describe the problem we seek to resolve.

5.2.1 Cloud Bursting Background

Employing cloud bursting can save enterprises a significant amount of money. Fig-

ure 5.1 illustrates a scenario where a business typically requires five “extra large” servers

79

 Mon Tues Wed Thur Fri Sat Sun

10

0

2

4

6

8

S
e
r
v
e
r
s
 N

e
e
d

e
d

Private Site (5 servers)

Cloud Burst

(a)

0

10

20

30

C
o
s
t

p
e
r

y
e
a
r

($
1
0
0
0
s
)

Private Cloud Hybrid

$40.6K
$38.0K

$28.8K

40

(b)

Figure 5.1: Hybrid clouds can utilize cheaper private resources the majority of the time

and burst to the cloud only during periods of peak demand, providing lower cost than

exclusively private or public cloud based solutions.

for its daily needs, but two days a week experiences a spike up to ten servers. Using

Amazon’s EC2 Cost Calculator [7], we find that using private resources for this would

cost about $40K a year since the business would be required to pay for all ten servers up

front. A cloud-only solution provides greater elasticity, allowing the business to pay for

ten servers only during the two days a week that they are needed, but the premium paid

for the cloud negates much of this benefit, only lowering the cost by $2,600. However, if a

hybrid approach is used so five servers are kept in the private site at all times and the cloud

is only used for an additional five servers on Thursdays and Fridays, the total price drops

by a further $9,200, a saving of 27%.

These observations have resulted in new product offerings from software vendors and

cloud providers such as Amazon, VMware, and Rackspace that help businesses connect and

manage “hybrid” clouds that span both private and public resources. Cloud management

tools such as OpenNebula and Eucalyptus have begun to support flexible placement models

where new applications can be easily deployed into either a local or public cloud.

However, these existing solutions are generally designed to move resources between

private and public clouds only at very coarse time scales. For example, Terremark’s cloud

bursting system designed for a government agency could take between two and ten days

80

to fully burst from the local to cloud site [16]. This slowdown is caused by the massive

amount of application state that must be transferred over relatively slow links between a

private data center and a public cloud. Our work seeks to enable more agile cloud bursting

that can respond to moderate workload spikes within hours or even minutes.

A further limitation is the difficult high-level policy decisions of when to invoke these

migration tools, which applications to move, and for how long still must be done manually

by system administrators. These decisions are non-trivial, particularly in data centers with

a large number of applications.

5.2.2 System Model and Problem Statement

Our work assumes a medium size or large enterprise that has its own backend IT infras-

tructure housed in one or more data centers. We assume that each application is virtualized

and comprises one or more virtual machines. Each server may host one or more VMs for

different applications. We assume that the data center is virtualized and is agile in terms

of allocating server capacity to applications. Application capacity can be scaled in one of

two ways. In horizontal scaling, the application is replicable so that new VM replicas can

be started up on demand to increase application capacity. In vertical scaling, we assume

that the application is not replicable, and the data center can only scale the application ca-

pacity by migrating the VM to a larger server. Typically horizontal or vertical scaling is

performed locally within the data center by using any spare servers that may be available.

When the local site becomes overloaded, cloud bursting is used to obtain additional capac-

ity. We enforce the common constraint that all VMs that make up an application must be

kept together either in the private site or the cloud.

The goal of our work is to design a system that can both automate and optimize cloud

bursting tasks. We assume that the application resource needs and constraints such as

whether an application is horizontally or vertically scalable are known and so is the cloud

pricing model which dictates server rental and network I/O costs. Given this knowledge,

81

our system must answer the following questions: i) When to trigger a cloud burst? ii)

Which applications to cloud burst so as to optimize cloud server and I/O costs? iii) Can

judicious precopying reduce cloud bursting latency? and if so by how much?

In this work, we formulate the second question as an optimization problem and present

an algorithm, that iteratively uses the solution to this problem to find an answer for the third

question.

5.2.3 Problem definition and formulation

Let N denote the number of applications. Each application i is composed of Mi virtual

machines. Let L denote the number of clouds (or datacenter locations), with the first being

the private cloud location. Let Hl denote the number of hosts in location l. Each of these

virtual machines require two resources (pijkl, rijkl), where pijkl denotes number of cores1

and rijkl denotes the size of RAM required by the jth VM of ith application on the kth

host of lth location. Let (Plk, Qlk) be the cores and RAM, respectively, of kth host at lth

location. Let Cijlk be the cost of moving the ith VM of jth application to kth host at lth

location; within the same location we keep the cost to be zero, while across locations we

compute the cost using (5.7) and (5.8). Let αijkl and βijklbe binary variables, such that:

αijkl =

1 if jth VM of ith app is on kth host of lth loc

0 otherwise

βil =

1 if ith app is at the lth loc

0 otherwise

The optimization problem is:

1The number of cores required on each host varies depending on the hardware of host; thus the number

of cores also depends on the host k

82

minimize

N
∑

i=1

Mi
∑

j=1

L
∑

l=1

Hl
∑

k=1

αijkCijlk

subject to

L
∑

l=1

Hl
∑

k=1

αijkl = 1 ∀j = 1 . . .Mi, ∀i = 1 . . . N (5.1)

N
∑

i=1

Mi
∑

j=1

αijklpijkl ≤ Plk ∀k = 1 . . . Hl, ∀l = 1 . . . L (5.2)

N
∑

i=1

Mi
∑

j=1

αijklqijkl ≤ Qlk ∀k = 1 . . . Hl, ∀l = 1 . . . L (5.3)

Mi
∑

j=1

L
∑

l=1

Hl
∑

k=1

αijlk = Mi ∀i = 1 . . . N (5.4)

(1/Hl)

Mi
∑

j=1

Hl
∑

k=1

αijlkpijlk ≤ βil ∀i = 1 . . . N, ∀l = 1 . . . L (5.5)

L
∑

l=1

βil = 1 ∀i = 1 . . . N (5.6)

αijk, βil ∈ {0, 1} ∀i, j, l, k.

Constraint (5.1) ensures that each VM is on a single host. Constraints (5.2) and (5.3)

ensure that resources used by VMs do not exceed the host capacity, while constraint (5.4)

ensures that all the VMs of each application are placed on some host. Constraints (5.5) and

(5.6) together ensure that all the VMs of an application stay in one location.

The optimization problem is a 2-dimensional bin packing problem [28, 35] and is a well

know NP-hard problem. We solve this formulation using CPLEX but the approach will be

unacceptable for large number of applications and VMs. We introduce a heuristic in the

following sections and also compare its performance with the optimal solution for small

setups in our evaluation section.

83

 Seagull

Burst Manager

Private Cloud

Public Cloud

VM

Cloud Management Layer

VM

VMVM
VMVMVM

Placement

Algorithm

Precopy

Algorithm

Workload

Forecaster

VM

VMVM

Clients

Actuator

Traffic
Router

Metadata

Manager Data

Figure 5.2: Seagull architecture

5.3 Seagull Design: Bursting to the Cloud

Seagull’s architecture is divided into the core algorithms that control placement and

precopying, the actuator that enacts the decisions of these algorithms, and the cloud man-

agement layer which translates generic Seagull orders into data center or cloud specific

commands. This overall architecture is illustrated in Figure 5.2. This section describes

the placement and precopying algorithms, we discuss how migrations are enacted in Sec-

tion 5.4, and provide details of our EC2 specific implementation in Section 5.5.

5.3.1 Intelligent Placement Algorithm

Consider a simple scenario of a quad-core server Q and a dual-core one D. Application

A is hosted on D with two cores and a disk state of 10GB while Application B is on Q with

two cores but only 5GB disk state. Later A becomes overloaded and requires four cores.

The naı̈ve way to distribute this load is to directly burst A to the cloud even though there

may exist a less expensive option, i.e., bursting B and move A to Q. The latter solution

from Seagull saves not only the cloud charges but also reduces the data copying latency.

The intuition behind Seagull is to maximize the utilization of local resources, which are

cheaper than public resources, and migrate the cheapest applications when local resources

are stressed.

84

Based on this intuition, Seagull uses the following algorithms to determine when a data

center is overloaded, whether to use cloud bursting, and which applications to migrate.

5.3.1.1 Threshold based triggers

The decision of when to trigger a cloud burst involves monitoring performance metrics

(like CPU utilization or load etc) and using a threshold on these metrics to trigger the cloud

bursting algorithm. Depending on the scenario, we can use system-level metrics (such as

CPU utilization, disk/network utilization or memory page fault rate) or application-level

metrics such as response time. We assume that the system administrator makes a one-time

decision on which metrics are relevant to the applications and specifies both the metrics

that should be monitored and the thresholds that should trigger a cloud burst. In case of

system-level metrics, the desired metrics can be monitored at the hypervisor-level, and for

application-level metrics, we assume the presence of a monitoring system such as Ganglia

that supports extensions to monitor any application metric of interest.

5.3.1.2 Use local resources first when possible

We assume that the capacity increase C necessary for each overloaded application can

be determined using one of the many empirical or analytical methods proposed in the lit-

erature [102, 93]. Seagull first examines if any of the local servers have sufficient idle

capacity to satisfy this desired capacity C. If so, the overloaded application can be live

migrated to this server (for vertical scaling) or a new VM replica can be spawned on the

server (for horizontal scaling). This is the simplest scenario for addressing the overload;

Seagull also supports more sophisticated “repacking” of VMs to first free up the desired

capacity C on a particular server and then move (or replicate) the application to that server.

This is done in Seagull using a greedy technique that sorts all servers in decreasing order

of free capacity. Starting with the first server on the list, if its idle capacity is less than C,

the technique examines if one or more current VMs can be moved to a different server to

85

free up sufficient capacity C. If so, this sequence of VM moves can address the overload.

Otherwise it moves on the next server with the most idle capacity and repeats.

5.3.1.3 Move the cheapest applications first

If the overload cannot be handled locally, Seagull must choose a set of applications

to burst to the cloud. The objective is to select the cheaper option between bursting the

overloaded app or one or more of the other applications based on cost. To do so in a cost-

effective manner, the algorithm picks those applications to move that free up the most local

resources relative to their cost of running in the cloud.2

To determine which applications should be moved, we assume the duration of the work-

load spike, L, and the desired capacity C for each virtual machine are known. Note that C

is a vector representing the CPU, disk, network and memory capacity needs of the VM.

We then define the cost of bursting an application, say A, that is composed of n virtual

machine in terms of the cost of transferring the memory and storage, storing the data, and

the execution cost in public cloud:

Cost =
n

∑

j=1

C tranj + C storj + (C runj ∗ L), (5.7)

C tranj = C tran storj + C tran memj, (5.8)

where C tran storj and C storj are calculated based on the amount of storage actively

used by the jth VM of A (i.e. VMj); C tran memj counts for the cost of transferring

the memory in live migrating VMj; C runj is determined based on the type of the virtual

machine (e.g., the number of cores it requires) and must be multiplied by L to account for

the length of time the VM would need to remain in the cloud before the workload spike

passes. We sum the cost across all VMs in the application to account for the constraint that

2Additional administrative criteria such as security policies may also preclude some applications from

being valid cloud burst targets; we assume that system administrators provide this information as a cloud

bursting black list.

86

all virtual machines that comprise an application be grouped either in the local data center

or on the cloud.

The virtual machines in the overloaded application are considered in decreasing order

of their resource requirements. For each of these virtual machines, Seagull considers the

potential hosts in the local data center sorted by their free capacity in descending order.

This approach is biased towards utilizing the free capacity in the local data center first,

potentially reducing the number of applications that needs to be moved to the cloud.

The secondary sorting criteria(tie breaker) we consider is the total cost of moving all

applications on a host to the cloud; this includes the cost of not only the VMs on that

particular host, but all other VMs that would need to be moved in order to keep each

application grouped together in the cloud. This causes the hosts that run primarily low cost

applications to be considered first.

When hosts have been sorted in this way, the algorithm considers the first host and

decides if a set of VMs on that host can be moved in order to create space for the overloaded

VM. Each virtual machine, VMj on the host is ranked based on:

num coresj/Cost (5.9)

where Cost is the cost of moving the full application that VMj is part of, and num coresj

is the number of CPU cores currently in use by the virtual machine. The VMs on the host

are considered in decreasing order of this criteria, and the first k VMs are selected such

that the free capacity they will generate is sufficient to host the overloaded virtual machine.

The intuition behind this greedy heuristic is that it optimizes the amount of local capacity

freed per dollar spent running applications in the cloud.

Each of the overloaded applications is considered for bursting using this metric. When

a solution is found, the total cost of moving all of the marked applications is compared to

moving just the overloaded application; the cheaper of the two options is chosen in each

case.

87

5.3.2 Opportunistic Precopying

In general, the application state, consisting of its code and data, may be large, of the

order of tens or hundreds of gigabytes. Migrating all of this data at cloud bursting time can

easily take hours or even days, significantly reducing the agility with which a data center

can respond to rising workloads.

Seagull performs precopying by transferring an incremental snapshot of a virtual ma-

chine’s disk-state to the cloud. Seagull’s precopying technique makes two important

decisions: (i) which applications to precopy, and (ii) how frequently to precopy each one.

Each of these decisions lead to a cost-benefit tradeoff. The larger the set of candidate appli-

cations chosen for precopying, the greater the chances Seagull’s cloud bursting algorithm

will pick one of the precopied applications to burst to the cloud when the peak workload

arrives, increasing the agility of the system to respond to local stress. Similarly, the more

frequently each application is precopied to the cloud, the smaller the delta will be, leading

to a smaller bursting latency. Thus a careful choice of the candidate set of applications to

precopy and precopying frequency can both reduce the overheads.

Seagull supports multiple strategies to assist administrators in controlling the cloud

storage and bandwidth costs incurred during precopying. We have implemented a strat-

egy which computes a set of candidate applications that balances the benefits precopying

against its cost and also two baseline strategies for comparison.

In our cost-benefit tradeoff strategy, we first generate an overload list, i.e. a list of

applications likely to become overloaded3. Seagull, then, runs the cloud bursting algorithm,

described in the previous section, in an offline mode over the overload list. That is, for each

application A on the overload list, Seagull runs its algorithm to see which application(s) get

chosen for bursting if A were to become overloaded. These applications form the precopy

list.

3Seagull can generate such a list based on the history of prior cloud-burst instances and system adminis-

trators can alter it, based on their expert knowledge of which overload scenarios are still likely in the future.

88

The disk state of applications in the precopy list is replicated to the cloud based on a

frequency strategy. In the simplest case the precopy frequency can be chosen statically

— say once a day or once a week. However, Seagull can analyze the write rates to the

virtual disks of each precopy application and compute how much data is being modified,

which in turn allows for an estimate of both the monetary cost of transferring data and the

time needed to perform a cloud burst. Based on these estimates, the system administrators

can then “tune” the precopy frequency for each application in the precopy list. Doing so

enables them to manage overall cloud costs (and avoid incurring large cloud bills) while

retaining agility.

The two other strategies that we use as the baseline strategies for our comparitive eval-

uation are:

• Random Precopying: selects a random set of applications to be precopied based on

the maximum expected overload (e.g., randomly precopy 20% of the data center’s

applications).

• Naı̈ve Precopying:selects the set of applications that is predicted to become over-

loaded for precopying.

5.4 Cloud Migration

Once Seagull determines a plan for which applications to move to the cloud, the Actu-

ator must execute this plan. Bursting an application is accomplished by copying its virtual

disk image to the cloud. The virtual disk image consists of the application code, configura-

tion files, and the application’s data; once this has been moved to the cloud, a new VM can

be started using the transferred disk for its storage. In practice, current cloud platforms

require several additional steps to prepare a disk image for booting within the cloud, thus

Seagull uses the following procedure, shown in Figure 5.3, to migrate a virtual machine to

the cloud:

89

Volumes

Private Cloud

VMVMVM

VM

Coordinator
VM

1.Create Snapshot

2. Create
Cloud Image

Registered
Image

4. Start
Application

cloudbursted

VM

Public Cloud

Seagull

3. Shut down App and Final sync

Figure 5.3: Seagull Cloud Bursting Procedure

1. Seagull creates a snapshot of the VM’s file system as it is executes and transfers this

to the cloud to be stored in a new disk image.

2. Seagull then takes the image snapshot and transforms it to the public cloud’s usable

image format. Seagull then registers the image with the public cloud management

system and boots the VM.

3. Next Seagull shuts down the local instance of the application so that it can resynchro-

nize any file system changes that have occurred at the origin site since the snapshot

was made.

4. Finally, Seagull restarts the application within the cloud VM and redirects the appli-

cation workload to the public cloud.

Seagull contains modules to implement this functionality for Amazon EC2, as dis-

cussed in the subsequent section. This approach is designed to minimize the amount of

downtime incurred during a migration; the application being moved is only completely

stopped during step 3. The process above can be easily enhanced to support precopying

by preemptively performing steps 1 and 2, and then periodically copying a snapshot to the

cloud. Thus when a burst is required, only the final stages of steps 3 and 4 need to be

performed, reducing the total time of the cloud migration.

90

5.4.1 Supporting Live Migration

Since today’s public cloud platforms such as EC2 and Azure do not presently support

live VM migration, Seagull’s cloud bursting mechanisms employ migration strategies that

involve VM and application downtimes. However, if public cloud platforms were to support

live migration in the future, Seagull’s cloud bursting mechanisms can be easily adapted to

take advantage of such a feature. For instance, we recently proposed the CloudNet system

to support live migration of VMs over a WAN from one data center site to another [116].

Seagull can employ CloudNet technology to perform live cloud bursting. CloudNet em-

ploys VPN and VPLS protocols to enable transparent migration of a VM’s IP address from

one WAN location to another and uses several optimization techniques such as content-

based redundancy elimination and block deltas to efficiently transfer memory (and disk)

state of the VM over slow WAN links. In Section 5.6.2.3, we experimentally demonstrate

how Seagull can employ such WAN migration mechanisms from CloudNet to support live

cloud bursting from a private cloud to a public cloud site.

5.5 System Overview and Implementation

This section describes Seagull’s five main components, namely i.) cloud management

layer, ii.) workload forecaster, iii.) burst manager iv.) metadata manager v.) actuator. The

functional block diagram of the architecture of Seagull is shown in Figure 5.2.

5.5.1 Cloud Management Layer

This layer exposes cloud management APIs used for managing and monitoring VMs

and their resources across both private and public cloud. This layer offers a common ab-

stract interface to the public cloud for all the other functional blocks of Seagull and adapts

according to the destination cloud used for cloud bursting and monitoring.

91

We extended OpenNebula [74] to implement the Cloud Management Layer in our pro-

totype. We implemented the mechanism of cloud bursting and precopying a VM from

private cloud to public cloud and exposed it as an XML-RPC API.

Our cloud bursting implementation supports two different modes, namely live and non-

live. The steps for VM migration are outlined in Section 5.4. We have implemented the

migration tasks as python wrappers around the basic VM operations.

5.5.2 Precopier

We have implemented a filesystem level precopyer using rsync to replicate VMs across

clouds. Our implementation supports live precopying, which means we precopy a VM

image while the VM is active. Our implementation has two modes 1) Initial Copy: In this

mode the precopier follows the following control sequence: i) create a volume on public

cloud and attach it to the Coordinator VM, ii) rsync the local volume to the remote volume,

iii) update the local database with local volume information and remote volume id. 2)

Subsequent Copy: In this mode, the precopier performs only step (ii) of the initial copy

stage.

5.5.3 Monitoring

We have extended OpenNebula to support sophisticated monitoring capabilities like

that of EC2 cloudwatch. Our monitoring engine is implemented using the Ganglia moni-

toring system. Ganglia consists of a monitoring agent (gmond), which runs inside each host

machine and virtual machines, and a gathering daemon (gmetad), that aggregates monitor-

ing statistics from multiple monitoring/gathering daemons. Each VM image used by ap-

plications is pre-configured with a monitoring agent; thus, when new virtual machines are

dynamically deployed, the Ganglia system automatically recognizes new servers and be-

gins to monitor them. When the VMs are cloud bursted, we tune the monitoring agents to

report data according to the destination cloud setting, e.g., using EC2’s cloudwatch service.

92

5.5.4 Metadata Manager

We assume that all applications are a collection of VMs connected to each other over

LAN. Each VM is of particular type, which is captured by a specific VM image, and an

application may be composed of VMs with several different types. In addition to this, each

application is either migratable or replicable. We capture all information about applica-

tions, hosts, and network configuration in a database.

In our prototype, we have implemented the metadata manager as a collection of python

classes for each application, which store their data in the backend MySQL database. This

offers the functionality of safe retrieval and updating of application metadata.

5.5.5 Workload Forecaster

The workload analyzer uses the workload statistics to derive estimates of future work-

loads. It obtains the application resource list using the application metadata and obtains

the workload statistics from the cloud management layer for each of the application com-

ponents. It then coalesces this to generate application level workload data. A forecaster

module pulls this application level monitored data for forecasting the future application

workload.

The design of Seagull is generic and any time series based forecaster [49],[105], con-

forming to the interface, can be used. In our current implementation, we have implemented

an ARIMA forecaster. The ARIMA forecaster obtains a time-series of workload obser-

vations from the monitoring engine and models it as an ARIMA time-series. We use the

ARIMA forecasting libraries of open-source statistical package R for generating the model

and predicting the future peak workload.

5.5.6 Burst Manager

This is the core of Seagull that must i) find which applications/VMs to burst over to

public cloud or which to bring back into the private cloud and ii) find which applications to

precopy and schedule their periodic precopying operations. Using the workload forecast,

93

obtained from workload forecaster, and the application metadata, it runs the placement

algorithm outlined in section 5.3. The output of the placement algorithm is a list of ap-

plications/VMs and their final destinations, i.e. either public cloud or hosts within the

private cloud. If precopying is enabled, burst manager also computes a list of applications

to precopy, using a precopying algorithm outlined in section 3.2, and creates a schedule to

synchronize these applications to the cloud

We have implemented burst manager as a python daemon, which periodically wakes

up and performs both the above mentioned operations. The periodicity is adjusted by a

configuration file.

Actuator executes all the commands issued to it by the burst manager. Actuator takes

the list of VMs from burst manager and calls the cloud bursting API exposed by the cloud

management layer. It also executes periodic tasks of precopying issued by burst manager.

5.6 Experimental Setup and Evaluation

In this section we describe the experimental setup used to evaluate the performance of

Seagull. We have created a private cloud environment on a lab cluster using OpenNebula

[74]; for public cloud we have used Amazon EC2. We conducted experiments to illustrate

the effectiveness of our algorithms and the intuition behind them. We also present an anal-

ysis of the costs and benefits when moving applications to the cloud and using precopying.

We have created a private cloud environment using two types of servers: 8-core 2GHz

AMD Opteron 2350 servers and 4-core 2.4 GHz Intel Xeon X3220 systems. All machines

run Xen 3.3 and Linux 2.6.18 (64bit kernel). We deployed OpenNebula on these machines

to create a private cloud and manage a total of 44 cores distributed across 9 physical hosts.

Our private cloud supports small, medium and large servers, comprising 1, 2 and 4 cores,

respectively.

We have used Amazon EC2 as the public cloud environment in our experiments. EC2

offers two type of storage solutions for their instances, namely S3 and EBS. We have used

94

the latter for our experiments, primarily to simplify the implementation of replication of

data across cloud boundaries.

5.6.1 Application appliances

We use three applications, TPC-W, Wikibooks and CloudStone for our evaluation. We

have created private-cloud as well as public-cloud appliances for each of these three appli-

cations and their respective client applications. An appliance instance creates the virtual

machine(s) which house the complete application. We warm up each application, using its

clients, for two minutes before collecting data.

TPC-W is a multi-tier transactional web benchmark that represents an online book-

store [101]. We use the Java implementation of TPC-W which has two-tiers: a Web server

tier based on Apache Tomcat servlet container and a database tier based on MySQL. In our

appliance we have deployed both the tiers on the same VM.

Wikibooks is an open-content textbooks collection website for which an http replay

tool has been developed [17]. It uses a MySQL database with a front-end PHP application.

We have created two separate VMs for this application, one containing Wikimedia software

and the other hosting the database.

CloudStone is a multi-platform, multi-language benchmark, which represents Web 2.0

applications in a Cloud Computing environment [95]. It implements a social online calen-

dar as an AJAX application, called Olio. Olio uses MySQL as the backend database and

supports a memcached tier which can be horizontally scaled. We use CloudStone both in a

single VM deployment and in a multi-node, replicated setup. We again use the http replay

tool as a workload generator.

5.6.2 Migration and Precopying Tools

This section evaluates the tools used by Seagull to burst applications to the cloud and

perform precopying.

95

Figure 5.4: Impact of size of application on cloud bursting operation

5.6.2.1 Burst Operation Time Costs

We analyze the amount of time needed for each of the steps to burst an application to

the cloud with and without precopy. The total cloud bursting time can be decomposed into

three major parts: copying data to the cloud, preparing an application image and booting

up the virtual machine. We migrate a virtual machine running the CloudStone application

with a disk-state size of 5GB.

As shown in Figure 5.4, the total time to migrate an application with even a very small

5GB disk state, is 1336 secs (∼ 22 mins); this clearly illustrates the need for precopying

in real applications that may have ten or more times as much state. We then precopy

the application and reduce the delta (i.e. difference between the original and precopied

snapshot) to 10MB or 100MB; the total time to burst the application significantly reduces

to less than 200 secs for a delta of 100 MB. Note that as delta reduces the image preparation

time and boot time start to flatten around 120 secs and become the prime component of total

bursting time.

5.6.2.2 Performance Impact of Precopying

To measure the impact of precopying on application’s performance, we run a TPCW

application and continuously precopy its data to the cloud during a thirty minute measure-

ment interval – each precopying only takes 1-2 minutes. While the replication process is

96

Figure 5.5: CDF of client response time with heavy workload.

running, we measure the response time observed by the TPCW clients running a “shop-

ping” workload. We repeat this experiment ten times and report average statistics across

these runs.

The response time performance for light (100 clients) and heavy workloads (600 clients)

is shown in Table 5.1. When there is only a light workload, the average response time of

all request types only increases by 2ms. When the workload is at peak capacity, the av-

erage response time of all requests increased by 19%, but write-requests observed a 37%

increase. However, we observe in Figure 5.5 that 90% of write-requests see only a small

performance change, i.e. response times rose from 300 ms to 350 ms with precopying (less

than 17%).

5.6.2.3 Migration Downtime

We next study the application downtime when migrating applications over the WAN

with Seagull. Our current implementation relies on non-live migration of VMs because

existing clouds do not support live migration into their platforms. However, we can test

what the performance of live migration might be by running a process on the cloud platform

that receives a stream of Xen migration data from a private data center.

Our experiment migrates a VM running the TPC-W benchmark application, which is

being accessed by a set of 200 clients running an ordering workload. The VM is configured

97

with 1.7GB of RAM and a 5GB disk. When using non-live migration, the application is

inaccessible during the shutdown process at the origin site (1.2 secs), for the final copy of

data to the cloud (7.0 secs), and while the application is reinitialized in the cloud VM (1.2

secs). In total, Seagull’s non-live migration incurs 9.422 seconds of downtime. Note that a

naı̈ve approach to VM migration could increase this to a minute or more if the cloud VM

was not booted until after the origin VM was shutdown. In comparison, running a live mi-

gration to EC2 incurs only 0.978 seconds of downtime while copying the virtual machine’s

memory. Using live migration does cause a slight increase in cost since more data must

be sent; in total, the memory migration added 1.84GB of data transfer and required 236

seconds to run.

Conclusion: Precopying has only a modest impact on response time, but can dramat-

ically reduce the total time required to burst an application to the cloud and reduces the

downtime to less than 10 seconds.

TPC-W workload
READ WRITE ALL

None Precopy None Precopy None Precopy

Shopping Light 29 31 21 25 28 30

Shopping Heavy 117 131 120 190 118 140

Table 5.1: Average client response time (ms) comparison for TPC-W in Shopping Mode

5.6.3 Placement and Precopying Algorithms

In this section we examine the algorithms used by Seagull to decide which applications

to burst to the cloud and which are selected for precopying.

5.6.3.1 Placement Decisions

We first analyze the placement efficiency of Seagull compared to a naı̈ve algorithm in a

small scenario that demonstrates the intuition behind Seagull’s decision making. We show

98

that when a hotspot occurs, Seagull is able to make better use of local resources as well as

pick cheaper applications to move to the cloud.

We use three hosts of 6 cores, each hosting two applications, and three types of ap-

plications: TPC-W(A, D) Wikibooks (B, E), and CloudStone (C, F). Each application is

running inside a single VM and we treat all applications in a scale up style. The initial

arrangement of applications and the number of cores dedicated to each is shown under t0 in

Figure 5.6. To simplify the scenario, we assume that all applications have identical storage

requirements.

We change application A’s workload every hour (marked by instants ti, where i =

1 . . . 3) such that its CPU requirement increases to 4 cores, then 6 cores, before falling

back to four cores at t3. To eliminate the impact of prediction errors in this experiment we

assume a perfect forecaster.

A

1
B: 5 cores

C: 2 D: 2

t0

E: 2 F: 2

A: 4

B: 5 cores

C: 2

D: 2

E: 2 F: 2

h0

h1

h2

t1 t2

A: 6

B: 5 cores

C: 2

D: 2

E: 2 F: 2

t3

A: 4

B: 5 cores

C: 2

D: 2

E: 2 F: 2

free

free

fr
e
e

fr
e
e

fr
e
e

EC2

A
(naive)

Naive Seagull

Figure 5.6: The naı̈ve approach uses only one migration, immediately moving A from h0

to the cloud. Seagull initially avoids any cloud costs by rebalancing locally, and is able to

move back from the cloud sooner than the naı̈ve approach.

When Seagull detects the first upcoming workload spike at t1, it attempts to resolve the

hotspot by repacking the local machines, shifting application C to h2 and then moving A to

h1 at effectively no cost. In the naı̈ve solution, application A is cloud burst to EC2 directly

without considering local reshuffling.

99

Figure 5.7: Seagull uses local, live migrations at t1, and benefits from reverse pre-copying

at t3, substantially reducing the time spent at each stage compared to naı̈vely cloud bursting

at t1 and restarting instances at t2 and t3.

In the workload’s second phase, Seagull migrates a cheaper application D to EC2 since

the local data center could not provide enough capacity needed for A. On the other hand,

the naı̈ve algorithm had already moved A to the cloud, so it simply allocates extra resources

to it making it more expensive.

Eventually, the workload spike for application A passes, Seagull migrates D back to

the local data center while naı̈ve algorithm, lacking the ability to perform local reshuffling,

still needs to keep A in the cloud, consuming more money.

The use of local resources in Seagull allows it to respond to overload faster than the

naı̈ve approach. Figure 5.7 shows the amount of time spent by each approach to resolve the

hotspots at each measurement interval; note that for both systems we precopy all applica-

tions once to the cloud before the experiment begins. Seagull is substantially faster because

it uses only a local, live migration at t1 whereas the naı̈ve approach approach requires a full

cloud burst. Subsequent actions performed by Naı̈ve also incur substantial downtime since

VMs must be rebooted in the cloud to adjust their instance type to obtain more cores. Seag-

ull’s migration back from the cloud at t3 is also quite fast because it does not require the

full image registration process needed for moving into the cloud. Most importantly, the fact

that Seagull only requires a virtual machine in the cloud for the hour starting at t2 means

that it pays 30% less in cloud data transfer and instance running costs.

100

Conclusion: This experiment illustrates the intuition behind Seagull’s placement algo-

rithm. To find more capacity while minimizing the infrastructure cost and transition time,

Seagull first tries to find free resources locally; if cloud resources are needed, then it moves

the cheapest application possible to the public cloud.

5.6.3.2 Cost Efficiency

We study the difference in cost of our algorithm compared with the naı̈ve approach and

the optimal solution, described in section 5.2.3. We simulate a data center comprising of

100 quad-core hosts and test the strategies using three types of applications, namely small

medium and large. We create a random set of applications using the categories provided in

Table 5.2.

In order to evaluate the effect of local reshuffling, we fill the private data-center to

approximately 70% of its compute capacity (in terms of compute cores). We then vary the

data center workload by increasing the percentage of overloaded applications from 10%

to 30%; each overloaded application observes an average compute capacity increase of 20

cores. For each overload situation, we compute the cost of cloud bursting decisions made

by each of the three strategies, namely naı̈ve, greedy and optimal (solution of ILP).

Figure 5.8a presents the performance of the three mentioned strategies averaged over

30 simulation trials. We compute the cost of cloud bursting by applying Amazon’s resource

pricing scheme in (5.7) and (5.8).

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 30

$
 C

o
s
t

Overload Level (%)

Naive
Greedy
Optimal

(a) With local reshuffling

 50

 100

 150

 200

 250

 300

 350

 400

 450

10 20 30

$
 C

o
s
t

Overload Level (%)

Naive
Greedy
Optimal

(b) Without local reshuffling

Figure 5.8: Comparison of average cost of cloudbursting with optimal

101

Figure 5.8 shows that the optimal solution offers a zero cost solution for 10% overload;

our heuristic driven approach (greedy) offers an average of 100% improvement compared

to naive approach, but is not very close to optimal to solution. The primary reason for

a large disparity between optimal and greedy approach is because our heuristic performs

a greedy search to obtain the local placement configuration; this leaves many possible

local reshuffling options.To be sure of this, we conducted an experiment where we remove

the possibility of local reshuffling. This will force a comparison of the other half of the

algorithm, which is responsible for selection of applications for cloud bursting. We observe

in figure 5.8b that the greedy approach provides nearly as good a solution as the optimal

approach.

5.6.3.3 Precopying Efficiency

This experiment evaluates the effectiveness of Seagull’s intelligent precopy strategy

compared to the random (SG-random) and naı̈ve precopy strategies (described in section

5.3.2) at a larger scale. We simulate a data center comprising of 200 quad-core hosts and

test the strategies using three types of applications, namely small medium and large. We

create a random set of applications using the categories provided in Table 5.2. To elimi-

nate the impact of Seagull’s local reshuffling on precopying efficiency, we assume that the

data center runs only scale out applications, preventing the need for local reconsolidating.

For computing the cost of each of these precopying strategies we use Seagull’s placement

algorithm.

App-Type Reps Active Disk Size Image Size Write Rate

Small 1-2 3-4GB 10G 1MB/min

Medium 3-6 6-8GB 15GB 2MB/min

Large 7-12 12-16GB 20GB 3MB/min

Table 5.2: Application Details

102

Again to eliminate the effect of forecasting errors we assume perfect workload forecast-

ing with a 24 hour horizon, and perform precopying every hour. We study the decisions

made when the level of overload in the data center increases from 10 to 30 percent. Fig-

ure 5.9 presents the average performance of these three strategies when the simulation is

repeated 40 times for each level of overload.

In Figure 5.9(a), Seagull achieves the lowest precopying cost across all the overload

levels. The benefits of Seagull increase with rising overload levels, and it is able to lower

precopying costs by up to 75%. The naı̈ve approach shows the highest cost because there

are often applications which can be precopied more cheaply than those which are expected

to become overloaded.

Figure 5.9(b) shows the total cost including both precopying and cloud bursting. Seag-

ull reduces the cost by 45% compared to the naı̈ve approach because running the overloaded

applications in the public cloud is more costly. SG-Random and Seagull have similar total

cost because they select the same applications to burst.

Figure 5.9(c) shows that our intelligent precopying strategy outperforms SG-Random

because it has a poor chance of precopying the applications which will be selected by the

placement algorithm. The naı̈ve one behaves well because it selects the overloaded appli-

cations for precopying thereby substantially reducing the actual amount of data transferred

during bursting.

Our evaluation demonstrates that precopying can significantly reduce burst time with

minimal impact on application performance, however, we must also consider the monetary

cost added by precopying. To study this, we consider the results of simulation similar to

that described in the previous section. We increase the data center workload by overloading

30% of the applications in datacenter and compare Seagull with and without precopying.

Figure 5.10 shows a modest 22% increase in cost and a substantial 95% saving in data

transfer by using precopying. Since the migration time largely depends on the amount of

103

(a) (b)

(c)

Figure 5.9: Intelligent precopying reduces total cost and data transferred by over 45%

compared to the naı̈ve algorithm.

data needed to transfer given the bandwidth, we conclude that our intelligent precopying

strategy provides a reasonable tradeoff between cost and migration time.

Figure 5.10: Precopying causes a marginal increase in cost, but a dramatic reduction in

burst time.

Conclusion: Seagull reduces total cost by up to 45% compared to other precopying

strategies while reducing data transfer cost by up to 95% compared to cloud bursting with-

out precopying

104

5.6.3.4 System Scalability

We executed Seagull’s heuristic driven application selection algorithm as well as the

ILP solver to obtain the optimal solution on simulated data centers with variable numbers

of hosts and applications (assuming that each application is completely packing in a single

virtual machine). We again considered three types of applications as outlined in Table 5.2.

We increased the complexity of application selection problem by increasing the number of

hosts and proportionally the number of applications. We then measure the running time of

the algorithms before they report the final solution. The results are plotted in Figure 5.11.

It is apparaent that as the size of the problem increases the optimal algorithm becomes

unusable. Seagull uses a greedy heuristic to make its placement decisions. While this leads

to a non-optimal solution, it makes this multi-resource bin-packing problem more tractable.

Seagull is able to process data centers of 800 virtual machines within thirty seconds as

compared to 7678 sec taken by the optimal. While large data centers may have many more

hosts and virtual machines than this, we believe that Seagull can report a solution within a

few minutes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800

S
e

c
o

n
d

s

Number of hosts

Greedy
Optimal

Figure 5.11: Scalability of the algorithm.

5.6.4 Multiple Overload Scaling

In this section, we show how Seagull deals with simultaneous overload from multiple

applications that require both scale up and scale out strategies. We deploy seven web

applications across the five hosts in our local cluster as shown in Figure 5.12(a). Two of

105

the applications, B and C, are VMs running the CloudStone application, which supports

replication of its memcached layer. The other applications are scale up, and run different

instances of TPC-W. The full details of each application’s characteristics are shown in

Figure 5.12(c). At time t = 12 minutes, both applications A and B become overloaded for

a period of ten minutes; later at t = 70 minutes, application B sees a second spike that lasts

until the end of the experiment.

Seagull uses workload forecast information to guide its precopying strategy, and imme-

diately begins precopying Application A and F once the experiment starts. Throughout the

experiment, we use xentop to gather the CPU utilization of Application A and B, which is

illustrated in Figure 5.12(b), along with annotations indicating where each is located. The

periodic spikes at ten minute intervals indicate the CPU overhead of precopying.

Seagull detects the overload condition expected to begin at t = 12 from A’s and B’s

rising demands. It decides that bursting Applications A and F is the most efficient use of

resources; since these applications have already been precopied, Seagull is able to burst

both applications to the cloud within one minute. Moving A to the cloud allows it to start

with a larger VM (a 4-core instance), causing its relative CPU consumption to decrease

since it now has more resources available. Application B, running the replicable Cloud-

stone application, is able to expand its resource consumption in the local data center by

spawning a new two core VM on host 5 using the resources freed up by Application F.

The applications continue running in this manner and the workload spike subsides.

While it would be possible to immediately move the applications back to the local data cen-

ter, EC2 charges in hourly increments, so there is no economic reason to do so. However,

Seagull does continue to perform “backwards precopying” to replicate the state changes

occurring to applications A and F in the cloud to the local data center. At t = 70 minutes,

Seagull computes new placement decisions before the next hour of EC2 charges will begin.

Seagull must plan for B’s second workload spike, so it can only move either A or F back

from the cloud. Since both are using the same cloud instance type, Seagull selects appli-

106

cation F to move back to the private data center as it has a slightly higher cloud cost than

A. At the end of the 80 minutes experiment, Application A remains in the cloud to make

space for overloaded Application B.

A

D E G

C

B

F

(a)

Amazon EC2

H1 A, B overloaded

 H1,H2

 H1,H2,H5

(b)

! "! #! $! %! &! '! (!

)*+!,-!./0! 1! 2! 3! 1! 1! 1! 1!

$,450! 627! 62827! 6282827! 627! 627! 627! 627!

"9:;<5!%;0=!>;?5!6(#7! 61@27! 6A@B8C@A7! 6C@A83@28C@C7! 6A@27! 63@27! 62@B7! 6D@C7!

E+FG5!>;?5!6(#7! 61H7! 6128127! 61H81H81H7! 61H7! 61H7! 61H7! 61H7!

I4;:5!JF:5!6/#K+;L7! 617! 62827! 6181817! 617! 617! 617! 617!

!

(c)

Figure 5.12: (a) The initial set up of local data center. (b) The average CPU utilization of

Application A and B over 80 minutes experiment. (c) Detail information of each applica-

tion in the local data center.

5.7 Related Work

Cloud Bursting was first proposed by Amazon’s Jeff Barr as a way to allow enter-

prises who already own significant amounts of IT infrastructure to still make use of the

cloud during periods of high demand [27]. Researchers have been investigating the poten-

tial economic savings by using cloud bursting in specific domains such as medical image

processing [57] and publishing [55]. Cloud Bursting generally assumes that a private data

center is connected to a public cloud, producing what is known as a hybrid-cloud. Hybrid

107

clouds have become a popular service offering for hosting and data center companies, and

also have been the subject of research [62, 96].

WAN Migration tools seek to move applications between data center sites with mini-

mal downtime. Full VM WAN migration techniques such as [110, 69, 116, 12] attempt to

seamlessly move the memory and storage of a virtual machine, usually by building upon

the existing LAN migration tools included in Xen [26] and VMWare [71]. Alternatively,

storage migration tools such as [61, 124] only focus on moving the disk state of applica-

tions. Since current cloud platforms typically do not support live VM migration into the

cloud, our work focuses only on storage migration. We use a simple rsync-based repli-

cation scheme, but we note that Seagull could easily be enhanced to use more advanced

migration tools, including support for full VM live migration.

5.8 Conclusions

Cloud bursting is a technique to dynamically move applications running in a private

data center to the public cloud to take advantage of additional resources there. In this

work we propose Seagull, a cloud bursting system that automates the decision processes

about which applications can be run in the cloud most efficiently. Seagull uses selective

precopying to proactively replicate some applications from the private data center to the

cloud, reducing the migration time of large applications by orders of magnitude. This

allows Seagull to perform agile provisioning of resources across a local data center and the

cloud, resulting in more efficient utilization of local resources while incurring only minimal

expense in the cloud. Our evaluation demonstrates how Seagull can burst applications

to the cloud in under three minutes, while incurring only minimal performance overhead

due to precopying. Seagull’s placement algorithm considers both local reconsolidation

opportunities and application cost characteristics, lowering the total cost of cloud bursting

in response to data center overload by 45%.

108

CHAPTER 6

FLEXIBLE ADAPTIVE CONTROL PLANE FOR PRIVATE

CLOUDS

Enterprises with existing IT resources are beginning to employ private clouds to manage

them. But IT requirements grow with business needs and the cloud management system has

to undergo a transformation to include this growth. This is a difficult challenge for private

cloud administrators from a design as well as an execution point of view. It often demands

reconfiguration of individual control plane services of the cloud management system so

that each of them can sustain the increase in workload without violating their Service Level

Objectives (SLOs). The control plane services support multiple configurations and manu-

ally deploying and managing the cloud management system is a challenging task; this is

mainly because of the fact that it will involve configuring a large number of interdependent

control plane services. In this work we design and implement a system to automate the

process of deployment and reconfiguration of the cloud management system of a private

cloud.

In the earlier chapters we presented methods of elastic provisioning of applications but

all of them supported a single configuration, i.e. a three tier configuration. In this chapter

we address the problem of automatic deployment and dynamic reconfiguration of control

plane subsystems, which support multiple configurations, so that they conform to their

Service Level Objectives (SLOs).

6.1 Background and Problem Description

In this section we provide the background information on private clouds and formulate

the problem addressed in the chapter.

109

IT Infrastructure

Server
Server

Server
Server

Server

Storage
Storage

Storage
Storage

Network

IP
Addresses

Control Plane Services

Storage

Mgmt

Network

Mgmt

Hypervisor

Mgmt
MonitoringMessaging

Figure 6.1: An example private cloud

6.1.1 Background: Private Cloud

A private cloud consists of infrastructure resources like compute storage and network

and allows users to create virtual resources remotely on demand. Private clouds provide

similar functionality like public clouds like Amazon Elastic Compute Cloud except that

they are created using the infrastructure owned by the organization and are for its dedicated

use unlike a public cloud, which leases resources.

A number of open source cloud management platforms are available to establish and

operate a private cloud, namely OpenStack [79], CloudStack [77], Eucalyptus [73], Open-

Nebula [74] etc. These assume a cluster of linux machines and provide a control plane to

manage the cloud infrastructure and perform management tasks, like hypervisor manage-

ment, user management, messaging, monitoring, image management, etc. as depicted in

Figure 6.1. Each such management task is performed by a control plane service that runs in

one or more virtual machine. In this work we have chosen OpenStack as our cloud manage-

ment system of study; this is primarily because it offers a rich set of control plane services

and has become the most popular choice amongst the open source community [52].

6.1.2 Problem Formulation

Consider an organization that wishes to deploy a private cloud on a cluster of size

N . Most of the open source cloud management systems are designed to work with as

few as tens of hosts/machines to very large clusters consisting of thousand machines but

110

for successful and efficient operation, the cloud management system has to be configured

according to the size of the cluster. For this to happen, the administrator must configure

each control plane service with sufficient capacity so that it can service the control plane

workload generated by the management tasks in the cluster.

In the simplest case each control plane service runs as a single process on a single

virtualized node. A single node per service setup is adequate for a small to medium size

cluster. However, as the managed cluster’s size grows, a single node setup will become a

bottleneck. For instance, consider a monitoring service, which performs two major tasks,

recording the monitored metrics for all resource as well serving queries regarding the same.

The monitoring service, supported by a single node can handle the monitoring data for a

cluster of size hundred, but if the cluster grows to a thousand machines, the amount of

monitoring data that is generated by the clients will overwhelm a single node setup.

To scale the monitoring service we need to distribute the the workload across all the

instances of the control plane service. This can be done in two ways: i) Employ clustering,

where a group of replicas of the control plane service collectively serve the requests made

to it. ii) Employ federation, which partitions the workload across multiple instances of

the control plane service. In the clustering approach, all replicas collectively serve all the

requests as a single logical entity – as shown in Figure 6.2a. In federation, each service

instance services a subset of clients and forwards only the necessary requests to the other –

as shown in Figure 6.2b.

Given such a cloud management system and the control plane services, an IT admin-

istrator is faced with the task of appropriately configuring each control plane service and

ensuring that there is sufficient capacity to service the requests. Manual configuration and

capacity allocation is a challenging task as a large number of interdependent services are

involved. We, thus, have the problem of configuring and provisioning each control plane

service so that the task of deploying the control plane service can be automated.

111

Control plane service nodes

...

clients

(a) Clustering

...

Control plane service nodes

......

clients

(b) Federation

Figure 6.2: Clustering and Federated approaches

While there are rules of thumb on how to configure these control plane services, it is

not apparent which approach to use to scale up and in which situation. In addition to this it

is not obvious how many instance to provision for a particular size of managed cluster. Our

approach is to design a flexible control plane service that automates this task by solving

two sub problems: i) Given the size of managed cluster, say N , choose which approach

is suitable, i.e. clustering or federation. ii) Provision sufficient capacity according the

requirements of the adopted approach.

6.1.2.1 Dynamic Provisioning

Initial provisioning is based on an estimate of the workload likely to be seen by the

control plane service. However, the workload observed by services may change over time

either due to imperfect initial estimates of client workloads or due to incremental growth

of the managed infrastructure or even a sudden change in managed workload; for instance

the administrator may increase the monitoring resolution from 15 min to 1 min, causing

an order of magnitude increase in the monitoring data. In such situations, some services

required to be reconfigured by dynamically increasing (or decreasing) the capacity of the

control plane service. The problem of dynamic reconfiguration is one where we automate

the task of dynamically re-provision each control plane service to desired capacity.

112

6.1.2.2 System Model

The control plane services are assumed to be composed of multiple software compo-

nents; these components can be deployed in dedicated virtual machines – we call them

component nodes of a control plane service. In this work we assume that all the component

nodes of a control plane service are identical (thus we also address a component node as

a replica). This is not a limitation of our approach but a simplification, which we have

adopted for ease of exposition of our solution. A fully functional control plane service is

assumed to be created by arranging these component nodes in a single node, clustered or

federated configuration – as shown in Figure 6.2. We assume that each component node

has an associated SLO it and the administrator must pick a configuration and number of

nodes such that there is enough capacity to serve the request seen by the service.

We assume that the private cloud management system has a monitoring service that

keeps time-series of each monitored metrics and has a capability to report events like SLO

violations.

6.2 Capacity Model and Empirical Profiling

Since each control plane service can be clustered, federated or a single node, we model

each control plane service as a set of one or more identical components (referred as com-

ponent nodes). A component node is assumed to service two types of requests, namely

requests from infrastructure nodes or from other clients of the service and requests from

the other component nodes of the same service – intra service messages. Let λc and λn

denote the average workload due to requests of infrastructure nodes and other component

nodes respectively. We also assume that each control plane service needs to meet a per-

formance threshold to meet an Service Level Objective (SLO). SLO of a control plane can

be specified using a threshold on application performance metric (e.g. latency) or on a

resource utilization metric, for instance 80% of CPU utilization. Administrators try to pro-

vision sufficient resource capacity to a control plane service for keeping it from violating

113

the SLO. Capacity estimation of a distributed system is a well known hard challenge and the

challenge is intensified by the fact that software components behave differently in different

configurations this is because different plugins are used to enable different configurations.

Our approach is to automate the task of configuring the control plane service by deter-

mining whether a single node or clustered or federated configuration is best suited for the

control plane service and how many nodes are necessary to provide the desired capacity.

Our approach comprises of deriving an analytical model to determine the capacity

needed and an algorithm to dynamically re-provision when the workload increase beyond

the capacity.

6.2.1 Analytical model

Control plane service uses different resources, namely memory, CPU, network etc. The

performance of a control plane service can be affected by many factors, including its con-

figuration, workload variations, resource utilization, and also artifacts of the involved soft-

ware components as well as those of the system. Our approach is to employ a probabilistic

model to estimate the capacity needed by a control plane service to service a particular

workload.

Workload

S
L
O

Threshold

Capacity

(a)

1

0

0.5

π(x)

(workload)

S
L
O
-V
io
la
ti
o
n
s

(b)

Figure 6.3: Intuition of SLO violation curve

Let λT be the be the total estimated workload and let k be the number of replicas (k ≥ 1)

needed to service this workload. That means we must estimate the number of replicas k

required by a control plane to service a workload of requests arriving at rate λT for a

114

given SLO. Our approach consists of gathering empirical data of SLO violations of each

node/replica of the control plane service and use these observations to build a probabilistic

model/function of SLO violations given the observed workload at the node. We then use

this model/function to determine the max load λ∗
c that can be serviced by a single node;

given this capacity of a single node, we can estimate the number of nodes, i.e. k, for a

specific configuration (i.e. clustered, federated).

6.2.1.1 Formalizing the problem

The objective is to determine a function that relates λ to the SLO. More formally, let

Y be a binary random variable, which represents presence/absence of an SLO violation

and λ be the total workload observed by a node (i.e. λ = λc + λn). We, then, wish to

estimate the conditional expectation of SLO violation, i.e. E(Y |λ). There are a number of

sophisticated non parametric techniques which can estimate conditional probabilities but

these techniques often require a large amount of training data to create reliable models.

Logistic regression [50] is an alternative that does not require a large number of training

samples to determine the conditional expectation.

Let π(λ) denote the conditional expectation E(Y |λ), when assuming a logistic distri-

bution. The specific form of logistic distribution we use is:

π(λ) =
e(β0+β1λ)

1 + e(β0+β1λ)
, (6.1)

where, β0 is the intercept parameter and β1s is the slope parameter. We re-write (6.1) to

obtain a linear equation in λ:

g(λ) = ln

(

π(λ)

1− π(λ)

)

= β0 + β1λ. (6.2)

The parameters β0 and β1 can be estimated using logistic regression; they are maximum

likelihood estimates of π(λ) – expectation of SLO violation for a given λ.

115

Using (6.2), we can compute the value of λ for a given probability of SLO violation, say

=λ∗. For instance, let us suppose we want to compute the capacity λ∗ for a conservative

threshold on probability of SLO violation, say 0.5; this essentially means that whenever

λ ≥ λ∗ there is more than 50% chance of SLO violation (as shown in Figure 6.3b). Thus

equating π(λ) = 0.5 in equation 6.2 yields

β0 + β1λ
∗ = 0 (6.3)

Estimating β0 and β1 requires some real observations of workloads and SLO of a control

plane node in a real setting. For that we perform offline empirical profiling of control plane

services in different topologies as outlined in the next section.

6.2.2 Workload Estimation

The workload λ seen by a node of each control plane service has two components,

namely requests from the clients (λc) and requests from the other replicas/nodes of the same

service (λn), i.e. λ = λc + λn. Intra service workload (λn) is a function of client workload

(i.e. λn = f(λc)) and the exact form of the function depends on the configuration.

We can use knowledge of the control plane to provide the function f . For instance,

in a federated setup the clients are partitioned into smaller groups and each partition is

serviced by one node/replica. Thus λn is a fraction of λc, i.e. λn = δλc. Similarly, in the

case of clustering, the intra service workload depends on the size of the cluster and also on

the way it has been implemented. This means that if a clustered configuration implements

information exchange via broadcast then the messages received by each node will equal

the size of the cluster; now, if the service uses multicast transmission to implement the

same then only one message need to be sent, however,if the implementation adopts unicast

transmission then the number of outgoing messages will be equal to the size of the cluster.

Thus for a cluster of size n we will have λn = 2(n − 1)λc if the unicast is adopted, while

in the case of multicast based implementation it will be λn = nλc.

116

On the other hand if nothing is known about the control plane service then we can treat

the control plane service as a black box and estimate λn as function of λc by regressing

over the empirical profiling data, i.e.

λn = α0 + α1λc. (6.4)

For the purpose of computing initial estimate of control plane’s capacity, and also for

performing empirical profiling, we require an estimate the client workload, i.e. λc, and the

workload generated by a single client, say λ′
c. We make use of rules of thumb or prior

experience for the same; for instance, if it is known that for each monitored machine a

monitoring service records an average of 25 metrics at a granularity of 1-sec, then λ′
c = 25.

Now, if the monitoring node services n clients then the average client workload observed

by a single monitoring node will be λc = n× 25 and the total client workload observed by

the whole monitoring service for a cluster of size N will be λT = N × λ′
c.

6.2.3 Provisioning Algorithm

Having modeled the control plane service and estimated the workload parameters, we

compute the number of nodes required for service as follows:

Step 1: We compute a conservative capacity of a control plane node, i.e. λ∗, using

logistic regression, i.e. (6.3).

Step 2: Next we estimate the maximum client workload a control plane node can ser-

vice, say λ∗
c . Since λn is a known function of λc, we obtain the estimate by solving the

following equation for λ∗
c :

λ∗
c + f(λ∗

c) = λ∗

Step 3: We estimate the capacity of a control plane service, i.e. total number of control

plane nodes (say k), required to service a cluster of size N , i.e. k = *λT/λ
∗
c+.

Step 4: We provision the estimated capacity of control plane service in a particular

configuration.

117

6.3 Dynamic Reconfiguration

The initial configuration was based on an estimate of the workload before the cluster

was even deployed. These capacity estimates need to be redefined after the actual observa-

tion of changes in workload or that in the control plane operations/settings. For instance,

if the administrator changes the monitoring resolution from 1-min to 5-sec, the monitoring

service needs to re-compute the new capacity to faithfully monitor and record the data.

We call this as the dynamic reconfiguration of the control sub-system; this involves

two steps: i) When to trigger dynamic reconfiguration? ii) How to migrate from current

configuration to new one?

When to trigger reconfiguration? We trigger re-provisioning in one of two ways,

namely i) reactively, i.e. when we observe SLO violations, and ii) proactively, i.e. we

forecast the workload and if the forecasted workload changes more than a threshold then

we trigger re-provisioning.

• Reactive: In the situations when we observe SLO violations, we perform two type

of reactive provisioning: i) We increment the capacity of the control plane service

by a fixed amount. For instance, when we observe sustained SLO violations, we can

increase the control plane’s capacity by single node. ii) We learn new model for the

configuration; for this we clean the monitored time series data of SLO and λ obtained

from each node and append it to the empirical profiling data and then re-estimate new

βs of (6.3) using logistic regression.

• Proactive: We use an ARIMA based time-series forecaster to predict the future work-

load at a node; the approach is similar to what is adopted in [105]. Specifically, we

obtain a time-series of workload observations and model it as an ARIMA time-series.

The forecasted workload allows us to plan a transition to a new configuration when

it detects that the capacity of the current configuration may get exceeded.

118

• Computing new configuration: We re-use the provisioning algorithm outlined in sec-

tion 6.2.3 for computing a new configuration but with an updated workload estimate.

How to migrate to new configuration? There are two main steps in migrating the

control plane service from old configuration to new configuration, namely i) redeployment

and ii) redistribution of the clients across the new configuration.

• Redeployment: There are two approaches to deploy the newly computed control

plane service configurations: i) Full redeployment and ii) incremental. Full re-

deployment is useful when the control plane service will need to change its configura-

tion from clustered to federated or vice-versa. In most of the other cases we perform

incremental, where-in if the number of control plane nodes/replicas has change from

k to k′, we just provision the difference and set them up to communicate with the rest

of the replicas. This might require stopping the service for a short period of time.

• Redistribution: If clients are connected to the control plane service nodes via a load-

balancer, we simply change the loadbalancer configuration to make it aware of the

new replicas. However in certain cases, clients are directly connected to the control-

plane service replicas and in that situation, first, we compute the increase in capacity

in terms of number of client nodes, say δn, next we pick the top p maximally loaded

replicas and take δn/p clients from each of them and evenly distribute them across

the new replicas. We assume that services nodes hold their state in a common shared

repository which is over provisioned.

6.4 Prototype Design and Implementation

This section provide details of the prototype implementation carried out for enabling

flexibility and adaptiveness to control plane services of a private cloud management system.

Functional block diagram of our prototype is shown in Figure 6.4. We have used OpenStack

for creation of private cloud management system.

119

Cloud VM

Provisioning

Provisioning

Algorithm

Dynamic

Reconfigurator

Actuator

Metadata

ManagerData

Model

Generator

Empirical

Profiling

Workload

Monitoring

Forecasting

CP
Service

CP
Service

CP
Service

Cloud Management Layer

Provisioning Engine

Adaptation Controller

Data

Figure 6.4: Logical architecture of the prototype

6.4.1 System Model

: Following the brief description of the various functional blocks of our prototype and

also some details of their implementation. We have implemented all the modules in Python.

• Model Generator: It takes the empirical profiling data for each control plane service

and generates a model (set of βs) and hands it over to the Metadata manager for

storing it. We have used the STATA 10’s implementation of logistic regression [13]

to obtain our models.

• Metadata manager: It essentially stores and retrieves all necessary metadata details.

It stores models for each control plane service, their current configuration and capac-

ities. We have implemented this as a python class, which stores all the information

in in-memory data structures.

• Workload Monitoring and Forecasting: It collects time-series monitoring data of all

the virtual machines as well as of those of the control plane services. It stores all

the results in a database, which can be queried. We have implemented this as a part

of monitoring service of OpenStack using Ganglia. We have used STATA 10 for

implementing the ARIMA forecaster [119].

120

• Configuration and Provisioning Engine: It implements the provisioning algorithm.

It takes the generated model from Metadata manager and computes the number of

replicas needed for a configuration. In case of change in configuration, it provisions

new replicas using the Actuator module and updates the details of new configura-

tion to Metadata manager. It also performs dynamic reconfiguration by constantly

evaluating the SLO metric and by computing the change in average client workload.

As a solution to the less frequent situation where the model requires re-learning, the

provisioning engine queries and collects the cases of SLO violations and updates the

learning data. It then re-estimates the model parameters and updates the records in

metadata manager.

• Actuator: This is module is a part of configuration and provisioning engine. It per-

forms the task of deploying new virtual machines of each control plane service. After

deployment it executes the necessary scripts in each replica of the control plane ser-

vice for creating the correct configuration. The actuator also looks up the dependent

clients and alter’s their configuration so that the client workload is evenly distributed

across all the replicas. It essentially keeps a fixed number of clients for each replica.

6.4.2 Private cloud management system

We have used OpenStack as our cloud management system. It has four main com-

ponents, namely, compute (Nova), image repository (Glance), authentication (Keystone),

and swift (Storage). The nova, glance, and keystone provide the service of hypervisor

management, image management and authentication respectively, while swift provides and

object-store service [76]. We use Nova as an example to expose some of the design details

of scalable cloud service components. Nova has multiple control plane services which to-

gether provide the the functionality of compute and volume storage management. Nova’s

various services communicate with each other via AMQP [108]. In our setup we have used

the open source implementation of AMQP, namely RabbitMQ [88].

121

But OpenStack does not have a full fledged monitoring service; we thus have built a full

fledged monitoring service using Ganglia and Nagios [54]. Ganglia helps in monitoring and

storing the data in the database and Nagios, helps in putting simple triggers in the DB; for

instance, we use Nagios to report if the average memory utilization of a bunch of nodes is

over 300 MB.

6.4.3 Empirical profiling

As the first step towards learning the parameters we perform empirical profiling of

each control plane service in both clustered and federated pattern types. In general, a

configuration topology is a graph that is created using replicas of component nodes. In

order to empirically profile a component nodes of a service in a particular configuration,

we start with the smallest possible graph of that configuration and systematically increase

the client workload on the service (i.e. λc) until we observe SLO violations; at each step

we record the average intra service workload as well (i.e. λn). We, then, repeat the same

procedure with the next bigger graph of the same topology type and so on.

• Single node: this is the smallest configuration for all types of topology – Figure 6.5a.

We assume the average workload generated by a single client, i.e. λc and for the

purpose of increasing λc we simply increase the number of clients until we observe

SLO violations.

• Cluster configuration: We start with a cluster of size 2 and distribute evenly clients,

say 2m, between the two nodes. We, then gradually increase the workload on both

the nodes, distributed evenly, until we observe SLO violations on any of the nodes.

We measure both the average number of client requests per sec, λc, and the average

number of intra service requests per sec, λn. We repeat the same experiment with

larger cluster size. This helps us gather data necessary for capturing the impact of

cluster size as well.

122

n

C C

C

Clients

C

CC

C

C

(a) Star/Single

Node

n n

n n

Clients

(b) Cluster

n n

n n

Clients

(c) Federated - Ring

n

n

n

n

Clients

n

(root)

(intermediate)

(leaf)

(d) Federated - Heirarchical

Figure 6.5: Example initial configurations; grey nodes represent control plane service

nodes and the white nodes are its clients

• Federated configuration: In this configuration type, the clients are partitioned be-

tween different component nodes of the service, but the service nodes themselves

could be arranged either in a tree based hierarchical manner or in a non-hierarchical

fashion (for instance a ring). For nonhierarchical kind of federated configuration, the

method of profiling is like that of clustered configuration, i.e. we start with smallest

possible configuration and profile till it is saturation and then increase the number of

component nodes by one and repeat the same procedure.

In the case of hierarchical configuration, we have to differentiate between nodes, i.e.

leaf nodes, intermediate nodes and root node. This makes the profiling a little more in-

volved. We start with a tree of depth=1, i.e. with a root node and single leaf node; thus

to make life easier we have profiled assuming that the in a hierarchical topology only leaf

nodes and root node will have client workload and not the intermediate nodes. Similar to

cluster topology we increase the client workload on the leaf node while keeping the client

123

workload of root node to zero until leaf node’s saturation. We keep the root node’s client

workload to zero and gradually increase the λn by adding more leaf nodes. We repeat the

same experiment with a tree of depth two, where there is a leaf node and intermediate node

and then a leaf node. We empirically profile the intermediate node.

6.5 Case Study: Monitoring Subsystem

The monitoring subsystem offers one of the core services for cloud management. Al-

most all system management analytics, namely elasticity, problem determination perfor-

mance monitoring etc. are dependent on it. Essentially, a monitoring system collects uti-

lization and performance metrics of various system resources like compute nodes, storage

devices, network resources etc and persists them. It also offers a system to query and

retrieve the recorded information.

At a conceptual level a monitoring system needs minimally the following three sys-

tems i.) storage system: which stores the monitored data for posterity ii) querying system:

which provides methods to query the stored data and iii) collection system: a method of

collecting monitoring information. For the monitoring system to be able to scale, each of

these sub-systems should scale individually. There are a number of commercial and open-

source software systems that support scalable monitoring systems; for instance IBM Tivoli

monitoring system, Supermon [98], CARD [4] etc.

We have used Ganglia as our choice of monitoring subsystem. Ganglia also has a mon-

itoring agent, gmond, which listens and broadcasts monitored data using UDP multicast/u-

nicast. The monitored data is pushed to a metadata server, gmetad, for persisting; gmetad

stores data in a Round Robin Database (RRD) [78] and leverages rrdtool to extract and

graph the monitored data using Apache web-server and php technology. Unlike many of

the open source solutions, ganglia uses listen/announce protocols and automatic discovery

124

of cluster membership, which affords no manual configuration for addition of new member

or metric. Ganglia supports a federation in a hierarchical manner1.

Ganglia uses UDP to transfer data from client to server. Consequently, message de-

livery is very unreliable. This lack of reliability is particularly prominent in a reasonably

loaded datacenter. This makes ganglia a very relevant system to stress test our approach,

particularly for testing our approach to dynamic provisioning. We noticed that the Gan-

glia monitoring suffers data loss either due to unreliable message delivery or because of

software artifacts. We, thus, have defined SLO of our monitoring subsystem as a threshold

on the percentage of data loss, i.e. data loss is less than 10%. To test the efficacy of our

approach in a real life setting we conducted our experiments on Amazon EC2.

In the following sections we describe the experimental setup for conducting experi-

ments on various configuration patterns.

6.5.1 Experimental Setup

We have used Ganglia 3.3.6 over Ubuntu 12.04 machines for creating a monitoring

node by deploying both a gmetad and a gmond daemon on it. This server is responsible

for gathering all data from the monitored nodes. Client workload generated by a single

client (i.e. λ′
c) is dependent on number of metrics being monitored and the frequency at

which they are monitored. We have considered three types of monitoring workloads for

our experiments. Each of these workloads involve monitoring 25 metrics but at different

monitoring frequencies, i.e. 1-sec, 5-sec and, 15-sec.

We generated client workloads by simulating monitored clients via a data generation

daemon in python. It sends gmond 2.x data packets to gmond. For each monitored node

(i.e. client machine, labelled as gmond in Figure 6.6a) we executed our simulator 25 times

to send 25 separate metrics at the pre-configured monitoring frequency. On the monitoring

1Ganglia creates one rrd file for each metric of each node; which means that if there n nodes and m
metrics then Ganglia will generate/create n×m rrd files on the metadata server.

125

node The metrics are saved in separate files and folders, where files are named using the

metric’s name and the folder is named using the host name.

6.5.1.1 SLO metric

Ganglia is designed to use UDP to transfer monitoring metrics to gmond. These metrics

are collected by gmetad using a TCP connection with gmond. We have chosen data-error

percentage, i.e. percentage of data lost per unit of monitoring time, as our SLO metric.

For measuring the capacity of Ganglia monitoring subsystem we have used 10% as the

threshold for our SLO-metric, which means that we consider more than 10% data-loss as

an SLO violation.

6.5.2 Empirical Profiling and Capacity Estimation

In this section we empirically profile Ganglia based monitoring subsystem in two dif-

ferent configurations, namely, single-node and federated (nodes deployed in a hierarchy).

We then use the profiling data and the results developed in Section 6.2 to compute the max-

imum capacity of a configuration. Finally, we test our dynamic reconfiguration approach

on monitoring subsystem deployed in a federated topology.

6.5.2.1 Single Node Configuration

We created a single node configuration, as shown in Figure 6.6a, by using the m2.xlarge

instance of EC2 as our monitoring node. Ganglia metadata node has a software setting to al-

ter the monitoring granularity of the metadata server. To show the efficacy of our approach

we conducted empirical profiling and capacity estimation of single-node Ganglia setup in

three different monitoring granularities, i.e. 1-sec, 5-sec and 15-sec. We conducted three

different profiling experiments and trained three different models (one for each monitoring

granularity).

126

We have simulated nc client nodes by sending the monitored data of nc×25 metrics2 to

the monitoring node from 5 client machines running the client workload simulator. The λc

observed by the monitoring node in the three respective monitoring granularities is nc×25,

5 × nc, and 5 × nc/3. The observed data-loss at the monitoring node for each of the three

different monitoring granularities is recorded for training the model. The SLO plots for

each of the experiment are shown in Figure 6.6b, where each point on the graph is an

average of more than 50 samples.

Monitoring

Node

gmond gmond gmond...

(a) Configuration

(b) Data loss

Figure 6.6: Data loss in a single node configuration

We used the complete profiling data to compute the capacity model of a single node

configuration in three different settings. We estimate the parameters of the model using

logistic regression and compute capacity using (6.3). Figure 6.7b summarizes the results

of profiling of a single node configuration with the three different monitoring workloads as

a table.

2Amazon cloudwatch monitors 25 metrics for an instance and its volume

127

(a) Estimated and observed capacities as a

function of λc

1-sec 5-sec 15-sec

(λc = 25) (λc = 5) (λc = 5/3)

Capacity 58 122 256

(b) Estimated Capacities

Figure 6.7: Empirical and estimated capacities of single node monitoring configuration

with monitoring node on an m2.xlarge instance type.

It can be seen from Figure 6.7a that capacity does not vary linearly in λc and that the

model provides a conservative estimate of capacity with the data generated by empirical

profiling.

Conclusion: Empirical profiling effectively captures the software artifacts. In addition

the model allows us to capture that knowledge and generate conservative estimates.

6.5.2.2 Federated configuration

For a federated configuration we conducted an experiment with a tree of depth two,

as shown in figure 6.8a (which means a tree of depth one for control plane nodes). In this

configuration there are multiple monitoring nodes each of which gathers the data from their

individual group of monitored nodes, called clusters. It is often useful for administrators to

have a summary of monitored metrics at cluster level. Ganglia collects summary statistics

at the monitoring node, which monitor another monitoring nodes; in our case it will be

the root monitoring node. The root node pulls the summary statistics data periodically

after t-seconds which can be set using a config-file. This places additional load on the leaf

monitoring nodes and thus impacts data loss.

128

In a hierarchical configuration there are three types of nodes, namely a leaf metadata

node (subjected to both client and intra-service workload) and the other is a root node (with

only intra service workload); we profiled each of these nodes. For leaf metadata nodes, we

generated the client workload in the same manner as for single-node configuration profiling.

However, for generating intra service workload (λn), we setup the root node to pull data

from the leaf metadata nodes at three different granularities, i.e. 15-sec, 30-sec and, 1-

min. This is because the higher level nodes in the tree collect only summary statistics

of the lower level nodes and thus the resolution is often quite low. For each resolution,

we measure SLO while gradually increasing λn. The variation in the SLO metric with

increase in workload, for both leaf as well as root metadata node, is shown in Figure 6.8b

and 6.8c respectively. We have used an average workload of 25 metrics per monitored

client, thus λc = 25/tl, where tl is the monitoring granularity of the leaf metadata node.

Similarly average workload generated by a leaf metadata node for its parent node is λn =

150/tr, where tr is the monitoring granularity of the leaf metadata node. We conducted

nine profiling experiments and developed capacity models for each of them.

Like the single node setup, we compute the capacity of a federated pattern by assuming

10% as the maximum allowed data loss. As expected, we find that the data loss character-

istics of the leaf monitoring nodes are very similar to those of a single node configuration

except only slightly less (shown in Table 6.1a). However, as the root metadata node’s mon-

itoring granularity increases to 30-sec and 60-sec the impact becomes nearly negligible.

For estimating the capacity of a tree of deputy on, we estimated capacity for both leaf

and root metadata node for each of the nine empirical profiling experiments (shown in

Tables 6.1a and 6.1b respectively). We then evaluated the capacity of a tree topology type

(with depth one) by assigning maximum number of child nodes which each service node

can handle.

Table 6.1c summarizes the maximum capacities of a tree topology of depth one with

nine different settings of monitoring granularities. The total capacity of each of the nine

129

Monitoring

Node

...

Monitoring

Node

...

Monitoring

Node

...

...

Root

Node

Monitored Nodes

(a) A federated configuration

(b) Data loss on leaf monitoring node; root node

monitoring at 15-sec granularity

(c) Data loss on root monitoring node

Figure 6.8: Data loss in a federated configuration

configurations is computed by multiplying capacities of leaf and root nodes. This is because

of the fact that we assume λn = 150/tr (a constant). Note that an approximate functional

form of λn = f(λc) is estimated using the knowledge of the monitoring service. Since the

root node collects only the averaged values from each child metadata nodes, it computes to

λn = λ′
c × 6/tr.

Conclusion: Empirical profiling assists in capturing the application artifacts. This

coupled with our modeling approach helps in estimating maximum capacity of any config-

uration.

6.5.3 Adaptation of Monitoring Subsystem Model

In certain situations the initial estimate of node capacities and hence the capacity of

a configuration could be quite off from the the actual values needed in real deployment.

This, either, could be because of change in hardware configurations or new version of soft-

wares. The actual values needed might require re-computation of the model. To showcase

130

RootNode/LeafNode
15-sec 30-sec 1-min

λn = 10 λn = 5 λn = 2.5
1-sec (λc = 25) 56 58 58

5-sec (λc = 5) 118 133 133

15-sec (λc = 1.67) 272 284 285

(a) Leaf metadata node capacity

15 -sec 30-sec 1-min

Capacity 28 32 55

(b) Root metadata node capacity

RootNode/LeafNode 15-sec 30-sec 1-min

1-sec 1568 1856 3190

5-sec 3304 4256 7315

15-sec 7616 9088 15675

(c) Capacity of a hierarchical configuration pattern

Table 6.1: Empirical capacity of federated monitoring configuration deployed as a tree of

depth of two; monitoring node on an m2.xlarge instance type.

a scenario of dynamic reconfiguration of the model we conducted an experiment with a

federated topology type, more precisely, we used a tree with one root metadata node (nr)

and one leaf metadata node (n1). We started with the capacity models of both root and leaf

metadata nodes, obtained in the previous experiment. The initial estimate results in maxi-

mum client capacity of 56. We conducted the following experiment: i) We started with the

two node tree with 10 clients attached to the leaf metadata node. The leaf metadata node

was configured to monitor at 1-sec monitoring granularity, while the root metadata node

at a 15-sec granularity. ii) We gradually increased the workload in units of 10 clients (i.e.

nc+ = 10). We then learn a new model with the new data of SLO violation. For increasing

the capacity of the system we adopted the mechanism outlined in Section 6.3.

Our reconfiguration process triggered when the n-c connections reached 50 nodes be-

cause the SLO got violated (shown in Figure 6.9a). The new capacity turned out to be

55 client nodes, the reconfiguration algorithm returned the same topology back (shown in

Figure 6.9a. When the workload was made 60 it automatically triggers re-computation as

131

(a) Dynamic reconfiguration

the workload has exceeded the capacity of the configuration. The new configuration at this

point contains a second leaf node (n2). We keep 55 clients assigned to n1 for monitoring

and the remaining are assigned to n2. As we gradually increased the workload to 80 client

nodes, the SLO violation again exceeded 10% and on re-evaluation lead to a new maximum

capacity of 47 client nodes for each leaf node (shown in figure 6.9b). With this evaluation

the algorithm believes that the system is within capacity and we increased the capacity to

90 clients. Due to SLO violation yet another re-evaluation happened and the new capacity

computed was 44 (shown in figure 6.9c) and this caused a new topology with an addition of

third node n3. At this point each of the first two nodes account for 44 clients while n3 gets

two clients and SLO violations dropped below threshold. Next re-evaluation happened at

120-client nodes again because of SLO violations and the new capacity for leaf metadata

nodes that was computed to be 38 client nodes (shown in figure 6.9d). Due to rebalancing

the average SLO violations go down but at 150 requests the 5th revaluation leads to the fi-

nal capacity of 30 client nodes for each leaf node and the SLO violations reduce to around

6%. The initial model which we started with was off by 45%. Our approach is able to learn

the correct model quickly without interfering with the model for other granularities.

132

(a) First violation (cap=55) (b) Second violation (cap=47)

(c) Third violation (cap=42) (d) Fourth violation (cap=30)

Figure 6.9: Dynamic scaling and adaptation of capacity rule

Conclusion: i) Dynamic adaptation is effective. ii) Logistic regression based model is

able to quickly learn new parameters and configures the system with correct topology. iii)

Models for specific workloads can be simple but effective.

6.6 Case Study: Messaging Subsystem

Distributed systems communicate with different components synchronously or asyn-

chronously by invoking remote objects transparently. A messaging system offers a scal-

able backbone service to a distributed system for synchronous as well as asynchronous

communication.

133

In a message queuing based architecture distributed components communicate by pub-

lishing messages in specific source queues. The messages hop across multiple communi-

cation servers before eventually getting delivered to its destination queue(s).

There are a large variety of commercial and open source message queuing systems, e.g.

IBM Webshpere MQ, Microsoft Message Queuing, RabbitMQ, Apache Active MQ, Sun

Opend Message Queue, Apache Qpid etc. A messaging system, essentially, has three main

components: i) Clients which post and receive messages by registering specific queues ii)

Local queue managers, which manage the queues of clients that are directly connected

to them and iii) message routers or exchanges, which forward the incoming messages to

other exchanges or to destination queues. Exchanges help in building a scalable message-

queuing system. However, there are multiple configurations in which these exchanges can

be arranged to scale the queuing network.

This case study is on OpenStack’s message queuing subsystem, that forms the back-

bone of this scalable private cloud management system. All the components of the com-

pute cloud of OpenStack (i.e. Nova) communicate with each other via blocking and non-

blocking RPC calls using AMQP [109].

In the following sub-sections we describe the architecture of OpenStack and then our

experimental setup and finally experiments and results on the messaging subsystem of

OpenStack.

6.6.1 OpenStack Messaging Subsystem

Openstack’s compute cloud is called Nova. Its a distributed system whose sub-components

communicate with each other using AMQP [109] protocol. A high level architecture of

Nova3 is shown in Figure 6.10

3In Essex release of OpenStack nova-console, nova-cert/objectstore and nova-consoleauth modules also

leverage AMQP for communication. We have not considered their workload in our simulations but it should

be noted that they introduce a nearly insignificant load on the message queuing subsystem

134

AMQP

Nova-API

Nova-
Scheduler

Nova-
Compute

Nova-
Network

Nova-
Volume

Nova-
Compute
Nova-

Compute
Nova-

Compute

Nova-
Network
Nova-
Network
Nova-
Network

Nova-APINova-APINova-API

Nova-
Scheduler

Nova-
Scheduler

Nova-
Scheduler

Nova-
Volume
Nova-
Volume
Nova-
Volume

Figure 6.10: OpenStack Nova components

Each of the OpenStack components communicate over AMQP using an exchange named

nova. Following is a brief description of these components, which is relevant to our work:

• Nova-api: This is the external facing component of OpenStack. It exposes interfaces

for clients to be able to initiate most of the resource management/query activities. It,

essentially, takes the client requests, marshals them and posts it on to the scheduler-

queue.

• Nova-scheduler: It determines which instance executes where. There could be multi-

ple schedulers in an OpenStack installations and each scheduler registers two queues

on the nova-exchange, namely scheduler and scheduler.hostname. Scheduler, essen-

tially, dequeues tasks posted on the shared scheduler queue or on its specific queue,

i.e. scheduler.hostname.

• Nova-compute: this is a worker process which runs on host machines and handles

the task of creation and termination of virtual machines. There are multiple nova-

compute instances, one running on each compute node, and each of them registers

two queues at the nova exchange, namely compute and compute.hostname. Nova-

compute dequeues its tasks from the exclusive queue, compute.hostname.

• Nova-network: it accepts the tasks from the queue regarding allocating and setting the

network of the provisioned virtual machine. OpenStack supports a single network-

135

node mode as well as a multi-network node mode. Each network node registers two

queues at the exchange, namely, network (shared) and network.hostname (exclusive)

• Nova-volume: it handles the tasks of creation, attaching and detaching of persistent

volumes to compute instances. Like compute, network and scheduler, it also registers

two queues at the nova exchange, namely volume (shared) and volume.hostname

(exclusive). It initiates its processes after receiving requests on the shared queue and

exclusive queues.

6.6.2 Workload Simulator

OpenStack supports two open source implementations of AMQP, namely RabbitMQ

and Apache Qpid. We have used RabbitMQ as the messaging service subsystems and in-

stead of Kombu client library4 we have used Pika version 0.9 client library to communicate

with RabbitMQ. We simulate the message sequences and RPC calls of each of the Open-

Stack components.

• Empirical Profiling: For each configuration of RabbitMQ server configuration we

increase the number of compute nodes and volume nodes gradually. We assume that

each host (nova-compute) will receive a VM create and terminate request per hour

per core; associated with it will be volume creation and termination request. We

assume a host of 64 cores, which means 64 VM and volume creation and deletion

requests per host per hour.

• SLO metric: OpenStack’s components do not inject a lot of messages into the mes-

saging system and neither are they very sensitive to the delay in their delivery. Open-

stack’s components start observing trouble in their operations, when the messaging

system stops publishing messages. This happens when RabbitMQ reaches its max-

imum allowed memory utilization limit. In this work we have kept SLO as when

4OpenStack uses Kombu but it does not support federation of exchanges in RabbitMQ.

136

average memory utilization shoots over 75% of the maximum allowed memory; for

instance, if 400MB of memory is allotted to RabbitMQ, then we consider a SLO

violation when memory utilization increase to a value more than 300MB.

• Data collection: We collect the memory utilization as well as message latency for our

study. For memory utilization we use an admin tool, which reports current memory

utilization of RabbitMQ server. Although we have not used message latency in this

study, we collect it for our future work. For collecting message latency, we synchro-

nized the clock on each server and each message is time-stamped by the publisher.

The client receives the message and logs the performance metric, i.e. message la-

tency. We have equipped each nova component with a TCP-socket based logger and

created a logger-server for recording the logs at a single place for ease of processing.

We compute the average latency by processing this central log.

6.6.3 Experimental Setup

We have used RabbitMQ 2.8 for our experiments. We experimented on a private cloud

created over 12 Intel Xeon (X3430) machines each with 8 GB RAM and 500 GB SATA

Disk. The machines were installed with Ubuntu 12.04 and we created the private cloud

using OpenStack Essex release. Each RabbitMQ node possesses both queue-management

capabilities as well as router capabilities. They just need to be configured in a particular

manner to create different configuration topologies. We have installed them on single core

VMs with 6GB of RAM. The clients were deployed on the hosts described above. On each

VM as well on each host we set the limit to number of open files to 81920 (80 K). In order

to synchronize the clock we used NTP 4.2.6.

6.6.4 Empirical Profiling and Capacity Estimation

In this section we perform the empirical profiling of RabbitMQ based messaging system

in two different topologies, namely single-node and ring.We will use the offline profiling

137

data and the results developed in Section 6.2 to compute the maximum capacity of a topol-

ogy. We will finally test our dynamic reconfiguration approach on monitoring subsystem

deployed in a federated topology.

We assume that each client, i.e. Nova-compute and Nova-volume generate one VM and

volume creation and deletion request every hour. We have assumed that each client node

is of 64 cores and thus each node create one VM as well as volume creation request every

second. Since a VM creation requires 5 messages and VM-deletion requires 6 messages

and equal for volume creation and deletion, thus λ′
c = 22.

6.6.4.1 Single Node Configuration

We conducted the experiment with a single node configuration by using a single core

VM but with amount RAM to RabbitMQ, i.e. starting from from 400MB to 2.4GB. We

gradually increase the number of compute and volume nodes, which increases the message

traffic via the message queue. We, then, measure memory utilization of the RabbitMQ

node. The results are shown in Figure 6.11.

In each experiment we gradually increased the number of compute nodes, keeping a

single scheduler and a single network node. Increasing scheduler and network is not a

recommended configuration in openStack.

In each experiment we scaled up the number of clients in batches of 250 clients. We

stop adding clients when the memory utilization reaches 75% of the total allowed memory

to RabbitMQ server. We found that the memory utilization linearly increases with number

of clients, as shown in figure 6.11b. To generate a model of single node configuration, we

conducted experiments where we varied the RAM from 400MB to 2400MB and the results

are shown in figure 6.11c. It can be observed that the capacity scales linearly with RAM

for workload generated by OpenStack clients. The model also captures the same.

Thus we conclude that for a fixed size RAM the capacity in terms of number of client

nodes is a constant, for all practical purposes, i.e. 750 clients for 400MB of RAM.

138

RabbitMQ

Compute

Compute
Compute

Compute

Volume
Volume

VolumeVolumeVolume
Volume

Scheduler

Network

(a) Single node setup

(b) Memory utilization (c) Capacity

Figure 6.11: Memory utilization and average message latency observed in a single node

configuration of RabbitMQ

6.6.4.2 Cluster Configuration

RabbitMQ supports a clustering configuration, where each broker node in the cluster

has all a replica of all the data necessary for operation. This means that any queue can be

accessed from any broker node, however, the queues and its messages are not replicated

and thus it saves unnecessary excess communication. We experimented with three types of

cluster node configurations and the results are shown in Figure 6.12.

We conducted two set of experiments: First with by hosting RabbitMQ on a single core

VM but with 2.4GB RAM, second with a RabbitMQ server with single core VM and with

0.4GB RAM. For both the experiments we created cluster of different sizes and for each

such cluster, we increase the number of clients gradually till SLO violations were observed.

The second experiment was conducted with a limited RAM to study the asymptotic behav-

ior of the configuration and also to test if the model can capture this knowledge faithfully.

139

Unit Unit

(a) Two Node

Unit Unit

Unit

(b) Three Node

Unit Unit

Unit Unit

Clients

(c) Four Node

(d) Configuration Capacity (RAM=2.4GB) (e) Configuration Capacity (RAM=0.4GB)

Figure 6.12: Various cluster configurations and their empirically estimated capacity.

In the case of clustering configuration, the intra service workload (i.e. λn) scales lin-

early with λc. The linear function is such that it also depends on the size of cluster. So we

estimated the following function from our empirical profiling data λn = α0 + kα1λc.

We estimate the capacity of the clustered setup using our logistic regression. Results

of empirical observations for the cluster with 2.4GB RAM are shown in figure 6.12d. We

observed that this data creates a model which depicts a linear growth. To study the impact

of increasing cluster size on the capacity we conducted the same experiment but with much

less amount of RAM to the RabbitMQ nodes, i.e. 0.4GB. Since λn is not linearly depen-

dent on λc (because cluster size k is also a variable), we ran a multiple logistic regression

with λc and λn as our independent variables and SLO as the dependent variable. Capac-

ity in terms of number of clients which a node can handle reduces to the following form:

λ∗c = 22.25/(0.01 + k × 0.003). We plot the capacity for each k using this result and the

capacity curve is shown in figure 6.12e. The figure depicts that the capacity of a clustered

140

configuration starts to saturate as cluster size increases. Thus after some point in time it

will not be useful to scale using clustered configuration.

Conclusion: Capacity of a clustered configuration starts to saturate as the size of the

cluster increases. Also the model provides better estimates of SLO violation with more

number of independent parameters, namely λc and λn.

6.7 Related Work

6.7.1 Cloud Benchmarking

Many researchers have conducted empirical evaluation of cloud platforms; Researchers

in [9] and [33] benchmark Amazon EC2 to quantify CPU, disk and network performance

of the provisioned virtual machines. Sharada et al. in [11] evaluate different virtualiza-

tion technologies by running database workloads in a virtualized environment. Cooper et

al. in [29] propose benchmark for the data storage subsystems popular in clouds, namely

Hadoop, Cassandra, HBase and compare their bench marking results with shared MySQL

implementation.

6.7.2 System Performance Modeling

Generic system performance model based on ensemble of tree augmented bayesian

networks has been developed by Zhang et al in [123] to capture the performance behavior

of a system application under changing workload conditions. Watson et al. in [114] develop

a probabilistic performance model for virtual machines with the objective of capturing the

effect of statistical multiplexing in clouds and impact of other measurable factors to provide

performance guarantees expressed in percentiles. Our work in this chapter is closest to this

approach, however, unlike them we use a simple model and also support dynamic update

of model for adjusting to dynamic changes in workload.

141

6.8 Conclusion and Future Work

Scaling the control plane services of a cloud management system is a challenging task

because of diversity involved in the type of systems. We present a system, which adopts

a control-plane of control plane services and present an approach to perform empirical

profiling of the control plane services. We also develop a performance model which lever-

ages the data from empirical profiling to determine the initial configuration of the service.

We present a four-step mechanism to compute for new configuration and provision it. We

present a method of dynamically scaling the control plane in accordance to the dynamism

of the workload using either a clustered or a federated approach. We have developed a

prototype for monitoring subsystem and tested it on public cloud (i.e. Amazon EC2) with

two different topologies, namely single-node and federated. We also developed a prototype

of messaging subsystem of OpenStack and tested our methodology using three different

configuration, namely star, cluster and ring. Our experiments indicate that initial configu-

ration could be far from actual configuration but we converge to the desired configuration

in a few iterations.

Logistic regression gives better models with more number of uncorrelated independent

metrics. Thus as a future work, we plan to extend the model to include other system metrics,

namely CPU and Disk and conduct a study again on some of the control plane services to

test its efficacy.

142

CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Thesis Summary

This thesis has explored how complex systems/applications can be made elastic on

a cloud computing platform. We have proposed models and algorithms to automate the

process and have demonstrated their efficacy by building prototypes in both public as well

as private cloud computing environments.

7.1.1 Cost Aware elasticity

As the first part of the thesis, I presented a system and methodology for performing

cost aware elasticity of a cloud application on any IaaS cloud platform. The approach

optimized for infrastructure cost or transition latency (or a weighted combination of both)

while ensuring that application’s SLA is not violated. The evaluation demonstrated that,

even in a modest size setup, our system afforded as high as 24% higher cost savings as

compared to the cost oblivious approaches. On the other hand our system demonstrated

an ability to perform elasticity in times two orders of magnitude smaller than the transition

cost oblivious approach.

7.1.2 Planning for the Tail

As the second piece of this thesis, I presented a model for computing capacity of a

multi-tier cloud application when the SLA is expressed as a threshold percentile of end-to-

end response time. The model was extended to account for the non-linear pricing in cloud

platforms and also to account for the heterogeneity present in cloud platforms. Our system

143

is able to make the multi-tier cloud application elastic with as high as 80% savings in cost.

The study showed that its better to use bigger servers on clouds than smaller servers for

high percentile provisioning.

7.1.3 Hybrid Cloud

Next, I described a new dynamic provisioning system, Seagull, which supports dynamic

provisioning of enterprise applications in a hybrid cloud environment. It automates the de-

cision about which applications can be run in the cloud most efficiently. It leverages selec-

tive pre-copying as an optimization for reducing the migration time of large applications

by orders of magnitude. Our evaluation demonstrated how Seagull can burst applications

to the cloud in very short times, while incurring only minimal performance overhead due

to precopying.

7.1.4 Flexible Adaptive Control Plane for Private Clouds

Finally, I presented a generic methodology to generate a topology for any control plane

service of a cloud management system. I developed a logistic regression based generic

model and used it to generate specific models for each kind of topologies. I empirically

profiled various topologies for two core control plane services and used this data to train

the model. I also presented a dynamic reconfiguration mechanism to assist the control

plane service in adapting to wrong configuration and workload changes. Our experiments

on both private and public cloud indicate that our model is able to suggest reasonable initial

configurations for control plane services for a given SLO. Also in situation where the ini-

tial configuration was far from satisfying the SLO, the dynamic reconfiguration algorithm

quickly converged to suggest the correct configuration.

7.2 Future Work

In this section we discuss some future research directions that have emerged from this

dissertation.

144

• Cost Aware elasticity: Kingfisher , currently works in a single cloud environment,

however it will be very useful to extend this work to incorporate hybrid cloud en-

vironments. This would require factoring in the application’s limitations and also

performance degradation caused by spreading the workload across different clouds

platforms.

• Hybrid Clouds: Seagull has methods and mechanisms for supporting applications

in a hybrid cloud environment. It can be extended to support cost efficient disaster

recovery and resiliency to applications which guarantees a particular RTO and RPO.

• Flexible Adaptive Control Plane for Private Clouds: In our current solution the

we have developed an SLO model of each node based on the number and type of

requests processed by the node. However, the model will be more robust and effective

if we could base it on more number of relevant metrics. But in any large distributed

system, the number of metrics could easily become very large and thus the challenge

would be automatically identify the relevant system metrics and train the model on

those metrics.

145

BIBLIOGRAPHY

[1] Abdelzaher, Tarek F., Shin, Kang G., and Bhatti, Nina. Performance Guarantees for

Web Server End-Systems: A Control-Theoretical Approach. IEEE Transactions on

Parallel and Distributed Systems 13, 1 (2002), 80–96.

[2] Airoldi, Edoardo M., and Carley, Kathleen M. Sampling algorithms for pure net-

work topologies: a study on the stability and the separability of metric embeddings.

SIGKDD Explor. Newsl. 7, 2 (Dec. 2005), 13–22.

[3] Al-Fares, Mohammad, Loukissas, Alexander, and Vahdat, Amin. A scalable, com-

modity data center network architecture. In Proceedings of the ACM SIGCOMM

2008 conference on Data communication (New York, NY, USA, 2008), SIGCOMM

’08, ACM, pp. 63–74.

[4] Anderson, Eric. Extensible, scalable monitoring for clusters of computers. In Proc.

1997 Large Installation System Administration Confere (LISA XI (1997), pp. 9–16.

[5] Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D., Katz,

Randy, Konwinski, Andy, Lee, Gunho, Patterson, David, Rabkin, Ariel, Stoica, Ion,

and Zaharia, Matei. A view of cloud computing. Commun. ACM 53, 4 (Apr. 2010),

50–58.

[6] Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D, Katz,

Randy H, Konwinski, Andrew, Lee, Gunho, Patterson, David, Rabkin, Ariel, Sto-

ica, Ion, and Zaharia, Matei. Above the clouds: A berkeley view of cloud comput-

ing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California,

Berkeley, Feb. 2009.

[7] AWS Economics Center. http://aws.amazon.com/economics/.

[8] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebuer, R.,

Pratt, I., and Warfield, A. Xen and the Art of Virtulization. In Proceedings of the

19th SOSP (2003).

[9] Barker, Sean Kenneth, and Shenoy, Prashant. Empirical evaluation of latency-

sensitive application performance in the cloud. In Proceedings of the first annual

ACM SIGMM conference on Multimedia systems (New York, NY, USA, 2010), MM-

Sys ’10, ACM, pp. 35–46.

[10] Bennani, Mohamed N., and Menasce, Daniel A. Resource allocation for autonomic

data centers using analytic performance models. In ICAC ’05 (Washington, DC,

USA, 2005), IEEE Computer Society, pp. 229–240.

146

[11] Bose, Sharada, Mishra, Priti, Sethuraman, Priya, and Taheri, Reza. Performance

evaluation and benchmarking. In Performance Evaluation and Benchmarking,

Raghunath Nambiar and Meikel Poess, Eds. Springer-Verlag, Berlin, Heidelberg,

2009, ch. Benchmarking Database Performance in a Virtual Environment, pp. 167–

182.

[12] Bradford, Robert, Kotsovinos, Evangelos, Feldmann, Anja, and Schiöberg, Harald.

Live wide-area migration of virtual machines including local persistent state. In VEE

(San Diego, California, USA, 2007), ACM, pp. 169–179.

[13] Buis, M. L. predict and adjust with logistic regression. Stata Journal 7, 2 (2007),

221–226(6).

[14] Buyya, Rajkumar, Ranjan, Rajiv, and Calheiros, Rodrigo N. Intercloud: Utility-

oriented federation of cloud computing environments for scaling of application ser-

vices. In International Conference on Algorithms and Architectures for Parallel

Processing (2010).

[15] Cain, Harold W., and Rajwar, Ravi. An architectural evaluation of Java TPC-W.

In In Proceedings of the Seventh International Symposium on High-Performance

Computer Architecture (2001), pp. 229–240.

[16] Case Study: USA.gov Achieves Cloud Bursting Efficiency Using Terremarks Enter-

prise Cloud. http://bit.ly/ua5Qq2 .

[17] Cecchet, Emmanuel, Udayabhanu, Veena, Wood, Timothy, and Shenoy, Prashant.

BenchLab: An Open Testbed for Realistic Benchmarking of Web Applications.

In Proceedings of 2nd USENIX Conference on Web Application Development (We-

bApps) (June 2011).

[18] Cerbelaud, Damien, Garg, Shishir, and Huylebroeck, Jeremy. Opening the clouds:

qualitative overview of the state-of-the-art open source vm-based cloud management

platforms. In Proceedings of the 10th ACM/IFIP/USENIX International Conference

on Middleware (New York, NY, USA, 2009), Middleware ’09, Springer-Verlag New

York, Inc., pp. 22:1–22:8.

[19] Chase, Jeffrey S., Anderson, Darrell C., Thakar, Prachi N., Vahdat, Amin M., and

Doyle, Ronald P. Managing energy and server resources in hosting centers. In Pro-

ceedings of the eighteenth ACM symposium on Operating systems principles (New

York, NY, USA, 2001), SOSP ’01, ACM, pp. 103–116.

[20] Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., and Doyle, R.P. Managing

energy and server resources in hosting centers. ACM SIGOPS Operating Systems

Review 35, 5 (2001), 103–116.

[21] Chen, Jin, Soundararajan, Gokul, and Amza, Cristiana. Autonomic Provisioning

of Backend Databases in Dynamic Content Web Servers. In ICAC (June 2006),

pp. 231–242.

147

[22] Chen, Shigang, and Nahrstedt, Klara. Hierarchical scheduling for multiple classes of

applications in connection-oriented integrated-service networks. In Proceedings of

the IEEE International Conference on Multimedia Computing and Systems - Volume

2 (Washington, DC, USA, 1999), ICMCS ’99, IEEE Computer Society, pp. 9153–.

[23] Chen, Y., Paxson, V., and Katz, R. What’s New About Cloud Computing Security.

University of California, Berkeley Report No. UCB/EECS-2010-5 January 20, 2010

(2010), 2010–5.

[24] Cherkasova, L., and Phaal, P. Session-Based Admission Control: A Mechanism for

Peak Load Management of Commercial Web Sites. IEEE Transactions on Comput-

ers 51, 6 (June 2002), 669–685.

[25] Chohan, Navraj, Bunch, Chris, Pang, Sydney, Krintz, Chandra, Mostafa, Nagy, So-

man, Sunil, and Wolski, Rich. Appscale design and implementation, 2009.

[26] Clark, C., Fraser, K., Hand, S., Hansen, J. G, Jul, E., Limpach, C., Pratt, I., and

Warfield, A. Live migration of virtual machines. In Proceedings of NSDI (May

2005).

[27] Cloudbursting - hybrid application hosting. http://aws.typepad.com/aws/2008/08/cloudbursting-

.html, Aug. 2008.

[28] Coffmann, E. G., Gary, M. R., and Johnson, D. S. Approximation algorithms for bin-

packing-an updated survey. Algorithm Design for Computer System Design (1984),

49–106.

[29] Cooper, Brian F., Silberstein, Adam, Tam, Erwin, Ramakrishnan, Raghu, and Sears,

Russell. Benchmarking cloud serving systems with ycsb. In Proceedings of the

1st ACM symposium on Cloud computing (New York, NY, USA, 2010), SoCC ’10,

ACM, pp. 143–154.

[30] Crovella, Mark. Performance evaluation with heavy tailed distributions. In Proceed-

ings of the 11th International Conference on Computer Performance Evaluation:

Modelling Techniques and Tools (London, UK, 2000), TOOLS ’00, Springer-Verlag,

pp. 1–9.

[31] Csirik, J., Frenk, J. B. G., Labbé, M., and Zhang, S. Heuristics for the 0–1 min-

knapsack problem. Acta Cybern. 10, 1-2 (1991), 15–20.

[32] DeCandia, Giuseppe, Hastorun, Deniz, Jampani, Madan, Kakulapati, Gunavardhan,

Lakshman, Avinash, Pilchin, Alex, Sivasubramanian, Swaminathan, Vosshall, Peter,

and Vogels, Werner. Dynamo: amazon’s highly available key-value store. SIGOPS

Oper. Syst. Rev. 41 (October 2007), 205–220.

[33] Dejun, Jiang, Pierre, Guillaume, and Chi, Chi-Hung. Ec2 performance analysis for

resource provisioning of service-oriented applications. In Proceedings of the 2009

international conference on Service-oriented computing (Berlin, Heidelberg, 2009),

ICSOC/ServiceWave’09, Springer-Verlag, pp. 197–207.

148

[34] Demers, A., Keshav, S., and Shenker, S. Analysis and simulation of a fair queueing

algorithm. SIGCOMM Comput. Commun. Rev. 19, 4 (Aug. 1989), 1–12.

[35] Dowsland, Kathryn A., and Dowsland, William B. Packing problems. European

Journal of Operational Research 56, 1 (1992), 2 – 14.

[36] Doyle, R., Chase, J., Asad, O., Jin, W., and Vahdat, Amin. Model-Based Resource

Provisioning in a Web Service Utility. In Proceedings of the 4th USITS (Mar. 2003).

[37] Duda, Kenneth J., and Cheriton, David R. Borrowed-virtual-time (BVT) scheduling:

supporting latency-sensitive threads in a general-purpose scheduler. SIGOPS Oper.

Syst. Rev. 33, 5 (Dec. 1999), 261–276.

[38] EC2, Amazon. Amazon ec2. Website. http://aws.amazon.com/ec2.

[39] Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A., and Gauthier, P. Cluster-

based scalable network services. In Proceedings of the sixteenth ACM symposium

on Operating systems principles (SOSP’97), Saint-Malo, France (December 1997),

pp. 78–91.

[40] Ganglia monitoring system. http://ganglia.sourceforge.net/.

[41] Goyal, Pawan, Vin, Harrick M., and Cheng, Haichen. Start-time fair queueing: a

scheduling algorithm for integrated services packet switching networks. IEEE/ACM

Trans. Netw. 5 (October 1997), 690–704.

[42] Grit, Laura, Irwin, David, , Yumerefendi, Aydan, and Chase, Jeff. Virtual machine

hosting for networked clusters: Building the foundations for autonomic orchestra-

tion. In In the First International Workshop on Virtualization Technology in Dis-

tributed Computing (VTDC) (November 2006).

[43] Gujarati, D.N. Essentials of Econometrics. McGraw-Hill higher education.

McGraw-Hill Education, 2009.

[44] Gulati, Ajay, Shanmuganathan, Ganesha, Ahmad, Irfan, Waldspurger, Carl, and

Uysal, Mustafa. Pesto: online storage performance management in virtualized data-

centers. In SOCC (New York, NY, USA, 2011), SOCC ’11, ACM, pp. 19:1–19:14.

[45] Gupta, Diwaker, Cherkasova, Ludmila, Gardner, Rob, and Vahdat, Amin. Enforcing

performance isolation across virtual machines in xen. In Proceedings of the ACM/I-

FIP/USENIX 2006 International Conference on Middleware (New York, NY, USA,

2006), Middleware ’06, Springer-Verlag New York, Inc., pp. 342–362.

[46] Hamilton, James R. Architecture for modular data centers. CoRR abs/cs/0612110

(2006).

[47] Haproxy the reliable, high performance tcp/http load balancer. http://

haproxy.1wt.eu/.

149

[48] Harrison, Peter G., and Knottenbelt, William J. Passage time distributions in large

markov chains. In SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems (New

York, NY, USA, 2002), ACM, pp. 77–85.

[49] Hellerstein, J., Zhang, F., and Shahabuddin, P. An Approach to Predictive Detection

for Service Management. In Proceedings of the IEEE Intl. Conf. on Systems and

Network Management (1999).

[50] Hosmer, David W., and Lemeshow, Stanley. Applied logistic regression (Wiley Series

in probability and statistics), 2 ed. Wiley-Interscience Publication, 2000.

[51] Iyer, Sitaram, and Druschel, Peter. Anticipatory scheduling: a disk scheduling

framework to overcome deceptive idleness in synchronous i/o. SIGOPS Oper. Syst.

Rev. 35 (October 2001), 117–130.

[52] Jiang, Qingye. Open Source IaaS Community Analysis. http://www.qyjohn.

net/?p=2233.

[53] Jones, Michael B., Roşu, Daniela, and Roşu, Marcel-Cătălin. Cpu reservations and

time constraints: efficient, predictable scheduling of independent activities. In Pro-

ceedings of the sixteenth ACM symposium on Operating systems principles (New

York, NY, USA, 1997), SOSP ’97, ACM, pp. 198–211.

[54] Josephsen, David. Building a Monitoring Infrastructure with Nagios. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2007.

[55] Kailasam, Sriram, Gnanasambandam, Nathan, Dharanipragada, Janakiram, and

Sharma, Naveen. Optimizing service level agreements for autonomic cloud bursting

schedulers. In ICPP Workshops (2010), pp. 285–294.

[56] Katz, R. H. Tech titans building boom. IEEE Spectr. 46, 2 (Feb. 2009), 40–54.

[57] Kim, Hyunjoo, Parashar, Manish, Foran, David J., and Yang, Lin. Investigating the

use of autonomic cloudbursts for high-throughput medical image registration. In

GRID (2009), IEEE, pp. 34–41.

[58] Kundu, Sajib, Rangaswami, Raju, Gulati, Ajay, Zhao, Ming, and Dutta, Kaushik.

Modeling virtualized applications using machine learning techniques. SIGPLAN

Not. 47, 7 (Mar. 2012), 3–14.

[59] Kernel Based Virtual Machine. http://www.linux-kvm.org/page.

[60] Lim, Harold C., Babu, Shivnath, and Chase, Jeffrey S. Automated control for elastic

storage. In Proceedings of the 7th international conference on Autonomic computing

(New York, NY, USA, 2010), ICAC ’10, ACM, pp. 1–10.

[61] Mashtizadeh, Ali, Celebi, Emré, Garfinkel, Tal, and Cai, Min. The design and evolu-

tion of live storage migration in vmware esx. In USENIX ATC (Berkeley, CA, USA,

2011), pp. 14–14.

150

[62] Mateescu, Gabriel, Gentzsch, Wolfgang, and Ribbens, Calvin J. Hybrid computing-

where hpc meets grid and cloud computing. Future Gener. Comput. Syst. 27 (May

2011), 440–453.

[63] Matthews, Jeanna Neefe, Hu, Wenjin, Hapuarachchi, Madhujith, Deshane, Todd,

Dimatos, Demetrios, Hamilton, Gary, McCabe, Michael, and Owens, James. Quan-

tifying the performance isolation properties of virtualization systems. In Proceed-

ings of the 2007 workshop on Experimental computer science (New York, NY, USA,

2007), ExpCS ’07, ACM.

[64] Maxemchuk, Nicholas F., Ouveysi, Iradj, and Zukerman, Moshe. A quantitative

measure for telecommunications networks topology design. IEEE/ACM Trans. Netw.

13, 4 (Aug. 2005), 731–742.

[65] Mell, Peter, and Grance, Tim. Effectively and Securely Using the Cloud Computing

Paradigm, May 2009.

[66] Menasce, D. Web Server Software Architectures. In IEEE Internet Computing

(November/December 2003), vol. 7.

[67] Menascé, Daniel A., Almeida, Virgilio A. F., Fonseca, Rodrigo, and Mendes,

Marco A. A methodology for workload characterization of e-commerce sites. In EC

’99: Proceedings of the 1st ACM conference on Electronic commerce (New York,

NY, USA, 1999), ACM, pp. 119–128.

[68] Muppala, Jogesh K., Trivedi, Kishor S., Mainkar, Varsha, and Kulkarni, Vidyad-

har G. Numerical computation of response time distributions using stochastic reward

nets. In Annals of Operations Research (1994), pp. 155–184.

[69] Nagin, Kenneth, Hadas, David, Dubitzky, Zvi, Glikson, Alex, Loy, Irit, Rochwerger,

Benny, and Schour, Liran. Inter-cloud mobility of virtual machines. In Annual Inter-

national Conference on Systems and Storage (New York, NY, USA, 2011), SYSTOR

’11, ACM, pp. 3:1–3:12.

[70] Nanda, Susanta, and cker Chiueh, Tzi. A survey of virtualization technologies. Tech.

rep., Department of Computer Science, SUNY at Stony Brook, 2005.

[71] Nelson, Michael, Lim, Beng-Hong, and Hutchins, Greg. Fast transparent migration

for virtual machines. In ATEC ’05: USENIX ATC (Berkeley, CA, USA, 2005),

USENIX Association, p. 25.

[72] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., and

Zagorodnov, D. The eucalyptus open-source cloud-computing system. In Cluster

Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International Sympo-

sium on (may 2009), pp. 124 –131.

151

[73] Nurmi, Daniel, Wolski, Rich, Grzegorczyk, Chris, Obertelli, Graziano, Soman,

Sunil, Youseff, Lamia, and Zagorodnov, Dmitrii. The eucalyptus open-source cloud-

computing system. In Proceedings of the 2009 9th IEEE/ACM International Sympo-

sium on Cluster Computing and the Grid (Washington, DC, USA, 2009), CCGRID

’09, IEEE Computer Society, pp. 124–131.

[74] Open Nebula: The Open Source Toolkit for Data Center Virtualization.

http://www.opennebula.org.

[75] Opennebula. http://www.opennebula.org.

[76] Amazon Simple Storage Service. http://www.amazon.com/s3.

[77] Cloudstack, opensource cloud computing. http://cloudstack.org.

[78] Round Robin Database Tool. http://oss.oetiker.ch/rrdtool/.

[79] openstack: Cloud Software. http://www.openstack.org.

[80] Pacifici, Giovanni, Segmuller, Wolfgang, Spreitzer, Mike, Steinder, Malgorzata,

Tantawi, Asser, and Youssef, Alaa. Managing the response time for multi-tiered

web applications. In IBM, Technical Report (January 2005).

[81] Padala, Pradeep, Shin, Kang G., Zhu, Xiaoyun, Uysal, Mustafa, Wang, Zhikui, Sing-

hal, Sharad, Merchant, Arif, and Salem, Kenneth. Adaptive control of virtualized re-

sources in utility computing environments. In Proceedings of the 2nd ACM SIGOP-

S/EuroSys European Conference on Computer Systems 2007 (New York, NY, USA,

2007), EuroSys ’07, ACM, pp. 289–302.

[82] Perilli, Alessandro, Manieri, Andrea, Algom, Avner, Balding, Craig, and Various.

Cloud Computing Risk Assessment ENISA. Tech. rep., ENISA, Greece, Nov. 2009.

[83] Pickavet, Mario, and Demeester, Piet. Multi-period planning of survivable wdm

networks. European Transactions on Telecommunications 11, 1 (2000), 7–16.

[84] Raghavendra, Ramya, Ranganathan, Parthasarathy, Talwar, Vanish, Wang, Zhikui,

and Zhu, Xiaoyun. No ”power” struggles: coordinated multi-level power manage-

ment for the data center. In Proceedings of the 13th international conference on Ar-

chitectural support for programming languages and operating systems (New York,

NY, USA, 2008), ASPLOS XIII, ACM, pp. 48–59.

[85] Rajagopalan, Sampath, Singh, Medini R., and Morton, Thomas E. Capacity ex-

pansion and replacement in growing markets with uncertain technological break-

throughs. Manage. Sci. 44, 1 (Jan. 1998), 12–30.

[86] Ranjan, S., Rolia, J., Fu, H., and Knightly, E. Qos-driven server migration for inter-

net data centers. In Proceedings of IWQoS 2002, Miami Beach, FL (May 2002).

152

[87] Rochwerger, Benny, Breitgand, David, Epstein, Amir, Hadas, David, Loy, Irit, Na-

gin, Kenneth, Tordsson, Johan, Ragusa, Carmelo, Villari, Massimo, Clayman, Stu-

art, Levy, Eliezer, Maraschini, Alessandro, Massonet, Philippe, Munoz, Henar, and

Toffetti, Giovanni. Reservoir - when one cloud is not enough. Computer 44 (2011),

44–51.

[88] Russell, J., and Cohn, R. Rabbitmq. Book on Demand, 2012.

[89] Sengupta, Bikram, and Roychoudhury, Abhik. Engineering multi-tenant software-

as-a-service systems. In Proceedings of the 3rd International Workshop on Princi-

ples of Engineering Service-Oriented Systems (New York, NY, USA, 2011), PESOS

’11, ACM, pp. 15–21.

[90] Sharma, U., Shenoy, P., and Towsley, D. F. Provisioning Multi-tier Cloud Appli-

cations Using Statistical Bounds on Sojourn Time. Tech. Rep. UM-CS-2012-009,

Dept. of Computer Science, Univ. of Massachusetts, March 2012.

[91] Sharma, Upendra, Shenoy, P., Sahu, Sambit, and Anees, Shaikh. Kingfisher: A

System for Elastic Cost-aware Provisioning in the Cloud. Tech. Rep. UM-CS-2010-

005, Dept. of CS, UMASS, May 2010.

[92] Shen, Zhiming, Subbiah, Sethuraman, Gu, Xiaohui, and Wilkes, John. Cloudscale:

elastic resource scaling for multi-tenant cloud systems. In SOCC ’11 (New York,

NY, USA, 2011), ACM, pp. 5:1–5:14.

[93] Shivam, Piyush, Iamnitchi, Adriana, Yumerefendi, Aydan R., and Chase, Jeffrey S.

Model-driven placement of compute tasks and data in a networked utility. ICAC

(2005).

[94] Shivam, Piyush, Marupadi, Varun, Chase, Jeff, Subramaniam, Thileepan, and

Babu, Shivnath. Cutting corners: workbench automation for server benchmark-

ing. In USENIX 2008 Annual Technical Conference on Annual Technical Conference

(Berkeley, CA, USA, 2008), ATC’08, USENIX Association, pp. 241–254.

[95] Sobel, W, Subramanyam, S, Sucharitakul, A, Nguyen, J, Wong, H, Patil, S, Fox,

A, and Patterson, D. Cloudstone: Multi-platform, multi-language benchmark and

measurement tools for web 2.0. In Proc. of Cloud Computing and its Applications

(2008).

[96] Sotomayor, B., Montero, R.S., Llorente, I.M., and Foster, I. Virtual infrastructure

management in private and hybrid clouds. Internet Computing, IEEE 13, 5 (sept.-

oct. 2009), 14 –22.

[97] Sotomayor, Borja, Montero, Rubén S., Llorente, Ignacio M., and Foster, Ian. Virtual

infrastructure management in private and hybrid clouds. IEEE Internet Computing

13, 5 (Sept. 2009), 14–22.

153

[98] Sottile, Matthew J., and Minnich, Ronald G. Supermon: A high-speed cluster mon-

itoring system. In In Proc. of IEEE Intl. Conference on Cluster Computing (2002),

pp. 39–46.

[99] Stewart, Christopher, and Shen, Kai. Performance Modeling and System Manage-

ment for Multi-component Online Services. In Proc. USENIX Symp. on Networked

Systems Design and Implementation (NSDI) (May 2005).

[100] Subashini, S., and Kavitha, V. Review: A survey on security issues in service deliv-

ery models of cloud computing. J. Netw. Comput. Appl. 34, 1 (Jan. 2011), 1–11.

[101] TPCW. Java implementation. Website. http://tpcw.deadpixel.de.

[102] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and Tantawi, A. An analytical

model for multi-tier internet services and its applications. In Proceedings of the

ACM Sigmetrics Conference, Banff, Canada (June 2005).

[103] Urgaonkar, Bhuvan, Pacifici, Giovanni, Shenoy, Prashant, Spreitzer, Mike, and

Tantawi, Assar. An Analytical Model for Multi-tier Internet Services and Its Ap-

plications. In Proc. of the ACM SIGMETRICS Conf. (Banff, Canada, June 2005).

[104] Urgaonkar, Bhuvan, Shenoy, Prashant, Chandra, Abhishek, Goyal, Pawan, and

Wood, Timothy. Agile dynamic provisioning of multi-tier internet applications.

ACM Transactions on Adaptive and Autonomous Systems (TAAS), Vol. 3, No. 1

(March 2008), 1–39.

[105] Urgaonkar, Bhuvan, Shenoy, Prashant, Chandra, Abhishek, Goyal, Pawan, and

Wood, Timothy. Agile dynamic provisioning of multi-tier internet applications.

ACM Trans. Auton. Adapt. Syst. 3 (March 2008), 1:1–1:39.

[106] Vahdat, Amin. Future directions in distributed computing. Springer-Verlag, Berlin,

Heidelberg, 2003, ch. Dynamically provisioning distributed systems to meet target

levels of performance, availability, and data quality, pp. 127–131.

[107] Villela, D., Pradhan, P., and Rubenstein, D. Provisioning Servers in the Application

Tier for E-commerce Systems. In Proceedings of the 12th IWQoS (June 2004).

[108] Vinoski, Steve. Advanced message queuing protocol. IEEE Internet Computing 10,

6 (Nov. 2006), 87–89.

[109] Vinoski, Steve. Advanced message queuing protocol. IEEE Internet Computing 10,

6 (Nov. 2006), 87–89.

[110] Virtual machine mobility with VMware VMotion and Cisco Data Center Intercon-

nect Technologies. http://www.cisco.com/en/US/solutions/collateral/

ns340/ns517/ns224/ns836/white paper c11-557822.pdf, Sept. 2009.

[111] VMware: Public & Hybrid Cloud Computing.

http://www.vmware.com/solutions/cloud-computing/public-cloud/products.html .

154

[112] Waldspurger, C. A. Lottery and stride scheduling: Flexible proportional-share re-

source management. Tech. rep., Cambridge, MA, USA, 1995.

[113] Waldspurger, Carl A. Memory resource management in vmware esx server. SIGOPS

Oper. Syst. Rev. 36 (Dec. 2002), 181–194.

[114] Watson, Brian J., Marwah, Manish, Gmach, Daniel, Chen, Yuan, Arlitt, Martin, and

Wang, Zhikui. Probabilistic performance modeling of virtualized resource alloca-

tion. In Proceedings of the 7th international conference on Autonomic computing

(New York, NY, USA, 2010), ICAC ’10, ACM, pp. 99–108.

[115] Wood, T., Tarasuk-Levin, G., Shenoy, P., Desnoyers, P., Cecchet, E., and Corner,

M. Memory buddies: Exploiting page sharing for smart colocation in virtualized

data centers. In Proceedings of the International Conference on Virtual Execution

Environments (VEE’09) (April 2009), pp. 31–40.

[116] Wood, Timothy, Ramakrishnan, K. K., Shenoy, Prashant, and Van der Merwe, Ja-

cobus. CloudNet : Dynamic Pooling of Cloud Resources by Live WAN Migration

of Virtual Machines. In VEE (Mar. 2011), pp. 121–132.

[117] Wood, Timothy, Shenoy, Prashant, Venkataramani, Arun, and Yousif, Mazin. Sand-

piper: Black-Box and Gray-Box Resource Management For Virtual Machines. Com-

puter Networks: The International Journal of Computer and Telecommunications

Networking 53, 17 (Dec. 2009).

[118] Xiong, Kaiqi, and Perros, H. Qrp01-6: Resource optimization subject to a percentile

response time sla for enterprise computing. In Global Telecommunications Confer-

ence, 2006. GLOBECOM ’06. IEEE (27 2006-dec. 1 2006), pp. 1 –6.

[119] Yaffee, Robert A. Forecast evaluation with stata. United kingdom stata users’ group

meetings 2010, Stata Users Group, 2010.

[120] Yashkov, S. F. Processor-sharing queues: some progress in analysis. Queueing Syst.

Theory Appl. 2, 1 (1987), 1–17.

[121] Zhang, Qi, Cherkasova, Ludmila, Mi, Ningfang, and Smirni, Evgenia. A regression-

based analytic model for capacity planning of multi-tier applications. Cluster Com-

puting 11, 3 (2008), 197–211.

[122] Zhang, Qi, Cherkasova, Ludmila, and Smirni, Evgenia. A regression-based analytic

model for dynamic resource provisioning of multi-tier applications. In ICAC ’07

(2007).

[123] Zhang, Steve, Cohen, Ira, Symons, Julie, and Fox, Armando. Ensembles of models

for automated diagnosis of system performance problems. In Proceedings of the

2005 International Conference on Dependable Systems and Networks (Washington,

DC, USA, 2005), DSN ’05, IEEE Computer Society, pp. 644–653.

155

[124] Zheng, Jie, Ng, Tze Sing Eugene, and Sripanidkulchai, Kunwadee. Workload-aware

live storage migration for clouds. In VEE (New York, NY, USA, 2011), VEE ’11,

ACM, pp. 133–144.

[125] Zheng, Wei, Bianchini, Ricardo, Janakiraman, G. John, Santos, Jose Renato, and

Turner, Yoshio. Justrunit: experiment-based management of virtualized data cen-

ters. In Proceedings of the 2009 conference on USENIX Annual technical conference

(Berkeley, CA, USA, 2009), USENIX’09, USENIX Association, pp. 18–18.

[126] Zhu, Xiaoyun, Young, Donald, Watson, Brian J., Wang, Zhikui, Rolia, Jerry, Sing-

hal, Sharad, McKee, Bret, Hyser, Chris, Gmach, Daniel, Gardner, Rob, Christian,

Tom, and Cherkasova, Ludmila. 1000 islands: Integrated capacity and workload

management for the next generation data center. In ICAC (2008), pp. 172–181.

156

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	5-2013

	Elastic Resource Management in Cloud Computing Platforms
	Upendra Sharma
	Recommended Citation

	Sharma_umass_0118D_11322.pdf

