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ABSTRACT

COMPUTATIONAL COMMUNICATION
INTELLIGENCE: EXPLORING LINGUISTIC

MANIFESTATION AND SOCIAL DYNAMICS IN
ONLINE COMMUNICATION

SEPTEMBER, 2014

XIAOXI XU

B.Sc., BEIJING TECHNOLOGY AND BUSINESS UNIVERSITY

M.Sc., LOUISIANA STATE UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Beverly Park Woolf

We now live in an age of online communication. As social media becomes an

integral part of our life, online communication becomes an essential life skill. Online

communication has long been considered challenging, largely because participants of-

ten have no prior relationship with other participants and therefore lack understand-

ing about their backgrounds, values, and expectations. Missing this prior knowledge

often leads to misunderstanding and distrust, which in turn lead to poor group per-

formance in collaboration and unsatisfied decision-making in problem solving (e.g.,

conflict resolution).
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In this dissertation, we aim to understand how people effectively communicate

online. We research components of success in online communication and present sci-

entific methods to study the skill of effective communication. This research advances

the state of art in machine learning and communication studies.

For communication studies, we pioneer the study of a communication phenomenon

we call Communication Intelligence in online interactions. We create a theory about

communication intelligence that measures participants’ ten high-order communica-

tion skills, including restraint, self-reflection, perspective taking, and balance. We

present a multi-perspective analysis for understanding communication intelligence,

including its diverse language, shared linguistic characteristics across people, social

dynamics, and the effects of communication modality on communication intelligence.

We discover that people showing more perspective taking behaviors are more popular

and influential than others in their communication network. Such people also tend

to reach out to people who behave similarly, which implies a like-attracts-like social

phenomenon that complies with the Law of Attraction. We furthermore show that

participants’ communication intelligence is on average scored significantly higher in

an asynchronous and facilitated communication mode than is in a synchronous and

unfacilitated communication mode.

For the area of machine learning, we contribute new computational models and

formulations for addressing multi-label and multi-task machine learning problems.

We develop a new hierarchical probabilistic model for addressing the problem of si-

multaneously identifying multiple intelligence-embodied communication skills from

natural language. The model learns the topic assignment for each sentence and pro-

vides a practical and simple way to determine document labels without relying on a

threshold function. The model performance increases as the number of labels grows,

which makes it a promising approach for large-scale data analysis. The model also

has high interpretability and its annotated sentences significantly augment the view

x



of each document with rich contextual information. We also develop a new multi-task

formulation for simultaneously identifying multiple intelligence-embodied communi-

cation skills from lexical, discourse, and interaction features. The key merit of this

model is that it is a general multi-task formulation that unifies many widely used

regularization techniques, including Lasso, group Lasso, sparse-group Lasso, and the

Dirty model. This model expands the applicability of multi-task learning by allowing

analyzing real-world problems where (1) the degree of task relatedness is uncertain

and (2) the true structure of the groups in data is not clear ahead of time. Moreover, it

can be applied to streaming data to perform large-scale analysis in real time. Beyond

the application of studying communication intelligence, the developed models and

formulations can also benefit research in other areas where the problems of simulta-

neously predicting multiple categories are abundant. These areas include, but are not

limited to, signal processing, computer vision, computational finance, computational

biology, and computational neuroscience.

Keywords: Communication intelligence, multi-task learning, hierarchical prob-

abilistic models, regularized canonical correlation analysis, social network analysis

xi



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Multi-perspective Approach to Communication Intelligence . . . . . . . . . . 2

1.1.1 Understanding the Diverse Language of Communication
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Understanding the Shared Linguistic Characteristics of
Communication Intelligence Across People . . . . . . . . . . . . . . . . . . 4

1.1.3 Understanding the Social Dynamics of Communication
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Understanding the Effects of Communication Modality on
Communication Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 A Multifaceted Approach to Big-Data Challenges in Machine

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Data with Large Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Data with High-dimension Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Data with Multiple Categories/Labels . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.4 Data with High Dimensional Multivariate Correlations . . . . . . . . . 10
1.4.5 Data with Multiple Latent Dependencies Between Features

and Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.6 Data of Multiple Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

xii



1.5 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Theories about Communication as Deliberation . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Text Classification and Hierarchical Probabilistic Models . . . . . . . . . . . . . . 16

2.2.1 LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Author-topic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Labeled LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Multi-task Learning and Structured Sparsity . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Inductive Transfer Through Parallel Learning . . . . . . . . . . . . . . . . . 23
2.3.2 Task Relatedness vs. Task Dependence . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Joint Feature Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3.1 Structured Sparsity and Regularization . . . . . . . . . . . . . . 27

2.3.4 Sharing vs. Individual Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. COMMUNICATION INTELLIGENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Constructs of Communication Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Computing Communication Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1.1 Hamming Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1.2 Jaccard Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. MULTI-LABEL LEARNING WITH CONSTRAINT LABELED
LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Constrained Labeled LDA (CL-LDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Inference Using Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Gibbs Query Sampling for Unseen Data . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiii



4.4.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.3 Parameter Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.4 Data Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Multi-label Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1.1 Category-pivoted Evaluations . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.1.2 Message-pivoted Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.2 Word and Sentence Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.2.1 Credit Attribution – Sentence Discovery . . . . . . . . . . . . . . 65

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. MULTI-TASK LEARNING WITH RELAXED STRUCTURED
SPARSITY REGULARIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Lexical Features – LIWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Discourse Features – Coh-Metrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Interaction Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Relaxed Sparse-group Lasso (RSGL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Solving RSGL – Reducing a Constrained Optimization
Problem to an Unconstrained One . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 A Working Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.3 Online Learning for RSGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Evaluating Classification Performance . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1.1 Category-pivoted Evaluations . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1.2 Message-pivoted Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Evaluating Feature Compression Capacity . . . . . . . . . . . . . . . . . . . . 90
5.4.3 Evaluating the Importance of Task-specific Feature Space . . . . . . . 92
5.4.4 Evaluating Learned Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiv



6. UNDERSTANDING COMMUNICATION INTELLIGENCE
AND ITS EMBODIED SKILLS THROUGH SOCIAL
NETWORK ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Data and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Understanding the Effects of Communication Modalities on
Communication Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.2 Understanding the Gender Difference of Communication
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.3 Studying the Relationship Between Intelligence-embodied
Communication Skills and Social Interaction Patterns . . . . . . 124

6.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 Regularized Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . 127

6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.1 Understanding the Association Between
Intelligence-Embodied Communication Skills and Network
Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.1 Modeling Multi-modal Data With Tensor Decomposition . . . . . . 138
7.2.2 Building an Intelligent Tutoring System for Deliberative

Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.3 Improving Communication Intelligence through Brain-based

Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

APPENDICES

A. GIBBS SAMPLING DERIVATION OF CONSTRAINT
LABELED LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B. UNDERSTANDING THE RELATIONSHIP BETWEEN THE
CONSTRUCTS OF COMMUNICATION INTELLIGENCE
AND SKILLS IN THE CONCEPTUAL SOCIAL
DELIBERATIVE SKILL FRAMEWORK . . . . . . . . . . . . . . . . . . . . 149

xv



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xvi



LIST OF TABLES

Table Page

2.1 Social network measures and their interpretations in the context of
this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Category-pivoted evaluations in the professional community
negotiation domain: A comparison of SVM, Labeled
LDA+Calibrated-labels, and CL-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Category-pivoted evaluations in the civic deliberation discussion
domain: A comparison of SVM, Labeled LDA+Calibrated-labels,
and CL-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Message-pivoted evaluations in the professional community
negotiation domain: A comparison of SVM, Labeled
LDA+Calibrated-labels, and CL-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Message-pivoted evaluations in the civic deliberation discussion
domain: A comparison of SVM, Labeled LDA+Calibrated-labels,
and CL-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Coherence scores of learned topics using the 5 most salient words in
the professional community negotiation domain . . . . . . . . . . . . . . . . . . . 64

4.6 Coherence scores of learned topics using the 5 most salient words in
the civic deliberation discussion domain . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Examples of learned sentences by CL-LDA for each
intelligence-embodied skill in the professional community
negotiation domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Examples of learned sentences by CL-LDA for each
intelligence-embodied skill in the civic deliberation discussion
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 A comparison of SGL, the Dirty model, and RSGL . . . . . . . . . . . . . . . . . . 81

xvii



5.2 Category-pivoted evaluations in the professional community
negotiation domain: A comparison of SGL, Dirty+, and RSGL . . . . . 86

5.3 Category-pivoted evaluations in the civic deliberation discussion
domain: A comparison of SGL, Dirty+, and RSGL . . . . . . . . . . . . . . . . 88

5.4 Message-pivoted evaluations in the professional community
negotiation domain: A comparison of SGL, Dirty+, and RSGL . . . . . 89

5.5 Message-pivoted evaluations in the civic deliberation discussion
domain: A comparison of SGL, Dirty+, and RSGL . . . . . . . . . . . . . . . . 90

5.6 Feature compression evaluations in the professional community
negotiation domain (percentage shrinkage of feature space shared
by skill labels): A comparison of Dirty+ and RSGL . . . . . . . . . . . . . . . 91

5.7 Feature compression evaluations in the civic deliberation discussion
domain (percentage shrinkage of feature space shared by skill
labels): A comparison of Dirty+ and RSGL . . . . . . . . . . . . . . . . . . . . . . 92

5.8 An illustration of the number of features in the task-specific feature
space (the professional community negotiation domain): A
comparison of SGL and RSGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 An illustration of the number of features in the task-specific feature
space (the civic deliberation discussion domain): A comparison of
SGL and RSGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 Learned features by RSGL for each intelligence-embodied skill in the
professional community negotiation domain . . . . . . . . . . . . . . . . . . . . . . 96

5.11 Learned features by RSGL for each intelligence-embodied skill in the
civic deliberation discussion domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Social network measures and their interpretations in the context of
this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Standardized canonical coefficients for the first dimension across skill
variables and network metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1 The correspondence between intelligence-embodied communication
skills and skills contained in the social deliberative skill
framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xviii



LIST OF FIGURES

Figure Page

2.1 The graphical model of LDA (from [16]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The graphical model of author-topic model (from [149]) . . . . . . . . . . . . . . 21

2.3 The graphical model of Labeled LDA (from [132]) . . . . . . . . . . . . . . . . . . . 22

2.4 A comparison of single-task learning and multi-task learning
(from [177]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Task relatedness through the share of a common set of features
(from [177]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 A comparison of sparsity-induced norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 An illustration of the Dirty model (adapted from [177]) . . . . . . . . . . . . . . . 31

3.1 An overview of the constructs of communication intelligence . . . . . . . . . . 41

4.1 The graphical model of constrained Labeled LDA . . . . . . . . . . . . . . . . . . . 49

4.2 An illustration of the training data class distributions in different
domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The relationship between the prediction performance of CL-LDA and
the number of positive labels per message in the professional
negotiation domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 The relationship between the prediction performance of CL-LDA and
the number of positive labels per message in the civic deliberation
discussion domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 An overview of LIWC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 An overview of Coh-Metrix features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xix



6.1 A comparison of the scores of communication intelligence and its
embodied skills across communication modalities (In the
asynchronous & facilitated communication mode the discussion
topic was “internet free speech;” in the synchronous &
unfacilitated communication mode the discussion topic was “right
to die.”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 A Comparison of the scores of communication intelligence and its
embodied skills across gender: the asynchronous and facilitated
communication mode with topic “internet free speech” (left
panel), the synchronous and unfacilitated mode with topic “right
to die” (right panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Pearson correlations of two variables (1) within the set of skill
variables (upper left corner), (2) within the set of network metrics
(lower right corner), and (3) between the two sets (lower left and
upper right corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Canonical coefficients of each dimension for the correlation between
skill variables and network metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xx



CHAPTER 1

INTRODUCTION

As Web 2.0 gains popularity, social media platforms, including online discussion

and support forums, collaboratively edited question and answer sites, chat rooms,

and Twitter, have enabled new methods of online interactions through computer-

mediated communication, which in turn provide researchers new opportunities of an-

alyzing user-generated content to study large-scale social phenomena. For example,

socialpsychologists nowadays study conversations in online communities to under-

stand opinion formation [83] and analyze Twitter data to understand why people

retweet [101]. Sociallinguists study Twitter data to address questions about how

language reflects people’s social identity [47], communication data in Wikipedia to

explore how conversational behavior reveals power relationships [41] and how Wiki

mediators reconcile online conflicts and help strengthen community membership [12].

Research [6] has shown that user-generated content provides great opportunities for

revealing today’s social norms and has profound implications for supporting a literate,

respectful, and thriving society.

In this dissertation, we aim to understand how effectively people communicate

online. Online communication has long been considered challenging, largely because

participants often have no prior relationship with other participants and therefore

lack understanding about their backgrounds, values, and expectations. Missing this

prior knowledge often leads to misunderstanding and distrust, which in turn lead to

poor group performance in collaboration and unsatisfied decision-making in problem

solving (e.g., conflict resolution). We believe that effective online communication
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largely depends upon how intelligent a participant is in the area of communication

in online environments. For example, can participants perceive and respond to the

feelings of others, reflect on their own bias, and respect others’ perspectives? Previ-

ous research [34, 143, 138] has shown that skillful behaviors are useful predictors of

intelligences. Drawing on this perspective and based on the theory about multiple

intelligences [56], the theory about zone of proximal development [158], and theories

about communication as deliberation [57, 150, 116], we develop a new theory about

communication intelligence. This new theory initiates a conversation between the

disciplines of communication studies and computer science about human communica-

tion intelligence and computational methods for measuring it. This dissertation takes

the first step to address some of the basic questions:

• What is communication intelligence?

• What are the constructs of communication intelligence, or what are intelligence-

embodied communication skills/crafts?

• How can communication intelligence be measured based on the use of these

skills?

• How can these skills be identified from online messages computationally?

1.1 A Multi-perspective Approach to Communication Intel-

ligence

Large-scale online communication generally takes place in the form of natural lan-

guage among multiple parties. What do people say and to whom provide key data for

studying communication behaviors and therefore communication intelligence. In ad-

dition, online communication can occur in different communication modalities (e.g.,

synchronous communication and facilitated communication). Studying the effects of

2



communication modalities on communication intelligence can have important peda-

gogical implications of how to foster a deliberative and effective communication among

people. Wallace Stevens poem “Thirteen Ways of Looking At A Blackbird” shows

that the essence of a subject, as simple as a blackbird, can be derived from a number

of different perspectives. In this dissertation, we are committed to a thorough study

of communication intelligence from the following perspectives.

1.1.1 Understanding the Diverse Language of Communication Intelli-

gence

Language is a phenomenon at the interplay of culture, education, psychology, and

communication. The different word choices and diverse ways that people use lan-

guage to express their thoughts and feelings provide great opportunities for studying

communication intelligence. For example, in a negotiation context, where two aca-

demic communities negotiate a proper solution to a conference scheduling conflict,

some people may show agreement explicitly by saying “I also think that bringing this

to the BLUEconf community for discussion vote helps build our community ” and

others may use more implicit language, such as “I trust Larry G. in the way he is

proceeding to collect data while minimize long iterations and clogging mailboxes. ”

In the same context, some people may exhibit the behavior of perspective taking

when stating that “As I understand BLUEorgs work with FocusGroups, they would

fully understand our decision, and probably support it” and others may use the ex-

pression “Perhaps a vote will alter the options, or maybe the BLUEconf community

as represented by us will disagree with what I have said.” Human annotators would

annotate messages containing these sentences with multiple labels, including agree-

ment and perspective taking, and yet it is difficult for a computational model to

achieve the same level of competence. This task becomes even challenging when

the number of labels associated with each message grow, because the computational
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model would need to address a more complex associative mapping between labels

and sentence statements. In this dissertation, we formulate the computational iden-

tification of intelligence-embodied communication skills as a multi-label classification

problem, in which words are predictors and labels are skills annotated for each mes-

sage. We present a new hierarchical probabilistic model, called Constrained Labeled

LDA, to address the problem of identifying multiple intelligence-embodied communi-

cation skills from natural language. This model reveals the language manifestation

of intelligence-embodied communication skills and can support large-scale computa-

tional annotations of intelligence-embodied communication skills from text corpora

online.

1.1.2 Understanding the Shared Linguistic Characteristics of Communi-

cation Intelligence Across People

While it is important to learn the diversity in language among people when a par-

ticular intelligence-embodied communication skill is applied, it is equally important

to explore the shared linguistic characteristics in skill use across people. High-level

features, such as lexical and discourse features, provide a good starting point for this

exploration. For example, self-reflection might be characterized as using tentative lan-

guage (e.g., perhaps, guess) and repetitive grammatical aspect – the use of a verb to

express an event related to the flow of time (e.g., “I believed,” “now I think”). In this

dissertation, we formulate the computational identification of communication skills

also as a multi-task learning problem, where tasks are skill labels associated with each

message, and predictors are linguistics and interaction features. Interaction features

are included in this research to explore language coordination [41], consistently shown

in the literature. We present a new multi-task formulation with a novel composite

regularizer, called Relaxed Sparse-group Lasso, for identifying multiple intelligence-

embodied communication skills from lexical, discourse, and interaction features. The
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key merit of this model is that it is a general multi-task formulation that unifies

many widely used regularization techniques, including Lasso, group Lasso, sparse-

group Lasso, and the Dirty model. Moreover, this model can be applied to streaming

data to perform real-time analysis. This model also reveals psycholinguistic and in-

teraction characteristics of each intelligence-embodied communication skill that, to a

great extent, resonate with human understanding.

1.1.3 Understanding the Social Dynamics of Communication Intelligence

Examining the conversational structure of online communication, such as who

talks to whom and how such interactions form a social network diagram, provides a

tool to understand communication intelligence from the perspective of social inter-

action patterns. In this dissertation, we study the association between intelligence-

embodied communication skills and social dynamics measured by social network met-

rics using regularized canonical correlation analysis (RCCA). RCCA helps character-

ize intelligent-embodied skills within a social context. For example, people showing

more perspective taking behaviors are found to be more popular and influential than

others in their communication network.

1.1.4 Understanding the Effects of Communication Modality on Commu-

nication Intelligence

Understanding which intelligence-embodied communication skills are better stim-

ulated in which communication modality has significant pedagogical implications.

In this dissertation, we analyze research questions, such as “Within which commu-

nication mode is participants’ communication intelligence on average higher?” and

“Within which communication mode do participants show more self-reflection behav-

iors?”
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1.2 Research Hypotheses

In this dissertation, we evaluate the following four research hypotheses.

• Communication intelligence can be defined with respect to high-order commu-

nication skills/crafts and can be measured with respect to the use of those

skills.

• Constrained Labeled LDA (CL-LDA) achieves better prediction performance

than do state-of the-art text classification methods (i.e., Labeled LDA, SVM)

for identifying intelligence-embodied communication skills from online text.

• Multi-task learning with Relaxed Sparse-group Lasso (RSGL), as a general

multi-task formulation, unifies other widely used regularization methods (i.e.,

sparse-group Lasso, the Dirty model), without sacrificing performance in identi-

fying intelligence-embodied communication skills from linguistic and interaction

features.

• A statistically significant correlation exists between communication intelligence-

embodied skills and social network metrics measured from the same participant.

1.3 Dissertation Contributions

Broadly, in this dissertation, we contribute new theories, methods, models, and

formulations for measuring and computing communication intelligence. This disser-

tation also contributes towards the fields of communication studies, machine learning,

and natural language processing. The models that we develop are quite general; it is

thus likely that the contributions presented in this dissertation will benefit other ar-

eas, such as signal processing, computer vision, computational finance, computational

biology, and computational neuroscience. Detailed contributions are summarized be-

low.
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• We introduce a new theory of communication intelligence, define its constructs,

and propose a method for measuring communication intelligence based on intelligence-

embodied communication skills.

• We describe a new hierarchical probabilistic model for addressing the problem of

identifying multiple intelligence-embodied communication skills from text. This

new model outperforms state-of-the-art multi-class text classification methods

by learning topic assignments for each sentence in online communication. The

model performance increases as the number of labels grows, which makes it

a promising approach for large-scale data analysis. The model is also highly

interpretable and its annotated sentences significantly augment the view of each

text with rich contextual information.

• We describe a new multi-task formulation with a novel composite regularizer

for identifying multiple intelligence-embodied communication skills from lexi-

cal, discourse, and interaction features. The key merit of this model is that it is

a general multi-task formulation that unifies many widely used regularization

techniques, including Lasso, group Lasso, sparse-group Lasso, and the Dirty

model. This model expands the applicability of multi-task learning by allowing

analyzing real-world problems where (1) the degree of task relatedness is uncer-

tain and (2) the true structure of the groups in data is not clear ahead of time.

Moreover, this model can be applied to streaming data to perform real-time

analysis. It also reveals psycholinguistic and interaction characteristics of each

intelligence-embodied communication skill that, to a great extent, resonate with

human understanding.

• We report experiments on using regularized canonical correlation analysis to

decode the association between intelligence-embodied communication skills and

social dynamics, measured by social network metrics. This study complements
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linguistic discoveries of intelligence-embodied communication skills with social

dynamic characteristics.

• We demonstrate that participants’ communication intelligence is on average

scored significantly higher in an asynchronous and facilitated communication

mode than is in a synchronous and unfacilitated mode. We furthermore show

that females score consistently higher than do males in communication intelli-

gence regardless of communication modalities.

1.4 A Multifaceted Approach to Big-Data Challenges in Ma-

chine Learning

To make this dissertation a coherent document, we omit some of the research

work conducted during my doctoral studies, whose theme can be described as a mul-

tifaceted approach to big-data challenges in machine learning. The different facets of

big data challenges explored, or being explored, include (1) large volume, (2) high

dimensional features, (3) multiple categories/labels, (4) high dimensional multivari-

ate correlations, (5) multiple latent dependencies between features and labels, and

(6) multiple modalities. We remark below the challenges of each type of big-data

machine learning challenges and provide proper citations to our work 1 that tackle

those challenges.

1.4.1 Data with Large Volumes

• Examples: Online communication data from a wide variety of online media,

such as discussion forums, negotiation sites, and LinkedIn groups for studying

perspective taking behaviors

1One work not shown here is an exploration study on identifying discourse predictors for skillful
communication in negotiation (AAAI’ 12) [166].
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• Challenges : Data from heterogeneous but related sources (e.g., different online

contexts or topical domains) or over time (e.g., data stream). How can a model

built from one context generalize well in a new context?

• Solutions : Robust machine learning models (EDM’ 13 [174])(EEE’13 [170])

1.4.2 Data with High-dimension Features

• Examples: Hundreds of lexical and discourse features derived from the textual

data in online communication for studying perspective taking behaviors; tens

of thousands of words in a thread of online discussion for studying perspective

taking behaviors

• Challenges : Irrelevant features; unstructured data/text. How can relevant fea-

tures be selected automatically for the purpose of classification and prediction?

How can a projection from high dimensional bag-of-words to low dimensional

easy-to-understand themes be learned?

• Solutions : regularized machine models (AIED’ 13 [117], FLAIRS’ 14 [171]);

latent variable models (DMIN’ 12 [173])

1.4.3 Data with Multiple Categories/Labels

• Examples: Multiple skill labels annotated at each online message; multiple

diseases associated with each brain scan image; multiple stock options associated

with each stock quote

• Challenges : Multiple labels/classes potentially follow the power law distribu-

tion, and some classification problems are under sampled and yet share a feature

space with other related problems. How can classifiers for multiple related prob-

lems/tasks be learned jointly?

• Solutions : Multi-label learning (CL-LDA); Multi-task learning (RSGL)
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1.4.4 Data with High Dimensional Multivariate Correlations

• Examples: High dimensional psychological variables (e.g., motivation, self-discipline,

and self-esteem) and social network variables (e.g., in-degree, out-degree, and

hub) measured on the same participant

• Challenges : Correlations among two sets of variables, each with high dimension.

How can a compact correlation between two sets of high-dimension intercorre-

lated variables be identified?

• Solutions : (Regularized) canonical correlation analysis (CCA) (ITS’ 14 [172])

1.4.5 Data with Multiple Latent Dependencies Between Features and

Labels

• Examples: Various schools of thought used by physicians to prescribe differ-

ent treatments for patients based on evaluating their previous medical com-

plications, reported symptoms, and test results; different doctrines followed by

Supreme court and federal courts to rule for recovery after evaluating case facts,

such as product defect, injuries, and professional duties.

• Challenges : Multiple latent dependencies of decision labels on data features.

How can these various latent conditional dependency be identified?

• Solutions : Discovering latent strategies (clustering conditional dependencies)

(AAAI’ 11 [168], FLAIRS’ 14 [169])

1.4.6 Data of Multiple Modalities

• Examples: Neuroimaging features, psychological features, and personality-type

features are all available for studying the self-reflection behavior of the same

participant
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• Challenges : Features from different modalities or heterogeneous sources – some-

times two-dimension matrix is not sufficient to represent all the modalities. How

can features be represented in a way so that each feature set (i.e., perspective)

can contribute to learning a specific task?

• Solutions : Tensor decomposition (future work)

Although these omitted papers do not directly relate to communication intelli-

gence being studied in this dissertation, they are the early work on seeking com-

putational predictors of high-order communication skills, exploring computational

modeling of composite high-order communication skill 2 in various discussion and

negotiation contexts, and predicting conflict resolution in an online dispute context.

For example, we found evidence about significant statistical correlations between dis-

course features derived from natural language in the communication text and the

higher-order communication skills exhibited in the same text. These communication

skills include reflect back, mediate, negative emotions about topic, and questions about

topic. In another study, we developed robust machine learning models using L1 reg-

ularized logistic regression with lexical, discourse, and gender features to distinguish

between the composite high-order communication skill and other speech acts. These

models achieve up to 68.5% in-domain accuracy (compared to the 50% baseline),

63.3% in-domain precision, and 90% in-domain recall. In cross-domain identifica-

tion tasks, the developed models achieve up to 60.9% cross-domain accuracy, 60.9%

cross-domain precision, and 89.3% cross-domain recall. In yet another study, we ex-

plored the possibility of predicting settlements (i.e., resolved vs. unresolved) in online

dispute resolution by performing text-analysis on conflict narratives from disputant

parties. The experimental data was from eBay Motor vehicles online disputes, in

2Composite high-order communication skill simply treats all studied skills as a whole and therefore
is an aggregate of each component skill.
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which disputants try to resolve complaints, possibly working with online human me-

diators. We created an unsupervised disputant negotiation model to represent the

negotiation process and analyzed the divergence of topic distributions of each party

in the dispute to predict conflict resolution in various negotiation scenarios. The de-

veloped model achieves 67% in prediction accuracy (compared to the 50% baseline),

69.43% in precision, and 87.2% in recall, outperforming a state-of-the-art supervised

learner (i.e., support vector machine) on both precision and recall.

1.5 Organization of the Dissertation

The remainder of the dissertation is divided into 6 chapters, which we describe

below.

• Chapter 2 elaborates background knowledge and related work on theories

about communication as deliberation, text classification and hierarchical prob-

abilistic models, multi-task learning and structured sparsity, and social network

analysis.

• Chapter 3 defines communication intelligence and describe constructs of com-

munication intelligence and measures for computing communication intelligence.

• Chapter 4 presents a new hierarchical probabilistic model for identifying mul-

tiple intelligence-embodied communication skills from text.

• Chapter 5 presents a new multi-task learning formulation with a novel com-

posite regularizer for identifying multiple intelligence-embodied communication

skills from linguistic and interaction features.

• Chapter 6 describes an advanced correlation analysis between communication

intelligence-embodied skills and social network metrics measured from the same

participant.
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• Chapter 7 concludes this dissertation and describes future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Theories about Communication as Deliberation

One popular school of thought in communication studies is that communication

can be best understood through the lens of deliberative democratic theory [57]. Delib-

erative democracy, or deliberation, refers to the concept that democratic practice and

policy making should rely on “open and informed” communication on the part of cit-

izenry. “Openness” refers to the ability to allow a voice for multiple perspectives in a

discussion, and “informed” refers to the capacity of making rational arguments in the

discussion. Deliberation is originally used in the context of politics, where citizens are

gathered together in small groups to discuss public or political issues relevant to their

communities. Examples of political deliberation include National Issue Forums [140],

Deliberative Polls [50], and Twenty-first Century Town Meetings [99].

With the rise of socially enabling technologies and the advent of computer-mediated

communication, deliberation in online interactions is being explored as a new oppor-

tunity to understand participants’ communication behaviors online and as a new

possibility of promoting the establishment of an increasingly deliberative society. A

large body of research in communication studies have provided great insights into the

study of the analytic aspect (i.e.,“informed” ) of online deliberation [148, 150]. These

work include studies on rational argument and consensus [37, 65], problem solving and

inquiry [141, 27], critical thinking [87], and metacognition [106, 165]. A burgeoning

body of research has examined the social-relational aspect (i.e., “openness” ) of de-
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liberation in group interactions, such as respect [97], conflict management [8, 21, 97],

establishing trust [133, 88], and managing group members’ expectations [23].

To encourage attention to both analytic and social-relational dimensions of de-

liberation, Gastil and Black [58, 14] have created a prominent framework that con-

ceptualizes the dual dimensions of deliberation. In their framework, the analytic

dimension includes five components: creating an information base, prioritizing key

values at stake, identifying a wide range of possible solutions, weighing the solutions,

and (in situations that call for decisions) making the best decision possible. The

social-relational dimension involves the following four components: having equal and

adequate speaking opportunities, attempting to comprehend anothers views, making ef-

forts to fully consider another’s input, and demonstrating respect for each other. This

framework was created for the purpose of understanding politic conversation and dis-

cussion and has been successfully applied to analyzing the communication behavior

of team members who collaboratively edit knowledge repositories in a Wikipedia en-

vironment. However, the authors note the potential limitation of this framework in

trying to apply their framework to other contexts of online interactions.

Murray’s theory about social deliberative skills [116] is a conceptual framework

that considers both analytic and social-relational dimensions of deliberation, with a

focus on the social dimension of deliberation in an online environment. Specifically,

this theory focuses on inter-subjectivity (i.e., shared values, meaning, background, re-

lationship), interaction, self-reflection, reciprocal role taking, and cognitive empathy.

More importantly, this theory was created based on examining online group conver-

sations in a variety of domains and across both collaborative (e.g., college classroom

online discussions, civic deliberation forum discussions) and conflicting contexts (e.g.,

workplace disputes, e-commerce disputes, and divorce settlements). Murray argues

that social deliberative skills are the driving force of high-quality communication. In

his theory, social deliberative skills include the following three dimensions:
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• Social perspective taking, which includes cognitive empathy and reciprocal role

taking;

• Social perspective seeking, which includes social inquiry and question asking

skills;

• Social perspective monitoring, which includes self-reflection and meta-dialogue.

This theory about social deliberative skills lays the groundwork for studying commu-

nication intelligence.

2.2 Text Classification and Hierarchical Probabilistic Models

Machine learning approaches to multi-label text classification have largely relied

on discriminative modeling techniques, such as support vector machines (SVM) [39].

In general, discriminative approaches suffer from huge performance loss when the

total number of labels and the number of labels per text document grow larger [98].

Their performance degrades even more when the label frequencies follow a highly

skewed power-law distribution as often observed in real-world data sets.

Among generative approaches, hierarchical probabilistic models, such as Latent

Dirichlet allocation (LDA) [20], have gained widespread popularity in analyzing large-

scale text collections in science, humanities, industry, and culture [63, 121, 4, 43, 111].

LDA is a probabilistic model for discovering main themes or topics that pervade a

large and otherwise unstructured collection of texts. Therefore, it is also referred

to as topic model. The main advantages of topic models are interpretability and

extensibility.

• Interpretability:

– Topic models reduce the dimension of text data by projecting high-dimension

bag-of-words into low dimensional salient themes, which greatly help in-

terpret, organize, and summarize the text.
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– Topic models describe generative processes about how text arose, which

facilitate the “intuitive” understanding of how topic models work.

– The central computational problem for topic modeling is to “reverse” the

generative process – discovering themes through posterior inference. The

posterior distributions can be used in creative ways, such as visualization,

summarization, and recommendations.

• Extensibility:

– LDA is a simple building block that can be embedded in more complicated

models to enable many applications. For example, it can be extended to

account for syntax, authorship, interaction, word sense, dynamics, correla-

tion, hierarchies, and other structures [149, 173, 64, 24, 17, 18, 15] and can

model a variety of data, including images, social networks, music, software

bugs, purchase histories, genetic data, and other types [48, 108, 146, 4, 78,

33].

LDA is an unsupervised model. For data that are paired with response variables,

we need a variant of LDA that models both text and responses. In the literature, a

number of approaches have been proposed for adapting the unsupervised LDA model

to its supervised variants, including supervised topic models [19], DiscLDA [89], and

MedLDA [178]. However, these adaptations are designed for single label classifica-

tion or regression, but not for learning tasks with multiple labels. In [132], Labeled

LDA was proposed with the intention to solve multi-label classification problems. In

Labeled LDA, supervision is accomplished by constraining the topic model to use

only those topics that correspond to labels in the label set. One great advantage of

Labeled LDA is that it explicitly assigns individual words to specific labels of a piece

of text, rather than assume that all of the words in the text are relevant to each label.

(Discriminative models, such as SVM, however, do not model this association explic-
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itly.) This associative mapping between words and labels is critical for accomplishing

many real-world tasks, such as tagging documents, tagging webpages, and informa-

tion retrieval. Despite its capacity of solving multi-label text classification problems,

the generative process described in Labeled LDA inherits the naive assumption from

LDA that words within a document are assumed to be exchangeable. This bag-of-

words assumption is the fundamental limitation to apply topic models to domains,

where word order, phrases, or sentences are critical to capturing the meaning of text,

such as in this study.

In the rest of this section, we provide an overview of LDA, Labeled LDA, and

author-topic model [149]. The author-topic model is reviewed for the reason that the

method carries great similarity to Labeled LDA and thus the relationship between

these models is important to note.

2.2.1 LDA

LDA [20] and other topic models are part of the larger field of probabilistic model-

ing. In generative probabilistic modeling, data is assumed to arise from a generative

process that includes “latent variables.” This generative process defines a joint prob-

ability distribution over both the observed and latent random variables. We uncover

the latent variables by computing the posterior distribution of the latent variables

conditioned on the observed variables. In LDA, the observed variables are words of

the documents; the latent variables are the topics. The generative process in LDA

can be described as a two-step stochastic process shown below.

1. For every topic β out of K,

(a) Draw a word distribution βk v Dirichlet (η).

2. For each document d out of D,

(a) Draw a topic proportion θd v Dirichlet (α).
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Figure 2.1. The graphical model of LDA (from [16])

(b) For each word n out of N ,

(i) Draw a topic assignment Zd,n v Multinomial (θd).

(ii) Draw a word Wd,n v Multinomial (βZd,n
).

The graphical model using plate notation shown in Figure 2.1 gives us the following

joint probability distribution:

P (θ, β, z, w) = P (θ)P (β)P (z|θ)P (w|z, β)

=
∏
d

Dir(θd;α)
∏
k

Dir(βk; η)
∏
n

θzn|dn
∏
n

βwn|zn

To uncover latent topics, we compute the posterior distribution over latent topics

given the observed words and model hyperparameters α and η :

P (θ, β, z|w, α, η) =
P (θ, β, z, w, α, η)

P (w, α, η)

In addition to learning high-level topic themes, estimating θ and β provides infor-

mation about the topics that participate in a corpus and the proportions of those top-

ics in each document respectively. Various learning algorithms have been developed
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in recent years to estimate latent topics and model parameters, including collapsed

Gibbs sampling [63], variational inference [20], and expectation propagation [113].

In [9], empirical evaluations were carried out to compare these algorithms and found

that using appropriate hyper parameters causes the performance differences between

these algorithm to largely disappear.

As can been seen from the generative process of LDA, each document is assumed

to be a finite mixture over latent topics. In the next section, we will introduce another

topic model that extends LDA to include author information. In that model, each

document is assumed to be a mixture over authors who are associated with a mixture

over latent topics.

2.2.2 Author-topic model

The author-topic model [149] reduces the process of writing a scientific document

to a simple series of probabilistic steps and is aimed at discovering the topical interests

of each author. As a result, it not only discovers which topics participate in each

document, but also which authors are associated with each topic. In this model, the

list of authors is assumed to be observed. When generating a document, an author

is chosen uniformly at random. The generative process of the author-topic model,

shown in Figure 2.2, can be described as follows. Note that in the author-topic model,

we have two sets of latent variables: z and x for topics and authors respectively.

1. For every topic φ out of T ,

(a) Draw a word distribution φt v Dirichlet (β).

2. For each document d out of D,

(a) Choose an author x uniformly from an observed list of authors ad.

(b) For each author x out of A,

(i) Draw a topic proportion θx v Dirichlet (α).
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Figure 2.2. The graphical model of author-topic model (from [149])

(ii) For each word n out of N ,

(1) Draw a topic assignment Zx,n v Multinomial (θx),

(2) Draw a word Wx,n v Multinomial (φZx,n).

2.2.3 Labeled LDA

Labeled LDA [132] is very similar to the author-topic model from the previous

section. The author-topic model is conditioned on the set of authors in a document,

and therefore, a “topic” is learned for each author in the corpus. Similarly, Labeled

LDA is conditioned on the set of labels assigned to a document, and a “topic” is

learned for each label in the corpus. Labeled LDA describes a process for generating

a labeled document collection. Like LDA, Labeled LDA models each document as

a mixture of latent topics and generates each word from one topic. Unlike LDA,

Labeled LDA incorporates supervision by constraining the model to use topics that

are correspondent to a document’s observed label set. Therefore, the number of topics

K is now the number of labels in the labels set. The graphical model of Labeled LDA
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Figure 2.3. The graphical model of Labeled LDA (from [132])

is shown in Figure 2.3. The generative process of Labeled LDA can be described as

follows:

1. For every topic β out of K,

(a) Draw a word distribution βk v Dirichlet (η).

2. For each document d out of D,

(a) For each topic β out of K,

(i) Draw topic presence/absence indicator Λ ∈ { 0, 1 } v Bernoulli (φ).

(b) Project the Dirichlet prior vector into low dimensions α = L x α.

(c) Draw a topic proportion θ v Dirichlet (α).

(d) For each word n out of N ,

(i) Draw a topic assignment Zd,n v Multinomial (θd).

(ii) Draw a word Wd,n v Multinomial (βZd,n
).

As can been seen from the generative process, the constraint that the document’s

labels are restricted to its own labels is fulfilled by step 2(b), where the Dirichlet prior

α is projected from topic dimension K into a low dimension of the size of document

labels M . To accomplish this, a projection matrix L of dimension of M by K is

22



created. Each entry of this matrix has value 1 only if the document label m is equal

to the topic k, zero otherwise.

2.3 Multi-task Learning and Structured Sparsity

Multi-task learning (MTL) [30] is a learning paradigm where multiple related tasks

are jointly learnt. The key idea of MTL is that tasks, if related, learned simultane-

ously through parallel inductive transfer can mutually benefit each other and lead

to improved prediction performance. Multi-task learning has been applied to many

problems, including those in computer vision, finance, natural language processing,

and genomics [155, 130, 59, 3, 124]. Multi-task learning is especially beneficial when

the training sample size is relatively small for each task, because learning multiple

related tasks simultaneously increases the sample size for each task and consequently

improves the performance of the learners. Therefore, it favorably addresses the prob-

lem of the skewed class distribution in power-law data, such as unbalanced skill use

in life contexts. In the rest of this section, we discuss in detail important notions

in MTL, regularization-based approaches to MTL, and its limitations. We hope this

discussion can foster a better understanding about the motivations for creating a new

model to address the task of predicting multiple high-order communication skills.

2.3.1 Inductive Transfer Through Parallel Learning

In traditional single-task learning, each task is considered to be independent and

therefore learned independently. In multi-task learning, multiple tasks are learnt in

parallel, by using task relatedness. As shown in Figure 2.4, multi-task learning and

single-task learning are different in the training or induction phase. The induction of

multiple tasks is performed simultaneously to capture intrinsic relatedness. Multi-task

learning emphasizes parallel learning and transfer rather than sequential processes is

because if training tasks are executed independently followed by transfer using only
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Figure 2.4. A comparison of single-task learning and multi-task learning (from [177])

the models learned for each task, then the computation will result in lost information

in the training data that are not captured by those models [30]. In other words, the

representations (i.e., models) learned to achieve good performance on tasks trained

individually may not be the representation that a learner learning a related task will

find most useful.

2.3.2 Task Relatedness vs. Task Dependence

One key assumption of multi-task learning is that tasks relate to each other, so

it is critical to understand what we mean by task relatedness. Two tasks that are

correlated or dependent are related; tasks that have no correlation or dependency

can still be related. In the latter case, task relatedness may exist in the feature space

they share. It is important to note the difference between explicit task dependence or

correlation and implicit but intrinsic task relatedness. In multi-task learning, there
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Figure 2.5. Task relatedness through the share of a common set of features
(from [177])

are two ways to define task relatedness. The first one assumes that tasks share a

common yet latent feature space [5], as shown in Figure 2.5. The second way is

to assume that tasks share a low-rank subspace [80]. While the first way learns a

shared feature space among tasks, the second learns a model in a black-box way 1. In

this dissertation, we focus on the former paradigm. Consider the task of predicting

multiple intelligence-embodied communication skills, commonness among skills may

not be shown with respected to language use, yet it does not exclude the possibility

that there is one at the level of discourse style, as measured by LIWC and Coh-Metrix

systems.

2.3.3 Joint Feature Learning

In the multi-task learning paradigm, joint feature learning, or embedded feature

learning, is based on the assumption that a common yet latent structure in the feature

1For the purpose of feature analysis, we need to perform singular value decomposition on the
resulting model to get the basis and their importances (singular values).
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space is shared among multiple tasks. A great strength of joint feature learning is

to perform feature selection and learning simultaneously. Before we introduce how

embedded feature selection works, we review existing approaches to automatic feature

selection.

• Filter approach: The idea of filter approach to feature selection is that for

each candidate feature, a heuristic is applied to determine whether or not to

include it. Examples of filter-based feature selection include mutual informa-

tion [126] and correlations [66] between features and labels. This approach to

feature selection can be considered as a preprocessing step independent from

the learning algorithm used at the learning phase. Although the filter approach

tends to be fast, its major drawback is that the optimal subset of features

may not be independent of the biases of the learning algorithm. Therefore, the

preselected features may not lead to the best learning performance.

• Wrapper approach: Wrapper-based feature selection uses a search algorithm

to search through the space of possible features and evaluate each subset by

running a learning model on the subset. Examples of wrapper-based feature

selection include decision tree [131] and random forests [26]. This approach can

be computationally expensive and has a risk of overfitting to a particular model.

• Embedded feature selection: This approach addresses the limitations in

both filter-based and wrapper-based feature selections. Specifically, it selects

features while performing learning and it formulates the learning problem as

a trade-off between minimizing loss (i.e., achieving good accuracy on training

data), and choosing a desirable model (i.e., improving generalization in predic-

tion on unseen data, interpretability, and computational savings.) Formally,

embedded feature selection approach to MTL can be described as follows:
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min
w

L(w, X, Y ) + Ω(w) (2.1)

where L is an empirical loss function and Ω is a regularizer; X is the inpute

feature matrix with dimension N x D (where N is the number of training

examples; D is the feature dimension), Y is the response matrix with dimension

N x T (where T is the number of tasks), w is the weight matrix with dimension

D x T.

Widely studied loss functions include square error loss, logistic loss, hinge loss, and

perceptron loss [13]. Square error loss is typically used in regression analysis, whereas

log-liner loss functions as employed in logistic regression [109]; maximum entropy [11]

and conditional random fields [90] are often used for classification and structure pre-

diction. It is beyond the scope of this dissertation to review each loss function. For

our multi-task text classification task, we will use logistic loss. In the next section, we

motivate our proposed work by reviewing the commonly used regularizers in length.

2.3.3.1 Structured Sparsity and Regularization

Sparsity in the context of MTL refers to model sparsity. In other words, most

dimensions of the feature space are not needed for the learning task and those dimen-

sions can be then set to zero, leading to a sparse model. Model sparsity is desirable,

because it leads to a model that is more interpretable and has greater generalizability

than a model that is not sparse. Regularization is often achieved by inducing sparsity.

Sparsity-induced regularization is often achieved by using norms.

Different choices of norms make a difference at the level of sparsity. For example,

classical L2 norm [72], also referred to as ridge norm, imposes no sparsity.

• Ridge (L2 norm):

Ω(w) =
λ

2
||w||2 (2.2)
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L1 norm [154], also called least absolute shrinkage and selection operator (Lasso),

yields element-wise sparsity.

• Lasso (L1 norm):

Ω(w) = λ||w||1 = λΣD
i=1|wi| (2.3)

where D is the feature dimension. The difference between ridge and Lasso can

be better explained from a Bayesian perspective. Specifically, while the ridge

penalty produces a Gaussian prior that is near zero, the Lasso penalty produces

a laplace (i.e., double exponential) prior that is “pointy” at zero, which allows

feature shrinkage and selection. More analysis about when to use which norms

can be found in Ng’s paper [122].

Another popular norm is group Lasso, which implements the idea of promoting

structured patterns by discarding entire group of features.

• Group Lasso:

Ω(w) = ΣM
m=1||wm||2 (2.4)

where M represents groups G1, . . . , GM , each Gm ⊆ {, 1, . . . , D }, w1, . . . ,

wM are feature sub-matrices.

The group Lasso regularizer is also called composite regularizer, because it is

the l1 norm of the lq norms, where q > 1. Technically, it is still a norm, but a

mixed norm, denoted lq,1
2. In the literature, l∞,1 and l2,1 norms are the two

commonly used structure sparsity-imposed norms. Although both regularizers

induce sparsity on the group level, the l2,1 norm penalizes the sum of the group-

wise l2 norms of the regression weights, whereas the l∞,1 norm penalizes the sum

of maximum absolute values per group. Group Lasso is widely used in MTL.

In [157], it has shown that l2,1 consistently outperforms the l∞,1 counterpart

2Some researchers use the notation of l1,q.
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in terms of predicting accuracy for MTL. Using group Lasso for MTL means a

feature is either selected as relevant for all tasks simultaneously, or is excluded

all-together for all tasks. Thus, it is often referred to as “simultaneous Lasso.” It

is this all-in-all-out manner that captures the common structure across multiple

tasks. Although group Lasso constrains the set of selected features to be iden-

tical across tasks, it allows for different amplitudes for the selected regression

coefficients.

Despite its structured sparsity, group Lasso finds its limitations in many real

world problems where the interest is in identifying important groups as well as

important features within the selected groups. As an efficient way of addressing

this limitation, sparse-group Lasso [54] was proposed to produce the desired

effect of group-wise and within group sparsity by combining group Lasso and

Lasso.

• Sparse-group Lasso:

Ω(w) = λ1||w||2,1 + λ2||w||1 (2.5)

In Figure 2.6, we visually illustrate the difference among sparsity-induced norms,

namely, Lasso, group Lasso, and sparse-group Lasso.

2.3.4 Sharing vs. Individual Difference

Although “shared common structure” is the key assumption for joint feature learn-

ing, research [118] has shown that if the extent of overlap in the feature space is less

than a threshold, the group Lasso regularization (and therefore the sparse-group

Lasso) could actually perform worse than simple separate element-wise l1 regularizer.

Since the choices of regularizer largely depend on the unknown true parameter hid-

den in the data, we might not know when and which regularizer to apply beforehand.
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Figure 2.6. A comparison of sparsity-induced norms

Recent research has proposed the idea of decomposing the model (i.e., regression

weight matrix) into a task-specific component and a sharing component. As shown in

Figure 2.7, an element-wise regularizer (i.e., l1 norm) is imposed on the task-specific

component, and a group Lasso regularizer is imposed on the sharing component. The

resulting model is referred to as the “ Dirty model [79].” Since the Dirty model uses

group Lasso rather than sparse-group Lasso, it does not encourage the sparsity within

a group. As a result, important features within the selected groups can not be ef-

fectively recognized. In addition, the Dirty model applies the l∞,1 norm, which, as

discussed earlier, is not as effective as l2,1 norm for MTL.

• The Dirty Model:

min
w

L(w, X, Y ) + λ1 ‖ u ‖∞,1 +λ2 ‖ v ‖1

subject to: w = u + v

(2.6)

where u denotes common structure; v denotes task-specific structure.
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Figure 2.7. An illustration of the Dirty model (adapted from [177])

2.4 Social Network Analysis

Social network analysis (SNA) has its origins in both social science and in the

broader fields of network analysis and graph theory. SNA concerns itself with ana-

lyzing social relationships by studying individuals who are embedded in a network of

relations and by seeking explanations for social behaviors in the structure of these net-

works [162]. SNA has gained a significant following in anthropology, communication

studies, biology, social psychology, sociolinguistics, economics, geography, information

science, and organizational studies [142, 162, 22, 49, 110]. Social network analysis is

also diverse in perspectives, from ego network to whole network, structure to relation,

and behavior to attitude. For example, SNA has been used to examine how organi-

zations interact with each other, characterizing the many informal connections that

link executives together, as well as the connections between individual employees in

different organizations [162]. In another study, SNA has found that happiness is con-

tagious in social networks – when a person is happy, nearby friends have a 25 percent

higher chance of being happy themselves [51]. In this dissertation, we will use SNA to
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analyze the structure properties of a participant’s social interactions (e.g., who talks

to whom), which may provide some keen insights into the nature of communication

intelligence and its embodied communication skills. In the text below, we will first

introduce the definition of social network analysis, and then describe several network

properties and structure measures.

Social network analysis views social relationships in terms of network theory, con-

sisting of nodes (representing individuals within the network) and links (representing

relationships between individuals [162]). For example, in this dissertation, a social

communication network comprises interconnected nodes representing participants in

online communication and directed edges representing messages sent from one par-

ticipant to another. Weights frequency can be added to each edge to represent the

number of messages sent in a period of observation. SNA analyzes social connections

by studying the following four network properties [164].

• Homophily: The extent to which individuals form connections with similar

versus dissimilar others.

• Reciprocity: The extent to which two individuals reciprocate each other’s in-

teraction.

• Transitivity: The tendency for a connection to be transitive (A connects to B,

and B connects to C, so A connects to C).

• Propinquity: The tendency for individuals to have more connections with other

individuals geographically or psychological close to them (i.e., like attracts like).

Note that homophily and propinquity can overlap, when similarity is defined by view-

points or beliefs. Transitivity is not applicable in this research because communica-

tion online is often motivated by social choice and preference and a lack of direct

connection implies a social choice of “no.”
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SNA also uses an array of network metrics to study social interaction charac-

teristics. Different network analysis tools focus on different selections of network

metrics. In this research, we choose Gephi 3, an open-source network analysis pack-

age widely used in the community of communication studies. In Table 6.1, we list

network metrics measured by Gephi and provide their interpretations in the context

of this dissertation. Conventional interpretations of social network measures can be

found in [163, 125], which have shown that, for example, hub and degree are the con-

structs of popularity, authority is a measure of influence, and components indicate

communities.

Table 2.1: Social network measures and their interpreta-

tions in the context of this research

Network structure measures Definition

In Degree This metric indicates the number of

people, from whom a message is sent

to the studied participant.

Out Degree This metric indicates the number of

people, to whom a message is sent from

the studied participant.

Degree This metric indicates the total number

of people that the studied participant

has communication with.

Weighted In Degree This metric indicates the number of

messages received by the studied par-

ticipant.

3https://gephi.org/
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Weighted Out Degree This metric indicates the number of

messages sent by the studied partici-

pant.

Weighted Degree This metric indicates the total number

of messages both received and sent by

the studied participant.

Eccentricity This metric indicates the length of the

longest directed path (assuming it is

the only path) between the studied par-

ticipant and another participant.

Closeness Centrality This metric indicates the average

length of the directed path between the

studied participant and another partic-

ipant.

Betweenness Centrality This metric indicates on average how

possible the studied participant is in

the middle of a direct chain between

any two other participants.

Authority This metric indicates how influential

the studied participant is.

Hub This metric indicates how popular the

studied participant is.

Modularity Class This metric indicates how sophisticated

the communication network’s internal

structure is.
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PageRank This metric indicates on average how

influential the participants who send

messages to the studied participants

are.

Component ID This metric describes community.

Strongly connected ID This metric describes how closely mem-

bers of the community, to which the

studied participant is belong, interact.

Clustering Coefficient This metric indicates how closely the

neighborhoods of the studied partici-

pant interact.

Eigenvector Centrality This metric also indicates on average

how influential are the participants who

send messages to the studied partici-

pant.

35



CHAPTER 3

COMMUNICATION INTELLIGENCE

Living, succeeding, and leading in the 21st century hinge closely on consistently

acquiring and subsequently enhancing transferable skills – skills that serve purposes

in many areas of work and life and can be used from one situation to another. These

skills include effective communication, critical thinking, and self-directed learning.

Among these skills, the ability to communicate effectively is often treated lightly or

even glossed over in our personal agenda for self-improvement and growth. As a

result, effective communication endures as one of the central, collective challenges in

our society. We think this happens partly because of the lack of a clear, actionable

definition of effective communication, and partly because a supportive scaffolding

environment for improving communication capacity is not in place.

In this research, we hope to initiate a movement to improve people’s commu-

nication capacities in online interactions. We research skillful behaviors related to

effective communication and develop computational systems for modeling and mea-

suring peoples’ communication behaviors online. Although our research focuses on

online communication, it is reasonable to assume that the resulting skill improvement

is likely to be transferred from online to offline experiences.

Our research starts with a realization that individuals are born with a general

intelligence in communication, upon which one can improve with practice, as in other

forms of intelligences [45, 138, 143]. Therefore, we take the first steps to define

an ability-based model for this intellectual construct of communication that we call

communication intelligence. In this chapter, we present the definition of commu-
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nication intelligence and describe a measure to compute it based on participant’s

use of intelligence-embodied communication skills. In the next two chapters, we will

present computational models for identifying intelligence-embodied communication

skills from online dialogues. The last chapter of this dissertation will focus on plans

of creating a scaffolding environment for improving people’s communication intelli-

gence.

3.1 Related Work

Research has shown that people have multiple intelligences, including IQ [100],

EQ (i.e., emotional intelligence) [60], and SQ (i.e., social intelligence) [61]. Practical

experiences teach us that, instead of one intelligence, it is the combination of both that

makes for success in life. The research on growth mindset [45] has suggested that IQ is

malleable and improvable. EQ and SQ can also be strengthened through skill practice,

as shown in [138, 143]. In the theory of multiple intelligences, emotional intelligence

is absorbed by intrapersonal intelligence, or the ability to have a deep understanding

of the self, including one’s strengths and weaknesses, knowledge of what makes a

person unique, and the ability to self-reflect and to control one’s own emotion and

reaction. Similarly, social intelligence is subsumed by interpersonal intelligence, or

the ability to lead and inspire other people through influence, empathy, and care. In

this research, we aim to understand the projection of intrapersonal intelligence and

interpersonal intelligence onto the space of communication 1 in online environments

with the ultimate goal of supporting participants to improve their communication

skills.

In addition, our research is closely related to existing theories about communi-

cation as deliberation [57, 150, 116], which we reviewed in the chapter about Back-

1In this research, we focus on online communication and do not explore how these two intelligences
affect other important areas of life, such as work and family balance.
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ground. With those research, we share our goal of fostering socially literate citizens

in a technology-advanced society capable of navigating situations where different per-

spectives and opinions exist.

This research is also motivated by the well-known theory of the zone of proximal

development (ZPD) [158]. ZPD has shown that the performance-competence gap

often exists between functional and optimal skill applications, which suggests that

people can improve their skills through scaffolding and practice. Improvable skills and

abilities lie at the heart of this research on communication intelligence. In addition,

our human beings are very rich and flexible by nature, and as a result, we are able

to behave differently at different times. Because our behavior can vary in different

situations, so can our ability to communicate effectively. Therefore the ability-based

model of communication intelligence we develop in this research has the following

property: dynamic and situational (i.e.,context dependent). The dynamic of people’s

communication intelligence in different contexts and from time to time can provide

behavior traces about people’s improvement of their communication intelligence. In

the rest of this dissertation, the terms “communication intelligence” and “contextual

communication intelligence” will be used interchangeably. To understand the contexts

of communication intelligence, we explain with an simple example. Let us assume

that in an online forum setting, Ali contributes 16 posts while interacting with other

participants in a thread. The context that influences Ali’s application of certain

communication skills (and therefore her communication intelligence) in a given post

at any micro-moment is called micro context. A micro context includes all the posts

up to that particular micro-moment. For example, post #1 through post #4 is

the micro context associated with Ali’s communication intelligence related to her

post #5 in a thread. Given a certain context, we can compute Ali’s contextual

communication intelligence. For example, in the above example, we can compute

Ali’s communication intelligence associated with her post #5, with respect to a micro
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context. With respect to an overall context (i.e., the whole thread), Ali’s contextual

communication intelligence can be computed as the average of all the micro contextual

communication intelligence. We use this way to compute peoples’ communication

intelligence in this research. In the future, we will consider a more sophisticated

approach to computing participants’ communication intelligence by taking account

of the following factors: recency effect (i.e., time decay effect), the outcome of the

communication if applicable, the level of satisfaction reported by other parties in

the communication, and the context effect (i.e., negotiation vs. discussion). For

example, we will design a weighted formula of these factors to compute participants’

communication intelligence in an overall context.

Lastly, our theory about communication intelligence also benefits from studying

various online contexts, including deliberation, negotiation, and inquiry-based learn-

ing, and analyzing online interaction experiences of people ranging from undergrad-

uate students of multiple disciplines to highly-educated academic professionals and

to members of the general public. These first-hand experiences allow us to see the

different orientations in people: while some people are more relationship-oriented or

people-oriented, others are more task-oriented or outcome-oriented [32]. Therefore,

when we define our ability model of communication intelligence, we also attend to

those two orientations.

3.2 Definition

• Definition: Communication intelligence is an intellectual construct that sup-

ports intentional dialogue. It is composed of several abilities, including the abil-

ity to be mindful about one’s own assumptions and emotions and examine them

from an objective perspective, to attend to others’ views and feelings and respond

in a respectful manner, and to present rational ideas and evidence in order to

move the conversation toward a meaningful direction.
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3.3 Constructs of Communication Intelligence

Any form of intelligence is challenging to measure and is often measured through

quantitative scoring of constructs. Depending on whether assuming intelligence is

innate or improvable, research in measuring human intelligence has mostly fallen

into three main categories: trait-based model [129], ability-based model [139], or the

combination of both [25]. Since a myriad of recent research about neuroplasticity

and growth mindsets from neuroscience and psychology (as highlighted in [45]) has

suggested that intelligence is improvable, in this research we will focus on creating

an ability-based model of communication intelligence and measuring it with skill

constructs.

Based on our own research, in particular [116], and many of others introduced

in the previous section, we distill an intellectual model of communication intelli-

gence comprising ten interrelated actionable dimensions, illustrated in Figure 3.1.

These ten dimensions keep a good balance of acknowledging the different orienta-

tions among people. Loosely, the six people-oriented dimensions include connection,

restraint, agreement, appreciation, self-reflection, and perspective taking; the four

task-oriented dimensions include proof, monitoring, balance, and plan. In appendix,

we also provide a chart showing how our communication intelligence model maps to

the social deliberative skill framework.

Note that our intellectual model of communication intelligence includes the di-

mension agreement 2. This is because we believe that agreement is an important

intelligence-embodied skill for social communication – it requires attentive listening,

analyzing and identifying the shared space in different minds, and acknowledging that

shared opinions or feelings to build rapport and harmony in a dialogue. Indeed, the

lack of agreement may imply a starting point of divergence in opinions.

2The skill of agreement falls outside of the category of social deliberative skills in Murray’s
framework.
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Figure 3.1. An overview of the constructs of communication intelligence

• Connection: connection with ideas of other participants.

• Proof: showing evidence by providing references or noting the source of state-

ments.

• Restraint: controlling negative emotions toward other participants.

• Agreement: expressing agreement to other participants’ viewpoints.

• Appreciation: showing appreciation to others’ ideas or situations.

• Self-reflection: reflecting on one’s own assumptions, values, biases, or emotions.

• Perspective taking: reflecting on the ideas or feelings of others (including par-

ticipants in or outside of the dialogue).

• Monitoring: reflecting on the quality of discussions and/or suggesting changes.

• Balance: reflecting on the quality of discussed topics and/or weighing alterna-

tives and identifying trade-offs.
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• Plan: proposing or suggesting actions for resolving the discussed problem.

3.4 Computing Communication Intelligence

Measuring communication intelligence with respect to a set of skills becomes a

manageable task that involves two steps: (1) identifying the set of skills, and (2)

computing participants’ communication intelligence based on the use of those skills.

In Chapter 4 and Chapter 5, we will propose new models for automatically identi-

fying intelligence-embodied communication skills. In those chapters, we will learn

binary vectors of skill labels, in which the value of 0 or 1 represents the absence or

presence use of a certain skill. In this section, we focus on computing communication

intelligence by assuming that the skills labels are readily available.

Motivated by the theory of zone of proximal development, we first define an op-

timal state, or ideal state, of communication intelligence. The ideal state of com-

munication intelligence refers to the use of the whole set of intelligence-embodied

skills invariant of contexts. This definition is reasonable, because ideally, we hope

to perform skillful communication regardless of circumstances, whether discussing

a simple matter or a complicated issue, with an open-minded listener who respects

your perspective or with a stubborn debater who competes with your position. This

definition allows us to measure the communication intelligence of an individual in

a micro context by computing the set similarity between the ideal set of skills and

the actual set of skills employed by that participant in that context. As explained

early, an individual’s communication intelligence in an overall context (e.g., a thread)

can be simply computed by taking an average of the communication intelligences in

micro contexts that are part of the overall context. This definition also permits us to

compare the communication intelligence of different individuals based on an overall

context, which would be the absolute value of the difference between their communi-

cation intelligence with respect to the same overall context. It is worth noting that
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computing the score of contextual communication intelligence always involves eval-

uation against the ideal set of skills. Therefore, comparing an arbitrary set of skills

with another is meaningless.

3.4.1 Similarity Measures

To compute communication intelligence, we need to measure the similarity be-

tween a performance skill vector and the optimal skill vector. Two widely-used sim-

ilarity metrics for binary vectors are Hamming similarity [147] and Jaccard coeffi-

cient [95]. In the rest of this section, we provide definitions for each metric and use

examples to illustrate how to use each measure to compute communication intelli-

gence.

3.4.1.1 Hamming Similarity

From information theory, we know that the Hamming distance for 0 and 1 se-

quences of the same length is defined as the number of positions at which the corre-

sponding symbols/attributes are different. Hamming similarity is then defined as the

number of positions where corresponding attributes from two binary vectors agree.

Formally, given two binary vectors x and y of the same length, the Hamming similar-

ity between x and y is f0,0 + f1,1, where f0,1 denotes the number of attributes where

x is 0 and y is 1; f0,1 denotes the number of attributes where x is 0 and y is 1; f0,0

denotes the number of attributes where x is 0 and y is 0; and f1,1 denotes the number

of attributes where x is 1 and y is 1;

We now show an example of computing communication intelligence using Ham-

ming similarity. Suppose x = 1111111111, y = 1110010110, where x represents the

optimal skill vector and y represents the performance skill vector of a single par-

ticipant. The Hamming similarity in this case is H = 0 + 6 = 6. Therefore, the

communication intelligence associated with this participant is 6 out of 10. When us-
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ing Hamming distance, communication intelligence is lower bounded by 0 and upper

bounded by 10.

3.4.1.2 Jaccard Coefficient

Jaccard coefficient or Jaccard similarity is an asymmetric similarity measure,

which is often used in situations that the value of 1 or the presence is more im-

portant than that of 0 or absence. It computes the number of attributes where two

binary vectors agree at 1. Formally, given two binary vectors x and y of same length,

the Jaccard coefficient of x and y is
f1,1

f0,1 + f1,0 + f1,1
3 .

Using the same example from last section, where x = 1111111111, y = 1110100110,

the Jaccard coefficient J is
6

0 + 4 + 6
= 6/10. Therefore, the communication intel-

ligence of the participant whose performance skill vector is illustrated by y is 6/10.

When using Jaccard coefficient, communication intelligence is lower bounded by 0

and upper bounded by 1.

By comparing Hamming similarity and Jaccard coefficient, we see that both met-

rics give the same measurement (i.e., 6 out of 10 is equivalent to 6/10). This is

because the x vector representing the optimal skill set has a uniform distribution of

1. In this dissertation, we use Jaccard coefficient to measure communication intel-

ligence. This is because if theories about which skills are more valued than others

for measuring communication intelligence are developed in the future, we can switch

to use weighted Jaccard coefficient, where weights are added to take account of the

importance of each attribute in the set.

Before closing this chapter, we want to remark that creating a new measure for

communication intelligence and then validating it through repeated tests would have
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profound implications for increasing production in work groups and teams 4 and

building a respectful and deliberative society at large.

4Recent research from the MIT media lab [167] has verified a new formula for successful working
teams: Smart effective teams = people willing to listen and empathize + people able to perceive
and respond to others emotions.
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CHAPTER 4

MULTI-LABEL LEARNING WITH CONSTRAINT
LABELED LDA

In this chapter, we present a new hierarchical probabilistic model for addressing

the problem of identifying multiple intelligence-embodied communication skills from

natural language. This model reveals the language manifestation of intelligence-

embodied communication skills and can support large-scale computational annotation

on these high-order skills.

4.1 Motivation and Related Work

Language is to online communication as a seed to a plant – it is the core to

understanding communication phenomena in an online environment. Intensive re-

search in anthropology, sociology, linguistic, and communication has studied a wide

variety of social phenomena, including leadership [107], power [84], conflicts [152],

deception [68], and perspective-taking [74]. This previous research typically looks at

language use in situations, where social relationships are known, rather than using

language predictively.

There is also a body of literature in computational linguistic that uses a two-tier

framework for modeling social phenomena. This line of research first creates com-

putational methods for detecting social language cues, such as on-topic discussion

and involvement, and then uses these language cues to infer high-order social con-

structs, such as influence and conflicts [151]. Little research has attempted to identify

multiple social and communicational phenomena, including perspective-taking, mon-

itoring, and balance, both directly and simultaneously from natural language. In this
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chapter, we introduce a novel language model for identifying intelligence-embodied

communication skills within online communication.

As we learned from the chapter on Background, generative models have great ad-

vantages over discriminative models for the task of multi-lable text classification. An

extension of LDA, called Labeled LDA, seems to be a plausible choice for identifying

high-order communication skills. Labeled LDA is specifically designed for multi-label

classification problems, and, as a generative model, it learns an associative mapping

between words and document labels that can help understand how language reflects

the use of each intelligence-embodied skill. However, Labeled LDA is based on the

bag-of-words assumption and is limited in the current task, where credit attribution

between labels and sentences is desired. For example, human annotators would label

the following text from an authentic online interaction as perspective taking only after

processing the whole sentence.

“From both of you I have now a little insight into how you view this
problem and what the problem solution could be.”

This observation suggests that we need a model, which, similar to Labeled LDA,

but takes account of word order within a sentence. As true in many real-world prob-

lems, a sentence is the base unit that carries a meaning. Such a model, once devel-

oped, would find wide applications.

In the literature, two general solutions have been proposed to address the limita-

tion of topic models that the positions of individual words are neglected for inference

(i.e., the bag-of-words assumption): (1) modeling the word order (i.e., n-grams) ex-

plicitly [159, 160, 64], and (2) imposing constraints to capture the word occurrence

in proximity [81]. The former approach mainly relies on extending the LDA model

by adding more variables (i.e., indicator variables for each word are used to signify

if a bigram should be generated to form an n-gram.) One major drawback of these

models is the increased model complexity and therefore decreased computational ef-

ficiency in inference. In this chapter, we follow the second approach and present a
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new model, called constrained Labeled LDA (CL-LDA), which adapts Labeled LDA

to impose the constraint that all words in a sentence are generated from one label.

Before we formally describe the generative process of CL-LDA, we show the list

of research questions we can address with CL-LDA.

• Research questions:

– How can the use of multiple intelligence-embodied skills be automatically

and simultanously identified?

– How does language (at the sentence level) reflect the use of each intelligence-

embodied communication skill, respectively?

4.2 Constrained Labeled LDA (CL-LDA)

In this section, we first show the graphical model of CL-LDA (Figure 4.1) and its

generative process, and then describe the Gibbs sampling inference for CL-LDA.

CL-LDA assumes the following stochastic process of writing messages on social

media sites.

1. For every topic φ out of K,

(a) Draw a word distribution φk v Dirichlet (β).

2. For each message d out of D,

(a) For each topic φ out of K,

(i) Draw topic presence/absence indicator Λ ∈ { 0, 1 } v Bernoulli (η).

(b) Project the Dirichlet prior vector into lower dimensions α = L x α.

(c) Draw a topic proportion θ v Dirichlet (α).

(d) For each sentence m out of M ,

(i) Draw a topic assignment Zd,m v Multinomial (θd).
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Figure 4.1. The graphical model of constrained Labeled LDA

(ii) For each word n out of N ,

(1) Draw a word Wd,m,n v Multinomial (φZd,m,n
).

As can be seen in the graphical model in Figure 4.1, CL-LDA implements the

word-order constraint by adding a sentence-level plate to the Labeled LDA model.

With this modification, the hidden topic variable z now resides in the sentence plate,

and thereby all words in a sentence are assumed to be generated from one label. Since

the labels are observed, as in LDA, the labeling prior is D-separated from the rest of

the model conditioned on the labels, so that we can use collapsed Gibbs sampling to

derive the posterior distribution of labels.

During training, CL-LDA adds the restriction that all words in a sentence can

only be assigned to the observed labels of the text. At test, CL-LDA infers all the

labels associated with each text. Inferring multiple labels of a text is much more

challenging than inferring a single label. It involves evaluating all combinations of

label assignments, 2k in total (k is the number of labels). This problem is amplified
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by the fact that, for each assignment, we need to construct a low-dimension Dirichlet

prior vector α (using the projection matrix L) to restrict the model to use only those

topics that correspond to document labels. As in Labeled LDA, in this research,

we made a simplifying assumption that model inference reduces to standard LDA

inference. This is a reasonable assumption, because exploring the whole topic space

is in essence similar to exploring all the possible label assignments.

4.2.1 Inference Using Gibbs Sampling

We used collapsed Gibbs sampling [63] to estimate the posterior distribution of

hidden variable z given the input variables w, Λ, and hyperparameters, α and β, and

then use the results to infer model parameters θ and φ. (In the appendix, we detail

the derivation of Gibbs sampling for CL-LDA.)

P (θ, φ, z|w,Λ) =
P (θ, φ, z, w,Λ)

P (w,Λ)

Using Gibbs sampling, we constructed a Markov chain that converges to the poste-

rior distribution on z. The transition between successive states of the Markov chain

is achieved by randomly sampling z from its distribution conditioned on all other

variables, summing out θ and φ. By derivation (shown in the appendix), we get:

P (zi|z−i, w,Λ) ∝
Nk|d + αk
Nd +

∑
k αk
· Γ(Nk +

∑
w βw)

Γ(Nk + si +
∑

w βw)
·
∏
w

Γ(Nw|k + swi + βw)

Γ(Nw|k + βw)

where the subscript z−i denotes all topic assignments excluding the ith sentence, Nk|d

is the number of times that topic k is assigned to message d, excluding the current

sentence, Nw|k is the number of times that topic k is assigned to word w, excluding
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the current sentence, swi is the number of word w in sentence i, and si is the number

of total words in sentence i.

After the Gibbs sampling process, the model parameters in CL-LDA can be ob-

tained as follows:

φw|k =
Nw|k + βw
Nk + V βw

θk|d =
Nk|d + αk
Nd +Kαk

where φw|k is the probability of using word w in topic k, and θk|d is the probability of

using topic k in message d.

4.2.2 Gibbs Query Sampling for Unseen Data

To estimate the labels (i.e., topics) in unseen data, we need to derive a Gibbs

query sampler. In order to find the required counts for a previously unseen data, we

follow the approach in [73] to run the inference algorithm on the new data exclusively.

Specifically, we first initialize the algorithm by randomly assigning topics to sentences

and then perform a small number of iterations through the Gibbs sampling update.

For such an inference, the Gibbs query sample takes the following form:

P (z̃i|z̃−i, w̃,Λ) ∝
Nk|d + α̃k
Nd +

∑
k α̃k
· Γ(Nk + Ñk +

∑
w β̃w)

Γ(Nk + Ñk + s̃i +
∑

w β̃w)
·
∏
w

Γ(Nw|k + Ñw|k + s̃wi + β̃w)

Γ(Nw|k + Ñw|k + β̃w)

where [̃∗] denote the corresponding quantities in the test corpus and
∑

w β̃w counts

the words appeared in both training and testing vocabularies.
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4.3 Corpora

As a part of a larger research endeavor, we collected online dialogues from a vari-

ety of online contexts, including deliberation, negotiation, and inquiry-based learning.

In this research, we examined two online corpora: one involving participants in ne-

gotiation and another involving participants in an open discussion. Since these two

corpora are from two domains, each corresponding to a different online context, we

may use the term “domain” to refer “online context” in the text below unless other-

wise specified.

In the first domain, professional community negotiation, 72 email exchanges from

a faculty listserv with geographically dispersed participants were gathered. Sixteen

faculty members from two academic communities negotiated about a proper solution

to a conference scheduling conflict. An emerging theme in this dialogue was the

tension between democratic decision making versus fiat decision making by those

in authoritative roles. Participants were highly educated academic professionals and

most of them encouraged democratic decision making about relocating the conference.

In the second domain, civic deliberation, 51 posts were collected from a civic

engagement online discussion forum at e-deomocracy.org. Thirty two participants

discussed ethnic issues suggesting ways to alleviate tensions about their multi-racial

community. This discussion was in response to a post describing negative incidents

they believed occurred because of their race, being black in the predominantly white,

upper-middle class neighborhood. Several participants attempted to be consoling and

supportive, others attempted to frame the social characteristics of the neighborhood

in a wider political context, and yet others reacted against this imposed political

context.

Two independent trained human judges annotated the two corpora based on Mur-

ray’s theory about social deliberative skills [116], which is a hierarchical conceptual

coding framework containing over 50 social deliberative skills and other speech acts.
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Messages were first segmented manually at speech act boundaries before annota-

tion. The inter-rater reliability of human annotations was 69% (measured in Cohen’s

Kappa) for the professional communication negotiations and 76% for the civic delib-

eration discussions. According to [91], the agreement level between human judges was

good. For the purpose of this study, we aggregated appropriate social deliberative

skills to construct each intelligence-embodied communication skill. We used 0 and 1

to denote the absence and presence of the use of each skill, respectively.

4.4 Experimental Design

4.4.1 Data Preparation

CL-LDA is a supervised machine learning model. For the task of identifying

intelligence-embodied communication skills, we need data for training and testing

from each domain. In this research, we split data according to the following three

principles.

• The ratio of training to testing data is 4:1;

• Each skill label has representations in both training and testing sets;

• For both training and testing set, the number of positive skill labels (i.e., the

“1s” in the label matrix) ranges from 2 to 8 (where 2 is the smallest and 8 is

the largest number of annotated labels in the actual data).

This last principle was specifically designed with the goal of studying CL-LDA’s

prediction performance on data whose number of positive labels is across a relatively

wide range. In the literature, the majority of studies have focused on corpora with

either relatively few labels or many examples of each label [96]. With this study,

we wish to study the robustness of CL-LDA in the face of the number of labels in

a relatively wide range and with a small number of training data available for each

label.
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Figure 4.2. An illustration of the training data class distributions in different do-
mains

In the experiments that followed, we have 57 training and 15 testing instances in

the professional community negotiation domain. In the civic deliberation discussion

domain, we have 39 training and 12 testing instances.

We show in Figure 4.2 the statistics of class distribution in the training data for

both domains. Note that in the professional community negotiation domain, the

majority classes are restraint, monitoring, and other 1. In the civic deliberation dis-

cussion domain, the majority classes include connection, restraint, monitoring, and

other. These numbers will be referenced later when we study the prediction perfor-

mance of some comparison methods whose predictions in unseen data rely heavily on

this prior information from the training data.

1“Other” includes all other annotated labels that are not related to any of the intelligence-
embodied skills.
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4.4.2 Data Preprocessing

In order to prepare data for CL-LDA, we first preprocessed the data by splitting

data messages into sentences using Stanford Natural Language toolkit (NLTK 2.0) 2.

We realized that function words (e.g., would, but) play an integral role in statements

showing the use of intelligence-embodied skills (e.g., self-reflection, perspective tak-

ing). Therefore, we did not filter standard English stop words completely. Instead,

we set up a threshold to prune words that appear more than 110 times (e.g., a, the) or

less than 3 times. We applied the Porter stemmer 3 algorithm on unigram features in

this study. In the professional community negotiation domain, we had 13,714 words

from 72 messages that contain 741 sentences. In the civic deliberation discussion

domain, we had 17,810 words from 51 messages that contain 934 sentences. The

training vocabulary in the professional community negotiation domain was 538 and

that in the civic deliberation discussion domain was 719.

4.4.3 Parameter Configurations

In CL-LDA, the number of topics (i.e., 11 labels: ten skill labels, one “other”)

was given. At training, the Dirichlet prior β was set to 0.01. The hyper-parameter η

that specifies the total weight contributed by the labels was set to 20. The Dirichlet

prior α was projected from the topic dimension (i.e., 11) into a low dimension of

the size of the positive labels M (i.e., labels that are present). In this way, the

supervision is incorporated so that each message takes on the topics that correspond

to the message’s positive labels. We run Gibbs sampler with 1000 burn-in iterations

and 1000 sampling iterations.

At test, the Dirichlet prior β and α were set to 0.01 and 4, respectively. We used

symmetric Dirichlet prior α because we want to challenge CL-LDA to see its ability to

2http://nltk.org

3http://tartarus.org/martin/PorterStemmer/
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identify those communication skills without being given any prior information about

observed frequencies of different skill labels from the training data. We ran Gibbs

sampling with a small number of times (i.e., 100 burn-in iterations and 100 sampling

iterations) before we collected the results.

For both domains, we used the same set of hyper-parameters. Note that these

hyper-parameters were chosen heuristically and were not optimized. Therefore, we

would expect that with hyper parameter optimization, at least a modest improvement

in performance over the presented results could be obtained.

4.4.4 Data Postprocessing

Inferring message labels in supervised topic models often involves thresholding

probabilities of the label-message distribution. Choosing a threshold-selection method

is non-trivial and is a research problem in and of itself [175, 55]. In the literature,

there are two main rank-based cutoff approaches to thresholding: proportional method

and calibrated method. The first one sets the cut-off number Ni based on training data

frequencies. For example, suppose that 28 training data are assigned label Ci and

there are 40 training data and 10 testing data in total, the cut-off number for label Ci

will be 28∗ 10
40

= 7, meaning that we select the top 7 labels with the highest probability

over topics from the label-message distribution. The second approach, calibrated

method, sets the cut-off number equal to the true number of positive instances in the

testing data. In other words, if the testing data has 10 positive labels, then the top

10 labels with the highest probability over topics would be selected as predictions for

that data. Note that both methods use prior information – the proportional method

uses prior information from the training data; whereas the calibrated method uses an

even stronger prior information from the testing data. In this research, we will use

the calibrated method to infer labels from a comparison model – labeled-LDA. We
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equip Labeled-LDA with this strong bias to see what the best this boosted version of

labeled-LDA can perform to identify intelligence-embodied communication skills.

Note that for CL-LDA, we do not need to select a threshold. This is because CL-

LDA learns the topic assignment for each sentence. It is practical and easy to obtain

the labels for each data by employing a simple aggregation method over sentence

labels. For example, a message is determined to have a particular label, only if its

containing sentences are assigned that label. In this study, we used this simple method

to construct the 0/1 label matrix for each testing message.

4.5 Results and Discussions

In this section, we will evaluate the learning performance of CL-LDA for identi-

fying multiple intelligence-embodied communication skills. Specifically, we will first

compare the prediction performance of CL-LDA against state-of-the-art multi-label

text classification methods: Labeled LDA and a set of multiple one-vs-rest SVM clas-

sifiers. We then evaluate the quality of the most salient words that represent each

skill using topic coherence metric. Finally, we illustrate CL-LDA’s performance on

credit attribution – assigning skills labels to sentences.

4.5.1 Multi-label Text Classification

4.5.1.1 Category-pivoted Evaluations

In this section, we focus on category-pivoted evaluations – the evaluation of model

performance on predicting each skill label. We evaluated model performance quanti-

tatively in terms of sensitivity (the true positive rate), specificity (the true negative

rate), and accuracy. Both sensitivity and specificity are valued in this research, be-

cause for the purpose of measuring communication intelligence, the presence and ab-

sence use of skills are equally important to identify. As shown in Table 4.1, in the pro-

fessional community negotiation domain, CL-LDA achieves the best average predic-
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Table 4.1: Category-pivoted evaluations in the professional community negotiation
domain: A comparison of SVM, Labeled LDA+Calibrated-labels, and CL-LDA

SVM Labeled LDA+Calibrated-labels CL-LDA
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1connection 0.00 1.00 0.53 0.14 0.88 0.53 0.71 0.88 0.80
2proof 0.00 1.00 0.80 1.00 0.50 0.47 1.00 0.58 0.67
3restraint 1.00 0.00 0.93 0.71 0.00 0.67 0.57 1.00 0.60
4agreement 0.00 1.00 0.73 0.75 0.73 0.73 0.75 0.45 0.53
5appreciation 0.00 1.00 0.80 0.67 0.50 0.53 0.67 0.67 0.67
6self reflection 0.00 1.00 0.73 0.50 0.45 0.47 0.50 0.73 0.67
7perspective taking 0.00 1.00 0.53 0.57 0.75 0.67 0.86 0.88 0.87
8monitoring 1.00 0.00 0.60 0.44 0.67 0.53 0.78 0.67 0.73
9balance 0.00 1.00 0.80 0.33 0.58 0.53 0.67 0.71 0.47
10plan 0.00 1.00 0.67 0.00 0.90 0.60 0.40 0.30 0.33
11other 1.00 0.00 0.87 0.54 1.00 0.60 0.62 0.50 0.60

Min 0.00 0.00 0.53 0.00 0.00 0.47 0.40 0.30 0.33
Max 1.00 1.00 0.93 1.00 1.00 0.73 1.00 1.00 0.87
Avg 0.27 0.73 0.73 0.51 0.63 0.58 0.68 0.67 0.63
Avg (sen+spe) 0.50 0.57 0.68

tion sensitivity (68%) across all 11 categories, followed by Labeled LDA+calibrated-

labels 4(51%.) and SVM (27%). Note that for SVM, different kernels were tested,

including linear, polynomial, sigmoid, and radial basis function. Linear kernels yielded

the best performance for both domains. As to average prediction specificity, CL-LDA

(67%) achieves the second-best followed by Labeled LDA+calibrated-labels (63%).

With further examinations, we realized that SVM’s good performance on average

prediction specificity and accuracy is attributed to the high-skewed class distribu-

tion. In other words, SVM predicted all data as coming from the majority class,

which confirms the findings from the literature that we suryeved in the chapter on

Background. For example, as shown in Figure 4.2, in the professional community

negotiation domain, the majority classes are restraint, monitoring, and other. There-

fore, only for those 3 classes, SVM achieves 100% sensitivity, and for other classes,

it achieves 0% sensitivity. Since SVM is heavily biased by class distribution, we

only compare CL-LDA with Labeled LDA+calibrated-labels for average prediction

accuracy. CL-LDA achieves 63% (compared to the 9% baseline), whereas Labeled

LDA+calibrated-labels achieves 58% in average prediction accuracy. This is an im-

4Because the labeled-LDA uses the calibrated method to obtain its labels for the testing data,
we refer it as “LLDA+Calibrated-labels.”
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Table 4.2: Category-pivoted evaluations in the civic deliberation discussion domain:
A comparison of SVM, Labeled LDA+Calibrated-labels, and CL-LDA

SVM Labeled LDA+Calibrated-labels CL-LDA
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1connection 1.00 0.00 0.33 1.00 0.00 0.33 0.75 0.50 0.58
2proof 0.00 1.00 0.67 1.00 0.50 0.67 0.75 0.63 0.67
3restraint 1.00 0.00 0.92 1.00 0.00 0.92 0.45 1.00 0.50
4agreement 0.00 1.00 0.83 0.50 0.80 0.75 0.50 0.20 0.25
5appreciation 0.00 1.00 0.83 0.50 0.70 0.67 0.50 0.40 0.42
6self reflection 0.00 1.00 0.58 0.40 1.00 0.75 1.00 0.43 0.67
7perspective taking 0.00 1.00 0.58 0.80 0.71 0.75 0.80 0.71 0.75
8monitoring 1.00 0.00 0.50 0.17 1.00 0.58 0.67 0.67 0.67
9balance 0.00 1.00 0.83 0.00 0.80 0.67 1.00 0.50 0.58
10plan 0.00 1.00 0.92 0.00 0.91 0.83 0.00 0.64 0.58
11other 1.00 0.00 0.92 0.18 1.00 0.25 0.82 0.00 0.75

Min 0.00 0.00 0.33 0.00 0.00 0.25 0.00 0.00 0.25
Max 1.00 1.00 0.92 1.00 1.00 0.92 1.00 1.00 0.75
Avg 0.36 0.64 0.72 0.50 0.67 0.65 0.66 0.52 0.58
Avg (sen+spe) 0.50 0.59 0.59

pressive result, given that Labeled LDA+calibrated-labels has supervision from the

test phase (through thresholding), while CL-LDA receives no guidance from the test-

ing data. Moreover, CL-LDA does not use observed frequencies of skill labels from

training data either.

As can also be seen from Table 4.1, CL-LDA achieves the highest sensitivity (i.e.,

the true positive rate) (100%) in predicting the skill of proof and the lowest sensitivity

(40%) in predicting the skill of plan. CL-LDA achieves the highest specificity (i.e., the

true negative rate) (100%) in predicting the skill of restraint and the lowest specificity

(30%) in predicting the skill of plan. Please be cautious that these observations can

not be used as evidence to conclude which intelligence-embodied skills are easy or

hard to predict automatically from natural language. This is because these results

are tied to a particular online context (e.g., negotiation vs. discussion) that we study

in this research. They are also influenced by the number of training and testing data

available in each skill/category that is constrained by the three experiment design

principles introduced early. This statement also applies to similar observations in the

following experiments in this chapter.

Now, let us look at the civic deliberation discussion domain. As can be seen

in Table 4.2, in the professional community negotiation, CL-LDA achieves the best
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average prediction sensitivity (66%) across all 11 categories, followed by Labeled

LDA+calibrated-labels (50%) and SVM (36%). We once again observed that SVM’s

prediction performance highly reflects the bias of class distribution. As a result,

we ignore SVM for performance comparisons in the rest of this section. We also

observed that Labeled LDA+calibrated-labels outperforms CL-LDA in average pre-

diction specificity and accuracy and we hypothesize that the assumption of CL-LDA

is violated in this domain. In other words, sentences in this domain are relatively

long, so that all words in a sentence might be generated from more than one label.

We tested this hypothesis by computing the average number of words in each do-

main. We found that the professional community negotiation domain has an average

of 18 words per sentence and the civic deliberation discussion domain has an average

of 19 words per sentence, which does not support this hypothesis. Furthermore, if

this assumption is violated, CL-LDA would not achieve good prediction sensitivity.

Another hypothesis is that the better performance of Labeled LDA+calibrated-label

in average specificity (i.e., the true negative rate) is largely attributed to the extra

supervision from the thresholding method it uses. Specifically, the calibrated labels

(i.e., the true number of positive instances for the test data) set the upper-bound

for the number of labels to be selected for each test data, which in turn guarantee a

certain number of negative predictions. In contrast, CL-LDA – without supervision

in the test phase – might assign each sentence in a message with a different label,

leading to most positive predictions.

As can also be seen from Table 4.2, in the civic deliberation discussion domain,

CL-LDA achieves the highest sensitivity in predicting the skills of self-reflection and

balance and the lowest sensitivity (45%) in predicting the skill of restraint. CL-LDA

achieves the highest specificity (100%) in predicting the skill of restraint and the

lowest specificity (0%) in predicting the skill of others.
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Table 4.3: Message-pivoted evaluations in the professional community negotiation
domain: A comparison of SVM, Labeled LDA+Calibrated-labels, and CL-LDA

SVM Labeled LDA+Calibrated-labels CL-LDA
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Min 0.29 0.75 0.45 0.00 0.00 0.27 0.00 0.00 0.36
Max 0.75 1.00 0.91 1.00 1.00 1.00 1.00 0.89 0.91
Avg 0.52 0.92 0.73 0.49 0.57 0.58 0.57 0.54 0.63

Avg (sen+spe) 0.72 0.53 0.56

Comparing model performance across domains, we found that all models have

lower performance in the civic deliberation discussion domain than in the professional

community negotiation domain. The lower model performance might be attributed

to fewer training instances (41% less) in the civic deliberation discussion domain.

4.5.1.2 Message-pivoted Evaluations

Category-pivoted evaluations allow us to study a model’s predicability for each

skill label separately. When multi-category classification is concerned, message-pivoted

evaluations provide a holistic view on a model’s predicability of all skill labels asso-

ciated with a message.

As shown in Table 4.3, in the professional community negotiation domain, CL-

LDA achieves the best average prediction sensitivity (57%) across all the messages in

the testing set, followed by SVM (52%) and Labeled LDA+Calibrated-labels (49%).

For the same reason that SVM is highly biased by the class distribution, we ig-

nore it in the rest of this section. As to the average prediction specificity, La-

beled LDA+Calibrated-labels (57%) outperforms CL-LDA (54%) by 3%. For aver-

age prediction accuracy, CL-LDA (63%) has an upper hand and outperforms Labeled

LDA+Calibrated-labels by 5%.

In the civic deliberation discussion domain, as shown in Table 4.4, we found

the same pattern as in category-pivoted evaluations. CL-LDA outperforms Labeled

LDA+Calibrated-labels on prediction specificity, while Labeled LDA+ Calibrated-

labels has an upper hand on prediction specificity and accuracy.
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Table 4.4: Message-pivoted evaluations in the civic deliberation discussion domain:
A comparison of SVM, Labeled LDA+Calibrated-labels, and CL-LDA

SVM Labeled LDA+Calibrated-labels CL-LDA
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Min 0.33 0.60 0.45 0.25 0.40 0.45 0.00 0.00 0.36
Max 1.00 1.00 0.91 0.88 0.89 0.82 1.00 0.89 0.91
Avg 0.67 0.80 0.72 0.53 0.69 0.65 0.61 0.49 0.58

Avg (sen+spe) 0.74 0.61 0.55

4.5.1.2.1 The Relationship Between the Number of Positive Labels per

Message and Model’s Performance When designing experiments, we ensured

that, for data in both training and testing sets, the number of positive instance of

skill labels spans a spectrum. In doing so, we can study the relationship between a

model’s prediction performance and the number of positive labels the data has. For

example, we ask is CL-LDA more likely to have better prediction when a data has

fewer labels or vice versa?

As can be seen in Figure 4.3, in the professional negotiation domain, a statistically

significant (p=0.0005) positive correlation exists between the number of positive labels

per message and CL-LDA’s prediction sensitivity. A negative statistically significant

(p = 0.0091) correlation is also found between the number of positive labels per

message and CL-LDA’s prediction specificity. No statistically significant relationship

exists between the number of positive labels per message and CL-LDA’s prediction

accuracy.

In the civic deliberation discussion domain, as shown in Figure 4.4, we only ob-

served a positive statistically significant correlation (p=0.0278) between the number

of positive labels per message and CL-LDA’s prediction sensitivity. No statistically

significant correlation is found between the number of positive labels per message and

other prediction measures.

These observations imply that despite the difficulty of predicting multiple labels

simultaneously, CL-LDA’s performance increases as the prediction task becomes more

challenging (i.e., predicting a large number of labels). It suggests that CL-LDA can
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Figure 4.3. The relationship between the prediction performance of CL-LDA and
the number of positive labels per message in the professional negotiation domain
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Figure 4.4. The relationship between the prediction performance of CL-LDA and
the number of positive labels per message in the civic deliberation discussion domain

be a promising multi-label text classification technique for large-scale applications.

This observation also suggests that there might exist an inter-dependency between

labels that contribute to the performance gain in predictions.

4.5.2 Word and Sentence Discovery

CL-LDA is a supervised machine learning model. During training, CL-LDA learns

label-specific word distributions under the constraint that words in a sentence can

only take observed labels of the text. Our experiments showed that function words
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Table 4.5: Coherence scores of learned topics using the 5 most salient words in the
professional community negotiation domain

Topics Scores 5 Most Salient Words
1connection -64.6 confer, would, at, not, or
2proof -60.8 but, discuss, at, not, are
3restraint -61.3 on, communiti, discuss, would,

not
4agreement -59.9 would, agre, tri, on, but
5appreciation -57.3 veri, peopl, would, but, commu-

niti
6self reflection -64 not, discuss, on, communiti, con-

fer
7perspective taking -37.8 confer, blueorg, not, as, some
8monitoring -62.9 not, would, are, veri, at
9balance -65.7 confer, or, will, there, communiti
10plan -51.5 would, not, you, confer, do
11other -58 would, as, at, confer, discuss

(e.g., would, but) play an important role in statements/messages showing the use of

intelligence-embodied skills (e.g., self-reflection, perspective taking). Because of this

reason, it would be hard to evaluate the coherence of each topic (label) qualitatively.

For example, a coherent topic “brain” may contain words like neurons, neuronal,

brain, axon, neuron, nervous system, which our minds can visualize. However, a

coherence topic “self-reflection” containing function words is hard to imagine.

In our previous research [173], we used a quantitative approach – topic coherence

metric – to evaluate the quality of learned topics. Topic coherence [112] is based on

the assumption that pairs of words belonging to a single topic will co-occur within

a single document, whereas word pairs belonging to different topics will not. This

assumption is violated in this research, where each text message can have multiple

equally appropriate labels. Nevertheless, for lack of a better evaluation method, in

Table 4.5 and Table 4.6, we show the 5 most salient words and topic coherence score for

each topic. Numbers closer to zero indicate higher coherence. To put the coherence

scores in context, we use the following example. In an online dispute domain, we
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Table 4.6: Coherence scores of learned topics using the 5 most salient words in the
civic deliberation discussion domain

Topic Scores 5 Most Salient Words
1connection -58.4 be, as, was, are, or
2proof -56.1 you, were, can, if, so
3restraint -64.3 for, my, you, as, be
4agreement -57.5 was, peopl, not, white, my
5appreciation -59.5 was, neighborhood, my, on, peopl
6self reflection -61 have, be, you, for, with
7perspective taking -62.4 are, we, about, all, was
8monitoring -54.9 you, white, for, we, was
9balance -54.9 are, from, feel, there, vigil
10plan -64.2 are, differ, with, have, white
11other -63.5 as, for, have, about, with

developed a variant of LDA that learned a topic about vehicle transaction on eBay

with a coherence score of -58.0, where the top 5 topic words were car, vehicle, seller,

buyer, and state.

Because CL-LDA learns a label for each sentence, in the section below, we evaluate

the quality of each learned topic (label) with annotated sentences.

4.5.2.1 Credit Attribution – Sentence Discovery

Credit attribution in the context of supervised language models often refers to

the ability to associate individual words in a text with their most appropriate labels.

To better understand the language characteristics of intelligence-embodied skills, the

associations between sentences (vs. words) in a message and their most appropriate

labels are desired. CL-LDA’s ability to annotate sentences in online text manifests

its extraordinary model interpretability.

In Table 4.7 and Table 4.8, we demonstrate that CL-LDA can effectively model

the sentence-label associations of online text with multiply labels. We show three

examples of learned sentences for each skill label. Those annotated sentences augment

the view of each online message with rich contextual information. It is worth noting

that, in the supervision phase, CL-LDA is only given label information at the message
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level rather than at the sentence level. In other words, at the training stage, CL-LDA

still needs to solve the problem of associative mapping between m observed labels

and each of the n sentences in the text.

Table 4.7: Examples of learned sentences by CL-LDA for

each intelligence-embodied skill in the professional com-

munity negotiation domain

Label Sentence

1connection From some of the emails in this chain from those in the know

it sounds like the leadership at REDorg is not interested in

co-locating with BLUEconf.

However, it sounds like there are some remaining points of

confusion.

As an aside, the idea of a co-sponsored track at REDorg seems

non-controversial.

2proof This morning I received your email (see below) indicating

that BLUEconf is proceeding with BLUEconf as previously

planned.

2011 CFP on your institutions internal email lists and other

email lists that you know but are not reached by our publicity

chairs.

I say apparent, as there has been no vote, although one has

been suggested.

3restraint However, it sounds like there are some remaining points of

confusion.

I repeat my encouragement for a discussion with Silas F.

about our reasons for shifting BLUEconf 2011 to early 2012.
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Further, the issue is not that decisions are made behind closed

doors.

4agreement I also think that bringing this to the BLUEconf community for

discussion vote helps build our community, lets the leadership

respond to the communitys desires, and shows our good will

towards REDorg win-win on all counts.

I trust Larry G. in the way he is proceeding to collect data

while minimize long iterations and clogging mailboxes.

The consultation process is still taking place and Larry G. is

trying to find a compromise for which most will be satisfied

without jeopardizing BLUEconf.

5appreciation Larry G. has been busy around the clock sending messages

to groups and to individuals as well making numerous phone

calls.

Each meeting will draw on (largely) different groups of people

with (largely) different backgrounds.

Having been to many REDorg meetings, I think that BLUE-

conf can will fill a niche and need that does complement RE-

Dorg.

6self reflection Particularly, if everybody insists on running BLUEconf in the

same way as the conference of hisher own area, then there is

no way to run BLUEconf.

I’ve been really happy to hear the opinions that have been

shared so far.
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That’s why each organization has an executive committee to

collect information and does internal discussion to figure out

what is the best option for that organization by considering

all the considerations.

7perspective taking Patricia W. is very experienced and will know what can be

done (and how), whereas Sally K. will provide the driving

force and ideas to SEE what can be done.

Perhaps a vote will alter the options, or maybe the BLUEconf

community as represented by us will disagree with what I have

said.

As I understand BLUEorgs work with FocusGroups, they

would fully understand our decision, and probably support

it.

8monitoring My impression is that most people had in mind the former.

We have also seen some other conferences that are ruined

by doing certain things, but it is inappropriate to say the

examples in public.

Moreover, does the discussion within REDorg happen in this

way?

9balance We will have a REDdomain1 track at our expanded two-day

lab symposium on June 4-7.

As a result, moving BLUEconf at this point would effectively

force us to skip BLUEconf 2011 while disappointing people

who have been planning to attend.

Moreover, BLUEconf needs to represent interest of many dif-

ferent areas people, rather than one person area comes to

insist on doing things in the way of that person area.
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10plan Could someone volunteer to list the URLs of active research

groups (university, industry and govt) and courses on RED-

domain1 inside and outside of REDdomain.

This should be top priority.

I look forward to hearing what others have to add.

11other I have no desire to be ruled.

Things take time especially when much is at stake.

It is unfortunate that some have hastily decided to resign.

Table 4.8: Examples of learned sentences by CL-LDA for

each intelligence-embodied skill in the civic deliberation

discussion domain

Label Sentence

1connection If you have ideas on updating modifying it, I would love to

hear from you.

Cloe, I think you have a lot to be proud of.

Also I think we have to simply admit to ourselves that the

artful description and framing of a situation is powerful in

creating action.

2proof They meet the 3rd Tuesday of each month.

Finally, I want you all to know that I am still very much

in awe that this thread stayed within the boundaries of the

forum guidelines for as long as it did.
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There is a huge amount of unexamined white privilege and

class privilege in this community, and it was on such display

at the vigil that my partner and I left early because we were

so uncomfortable.

3restraint The first step in equality is to realize what were missing up

here in the land of class privilege.

It is so hard for us white folks to see that were the ones with-

out knowledge, experience or insight into how to integrate–we

don’t know which of our assumptions are stupid – or what we

do to marginalize, stereotype and alienate.

The first step in equality is to realize what were missing up

here in the land of class privilege.

4agreement In addition to bringing more attention she also made people

feel optimistic, which is a much better way to create action.

Maybe theres a next step.

Not part of this crowd you mention, Bill, not as far as I can

tell, but maybe that cant be seen from the outside.

5appreciation Love the parade and the community.

She told me thank god I’m not white or I’d have to eat with

the family like you do - was she ever right.

There will always be naysayers and critics for one reason or

another, but the bottom line is the event was a great gift for

all of the neighborhood.

6self reflection I also think it was very important that this event was framed

in an optimistic manner early on by the mother.
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Of course this in no way secures my place in my own mind

as a good person who tries and anyway that is clearly not

enough.

I cant help but imagine what that is like, for her and for her

family.

7perspective taking Poor people are also less likely to have good, warm winter

clothes in which they would feel comfortable standing about

on a cold winter night.

There’s only one source of any information and experience

and that’s from people of color.

Puppets are great and fun, but in the face of the real work

that needs to happen here, the focus of recent community

events really feels to a lot of us (according to the emails Ive

received off-list) like a slap in the face.

8monitoring It is hard work to learn what white privilege is – how it works.

We still don’t actually know the race of anyone involved in

the more recent incident.

Typically threads dealing with race or other major societal

issues are dominated by a few authors, so for so many people

add their thoughts is pretty amazing.

9balance Encouraging our neighbors of color to join committees is only

one possible option, and it’s insufficient to tell people they are

welcome.

I’m afraid this one topic could go on into eternity.

Additionally, I would like to note that saying that we have

now reclaimed the park is a really problematic statement in

and of itself and claiming territory is not for any of us to do.
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10plan There are plenty of people who are interested in what goes

on here, for a variety of reasons, and if they want to add

their thoughts, as long as they follow the same guidelines as

everyone else that is fine.

The only catch is that whomever is doing the posting is re-

sponsible for the content.

The neighborhood needs people like you, Michelle, and others

who will come forward and provide leadership in order to make

our neighborhood the sort of special place that so many of us

choose to live in.

11other Glad you were able to bring out your family.

I’m willing to meet up with folks for something like that.

Be Civil - No insults, name calling or inflamed speech.

4.6 Conclusion and Future Work

In this chapter, we presented a new hierarchical probabilistic model for identify-

ing multiple intelligence-embodied communication skills simultanously from natural

language. This model, called Constrained Labeled LDA (CL-LDA), learns the topic

assignment of each sentence so it provides a practical and simple way to determine

document labels without relying on a threshold function. CL-LDA has high inter-

pretability and its annotated sentences significantly augment the view of each docu-

ment with rich contextual information. CL-LDA outperforms state-of-the-art multi-

label text classification methods on prediction sensitivity, specificity, and accuracy in

an online negotiation context. Experimental results also show that CL-LDA’s per-

formance increases as the number of labels grows, which makes CL-LDA a promising
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approach for large-scale data analysis. The results of comparing LDA-based models

with SVM models indicate that a set of binary SVM models performed poorly in the

face of many labels and only a small number of training instances.

We note that multi-label classification problems are by no means exclusive of nat-

ural language processing. Therefore, CL-LDA is general enough to be applied to other

domains where the research interest lies in predicting multiple labels simultaneously,

such as signal processing, computer vision, and computational neuroscience.

In future work, we will apply CL-LDA to more online contexts and data sets where

people are from diverse culture backgrounds so that we can explore the effect of culture

differences on peoples’ communication intelligence. In addition, we will extend CL-

LDA with the ability to model label associations. The statistically significant positive

correlation between the number of positive labels per message and the prediction

sensitivity of CL-LDA provides evidence that an inter-dependency may exist between

multiple labels and can help the model learn better. Moreover, we are interested in

augmenting CL-LDA with temporal information. The resulting dynamic CL-LDA can

address questions, such as whether the use of intelligence-embodied communication

skills follow certain pattern? For example, is a perspective taking statement/message

always followed by an appreciation message?
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CHAPTER 5

MULTI-TASK LEARNING WITH RELAXED
STRUCTURED SPARSITY REGULARIZATION

The learning approach, constraint labeled LDA (CL-LDA), introduced in the

previous chapter can support large-scale computational annotations of intelligence-

embodied communication skills from text corpora in online communication. CL-LDA

is a powerful language model in that, it, for the first time, illustrates the diverse

language (i.e., sentences) that people use when applying high-order communication

skills in online interactions. The extensive model evaluations provide evidence about

the inter-dependency between labels and show that this dependency can help the

model learn better. In this chapter, we introduce a learning approach that exploits

label dependency to improve prediction performance of multi-class learning and can

be used for real-time analysis.

5.1 Motivation and Related Work

Language is a phenomenon at the interplay of culture, education, psychology, and

communication. The different word choices and diverse ways that people use lan-

guage to express their thoughts and feelings provide windows into people’s cognitive

and emotional worlds. While it is important to learn the diversity in language among

people when a particular high-order communication skill is applied, it is equally im-

portant to explore the shared linguistic characteristics in skill use across people. High-

level features, such as lexical and discourse features, provide a good starting point

for this exploration. For example, self-reflection might be characterized as using ten-

tative language (e.g., perhaps, guess) and using repetitive grammatical aspect – the
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use of a verb to express an event related to the flow of time (e.g., “I believed,” “now I

think”). In this research, we also explore the language coordination phenomenon [41]

and priming effects (e.g., semantic priming) by using interaction features (i.e., the

skill labels of prior message).

In this chapter, we introduce a novel machine learning approach that simulta-

neously identifies multiple intelligence-embodied communication skills from online

messages. This approach has two improvements over CL-LDA introduced in the pre-

vious chapter. First, it does not assume label independence. Indeed, it exploits the

relationship among multiple tasks/labels to learn them simultaneously, so that tasks

can mutually benefit from each other leading to improved prediction performance.

Second, it can be used in real-time to identify those intelligence-embodied communi-

cation skills from online communication. In other words, it can be applied to domains

where messages become available one at a time, such as online social media.

State-of-the-art approaches that explore label relationship to simultaneously learn

multiple labels mostly fall under the paradigm of multi-task learning (MTL) [30]. In

the chapter on Background, we surveyed a number of multi-task learning approaches

that employ advanced regularization techniques to induce structured sparsity. Ap-

plying sparse-group Lasso to identifying multiple skills using lexical, discourse, and

interaction features seems ideal at the first thought. This is because with sparse-

group Lasso, we can identify both important feature groups and important features

within the selected groups while learning multi-task problems. However, although

we expect that a certain level of sharing exists among the studied skills in terms of

discourse styles, it is always sensible to take account of the individual differences by

allowing tasks to learn independently when appropriate. The Dirty model allows us

to explicitly model the sharing among tasks as well as task specificity. However, it

does not induce sparsity within a group, as a result, important features within the

selected groups can not be effectively recognized. To get the best of both worlds, we
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develop a new multi-task learning formulation based on a novel composite regulariza-

tion technique, called relaxed sparse-group Lasso (RSGL) (because the between-group

sparsity is relaxed to model task specificity). RSGL combines the advantages of SGL

and the Dirty model. As a result, it encourages between-group sparsity, within-group

sparsity, and also takes account of both task sharing and task specificity. More im-

portantly, the key merit of RSGL is that it is a general multi-task formulation that

is able to unify many widely used regularization techniques, including Lasso, group

Lasso, sparse-group Lasso, and the Dirty model, as we show in the next section.

Before we formally describe its model formulation, we show the list of research

questions we can address with RSGL.

• Research questions:

– How can the use of multiple intelligence-embodied skills be automatically

and simultaneously identified?

– What are the shared linguistic characteristics (e.g., lexical and discourse)

across people with respect to each intelligence-embodied skill?

5.2 Features

Computational understanding of intelligence-embodied communication skills is an

unexplored research area. We turned to the literature of social, psycholinguistic, and

communication studies to explore possible feature sets. In this research, we take the

first step by using LIWC, Coh-Metrix, and interaction features to identify linguistic

characteristics of each intelligence-embodied communication skill.

5.2.1 Lexical Features – LIWC

The ways that individuals communicate provide windows into their cognitive and

emotional worlds. Methods for studying the various emotional, cognitive, social, and
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psychological process components in individuals’ language allow researchers to un-

derstand mechanisms and strategies of effective communication. LIWC, Linguistic

Inquiry Word Count [127], is a discourse analytic system generated based on an-

alyzing the utterances of over 24,000 writers or speakers totaling over 168 million

words. LIWC produces groups of words from 82 language dimensions through a word

counting approach. As shown in Figure 5.1, these 82 groups fall into 5 general cate-

gories: linguistic processes (e.g., total word count, words per sentence, percentage of

words in the text that are pronouns), psychological processes (e.g., affect, cognition,

biological processes), personal subjects, paralinguistic dimensions(e.g., assents, fillers,

nonfluencies), and punctuations (e.g., quotation marks, exclamation marks). LIWC

categories have been shown to be valid and reliable markers of a variety of psycholin-

guistic phenomena. For example, when investigating gender differences in linguistic

styles using LIWC features, researchers found significant differences between genders

for the use of self references, but not for the use of social words and positive and

negative emotion words [10]. In the work of [161], LIWC features helped find the

roles played by emotional and informational support in participants’ commitment in

online health support groups. In another study [67], LIWC helped identify the com-

munication characteristics of terrorists and authoritarian regimes. Given a wealth

of evidence of the effectiveness of LIWC features in decoding people’s communica-

tion and interaction from the language they use, we believe that LIWC features can

contribute to demystifying the link between language and effective communication.

5.2.2 Discourse Features – Coh-Metrix

Successful discourse communication often occurs when discourse participants un-

derstand one another, agree on the subject matter, or even agree to “disagree [120].”

Discourse communication may easily break down when participants encounter sub-

stantial differences in language, common ground, prior knowledge, or discourse skills,
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Figure 5.1. An overview of LIWC features

which is often true in computer-mediated communication [62]. Coh-Metrix is a dis-

course model aimed at better understanding of discourse comprehension, communica-

tion breakdowns and misalignments. It operationalizes a multilevel discourse frame-

work using a number of advanced language models (e.g., latent semantic analysis) and

text processing algorithms (e.g., syntactic parser). Coh-Metrix focuses on text cohe-

sion, or “characteristics of the text that play some role in helping the reader mentally

connect ideas in the text.” Coh-Metrix was developed by analyzing the TASA (Touch-

stone Applied Science Associates, Inc.) corpus of 37,520 texts. Coh-Metrix outputs

over 80 measurements 1 about text cohesion that fall under 8 categories, shown in

Figure 5.2: narrativity, referential cohesion, syntactic simplicity, word concreteness,

causal cohesion, logical cohesion, verb cohesion, and temporal cohesion.

Despite its academic roots, Coh-Metrix has been widely validated as a computa-

tional psycholinguistic tool for predicting complex phenomena, such as personality,

1The second-order features derived from principal component analysis were excluded in this
research to remove redundancy.
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Figure 5.2. An overview of Coh-Metrix features

deception, affect states, and even physical and mental health outcomes [68, 102, 28,

46]. Given that Coh-Metirx provides a platform for a systematic and deeper analysis

of discourse contents, we believe that it can help uncover subtle linguistic character-

istics related to intelligence-embodied communication skills.

5.2.3 Interaction Features

Communication is an interactive event – it occurs in a dialogue between inter-

locutors. Numerous researchers argued that mutual influence between conversational

parties created an interdependent relationship in language use [36], known as linguis-

tic style matching [123], or language coordination [41]. In other words, people tend

to unconsciously take on the linguistic features of the person immediately preceding

them. Thinking in this line, we created a feature, called labels of prior message, to

investigate whether the labels of prior message would help to predict the labels of

the current message. Because we have 11 skill labels, 11 corresponding interaction

features were used in this study.
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5.3 Relaxed Sparse-group Lasso (RSGL)

Research in regularization-based approaches to multi-task learning (MTL) has at-

tempted to relax two underlying assumptions in MTL to allow its wider applicability.

These two assumptions are (1) task relatedness and (2) well-defined group structure 2.

The Dirty model relaxes the first assumption by modeling task-specificity in addition

to task sharing, which allows it to solve problems where tasks only relate to each

other “to some extent.” The sparse group Lasso (SGL) relaxes the second assump-

tion by allowing some features to be “added” back to groups entirely shrunk early and

some other features to be “shrunk” from groups entirely selected early. The relaxed

sparse group lasso (RSGL) developed in this research relaxes these two assumptions

all together and therefore can find applications in a wide range of real-world prob-

lems where (1) the degree of task relatedness is uncertain and (2) the true structure

of the groups in data is not clear ahead of time. Therefore, RSGL contributes to the

research in multi-task learning by expanding its applicability to data and situations

that were previously not applicable.

Another way to understand the differences between RSGL and the other two

methods is by looking at the technical challenges they tackle. The Dirty model solves

a constrained optimization problem where the penalties are separated over two fea-

ture spaces (i.e., task-specific and task-sharing). SGL solves a problem of structured

sparsity involving overlapping group structures – a key challenge in many multi-task

learning formulations [104]. The compound challenges from penalties separated over

two feature spaces and groups overlapping one another are what RSGL is set to solve.

2Choices of groups are problem dependent. Prior knowledge can be used to favor certain structure
patterns but may not be always available. In this research, the group structures of features were
obtained from the predefined categories in each feature set. For example, Coh-Metrix has 12 feature
groups, because Coh-Metrix further divides its 8 overarching categories into 12 subgroups that
include lexical diversity, latent semantic analysis, and connectives. Similarly, the LIWC system
outputs 10 subgroups (e.g., affect process, cognitive process) out of its 5 main categories. As to the
11 interaction features, we had them in one group.

80



Table 5.1: A comparison of SGL, the Dirty model, and RSGL

SGL The Dirty Model RSGL
Assuming task relatedness Yes No No
Assuming well-defined groups No Yes No
Sovling a constrained optimiza-
tion problem (with penalties sep-
arated over two feature spaces)

No Yes Yes

Solving a structured sparsity
problem (with overlapping group
structures)

Yes No Yes

Adapting the Dirty Model solution to RSGL is not feasible. This is because their so-

lution approach is tied to the l∞,1 norm used in the Dirty model formulation, and the

l∞,1 norm is shown to be less effective than the l2,1 norm for multi-task learning, as

we learned from the chapter about Background. A comparison chart of these models

is shown in Table 5.1. In this section, we present a simple solution for solving RSGL.

In the text below, we first define relaxed sparse-group Lasso (RSGL) formally,

then illustrate its solution with a working example, and finally describe an online

learning algorithm for RSGL.

Formally, the multi-task learning model with relaxed sparse-group Lasso penalties

can be described as follows:

min
w

L(w, X, Y ) + λ1||u||1 + λ2||u||2,1 + λ3||v||1

subject to: w = u + v

(5.1)

where u and v denote the common structure and the task-specific structure, re-

spectively.

Relaxed sparse-group Lasso has a key property: it subsumes the most widely-used

norms and the Dirty model 3, as special cases.

3Here, we consider substituting l2,1 norm for l∞,1 norm.
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• If λ1 = λ2 = u = 0, it becomes Lasso;

• If λ1 = λ3 = v =0, it becomes group Lasso;

• If λ3 = v = 0, it becomes sparse-group Lasso;

• If λ1 = 0, it becomes the Dirty model.

In this research, we use the logistic loss function for the task of multi-skill classi-

fication, where the logistic loss function is as follows.

−y ∗ log(
1

1 + exp(−wTx)
)− (1− y) ∗ log(1− 1

1 + exp(−wTx)
) (5.2)

5.3.1 Solving RSGL – Reducing a Constrained Optimization Problem to

an Unconstrained One

The new formulation of multi-task learning with relaxed sparse-group Lasso is

a constrained optimization problem where the penalties are separated over u and

v. Different from the solution to the Dirty model, we propose a simple method to

reduce this constraint optimization problem to an unconstrained problem by exploiting

the good property of w = u + v. Specifically, defining w = u + v is equivalent to

duplicating the feature space, since w′*f(x) = u′*f(x) + v′*f(x) = [u, v]′*[f(x), f(x)].

Therefore, we can reason about a feature space that is twice the original dimension,

a double-size weight matrix that concatenates u and v.

5.3.2 A Working Example

In this section, we use an example to illustrate the feature-duplicating approach to

feature selection with RSGL. We also motivate the use of algorithms that can handle

a special property of RSGL: overlapping groups.

Suppose that we have 4 features, f1, f2, f3, f4, and 3 tasks. The feature space

then has 12 features to begin with – let them be f11, f12, f13, f21, . . . , f43, where the

second index denotes the task.
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Then we double the feature space and get 24 features in total. Let us use letter g

for the copied features: g11, g12, g13, g21, . . . , g43.

Suppose the groups in this example are:

• 4 groups that group the f -features over the tasks, G1 = {f11, f12, f13}, G2 =

{f21, f22, f23}, G3 = {f31, f32, f33}, G4 = {f41, f42, f43},

• 12 groups for the individual f -features, G5 = {f11}, G6 = {f12}, . . . , G16 =

{f43},

• 12 groups for the individual g-features , G17 = {g11}, G18 = {g12}, . . . , G28 =

{g43}.

Let us assume that the f -features are from the sharing component u, and the g-

features are from the task-specific component v. We further assume that the groups

that selected groups are G4 = {f41, f42, f43}, G14 = {f41}, and G28 = {g43}. Then

the selected feature in u will be f41, and the selected feature in v will be g43. When

summing u and v the selected features will be f41 and g43.

Observations:

• f42 and f43 are shrunk. RSGL inherits the good property from SGL, so it

allows for the shrinkage of features within the selected group. Technically, this

is because f -features have an overlapping-group (i.e., each feature may appear in

more than one group) structure that makes the within-group sparsity possible.

• g43 is put back. RSGL inherits the desirable property from the Dirty model,

so it allows individual features to be selected even though its belonging group

is shrunk. Technically, we can attribute this property to the inclusion of a

task-specific feature space.

non-overlapping group structure of g.
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5.3.3 Online Learning for RSGL

Different from the Dirty model that has only disjoint groups, RSGL has both

disjoint groups and overlapping groups. In the literature, a number of algorithms

have proposed to solve problems of structured sparsity with overlapping groups.

In this research, we use an algorithm, called online proximal-gradient algorithm

(OPG) [104], which unifies many well-know learning algorithms for multi-task learn-

ing with structure sparsity, including online projected sub gradient algorithm [179],

PEGASOS [144], truncated gradient descent [92], and FOBO [44]. We chose OPG

because of two reasons. First, the OPG algorithm uses an easy way to handle overlap-

ping groups with the application of Φ−proximity operators [114], so that mixed-norm

proximity operators can be applied sequentially. Second, as an online algorithm, OPG

allows RSGL to be applied in a real-time manner, so that data can be analyzed as it

comes.

In Algorithm 1, we adapt the OPG algorithm to solve RSGL with logistic loss.

5.4 Experiments and Results

In this section, we evaluate the learning performance of RSGL for simultane-

ously identifying multiple intelligence-embodied communication skills. Specifically,

we first compare the prediction performance of RSGL against state-of-the-art multi-

task learning formulations: sparse-group Lasso (SGL) and the Dirty model. We then

examine the feature space shared by all the skill labels and those specific to each

skill label in order to study the attributions of RSGL’s performance gain over the

Dirty model and SGL. Lastly, we show the learned features with respect to each

communication skill and evaluate features’ quality qualitatively.

Our experimental data are from the two online corpora described in the previous

chapter. They are the professional community negotiation and the civic deliberation

discussion domains. The training and testing sets remain the same as before for each
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Algorithm 1:

Input: data matrix X with dimension N * 2D (doubling feature space);
response matrix Y with dimension N x M ;
regularization constraint constants:
λ1 (controlling within-group sparsity in u);
λ2 (controlling between-group sparsity in u);
λ3 (controlling element-wise sparsity in v);
T : the number of epochs * training examples (N);
αt : the learning rate at time t.
Output: weight matrix: sum (uT+1, vT+1)
Initialization: Initialize u1 = 0, v1 =0
for t← 1 to T do

//computing the gradient of logistic loss
g= ∇(u+v; xt, yt); //concatenate u and v
ũt = ut − αt∗g
ṽt = vt − αt∗g
//proximal mapping for u, first at the group level, then within-group
ũt = soft-thresholing(ũt,λ2)
ũt = soft-thresholing(ũt,λ1)
//proximal mapping for v
ṽt = soft-thresholding(ṽt,λ3)
//projection (optional for learning speedup)
ut+1 = ũt ∗ min(1, (λ1+λ2)/ ‖ ũt ‖)
vt+1 = ṽt ∗ min(1, λ3/ ‖ ṽt ‖)

end
return uT+1, vT+1

domain. For both domains, we acquired lexical and discourse features from the LIWC

and Coh-Metrix systems. The interaction features were readily available, as they are

skill labels of the message that immediately precedes the message being studied. We

had 175 features – 82 LIWC features, 82 Coh-Metrix features, and 11 interaction

features in total. We preprocessed the data by standardizing all feature variables to

have zero mean and unit variance. In doing so, we avoided imposing priors on any

features based on their numerical values.

To select the best model parameters of RSGL, we performed a grid search for the

optimal learning rate α from values {0.001, 0.01, 0.1, 1, 10} and searched for the

optical values of each regularization constant λ (λ1, λ2, and λ3) from {0.0001, 0.001,
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Table 5.2: Category-pivoted evaluations in the professional community negotiation
domain: A comparison of SGL, Dirty+, and RSGL

SGL Dirty+ RSGL
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1connection 1.00 0.50 0.73 1.00 0.50 0.73 1.00 0.50 0.73
2proof 0.67 0.50 0.53 0.67 0.50 0.53 0.67 0.50 0.53
3restraint 0.64 0.00 0.60 0.57 1.00 0.60 0.57 1.00 0.60
4agreement 0.50 0.55 0.53 0.50 0.55 0.53 0.50 0.64 0.60
5appreciation 0.33 0.50 0.47 0.33 0.50 0.47 0.33 0.50 0.47
6self reflection 1.00 0.45 0.60 1.00 0.36 0.53 1.00 0.45 0.60
7perspective taking 1.00 0.63 0.80 1.00 0.63 0.80 1.00 0.63 0.80
8monitoring 0.78 0.83 0.80 0.89 0.67 0.80 0.89 0.67 0.80
9balance 1.00 0.33 0.47 0.67 0.42 0.47 1.00 0.33 0.47
10plan 0.60 0.50 0.53 0.60 0.50 0.53 0.60 0.50 0.53
11other 0.85 1.00 0.87 0.92 0.50 0.87 0.92 0.50 0.87

Min 0.33 0.00 0.47 0.33 0.36 0.47 0.33 0.33 0.47
Max 1.00 1.00 0.87 1.00 1.00 0.87 1.00 1.00 0.87
Avg 0.76 0.53 0.63 0.74 0.56 0.62 0.77 0.57 0.64

Avg (sen+spe) 0.64 0.65 0.67

0.01, 0.1, 1}. Specifically, in our experiments, the learning rate was set to decrease

as αt = α0/
√
t, while all combinations of possible λ values were tested. We looked

at the training objective and picked α0 that yields the best objective value after 2

epochs. When choosing each regularization parameter λ, we used the chosen learning

rate and performed leave-one-out cross validation on the training set for 2 epochs

and selected the one that has the smallest misclassification error on the validation

data. We applied the best model parameters sets (α= 10, λ1 = 0.01, λ2 = 0.01,

and λ3 = 1) to the testing data for 1 epoch and omitted the optional projection

step. We followed the same procedure for both domains and arrived at the same

best parameter setting. For other comparison approaches SGL and the Dirty model,

similar experimental figurations were applied.

5.4.1 Evaluating Classification Performance

5.4.1.1 Category-pivoted Evaluations

In this section, we focus on category-pivoted evaluations – the evaluation of model

performance on predicting each skill label. We evaluated model performance quanti-

tatively in terms of sensitivity (the true positive rate), specificity (the true negative

rate), and accuracy. Both sensitivity and specificity are valued in this research be-
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cause, for the purpose of measuring communication intelligence, the presence and

absence of skills are equally important to identify. Note that the original Dirty model

minimizes the least squared objective and uses l∞,1 norm. As discussed in the chapter

on Background, l∞,1 norm is not as effective as l2,1 norm for multi-task learning. We

implemented a variation of Dirty model with logistic loss function and l2,1 norm so

that we can compare methods on the same footing. In the text below, for simplic-

ity, we refer to this improved variation as Dirty+. As shown in Table 5.2, in the

professional community negotiation domain, RSGL achieves the best average predic-

tion sensitivity (77%) across all 11 categories, followed by SGL (76%) and Dirty+

(74%). The similar performance of RSGL and other methods in predicting some of

the intelligence-embodied skills is because the feature spaces learned by the relevant

methods are similar, as we will show in the next section. RSGL also achieves the best

average prediction specificity (57%) and the best average prediction accuracy (64%)

(compared to the 9% baseline).

As can also be seen in Table 5.2, in the professional community negotiation do-

main, RSGL achieves the highest sensitivity (100%) in predicting the skills of connec-

tion, self-reflection, and perspective taking, and achieves the lowest sensitivity (33%)

in predicting the skill of appreciation. RSGL achieves the highest specificity (100%) in

predicting the skill of restraint and the lowest specificity (33%) in predicting the skill

of balance. Please be cautious that these observations can not be used as evidence to

conclude which intelligence-embodied skills are easy or hard to predict automatically

from linguistic and interaction features. This is because these results are tied to a

particular online context (e.g., discussion vs. negotiation) that we study in this re-

search. They are also influenced by the number of training and testing data available

in each skill/category which is constrained by the three experiment design princi-

ples we introduced early. This statement also applies to similar observations in the

following experiments in this chapter.
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Table 5.3: Category-pivoted evaluations in the civic deliberation discussion domain:
A comparison of SGL, Dirty+, and RSGL

SGL Dirty+ RSGL
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1connection 0.75 0.25 0.42 0.50 0.13 0.25 0.50 0.13 0.25
2proof 0.50 0.50 0.50 0.25 0.50 0.42 0.50 0.38 0.42
3restraint 0.55 0.00 0.50 0.91 1.00 0.92 0.91 1.00 0.92
4agreement 0.50 0.60 0.58 0.50 0.60 0.58 0.50 0.60 0.58
5appreciation 0.50 0.40 0.42 0.50 0.40 0.42 0.50 0.40 0.42
6self reflection 0.60 0.29 0.42 0.60 0.43 0.50 0.60 0.29 0.42
7perspective taking 0.80 0.57 0.67 1.00 0.57 0.75 1.00 0.57 0.75
8monitoring 0.33 0.17 0.25 0.50 0.17 0.33 0.50 0.17 0.33
9balance 0.00 0.30 0.25 0.00 0.20 0.17 0.00 0.20 0.17
10plan 1.00 0.36 0.42 1.00 0.46 0.50 1.00 0.36 0.42
11other 0.55 0.00 0.50 0.55 0.00 0.50 0.64 0.00 0.58

Min 0.00 0.00 0.25 0.00 0.00 0.17 0.00 0.00 0.17
Max 1.00 0.60 0.67 1.00 1.00 0.92 1.00 1.00 0.92
Avg 0.55 0.31 0.45 0.57 0.40 0.49 0.60 0.37 0.48

Avg (sen+spe) 0.43 0.49 0.49

Now, let us look at the civic deliberation discussion domain. As can be seen in

Table 5.3, RSGL achieves the best average prediction sensitivity (60%) across all

11 categories, followed by Dirty+ (57%) and SGL(55%). Dirty+ achieves the best

average prediction specificity (40%), followed by RSGL (37%) and SGL (31%). RSGL

achieves the second-best (48%) in average prediction accuracy (compared to the 9%

baseline), which is 1% lower than Dirty+.

Given that Dirty+ outperforms RSGL slightly on the average specific and accu-

racy in the civic deliberation discussion domain, we performed a multivariate permu-

tation test [128] to see whether a statistically significant difference exists between the

predictions from RSGL and those from Dirty+. Permutation test is a Monte Carlo

procedure that shuffles the data to test the equality of two sample distributions. Mul-

tivariate permutation test was used here because the prediction includes a group of

11 skill labels. The result of the multivariate permutation test (based on 10,000 per-

mutations) shows that there is no statistically significant difference (P=0.52) between

the performance of RSGL and that of Dirty+.

As can also be seen in 5.3, in the civic deliberation discussion domain, RSGL

achieves the highest sensitivity in predicting the skills of perspective taking and plan

and about 50%-60% in predicting other skills. RSGL achieves the highest specificity
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Table 5.4: Message-pivoted evaluations in the professional community negotiation
domain: A comparison of SGL, Dirty+, and RSGL

SGL Dirty+ RSGL
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Min 0.40 0.17 0.36 0.25 0.00 0.45 0.50 0.00 0.45
Max 1.00 0.83 0.82 1.00 0.83 0.82 1.00 1.00 0.91
Avg 0.79 0.52 0.63 0.79 0.50 0.62 0.81 0.51 0.64

Avg (sen+spe) 0.65 0.65 0.66

(100%) in predicting the skill of restraint, and achieves the lowest specificity (13%)

in predicting the skill of connection.

Comparing model performance in two domains, we once again found again that

all models have lower performance in the civic deliberation discussion domain. In ad-

dition to the fact that fewer training instances are available in the civic deliberation

domain, we also speculate that, in the civic deliberation domain, the linguistic char-

acteristics of intelligence-embodied skills might be more distinct from one another

in a negotiation context than might in a discussion context. In other words, each

high-order communication skill appears to have more unique linguistic characteristics

in a communication environment that is more controversial or with greater tension.

5.4.1.2 Message-pivoted Evaluations

Category-pivoted evaluations allow us to study a model’s predicability for each

skill label separately. When multi-category classification is concerned, message-

pivoted evaluations provide a holistic view on a model’s predicability of all skill labels

associated with a message. Moreover, message-pivoted evaluations are suitable when

data becomes available one at a time (e.g., in online messages), and therefore great

for real-time analysis.

As shown in Table 5.4, in the professional community negotiation domain, RSGL

achieves the best average prediction sensitivity (81%) across all the messages in the

testing set, followed by SGL and Dirty+ (79%). RSGL achieves the second-best (51%)

in average prediction specificity, which is 1% lower than SGL. RSGL also achieves

the best average prediction accuracy (64%).
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Table 5.5: Message-pivoted evaluations in the civic deliberation discussion domain:
A comparison of SGL, Dirty+, and RSGL

SGL Dirty+ RSGL
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Min 0.00 0.00 0.18 0.33 0.00 0.27 0.33 0.00 0.27
Max 1.00 0.67 0.64 1.00 0.71 0.82 1.00 0.60 0.73
Avg 0.57 0.37 0.45 0.66 0.38 0.49 0.69 0.34 0.48

Avg (sen+spe) 0.47 0.52 0.52

In the civic deliberation discussion domain, as shown in 5.5, RSGL achieves the

best average prediction sensitivity (69%) across all the messages in the testing set,

followed by Dirty+ (69%) and SGL (57%). Dirty+ achieves the best average predic-

tion specificity (38%), followed by SGL (37%) and RSGL (34%). RSGL achieves the

second-best (48%) in average prediction specificity, which is 1% lower than Dirty+.

We found consistently in both domains that RSGL outperforms other comparison

methods on predicting sensitivity – the ability to correctly predict the use of skills,

with little sacrifice on prediction specificity.

5.4.1.2.1 The Relationship Between the Number of Positive Labels per

Message and Model Performance In the previous chapter, we found statistically

significant correlations between a model’s prediction performance and the number of

positive labels each message has, which implies that an inter-dependency might exist

between labels and an help the model learn better. Multi-task learning naturally

exploits such interrelationship to perform parallel learning across tasks. Not sur-

prisingly, we found no significant correlation (α = 0.05) for any measures in either

the professional community negotiation domain or the civic deliberation discussion

domain.

5.4.2 Evaluating Feature Compression Capacity

To study the performance differences between RSGL and Dirty+, we focus on

the technical differences between the two models. Specifically, Dirty+ uses group

Lasso to impose between-group sparsity in the feature space shared by tasks (e.g.,
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Table 5.6: Feature compression evaluations in the professional community negotiation
domain (percentage shrinkage of feature space shared by skill labels): A comparison
of Dirty+ and RSGL

SGL Dirty+ RSGL Shrinkage (%)
1connection 171 172 172 0.00
2proof 172 172 172 0.00
3restraint 172 172 172 0.00
4agreement 170 172 170 1.14
5appreciation 172 172 171 0.57
6self reflection 172 172 172 0.00
7perspective taking 172 172 172 0.00
8monitoring 172 172 172 0.00
9balance 172 172 172 0.00
10plan 171 172 171 0.57
11other 172 172 172 0

skill labels), whereas RSGL imposes both between-group sparsity and within-group

sparsity in that feature space. As we learn from the chapter on Background, the

natural consequence of group Lasso is that a feature is either selected as relevant

for all tasks simultaneously, or is excluded all-together for all tasks, implying that

all tasks share the same number of active features. As shown in Table 5.6, in the

professional community negotiation domain, compared to Dirty+, RSGL achieves up

to 1.14% compression of the task-sharing feature space, while improving prediction

sensitivity by 3%, predicting specificity by 1%, and predicting accuracy by 2%. In

the civic deliberation discussion domain, shown in Table 5.7, compared to Dirty+,

RSGL achieves up to 14.86% compression of the task-sharing feature space, while

improving prediction sensitivity by 3%, with a decrease of predicting specificity by

3% and predicting accuracy by 1%.

We observe that the level of feature shrinkage is agreed by SGL, Dirty+, and

RSGL. This observation implies that simultaneously identifying multiple intelligence-

embodied communication skills from online communication is a challenging task, and

therefore most of the linguistic and interaction features are needed to achieve the

competence we reported in the last section. The discrepancy in feature compression
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Table 5.7: Feature compression evaluations in the civic deliberation discussion domain
(percentage shrinkage of feature space shared by skill labels): A comparison of Dirty+
and RSGL

SGL Dirty+ RSGL Shrinkage (%)
1connection 170 170 170 0.00
2proof 165 170 165 2.86
3restraint 169 170 170 0.00
4agreement 170 170 170 0.00
5appreciation 170 170 169 0.57
6self reflection 161 170 161 5.14
7perspective taking 163 170 163 4.00
8monitoring 170 170 170 0.00
9balance 144 170 144 14.86
10plan 168 170 165 2.86
11other 165 170 170 0

in different online contexts suggests that skill predictions in a negotiation context

need more features than do predictions in a discussion context, which implies that

skill predictions in a negotiation context are more complex than those in a discussion

context.

5.4.3 Evaluating the Importance of Task-specific Feature Space

As shown early, RSGL consistently outperforms SGL on both domains under

category-pivoted evaluations. In this section, we study the attribution of RSGL’s

performance gain over SGL. Recall that the difference between these two models is

that RSGL models task-sharing and task specificity, whereas SGL only models task-

sharing. As shown in Table 5.8, in the professional community negotiation domain,

for some tasks, RSGL adds to the task-specific feature space as many as 84 features.

A further examination shows that these added features are all kept (not shrunk) in the

task-sharing feature space, so what is being added is feature weights rather than the

number of features. It is important to note that, in multi-task learning, multiple tasks

(e.g., skill labels) are learnt in parallel in order to capture the interrelation between

tasks, meaning that task-specific features are not only useful to learn its own task
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Table 5.8: An illustration of the number of features in the task-specific feature space
(the professional community negotiation domain): A comparison of SGL and RSGL

SGL Dirty+ RSGL
1connection 0 1 1
2proof 0 0 0
3restraint 0 84 84
4agreement 0 0 0
5appreciation 0 0 0
6self reflection 0 6 6
7perspective taking 0 0 0
8monitoring 0 83 84
9balance 0 0 0
10plan 0 0 0
11other 0 75 75

Table 5.9: An illustration of the number of features in the task-specific feature space
(the civic deliberation discussion domain): A comparison of SGL and RSGL

SGL Dirty+ RSGL
1connection 0 2 2
2proof 0 0 0
3restraint 0 127 127
4agreement 0 128 128
5appreciation 0 32 32
6self reflection 0 0 0
7perspective taking 0 0 0
8monitoring 0 9 9
9balance 0 0 0
10plan 0 2 2
11other 0 1 1

(i.e., skill labels), but also contribute to the learning of other labels. As can be seen in

Table 5.8, the task-specific feature weights learned by RSGL lead to an improvement

of 1% in prediction specificity, 3% in predicting specificity, and 1% predicting accuracy

over SGL. Similarly, in the civic deliberation discussion domain, shown in Table 5.9,

RSGL adds feature weights for up to 128 features from the task-specific feature space.

These feature weights lead to an improvement of 5% in prediction specificity, 6% in

predicting specificity, and 3% predicting accuracy over SGL.
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5.4.4 Evaluating Learned Features

In Table 5.10, we present top 10 learned features by RSGL for each communication

skill in the professional community negotiation domain. In the text below, we explain

some highlights of our findings.

• Connection: We observed that the use of this skill can be attracted by the

use of skills of proof and appreciation. In other words, when a participant

demonstrates the use of either proof or appreciation, others in the group may

be motivated to do connection. This is reasonable, because when one participant

provides factual information or references, others follow up with inquiries, or,

when one participant shows appreciations in his message, another connects back.

This skill is also found to involve cognitive processes and the use of insightful

and inclusive words.

• Proof : We observed that this skill is positively correlated to the use of colon.

This is reasonable, because colon is often used in the situation of citing references

and other resources. We also found high semantic similarity of messages showing

the use of this skill, which implies the presented idea is coherent.

• Restraint : We observed that this skill – emotional control – is negatively corre-

lated with the use of discrepancy words (e.g., should) and anger words.

• Agreement : We observed that this skill involves the use of assent words and

words related to positive emotions. This skill has negative correlations with the

use of adversative and contrastive connectives (e.g., although). We also found

that the use of this skill can be attracted by the use of skills of monitoring and

self-reflection. In other words, when one participant demonstrates the use of

either monitoring or self-reflection, others in the group may be motivated to

show agreement. This is reasonable, because when a participant presents his
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thoughts on how the dialogue goes or when a participant shows some reflective

thoughts, others may follow with consensus statements.

• Appreciation: We observed that the use of this skill can be attracted by the use

of skill of self-reflection. In other words, when a participant demonstrates the

use of self-reflection, others in the group may be motivated to show appreciation.

This is reasonable, because when a participant shows some reflective thoughts

on his previous ideas, others may follow with an appreciative note. This skill is

also shown to be negatively correlated with the use of negation words.

• Self-reflection: We observed that the use of this skill can be attracted by the use

of a number of other communication skills, including appreciation, agreement,

proof, connection, monitoring, and plan. In other words, when a participant

demonstrates the use of one of the listed skills, others in the group may be

motivated to do self-reflection. This skill is also shown to involve the use of

tentative words (e.g., perhaps) and adversative and contrastive connectives (e.g.,

although). This is reasonable, because self-reflection can sometimes involve

uncertainty and adaption.

• Perspective taking : We observed that the use of this skill can be attracted by

the use of skills of self-reflection and perspective taking. In other words, when a

participant demonstrates the use of either self-reflection or perspective taking,

others in the group may be motivated to do perspective taking. This finding, to

some extent, resonates with the Law of Attraction: you attract who you are.

This skill is also shown to involve the use of parenthesis – a punctuation often

used in referencing other’s thoughts and ideas.

• Monitoring : We observed that this skill is positively correlated with the use

of third person pronoun singular (e.g., she, he). This is reasonable, because

monitoring how the dialogue has gone may involve referencing other’s opin-
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ions. This skill is also shown to be positively correlated with sentence length.

This is reasonable, because summarizing or synthesizing ideas can lead to long

statements.

• Balance: We observed that this skill is positively correlated with the use of

tentative words and causal connectives. This is reasonable, because weighing

different viewpoints may involve causal reasoning and a sense of uncertainty.

• Plan: We observed that the use of this skill can be attracted by the use of skills

of monitoring, balance, and agreement. In other words, when a participant

demonstrates the use of any one of the listed skills, others in the group may be

motivated to do planning – proposing actions for the next steps. This skill is

also shown to be positively correlated with the use of tentative words and words

related to positive emotions. This is reasonable, because plans can be tentative

and are often filled with positive expectations.

Table 5.10: Learned features by RSGL for each

intelligence-embodied skill in the professional community

negotiation domain

Top 10 features Interpretations Feature source Weight

1connection 2proof Interaction

effects

Interaction 1.19

cogmech Cognitive

process

LIWC 1.06

insight Insight words LIWC 1.05

5appreciation Interaction

effects

Interaction 0.99
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percept Perceptual

process

LIWC -0.98

incl Inclusive LIWC 0.94

LEXDIVVD Lexical diver-

sity

Coh-Metrix 0.93

work Work related

words

LIWC 0.93

achieve Achievement LIWC 0.86

swear Swear words LIWC 0.84

2proof ADJi Adjectives Coh-Metrix 0.58

OtherP Other punc-

tuations

LIWC 0.52

Colon Colon LIWC 0.48

anx Anxiety

words

LIWC 0.45

READASW Word length Coh-Metrix 0.42

QMark Question

mark

LIWC 0.41

LexDensity Lexical den-

sity

Coh-Metrix 0.36

FRCLaewm CELEX Log

frequency for

all words

Coh-Metrix -0.36

LSApssd Semantic

similarity (all

sentences in a

paragraph)

Coh-Metrix 0.34
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funct Function

words

LIWC -0.34

3restraint discrep Discrepancy LIWC -2.23

they They LIWC -2.00

CAUSWN Wordnet verb

overlap

Coh-Metrix -1.98

Quote Quotation LIWC 1.97

CONCAUSi Causal con-

nectives

Coh-Metrix 1.88

LSAassa Semantic

similarity (all

sentences in a

paragraph)

Coh-Metrix -1.82

anger Anger words LIWC -1.81

SPATmpi Motional

preposition

Coh-Metrix -1.80

PRO1i First person

pronoun

Coh-Metrix -1.78

LEXDIVVD Lexical diver-

sity

Coh-Metrix -1.77

4agreement assent Assent words LIWC 0.82

hear Perceptual

process

LIWC 0.68

8monitoring Interaction

effects

Interaction 0.64

we We LIWC 0.57
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WRDFacwm Familiarity of

content words

Coh-Metrix 0.55

6self reflection Interaction

effects

Interaction 0.49

percept Perceptual

process

LIWC 0.49

posemo Positive emo-

tion

LIWC 0.44

article Article LIWC -0.43

CONADVCONi Adversative

and con-

trastive

connective

(Although,

Whereas)

Coh-Metrix -0.39

5appreciation CONCAUSi Causal con-

nectives

Coh-Metrix 1.33

conj Conjunctions LIWC -1.22

6self reflection Interaction

effects

Interaction 1.16

number Numbers LIWC 1.14

leisure Personal

words

LIWC 1.13

cogmech Cognitive

process

LIWC -1.12

negate Negations LIWC -1.05
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CONTEMPEXi Temporal

connectives

Coh-Metrix 1.03

we We LIWC -1.01

bio Biological

process

LIWC -1.01

6self reflection 5appreciation Interaction

effects

Interaction 1.04

4agreement Interaction

effects

Interaction 0.99

excl Exclusive LIWC 0.98

Exclam Exclamation LIWC 0.92

tentat Tentative LIWC 0.91

2proof Interaction

effects

Interaction 0.90

1connection Interaction

effects

Interaction 0.88

8monitoring Interaction

effects

Interaction 0.86

CONADVCONi Adversative

and con-

trastive

connective

(Although,

Whereas)

Coh-Metrix 0.81

10plan Interaction

effects

Interaction 0.77
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7perspective taking 6self reflection Interaction

effects

Interaction 1.58

leisure Personal

words

LIWC 1.24

7perspective taking Interaction

effects

Interaction 1.15

Numerals Numbers LIWC 1.13

they They LIWC 1.11

CONLOGi Logical con-

nectives

Coh-Metrix 1.08

CONADVCONi Adversative

and con-

trastive

connective

(Although,

Whereas)

Coh-Metrix 1.07

relig Religion

words

LIWC 1.02

CRFBN1um Noun overlap,

adjacent sen-

tences

Coh-Metrix 0.97

Parenth Parenthesis LIWC 0.92

8monitoring filler Fillers LIWC 1.34

shehe She/he LIWC 1.31

see Perceptual

process

LIWC -1.23
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INTEi Intentional

actions

LIWC -1.21

WPS Sentence

length

LIWC 1.22

3restraint Interaction

effects

Interaction -1.15

Dic Dictionary

words

LIWC -1.11

Comma Comma LIWC 0.98

WRDMacwm Meaningfulness Coh-Metrix -0.97

future Future tense LIWC 0.95

9balance death Personal

words

LIWC 0.45

future Future tense LIWC 0.36

DATTIMi Date time Coh-Metrix 0.36

HYVERBaw Mean hyper-

nym values of

verbs

Coh-Metrix -0.30

verb Verb LIWC 0.28

tentat Tentative

words

LIWC 0.28

sexual Biological

process

LIWC 0.28

auxverb Auxiliary

verbs

LIWC 0.25

cause Causal con-

nectives

LIWC 0.24

102



excl Exclusive LIWC 0.22

10plan 9balance Interaction

effects

Interaction 1.10

8monitoring Interaction

effects

Interaction 0.79

Numerals Numbers LIWC 0.69

INFi Infinitives Coh-Metrix 0.56

4agreement Interaction

effects

Interaction 0.56

tentat Tentative LIWC 0.52

CRFBAaum Argument

overlap

Coh-Metrix -0.51

ingest Biological

process

LIWC 0.50

posemo Positive emo-

tion

LIWC 0.50

MEDawm Minimum

edit distance

of all words

Coh-Metrix -0.50

11other adverb Adverbs LIWC 2.41

Period Period LIWC 2.10

CAUSC Ratio of

causal parti-

cles to causal

verbs

Coh-Metrix 2.08

GERUNDi Gerund den-

sity

Coh-Metrix 1.96
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CAUSWN Wordnet verb

overlap

Coh-Metrix -1.94

CONADVCONi Adversative

and con-

trastive

connective

(Although,

Whereas)

Coh-Metrix 1.90

CONCAUSi Causal con-

nectives

Coh-Metrix 1.90

HYNOUNaw Mean hyper-

nym values of

nouns

Coh-Metrix -1.81

SPATmpi motional

preposition

Coh-Metrix -1.77

LSAassa LSA overlap

(adjacent sen-

tences)

Coh-Metrix -1.76

Now, we look at the civic deliberation discussion domain. Some result highlights

are as follows.

• Connection: We observed that the use of this skill can be attracted by the use

of skills of proof and restraint. In other words, when a participant demonstrates

the use of either proof or restraint, others in the group may be motivated to do

connection. This is reasonable, because when one participant provides factual
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information or references, others follow up with inquiries – people are willing to

connect with others who are able to control their emotions and not judge.

• Proof : We observed that this skill is positively correlated with the process of

causal inference. This is reasonable, because during causal inference, citing facts

and providing references are often used.

• Restraint : We observed that this skill – emotional control – is positively corre-

lated with affective process. This is reasonable, because the presence of emotion

precedes the control of emotion.

• Agreement : We observed that this skill involves the use of words related to

positive emotions and personal pronouns.

• Appreciation: We observed that this skill is positively correlated with the pro-

cess of causal inferences and the use of positive emotional words.

• Self-reflection: We observed that the use of this skill can be attracted by the

use of agreement. In other words, when a participant demonstrates the use of

the skill agreement, others in the group may be motivated to do self-reflection.

This skill is also shown to involve the use of verbs and inclusive words. More

interestingly, this skill is found to be positively correlated with repetitive gram-

matical aspect – the use of a verb to express an event related to the flow of time

(e.g., “I believed”, “now I think”). This linguistic phenomenon reveals precisely

how one’s thinking evolves during self-reflection.

• Perspective taking : We observed that this skill is positively correlated with the

use of hypernym (i.e., generic words), the word “feel,” and positive emotional

words. This is reasonable, because perspective taking involves the ability to

intuit another person’s thoughts and feelings and see them from a positive light.
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Perspective taking may also involve reframing, which is reflected by the use of

hypernym for nouns and verbs.

• Monitoring : We observed that this skill is positively correlated with stem over-

lap in adjacent sentences and with paragraph length. This is reasonable, be-

cause monitoring how the dialogue has gone involves referencing and comment-

ing, which, in tandem with summarizing or synthesizing ideas, can lead to long

statements.

• Balance: We observed that the use of this skill can be attracted by the use

of self-reflection. In other words, when a participant demonstrates the use of

the skill self-reflection, others in the group may be motivated to do balance –

weighing different opinions about the topic being discussed. This skill is also

found to be positively correlated with the imaginability of content words (e.g.,

a vivid description).

• Plan: We observed that this skill is positively correlated with the use of dis-

crepancy (e.g., should) words, which are often used in planning statements. We

also found that the semantic similarity of messages showing the use of this skill

is high, which means the presented idea is coherent.

As we can see from Table 5.10 and Table 5.11, for some skills, the learned fea-

tures of some skills learned from the professional community negotiation domain more

closely conform to human understanding than those from the civic deliberation dis-

cussion domain. This comes as no surprise, given that the model performance in

the professional community negotiation domain is about 20% better than that in the

civic deliberation discussion domain. Nevertheless, we found some evidence consistent

with both domains. For example, the use of proof attracts the use of connection, and

the use of agreement attracts the use of self-reflection.This observation also implies

that interaction features are more robust than psycholinguistic features for predicting
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intelligence-embodied communication skills at the change of domain or online con-

text. In addition, as feature rankings interaction features are not as high as that of

pyscholinguistic features, future studies using interaction features alone might provide

some insights into the predictive power of these features.

Table 5.11: Learned features by RSGL for each

intelligence-embodied skill in the civic deliberation dis-

cussion domain

Top 10 features Interpretations Feature source Weight

1connection 2proof Interaction

effects

Interaction 13.60

READFKGL Reading easi-

ness

Coh-Metrix 12.71

Numerals Numbers LIWC 11.24

CRFBSaum Argument

Overlap, all

distances,

unweighted

Coh-Metrix 11.14

inhib restraint LIWC 10.96

LSAppa Semantic sim-

ilarity (at the

paragraph

level)

Coh-Metrix 10.24

future Future tense LIWC 10.00

INFi The use of in-

finitives

Coh-Metrix -9.86
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3restraint Interaction

effects

Interaction -9.85

Period Period LIWC -8.50

2proof friend Words about

friend and

neighborhood

LIWC 8.55

health Words about

health

LIWC -5.02

swear Swear words LIWC 4.84

LEXDIVVD Lexical diver-

sity

Coh-Metrix 4.21

CAUSV Causal infer-

ence

Coh-Metrix 4.16

past Past tense LIWC 4.08

percept Perceptual

words

LIWC 3.94

see Perceptual

words

LIWC 3.61

sad Sadness LIWC -3.75

space Spacial words LIWC 3.23

3restraint CONCAUSi Causal con-

nectives

Coh-Metrix -18.78

future Future tense LIWC -18.51

TEMPtaa Temporal co-

hesion

Coh-Metrix -18.42

LOCi Location

words

Coh-Metrix -18.13
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POLm Polysemy

for content

words, mean

Coh-Metrix -16.12

FRCLmcsm CELEX Log

minimum

frequency

for content

words, mean

Coh-Metrix 15.43

TEMPtrs Tense repeti-

tion

Coh-Metrix 14.49

affect Affective pro-

cess

LIWC 14.27

CRFBA1um Argument

Overlap

Coh-Metrix -12.97

money Money words LIWC -12.42

4agreement WRDAacwm Age of ac-

quisition

for content

words, mean

Coh-Metrix 10.09

death Death words LIWC 8.32

sexual Love words LIWC 7.76

posemo Positive emo-

tion

LIWC 6.80

Numerals Number LIWC 6.15

excl Exclusive LIWC 6.05

READASL Sentence

length

Coh-Metrix 5.98
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ppron Personal pro-

nouns

LIWC 5.93

anger Anger words LIWC 5.74

AllPct All punctua-

tions

LIWC 5.65

5appreciation cause Causal infer-

ence

LIWC 12.59

CONADDi Additive con-

nectives

Coh-Metrix 11.67

posemo Positive emo-

tion

LIWC 11.48

nonfl Nonfluencies LIWC -11.15

HYPm Hypernymy

for nouns and

verbs, mean

Coh-Metrix 10.51

GERUNDi Gerund den-

sity, incidence

Coh-Metrix -10.22

hear Perceptual

words

LIWC 10.05

READFKGL Reading easi-

ness

Coh-Metrix -10.00

WRDAacwm Age of ac-

quisition

for content

words, mean

Coh-Metrix 9.77

pronoun Pronoun LIWC -9.66

6self reflection verb Verb LIWC 13.80

110



SYNLE Number of

words before

the main verb

Coh-Metrix 12.67

READL2 Second lan-

guage com-

prehension

Coh-Metrix 11.62

humans Social pro-

cesses

LIWC 10.58

READFRE Reading easi-

ness

Coh-Metrix 10.33

incl Inclusive LIWC 9.82

4agreement Interaction

effects

LIWC 9.54

TEMPars Aspect repe-

tition

Coh-Metrix 8.61

READNP Number of

paragraphs

Coh-Metrix 8.54

friend Friend words LIWC 8.48

7perspective taking HYPm Hypernymy

for nouns and

verbs, mean

Coh-Metrix 16.19

feel Perceptual

words

LIWC 15.56

posemo Positive emo-

tion

LIWC 15.18

SPATmpi Motional

preposition

Coh-Metrix 11.17
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leisure Personal

words

LIWC 10.46

sexual Love words LIWC 10.07

TYPTOKc Vocabulary

variation

Coh-Metrix -9.95

DENPRPi Personal pro-

noun

Coh-Metrix -9.89

DENSPR2 Ratio of

pronouns to

noun phrases

Coh-Metrix -9.41

verb Verb LIWC 8.82

8monitoring TEMPta Tense and

aspect repeti-

tion

Coh-Metrix -13.45

PRO1i First person

pronoun

Coh-Metrix -11.32

CRFBS1um Stem overlap,

adjacent sen-

tences

Coh-Metrix 11.29

READAPL Paragraph

length

Coh-Metrix 10.56

verb Verb LIWC 10.52

LSAppd Semantic

similarity

(adjacent

paragraphs)

Coh-Metrix -10.13
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LSAassd Semantic

similarity

(adjacent

sentence)

Coh-Metrix 9.72

AllPct All punctua-

tions

LIWC 9.35

LSAassa Semantic

similarity (all

sentences in a

paragraph)

Coh-Metrix -8.82

funct Functional

words

LIWC 8.78

9balance CRFBAaum Argument

overlap

Coh-Metrix 6.57

Exclam Exclamation

marks

LIWC 5.14

6self reflection Interaction

effects

Interaction 5.11

WRDIacwm Imaginability

for content

words, mean

Coh-Metrix 4.02

SPATlpi motional

preposition

Coh-Metrix 3.71

DENSPR2 Ratio of

pronouns to

noun phrases

Coh-Metrix 3.70
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cogmech Cognitive

processes

LIWC 3.36

they They LIWC 3.23

body Biological

process

LIWC 3.21

LSAppa Semantic sim-

ilarity (at the

paragraph

level)

Coh-Metrix 2.97

10plan LSAassd Semantic

similarity

(adjacent

sentences)

Coh-Metrix 11.94

WRDAacwm Age of ac-

quisition

for content

words, mean

Coh-Metrix 8.61

sexual Love words LIWC 7.42

Numerals Numbers LIWC 5.96

discrep Discrepancy LIWC 5.54

AllPct All punctua-

tions

LIWC 5.41

ingest Biological

process

LIWC 5.04

CAUSWN Wordnet

word overlap

Coh-Metrix -4.99
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ppron Personal pro-

nouns

LIWC 4.92

READASW Average Syl-

lables per

word

Coh-Metrix -4.72

11other i First per-

son pronoun

singular

LIWC 21.84

TEMPtrs Tense repeti-

tion

Coh-Metrix 21.28

tentat Tentative LIWC 19.22

MEDwtm Minimum

edit distance

of all words

Coh-Metrix -19.22

CONCAUSi Causal con-

nectives

Coh-Metrix -19.08

CONi All connec-

tives

Coh-Metrix -18.63

cause Causal infer-

ence

LIWC 17.88

8monitoring Interaction

effects

Interaction 17.75

CONLOGi Logical con-

nectives

Coh-Metrix -17.58

humans Social pro-

cesses

LIWC 17.18
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5.5 Conclusion and Future Work

In this chapter, we present a new multi-task formulation with a novel composite

regularizer, called relaxed Sparse-group Lasso (RSGL), for simultaneously identify-

ing multiple intelligence-embodied communication skills using lexical, discourse, and

interaction features. The key merit of RSGL is that it is a general multi-task for-

mulation that unifies many widely used regularization techniques, including Lasso,

group Lasso, sparse-group Lasso, and the Dirty model. Moreover, RSGL can be ap-

plied to streaming data to perform large scale analysis in real time. Empirical results

show that, as a more general framework in multi-task learning, RSGL does not sacri-

fice performance. In fact, RSGL outperforms state-of-the-art multi-tasking learning

formulations on prediction sensitivity, specificity, accuracy, and feature compression

capacity in an online negotiation context. Future studies involving cross-validations

and complying with our three experiment design principles may be used to study

the performance variance of each model and provide evidence for the significance of

performance improvement of RSGL. Finally, RSGL also revealed psycholinguistic and

interaction characteristics of each of the intelligence-embodied communication skill

that, to a great extent, resonate with human understanding.

We note that multi-task classification problems are by no means exclusive for un-

derstanding intelligence-embodied skills. The developed model is general enough to

be applied to any other domains where the research interest includes predicting mul-

tiple interrelated labels simultaneously, including signal processing, computer vision,

and computational neuroscience.

In future work, we will apply RSGL to more online contexts and data sets where

people are from diverse culture backgrounds with a hope to explore the effect of

culture differences on peoples’ communication intelligence. In addition, we will ex-

tend RSGL with the ability to handle tasks embedded in a graph structure. Our

experimental results have shown that certain skills attract the use of other skills.
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This inter-dependency between skills can be well captured in a graphical framework.

Therefore, multi-task learning on identifying multiple intelligence-embodied commu-

nication skills with graph structures is a promising direction to explore. Moreover,

lexical and discourse features provide a good starting point for the initial exploration

of linguistic manifestation of intelligence-embodied skills. The next steps will include

incorporating to the model other types of features, such as semantic features to see

whether prediction performance can be improved. Although less common, another

possibility is to use word features in RSGL and compare it with the results from the

previous chapter. The benefits of using word features is to save feature generation

time by using LIWC and Coh-Metrix systems for real-time applications. It is also

possible to use CL-LDA (the model from the previous chapter) with linguistic and

interaction features when a mapping can be appropriately designed between those

features and sentences/words in the context of text analysis.
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CHAPTER 6

UNDERSTANDING COMMUNICATION INTELLIGENCE
AND ITS EMBODIED SKILLS THROUGH SOCIAL

NETWORK ANALYSIS

In previous chapters, we presented novel contributions of multi-task learning

and multi-label learning, with applications to simultaneously identifying multiple

intelligence-embodied communication skills from online dialogues. Those novel mod-

els provide keen insights into the language characteristics (Chapter 4) as well as

lexical, discourse, and interaction characteristics (Chapter 5) of each intelligence-

embodied communication skill. In this chapter, we aim to deepen our understanding

of the nature of intelligence-embodied communication skills by analyzing the struc-

ture properties (e.g., degree, clustering coefficient) of participants’ interactions in a

social communication network context.

6.1 Motivation and Related Work

Understanding communication intelligence and its embodied communication skills

requires multiple-perspective analysis of participants’ online behaviors. Because on-

line interactions generally take place in the form of natural language, analyzing human

languages naturally becomes the first step in evaluating the language and linguistics

landscapes of intelligence-embodied communication skills. From a different perspec-

tive, examining the conversational structure of online communication, such as who

talks to whom and how such interactions form a social network diagram, provides an

opportunity to understand communication intelligence from the lens of social inter-

action patterns.
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Previous research in conversational analysis [137] has explored the structure of

interactions in a communication phenomenon, called turn-taking. That line of re-

search was concerned with the systematic analysis of turn-turning, such as when

interruptions occurred and how repairs were signaled. Another line of research in

online deliberation has studied up-taking [153], whose main goal was to reveal par-

ticipants’ roles and contributions (e.g., who are the central actors in the discussions

and what ideas (from whom) receive the most development). Little research has at-

tempted to characterize a group of high-order social constructs, such as intelligence-

embodied communication skills, from the perspective of the structure of interactions.

The present research as described in this chapter focuses on addressing the following

intriguing question: what are the network signatures of intelligence-embodied commu-

nication skills?

The remaining of this chapter is organized as follows. In Section 6.2, we describe

two experimental domains and provide analysis on comparing communication intelli-

gence scores across communication modalities and across genders. In Section 6.3, we

use canonical correlation analysis to test the hypothesis that statistically significant

correlations exist between participants’ communication skills and network metrics. We

summarize our findings in Section 6.4.

6.2 Data and Experiments

We collected activity logs of participants’ communication from two different com-

munication modalities (i.e., synchronous communication without facilitation vs. asyn-

chronous communication with facilitation) within classroom experimental trials, whose

goal was to assess the effectiveness of educational software tools for supporting high-

order communication skills. Subjects in the experimental trials were college students

of two different majors. The students were engaged in computer mediated communi-

cation discussing about ill-defined topics. In the synchronous communication mode,
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students took part in the discussion at the same time from difference places; whereas

in the asynchronous communication mode, students joined he discussion at differ-

ent times and places. In the synchronous communication mode, the total number of

contributing messages was 489, the average number of posts per participant was 19,

and the number of words per post was 26. The 25 participating students were from

a mixed majors of communication and pre-law. There were 52% females and 48%

males and 92% of the students were juniors/seniors. The topic of their discussion

was “right to die.” In the asynchronous communication mode, the total number of

contributing messages was 93, the average number of posts per participant is 5, and

the number of words per post is 80. The 19 participating students were from the

communication major. There were 58% were females and 42% were males and 63%

of the students were juniors/seniors. The topic of their discussion was “internet free

speech.” Professional mediators were only present remotely and facilitated the discus-

sion in the asynchronous communication mode. Facilitators’ messages were excluded

for this study.

One trained human judge annotated this data based on Murray’s theory about

social deliberative skills [116]. We aggregated appropriate social deliberative skills

to construct each intelligence-embodied communication skill at the message level.

We computed the overall communication intelligence for each participant across their

messages in the whole discussion based on the measuring protocol introduced in

Chapter 3.

6.2.1 Understanding the Effects of Communication Modalities on Com-

munication Intelligence

We computed descriptive statistics of the average level of participants’ communi-

cation intelligence and the average use of each skill across communication modalities.

As shown in Figure 6.1, participant’s communication intelligence is scored 47.1%
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higher in an asynchronous and facilitated communication mode (0.25) than is in a

synchronous and unfacilitated communication mode (0.17). Similar patterns were

also found in each of the ten intelligence-embodied communication skills, with only

one exception – the skill of appreciation is shown to be used slightly more often in a

synchronous and unfacilitated mode (0.04) than is in an asynchronous and facilitated

mode (0.03). We found that the asynchronous and facilitated communication mode is

related to the creation of longer posts, which may partly contribute to the use of more

intelligence-embodied skills. In addition, although in both communication modalities

most of the participants were females and most participants were juniors/seniors,

participants’ majors are not same, which may, to some degree, contribute to the

differences in participants’ communication intelligence scores in different modalities.

We think this effect is likely mitigated and absorbed by the facilitation element of

the mode of the communication. In other words, participants’ higher communication

intelligence is more likely attributed to the fact that they were situated in a “facili-

tated” discussion of an asynchronous mode than to the fact that they were majoring

in communication studies (vs. pre-law). This is because the communication skills of

students within the same major may also vary to some degree. To test this hypoth-

esis, we run a simple analysis and the results have shown that the communication

intelligence scores of students from the same major is scored consistently higher in

an asynchronous and facilitated communication mode than is in a synchronous and

unfacilitated communication mode. (Similar patterns were also found for scores of

all ten intelligence-embodied skills.) These results provide evidence that the asyn-

chronous and facilitated communication mode may be a valuable means for promoting

a deliberative communication as measured by communication intelligence. In addi-

tion, asynchronous interactions may benefit facilitators in a way that facilitators are

less likely to be caught up in the immediacy of response and therefore having more

time to reframe participant’s sentiments in a more productive way. In future work
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Figure 6.1. A comparison of the scores of communication intelligence and its embod-
ied skills across communication modalities (In the asynchronous & facilitated com-
munication mode the discussion topic was “internet free speech;” in the synchronous
& unfacilitated communication mode the discussion topic was “right to die.”)

we will study the effect of communication modalities on communication intelligence

by controlling the topic variable. In addition, rather than use asynchronous and fa-

cilitated communication modality as a joint experimental condition, we will improve

our experimental design to allow for studying the separate effects of communica-

tion modality (i.e., synchronous, asynchronous) and intervention (i.e., facilitation) on

communication intelligence.

It can also be seen from Figure 6.1 that, in both communication modalities, par-

ticipants are shown to use the skill of proof the least often. In the asynchronous and

facilitated communication mode, participants are shown to use the skill balance the

most, when discussing “internet free speech.” In the synchronous and unfacilitated

communication mode, participants are shown to use the skill connection the most,

when discussing “right to die.”
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Figure 6.2. A Comparison of the scores of communication intelligence and its em-
bodied skills across gender: the asynchronous and facilitated communication mode
with topic “internet free speech” (left panel), the synchronous and unfacilitated mode
with topic “right to die” (right panel)

6.2.2 Understanding the Gender Difference of Communication Intelli-

gence

In this section, we examine the gender difference in the use of high-order commu-

nication skills and associated communication intelligence. As shown in Figure 6.2,

females’ communication intelligence scores are consistently higher than those of males

across communication modalities. This finding is consistent with the recent research

from MIT which concludes that adding women to a team helps improve group perfor-

mance [167]. Moreover, the gender gap in communication intelligence appears to be

widened in the case of asynchronous and facilitated mode. One possible explanation

for this observation is that females are more sensitive to the external environment

and more adaptive in response to external stimuli in communication, such as dis-

tance, the passage of time, and facilitated interventions. When comparing the use

of each communication skill across genders, we found that males appear to use self-

reflection slightly more often than females, regardless of communication modalities.

In the asynchronous and facilitated mode, males are also shown to use perspective
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taking more often than females. In the synchronous and unfacilitated mode, males

are shown to use appreciation and balance more often than females. These interest-

ing observations shed light on which communication modality works the best for each

gender to stimulate the use of which communication skills.

6.2.3 Studying the Relationship Between Intelligence-embodied Commu-

nication Skills and Social Interaction Patterns

To decode the link between intelligence-embodied skills and social interaction

patterns, we extracted the structural information of “reply-to” from participants’ ac-

tivity logs. We used the “reply-to” feature because it provides important evidence

about participants’ social choices in online communication, which, to some degree, can

speak about their communication intelligence. We measure participant’s communica-

tion network quantitatively and generate a social network profile for each participant.

The profile includes a group of network metrics, including degree, weighted degree,

and eccentricity, as shown in Table ?? (also shown in the chapter about Background).

Table 6.1: Social network measures and their interpreta-

tions in the context of this research

Network structure measures Definition

In Degree This metric indicates the number of

people, from whom a message is sent

to the studied participant.

Out Degree This metric indicates the number of

people, to whom a message is sent from

the studied participant.
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Degree This metric indicates the total number

of people that the studied participant

has communication with.

Weighted In Degree This metric indicates the number of

messages received by the studied par-

ticipant.

Weighted Out Degree This metric indicates the number of

messages sent by the studied partici-

pant.

Weighted Degree This metric indicates the total number

of messages both received and sent by

the studied participant.

Eccentricity This metric indicates the length of the

longest directed path (assuming it is

the only path) between the studied par-

ticipant and another participant.

Closeness Centrality This metric indicates the average

length of the directed path between the

studied participant and another partic-

ipant.

Betweenness Centrality This metric indicates on average how

possible the studied participant is in

the middle of a direct chain between

any two other participants.

Authority This metric indicates how influential

the studied participant is.
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Hub This metric indicates how popular the

studied participant is.

Modularity Class This metric indicates how sophisticated

the communication network’s internal

structure is.

PageRank This metric indicates on average how

influential the participants who send

messages to the studied participants

are.

Component ID This metric describes community.

Strongly connected ID This metric describes how closely mem-

bers of the community, to which the

studied participant is belong, interact.

Clustering Coefficient This metric indicates how closely the

neighborhoods of the studied partici-

pant interact.

Eigenvector Centrality This metric also indicates on average

how influential are the participants who

send messages to the studied partici-

pant.

In the following sections, we will present analyses for understanding the associa-

tions between intelligence-embodied communication skills and participants’ network

metrics. In order to find patterns that hold true across communication modalities,

we aggregate the data for the analysis below.
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6.3 Research Method

6.3.1 Regularized Canonical Correlation Analysis

There are several measures of correlation to express the relationship between two

or more variables. For example, Pearson correlation [93] measures the extent to which

two variables are related; multiple regression [38] measure the relationship between a

dependent variable and a set of independent variables; multivariate regression [103]

computes how two sets of variables are associated. Canonical correlation analysis

(CCA) [76] is a method for exploring the relationships between two sets of variables,

all measured on the same experimental unit. CCA is both a regression technique and

a dimension reduction technique – it determines the relationship between two sets of

variables and computes how many dimensions are necessary to understand the asso-

ciation between them. CCA is different from other dimension reduction techniques,

such as principal component analysis [82] and factor analysis [70], because those two

techniques examine relationships within a single set of variables, whereas CCA looks

at the relationship between two sets of variables.

CCA finds its limitations in applications where multicolliearity 1 is present within

either or both sets of variables, or the number of experimental units is less than

the number of measuring variables. To efficiently address these limitations, regu-

larized canonical correlation analysis (RCCA) [69] is developed by imposing a ridge

penalty [72] (as discussed in the chapter about Background) to CCA. In this re-

search, we use RCCA to identify associative patterns between participants’ use of

intelligence-embodied skills and their network metrics.

Below we first introduce some key concepts in RCCA.

• Canonical variate (dimension): Canonical variate is the weighted sum of a

set of variables, a form of a latent variable. For each canonical correlation be-

1Multicollinearity refers to the situation where one or more variables are linearly dependent on
other variables.

127



tween two sets of variables, there are two canonical variates, each corresponding

to one set of variables. For example, suppose we have two sets of measuring

variables X and Y .

Set 1 has p variables: X =



X1

X2

...

Xp


, and

set 2 has q variables: Y =



Y1

Y2

...

Yq


We look at linear combinations of the data, as in principal components analysis.

Canonical variate U corresponds to the linear combinations of the first set of

variables X, and canonical variate V corresponds to the linear combinations of

the second set of variables Y . For example, U1 below is a linear combination

of the p variables in X and V1 is the corresponding linear combination of the q

variables in Y . Similarly, U2 is a different linear combination of the p variables

in X, and V2 is the corresponding linear combination of the q variables in Y .

U1 = a11X1 + a12X2 + · · ·+ a1pXp

U2 = a21X1 + a22X2 + · · ·+ a2pXp

...

Up = ap1X1 + ap2X2 + · · ·+ appXp

V1 = b11Y1 + b12Y2 + · · ·+ b1qYq

V2 = b21Y1 + b22Y2 + · · ·+ b2qYq
...

Vq = bq1Y1 + bq2Y2 + · · ·+ bqqYq
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Each member of U is paired with a member of V . The goal of RCCA (and

CCA) is to find weights in the linear equations so as to maximize the correlation

between canonical variate U and V .

• Wilks’s lambda significant test: The number of canonical correlations be-

tween two sets of variables is determined by the number of variables in the

smaller set. In other words, the maximum number of canonical variate pairs is

the same as the number of variables in the smaller set. The number of canonical

variate pairs is often referred to as dimension. Wilks’s lambda is commonly used

to test the significance of each dimension. Specifically, it determines how many

dimensions are needed to account for the relationship between canonical vari-

ates. For example, in the case of only one significant dimension, the relationship

between two set of variables can be easily examined in a one dimensional space.

When more than one significant dimension is present, the first dimension is

always the one which explains the most of the relationship, followed by the sec-

ond dimension, and so on. The canonical correlation is interpreted in the same

way as in Pearson’s correlation – the square of the correlation is the percent

of shared variance along that dimension. For example, a canonical correlation

of 0.9 in the first dimension represents 81% of the shared variance between the

two sets of variables. In other words, the effect size of the canonical correlation

is 0.81.

• Canonical coefficients: Canonical coefficients are used to assess the relative

importance of individual variables’ contributions to a given canonical correla-

tion. Canonical coefficients are the weights in the linear equation of variables

that creates the canonical variates. In general, the larger the absolute value of

the weight, the greater is the respective variable’s unique positive or negative

contribution to the weighted sum (canonical variate). To facilitate comparisons
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Figure 6.3. Pearson correlations of two variables (1) within the set of skill variables
(upper left corner), (2) within the set of network metrics (lower right corner), and (3)
between the two sets (lower left and upper right corner)

between weights, the standardized canonical weights are usually used for in-

terpretation (i.e., using the z transformed variables with a zero mean and unit

standard deviation).

6.4 Experiments and Results

6.4.1 Understanding the Association Between Intelligence-Embodied Com-

munication Skills and Network Metrics

Before we perform canonical correlation analysis, we first want to determine if

any relationship exists between communication skill variables and network metric

variables. To test for independence, we performed Pearson correlation analysis for

these two sets of variables. In Figure 6.3, we reveal the correlation within commu-

nication skill variables, within network metric variables, and between these two sets

of variables. For example, we found that agreement has a high positive correlation
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Figure 6.4. Canonical coefficients of each dimension for the correlation between skill
variables and network metrics

with connection and self-reflection, which implies that, for example, people who use

the skill of agreement also often use the skill of self-reflection. Within network metric

variables, we found that, for example, eccentricity has a positive correlation with hub

and a negative correlation with page rank. More importantly, we are reassured that

correlations appear to exist between communication skill variables and network met-

ric variables (i.e., cells in the lower left corner in Figure ?? are not uniformly green).

Given that multicollinearity is present in both sets of variables, we move forward with

regularized canonical correlation analysis.

With regularized canonical correlation analysis, (λ1 = 0.0001 for communication

skill variables and λ2 = 0.00001 for network metric variables), we found one sta-

tistically significant (α=0.1) canonical dimension. This canonical dimension has a

canonical correlation of 0.90 (p=0.08) and large effect size of 0.81. Figure 6.4 shows

all 10 canonical dimensions.

Table 6.2 presents the standardized canonical coefficients for the first significant

dimension across both sets of variables. For the communication skill variables, the

first canonical dimension is most strongly influenced by perspective taking (0.63).

Similarly, for the network metrics, the first dimension is mainly influenced by page
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Table 6.2: Standardized canonical coefficients for the first dimension across skill vari-
ables and network metrics

Communication skill variables Canonical coefficient
Average of 1connection 0.24
Average of 2proof -0.04
Average of 3restraint 0.01
Average of 4agreement 0.35
Average of 5appreciation -0.04
Average of 6self reflection 0.13
Average of 7perspective taking 0.63
Average of 8monitoring 0.11
Average of 9balance 0.21
Average of 10plan 0.01
Social network metrics

In Degree 0.12
Out Degree -0.02
Degree 0.20
Weighted Degree -0.06
Weighted In Degree -0.34
Weighted Out Degree 0.31
Eccentricity 0.50
Closeness Centrality -0.12
Betweenness Centrality -0.04
Authority 0.22
Hub 0.38
Modularity Class -0.07
PageRank -0.87
Component ID 0.86
Strongly Connected ID -0.36
Clustering Coefficient -0.52
Eigenvector Centrality -0.52
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rank (-0.87), component ID (0.86). This result provides an exciting way to study

perspective taking through the lens of social network metrics. Below, we present some

highlights of the social dynamics of people showing more perspective taking behaviors.

• Popular – people showing more perspective taking behaviors are more popular

(i.e., positive correlations with hub, degree) than others in their communication

network.

• Influential – people showing more perspective taking behaviors are more influ-

ential (i.e., a positive correlation with authority). Their neighborhoods interact

not much themselves (i.e., a negative correlation with clustering coefficient).

They contribute to a large local community (i.e., a positive correlation with

eccentricity) that has more communication (i.e., a correlation with strongly

connected 2).

• Like-attracts-like – people showing more perspective taking behaviors are more

likely to communicate with people who behave similarly. Their communication

network demonstrates propinquity and homophily. In other words, people tend

to communicate with others who demonstrate similar level of perspective taking

(i.e., a positive correlation between perspective taking and network component).

Furthermore, they only interact with a subgroup of people rather than all peo-

ple in the network (i.e., a positive correlation with weighted out degree and a

negative correlation with closeness centrality). Most of the people who send

messages to them are not influential (i.e., negative correlations with page rank

and eigenvector eccentricity). This finding is consistent with the findings from

2In Gephi, component ID and strongly connected ID are used to name communities. There is
no specific meaning about the number itself. The high absolute value of the correlation between
perspective taking and component ID indicates people doing perspective taking tend to form a
community. The high absolute value of the correlation between perspective taking and strongly
connected ID indicates people doing perspective taking tend to contribute to a community that has
more communication.
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Chapter 4, where people showing perspective taking behaviors (measured from

their discourse) in an online message were observed to attract other people to

match the same behavior in the message immediately following it.

6.5 Summary

In this chapter, we first studied communication intelligence across communica-

tion modalities and across genders. We showed that participants’ communication

intelligence is scored 47.1% higher in an asynchronous and facilitated communication

mode (0.25) than is in a synchronous and unfacilitated one (0.17). This observa-

tion provides evidence that the asynchronous and facilitated communication mode

may be a valuable means for promoting a deliberative communication as measured

by communication intelligence. We further showed that females’ communication in-

telligence scores are consistently higher than those of males across communication

modalities. Moreover, the gender gap in communication intelligence appears to be

widened in the case of asynchronous and facilitated mode. One possible explanation

for this observation is that females are more sensitive to the external environment and

more adaptive in response to external stimuli in communication, such as distance, the

passage of time, and facilitated interventions. When comparing the use of each com-

munication skill across genders, we found that males are shown to use self-reflection

slightly more often than females, regardless of communication modalities.

We then studied the association between intelligence-embodied communication

skills and participants’ social network metrics using regularized canonical correla-

tion analysis. We showed that a statistically significant correlation exists between

intelligence-embodied communication skills and social network metrics with a large

effect size of 0.8, which provides an opportunity to characterize the skill of perspective

taking from the perspective of social interaction patterns. Specifically, people showing

more perspective taking behaviors are found to be more popular and influential than
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others in their communication network. They also tend to reach out to people who

behave similarly, which implies a like-attracts-like social phenomenon that complies

with the Law of Attraction. These observations complement discoveries from previous

chapters about the linguistic manifestation of intelligence-embodied communication

skills with social dynamic characteristics.

Future research will expand this study along several dimensions. To further vali-

date of our results, we will replicate the above experiments with a larger sample size.

In addition, in the present research, the experimental subjects are college students

mostly from the United States. We need to study a larger sample of populations

and possibly from diverse cultures to reach solid conclusions. We would also like to

improve our experimental design by controlling the topic effect on communication in-

telligence and by allowing for studying the separate effects of communication modality

(synchronous vs. asynchronous) and intervention (i.e., facilitation) on communication

intelligence.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our contributions and suggest possible directions

for future research.

7.1 Summary of Contributions

In this dissertation, we have advanced the state of the art in communication

studies and machine learning. Generally speaking, our contributions fall into two

realms:

• We pioneered the study of a communication phenomenon: communication in-

telligence, in the world of online interactions. We created the first theory about

communication intelligence that measures the use of ten high-order commu-

nication skills, including connection, proof, restraint, agreement, appreciation,

self-reflection, perspective taking, monitoring, balance, and plan. We presented

a multi-perspective analysis for understanding communication intelligence, in-

cluding its diverse language, shared linguistic characteristics across people, so-

cial dynamics, and the effects of communication modality on communication

intelligence.

• We contributed new machine models and formulations for addressing multi-

label and multi-task machine learning problems. Those models and formula-

tions can simultaneously identify multiple intelligence-embodied communication

skills from natural language, linguistic features, and interaction features. Be-

yond these applications, they can also benefit research in other areas where the
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problems of simultaneously predicting multiple categories are abundant. These

areas include, but are not limited to, signal processing, computer vision, com-

putational finance, computational biology, and computational neuroscience.

Regarding the new theory about communication intelligence, in Chapter 3, we pre-

sented an intellectual model of communication intelligence comprising ten interrelated

actionable dimensions/skill constructs. These ten dimensions keep a good balance of

acknowledging the different orientations (relationship vs. tasks) among people. We

also described a key property of communication intelligence (i.e., dynamic and con-

textual) and introduced a method for measuring communication intelligence.

Regarding understanding the diverse language of communication intelligence, in

Chapter 4, we presented a new hierarchical probabilistic model for addressing the

problem of simultaneously identifying multiple intelligence-embodied communication

skills from natural language. That model, called Constrained Labeled LDA (CL-

LDA), learns the topic assignment for each sentence and provides a practical and

simple way to determine document labels without relying on a threshold function.

CL-LDA’s performance increases as the number of labels grows, which makes CL-

LDA a promising approach for large-scale data analysis. CL-LDA also has high

interpretability and its annotated sentences significantly augment the view of each

document with rich contextual information.

Regarding understanding the shared linguistic characteristics of communication

intelligence across people, in Chapter 5, we presented a new multi-task formulation

for simultaneously identifying multiple intelligence-embodied communication skills,

from lexical, discourse, and interaction features. The key merit of this model is that

it is a general multi-task formulation that unifies many widely used regularization

techniques, including Lasso, group Lasso, sparse-group Lasso, and the Dirty model.

This model expands the applicability of multi-task learning by allowing analyzing

real-world problems where (1) the degree of task relatedness is uncertain and (2) the
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true structure of the groups in data is not clear ahead of time. Moreover, this model

can be applied to streaming data to perform real-time analysis. Moreover, it can

be applied to streaming data to perform large scale analysis in real time. It also

reveals psycholinguistic and interaction characteristics of each intelligence-embodied

communication skill that, to a great extent, resonate with human understanding.

Regarding understanding the social dynamics of communication intelligence and

the effects of communication modalities on communication intelligence, in Chapter

6, we presented an advanced correlation analysis, called regularized canonical corre-

lation analysis (RCCA), for studying the association between intelligence-embodied

communication skills and social network metrics, measured on the same participant.

RCCA finds a statistically significant correlation between intelligence-embodied com-

munication skills and social network metrics (effect size=0.81), which provides an op-

portunity to characterize the skill of perspective taking from the perspective of social

interaction patterns. Specifically, people showing more perspective taking behaviors

are more popular and influential than others in their communication network. They

also tend to reach out to people who behave similarly, which implies a like-attracts-

like social phenomenon that complies with the Law of Attraction. We furthermore

showed that participants’ communication intelligence is on average scored signifi-

cantly higher in an asynchronous and facilitated communication mode than is in a

synchronous and unfacilitated mode. Females’ communication intelligence scores are

shown to be consistently higher than those of males across communication modalities.

7.2 Future Work

7.2.1 Modeling Multi-modal Data With Tensor Decomposition

A tensor [86] is a multidimensional array. More formally, an N -way or Nth-order

tensor is an element of the tensor product of N vector spaces, each of which has its

own coordinate system. Tensor decomposition is a technique that applies decompo-
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sition to data arrays for extracting and explaining their properties. There has been

active research on developing tensor decomposition algorithms and models, including

CP [29], Tucker decomposition [156], and PARAFAC2 [71]. Tensor decomposition has

shown to be an effective technique for feature extraction, classification, dimension-

ality reduction, and multiway clustering [86]. Decomposition of higher-order tensors

(i.e., N -way arrays with N ≥ 3) has found wide applications in psychometrics, signal

processing, computer vision, data mining, and neuroscience [86, 35]. In these applica-

tions, data are often in three or more modes, and therefore, a two diminutional matrix

is not sufficient for the purpose of data representation. For example, in data mining,

web graph data have three modalities: source, destination, and text. Similarly, in

neuroscience, brain imaging data have three modalities: channel, frequency, and time

frame. In computer vision, face recognition data have four modalities: people, expres-

sion, head pose, and illumination. Current substitutes for tensor techniques include

separating the data through one dimension (so that the rest two dimensions can be

represented with matrix) and studying them separately, or aggregating the data all

together along one dimension and studying them as a whole. These work-around ap-

proaches miss the opportunity of studying the split (or aggregate) dimension as part

of the data and therefore exclude the possibility to discover the interactions between

the split (or aggregate) dimension and other dimensions.

Tensor decomposition is a promising method to further our understanding of com-

munication intelligence, as we collect data from more perspectives in the future. For

example, we may consider semantic features as a feature dimension in addition to

lexical, discourse, and interaction features for studying the linguistic manifestation of

communication intelligence. We may also consider collecting data about participants’

personality types [40] and reflective judgment stages [85] in addition to social network

metrics for studying the psychosocial characteristics of communication intelligence.

Moreover, we will also collaborate with researchers from other disciplines to deepen
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our understanding of communication intelligence from other perspectives. For exam-

ple, research in psychology [176] has started to study visual social cognition. They

monitored and analyzed how people move their eyes as they perform perspective tak-

ing and measured how such intimate behavior changes in space and time. Research

in social neuroscience [42] has also studied the link between mental states and so-

cial behaviors. They performed functional-imaging studies to understand how people

regulate emotional process and show empathy. They created a functional model that

highlighted the role of specific brain regions responsible for empathetic behaviors.

Similar visual and neuroimaging data are useful to broaden our perspectives and

deepen our understanding of intelligence-embodied communication skills. Eventu-

ally, we will combine tensor decomposition with multi-task learning to create multi-

modal multi-task learning models to jointly predict multiple intelligence-embodied

communication skills from multi-modal data. We are also interested in developing

multi-modal canonical correlation analysis model to explore multi-way multivariate

correlations among different perspectives (i.e., modalities).

7.2.2 Building an Intelligent Tutoring System for Deliberative Commu-

nication

Research in the field of intelligent tutoring system (ITS) has been developing

interactive education systems to provide personalized scaffolding on knowledge learn-

ing [7] and skill improvement [2]. The research on ITS has largely focused on im-

proving students cognitive abilities [7], metacognitive skills [2], and inducing the op-

timal emotional state for learning [31]. Little research has attempted to develop an

intelligent tutoring system for supporting effective communication. In the field of

human-computer interaction, some recent research has designed automated personal

agents [75] to help people conquer fear and increase self-confidence in pressured social

interaction situations, such as public speaking and job interviews. In future work,
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we will work toward creating an ITS for deliberative communication with the goal of

supporting large-scale, multiple-party online communication.

A key component of an ITS is its student model, which is often used to guide

pedagogical decision makings, such as providing feedback or hints. In order to inform

a pedagogical model, the student model needs to recognize incorrect student answers

by checking against a domain model. Similarly, an ITS for deliberative communi-

cation needs to have an intelligent interlocutor model and a facilitator model. The

main purpose of the interlocutor model is to inform decision-makings of the facilitator

model. The model presented in Chapter 4, regularized sparse-group Lasso (RSGL),

is a good candidate for an intelligent interlocutor model in an ITS for deliberative

communication. This is because it can, in real time, identify high-order communi-

cation skills being used or not used by each participant and provide evidence about

the linguistic characteristics associated with each skill use, which guide the facilitator

model. For example, within a time window, if the majority of participants did not use

certain skills, or, if one participant did not use certain skills over an extended period

of time, the facilitator model may be called to intervene. Ultimately, we will create

an intelligent interlocutor model that can recognize interlocutors’ absence of certain

communication skills when called for, so it can provide even valuable information to

the facilitator model suggesting when and how to intervene in real time.

7.2.3 Improving Communication Intelligence through Brain-based Edu-

cation

The ultimate goal of this research is to support people in improving their commu-

nication intelligence. The need for being an effective communicator resides at a higher

tier in Maslows hierarchy of needs [105], which is often portrayed as a pyramid with

the most fundamental level of needs (e.g., breathing, food) at the bottom, and the

need for esteem (e.g., respect others) and self-actualization (e.g., acceptance of facts)
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at the top. Maslow has shown that a person’s motivation generally moves through

this pyramid, implying that the motivation to achieve goals at the higher tiers of the

pyramid is often lacking or not sufficient.

A vast literature in human psychology and motivation [136] has shown that ex-

ternal rewards are not as effective as are intrinsic needs or desires. The Google way

is an effective example. At Google, people are encouraged to take 20 percent of their

time (the Google Way) to work on company-related projects that speak to their own

desires. And some of those personal projects have now become Google’s most popular

products, including Gmail and Google news. In addition, as Maslow’s hierarchy of

needs suggest, motivation works in a highly individualized fashion– what motivates

one individual may not motivate others.

In future research, we plan to work toward creating an effective motivation strat-

egy to improve people’s communication intelligence, and propose to use brain-based

education to support people in improving their communication intelligence. Specifi-

cally, we will study the behavior-brain-benefit connection by illustrating the benefits

of using certain intelligence-embodied skills in relation to state-of-the-art research in

brain studies. For example, we will study the neural signature of perspective taking

and research into the benefits of using the the same part of the brain (e.g., happiness,

longevity). If these results are found, people would more likely be motivated to be-

have intelligently in communication, because living longer and being happy (as basic

needs in the pyramid) are more likely to be their intrinsic desires. Therefore, this

motivation strategy would work universally well across people.

The past two decades have witnessed a remarkable rise in the number of research

published under the rubric of social neuroscience. Fruitful discoveries have been found

about the neural basis of love, gratitude, trust, altruism, and empathy [52, 1, 134, 145].

For example, prefrontal cortex, the “executive” part of the brain, has been consistently

shown to govern planning, impulse control, and empathy, closely related to some of
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the intelligent-embodied skills that we study, including plan, restraint, and perspective

taking. Research in health psychology has also recently revealed a surprising truth

about longevity. This eight-decade study [53] has discovered that health and long

life are significantly correlated with living conscientiously, the use of forethought,

planning, and perseverance in all aspects of one’s life. This behavior-brain-benefit

(i.e., planning – prefrontal cortex – longevity) connection shows a good promise for

motivating people to improve their communication intelligence.

To motivate the use of some other intelligence-embodied communication skills, we

still need to first understand which brain regions govern which behaviors. Measuring

how the brain functions during an activity involves the use of brain-scanning instru-

ments, such as functional magnetic resonance imaging (fMRI), magnetoencephalog-

raphy (MEG), electroencephalography (EEG), and single-photon emission computed

tomography (SPECT). These brain-scanning instruments have long been used to un-

derstand the relationship between brain function and behaviors [77, 135, 115, 94].

The recent availability of simple, low-cost, portable EEG monitoring devices (audio

headsets) [119] makes it feasible to take EEG from the lab into schools, offices, and

home for more widespread brain research. These portable headsets require no ex-

pertise to wear, and, although they record from only a single sensor with untrained

users, they can distinguish two fairly similar mental states (neutral and attentive)

with 86% accuracy [119]. These portable EEG monitoring devises are promising for

studying brain activities of intelligence-embodied communication behaviors in vivo.

Moreover, recently the BRAIN Initiative (Brain Research through Advancing In-

novative Neurotechnologies) 1 is announced by the Obama administration. This ini-

tiative has sets top priorities to study the link between neuronal activity and behav-

iors. This agenda creates a supportive environment for collaborating with other re-

1http://www.whitehouse.gov/share/brain-initiative
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search institutes, funding agencies, and individuals to study brain activities related to

intelligence-embodied communication skills. For example, in response to that initia-

tive, the US Defense Advanced Research Projects Agency (DARPA) has developed

another prototype of low-cost EEG devices aiming to spark a do-it-yourself (DIY)

revolution in neuroscience in the society.

It is our hope that this dissertation can help launch a movement to improve

communication intelligence with the goal of co-creating a respectful, deliberative,

and thriving society. We believe motivating social behaviors through brain-based

education can accelerate the progress of achieving this grand goal.

Now we have come to the end of this dissertation, and yet we just begin a journey

to awaken the communication intelligence within us.
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APPENDIX A

GIBBS SAMPLING DERIVATION OF CONSTRAINT
LABELED LDA

Goal: Find posterior distribution over latent variables given the observed variables

(omitting hyperparameters).

P (θ, φ, z|w,Λ) =
P (θ, φ, z, w,Λ)

P (w,Λ)

Graphical model gives us:

P (θ, φ, z, w,Λ) = P (θ)P (φ)P (Λ)P (z|θ)P (w|z, φ)

=
∏
d

Dir(θd;α)
∏
d

P (Λd)
∏
k

Dir(φk; β)
∏
m

θzm|dm∏
n

φwn|zn

We use collapsed Gibbs sampling to integrate out model parameters φ and θ, and

just sample z.

Sample z for P (z|w,Λ).

P (z|w,Λ) =
P (z, w,Λ)

P (w,Λ)

Numerator:
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P (z, w,Λ) =

∫
dθ

∫
dφP (θ, φ, z, w,Λ)

=

∫
dθ

∫
dφ

∏
d

Dir(θd;α)
∏
k

Dir(φk; β)

∏
m

θzm|dm
∏
n

φwn|zn

∏
d

P (Λd)

=

∫
dθ

∫
dφ

∏
d

Dir(θd;α)
∏
k

Dir(φk; β)

∏
d

∏
k

θ
Nk|d
k|d

∏
k

∏
w

φ
Nw|k+swi

w|k

∏
d

P (Λd)

=

∫
dθ

∏
d

[
Dir(θd;α)

∏
k

θ
Nk|d
k|d

]
∫

dφ
∏
k

[
Dir(φk; β)

∏
w

φ
Nw|k+swi

w|k

]∏
d

P (Λd)

= A×B ×
∏
d

P (Λd)

where A =
∫

dθ
∏

d

[
Dir(θd;α)

∏
k θ

Nk|d
k|d

]
, B =

∫
dφ

∏
k

[
Dir(φk; β)

∏
w φ

Nw|k+swi

w|k

]
.

Now we expand term A and B. Since we use symmetric Dirichlet priors, α and β

are scalars.

Note that

∫
dθDir(θd; {Nk|d + α}) = 1

=⇒
∫

dθ
Γ(Nd +

∑
k αk)∏

k Γ(Nk|d + αk)

∏
k

θ
Nk|d+αk−1

k|d = 1

=⇒ Γ(Nd +
∑

k αk)∏
k Γ(Nk|d + αk)

∏
k

∫
dθ

Nk|d+αk−1

k|d = 1

=⇒
∏
k

∫
dθ

Nk|d+αk−1

k|d =

∏
k Γ(Nk|d + αk)

Γ(Nd +
∑

k αk)

First, we start with A
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A =

∫
dθ

∏
d

[
Dir(θd;α)

∏
k

θ
Nk|d
k|d

]

=
∏
d

∫
dθDir(θd;α)

∏
k

θ
Nk|d
k|d

=
∏
d

∫
dθ

Γ(
∑

k αk)∏
k Γ(αk)

∏
k

θαk−1
k|d

∏
k

θ
Nk|d
k|d

=
∏
d

Γ(
∑

k αk)∏
k Γ(αk)

∏
k

∫
dθ

Nk|d+αk−1

k|d

=
∏
d

Γ(
∑

k αk)∏
k Γ(αk)

∏
k Γ(Nk|d + αk)

Γ(Nd +
∑

k αk)

Next, we look at B

A =

∫
dφ

∏
k

[
Dir(φk; β)

∏
w

φ
Nw|k+swi

w|k

]

=
∏
k

∫
dφDir(φk; β)

∏
w

φ
Nw|k+swi

w|k

=
∏
k

∫
dφ

Γ(
∑

w βw)∏
w Γ(βw)

∏
w

φβw−1
w|k

∏
w

φ
Nw|k+swi

w|k

=
∏
k

Γ(
∑

w βw)∏
w Γ(βw)

∏
w

∫
dφ

Nw|k+swi+βw−1

w|k

=
∏
k

Γ(
∑

w βw)∏
w Γ(βw)

∏
w Γ(Nw|k + swi + βw)

Γ(Nk + si +
∑

w βw)

Denominator: P (w,Λ) =
∑

z P (z, w,Λ) requires Gibbs sampling. We use the full

conditional P (zi|z−i, w,Λ) to simulate P (z|w,Λ).

P (zi|z−i, w,Λ) =
P (w, z,Λ)

P (w, z−i,Λ)

∝ P (w|z,Λ)P (z,Λ)

P (w−i|z−i,Λ)P (z−i,Λ)

=
P (w, z,Λ)

P (w−i, z−i,Λ)
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We know that P (w, z,Λ) = A×B ×
∏

d P (Λd). P (w−i, z−i,Λ) is the same except

with Nk|d − 1, Nd − 1, Nw|k − swi, Nk − si. Because xΓ(x) = Γ(x + 1), Γ(x+1)
Γ(x)

= x.

After canceling terms, we have

∏
k Γ(Nk|d+αk)

Γ(Nd+
∑

k αk)
·
∏

w Γ(Nw|k+swi+βw)

Γ(Nk+si+
∑

w βw)∏
k Γ(Nk|d+αk−1)

Γ(Nd+
∑

k αk−1)
·
∏

w Γ(Nw|k+βw)

Γ(Nk+
∑

w βw)

=
Nk|d + αk
Nd +

∑
k αk
· Γ(Nk +

∑
w βw)

Γ(Nk + si +
∑

w βw)
·
∏
w

Γ(Nw|k + swi + βw)

Γ(Nw|k + βw)

The posterior on θ and φ using the fact that the Dirichlet is conjugate to the

multinomial.

φ|z, w, β ∼ Dir(Nk + β)

θ|z, w, α ∼ Dir(Nd + α)

Evaluating the posterior mean of θ and φ:

E[φw|k|z, w, β] =
Nw|k + βw
Nk + V βw

E[θk|d|z, w, α] =
Nk|d + αk
Nd +Kαk
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APPENDIX B

UNDERSTANDING THE RELATIONSHIP BETWEEN
THE CONSTRUCTS OF COMMUNICATION

INTELLIGENCE AND SKILLS IN THE CONCEPTUAL
SOCIAL DELIBERATIVE SKILL FRAMEWORK

Table B.1: The correspondence between intelligence-

embodied communication skills and skills contained in

the social deliberative skill framework

Communication

Intelli-

gence

Skill

Con-

structs

Social Delib-

erative Skills

(SDS) and

Other Speech

Acts

Definitions provided by SDS

1. Connect Q INTERL Asking questions to discover

more about a single interlocu-

tor’s thoughts or feelings (curios-

ity)(see Stromer-Galley Directive

Questions.

REF INTERL Referencing what others said,

including quoting, summarizing,

and mentioning it.
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2. Proof FACT SRC Stating a fact and noting the

source in the same post.

SOURCE REF Mentioning a source, with a

pointer or quote.

3. Restraint 1 NEGEMO INT Negative emotion about inter-

locutors or dialog process.

4. Agreement AGREE Expressing agreement with inter-

locutors.

5. Appreciation APPREC Showing appreciation, gratitude,

affirmation of another’s idea or

situation.

6. Self-reflection SELF REFL Reflecting on (or commenting on)

one’s own assumptions, values,

biases, or emotions.

7. Perspective taking PERSPECTIVE Putting oneself in another’s shoes

(of an interlocutor OR a group

you are not a member of).

OTHERS THNK Assessing or reflecting on the

ideas, assumptions, values, biases

of others (individuals and groups

– generally outside of the dia-

logue).

1In this research, “restraint” is encoded as the opposite of NEGEMO INT.
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8. Monitoring MEDIATE Making suggestions about how in-

terlocutors should communicate

or how the conversation should

proceed; redirecting conversation

toward higher quality.

META CONS Highlighting agreement or con-

sensus on some point, for entire

group or part of group (not just

self and self and one other).

META CONFL Highlighting disagreement on

some point, for entire group or

part of group (not just self and

self and one other)

META SUM Summarizing the conversation –

may include both consensus and

conflict.

META CHECK Asking “how are we doing” ques-

tions or reflecting about the

whole group or context.

9. Balance WEIGH Weighing alternatives; identifying

trade-offs.
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SYSTEM System-thinking about the topic

(not the dialogue). Introducing

(for the first time in a dialog) a

larger set of concerns in: time; ge-

ography; causality; level; part-to-

whole systems. Moving the con-

versation from individual exam-

ples and factors to more inclusive

or big picture systems of things or

factors.

10. Plan ActPropose Proposing or suggesting action or

solution planning.
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