
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

Fall 2014

Streaming Algorithms Via Reductions
Michael S. Crouch
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Theory and Algorithms Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Crouch, Michael S., "Streaming Algorithms Via Reductions" (2014). Doctoral Dissertations. 172.
https://scholarworks.umass.edu/dissertations_2/172

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/172?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

STREAMING ALGORITHMS VIA REDUCTIONS

A Dissertation Presented

by

MICHAEL STEVEN CROUCH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2014

Computer Science

c© Copyright by Michael Steven Crouch 2014

All Rights Reserved

STREAMING ALGORITHMS VIA REDUCTIONS

A Dissertation Presented

by

MICHAEL STEVEN CROUCH

Approved as to style and content by:

Andrew McGregor, Chair

Neil Immerman, Member

Ramesh Sitaraman, Member

Marco Duarte, Member

Lori A. Clarke, Chair
Computer Science

To my parents, for their tireless support and unwavering love.

ACKNOWLEDGEMENTS

We thank an anonymous reviewer for mentioning that ideas from the pattern

matching result in Ergün et al. [41] can be applied to cyclic shifts in the time-series

model without requiring a second pass (§2.5). We also thank Graham Cormode for

suggesting a simplification to the cyclic shift algorithm presented in §2.5.2.

v

ABSTRACT

STREAMING ALGORITHMS VIA REDUCTIONS

SEPTEMBER 2014

MICHAEL STEVEN CROUCH

B.S., CARNEGIE MELLON UNIVERSITY

B.S., CARNEGIE MELLON UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McGregor

In the streaming algorithms model of computation we must process data “in

order” and without enough memory to remember the entire input. We study reduc-

tions between problems in the streaming model with an eye to using reductions as an

algorithm design technique. Our contributions include

• “Linear Transformation” reductions, which compose with existing linear sketch

techniques. We use these for small-space algorithms for numeric measurements

of distance-from-periodicity, finding the period of a numeric stream, and de-

tecting cyclic shifts.

• The first streaming graph algorithms in the “sliding window” model, where we

must consider only the most recent L elements for some fixed threshold L. We

develop basic algorithms for connectivity and unweighted maximum matching,

then develop a variety of other algorithms via reductions to these problems.

• A new reduction from maximum weighted matching to maximum unweighted

matching. This reduction immediately yields improved approximation guar-

vi

antees for maximum weighted matching in the semistreaming, sliding window,

and MapReduce models, and extends to the more general problem of finding

maximum independent sets in p-systems.

• Algorithms in a “stream-of-samples” model which exhibit clear sample vs. space

tradeoffs. These algorithms are also inspired by examining reductions. We pro-

vide algorithms for calculating Fk frequency moments and graph connectivity.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Notation . 2

1.1.1 `p norms . 2

1.2 The Streaming Model: History . 4
1.3 The Data Stream Model . 5

1.3.1 Numeric Streams . 5
1.3.2 Linear Sketches . 6
1.3.3 Graph Streams. 8
1.3.4 Approximation and Randomization . 9
1.3.5 Sampling Problems . 9

1.3.5.1 Streaming Example: `p Sampling . 9

1.4 Example Reduction in the Streaming Model . 10

1.4.1 Precision Sampling: `1-Sampling Reduces to Heaviest
Hitter . 10

1.5 Contributions . 12

1.5.1 Linear Transformation Reductions . 12

viii

1.5.1.1 Periodicity Results . 13

1.5.2 Polylog-parallel Reductions . 14
1.5.3 Sliding Window Model . 15
1.5.4 Weighted Matching . 17
1.5.5 Sampling vs. Space . 18

1.6 Other Reduction Models . 19
1.7 Chernoff-Hoeffding Bounds . 20
1.8 Organization . 22

2. PERIODICITY . 23

2.1 Introduction . 23

2.1.1 Results and Related Work . 25
2.1.2 Notation . 27
2.1.3 Precision . 27

2.2 Fourier Preliminaries and Choice of Distance Function 27

2.2.1 Discrete Fourier Transform and Sketches . 27
2.2.2 Choice of Distance Function . 28

2.3 Reductions Using the Discrete Fourier Transform . 30

2.3.1 Distance from Fixed Periodicity . 30
2.3.2 Determining Perfect Periodicity: Noiseless Case 32
2.3.3 Determining Perfect Periodicity: Noisy Case 34

2.3.3.1 Fourier Sampling . 34
2.3.3.2 Application to the Noiseless Case . 36
2.3.3.3 Application to the Noisy Case . 36

2.4 Distance from Fixed Periodicity . 37
2.5 Cyclic Shifts . 40

2.5.1 Time-Series Model . 40
2.5.2 Cyclic Shift Distance . 41

2.6 Conclusion . 42

3. SLIDING WINDOW GRAPH STREAMS . 43

3.1 Introduction . 44

3.1.1 Sliding-Window Model . 44

ix

3.1.2 Results . 44

3.2 Connectivity and Graph Sparsification . 45

3.2.1 Algorithm . 46
3.2.2 Analysis . 46
3.2.3 Applications: Bipartiteness and Graph Sparsification 47

3.2.3.1 Bipartiteness . 47
3.2.3.2 Graph Sparsification . 48

3.3 Matchings . 48

3.3.1 Maximum Cardinality Matching . 48

3.3.1.1 Smooth Histograms . 49
3.3.1.2 Matchings are Almost Smooth . 49
3.3.1.3 Space Usage . 53
3.3.1.4 Approximation Factor . 53

3.3.2 Weighted Matching . 54

3.4 Minimum Spanning Tree . 54
3.5 Graph Spanners . 55
3.6 Conclusions . 57

4. MATCHING . 58

4.1 Introduction . 58
4.2 Definitions and Results . 59

4.2.1 Independence Systems . 59
4.2.2 Streaming Reductions . 60
4.2.3 Main Result . 61

4.3 Algorithm . 62
4.4 Extensions . 63
4.5 Lower Bounds for Graph Matching . 65
4.6 Conclusion . 67

5. SAMPLE VS. SPACE COMPLEXITY . 69

5.1 Introduction . 69

5.1.1 Sufficient Statistics and Data Streams . 70
5.1.2 Subsampling vs. Supersampling . 70
5.1.3 Results . 71

x

5.2 Frequency Moments . 71

5.2.1 Warm-Up: F2 Estimation . 72
5.2.2 Technique: `2-Sampling in the IID model . 72

5.2.2.1 Frequency Moments Algorithm and Analysis 74

5.3 Connectivity . 77

5.3.1 Technique: Emulating Classical Random Walks 77

5.3.1.1 An Inefficient Connectivity Algorithm. 78
5.3.1.2 The Loopy Graph and an Improved Analysis 78
5.3.1.3 Multiple Independent Random Walks 78
5.3.1.4 Issue 1: Multiple Walks can use a Sampled Edge 79
5.3.1.5 Issue 2: Negative Correlation . 80

5.3.2 Connectivity Algorithm and Analysis . 82

5.3.2.1 Finding Small Components . 83
5.3.2.2 Checking Mutual Connectivity . 84

5.4 Lower Bound . 85

6. CONCLUSIONS . 87

BIBLIOGRAPHY . 88

xi

LIST OF TABLES

Table Page

1.1 Approximation factor improvements over previous results. 18

3.1 Single-pass, semi-streaming results. 45

4.1 Approximation factor improvements over previous results. 64

xii

LIST OF FIGURES

Figure Page

1.1 Linearity allows distributed processing. 8

1.2 Linear sketches can be combined with linear transformation
reductions. 13

1.3 A parallel non-adaptive Turing reduction from problem A to problem
B . 15

3.1 A graph with Opnq nodes where Lemma 3.3.2 is tight. 51

4.1 Block diagram of the weighted matching algorithm. 60

4.2 Graph with output weight 1 and optimum matching weight 4´ 2ε. 66

4.3 A graph which, when extended upwards, approaches approximation
ratio 3.5. 67

xiii

CHAPTER 1

INTRODUCTION

The advent of “big data” requires us to develop new algorithmic techniques and

to contend with new restrictions in our computational models. The “streaming al-

gorithms” model captures two of the most important of these restrictions. In this

model, we have only one-way access to a very large input, and we do not have enough

random-access memory space to store the entire input at once.

Within the umbrella of “streaming algorithms” there are a wide variety of spe-

cific models, techniques, and problems. Some streaming algorithms are very general;

algorithms which can be phrased as linear “sketches” of the data, for instance, are

applicable not only in single-processor settings, but in parallel settings, distributed

sensor networks, and compressed sensing applications. Other algorithms may be ap-

plicable only in a specific model (e.g. when processing is done by a single processor),

or for a restricted class of inputs (e.g. non-negative numbers).

In algorithmic development within all of the streaming settings, reductions between

problems have played a central role. A reduction from problem A to problem B is

simply a “computationally easy” way of solving A, given an efficient way of solving

instances of problem B. It is a way of using B “as a subroutine” to do “most of

the work” involved in A. Of course, using one problem as a subroutine in solving

another is one of the most fundamental ideas in algorithm development, but in the

field of streaming algorithms these subroutines are often particularly clear, and many

different problems are often solved by reductions to a few important “primitives”.

1

Streaming reductions have played a vital role in the development of new streaming

algorithms, and in adapting existing algorithms to new computational models. Many

results in the streaming literature are already phrased in terms of informal “reduc-

tions” between problems. Unfortunately, their study as formal objects has lagged

behind their application.

In this thesis, we present new algorithms for problems in data stream models.

These algorithms are primarily inspired by examining reductions which preserve

streaming resources (particularly memory space and per-item processing time).

1.1 Notation

We write rns for the set {0, 1, 2, . . . , n´ 1}.

For functions fpnq, gpnq, we write fpnq “ Õpgpnqq when there is a constant k such

that fpnq “ Opgpnq logk nq. When fpnq “ Oplogk nq for some constant k ě 0 we will

say that fpnq is Oppolylog nq, or simply that fpnq is polylog n.

We denote vectors in boldface, e.g. a “ a1a2 . . . an. Unless otherwise noted, when

a vector is length n, we assume that each element of the vector can be represented

by Oplog nq bits. Thus, integers are bounded in size by some polynomial in n, and

real numbers are represented to within some precision polynomial in n.

For a true/false statement ϕ, let 1rϕs be the 0–1 indicator function which is 1

exactly when ϕ is true.

1.1.1 `p norms

The `p-norms, where p ě 0, are a set of length measures for finite-length vectors.

(When p P r0, 1q, the measure is technically not a “norm”, but is still well-defined).

Given a length-n vector x “ x1 . . . xn, we define

‖x‖p “ `ppxq ,

(
n∑
i“1

|xi|p
)1{p

(1.1)

2

Particularly important norms include the `1 norm (or Manhattan distance), which

gives us

‖x‖1 “ `1pxq ,
n∑
i“1

|xi| (1.2)

and the `2 norm (or Euclidean distance), which gives us

‖x‖2 “ ‖x‖ “ `2pxq ,

√√√√ n∑
i“1

|xi|
2. (1.3)

We define `0 as the number of nonzero elements; if we take 00 “ 0 we can write

‖x‖0 “ `0pxq ,
n∑
i“1

|xi|0 (1.4)

Used as a distance measure, the `0 norm induces the Hamming distance.

We also define the uniform norm, maximum norm, or `8 norm as

‖x‖
8
“ `8pxq , max

i
|xi| (1.5)

As we might hope from the notation, we have

`8pxq “ lim
pÑ8
‖x‖p (1.6)

Rather than the `p norms, work in the literature sometimes refers to the frequency

moments Fp, defined by

Fppaq “ `ppaq
p p ‰ 0 (1.7)

F0paq “ `0paq (1.8)

3

1.2 The Streaming Model: History

The history of the streaming model has been well documented by several recent

theses. We provide a summary of the relevant events here; the reader is recommended

to examine McGregor 2007 [82, Chapter 1] and Nelson 2011 [93, Chapter 1] for further

details.

Requiring that a Turing machine perform “on-line” processing of its inputs was a

natural extension of early language-recognition problems, and was studied by several

early papers [99, 79, 63]. Later, the class 1-L was defined formally, comprising Turing

machines with a logarithmic amount of workspace and an input head capable of

moving in only one direction [58, 59].

Tantalizingly, 1-L machines were introduced specifically as a model of reductions,

in the hope of providing a “more refined tool for studying the feasible complexity

classes” than polynomial-time or logarithmic-space reductions [58]. Unfortunately,

streaming reductions proved a poor tool for studying non-streaming complexity; the

“fine structure” of classes within polynomial time was more fruitfully studied by

reductions defined in terms of small circuits (see, e.g., [102]) or simple logical formulas

(see, e.g., [64]).

In the decades that followed several algorithms appeared which we would now rec-

ognize as being in the streaming model. In 1975, Morris developed a probabilistic al-

gorithm for approximately counting m events using a register with space Oplog logmq

(published in 1978 as [88]). In 1978, Munro and Paterson gave a two-pass algorithm

for finding the median of m numbers with space Op
√
m logmq [90]. Flajolet and

Martin described a single-pass probabilistic approximation algorithm for calculating

the number of distinct elements in a list where possible elements range over the set

{1, . . . , d} with space Oplog dq bits of space in 1983 [48].

The importance of sublinear memory models became clearer as internet data began

to outstrip the memory capacity of single machines. In 1996, Alon, Matias, and

4

Szegedy developed a small-space algorithm for estimating frequency moments of a

data stream [4]; this algorithm has since been called the “tug-of-war sketch”. The

paper was awarded the Gödel Prize in 2005.

1.3 The Data Stream Model

In all models of streaming algorithms, we are interested in performing calculations

without having enough memory to store the entire input, and with only one-way access

to the input1. The restrictions in this model have led to many successes in analyzing

streaming algorithms; in particular, explicit lower bounds are far more common in

streaming algorithms than in classical computation.

The restrictions in our model come at a cost, however. Many problems are known

to be feasibly solvable only in randomized approximation versions. The complexity

of problems may vary depending on seemingly small choices about how the input is

represented. In this section, we discuss input models and approximation guarantees.

For problems where our input is a vector of n numbers, many problems of interest

can be solved using space Oppolylog nq. For problems where our input forms the edges

of an n-node graph, there are Ωpnq lower bounds for many natural problems [45], but

there are many interesting algorithms using space Opn polylog nq.

1.3.1 Numeric Streams

For numeric problems, we are interested in calculating properties of some under-

lying vector a “ a1 . . . an. We will consider three different models of how the stream

might define this vector, following the terminology of Muthukrishnan [91, pg. 12–13].

1For some applications, it is appropriate to consider algorithms which receive a small number of
one-way “passes” over the data. Multi-pass algorithms are particularly appropriate for applications
such as large database algorithms, where the choice to use streaming algorithms may reflect the
better caching behavior of in-order memory access. In this work, however, we restrict ourselves to
single-pass algorithms.

5

In the time series model, our input stream is simply the underlying vector,

presented in order. We read elements a1, a2, . . . , an. Slightly more general is

the permutation model where coordinates of a may arrive out of order, i.e., S “

〈pπp0q, aπp0qq . . . pπpn´ 1q, aπpn´1qq〉, for some permutation π of {0, . . . , n´ 1}.

The most general model we consider is the turnstile model, where instead of

reading a directly, we read a series of “update operations” to a (which is initially the

zero vector). The input stream consists of a series of m pairs 〈k1, z1〉, . . . , 〈km, zm〉,

with ki P rns and zi P R; informally each pair 〈k, z〉 has the meaning “increment ak

by z”. We will often write these updates as ak += z.

Note that a time series input can always be viewed as a permutation input where

the inputs happen to occur in order2. Similarly, a permutation input can always

be viewed as a turnstile input where each element happens to occur exactly once.

Turnstile algorithms are thus the most general, since they can always be used to

solve problems on permutation or time series inputs.

The converse is not true: there do exist problems which are harder in the turn-

stile model than the time series model. For example, calculating an `p norm ‖a‖p “

(
∑

i|ai|
p)

1{p
is trivial in the time series or permutation models, because we can main-

tain a running total of
∑

i|ai|
p. In the turnstile model, this is provably harder [4];

intuitively, the effect of an update ak += z on
∑

i|ai|
p depends on the previous value

of ak.

1.3.2 Linear Sketches

One of the basic classes of algorithms used in the streaming model is the linear

sketch. Linear sketches work for the general case of turnstile inputs, and are common

2Technically, to turn a time series input into a permutation input we must also annotate each
element with its position number. We can keep track of our current position using space Oplog nq,
which will typically not affect our results.

6

in compressed sensing. A good review of linear sketch techniques is Gilbert / Indyk

2010 [51].

In a linear sketch algorithm we choose, perhaps randomly, some linear transfor-

mation T from Rn onto a space Rs with much smaller dimension (s ! n). Storing the

post-transformation vector Ta then requires storing s elements.

â1

...

âk

 “

T11 T1n

...
...

Tk1 Tkn

a1
...
...
...
an

 (1.9)

If our quantity of interest can be approximately reconstructed from Ta, this yields

a natural turnstile algorithm. Letting êk denote the unit vector which is 1 in the coor-

dinate k, an input update ak += z has the effect a += zêk. If we have been maintaining

Ta, then by linearity we must simply take Ta += zT êk.

Linearity is a powerful property which allows us to combine the sketches of mul-

tiple input streams to obtain a sketch of the total, enabling distributed processing

(Figure 1.1). In a distributed sensor network, for example, each sensor could perform

a sketch of its local observations, and communicate only that small sketch to a central

processing node. The central node can sum the sketches together to obtain a sketch

of the sum of all measurements.

For many functions, such as quantiles and heavy hitters [31], distinct items [72],

and `1 and `2 norms [65], linear sketches exist where k is only polylogarithmic in n.

Of course, it would still defeat the object of small-space computation if the algorithm

needed to explicitly store a random k ˆ n matrix. Instead the random matrices of

interest are constructed either using limited independence or via a pseudo-random

generator, e.g., Nisan [94]. Either way, the relevant entries can be reconstructed from

some small seed as required.

7

Linear
SketchInput Output

Postprocessing+

(a)

Linear
SketchInput
Linear
Sketch

Linear
Sketch

+
Output

Postprocessing

(b)

Figure 1.1: Linearity allows distributed processing. Instead of sketching the sum of
multiple streams (a), we can perform the sketch of each stream (b), and sum the
sketches (which are of much lower dimension that the original signal).

1.3.3 Graph Streams

For graph data, we typically assume that there is an underlying set of n nodes

(for known n) and that the input stream defines the edge relation on the graph.

Almost all of the previous work on processing graph streams considered what is

sometimes referred to as the partially-dynamic case, where the stream consists simply

of a sequence of edges 〈e1, e2, e3, . . .〉, and the graph being monitored consists of the set

of edges that have arrived so far. In other words, the graph is formed by a sequence

of edge insertions. Over the last decade, it has been shown that many interesting

problems can be solved using Opn polylog nq space, where n is the number of nodes

in the graph. This is referred to as the semi-streaming space restriction [45].

8

1.3.4 Approximation and Randomization

Approximation problems are particularly important in the streaming setting, where

many problems provably cannot be solved exactly in small space. Consider the

case where, given an input X, we are interested in some real-valued function fpXq

which is difficult to calculate exactly. We may still be able to create an algorithm

which, given some approximation parameter ε, outputs some number f̂pXq such that

f̂pXq P p1˘ εqfpXq.

In a typical randomized approximation algorithm, we must choose two parame-

ters before running the algorithm: an acceptable failure probability δ ą 0, and an

approximation accuracy ε ą 0. Our algorithm uses more resources as δ and ε become

smaller. A typical streaming algorithm might use space proportional to Oplog 1
δ
q and

Oppoly 1
ε
q.

1.3.5 Sampling Problems

In sampling problems, each input x P {0, 1}n corresponds to some probability

distribution Dx over polypnq-bit strings. We are to output a sample drawn from this

distribution. For example, given an input representing a graph, we might be asked

to select a node at random, selecting each node with probability proportional to its

degree.

We are most often interested in approximation versions of sampling problems:

given an input x and a parameter ε ą 0, we are to output samples from some proba-

bility distribution D1x with distance ‖Dx ´D
1
x‖ ď ε. The distance measure used may

vary, and will be specified; typically measurements include the total variation distance

and the `0 distance (the maximum probability difference for any atomic event).

1.3.5.1 Streaming Example: `p Sampling

A general sampling problem in the streaming setting is to choose an element of

the underlying vector with probability proportional to its size (in some measure). In

9

the exact Lp sampling problem, we are to output each index i with probability

Pr[sample i] “
api
‖a‖pp

. (1.10)

We will typically consider the approximate case, which we will simply call Lp

sampling. For a parameter ε, our samples must be output from some distribution

which has, for each i,

Pr[sample i] “
api
‖a‖pp

p1˘ εq . (1.11)

1.4 Example Reduction in the Streaming Model

Many results in the streaming literature are already phrased in terms of informal

“reductions” between problems. Formalizing these models of reductions has suggested

new algorithms, and has helped us extend existing algorithms to new models of com-

putation. In this section, we present an example of streaming reductions used in the

literature to describe an algorithm.

1.4.1 Precision Sampling: `1-Sampling Reduces to Heaviest Hitter

Precision sampling was introduced in [7]. Some of our analysis will also follow [71],

which found space improvements over the original algorithm and which extended the

algorithm to the p P p0, 1q case. We will show a reduction from `1 sampling onto

Heaviest Hitter; the analysis of the other reductions is similar.

The Heaviest Hitter problem is the problem of determining the location and mag-

nitude of the largest element in a numeric stream. In the exact version of the Heaviest

Hitter problem, we would wish to return the index i corresponding to the largest ele-

ment ai. An approximation version of Heaviest Hitter was introduced in [26] (where

it was referred to as “ApproxTop”). If i is the index of the largest element ai, then

in the Heaviest Hitter problem we are responsible for outputting the index of any

10

element j with aj ą p1 ´ εqai. (It is acceptable to output any element which is

“approximately” as large as the largest element).

Of relevance here is the fact that space-efficient streaming algorithms are well-

known in the streaming model. Berinde et al. 2010 [19] presents provably space-

optimal randomized algorithms, with a summary of existing work. The summary

paper Cormode / Hadjieleftheriou 2009 [30] is very good for `1-heavy-hitters.

Approximate `1 sampling is the problem of returning an index i with some prob-

ability in the range

Pr[accept i] P
|ai|
‖a‖1

p1˘ εq (1.12)

The Precision Sampling technique shows a reduction from approximate `1 sam-

pling onto Op1
ε
q parallel copies of Heaviest Hitter. Each of the copies will have only

probability Opεq of returning a sample; however, conditioned on having returned a

sample, the sample has been drawn from the correct distribution (1.12). By running

Op1
ε
q of these Heaviest Hitter calculations in parallel, we can guarantee that a sample

is returned with high probability.

We will assume that 1
2
ď ‖a‖1 ď 1. This is not a limitation, since we can use

a standard sketch to store a value r with ‖a‖1 ď r ď 2‖a‖1, and then consider the

vector 1
r
a. All of our algorithm can be scaled in this way during reconstruction.

Consider an input vector a “ a1 . . . an. For each i P rns, we choose (pairwise

independently) some ui PR r0, 1s. We will use our heaviest-hitter structure to store

the stream ai
ui

for each i. (Equivalently, when our reduction reads an input stream

element ai +=∆, it outputs a stream update ai +=
∆
ui

). At the end of the algorithm,

we find a heaviest hitter j and the amplitude
aj
uj

. We will accept j as our sample iff

we have
aj
uj
ě 1

ε
.

The analysis proceeds by analyzing indicator variables

11

si ,

1 |ai|

ui
ě 1

ε
‖a‖1

0 o.w.

(1.13)

We have that

Pr[si] “ Pr

[
|ai|
ui
ě

1

ε
‖a‖1

]
(1.14)

“ Pr

[
ui ď ε

|ai|
‖a‖1

]
(1.15)

“ ε
|ai|
‖a‖1

(1.16)

An item j is accepted as our sample iff we have sj and we have no sj1 for any

j1 ‰ j. We thus obtain that

εp1´ εq
|ai|
‖a‖1

ď Pr[i accepted] ď ε
|ai|
‖a‖1

(1.17)

and that

Pr[accept any] ě ε (1.18)

Running Op1{εq copies of the algorithm in parallel thus gives us a sample from

the desired distribution.

1.5 Contributions

1.5.1 Linear Transformation Reductions

Because many streaming sketch algorithms are linear, and because linear sketches

have many desirable properties, a natural class of reductions to consider is linear

transformations. Linear transformations are particularly desirable as reductions be-

cause they can be composed with linear sketch matrices (Figure 1.2). By applying

the linear transformation to each sketch matrix, we obtain one matrix which performs

the linear transformation and the sketch.

12

Linear
Sketch

PostprocessingLinear
Transform Linear

Sketch

Linear
Sketch

Linear
Sketch

(a)

Transform
and Sketch

PostprocessingTransform
and Sketch

Transform
and Sketch

Transform
and Sketch

(b)

Figure 1.2: Linear sketches can be combined with linear transformation reductions. If
a reduction’s preprocessing step is a linear transformation (a), we can instead compose
the linear transformation matrix with each sketch matrix (b).

Our work defines the class of linear transformation reductions, and uses them to

find algorithms for problems relating to detecting repeating patterns in data streams.

1.5.1.1 Periodicity Results

In Chapter 2, we use linear transformation reductions to study the problem of

identifying periodic trends in streams of numerical data. Previous work considered

signals defined in the time series model; by using linear transformation reductions, we

presented the first algorithms for identifying periodic trends in the turnstile model.

13

We say a signal a P Rn is p-periodic if it can be expressed as a concatenation

a “ x ˝ . . . ˝x ˝x1 for some x P Rp and some x1 P Rn´pbn{pc that is a prefix of x. Given

a signal a P Rn, we define the distance to p-periodicity as

Dppaq , min
y p-periodic

‖a´ y‖2 (1.19)

where ‖v‖2 “
√
v2

1 ` ¨ ¨ ¨ ` v
2
n denotes the `2 norm (§1.1.1) of the vector v P Rn.

Theorem 2.4.2 presents an Opε´2 polylog nq-space turnstile algorithm to approxi-

mate Dppaq for any p.

The problem of detecting approximate periodicity for unknown periods is more

subtle to define. For example a signal which is close to being 3-periodic is at least as

close to being 6-periodic. In §2.3.3 we present an algorithm which achieves a natural

“gap promise” guarantee: given ϕ, ε with 0 ă ϕ ă ε ă 1, it returns a period p � n

with

Dppaq ď ε‖a‖2 and p ď min{q � n : Dqpaq ď pε´ ϕq‖a‖2} (1.20)

In §2.5, we consider the related problem of determining whether two sequences are

approximate cyclic shifts of each other, e.g., given length-n sequences a,b we wish

to determine whether b “ as`1as`2 ¨ ¨ ¨ ana1 ¨ ¨ ¨ as. Defining the cyclic shift distance

as the minimum `2 distance (§1.1.1) between a and any cyclic shift of b, we present

a randomized turnstile algorithm for p1 ` εq-approximating cyclic shift distance in

space Opε´2
√
n polylog nq (Theorem 2.5.1).

1.5.2 Polylog-parallel Reductions

A more general reduction from problem A to problem B is to allow problem

A to construct the inputs for some polylogarithmic number of parallel instances of

problem B (Figure 1.3). This preserves polylogarthmic space and per-update time

14

Minimal
Preprocessing

B

B

B

B

…
…

.

Minimal
Postprocessing

Input for A Output from A

Figure 1.3: A parallel non-adaptive Turing reduction from problem A to problem B.
We typically allow a polylogarithmic number of copies of B.

(since “polylogarithmic” is closed under composition). A version of these reductions

appeared in Bar-Yossef / Kumar / Sivakumar 2002 [16], and many streaming algo-

rithms are informally defined in terms of such reductions. Our contributions are to

use these reductions explicitly in the creation of new algorithms in several streaming

models.

1.5.3 Sliding Window Model

The sliding-window model, introduced by Datar et al. [35], has become a popular

model for processing infinite data streams in small space when the goal is to compute

properties of data that has arrived in the last window of time. Specifically, given an

infinite stream of data 〈a1, a2, . . . 〉 and a function f , at time t we need to return

an estimate of fpat´L`1, at´L`2, . . . , atq. We refer to 〈at´L`1, at´L`2, . . . , at〉 as the

active window where L is length of this window. The length of the window could

correspond to hours, days, or years depending on the application. The motivation is

that by ignoring data prior to the active window, we focus on the “freshest” data and

can therefore detect anomalies and trends more quickly. Existing work has considered

estimating various numerical statistics and geometric problems in this model [22, 21,

15

9, 46, 10, 12, 11], as well as developing useful techniques such as the exponential

histogram [35] and smooth histogram data structures [22, 21].

Our work initiates the study of processing graphs in the sliding-window model,

where the goal is to monitor the graph described by the last L entries of a stream

of inserted edges. We present three basic algorithms in this model, and then use

reductions to these algorithms to solve several other problems.

In §3.2 we present a deterministic sliding window algorithm which maintains the

most recent k edges across every cut in a graph, using space Opkn log nq. This al-

gorithm allows us to directly solve the problem of network k-edge-connectivity, i.e.,

determining whether a graph would remain connected when any k ´ 1 edges are

removed.

Using reductions to this algorithm, we solve several additional problems in the slid-

ing window model. Theorem 3.2.3 presents a deterministic sliding-window algorithm

for testing whether the graph formed by the most recent L edges is bipartite, using

space Opn log nq. Theorem 3.4.1 presents a deterministic sliding-window algorithm for

maintaining a p1` εq-approximate minimum spanning tree in weighted graphs, using

space Opε´1n log2 nq. Theorem 3.2.4 presents a randomized sliding-window algorithm

which uses space Opε´2n polylog nq to maintain a p1` εq-sparsifier of the active win-

dow, i.e., a sparse weighted subgraph which maintains a 1 ` ε approximation of the

weight across every cut.

The second fundamental problem we address in the sliding window model is main-

taining a maximum-cardinality matching3 in an unweighted graph. In §3.3, we adapt

the powerful “smooth histograms” technique of Braverman and Ostrovsky [22, 21]

to provide a sliding-window algorithm which maintains, at all times, a p3 ` εq-

3A matching in a graph is a set of edges where no two edges have any vertex in common.

16

approximation of the maximum cardinality matching in the active window, using

space Opε´1n log2 nq (Theorem 3.3.3).

We also present an algorithm for graph spanners: finding a sparse subgraph of the

edges which approximately preserves the distance between any pair of points. Our

algorithm provides a spanner of stretch p2t ´ 1q using space OpL1{2np1`1{tq{2q. We

then generalize to provide a spanner of stretch p2t´1qk for integer k ě 1, using space

OpLnq

1.5.4 Weighted Matching

The problem of finding maximum-weight matchings in the semi-streaming model

has seen a great deal of attention since it was first introduced in [45], which gave

a 6-approximation. This was improved to a 5.828-approximation in [81]; a 5.585-

approximation in the [104]; and finally the current best, a 4.911 ` ε-approximation

in [40]. Other work has looked at generalizations of matching to submodular-function

matching [25], and at maximum weighted matching in the map reduce model [78].

In Chapter 4 we develop a reduction from maximum weighted matching to max-

imum unweighted matching. The structure of our reduction is related to [40], a

streaming algorithm for maximum weighted matching. That algorithm partitions

incoming edges into multiplicatively spaced weight classes and calculates a greedy

matching on the edges within each weight class. At the end of the stream, they

greedily merge the greedy matchings from largest to smallest.

Our algorithm uses weight classes that have lower bounds but not upper bounds,

so classes that admit smaller edges are subsets of all the “more exclusive” classes. This

gives rise to a better approximation and to a more broadly applicable proof, allowing

us to address a generalization of the problem: finding maximum-weight independent

sets in p-systems. p-systems are a type of independence system which generalize both

matching on p-bounded hypergraphs and intersections of p matroids.

17

Problem Model Previous Ref This Work

MWM One-pass streaming 4.911 [40] 4
MWM One-pass sliding window 9.027 [33] 6
MWM Map-reduce 8 [78] 4

3-MWM One-pass streaming 9.899 [25] 9
2-MWIS One-pass streaming 8 [25] 4
3-MWIS One-pass streaming 9.899 [25] 9

Table 1.1: Approximation factor improvements over previous results. ε factors have
been omitted. MWM is the “maximum weighted matching” problem; “MWIS” is the
“maximum weighted independent set” problem.

The reduction works in the streaming model and in several related models, and

improves the best known algorithms for many matching problems. These are sum-

marized in Table 1.1.

1.5.5 Sampling vs. Space

In Chapter 5, we consider an alternative streaming model, where our input is a

stream of independent samples (with replacement) from some underlying distribution.

We examine the trade-offs between the number of samples we must take from the

distribution and the amount of memory space allowed to process these samples. This

provides a trade-off between two well-studied quantities:

1. The statistics question is how to bound the sample complexity : how many

samples are required to estimate fpDq to some prescribed accuracy with high

probability?

2. The data stream question is how to bound the space complexity : how much

memory is required to compute or approximate the estimator for fpDq?

The model can also been seen as an extension of the field of sufficient statistics [47]

to the study of quantities which suffice to maintain approximate information about a

distribution.

18

Similarly to the sliding windows model, we study this new model by develop-

ing a few algorithmic primitives and then using reductions to easily get additional

algorithms.

We begin with a primitive for the F2 moment (equivalently, the Euclidean norm

of the input). We use reductions to this primitive to show that the Fk moment for

k ě 2 can be estimated using s space and t samples where

s ¨ t “ Õεpn
2´2{k

q (1.21)

for any t “ Ωpn1´1{kq.

Similarly, we study a “random walk” sampling primitive, and use these walks to

implement a graph connectivity tester. For a graph with n nodes and m edges, we

show that connectivity can be determined with high probability using s space and t

samples for

s2
¨ t “ Õpnm2

q (1.22)

for any t “ Ωpm logmq.

1.6 Other Reduction Models

Other work on defining streaming reductions has focused primarily on decision

problems (as opposed to numeric-valued / “function” problems). We briefly recall

this work here.

Magniez et al. 2010 [80] defines streaming reductions as a sort of generalization of

string homomorphism; each character in the first stream is translated into some fpnq

characters on the second stream. Their focus is on language-membership problems

over a finite alphabet, which only works well for decision problems. They describe

probabilistic reductions, but do not examine approximation.

19

A modification of these reductions are used to examine streaming algorithms for

recognizing various subclasses of the context-free languages in [14].

Ganguly [50] defines space-bounded stream automata, in the context of proving

lower bounds for some deterministic streaming algorithms. This analysis uses a de-

terministic Turing machine with a two-way work tape and a one-way input tape.

After reading the input it is responsible for writing some output onto the work tape.

The work tape’s space is only bounded during the input moves. In particular, after

reading the end of the input, it’s allowed unlimited space to process the work tape

into the output.

1.7 Chernoff-Hoeffding Bounds

When a set of random variables is fully independent, we can typically obtain

very strong bounds on how far the mean of those variables is likely to be from its

expectation. There are a wide variety of these bounds in the literature; see particu-

larly Dubhashi / Panconesi 2009 [36] for bounds useful to the analysis of algorithms.

We follow their nomenclature and refer to the relatively simple form we use as the

“Chernoff-Hoeffding bound”.

Fully independent variables are “expensive” for our algorithms to use; unlike

limited-independence variables, we can’t save space by storing some small “seed”.

Luckily, the bounds we obtain are typically exponential in the number of variables

used. Many streaming algorithms work via the approximate outline of:

1. Using limited independence, store an Oppolylog nq-bit seed for a polynomial

number of random variables.

2. Use these random variables to obtain a single “atomic” estimator for some

desired quality.

20

3. Use the Chernoff-Hoeffding bound to argue that only Oppolylog nq fully inde-

pendent copies of the atomic estimator are necessary to yield a good estimate

of the desired quality.

Fact 1.7.1 (Chernoff-Hoeffding bound). Let X1, X2, . . . , Xn be independent random

variables bounded by 0 ď Xi ď 1, and let X “
∑

iXi. Then for any t ě 0 we have:

Pr
[
X ď E[X]´ t

]
ď e´2t2{n (1.23)

Pr
[
X ě E[X]` t

]
ď e´2t2{n (1.24)

(See [36, (1.6)] for reference).

From this, we obtain a bound which will be helpful in the analysis of several of

our algorithms, on the number of repetitions necessary to distinguish between two

Bernoulli distributions:

Lemma 1.7.2. Fix known p, q with 0 ď p ă q ě 1. Assume we are drawing

independent samples from a Bernoulli (0/1) distribution with some unknown success

probability r; we are guaranteed that either r ď p or r ě q, and we are to determine

which is the case.

In order to make this determination with error probability ď δ, it will suffice to

draw 2 log δ´1

pq´pq2
samples from the distribution.

Proof. We proceed by taking n samples from the distribution. Let X1, X2, . . . , Xn be

the results of these samples (thus Xi P {0, 1} for 1 ď i ď n). Then let X “
∑

iXi.

If X ě
p`q

2
n, we will conclude r ě q; otherwise, we will conclude r ď p.

Consider first the case where we hold a coin with probability r ă p coin. Then

E[X] ď pn. We make an error iff X ě
p`q

2
n; using Fact 1.7.1 we have:

21

Pr[fail] “ Pr
[
X ě

p` q

2
n
]

(1.25)

“ Pr
[
X ě pn`

q ´ p

2
n
]

(1.26)

ď exp

(
´2
pq ´ pq2n2

22n

)
(1.27)

“ exp

(
´
pq ´ pq2n

2

)
(1.28)

Setting Pr[fail] ď δ then yields

exp

(
´
pq ´ pq2n

2

)
ď δ (1.29)

pq ´ pq2n

2
ě log

1

δ
(1.30)

n ě
2 log 1

δ

pq ´ pq2
(1.31)

The r ě q case is symmetric.

1.8 Organization

Chapter 2 describes algorithms for detecting periodicity and cyclic shifts in nu-

meric streams, based primarily on linear transformation reductions. Chapter 3 intro-

duces the first sliding window graph algorithms, primarily as reductions to the “prim-

itive” problems of detecting connectivity and unweighted graph matching. Chapter 4

presents a new reduction from weighted graph matching to unweighted graph match-

ing in detail, giving improved approximation guarantees in a variety of models. Chap-

ter 5 examines basic algorithms in the sampling model for sample-vs.-space tradeoffs.

Chapter 6 presents conclusions.

22

CHAPTER 2

PERIODICITY

In this chapter, we present a detailed example of novel streaming algorithms found

via a linear transformation reduction. We develop algorithms for examining the

periodicity of a streamed signal vector in both the time series and turnstile models

(§1.3.1). Many questions about periodicity reduce to `2 distance and `2 sampling

questions; the reduction in this case is typically the Discrete Fourier Transform. This

work was originally done with Andrew McGregor and was published as [32].

2.1 Introduction

We consider the problem of identifying periodic trends in data streams. Motivated

by applications in computational biology and data mining, there has recently been a

series of papers related to finding such trends in large data sets [41, 42, 66, 34, 95].

We say a signal a P Rn is p-periodic if it can be expressed as a concatenation a “

x ˝ . . . ˝ x ˝ x1 for some x P Rp and some x1 P Rn´pbn{pc that is a prefix of x. We say

a is perfectly p-periodic if a is p-periodic and p � n. Given a signal a P Rn, we define

the distance to p-periodicity as

Dppaq , min
yPPp,n

‖a´ y‖2 where Pp,n “ {y P Rn : y is p-periodic}

where ‖v‖2 “
√
v2

1 ` ¨ ¨ ¨ ` v
2
n denotes the `2 norm (§1.1.1) of the vector v P Rn. (In

§2.2.2 we discuss our choice of distance measure and observe that many of our results

23

still hold if an alternative measure is chosen.) We denote the minimum period of a

signal a P Rn by

periodpaq “ min{p : a is p-periodic} .

Previous periodicity work has considered signals defined in the time series model

(§1.3.1), e.g., the stream 〈1, 2, 3, 4〉 defines the signal a “ r1, 2, 3, 4s. However, we

wish to consider a more general setting. For example, consider a sensor network in

which each node is tasked with recording the times when certain local events occur.

These records are forwarded through the network to some central node for processing.

In this situation, there is no guarantee that the records are received in the order they

were generated. Hence, we would need an algorithm that could identify patterns

even if the records arive out of order. A yet more challenging example would be if

each sensor monitors the local temperature at each time step and we are interested

in identifying periodic trends in the average temperature. In this case, not only can

records arrive out of order but the signal will be determined by the value of multiple

records.

Next we examine estimating the period of a nearly-periodic sequence in the pres-

ence of noise. While a seemingly natural problem, defining the precise problem is

subtle. For example, should we deem the noisy signal

a “ r1, 2, 3, 1, 2, 3.5, 1, 2, 3.1, 1, 2, 3.4s (2.1)

to be 3-periodic, 6-periodic, or aperiodic? Our algorithm achieves a natural “gap

promise” guarantee: given ϕ, ε with 0 ă ϕ ă ε ă 1, it returns a period p � n with

Dppaq ď ε‖a‖2 and p ď min{q � n : Dqpaq ď pε´ ϕq‖a‖2} (2.2)

24

(Note that there is always such a p, since any length-n signal trivially has Dnpaq “ 0.)

In other words, we ensure that a is close to being perfectly p-periodic and that there

is no q ď p such that a is “significantly closer” to being perfectly q-periodic.

All of our algorithms work in the turnstile model and are sketch-based. We discuss

sketches in more detail in §1.3.2 but note here that one of their main advantages is

that they work in a distributed setting where parts of the streams are monitored at

different locations: after the stream concludes, it is sufficient to communicate only

the sketches, as these can then be merged in order to estimate the global property of

interest. This would enable data aggregation in the sensor network example outlined

above.

2.1.1 Results and Related Work

We first examine reductions using the Discrete Fourier Transform. We obtain an

Opε´2 polylog nq-space algorithm (Theorem 2.3.1) for p1` εq-appoximating Dppaq for

fixed p in the case of perfect periodicity (p divides n). This algorithm operates by

reducing Dppaq to the problem of calculating an `2 norm; the reduction is the Discrete

Fourier Transform, composed with a simple “filtering” matrix removing nonperiodic

components.

By using the above algorithm as a subroutine, we are able to determine the period

of a perfectly periodic noiseless signal (Theorem 2.3.3). This corresponds to reducing

the problem of determining the period to Oplog nq parallel `2 norm estimation prob-

lems, one for each prime or power-of-a-prime factor of n. This algorithm uses space

Oppolylog nq. In contrast, an earlier paper by Ergün et al. [41] presents a single-pass,

Oppolylog nq-space algorithm for computing periodpaq in the time-series model. Our

results generalize this result to the turnstile model although our algorithm in this

case requires that a is perfectly periodic.

25

In §2.3.3 we discuss algorithms which use the Discrete Fourier Transform to re-

duce onto sampling questions instead of norm estimation questions. We first discuss

an alternative algorithm for determining the period of a noiseless prfectly periodic

signal (§2.3.3.2), then discuss how this extends to an algorithm which works for

noisy signals and provides a natural “gap promise” guarantee (Theorem 2.3.4), using

polyplog n, ϕ´1q space. There is no analog in the recent Ergün et al. [41] paper but

an earlier result [42] in the combinatorial property-testing model can be applied in

the streaming setting if we may use Op
√
n polylog nq space.

In Theorem 2.4.2 we present an alternative Opε´2 polylog nq space algorithm that

p1` εq-approximates Dppaq for any given p (for this algorithm p need not divide the

length of the sequence). This algorithm again works by reducing Dp to an `2 distance

question, but this time via an averaging method rather than via the Discrete Fourier

Transform. We show that the bilinear sketches of Indyk and McGregor [67] can be

adapted to provide small per-update time as well as small memory usage. In contrast,

an earlier paper by Ergün et al. [41] presented an algorithm using Opε´5.5√p polylog nq

space for estimating the Hamming distance to the nearest p-periodic signal.

We conclude with a simple sketch algorithm (Theorem 2.5.1) for the related prob-

lem of identifying when two sequences are cyclic shifts of one another. This algorithm

uses Opε´2
√
n polylog nq space and has the additional feature that it actually approx-

imates how close the strings are to being cyclic shifts. Subsequent work [6] developed

sketches which determined whether two sequences were within Hamming distance t

of being cyclic shifts of each other using Oppt `Dpnqq polylog nq, where Dpnq is the

number of divisors of n. This is less space, but their algorithm does not provide an

approximation of the distance from being a cyclic shift.

26

2.1.2 Notation

Recall rns “ {0, 1, 2, . . . , n ´ 1}. In this chapter, we denote signals in lower-case

bold and their corresponding Fourier transforms in upper-case bold. For a complex

number z P C we denote the real and imaginary parts by Repzq and Impzq respectively.

Recall 1rϕs is the 0–1 indicator function which is 1 whenever ϕ is true.

2.1.3 Precision

Throughout this chapter, we will assume that the values of the signals can be

exactly stored with 1{ polypnq precision. For example, this would be guaranteed in

the turnstile model with a number of updates m “ polypnq and with each ∆j P

{´M,´M ` 1, . . . ,M ´ 1,M} for some M “ polypnq. We also assume that the

approximation parameters ε, ϕ, δ satisfy 1{ε, 1{δ, 1{ϕ P Oppoly nq.

2.2 Fourier Preliminaries and Choice of Distance Function

In this section, we review the basic definition and properties of the discrete Fourier

transform. We then discuss the utility of the transform in the context of linear sketch-

based data stream algorithms. Finally, we discuss our choice of the `2 norm as a

distance measure.

2.2.1 Discrete Fourier Transform and Sketches

Given a signal a P Rn, the discrete Fourier transform of a, denoted A “ Fpaq, is

defined as

A “ pA0, A1, . . . , An´1q where Ak “
1√
n

n´1∑
j“0

aje
2πi
n
jk .

The following proposition states some standard properties that will be of use.

Proposition 2.2.1. For any signal a P Rn,

27

1. a is perfectly p-periodic iff pAk ‰ 0 ñ n{p | kq.

2. ‖a‖2 “ ‖A‖2 (Parseval’s identity).

Of particular importance in the context of data streams is the fact that the trans-

formation from a to A is a linear transformation, i.e.,

AT
“ V aT where V P Cnˆn and Vkj “

1√
n
e

2πi
n
kj for k, j P rns . (2.3)

This is significant because many data stream algorithms are based on randomized

linear projections called linear sketches (§1.3.2). In particular, we will use linear

sketches for calculating the `2 norm of the input, from [4], and for `2 sampling,

from [87].

We will make use of the simple, but very useful, observation that rather than

estimating functions in the time domain, we may estimate these functions in the

frequency domain by combining the change of basis matrix V with the sketch matrix

W . For example, if the random sketch matrix W P Rkˆn can be used to estimate the

number of non-zero entries in a then the sketch matrix WV P Ckˆn can be used to

estimate the number of non-zero entries1 in A.

2.2.2 Choice of Distance Function

In the context of the Fourier transform and many signal processing applications,

the natural measure of dissimilarity between two signals is the `2 norm of their dif-

ference. In contrast, Ergün and coauthors [41, 42] considered a measure based on the

Hamming distance, D0
ppaq , minyPPp,n ∆pa,yq where ∆pa,yq “ |{i P rns : ai ‰ yi}|.

1To be precise, it is often necessary to separate real and imaginary parts of V . That is, we
consider W P Rkˆ2n and let V P R2nˆn have entries Vkj “ cosp2πjk{nq for k P {0, . . . , n ´ 1} and
Vkj “ sinp2πjk{nq for k P {n, . . . , 2n´ 1}. In calculating the `2 norm this causes no difficulties, but
in other cases we may need to be careful. If we counted the number of nonzero entries of V , for
example, we would find the total number of non-zero real parts and non-zero imaginary parts.

28

While different measures are suited to different applications, many of our algorithms

can also be applied to approximate the Hamming distance, at least in the permutation

model.

Suppose Σ “ {σ1, . . . , σr} and consider the mapping h from Σ Ñ {0, 1}r:

hpσq “ x1 . . . xr where for each position j, xj “

1 if σ “ σj

0 otherwise

.

The following lemma demonstrates that D0
ppaq and pDpphpaqqq

2{2 are closely related.

Hence, if each element of the sequence is first transformed using h (as is possible in the

permutation model) then the Hamming distance to periodicity can be approximated

via the `2 distance to periodicity. The approximation is by a factor close to 1 if the

sequence is close to being p-periodic. Note that we would expect this to be the more

relevant case in the sense that we would be measuring the distance from periodicity

of a nearly-periodic sequence.

Lemma 2.2.2. For any a P Σn, with Σ “ {σ1, . . . , σr}, let T paq “ pDpphpaqqq
2{2.

Then we have,

1
2

D0
ppaq ď T paq ď D0

ppaq . (2.4)

Furthermore, if a is almost periodic in the sense that at least a 1 ´ ε fraction of the

elements {aj, aj`p, . . . , aj`n´p} are identical for each j P rps, then

p1´ εqD0
ppaq ď T paq ď D0

ppaq . (2.5)

Proof. Let d “ n{p. For σ P Σ and j P rps define

γσ,j “ |{ak “ σ : p divides k ´ j}|{d (2.6)

29

and let γ‹,j “ maxσPΣ γσ,j. It follows from basic properties of `2 that

2T paq “
∑
jPrps

∑
σPΣ

dγσ,jp1´ γσ,jq
2
` dp1´ γσ,jqγ

2
σ,j “ d

∑
jPrps

p1´
∑
σPΣ

γ2
σ,jq (2.7)

whereas D0paq “ d
∑

jPrpsp1´ γ‹,jq. The RHS of the first bound follows because

1

2
´

1

2

∑
σPΣ

γ2
σ,j ď

1

2
´

1

2
γ2
‹,j ď 1´ γ‹,j ,

where the last inequality follows from pγ‹,j ´ 1{2q2 ě 0. The LHS of the first bound

follows because

1´ γ‹,j “ 1´ γ‹,j
∑
σPΣ

γσ,j ď 1´
∑
σPΣ

γ2
σ,j .

However, if γ‹,j ě 1´ ε, this can be tightened to

1´
∑
σPΣ

γ2
σ,j ě 1´ γ2

‹,j ´ p1´ γ‹,jq
2
“ 2p1´ γ‹,jqγ‹,j ě 2p1´ γ‹,jqp1´ εq .

We can also relate Dppaq to the `1 distance to the nearest p-periodic signal. For

this, consider the alphabet Σ “ {1, . . . , t}, and use the mapping hpσq “ x1 . . . xt

where xj “ 1rσ ě js. This mapping satisfies D1
ppaq “ D2

ptphpaqq, but at the cost of

increasing the length of the signal by a factor of t.

2.3 Reductions Using the Discrete Fourier Transform

2.3.1 Distance from Fixed Periodicity

We first present a small-space algorithm for measuring the distance between the

signal and the closest (under the `2 norm) p-periodic sequence, for fixed p. If a is

perfectly periodic with period p, then the Fourier transform A “ Fpaq has at most p

nonzero components. Letting d “ n{p, we know by Prop. 2.2.1 that the only non-zero

30

coordinates of A are Akd for k P {0, . . . , p ´ 1}. For the case of general a, let Xp

denote the restriction of A to the coordinates corresponding to a perfectly p-periodic

signal, i.e.,

Xp “ pA0, 0, . . . , 0, Ad, 0, . . . , 0, . . . , App´1qd, 0, . . . , 0q .

In the frequency domain, Xp is the closest Fourier transform of a period-p vector

to A. By Parseval’s theorem, F and F´1 preserve inner products and `2 distances.

Therefore, F´1pXpq is the p-periodic vector that is closest to a in the `2 distance.

This implies that

Dppaq “ ‖a´ F´1
pXpq‖2 “ ‖A´Xp‖2 “ ‖Yp‖2 “

√∑
d ffl k

|Ak|
2 . (2.8)

There is a linear transformation V : R2nˆ2n which performs the Discrete Fourier

Transform, and we can easily create a linear transformation

U P R2nˆ2n where Ukj “

1 for j “ k and d ffl j

0 otherwise

(2.9)

which “filters out” all except the p-periodic components. We then have

Dppaq “ ‖UV a‖2 (2.10)

Tug-of-War sketches [4] provide a natural linear sketch for the `2 norm of a vector.

Alon et al. showed that if the entries of a random vector z “ z0 . . . zn´1 P {´1, 1}n are

chosen with 4-wise independence then the random variable T “
∑n´1

i“0 ziai satisfies

E[T 2] “ ‖a‖2
2. They show that the estimator has sufficiently low variance that, by

averaging Opε´2 log δ´1q independent estimators, we can find a p1` εq approximation

for ‖a‖2
2 with error probability ď δ.

31

Tug-of-War sketches are linear, and take the 2n-dimensional input space onto a

k “ Opε´2 log δ´1q-dimensional sketch space (containing the independent estimators

necessary for our desired error bound). We can view the sketching process as a

matrix W P Rkˆ2n. Sketching Dppaq thus requires that we maintain WUV a. By

viewing WUV as a single k ˆ 2n sketch matrix, we obtain

Theorem 2.3.1. There is a one-pass Opε´2 log δ´1 polylog nq-space algorithm for p1`

εq-estimating Dppaq with error probability ď δ.

2.3.2 Determining Perfect Periodicity: Noiseless Case

In this and the next section we consider finding the period of a sequence that

is perfectly periodic. In this case, a possible approach to detecting periodicity with

unknown period would be to use the above algorithm to test all factors p � n and

return the minimum p such that Dppaq “ 0 (it suffices to set ε “ 1 for this purpose).

Unfortunately, in the worst case n may have dpnq “ O(expplog n{log log nq) factors

[57, pp. 260–264] and therefore this approach would take too much time and space.

However, a simple modification suffices: we check for periodicity at each prime or

power-of-a-prime factor k of n. Define the set

Kpnq “ {k : k divides n and is the power of a prime} .

We first observe that |Kpnq| ď Oplog nq (since each prime factor of n is at least 2,

we have from the prime factorization n “ pr11 p
r2
2 . . . prtt that |Kpnq| “

∑
ri ď log2 n).

The following lemma demonstrates that testing periodicity for p P Kpnq is sufficient

to determine periodpaq:

Lemma 2.3.2. For any a P Rn which is perfectly periodic,

periodpaq “ GCDpn{k : k P Kpnq and a is n{k-periodicq .

32

Proof. In this proof we will make use of two simple facts about periodicity: a) if a is

p-periodic then n is kp-periodic for any kp � n; and b) that if a is both p1-periodic

and p2-periodic then a is GCDpp1, p2q-periodic. Let p “ periodpaq and consider the

prime factorization of n,p, and g “ GCDpn{k : k P Kpnq and a is n{k-periodicq

n “ qr11 . . . qrmm , p “ qs11 . . . qsmm , and g “ qt11 . . . qtmm . (2.11)

It easy to see that for each j, 0 ď sj, tj ď rj. To prove the lemma we need to show

that sj “ tj for each j.

Consider a fixed j P rms. Let A “ {n{k : k P Kpnq and a is n{k-periodic} and

B “ {b0, . . . , brj} where

bk “ n
qkj
q
rj
j

“ qr11 . . . q
rj´1

j´1 q
k
j q

rj`1

j`1 . . . q
rm
m (2.12)

Then bk P A for sj ď k ď rj since these terms are multiples of p. On the other

hand bk R A for 0 ď k ď sj ´ 1: otherwise GCDpbk, pq ă p and this contradicts the

minimality of p. Note that all terms in AzB have q
rj
j as factor. Hence, q

sj
j � g but

q
sj`1
j ffl g and so sj “ tj as required.

We can thus detect the minimum p for which a is perfectly p-periodic by running

|K| “ Oplog nq parallel copies of the algorithm of §2.3.1. With Oplog nq points of

failure, we must ensure that each algorithm fails with probability at most δ{ log n;

this increases the space by a log log n factor which is dominated by other factors in

the analysis.

Theorem 2.3.3. There is a single-pass, turnstile algorithm for computing periodpaq

of perfectly periodic strings that uses Oppolylog nq space and update time.

33

2.3.3 Determining Perfect Periodicity: Noisy Case

In this section, we present an algorithm for estimating the periodicity of a noisy

signal. As a stepping stone to this result, we discuss an alternative approach for

the noiseless case based on sampling. An advantage of the alternative approach

is that it does not require the factorization of n to be computed thereby avoiding

any (admittedly sublinear time) preprocessing. However, the guarantee achieved is

weaker.

2.3.3.1 Fourier Sampling

If a is perfectly periodic with period p, then the Fourier transform A “ Fpaq has

at most p nonzero components. Letting d “ n{p, we know by Prop. 2.2.1 that the

only non-zero coordinates of A are Akd for k P {0, . . . , p´ 1}. For the case of general

a, let Xp denote the restriction of A to the coordinates corresponding to a perfectly

p-periodic signal, i.e.,

Xp “ pA0, 0, . . . , 0, Ad, 0, . . . , 0, . . . , App´1qd, 0, . . . , 0q .

In the frequency domain, Xp is the closest Fourier transform of a period-p vector

to A. By Plancherel’s theorem, F and F´1 preserve inner products and `2 distances.

Therefore, F´1pXpq is the p-periodic vector that is closest to the original signal a in

the `2 distance. This implies that

Dppaq “ ‖a´ F´1
pXpq‖2 “ ‖A´Xp‖2 “ ‖Yp‖2 “

√∑
d ffl k

|Ak|
2 . (2.13)

Our algorithms in this section are based on combining the above relationship with a

technique for sampling in the Fourier domain.

34

Monemizadeh and Woodruff [87] present a general approach for `p-sampling in the

time-domain: for a signal a P Rn defined in the turnstile model, the goal here is to

output k with probability in the interval

[
p1´ αq

|ak|
p

`pppaq
, p1` αq

|ak|
p

`pppaq

]
(2.14)

for some small user-defined parameter α ą 0. They show that this can be performed

efficiently in space polypα´1 log nq.2 A series of later papers improves the space usage,

culminating in algorithms using space Opε´1 log2 nq for p P p0, 1q, Opε´p log2 nq for

p P p1, 2s, and Oplogpε´1qε´1 log2 nq for p “ 1 [71].

For our purposes, rather than considering the time-series vector a, we consider

the vector

A1
“ pRepA1q, . . . ,RepAnq, ImpA1q, . . . , ImpAnqq P R2n . (2.15)

defined by applying the appropriate Fourier transform matrix to the signal. If `2-

sampling is performed on A1 and we return the value modulo n, then the probability

that k is returned is in the interval:

[
p1´ αq

|Ak|
2

‖A‖2
2

, p1` αq
|Ak|

2

‖A‖2
2

]
, (2.16)

because RepAkq
2`ImpAkq

2∑
iPrns RepAjq2`ImpAjq2

“
|Ak|

2

‖A‖22
.

To perform this sampling we use the fact that the `p-sampling algorithms described

above can be performed using a sketch matrix W and that there exists a matrix

transformation V P R2nˆn that transforms any signal a P Rn into the corresponding

A1 vector. Hence, applying the sketch matrix WV allows us to sample from A1 as

required. We will show how to use this sampling in the next two sections.

2There is an additive error probability of n´C for arbitrarily large constant C but this can be
ignored in our subsequent analysis.

35

2.3.3.2 Application to the Noiseless Case

Suppose there is no noise and that p “ periodpaq. Let the samples collected be

k1, . . . , kw P rns. We know from Prop. 2.2.1 that each sample ki “ cd for some c P rps.

Let q “ n{GCDpk1, . . . , kw, nq. We have q “ p{c1 for some c1 � p. Next we will show

that for sufficiently large w, with high probability, either q “ p or the sequence was

nearly perfectly q-periodic. (For example, in the case of the sequence in Eq. (2.1),

perhaps we return q “ 6.)

Choose an approximation parameter ϕ ą 0. Assume for contradiction that q “

p{c1 for some c1 ą 1, but that Dqpaq ě ϕ
√

1` α‖a‖2. Summing over bins j, by

appealing to Eq. (2.13), we have that

∑
n{q ffl j

|Aj|
2

‖A‖2
2

“
1

‖a‖2
2

∑
n{q ffl j

|Aj|
2
“
pDqpaqq

2

‖a‖2
2

ě ϕ2
p1` αq . (2.17)

Therefore, using the p1 ` αq approximation to `2-sampling, the probability that

we return a sample that is not a multiple of n{q is at least ϕ2. Taking w “

Opϕ´2 logpδ´1 log pqq samples ensures that we find some sample that is not a mul-

tiple of n{q for all Oplog pq prime factors q of p. Consequently, if the algorithm does

not return the exact value of periodpaq, it returns a value h � periodpaq such that the

sequence was very close to being h-periodic with high probability.

2.3.3.3 Application to the Noisy Case

For noisy signals, a natural question is to find the smallest period p such that

Dppaq ď ε‖a‖2. Unfortunately, since Dppaq could be just under ε‖a‖2 while another

value q ă p may have Dqpaq just larger than ε‖a‖2, this is too much to hope for.

Instead we consider two parameters ε, ϕ with ε ą ϕ ą 0, and use a slight modification

of the above approaches to accept some p � n such that Dppaq ď ε‖a‖2, and for no

smaller q do we have Dqpaq ď pε´ ϕq‖a‖2.

36

Our algorithm proceeds by taking samples of the Fourier coefficients as before. It

then returns the smallest value p � n such that at least 1 ´ pε ´ ϕ{2q fraction of the

samples are of Fourier coefficients k “ cn{p. With probability at least 1 ´ δ, we can

guarantee that this condition is satisfied for all p with Dppaq ď pε ´ ϕq‖a‖2, and by

no p with Dppaq ą ε‖a‖2; this requires Opϕ´2 log δ´1q samples by an application of

Lemma 1.7.2.

Theorem 2.3.4. For any ε, ϕ, δ, there exists a single-pass, Oppolyplog n, ϕ´1qq-space

turnstile algorithm which returns p | n such that both of the following conditions are

satisfied with high probability:

1. Dppaq ă ε‖a‖2

2. There does not exist q ă p such that q | n and Dqpaq ă pε´ ϕq‖a‖2.

2.4 Distance from Fixed Periodicity

In this section, we present an alternative algorithm for measuring the distance

between the signal and the closest (under the `2 norm) p-periodic sequence, for fixed

p. This algorithm has significantly faster update processing time than the previous

algorithm, and has the advantage that it does not require that the length of the

sequence is a perfect multiple of the periods considered.

For p ă n, we write n “ dp` r where

d “ bn{pc and r “ n mod p .

Basic properties of the `2 norm imply that the p-periodic pattern that is `2-closest to

a vector a is the arithmetic mean of length-p segments of the vector:

37

Fact 2.4.1. For any sequence a P Rn, let c “ argminyPPn,p ‖a´ y‖2 be the p-periodic

vector which is `2-closest to a. Then c “ b ˝ . . .b ˝ pb0b1 . . . br´1q where

bi “

∑d

j“0 ai`jp{pd` 1q for 0 ď i ă r∑d´1
j“0 ai`jp{d for r ď i ď p´ 1

.

With this explicit form for c, we can again use the Tug-of-War sketches of [4]

(described above in §2.3.1) to approximate Dppaq “ ‖a´ c‖2. We choose 4-wise

independently the entries of a random vector z “ z0 . . . zn´1 P {´1, 1}n and construct

the random variable T “
∑n´1

i“0 zipai ´ ciq, which satisfies E[T 2] “ ‖a ´ c‖2
2. By

averaging Opε´2 log δ´1q independent copies of this estimator, we can find a p1 ` εq

approximation for ‖a´ c‖2
2.

Note that the value of each estimator T can easily be constructed in a streaming

fashion: when the ith element of a is incremented by ∆ we increment

T +=

(
zi ´

∑
j:i“j mod p

zj
|{j : 0 ď j ď n´ 1, i “ j mod p}|

)
∆ (2.18)

A naive implementation of this update method takes Ωpn{pq time per update. To

avoid this we adapt the bilinear sketch method of Indyk and McGregor [67]. This

technique was originally designed to detect correlations in data streams but we can

exploit the structure of this sketch to reduce the update time. Intuitively, we will be

taking advantage of the fact that c has only p independent entries. Rather than view

a as a length n vector, we encode it as a pd ` 1q ˆ p matrix A where Aij “ aip`j if

ip` j ď n´1 and Aij “ bj otherwise. Similarly let C be the pd`1qˆp matrix where

Cij “ bj. E.g., for n “ 10 and p “ 4 we have the matrices

A “

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 b2 b3

 and C “

b0 b1 b2 b3

b0 b1 b2 b3

b0 b1 b2 b3

 .

38

Let x P {´1, 1}p and y P {´1, 1}d`1 be random vectors whose entries are 4-wise

independent. Indyk and McGregor extended the Alon et al. result to show that the

outer product of x and y had sufficient randomness for a result similar to the Tug-of-

War sketch. In our context, the result implies that if T “
∑

0ďiďd,0ďjďp´1 xjyipAij ´

Cijq, then by appealing to Fact 2.4.1, we have that

E
[
T 2
]
“

∑
0ďiďd,0ďjăp

pAij ´ Cijq
2
“ D2

ppaq

and there is still sufficiently low variance for Opε´2 log δ´1q parallel repetitions to be

sufficient for constructing a p1 ` εq approximation with probability 1 ´ δ. We next

show that each T can be constructed in only Op1q update time. To do this, decompose

T as

T “
∑

0ďiďd
0ďjăp

xjyiAij ´
∑

0ďiďd
0ďjăp

xjyiCij “
∑

0ďiďd
0ďjăp

xjyiAij ´

(∑
0ďiďd

yi

)(∑
0ďjăp

xjbj

)

and define T1 “
∑

0ďiďd,0ďjăp xjyiAij and T2 “
∑

0ďjăp xjbj. Since
∑

0ďiďd yi can be

computed in pre-processing, it suffices to compute T1 and T2. We initialize T1 “ T2 “

0. As the stream is read T1 and T2 are updated in Op1q time using the following rule:

when the pip` jqth entry of a is incremented by ∆,

T1 +=
(
xjyi ` 1rj ě rs

xjyd
d

)
∆ and T2 +=

(
1rj ă rs

xj
d` 1

` 1rj ě rs
xj
d

)
∆

where r “ n mod p and 1 is the indicator function.

Theorem 2.4.2. Dppaq can be approximated up to a factor p1 ` εq with probability

1 ´ δ using Õpε´2q space and Õpε´2q update time. The algorithm operates in the

turnstile model using one pass.

39

2.5 Cyclic Shifts

In this section, we consider the problem of identifying whether two sequences

a,b P Σn are close to being cyclic shifts of each other. We will assume for convenience

that Σ Ă R. Let CSs : Rn Ñ Rn be the function that “rotates” the input sequence by

s positions, i.e.,

CSspa1a2 . . . anq “ as`1as`2 . . . ana1 . . . as .

Then a and b are cyclic shifts iff there exists s such that b “ CSspaq.

Our goal is to recognize cyclic shifts using linear sketches. We first note that the

analogous problem in the simultaneous communication model is rather straightfor-

ward. Supose Alice knows a P Σn and Bob knows b P Σn. They can easily determine

whether CSspaq “ b for some s by each transforming a and b into some canonical

form and then using an equality test. Specifically, consider an arbitrary ordering of

the sequences in Σn. Alice generates the cyclic shift â of a that is minimal under this

ordering. Similarly, Bob generates the minimal cyclic shift b̂ of b. Clearly â “ b̂

iff a is a cyclic shift of b. This can be verified with Oplog nq communication using

standard fingerprinting techniques such as Rabin fingerprints (see e.g. [89]).

Obviously such an approach is not possible in the data stream model. In the time-

series model, existing work combined with simple observations leads to an efficient

algorithm for determining if two sequences are cyclic shifts. We first review this

before presenting a new streaming algorithm that is sketch-based and thus applies

in the turnstile steaming model. Furthermore, it can estimate the distance of two

sequences from being cyclic shifts.

2.5.1 Time-Series Model

In the time-series model, a one-pass Oppolylog nq-space algorithm follows from

Ergün et al.’s extensions [41] of the pattern matching algorithm of Porat and Po-

rat [95]. The algorithm works when one of the strings precedes the other, i.e.,

40

S “ 〈a0, a1, . . . , an´1, b0, b1, . . . , bn´1〉, or when the strings are interleaved, i.e., S “

〈a0, b0, a1, b1, . . . , an´1, bn´1〉. (It is actually sufficient for the elements of one se-

quence to always precede the corresponding elements of the other; e.g., the stream

S “ 〈a0, b0, a1, a2, b1, a3, b2, b3〉 is acceptable.)

The pattern-matching algorithm of [41] uses a fingerprinting function Φ to main-

tain a series of exponentially-lengthening fingerprints ϕj “ Φpa0 . . . a2j´1q; by cleverly

updating appropriate fingerprints of b, they keep track of each match for ϕj which oc-

curred within the last 2j characters. When we reach the final character of b, for each

m such that Φpbm . . . bm`2j´1q “ Φpa0 . . . a2j´1q, we have access to the fingerprints

Φpb0 . . . bm´1q, Φpbm . . . bm`2j´1q, and Φpbm`2j . . . bn´1q. By adjusting the fingerprints

appropriately, we can determine whether there exists m P rns such that

Φpa0 . . . an´1q “ Φpbm . . . bm`2j´1bm`2j . . . bn´1b0 . . . bm´1q .

2.5.2 Cyclic Shift Distance

In this section, we present a simple turnstile algorithm for estimating how close

two sequences are to being cyclic shifts. We define the cyclic shift distance, CSD,

between two strings as

CSDpa,bq “ min
s
‖a´ CSspbq‖2 .

Clearly, if b is a cyclic shift of a then CSDpa,bq “ 0.

The algorithm proceeds as follows: We will use two sets of candidate shifts, S “{
0, 1, 2, . . . ,

⌈√
n
⌉
´ 1
}

and T “
{⌈√

n
⌉
, 2
⌈√

n
⌉
, 3
⌈√

n
⌉
, . . . ,

(⌈
n

d
√
n e

⌉
´ 1
)⌈√

n
⌉}

.

As we process the turnstile stream, we construct Tug-of-War sketches [4] of CSspaq

and CStpbq for each s P S, t P T . Using Opε´2 log 1
δ

log nq-sized sketches, this allows

us to p1`εq-approximate ‖CSspaq´CStpbq‖2 for each s P S and t P T with probability

41

at least 1´δ1. Since for all r, s we have that ‖a´ CSspbq‖2 “ ‖CSrpaq ´ CSr`spbq‖2,

these shifts suffice to p1` εq-approximate ‖a´ CSupbq‖2 for each u P {1, . . . , n}.

Choosing δ1 “ δ
n
, we have that each pair r, s is simultaneously a p1`εq-approximation

with probability ě 1´ δ. We then find:

Pr

[∣∣∣ min
sPS,tPT

‖CSspaq ´ CStpbq‖2 ´ CSDpa,bq
∣∣∣ ě εCSDpa,bq

]
ď δ . (2.19)

Theorem 2.5.1. There exists a single pass algorithm using space Õpε´2
√
nq that

returns a p1` εq approximation for CSDpa,bq with probability at least 1´ δ.

2.6 Conclusion

We presented one-pass data stream algorithms for detecting periodic sequences

and cyclic shifts, and for measuring the distance to the closest periodic sequence or

cyclic shift. Our principle goal was to minimize the space used, and all of our period-

icity algorithms used Oppolylog nq space. Our algorithms used a range of techniques

including bilinear sketches and combining a Fourier change of basis transform with

a range of sketching techniques. This second technique is particularly powerful and

we would be surprised if it didn’t have applications that were still to be discovered

(either via the Fourier basis or other bases). An important future direction is ana-

lyzing the structure of the sketches formed by combining the transform and sketch

matrices: among other things, this could lead to more time-efficient algorithms. An-

other question is to generalize our results in Sects. 2.3.2 and 2.3.3 to estimate the

period of signals that conclude with a partial repetition. This was not an issue with

time-series data since there would always be a point near the end of the stream where

there had been an exact number of repetitions. In the turnstile model the issue is

more complicated, but we are hopeful that a more involved analysis of the Fourier

approach may yield results.

42

CHAPTER 3

SLIDING WINDOW GRAPH STREAMS

Massive graphs arise in any application where there is data about both basic en-

tities and the relationships between these entities, e.g., web-pages and hyperlinks;

papers and citations; IP addresses and network flows; phone numbers and phone

calls; Tweeters and their followers. Graphs have become the de facto standard for

representing many types of highly-structured data. Furthermore, many interesting

graphs are dynamic, e.g., hyperlinks are added and removed, citations hopefully ac-

crue over time, and the volume of network traffic between two IP addresses may vary

depending on the time of day.

Consequently there is a growing body of work on designing algorithms for an-

alyzing dynamic graphs. This includes both traditional data structures where the

goal is to enable fast updates and queries [69, 39, 62, 61, 101] and data stream algo-

rithms where the primary goal is to design randomized data structures of sublinear

size that can answer queries with high probability [45, 3, 2, 81, 104, 40, 74]. This

chapter focuses on the latter: specifically, processing graphs using sublinear space in

the sliding-window model. Although the focus is not on update time, many of these

algorithms can be made fast by using standard data structures.

Work in this chapter was originally done with Andrew McGregor and Daniel

Stubbs, and was published as [33].

43

3.1 Introduction

3.1.1 Sliding-Window Model

The sliding-window model, introduced by Datar et al. [35], has become a popular

model for processing infinite data streams in small space when the goal is to compute

properties of data that has arrived in the last window of time. Specifically, given an

infinite stream of data 〈a1, a2, . . . 〉 and a function f , at time t we need to return

an estimate of fpat´L`1, at´L`2, . . . , atq. We refer to 〈at´L`1, at´L`2, . . . , at〉 as the

active window where L is length of this window. The length of the window could

correspond to hours, days, or years depending on the application. The motivation is

that by ignoring data prior to the active window, we focus on the “freshest” data and

can therefore detect anomalies and trends more quickly. Existing work has considered

estimating various numerical statistics and geometric problems in this model [22, 21,

9, 46, 10, 12, 11], as well as developing useful techniques such as the exponential

histogram [35] and smooth histogram data structures [22, 21].

3.1.2 Results

This work initiates the study of processing graphs in the sliding-window model,

where the goal is to monitor the graph described by the last L entries of a stream of

inserted edges. Note the following differences between this model and fully-dynamic

model. In the sliding-window model the edge deletions are implicit, in the sense that

when an edge leaves the active window it is effectively deleted but we may not know

the identity of the deleted edge unless we store the entire window. In the case of

fully-dynamic graph streams, the identity of the deleted edge is explicit but the edge

could correspond to any of the edges already inserted but not deleted.

We present semi-streaming algorithms in the sliding-window model for various

classic graph problems including testing connectivity, constructing minimum spanning

trees, and approximating the size of graph matchings. We also present algorithms for

44

Insert-Only Insert-Delete Sliding Window (here)

Connectivity Deterministic[45] Randomized[2] Deterministic
Bipartiteness Deterministic[45] Randomized[2] Deterministic

p1` εq-Sparsifier Deterministic[1] Randomized[3, 52] Randomized

p2t´ 1q-Spanner n1`1{t spc[18, 38] None L1{2np1`1{tq{2 spc
Min. Span. Tree Exact[45] (1` ε)-approx.[2] (1` ε)-approx.

Unweight. Match 2-approx.[45] None (3` ε)-approx.
Weight. Match 4.911-approx.[40] None (6` ε)-approx.

Table 3.1: Single-pass, semi-streaming results. All the above algorithms use
Opn polylog nq space with the exception of the spanner constructions, where the space
usage on the table ignores constant factors.

constructing graph synopses including sparsifiers and spanners. We say a subgraph

H of G is a p2t´ 1q-spanner if:

@u, v P V : dGpu, vq ď dHpu, vq ď p2t´ 1qdGpu, vq

where dGpu, vq and dHpu, vq denote the distance between nodes u and v in G and H

respectively. We say a weighted subgraph H of G is a p1` εq sparsifier if

@U Ă V : p1´ εqλGpUq ď λHpu, vq ď p1` εqλGpUq

where λGpUq and λHpUq denote the weight of the cut pU, V zUq in G and H respec-

tively. A summary of our results can be seen in Table 3.1 along with the state-of-the-

art results for these problems in the insert-only and insert/delete models.

3.2 Connectivity and Graph Sparsification

We first consider the problem of testing whether the graph is k-edge connected

for a given k P {1, 2, 3 . . .}. Note that k “ 1 corresponds to testing connectivity. To

do this, it is sufficient to maintain a set of edges F Ď {e1, e2, . . . , et} along with the

time-of-arrival toapeq for each e P F where F satisfies the following property:

45

• Recent Edges Property. For every cut pU, V zUq, the stored edges F contain the

most recent minpk, λpUqq edges across the cut where λpUq denotes the total

number of edges from {e1, e2, . . . , et} that cross the cut.

Then, we can easily tell whether the graph on the active edges, 〈et´L`1, et´L`2,

. . . , et〉, is k-connected by checking whether F would be k-connected once we remove

all edges e P F where toapeq ď t ´ L. This follows because if there are k or more

edges among the last L edges across a cut, F will include the k most recent of them.

3.2.1 Algorithm

The following simple algorithm maintains a set F with the above property. The

algorithm maintains k disjoint sets of edges F1, F2, . . . , Fk where each Fi is acyclic.

Initially, F1 “ F2 “ . . . “ Fk “ H and on seeing edge e in the stream, we update the

sets as follows:

1. Define the sequence f0, f1, f2, f3, . . . where f0 “ {e} and for each i ě 1, fi

consists of the oldest edge in a cycle in Fi Y fi´1 if such a cycle exists and

fi “ H otherwise. Since each Fi is acyclic, there will be at most one cycle in

each Fi Y fi´1.

2. For i P {1, 2, . . . , k},

Fi Ð pFi Y fi´1qzfi

In other words, we add the new edge e to F1. If it completes a cycle, we remove the

oldest edge on this cycle and add that edge to F2. If we now have a cycle in F2, we

remove the oldest edge on this cycle and add that edge to F3. And so on. By using

an existing data structure for constructing online minimum spanning trees [100], the

above algorithm can be implemented with Opk log nq update time.

3.2.2 Analysis

Lemma 3.2.1. F “ F1 Y F2 Y . . .Y Fk satisfies the Recent Edges Property.

46

Proof. Fix some i P rks and a cut pU, V zUq. Observe that the youngest edge y P Fi

crossing a cut pU, V zUq is never removed from Fi since its removal would require it

to be the oldest edge in some cycle C. This cannot be the case since there must be

an even number of edges in C that cross the cut and so there is another edge x P C

crossing the cut. This edge must have been older than y since y was the youngest.

It follows that F1 always contains the youngest edge crossing any cut, and by

induction on i, the ith youngest edge crossing any cut is contained in
⋃i
j“1 Fj. This

is true because this edge was initially added to F1 Ď
⋃i
j“1 Fj, and cannot leave⋃i

j“1 Fj. For the ith youngest edge to be evicted from Fi, there would have to be

an even younger crossing edge in Fi; however, inductively, any such edge is instead

contained in the set of earlier matchings
⋃i´1
j“1 Fj.

Theorem 3.2.2. There exists a sliding-window algorithm for monitoring k-connectivity

using Opkn log nq space.

3.2.3 Applications: Bipartiteness and Graph Sparsification

3.2.3.1 Bipartiteness

To monitor whether a graph is bipartite, we run the connectivity tester on the

input graph and also simulate the connectivity tester on the cycle double cover of

the input graph. The cycle double cover DpGq of a graph G “ pV,Eq is formed by

replacing each node v P V by two copies v1 and v2 and each edge pu, vq P E by

the edges pu1, v2q and pu2, v1q. Note that this transformation can be performed in a

streaming fashion. Furthermore, DpGq has exactly twice the number of connected

components as G iff G is bipartite [2].

Theorem 3.2.3. There exists a sliding-window algorithm for monitoring bipartite-

ness using Opn log nq space.

47

3.2.3.2 Graph Sparsification

Using the k-connectivity tester as a black-box we can also construct a p1 ` εq-

sparsifier following the approach of Ahn et al. [3]. The approach is based upon a

result by Fung et al. [49] that states that sampling each edge e with probability

pe ě min
{

253λ´1
e ε´2 log2 n, 1

}
, where λe is the size of the minimum cut that includes

e, and weighting the sampled edges by 1{pe results in a p1 ` εq sparsifier with high

probability. To emulate this sampling without knowing λe values, we subsample

the graph stream to generate sub-streams that define Oplog nq graphs G0, G1, G2, . . .

where each edge is in Gi with probability 2´i. For each i, we store the set of edges

F pGiq generated by the k-connectivity algorithm. If k “ Θpε´2 log2 nq, then note that

e is in some F pGiq with probability at least min{Ωpλ´1
e ε´2 log2 nq, 1} as required. See

Ahn et al. [3] for further details.

Theorem 3.2.4. There exists a sliding-window algorithm for maintaining a p1 ` εq

sparsifier using Opε´2n polylog nq space.

3.3 Matchings

We next consider the problem of finding large matchings in the sliding-window

model. We first consider the unweighted case, maximum cardinality matching, and

then generalize to the weighted case.

3.3.1 Maximum Cardinality Matching

Our approach for estimating the size of the maximum cardinality matching com-

bines ideas from the powerful “smooth histograms” technique of Braverman and Os-

trovsky [22, 21] with the fact that graph matchings are submodular and satisfy a

“smooth-like” condition.

48

3.3.1.1 Smooth Histograms

The smooth histogram technique gives a general framework for maintaining an

estimate of a function f on a sliding window provided that f satisfies a certain set of

conditions. Among these conditions are:

1. Smoothness: For any α P p0, 1q there exists β P p0, αs such that

fpBq ě p1´ βqfpABq implies fpBCq ě p1´ αqfpABCq (3.1)

where A, B, and C are disjoint segments of the stream and AB,BC,ABC

denote concatenations of these segments.

2. Approximability: There exists a sublinear space stream algorithm that returns

an estimate f̃pAq for f evaluated on a (non-sliding-window) stream A, such that

p1´ β{4qfpAq ď f̃pAq ď p1` β{4qfpAq

The basic idea behind smooth histograms is to approximate f on various suffixes

B1, B2, . . . , Bk of the stream where B1 Ě W Ľ B2 Ľ ¨ ¨ ¨ Ľ Bk and W is the active

window. We refer to the Bi as “buckets.” Roughly speaking, if we can ensure that

fpBi`1q « p1´εqfpBiq for each i then fpB2q is a good approximation for fpW q and we

will only need to consider a logarithmic number of suffixes. We will later present the

relevant parts of the technique in more detail in the context of approximate matching.

3.3.1.2 Matchings are Almost Smooth

Let mpAq denote the size of the maximum matching on a set of edges A. Unfor-

tunately, the function m does not satisfy the above smoothness condition and cannot

be approximated to sufficient accuracy. It does however satisfy a “smooth-like” con-

dition:

49

Lemma 3.3.1. For disjoint segments of the stream A, B, and C and for any β ą 0:

mpBq ě p1´ βqmpABq implies mpBCq ě
1

2
p1´ βqmpABCq (3.2)

Proof. 2mpBCq ě mpBq `mpBCq ě p1 ´ βqmpABq `mpBCq ě p1 ´ βqmpABCq.

The last step follows since mpABq `mpBCq ě mpAq `mpBCq ě mpABCq.

The best known semi-streaming algorithm for approximating m on a stream A is a

2-approximation and a lower bound 1.582 has recently been proved [74]. Specifically,

let m̂pAq be the size of the greedy matching on A. Then it is easy to show that

mpAq ě m̂pAq ě mpAq{2 (3.3)

Unfortunately, it is not possible to maintain a greedy matching over a sliding

window.1 However, by adjusting the analysis of [22], properties (3.2) and (3.3) suffice

to show that smooth histograms can obtain an p8`εq-approximation of the maximum

matching in the sliding-window model. However, by proving a modified smoothness

condition that takes advantage of relationships between m and m̂, and specifically

the fact that m̂ is maximal rather than just a 2-approximation, we will show that a

smooth histograms-based approach can obtain a p3` εq-approximation.

1Maintaining the matching that would be generated by a greedy algorithm on the active window
requires Ωpminpn2, Lqq space since it would always contain the oldest edge in the window and ad-
vancing the window allows us to recover all the edges. Similarly, it is not possible to construct the
matching that would be returned by a greedy algorithm on reading the active window in reverse.
This can be seen to require Ωpn2q space even in the unbounded-stream model via reduction from
index. Alice considers the possible edges on an n-clique, and includes an edge iff the corresponding
bit of her input is a 1. Bob then adds edges forming a perfect matching on all nodes except the
endpoints of an edge of interest. The backwards greedy matching on the resulting graph consists of
all of Bob’s edges, plus one additional edge iff Alice’s corresponding bit was a 1.

50

u z z

û v̂

p1´ βqn copies

u

û

u

βn copies

Figure 3.1: A graph with Opnq nodes where Lemma 3.3.2 is tight. Edges arrive in
the order: û edges (placed in greedy matching), other u edges, v̂ edges, z edges. We
then have m̂pABq “ n, m̂pBq “ p1´ βqn “ m̂pBCq, mpABCq “ p3´ βqn.

Lemma 3.3.2. Consider any disjoint segments A, B, C of a stream of edges and

β P p0, 1q.

m̂pBq ě p1´ βqm̂pABq implies mpABCq ď

(
3`

2β

1´ β

)
m̂pBCq .

Note that it is the size of the maximum matching on ABC that is being compared

with the size of the greedy matching on BC. To see that the above lemma is tight

for any β P p0, 1q, consider the graph in Fig. 3.1, and let A be the stream of the

û edges (which are placed in greedy matching) followed the u edges; B are the v̂

edges, and C are the z edges. Then m̂pABq “ n, m̂pBq “ p1 ´ βqn “ m̂pBCq, and

mpABCq “ p3´ βqn.

Proof of Lemma 3.3.2. Let MpXq and M̂pXq be the set of edges in an optimal match-

ing on X and a maximal matching on X. We say that an edge in a matching covers

the two nodes which are its endpoints.

We first note that every edge in MpABCq covers at least one node which is covered

by M̂pABq Y M̂pBCq; otherwise, the edge could have been added to M̂pABq or

M̂pBCq or both. Since MpABCq is a matching, no two of its edges can cover the same

node. Thus mpABCq is at most the number of nodes covered by M̂pABq Y M̂pBCq.

51

The number of nodes covered by M̂pABq Y M̂pBCq is clearly at most 2m̂pABq `

2m̂pBCq. But this over-counts edges in M̂pBq. Every edge in M̂pBq is clearly in

M̂pBCq; also, every edge in M̂pBq shares at least one node with an edge in M̂pABq

since the construction was greedy. Thus we find

mpABCq ď 2m̂pBCq ` 2m̂pABq ´ m̂pBq

ď 2m̂pBCq `
2

1´ β
m̂pBq ´ m̂pBq

“ 2m̂pBCq `
1` β

1´ β
m̂pBq

ď

(
3`

2β

1´ β

)
m̂pBCq .

where the second inequality follows from the assumption m̂pBq ě p1´βqm̂pABq.

Theorem 3.3.3. There exists a sliding-window algorithm for maintaining a p3 ` εq

approximation of the maximum cardinality matching using Opε´1n log2 nq space.

Proof. We now use the smooth histograms technique to estimate the maximum match-

ing size. The algorithm maintains maximal matchings over various buckets B1, . . . , Bk

where each bucket comprises of the edges in some suffix of the stream. Let W be the

set of updates within the window. The buckets will always satisfy B1 Ě W Ľ B2 Ľ

¨ ¨ ¨ Ľ Bk, and thus mpB1q ě mpW q ě mpB2q.

Within each bucket B, we will keep a greedy matching whose size we denote by

m̂pBq. To achieve small space usage, whenever two nonadjacent buckets have greedy

matchings of similar size, we will delete any buckets between them. Lemma 3.3.2

tells us that if the greedy matchings of two buckets have ever been close, then the

smaller bucket’s greedy matching is a good approximation of the size of the maximum

matching on the larger bucket.

When a new edge e arrives, we update the buckets B1, . . . , Bk and greedy match-

ings m̂pB1q, . . . , m̂pBkq as follows where β “ ε{4:

52

1. Create a new empty bucket Bk`1.

2. Add e to the greedy matching within each bucket if possible.

3. For i “ 1 . . . k ´ 2:

(a) Find the largest j ą i such that m̂pBjq ě p1´ βqm̂pBiq

(b) Delete Bt for any i ă t ă j and renumber the buckets.

4. If B2 contains the entire active window, delete B1 and renumber the buckets.

3.3.1.3 Space Usage

Step 3 deletes “unnecessary” buckets and therefore ensures that for all i ď k ´ 2

then m̂pBi`2q ă p1´βqm̂pBiq. Since the maximum matching has size at most n, this

ensures that the number of buckets is Opε´1 log nq. Hence, the total number of bits

used to maintain all k greedy matchings is Opε´1n log2 nq.

3.3.1.4 Approximation Factor

We prove the invariant that for any i ă k, either m̂pBi`1q ě mpBiq{p3 ` εq

or |Bi| “ |Bi`1| ` 1 (i.e., Bi`1 includes all but the first edge of Bi) or both. If

|Bi| ‰ |Bi`1| ` 1, then we must have deleted some bucket B which Bi Ĺ B Ĺ Bi`1.

For this to have happened it must have been the case that m̂pBi`1q ě p1´ βqm̂pBiq

at the time. But then Lemma 3.3.2 implies that we currently satisfy:

mpBiq ď

(
3`

2β

1´ β

)
m̂pBi`1q ď p3` εqm̂pBi`1q .

Therefore, either W “ B1 and m̂pB1q is a 2-approximation for mpW q, or we have

mpB1q ě mpW q ě mpB2q ě m̂pB2q ě
mpB1q

3` ε

and thus m̂pB2q is a p3` εq-approximation of mpW q.

53

3.3.2 Weighted Matching

In the paper where we first presented these algorithms [33], results of Epstein et

al. [40] were adapted to provide a 9.027 approximation for maximum matching on

weighted graphs in the sliding window model. These results have been superceded

by our later work, presented in Chapter 4, which provides an 6` ε approximation in

space Op1
ε
n log2 nq bits.

3.4 Minimum Spanning Tree

We next consider the problem of maintaining a minimum spanning forest in the

sliding-window model. We show that it is possible to maintain a spanning forest

that is at most a factor p1 ` εq from optimal but that maintaining the exact mini-

mum spanning tree requires Ωpmaxpn2, Lqq space where L is the length of the sliding

window.

The approximation algorithm is based on an idea of Chazelle et al. [27] where

the problem is reduced to finding maximal acyclic subgraphs, i.e., spanning forests,

among edges with similar weights. If each edge weight is rounded to the nearest

power of p1 ` εq, it can be shown that the minimum spanning tree of the union of

these subgraphs is a p1 ` εq approximation of the minimum spanning tree of the

original graph. The acyclic subgraphs can be found in the sliding-window model

using the connectivity algorithm we presented earlier. The proof of the next theorem

is almost identical to those in [2, Lemma 3.4].

Theorem 3.4.1. There exists a sliding-window algorithm for maintaining a p1 ` εq

approximation for the minimum spanning tree using Opε´1n log2 nq bits of space.

In the “unbounded”/non-sliding-window stream model, it was possible to com-

pute the exact minimum spanning tree via a simple algorithm: 1) add the latest edge

to an acyclic subgraph that is being maintained, 2) if this results in a cycle, remove

54

the heaviest weight edge in the cycle. However, the next theorem shows that main-

taining an exact minimum spanning tree in the sliding-window model is not possible

in sublinear space.

Theorem 3.4.2. Maintaining an exact minimum spanning forest in the sliding-

window model requires ΩpminpL, n2qq space.

Proof. Let p “ minpL, n2{4q. The proof is by a reduction from the communication

complexity of the two-party communication problem indexppq where Alice holds a

binary string ~a “ a1a2 . . . ap and Bob has an index k P {1, . . . , p}. If Alice sends a

single message to Bob that enables Bob to output ak with probability at least 2{3,

then Alice’s message must contain at Ωppq bits [77].

Alice encodes her bits on the edges of a complete bipartite graph, writing in order

the edges pu1, v1q, pu1, v2q, pu1, v3q, . . . , pu1, v√pq, pu2, v1q, . . . , pu2, v√pq, . . . , pu√p, v√pq

where the ith edge weight 2i` ai. Note that all these edges are in the current active

window. Suppose she runs a sliding-window algorithm for exact MST on this graph

and sends the memory state to Bob. Bob continues running the algorithm on an

arbitrary set of L´ p`k´ 1 edges each of weight 2p` 2. At this point any minimum

spanning forest in the active window must contain the edge of weight 2k` ak since it

is the lowest-cost edge in the graph. Bob can thus learn ak and hence the algorithm

must have used Ωppq bits of memory. Note that if Bob can only determine what

the MST edges are, but not their weights, he can add an alternative path of weight

2k ` 1{2 to the node in question.

3.5 Graph Spanners

In the unbounded stream model, the following greedy algorithm constructs a 2t´1

stretch spanner with Opn1`1{tq edges [5, 45]. We process the stream of edges in order;

when seeing each edge pu, vq, we add it to the spanner if there is not already a path

from u to v of length 2t´ 1 or less. Any path in the original graph then increases by

55

a factor of at most 2t´ 1, so the resulting graph is a p2t´ 1q-spanner. The resulting

graph has girth at least 2t` 1, so it has at most Opn1`1{tq edges [20].

For graphs G1, G2 on the same set of nodes, let G1 Y G2 denote the graph with

the union of edges from G1 and G2. We will need the following simple lemma.

Lemma 3.5.1. Let G1 and G2 be graphs on the same set of nodes, and let H1 and H2

be α-spanners of G1 and G2 respectively. Then H1 YH2 is an α-spanner of G1 YG2.

Proof. Let G “ G1YG2 and H “ H1YH2. For arbitrary nodes u, v, consider a path

of length dGpu, vq. Each edge in this path is in G1 or G2 (or both). There is thus a

path between the edge’s endpoints in the corresponding H1 or H2 which is of length

at most α. Thus, there is a path of length at most αdGpu, vq in H “ H1 YH2.

Theorem 3.5.2. There exists a sliding-window algorithm for maintaining a p2t´ 1q

spanner using Op
√
Ln1`1{tq space.

Proof. We batch the stream into blocks E1, E2, E3, . . . , where each consists of s

edges. We buffer the edges in each block until it has been read completely, marking

each edge with its arrival time. We then run the greedy spanner construction on

each block in reverse order, obtaining a spanner Si. By Lemma 3.5.1, the union of

the spanners Si and the edges in the current block, restricted to the active edges,

is a spanner of the edges in the active window. This algorithm requires space s to

track the edges in the current block. Each spanner Si has Opn1`1{tq edges, and at

most L{s past blocks are within the window. The total number of edges stored by

the algorithm is thus s ` pL{sqOpn1`1{tq. Setting s “
√
Ln1`1{t gives Op

√
Ln1`1{tq

edges.

We can achieve a space/approximation trade-off by appling the construction of

Theorem 3.5.2 recursively (using that an α-spanner of an α-spanner of G is an α2-

spanner of G):

56

Theorem 3.5.3. For any integer d ě 1 there exists a sliding-window algorithm for

maintaining a p2t´ 1qd spanner using O
(
L

1
d`1n(1` 1

t)(1´ 1
d`1)

)
space.

Proof. We will determine parameters s1, s2, . . . , sd. The algorithm keeps s1 edges per

block in the first level, when a block of s1 edges are complete, it computes and stores

a p2t´1q-spanner (in reverse order, as in Theorem 3.5.2 above). When the algorithm

acquires s2 of these first-level blocks, it computes and stores a p2t ´ 1q-spanner of

them in reverse order, and so on.

The algorithm will store s1 single edges; s2 ` s3 ` ¨ ¨ ¨ ` sd spanners at the inter-

mediate levels; and L{ps1s2s3 ¨ ¨ ¨ sdq edges at the top level. Each spanner contains

Opn1`1{tq edges.

The total space used is thus

Ln1`1{t

s1s2 ¨ ¨ ¨ sd
` ps2 ` s3 ` ¨ ¨ ¨ ` sdqn

1`1{t
` s1 (3.4)

For s1 “ L
1
d`1n1´ 1

d`1 , s2 “ s3 “ ¨ ¨ ¨ “ sd “ s1{n, this yields space usage

O
(
L

1
d`1n(1` 1

t)(1´ 1
d`1)

)
.

3.6 Conclusions

We initiate the study of graph problems in the well-studied sliding-window model.

We present algorithms for a wide range of problems including testing connectivity and

constructing combinatorial sparsifiers; constructing minimum spanning trees; approx-

imating weighted and unweighted matchings; and estimating graph distances via the

construction of spanners. Open problems include reducing the space required to

construct graph spanners and improving the approximation ratio when estimating

matching size.

57

CHAPTER 4

MATCHING

4.1 Introduction

The problem of finding maximum-weight matchings in the semi-streaming model

has seen a great deal of attention since it was first introduced in [45], which gave

a 6-approximation. This was improved to a 5.828-approximation in [81]; a 5.585-

approximation in the [104]; and finally the current best, a 4.911` ε-approximation in

[40]. Other work has looked at generalizations of matching to submodular-function

matching [25], and at maximum weighted matching in the map reduce model [78] and

the sliding-window stream model [33].

We study a generalization of the problem of finding maximum weighted matching

on graphs: finding maximum-weight independent sets in p-systems. p-systems are a

type of independence system which generalize both matching on p-bounded hyper-

graphs and intersections of p matroids. We show that maximum-weight independent

sets can be approximated by finding approximate solutions to maximum-cardinality

independent sets. This reduction works in the streaming model and in several related

models.

The structure of our reduction is related to [40], a streaming algorithm for maxi-

mum weighted matching. That algorithm partitions incoming edges into multiplica-

tively spaced weight classes and calculates a greedy matching on the edges within each

weight class. At the end of the stream, they greedily merge the greedy matchings

from largest to smallest.

58

Our algorithm uses weight classes that have lower bounds but not upper bounds,

so classes that admit smaller edges are subsets of all the “more exclusive” classes. This

gives rise to a better approximation with a more broadly applicable proof, allowing

us to use the algorithm for arbitrary p-systems.

In §4.2 we define our model more specifically and state our main result. In §4.3

we present the general algorithm. In §4.4 we show that the general algorithm can be

applied to improve the best known algorithms for weighted matching and weighted

independent set problems in the streaming, sliding window, and map-reduce models.

In §4.6 we comment on improvements for specific cases and outline future work.

Work in this chapter was originally done with Daniel Stubbs and is currently in

submission.

4.2 Definitions and Results

4.2.1 Independence Systems

An independence system is a pair pS, Iq comprising a finite set S and a set I of

subsets of S (the “independent sets”) such that

1. H P I

2. For X Ď X 1, X 1 P S ñ X P S.

An independence system is called a p-system if, for any A Ď S, the ratio between the

largest and smallest maximal independent subsets of A is at most p. Graph matching

forms a 2-system where S is the set of edges and where a set of edges is independent if

no two edges share an endpoint. More generally, p-hypergraph matching is a p-system,

as is the intersection of p matroids. For more detail on p-systems, see e.g. [70].

Given a p-system pS, Iq, the maximum-cardinality independent set problem is the

problem of finding an independent set with the largest number of elements. Given

a weight function w : S Ñ Rě0, the maximum-weight independent set problem is

59

 Weight-
based

SubstreamsWeighted
Edges

Unweighted
Matching

Unweighted
Matching

Unweighted
Matching

Unweighted
Matching

Greedy
Merge Weighted

Matching

…
…

Figure 4.1: Block diagram of the weighted matching algorithm.

the problem of finding an independent set X P I which maximizes
∑

xPX wpxq.

These problems naturally extend the problems of finding maximum matchings on

unweighted or weighted graphs; on first reading, the reader is encouraged to read

“independent set” as “matching” and p as 2.

4.2.2 Streaming Reductions

Our algorithm will operate by transforming a maximum-weight independent set

problem into a polylogarithmic number of maximum-cardinality independent set

problems (Figure 4.1). This is an example of a class of reductions which we be-

lieve may be of particular interest in big data models: Turing reductions which make

a polylogarithmically-bounded number of queries and which are “non-adaptive” (in

the sense that the input to one query cannot depend on the output of another query).

In this model, a reduction from problem A to problem B consists of processing the

input to problem A into the inputs to polylog instances of B; solving the B instances;

then processing the B outputs into the output to problem A. These models form a

restricted class of the approximation-preserving streaming reductions used in [16].1

1Other papers introducing reductions in the streaming model defined many-one reductions be-
tween decision problems via a generalization of string homomorphisms [80, 13]; it is not readily
apparent how to apply this work to approximation problems.

60

These reductions are natural choices because the resource classes being studied

are typically closed under polylogarithmic blowup. Requiring the subproblems to

be nonadaptive allows them to be easily parallelized. The resources used by the

preprocessing and postprocessing steps can be restricted to preserve the classes of

interest; in our case, the preprocessing step is merely testing the weight of each edge,

and the postprocessing step is a greedy merge. Many existing streaming algorithms

operate by reducing to polylog nonadaptive subproblems, including the precision

sampling framework [7] and Indyk/Woodruff `p norm estimators [68].

We say that a reduction from A to B is p-approximate if, for any α ě 1, given an

α-approximate solution to each B subproblem we can generate an αp-approximate

solution to the A problem.

4.2.3 Main Result

Section 4.3 presents the proof of our main result:

Theorem 4.2.1. Let pS, Iq be a p-system. Then there is a pp1` εq-approximate non-

adaptive Turing reduction from the problem of maximum-weight independent set on

pS, Iq to the problem of maximum-cardinality independent set on pS, Iq. The reduction

uses Op1
ε

log nq copies of maximum-cardinality independent set.

The reduction in Theorem 4.2.1 uses extremely minimal preprocessing (separating

edges by weight) and minimal postprocessing (performing a greedy merge of the

independent sets).

From the definition of p-systems, a greedily maximized set is always a p-approximate

maximum cardinality matching. From Theorem 4.2.1 we thus immediately find:

Corollary 4.2.2. We can perform a p2p1 ` εq approximation to maximum-weight

independent set on any p-system, using Op1
ε

log nq times the resources necessary to

greedily compute a maximal independent set on that p-system.

The consequences of Corollary 4.2.2 in specific models are described in §4.4.

61

4.3 Algorithm

In this section we present a proof of Theorem 4.2.1.

Consider a p-system pS, Iq. Let n “ |S|. Let the input E be a stream of elements

from S, where each e P E is annotated with its weight wpeq.

For i P Z, we define substreams Ei, each containing all edges with weight above

threshold p1` εqi:

Ei , {e P E | wpeq ě p1` εqi} (4.1)

Note that i can be negative, but we assume that the range of possible weights wpeq is

polynomially bounded in n, so that we only need to consider substreams for Op1
ε

log nq

values of i.2

To perform the reduction, assume that for α ą 1, we have for each Ei some

independent set Ci Ď Ei which contains at least 1
α

times as many elements as the

maximum-cardinality independent set on Ei. We then greedily construct an indepen-

dent set T by considering the elements in Ci in descending order of i. We output T .

The top-level structure of the algorithm is summarized in Figure 4.1.

Consider a fixed maximum-weight independent set Opt on E.

Lemma 4.3.1. For each i, |OptX Ei| ď αp|T X Ei|.

Proof. For each class Ei let Opti be the maximum-weight independent set on Ei.

Our oracle returns Ci with |Opti| ď α|Ci|, and thus with |OptX Ei| ď α|Ci|.

Ei is a p-system, with independent sets formed by any valid matching. Now

consider maximal independent sets on Ci Y T (recall Ci Y T Ď Ei). We have that Ci

is a maximal independent set of size |Ci|. Thus, by the definition of p-systems, no

maximal independent subset of Ci Y T can have size less than 1
p
|Ci|.

2If we do not have this guarantee, we can keep track of the highest-weight item seen so far,
and discard any items with less than 2ε{n times that weight. A matching made entirely of these
discarded edges is then at most an ε fraction of the output weight (since the weight we output is at
least the weight of the largest edge).

62

The greedy merge can thus always add elements from Ci to T until |T X Ei| ě
1
p
|Ci|. Combining this with the above we have |OptX Ei| ď αp|T X Ei|.

Lemma 4.3.2. There exists a function f from Opt to T such that for each e P Opt,

wpeq ď p1 ` εqwpfpeqq and for each t P T , there are at most αp elements e P Opt

such that fpeq “ t.

Proof. We define f inductively, considering Opt X Ei in descending order by i and

picking fpeq from among the elements of TXEi that have fewer than αp edges already

associated with them. This restriction will guarantee that fpeq is from at least as

high a class as e, which gives us that wpeq ď p1` εqwpfpeqq. By Lemma 4.3.1, there

are always enough elements in T X Ei to avoid overcrowding.

Lemma 4.3.2 leads immediately to a charging argument which proves Theorem 4.2.1:

every edge e P Opt is an element of the preimage f´1ptq for some t, and for each t

∑
ePf´1ptq

wpeq ď |f´1
ptq|p1` εqwptq ď αpp1` εqwptq (4.2)

so we have

wpOptq “
∑
ePOpt

wpeq “
∑
tPT

∑
ePf´1ptq

wpeq ď
∑
tPT

αpp1` εqwptq “ αpp1` εqwpT q (4.3)

4.4 Extensions

The general result of Corollary 4.2.2 improves the best known algorithms for many

matching problems. These are summarized in Table 4.1.

Maximum weighted graph matching (MWM) is a 2-system; since any maximal

matching is a 2-approximation of unweighted maximum matching, our algorithm can

thus provide a 4` ε approximation by keeping a greedy unweighted matching in each

63

Problem Model Previous Ref This Work
MWM One-pass streaming 4.911 [40] 4
MWM One-pass sliding window 9.027 [33] 6
MWM Map-reduce 8 [78] 4

3-MWM One-pass streaming 9.899 [25] 9
2-MWIS One-pass streaming 8 [25] 4
3-MWIS One-pass streaming 9.899 [25] 9

Table 4.1: Approximation factor improvements over previous results. ε factors have
been omitted.

Ei class. This provides an approximation guarantee in any big data model where we

are capable of performing greedy matching on weight-based substreams of the data.

Several of these applications are explained below; each of these is an improvement of

the previous best results in these models. Results are summarized in Figure 4.1.

The semi-streaming model (defined in [45]) allows one-way access to a stream of

weighted edges on a machine limited to Opn polylog nq memory. A series of papers

in this model have provided improved approximation guarantees in this model [45,

81, 104, 40]; the current best is a 4.911 + ε approximation [40]. Keeping a maximal

matching in the semistreaming model is trivial (see e.g. [45]) and the machine has

enough memory space to store one maximal matching for each of the Oplog nq many

weight classes, thus we find

Corollary 4.4.1. There is a 4 ` ε approximation algorithm for maximum weighted

matching in the semistreaming model.

Chakribarti et al. 2013 [25] extended semistreaming matching algorithms to the

more general cases of weighted matching on hypergraphs of degree p (p-MWM) and of

finding maximum-weight independent sets in p-intersection systems (p-MWIS). Our

algorithm improves their approximation ratios for the most practical p “ 2 and p “ 3

cases (see Figure 4.1).

64

Corollary 4.4.2. There is a semistreaming algorithm for finding the Maximum-

Weight Independent Set on a p-system with approximation ratio p2 ` ε.

Corollary 4.4.3. There is a semistreaming algorithm for finding the Maximum-

Weight Matching on a degree p hypergraph with approximation ratio p2 ` ε.

In the related semi-streaming “sliding window” graph model [35, 33], there is a

fixed window length L P ωpn polylog nq, and we are interested in maintaining (at all

times) a maximum matching over the most recent L edges. We are again limited to

Opn polylog nqmemory space. In this model, only a 3`ε-approximation to unweighted

matching is known [33], and we thus find:

Corollary 4.4.4. There is a 6 ` ε approximation algorithm for maximum weighted

matching in the semi-streaming sliding window model.

The classMRC0 [75] is a theoretical model for MapReduce computations achiev-

able with a constant number of rounds. In this model, even though the edge set does

not fit on any individual processor, it is possible to find a maximal matching [78] (and

thus a 2-approximation of the maximum unweighted matching). This immediately

yields an improvement over the previous best-known 8-approximation algorithm for

maximum weighted matching [78], with no additional communication cost (since the

merge can be performed on a single processor).

Corollary 4.4.5. There is a constant-round 4` ε approximation algorithm for max-

imum weighted matching in the MapReduce model MRC0.

4.5 Lower Bounds for Graph Matching

In this section we consider the case of maximum weighted graph matching, and

we present graph constructions which prove lower bounds on the approximation ra-

tios achievable by our algorithm. These constructions extend to a general family of

65

1´ ε

1´ ε

1

1´ ε

1´ ε

1 1

Figure 4.2: Graph with output weight 1 and optimum matching weight 4´2ε. In the
weight class r1,8q the double-lined edge is remembered; in the weight class r1´ ε,8q
the two single-lined edges are remembered. The double-lined edge is output. The
dashed edges are the optimum matching (and are not remembered in either class).

techniques which also includes previous weight-class-based approaches to maximum

weighted matching.

The algorithm presented in §4.3 computes its output matching by performing a

greedy matching on remembered edges, in decreasing order of weight. Our analysis

showed that this was a 4-approximation. In Fig. 4.2 we present a graph where the

algorithm’s approximation ratio is 4´ 2ε, showing that our analysis is tight to within

1` ε factors.

In the graph of Fig. 4.2, the greedy matching on the remembered edges has weight

1, but the maximum weight matching on remembered edges has weight 2 ´ 2ε. In

practice, many applications may be able to spend the post-processing time necessary

to find the maximum-weight matching on the remembered edges (which are, after

all, a sparse subgraph of the original graph). An obvious question is whether this

post-processing can provide a stronger approximation guarantee.

The graph of Fig. 4.3 shows that our algorithm cannot achieve better than a

3.5 approximation, even when we output the maximum-weight matching on all of

the remembered edges. Only remembered edges are drawn. Edges arrive in increas-

ing order by weight, with the remembered edges appearing before other edges of

the same weight. When the graph of Fig. 4.3 is extended upwards, any algorithm

66

4

8 8

4

2

6 6

2

1
3 3

1

4 48

6 6

42 2

3 3

21 1

Figure 4.3: A graph which, when extended upwards, approaches approximation ratio
3.5. The dotted-line edges form the optimal matching, but are not remembered in
any weight class. Solid edges are remembered but not output; double-lined edges are
remembered and output. These remembered edges are produced by a stream where
the edges arrive in order of increasing weight, with to-be-remembered edges arriving
first. The reader can verify that within each weight class, the set of remembered
edges is maximal.
On this graph, the output has weight 14, and the optimum matching has weight 48,
for an approximation ratio of «3.429. The graph can be extended upwards, with each
new layer including a single new output edge which decreases in weight by a power
of 2; the approximation ratio quickly approaches 3.5.

which uses greedy matchings on weight-based substreams cannot do better than a

3.5-approximation, because it is incapable of remembering any edge from Opt. This

class of algorithms includes our algorithm and also the previous best algorithm of

[40].

4.6 Conclusion

For specific systems of interest, we may be able to obtain stronger approximation

guarantees, particularly by being more clever in our post-processing of memory. The

case of one-pass streaming algorithms for graph matching is of particular interest. An

67

obvious improvement to our algorithm is to calculate the maximum matching on all

edges held in memory (via, e.g., the Blossom algorithm [85]) rather than performing a

greedy matching on edges held. In future work we plan to analyze the approximation

guarantees achievable by this algorithm. We conjecture that this improvement yields

a p3.5` εq-approximation, tight to the lower bound shown in Fig. 4.3.

68

CHAPTER 5

SAMPLE VS. SPACE COMPLEXITY

5.1 Introduction

In this chapter, we consider receiving a stream of IID samples from some unknown

distribution D, and being tasked with estimating some function fpDq of the distri-

bution. Two natural questions arise, both of which have been studied extensively:

1. The statistics question is how to bound the sample complexity : how many

samples are required to estimate fpDq to some prescribed accuracy with high

probability?

2. The data stream question is how to bound the space complexity : how much

memory is required to compute or approximate the estimator for fpDq?

The focus of this chapter is investigating the trade-offs between these two quantities:

If the stream is observed for time t, how much memory, s, is required to estimate

fpDq. Obviously t needs to be at least the sample complexity t˚ for the problem

since, with less than t˚ samples, insufficient information has been revealed about the

data set and therefore even unlimited computation space and time cannot yield a

good answer. However, in this chapter we observe that for two canonical problems,

the space complexity to process these samples decreases as t{t˚ increases.

Work in this chapter was originally done with Andrew McGregor and David

Woodruff and was presented at the MASSIVE 2013 workshop.

69

5.1.1 Sufficient Statistics and Data Streams

The goal of space-efficiency in statistical estimation is not new. In the study

of sufficient statistics [47] the goal is to prove that it suffices to maintain a small

number of statistics about the input when estimating certain parameters of the source

distribution D. For example, to estimate µ if D „ Npµ, 1q, it is sufficient to maintain

the sum and count of the samples; other information can be discarded. However,

for non-parametric problems sufficient statistics typically do not exist. Therefore, it

makes sense to also consider “approximate sufficient statistics”, i.e., statistics about

the stream of samples that can be computed online that will suffice to estimate the

relevant properties of the input with high probability.

In contrast to the majority of data stream research, in the above setting we do

not need to consider adversarially-ordered streams since the assumption is that input

stream is generated by a stochastic process. There is a growing body of work on

randomly-ordered streams [56, 96, 90, 24, 84, 53, 23]. Some work has also explicitly

considered streams of IID samples [28, 103, 55, 92]. There has also been work on

hypothesis testing given limited space [76, 60].

5.1.2 Subsampling vs. Supersampling

Other related work includes a paper by an overlapping set of authors [83] (see also

[98]) that considered the problem of processing data streams whose arrival rate was so

high that it was not possible to observe every element of the stream. Consequently,

it was presumed that the stream was first subsampled and then properties of the

original stream had to be deduced from the samples. In contrast, in this work we

essentially consider oversampling, or supersampling the data set. The motivation

is two-fold. First, in many applications there is an abundance of redundant data,

e.g., from sensors that a continually monitoring a static environment, and it makes

sense to find a way to capitalize on this data. Second, it may be preferable from a

70

computational point of view, to run a fast light-weight algorithm on a lot of data

rather than a computationally expensive algorithm on a small amount of data.

5.1.3 Results

We study the trade-off between sample and space complexity for the canonical

problems of undirected connectivity [43, 44, 97] and estimating frequency moments

[4, 68]. Our results are as follows:

1. Frequency Moments. Suppose D “ Dp is a distribution pp1, . . . , pnq over rns.

Then, to estimate FkpDq “
∑

i p
k
i for k ě 2 up to a factor p1` εq it is sufficient1

for

s ¨ t “ Õεpn
2´2{k

q (5.1)

if t ě t˚ “ Ωpn1´1{kq. We also show the lower bound that s “ Ω̃pn2.5p1´1{kq{t1.5q

space is necessary to return a constant approximation. We present the algorith-

mic result in §5.2 and the lower bound in §5.4.

2. Graph Connectivity. Suppose D “ DG is the uniform distribution of the set of

edges of an undirected, unweighted graph G. We show that it suffices for

s2
¨ t “ Õp|E| ¨ |V |2q

if t ě t˚ “ Ωp|E| log |E|q. We present these results in §5.3.

5.2 Frequency Moments

In this section we consider a stream of samples 〈a1, a2, a3, . . .〉 where each ai is

drawn independently from some unknown, discrete distribution p over rns. Let pj “

P[ai “ j] and define Fk “
∑

j p
k
j . Our main theorem in this section is as follows:

1Õεpfpnqq omits polyplog n, 1{εq terms.

71

Theorem 5.2.1. For k ě 2 and for t “ Ωpn1´1{kq, estimating Fk up to a factor

p1˘ εq given t samples is possible in Õεpn
2´2{k{tq space.

We will prove the upper bound in this section and establish a lower bound in

§5.4. We start with a simple algorithm for the k “ 2 case and then extend to k ą 2

via a variant of `2 sampling. Note that the condition that t “ Ωpn1´1{kq was shown

to be necessary by Bar-Yossef [15]; with less samples it is information-theoretically

impossible to estimate Fk.

5.2.1 Warm-Up: F2 Estimation

Consider the stream of samples as defining a sequence of pairs

〈pa1, a2q, pa3, a4q, . . . , pat´1, atq〉 .

Note that the probability that a pair of values is identical is exactly F2. Define

Xi P {0, 1} where Xi “ 1ra2i´1 “ a2is. Let X “ 2
t

∑
iXi.

Lemma 5.2.2. If t ą 6ε´2n lnp2{δq then P[|X ´ F2| ě εF2] ď δ.

Proof. First note that E[X] “
∑

i p
2
i “ F2. Since each Xi P {0, 1} is independent,

by an application of the Chernoff bound, P[|X ´ F2| ě εF2] ď 2e´ε
2tF2{6. Hence this

probability is less than δ if t ě 6 lnp2{δq{pF2ε
2q. Since F2 ě 1{n the result follows.

5.2.2 Technique: `2-Sampling in the IID model

The main technique that will be used in our Fk estimation algorithm is a form of

`2 sampling. Here we are given a sequence of samples 〈a1, a2, a3 . . .〉 from p and wish

to generate a sample from q where qi “ p2
i {F2ppq. In the F2-estimation algorithm

above, we observed that returning a2i for the smallest i such that a2i´1 “ a2i yields

a value drawn according to q. This required Oplog nq space but potentially Ωpnq

samples even in expectation.

72

We next consider a generalization of this idea: rather than taking two samples

and hoping they are the same value, we take w samples and return the first value that

occurs twice in the sequence. If w is small, it is possible there will be no duplicates.

However, the next lemma establishes that i is sampled with probability approximately

proportional to p2
i .

Lemma 5.2.3. Probability of returning i P rns satisfies:

cp2
i

1` wpi
ď P[returning i] ď cp2

i

where c does not dependent on i. The probability of returning any value in rns is at

least minp1{2, w2{p50nqq.

Proof. To simplify notation let i “ n. Let

Ak “
∑

distinct i1,...,ikPrns

pi1 . . . pik and Bk “
∑

distinct i1,...,ikPrn´1s

pi1 . . . pik

Then, the probability of returning n can be written as p2
np1` 2B1` 3B2` . . .` pw´

1qBw´2q. Since Ak “ Bk ` kpnBk´1, we then have

1` 2B1 ` 3B2 ` . . .` pw ´ 1qBw´2

ď 1` 2A1 ` 3A2 ` . . .` pw ´ 1qAw´2

“ p1` 2pnq ` 2p1` 3pnqB1 ` 3p1` 4pnqB2 ` . . .

`pw ´ 2qp1` pw ´ 1qpnqBw´3 ` pw ´ 1qBr´2

The first part of the lemma follows by setting c “ 1` 2A1` 3A2` ¨ ¨ ¨` pw´ 1qAw´2.

For the second part, observe that the probability of returning a value in rns is

minimized if p is the uniform distribution over rns. With probability at least 1{2 there

73

is at least one pair of duplicate samples after 5
√
n samples. If such a pair exists, the

probability that a specific pair occurs within the first w samples is minp1, pw{5
√
nq

2
q

since every ordering of the 5
√
n samples is equally likely.

5.2.2.1 Frequency Moments Algorithm and Analysis

The algorithm we present is inspired by the `2-sampling approach for frequency

moment estimation [87, 29]. Specifically, suppose we had a sequence of r “ Opε´2n1´2{k log δ´1q

samples and frequency estimations pi1, p̃i1q, pi2, p̃i2q, . . . pir, p̃irq, where p̃ij “ p1 ˘

ε{2qpij and where samples were chosen with probability P[ij “ `] “ p1˘ ε{2qp2
l {F2ppq.

Then a simple calculation and an application of the Chernoff bound would allow us

to estimate Fkppq via

Pr

[∣∣∣∣F2ppq

r

r∑
j“1

p̃k´2
ij

´ Fkppq

∣∣∣∣ ą εFkppq

]
ď δ .

We can estimate F2ppq in the sampling model as above. The remaining challenge

is to approximate
∑r

j“1 p̃
k´2
ij

. We present an algorithm which approximates this by

sampling r elements (with appropriate probabilities) and then approximating their

frequencies.

In what follows we assume all pi ď ε3t{n2´2{k since we can identify all larger

probabilities (there will be only Opε´3n2´2{k{tq of them and they’ll all appear among

the first Opε´3 log nn2´2{k{tq samples) and estimate their frequencies separately.

5.2.2.1.1 Algorithm. We consider the t samples divided into t{w contiguous

segments

C1, C2, . . . , Ct{w ,

each consisting of w “ maxp5
√
n, αε´2 log δ´1n2´2{k{tq samples for some large con-

stant α. In each segment Ci, the goal is to collect the first duplicate ei . Given the

assumption that pi ď ε{w for all i, Lemma 5.2.3 ensures that the element is chosen

74

with probability 9p1 ˘ εqp2
ei

as required. Subsequently we monitor ei, perhaps into

future segments, until we have a good estimate of pei .

1. X Ð 0

2. Collect: For each segment Ci, let ei be the first element to have a duplicate (if

one exists).

3. Monitoring: Let ci be the number of samples in Ci`1 Y Ci`2 Y . . . that appear

before ei has occurred d “ Opε´2 log nq times. Let X Ð X ` pd{ciq
k´2{r

4. Repeat until r samples ei are found. Return F2 ¨X.

The following lemma establishes that we get a good approximation of the proba-

bility of each element collected.

Lemma 5.2.4. For all i P {1, 2, . . . , r}, d{ci “ p1˘ ε{2qpi

Lemma 5.2.4 follows immediately from the following tail bounds for the negative

binomial distribution:

Lemma 5.2.5. Let X „ NBpr, pq be distributed according to the negative binomial

distribution with parameters r P N and p P p0, 1q. Then,

P[|r{X ´ p| ě εp|] ď 2 exp

(
´ε2r

3p1` εq

)

Hence, for some c ą 0 and r “ cε´2 logm, P[|r{X ´ p| ě εp|] ď m´100.

75

Proof. Consider Y „ Binp r
pp1`εq

, pq. Then

P

[
X ă

r

pp1` εq

]
“ P[Y ě r] “ P

[
Y ě p1` εqE[Y]

]
ď exp

(
´ε2r

3p1` εq

)

Similarly, let Y „ Binp r
pp1´εq

, pq. Then

P

[
X ą

r

pp1´ εq

]
“ P[Y ă r] “ P

[
Y ă p1´ εqE[Y]

]
ď exp

(
´ε2r

3p1´ εq

)

The result follows from the union bound.

Lemma 5.2.6. With high probability, the algorithm terminates before the end of the

stream is reached.

Proof. By Lemma 5.2.3, the probability of finding a duplicate during a segment is at

least minp1{2, w2{p50nqq. Hence the expected number of elements collected is

minp1{2, w2
{p50nqq ¨ t{w “ tw{p50nq ě αε´2 logpδ´1

qn1´2{k
{50 .

For sufficiently large α ą 0, this is at least r with high probability.

The last lemma bounds the space use of the algorithm.

Lemma 5.2.7. The algorithm uses Õεpn
2´2{k{tq space.

Proof. To find a duplicate in each segment only requires w ď n2´2{k{t space. It

remains to show that we are never monitoring too many items at the same time.

During the j-th segment, we may be estimating pi. By Lemma 5.2.5 we may assume

that we have not been monitoring i for more than Opε´2 log n{piq time, or equivalently

76

more than Opε´2 log n{pwpiqq segments. The probability that i is a duplicate during

a segment is at most
(
w
2

)
p2
i . Hence,

P[monitoring i during j-th segment] “

(
w

2

)
p2
i ¨Opε

´2 log n{pwpiqq

“ Opn2´2{kpiε
´2 log n{tq

Hence, the total expected number of items being monitored is Opn2´2{kε´2 log n{tq as

claimed.

5.3 Connectivity

In this section, we consider the problem of determining whether a graph G “

pV,Eq is connected given a sequence of t random samples (with replacement) from E.

For notational convenience, denote the number of nodes by n “ |V | and the number

of edges by m “ |E|.

Our algorithm uses the sampled edges to simulate classical random walks on the

graph. In §5.3.1, we discuss how to simulate (and tightly analyze) random walks in

our model. The main technical difficulty is ensuring independence when simulating

multiple random walks in parallel. Then, in §5.3.2, we adapt a connectivity algorithm

of Feige [44] to achieve the required space/sample trade-off.

5.3.1 Technique: Emulating Classical Random Walks

Consider the following basic algorithm: given a node v, we sample edges until we

receive an edge {v, u} for some u. At this point, we move to node u, and repeat.

We refer to this method as a sampling walk. Note that the expected time to leave

v is m{dpvq samples2 where dpvq is the degree of a node v, and so a single step of a

classical random walk may require Ωpmq samples if v has low degree.

2This is because the number of samples is geometrically distributed with parameter dpvq{m.

77

5.3.1.1 An Inefficient Connectivity Algorithm

This basic algorithm already leads to a Oplog nq space algorithm which uses

Opm2n2q samples in expectation. This follows by starting a sampling walk at node

1 and emulating a classical walk until it traverses nodes 2, 3, . . . , n in order. The

expected length of this walk is Opmn2q because the cover time of G, i.e., the expected

length of walk until it visits all nodes (see, e.g., [86]), is Opmnq and there are n ´ 1

segments in the traversal. Hence, emulating the random walk takes Opm2n2q sam-

ples in expectation. The space use is Oplog nq bits because the algorithm just needs

to remember the current node and the furthest node that has been reached in the

sequence. In what follows, we will improve upon the number of samples required and

generalize to algorithms that use more space.

5.3.1.2 The Loopy Graph and an Improved Analysis

The first improvement comes via a better analysis. At a node v with dpvq neigh-

bors, there are dpvq possible samples which would result in a move, and m ´ dpvq

samples which would not. We can thus view our sampling-based walk on G as a

classical random walk on a new graph H formed adding m ´ dpvq self-loops to each

vertex v in G. We call H the “loopy graph”.

This view of the sampling walk illuminates its properties. Specifically, H’s cover

time is Opmn2q since there are mn edges and n nodes. Hence, the above “inefficient”

algorithm actually only requires pn ´ 1q ˆ cover-timepHq “ Opmn3q samples. We

will also subsequently use the fact that since H is m-regular, its stable distribution

is uniform across all nodes.

5.3.1.3 Multiple Independent Random Walks

Random walks experience dramatic speedups in cover time, hitting time, etc.,

when they are split into multiple shorter walks; [37] provides a recent survey and

results. These speedups naturally require the walks to be independent. In this section,

78

we consider performing p ď n random walks in parallel, with the starting point of

each walk chosen independently and uniformly from the nodes (and thus according

to the stationary distribution on H). Running these p walks will require Opp log nq

space.

The main theorem of this section establishes that it is possible to efficiently per-

form p independent, parallel walks in H.

Theorem 5.3.1. Given p ď n parallel random walks in H, each starting at an

independently-chosen uniformly random node, we can simulate one independent step

of each walk using Oplog n{ log log nq total samples.

5.3.1.4 Issue 1: Multiple Walks can use a Sampled Edge

The first issue we encounter is that a single sample may be a valid move for

multiple walks. If we allow multiple walks to use the same sample, we introduce

obvious dependence; if we only allow one of our walks to use the sample, we are

“slowing down” walks that have collisions, and again introducing dependence.

When multiple walks are at the same node, we will handle them independently in

the following way. We partition the p walks into B1 Y B2 Y . . . Y Br where each Bi

contains at most one walk at each node. We process each batch in turn and hence the

total number of samples required equals the number of samples required for a batch

multiplied by the number of batches. The next lemma establishes that it suffices to

consider r “ Oplog n{ log log nq batches.

Lemma 5.3.2. With high probability, no node ever contains more than Oplog n{ log log nq

walks.

Proof. Consider a fixed node at a fixed time. Let Z be the number of walks in this

node. Note that Z „ Binpp, 1{nq since each walk is independent and is equally likely

to be at any node. Hence E[Z] “ p{n ď 1. By an application of the Chernoff bound,

79

P[Z ě c log n{ log log n] ď n´10

for some large constant c. The lemma follows by taking the union bound over the n

nodes and poly n time-steps.

Henceforth, we assume that at most one walk is at each node, i.e., we analyze how

many samples are required to process a single batch. The remaining case where a

sampled edge may be valid for multiple walks is if there are walks at both endpoints.

To solve this problem, we randomly orient each sampled edge so that it is valid for

only one walk. This increases the expected number of samples required by a factor

of 2.

5.3.1.5 Issue 2: Negative Correlation

We have reduced the problem to the following situation: we have p distinct nodes

u1, . . . , up and can sample arcs uv uniformly from the set E` “ {uv : {u, v} P

EG}, i.e., the set of arcs formed by bidirecting each each in EG. Note that |E`| “

2|EG|. The goal is to generate a set of arcs {u1v1, . . . , upvp} such that arc is chosen

independently and for each i,

vi “

v PR Γpuiq with probability dGpviq{|E

`|

ui with probability 1´ dGpviq{|E
`|

(5.2)

where Γpuiq “ {v : {u, v} P E} is the neighborhood of ui in G.

Consider the following procedure: draw a single sample uv PR E
` and, for each i,

set vi “ v if u “ ui, or vi “ ui otherwise. This procedure picks each vi according to

the desired distribution:

P[vi “ ui] “ 1´ dGpviq{|E
`
|

80

and conditioned on {vi ‰ ui}, vi is uniformly chosen from Γpuiq. Unfortunately, the

procedure obviously does not satisfy the independence requirement because the events

{ui “ vi} and {uj “ vj} are negatively correlated. However, the following theorem

establishes that, with only Op1q samples from E` in expectation, it is possible to

sample independently according to the desired distribution.

Theorem 5.3.3 (Efficient Parallel Sampling). There exists an algorithm that returns

samples pv1, . . . , vpq drawn from the desired distribution (5.2) while using at most

2e´ 1 samples from E` in expectation.

Proof. Our algorithm operates in rounds and each round uses at most 2 samples

from E`. At the beginning of a round, suppose we have already assigned values to

v1, . . . , vi for some i ě 0. Then the round proceeds as follows:

1. Sample uv P E`:

(a) If u R {ui`1, . . . , up} then set vi`1 “ ui`1, . . . , vp “ up

(b) If u “ uj for some j P {i`1, . . . , p} then sample an additional arc wx P E`

i. If w P {ui`1, . . . , uj´1} then set vi`1 “ ui`1, . . . , vj´1 “ uj´1, vj “ uj

ii. If w R {ui`1, . . . , uj´1} then set vi`1 “ ui`1, . . . , vj´1 “ uj´1, vj “ v

and we repeat the process until all v1, . . . , vp have been assigned.

To analyze the algorithm we define Tj “ {ujv : {uj, v} P EG} to be the set of

dGpujq arcs leaving uj and note that because u1, . . . , up are distinct, T1, . . . , Tp are

disjoint. Also define Aj to be the event that {vj ‰ uj}. Then, in any round in which

vj hasn’t yet been assigned:

P[vj is assigned and Aj|vj is assigned] (5.3)

“
|Tj|

|E`| ´
∑j´1

k“i`1 |Tk|
¨
|E`| ´

∑j´1
k“i`1 |Tk|

|E`|
“
|Tj|

|E`|
.

and hence vj is chosen according the desired distribution.

81

We next show that each vj is chosen independently. First observe that, conditioned

on Aj, vj is independent of pv1, . . . , vj´1, vj`1, . . . , vpq. Hence, it suffices to show that

all Aj are independent. Note that the RHS of (5.3) does not depend on decisions made

in previous rounds. Hence, we may deduce that Aj is independent of the outcome of

rounds before vj is assigned. Hence, for any 1 ď i1 ă i2 ă ¨ ¨ ¨ ă ir ď p,

P[Ai1 X . . .X Air] “ P[Ai1]P[Ai2 |Ai1] . . .P
[
Air |Ai1 X . . .X Air´1

]
“ P[Ai1]P[Ai2] . . .P[Air] .

The worst case for the expected number of samples is achieved when p “ |E`| and

each set is of size 1. For the algorithm not to terminate in a given round, we need

u P {ui`1, . . . , up} and hence the index of the sampled u needs to strictly increase

over previous rounds. The probability of this happening for r rounds is
(
m
r

)
{mr

and the expected number of rounds which don’t terminate is
∑m

r“1

(
m
r

)
{mr ď e ´ 1.

Because each non-terminating round involves two samples, the expected total number

of samples is thus at most 2e´ 1.

5.3.2 Connectivity Algorithm and Analysis

Our algorithm adapts a technique of Feige [43] for determining graph connectivity

via a two step process. We first test whether G contains any connected components

containing k or fewer nodes (for some k ă n to be chosen). If all of the connected

components of G contain at least k nodes, we choose Opn log n{kq nodes at random,

and verify that they are all connected to each other. Note that we can expect to have

chosen a vertex from each connected component. If we find that all of our chosen

vertices are connected, we conclude that G is connected; otherwise, we conclude that

G is disconnected.

Our connectivity algorithm thus relies on algorithms for two problems: 1) deter-

mining whether the graph has any connected components below a certain size, and 2)

82

determining whether a set of nodes is mutually connected in the graph. In the next

two sections, we develop algorithms with sample/space tradeoffs for each of these two

problems. We then use them in an algorithm for determining whether the graph G

is connected.

5.3.2.1 Finding Small Components

Our first subproblem is to determine whether the graph has any connected com-

ponents below a certain size. Given a node v, let the set of nodes in the connected

component containing v be denoted ccpvq.

Lemma 5.3.4. Given a node v of G and a parameter r, we can distinguish between

the case where |ccpvq| ă r and the case where |ccpvq| ą 2r with constant probability

using Opmr2q samples and Õp1q space.

Proof. We perform a sampling walk of length Opmr2q samples. While performing

this walk, we maintain a 1.1-approximation of the number of distinct vertices visited

using an F0 estimator [73]. If the estimated number of vertices visited is at least 3r{2,

we conclude that |ccpvq| ě r; otherwise, we conclude that |ccpvq| ď 2r.

If |ccpvq| ď r, we will clearly visit at most r nodes. Our algorithm correctly

concludes this so long as the F0 estimator returns the promised approximation. If

|ccpvq| ě 2r, we need to argue that in Opmr2q samples we will hit at least 2r distinct

nodes (except with constant probability). This follows from a result by Barnes [17,

Thm 1.3] that states that for any connected (multi-)graph, it takes OpMN q time in

expectation to hit either N distinct nodes orM distinct edges. UsingM “ 2mr and

N “ 2r establishes the result.

Theorem 5.3.5. We can determine whether G has a connected component of size

less than 2k using Oppq space and Õp2k ¨mn{pq samples for any p ď n.

Proof. Our algorithm has k rounds, each corresponding to a value r “ 1, 2, 4, . . . , 2k´1.

In each round we reach one of the following two conclusions: 1) G has no connected

83

components with size in the range rr, 2rs or 2) there exists a connected component

of G of size ă 3r. All graphs satisfy at least one of these conclusions. We then

determine G has no connected component of size less than 2k if we never reach the

first conclusion.

At a given value of r, we choose Opn log n{rq nodes, so that we hit any connected

component of at least r nodes with high probability. From each node, we perform

Õp1q random walks of length Õpmr2q samples; from Lemma 5.3.4 this will suffice

to determine with high probability whether any of these nodes is in a connected

component of size ď 2r.

We choose p nodes at a time, and perform p walks in parallel. From Theorem 5.3.1

we can perform each set of p walks using Õpmr2q samples. The number of samples

required for each r value is then Op n
rp
mr2q “ Opmnr{pq, and we thus require a total

number of samples Opmn2k{pq.

5.3.2.2 Checking Mutual Connectivity

The remaining subproblem is to determine whether a set of randomly-chosen nodes

is mutually connected.

Lemma 5.3.6. We can determine whether a set of Oppq randomly-chosen nodes is

mutually connected in G using Õppq space and Õpmn2{p2q samples for any p ď n.

Proof. Feige [44] provides a method for testing whether two nodes s and t are con-

nected using space Õppq and using a total of Õpmn{pq random-walk steps. Their

algorithm proceeds by choosing p “landmark” nodes; we then run Oplog nq random

walks from each landmark and from s and t. Each random walk is of length Õpmn{p2q.

During these random walks we build up a union-find data structure indicating which

sets of landmark nodes are connected. If at the end of the algorithm, s and t are in

the same union-find component, we conclude that s and t are connected.

84

Since H is regular, the landmark selection process chooses each node with equal

probability. Using Feige’s algorithm on the p randomly-chosen landmarks determines

whether this set of p nodes is mutually connected. The graph H has n nodes and mn

edges, so from [44] each walk should be of length Õpmn2{p2q. Using Theorem 5.3.1

we can simulate the p walks with total of Õpmn2{p2q samples.

We are now ready to prove our main connectivity result.

Theorem 5.3.7. Given sampling access to a graph G, we can determine with high

probability whether G is connected using Opp log nq space and Õpmn2{p2q samples, for

any p ď n.

Proof. We use Theorem 5.3.5 with 2k “ n{p to verify that G has no connected com-

ponents of size less than n{p. If it has such a component, then G is disconnected.

If not, we choose Opp log nq random vertices, hitting each remaining component with

high probability. Using Lemma 5.3.6, we test that these vertices are mutually con-

nected. Since we have chosen enough vertices to hit every connected component, this

suffices to show that the graph is connected. Each of the two subproblems requires

Opmn2{p2q samples and Õppq space, so these are the sample and space requirements

of our algorithm.

5.4 Lower Bound

Our lower bound result relies on a result by Andoni et al. [8] that implies that

Ωpt{r2.5q space is required3 to distinguish between the following two cases:

Case 1: We observe a sequence of t samples from a distribution pno that is uniform on

some subset S Ď rts of size Θptq

3We note that an improvement to the work of Andoni et al. [8] was claimed in [54]; however, the
proof given in [54] is incorrect and currently not known to be fixable.

85

Case 2: We observe a sequence of t samples from a distribution pyes such that pyes
i “ r{t

for some i P rts and uniform on some subset T Ď rtsz{i}.

By combining this result with a hashing technique we establish the following result.

Theorem 5.4.1. Any constant factor approximation of FkpDq given a sequence of t

IID samples on rns requires Ωpn2.5p1´1{kq{plog2.5 n ¨ t1.5qq space.

Proof. Let h : rts Ñ rns be a fully-random hash function and consider the problem

of distinguishing pno and pyes where we set r “ c log n ¨ t ¨ n1{k´1 for some constant

c ą 0. By applying h on each distribution (i.e., applying h to each observed sample)

we generate two new distributions qno and qyes over rns where:

qno
i “

∑
j:hpjq“i

pno
i and qyes

i “
∑

j:hpjq“i

pyes
i

Note that with high probability maxi q
no
i “ Oplog n ¨ 1{nq and hence

Fkpq
no
q ď n ¨Opplog n ¨ 1{nqkq “ Oplogk n ¨ n1´k

q .

However, maxi q
yes
i ě r{n and so

Fkpq
yes
q ě rk{tk “ ck ¨ logk n ¨ n1´k .

Hence, for a sufficiently large value of the constant c ą 0 we can ensure that any

constant approximation of Fk distinguishes between qyes and qno and hence, also

distinguishes between pyes and pno. However, by the result of Andoni et al. [8] we

know that this requires Ωpt{r2.5q “ Ωpn2.5p1´1{kq{plog2.5 n ¨ t1.5qq space.

86

CHAPTER 6

CONCLUSIONS

In this thesis, we have introduced several new models of streaming computation.

We used computational reductions to adapt existing algorithms to these models, and

to move from a small number of new algorithmic “primitives” to easily develop new

algorithms. Considering reductions as an important object of study led directly to

the development of algorithms.

We hope that future work will study reductions between streaming problems in

more detail. Many interesting streaming problems can be solved only by probabilis-

tic approximation algorithms. Unfortunately, classical approximation complexity has

largely considered nondeterministic classes rather than probabilistic models. We sus-

pect that this is one reason that a more formal study of streaming complexity classes

has been elusive.

87

BIBLIOGRAPHY

[1] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming
model. In ICALP (2), pages 328–338, 2009. Referenced on pg. 45.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph struc-
ture via linear measurements. In SODA, pages 459–467, 2012. Referenced on
pp. 43, 45, 47, and 54.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsi-
fication, spanners, and subgraphs. In PODS, pages 5–14, 2012. Referenced on
pp. 43, 45, and 48.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approx-
imating the Frequency Moments. Journal of Computer and System Sciences,
58(1):137–147, February 1999. Referenced on pp. 5, 6, 28, 31, 38, 41, and 71.

[5] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares.
On sparse spanners of weighted graphs. Discrete & Computational Geometry,
9:81–100, 1993. Referenced on pg. 55.

[6] Alexandr Andoni, Assaf Goldberger, Andrew McGregor, and Ely Porat. Ho-
momorphic fingerprints under misalignments. In STOC, page 931, June 2013.
Referenced on pg. 26.

[7] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algo-
rithms via precision sampling. FOCS, 2011. Referenced on pp. 10 and 61.

[8] Alexandr Andoni, Andrew McGregor, Krzysztof Onak, and Rina Panigrahy.
Better bounds for frequency moments in random-order streams. CoRR,
abs/0808.2222, 2008. Referenced on pp. 85 and 86.

[9] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles
over sliding windows. In PODS, pages 286–296, 2004. Referenced on pp. 16
and 44.

[10] Ahmed Ayad and Jeffrey F. Naughton. Static optimization of conjunctive
queries with sliding windows over infinite streams. In SIGMOD Conference,
pages 419–430, 2004. Referenced on pp. 16 and 44.

[11] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving
window over streaming data. In SODA, pages 633–634, 2002. Referenced on
pp. 16 and 44.

88

[12] Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Main-
taining variance and k-medians over data stream windows. In PODS, pages
234–243, 2003. Referenced on pp. 16 and 44.

[13] Ajesh Babu, Nutan Limaye, J Radhakrishnan, and Girish Varma. Streaming
algorithms for language recognition problems. Theoretical Computer Science,
494:13–23, 2013. Referenced on pg. 60.

[14] Ajesh Babu, Nutan Limaye, and Girish Varma. Streaming algorithms for some
problems in log-space. Electronic Colloquium on Computational Complexity
(ECCC), 17:94, 2010. Referenced on pg. 20.

[15] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: lower
bounds and applications. In STOC, pages 266–275, 2001. Referenced on pg. 72.

[16] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algo-
rithms, with an application to counting triangles in graphs. In SODA, pages
623–632, January 2002. Referenced on pp. 15 and 60.

[17] Greg Barnes and Uriel Feige. Short Random Walks on Graphs. SIAM Journal
on Discrete Mathematics, 9(1):19, 1996. Referenced on pg. 83.

[18] Surender Baswana. Streaming algorithm for graph spanners—single pass and
constant processing time per edge. Information Processing Letters, 2008. Ref-
erenced on pg. 45.

[19] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J Strauss. Space-
optimal heavy hitters with strong error bounds. ACM Transactions on Database
Systems, 35(4):1–28, November 2010. Referenced on pg. 11.

[20] B Bollobás. Extremal graph theory. Academic Press, New York, 1978. Refer-
enced on pg. 56.

[21] Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch `2-heavy-
hitters on sliding windows. In COCOON, pages 638–650, 2013. Referenced on
pp. 16, 44, and 48.

[22] Vladimir Braverman and Rafail Ostrovsky. Smooth Histograms for Sliding
Windows. In FOCS, pages 283–293. Ieee, October 2007. Referenced on pp. 16,
44, 48, and 50.

[23] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower
bounds for communication and stream computation. In STOC, pages 641–650,
2008. Referenced on pg. 70.

[24] Amit Chakrabarti, T. S. Jayram, and Mihai Patrascu. Tight lower bounds
for selection in randomly ordered streams. In SODA, pages 720–729, 2008.
Referenced on pg. 70.

89

[25] Amit Chakrabarti and Sagar Kale. Submodular Maximization Meets Streaming:
Matchings, Matroids, and More. In IPCO, September 2014. Referenced on
pp. 17, 18, 58, and 64.

[26] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding Frequent
Items in Data Streams. In ICALP ’02: Proceedings of the 29th International
Colloquium on Automata, Languages and Programming, pages 693–703, Lon-
don, UK, 2002. Springer-Verlag. Referenced on pg. 10.

[27] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating
the minimum spanning tree weight in sublinear time. SIAM J. Comput.,
34(6):1370–1379, 2005. Referenced on pg. 54.

[28] Steve Chien, Katrina Ligett, and Andrew McGregor. Space-efficient estima-
tion of robust statistics and distribution testing. In ICS, pages 251–265, 2010.
Referenced on pg. 70.

[29] Don Coppersmith and Ravi Kumar. An improved data stream algorithm for
frequency moments. In SODA, pages 151–156, 2004. Referenced on pg. 74.

[30] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent
items in data streams. The VLDB Journal, 19(1):3–20, December 2010. Refer-
enced on pg. 11.

[31] Graham Cormode and S. Muthukrishnan. An improved data stream summary:
The Count-Min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.
Referenced on pg. 7.

[32] Michael Crouch and Andrew McGregor. Periodicity and cyclic shifts via lin-
ear sketches. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 158–170, 2011. Referenced on pg. 23.

[33] Michael Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic Graphs in
the Sliding-Window Model. ESA, 2013. Referenced on pp. 18, 43, 54, 58, 64,
and 65.

[34] Artur Czumaj and Leszek Gccasieniec. On the Complexity of Determining the
Period of a String. In Raffaele Giancarlo and David Sankoff, editors, Combi-
natorial Pattern Matching, volume 1848 of Lecture Notes in Computer Science,
pages 412–422. Springer Berlin / Heidelberg, 2000. Referenced on pg. 23.

[35] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintain-
ing Stream Statistics over Sliding Windows. SIAM Journal on Computing,
31(6):1794, 2002. Referenced on pp. 15, 16, 44, and 65.

[36] DP Dubhashi and A Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009. Referenced on pp. 20
and 21.

90

[37] Klim Efremenko and Omer Reingold. How Well Do Random Walks Parallelize?
In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors, APPROX-
RANDOM, volume 5687 of Lecture Notes in Computer Science, pages 476–489,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. Referenced on pg. 78.

[38] Michael Elkin. Streaming and fully dynamic centralized algorithms for con-
structing and maintaining sparse spanners. ACM Transactions on Algorithms,
7(2):1–17, March 2011. Referenced on pg. 45.

[39] D. Eppstein, Z. Galil, G.F. Italiano, and A. Nissenzweig. Sparsification: a
technique for speeding up dynamic graph algorithms. Journal of the ACM,
44(5):669–696, 1997. Referenced on pg. 43.

[40] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved Approxi-
mation Guarantees for Weighted Matching in the Semi-streaming Model. SIAM
Journal on Discrete Mathematics, 25(3):1251–1265, January 2011. Referenced
on pp. 17, 18, 43, 45, 54, 58, 64, and 67.

[41] Funda Ergün, Hossein Jowhari, and Mert Salam. Periodicity in Streams. RAN-
DOM, 2010. Referenced on pp. v, 23, 25, 26, 28, 40, and 41.

[42] Funda Ergün, S. Muthukrishnan, and Cenk Sahinalp. Periodicity testing with
sublinear samples and space. ACM Transactions on Algorithms, 6(2):1–14,
March 2010. Referenced on pp. 23, 26, and 28.

[43] Uriel Feige. A fast randomized logspace algorithm for graph connectivity. Theor.
Comput. Sci., 169(2):147–160, 1996. Referenced on pp. 71 and 82.

[44] Uriel Feige. A Spectrum of TimeSpace Trade-offs for Undirected s-t Connec-
tivity. Journal of Computer and System Sciences, 54(2):305–316, April 1997.
Referenced on pp. 71, 77, 84, and 85.

[45] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and
Jian Zhang. On graph problems in a semi-streaming model. Theoretical Com-
puter Science, 348(2-3):207–216, December 2005. Referenced on pp. 5, 8, 17,
43, 45, 55, 58, and 64.

[46] Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter
in the streaming and sliding-window models. Algorithmica, 41(1):25–41, 2004.
Referenced on pp. 16 and 44.

[47] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philo-
sophical Transactions of the Royal Society of London. Series A, Containing Pa-
pers of a Mathematical or Physical Character, 222:309–368, 1922. Referenced
on pp. 18 and 70.

[48] Philippe Flajolet and G Nigel Martin. Probabilistic Counting. In FOCS, pages
76–82. IEEE, 1983. Referenced on pg. 4.

91

[49] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya
Panigrahi. A general framework for graph sparsification. In STOC, pages 71–
80, 2011. Referenced on pg. 48.

[50] Sumit Ganguly. Lower bounds on frequency estimation of data streams. In
Computer ScienceTheory and Applications, pages 204–215. Springer, 2008. Ref-
erenced on pg. 20.

[51] Anna C. Gilbert and Piotr Indyk. Sparse Recovery Using Sparse Matrices.
Proceedings of the IEEE, 98(6):937–947, June 2010. Referenced on pg. 7.

[52] Ashish Goel, Michael Kapralov, and Ian Post. Single pass sparsification in the
streaming model with edge deletions. CoRR, abs/1203.4900, 2012. Referenced
on pg. 45.

[53] Michael Greenwald and Sanjeev Khanna. Efficient online computation of quan-
tile summaries. In ACM International Conference on Management of Data,
pages 58–66, 2001. Referenced on pg. 70.

[54] Sudipto Guha and Zhiyi Huang. Revisiting the direct sum theorem and space
lower bounds in random order streams. In ICALP, pages 513–524, 2009. Ref-
erenced on pg. 85.

[55] Sudipto Guha and Andrew McGregor. Space-efficient sampling. In AISTATS,
pages 169–176, 2007. Referenced on pg. 70.

[56] Sudipto Guha and Andrew McGregor. Stream order and order statistics:
Quantile estimation in random-order streams. SIAM Journal on Computing,
38(5):2044–2059, 2009. Referenced on pg. 70.

[57] G H Hardy and E M Wright. An Introduction to The Theory of Numbers
(Fourth Edition). Oxford University Press, 1960. Referenced on pg. 32.

[58] Juris Hartmanis, Neil Immerman, and Stephen R. Mahaney. One-Way Log-
Tape Reductions. In FOCS, pages 65–72, 1978. Referenced on pg. 4.

[59] Juris Hartmanis and Stephen R. Mahaney. Languages Simultaneously Complete
for One-Way and Two-Way Log-Tape Automata. SIAM Journal on Computing,
10(2):383, 1981. Referenced on pg. 4.

[60] Martin E Hellman and Thomas M Cover. Learning with finite memory. The
Annals of Mathematical Statistics, pages 765–782, 1970. Referenced on pg. 70.

[61] Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM, 46(4):502–516,
1999. Referenced on pg. 43.

[62] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic de-
terministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. J. ACM, 48(4):723–760, 2001. Referenced on pg. 43.

92

[63] John Hopcroft and J. D. Ullman. Some Results on Tape-Bounded Turing Ma-
chines. Journal of the ACM, 16(1):168–177, January 1969. Referenced on pg. 4.

[64] Neil Immerman. Descriptive Complexity. Springer, 1999. Referenced on pg. 4.

[65] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and
data stream computation. J. ACM, 53(3):307–323, 2006. Referenced on pg. 7.

[66] Piotr Indyk, N Koudas, and S. Muthukrishnan. Identifying representative
trends in massive time series data sets using sketches. In VLDB, pages 363–372,
2000. Referenced on pg. 23.

[67] Piotr Indyk and Andrew McGregor. Declaring independence via the sketching
of sketches. In Shang-Hua Teng, editor, SODA, pages 737–745. SIAM, 2008.
Referenced on pp. 26 and 38.

[68] Piotr Indyk and David P Woodruff. Optimal approximations of the frequency
moments of data streams. In Harold N Gabow and Ronald Fagin, editors,
STOC, pages 202–208. ACM, 2005. Referenced on pp. 61 and 71.

[69] G.F. Italiano, D. Eppstein, and Z. Galil. Dynamic graph algorithms. Algorithms
and Theory of Computation Handbook, CRC Press, 1999. Referenced on pg. 43.

[70] Thomas A Jenkyns. The efficacy of the greedy algorithm. Proceedings of the
7th Southeastern Conference on Combinatorics, Graph Theory and Computing,
pages 341–350, 1976. Referenced on pg. 59.

[71] Hossein Jowhari, Mert Salam, and Gábor Tardos. Tight bounds for Lp samplers,
finding duplicates in streams, and related problems. In PODS, pages 49–58.
ACM Press, June 2011. Referenced on pp. 10 and 35.

[72] Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm
for the distinct elements problem. In PODS, pages 41–52, 2010. Referenced on
pg. 7.

[73] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the Exact Space
Complexity of Sketching and Streaming Small Norms. In Moses Charikar, edi-
tor, SODA, pages 1161–1178. SIAM, 2010. Referenced on pg. 83.

[74] Michael Kapralov. Better bounds for matchings in the streaming model. In
SODA, pages 1679–1697, 2013. Referenced on pp. 43 and 50.

[75] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Com-
putation for MapReduce. In SODA, pages 938–948, 2010. Referenced on pg. 65.

[76] Jack Koplowitz. Necessary and sufficient memory size for m-hypothesis testing.
Information Theory, IEEE Transactions on, 21(1):44–46, 1975. Referenced on
pg. 70.

93

[77] Eyal Kushilevitz and Noam Nisan. Communication Complexity, volume 2006.
Cambridge University Press, 1997. Referenced on pg. 55.

[78] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii.
Filtering: a method for solving graph problems in MapReduce. In SPAA, New
York, New York, USA, 2011. ACM Press. Referenced on pp. 17, 18, 58, 64,
and 65.

[79] P. M. Lewis, R. E. Stearns, and Juris Hartmanis. Memory bounds for recogni-
tion of context-free and context-sensitive languages. In 6th Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT 1965), pages 191–202.
IEEE, 1965. Referenced on pg. 4.

[80] Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-
parenthesized expressions in the streaming model. In Leonard J Schulman,
editor, STOC, pages 261–270. ACM, 2010. Referenced on pp. 19 and 60.

[81] Andrew McGregor. Finding graph matchings in data streams. APPROX-
RANDOM, 2005. Referenced on pp. 17, 43, 58, and 64.

[82] Andrew McGregor. Processing data streams. PhD thesis, University of Penn-
sylvania, 2007. Referenced on pg. 4.

[83] Andrew McGregor, A. Pavan, Srikanta Tirthapura, and David P. Woodruff.
Space-efficient estimation of statistics over sub-sampled streams. In PODS,
pages 273–282, 2012. Referenced on pg. 70.

[84] Andrew McGregor and Paul Valiant. The shifting sands algorithm. In ACM-
SIAM Symposium on Discrete Algorithms, pages 453–458, 2012. Referenced on
pg. 70.

[85] Silvio Micali and Vijay V. Vazirani. An O(sqrt(|V|) |E|) algorithm for finding
maximum matching in general graphs. In FOCS, pages 17–27, 1980. Referenced
on pg. 68.

[86] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
Referenced on pg. 78.

[87] Morteza Monemizadeh and David P Woodruff. 1-Pass Relative-Error L p-
Sampling with Applications. In SODA, 2010. Referenced on pp. 28, 35, and 74.

[88] Robert Morris. Counting large numbers of events in small registers. Commun.
ACM, 21(10):840–842, October 1978. Referenced on pg. 4.

[89] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995. Referenced on pg. 40.

94

[90] J. Ian Munro and M.S. Paterson. Selection and sorting with limited storage.
Theoretical Computer Science, 12(3):315–323, November 1980. Referenced on
pp. 4 and 70.

[91] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations
and Trends in Theoretical Computer Science, 1(2), 2006. Referenced on pg. 5.

[92] S. Muthukrishnan. Stochastic data streams. In MFCS, page 55, 2009. Refer-
enced on pg. 70.

[93] Jelani Nelson. Sketching and Streaming High-Dimensional Vectors. PhD thesis,
Massachusetts Institute of Technology, 2011. Referenced on pg. 4.

[94] Noam Nisan. Pseudorandom Generators for Space-bounded Computation.
Combinatorica, 12:449–461, 1992. Referenced on pg. 7.

[95] Benny Porat and Ely Porat. Exact and Approximate Pattern Matching in the
Streaming Model. In FOCS, pages 315–323, October 2009. Referenced on pp. 23
and 40.

[96] Piyush Rai, Hal Daumé III, and Suresh Venkatasubramanian. Streamed learn-
ing: One-pass SVMs. In IJCAI, pages 1211–1216, 2009. Referenced on pg. 70.

[97] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM,
55(4):1–24, September 2008. Referenced on pg. 71.

[98] Florin Rusu and Alin Dobra. Sketching sampled data streams. In ICDE, pages
381–392, 2009. Referenced on pg. 70.

[99] R. E. Stearns, Juris Hartmanis, and P. M. Lewis. Hierarchies of memory limited
computations. In 6th Annual Symposium on Switching Circuit Theory and
Logical Design (SWCT 1965), pages 179–190. IEEE, 1965. Referenced on pg. 4.

[100] R.E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia,
1983. Referenced on pg. 46.

[101] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In STOC,
pages 343–350, 2000. Referenced on pg. 43.

[102] H Vollmer. Introduction to circuit complexity: a uniform approach. Springer-
Verlag, 1999. Referenced on pg. 4.

[103] David P. Woodruff. The average-case complexity of counting distinct elements.
In ICDT, pages 284–295, 2009. Referenced on pg. 70.

[104] Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica,
pages 669–680, 2012. Referenced on pp. 17, 43, 58, and 64.

95

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	Fall 2014

	Streaming Algorithms Via Reductions
	Michael S. Crouch
	Recommended Citation

	acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Notation
	p norms

	The Streaming Model: History
	The Data Stream Model
	Numeric Streams
	Linear Sketches
	Graph Streams
	Approximation and Randomization
	Sampling Problems
	Streaming Example: p Sampling

	Example Reduction in the Streaming Model
	Precision Sampling: 1-Sampling Reduces to Heaviest Hitter

	Contributions
	Linear Transformation Reductions
	Periodicity Results

	Polylog-parallel Reductions
	Sliding Window Model
	Weighted Matching
	Sampling vs. Space

	Other Reduction Models
	Chernoff-Hoeffding Bounds
	Organization

	Periodicity
	Introduction
	Results and Related Work
	Notation
	Precision

	Fourier Preliminaries and Choice of Distance Function
	Discrete Fourier Transform and Sketches
	Choice of Distance Function

	Reductions Using the Discrete Fourier Transform
	Distance from Fixed Periodicity
	Determining Perfect Periodicity: Noiseless Case
	Determining Perfect Periodicity: Noisy Case
	Fourier Sampling
	Application to the Noiseless Case
	Application to the Noisy Case

	Distance from Fixed Periodicity
	Cyclic Shifts
	Time-Series Model
	Cyclic Shift Distance

	Conclusion

	Sliding Window Graph Streams
	Introduction
	Sliding-Window Model
	Results

	Connectivity and Graph Sparsification
	Algorithm
	Analysis
	Applications: Bipartiteness and Graph Sparsification
	Bipartiteness
	Graph Sparsification

	Matchings
	Maximum Cardinality Matching
	Smooth Histograms
	Matchings are Almost Smooth
	Space Usage
	Approximation Factor

	Weighted Matching

	Minimum Spanning Tree
	Graph Spanners
	Conclusions

	Matching
	Introduction
	Definitions and Results
	Independence Systems
	Streaming Reductions
	Main Result

	Algorithm
	Extensions
	Lower Bounds for Graph Matching
	Conclusion

	Sample vs. Space Complexity
	Introduction
	Sufficient Statistics and Data Streams
	Subsampling vs. Supersampling
	Results

	Frequency Moments
	Warm-Up: F2 Estimation
	Technique: 2-Sampling in the IID model
	Frequency Moments Algorithm and Analysis

	Connectivity
	Technique: Emulating Classical Random Walks
	An Inefficient Connectivity Algorithm
	The Loopy Graph and an Improved Analysis
	Multiple Independent Random Walks
	Issue 1: Multiple Walks can use a Sampled Edge
	Issue 2: Negative Correlation

	Connectivity Algorithm and Analysis
	Finding Small Components
	Checking Mutual Connectivity

	Lower Bound

	Conclusions
	Bibliography

