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ABSTRACT 
 

MULTIDIMENSIONAL MODELING OF CONDENSING TWO-PHASE EJECTOR 
FLOW  

 

SEPTEMBER 2011 
 

MICHAEL COLAROSSI, B.S., CLARKSON UNIVERSITY 
 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by:  Professor David Schmidt 
 
 

  
Condensing ejectors utilize the beneficial thermodynamics of condensation to 

produce an exiting static pressure that can be in excess of either entering static pressure.  

The phase change process is driven by both turbulent mixing and interphase heat transfer.  

Semi-empirical models can be used in conjunction with computational fluid dynamics 

(CFD) to gain some understanding of how condensing ejectors should be designed and 

operated.  

The current work describes the construction of a multidimensional simulation 

capability built around an Eulerian pseudo-fluid approach.  The transport equations for 

mass and momentum treat the two phases as a continuous mixture.  The fluid is treated as 

being in a non-thermodynamic equilibrium state, and a modified form of the homogenous 

relaxation model (HRM) is employed.  This model was originally intended for 

representing flash-boiling, but with suitable modification, the same ideas could be used 

for condensing flow.  The computational fluid dynamics code is constructed using the 

open-source OpenFOAM library.  Fluid properties are evaluated using the REFPROP 

database from NIST, which includes many common fluids and refrigerants. 
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The working fluids used are water and carbon dioxide.  For ejector flow, 

simulations using carbon dioxide are more stable than with water.  Using carbon dioxide 

as the working fluid, the results of the validation simulations show a pressure rise that is 

comparable to experimental data.  It is also observed that the flow is near thermodynamic 

equilibrium in the diffuser for these cases, suggesting that turbulence effects present the 

greatest challenge in modeling these ejectors. 
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CHAPTER 1 

 

INTRODUCTION AND LITERARY BACKGROUND 

 

 

1.1 Description of Condensing Ejector 

 

 The condensing ejector is a two-phase jet device in which a fluid in a liquid state 

or in the two-phase region is mixed with its vapor phase, producing a mixed stream with 

a pressure that is higher than the pressure of either of the two inlet streams [1]. Figure 1.1 

presents the predicted behavior of a condensing ejector. 

 

Figure 1.1.  Principle of a condensing ejector [2]. 

 

 As can be seen from the picture, liquid and vapor enter the nozzle and mix in the 

converging section.  The liquid inlet is the motive inlet that drives the nature of the flow, 

and the vapor inlet is the suction inlet.  The high relative velocity between the suction and 

motive streams produces a high heat transfer value and vapor phase condensation rate.  

This condensed vapor adds to the momentum flux of the motive stream.  The pressure 
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rises due to lowering the velocity of the motive and suction streams and the mass flow 

balance is maintained by a sudden change of density (condensation).  The main objective 

of this project is to model the flow inside a condensing ejector using Computational Fluid 

Dynamics (CFD). 

 A CFD analysis is employed to overcome the limitations of a simple control 

volume analysis and to provide an input to design methodology of the condensing ejector.  

The simulations will be used to predict the flow for various boundary conditions and 

different fluids (in these cases, water and carbon dioxide).  This can also provide the 

basis for the design methods of other equipment operating on two-phase flow, including 

condensing ejectors, pumps, heat exchangers, jet compressors, and diffusers.  

 

1.2 Application of Condensing Ejector 

 The two-phase condensing ejector that is being modeled in this work could 

potentially be put into a refrigeration cycle.  A typical refrigeration cycle consists of a 

compressor, condenser, expansion valve, and evaporator.  In a standard cycle, refrigerant 

enters the compressor as a saturated vapor and is compressed to a higher pressure and 

temperature.  This superheated vapor moves through the condenser and is cooled to a 

saturated liquid state.  At this stage, heat is rejected from the system.  Next, the liquid 

goes through the expansion valve where there is a significant reduction in pressure.  This 

reduction in pressure allows for evaporation to occur at a lower temperature. Lastly, the 

low-pressure liquid moves through the evaporator.  Here, the refrigerant absorbs heat 

released from the condenser and results in a cooling of the surrounding environment.  

The evaporated refrigerant continues to the compressor and repeats the cycle again. 
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 Having an ejector placed in the cycle could potentially reduce the amount of work 

required by the compressor, resulting in an increased efficiency.  Figure 1.2 shows a 

proposal configuration of a condensing ejector within a refrigeration cycle [3]. 

 
Figure 1.2:  Example of a condensing ejector refrigeration cycle [3]. 

  
In this refrigeration cycle [3], (1) is the main piping circuit, which contains the 

evaporator (2), compressor (3), ejector (4), condenser (5), separator tank (6), intermediate 

heat exchanger (7), and expansion valve (8).  The additional liquid line (9) circulates the 

liquid from the separator (6) and moves it through the pump (10), and continues back to 

the ejector (4).  The evaporator (2) absorbs heat from the source (11), and the condenser 

(5) is connected to the heat sink (12) [3].   

 Earlier work using a single-phase ejector resulted in a theoretical improvement of 

16 percent and an experimental improvement of 4 percent [4].  Bergander [3] expected a 

theoretical improvement of 38 percent and observed an experimental improvement of 16 

percent when using a two-phase ejector with R22 as the working fluid.  The improvement 
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in efficiency is based upon the type of refrigerant, design of the cycle, and the design of 

the ejector nozzle.  Specifically looking at the ejector, the operating conditions and 

nozzle geometry have a significant role in the effectiveness of the refrigeration cycle.  

This will be discussed later in the chapter. 

 

1.3 Early Experimental Work on Condensing Ejectors 

 The condensing ejector has a long history going back to the early 1900’s [5], but 

there are still questions of how to correctly model the flow and to determine the best 

nozzle shape.  Experiments have been done to analyze thermodynamic properties 

throughout the nozzle and how the vapor and liquid phases interact before and after the 

potential shock wave [6] [7].  Analytical models have been made to better describe the 

experimental results.  In the past few decades, CFD has been used to describe two-phase 

flow through nozzles, with some work particularly looking at the condensing ejector [8-

14]. 

A key feature of two-phase flow is that the speed of sound is much lower than for 

a pure liquid or pure gas.  Fisenko [15] shows that the sonic speed of an equal mix of 

liquid and gas, by volume, is less than one tenth of the sonic speed of a pure gas.  Even 

when a mixture has a high percentage of one of the phases, the speed of sound is still 

significantly lower.  With this known, this author mentions how less energy is necessary 

to reach the speed of sound in a two-phase mixture [15].   

Miguel and Brown [1] designed a condensing ejector for two-phase flow.  They 

also provided analytical results that matched well with their experiments.  The analytical 

solution assumed that it was steady, incompressible flow, and that there was complete 
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condensation of the vapor at the end of the constant-area mixing section.  The nozzle that 

was used had a converging mixing section followed by a constant-area mixing section 

and then a diffusing section after the condensation shock occurs. 

 Different designs for condensing ejectors would be studied.  Levy and Brown [16] 

designed a nozzle that only had a constant-area section for mixing of the liquid and vapor 

streams, followed by a diffusing section.  Experiments looked at the effect of changing 

the inlet liquid velocity.  Tests were done with the back pressure valve open, even though 

in most applications the condensing ejector must operate with a high back pressure or 

with the back pressure valve closed.  This was done because it was easier to examine the 

interactions between the liquid and vapor streams.  From the experiments, it was noticed 

that there was liquid jet breakup in the mixing section and was most prominent for the 

lower inlet liquid velocities (25 ft/s, 7.62 m/s).  Complete condensation occurred with the 

high liquid inlet velocity stream (88.5 ft/s, 27.0 m/s), but not with the intermediate (35.8 

ft/s, 10.9 m/s) and low velocity liquid streams. 

The efficiency of the condensing ejector is currently non-ideal, and there has been 

work that predominantly looks at the efficiency of the ejector cycle and possible ways to 

improve it [17] [18] [19].  Kermani et al. [19] studied the thermodynamic loss for 

condensing steam flow through a converging-diverging nozzle.  A CFD model was 

constructed to get the results, where it was seen that most of the losses were caused by 

nucleation and also the temperature change through the shock.  Trela et al. [17] noticed 

similar results with experimental testing of a condensing injector (liquid is pumped into 

the mixing chamber for an injector, where as it is sucked into the mixing chamber for an 

ejector), with irreversible losses around the shock wave and in the mixing chamber. 
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1.4 Modeling of Two-Phase Flow 

Previous works have looked at modeling turbulent flow for two-phase mixtures, 

having mixed results overall [8] [20] [21].  The mixing of the liquid and vapor phases 

causes a high amount of turbulence.  A simple model to describe this is a turbulent 

mixing length [20].  So far, this has not led to a sufficient turbulence model [8].  

Avetissian et al. [21] analyzes the effects of turbulence on the spontaneous condensation 

of steam in a de Laval nozzle.  In the analysis, a standard k-epsilon and a modified k-

epsilon turbulence model were used.  The k-epsilon was modified to account for the 

modulation of turbulence due to droplets, and it was assumed that the expression for the 

eddy viscosity coefficient is a function of the turbulence production-to-turbulence ratio 

[21].  It was concluded that the modified k-epsilon model was better at predicting two-

phase flow through a de Laval nozzle.  The authors noticed that the standard k-epsilon 

model can incorrectly predict the disappearance of a steady condensation shock for a 

nozzle with a low level of inlet turbulence [21].  At very high-level inlet turbulence, 

steady shock and the shock waves of spontaneous condensation disappear with either 

model [21].  

 White [22] compares three different modeling methods for wet-steam flow.  In 

particular, the size distributions and the growth of the liquid phase are compared for flow 

through a one-dimensional supersonic nozzle.  The author looks at a mixed Eulerian-

Lagrangian method, a fully Eulerian method, and a method based on moments of the 

droplet field [22].  It was concluded that the moment-based method was efficient and 

would be most practical for two-dimensional and three-dimensional calculations.  The 

fully Eulerian calculations did have some error but required less CPU time.  The 
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Eulerian-Lagrangian method had accurate results, at a cost of longer computational time 

[22]; this method has also been used for modeling flow through de Laval nozzles and 

turbine blades [23].  In a later work, White used Reynolds-averaged Navier-Stokes 

equations to calculate wet-steam flow [24].  Both steady and unsteady flows were looked 

at for various nozzle geometries.  For one of the unsteady cases, asymmetric oscillation 

modes were observed, which previously were only noticed in moist air [24]. 

For interphase mass transfer, Bilicki and Kestin [25] look at the homogeneous 

relaxation model (HRM) for one-dimensional, vaporizing two-phase flows.  HRM is a 

modified version of the homogeneous equilibrium model (HEM), where a differential 

term is added to the mass, momentum, and energy equations, and a relaxation equation is 

added.  The authors suggest that the HRM model is a better model than the HEM.  When 

calculating critical velocity, as the void fraction approaches zero (saturated liquid), for 

the HRM the critical velocity approaches the speed of sound for a liquid while for the 

HEM the critical velocity is of the magnitude of 1 m/s [25].  Also, the HEM can 

underestimate critical mass-flow rates up to 20%. Because of these reasons, it can be 

nearly impossible to calculate flow parameters for a two-phase mixture at high velocity 

using the HEM [25].  A modified form of the HRM is used in the work presented here.   

 

1.5 Using CFD to Model Flow in a Nozzle 

 

1.5.1 CFD of Two-Phase Flow through a Nozzle 

CFD has been used to simulate two-phase flow, with some work being done for 

flow through a condensing ejector (mostly one-dimensional modeling for condensing 

ejector simulations).  This sub-section will look at studies that did not specifically 

examine the condensing ejector cycle, or the condensing ejector.  Clerc et al. [26] used 
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CFD to simulate flow through nuclear reactor cores.  The simulations had liquid and 

vapor streams interacting in a converging-diverging nozzle.  A covolume method is used 

because it supports the use of unstructured meshes and variable density flows.  According 

to the authors [26], this is the first time where this modeling method is used for nuclear 

thermal-hydraulics.  From the preliminary results, the covolume method shows a similar 

efficiency to traditional sub-channel analysis, but there is a possibility for refinement in 

the future [26].   

Richter [27] modeled one-dimensional flow through a short tube or nozzle.  He 

used a separated flow model where the conservation equations were written for each 

phase.  Harrell [28] wrote a computer program for a one-dimensional model of flow in 

the mixing section of an ejector.  The model divides the flow into a jet core of droplets 

and vapor, and an annular suction flow. A pressure rise in the mixing section and diffuser 

is predicted, supporting previous experimental results [28].   

The study of shocks has not only been tested using liquid-water and vapor-water 

as the working fluids, but also with other mixtures such as liquid-water and air [29] [30].  

For flow through a nozzle, the air bubbles are a non-condensing component, but act 

similarly to water-vapor in that injecting the air into the liquid flow at high speeds causes 

the overall flow to accelerate.  In Albagli and Gany [30], choking conditions with 

supersonic velocity at the exit were seen with an air and liquid-water mixture.  It was also 

noticed that wall friction caused a significant decrease in energy and velocity of the flow. 

Young [31] used CFD to simulate non-equilibrium, steady flows of wet steam in 

two-dimensional and three-dimensional turbine cascades.  A time-marching solution is 

used to solve the mixture equations in an Eulerian reference frame.  The author noticed a 
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difference between the computational and experimental results, attributing it to the high 

level of unsteady flow seen in turbines, which is difficult to model [31].   Senoo and 

White [32] used numerical techniques to simulate unsteady wet steam flow through a de 

Laval nozzle and through a turbine.  A finite volume method based on an approximate 

Riemann solver is used to solve the conservation equations for two-phase compressible 

flow [32].  The vapor is assumed to be a perfect gas, and the wetness is low enough (less 

than 15%) that the volume of the liquid droplets can be ignored [32].  Oblique shock 

waves and a pressure increase due to condensation are noticed.  Figure 1.3 shows where 

the shock occurs in the de Laval nozzle and the resulting change in direction of the flow.   

 

 

Figure 1.3:  An oblique shock is observed in the de Laval nozzle used in Senoo and 
White [32].   

 
1.5.2 Ejector Flow Studies Using CFD 

There has been some work done with CFD that directly deals with the condensing 

ejector cycle, and more specifically just the ejector.  Menegay [8] used CFD to simulate 
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two-phase flow through a condensing ejector.  The nozzle used has a constant-area 

mixing section, and is shown below in Figure 1.4. 

 

Figure 1.4:  Nozzle that was modeled in Menegay [8].  Saturated liquid flows through the 
motive nozzle and vapor flows in from the suction nozzle. 

 

A constant-area mixing section is chosen instead of a constant-pressure mixing section 

because with the homogeneous equilibrium model (HEM) that is implemented in the 

modeling, constant-area mixing results in slightly higher performance.  Menegay [8] 

describes the problems with the HEM and how the methods lead to poor ejector designs 

and thus poor cycle performance.  This model was chosen mainly for its simplicity, but it 

unfortunately does not accurately represent the complexity of the flow [8].  Menegay and 

Kornhauser [4] also noticed the relatively small coefficient of performance (COP) 

improvement when using the HEM on an ejector compared to the standard refrigeration 

cycle; for one case, a 3.6 percent increase was observed.  With the same conditions for an 

ideal (isentropic) ejector, a 16.2 percent increase was calculated [4]. 

Realizing the problems that come with the HEM, they suggest a semi-parabolic 

two-fluid model instead to better describe flow through an ejector [8].  An Eulerian-

Eulerian formulation is used that has a total of eight equations; two for mass conservation 

equations (one for each phase), two energy equations, two stream-wise momentum 
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equations, and two cross-stream momentum equations.  The equations are parabolized to 

simplify the system of equations.  This can be done because the cross-stream velocity is 

assumed to be negligible compared to the stream-wise velocity and the cross-stream 

gradients are much greater than the stream-wise gradients.  Also, pressure can be shown 

to depend mainly on the stream-wise direction, allowing the use of a marching solution 

that significantly reduces the computational time needed [8].  The determination of 

droplet and bubble size is based on the Weber number.  This term is included in the 

equations for calculating interfacial drag and heat transfer [8]. 

More recently (within the last decade), CFD simulations looking at flow (both 

single-phase and two-phase) through an ejector have become more complex in the aspect 

of modeling [9-13].  More sophisticated turbulence models have been used to better 

predict the flow and compressibility effects have been added too.  By having turbulence 

predictions in the conservation equations, this causes the primary and secondary streams 

to mix in the constant area section, where a shock (or series of shocks) can occur.  

Compressibility is considered because of the supersonic flow of the vapor and also 

because it is the driving force for an accurate condensation shock to occur in the nozzle 

[9] [10]. 

 Bartosiewicz et al. [9] looked at how different turbulence models would affect the 

performance of a steam ejector.  Other authors in the past have used k-epsilon models in 

their work, but there was no justification to the use of a particular model and no 

experimental validations [33] [34] [35].  For this particular work, superheated R142b was 

the working fluid at both inlets, with the fluid at the primary inlet having a greater 

temperature than the fluid at the secondary inlet.  Favre averaged Navier-Stokes 
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equations were used for compressible, steady state flow, for an axisymmetric nozzle [9].  

Using the conditions described in Bartosiewicz et al. [9], the k-omega-SST turbulence 

model resulted in the greatest possible nozzle efficiency compared to the standard k-

epsilon model and the RNG model.  The authors conclude that there is still a need to 

integrate experimental work with the CFD results in order to determine the most 

appropriate turbulence model [9].  

Sriveerakul et al. [12] determined that the realizable k-epsilon model was the best 

choice for their ejector (with different nozzle geometry and operating conditions).  The 

authors’ justification is that this model is able to predict a more accurate spreading rate of 

a round jet [12].  This was tested for a steam ejector, where the fluid at both inlets are 

saturated vapor, with the primary fluid being much hotter.  A diagram of the experimental 

refrigeration cycle used is shown in Figure 1.5.  From the figure, it is seen how the liquid 

in the receiver tank is pumped to either the evaporator or the boiler, with the boiler 

providing the primary fluid moving through the ejector. 
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Figure 1.5: Experimental steam ejector cycle used in Sriveerakul et al. [12]. 

 

  The CFD simulation package Fluent was used to simulate the flow through the 

ejector [12].  Water vapor was used as the working fluid, and was treated as an ideal gas.  

The authors [12] state that this is an unrealistic assumption, but it has been shown before 

that the ideal gas model can produce similar results to a real gas model [36].  The CFD 

calculations of the entrainment ratio, the ratio of the mass flow rate of the secondary fluid 

to the mass flow rate of the primary fluid, and critical back pressure were close in 

comparison to experimental results for numerous nozzle geometries and inlet 

temperatures. 

 With the compressibility terms modeled, there is an expectation of a “shock-train” 

in the constant area section [9].  A “shock-train” contains a series of shocks and multiple 

pressure peaks, along with a pressure rise at the end of the set of shocks.  Bartosiewicz et 
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al. [9] describes this phenomenon, but the ejector used in their CFD simulation had a 

constant area section that was too small to produce this series of shocks.  Simulating the 

“shock-train” was not a key part of that work, but the authors had a plan to look at this in 

the future. 

 Using the same experimental setup and ejector geometries for the steam ejector in 

[12], Sriveerakul et al. [13] did notice a series of oblique shocks and expansion waves in 

the mixing chamber, and refers to it was a “diamond wave.”  This is in Figure 1.6, along 

with other important characteristics seen in the ejector.  The contour lines of Mach 

number are pictured, and it shows that the flow is supersonic until reaching the diffuser, 

where there is a set of secondary oblique shocks.   

 

 

 

Figure 1.6: Contour lines of Mach number [13]. 

 

 Besides turbulence and compressibility effects, ejector geometry has an effect on 

the nozzle performance.  Authors have attempted to determine an optimal nozzle shape 

that will result in a high rate of performance [9] [10] [11] [13].   
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It was discussed earlier in Bartosiewicz et al. [9] how a small constant area 

mixing section would result in the absence of a shock-train.  Sriveerakul et al. [13] 

concludes that changing the length of the mixing section of the ejector has little effect on 

the entrainment ratio, but it does change the shape of the oblique shocks.  With a longer 

mixing section, the streams become more uniform, which cause the oblique shocks to be 

flatter [13].  A longer mixing section will also result in a greater pressure loss because of 

the viscous boundary layer along the wall, and the stronger shock wave [13].   

Rusly et al. [10] primarily focused on the effects of using different nozzle 

geometries.  The authors used a combined ejector-vapor compression system, which 

contains an ejector sub-cycle and a vapor-compression sub-cycle.  There is an intercooler 

that provides the interaction between the sub-cycles.  The vapor from the vapor-

compression cycle rejects heat to (and evaporates) the liquid refrigerant from the ejector 

cycle [10].  Using CFD to specifically look at the ejector flow, the entrainment ratio was 

calculated for the simulations and compared to previous experimental work [37], with 

reasonable agreement seen between the results.  The diameter of the constant area section 

was thought to be the most influential parameter on ejector performance due to its direct 

proportion with the secondary flow area.  It is also noted that the constant area diameter 

can be increased to improve ejector performance, but at a certain diameter the shock 

disappears [10]. 

  Varga et al. [11] also used CFD to attempt to determine optimal nozzle 

geometry, and noticed that the nozzle efficiency was only slightly affected by increasing 

the mixing section diameter.  These conclusions were based on different operating 
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conditions, and it is noted that the operating conditions do have a significant effect on 

how the flow in the nozzle will behave [10] [11].  

 Sriveerakul et al. [13] compares a constant-area mixing section and a converging 

mixing section.  There is a lower entrainment ratio with a converging section because less 

secondary fluid can move through the nozzle.  The Mach number of the primary fluid is 

greater with a converging mixing section [13].  The shock positions are also different 

between the two nozzles.   

In Sriveerakul et al. [13], when the primary nozzle area is increased, there is a 

lower entrainment ratio since less secondary fluid can enter the mixing section.  This 

causes the second series of oblique shocks to be stronger and closer to the end of the 

diffuser. 

Also considered important was the nozzle exit distance relative to the constant 

area entrance.  In the results of Rusly et al. [10], moving the nozzle exit distance 1.5 

times further away from the constant area duct (compared to the base model) resulted in a 

better ejector performance. 

 Changing the pressure values at the inlets and the outlet has a significant effect on 

fluid flow.  When the downstream pressure is increased, this will move the second series 

of oblique shocks further upstream, closer to the first series [13].  Because of this, the 

secondary fluid is no longer choked.  If the primary fluid pressure is increased, the Mach 

number of the primary stream does not change, which is expected for supersonic 

compressible flow [13].  This also increases the mass flow rate of the primary fluid, thus 

decreasing the entrainment ratio.  If the secondary fluid pressure is increased, the overall 

momentum is increased and the position of the shock wave moves downstream [13]. 
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 An assumption that has been used by several authors is treating the vapor as an 

ideal gas [10] [12] [32] [38] [39].  This allows for simplicity in modeling the two-phase 

flow, but at a cost of obtaining less than perfect results.  This assumption can be used for 

preliminary results, and some authors mention using real gas equations in their future 

work [12].  Grazzini et al. [14] compares the ideal gas model to the saturated vapor model 

and the metastable (not in thermodynamic equilibrium) vapor model for a two-stage 

steam ejector.  It is seen that the ideal gas model underestimates the nozzle exit pressure 

by about 35 percent when compared to the metastable model.  Also, the ideal gas model 

predicted the lowest rate of condensation [14].   

 

1.6 Use of Carbon Dioxide in a Refrigeration Cycle with an Ejector 

The working fluid for most of the results presented in this thesis is carbon 

dioxide.  In recent years, CO2 has become a more prevalent refrigerant because of its low 

global warming potential and zero ozone depletion potential [40]. 

Several authors have experimentally studied the condensing ejector refrigeration 

cycle with carbon dioxide as the working refrigerant where the fluid is above the critical 

point before entering the motive nozzle [40 – 45].  None of these authors reported 

observing a shock in the ejector.  An example of this type of cycle along with a 

corresponding p-h diagram can be seen in Figure 1.7 [42].  This specific ejector cycle has 

the option of using a heat exchanger, which lowers the temperature of the super-critical 

fluid before entering the motive nozzle.  When the flow from the motive nozzle and 

suction nozzle meet in the mixing section, both streams are in the two-phase region.  
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Within the ejector, there is a pressure rise, which leads to a more efficient cycle as 

compared to a standard cycle without an ejector. 

 
 

 
Figure 1.7.  CO2 refrigeration system with ejector, and corresponding p-h diagram [42]. 

 

Li and Groll [46] presented numerical results for a CO2 ejector system that looked 

at the effect of entrainment ratio and pressure drop at the nozzle inlets, and also saw a 

16% overall COP improvement compared to a basic cycle for air-conditioning 

applications. 
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Most studies have looked at the overall cycle, but there has been some 

experimental work that analyzes the flow within the ejector nozzle [42].  In the 

experiments in this paper [42], the effect of the length of the mixing section was tested.  

Thermocouples were placed inside the mixing section and diffuser, and the pressure 

values were calculated at each point.  The pressure recovery was able to be determined 

from this data.  It was seen that the ejector with the 15 mm mixing section length 

(compared to the 5 mm mixing section and the 25 mm mixing section) had the highest 

pressure recovery, and also the highest COP. 
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CHAPTER 2 

 

MODELING APPROACH 

 

 
Overall, from the previous works, numerous authors have looked at how an 

ejector can be utilized in a refrigeration cycle.  There is much that is still unknown, 

especially how the fluid mixes in the mixing section of the ejector.  In most of the work 

presented here, the ejector being modeled uses carbon dioxide as the working fluid.  

Compared to other refrigerants, there have been relatively fewer numerical studies 

looking at CO2 flow through an ejector.  The modeling method here is based on treating 

the fluid as being in a state of non-thermodynamic equilibrium, and a modified form of 

the homogeneous relaxation model (HRM) will be presented. 

For the condensing flow simulation, the two phases are treated as a single fluid 

with combined transport equations; this is known as the “pseudo-fluid” approach.  The 

equations for the conservation of mass, momentum, and enthalpy are given below.   
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In these equations, φ  is the mass flux and τ  is the stress tensor.  A form of the 

enthalpy equation is used instead of the energy equation.   In the enthalpy equation, a 

diffusive term is included in lieu of conduction.  In this term, µ t is the turbulent viscosity 

calculated from the k-epsilon turbulence model and Prt is the turbulent Prandtl number.  



 

 

Cebeci [47] shows how the enthalpy equation can be derived and how the diffusion term 

in the energy equation can be put in terms of viscosity, Prandtl number, and enthalpy.
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shows how the enthalpy equation can be derived and how the diffusion term 

in the energy equation can be put in terms of viscosity, Prandtl number, and enthalpy.

equation of state would be necessary to close the system.  In the case of two

e condensation process involves mixing and heat transfer between the 

phases, and there is no direct method to calculate this.  Also, the two-phase mixture is not 

in thermodynamic equilibrium.  To bring the mixture towards equilibrium, a modified 

HRM is used.  The model was originally used for flash-boiling cases

with some modifications the same idea can be applied for condensing flow.

The homogeneous relaxation model is based on a linearized expansion proposed 

[25].  The equation for the total derivative of quality, the mass 

fraction of vapor, is shown in Eqn. 4.   
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The derivative shows the relaxation of the instantaneous quality, x, compared to 

the equilibrium quality, x̄, over the timescale, Θ.  The formula suggested by Downar

for the timescale is shown below in Eqn. 5.   
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For a variable density flow, the divergence of the velocity field is non-zero.  
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By expanding this total derivative of density via the chain rule, the change in 

density is split into contributions of Mach effects, density variations due to concentration 

differences, and thermal expansion effects (Eqn. 8).  
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As shown in the above equation, density is a function of pressure, quality, and 

enthalpy [25].  The first term on the right-hand side of Eqn. 8 represents the density 

change due to compressibility.  The middle term represents the change in density due to 

phase change.  The last term is omitted because of the negligible effect on the change in 

density due to change in enthalpy as compared to change in density due to phase change 

and compressibility.  With this assumption, the divergence of velocity is given by Eqn. 9. 
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A generalized form of the momentum equation is shown below in Eqn. 10, where 

ap is the diagonal coefficient of the momentum equation matrix and H(U) is the off-

diagonal terms caused by convection and diffusion with neighboring cells plus source 

terms.   
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 The divergence of this equation is taken and combined with Eqn. 9.  
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The HRM model is an empiricism that has been tuned to represent flash boiling 

[48].  The current application to rapid condensation represents an extension of the model 

beyond its original intent.  One should certainly expect that some adjustment of the 

model is required.  

In the current application, a number of changes were made to the classic HRM 

model.  To achieve the amount of mixing between the motive and suction streams that 

has previously been observed experimentally, turbulent mixing terms have been 

introduced into transport equations for quality, momentum and enthalpy.  This approach 

has been employed previously in the ∑-Y model [50] to predict the turbulent atomization 

of a liquid jet using a similar pseudo-fluid Eulerian framework. This approach assumes 

that at high Reynolds and Weber numbers, the scales at which turbulent mixing occurs 

are separate from those of the bulk fluid motion, allowing the turbulent mixing and 

generation of interfacial surface area to be resolved through classical turbulence closures.  

The calculation of Reynolds stresses are modeled through a k-epsilon model while the 

turbulent mixing of motive and suction streams is characterized by a turbulent diffusion 

hypothesis.  In the results that will be presented, the k-epsilon turbulence models used are 

the standard, RNG (Renormalization Group), and realizable models; the k-omega SST 

(shear stress transport) model is also used.  The equations and the constant values for 

each model can be found in the Fluent User’s Guide [51].  The values for k and epsilon 

that are specified at the inlets and the outlet are based on turbulent intensity and velocity 
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magnitude, and a zero gradient boundary condition is applied at the walls.  The value for 

k is calculated by Eqn. 12, where I is the turbulent intensity set near 5%.   

2)*(5.1 avgUIk =          (12) 

 
The initial value for epsilon is calculated such that the resulting eddy viscosity is 

approximately two orders higher in magnitude than the molecular viscosity.  Turbulent 

viscosity, µ t, is shown in Eqn. 13. 
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A transport equation from the ∑-Y model that is used to calculate quality is added 

to the HRM model and is shown below in Eqn. 15.  In the ∑-Y model, Y is the liquid 

mass fraction; vapor mass fraction, x, is substituted in to Eqn. 15, with Eqn. 14 showing 

the relation of Y to x.   
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 For all of the CFD cases, the turbulent Schmidt number, Sct, was set to 0.9, which 

is within an acceptable range for CO2 [52] [53] [54].   

 According to Eqn. 5, the timescale of phase change becomes infinite at zero void 

fraction.  This represents that the change in quality over time will equal zero.  For 

condensing flows, a similar behavior should be present for the case of unity void fraction.  

An extra term was added to Eqn. 5 to provide symmetry of phases, so that Θ approaches 

infinity at both α = 0 and α = 1, and the modified equation is shown in Eqn. 16. 
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 Also, the timescale was bounded, both from above and below, in order to avoid 

numerical instability and floating point exceptions. 

 For simplicity in the numerical simulation, a relationship is found between the 

vapor mass fraction, x, and the vapor volume fraction, α, in terms of density.  From 

simple derivations, the formula for α in terms of density is shown below in Eqn. 17. 
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Similarly, the formula for x is in terms of density is shown in Eqn. 18. 
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By finding a common denominator for both parts of the fraction in Eqn. 18, vapor mass 

fraction is equivalent to: 
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Simplifying Eqn. 19, vapor mass fraction equals: 
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This is the same as writing: 
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CHAPTER 3 

NUMERICAL IMPLEMENTATION 

 

 

A benefit of the pressure equation (11) is that most of the terms are linear in 

relation to pressure.  An incompressible formulation can be established, and Schmidt et 

al. [55] used this form in a two-step projection method on a staggered mesh approach.  

This method was used for their two-dimensional structured grid solver.  In order to apply 

this model to a variable density, compressible, two-dimensional solution and for an 

unstructured, general polyhedral mesh, a collocated variable approach is applied in the 

current model. 

For each time step, the first step is to find the solution of the mass conservation 

equation using the volumetric velocity flux, vφ , from the previous time step (Eqn. 22). 
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The resulting density is interpolated to cell faces and multiplied by the volumetric 

flux to define a predictor for the mass flux, φ .  Thermodynamic variables, such as the 

equilibrium quality, are then updated using the new density. 

The enthalpy equation, shown below in Eqn. 23, is then solved. 
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 Using the equilibrium vapor mass fraction determined via Eqn. 22, the transport 

equation for vapor mass fraction can be solved.  This is given in Eqn. 24. 
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An adjusted form of the PISO (Pressure Implicit with Splitting of Operators) 

algorithm [56] is used to calculate the pressure and velocity implicitly. First, the velocity 

field is predicted using a lagged pressure.  The equation for predicted velocity, U0, is 

given below in Eqn. 25.   
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This equation represents three linear systems of equations, for the three 

components of velocity, with the nonlinear velocity terms lagged in the mass flux term.  

Velocity is solved implicitly and the pressure gradient is treated as an explicit source 

term. 

Eqn. 10 is used to determine an updated velocity flux, *φ , via Jacobi inversion 

dividing the off-diagonal terms by the diagonal coefficients (Eqn. 26). 
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The non-linearity of the last term in Eqn. 11, the term representing the phase 

change model, is treated semi-implicitly with respect to pressure through the use of a 

secant method, as seen in Eqn. 28, where the term M in Eqn. 28 is shorthand for the 

phase-change model, seen in Eqn. 27.   
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 The previous and current PISO iterations are represented by the superscripts “k” 

and “k + 1”, respectively.  Solution of Eqn. 27 yields a pressure that will give a velocity 

field approximately satisfying the continuity equation.  Multiple PISO iterations can be 

performed to account for the non-linearity of the momentum equation.  Typically, four to 

eight PISO/secant iterations are employed, and the solution of the pressure equation is 

necessary for every iteration.  For the full pressure equation, a geometric/algebraic 

multigrid solver is used.  Once the pressure equation is solved, the pressure field is used 

to correct the fluxes and the time step is finished. 

 Fluid properties are obtained using REFPROP (Reference Fluid Thermodynamic 

and Transport Properties Database) from the NIST (National Institute of Standards and 

Technology) database [57].  Given two thermodynamic inputs, REFPROP calls its 

necessary subroutines to calculate the thermodynamic and transport properties requested 

by the user.  The user selects two thermodynamic properties to use as inputs and selects 

an appropriate range and step size.  For the current work being completed, pressure and 

enthalpy are the two inputs.  The properties calculated at these specified points are 

arranged in a table format.  Properties can be calculated for many fluids, including 

mixtures; in this case the working fluid is carbon dioxide.   

The structure for solving these equations is provided by OpenFOAM, which 

allows rapid construction of CFD codes in an object-oriented framework [58].  

OpenFOAM also provides a message passing interface (MPI) that can run decomposed 

cases in parallel.  Solvers written with OpenFOAM are compatible with fully three-

dimensional general polyhedral meshes. 
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CHAPTER 4 

LEVY-BROWN EJECTOR RESULTS 

4.1 Levy-Brown Condensing Ejector 

 

The nozzle being modeled in the CFD simulations is one that has been used in 

experiments by Levy and Brown [16], and is shown below in Figure 4.1.  The 

experimental work uses water as the working fluid. 

Figure 4.1: Two-dimensional representation of nozzle used by Levy and Brown [16]. 

 
This nozzle acts as a condensing ejector for two-dimensional flow of a fluid.  The 

image in Fig. 4.1 is axisymmetric across the centerline axis. 

For these simulations, saturated vapor enters through the annular channel and 

saturated liquid enters axially.  As the saturated liquid and saturated vapor flow past the 

splitter (the wall between the mixing section entrances of the liquid and vapor streams), 

the two streams start to mix.  Within the diverging part of the nozzle there is an 

expectation of a shock wave that leads to increased mixing and circulation of the two 

streams, according to Levy and Brown [16]. In the experimental work, the precise 

location and size of the shock wave has been difficult to determine [16].   
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4.2 CFD Results 

 

4.2.1 Water as Working Fluid 

The velocity at the gas inlet is set to Mach 1 and the velocity at the liquid inlet is 

set to 30 m/s, which are values used by Levy and Brown [16]. The outlet boundary 

condition on the velocity gradient is set to zero. Fixed uniform densities of 0.59 kg/m3 at 

the gas inlet and 997.1 kg/m3 at the liquid inlet are imposed. Zero pressure gradient 

boundary conditions are specified at the inlets. At the outlet, the pressure is set to a value 

of 4 bar.  The realizable k-epsilon turbulence model is applied, with standard wall 

functions applied near the walls.  All walls are adiabatic. 

 This simulation presented here was run for 0.075 seconds of simulated time, and 

the flow was able to reach steady state.  In general, most of the simulations were unstable 

and led to floating point exceptions.  The region where most of the instability occurred 

was around the splitter wall.  One way to make the simulations more stable is to treat the 

fluid flow as incompressible.  For this case shown here, the compressibility term in the 

modeling equations were not included. 

Figure 4.2 shows the pressure distribution through the nozzle.  Though there is a 

slight pressure increase at the beginning of the mixing section and the beginning of the 

diffuser, the pressure at the outlet does not have a significant increase compared to the 

inlet pressure because of the pressure drop that occurs in most of the mixing section.  The 

outlet pressure is only greater than the liquid inlet pressure.  Looking at just the constant 

area mixing section and diffuser section, the minimum pressure is at the end of the 

constant area section. 
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Figure 4.2: Pressure distribution through ejector.  Top picture is mirrored over the 

centerline axis for easier viewing. 
 

 The velocity magnitude profile is shown in Figure 4.3.  There is no condensation 

shock seen in the simulation, but there is a gradual decrease in velocity as the fluids mix 

and move through the ejector.  The vapor flow velocity increases from the inlet to the 

beginning of the mixing section and then decreases when starting to mix with the liquid 

flow.  In the diffuser section there is an increase in density, which results in a continuing 

deceleration of the fluid.  The flow at the outlet is sub-sonic.  



 

 

Figure 4.3. Velocity in the ejector (mirrored over centerline axis).  As the two s
mix, there is a steady decrease in velocity as the flow moves across the nozzle.

 
 

Figure 4.4 shows that there is

streams, and that by the nozzle exit the flow is mostly liquid, but has not completely 

condensed.  This mixing is caused by the high enthalpy of the gas mixing with the low 

enthalpy of the liquid.  This mixing predisposes the vapor to condense by lowering its 

temperature.  Around the centerline the mass fraction of vapor is very close to zero

along the top wall of the vapor stream area the mass fraction of vapor is close to 0.02.

The equilibrium mass fraction at the outlet is zero.  The flow does not reach 

thermodynamic equilibrium by the outlet.
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Figure 4.3. Velocity in the ejector (mirrored over centerline axis).  As the two s
mix, there is a steady decrease in velocity as the flow moves across the nozzle.

shows that there is noticeable mixing between the vapor and liquid 

streams, and that by the nozzle exit the flow is mostly liquid, but has not completely 

ondensed.  This mixing is caused by the high enthalpy of the gas mixing with the low 

enthalpy of the liquid.  This mixing predisposes the vapor to condense by lowering its 

temperature.  Around the centerline the mass fraction of vapor is very close to zero

along the top wall of the vapor stream area the mass fraction of vapor is close to 0.02.

The equilibrium mass fraction at the outlet is zero.  The flow does not reach 

thermodynamic equilibrium by the outlet. 

 

 
Figure 4.3. Velocity in the ejector (mirrored over centerline axis).  As the two streams 

mix, there is a steady decrease in velocity as the flow moves across the nozzle. 

mixing between the vapor and liquid 

streams, and that by the nozzle exit the flow is mostly liquid, but has not completely 

ondensed.  This mixing is caused by the high enthalpy of the gas mixing with the low 

enthalpy of the liquid.  This mixing predisposes the vapor to condense by lowering its 

temperature.  Around the centerline the mass fraction of vapor is very close to zero, while 

along the top wall of the vapor stream area the mass fraction of vapor is close to 0.02.  

The equilibrium mass fraction at the outlet is zero.  The flow does not reach 



 

 

 

 

 

 
Figure 4.4.  In these two pic

equilibrium vapor mass fraction, 
the second picture to better show the vapor

 
The turbulent viscosity is shown in Figure 4.5.  The greatest value of viscosity is 

in the mixing section along the splitter axis, somewhat downstream of where the vapor 

and liquid streams meet.  This is expected, since this is where 

between streams occurs

viscosity decreases. 

 

Figure 4.5.  The highest value of viscosity is in the mixing section, when the liquid and 
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Figure 4.4.  In these two pictures, vapor mass fraction, x, is shown in the top half, and 
equilibrium vapor mass fraction, x̄, is shown in the bottom half.  The scale is adjusted in 

the second picture to better show the vapor mass fraction in the diffuser.
 

The turbulent viscosity is shown in Figure 4.5.  The greatest value of viscosity is 

in the mixing section along the splitter axis, somewhat downstream of where the vapor 

and liquid streams meet.  This is expected, since this is where most of the mixing 

ween streams occurs.  As the flow becomes more homogeneous, the turbulent 

Figure 4.5.  The highest value of viscosity is in the mixing section, when the liquid and 
vapor streams begin to mix.

 

 

tures, vapor mass fraction, x, is shown in the top half, and 
, is shown in the bottom half.  The scale is adjusted in 

fraction in the diffuser. 

The turbulent viscosity is shown in Figure 4.5.  The greatest value of viscosity is 

in the mixing section along the splitter axis, somewhat downstream of where the vapor 

most of the mixing 

.  As the flow becomes more homogeneous, the turbulent 

 
Figure 4.5.  The highest value of viscosity is in the mixing section, when the liquid and 
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4.2.2 CO2 as Working Fluid 

Since using water can lead to numerical instability, the working fluid used for the 

cases in this sub-section is carbon dioxide.  Stated earlier in Chapter 1, CO2 has become a 

more commonly studied refrigerant [40 - 45].  Besides being a more practical refrigerant 

than water for current applications, using carbon dioxide as the working fluid leads to 

more stable simulations.  The highest rate of instability is at the splitter, where the vapor 

and liquid streams meet.  The ratio of liquid density to vapor density of water is about 

1000.  For the pressure values used in this sub-section, the ratio of liquid density to vapor 

density of CO2 is around 50.  This results in a much lower density gradient at cells where 

the liquid and vapor flow interact.  Also, because of the greater stability, compressibility 

can be included in the modeling equations.    

For the initial case shown (Figs. 4.6 – 4.10), the velocity at the saturated vapor 

inlet is set to Mach 1 (221 m s-1) and the velocity at the saturated liquid inlet is set to 150 

m s-1.  At both of the inlets, the pressure gradient is set to zero.  Fixed uniform densities 

of 23.0 kg m-3 at the vapor inlet and 1150 kg m-3 at the liquid inlet are applied.  At the 

outlet, a non-reflecting pressure boundary condition of 2.5 MPa is imposed and the 

velocity gradient is zero.  The realizable k-epsilon turbulence model is used, with 

standard wall functions applied near the walls.  All walls are adiabatic. 

The simulations were run for 0.1 seconds of simulated time, and the flow was able 

to reach steady state.  The nozzle is reflected around the centerline axis for better clarity 

in showing the results (Figs. 4.6 – 4.10).  Fig. 4.6 shows the mixing between the vapor 

and liquid streams.  By the nozzle exit the flow is mostly liquid, but has not completely 

condensed.  Figure 4.7 shows the rate of phase change, the difference between the 



 

35 
 

instantaneous quality and the equilibrium quality divided by the timescale, Θ.  At points 

where x is greater than x̄, further condensation will have to occur over time to reach 

thermodynamic equilibrium.  This is seen in the diffuser and across the top wall of the 

whole ejector.  The equilibrium quality is greater than the instantaneous quality along the 

liquid stream line in the mixing section, before it completely mixes with the vapor 

stream. 

 

 
Figure 4.6.  Mass fraction of vapor, x, is shown in the top half of the figure and the 

equilibrium mass fraction of vapor, x̄, is shown in the bottom half. 
 
 

 
Figure 4.7. Rate of phase change (mirrored over centerline axis).  Negative values 

indicate condensation, positive values indicate vaporization. 
 

 Pressure shows a noticeable increase, as shown in Fig. 4.8.  The pressure at the 

outlet is greater than the pressure at both inlets; slightly higher than the pressure at the 

vapor inlet, and much higher than the pressure at the liquid inlet.  This is to be expected 

for an efficient condensing ejector.  Similar to the results in the last sub-section, the 



 

 

pressure reaches a minimum around the end of the mixing section and then the pressure 

increases rapidly in the diffuser.

Figure 4.8.  Pressure profile throughout the nozzle (mirrored over centerline axis).  The 
pressure at the outlet is higher than

 

 Fig. 4.9 shows the deceleration that accompanies the pressure increase and 

condensation.  Near the beginning of the diffuser there is a rapid decrease in velocity.  

There is an increase in the vapor velocity shortly after the inlet, but the velocity gradually 

decreases when moving through the constant

liquid stream.  The velocity in the diffuser is lower along the top wall than along the 

centerline axis. 

Figure 4.9.  Velocity profile throughout the nozzle (mirrored over
 

 Fig. 4.10 shows the effective turbulent viscosity, 

amount of mixing occurs within the mixing layer near the splitter, where the two inlet 

streams meet.  Turbulent viscosity is at a maximum shortly before 

mixing section.  The flow is also turbulent near the exit of the nozzle.

with the decrease in the velocity in the diffuser.
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pressure reaches a minimum around the end of the mixing section and then the pressure 

increases rapidly in the diffuser. 

Figure 4.8.  Pressure profile throughout the nozzle (mirrored over centerline axis).  The 
pressure at the outlet is higher than the pressure at both inlets.

shows the deceleration that accompanies the pressure increase and 

condensation.  Near the beginning of the diffuser there is a rapid decrease in velocity.  

There is an increase in the vapor velocity shortly after the inlet, but the velocity gradually 

eases when moving through the constant-area section after starting to mix with the 

The velocity in the diffuser is lower along the top wall than along the 

Figure 4.9.  Velocity profile throughout the nozzle (mirrored over centerline axis).

shows the effective turbulent viscosity, νt.  As expected, the greatest 

amount of mixing occurs within the mixing layer near the splitter, where the two inlet 

Turbulent viscosity is at a maximum shortly before the midpoint of the 

The flow is also turbulent near the exit of the nozzle.  This corresponds 

with the decrease in the velocity in the diffuser. 

pressure reaches a minimum around the end of the mixing section and then the pressure 

 
Figure 4.8.  Pressure profile throughout the nozzle (mirrored over centerline axis).  The 

the pressure at both inlets. 

shows the deceleration that accompanies the pressure increase and 

condensation.  Near the beginning of the diffuser there is a rapid decrease in velocity.  

There is an increase in the vapor velocity shortly after the inlet, but the velocity gradually 

area section after starting to mix with the 

The velocity in the diffuser is lower along the top wall than along the 

 
centerline axis). 

.  As expected, the greatest 

amount of mixing occurs within the mixing layer near the splitter, where the two inlet 

the midpoint of the 

This corresponds 



 

 

Figure 4.10. Turbulent viscosity is shown in this figure (mirrored over centerline axis).  
Mixing can be seen along the splitter in the constant area section, and also near the outlet.
 

 Changing the operating pressure at the outlet was also investigated.  The 

boundary conditions stated earlier in this section remained the same, while the outlet

pressure was varied from 1.5 MPa to 2.7 MPa.  The velocity profile was looked at, and 

also the mass fraction of vapor.  In Fig. 

increased, the point of rapid deceleration of the flow is more upstream.

velocity in the diffuser is greatest at the lowest set outlet pressure in this study.

the lack of a condensation shock, t

where the shocking position

upstream for higher back pressure.

The mass fraction of vapor and the equilibrium mass fraction of vapor at the 

outlet are lower for higher outlet pressure (Fig. 4.12), with an increase in pressure

a greater effect on x̄.  This can be expected for 

also enthalpy).  The instantaneous mass fraction of vapor is also affected by pressure; an 

increase in pressure while keeping enthal

thus a greater value of x. 
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Figure 4.10. Turbulent viscosity is shown in this figure (mirrored over centerline axis).  
Mixing can be seen along the splitter in the constant area section, and also near the outlet.

Changing the operating pressure at the outlet was also investigated.  The 

boundary conditions stated earlier in this section remained the same, while the outlet

pressure was varied from 1.5 MPa to 2.7 MPa.  The velocity profile was looked at, and 

also the mass fraction of vapor.  In Fig. 4.11, it can be seen that as the outlet pressure is 

increased, the point of rapid deceleration of the flow is more upstream.

velocity in the diffuser is greatest at the lowest set outlet pressure in this study.

the lack of a condensation shock, this is similar to what is seen in Sriveerakul et al.

where the shocking position (which leads to a sudden decrease in velocity)

upstream for higher back pressure. 

The mass fraction of vapor and the equilibrium mass fraction of vapor at the 

outlet are lower for higher outlet pressure (Fig. 4.12), with an increase in pressure

.  This can be expected for x̄ since it is dependent on pressure

.  The instantaneous mass fraction of vapor is also affected by pressure; an 

increase in pressure while keeping enthalpy constant will result in a lower density, and 

 

 
Figure 4.10. Turbulent viscosity is shown in this figure (mirrored over centerline axis).  

Mixing can be seen along the splitter in the constant area section, and also near the outlet. 

Changing the operating pressure at the outlet was also investigated.  The 

boundary conditions stated earlier in this section remained the same, while the outlet 

pressure was varied from 1.5 MPa to 2.7 MPa.  The velocity profile was looked at, and 

, it can be seen that as the outlet pressure is 

increased, the point of rapid deceleration of the flow is more upstream.  The maximum 

velocity in the diffuser is greatest at the lowest set outlet pressure in this study.  Despite 

his is similar to what is seen in Sriveerakul et al. [13], 

(which leads to a sudden decrease in velocity) is further 

The mass fraction of vapor and the equilibrium mass fraction of vapor at the 

outlet are lower for higher outlet pressure (Fig. 4.12), with an increase in pressure having 

since it is dependent on pressure (and 

.  The instantaneous mass fraction of vapor is also affected by pressure; an 

py constant will result in a lower density, and 
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Figure 4.11. Velocity along the midpoint of the diffuser for varying outlet pressure. 
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Figure 4.12.  The boundary condition on the pressure at outlet is varied, and the effect on 
the instantaneous mass fraction of vapor and equilibrium mass fraction of vapor is 

investigated. 
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CHAPTER 5 

NAKAGAWA EJECTOR RESULTS 

5.1 Nakagawa et al. Two-Phase CO2 Ejector Cycle 

The ejector being modeled is described in Nakagawa et al. [42].  The work in that 

paper not only looks at the overall refrigeration cycle, but also what specifically occurs in 

the ejector nozzle through experimental study.  Because this paper uses carbon dioxide as 

the working refrigerant and has data on the flow in the ejector, this work is a good choice 

for comparison to the CFD model presented here.  A diagram of the ejector refrigeration 

cycle used in the work by Nakagawa et al. [42], along with a corresponding p-h diagram, 

is shown in Figure 1.7. 

 The full nozzle dimensions can be found in Nakagawa et al. [42], and the 

dimensions of the parts modeled in the CFD mesh are stated here.  The width at the exit 

of the motive nozzle is 0.8 mm.  Three different mixing section lengths were investigated 

(5, 15, and 25 mm), each with a width of 2.5 mm.  The diffuser length is 30.5 mm, with a 

width of 2.5 mm at the beginning and 8 mm at the outlet.  For the 5 mm and 15 mm 

mixing section lengths, a supplementary piece with a width of 8 mm was attached to the 

end of the diffuser so the total length of the ejector was 55.5 mm.  Along with analyzing 

the effect of different mixing section lengths, the effect of using an internal heat 

exchanger (IHX) was also investigated.  The use of an IHX lowers the temperature of the 

super-critical fluid exiting the gas cooler.  This results in the fluid having a lower 

enthalpy in the motive nozzle.  
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5.2 Results 

5.2.1 Model Validation 

For each of the three nozzle designs (for the different mixing section lengths), a 2-

D quad mesh of 6100 to 6750  cells (6145 cells for the nozzle with the 5 mm mixing 

section; 6549 for the 15 mm; 6741 for the 25 mm) was made.  Figure 5.1 shows the mesh 

for the ejector with a 5 mm mixing section with the parts of the ejector labeled, and a 

close-up of the mesh at the inlets and mixing section.  Only the top half of the nozzle was 

modeled because of axi-symmetry.  At the inlets, a mass flow rate is specified based on 

the experimental results in Nakagawa et al. [42], and a zero gradient pressure boundary 

condition is applied.  At the walls, a slip condition is applied.  At the outlet, the velocity 

gradient is set to zero, and a non-reflecting pressure boundary condition is imposed.  For 

each case, the value of the outlet pressure is set to what was determined in the 

experimental results.  Exit pressure is specified at the outlet to help ensure a well-posed 

problem.  Using the exit pressure value, the pressure at the inlets is predicted.  Density at 

the inlets and outlet are calculated based on the pressure and enthalpy.  The density is 

updated at the inlets for every time step as pressure changes.  The enthalpy at the motive 

inlet is calculated based on the pressure and temperature of the gas cooler in the 

experimental work, and the efficiency of the ejector; the enthalpy at the suction nozzle 

inlet can be determined from the pressure and temperature in the evaporator.   All walls 

are adiabatic.   

 

 



 

 

Figure 5.1.  Mesh for the 5 mm mixing section length case with the boundarie
and a close

 

The simulations were run up to 0.08 seconds of simulated time, and were all able 

to reach steady state.  Cases were run for the three different mixing section lengths 

(simulating both the use of an IHX and also without it), and for varying gas cooler 

pressure.  The three gas cooler pressures chosen were 9.5, 10, and 10.5 MPa, which were 

also tested in the experiments.  The flow is super

sub-critical two-phase region when entering the mixing section.  The temperature at the 

gas cooler is 42 °C and the temperature at the evaporator is 2 °C.

 A key characteristic of an ejector is the pressure rise at the outlet.  This pressure 

rise is what leads to an increase in the COP of this refrigeration cycle, as compared to a 

standard cycle.  For all of the cases simulated, the pressure recovery is shown in Figure 

5.2.  The pressure recovery is the difference in the pressure at the outlet to the pressure at 

the start of the mixing section.  The pressure values are taken along the top wall of the 

ejector, which was also done in the experiments by Nakagawa et al. 
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Figure 5.1.  Mesh for the 5 mm mixing section length case with the boundarie
and a close-up image of the inlets and mixing section. 

The simulations were run up to 0.08 seconds of simulated time, and were all able 

to reach steady state.  Cases were run for the three different mixing section lengths 

se of an IHX and also without it), and for varying gas cooler 

pressure.  The three gas cooler pressures chosen were 9.5, 10, and 10.5 MPa, which were 

also tested in the experiments.  The flow is super-critical at these pressures, but is in the 

phase region when entering the mixing section.  The temperature at the 

gas cooler is 42 °C and the temperature at the evaporator is 2 °C. 

A key characteristic of an ejector is the pressure rise at the outlet.  This pressure 

ncrease in the COP of this refrigeration cycle, as compared to a 

standard cycle.  For all of the cases simulated, the pressure recovery is shown in Figure 

5.2.  The pressure recovery is the difference in the pressure at the outlet to the pressure at 

art of the mixing section.  The pressure values are taken along the top wall of the 

ejector, which was also done in the experiments by Nakagawa et al. [42]

 

 
Figure 5.1.  Mesh for the 5 mm mixing section length case with the boundaries labeled, 

 

The simulations were run up to 0.08 seconds of simulated time, and were all able 

to reach steady state.  Cases were run for the three different mixing section lengths 

se of an IHX and also without it), and for varying gas cooler 

pressure.  The three gas cooler pressures chosen were 9.5, 10, and 10.5 MPa, which were 

critical at these pressures, but is in the 

phase region when entering the mixing section.  The temperature at the 

A key characteristic of an ejector is the pressure rise at the outlet.  This pressure 

ncrease in the COP of this refrigeration cycle, as compared to a 

standard cycle.  For all of the cases simulated, the pressure recovery is shown in Figure 

5.2.  The pressure recovery is the difference in the pressure at the outlet to the pressure at 

art of the mixing section.  The pressure values are taken along the top wall of the 

[42].  As can be seen 
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from Fig. 5.2, the nozzle with the 15 mm mixing section length outperformed the other 

two ejector designs for both the use of an IHX and without.  The nozzle with the 25 mm 

mixing section length has a slightly lower pressure recovery for all cases.   The pressure 

rise in the nozzle with the 5 mm mixing section length is significantly lower than the 

other two ejector types (for when the IHX is used and also when not used), and this is 

especially noticed when the gas cooler pressure is higher.   

 
Figure 5.2.  CFD results of pressure recovery for different mixing section lengths at 

varying gas cooler pressure.  The 15 mm ejector type has the greatest predicted pressure 
rise, both when the IHX is used and when not used. 

 

 These pressure recoveries have a similar trend with the experimental results in 

Nakagawa et al. [42], where the 15 mm mixing section has the best performance and the 

pressure recovery increases as the gas cooler pressure increases.  The only exception in 

the experimental results is the 5 mm mixing section with the IHX, where pressure 

recovery slightly decreases when increasing the gas cooler pressure from 10 MPa to 10.5 

MPa.  The CFD results predict a steady increase in pressure rise for this case, similar to 



 

44 
 

what is seen with the other ejector types.  The comparison of CFD to experimental 

results, for pressure recovery for each of the cases is shown in Table 5.1 a-c.  The 

experimental setup did not have a thermocouple placed directly at the beginning of the 

mixing section to measure the pressure (the entire flow in the ejector is in the two-phase 

region, so a temperature value can only have one corresponding pressure value), but did 

shortly after (2.2 mm for the 5 mm mixing section; 3 mm for the 15 mm; 4 mm for the 25 

mm).  Pressure recovery was determined as the difference between the pressure at the 

outlet to the pressure at the first thermocouple in the mixing section.  From Table 5.1 a-c, 

it is noticed that the CFD results under-predict pressure recovery for the cases that do not 

use the IHX, and over-predict recovery for the cases with the IHX with the exception of 

the 15 mm and 25 mm types when the gas cooler pressure is set to 9.5 MPa.  The worst 

CFD results (based on percent error) are the cases with the 5 mm mixing section and the 

use of the IHX.  This is because the CFD results predict a gradual increase in pressure 

recovery as gas cooler pressure increases (similar to all the other cases) while the 

experimental results do not.  The ejector types with the CFD results closest to the 

experiments are the 5 mm mixing section without the IHX and the 25 mm mixing section 

with the IHX.  The average percent error of all the cases is 18.6%.  For the initial CFD 

results this is promising and there are a few sources of error that could be accounted for 

and improved upon.   
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Table 5.1: Pressure recovery difference between experimental and CFD results for 
varying gas cooler pressures of (a) 9.5 MPa, (b) 10 MPa, and (c) 10.5 MPa. 

 

(a) Gas cooler pressure = 9.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no  0.265 0.210 0.055 20.755 

5 yes 0.240 0.270 -0.030 -12.500 

15 no  0.375 0.253 0.122 32.533 

15 yes 0.397 0.339 0.058 14.610 

25 no  0.365 0.237 0.128 35.068 

25 yes 0.393 0.353 0.040 10.178 

(b) Gas cooler pressure = 10 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no  0.291 0.275 0.016 5.498 

5 yes 0.256 0.336 -0.080 -31.250 

15 no  0.448 0.334 0.114 25.446 

15 yes 0.443 0.468 -0.025 -5.643 

25 no  0.432 0.329 0.103 23.843 

25 yes 0.454 0.450 0.004 0.881 

(c) Gas cooler pressure = 10.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no  0.313 0.308 0.005 1.597 

5 yes 0.254 0.380 -0.126 -49.606 

15 no  0.496 0.377 0.119 23.992 

15 yes 0.487 0.561 -0.074 -15.195 

25 no  0.472 0.402 0.070 14.831 

25 yes 0.480 0.537 -0.057 -11.875 
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The choice of turbulence model has an effect on the flow, especially in the mixing 

section where the two streams meet.  The standard k-epsilon model is used for the 

simulations presented here.  Other Reynolds-averaged Navier-Stokes (RANS) turbulence 

models, such as the realizable k-epsilon model, and the RNG model and the k-omega 

SST model will be examined in section 5.4.  Large-eddy simulation (LES) turbulence 

models are also a possibility for future work. 

 Another possible source of error could be from the boundary conditions, most 

importantly at the motive nozzle inlet.  The velocity and density of the motive nozzle 

flow have the most significant effect on the pressure recovery in the ejector.  The mass 

flow rates measured in the experiments are specified at the inlets in the CFD cases, so a 

change in density will also result in a change in velocity.  Density is calculated from the 

pressure and enthalpy at the inlets; this assumes that the fluid is in thermodynamic 

equilibrium.  This is the best assumption that can be made based on the information given 

in the experiments.  The difference between the instantaneous quality and the equilibrium 

quality will be minor, but a slight difference will have a small but noticeable effect on 

pressure recovery. 

 Adjusting some of the constants, particularly the turbulent Schmidt number and 

turbulent Prandtl number, can have an impact on pressure recovery.  For all of the CFD 

cases, the turbulent Schmidt number was set to 0.9 and the turbulent Prandtl number was 

set to 0.9, both within an acceptable range for CO2 [52] [53] [54].  Different turbulent 

Schmidt numbers within the acceptable range determined in Koeltzsch [59] and 

Tominaga [60] were investigated.  Table 5.2 shows how changing the turbulent Schmidt 

number has an effect on pressure recovery (for the cases with the gas cooler pressure set 
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to 10 MPa).  Looking at Sct values of 0.4 and 0.9, for the cases with the 5 mm mixing 

section length ejector the change in pressure recovery was 2.2% and 3.4%, without and 

with the IHX, respectively, and for the cases with the 15 mm and 25 mm mixing section 

length ejectors there was a pressure recovery difference of only ±1 kPa.  While changing 

the turbulent Schmidt number can affect the pressure rise in the nozzle, the difference is 

not too significant. 

 
Table 5.2: Effect on pressure recovery when varying the turbulent Schmidt number for 

cases with gas cooler pressure set to 10 MPa. 
 

Turbulent Schmidt number 

0.4 0.625 0.9 

Mixing section length (mm) IHX? Pressure recovery (MPa) 

5 no 0.281 0.278 0.275 

5 yes 0.368 0.361 0.356 

15 no 0.325 0.326 0.326 

15 yes 0.492 0.492 0.492 

25 no 0.309 0.309 0.309 

25 yes 0.463 0.464 0.464 
 

 

5.2.2 CFD Results 

The CFD results show the distribution of the pressure rise.  Figure 5.3 shows the 

pressure throughout the nozzle (the nozzle is reflected about the horizontal axis for 

clarity).  The case presented here, and for the other figures in this sub-section, is the 25 

mm mixing section length with the IHX and the gas cooler pressure at 10 MPa.  It can be 

seen that most of the pressure recovery occurs in the mixing section and the beginning of 

the diffuser section.  Also, the pressure becomes almost constant near the end of the 

mixing section, but has a pressure increase at the beginning of the diffuser.  This was also 

noticed in the experiments of Nakagawa et al. [42] for the cases with the ejector that had 
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the 25 mm mixing section.  Figure 5.4 shows the comparison of the pressure profile from 

the CFD case compared to the experimental results for the same operating conditions and 

nozzle geometry.  Even though both cases predict the same pressure recovery in the 

nozzle, the CFD results predict a higher pressure recovery in the mixing section, and less 

of a recovery in the diffuser section.   

 

 
Figure 5.3. Pressure profile throughout the nozzle.  Only the top half of the nozzle is 

modeled in the simulation, but the image is mirrored over the horizontal axis for easier 
viewing. 

 
 

  
Figure 5.4.  Comparison of CFD to experimental results of pressure profile across 

the nozzle. 
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 Figure 5.5 shows the mixing between the two streams.  The instantaneous quality, 

x, is displayed in the top half of the nozzle and the equilibrium quality, x̄, is shown in the 

bottom half.  The two streams become well mixed by the end of the mixing section and in 

the diffuser.  The very small difference between x and x̄ in the diffuser means that the 

flow in this section is near thermodynamic equilibrium.  Changing the constant values in 

the relaxation model can have an effect on how fast the motive and suction streams will 

mix and reach equilibrium, and in the cases for the geometries and operating conditions 

in the presented work, the flow will be around thermodynamic equilibrium at the outlet. 

 
Figure 5.5.  Instantaneous quality, x, shown on the top half of the nozzle and equilibrium 
quality, x̄, is mirrored on the bottom half.  The flow is near thermodynamic equilibrium 

in the diffuser section. 
 

 Figure 5.6 shows the velocity profile throughout the ejector.  The velocity is at a 

maximum at the motive nozzle inlet.  It can be seen that the mixing of the two streams 

and the occurring pressure rise cause the velocity to gradually decrease in the mixing 

section.  The velocity continues to decrease in the diffuser (along with an increase in 

density), and the velocity at the outlet is about 3 m s-1.  There is also a recirculation zone 

along the top wall a few millimeters into the mixing section.  This can be seen in Figure 

5.7.  The recirculation can be attributed to the angle the suction nozzle stream enters the 

mixing section and that when the motive stream enters the mixing section, the flow fans 



 

 

out to the top wall just after the recirculation area.  The part of the suction stream that is 

near the top wall flows into the motive stream that has a greater density, and causes the 

suction flow to recirculate in this section.  The velocity of the flow in the recirculation 

area is less than 5 m s-1. 

Figure 5.6.  Velocity profile in the nozzle (mirrored ov
nozzle flow quickly decelerates in the mixing section.

Figure 5.7. Stream lines show recirculation along the top wall of the mixing section.  The 
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p wall flows into the motive stream that has a greater density, and causes the 

suction flow to recirculate in this section.  The velocity of the flow in the recirculation 

Figure 5.6.  Velocity profile in the nozzle (mirrored over horizontal axis).  The motive 
nozzle flow quickly decelerates in the mixing section. 

 
 

Figure 5.7. Stream lines show recirculation along the top wall of the mixing section.  The 
stream lines are colored by velocity. 

Turbulent kinematic viscosity, νt, can be seen in Figure 5.8.  As expected, the 

viscosity is highest in the mixing section.  This is because the streams have the most 

interaction in this area.  The mixing of the two streams creates a high amount of 

turbulence, leading to an increase in turbulent viscosity.  Turbulent viscosity is at a 

maximum slightly downstream of the recirculation zone.  At the very beginning of the 

mixing section, the turbulent viscosity is lower (compared to the rest of the mixing 

section) because the motive and suction streams have not begun to mix  Near the outlet, 

out to the top wall just after the recirculation area.  The part of the suction stream that is 

p wall flows into the motive stream that has a greater density, and causes the 

suction flow to recirculate in this section.  The velocity of the flow in the recirculation 

 
er horizontal axis).  The motive 

 

 
Figure 5.7. Stream lines show recirculation along the top wall of the mixing section.  The 

.  As expected, the 

viscosity is highest in the mixing section.  This is because the streams have the most 

interaction in this area.  The mixing of the two streams creates a high amount of 

rbulent viscosity.  Turbulent viscosity is at a 

maximum slightly downstream of the recirculation zone.  At the very beginning of the 

mixing section, the turbulent viscosity is lower (compared to the rest of the mixing 

n streams have not begun to mix  Near the outlet, 



 

 

where the flow is less turbulent and is near thermodynamic equilibrium, the turbulent 

viscosity is at a minimum.

Figure 5.8.  Turbulent kinematic viscosity is shown here (mirrored over horizontal axis), 
with the greatest amount of viscosity occurring in the mixing section.

 

5.3 Mesh Quality 

 A mesh quality study was done to test the accuracy of the meshes used in the 

previous sections of this chapter.  Each of the three meshes was in the range of 6100 to 

6750 cells (6145 cells for the nozzle with the 5 mm mixing section; 6549 for

6741 for the 25 mm).  The number of cells for the finer meshes 

for the 5 mm; 12,296 for the 15 mm; 12,966 for the 25 mm).  The eighteen cases were 

run again with the finer meshes and the difference in pressure recovery for 16 out of 18 

cases was ±2 kPa, which is less than 

meshes (with most cases being under 0.5% difference).  The two cases that had a greater 

difference were the ejector with the 25 mm mixing section and the gas cooler pressure set 

to 10.5 MPa, both for the

without the IHX, the difference was 3 kPa (0.75% difference

for the case with the IHX, the difference was 6 kPa (1.12% difference).  Since the finer 

meshes resulted in a very small change in pressure recovery, it can be concluded that the 

coarser meshes used in the previous sections of this chapter are acceptable.  
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study was done to test the accuracy of the meshes used in the 

previous sections of this chapter.  Each of the three meshes was in the range of 6100 to 

for the nozzle with the 5 mm mixing section; 6549 for the 15 mm; 

about double (12,645 

for the 5 mm; 12,296 for the 15 mm; 12,966 for the 25 mm).  The eighteen cases were 

meshes and the difference in pressure recovery for 16 out of 18 

0.85% difference from the cases run with the coarser 

meshes (with most cases being under 0.5% difference).  The two cases that had a greater 

difference were the ejector with the 25 mm mixing section and the gas cooler pressure set 

cases considering the IHX and without the IHX.  For the case 

in pressure recovery), and 

for the case with the IHX, the difference was 6 kPa (1.12% difference).  Since the finer 

a very small change in pressure recovery, it can be concluded that the 

coarser meshes used in the previous sections of this chapter are acceptable.   
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 Looking at the finer mesh, there are some local differences in pressure in the 

region near the splitter where the two streams start to interact (Fig 5.9).  In Figure 5.9, the 

ejector with the 5 mm mixing section is shown.  A comparison is given, looking at the 

differences in pressure of the coarse and fine meshes, particularly around the splitter.  

The local differences in pressure with the finer mesh can be attributed to the fluctuations 

in turbulent viscosity in this area.  The coarse mesh does not have enough cells to 

completely model the turbulence in this region. 

 

 

 
Figure 5.9. Difference in pressure in the mixing section of the ejector with the 5 mm 

mixing section for varying cell count.  The coarser mesh with 6145 cells is on top and the 
mesh with 12,645 cells is on the bottom. 
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5.4 Comparison of Different Turbulence Models 

 From the results in the previous sections of this chapter, it is noticed that the 

choice of turbulence model has an important role is predicting the pressure recovery.  

Along with the standard k-epsilon model that was used in the previous sections, three 

other RANS models were tested: realizable k-epsilon, RNG k-epsilon, and k-omega SST.  

Comparing these four models will provide a good initial study on the effects of applying 

different turbulence models. 

 All 18 cases were tested again with each of the other three turbulence models.  

Figure 5.10 – 5.12 show the pressure recovery when using the realizable k-epsilon model, 

RNG model, and k-omega SST model, respectively.  In these three figures, and Figure 

5.2, it is noticed that the nozzle with the greatest pressure recovery is the 15 mm mixing 

section length ejector with the use of the IHX and the nozzle with the lowest pressure 

recovery is the 5 mm mixing section length ejector without the use of the IHX.   

Comparing the turbulence models, the pressure recovery for the 15 mm mixing section 

length nozzle was least affected by the choice of turbulence model.  The 5 mm mixing 

section length ejector was significantly affected by the turbulence model.  This can be 

attributed to the change in the suction stream density at the inlet of the mixing section 

caused by the choice of turbulence model.  A greater density would correlate with a 

greater pressure and thus a lower pressure recovery in the ejector.  For any specific case 

with the 15 mm or 25 mm mixing section, the suction stream density at the mixing 

section entrance was almost unchanged for different turbulence models.  Looking just at 

the 5 mm mixing section ejector, the realizable k-epsilon model predicts the lowest 
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pressure recovery out of the four turbulence models, and the k-omega SST model predicts 

the greatest pressure recovery.   

 
Figure 5.10. Using the realizable k-epsilon turbulence model, CFD results of pressure 

recovery for different mixing section lengths at varying gas cooler pressure.   
 
 

 
Figure 5.11. Using the RNG k-epsilon turbulence model, CFD results of pressure 

recovery for different mixing section lengths at varying gas cooler pressure.   
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Figure 5.12. Using the k-omega SST turbulence model, CFD results of pressure recovery 

for different mixing section lengths at varying gas cooler pressure.   
 
 

Tables 5.3 – 5.5 show the difference in pressure recovery in the experimental 

work compared to the CFD results.  Looking at each turbulence model, the average 

percent error for the 18 cases tested for each turbulence model ranged from 18% to 23% 

(18.6% average error for standard k-epsilon; 18.8% for k-omega SST; 19.2% for RNG; 

23.0% for realizable k-epsilon).  It is interesting to note that in the experimental work of 

Nakagawa et al. [42], the pressure recovery in the ejector with the 5 mm mixing section 

length and the use of the IHX is less than the pressure recovery of the 15 and 25 mm 

mixing section ejectors that do not use the IHX.  The realizable k-epsilon model is the 

only model out of the four that predicts this similar outcome, despite having the greatest 

average percent error to the experimental work. 
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Table 5.3. Using the realizable k-epsilon turbulence model, pressure recovery difference 
between experimental and CFD results for varying gas cooler pressures of (a) 9.5 MPa, 

(b) 10 MPa, and (c) 10.5 MPa. 
 

(a) Gas cooler pressure = 9.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.265 0.130 0.135 50.943 

5 yes 0.240 0.183 0.057 23.750 

15 no 0.375 0.228 0.147 39.200 

15 yes 0.397 0.345 0.052 13.098 

25 no 0.365 0.223 0.142 38.904 

25 yes 0.393 0.340 0.053 13.486 

(b) Gas cooler pressure = 10 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.291 0.179 0.112 38.488 

5 yes 0.256 0.240 0.016 6.250 

15 no 0.448 0.322 0.126 28.125 

15 yes 0.443 0.483 -0.040 -9.029 

25 no 0.432 0.306 0.126 29.167 

25 yes 0.454 0.450 0.004 0.881 

(c) Gas cooler pressure = 10.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.313 0.205 0.108 34.505 

5 yes 0.254 0.282 -0.028 -11.024 

15 no 0.496 0.378 0.118 23.790 

15 yes 0.487 0.580 -0.093 -19.097 

25 no 0.472 0.376 0.096 20.339 

25 yes 0.480 0.545 -0.065 -13.542 
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Table 5.4. Using the RNG k-epsilon turbulence model, pressure recovery difference 
between experimental and CFD results for varying gas cooler pressures of (a) 9.5 MPa, 

(b) 10 MPa, and (c) 10.5 MPa. 
 

(a) Gas cooler pressure = 9.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.265 0.169 0.096 36.226 

5 yes 0.240 0.221 0.019 7.917 

15 no 0.375 0.235 0.140 37.333 

15 yes 0.397 0.343 0.054 13.602 

25 no 0.365 0.245 0.120 32.877 

25 yes 0.393 0.340 0.053 13.486 

(b) Gas cooler pressure = 10 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.291 0.224 0.067 23.024 

5 yes 0.256 0.274 -0.018 -7.031 

15 no 0.448 0.321 0.127 28.348 

15 yes 0.443 0.473 -0.030 -6.772 

25 no 0.432 0.322 0.110 25.463 

25 yes 0.454 0.445 0.009 1.982 

(c) Gas cooler pressure = 10.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.313 0.252 0.061 19.489 

5 yes 0.254 0.308 -0.054 -21.260 

15 no 0.496 0.376 0.120 24.194 

15 yes 0.487 0.567 -0.080 -16.427 

25 no 0.472 0.381 0.091 19.280 

25 yes 0.480 0.535 -0.055 -11.458 
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Table 5.5. Using the k-omega SST turbulence model, pressure recovery difference 
between experimental and CFD results for varying gas cooler pressures of (a) 9.5 MPa, 

(b) 10 MPa, and (c) 10.5 MPa. 
 

(a) Gas cooler pressure = 9.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.265 0.231 0.034 12.830 

5 yes 0.240 0.281 -0.041 -17.083 

15 no 0.375 0.261 0.114 30.400 

15 yes 0.397 0.345 0.052 13.098 

25 no 0.365 0.222 0.143 39.178 

25 yes 0.393 0.358 0.035 8.906 

(b) Gas cooler pressure = 10 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.291 0.305 -0.014 -4.811 

5 yes 0.256 0.351 -0.095 -37.109 

15 no 0.448 0.351 0.097 21.652 

15 yes 0.443 0.464 -0.021 -4.740 

25 no 0.432 0.321 0.111 25.694 

25 yes 0.454 0.465 -0.011 -2.423 

(c) Gas cooler pressure = 10.5 MPa 

Mixing section length (mm) IHX? Pressure increase (MPa) 

Nakagawa et al. CFD difference % error 

5 no 0.313 0.321 -0.008 -2.556 

5 yes 0.254 0.390 -0.136 -53.543 

15 no 0.496 0.391 0.105 21.169 

15 yes 0.487 0.553 -0.066 -13.552 

25 no 0.472 0.397 0.075 15.890 

25 yes 0.480 0.547 -0.067 -13.958 
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An appendix is included that shows the pressure profile through the ejector for all 

the cases with each of the turbulence models and also the experimental results.  For each 

of the cases, the minimum pressure occurs shortly after the beginning of the mixing 

section.  This is where the suction stream reaches the recirculation zone.  In each 

individual case, the recirculation area occurs closer to the beginning of the mixing section 

with the k-omega SST model; the recirculation area is furthest downstream with the 

realizable k-epsilon turbulence model.  In general for each case, the CFD simulations 

predict a higher rate of pressure recovery in the early section of the ejector than the 

experimental results.  In the first 10 - 15 mm of the ejector, the highest rate of pressure 

recovery is seen with the k-omega SST model, and the lowest rate of pressure recovery is 

seen with the realizable k-epsilon model.  This is true for all cases. 
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CHAPTER 6 

 

CONCLUSIONS 

 The goal of this project was to use CFD to model fluid flow inside a two-phase 

ejector.  One application for the ejector is to be put in a refrigeration cycle.  A pressure 

rise is expected to occur in the nozzle, which will require less work from the compressor, 

thus resulting in a more efficient cycle.  CFD is used to model the flow inside the ejector 

because many different operating conditions and geometries can be tested at a minimal 

cost.  From the results shown in Chapters 4 and 5, some remarks can be made on the 

effectiveness of the HRM—∑-Y model. 

The relaxation model is designed to bring the mixture towards equilibrium over a 

period of time.  The value of this model is most significant when the enthalpy difference 

between the motive and suction streams is great.    Adjusting the constants that determine 

the timescale does not have an effect on the pressure recovery, the key reason of using an 

ejector in a refrigeration cycle, but it has the ability to adequately show the non-

thermodynamic equilibrium state of the fluid.  Using the model constants from Downar-

Zapolski et al. [49] may not be accurate for the cases with CO2 as the refrigerant (since 

water was used to determine the constants in Downar-Zapolski et al.), but it provides a 

preliminary start for future work that can look at how adjusting the relaxation model 

constants can affect how close the fluid is to thermodynamic equilibrium. 

Carbon dioxide is a much better choice for a refrigerant than water.  CO2 has 

become a more widely used refrigerant in recent experimental work.  In the CFD results, 

cases with carbon dioxide led to more numerically stable simulations; the cases with 

water as the working fluid were not stable enough to include a compressibility term in the 
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model.  Because of this, and that the density gradient where the two streams meet near 

the splitter was lower for cases with CO2 as the working fluid, the CFD results were 

better when using CO2.  A minor drawback of using CO2 is that the relaxation model 

constants are potentially mis-matched to the fluid. 

 The ∑-Y model has a dominant effect on the mixing of the streams and the 

overall pressure recovery in the nozzle.  It controls almost all of the interaction between 

the motive and suction streams in the mixing section.  Because interphase mixing is 

largely governed by the ∑-Y model, improvements in this area would be particularly 

beneficial.  The diffusion term used in the cases in the current work is based on Fick’s 

law of mass diffusion; different diffusion models could be considered, such as a model 

used by Demoulin et al. [61] that accounts for large density fluctuations. 

 Turbulent viscosity is greatest in the mixing section.  Because most of the mixing 

occurs in this section, the choice of RANS turbulence model has an important effect on 

pressure recovery since the pressure at the outlet is already specified and the inlet 

pressures are being predicted.   None of the models chosen were significantly better than 

the rest.  This is a reasonable outcome because the four models chosen are not greatly 

different from one another (as compared to other forms of turbulence models available).  

A more detailed turbulence study looking at different turbulence models, such as LES 

models and other RANS models, could be examined in the future. 

The boundary conditions have a significant effect on the modeling of the ejector 

flow.  In Chapter 4, the density at the inlets was set to a fixed value.  This considered the 

fluid at each of the inlets to not be in thermodynamic equilibrium.  This was modified in 

Chapter 5, where the density at the inlets was based on the enthalpy and the pressure 
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solved in the previous time step.  For these cases, the fluid at the motive and suction 

inlets are considered to be in thermodynamic equilibrium.  This is a reasonable 

assumption since the difference between the instantaneous and equilibrium mass fraction 

of vapor is small in the sections of the motive and suction nozzle that are modeled in the 

CFD cases.  Even though the difference is not great, the density and velocity of the 

motive nozzle flow have a significant effect on the pressure rise, so a change in the 

boundary conditions at the motive inlet can make a difference in the pressure recovery in 

the nozzle.  Future investigation of how best to specify boundary conditions could be 

warranted. 

The attempt to validate the HRM—∑-Y model to the experimental work of 

Nakagawa et al. [42] was a partial success.  The error in pressure recovery was slightly 

higher than desired, but the CFD cases were tested against a variety of nozzle geometries 

and operating conditions.  Similar trends were seen in the CFD results and the 

experimental work of Nakagawa et al. [42], so only minor adjustments to the HRM—∑-

Y model may be necessary.  Some of the ways to lower the CFD error have been 

mentioned earlier in this chapter, such as modifying the diffusion model in the ∑-Y code, 

changing the turbulence model, or modifying the boundary conditions.  At this time, the 

code is not robust enough to accurately model a general set of operating conditions and 

nozzle geometries. 
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APPENDIX 

 

PRESSURE PROFILE FOR ALL CFD VALIDATION CASES 

 

 
Figure A.1.  Pressure through the ejector, comparing four turbulence models against 
experimental data.  5 mm mixing section length case without the IHX.  Gas cooler 

pressure = 9.5 MPa. 
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Figure A.2. Pressure profile for 5 mm mixing section length case with the IHX.  Gas 

cooler pressure = 9.5 MPa. 
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Figure A.3. Pressure profile for 15 mm mixing section length case without the IHX.  Gas 

cooler pressure = 9.5 MPa.  
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Figure A.4. Pressure profile for 15 mm mixing section length case with the IHX.  Gas 

cooler pressure = 9.5 MPa.  
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Figure A.5. Pressure profile for 25 mm mixing section length case without the IHX.  Gas 

cooler pressure = 9.5 MPa.  
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Figure A.6. Pressure profile for 25 mm mixing section length case with the IHX.  Gas 

cooler pressure = 9.5 MPa. 
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Figure A.7. Pressure profile for 5 mm mixing section length case without the IHX.  Gas 

cooler pressure = 10 MPa.  
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Figure A.8. Pressure profile for 5 mm mixing section length case with the IHX.  Gas 

cooler pressure = 10 MPa.  
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Figure A.9. Pressure profile for 15 mm mixing section length case without the IHX.  Gas 

cooler pressure = 10 MPa.  
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Figure A.10. Pressure profile for 15 mm mixing section length case with the IHX.  Gas 

cooler pressure = 10 MPa.  
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Figure A.11. Pressure profile for 25 mm mixing section length case without the IHX.  

Gas cooler pressure = 10 MPa.  
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Figure A.12. Pressure profile for 25 mm mixing section length case with the IHX.  Gas 

cooler pressure = 10 MPa.  
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Figure A.13. Pressure profile for 5 mm mixing section length case without the IHX.  Gas 

cooler pressure = 10.5 MPa.  
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Figure A.14. Pressure profile for 5 mm mixing section length case with the IHX.  Gas 

cooler pressure = 10.5 MPa.  
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Figure A.15. Pressure profile for 15 mm mixing section length case without the IHX.  

Gas cooler pressure = 10.5 MPa.  
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Figure A.16. Pressure profile for 15 mm mixing section length case with the IHX.  Gas 

cooler pressure = 10.5 MPa.  
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Figure A.17. Pressure profile for 25 mm mixing section length case without the IHX.  

Gas cooler pressure = 10.5 MPa.  
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Figure A.18. Pressure profile for 25 mm mixing section length case with the IHX.  Gas 

cooler pressure = 10.5 MPa. 
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