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ABSTRACT

NON-EQUISPACED FAST FOURIER TRANSFORMS IN TURBULENCE

SIMULATION

SEPTEMBER 2017

ADITYA MOHAN KULKARNI, B. E., UNIVERSITY OF PUNE

M.S.M.E.

UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Prof. Stephen de Bruyn Kops

Fourier pseudo-spectral method is one of the approaches used to compute the derivative of a discrete

data in Computational Fluid Dynamics. The Fourier transform of the data sampled on equispaced

gridpoints is computed using Fast Fourier Transform (FFT), and the Fourier transform of deriva-

tive is obtained by multiplying each Fourier coefficient by its corresponding wavenumber and the

imaginary number i =
√
−1. In a number of turbulent flows like wakes, jets etc., the dynamically

important scales of motion are concentrated in some regions, which require a finer gridspacing and

other regions may have a coarse grid. Use of non-equispaced grid can potentially lead to reduced

memory usage without sacrificing accuracy, which is particularly important as memory throughput

is a major limiting factor of the Direct Numerical Simulations (DNS) performed today. The aim of

this thesis is to implement the non-equispaced grid in DNS, using the Non-Equispaced Fast Fourier

Transform (NFFT)[1] algorithm.

In order to be able to achieve the similar accuracy using reduced number of gridpoints, the

number of Fourier coefficients needs to be larger than that of the gridpoints. NFFT calculates

the Fourier transform by solving a system of linear equations using a variant of conjugate gradient

method, which in our case, becomes an under-determined system. A combination of NFFT and

an iterative reconstruction algorithm, FOCUSS [2] is used to obtain the accurate Fourier transform

of certain test functions, by solving an under-determined system of equations. The combination

of NFFT and FOCUSS algorithm is also used to perform a small test case of Direct Numerical

Simulation on a grid of 643 points, using Taylor Green initial conditions and the results are found to

vi



be in agreement with the analytical solution. The speed of this simulation is slower than acceptable,

which can be attributed to an increased condition number of the DFT matrix and various means

that have the potential of increasing the computational performance are analyzed.

A test is also performed on slice of a 3 dimensional field of fluctuating density of a turbulent

wake of high Reynold’s number and larger size with 1024 gridpoints in the NFFT, which is similar

to the ultimate expected application. The derivative computed for this slice using NFFT and

FOCUSS is found to be inaccurate. The errors in the derivative can be attributed to the inaccurate

computation of the Fourier transform using a non-equispaced grid in under-determined case. The

FOCUSS algorithm is thus found incapable of computing the Fourier transform by solving an under-

determined system of linear equations in cases like turbulence simulation where the fields have a

wideband Fourier transform.
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CHAPTER 1

MOTIVATION

1.1 Introduction

Computational fluid dynamics is a widely used tool that solves the governing equations of fluid flow

numerically, as they are too complicated to solve analytically when applied to general problems. With

the increase in processing power of computers, we are able to solve more and more complicated fluid

dynamics problems without sacrificing accuracy. The basic approach to CFD can be explained by

following four steps:

1. Define geometry of the problem

2. Discretize the geometry, that is, divide the geometry into finitely small discrete elements.

3. Identify the governing equations

4. Solve the equations using appropriate numerical algorithms

The basic underlying idea here is to discretize the domain(volume, area etc.) of our focus into

discrete small elements, use mathematical methods to convert partial and/or ordinary differential

equations into algebraic equations and solve them numerically. The governing equations are equa-

tions of conservation of some physical property like mass, momentum, energy etc. There are various

methods of discretisation, the most commonly used ones being Finite Volume Method, Finite Ele-

ment Method, Finite Difference Method etc.

From the study of numerical analysis[3] we know that the accuracy of the solution depends upon

the size of the discrete elements. Generally, smaller the elements, better is the accuracy and vice

versa. In turbulence simulation, finer discretization allows us to resolve the smaller length scales.

In many turbulence problems including but not limited to jets, wake, plumes etc., the smaller and

dynamically important scales are concentrated in some regions than others. In other words, there

are some regions with smaller lengthscales and some regions without them, for which a coarser

discretization is sufficient. The finer discretization can only be used in only the regions containing
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the small lengthscales to be able to accurately resolve them. A coarser discretization can be used in

other regions, as fine discretization increases the memory and computational requirements.

If the domain is divided using a finite number of points called gridpoints, the above approach

will make the grid non-equispaced. The purpose of this thesis is to assess the feasibility of using

Fourier spectral method on a non-equispaced grid in turbulence simulation.

1.2 Discretization Methods

There are various discretization methods with their own advantages and disadvantages. It is the job

of fluid dynamicist to select the best method for his/her purpose.

1.2.1 Finite Volume Method

The Finite Volume Method (FVM) is the most widely used method for fluid problems. In this

method, the volume occupied by the fluid is divided into finite discrete non overlapping volumes

called as elements or cells. Partial differential equations are converted into algebraic equations

enforcing the requirement that fluxes between adjacent cells satisfy simple algebraic relationships for

most quantities of interest in fluid dynamics[4]. FVM solves the integral conservation law equation

numerically.

∂

∂t

∫∫∫
V

QdV +

∫∫
A

F dA =

∫∫∫
V

SdV

Here, Q is the property that is conserved, F is the flux of properties and S is a source. The cells

are so small that Q is assumed to be constant over a cell and dV is the cell volume. Also, the total

flux from cell surfaces can be calculated by summation of fluxes on all areas. It can be seen that

FVM is an approximation just like other numerical methods and smaller the cell size, better is the

accuracy of FVM. FVM is inherently conservative, which makes it more suitable for fluid problems.

1.2.2 Finite Difference Method

In the Finite Difference Method (FDM), the domain is discretized by considering various points

at discrete intervals inside the domain, the values of properties at those points being known[5].

Governing equations, which are partial differential equations are solved numerically using finite

2



difference approximation. The underlying idea of FDM is the Taylor series.

f(x+ a) = f(x) +
f(x)

1!
a+

f ′(x)

2!
a2 +

f ′′(x)

3!
a3 + . . .

Based on Taylor series about point x and f(x), the values of derivatives of f(x) with respect to x

can be approximated. The accuracy of the approximation reduces with an increase in the value of

a. Finite difference method requires a structured grid.

1.2.3 Finite Element Method

In Finite Element Method (FEM), the domain is divided into a finite number of subdomains (finite

elements)[6]. Inside each subdomain, the dependent variable f(x, t) is approximated as a linear

combination of basis functions.

f(x, t) ≈ fN (x, t) =
∑
k

ck(t)φk(x)

Here, fN is the approximation of the dependent variable f , φk(x) are the basis functions and ck(t)

are their coefficients at a time t. Smoothness and continuity needs to be ensured at the boundary

of each subdomain. Selection of basis function is influenced by several factors, like boundary condi-

tions, accuracy requirements, computational cost etc. The computation of coefficients ck is done by

minimizing the following:

R(x) = fN (x)− f(x)→ min

R(x) is called as residual. It can be seen that for exact interpolation, the residual is zero. In theory,

coefficients ck can be found by solving a system of N linear equations in N variables.

The basis functions φk(x) may be algebraic expressions in x like xk, so that f(x, t) is an algebraic

polynomial in x; or they may be chosen from one of the following[7]:

1. Fourier Series

2. Chebyshev Polynomials

3. Legendre Polynomials

4. Spherical Harmonics

5. Laguerre Functions

3



Accuracy of the interpolation depends mainly on three metrics and it can be increased (also called

as refinement) by altering one or more of those metrics, which are as follows[7]:

1. Increase the number of discrete points, called h-type refinement

2. Increase the number of discrete points in the regions of steep gradients, called r -type refine-

ment. This is the topic of our interest in this thesis.

3. Increase the degree of interpolating polynomial, called p-type refinement. The degree of inter-

polating polynomial is typically denoted by p, hence the name p-type refinement.

The error is introduced due to interpolating the data in FEM is called as truncation error and

this introduces numerical diffusion and dispersion in the problem. For turbulence simulation, the

discretization scheme is desired to be as free from these errors as possible[8]. Increasing the number

of points in entire domain or in some parts of the domain (h or r -type refinements) reduce the

truncation errors. However, the downside of these is the requirement of more number of points

and a corresponding increase in memory requirement. The p-type refinement, which uses a higher

order interpolation, is a potential alternative to reduce truncation error without increasing memory

requirement.

The degree of interpolating polynomial ckφk, denoted by p determines the accuracy of the dis-

cretization. Higher the value of p, higher is the accuracy and vice versa. FEM is called as Spectral

Element Method (SEM) if higher order functions are used in discretization, typically p > 6. SEM is

thus, a special case of FEM.

In SEM or FEM, the partial differential equations that needs to be solved is given as follows:

∂f

∂t
= Lf(x, t)

where L is an operator containing partial differentiation in the spatial domain. When f(x, t) is

interpolated as a sum of basis functions, above equation can be written as follows:

∂f

∂t
≈ ∂fN

∂t
=

N∑
k=0

ck(t)Lφk(x)

This is an ordinary differential equation in time, since φk(x) is known, and can be solved numerically

by finite differencing in time.

4



1.2.4 Spectral Method

Spectral method is a special case of SEM where the number of subdomains is 1, i.e., the domain is not

divided into smaller domains. Spectral method takes a global approach to interpolate the function

and defines a single high order interpolating function in the entire domain. The basis function can

be any of the functions listed above.

Figure 1.1: Comparison of Error in Spectral Derivative (taken using Fourier series) and Finite
Difference Derivative. A demonstration of h-type and p-type convergence.

Fig 1.1 shows the comparison between error in derivative of esin x taken over interval (0, 2π) by

Fourier spectral method and fourth order finite difference order method. It can be observed that the

spectral method can achieve the same level of accuracy with a lesser number of points as compared

to the finite difference method thereby requiring lesser memory.

1.3 Fourier Series

The Fourier series is an example of spectral expansion of a function where the basis function is a

trigonometric function which can be indicated as

f(x) =

∞∑
k=−∞

cke
ikx

Fourier series can be characterized by rapid convergence, which is faster than algebric, that is,

kpck → 0 as k →∞ for all p > 0[9]. Thus, a Fourier transformable function f(x) can be accurately

interpolated by a Fourier series truncated at k = ±N .

f(x) ≈ fN (x) =

N∑
k=−N

cke
ikx
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The rapid convergence can also be visualized from fig. 1.1. Derivative calculated by Fourier

spectral method quickly approaches the roundoff error, the least possible error. This also indicates

that the truncation errors of Fourier series are limited by the roundoff error, given that the number

of points N is sufficiently large. This low truncation error makes Fourier series interpolation suitable

for turbulence simulations.

The process of calculating values of coefficients ck is called Fourier transform. Also, if the values

of coefficients ck are known, then the function f(x) can be reconstructed by a process called Inverse

Fourier Transform. However, Fourier series gives accurate representations only for periodic and

continuous function. If the function is not periodic, then there appears a jump discontinuity at

the ends of the domain and the representation is inaccurate at the discontinuity, due to Gibbs

phenomenon[10].

The constants are often represented as f̂ in Fourier analysis, by convention. Fourier transform

can be taken analytically as follows:

f̂(k) =

∫ ∞
−∞

f(x)e−ikxdx (1.1)

The inverse Fourier transform, which reconstructs the function f from known values of Fourier

coefficients f̂ can be taken analytically as

f(x) =
1

P

∫ ∞
−∞

f̂(k)eikxdk (1.2)

Here, P is the time period of the function.

Spectral method where Fourier series is used to interpolate the data is called as Fourier spectral

method. In Fourier spectral method, error in the interpolation reduces as O(N−N ) where N is the

number of gridpoints. This is called as “infinite order convergence” or “exponential convergence”.

In finite difference or finite volume method, the error in spatial derivative can be given as ∆xc

where ∆x� 1, ∆x = 1/N and c is a positive integer that depends on the discretization scheme used

but not on the number of gridpoints. Usually, in compact finite difference method or in finite volume

method, c lies between 4 and 6[11, 12, 13]. In Fourier spectral method, the error in spatial derivative

scales as ∆xN due to exponential convergence. Thus, increasing the number of points increases not

only reduces the ∆x but also increases the order of accuracy of the discretization scheme with the

same computational cost as other methods.

Another factor that makes a difference in the quality of CFD solutions is the numerical dispersion.
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This is the error in the phase of a wave whose propagation is simulated numerically. Numerical

dispersion is also called as phase error. The turbulent eddies are transported in spatial coordinates

and numerical dispersion can play an important role in the overall accuracy of the simulation. The

spatial transport is modelled by equations of type (c ∂f/∂x), where c is the wave speed and f(x, t) is

the field that travels in space.[3] The spatial derivative ∂f/∂x is approximated by the discretization

methods. Higher the error in spatial derivative, higher is the numerical dispersion error in the final

solution. As explained earlier, the Fourier method gives least error in the spatial derivative and will

thus lead to minimal dispersion errors. The same can be said about numerical dissipation which

depends upon the second derivative of the field, (d ∂2f/∂x2).

A combination of lower truncation, dispersion and diffusion errors explains the incentive to use

Fourier spectral method in CFD problems.

1.4 Fast Fourier Transform

In many cases the function f(x) is known at discrete points xj where j = 0, 1, 2, . . . ,M − 1. The

Fourier transform of such a function can be obtained by the process of discrete Fourier transform

(DFT). Fast Fourier Transform (FFT) is an algorithm that computes the discrete Fourier transform

and has been classified in the top ten algorithms of the 20th century[14]. The standard notation for

discretized Fourier series is as follows

f(xj) =

∞∑
k=−∞

f̂ke
ikxj (1.3)

where j = 0, 1, 2, . . . ,M − 1.

To take the forward Fourier transform of the discrete data, the values of coefficients f̂k for all

k ∈ (−∞,∞) need to be found. f(x) can then be approximated by an interpolating polynomial I.

It is impossible to store and calculate infinite values of f̂ . Thus, we limit the number of f̂ to some

number n and assume that f̂k = 0 for |k| > n/2. This assumption is justified due to the exponential

convergence discussed earlier. This yields a truncated Fourier series where the summation in equation

(1.3) is taken from −n/2 + 1 to n/2.

The most commonly used FFT algorithm is the Cooley-Tuckey algorithm that calculates the FFT

in O(N logN) operations[15]. For any discrete Fourier transform, the length of Fourier transform

is limited by the number of the function values m, i.e., the length of Fourier transform, n = m[16].

Thus, we get a truncated Fourier series, which makes the interpolating polynomial of order n as
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opposed to the infinite order polynomial as expected by theory. This interpolating polynomial aims

to approximate the function in order to take its derivatives. As explained in the previous section

values of f̂ converge rapidly to zero due to exponential convergence and truncation of the series to

n = m terms is an accurate approximation.

In the standard FFT, when it is required that n > m, output of FFT algorithm is padded with

zeros for values of k > m. If it is required that n < m, then the FFT output is chopped.

Discretized forms of equations (1.1) and (1.2) for calculation of forward FFT and inverse FFT

respectively are given as:

f̂k =

m−1∑
j=0

f(xj)e
−ikxj

f(xj) =
1

nP

n/2∑
k=−n/2+1

f̂ke
ikxj

Here, n is the number of discrete function values (n = m for FFT) and P is the period of the

function.

In spectral method, Fourier series or other high order methods are used to interpolate the function

from its discrete values and the spatial derivative can then be taken. For a discretely defined function

f with Fourier coefficients f̂k, the Fourier coefficients of its spatial derivative ∂f/∂x are given as

ikf̂k. It can be easily derived by differentiating equation (1.3). Thus the spatial derivative can be

calculated by taking inverse DFT of ikf̂k.

1.5 Other Approaches

Fourier spectral methods is one of the approaches of high order approximations, also called as

p-type refinement. Although Fourier series interpolation is highly accurate, it leads to a loss of

accuracy in the regions of discontinuous gradients, e.g. boundaries, due to the well known Gibbs

phenomenon[10]. Thus, it is suitable only for simulations with periodic boundary conditions.

Other methods to interpolate a polynomial with a high order accuracy have been used in turbu-

lence simulations involving sharp gradients. Chebyshev spectral method, B-spline interpolation and

compact finite difference schemes[17] are some of the examples.

Chebyshev collocation method uses Chebyshev polynomials instead of Fourier series to approx-

imate the function from discrete given values. It has been used by Moser et. al. in 1999 [18] to

simulate channel flow between two infinite horizontal plates. Wengle and Seinfeld(1978)[19] have

proven that the differentiation matrix in Chebyshev spectral method may be ill conditioned and
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errors in the smallest coefficients of Chebyshev series may cause a large error in even the largest

coefficients of derivative of Chebyshev series. For higher Reynolds numbers, we need to use a larger

number of points thereby increasing the possibility of errors in derivatives. Moreover, the grid-points

can’t be chosen arbitrarily for a Chebyshev polynomial interpolation. The grid-points (collocation

points) must be chosen from either the Gauss-Chebyshev quadrature or Gauss-Lobatto quadrature

points[7], as in other cases the higher order differentiation becomes ill conditioned.

The compact finite difference scheme(Lele 1992[17], Fadel 2011 et. al.[11], Shukla et. al. 2007[20])

has been implemented in channel flow by Avsarkisov et. al. [21]. Compact finite difference schemes

are generalizations of Padé schemes. As shown by Lele(1992)[17], the first derivative calculated

using compact finite difference schemes has some error compared to derivative calculated by Fourier

spectral method. The errors increase as the order of derivative increases, i.e., the errors are higher

for second derivative as compared to the first derivative and so on. These errors are in the high

wavenumber components of the derivative, and they accumulate over the time. Thus filters are

applied to mitigate them, as discussed by Lele (1992)[17] and Zhang et. al. (2004) [22]. The overall

accuracy of the scheme is limited by the accuracy of the filters which are usually third or fourth

order. It has also been discussed that the error increases with increasing order of the derivative.

We, thus, look for another scheme to interpolate the discretized data.

Myoungkyu and Moser(2015)[23] have solved turbulent channel flow using B-spline collocation

method. As explained by Kwok et. al.(2001)[24], B-spline collocation method suffers from similar

issues as compact finite difference scheme discussed above, that the error increases with each deriva-

tive. B-spline collocation, however, is more accurate than the compact finite difference schemes, but

still less accurate than spectral methods.

The errors in the spatial differentiation due to other methods will lead to numerical diffusion and

dispersion, as discussed earlier. Limitations of other methods using high order polynomials indicate

that the Fourier series is the best high order interpolation method for periodic boundary conditions

and smooth functions.

1.6 Non-Equispaced Grid

The r -type refinement approach discussed in sec. 1.2.3 increases the grid resolution only in the

places where we need a finer resolution. As discussed earlier, the r -type refinement is precisely what

we need to simulate a number of turbulent flows with increased accuracy. h-type refinement leads to

an increased number of gridpoints even where they are not required. This implies that the memory
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requirement for h-type refinement is higher than the r -type approach.

Chebyshev methods described above is one of the ways to solve the problem with non-equispaced

grid. Another way to take a derivative of a function on non equispaced grid, using compact finite

differences, is to map the grid first onto an equispaced grid. Let the original nonequispaced grid be

denoted by x and its mapping on uniform grid be denoted by x′[25]. When the function f is defined

on grid x, its derivative can be taken as follows:

∂f

∂x
=

∂f

∂x′
dx′

dx

Above two derivatives can then be calculated with compact finite difference method.

However, we want to get r -type refinement without the limitations of Chebyshev methods on

selection of gridpoints or finite difference method on the overall accuracy due to involvement of

filters. Thus, we want to be able to use Fourier spectral method on a non-equispaced grid. The

FFT library based on the Cooley Tuckey algorithm discussed in sec. 1.4 requires the function to

be sampled on equally spaced points. Thus, a different technique is needed to solve the problems

with non-equispaced grid. The Non-Equispaced Fast Fourier Transform (NFFT) library computes

the Fourier transform of data sampled on non-equispaced grid, which will be explained in section

1.7 and chapter 2.

1.7 Non-Equispaced FFT

Non Equispaced FFT (also called NFFT) is the calculation of FFT when the function f(xj) is known

at non equispaced discrete gridpoints. In principle, NFFT can be done by solving a linear system

of equations. The system of equations can be arranged in such a way that the residual f − fN is

minimized at a finite number of points xj where f and fN denote the original and the interpolated

functions respectively. In this case, xj are called as collocation points and this approach is called

pseudospectral method or collocation method. Mathematically,

||f(xj)− fN (xj)|| → 0

Here, || · || indicates a L2 norm or Euclidean norm. In this case, if N = M , the system of equations is

a well determined system and it has a solution. If N < M , the system is an over-determined system

and it does not have a solution. Thus, we use the lease square approach to get an interpolating
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polynomial IN such that the residual is minimized. If N > M , the system is an under-determined

system of equations and it has infinite number of solutions. An additional constraint is required in

order to achieve a particular solution. These additional constraints will be explained in subsequent

chapters.

1.8 NFFT in Turbulence

In numerical simulation of turbulent flows, truncation of Fourier series at a larger wavenumber is

always desirable in order to be able to resolve the smallest dissipative motions (characterized by

Kolmogorov lengthscales)[26]. It needs to be understood that when we truncate the Fourier series

at a index N , we put the values of wavenumbers greater than N equal to zero. In turbulence,

we are interested in amplitudes of Fourier coefficients at higher wavenumbers. In turbulence, the

amplitudes at high wavenumbers are fairly small as explained by Pope (2000) (section 6.5.4)[26].

More discussion on this will be done in section 3.3.

The amplitude decreases exponentially as wavenumber increases, becoming zero as k → ∞.

Higher wavenumber Fourier coefficients are of importance in turbulence simulation to resolve the

smallest scales[26, 27]. If equispaced grid and FFT are used to simulate turbulence which is resolved

at higher wavenumbers, we need a larger number of gridpoints as FFT requires a corresponding

increase in the number of gridpoints. This increases the memory requirements of the simulation.

In turbulence simulation, time-stepping is done on entire velocity field. This requires the field to

be loaded into physical memory before time-stepping. Thus, the requirement of memory increases

with an increase in the field size or the number of gridpoints. We would like to be able to increase

the resolution of the grid only in the regions of dynamically important scales, and achieve the same

effect as increasing the resolution of entire grid by using NFFT. Let’s assume that the initial grid

had p equally spaced points. The grid-spacing, i.e. the spacing between adjacent points on the

grid is 1/p. Using FFT, we can get p Fourier coefficients and compute the derivative. Now, the

number of equispaced points and the number of Fourier coefficients that can be obtained is increased

to P > p. Smaller lengthscales are responsible for producing a non-zero amplitude in the higher

wavenumbers of Fourier series. With increased gridpoints, the smaller lengthscales are not ignored

thereby increasing the accuracy. The grid-spacing in this case is 1/P . Note that 1
P < 1

p . This

approach, however, results in an increased memory usage as P values need to be stored. Using

NFFT, we redistribute p points in the grid so that the grid-spacing in the regions containing smaller

dynamically important scales is 1/P while that of other regions is greater than 1/p. If P Fourier
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coefficients can be obtained from this arrangement, the same accuracy can be achieved with lesser

gridpoints, thereby reducing the memory requirement.

Aim of this thesis is to use the NFFT algorithm developed by Kunis et. al. [1] to evaluate Fourier

transform of a function known at non equispaced discrete gridpoints. NFFT algorithm inherently

does not calculate Fourier transform where the number of Fourier coefficients, N > M where M is

the number of discrete data points. We modify the algorithm in order to make it able to calculate

N Fourier coefficients where N > M .

NFFT algorithm has been explained in detail in chapter 2 for inverse Fourier transform, i.e.

calculation of Fourier coefficients f̂k when discrete function values f(xj) are known. Pseudo codes

for the algorithm used have been presented. Theory of inversion of non square matrices, called

Moore-Penrose pseudoinverse [28] has also been discussed along with its implementation to solve

systems of linear equations. The problem of solving an under-determined system of linear equations

is also discussed, which is what we need when N > M .

The method to get correct Fourier transform when N > M , called FOCUSS algorithm (Gorod-

nitsky and Rao 1997)[2] has been discussed in chapter 3. Implementation of NFFT and FOCUSS

to get Fourier transform of test function has also been discussed.

It is observed that the computational speed of the test case of computational simulations using

NFFT and FOCUSS algorithms is too slow to be acceptable in large sized simulations. Mathematical

aspects related to the slow speed have been discussed in Chapter 4.

The combination of NFFT and FOCUSS algorithms was later tested on slices of large sized wake

of realistic resolution 4096 × 2048 × 2048. Non-equispaced grid was used in z direction with a size

of 2048 equispaced gridpoints, which was mapped onto a grid of 1024 non-equispaced points and

NFFT and FOCUSS algorithm was tested on it. The results related to accuracy of the speed have

been analyzed in Chapter 5.

Finally, Chapter 6 discusses the conclusions. It was observed that the combination of NFFT and

FOCUSS algorithms can not be used in our case, for direct numerical simulations of turbulent flows.
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CHAPTER 2

NFFT AS LINEAR SYSTEM OF
EQUATIONS

Non Equispaced Fast Fourier Transform (NFFT) is a library to calculate the forward and inverse

Fourier transforms of discretized function values at non-equispaced points. When values of function

f(xj) are known at M non-equispaced nodes xj where j = 0, 1, 2, . . . ,M − 1, calculation of N

Fourier coefficients f̂k where k = −N/2 + 1, . . . , 0, . . . , N/2 is called as forward Fourier transform.

Forward Fourier transform implementation by Kunis et. al. [1] involves solving a system of linear

equations to calculate the coefficients of truncated Fourier series. The system can be categorized

as under-determined(N > M), well-determined(N = M) and over-determined(N < M). Under-

determined and over-determined system solution involves inversion of non-square coefficient matrix.

A system of linear equations involving non square coefficient matrix can be solved by taking Moore-

Penrose pseudoinverse of the matrix as discussed in section 2.1. Section 2.2 discusses the adaption

of conjugate gradient method used to invert the matrix in NFFT. Section 2.3 discusses the problem

of solving under-determined system of linear equations which is of our interest.

2.1 Moore-Penrose Pseudoinverse

Moore Penrose pseudoinverse[28], also called as generalized inverse, was developed by E. H. Moore

and Roger Penrose. Pseudoinverse of a matrix A is denoted by A+. Pseudoinverse can be defined

as a matrix that satisfies the following properties:

1. AA+A = A

Matrix AA+ need not be an identity matrix, but it maps the columns of matrix A to themselves.

2. A+AA+ = A+

Matrix A+A need not be an identity matrix, it just maps the columns of A+ to themselves.

3. (AA+)∗ = AA+
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Here, ∗ denotes the conjugate transpose. Matrix AA+ is a hermitian matrix.

4. (A+A)∗ = A+A

Matrix A+A is also a hermitian matrix

Moreover, for any matrix A ∈ Cm×n, the pseudoinverse A+ always exists and is unique. Some other

properties of the pseudoinverse are given as follows:

1. If A is square and invertible, then A+ = A−1

2. (A+)+ = A

3. (αA)+ = α−1A+, where α is a scalar.

4. (AB)+ = B+A+

2.1.1 Linear Systems of Equations

Systems of linear equations that have multiple variables and multiple linear equations are called as

linear systems. The equations can be solved simultaneously to get a solution. A linear system with

m equations and n unknowns can be represented as follows:

a11x1 +a12x2 + . . . +a1nxn = b1

a21x1 +a22x2 + . . . +a2nxn = b2

...
...

...
...

...

am1x1 +am2x2 + . . . +amnxn = bm

Above system can also be written in matrix form as follows:



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

am1 am2 . . . amn





x1

x2
...

xn


=



b1

b2
...

bm
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Let’s use the following notation

A =



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

am1 am2 . . . amn



x =

[
x1 x2 . . . xn

]T
and b =

[
b1 b2 . . . bm

]T
The system can then be represented as

Ax = b (2.1)

Here, A ∈ Cm×n is called as the coefficient matrix. x ∈ Cn×1 is the vector containing the unknowns.

b ∈ Cm×1 is the vector containing all the scalar constants. Coefficient matrix A can be a square

matrix (m = n), a vertical matrix (m > n) or a horizontal matrix (n > m). Based on this, the

system can be divided into following three classes.

1. Well-determined, when m = n. Well-determined systems have equal number of unknowns and

equations. They have exactly one solution.

2. Over-determined, when m > n. Over-determined systems have more equations than un-

knowns. Over-determined systems of equations have no solution. The residual can however be

minimized as discussed above.

3. Under-determined, when n > m. Underdetermined systems have more unknowns than equa-

tions. Under-determined systems have infinite number of solutions.

2.1.2 Solution of Linear Systems

A system of linear equations can be solved by multiple methods, analytically by following approaches[29]:

1. Elimination of Variables.

• Solve first equation for one variable in terms of other

• Substitute the expression in remaining equations, which reduces one variable from the

system

• Go on reducing one variable at a time until only one variable remains.
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• Value of other variables can then be calculated by back substitution.

2. Row reduction: Above approach can be simplified in matrix form calculations by using row

reduction form. An augmented matrix is created by augmenting scalar constants matrix b as

an additional column to the coefficient matrix A. This is then reduced by row transformations

into an upper triangular matrix. This approach is also called as Gauss elimination.

3. Matrix Inversion: A system of linear equations can also be solved by matrix inversion. Both

the sides of equation (2.1) can be multiplied by A+, the pseudoinverse of coefficient matrix A.

The solution is then given as:

A+Ax = A+b

x = A+b

This approach can be validated from the fact that A+A maps column vectors to themselves.

When the system is large, i.e. m and n are large, it is often solved numerically with the help of

computers. Elimination of variables and row reduction are extremely expensive operations, thus are

not commonly used for large m and n. Also, matrix inversion is an expensive operation, thus not

used for large systems of equations. Most commonly used methods to solve large linear systems

numerically are conjugate gradient, which will be discussed in the subsequent sections.

2.1.3 Fourier Transform as Linear System

Discrete Fourier transform can be done by solving a system of linear equations, so that the values of

Fourier series evaluated at given points matches the discrete function values at those points, using

collocation approach as explained in chapter 1. Kunis (2006 Ph.D. Dissertation)[30] has discussed

this approach when the period of the function is unity and it is defined on the interval [0.5, 0.5) such

that f(0.5) = f(−0.5). Coefficient matrix for Discrete Fourier transform (DFT) can be written as

follows:

A =



e2πik1x1 e2πik2x1 . . . e2πiknx1

e2πik1x2 e2πik2x2 . . . e2πiknx2

...
...

...
...

e2πik1xm e2πik2xm . . . e2πiknxm


The unknown and constant vectors can be written as:

f̂ =

[
f̂1 f̂2 . . . f̂n

]T
and f =

[
f1 f2 . . . fm

]T
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Here, ki is the i-th wavenumber, f̂i is the value of Fourier coefficient associated i-th wavenumber

where i = 0, 1, 2, . . . , n− 1. fj is the value of function at point xj where j = 0, 1, 2, . . . ,m− 1. Here,

xj ∈ [−0.5, 0.5) for all j. The system of linear equations can be written as

Af̂ = f (2.2)

We can see that equation (2.2) is analogous to equation (2.1) representing a system of linear equa-

tions. Matrix A is called the DFT matrix. The solution of this system, f̂ is also the Fourier transform

and the corresponding Fourier series can be written as follows:

fj =

N∑
i=0

f̂ie
2πikixj for all j

Thus we have interpolated the given function into a sum of orthogonal basis functions, and calculated

the coefficients of individual terms by solving a system of linear equations. This approach has been

used in the development of NFFT library[1] to calculate Fourier transform of non function fj sampled

over m non-equispaced data points xj . We see that A ∈ Cm×n, f̂ ∈ Cn×1 and f ∈ Cm×1. Thus A

is a m× n matrix. The system of equations is well-determined if m = n, over-determined if m > n

and under-determined if n > m.

In practice, the values of number of equations, m and the number of unknowns, n, are large,

at about O(102) − O(104). This makes elimination of variables and matrix inversion prohibitively

expensive. Thus, NFFT library uses an adapted version of conjugate gradient method to solve the

system, which will be explained in the later section.

2.2 Iterative Method for Linear Systems

Solutions to systems of linear equations can be obtained by two kinds of methods, viz. direct meth-

ods and iterative methods[31]. Direct methods (e.g. Gaussian elimination) give an exact answer in

absence of rounding errors. Direct methods are easier and computationally efficient for smaller sys-

tems, but they become prohibitively expensive for large systems and the computational complexity

of direct methods increases rapidly with increasing number of equations. Iterative methods (e.g.

Gauss Seidel, Krylov Subspace Methods etc.), on the other hand, are computationally more efficient

for systems with a large number of equations [31]. Iterative methods begins with an initial guess of

the solution and iterates it until a solution with acceptable accuracy is reached. The convergence
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and applicability of iterative methods is expected to be ascertained before they are applied to a

particular application[32].

2.2.1 Conjugate Gradient

Conjugate gradient (CG) method is a Krylov subspace iterative method to solve linear systems[33,

Page 288]. It uses an adaptation of conjugate directions method, where the search directions are

defined by residual of the previous iteration. CG gives an exact solution to the linear system provided

that the arithmetic is exact. CG requires the coefficient matrix A to be positive definite, i.e., for

any vector x, xTAx > 0; as well as symmetric. CG uses the fact that residual at any point is the

direction of steepest descend of the error, and uses the residual at a given iteration x(k) to minimize

the error and calculates the next iteration x(k+1). Iterations are continued until a predetermined

acceptable level of error is reached. The requirement of symmetric coefficient matrix A means that

CG can only be used when the system is well determined i.e. the coefficient matrix A is a square

matrix.

2.2.2 Normal Equations

Since CG requires the coefficient matrix of a linear system to be symmetric and positive definite,

it can’t be applied to non square coefficient matrices. In order to modify the non square matrices,

we multiply the system by the conjugate transpose of its coefficient matrix to get the following

system.[34]

AHAf̂ = AHf (2.3)

The matrix AHA is a positive definite and symmetric matrix. CG can then be applied to this system.

Linear system (2.2) can be converted to a system of normal equations in one more way, by

factorizing the unknown vector.

AAHy = f where f̂ = AHy (2.4)

Matrix AAH is positive definite and symmetric and can be solved by conjugate gradient method.

Equations (2.3) and (2.4) are called normal equations of (2.2). The solution of these equations by

CG is then called conjugate gradient on Normal equations.
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2.2.3 Conjugate Gradient on Normal Equations

The normal equations can be solved by conjugate gradient. There are two approaches for solving nor-

mal equations called CGNR and CGNE[34] based on the quantity that is minimized. CGNR stands

for “Conjugate Gradient on Normal equations with residual minimization”. CGNR and CGNE are

two sub-types of conjugate gradient methods on normal equations. CGNR stands for Conjugate gra-

dient on Normal equations with Residual minimization and CGNE stands for Conjugate gradient

on Normal equations with Error minimization.

CGNR

For over-determined systems, there is no solution and thus the Fourier coefficients vector f̂ can only

be approximated up-to a certain residual.

||f −Af̂ || → min

Thus, the NFFT library uses CGNR[30] which minimizes the residual is the preferred choice for

over-determined case.

CGNE

CGNE is used in case of under-determined systems which are consistent. It minimizes the error in

solution with each iteration.

||f̂TS − f̂k|| → min

Here, f̂TS is the true solution and f̂k is the solution after kth iteration. Algebraically, true solution

can be obtained as:

f̂TS = A+f

As the error is minimized with each iteration, the iterative solution comes closer and closer to the

true solution and iterations are stopped at a predetermined level of acceptable error. Adaptation of

CGNE for NFFT can be summarized[35] as follows:
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Algorithm 2: CGNE

Input:

m,n ∈ N, f̂0 ∈ Cn×1

xj ∈ [−0.5, 0.5) for j = 0, 1, 2, . . . ,m− 1

f ∈ Cm×1

wj for j = 0, 1, 2, . . . ,m− 1

W = diag(wj)

r0 = f −Af̂0

p0 = AHr0

for l=0, 1, 2, . . . do

αl = rHl rl/p
H
l WPl

f̂l+1 = f̂l + αlWpl

rl+1 = rl − αlAWpl

βl = rHl+1rl+1/r
H
l rl

pl+1 = βlpl +AHrl+1

end for

Output: vector of Fourier coefficients f̂

Above algorithm solves the system (2.4), while applying weights wj and mathematically, it can be

represented as follows:

AWAHy = f where WAHy = f̂

Kunis and Potts [35] have estimated the cost of above algorithm as n log n + m. CGNE has been

used to get the NFFT when n > m, i.e., when the system (2.2) is under-determined.

2.3 Minimum Norm Solution

As discussed in section 2.1.1, under-determined systems (referred to as under-constrained systems

by some others) have an infinite number of solutions and a specific solution needs to be selected.
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For well-determined consistent systems similar to (2.2), the solution is given by:

f̂ = A−1f

Here, A−1 is the inverse to the coefficient matrix A. In case of under-determined or over-determined

systems, the iterative numerical methods try to take their solution closer and closer to the pseudo-

inverse solution f̂∗.

f̂∗ = A+f

Hearon (1968)[36] has proven that for an over-determined system, the pseudo-inverse solution f̂∗ is

same as the least squares solution that minimizes the euclidean norm (also called as L2 norm) of

the residual as discussed previously in CGNR.

For an under-determined system, which is of our interest, there are infinite number of solutions

and the pseudo-inverse solution f̂∗ is the one with minimum euclidean norm[36]. If the set of all the

solutions to (2.2) is denoted as F = f̂1, f̂2, . . . , f̂∞, then f̂∗ ∈ F and

||f̂∗|| ≤ ||f̂i|| for every i ∈ N

Vectors in set F can be given by a vector sum of the minimum norm solution (or pseudo-inverse

solution) and a vector g in the null space of coefficient matrix A.

f̂i = f̂∗ + g where g ∈ N(A)

If f̂∗ is a solution to the system (2.2) and g ∈ N(A), then

Af̂i = A(f̂∗ + g)

= Af̂∗ +Ag

= Af̂∗ since g ∈ N(A)

Af̂i = f

This proves that f̂i satisfies (2.2). Geometrically, this can be described in 2 dimensions as in Fig.

2.1.

The minimum norm solution f̂∗ obtained by methods discussed above tends to spread the energy
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Figure 2.1: Graphical illustration of minimum-norm solution

along multiple Fourier coefficients, as discussed by Gorodnitsky and Rao (1997)[2]. The Fourier

transform f̂ , on the other hand, has a tendency of rapid decay as discussed in section 1.4. This

leads to the vector of Fourier coefficients having few low wavenumbers with large amplitudes and rest

high wavenumbers of magnitudes several orders smaller. This indicates that the Fourier transform

is the sparsest solution to the under-determined system of linear equations. Focal Under-determined

equation Solver (FOCUSS)[2] has been proposed by Gorodnitsky and Rao (1997) to get the sparse

solution to the system of under-determined linear equations. Chapter 3 discusses the FOCUSS

algorithm, its implementation to NFFT discussed above and the test cases including application to

the simulation of Taylor Green vortex in 3 dimensions.
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CHAPTER 3

FOCUSS ALGORITHM AND TESTING

NFFT calculates the Fourier transform by solving a system of linear equation where the coefficient

matrix is also called as DFT matrix. Our interest is in solving the under-determined systems

of equation, where the number of unknowns (Fourier coefficients) is greater than the number of

variables (discrete function values). As discussed in section 2.3, an under-determined system has

infinite number of solutions, and solving it gives the solution with the minimum L2 norm. The

Fourier transform needed is the sparsest solution as described previously.

The idea of computing the discrete Fourier transform where the number of function values is

lesser than the number of Fourier coefficients wanted by iterative weighted norm solution was put

forward by Cabrera and Parks[37]. The idea was further developed and analysed by Gorodnitsky and

Rao[2] which led to development of Focal Under-determined equation solver (FOCUSS) algorithm.

Section 3.1 and 3.2 respectively discuss the limitations of the minimum norm solution pertaining

to computation of Fourier transform and how FOCUSS algorithm can be used to overcome them.

Section 3.3 discusses the characteristics of Fourier series in turbulent flows. Section 3.4 discusses the

application of FOCUSS algorithm to a fluid dynamics problem with known solution.

3.1 NFFT with Minimum Norm Solution

This algorithm solves the problem of computing n Fourier coefficients of a function known at m

discrete points where n > m. The computation is done by solving the under-determined system

of linear equations in n unknowns and m equations. Minimum norm is the additional required

constraint in order to solve the solution. Formulation of the system is similar to eq. (2.2) where

f̂ ∈ Cn×1 is the vector of Fourier coefficients, f ∈ Cm×1 is the vector of discrete function values

sampled at non-equispaced nodes and A ∈ Cm×n is the DFT matrix. Moreover, the system has

infinite number of solutions as discussed previously.

As discussed in [37, 2], the direct solution to (2.2) gives the minimum norm solution f̂∗ such

that f̂∗ has the L2 norm less than that of any other solution to system (2.2). The minimum norm
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solution is not the accurate estimation of the Fourier transform, as discussed earlier and can be

visualized from Fig. 3.1. The figure shows Fourier transform of a sinewave. The values of Fourier

coefficients should be ∓0.5j for wavenumbers of ±1 and zero elsewhere. The minimum norm solution,

as shown in fig 3.1(a), tends to distribute the energy among all the wavenumbers while reducing the

L2 norm. For taking the spectral derivative, each element in the vector of Fourier coefficients f̂ is

multiplied by the corresponding element of the vector of wavenumbers k and j, where j =
√

(−1).

As can be seen from fig. 3.1(a), the Fourier coefficients for higher wavenumbers are not close to zero

when FOCUSS is not implemented, thus giving higher values of amplitudes for high wavenumbers.

This is reflected by the spectral derivative in fig. 3.1(b), which clearly shows the presence of high

wavenumber components with smaller amplitudes on top of a cosine profile, which is the theoretical

derivative of the sine function considered here.

Moreover, the FFT of a sinewave is expected to be conjugate symmetric about the zeroth

wavenumber, as the sinewave is a real function.[38]. It can be observed from Fig. 3.1(a) that

the Fourier transform does not show a perfect conjugate symmetry.

On the other hand, when the FOCUSS algorithm is used (fig. 3.1(c)), the Fourier transform value

shows the amplitudes for wavenumbers ±1 as 0.5 and rest of the wavenumbers are closer to zero,

as compared to the case without FOCUSS. Also, the Fourier transform of a sinweave is expected

to be conjugate symmetric about the zeroth wavenumber as it is a real function. Thus it can be

expected that the absolute value of the Fourier transform plotted below is symmetric about k = 0.

The symmetry can be observed in fig. 3.1(c) when the FOCUSS algorithm is applied. When spectral

derivative is taken using the FFT coefficients obtained from NFFT with FOCUSS, we get a perfect

cosine function which is expected from the theory.

3.2 FOCUSS Algorithm

The minimum norm solution in fig. 3.1(a) can be refined iteratively to obtain the correct solution

in fig. 3.1(c). L2 norm of the vector f̂ can be given as follows:

||f̂ || =
√
f̂2−n/2+1 + f̂2−n/2+2 + · · ·+ f̂20 + · · ·+ f̂2n/2

As can be seen from the above equation, the norm ||f̂ || is minimum when the energy tends to

be more equally distributed in all the wavenumbers. In case of a sinewave, the solution tends to

increase the higher wavenumber coefficients, i.e., values of f̂±i where i is higher. This means that to
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(a) Fourier Transform without FOCUSS (b) Spectral Derivative without FOCUSS

(c) Fourier transform with FOCUSS (d) Spectral Derivative with FOCUSS

Figure 3.1: (a,c): Absolute values of the Fourier coefficients against the wavenumbers for function
sin (2πx) and x ∈ [−0.5, 0.5); (b,d): Spectral derivative of the function with respect to 2πx

achieve the minimum norm, the energy needs to be distributed more equally in all the coefficients of

a vector. This can also be understood from the concept of euclidean norm, which is the magnitude

of the vector f̂ .

The Fourier transform required by us has a behaviour opposite to this. It has a low wavenumbers

with high amplitude and the amplitude rapidly diminishes as wavenumber increases. This will be

discussed in more detail in section 3.3. This can be achieved if we calculate the weighted norm, as

follows:

||f̂ || =
√∑

ŵif̂2i for i ∈ (−n/2, n/2] and i ∈ Z (3.1)
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Here, the values of ŵi can be selected to be large for larger |i| to increase the contribution of higher

wavenumber Fourier coefficients to the calculation of norm. This will increase the contribution of

higher wavenumber coefficients to calculation of norm, and will force the value of higher wavenumber

coefficients to reduce in order to achieve the minimum norm. Eq. (3.1) can be rewritten as follows

by replacing ŵi by 1/ŵi.

||f̂ || =

√∑ f̂2i
ŵi

(3.2)

It can be seen from fig. 3.1 (a), it can be seen that the value of higher wavenumbers is smaller

than that of the lower wavenumbers, but still larger than the correct Fourier transform. Thus, we

need to increase the contribution of the higher wavenumbers in calculation of norm. This can be

achieved by using the minimum norm solution f̂∗ itself as the vector of weights ŵ. This will make

sure that 1/ŵi is larger for higher wavenumbers and vice versa. This approach has been discussed

in more details by Gorodnitsky and Rao[2].

Let Ŵ be the diagonal matrix with each diagonal element as ŵi. Considering the weights, the

norm to be minimized can be given as ||Ŵ−1f̂ ||. Analytically, this can be achieved as follows for

equation (2.2).

Af̂ = f

Let

f̂ = Ŵq

Thus the above equations becomes

AŴq = f

where q = Ŵ−1f̂

q = (AŴ )+f

26



This gives a solution where the norm of q is minimized. Thus,

||q|| = ||Ŵ−1f̂ || → min

The initial values of ŵi can be considered to be 1 for all i. It can be seen that the solution with

ŵi = 1 for all i is the minimum norm solution, as shown in fig. 3.1(a). Also, by default, the values

of ŵi are taken equal to 1 in the NFFT library used here.

After the first iteration, the minimum norm solution f̂∗ is obtained as discussed earlier. This

solution is then used as weights for the next iteration, so that ŵ = f̂∗. The procedure is repeated

until the answers of successive iterations no longer vary beyond a predetermined threshold value.

This solution is the correct Fourier transform as shown in fig. 3.1(c) and (d).

Algorithm 3 summarizes the procedure of computation of Fourier transform with FOCUSS.

Algorithm 3: CGNE with FOCUSS

Input:

m,n ∈ N, f̂ ∈ Cn×1
xj ∈ [−0.5, 0.5) for j = 0, 1, 2, . . . ,m− 1
f ∈ Cm×1

k̂0 ∈ Cn×1 where k̂0(i) = 1 ∀ i, this is vector of initial weights

k̂1 ∈ Cn×1 where k̂1(i) = 0 ∀ i
t, the predetermined threshold for allowable difference between two successive iterations
of FOCUSS

while ||k̂0 − k̂1|| > t do

Ŵ = diag(k̂0)

A1 = AŴ

q = Ŵ−1f̂ , the initial guess for conjugate gradient iterations
do conjugate gradient iterations on A1q = f to find q such that ||q|| → min

f̂ = Ŵq
k1 = k0

k0 = |f̂ |
end while
Output:

vector of Fourier coefficients f̂

Here, the matrix A is the DFT matrix as discussed in section 2.2. Also, the weights for norm

calculation, ŵi and their matrix form Ŵ are entirely independent of the weights to compensate for

clusters in the sampling points, denoted by wj and W in chapter 2. It should be noted that although

the algorithm 3 starts with initial weights as a vector of all ones, we may use some other values in

order reduce the number of iterations required and speed up the algorithm. This has been illustrated

in the next section.
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The example illustrated in the previous section (fig 3.1) is the Fourier transform of a sinewave

which has energy in only one wavenumber. Fig. 3.2 below shows the implementation of FO-

CUSS algorithm for a Gaussian function. The Fourier transform of a Gaussian has energy in all its

wavenumbers. It can be observed that Gaussian shows similar behaviour as a sinewave with and

without FOCUSS.

(a) Fourier Transform without FOCUSS (b) Spectral Derivative without FOCUSS

(c) Fourier transform with FOCUSS (d) Spectral Derivative with FOCUSS

Figure 3.2: (a,c): Absolute values of the Fourier coefficients against the wavenumbers for the Gaus-
sian exp(−50x2) and x ∈ [−0.5, 0.5); (b,d): Spectral derivative of the function with respect to
2πx

In the simulations this algorithm is expected to be applied, e.g. turbulent wake, the dynamically

important lengthscales are situated in the center of the domain. The example in Fig. 3.2 uses a

Gaussian sampled on a non-equispaced grid, similar to what could be used for the actual simula-
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Figure 3.3: The grid and a typical function observed in turbulence

tions. Fig. 3.3 shows the grid used and a line on a slice of an actual turbulent wake. Mathematical

properties of the grid and the details about turbulent wake will be discussed subsequently.

3.3 Introduction to Turbulence and its Numerical Simulation

Turbulence can be thought of a superposition of various eddies of different sizes, or length scales[26].

The larger ones are called integral length scales. The maximum length scale is constrained by the

size of the flow domain. The eddies corresponding to these contain most of the energy of the flow.

They have large flow velocity fluctuation which is low in frequency. The velocity of the eddies

corresponding to the integral length scales is comparable to the characteristic velocity of the flow.

The range of integral length scales is called as energy containing range.

Often in three dimensional turbulence, eddies produce even smaller eddies until molecular viscos-

ity is effective in dissipating the kinetic energy. The smallest length scales are called as Kolmogorov
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length scales[39]. The range of dissipative eddies is called as dissipation range. The eddies in

dissipation range have low velocity and high frequency.

In a Fourier series, the high wavenumbers represent high frequency components in the interpo-

lated function and low wavenumbers represent the low frequency components. It can thus concluded

that the low wavenumbers will represent the eddies corresponding to integral lengthscale and higher

wavenumbers will represent the eddies corresponding to Kolmogorov lengthscale (c. f. Pope Section

6.5.3[26]).

Thus, in a Fourier series representing a turbulent flow velocity field, the low wavenumbers have

high amplitude, which decays exponentially in the dissipation range. Thus in Fourier transforms of

turbulent flows, the energy is usually biased to lower values of wavenumbers k. As it is observed that

very few of the total wavenumbers account for most of the energy in a turbulent flow, we propose

to apply FOCUSS with NFFT to obtain Fourier transforms in the simulation of turbulent flows.

There are mainly three approaches of numerical simulation of turbulent flows, of which Direct

Numerical Simulation (DNS) is under consideration in this thesis. DNS is the most accurate approach

where all the dynamically relevant length scales and time scales of the flow are resolved[40]. The

first DNS was performed by Orszag and Patterson (1972)[41] on a Reynolds number (based on

Taylor Microscale) of 35. This work demonstrated the use of Fourier spectral methods in turbulence

simulation. Periodic boundary conditions were imposed in all the dimensions in this simulation.

Rogallo (1981)[42] applied DNS to homogeneous turbulence and examined the effects of mean shear,

irrotational strain and rotation. DNS of turbulent flows in plane channel and curved channel were

performed in 1987 by Kim et. al.[43] and Moser and Moin[44] respectively. In DNS, Fourier spectral

method is used in the directions of homogeneity and finite difference or compact finite difference

schemes in other directions. In recent years, the major improvement in DNS is the expansion of

grid size, due to increase in the computing power available. As of today, one of the largest DNS of

homogeneous turbulence contain roughly 0.5 trillion gridpoints[45].

3.4 Implementation on a test case

Algorithm 3 was applied to solve 3D Navier Stokes equations using DNS with spectral method for

spatial differentiation. The equation was solved with Taylor Green initial conditions[46]. Three

dimensional Navier Stokes equation has an asymptotic solution for early time in this case. Pressure

projection method developed by A. J. Chorin[47] was used to decouple the velocity and pressure

field, combined with third order Adams bashforth method for timestepping.
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The Navier Stokes equation in its convective form for incompressible flow in absence of any

external force is given by:

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u

Here, u is the velocity field, P is the pressure field, ρ is the density, ν is the viscosity and t is the

time. For x dimension, the above equation can be given as:

∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −1

ρ

(∂P
∂x

+
∂P

∂y
+
∂P

∂z

)
+ ν
(∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

)
(3.3)

Here, ux,uy,uz are the velocities in x,y and z directions, respectively. In a similar manner, the

equation can be written for y and z dimensions. The Navier Stokes equation needs to be solved

in such a way that it satisfies the continuity equation at any time. The continuity equation for

incompressible fluids is as follows:

∇.u = 0

or

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0

The simulation of Taylor Green vortex assumes a periodic boundary conditions in space, and

thus can be solved by spectral method for spatial domain. Initial conditions as given by Taylor and

Green [46] are:

ux = cos(2πx) sin(2πy) sin(2πz)

uy = − sin(2πx) cos(2πy) sin(2πz)

uz = 0

It can be verified that the initial conditions satisfy the continuity equation. For the test case, a

grid of 643 points was used. The grid spacing in y and z directions was taken to be uniform while

that in x direction was taken to be non uniform. The Fourier transform was done to give 32 Fourier

coefficients in both y and z directions and 40 Fourier coefficients in x direction. Fourier coefficients of

partial spatial derivative in any direction were calculated by multiplying the Fourier transform of the

original field by the wavenumbers for that direction and 1i where i =
√
−1. The time stepping was

done in Fourier space, i.e., the values of Fourier coefficients of velocity field ûn+1 at time tn+1 were

calculated while knowing the value of Fourier coefficients at earlier timestep. The actual velocity
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field at time tn+1 was calculated by taking the inverse fast Fourier transform of ûn+1.

It was observed that a significantly large portion of the total time required to run the simulation

was required for taking the NFFT with FOCUSS algorithm. To reduce the time requirement, the

solution ûn−1 of (n−1)th timestep was stored in memory and used as weights to minimize the norm

while calculating the NFFT of the velocity field at time tn, i.e., while taking the Fourier transform

ûn from un. Computing Fourier transform in each timestep was necessary due to the non-linear

term ui
∂uj

∂xi
. The non linear term was calculated by computing the partial derivative ∂uj/∂xi by

spectral method, and multiplying it with ui. Fourier transform of the product ui∂uj/∂xi was again

calculated using the NFFT algorithm, where the initial weights were considered to be the Fourier

transform from the previous timestep. This made sure that the initial weights are sufficiently close

to the actual solution, as the timestep was small, and reduced the number of iterations of algorithm

3 required to give the true solution, thereby reducing the time required. The reduction in time

requirement has been summarized in Table 3.1.

Initialization weights CPU Time (sec)
All weights equal one 160

Previous timestep solution 58.74

Table 3.1: CPU time requirement for Taylor Green vortex simulation for 323 grid-points in real
space, 322 × 40 Fourier coefficients, carried out for 50 timesteps.

Taylor and Green [46] have analytically calculated the mean dissipation rate of energy of a viscous

fluid, which gives us a basis to compare our solution. The dissipation rate of energy is given as:

W = µω2

Here, W denotes the mean of energy dissipation rate over entire volume and ω2 represents the mean

of the square of vorticity of the velocity field over entire volume and µ represents the dynamic

viscosity. The vorticity is given by:

ω = ∇× u

The rate of dissipation of energy was calculated for every timestep and plotted against the time

in Fig. 3.4. The numerical simulation was found to be in excellent agreement with the analytical

solution initially. As the time goes on increasing, the analytical solution is not accurate anymore

[46]. Taylor and Green have also given the approximate time upto which the analytical solution is

not reasonably accurate. W ′ and T represent the dimensionless values of energy dissipation rate

and time respectively. According to Taylor and Green [46], the analytical solution for Re = 20 is
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Figure 3.4: The Solution of 3D Navier Stokes equation with Taylor Green initial conditions. The solid
lines give the results of DNS using NFFT. Stars (*) denote the solution obtained independently using
an equispaced grid. Dashed lines give the analytical solution. W ′ and T represent the dimensionless
forms of dissipation rate and time, respectively.

accurate upto approximately T=1.5, Re = 50 upto T=2 and that for Re = 100 upto T=2.5. Our

solution matches the analytical solution initially as expected.

Slow computational speed of this approach was observed to be the biggest drawback of this

approach when applied to the test case. In Chapter 4, the mathematical aspects related to compu-

tational performance of CGNE algorithms used in this approach are discussed.
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CHAPTER 4

CONDITIONING OF NFFT

In the initial tests, when NFFT and FOCUSS were applied for DNS, it was observed that the speed of

DNS drops down considerably as the simulation proceeds, compared to the conventional equispaced

grid approach. The time required to perform DNS with NFFT and FOCUSS was observed to be

several times greater than that required to perform DNS on an equispaced grid. It was observed that

the slowdown in computational speed is due to the large number of conjugate gradient iterations

required for the computation of Fourier transform by NFFT. In this chapter, the condition number

and its effect on the convergence of conjugate gradient system and the observations of condition

number of DFT matrix in NFFT will be discussed.

4.1 Condition Number

For a matrix A, condition number[48] is defined as

cond(A) = κ(A) =
λmax

λmin

= ||A|| · ||A−1||

where λmax and λmin are the maximum and the minimum eigenvalues of matrix A. The matrix A

is called as “well-conditioned” if it has a low condition number and ill-conditioned if it has a high

condition number. For a system of linear equations Ax = b, condition number is a measure of how

much the error in the constant vector b affects the solution x. If A is ill-conditioned, small errors in

b result in large errors in the solution x and vice versa.

Condition number also affects the convergence of conjugate gradient iterations[31]. The error

in kth iteration of a conjugate gradient method ek is related to the error in the initial guess e0 as

follows:

ek ≤ 2Cke0
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where √
κ(A)− 1√
κ(A) + 1

= C

κ(A) is always positive, thus it can be proven that C < 1. It can be seen that if C is close to 1, higher

is the number of iterations required for convergence and vice versa. If the condition number κ(A)

is higher, C is close to 1. Thus, systems of linear equations with high condition number coefficient

matrices tend to require more iterations for convergence.

In our case, the coefficient matrix Am×n is not a square matrix, but has more columns than

rows, i.e. n > m. In this case, we use the conjugate gradient method for normal equations (CGNE)

as discussed in Sec. 2.2.3. We solve the following system of equations.

AŴAHy = f where ŴAHy = f̂

Let AŴAH = K. In this case the convergence of this system depends upon the condition number

of K[33].

4.2 Condition Number in NFFT

As NFFT uses conjugate gradient method to solve a system of linear equations, condition number

proves to be an important criteria to be investigated. The condition number of matrix K changes

with each FOCUSS loop, when new weights Ŵ are applied. It was observed that the condition

number of K increases with each FOCUSS iteration, thereby affecting the number of conjugate

gradient iterations required for convergence. The increase in condition number is steep and results

in a sharp increase in the number of conjugate gradient iterations required within each FOCUSS

algorithm, as shown in Fig. 4.1.

The non-equispaced grid used here is given as follows:

xn = tan−1
[
m

n
tan(xe)

]
(4.1)

where xn is the non-equispaced grid and xe is the equispaced grid of m points. n is the number

of Fourier coefficients required. It can be proven that ∆xmin = 1/n where ∆xmin is the minimum

grid-spacing on the non-equispaced grid. This observation is in agreement with the requirement that

the entire grid should be resolved on the finest grid-spacing.

Fig. 4.1 indicates how the number of conjugate gradient iterations increases with an increase in
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(a) m = 128, n = 224 (b) m = 64, n = 112

(c) m = 128, n = 224 (d) m = 64, n = 112

Figure 4.1: (a,b): Condition number of K; (c,d): Number of conjugate gradient iterations required
for convergence for n/m = 1.75

condition number with each FOCUSS loop. It can also be seen that the number of conjugate

gradient iterations required for m = 128 is much larger than that for m = 64.

A similar trend can be observed for slightly less perturbed grid (n/m = 1.5) as can be seen

from Fig. 4.2. However, in this case, it can be seen that both the condition numbers and the

number of FOCUSS iterations required is less than those in case of n/m = 1.75. It can be observed

that a smaller number of FOCUSS loops is required for convergence in case of the less perturbed

grid, thereby reducing the overall number of conjugate gradient iterations considerably. This can be

related to the fact that the grid used in Fig. 4.2 is closer to an equispaced grid than that in Fig. 4.1.

Both Fig. 4.1 and 4.2 indicate the observations related to condition number and conjugate gradient
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(a) m = 128, n = 192 (b) m = 64, n = 96

(c) m = 128, n = 192 (d) m = 64, n = 96

Figure 4.2: (a,b): Condition number of K; (c,d): Number of conjugate gradient iterations required
for convergence for n/m = 1.5

iterations while taking the Fourier transform of a Gaussian function as a test case.

4.3 Analysis

The condition number of a matrix is a measure of how far its rows are from being orthogonal. More

skewed the rows of the matrix are from being orthogonal, higher is the condition number of the

matrix and vice versa.

It can be observed that matrices with pairwise orthogonal rows are easier to solve. Diagonal
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matrix is an example whose rows are perfectly orthogonal to each other, and is the easiest matrix

to solve. As rows become less orthogonal, the matrix becomes more and more difficult to solve.

Intuitively, a matrix with pairwise orthogonal rows (e.g. diagonal matrix) leads to each equation in

only one variable, which makes it easier to solve.

It was observed that for the modified coefficient matrix K, the rows are more orthogonal without

application of the weights and they become less orthogonal as the weights are applied. This causes

the condition number of K to grow. This behaviour has been explained in Fig. 4.3 and 4.4.

Figure 4.3: Left: Real part, Right: Imaginary part of the modified coefficient matrix K before
application of weights. This matrix is independent of the function but depends only on the grid.

As can be seen in Fig. 4.3, the real part of matrix K has its rows perfectly orthogonal to each other.

The imaginary part is not orthogonal, but the magnitudes of the imaginary components are small

compared to those in the real parts and the orthogonality does not get affected significantly.

Figure 4.4 shows the real and imaginary component of K after weights are applied. It can be seen

that the real component dominates in the total magnitude. The rows of real part of K are less

orthogonal as compared to Fig. 4.3, resulting in a higher condition number.

Condition number, as discussed earlier, is the ratio of maximum and minimum eigenvalues. The

plots of eigenvalue distribution before and after weighting are shown in Fig. 4.5. A matrix is singular

if any of its eigenvalues is zero. The weighted coefficient matrix K has a cluster of eigenvalues of

magnitudes O(10) while other cluster of eigenvalues is small, close to zero. Matrices with these

characteristics are nearly singular[49], i.e., they are difficult to solve. This property is also evident

from the result regarding condition number described in Sec. 4.2.

Fig 4.6 and 4.7 show the modified coefficient matrix K for NFFT of a slice of a turbulent wake,
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Figure 4.4: Left: Real part, Right: Imaginary part of the modified coefficient matrix K after
application of weights in computation of Fourier transform of a Gaussian

Figure 4.5: Eigenvalue distribution of matrix K; Left: before application of weights (independent of
the function), right: After application of weights for computation of Fourier transform of a Gaussian

sampled on 1024 non-equispaced points for computation of 2048 Fourier coefficients. The matrix K

before the application of weights has rows that are more orthogonal to each other and thus has a

smaller condition number. After application of weights for one time, as shown in Fig. 4.7, the rows

become less orthogonal, in a pattern similar to Fig. 4.4. A similar observation can be made about

the eigenvalue distribution in Fig. 4.8 for this case, before and after the application of weights. The

smallest eigenvalues, after the application of weights can be observed to move closer to zero, thereby

increasing the condition number.
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Figure 4.6: Left: Real part, Right: Imaginary part of the modified coefficient matrix for m = 1024
non-equispaced gridpoints, n = 2048 Fourier coefficients before application of weights

Figure 4.7: Left: Real part, Right: Imaginary pat of the modified coefficient matrix for m = 1024,
n = 2048 after application of weights for NFFT of a slice of turbulent wake

4.4 Methods for Improving Speed

The speed of computation of Fourier transform can be potentially improved by primarily by two

means, preconditioning and opting for optimum number of Fourier coefficients. Use of preconditioned

conjugate gradient is one of the means to achieve this, by reducing the condition number of the

modified coefficient matrix K. Benzi (2002)[50] has done a comprehensive survey of preconditioning

techniques for the linear systems.

The condition number depends both upon the grid and the number of Fourier coefficients ex-

pected, which is another factor affecting computational performance. For a given grid, the number
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Figure 4.8: Eigenvalue distribution of modified coefficient matrix K for NFFT of slice of turbulent
wake before application of weights (Left) and after application of weights for 4 FOCUSS itera-
tions(Right)

of Fourier coefficients can impact the condition number considerably.

The problem can be split into two well-determined or a well-determined and an over-determined

problem for lower and higher wavenumber Fourier coefficients. The feasibility of this approach has

been discussed in Sec. 4.4.3.

4.4.1 Preconditioning

Preconditioning[50] of a linear system involves multiplying the coefficient matrix K of a linear system

by another matrix M , such that the product M−1K is well-conditioned. Preconditioning is of the

following three types:

1. Left-side preconditioning

2. Right-side preconditioning

3. Split preconditioning

The left side preconditioning solves the following system.

M−1Kf̂ = f

Right-side preconditioning, on the other hand, solves the following system.

KM−1f̂1 = f where M−1f̂1 = f̂
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Split preconditioning employs preconditioners on both the sides.

M−1K(M−1)H f̂1 = f where M−1f̂1 = f̂

Computation of the preconditioner matrix needs to be done such that the cost of estimating the

entries of preconditioner matrix is less, as well as the condition number of the linear system is

reduced. Incomplete Cholesky preconditioner[51] is the most commonly used type. Incomplete

Cholesky factorization is the sparse approximation to the Cholesky factoization which is given as

follows.

A = LLH

Here, L is a lower triangular matrix. L is easy to invert as it is a lower triangular matrix, and is

used as a preconditioner. The algorithm for computation of Incomplete Cholesky preconditioner

can be found in [52, section 10.3.2]. For NFFT using FOCUSS, the condition number was found to

reduce significantly if a preconditioner is used, thereby reducing the number of conjugate gradient

iterations required. The preconditioner can be computed either in every FOCUSS loops, or it can

be calculated in the first few FOCUSS loops and the same preconditioner can be used throughout.

Figure 4.9: The reduction in conjugate gradient iterations required with preconditioner applied.
Numbers in legend indicate the number of FOCUSS loops for which preconditioner was calculated,
for the test case of a Gaussian.
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This approach saves the cost required for computation of the incomplete Cholesky factorization.

Fig. 4.9 shows how preconditioning impacts the number of conjugate gradient iterations required

for convergence It can be seen that the number of CG iterations is lesser if the preconditioner is

applied in more FOCUSS loops and vice versa.

A similar trend can be observed in the condition number of modified coefficient matrix K, as

shown in Fig. 4.10. The condition number of K can be observed to reduce when the preconditioner

Figure 4.10: The reduction in condition number of modified coefficient matrix K with application of
preconditioner. Numbers in legend indicate the number of FOCUSS loops for which preconditioner
was calculated, for the test case of a Gaussian.

is applied. In application of the preconditioner, the computational effort saved by reduced number

of CG iterations is offset by cost computation of preconditioner. Thus, it needs to be considered that

it may not be feasible to apply the preconditioner for all FOCUSS loops. The number of FOCUSS

loops for which preconditioner should be calculated for the least computational cost depends on the

problem.

4.4.2 Selection of Number of Fourier Coefficients

It was also observed that the condition number of the modified coefficient matrix K also changes

with the number of Fourier coefficients n, for a given grid. It was observed that the condition number

of K is varies for different n for a given grid, i.e., with fixed m. Note that the condition number, in
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Figure 4.11: The variation of κ(K) with varying n. The grid has m = 128 non-equispaced points
and 1/∆xmin = 192. The condition number depends only on the grid before application of weights.

this case, does not depend on the function. It was observed that when n = 1/∆xmin, the condition

number of the coefficient matrix was minimum. The condition number increases rapidly as n moves

away from
1

∆xmin
. In other words, the number of Fourier coefficients is also the reciprocal of the

minimum grid-spacing in order to get a well-conditioned problem. Fig. 4.11 shows the condition

number of K without applying any weights, for various values of n and a fixed number of points

m = 128. It can be observed that the problem is not optimal if n is selected arbitrarily for a given

grid. Similar results were observed on grids of different sizes and with different n/m ratios.

4.4.3 Splitting the Problem

As explained in Sec. 2.1.3, the DFT matrix can be given as:

A =



e2πik1x1 e2πik2x1 . . . e2πiknx1

e2πik1x2 e2πik2x2 . . . e2πiknx2

...
...

...
...

e2πik1xm e2πik2xm . . . e2πiknxm


(4.2)
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Here, A ∈ Cm×n and n > m. In NFFT, the wavenumbers corresponding to n Fourier coefficients

are given as {k1, k2, . . . , kn} = {−n/2 + 1,−n/2 + 2, . . . , 0, . . . , n/2}. DFT matrix in equation 4.2

can then be written as:

A =



e2πi(−n/2+1)x1 . . . e2πi(−m/2)x1 . . . e2πi(0)x1 . . . e2πi(m/2)x1 . . . e2πi(n/2)x1

e2πi(−n/2+1)x2 . . . e2πi(−m/2)x2 . . . e2πi(0)x2 . . . e2πi(m/2)x2 . . . e2πi(n/2)x2

...
...

...
...

...
...

...
...

...

e2πi(−n/2+1)xm . . . e2πi(−m/2)xm . . . e2πi(0)xm . . . e2πi(m/2)xm . . . e2πi(n/2)xm


The under-determined problem with this matrix can be divided into two well-determined problems

(if n = 2m) using following two matrices.

A1 =



e2πi(−m/2)x1 . . . e2πi(0)x1 . . . e2πi(m/2)x1

e2πi(−m/2)x2 . . . e2πi(0)x2 . . . e2πi(m/2)x2

...
...

...
...

...

e2πi(−m/2)xm . . . e2πi(0)xm . . . e2πi(m/2)xm



A2 =



e2πi(−n/2+1)x1 . . . e2πi(−m/2−1)x1 e2πi(m/2+1)x1 . . . e2πi(n/2)x1

e2πi(−n/2+1)x2 . . . e2πi(−m/2−1)x2 e2πi(m/2+1)x2 . . . e2πi(n/2)x2

...
...

...
...

...
...

e2πi(−n/2+1)xm . . . e2πi(−m/2−1)xm e2πi(m/2+1)xm . . . e2πi(n/2)xm


The matrices A1 and A2 solve the system for Fourier coefficients corresponding to lower and higher

wavenumbers respectively. If n < 2m, the system corresponding to higher wavenumbers (matrix

A2) is an over-determined system. These two well-determined systems do not require FOCUSS

algorithms, thus only two conjugate gradient solvers are sufficient.

This approach gave unsatisfactory results when tried for Gaussian function e−50x
2

sampled on

m = 128 non-equispaced gridpoints and the output was n = 256 Fourier coefficients. It was observed

that the system of equations representing low wavenumber matrix A1 gave an accurate answer for

the 128 lower wavenumber Fourier coefficients for wavenumbers ranging from [-63,64], as can be

expected from the analysis in Kunis (2006 PhD Dissertation)[30]. However, the system representing

the higher wavenumber matrix A2 was observed to be unstable, and return the values which are

several orders of magnitude higher than the correct answer, as shown in Fig. 4.12. The FFT on

equispaced grid can be considered as the accurate solution, and it can be observed that the answer
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given by conjugate gradient solver for the higher wavenumbers using split matrices is not useful.

Figure 4.12: Fourier coefficients for higher wavenumbers compued by splitting the matrix, compared
with the FFT on equispaced grid. Left: k from -127 to -64, Right: k from 65 to 128

The spectrum shown in Fig. 4.12 is that of a real function (a Gaussian test case). According

to theory, the two plots should be mirror images of each other, as the Fourier transform of a real

function is conjugate symmetric about the zeroth wavenumber. The solution on equispaced grid

demonstrates the conjugate symmetry. However, the solution obtained using splitting the DFT

matrix for non-equispaced grid, apart from not matching the equispaced grid solution, is also not

conjugate symmetric thus disagreeing with the theory.

A combination of all or some of these approaches can be used to improve the computational

performance when this approach is applied to turbulent wake, given that the results of Fourier

transform of turbulent wake are accurate. A test of this approach was done on a slice of turbulent

wake, considering the observations listed above, to check the accuracy. The number of Fourier

coefficients was selected such that n =
1

∆xmin
, and the solution was compared to the one obtained

using equispaced grid. Chapter 5 discusses the observations related to computational cost and

accuracy of computation of NFFT of a slice of turbulent wake.
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CHAPTER 5

TESTS ON TURBULENT WAKE

Turbulent wake is an example of localized turbulence, others being jets, plumes, mixing layers etc;

where the use of non-equispaced grid in DNS can potentially lead to reduced memory usage in the

simulation. In these kinds of flows, there exists an interface between the turbulent and non-turbulent

flows[53]. Mass, momentum and energy exchanges occur mainly in these regions which need to be

simulated numerically. The use of denser grid is required only in these regions, thereby explaining

the use of non-equispaced grid. The ultimate aim of this thesis is to be able to simulate such flows

with non-equispaced grid, using NFFT and FOCUSS.

The reason behind taking Fourier transform is to compute the spatial derivatives. This approach

was applied to compute the derivative of the density fluctuations of the field of a turbulent wake. A

slice was extracted from the three dimensional field turbulent wake, and a spectral derivative was

taken using NFFT and FOCUSS algorithm. This chapter discusses the results about the accuracy

of Fourier transform computed using this approach for a slice of turbulent wake.

5.1 Slicing the Wake Field

The 3-dimensional field of fluctuating density ρ′ in the high resolution DNS of von Kármán Vortex

street is available, which has the appropriate shape to be sampled on non-equispaced grid in the

z-axis. The field is sampled on 4096 × 2048 × 2048 equispaced points in x, y and z directions

respectively. For more information, refer to [54, Hebert (2007) PhD Dissertation].

The field can be sampled and various z-slices can be extracted. The field is initially sampled

on equispaced grid as it is computed using a conventional FFT. This field can be mapped onto

non-equispaced grid by taking the forward FFT on equispaced grid, and transforming it backward

using NFFT on a non-equispaced grid. This non-equispaced grid is defined beforehand. The field

is initially sampled on 2048 equispaced points, which can be transformed back onto less than 2048

gridpoints (e.g. 1024). One of the slices of the field is shown in Fig. 5.1. It can be observed that

a finer grid-spacing is needed only at the center while a coarse gridspacing is sufficient towards the
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Figure 5.1: The line on a slice of the fluctuating density field in a turbulent wake. Y-axis shows the
density variations.

ends. This slice was sampled from 2048 equispaced gridpoints, which was subsequently mapped

onto 1024 non-equispaced points according to equation 4.1 for obtaining further observations about

accuracy and computational performance.

5.2 Accuracy

Our interest is in computation of accurate derivatives of the periodic field, using Fourier spectral

method. The comparison can be made between the derivative calculated using FFT on 2048 equi-

spaced gridpoints and that calculated using NFFT on non-equispaced grid having less than 2048

points. In addition to the derivative, following parameters can also be used for comparison.

1. Fourier coefficients (f̂): The vector of Fourier coefficients computed with NFFT should have

2048 coefficients, which can be compared with the vector of Fourier coefficients calculated with

FFT for the field sampled on equispaced grid.

2. Fourier coefficients of Derivative (ikf̂): The vector of Fourier coefficients of derivative can be

compared to check whether all the frequencies can be accurately computed by the NFFT. A

small error in the higher frequencies of Fourier transform of a function gets amplified while

computing the derivative, when it is multiplied by the corresponding wavenumber.
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Remainder part of this section describes the observations regarding accuracy of the derivative of the

slice computed using NFFT.

Fig. 5.2 shows the two different slices of the field, and their derivatives taken using NFFT

and FOCUSS algorithms. It can be seen that the mapping of the slice, originally sampled on 2048

(a) m = 1024, n = 2048 (b) m = 1024, n = 2048

(c) m = 1536, n = 2048 (d) m = 1536, n = 2048

Figure 5.2: (a, c): Blue lines indicate a line on a slice of turbulent wake mapped onto non-equispaced
grid, red dots indicate the original line on equispaced grid. (b, d): Blue lines indicate the derivative
of lines (a) and (c) respectively sampled on non-equispaced grid, red lines indicate the derivative of
original slice sampled on equispaced grid.

equispaced points, onto a non-equispaced grid is accurate. The derivatives computed with NFFT and

FOCUSS are inaccurate, as can be seen from the figure. A presence of high frequency components

can be seen in the derivatives, which will be explained subsequently.
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5.3 Analysis

As can be seen from Fig. 5.2, the derivatives of two slices of turbulent wake using NFFT and

FOCUSS algorithms do not have the desired accuracy. More insight about this can be gained by

looking at the spectrum (magnitude of Fourier coefficients plotted against wavenumbers) of the slice

computed using NFFT when it is sampled on non-equispaced grid and comparing it to the spectrum

computed using FFT when it is sampled on equispaced grid. Fig. 5.3 shows the spectrum of the

slice in Fig. 5.2 (a), sampled on both equispaced and non-equispaced grid. It can be seen from

Figure 5.3: Spectrum of a line on a slice of turbulent wake, m = 1024, n = 2048

Fig. 5.3 that the spectrum shows more error in higher wavenumber components when sampled on

non equispaced grid. The higher wavenumber part, from k = 900 to k = 1024 is shown in Fig. 5.4

separately. It can be seen from Fig. 5.4 that the spectrum of slice sampled on non-equispaced grid

differs from that of the slice sampled on equispaced grid in following two aspects.

1. Peaks are higher and narrower in non-equispaced sampling

2. Troughs are lower in the non-equispaced sampling

However, it can be seen that the location of peaks and troughs in both the cases approximately

coincide with each other.
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Figure 5.4: The spectrum of a line on a slice of turbulent wake, for wavenumbers from 900 to 1024.

When this spectrum is multiplied by the corresponding wavenumber to take derivative, the error

in the spectrum gets amplified by the corresponding wavenumber. This can be observed in Fig.

5.5, where the difference between the accurate spectrum of derivative and the one computed using

NFFT is shown.

Fig. 5.6 shows how first three FOCUSS loops affect the Fourier transform of a sine function. From

analytical Fourier transform, we know that the only two wavenumbers having non-zero amplitude are

±1, where the amplitude is 0.5. Initially, minimum L2 norm solution tends to distribute the energy

more equally among all the wavenumbers. FOCUSS algorithm leads to increase in the magnitude

of lower wavelength coefficients, while reducing the magnitude of higher wavenumber coefficients.

It can be observed that the coefficients having lower amplitude become smaller and those with

the higher value roughly remain the same. In other words, the algorithm favors a solution that is

sparse. The initial solution tends to distribute the energy more equally among all coefficients, where

the ‘shape’ of the spectrum is similar to the true solution, but higher wavenumbers have higher

amplitudes than the actual solution. Application of weights refines the ‘shape’ and gets it closer to

the actual solution. In other words, the peaks get narrower and sharper.

Fig. 5.7 shows how the FOCUSS loops affect the solution in case of a slice of Fourier transform.

A similar phenomena, of peaks getting taller and narrower can be observed, finally leading to an
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Figure 5.5: The spectrum of derivative of a line on a slice of turbulent wake, for wavenumbers from
900 to 1024

Figure 5.6: Fourier spectrum of a sinewave, sampled on a non-equispaced grid, for first three FOCUSS
iterations. Legend indicates the number of FOCUSS iterations.

erroneous solution, which leads to inaccurate derivative.

Fig. 5.7 shows that the solution with one FOCUSS loop is more accurate for higher wavenumber

coefficients. However, that solution still has errors beyond acceptable limits as the errors in derivative

computed using NFFT with one FOCUSS loop are high. Fig. 5.8 compares the derivative computed

with NFFT and one FOCUSS loop to that using an equispaced grid. It can be seen that the
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Figure 5.7: Effect of FOCUSS algorithm on the Fourier transform of a line on a slice of turbulent
wakes for wavenumbers ranging from 900 to 1024.

Figure 5.8: Left: The derivative of a line on a slice of turbulent wake, Right: Relative error in the
derivative when it is computed using one FOCUSS loop and NFFT

derivative is inaccurate without using FOCUSS loop. However, as in case of functions where the

Fourier transform is sparse, the FOCUSS algorithm does not lead to an accurate solution in this

case.

For the case of turbulent wake, where high wavenumber Fourier coefficients are non zero, the

FOCUSS algorithm can be observed to be inaccurate.
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CHAPTER 6

CONCLUDING REMARKS

The purpose of this project was to implement the non-equispaced gridspacing in Direct Numerical

Simulation of turbulent flows using Fourier spectral methods. The Non-Equispaced Fast Fourier

Transform (NFFT) algorithm was used in order to take the forward and backward Fourier transform

of a function sampled on non-equispaced grid. The forward Fourier transform on non-equispaced

grid, from real to Fourier space, is the topic of study in this thesis. The Forward Fourier transform

is done by solving a system of linear equations. In order to be able to reduce memory requirement

of the DNS, it has been discussed that the number of Fourier coefficients required is higher than

the number of non-equispaced gridpoints available. Thus, the system of linear equations becomes

an under-determined system.

The characteristics of the solution of under-determined system of equations were studied. It was

proven that the default minimum L2 norm solution obtained does not represent the Fourier trans-

form for under-determined cases. It was observed that the minimum L2 norm solution distributes

the energy more equally among all wavenumbers, resulting in high frequency components in the

derivatives of test functions. Iterative reconstruction algorithm, FOCUSS was implemented along

with NFFT to compute accurately the Fourier transform of test functions, by solving an under-

determined system of equations, where more Fourier coefficients than the number of gridpoints were

obtained. The combination of NFFT and FOCUSS has been used for a small test case of Direct Nu-

merical Simulation on a grid size of 643, using Taylor-Green initial conditions. The results are found

to be in agreement with the analytical solution as well as a similar simulation using an equispaced

grid.

The algorithm was found to be unacceptably slow for the test case of DNS. It has been found

that the reason behind poor computational performance of this approach is the increase in condition

number of the coefficient matrix in the system of linear equations after weights are applied in

successive FOCUSS loops. Ill conditioned matrix requires a higher number of conjugate gradient

iterations for solution, thereby increasing the computational cost. Following factors that may have
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an impact on the condition number have been analyzed.

1. Preconditioning using incomplete Cholesky factorization was found to be effective in reduc-

ing the condition number of the matrix and subsequently the number of conjugate gradient

iterations considerably.

2. For a given non-equispaced grid, it was found that the computational performance depends

on the number of Fourier coefficients required. It was found that the condition number is the

lease when the number of Fourier coefficients corresponds to the minimum gridspacing, i.e.,

n =
1

∆xmin
.

3. Another approach, that would completely obviate the FOCUSS algorithm by splitting one

under-determined problem into two well determined or over-determined problems was tested.

It was found out that this approach could not compute the Fourier coefficients corresponding

to the higher wavenumbers accurately.

The combination of NFFT and FOCUSS algorithms needs to satisfy two requirements to be used

in turbulence simulation on large grids:

1. Accuracy: The derivative of the turbulent field needs to be computed accurately.

2. Computational Performance: The computation of derivative must be faster than a computation

of similar accuracy on equispaced grid.

In order to test the accuracy, the NFFT and FOCUSS algorithms were tested on the slice of

3 dimensional field of fluctuating density in a turbulent wake and the results were analyzed. It

was observed that the accuracy of the derivative of various slices of turbulent wake field computed

using NFFT and FOCUSS approach was poor. The reason behind this is inaccurate computation of

the Fourier transform, especially the coefficients representing the higher wavenumbers. The errors

in higher wavenumber Fourier coefficients get amplified due to multiplication ikf̂ , resulting in an

inaccurate derivative.

The reason behind why FOCUSS loops give inaccurate results for Fourier transform of a slice of

turbulent field is the presence of local peaks in the high wavenumber regions of the spectrum. These

local peaks, due to characteristics of the FOCUSS algorithm which biases the solution to put more

energy into coefficients with higher amplitudes, get taller and narrower. This proves that FOCUSS

algorithm is not useful to compute accurate under-determined Fourier transform on a non-equispaced

grid.
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Also, it has been proven that a direct computation of minimum L2 norm solution of the under-

determined system still leads to inaccurate solution, both in case of test functions as well as a slice

of turbulent wake field. Thus, there needs some other approach to refine the minimum L2 norm

solution that gives the correct Fourier transform in under-determined case. The FOCUSS algorithm

works in cases where only a few wavenumbers of the Fourier coefficient contain energy, but it fails

when the Fourier transform is wideband, requiring some other approach.
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APPENDIX

‘C’ CODE FOR NFFT

The C code for computing forward and backward Fourier transform of data sampled on non-

equispaced grid is given in this appendix. The input array is a straightened 3 dimensional array in

row-major order. The grid is non-equispaced in one dimension, and equispaced in the other two di-

mensions. The code here shows only the lines related to NFFT library. The C code for computation

of Fourier coefficients from a data sampled on a non-equispaced grid is as follows:

nfft_plan pn; /*decleare NFFT plan*/

solver_plan_complex pi /*decleare iterative solver*/

nfft_init_1d(&pn,nz,mz); /*initialise 1D NFFT*/

for(i=0;i<mz;i++){ /*write values of grid for NFFT*/

pn.x[i]=z[i];

}

nfft_precompute_one_psi(&pn); /*precomputation for NFFT*/

solver_init_advanced_complex(&pi,(nfft_mv_plan_complex*)(&pn),CGNE|PRECOMPUTE_DAMP);

/*initialise iterative solver*/

complex double fhat0[nz],fhat1[nz]; /*intermediate arrays for NFFT*/

complex double diff_wt[nz]; /*difference in two successive solutions*/

for(i=0;i<nx*ny;i++){ /*extract 1D array for NFFT from the 3D array*/

for(j=0;j<mz;j++){

pi.y[j]=arri[i*mz+j]/(nx*ny);

}

for(j=0;j<nz;j++){ /*initialise intermediate array for weights*/

fhat1[j]=0+0*I;

fhat0[j]=1+0*I;

diff_wt[j]=fhat1[j]-fhat0[j];

}
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while(l2norm(diff_wt,nz)>1e-12){ /*start FOCUSS algorithm*/

for(k=0;k<nz;k++){

pi.f_hat_iter[k]=0+0*I; /*conjugate gradient initial guess*/

pi.w_hat[k]=cabs(fhat0[k]); /*initialise weights*/

}

solver_before_loop_complex(&pi);

while(sqrt(pi.dot_r_iter)>1e-14){ /*conjugate gradient loops*/

solver_loop_one_step_complex(&pi);

}

}

}

The code for computation of inverse Fourier transform is as follows:

nfft_plan pn; /*decleare NFFT plan*/

nfft_init_1d(&pn,nz,mz); /*initialise NFFT plan*/

for(i=0;i<mz;i++){ /*input the grid*/

pn.x[i]=z[i];

}

nfft_precompute_one_psi(&pn); /*precompute NFFT plan*/

for(i=0;i<nx*ny;i++){ /*input the values of Fourier coefficients*/

for(j=0;j<nz;j++){

pn.f_hat[j]=arr1[i*nz+j];

}

nfft_trafo(&pn); /*compute the inverse transform*/

for(j=0;j<mz;j++){ /*write the result on intermediate output array*/

arri[i*mz+j]=(pn.f[j]);

}

}

nfft_finalize(&pn); /*finalise NFFT plan*/

These NFFT codes can be combined with FFTW to write a function of 3 dimensional forward

and backward Fourier transforms with non-equispaced grid in one dimension and equispaced and

two dimensions.
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