
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014 Dissertations and Theses

2011

Numerical Investigation of Gas-Particle Supersonic
Flow
Mihir A. Samel
University of Massachusetts Amherst, msamel@engin.umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/theses

Part of the Computer-Aided Engineering and Design Commons

This thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for
inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Samel, Mihir A., "Numerical Investigation of Gas-Particle Supersonic Flow" (2011). Masters Theses 1911 - February 2014. 716.
http://scholarworks.umass.edu/theses/716

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Ftheses%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=scholarworks.umass.edu%2Ftheses%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses/716?utm_source=scholarworks.umass.edu%2Ftheses%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


NUMERICAL INVESTIGATION OF GAS-PARTICLE
SUPERSONIC FLOW

A Thesis Presented

by

MIHIR A. SAMEL

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

September 2011

Mechanical and Industrial Engineering



© Copyright by Mihir A. Samel 2011

All Rights Reserved



NUMERICAL INVESTIGATION OF GAS-PARTICLE
SUPERSONIC FLOW

A Thesis Presented

by

MIHIR A. SAMEL

Approved as to style and content by:

David P. Schmidt, Chair

Robert W. Hyers, Member

Jon G. McGowan, Member

Donald L. Fisher, Department Head
Mechanical and Industrial Engineering



To my parents, Geeta and Anil Samel.



ACKNOWLEDGMENTS

I’d like to thank Professor Schmidt for all the support and guidance provided to

me during this research. I am deeply grateful to the trust and patience he has had

with me, without which I probably would not have acheived this. I would like to

thank my committee members, Prof Robert Hyers and Prof Jon McGowan for their

valuable suggestions and insight. Let me also thank Prof Thomas Blake to grant

me the opportunity to conduct this research. I would like to acknowledge all my

lab mates, viz. Dnyanesh, Kshitij, Kyle, Michael Martel , Michael Colarossi, Raghu,

Sandeep, Shiva, Tom and Tim and many others for their support and for the fun I

had during my stay at Umass. Thanks to all the friends I made during my stay at

Amherst. And above all, my greatest regards to my parents, Geeta and Anil Samel

to whom I owe everything I have in life.

v



ABSTRACT

NUMERICAL INVESTIGATION OF GAS-PARTICLE
SUPERSONIC FLOW

SEPTEMBER 2011

MIHIR A. SAMEL

B.E., UNIVERSITY OF MUMBAI

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David P. Schmidt

Particles lying in the sub-micron range have widespread applications in the phar-

maceutical, ceramic and other related industries. Separation and classification of

these particles is a very important step involved in the manufacturing of these prod-

ucts. Inertial separation, which involves forcing a rapid change in direction of flow of

a particle laden gas flow, such that the solid particles separate from the gas stream-

lines due to their inertia, is the most commonly applied separation technique used

for industrial applications. This rapid change in direction of the fluid can be forced

by rapidly accelerating the mixture to high velocity and low pressure using a sonic

nozzle, causing disequilibrium between the phases. This separation property of super-

sonic jets, called ‘aerodynamic separation’, has been widely used in molecular beam

formation and mass spectrometry, techniques for analyzing properties of a substance.

These processes isolate a narrow beam of molecules, ions, and heavy isotopes along

the centerline axis, so that the beam can be introduced in a testing chamber for their

analysis.
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Using Computational Fluid Dynamics (CFD), I have demonstrated how super-

sonic free jets can be applied for the large scale isolation and separation of sub-micron

solid particles. Optimum separation for particles of a particular diameter can be ob-

tained, in the form of a very narrow distribution along the centerline axis. This

separation regime is represented by the optimum value of the dimensionless param-

eter called as the Stokes number (St), which predicts the probability of particles to

separate from the gas phase after encountering an obstacle in the flow. Straight noz-

zles or capillaries which provide maximum acceleration at its inlet have been found

to be best suited for such applications. The acceleration experienced by the gas-

particle mixture due to the sudden change in area of the nozzle, is the primary factor

responsible for the separation of the path of both phases.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Particles lying in the sub-micron range have widespread applications in the phar-

maceutical, ceramic and other related industries. They also have increasing applica-

tion in processes such as ‘Gas dynamic cold spray process’ [13,35], for the production

of thin metallic films. Inertial separation is used to separate solid particles or droplets

from a gas stream by enforcing a change in the velocity and direction of the gas. The

particles, due to their inertia, find themselves unable to follow this change in direction

and hence separate out of the gas flow. Cyclone separators have been one of the most

popular categories of inertial separators on account of their simplicity in design and

construction and high collection efficiency. In a typical cyclone separator the gas-solid

flow in injected into a cylindrical separator chamber in a direction tangential to its

circumference. This results in a vortex flow about the axis. The particles, on account

of their inertia, are hurled onto the walls of the chamber. On losing their momentum

because of the impact with the walls, the particles fall to the bottom of the chamber

where they are collected. In spite of the wide application of cyclone separation in

dust removal processes, it is difficult to obtain satisfactory collection efficiency for

sub-micron particles.

Impact separators force the change in direction of the fluid by imposing an obstacle

in its path. Common obstacles can come in many shapes. This obstacle causes causes

a disequilibrium between the two phases, causing the particles to diverge from the gas

after impacting the surface. Frain (2000) [17] designed a conical array of concentrically
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arranged circular rings which obtained collection efficiency in the range of 80-85% for

a particle size of 10 µm.

The separation of a particle is defined by the non-dimensional parameter called

the Stokes number (St), which is the ratio of two time scales, τp and τ . The τp, or the

particle dynamics time scale is the time required by the particle suspended in a gas,

to respond to the change in velocity of the gas, after experiencing an acceleration due

to the obstacle. The τ , or the gas dynamics time scale is the time taken by the gas to

travel around the obstacle. Micron and sub-micron sized particles have low inertia,

and hence a smaller value of τp and St. This severely affects their seperation at normal

operating conditions. A review of particle dynamics in Chapter 3 shows that the value

of τp and St can be increased by reducing the drag forces acting on the particles.

This reduction can be achieved by operating the device at sub-atmospheric pressures.

Witman (2005) [49] demonstrated this principle for particle sizes of 1− 10µm at sub-

atmospheric pressures, using a louver separator with rectangular cross-section for the

blades. A collection efficiency of 85% was obtained for 1µm particles at a pressure of

0.76 torr (101 Pa.), demonstrating its potential for its application in industry.

The particle laden flow maintained at reservoir pressure conditions is introduced

into the low pressure chamber through a nozzle. As the flow exits the nozzle it ex-

periences a strong pressure gradient. Such conditions result in the formation of an

under-expanded supersonic free jet. This jet is characterized by a rapid expansion of

the air to operating pressure, followed by formation of shocks, such as a Barrel shock

and a Mach disc. Witman’s experiments were focused on the fluid and particle dy-

namics occuring downstream around the louver blades. However, the under-expanded

jet has the potential of separating particles as they exit the nozzle, according to their

diameter size.

The application of under-expanded jets is prevelant in particle analyzer systems.

Both system use the properties of the jet to isolate and focus aerosol particles,

2



molecules or heavy isotopes along the centerline of the nozzle. In these processes, the

lighter specie or the carrier gas expands as it exits the nozzle. The heavier species,

representing the particles to be analyzed, however due to their relatively higher value

of τp, continue to travel in a straight trajectory. The nozzle geometry is known to have

influence on the degree of concentration of the heavy molecules around the centerline.

The size of the molecules and the ions separated in the particle analyser systems

is extremely small compared to the molecules. Here, the significance of the Stokes

number (St) is important. The value of the St defines the effects of fluid dynamics

and the geometry of the devices on the separation of the particle and gas phases.

Therefore, an optimum value of St shall be used to match separation performace in

different conditions.

3



CHAPTER 2

LITERATURE REVIEW

2.1 Inertial impact particle separation

One of the earliest studies on a louver-array based inertial impact separator was

conducted by Poulton and Cole (1981) [38]. The designers based the mechanism of

the separation on the inertia of the solid particles suspended in the gas flow. The

blade array was designed in a way that 90% of the incoming air was diverted through

the blade spacing as ‘clean air’, while the remaining 10% with the particles continues

in the original direction. The experimental results were backed up by numerical

simulation of the particle trajectory using the Runge-Kutta-Merson method. The

drag law acting on the particles was adopted as the one suggested by Serafini (1954)

[41].

Poulton and Cole measured the performance of their device in terms of ‘mass

efficiency’ of collection, i.e. simply by the ratio of the mass of the particles separated

to the total inlet mass. Further, the variation of the collection efficiency was plotted

against operating parameters such as the inlet air velocity and the design parameters

such as blade thickness, pitch, and array angle. Since the designers were relying on

the inertia of the particles for separation, they did not focus on the influence of the

particle dynamics on collection efficiency. For example, no attention was given to

study the effect operating pressure can have on the particle drag and how that can

affect collection. Nevertheless, this study did successfully establish the effectiveness

of louver-based separation for turbine engine applications, where the presence of solid

particles suspended in the gas can cause heavy damage to the turbine blade surface.

4



Moreover, careful consideration to design parameters can cause minimum pressure

loss across the array and hence improve the power consumption.

Musgrove et al (2009) [31] performed a computational study of a louver-based

separator for application in a jet engine, in order to prevent erosion of the turbine

region by solid particles in the gas. Their separator used a ‘collector bin’ located

downstream of the louver array for particle collection. The working gas was modeled

as an ideal incompressible gas, with light particle loading having no effect on the gas

phase. The particle drag forces were modeled by the Haider and Levenspeil (1989) [19]

drag law which expressed Cd in terms of certain empirical functions. These functions

are polynomials of the shape factor φ, which is a measure of the sphericity, with φ = 1

denoting a perfect sphere. This study recorded the collection efficiency for a range

of particle diameters from 1 to 50 µm. The efficiency for different particle sizes was

calculated by varying the shape factor φ. Perfectly spherical particles having φ = 1

displayed the best collection efficiency, with a decreasing trend for lower values for

φ (Figure 2.1). However the influence of φ on the particle collection efficiency was

much less pronounced for particle diameter larger than 10 µm. This was attributed

to the fact that for larger particles, inertia dominated the drag forces.
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Figure 2.1. Effect of shape factor on collection efficiency, Musgrove et al [31]

Frain (2000) [17] used a conical array of concentrically arranged circular rings as

the impact surface. Using the device, Frain obtained collection efficiency in the range

of 80-85% for particle size of 10µm. However, the efficiency dropped for particles

below 10µm as these particles have a lower inertia to drag ratio due to their lower

mass. Witman (2005) [49] used this mechanism for separating particles having sizes

ranging from 1 − 10µm at sub-atmospheric pressures using a louver separator with

rectangular configuration for the blades. A collection efficiency of 85 % was obtained

for 1µm particles at a pressure of 0.76 torr ≈ 101 Pa demonstrating its potential for

its application in industry.

In 1990, Fernandez de la Mora et al. [12], designed a hypersonic plate impactor

for separation and collection of nano-sized particles. In a plate impact separator, a

plate is placed close to the nozzle outlet in a direction normal to the flow. Operation

of the process at normal pressures limits the value of the particle dynamics time

scale( τp ), because of the low inertia of the particles. Supersonic and hypersonic jets

have regions of very low pressure which considerably reduce the drag forces on the
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particles, thus producing a higher value of St. This enables the particles to achieve

separation from the gas and collect on the plate. The nozzles used to expand the

gas mixture had diameters in the range of 0.1 to 0.5 mm. The collection of the

device was measured as a function of the nozzle geometry, operating conditions, and

distance between the plate and the nozzle exit. The significance of these parameters

was expressed through the Stokes number of the system, both in the impact region

and near the nozzle exit. Successful collection efficiency was obtained for particles

around 5 nm size. The collection efficiency results obtained experimentally have been

used to validate the numerical solver. A detailed explanation of the validation has

been offered in Chapter 5.

In (2004), Abouali and Ahmedi [1] performed computational investigation of a

hypersonic ‘plate impact separator’ by Fernandez de la Mora et al [12]. Abouali

and Ahmedi simulated the gas phase using the FLUENT compressible viscous flow

solver [16]. Particle trajectories were calculated by the Stokes drag law with the

Cunningham correction factor for the nano-sized particles. The mean free path (λ)

of the particles was expressed in the Cunningham correction factor [11] (Equation

2.3) as a variable quantity to account for the significant variations of the values of

pressure in the flow field:

λ =
0.031T γ

p
(2.1)

The collection efficiency predicted by FLUENT agreed well with the experimental

findings by Fernandez de la Mora et al [12], though the nozzle geometry was not

included in the computational model.

The operation of particle separation methods in supersonic, rarefied conditions

motivates us to take a look at how the supersonic gas flow itself can be used to separate

particles based on their size. Prominent amongst these methods are molecular beam

method and mass spectrometry. In these methods, molecules or heavy ions of a
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given size are focused narrowly along an axis and passed into a chamber where their

properties may be analyzed.

2.2 Particle focusing

The under-expanded jet is predominantly used by particle analyzer systems to

separate and isolate molecules, ions of substances for analyzing their physical and

chemical properties. Molecular beam method and mass spectrometry are the most

prominent methods that make use of the under-expanded jet evolved due to rapid

expansion of a carrier gas emerging from a sonic jet. The molecular beam method

is used to isolate a stream of molecules of the carrier gas along the centerline of

the nozzle, while mass spectrometry is used for the isolation of ions suspended in

a lighter carrier gas. However, the principle of operation remains the same in both

methods. In order to understand the application of the jet in separation of much

heavier solid particles, it is necessary to conduct a brief review of both methods.

Fenn [14] published an article in 2000, describing the history of the evolution of

both the methods. Figure 2.2 shows the schematic representation of molecular beam

methods. In the classical molecular beam method (Figure 2.2(a)), the gas effuses

from source through a orifice into the collimating chamber. The beam of molecules,

aligned close to the axis is generated in the collimating chamber and passed to the test

chamber through a hole or a channel placed co-axially, called the ‘skimmer’. However,

the effusive method suffers limitations in the form of reduced beam intensity due to

scattering of the molecules.

Kantrowitz and Grey [23], demonstrated that the under-expanded free jet, re-

sulted by the expansion of a gas stored at a higher pressure reservior to an extremely

low pressure region through a converging-diverging nozzle, can be used for generating

molecular beams. The molecules in the beams have a very narrow velocity distribu-

tion. The pressure maintained in the low pressure expansion chamber is generally on
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(a)

(b)

Figure 2.2. Molecular beam apparatus using (a) effusive source and (b)supersonic
nozzle, Fenn [14]

the order of 100 − 400Pa. The authors used a converging-diverging nozzle in order

to obtain gas streamlines parallel to the centerline, thereby increasing the intensity

of the beams. However, boundary layer effects, due to viscous flow interaction with

the nozzle walls in the diverging section were observed to have a negative impact on

the beam intensity. The influence of this effect was considered in the design of the

nozzle geometry. Figure 2.2(b) shows a typical molecular beam apparatus using the

under-expanded jet.

Becker and Bier [6] also observed the negative influence of the boundary layer

effects in the diverging section of the nozzle. Moreover, they proved that removing the

diverging section completely eliminated these effects and produced beam intensities

much higher than the ones obtained with the diverging section. Later, Ashkenas and

Sherman (1965) [4], observed that for short nozzles, without a diverging section, the

viscous effects do not affect the core of the nozzle flow. They remain concentrated
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in a thin boundary layer near the nozzle walls. Therefore, nozzles without diverging

section (capillaries or purely converging nozzles) have been predominantly used in

molecular beam formation. They are also easier to design and fabricate.

Later, Becker et al. [7] observed the property of the under-expanded jet to separate

heavier species suspended in the lighter carrier gas. Becker and his team observed that

when the carrier gas, contaminated with a small amount of the heavier specie, was

expanded in the form of the supersonic jet, the carrier gas streamlines diverged from

the centerline in a radial direction, after exiting the nozzle. However, the heavier of

the species remained close to the centerline on account of their higher inertia. Hence,

the specimen of the mixture, that was collected by the skimmer was enriched in the

heavier of the two species. Moreover, it was observed that the skimmer, which is

used to collect the separated molecular beams, enriches the beam even further, by

deflecting the lighter carrier gas away. They later used this mechanism to separate

heavier uranium isotopes [5]. Reis and Fenn [39] repeated such experiments to obtain

hydrogen-nitrogen mixtures by using under-expanded jets as the beam sources. It

was observed that the flow entering the sampling probe placed axially in the path of

the jet, was enriched in the heavier species. The inertial effects at the inlet of the

probe caused the species to be concentrated in the probe, while the lighter carrier

medium deflected away.

The ability of a supersonic under-expanded jet to isolate heavy molecules and

isotopes from a lighter carrier gas is thereby fairly known. The average size of the

molecules of most elements is of an order much smaller than 1 µm, which is the

desired size of this thesis. This difference in scale of the particle dimensions should

be accounted for, while designing separation mechanisms for solid particles belonging

to the micron range. The influence of the nozzle geometry on the flow of the gas also

needs to be studied. The preceding section describes that nozzles without a diverging

section to be best suited for aerodynamics separation. Hence, the attention of the
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thesis will be focused on nozzle with a converging and straight section only. The

above mentioned factors, viz. nozzle geometry and the operating conditions can be

represented by a single dimensionless parameter called the Stokes number (St) which

measures the probability of a particle to separate from the gas streamlines, after

experience an acceleration due to an obstacle in its path. If the value of St � 1, the

particles remain coupled to the gas streamlines after encountering the obstacle. For

a value of St ≥ 1, the particles separate from the gas streamlines. The St is given as:

St =
ρpdp

2U

18µL
(2.2)

where ρp and dp are the particle density and diameter respectively. Here, L is

the characteristic length scale in the flow, which can be represented by the nozzle

diameter.

As the particles exit the nozzle into the extremely low pressure region, they expe-

rience the effects of rarefaction in form of reduction of the drag force acting on them.

These effects are represented by the Cunningham correction factor (Cc), given as:

Cc =

[
1 +

2λ(T, p)

dp

(
1.257 + 0.4e

−1.1
(

dp
2λ(T,p)

))]
(2.3)

where λ(T, p) is the molecular mean free path of the particles, the distance trav-

elled by the particle between two successive collisions. The ratio Kn = 2λ(T,p)
dp

, called

as the dimensionless parameter Knudsen number, is the ratio of the molecular mean

free path to a characteristic length scale of the flow (particle diameter, dp in this

case). The magnitude of Kn signifies the regime of the flow. For sub-micron sized

particles in rarefied pressure, the value of the Kn is greater than unity. This means

that particles no longer move as continuum in the gas flow, but as discrete molecules

amongst the gas molecules, reducing the magnitude of the drag force. The expression

of the Cunningham correction factor is therefore used to obtain the computational

solution of the particle trajectories.
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The following sections contain a review of the characteristics of the nozzle flow, the

under-expanded jet and the numerical methods to simulate the same. A brief review

of inertial separation methods has been presented for the complete understanding of

the principle. Further, the equations of the particle dynamics have been explained in

detail in the following chapter.

2.3 Supersonic compressible flow

2.3.1 Flow in converging nozzles

The compressible flow in a converging nozzle (C-D) has been studied in detail by

many authors such as Shapiro (1953) [42] and Anderson (1990) [3]. The properties of

the gas across the length of the nozzle can be expressed in terms of their corresponding

stagnation values and the area ratio at any point, assuming an isentropic flow. Figure

2.3 describes the isentropic flow through a C-D nozzle. The gas enters the inlet from

the reservoir maintained at stagnation conditions represented by the suffix ‘0’. The

gas reaches sonic conditions at the throat i.e. the section with minimum area. It

expands isentropically to supersonic conditions in the diverging section of the nozzle.

It subsequently forms an under-expanded jet as it exits the diverging section.

The Mach number of the flow can be calculated at any point across the length of

the nozzle from the area of cross-section at that point and at the throat area.

A

A∗
=

1

M

[(
2

γ + 1

)(
1 +

γ − 1

2
M2

)] γ+1
2γ−2

(2.4)

The density, pressure and temperature of the gas can in turn be calculated from

the local Mach number (M):

ρ0

ρ
=

[
1 +

γ − 1

2
M2

] 1
γ−1

(2.5)
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Figure 2.3. Flow in a C-D nozzle, Anderson (1990) [3]

P0

P
=

[
1 +

γ − 1

2
M2

] γ
γ−1

(2.6)

T0

T
= 1 +

γ − 1

2
M2 (2.7)

These equations are valid for a purely converging nozzle where sonic conditions

are reached at the outlet (minimum cross-section area) of the nozzle. It must be

noted however, that for sonic conditions to be reached at the outlet, the values of the

outlet pressure, P0 must be below a value represented by the “critical conditions”.

These conditions represented by the suffix ‘*’ can be obtained by substituting M = 1

in Equations 2.5 to 2.7.

ρ∗

ρ0

=

(
2

γ + 1

) 1
γ−1

= 0.6399 (2.8)
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P ∗

P0

=

(
2

γ + 1

) γ
γ−1

= 0.5283 (2.9)

T ∗

T0

=

(
2

γ + 1

)
= 0.8333 (2.10)

2.3.2 Flow in constant area nozzles

Unlike converging nozzles, the compressible fluid flow through constant area noz-

zles cannot be governed by the change in the cross sectional area as given in Equation

2.4. The flow is driven by the pressure gradient applied across the length of the noz-

zle. The change in fluid properties is brought about by the friction of the gas with

the nozzle walls [42]. This flow can be approximated as the “Fanno Flow”. According

to this approximation, if the flow at a point in the nozzle is subsonic, the effect of

friction is to increase the velocity and hence decrease in pressure and density of the

flow. However, if the flow is supersonic, the friction has the opposite effect on the

velocity. Hence, the flow through the nozzle always tends towards M = 1.
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2.3.3 Free under-expanded jet

The particle laden air flow is introduced into the separator chamber from a plenum

chamber maintained at total pressure (Po) through a sonic nozzle. The exit of a

supersonic jet from the sonic nozzle at a pressure different from that of the external

medium results in the appearance of the phenomena of Mach disc and barrel shock.

When the pressure of the jet at exit (Pe) is higher than that of the ambient back

pressure (Pb), the resulting jet is termed as an “under-expanded” jet. Figure 2.4

shows the structure of such a jet emerging from a converging nozzle. The flow of the

gas attains M = 1 at the exit of the nozzle indicating choked flow. The gas at pressure

Pe expands rapidly through an expansion fan, to reach Pb. As the expansion waves

intercept the jet boundary, they are converted to compression waves and are deflected

towards the centerline. These compression waves coalesce to form the barrel shock.

Further downstream, the flow is turned parallel to the direction of the centerline

through the normal shock, Mach disc. The core of the jet bounded by the barrel

shock and the Mach disc is a region of very low pressure and high Mach number and

is termed as the “zone of silence”. This is the region from which molecular beams are

extracted through the skimmer [14,36,40] .
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Figure 2.4. Schematic representation of the supersonic under-expanded free jet,
Fenn [14]

Experimental investigation of under-expanded free jets by Crist et al (1966) [10]

provided empirical expressions that expressed the Mach disc location (Lmd) and its

diameter (Dmd), both non-dimensionalized, as a function of the stagnation pressure

to ambient pressure ratio (PR = Po
Pb

) (Figure 2.5).

Dmd

Dn

= 0.36

√(
Po
Pb
− 3.9

)
(2.11)

Lmd
Dn

= 0.65

√(
Po
Pb

)
(2.12)

Addy (1981) [2] performed an experimental investigation of under-expanded free-

jet flows using nozzles of different geometries, with the objective of validating Crist’s

expressions. Experiments were conducted on one contour converging nozzle, four con-

ically converging and a sharp-edged orifice ( Figure 2.6). The diameter and location

of the Mach discs were determined using 10 µs shadowgraph images. Experiments

on each nozzle were conducted by varying the PR within the range of 1 ≤ PR ≤ 10.
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Figure 2.5. Mach Disc diameter and location for under-expanded free-jet flows Addy
(1981) [2]

These experiments helped establish a plot for the onset of the Mach disc with respect

to the PR for nozzles with geometries described in (Figure 2.6).

Further observations established that Crist’s expressions are valid in the prediction

of the location and diameter of the Mach discs for under-expanded free jet flows for

all above nozzle geometries. Therefore, Addy’s work has been used as a benchmark

in numerous computational investigations of the same problem. Studying a free-jet

computationally has been a challenge for researchers due to the series of sharp shock

discontinuities present in the flow-field. Numerical schemes which are Total Varia-

tion Diminishing [20], which use a flux limiter to bound the values of the gradients

around the shock to realistic values and to avoid spurious oscillations, have been most

commonly used.
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Figure 2.6. Sonic nozzle geometries and the Mach disc onset regime, Addy (1981) [2]

Murphy and Miller (1984) [30] examined the formation of under-expanded jets

from converging and capillary nozzles. Pitot tube measurements at the nozzle exits

revealed difference in the value of the Mach numbers obtained by both the nozzle

geometries. While M = 1 was observed for the converging nozzle, a value of M = 1.45

at the exit. The properties in the downstream region were calculated using the

“Method of characteristics” with the pitot tube measurements at the nozzle exit as

the initial conditions. Measurements of Mach number along the centerline differed

for either nozzle geometry for a distance equal to two times the nozzle diameter.

However, beyond this point the profiles of the jet appeared very identical to each

other.

Matsuo et al (2004) [27] studied the impact of nozzle geometry on the near field

of the supersonic under-expanded jet. The free-jet characterized by the presence of a

Mach disc and barrel shock were simulated by solving the Navier-Stokes [N-S] equa-

tions in axisymmetric coordinate system. A third order Total Variation Diminishing

[TVD] with the MUSCL limiter [46] was implemented for the spatial derivative terms.

For the discretisation of the viscous terms in the N-S equations, a second order cen-
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tral differencing scheme was applied. Computational domains representing nozzle

geometries used by Addy were used in order to study the influence of geometry on

the appearance of the Mach disc. Each computation was performed using air as the

working fluid with a value of PR = 6.2. The results for each nozzle case were mea-

sured in the terms of the ratios Lmd
Dn

and Dmd
Dn

. The results successfully predicted the

location and diameter of the Mach disc in the flow. However, there was no distinct

presence of a barrel shock close to the exit in the case of the conically converging and

the orifice nozzles. It was considered that the presence of a vena-contracta near the

exit of these nozzles as a factor responsible for the distortion of the jet boundary.

Menon and Skews (2007) [28] modeled under-expanded jets using the Spallart-

Allmaras turbulence model for closure of the Reynolds Averaged Navier-Stokes equa-

tions. Three different nozzle configurations were used for the computations and results

were obtained for values of PR ranging from 2 to 10. The values of Dmd
Dn

and Lmd
Dn

were

observed to be in direct variation to the value of PR, though the actual values were

slightly over predicted compared to the analytical results by Addy. The authors at-

tributed this deviation from theoretical results to the lack of account of the boundary

layer formation in the nozzle geometry. They even suggested that the effects of tur-

bulence may have a bearing on the stem heights and hence needs to be investigated.

Further the Mach disc was accompanied with a slight curvature that seemed to be

increasing with the PR.

Otobe et al.(2007) [34] conducted a similar study for nozzle geometries of various

configurations. They chose to model their computations using the inviscid Eulerian

compressible flow equations as the governing differential equations assuming that

viscous effects do not have a significant influence on the flow structure. The choice of

nozzle configuration was the same as used by Addy. The equations were solved using a

third-order TVD finite difference scheme by Yee (1989) [50]. Grid sizes were varied to

obtain grid-independent solutions. Air at atmospheric temperature and pressure was
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Figure 2.7. Correlation between PR and Mach disc location and stem height, Otobe
[34]

assumed for inlet conditions while the back pressure was varied to study results for 4

≤ PR ≤ 12. These results sought successful confirmation with the analytical model

presented by Addy. The stem heights varied with respect to the PR. A variation for

these values for the different nozzle configuration was also obtained. The location of

the Mach disc was determined as a function of the PR alone and is independent of

the nozzle geometry (Figure 2.7).
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CHAPTER 3

PROPOSED METHODOLOGY

3.1 Eulerian phase

The simulation of the under-expanded free jet flow in the separator chamber is

performed using compressible flow solver rhoCentralFoam [18], which is a part of

OpenFOAM © [33]. High speed compressible flow is characterized by the presence

of discontinuities such as shocks and contact discontinuities, the treatment of which

is difficult to handle. Schemes such as the piecewise parabolic method (PPM) [9],

essentially non-oscillatory (ENO) schemes [20], weighted ENO (WENO) [21] schemes

have been popular in the numerical calculation of compressible flows. These schemes

basically are approximate Riemann solvers that involve characteristic decomposition

and Jacobian evaluation, which make them difficult to implement and are computa-

tionally expensive.

rhoCentralFoam uses an alternate Riemann-free approach that is independent of

characteristic decomposition and Jacobian evaluation. This approach, named the

“central scheme” described by Nessyahu and Tadmor [32], has been derived from the

Lax-Friedrichs scheme. The resulting numerical method has been proved to obtain

accurate and inexpensive solutions for compressible flow problems [18].

3.1.1 Governing equations

We solve the governing equations of fluid motion for the Eulerian phase. These

equations are discretised and subsequently solved using the Finite-Volume method

which shall be described briefly in section 3.1.2. The equations are expressed as a set

21



of partial differential equations (PDEs) which are derived by the application of the

laws of conservation to fluid motion :

Conservation of mass (Continuity equation):

∂ρ

∂t
+∇ · [ūρ] = 0 (3.1)

Conservation of momentum neglecting gravity and particle drag:

∂(ρū)

∂t
+∇ · [ū(ρū)] +∇p+∇ · σ = 0 (3.2)

where σ is the viscous stress tensor considered positive in compression.

Conservation of energy:

∂(ρE)

∂t
+∇ · [ū(ρE)] +∇ · (ūp) +∇ · (σ · ū) = ∇ · (k∇T ) (3.3)

where, the primary variable (ρE) is the total energy of the system, k is the con-

ductivity and T is the temperature and E = e+
|u2|

2
, where e = cvT = (γ-1)RT is the

specific internal energy and γ = Cp
Cv

is the ratio of specific heats at constant pressure

and constant volume.

The value of temperature is calculated as

T =
1

cv

(
ρE

ρ
− |u

2|
2

)
(3.4)

The Equations (3.1 - 3.3) are closed by the ideal gas equation of state :

p = ρRT (3.5)
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Figure 3.1. F-V control volume, Greenshields et al (2009) [18]

3.1.2 Finite volume method

In the Finite-Volume method [47] the computational domain is divided into poly-

hedral cells called Control Volumes (CV). Figure 3.1 shows a typical control volume.

Neighboring CVs are connected to each other by a face f represented by the area

vector Sf .The vector Sf points normally outwards from the cell designated as the

“owner cell”. The cell that shares the face f with “owner cell” is named as “neighbor-

ing cell” for the sake of convenience. The cell centers of the owner and neighboring

cells (named P and N respectively) are connected by the vector d̄. The governing

PDE’s are integrated over the CVs. Gauss’ theorem is implemented to convert these

integrals into surface integrals over the face f .

Discretisation is the next step where the surface integrals are converted into a set

of simple algebraic equations involving values of the flux of the primary variables ψf .

The values on the face of the CV are interpolated from values at centers (ψP and

ψN) of the cells connected by that face. The detailed procedure of discretisation and

interpolation has been explained in the following sections.
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3.1.2.1 Discretisation of convective terms

The convective terms in Eqns (3.1 - 3.3 ) are ∇· [(ūρ)],∇· [ū(ρū)] and ∇· [ū(ρE)]

. Each term is integrated over the control volume and further linearized as follows:

∫
V

∇ · (ūψ)dV =

∫
S

dS · (ūψ) =
∑
f

φfψf (3.6)

where φf=Sf .ūf is the volume of fluid passing through the face per unit time.

rhoCentralFoam uses a non-staggered central differencing interpolation scheme by

Kurganov, Noella, Petrova [25] to obtain ψf by splitting the flux in two directions,

namely incoming and outgoing directions. The quantities shall be represented by the

suffixes, f− and f+ respectively.

The discretisation can be represented thereby as :

∑
f

φfψf =
∑
f

[αφf+ψf+ + (1− α)φf−ψf−] (3.7)

φf in either direction is calculated from the respective local speeds of propagation:

φf+ = |S|max[(ūf+ + cf+), (ūf− + cf−), 0] (3.8)

φf− = |S|max[(ūf+ − cf+), (ūf− − cf−), 0] (3.9)

where cf± =
√
γRT are the speeds of sound at the face for the waves in the

outward and inward direction. The weighting function α is calculated as :

α =
φf+

φf+ + φf−
(3.10)
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3.1.2.2 Discretisation of gradient terms

∫
V

∇̄ψdV =

∫
s

dSψ =
∑
f

Sfψf (3.11)

After converting the volume integral into a surface integral, the discretisation is

carried out as follows:

∑
f

Sfψf =
∑
f

[αSfφf+ + (1− α)Sfφf−] (3.12)

The fluxes in the either direction are calculated in the same procedure used for

the convective terms.

3.1.2.3 Discretisation of Laplacian terms

The Laplacian terms are discretised as follows:

∫
V

∇ · (γ∇ψ)dV =

∫
S

dS · (γ∇ψ) ≈
∑
f

γfSf · (∇ψ)f (3.13)

The diffusion constant γf is interpolated directly from the cell centers. The eval-

uation of the diffusion flux Sf .(∇ψ)f is split into orthogonal and non-orthogonal

components.

3.1.2.4 Discretisation of temporal terms

The temporal terms in the Equations (3.1 − 3.3) are discretised using the Euler

explicit scheme:

∫
V

∂ψ

∂t
=

(ψn+1 − ψn) dV

δt
(3.14)

where δt is the time step
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3.1.3 Boundary conditions

Numerical simulations of compressible flow problems require a delicate treatment

of the boundary conditions at the inlet and the outlet. As mentioned earlier the

solution of high velocity compressible flow problems has a wave-like nature. Each of

these waves has a local speed of propagation which can be obtained as an eigenvalue

of the Jacobian matrix of the Navier-Stokes equations. Performing a characteristic

analysis of the equations to yield the eigenvalues will help to understand their signif-

icance in specifying the boundary conditions. The detailed procedure for the same

has been presented by Poinsot and Lele [37]. The eigenvalues for a 3-D compressible

flow system obtained as a result of the procedure can be expressed as follows:

λ1 = u− a,

λ2, λ3, λ3 = u

λ3 = u+ a

where λ1 is the eigen value obtained for the density equation. λ2, λ3, λ4 are the

eigenvalues corresponding to the mometum equatios. λ5 is the eigenvalue for the

energy equation. The polarity of the values of λi denotes the direction of flow of the

corresponding waves. The local speed of sound is denoted as ‘a’. If the wave enters

the computational domain at a particular boundary, its “region of dependence” lies

outside the domain, which means that it relies on information that is not present

in the domain. Hence the values of the variable attached to that wave needs to be

specified at that boundary. On the contrary, the waves that exit the computational

domain have a “region of dependence” that lies entirely inside and thereby the value

of the variables at the boundary must not be specified. The following boundary

conditions are encountered during the simulation of an under-expanded supersonic

jet:

Inlet: Supersonic conditions are present at the inlet. All the eigenvalues of the

system at the inlet have values greater than 0. This means that they enter the domain.
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For such a system value for every variable viz. p, T, U needs to be specified at the

inlet boundary.

Outlet: Subsonic conditions are prevalent at the outlet due to which the eigenvalue,

λ1 = u−a < 0. In order to deal with this incoming wave associated with the pressure

boundary condition, non-reflective boundary conditions shall be used. The values of

U and T , are allowed to float.
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3.2 Discrete particle phase

The fluid-particle interaction is defined in the form of adding a source added to

the Navier Stokes (N-S) equations of momentum conservation.

∂ρū

∂t
+∇ · [ū(ρū)] +∇p+∇ · σ +

∑
N

fP = 0 (3.15)

The nature of this fluid-particle coupling can be classified in three categories based

on the concentration of the particles in the gas, in terms of the volume fraction.

1-way coupling: A dilute suspension which has a volume fraction less than 10−6

has negligible effect on the momentum of the gas phase i.e. the gas influences the

particles, but the particles have no effect on the gas. The source term in the N-S

equation can thereby be neglected.

2-way coupling : a particle suspension of volume fraction in the range of 10−6

to 10−3 influences the gas phase. The source term is added in the N-S equation to

account for this 2-way coupling.

4-way coupling: for higher concentration particle-to-particle interaction must also

be taken into account.

A 1-way coupling between both the phases, neglecting the effect of the particle

phase on the gas phase.

3.2.1 Lagrangian equations of motion

The particle motion can be described by the following differential equation in a

Lagrangian frame of reference.

mp
dUp
dt

= Fd + Fg (3.16)

Where Fg is the force of gravity acting on the particle which shall be neglected as

it is extremely small compared to the drag force. The force Fd is the drag force per

unit mass of the particle, which can be expressed as:
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Fd =
1

2
CdAρg(U − Up) |U − Up| (3.17)

where Cd is the coefficient of drag, A is the projected frontal area of the particle,

ρg is the gas density, U is the velocity of the gas, Up is the velocity of the particle and

mp is the mass of the particle.

For a spherical particle of diameter dp,

A =
πdp

2

4
(3.18)

mp =
πρpdp

3

6
(3.19)

Hence Eq. 3.17 for a sphere reduces to:

dUp
dt

=
3

4

Cdρg
ρpdp

(U − Up) |U − Up| (3.20)

Stokes (1851) [44] expressed the coefficient of drag on a spherical particle sub-

merged in a creeping flow as:

CDS =
24

Rep

=
24

ρpdp |U − Up|
(3.21)

After substituting ρg from Equation 3.19 , we derive the equation of the acceler-

ation acting on the particle as :

dUp
dt

=
Cd
CDS

18µ

ρpdp
2 (U − Up) =

Cd
CDS

(U − Up)
ρpdp

2

18µ

(3.22)

Cd is the actual coefficient of drag acting on the particles. Necessary corrections

must be applied to Equation 3.22 in order to account for the influence of factors

such as particle geometry and gas properties. Some of the available drag laws have
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been reviewed in the following section. This expression for drag force also yields an

important parameter τp = ρpdp
2

18µ
which is the result of the ratio of the particle inertia

to the drag called as the particle dynamics time scale, τp . This time scale describes

the aerodynamic response time of the particle in the gas flow. The other relevant

parameter is the gas dynamics time scale τ that represents the time for the gas to

travel a characteristic length L with velocity U.

τ =
L

U
(3.23)

The ratio of the two time scales yields the non-dimensional parameter called as

the Stokes number.

St =
τp
τ

=
ρpdp

2U

18Lµ
(3.24)

For St � 1, the particles separate from the air flow after the impact on the louver

and escape out of the chamber through the collected outlet placed above the louver.

For St � 1 the particles follow the air streamline closely as the air flows around the

blades into the classified outlet.

3.2.2 Review of drag correlation

3.2.2.1 Drag correlation for smooth spherical particles

Morsi and Alexander [29] proposed the following relation for the drag coefficient

of smooth spherical particles:

Cd = a1 +
a2

Red

+
a3

Red
2 (3.25)

Where a1, a2, a3 are constants specified over several discrete ranges of Red.
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3.2.2.2 Drag correlation for non-spherical particles

Haider and Levenspeil [19] expressed a drag law in the following expression

Cd =
24

Re

(1 + b1Re
b2) +

b3Re

b4 +Re

(3.26)

where b1 = exp(2.3288− 6.4581φ2 + 2.4886φ3)

b2 = exp(0.0964 + 0.5565φ2)

b3 = exp(4.094− 13.8944φ+ 18.4222φ2 − 10.2599φ3)

b4 = exp(1.4681− 12.2584φ− 20.7322φ2 + 15.8855φ3)

Where φ= shape factor, is the measure of the sphericity of the particles. A value

of φ = 1 represents a perfectly spherical particle. The shape factor of the particles has

been observed to have an effect on the collection efficiency. Lower shape factor tends

to increase the drag acting on particles. This has a negative effect on the collection

efficiency. However, since inertia dominates the flow of larger particles, the effect of

φ on the efficiency is less pronounced on larger particles.

3.2.2.3 Drag correlation for sub-micron particles

For sub-micron spherical particles the Cd is obtained by obtained by applying the

Cunningham’s correction factor [11] Cc, represented in Equation 2.3. The effective

expression of Cd is therefore given as follows:

Cd =
24

ReCc
=

24

Re

[
1 + 2λ(T,p)

dp

(
1.257 + 0.4e

−1.1
(

dp
2λ(T,p)

))] (3.27)

3.2.2.4 Drag correlation for supersonic rarefied flow

Henderson (1976) [22] presented a set of empirical relations to model drag forces

in various flow regimes, continuum, rarefied and transition. Three equations, each

representing a particular range of Mach number were derived. The first expression

for subsonic flow is as follows:
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Cd = 24

[
Re + S

[
[4.33 + 1.567 exp

(
−0.247

Re

S

)]]−1

A+B (3.28)

A = e
0.5M√
Re

[
4.5 + 0.38(0.03Re + 0.48

√
Re)

1 + 0.03Re + 0.48
√
Re

]
(3.29)

B =
[
1− e(

M
Re

)
]

0.6S (3.30)

For supersonic flow with Mach number exceeding 1.75 the following expression

was considered valid:

Cd =
0.9 + 0.34

M2 + 1.86(M
Re

)0.5
[
2 + 2

S2 + 1.058
S
− 1

S4

]
1 + 1.86(M

Re
)0.5

(3.31)

Where, S = M
√

(γ
2
) is the molecular speed ratio and the ratio Re

S
≈ Kn. M is

the Mach number and γ is the ratio of the specific heats.

The values of M and Re are both based on the relative velocity between particle

and fluid. For Mach number between 1 and 1.75, linear interpolation is used. The

author validated the values of drag coefficient calculated by the above experiments

with alternate expressions and experimental data. In continuum, rarefied and transi-

tion regimes, Henderson’s expressions agreed more closely with the experimental data

than other expressions.

3.2.3 Selection of drag correlation

The Stokes-Cunningham drag correlation with the Cunningham correction factor

Cc has been used widely used for modeling the flow of sub-micron particles which

falls in the free molecular regime. Henderson’s equations are more comprehensive

than the Cunningham correction factor as they include compressibility due to high

Mach number flow. However, for free molecular flow, rarefaction effects dominate

effects due to compressibility. This was clearly observed by Tedeschi, Gouin, Elena
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(1999) [45] in their investigation of particle motion in high speed flows. Experimental

values of particle velocity across a shock were compared with values calculated by the-

oretical expressions provided by various drag laws. The predictions by Cunningham

correction factor showed satisfactory confirmation with experimental data. Moreover

its expression is much simpler and hence is selected for our purpose.
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CHAPTER 4

IMPLEMENTATION

The computational method for the solution of high speed compressible flow prob-

lems, described in the previous chapter has been implemented in the OpenFOAM

solver rhoCentralFoam. OpenFOAM is a collection of C++ libraries. It uses inheri-

tance and template features of Object Oriented Programming to design the structure

of the solvers in a manner that resembles that of the actual system equations and

is therefore easy to interpret. For example, the solution of the continuity equation

(Equation 3.1) can be represented by the following syntax:

solve(

fvm::ddt(rho) + fvc::div(phi) ==0

);

This operation casts the PDE into a matrix system of the form [A][x] = [b],

where [A] is composed of the algebraic coefficients derived from the discretisation

of the convective, gradient and Laplacian terms. [x] is the matrix of the dependent

variables and [b] is the matrix resulting from the source terms.

In order to calculate the discrete phase particle trajectories, an OpenFOAM La-

grangian particle class has been coupled with rhoCentralFoam. A new subroutine for

the calculation of the drag force on the particles by the Cunningham correction factor

has been written. We thus have an integrated compressible flow-discrete phase CFD

solver that has been used to perform CFD simulations of the validation cases and the

final results.
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4.1 Iterative algorithm for rhoCentralFoam

The viscous momentum and energy equations are solved using the time-splitting

approach. In this approach, the inviscid equations are solved explicitly, by the ‘fvc::’

operator, to obtain a predicted value of the variable. Later, the diffusion terms are

then introduced as implicit corrections to the original inviscid equations, represented

by the ‘fvm::’ operator .

The solution starts with the calculation of ρf±, Tf± and uf± at the face of the cell,

split into outgoing and incoming directions. The face values are interpolated from the

values at the cell centers and substituted in the calculation of the convective fluxes.

This method has been described in Equations (3.7 to 3.11).

Thereafter, the continuity equation (Equation 3.1) is solved to obtain the density,

ρ. The predicted value of the velocity, (ũ) is calculated explicitly from the inviscid

momentum equation:

(ρ̃u)− (ρu)n

∂t
+∇ · [u(ρu)] +∇p = 0 (4.1)

ũ =
˜(ρu)

ρ
(4.2)

The value of ũ is then used to calculate the corrected value of velocity at the next

time step (denoted as n+1) implictly, from the viscous momentum Equation 3.2.

(ρu)n+1 − (ρ̃u)

∂t
−∇ · (µ∇u) = 0 (4.3)

The energy equation is solved in the similar manner. A predictor value of the

energy flux (ρ̃E) is first calculated from the inviscid energy equation.

∂(ρE)

∂t
+∇ · [u(E + p)] +∇ · (σ · u) = 0 (4.4)
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The temperature, T is obtained using Equation 3.4, which takes ρ, u and E as

input. The estimated value of T is then used in the corrected energy equation:

∂(ρcvT )

∂t
−∇ · (k∇T ) = 0 (4.5)

The pressure is then updated using the ideal gas equation of state ( Equation 3.5).

Sutherland’s law of viscosity is used to model the viscosity µ:

µ = µref
T 1.5

T + Tref
(4.6)

T = 110.4 K is the reference temperature. µref = 1.716× 10−5N.s
m2 is the reference

viscosity.
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4.2 Lagrangian particle class

The Lagrangian particle tracking is performed using an intermediate particle class

that models effects due to kinematic, thermal and reacting forces acting on a particle.

Besides, it offers flexible models for drag forces, particle injection and wall interaction

models.

4.2.1 Lagrangian parcels and clouds

A physical particle is represented in the computational domain as a parcel. A

computational parcel represents a number of physical particles. It is assumed to have

the same velocity and material properties as the physical particle.

A cloud is a collection of Lagrangian parcels. The entire mass of particles entering

the computational domain is initialized as a cloud. The Lagrangian cloud named as

the kinematicCloud1 is directly coupled with the Eulerian gas phase through the mo-

mentum equation (Equation 3.15), representing the source due to particle momentum

and the gravity acting on the particles:

solve {

(

fvm::ddt(rho, U) - fvc::ddt(rho,U)

- fvm::laplacian(mu, U)

- fvc::div(tauMC)

== kinematicCloud1.SU1()

+ rho.dimensionedInternalField()*g

);

rhoU = rho*U;

}

However, it must be noted that our research assumes a one way coupling between

the gas and particle phase and that the effects of gravity are totally neglected. Instead
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only the values of the quantities of the gas phase are used to calculate the particle

trajectories.

The kinematicCloud is constructed with inputs such as references to gas properties

and the material properties of the particles. The quantities of the gas phase are stored

at the cell centres of the Finite Volume mesh. The values of the quantities at the

position of the Lagrangian particle is interpolated from the nearest cell centres, using

the ‘vpi’ interpolator function:

basicKinematicCloud kinematicCloud1

(

"kinematicCloud1",

vpi, %

rho, p, T, U,mu(), % references to gas phase.

g % acceration due to gravity (optional)

);

The motion of the particles suspended in the high speed compressible gas flow

is calculated by set of Ordinary Differential Equations [ODEs]. The position of the

center of a particle, xp is calculated by the following equation:

dxp
dt

= Up (4.7)

where Up is the velocity of the particles calculated by :

mp
dUp
dt

=
∑

fp (4.8)

where mp is the mass of the particle. Here,
∑
fp is the sum of forces acting on

the particle, also representing the source term in Equation 3.15. The most dominant

forces acting on a particle travelling in a gas are usually the drag forces Fd, lift forces
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Fl and the forces due to Brownian motion, Fb. The flow of sub-micron particles is

however dominated by the drag forces. Lift forces and Brownian forces have been

found to have negligible influence, and thereby are excluded from the calculations.

Fd = −mp
(Up − U)

τp
(4.9)

where τp = 4
3

ρpdp
ρgCd|U−Up|

is the particle relaxation time scale.

Cd is the drag coefficient modeled using the Cunningham correction factor.

4.2.2 Particle-wall Interaction

The intermediate Lagrangian class offered by OpenFOAM has the standard wall

interaction model, based on the coefficients of restitution, (en) and (et) for the normal

and the tangential components respectively, of the velocity of the particle impacting

on a wall. The components of the velocity are updated as follows:

Un,2 = enUn,1 (4.10)

Ut,2 = etUt,1 (4.11)

A value of 1.0 for either en and et signifies total conservation of velocity. A value

of 0.0 signifies total loss of velocity after impact with the wall. Hence the particles

stick to the wall. These latter conditions represent the “Trap” boundary conditions

for the particle phase and shall be used in the validation test case in Chapter 5.

39



CHAPTER 5

VALIDATION

5.1 Compressible flow

The introduction of supersonic flow from a sonic nozzle into a quiescent medium

maintained at an ambient pressure much less than the pressure at the outlet of the jet,

results in the formation of a free- under-expanded jet at the outlet of the nozzle. The

details of this phenomenon have been explained in Chapter 2. Numerical simulation

of this phenomenon for high inlet to ambient pressure ratio (P.R.), is a challenge due

to the presence of high gradients in the flow field. Hence, it is necessary to validate

the ability of the compressible flow solver, to accurately predict such flows.

The experimental study on under-expanded jets by Addy [2] provides a very re-

liable reference for measuring CFD predictions of the same. The objectives of the

validation can therefore be explained as:

1. To verify that the solver can successfully resolve shock discontinuities across the

flow field.

2. To verify the accuracy of the solution by measuring placement and dimensions

of the Mach disc against analytical Eqs. (2.11) and (2.12).
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5.1.1 Validation case

The validation has been performed using a rectangular mesh representing the

expansion chamber outside the nozzle exit. The geometry is 50 mm long and 15 mm

wide with a nozzle outlet radius 2.5 mm. The model has been meshed using 3000

cells as shown in Fig 5.1.

Figure 5.1. 2-D axisymmetric mesh of expansion chamber used in the validation
case

Inlet boundary conditions represent sonic conditions at the nozzle exit having a

total pressure of 101325 Pa, total temperature of 298 K and velocity equivalent to

Mach number 1. Non-reflective outlet boundary conditions are used at the outlet,

with values varied for every case (Table 5.1.1), in order to check the results for a

range of pressure ratios.

5.1.2 Results

Steady state solution for the case number 3 has been plotted in 5.2(b). Fig 5.2(a)

represents results for identical operating conditions obtained by Sommerfeld [43] us-

ing shadowgraph technique. The numerical results show very good agreement with
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Table 5.1. Boundary conditions for validation cases

Case poutlet Pressure ratio
1 12666 8
2 6755 15
3 3753 27
4 2533 40

the experimental results. The location and width of the Mach disc, both non-

dimensionalized with respect to dn, has been recorded for all cases and compared

with Addy’s empirical equation. Satisfactory agreement can again be observed be-

tween either results can be observed in Figures 5.3 and 5.4.
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(a)

(b)

Figure 5.2. (a) Shadowgraph image [43] and (b) Steady state numerical results of
under-expanded jet for Po

Pb
=27. Top half represents pressure in Pa (top scale), bottom

half represents velocity in m/s (bottom scale).
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Figure 5.4. Mach disc diameter
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5.2 Validation of the Cunningham correction factor (Cc )

5.2.1 Introduction

Fernandez de la Mora (1990) [12] designed a hypersonic impact separator for

nano sized aerosol particles using a flat plate for the collection of the particles. The

impactor plate was placed normal to the flow exiting a purely converging nozzle.

In the original experiment, the distance of the plate from the nozzle exit (Lp) was

varied with respect to the nozzle exit diameter (dn) in order to check the influence

of the ratio, Lp
dn

on the collection efficiency. The results obtained for Lp
dn

= 3 are used

for the validation of the OpenFOAM Lagrangian class implementing the Cc for sub-

micron sized particles in rarefied flow. The original article makes no mention of the

geometry of the nozzle. The nozzle used for the simulations in this case has a purely

converging section with an angle of 45◦. It has an outlet radius of 0.135 mm. The

2-D axisymmetrical computational mesh for the impactor is given in Figure 5.5.

Figure 5.5. Mesh used for validation case for the Cunningham correction factor
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5.2.2 Numerical results

The inlet pressure was fixed at 1 atm, with a temperature of 298 K throughout

the domain. The outlet pressure was fixed at 253 Pa, consistent with experimental

conditions. The single phase gas flow was calculated using the solver rhoCentralFoam.

Figure 5.6. Velocity contours and vectors of the hypersonic impact separator

The velocity contours and vectors of the steady state numerical solution are plotted

in Figure 5.6. The flow expands rapidly as soon as it exits the nozzle. The core of

the expanded jet has very high velocity. As the jet impacts the plate, a strong shock

develops in front of it. This is the bow shock, which is a form of the Mach Disc,

the normal shock that accompanies an under-expanded jet facing no obstacle in its

path. The impactor plate deflects the jet outwards in a radial direction. The velocity

decreases rapidly across the bow shock. Variations of the Mach number of the flow
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field across the centerline are plotted in Figure 5.7. The jet achieves a highest Mach

number above 4. As it crosses the bow shock, the value of Ma falls rapidly.

If the distance between the plate and the nozzle exit (Lp) is infinite compared

to the nozzle diameter dn, the expansion of the air from the nozzle would take the

form of the typical underexpanded jet discussed in previous sections. The location of

the bow shock with respect to the nozzle exit diameter, Lmd would be determined by

Addy’s expressions (Equations 2.11 and 2.12). In this case however, the location of

the bow shock is the function of the nozzle geometry and the value of the ratio Lp
dn

.

Fernandez de la Mora established the location of the bow shock as a function of the

variable η given as :

η =

(
Lp
dn

)
/
√
PR (5.1)

The distance between the bow shock and the plate surface, at a point of the

centerline axis is given as :

δ

Lp
= 1− 0.67

η
(5.2)

However, this equation only holds true for values of Lp
dn
≥ 14 , as for lower values δ

has a negative value. For Lp
dn

, the value of η ≈ 0.15. Therefore, a corrected corelation

for δ
Lp

, proposed by Abouali and Ahmedi [51] is used for the theoretical prediction of

the location of the bow shock :

δ

Lp
=


−0.8743η3 + 1.6322η2 − 0.4108η + 0.1445, 0.05 < η ≤ 0.85

0.0117η3 − 0.1346η2 + 0.5431η + 0.0703, 0.85 < η < 5,

1− 0.67
η
, η ≥ 5.

(5.3)

Figure 5.6 also shows the bow shock clearly formed before the impactor plate.

For the given operating conditions, the distance of the bow shock is measured as
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δ/Lp = 0.125. This value of δ/Lp closely agrees with the value of 0.1206 predicted by

Equation 5.3.

The bow shock has significant influence on the collection performance of the im-

pactor. The high gradient of pressure across the shock, and the rapid change in

direction of the flow act as an obstacle to the flow of particles exiting from the nozzle.
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Figure 5.7. Variation of Mach number along the centerline

The particles were introduced into the computational domain through the inlet.

The initialization of the particles across the inlet of the axisymmetric mesh should

adequately represent uniform initialization across the entire cross-sectional area of the

actual nozzle. The particles have been initialized in such a way, that equal number

of particles lie in each circular infinitesimal element of the total cross sectional area.

The spacing between every consecutive particle represents this circular element. The

algorithm for calculating the radial position of every consecutive particle (rpos), is as

given below:
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R = Inlet radius of nozzle.

A = Cross sectional area.

∆A = Area of elemental area representing each particle.

Np = number of particles.

Width of innermost ring r1 =
√

R2

Np

Since ∆A should remain constant between every particle,

∆A = π(ro
2 − ri2)

ro =
√
ri2 + ∆A

π

Thus the position of every particle is calculated by the following iterative proce-

dure:

ri = 0;

for i = 1→ Np do

ro =
√
ri2 + ∆A

π

rpos = 1
2
(ri + ro)

ri = ro

end for

where ri and ro are the inner and outer radius of every consecutive element and rpos

is the radial position of each particle at the center of the element.
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The “Trap” boundary conditions were used to simulate the collection of the par-

ticles on the impactor plate after the impact. Collection efficiency of the device is

measured by calculating the ratio of the particles collected on the impactor surface

over the total number of particles entering the domain. Figure 5.8 shows typical

particle tracks obtained by the Lagrangian solver. The bow shock acts as a sudden

obstacle in the path of the flow.

The performace of the impactor plate is measured by the collection efficiency for

a given range of particle diameters dp. The probability of a particular dp of crossing

the shock wave and impacting on the plate surface is directly proportial to its Stokes

number St.

Collection efficiency results obtained by the present CFD for particle size (1 to

100)nm are being compared to results obtained by Fernandez de la Mora in Figure

5.9. CFD results by Abouali et al (2005) [1] have also been used for comparison.

The CFD results predict a 100% collection efficiency for values of dp ≥ 10nm. A

cut diameter i.e. the value of dp which has a collection efficiency of 50%, of 3 nm has

been obtained. These results predicted by the numerical solver agree well with the

experimental results. This demonstrates the ability of the Lagrangian particle class to

accurately model the drag forces acting on sub-micron particles in rarefied conditions.

Moreover, the validation results demonstrate the efficiency of rhoCentralFoam coupled

with the Stokes Cunningham correction factor.
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Figure 5.8. Particle tracks for dp = 10 nm.
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CHAPTER 6

RESULTS

6.1 Flow field of the under-expanded jet

In this chapter, computational results of particle focusing obtained by two types

of nozzles have been discussed. A straight nozzle and a sharply converging nozzle

have been used for this purpose. The nozzles have an outlet diameter dn = 5mm.

The straight nozzle has a length of approximately 12mm. The converging nozzle has

an inlet diameter of 8mm. It has a sharply converging section with a depth of 2mm.

The computational domain of the geometry, is decomposed into an axi-symmetric,

Finite-Volume (F-V) mesh of approximately 3000 cells. The mesh has 5 cells across

the radius of the mesh. The supersonic under-expanded jet has been simulated using

rhoCentralFoam. Particle trajectories in the resulting flow have been studied by

the Lagrangian particle class, implementing the Cunningham correction factor while

calculating the drag forces

Inlet boundary conditions represent reservoir conditions having total pressure of

101325Pa. Non-reflective boundary conditions are used at the outlet with a fixed

value of 101Pa. The code, which is transient, is run until the solution reaches a

steady state.

6.1.1 Straight nozzle

The steady state results for the straight nozzle can be seen in Fig 6.1. The air

experiences a pressure drop as it enters the nozzle channel. Due to the sudden drop in

the flow area, a vena-contracta region is formed at the inlet. Here, the air is deflected
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towards the centerline of the nozzle (Figure 6.3). As it exits the nozzle, it rapidly

expands to match the back pressure.
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Figure 6.1. Pressure and velocity contours for the straight nozzle.
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Figure 6.2. Mach number variations across the centerline, along the length of the
straight duct
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Figure 6.3. Vena-contracta experienced at nozzle inlet.

The rapid expansion results in the formation of an under-expanded jet. The core

of this jet is characterized by an extremely low pressure region bounded by strong

shocks. A normal shock, the Mach disc is seen downstream. The region immediately

downstream of the Mach disc is a stagnation region with an extremely low velocity.

Figure 6.2 shows the variations of the Mach number, calculated along the centerline

of the flow field. A sharp acceleration is seen at the inlet of the nozzle reaching

M = 1. Further downstream, the Mach number exceeds unity, reaching a value of

1.08 throughout the length. According to the 1 − D Fanno flow analysis [42], the

flow inside the straight nozzle must indeed not exceed M = 1. The Mach number

variation in the nozzle is found to be independent of the density of the grid prompting

the need to search studies that recorded similar observations.

Murphy and Miller (1984) [30] recorded measurements of Mach number of the

flow, in the downstream region of a straight and a converging nozzle, starting from

a point right outside the nozzle exit. They observed that while the flow through

converging nozzle reached M = 1 at a distance of 0.25 ∗ Dn from the exit, flow

through a capillary (straight) nozzle obtained M ≈ 1.4 at the same length. The

measured the ‘sonic surface’ to be occuring atleast one diameter upstream of nozzle

exit. These values were recorded by pitot tube. However, the authours could not
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Figure 6.4. Computational mesh representing nozzle-duct assembly used by [24,26]

explain the reason for this anamoly in their paper. Beyond a short distance along the

axis, the profile of the jet did not seem to be dependent on the nozzle geometry.

Kubo et al. (2010) [24] observed the flow inside the duct section reaching M > 1,

near the exit, in their experimental investigation of choked flow in straight ducts.

Lijo et al. (2009) [26] performed detailed numerical investigations of choked flow

inside straight ducts and compare them with Kubo’s observations. The length of the

duct was varied in order to observe the influence of the L
Dn

ratio on the flow. Lijo

et al. confirmed the value of M to be greater than 1, near the exit. Both the works

attributed this deviation to the viscous effects near the exit region, which reduced

the effective cross-sectional area for the flow. Moreover, the thinning of the boundary

layer near the exit provided a diverging section for the flow, causing the value of

M to rise above 1. In both the studies, the air enters the straight duct through a

gradually converging nozzle. Figure 6.4 shows the computational mesh of the nozzle-

duct section. The inlet nozzle has a circular profile, with a radius R = 2 ∗Dn.
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(a)

(b)

Figure 6.5. Steady state Mach number contours (a) L
Dn

= 10 (b) L
Dn

= 20

Results by Lijo et al. and Kubo et al. are reproduced by rhoCentralFoam in

Figure 6.5 for the purpose of validation. The operating conditions are the same

as used in both the studies. Pressure ratio, Pb
Po

= 0.435 has been applied across the

domain. Simulations have been performed for L
Dn

ratios of 10 and 20. Figure 6.6 shows

the steady state results of Mach number contours obtained by rhoCentralFoam, for

L
Dn

= 10, 20.

The flow starts with a subsonic velocity, with M rising to a value slightly lower

than 1 at the inlet of the straight duct. As the flow approaches the exit, M = 1 is

reached at a point, approximately (80 − 90%) of the total length of the ducts. This

is consistent with the results of Kubo et al. [24] and Lijo et al. [26].
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Figure 6.6. Mach number variations in straight duct for L
Dn

= 10, 20.

However, the trend of the Mach number varies a lot for the flow entering the

duct through a sharply converging nozzle (this is the nozzle geometry used in the

thesis). The pressure and velocity contours and the Mach number variation across the

centerline along the length of the straight duct, obtained from the steady state results

are shown in Figures 6.1 and 6.2 respectively. The straight duct in this simulation

has a L
Dn
≈ 4. The vena-contracta at the duct inlet, due to the sudden contraction

in the cross sectional area, causes the M to exceed 1 at the inlet of the duct. The

centerline Mach number remains above 1 throughout the length of the duct. As

the flow nears the exit, M rises to reach a high value downstream. Similar trends

have been observed for a L
Dn

= 20, with operating conditions matching experimental

conditions (Pb
Po

= 0.435).

In the results seen in Figure 6.5(a) and 6.5(b), the flow chokes only at a point

close to the exit of the duct, where it reaches M = 1. At the inlet of the duct, the

flow does not accelerate to reach M = 1, even though for the case of L
Dn

= 10 it

reaches a value very close to unity, i.e. M = 0.99. Hence, no choking is observed at

58



this point. However, in Figure 6.1, the flow already attains choking at the point of

the vena-contracta.

The deviation of the compressible flow in the straight duct from the Fanno flow

theory may therefore be explained by the geometric factors rather than numerical

error. The velocity profiles of the flow in the duct and near the exit are found to be

sensitive to the inlet profiles of the nozzles and the length of the duct. As the flow

enters the straight nozzle in Figure 6.1, it experiences a sharp acceleration due to

the sudden contraction in cross-sectional area, resulting in it reaching M > 1. The

vena contracta at the inlet seems to be playing a role similar to the one played by

the boundary layer thinning at the exit, by offering a diverging passage for the flow,

causing M to exceed unity.

59



6.1.2 Converging nozzle

The steady state pressure and velocity contours of the under-expanded jet ob-

tained by a sharply converging nozzle can be seen in Figure 6.7. The change in values

of the properties in the converging section is a function of the change in cross-sectional

area. This relation can be expressed in Equations (2.4 - 2.7). Beyond the exit, the

gas expands rapidly and the properties are identical to the ones observed for the

straight nozzles. However, differences can be observed in the conditions upstream of

the nozzle outlet. Figure 6.8 shows the Mach number variation across the centerline,

calcutated for the converging nozzle. The flow experiences an acceleration as it en-

ters the converging section. The velocity increases gradually reaching M = 1 at the

minimum cross section which is also the exit.
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Figure 6.7. Pressure and velocity contours for the converging nozzle.
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Figure 6.8. Mach number variations across the centerline for the converging nozzle.
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6.2 Particle phase

In order to study the particle trajectories for particle diameters of various sizes

in the micron-submicron range, particle streams were initialized in the steady state

solution of the single phase under-expanded jet. The particles were initialized uni-

formly across the inlet of the domain. A uniform value of particle diameter dp has

been used for each simulation. The range of dp varies from 0.1-10 µm. The particle

drag force was calculated using the Stokes-Cunningham correction factor to account

for effects due to rarefaction. The width of the particle beams is been measured for

dp ranging from 0.1 µm to 10 µm. The extent of spread for each value of dp has

been measured in terms of the radial distance of the particles from the centerline,

using a probability density function (PDF). A PDF is a function that describes the

probability of an event to occur at a given point. In this case, the Weibull PDF [48]

shall be used to predict the probability of a particle of a given diameter to be spread

within a particular distance from the centerline. The Weibull probability distribution

function is given by the following expression:

f(x, c, k) =


k
c
(x
c
)k−1e−(x

c
)k x ≥ 0

0 x < 0

(6.1)

where k is the shape parameter and c is the scale parameter of the function. Both

are defined as follows:

k =

(
σ

µ

)−1.086

(6.2)

c = µ

(
0.568 +

0.433

k

)− 1
k

(6.3)

where σ is the standard deviation of the range of data and µ is it’s mean.

The accuracy of the PDF can be verified by comparing it with a histogram of

the same data. The histogram measures the frequency of occurance of a particular

event. In this case, the histogram would measure the frequency of radial position
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Figure 6.9. Histogram

of the particle to fall in a range. The events, i.e. the range of the radial distance

from the centerline is divided into number of equally sized bins. Figure 6.9 shows a

histogram plotted for 100, 000 particles along with a Weibull PDF for the data.
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6.2.1 Particle focusing by a straight nozzle

The particle trajectories for values of dp = 0.1 µm, 1 µm and 5 µm calculated

by the Cunningham correction factor, Cc can be seen in Fig 6.10. The width of the

particle beams can be clearly seen to varying for each value of dp. This variation for

the entire range of dp used is being plotted using a Weibull PDF in Fig 6.11.

As the air from the reservoir conditions enters the nozzle, it forms a vena-contracta

region at the inlet. The flow experiences a sharp acceleration due to the sudden change

in area. The response of the particles in the flow to this acceleration varies for every

value of dp. The smallest particles that are suspended in the air have a dp = 0.1 µm.

They remain closely coupled with the gas streamlines as the flow enters the nozzle.

After passing through the vena-contracta region, they continue to follow pathlines

parallel to the axis. As the flow expands rapidly to the extremely low back pressure

Pb, the particles again closely follow the streamlines and form wide beams in the

expansion chamber. As the value of dp approaches 1 µm, the particles are focused

very close to the axis. For dp = 1 µm, the particle beam remains tighly focused close

to the centerline. As dp rises above 1 µm, the particles tend to cross the centerline

at a point very close to the nozzle exit. This results in increasing width of the beams

downstream. This behavior is because of the particles having St � 1. Such behavior

for particles having a higher St has been observed by Fernandez de la Mora et al [15]

in their experimental investigation of focusing aerosol beams in a thin plate impact

separator. Due to the extremely narrow distribution for dp = 1µm, the PDF figure

for their positions is plotted separately in Figure 6.11(a). The PDFs for the other

sizes of dp are plotted in Figure 6.11(b).

The focusing performance of a particular nozzle geometry can be characterized by

the value of St for optimally focused particle diameter, dp. The approximate values of

St (Equation 2.2) based obtained assuming sonic gas velocity at the inlet are provided

in Table 6.2.1.
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Table 6.1. St at nozzle inlet

dp(µm) Stokes Number,
St

0.1 0.0209

0.2 0.0487

0.4 0.1312

0.7 0.3287

1 0.6156

2 2.2110

5 12.8805

The particle pathlines in Figure 6.10 also represent the translational velocity of the

particles Up, as a function of their position. Even though the particles are initialized

with an initial velocity Ui = 0, the magnitude of their velocity in the nozzle and the

under-expanded jet varies for every value of particle diameter. For dp = 0.1µm, the

particle velocity remains closely coupled to that of the gas phase. As they enter the

nozzle, they experience a sharp acceleration to a value of Up ≈ 300m/s. As the jet

exits from the nozzle, the particles exprerience further acceleration to a maximum

value of Up ≈ 550m/s. This velocity is reached at a distance approximately equal to

the diameter of the nozzle. The particles lose some velocity as the cross the Mach

disc.

Particles with dp = 1µm experience the similar trend of acceleration in the nozzle

and in the expansion chamber. However, the magnitude of Up reached is lower than

that attained for dp = 0.1µm throughout the flow. A maximum value of Up ≈ 350m/s

is reached outside the exit of the nozzle. The presence of the Mach disc does not seem

to have any influence on the velocity of the particles.
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For dp = 5µm, the maximum velocity drops further. The acceleration experienced

by these particles at the nozzle inlet is lower than that observed for the smaller

diameters. Even as they leave the nozzle, the maximum Up attained remains on the

order of 150m/s.
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(a)

(b)

(c)

Figure 6.10. Pathlines for (a) dp=0.1 µm, (b) dp=1 µm and (c) dp=5 µm for the
straight nozzle. The legend represents velocity of the particle trajectories.
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Figure 6.11. Weibull PDF for particle focusing by the straight nozzle
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6.2.2 Particle focusing by a convergent nozzle

Fig.6.12 shows the particle pathlines obtained by a convergent nozzle. The focus-

ing performance of the convergent nozzle is less efficient than the one obtained by the

straight nozzle for the identical range of dp. The acceleration experienced by the gas

at it enters the convergent section of the nozzle is less rapid compared to the straight

nozzle. Therefore the tendency of the particles to separate from the gas streamlines is

lesser. The distribution of the particle beam around the centerline has been measured

using a Weibull PDF and plotted in (Figure 6.14).

Smaller particles that remain closely coupled to the gas streamlines due to their

low inertia, closely follow the nozzle geometry. However for dp ≈ 1µm, the particles

impact on the converging section. This collision results in the random crossing of the

centerline by these particles, preventing the formation of continous particle beams

in the downstream region (Figure 6.13). Particles that cross the centerline at wide

angles approach the walls of the expansion chamber.

The particle velocity Up can also be observed from the pathlines in Figure 6.12. A

similar trend of Up varying with the particle diameter can be seen. The maximum ve-

locity attained by the respective particles in the expansion chamber is approximately

equal to that attained by the straight nozzle. However, the acceleration experienced

by the particles inside the converging section is not the same as for the straight nozzle.
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(a)

(b)

(c)

Figure 6.12. Pathlines for (a) dp=0.1 µm, (b) dp=1 µm and (c) dp=5 µm for the
convergent nozzle case. The legend represents velocity of the particle trajectories.
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Figure 6.13. Enlarged view of particles having dp = 5µm crossing the centerline
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Figure 6.14. Weibull PDF for particle focusing by a convergent nozzle
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6.3 Conclusion

The particle trajectories calculated using CFD demonstrate that the straight noz-

zle geometry is more efficient towards focusing particles in an under-expanded free

jet. The focusing is obtained for a very narrow range of particle diameters, which

is of the order of 1 µm for the straight nozzle applied here. This performance can

be characterized by an optimum Stokes number in the order of 0.6. Experimental

results by Fernandez de la Mora et al [15] observed optimum focusing Stokes number

in the similar range. The width of this particle beam is less than 0.1% of the nozzle

diameter. Similar results were obtained by Fernandez de la Mora [15]. Dahneke and

Chang [8] observed best focusing for particles with an optimum value of an inertia

parameter ‘β’ which is closely related to the Stokes number.

The focusing performance of the sharply converging nozzle is much less efficient

than the one obtained for the straight nozzle. Even though the expansion of the gas

from the reservoir pressure to the rarefied background pressure is largely independent

of the nozzle geometry, the optimum separation of particles seems to be dependent to

a great extent on the nozzle inlet conditions. By providing a high acceleration to the

flow at its inlet due to the sudden change in cross-sectional area, the straight nozzle

is better suited for this application than the converging nozzle. Moreover, straight

nozzles are easier to design and fabricate.

The particles that are tightly focused along the centerline can be separated from

the rest of the flow by using apparatus like a skimmer or a probe placed coaxially.

Most researchers note that the ideal position for such a skimmer would be at a distance

upstream of the Mach disc [39, 40]. Moreover, additional focusing has been observed

to have been brought about by the skimmers due to the inertial effects experienced

at their inlets.
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We thereby conclude that aerodynamic separation of particles offers a very ef-

fective and simple way to separate and collect particles belonging to the sub-micron

range.
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