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ABSTRACT 
 

TECHNO-ECONOMIC ANALYSIS OF HYDROGEN FUEL CELL SYSTEMS USED 

AS AN ELECTRICITY STORAGE TECHNOLOGY IN A WIND FARM WITH HIGH 

AMOUNTS OF INTERMITTENT ENERGY 

 

 FEBRUARY 2013 

Yash Sanghai, B.S.M.E, UNIVERSITY OF MUMBAI, INDIA 

M.S.M.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Erin Baker 

With the growing demand for electricity, renewable sources of energy have 

garnered a lot of support from all quarters. The problem with depending on these 

renewable sources is that the output from them is independent of the demand. Storage of 

electricity gives us an opportunity to effectively manage and balance the supply and 

demand of electricity. Fuel cells are a fast developing and market capturing technology 

that presents efficient means of storing electricity in the form of hydrogen. The aim of 

this research is to study the impact of integrating hydrogen fuel cell storage system with a 

wind farm to improve the reliability of the grid for allowing higher penetration of 

renewable energy sources in the power system. The installation of energy storage systems 

strongly depends on the economic viability of the storage system. We identified four 

types of fuel cells that could be used in a hydrogen fuel cell storage system. We bring 

together a range of estimates for each of the fuel cell systems for the economic analysis 
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that is targeted towards the total capital costs and the total annualized costs for the 

storage system for individual applications like rapid reserve and load shifting. We 

performed sensitivity analysis to determine the effect of varying the rate of interest and 

cost of fuel cell on the total annualized cost of the storage system. Finally, we compared 

the costs of hydrogen based storage system with other storage technologies like flywheel, 

pumped hydro, CAES and batteries for the individual application cases.  
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CHAPTER 1 

OVERVIEW 

Energy storage when implemented in a wind farm would allow us to stabilize the 

grid and at the same time balance the supply and demand of electricity.  As per the 

International Energy Agency, in four years from 2004-2008, there was a 5% increase in 

world population, 10% increase in annual CO2 emissions and a 10% increase in gross 

energy production [1]. High-energy consumption and the ever-increasing population are 

the main reasons for rapid diminishing of fossil fuels. Also, fossil fuel consumption, 

especially those based on oil and coal, is the major contributor in increasing carbon 

dioxide concentration in the atmosphere, thereby increasing the threat of global warming. 

Climatic change is considered as a serious threat due to its possible impact on the 

environment and vital processes like food production. Thus, research on reliable 

renewable energy systems has gained a lot of impetus. 

Due to the stochastic nature of wind and solar based electricity production, 

economically and technologically sound electricity storage systems would help in the 

widespread deployment of such renewable sources of energy. Hydrogen fuel cells have 

shown promising results in the research community so far as a way to store electricity. 

Storage of renewable energy would add value to the electricity supplied by the grid, by 

making it predictable and by balancing out peaks within a day cycle. Load management 

would help in extracting the most out of the existing network and making the grid more 

reliable however the cost of storage has to be considered.  
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The next section of the report comprises of an overview of fuel cell technology 

followed by the classification of various hydrogen fuel cells. The third section presents a 

background and summary of various studies on which this study is built. In the fourth 

section we discuss how and why fuel cells can be used in conjunction with wind as a kind 

of energy storage device. The fifth and sixth sections describe the process of production 

and storage of hydrogen on a wind farm and the characteristics of storage technologies 

respectively. Section seven consists of the economics related to the storage of electricity 

using fuel cells followed by the sensitivity analysis to study effect of varying the interest 

rate and cost of fuel cell system on the total annualized cost of the fuel cell. We also 

compare the cost of fuel cell storage system to 8 other storage technologies for individual 

applications like rapid reserve and load shifting in section seven. The conclusions on our 

findings are summarized in section eight. 
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CHAPTER 2 

FUEL CELL TECHNOLOGY 

2.1 Introduction 

This section provides an overview of fuel cell technology followed by a 

classification of hydrogen fuel cells. 

A fuel cell is a galvanic cell that efficiently converts chemical energy to electrical 

energy and useful heat. Stationary fuel cells can be used for backup power as well as 

distributed power. Modularity of fuel cells makes them useful for almost any portable 

application that typically uses batteries. Fuel cells have proved to be very effective in the 

transportation sector from personal vehicles to marine vessels.  

There are two important types of fuel cells, namely, hydrogen fuel cells and 

microbial fuel cells. This study will be focused on hydrogen fuel cells. These fuel cells 

directly convert the chemical energy in hydrogen to electricity. The only by-products of 

this reaction are pure water and useful heat. Hydrogen fuel cells are more efficient than 

traditional combustion engines and are pollution free, given that one has a source of 

hydrogen. A traditional combustion power plant is 33% - 35% efficient in generating 

electricity, whereas fuel cells have been known to be 60% efficient without cogeneration 

[2]. In addition to that, fuel cell engines have fewer moving parts when compared to a 

traditional combustion engine, and this helps in their quieter operation. 

2.2 Working of Fuel Cell 

Figure 1 shows the basic working principle of a hydrogen fuel cell. It consists of 

two electrodes separated by an electrolyte. When hydrogen gas, in channels, flows to the 
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anode, a catalyst (usually platinum based) causes the hydrogen molecule to split into 

protons and electrons. These electrons follow an external circuit to the cathode, whereas 

the protons get conducted through the electrolyte. This flow of electrons through the 

external circuit is the produced electricity that can be used to do work. 

 

 

Figure 1: Working of a fuel cell (www.grc.nasa.gov) 

 

2.3 Classification of Hydrogen Fuel Cells 

In this section, we will be discussing the classification criterion of hydrogen fuel 

cells followed by a detailed description of each hydrogen fuel cell. Table 1 provides us 

with the classification of the types of hydrogen fuel cells that are currently in use and 

development. Fuel cells are usually classified depending on the electrolyte that is used in 

them, with one exception: the direct methanol fuel cell in which methanol is directly fed 

to the anode in the course of the reaction. Methanol acts as a fuel in these types of fuel 
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cells eliminating the need to reform the fuel to hydrogen. Fuel cells can also be classified 

on the basis of operating temperature for the fuel cell. Alkaline fuel cells, Polymer 

electrolyte membrane fuel cell, direct methanol fuel cell and Phosphoric acid fuel are low 

temperature fuel cells: the operating temperature is below 220°C. Molten carbonate fuel 

cells and Solid oxide fuel cells are high temperature fuel cells, with an operating 

temperature of around 600-1000°C.  

Table 1: Classification of fuel cells [3] 

Fuel Cell Type Operating 
Temperature 

(°C) 

System Output Efficiency Application 

 

Polymer 
Electrolyte 

 

50-100 

 

1kW – 250kW 

53-58% 
(transportation) 

25-35% (stationary) 

Backup Power, 
Portable Power, 
Transportation, 

Small Distributed, 
Generation 

 

Direct Methanol 

 

60-90 

 

1W – 100W 

 

25-35% 

 

Small Portable 
Power 

 

Alkaline 

 

90-100 

 

10kW – 
100kW 

 

60% 

 

Military, Space 

 

Phosphoric Acid 

 

150-200 

 

50kW – 1MW 

 

>40% 

 

Distributed 
Generation 

 

Molten Carbonate 

 

600-700 

 

1kW – 1MW 

 

45-47% 

Large Distributed 
Generation, Electric 

Utility. 

 

Solid Oxide 

 

600-1000 

 

1kW – 3MW 

 

35-43% 

Auxiliary Power, 
Large Distributed 

Generation, Electric 
Utility 
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All the fuel cells mentioned above follow the same working principle as explained 

in section 2.1. For example in a PAFC, when hydrogen (fuel) and air (oxygen) are 

introduced at the anode and cathode gas chambers, they dissolve in the electrolyte and 

diffuse to the electrocatalyst (Polytetrafluoroethylene) sites in the electrodes where the 

following reactions take place. The catalyst strips the electrons from the hydrogen at the 

anode. Positively charged hydrogen ions migrate to the cathode through the electrolyte 

and electrons follow the external circuit where they can be used to perform useful work. 

 Table 2 below shows us the electrochemical reactions that take place in the fuel cell. A 

discussion of these fuels is presented later in this section.  

Table 2: Electrochemical reactions in fuel cells 

Fuel Cell Anode reaction Cathode reaction Overall reaction 

Polymer 

Electrolyte 

𝐻!   → 2𝐻!   + 2𝑒! 1
2   𝑂!   + 2𝐻

! +   2𝑒!   

→   𝐻!𝑂 

𝐻! + 1 2𝑂! →   𝐻!𝑂 

Direct 

Methanol 

𝐶𝐻!𝑂𝐻 +   𝐻!𝑂  

→ 6𝐻! +   6𝑒! +   𝐶𝑂! 

3
2𝑂! +   6𝐻

! + 6𝑒!   

→ 3𝐻!𝑂 

𝐶𝐻!𝑂𝐻 +   3 2𝑂!   

→ 2𝐻!𝑂 

Alkaline 𝐻! +   2𝑂𝐻!   

→ 2𝐻!𝑂 + 2𝑒! 

2𝐻!𝑂 +   𝑂! +   4𝑒!

→ 4𝑂𝐻! 

2𝐻! +   𝑂!   → 2𝐻!𝑂 

Phosphoric 

Acid 

𝐻!   → 2𝐻!   + 2𝑒! 1
2   𝑂!   + 2𝐻

! +   2𝑒!

→   𝐻!𝑂 

𝐻! + 1 2𝑂!   →   𝐻!𝑂 

Molten 

Carbonate 

𝐻!   +   𝐶𝑂!!!   

→   𝐻!𝑂 + 𝐶𝑂! +   2𝑒! 

1
2𝑂! +   𝐶𝑂! +   2𝑒

!   

→ 𝐶𝑂!!! 

𝐻! +   1 2𝑂!

+   𝐶𝑂! 𝑐𝑎𝑡ℎ𝑜𝑑𝑒

→   𝐻!𝑂 + 𝐶𝑂!(𝑎𝑛𝑜𝑑𝑒) 

Solid Oxide 𝐻! +   𝑂!!   →   𝐻!𝑂 + 2𝑒! 1
2   𝑂! +   2𝑒

!   →   𝑂!! 𝐻! +   1 2   𝑂!   →   𝐻!𝑂 
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2.3.1 Polymer electrolyte membrane fuel cell (PEMFC) 

In this section we discuss the polymer electrolyte membrane fuel cell (also known 

as proton exchange membrane fuel cell). We start with a basic introduction of the fuel 

cell followed with the specifics of the electrodes and electrolyte used in the PEMFC. 

PEMFC are a type of the low temperature fuel cell with an operating temperature 

in the range of 85°C - 105°C. The low temperature operation delivers high current 

density and high power density. This allows the cell to have a compact design, 

lightweight and faster response time when compared to other fuel cells. 

• Cell components for PEMFC 

As the name suggests, a solid proton exchange membrane is used as electrolyte in 

a PEMFC. The proton conducting membrane is an important component of the fuel cell. 

Using a solid electrolyte has its advantages. The sealing of the anode and cathode gases 

becomes easier, which in turn makes the manufacturing economical. Unlike liquid 

electrolytes, solid electrolytes are less prone to corrosion allowing the system to have 

longer cell and stack life. Figure 2 here shows the working of a PEMFC. Platinum 

impregnated porous gas diffused electrodes are usually used in PEMFC’s to ensure the 

regular supply of reactant gases to the system. The back of the electrodes is coated with 

polytetrafluoroethylene (PTFE) that provides a waterproof path for diffusion of gas to the 

catalyst. The gas supply, the catalyst particle, and the ionic conductor form a three-phase 

boundary. 
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Membranes usually operate in a very limited temperature range. Nafion®is the 

most studied membrane in the PEMFCs [3]. Membranes in this fuel cell are generally 

filled with water that keeps the conductivity high. Thus, water management becomes 

major issue in the fuel cell. Solidifying the gases coming into the fuel cell can solve this 

problem.  

 

Figure 2: Polymer Electrolyte Membrane Fuel Cell* 

*http://www.ballard.com/about-ballard/fuel-cell-education-resources/how-a-fuel-cell-works.aspx 

 

2.3.2 Phosphoric acid fuel cell (PAFC) 

In this section we discuss the Phosphoric Acid fuel cell. We start with a basic 

introduction of the fuel cell followed with the specifics of the electrodes and electrolyte 

used in a PAFC.  
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The phosphoric acid fuel cell is a low temperature fuel cell with an operating 

temperature of about 200 ºC. It is the most advanced fuel cell system with its main 

application in stationary power plants. PAFC is amongst the first few commercialized 

fuel cell technology with worldwide installed capacity of 75 MW [23]. These cells are 

expected to find a position in the market for applications of about 1 MW as they are very 

reliable and can be used for cogeneration of low-temperature steam. 

 

• Cell components for PAFC 

Figure 5 below shows the general working of a PAFC. Electrodes of a PAFC are 

Pt bonded PTFE (Polytetrafluoroethylene). At the cathode, relatively higher loading of Pt 

is necessary for the oxygen reduction reaction [3, 55]. It was the development of 

supported platinum electrocatalysts that helped to reduce the platinum loading. In recent 

times, platinum supported carbon black electrodes are also used along with the porous 

PTFE electrode structure as electrocatalyst [25]. The carbon not only increases the 

conductivity of the electrodes but it also help in dispersing the Pt catalyst and ensuring 

the proper utilization of the catalyst [33].  

Phosphoric acid is used as the electrolyte in the PAFC. The ionic conductivity of 

phosphoric acid is low at low temperatures, thus PAFC’s are operated in temperature 

range of 150 - 200 ºC. In the beginning diluted PAFC was used to avoid the corrosion of 

the cell elements, but with the advent in technology and with development of better 

materials 100% concentrated acid is used. The higher the concentration of the acid, 
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higher is the conductivity of the electrolyte. Operating temperature and concentration of 

the acid have increased in order to achieve better performance. 

 

Figure 3: Phosphoric Acid Fuel Cell (http://corrosion-doctors.org/FuelCell/pafc.htm) 

 

2.3.3 Molten carbonate fuel cell (MCFC) 

In this section we discuss the Molten Carbonate fuel cell in detail. We start with a 

basic introduction of the fuel cell followed with the specifics of the electrodes and 

electrolyte used in a MCFC. 

The molten carbonate fuel cell is a high temperature fuel cell having an operating 

temperature of about 600 - 700°C. The high temperatures are needed to improve the 

conductivity of its carbonate electrolyte and still work with low cost metal cell 

components. The high temperature also improves the oxidation - reduction processes at 
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the electrodes. The high temperature has two major disadvantages. It places a great 

demand on corrosion stability of the cell and it adversely affects the life span of the cell 

components. MCFCs have proven to attain an electrical efficiency of approximately 50%. 

• Cell components for MCFC 

Figure 4 below shows the working of a MCFC. Electrodes for a MCFC are 

usually made from Nickel. The cathode for MCFC is made of Nickel Oxide (NiO) and 

Ni-Al or Ni-Cr alloys [3, 10, 55]. The problem with nickel oxide cathodes is that particles 

of nickel oxide creep into the molten carbonate over a period of time which reduces its 

conductivity. Hence, lithium oxide material in combination with nickel oxide is used to 

avoid this problem. Nickel oxide is used because it is very active at high temperatures for 

oxygen reduction which eliminates the need for a Pt based catalyst.  

The electrolyte used in the MCFC is alumina based and it is in the form of a 

stabilized matrix. Till the 1990’s, the electrolyte was prepared by fabricating it into a tile 

using a hot pressing process. Nowadays tape casting methods are used for the preparation 

of the matrix. Ceria based electrolytes with better stability at higher temperatures are 

being used as electrolyte, but ceria-based materials are very expensive. Thus, mixtures of 

lithium and potassium carbonate salts that melt at high temperatures are also being 

considered [23].  
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Figure 4: Molten Carbonate Fuel Cell (http://www.fctec.com/fctec_types_mcfc.asp) 

2.3.4 Solid oxide fuel cell (SOFC) 

In this section we discuss the Solid Oxide fuel cell. We start with a basic 

introduction of the fuel cell followed with the specifics of the electrodes and electrolyte 

used in a SOFC. 

The SOFCs are the latest entry to the high temperature fuel cells with an operating 

temperature of 1000°C. SOFCs are a two-phase gas-solid system, which is a major 

advantage over other fuel cells i.e. the absence of a liquid electrolyte eliminates the need 

for elaborate systems for water management or flooding of the catalyst layer. SOFCs 

have demonstrated high power densities that help in the compact designing of its system. 

Due to the operating condition of the system, special materials are required to withstand 

the high operating temperature. Thus, the development of low cost ceramic structures 

(which would work efficiently under such high temperatures) is the key to commercialize 

SOFCs. 
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• Cell components for SOFC 

Figure 7 below shows the basic working of a SOFC. The electrodes in the SOFCs 

have to perform under severe operating conditions. Thus, right from the beginning LSM 

(Lanthanum Strontium Manganite) cathodes have been used, since they are stable under 

SOFC operating temperatures and show high activity for oxygen reduction at high 

temperatures. The anodes of the SOFCs are Ni based usually Ni-Zr (nickel – zirconia 

cermet). Applying a thin layer of zirconia particles improves the conductivity and 

stability of the electrodes [3, 10]. 

The SOFCs use solid oxide ceramics, usually perovskites, as the electrolyte that 

operates at temperatures as high as 1000°C. Electrolytes supported with Zirconium oxide 

(ZrO2) have proven to be highly conductive and stable [3]. Compared to other cell 

components, the electrolyte layer exhibits high ionic and low electronic conductivities. 

The solid state character of the SOFCs, enable us to shape the cell according to the type 

of application. Also the solid electrolyte eliminates the need of a water management 

system (like in PEMFC) and helps in avoiding the corrosion of cell components. But due 

to the high temperature of the SOFCs, it is difficult to find suitable materials that would 

have the necessary thermal and stability properties. Thus, it is one of the major 

contributors to the cost of SOFC.   
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Figure 5: Solid Oxide Fuel Cell (http://corrosion-doctors.org/FuelCell/sofc.htm) 

2.3.5 Other fuel cell technologies  

In addition to the fuel cell technologies described above, there are other fuel cell 

technologies that had importance in the past, or are an important future option. In this 

section we briefly describe these fuel cell technologies and give some reasoning for not 

including them in our study. 

Alkaline Fuel cell is a low temperature fuel cell that was amongst the first fuel 

cells to be used in the Apollo space missions that led to its application in the European 

Hermes Project [3, 4]. The AFC uses aqueous solution of potassium hydroxide as 

electrolyte and Pt-Co (Platinum-Cobalt) and Pt-Pd (Platinum Palladium) alloys 

electrodes. Major operating constraints for AFCs are that they work well only with pure 

gases and it requires for low carbon dioxide concentrations in the feed.  
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AFC’s are known to have the highest electrical efficiency among fuel cells, but 

interest in these types of fuel cells has diminished over the years as they were considered 

too costly for commercial applications and also there are no significant advantages over 

PEMFCs.  

Direct Methanol fuel cells are actually a subset of Polymer electrolyte membrane 

fuel cells, and are typically used for small portable applications having low operating 

temperature.  Methanol is directly fed to the anode in these fuel cells. This eliminates the 

need for a fuel reformer to convert the fuel to hydrogen. This makes the DMFC a very 

promising candidate for portable power sources, electric vehicles and transportation 

application. The working of a DMFC is similar to that of the PEMFC and it also uses a 

selective membrane as its electrolyte.  

The DMFCs are typically used for small portable applications having low 

operating temperatures. Thus, it is highly unlikely that these types of fuel cells could be 

used in a wind farm for storage purposes. 
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CHAPTER 3 

BACKGROUND 

3.1 Literature review 

In this section we present a summary of reports and papers on which this study 

builds. An up to date review of several storage technologies for wind power applications 

is presented in [48, 49, 50]. The review includes the state of technology as well as issues 

related to installation and challenges of storage systems. They discuss the external factors 

like geographical limitations and mineral availability that may affect the widespread 

implementation of storage technologies. Although they do not focus on the economics of 

the system, their focus is on applicability of various storage technologies for large scale 

integration.  

Reports published by the National Renewable Energy Laboratory ([34], [35], 

[36]) review in detail various technical scenarios and cost optimization for wind-

hydrogen systems. The 2006 report [34] brings across the opportunities for renewable 

hydrogen i.e. production of hydrogen by renewable energy sources. The aim of this report 

was to study production of renewable hydrogen from wind so that it could become a 

viable production method for transportation fuel in the future.  This included production 

of hydrogen at wind site and delivery to the point of use and also production of hydrogen 

at point of use using the wind energy transported through the electric grid from various 

wind farms. Both these analyses concluded that in order to optimize the hydrogen 

production from wind energy, the electricity and hydrogen production needed to be 

examined as an integrated system.   
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The 2008 report [35] was an electrolyzer study that focused on identifying the 

areas for improvement in the production of hydrogen at wind farms via electrolysis. The 

study provided a cost analysis of the state of the art electrolyzer technology that were 

already available or being developed. It focused on a single segment of the process for 

analysis so that a better picture of each stage of the process can be drawn. The 2011 

report [36] is the latest cost study of wind to hydrogen systems that builds on earlier cost 

studies. In the analysis it considered the technical requirements of a large scale wind 

electrolysis system and optimized sizing of system components for a particular hydrogen 

output. The study inferred a correlation between the wind site capacity factor and the cost 

of hydrogen i.e. higher wind capacity factors correlate to lower hydrogen costs even at 

sites with lower average wind speeds.  

Although all these studies were mainly focused on production of hydrogen at 

wind farms, they do present the option of wind to hydrogen based storage systems for 

improving the reliability of the grid and for maximum penetration of renewable sources 

of energy. Although the economics of the hydrogen storage system were not included in 

the scope of the research, they infer that the capital cost of the system is a significant 

factor that hinders the integration of the hydrogen storage system. According to the 

reports, combining energy storage and production of hydrogen at wind farms could 

present economic and environmental benefits that were not explored in these studies.  

There have been studies ([38], [43], [44], [46], [47], [66]) that have reviewed the 

viability of renewable hydrogen. WindHyGen was developed in [38]. It is a computer 

tool to conduct economical assessment of hybrid wind hydrogen system. The model was 
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guided by a management policy to derive maximum profits from energy sales i.e. sell as 

much energy as possible when the prices were higher and to store energy, in the form of 

hydrogen, when prices were lower. Wind energy and hydrogen storage power system is 

proposed for Corvo Island in Azores in [46]. The aim of the study was to decarbonize the 

power supply system of the island in order to reduce the harmful emissions and to reduce 

the cost incurred in transporting fuels as it is a small island that is exclusively dependent 

on imported fuel. The study introduced hydrogen as a storage medium and wind energy 

as an additional electricity production source. Future competitiveness of renewable 

hydrogen in environmental and economic aspects is discussed in [43, 44]. In these 

studies, the analysis was aimed at identifying the best energy policy for maximum 

penetration of hydrogen in the competitive fuel market. Integrated hydrogen production 

and utilization strategy of a PEMFC power plant is studied in [47]. The economic model 

was developed as a cost optimization problem subject to system and operational 

constraints. The model was used to determine the optimal operational strategy that would 

yield the minimum operating costs. The possibility of production of hydrogen by wind 

power for maximum wind energy penetration is investigated in [66]. There were two 

objectives of the research, the first one was to study the economics of an electrolysis unit 

in a wind farm to see if hydrogen could be technically and economically produced by 

wind energy and the second objective was to thermodynamically analyze the hydrogen 

and electricity production cycle for the same unit.  

Almost all the studies mentioned above consider hydrogen fuel cells as a single 

technology and do not explore their individual types. They focus more on cost of 

produced hydrogen and electricity and do not focus on the capital costs and the 
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annualized costs incurred for hydrogen based storage system in a wind farm. The aim of 

this thesis is to explore 4 hydrogen fuel cell technologies (PEMFC, PAFC, MAFC and 

SOFC) that could be used in the storage system in a wind farm. We bring together a 

range of estimates for each of the fuel cell systems for the economic analysis that is 

targeted towards the total capital costs and the total annualized costs for the storage 

system for individual applications like rapid reserve and load shifting. We also perform 

sensitivity analysis to determine the effect of varying the rate of interest and cost of fuel 

cell on the total annualized cost of the storage system. Finally, we compare the costs of 

hydrogen storage system with other storage technologies like flywheel, pumped hydro, 

CAES and batteries for the individual application cases.  
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CHAPTER 4 

FUEL CELL AS AN ELECTRICITY STORAGE DEVICE 

4.1 Introduction 

In this section, we answer two questions ‘how can fuel cells be used as a storage 

technology?’ followed by ‘why is storage necessary?’  

 

Figure 6: Hydrogen fuel cell storage system concept 

Figure 6 above presents the concept of a storage system based on hydrogen fuel 

cell technology. The main idea of integrating a storage system with a wind farm is that 

the combined output supply of the entire system would be more constant. Thus not only 

does it supplement the grid but it also helps in the widespread deployment of wind and 

other renewable sources of energy. The reason for using hydrogen fuel cells as an 

electricity storage technology in a wind farm is the possibility of using the off peak 

electricity produced in the wind farm to produce hydrogen. This hydrogen can be stored 

and later be used to produce electricity on demand. For a fuel cell to be used as a storage 

device it has to be combined with an electrolyzer. This system is termed as a regenerative 
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fuel cell system. An electrolyzer is a device that uses electricity to perform electrolysis of 

water to produce hydrogen (and oxygen) gas that can be stored. This stored hydrogen fuel 

will be used to produce electricity when required by using the fuel cell. This system can 

provide full back up power for an extended time period depending on the hydrogen 

storage capacity of the system, unlike storage of electricity in batteries.  

4.2 Why is storage necessary? 

Electricity storage plays a pivotal role in the power market. Although there are no 

economical methods of storing electricity directly, it can be stored in other forms and can 

be converted back to electricity as the need arises. Storage not only improves the 

reliability of electricity supply but it also increases the efficiency of existing power plants 

and transmission facilities and reduces the investment required in these facilities. 

Storage systems based on fuel cell technology permit the separation of the 

electricity storage and power conversion functions of the system. Thus, each of these 

functions may be optimized individually for performance, cost or other installation 

factors. The separation of each of the functions, for optimization, enables the storage 

system to provide significant benefits for its applications [7]. Storage systems have found 

application in the entire chain of the electrical system, from supporting the generation of 

electricity to transmission and distribution of electricity and to support the end customer 

applications. These multiple roles at times coincide with the area of the grid they will 

support. 

The following section is synthesized from Energy Storage systems papers 

published by Ibrahim et al. [16] the Sandia report [15], Piyasak et al. [18], Makansi et al 
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[31] and Rastler et al [32].  

4.2.1 Support for renewables 

One of the greatest challenges faced by the world today is to harness and deliver 

the almost limitless amounts of renewable energy resources available to us. Development 

of these sources not only helps the environment but also improves energy security. 

However, these renewable sources of energy have two major problems.  

Firstly, the potential power generation sites are far from the load centers. 

Although generating facilities for harnessing wind energy can be constructed in less than 

a year, new transmission facilities take longer (upwards of 7 years) to build these 

transmission assets. The second problem is that most of the power that is generated at 

these generating units is produced when there is low demand for it so that it can be 

supplied later. Thus, storage technologies would make the development of renewable 

sources far more cost effective, by increasing the value of electricity generated using 

renewable energy sources. Storage of electricity would reduce the fluctuations in the 

output of wind power thereby making it more reliable and readily available in times of 

peak demand [16].  

Figure 9 below describes the electricity production in a wind farm in 24 hours. It 

is evident that there is significant fluctuation in instantaneous power available during the 

day cycle. Thus, if electricity is stored during off peak hours and used during peak 

demand, renewable energy sources can be supported. 
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Figure9: Power generation on March 16, 2004 at Cap-Chat wind farm (Canada) [16] 
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CHAPTER 5 

PRODUCTION AND STORAGE OF HYDROGEN IN A WIND FARM 

5.1 Production of hydrogen from electrolysis 

In this section we discuss the production of hydrogen by electrolysis in a wind 

farm. The electrolyzer, similar to a fuel cell, is an electrochemical cell which produces 

hydrogen and oxygen from water when supplied with sufficient amount of electricity. 

Electrolysis was amongst the most popular techniques for hydrogen production before 

steam reforming processes were introduced [21]. We will focus on electrolysis because 

the electricity produced by wind is efficient and emission free. 

The electrolyzer consists of water, which is the electrolyte, sandwiched between 

two oppositely charged electrodes, made of chemically inert conductors such as platinum. 

The electrodes are made from chemically inert conductors, to avoid unwanted reactions 

with the hydrogen or oxygen ions. When current is passed through water, the positively 

charged hydrogen ions gets attracted to the negatively charged cathode and similarly, the 

positively charged oxygen ions migrate towards the anode. The reaction at the anode is:  

 

The reaction at the cathode is: 

 

Therefore, the overall reaction is: 

 

−+ ++→ eHOH 4402 22

2244 HeH →+ −+

222 22 OHOH +→
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 Under ideal circumstances the electrolysis process requires 39.4kWh of and 8.9 

liters of water at normal conditions to produce 1kg of hydrogen. This is known as the 

higher heating value. This represents the higher heating value of hydrogen which 

includes the total amount of energy to dissociate water at normal conditions. In some 

cases, the lower heating value (LHV) of hydrogen is considered for efficiency 

comparison that is equivalent to 33.3kWh/kg of hydrogen. The system efficiency is 

calculated by dividing the heating value (LHV or HHV) by the actual energy input in 

kWh/kg [35].   

Only 4% of total hydrogen produced in the world is produced from electrolysis 

[21]. In the production of hydrogen using electrolysis we realize that the driving cost of 

the process is the cost of electricity. Thus, using off peak electricity would help in 

lowering the cost of produced hydrogen.  

5.2 Bulk storage of hydrogen gas on a wind farm 

In this section we discuss bulk storage of hydrogen gas followed by the methods 

of storage. The storage technology used for hydrogen storage is determined based on 

storage capacity and the length of time the hydrogen is stored for. Thus, the cost of 

hydrogen storage depends on the technology used. Compressed gas, liquefied hydrogen, 

metal hydride and carbon based systems are major methods for hydrogen storage [21, 

23]. Underground storage in depleted oil or gas fields (or aquifers and evacuated rock 

caverns) can also be considered, although it is only a special case of compressed gas 

storage. Each of the methods have advantages and disadvantages. For example, if we 

need the hydrogen to have the highest energy density we store it as liquid hydrogen, but 
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this also requires an insulated storage container and an energy intensive liquefaction 

process. 

5.2.1 Compressed gas storage 

Storage of hydrogen in compressed gas form is the simplest storage solution. The 

only equipment it requires is a compressor and a pressure vessel [30]. The main problem 

with gaseous hydrogen is that it has poor energy density by volume and therefore it needs 

larger tank for storage. The capital and operating costs are directly proportional to the 

storage pressure. Thus, higher the storage pressure, higher is the capital and operational 

costs. Also, one of the major concerns with large storage vessels is the cushion gas that 

remains in the empty vessel at the end of the discharge cycle. A large variety of vessels 

are in operation today. The size of these vessels is limited by its materialistic 

characteristic to withstand high pressure as the thickness of the walls increases with 

increase in volume of the vessel. Cylindrical steel vessels with about 5 to 7 MPa are the 

most commonly used industrial storage method of hydrogen gas. About 6-7% of the 

stored energy is used up in compressing hydrogen. Technical lifetime of these vessels is 

approximated to be around 22 years [23]. 

5.2.1.1 Underground storage of gaseous hydrogen 

Storage of hydrogen underground is possible depending upon the geology of the area 

[30]. In general, caverns must provide containment of the gas. This is usually achieved by 

lining the cavern with steel or by using hydraulic pressure in the surrounding rock. Gas 

can be stored underground under pressure in formations like  

• Depleted oil fields 
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• Aquifers 

• Excavated rock caverns 

• Solution mined salt caverns. 

Underground storage of natural gas is very common. Helium, which diffuses faster 

than hydrogen has been stored underground successfully in Texas [30]. For underground 

storage of hydrogen gas, a large cavern or a porous rock with an impermeable caprock 

above is needed to contain the gas. This method is also vastly affected by the cushion gas, 

as mentioned for compressed gas storage, which occupies the underground storage 

volume at the end of the discharge cycle. 

Although underground storage has considerable economical advantages over storage in 

pressure vessels, there are a few issues that need to be addressed. These include 

subsidence, shrinkage of approximately 0.25% per year and deformation/breakage 

causing equipment damage. Hydrogen stored in caverns also requires a purification 

process before it can be used in fuel cells [29]. Thus, further research is required to 

ensure purity of the gas, hydrogen mobility in different rock types, hydrogen 

embrittlement, mixing of gases and the effect of hydrogen on rock properties. 
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CHAPTER 6 

CHARACTERISTICS OF FUEL CELL SYSTEMS 

6.1 Introduction 

Fuel cell systems have certain generic characteristics that make them favorable 

for electricity storage compared to other technologies. The purpose of this study is to 

critically analyze the fundamental characteristics of fuel cell systems and to check for 

their viability as an effective electricity storage technology. The key characteristics that 

we will consider are storage capacity, power transmission rate, discharge time, efficiency, 

durability, cost of the system, modularity, reliability and the siting flexibility of the plant. 

Storage capacity and duration are the major criteria that classify energy storage 

technologies For example, for a pumped hydro storage system, mass and height of 

waterfall determine the storage capacity, whereas the size of conduit and power of the 

turbine determine the maximum power available. The characteristics explained in this 

section have been classified into two groups, the ones that affect the performance of the 

whole system and the ones that don’t affect the performance of the system but still are 

very important characteristic of hydrogen fuel cell system when used as an electricity 

storage technology. The following characteristics are synthesized from [15, 16, 17]. 

The characteristics that affect the performance of the fuel cell storage systems listed 

below: 

6.2 Storage capacity 

Storage capacity can be defined as the total energy that is available in the storage 

system once it is fully charged. It is the quantity of energy available after a complete 
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charging cycle. The units of storage capacity are Watt-hour (W-h). The discharge cycle 

of a storage system is usually incomplete. Thus, the storage capacity is usually defined on 

the basis of the total energy stored Wst which is always more than the actual amount of 

energy retrieved Wut. The usable energy would be restricted to the minimum charge state, 

the state at which the system would need charging to continue operation. In times of 

quick discharge, the efficiency of the system deteriorates and the retrievable energy is 

much lower than the storage capacity. Thus, the storage capacity of a hydrogen fuel cell 

system depends upon the time of discharge. The aim is to design a system with storage 

capacity of 10MW-hr so that the storage system can supply 1MW power for 15 hours and 

upto 10MW power for an hour and a half depending on the need and application. 

6.3 Power transmission rate 

An important aspect of storing energy is to supplement the supply in case of peak 

demand. The power transmission rate may be defined as the delivery rate that determines 

the time required to extract the stored energy. Fuel cell systems have demonstrated fast 

response to demand which make them an alternative to shunt reactors and capacitors 

when connected to the grid [28]. The power transmission rate can be a limiting factor in 

deciding and designing the storage system. Power transmission rate depends upon the 

rate of reactions in the fuel cell, which in turn depend upon conditions like atmospheric 

pressure and temperature. Power transmission rate is proportional to discharge time.  

6.4 Discharge time 

Discharge time may be defined as time taken by the system for maximum energy 

discharge. The discharge time is dependent on the power transmission rate and the 
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minimum charge state, the state at which the system would cease to operate without 

recharging. It is expressed in units of time and can be calculated by the formula stated 

below: 

𝜏 =   
𝑊!"

𝑃!"#
 

𝜏 – Discharge Time (hour) 

𝑊!" – Total energy stored (W-h) 

𝑃!"# – Maximum power or charge (W) 

6.5 Efficiency 

Efficiency in general is the ratio of work output to work input. Thus, in a storage 

system it may be defined as the ratio between the released energy to the stored energy. 

The energy stored in the system is represented as 𝑊!"whereas the energy retrieved in the 

discharge cycle is expressed as  𝑊!". Therefore, the efficiency of the storage can be stated 

as  

�   =   
𝑊!"

𝑊!"
 

The losses in a fuel cell can be divided into fuel crossover and internal currents, 

activation losses, ohmic losses and mass transport losses.  

Fuel crossover and internal current losses result from the flow of fuel and electric 

current in the electrolyte. The electrolyte should only transport ions, however a certain 

fuel and electron flow will always occur. Although the fuel loss and internal currents are 
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small, they are the main reason for the real open circuit voltage (OCV) being lower than 

the theoretical one. 

Activation losses are caused by the slowness of the reactions taking place on the 

electrode surface. The voltage decreases somewhat due to the electrochemical reaction 

kinetics. 

The ohmic losses result from resistance to the flow of ions in the electrolyte and 

electrons through the cell hardware and various interconnections. The corresponding 

voltage drop is essentially proportional to current density, hence the term "ohmic losses". 

Mass transport losses result from the decrease in reactant concentration at the 

surface of the electrodes as fuel is used. At maximum (limiting) current, the 

concentration at the catalyst surface is practically zero, as the reactants are consumed as 

soon as they are supplied to the surface. 

The overall efficiency is an important characteristic for a competitive storage 

system. For a fuel cell system to achieve maximum efficiency, it should be designed to 

use pure reactants, with the removal of the product in a pure form, in order to tap the 

maximum free energy available. 

6.6 Durability 

Durability is the ability of the fuel cell system to resist a permanent change in its 

performance over time. This change does not lead to failure of the system but it is simply 

the decrease in performance that is not recoverable or reversible. These losses could be 

due to loss of electrochemical surface area, carbon corrosion etc. Durability at times is 

also referred to as the cycling capacity of the system. One cycle corresponds to one 

charge and one discharge cycle. Thus durability can be defined as the number of times 
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the system can supply the maximum energy it has been designed for. It is expressed in 

maximum number of cycles N or hours depending on the application.  

Durability at times is also referred to as ageing of the system. Thus, while 

designing storage systems ageing is considered and it becomes of utmost importance 

when choosing a system. Not a lot of testing has been done to quantify the durability or 

the decay of the system in a lifetime. The reason being that for 40000 hours of testing the 

system has to run uninterrupted for almost 4.5 years. Normal degradation targets are set 

upto 10% loss in efficiency of the fuel cell system at the end of lifespan, and a 

degradation rate of 2 – 10 µVh-1 is accepted for all applications [26, 27]. The small 

voltage drop signifies that over a number of cycles, the performance of the system 

decreases minimally as it is subjected to wear by usage due to constant charging and 

discharging cycles. This makes the system reliable.  

The characteristics explained below are the ones that do not affect the 

performance of the system but are equally important. These are the characteristics of fuel 

cells that make this technology favorable for energy storage applications.  

6.7 Modularity and reliability 

Modularity may be defined as the degree to which the systems components may 

be dismantled and assembled again. In engineering terms, it may also be defined as the 

technique of building a larger system using smaller sub-systems or modules. Thus, we 

can say that fuel cell systems are certainly modular. Like batteries, fuel cell systems can 

be designed depending on the application it is meant to be used for. Due to the modular 
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nature of fuel cell systems, the lead time for the construction of a fuel cell system would 

be short. 

The high reliability of the fuel cells is mainly attributed to the modularity of stacks and 

stack components and also due to the absence of highly stressed moving parts operating 

under extreme conditions. This also makes their maintenance easy. Fuel cell systems 

have improved the use of construction capital, as system capacity can be added in small 

increments based on the growth in actual demand. This ability to add capacity minimizes 

the risks involved from inaccurate load forecasting and provides flexibility to the planner. 

6.7.1 Siting flexibility 

The modular nature of a fuel cell system allows installation of a single unit in 

relatively smaller area. These characteristics, along with it being environmentally safe, 

permit fuel cell systems to be located in remote relatively inaccessible sites. Fuel cell 

systems may also be sited close to the point of use where the heat (product of the fuel cell 

reaction) may be used for cogeneration applications. 

6.8 Cost 

The total cost of the storage system is an important aspect that determines the 

value of the investment. Like any other transaction, the total gain from the system should 

exceed the total expense incurred in putting the system together. Thus, it is extremely 

important to analyze the overall costs over the entire life of the system, including 

materials, energy and other environmental costs from fabrication to recycling. Detailed 

explanation as to how the costs can be calculated has been presented in section 6 of the 

report. 
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                                                             CHAPTER 7 

ECONOMICS 

7.1 Introduction 

In this section, we present the economic assessment of fuel cells when used as a storage 

technology. For the current analysis, the storage will be used in a hypothetical wind farm with a 

nameplate power capacity of 100MW and we assume that 1/10th of the nameplate capacity will be 

provided by the storage system. Thus, for a 100 MW wind farm, we would like to have a storage 

system with rated power capacity of 10 MW. The storage system would help in increasing the 

reliability of the grid, as it would supplement the grid in times of peak demand. 

Figure 7 shows the system diagram for a hydrogen fuel cell storage system. Unlike other 

storage technologies, fuel cell systems have different charging and discharging interfaces. The 

electrolyzer provides hydrogen fuel for the fuel cell to generate electricity. Although it is possible 

to use a reversible fuel cell to perform both operations, having separate interfaces makes the 

system more cost effective. 
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Figure 7: Hydrogen fuel cell storage system and its components 



 

35 

 

 

The following approach has been adopted from [13, 15, 18]. 

7.2 Total capital cost of the storage system 
In this section, we present our approach for calculating the total capital cost 

incurred in a hydrogen fuel cell storage system.  

The total cost of a system consists of: the cost of the fuel cells, the cost of the 

electrolyzer and the cost of storing hydrogen. Unlike other storage systems, hydrogen 

fuel cell systems have a separate charging component, the electrolyzer. A compressor is 

also necessary in order to pressurize the hydrogen for storage. These components add to 

the overall cost of the system.  

There is no reliable data available for the Balance of Plant (i.e. housing, land etc.) 

cost for a fuel cell system. Thus, in this thesis we have not accounted for that. 

The total system cost for a hydrogen fuel cell storage system may be given as: 

Equation 1: Total Capital Cost of the Storage system 

𝐶𝑜𝑠𝑡!!  !"!#$ $ =   𝐶𝑂𝑆𝑇!"   +   𝐶𝑂𝑆𝑇!"#$%&' +   𝐶𝑂𝑆𝑇!"!#$%&"'(!% 

Where, 

𝐶𝑜𝑠𝑡!!  !"!#$= Total Capital Cost of the Hydrogen fuel cell storage system. 

𝐶𝑂𝑆𝑇!"  = Cost of fuel cells. 

𝐶𝑂𝑆𝑇!"#$%&' = Cost of hydrogen storage. 
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𝐶𝑂𝑆𝑇!"!#$%&"'(!% = Cost of Electrolyzer. 

Cost of fuel cells:  

The cost of the fuel cell system will be dependent on the rated power of the fuel 

cell system. Therefore, 

Equation 2: Cost of Fuel Cells 

𝐶𝑂𝑆𝑇!" = 𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡!"#   
$
!"

∗   𝑃!"#$ℎ!"#$ 𝑘𝑊 . 

Where, 

𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡!"# = Cost of Hydrogen Fuel Cell in $/kW 

𝑃!"#$ℎ!"#$ = Rated power of the fuel cell system in kW 

 

Cost of storage:  

The cost of the storage system is directly proportional to the amount of energy 

stored. Therefore, 

Equation 3: Cost of Storage 

𝐶𝑂𝑆𝑇!"#$%&' =   𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡!"#$%&'
$

!"#
∗   !  (!"!)

!!!  !"#
  

Where, 

UnitCost storage = Cost of hydrogen storage in $/kWh 

E = Stored energy capacity in kWh = Pdischarge * td 

η H2 dis = discharge efficiency or generating efficiency of the hydrogen system.  
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Cost of electrolyzer:  

To estimate the cost of the electrolyzer, its power rating must be determined. 

Electrolyzer rating 

The power rating of an electrolyzer depends on the time available for charging 

and the rated power of the fuel system. It is very important to note that the electrolyzer 

would only operate when the fuel cell is not operating. Thus, the power rating of the 

electrolyzer can be lower than the power rating of the fuel cell system at discharge.  

To calculate the rating of the electrolyzer, assume the fuel cell system is 

discharging for time td each day at a power level Pdischarge. Thus, the electrolyzer would 

have to recharge over the remaining time tch = 24 hr – td (hr) and be rated at  

Equation 4: Power rating of electrolyzer 

𝑃!ℎ!"#$   =   
𝑃!"#$ℎ!"#$ ∗   𝑡!
𝑡!ℎ ∗   𝜂!!!"!#

 

Where, 

𝑃!ℎ!"#$ = Rated power of electrolyzer. 

𝑃!"#$ℎ!"#$= Rated power of the fuel cell system. 

𝑡! = Time to discharge. 

𝑡!ℎ = Time to charge. 

η H2 elec = electrolyzer efficiency.  
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The cost of the electrolyzer is dependent on the power rating of the electrolyzer i.e. Pcharge.  

Equation 5: Cost of Electrolyzer 

𝐶𝑂𝑆𝑇!"!#$%&"'(!% =   𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡!"!#$%&"'(!%
$
𝑘𝑊 ∗   𝑃!ℎ!"#$ 𝑘𝑊  

Where, 

UnitCost electrolyzer = Cost of electrolyzer in $/kW. 
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7.2.1 Application areas 
In this sub section we discuss the key application areas that would be of major 

concern for the integration of wind farms to the grid. These applications can be divided 

into two categories based on their function. These categories are energy management 

applications and power management applications. Energy management applications 

involve long duration discharge i.e. discharge durations upto hours or more. Examples of 

energy management applications are load shifting, load following and transmission 

curtailment. Power management applications involve short duration discharge i.e. 

discharge duration from a few fractions of a second up to fifteen minutes depending on 

the application. Rapid reserve, power quality and frequency regulation are examples of 

power management applications. 

For the current analysis, the storage system will be used in a hypothetical wind farm 

with a nameplate power capacity of 100MW. We assume that 1/10th of the nameplate 

capacity will be provided by the storage system. Thus, for a 100 MW wind farm, we 

would like to have a storage system with rated power capacity of 10 MW. The 

applications considered for this study are mentioned below: 

1. Load Shifting 

Load shifting is the technique aimed to move demand from peak hours to off peak 

hours of the day. This is important for wind integrated grids because wind energy 

production is often unable to satisfy the peak demand periods, as wind is not uniform all 

the time. The fuel cell storage system produces hydrogen using the electricity provided 

by the wind farms during off peak hours and stores it for producing electricity during 

peak hours. This application would be beneficial for the wind farms. They can store 
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electricity at off peak times, when the cost of electricity is lower, and sell it in peak 

demand period when the cost of electricity is higher. It is a very energy intensive 

application in which energy may have to be supplied for a period of 3 to 5 hours at a low 

power rating of 2 to 3 MW [14, 19]. In order compare the results with the load shifting 

application in [14] we consider the power as 3MW and discharge duration as 5hours. 

2. Rapid reserve 

Rapid reserve is the reserved system capacity available to the operator within a short 

interval of time to meet the demand in case there is disruption in power supply. Energy 

Storage systems based on batteries, hydrogen fuel cells, flywheels, SMES, CAES and 

pumped hydro prove useful in providing reserve energy [3]. By providing energy at the 

time of need, stored energy can be utilized when generation units fail or during the 

intermediate periods when utilities are trying to fix the power failure. 

This application was originally known as spinning energy as reserve was supplied 

within few minutes by hot-spinning generators. Due to the advancements in storage 

technologies, energy can be supplied without necessarily ‘spinning’ the generator. Thus, 

now it is termed as rapid reserve instead of spinning reserve. In case of disruption of 

power supply the storage system is required to provide high power for a period upto 30 

mins [49]. DOE in 2010 identified the time for cold start up to 90% of rated power to be 

less than 30 seconds for PAFC and less than 15 seconds for PEMFCs. In order compare 

the results with the frequency regulation application in [14] we consider the power as 

10MW and discharge duration as 15mins. 
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Although each application is unique, an ideal storage system would help a user to 

resolve both the issues at once. We introduce an additional application and call it 

combined application. For this application we consider a storage system that could 

discharge at different power rating for varied discharge duration depending on the need 

of the application. It would benefit the user by satisfying high power requirements for the 

rapid reserve application and by also providing enough energy for longer duration 

application of load shifting. We design the system for maximum energy storage capacity 

requirement of 15MW-hr (for load shifting application) and capable of providing 

maximum power capacity of 10MW (for rapid reserve application). This storage system 

could provide 10MW for 30mins for rapid reserve application and could also provide 

3MW for 5 hours for load shifting application.  

Table 3: Application areas 

Application Power capacity 
(kW) 

Discharge duration 
(hr) 

Energy storage 
capacity (kW-hr) 

Load Shifting 3000 5 15000 

Rapid reserve 10000 0.25 (=15mins) 2500 

Combined Application 10000 1.5 15000 
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7.2.2 Cost Data  
In this sub section, we present estimates of the costs that we consider for this 

study.  

• Fuel cell cost data 

 In this section we present the estimates of fuel cell cost for each of the hydrogen 

fuel cell technology. We present lower, baseline and higher cost estimates of fuel cells 

(CostFC) that we have used in the study for calculating the total cost of the storage 

system (CostH2total). A Whisker plot is used to present the range of the estimates across 

different fuel cell technologies. The lower and higher cost estimates are used for 

sensitivity analysis.  

The cost of a 5kW PEM fuel cell in 2002 was estimated to $55,000 implying per 

unit cost of $11,000/kW [51]. The Fuel Cell Technologies Program Multi-Year Research, 

Development and Demonstration Plan has estimated the present cost of PEMFC system 

to be close $2500 - $4000 /kW and a target cost of $1000/kW [52]. The Oakridge 

National laboratory in their cost assessment of PEM systems present an estimate of 

PEMFC systems costing between $3000/kW – $6000/kW [53]. Reports published by 

EPRI in 2000 have estimated the price for producing 100,000 units of PEMFC to be 

around $1800/kW [54]. Thus, for PEMFC we take $750/kW as the lower end estimate, 

$2500/kW as the baseline estimate, and $4000/kW as the higher end estimate.  

The installed cost of PC25, a 200 kW PAFC system by UTC is approximately 

$850,000 implying per unit cost of $4250/kW. Their stated target is to reduce the cost to 

$2000/kW [55]. The installed cost for a PAFC system is estimated to be $3000 – 
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$4000/kW [56, 57]. Thus, for this study we consider $2000/kW as the lower end 

estimate, $3000/kW as our baseline estimate and $4250/kW as the higher end estimate 

for the PAFC system.  

The cost of MCFC systems declined from $ 8000/kW in 2004 to $6000/kW in 

2005 and it was expected to decline to $ 4800/kW by 2006[58]. The installed cost of 

MCFC systems is in the range of $4200/kW – $5600 /kW [59]. The estimated costs for 

MCFC system is around $3000/kW [60] and is expected to be around $2700/kW [55]. 

Long-term goal for the MCFC system is $1250 /kW. Thus, for this study, we consider 

$1250 /kW as the lower estimate, $2700/kW as our baseline estimate and $4200/kW for 

the higher estimate.  

SOFC are estimated to cost around $2500/kW to $5000/kW [23, 52]. EPRI 

published a report which stated a price of approximately $3000/kW considering 10,000 

units were produced each year [54]. The long term target cost for SOFC systems is 

around $750/kW [61]. Thus, for this study, we use $1000/kW as the lower end estimate, 

$2500/kW as the baseline estimate and $5000/kW as the higher end estimate for SOFC. 

Table 4: Hydrogen Fuel Cell cost data 

 Lower estimate 
($/kW) 

Baseline estimate 
($/kW) 

Upper estimate 
($/kW) 

PEMFC 1000 2500 4000 

PAFC 2000 3000 4250 

MCFC 1250 2700 4200 

SOFC 750 2500 5000 
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Figure 8 represents the whisker plot for the fuel cell cost data. Whisker plots are 

generally used when a large range of data points have to be covered. The number placed 

at the bottom of the vertical line is the lowest cost estimate and the number placed at the 

top of the line is highest cost estimate. The baseline estimate is placed in-between these 

two on the left hand side. 

 
Figure 8: Whisker Plot depicting a range of fuel cell cost data 

 
• Hydrogen storage cost data 

 In this section we present the estimates we use for the hydrogen storage cost data. 

The current cost estimate presented by for storage of hydrogen in tanks above ground is 

$19/ kWh [63]. In general, underground storage of hydrogen is anticipated to be 

significantly less expensive than storing hydrogen in steel tanks. However, development 

of underground storage is dependent on the characteristics of underground formations. 

Cost estimates for underground storage facilities for hydrogen were studied in [62]. Cost 

estimates were developed by studying the cost incurred in storing air for Compressed air 

energy storage (CAES) systems [62]. The storage volume required for storing hydrogen 
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is less than the volume required for equivalent energy capacity for a CAES reservoir 

because of the higher calorific value of hydrogen. Energy density for a typical hydrogen 

reservoir was estimated at 170kWh/m3 compared to 2.4kWh/m3 for a CAES system. 

They established estimates for storage of hydrogen in geological formations. The cost of 

underground storage for hydrogen ranges from 0.002$/kWh in naturally occurring porous 

rock formations, 0.02$/kWh in salt caverns and 0.2$/kWh in abandoned coal mines. In 

this study, we use 0.2$/kWh as the baseline estimate for geological storage of hydrogen. 

Table 5: Hydrogen Storage Cost Data 

Cost-storage ($/kWh) 

Above ground Underground 

19 0.2 

 

• Electrolyzer cost data 

In this section we present the estimates of electrolyzer costs that we have used in 

the study. The main drivers for the cost of production of hydrogen by electrolysis are the 

capital cost, electricity price and the efficiency of the electrolysis process. Significant 

technology advancements in reducing capital costs and improving efficiency have lead to 

substantially improved electrolysis production costs. The electrolyzer system is based on 

H2A central electrolysis cost assessment models by the DOE. The electrolyzer efficiency 

is 53% for the lower heating value (LHV) and 65% for the higher heating value (HHV) 

[35]. Thus, we use the average 59% as the baseline electrolyzer efficiency. NREL 

estimated the uninstalled capital cost of electrolyzer to be around $380/kW [36]. The 

DOE estimates current capital costs for central production systems and distributed 
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production system to be between $325 and $385/kW [64, 65]. Their stated target costs are 

between $215/kW and $270/kW. For this study, we assume $385/kW as the baseline 

estimate for electrolyzer capital cost. 

7.2.3 Calculation of total capital cost 

In this sub section we present a sample calculation for the total capital cost of the 

storage system. To calculate the total cost of the storage system we follow the approach 

mentioned in section 7.2. All calculations are based on the assumption that the excess off-

peak electricity is used to electrolyze water to produce hydrogen, which is stored in 

compressed gas cylinders or underground geological formations. The hydrogen is 

reconverted into electricity using a fuel cell. Below we present sample calculations for 

the total cost of a PEM (polymer electrolyte membrane) fuel cell storage system with 

compressed tank storage for load shifting application. Our assumptions for load shifting 

are presented in Table 6. We can see that the electrolyzer rating is 1.34MW. As 

mentioned earlier, the wind farm nameplate capacity is 100MW. Thus, we assume that 

the excess off-peak electricity would be sufficient to charge the system. 

Table 6: Assumptions for load shifting application 

Storage	  Capacity	  E	  (kWh)	   15000	  

Power	  rating	  of	  fuel	  cell	  system	  at	  	  discharge-‐Pdischarge	  (kW)	   3000	  

Power	  rating	  of	  electrolyzer	  charge-‐	  Pcharge	  (kW)	   1338.5	  

Discharge	  time-‐	  td	  (hr)	   5	  

Time	  to	  charge	  the	  electrolyzer-‐	  tch	  (hr)	   19	  

Discharge	  or	  generating	  efficiency	  of	  the	  hydrogen	  system-‐	  
nH2	  

0.59	  
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We repeat equations (1) to (5) to calculate the capital cost of the fuel cell storage system. 

We use baseline estimates to calculate the cost of the fuel cells, storage of hydrogen in 

compressed steel tanks and the cost of the electrolyzer. 

𝐶𝑂𝑆𝑇!" = 2500  
$
𝑘𝑊 ∗ 3000   𝑘𝑊 = $7,500,000   

𝐶𝑂𝑆𝑇!"#$%&' = 19  
$

𝑘𝑊ℎ
∗ 15000

𝑘𝑊ℎ

0.59 = $483,050.84   

𝐶𝑂𝑆𝑇!"!#$%&"'(!% = 385  
$
𝑘𝑊 ∗ 1338.5(𝑘𝑊) = $515,165 

𝐶𝑜𝑠𝑡!!  !"!#$ $ =   𝐶𝑂𝑆𝑇!"   +   𝐶𝑂𝑆𝑇!"#$%&' +   𝐶𝑂𝑆𝑇!"!#$%&"'(!% 

𝐶𝑜𝑠𝑡!!  !"!#$ $ = 7,500,000+ 483,050  +   515,165 = $8,498,215 

We use the same approach to calculate the values for all the fuel cell systems. 

Table 7 presents the total capital cost calculations for four types of fuel cells with 

compressed tank storage for load shifting application.  

Table 7: Total Capital Cost for storage system 

Fuel Cell 
Type 

Cost-Fuel 

Cell 

Cost-Fuel 

Cell 
Cost-storage Cost-

electrolyzer Total Cost  

 ($/kW) ($) Tank Storage ($) ($/kW) ($) 

PEMFC 2500 7,500,000 483,050 515,165 8,498,215 

PAFC 3000 9,000,000 483,050 515,165 9,998,215 

MCFC 2700 8,100,000 483,050 515,165 9,098,215 

SOFC 2500 7,500,000 483,050 515,165 8,498,215 
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For calculating the total capital cost of the storage system for rapid reserve 

application we use the power and discharge duration assumptions presented in Table3. 

Table 8 presents the values for the total capital cost of the fuel cell system for load 

shifting and rapid reserve application cases. 

Table 8: Total Capital Cost for assumed applications 

	  	   Total	  capital	  cost	  ($)	  

Fuel	  Cell	  Type	   Load	  Shifting	   Rapid	  reserve	  

PEMFC	   8,498,215	   25,149,197	  

PAFC	   9,998,215	   30,149,197	  

MCFC	   9,098,215	   27,149,197	  

SOFC	   8,498,215	   25,149,197	  

  

Figure 9 presents the cost components of the initial capital cost for each of the fuel cell 

system for the above mentioned applications. It is evident from the figure that the fuel 

cell cost is the major cost component in each of the application. The cost of the fuel cell 

system is dependent on the power requirement of the application. The power requirement 

for the load shifting application is 3MW and it less compared to the power requirement 

for the rapid reserve application case which is 10MW. Therefore, there are such vast 

differences in the initial capital cost requirement.  
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Figure 9: Initial capital cost components of fuel cell storage system 

7.3 Total annualized cost of the storage system 
The total annualized cost of the storage (TCstorage) is the sum of the annualized 

capital cost (AC) and the annualized operation and maintenance cost (O&Mc). It is 

measured in $. 

Equation 6: Total annualized cost 

𝑇𝐶!"#$%&'   =   𝐴𝐶  +   𝑂&𝑀!   

The annualized capital cost includes the initial capital cost and the replacement 

costs associated with the proper functioning and maintenance of the storage medium. It 

can be calculated by multiplying the total capital cost and the capital recovery factor 

(CRF). 

Equation 7: Annualized cost 

𝐴𝐶 =   𝐶𝑜𝑠𝑡!!  !"!#$ $ ∗ 𝐶𝑅𝐹 

0 

5000000 

10000000 

15000000 

20000000 

25000000 

30000000 

35000000 

Load 
Shifting 

Rapid 
Reserve 

Load 
Shifting 

Rapid 
Reserve 

Load 
Shifting 

Rapid 
Reserve 

Load 
Shifting 

Rapid 
Reserve 

PEMFC PAFC MCFC SOFC 

Cost-FuelCell Cost-electrolyzer Cost-storage 



 

50 

 

Equation 8: Capital Recovery Factor 

𝐶𝑅𝐹 =   
𝑖!(1+ 𝑖!)!!
(1+ 𝑖!)!! − 1

 

Where, 

Cost H2 total- cost for a hydrogen fuel cell storage system.  

ir - the annual interest rate in % 

ny – system lifetime in years. 

Assumptions 

The interest rate is an important aspect that determines the value of the 

investment. Like any other transaction, the total gain from the system should exceed the 

total expense incurred in putting the system together. The interest rates typically used by 

firms for investment are in the range of 10% to 15%. We have assumed 15% as our 

baseline estimate in all calculations. 

7.3.1 Calculation of total annualized cost of storage system 
In this sub-section we present a sample calculation for the total annualized cost of 

the storage system. To calculate the total annualized cost of the storage system we follow 

the approach mentioned in section 7.3. We repeat equations (6) to (8) for each of the fuel 

cell storage systems for load shifting and rapid reserve application cases. For calculating 

the capital recovery factor (CRF) we use an interest rate of 15% and system lifespan of 

20 years. We obtained the O&M costs for PEM, PAFC MCFC and SOFC from [8, 11, 

55, 54] respectively. For annualized O&M costs we multiply these costs with the power 

capacity. The annualized O&M cost for electrolyzer has been obtained from [36] to be 
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2% of the electrolyzer system cost. Below we present sample calculations for the total 

annualized cost of the PEM (polymer electrolyte membrane) fuel cell storage system with 

compressed tank storage for load shifting application.  

𝐶𝑅𝐹 =   
𝑖!(1+ 𝑖!)!!
(1+ 𝑖!)!! − 1

=
15(1+ 15)!!

(1+ 15)!" − 1 = 0.159761  

Therefore,  

𝐴𝐶 = $8,498,216 ∗ 0.159761 = $1,357,687/𝑦𝑒𝑎𝑟 

𝑂&𝑀!"## = 27  
$

𝑘𝑊 − 𝑦𝑟 ∗ 3000   𝑘𝑊 = $81,000/𝑦𝑒𝑎𝑟 

𝑂&𝑀!"!#$%&"'(!% = 0.02 ∗   515165 = $10,300/𝑦𝑒𝑎𝑟 

𝑂&𝑀! = $81,000/𝑦𝑒𝑎𝑟 + $10300/𝑦𝑒𝑎𝑟 = $91,300/𝑦𝑒𝑎𝑟 

𝑇𝐶!"#$%&'   =   𝐴𝐶  +   𝑂&𝑀! = $1357687+ $91300 = $1,448,987/𝑦𝑒𝑎𝑟 

Table 9 presents the calculations for each type of fuel cell storage system for load shifting 

application 

Table 9: Total Annualized Cost of Storage 

Fuel Cell 
Type 

Total Capital 
Cost ($) 

Annualized 
Cost($/yr)) 

O&M 

($/yr) 
Total Annualized 

Cost($/yr) 

PEMFC 8,498,215 1,357,687 91,300 1,448,987 

PAFC 9,998,215 1,597,329 210,264 1,807,593 

MCFC 9,098,215 1,453,544 685,300 2,138,844 

SOFC 8,498,215 1,357,687 265,300 1,622,987 
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We use the same approach for calculating the total annualized cost for each type of fuel 

cell storage system for load shaving and rapid reserve application cases. 

Table 10 and Table 11 present values for the total annualized cost of the storage system 

for each of above mentioned application with compressed tank and underground storage 

of hydrogen respectively. These values have been plotted in Figure 10 and Figure 11 

respectively. (All values in million$) 

Table 10: Total Annualized cost of storage system with compressed tank storage (in millions of $) 

Fuel Cell 
Load 

Shifting 
Spinning 
Reserve 

PEMFC 1.448 4.289 

PAFC 1.807 5.421 

MCFC 2.138 6.588 

SOFC 1.622 4.869 

 

Table 11: Total Annualized cost of storage system with underground storage (in millions of $) 

Fuel Cell 
Load 

Shifting 

Rapid 

 Reserve 

PEMFC 1.372 4.276 

PAFC 1.731 5.408 

MCFC 2.062 6.576 

SOFC 1.546 4.856 
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Figure 10: Total Annualized cost of storage system with compressed tank storage 

 

 
Figure 11: Total Annualized cost of storage system with underground storage 

Figure 12 represents the components of the total annualized cost of storage. As 

mentioned earlier, it is the sum of the annualized capital cost and the annualized 

operation maintenance costs of the system. For all the systems, the annualized capital 

cost is the major component of the cost. 
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Figure 12: Total annualized cost of storage components 

• Discussion 

From figures 10 and 11, we can see that PEMFCs have the lowest cost for all the 

studied applications. The lowest cost of PEMFC system may be attributed to the lowest 

cost of fuel cells and low operation and maintenance costs. PEMFC operate at low 

temperatures and therefore have the ability to cycle on and off more readily than the other 

fuel cells that operate at higher temperatures. However the scenarios considered here 

require much larger fuel cells than the ones currently available. Thus, it is not clear if 

they can be scaled up.  

PAFC systems may not be the least expensive technology for the studied 

applications but they were amongst the first commercialized fuel cell systems as they 

were reliable and also very effective in co-generation of low temperature steam. PAFC 

systems have been installed worldwide with output capacity ranging from 5 – 20MW 

supplying towns and cities with electricity, heat and hot water [3]. The advantages of 

PAFC systems are its chemical, thermal and electrochemical stability and the low 
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volatility of the electrolyte at its operating temperature. Being a low temperature fuel cell 

system, they have the capability to cycle on and off faster than high temperature fuel cell 

systems like MCFC and SOFC. These factors assisted in deployment of PAFC systems 

faster than other fuel cell types.  

We can see that MCFCs are the most expensive fuel cell system for the studied 

applications. This may be attributed to the highest operation and maintenance costs 

amongst all the fuel cell technologies as seen in Figure 12. The operation and 

maintenance cost of MCFC is so high because the operating conditions are so extreme 

that the stack has to be replaced every 5 years. Thus, this reduces its ability to compete 

with fuel cells with longer stack life. For MCFC systems to be economically acceptable, 

their stack life has to be improved to 10yrs as this would help in reducing the O&M costs. 

For SOFC systems, the cost is more than PEMFC, but less than MCFC systems. SOFC 

systems are known to have high power densities, thus compact designs are possible. The 

temperature of the exhaust gases are high and can be used in other power generation 

systems which can provide high overall electrical efficiency. SOFC technology is suited 

for stationary applications with longer discharge durations than for applications that have 

short discharge durations, as the operating temperature of the SOFC system is very high 

it takes time for the system for start up and shut off. Thus, SOFC systems would be better 

suited for load shifting operations as the discharge duration is longer. 
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7.4 Levelized cost of electricity (LCOE) 

In this section we calculate the levelized cost of electricity. Levelized cost of 

electricity can be calculated by the following formula.  

Equation 9  –   𝐋𝐞𝐯𝐞𝐥𝐢𝐳𝐞𝐝  𝐜𝐨𝐬𝐭  𝐨𝐟  𝐞𝐥𝐞𝐜𝐭𝐫𝐢𝐜𝐢𝐭𝐲 

𝑳𝑪𝑶𝑬  ($ 𝒌𝑾𝒉) =   
𝑪𝒐𝒔𝒕𝑯𝟐  𝒕𝒐𝒕𝒂𝒍 $/𝒚𝒓
𝑨𝑬𝑷  (𝒌𝑾𝒉/𝒚𝒓)  

AEP is the annual energy production. Annual energy production (AEP) is the total 

energy discharged by a storage unit in a year. This is proportional to the energy storage 

capacity and number of operating days per year of the unit. It is measured in kWh. 

Therefore, for the load shifting application: 

𝐴𝐸𝑃   𝑘𝑊ℎ = 3000 𝑘𝑊 ∗ 5 ℎ𝑟 ∗ 365 = 5475000  (
𝑘𝑊ℎ

𝑦𝑟 )   

In this sub-section we present a sample calculation for the levelized cost of 

electricity for the storage system. We repeat equation (9) for each of the fuel cell storage 

systems for load shifting application case.  

	   Cost	  H2	  Total	   AEP	   LCOE	  

Fuel	  Cell	   ($/yr)	   (kWh/yr)	   ($/kWh)	  

PEMFC	   1448990.765	   5475000	   0.264656	  

PAFC	   1807597.288	   5475000	   0.330155	  

MCFC	   2138847.647	   5475000	   0.390657	  

SOFC	   1622990.765	   5475000	   0.296437	  
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The daily peak price is in the range of 0.15 – 0.17 $/kWh. Thus, the cost of 

electricity produced by the storage system is almost twice the cost of the current cost.  

7.4 Combined application case 
In the previous sub section we calculated the total annualized cost of the storage 

system for individual application cases like load shifting and rapid reserve application. In 

this sub section, we calculate the total annualized storage system cost for the combined 

case application.  

For this application we consider a storage system that could discharge at different 

power rating for varied discharge duration depending on the need of the application. It 

would satisfy high power requirements for the rapid reserve application and could also 

provide enough energy for longer duration for the load shifting application. We design 

the system for maximum energy storage capacity requirement of 15MW-hr (for load 

shifting application) and capable of providing maximum power capacity of 10MW (for 

rapid reserve application). This storage system could provide 10MW for 30mins for rapid 

reserve application and could also provide 3MW for 5 hours for load shifting application.  

We use the same approach for the calculations for the combined case as we did 

for load shifting and rapid reserve in the previous section. Figure 13 and Figure 14 

present the results for the total annualized cost of storage system and the cost components 

of the total annualized cost for combined application case respectively. As mentioned 

earlier, the cost of the fuel cell system is dependent on the power capacity of the system. 

Thus, the total annualized cost of storage is high due to the high capital investment in a 

10MW fuel cell system. The pattern we see here is similar to the load shifting and rapid 
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reserve application cases where PEMFC have the lowest annualized cost of storage 

system. As noted above, this application requires much larger fuel cells than the ones 

currently available and it is not clear if they can be scaled up. Also as expected, the cost 

of the MCFC system is highest among all systems and this may be attributed to its 

highest operation and maintenance costs. 

 

Figure 13: Total Annualized cost of storage system for combined case application 
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Figure 14: Cost components of Total annualized cost of storage system with compressed tank storage for 
combined application case 

7.5 Sensitivity analysis  
In this section, we will study the effect of varying the interest rate and the cost of 

the fuel cell system on the total annualized cost of the storage system (TCstorage). We 

consider the combined case application for the sensitivity analysis because it has the 

maximum energy storage capacity and power requirement of 15MW-hr and 10MW 

respectively. We have mentioned the lower, baseline and higher cost estimates of 

individual fuel cell systems in section 7.2.2 and as mentioned earlier, our baseline interest 

rate is 15%. In this sub-section we vary these factors within the deviation range presented 

in Table 12 to see the effect on TCstorage. We use tornado diagrams to study the sensitivity 

of each of the characteristics for all the fuel cell systems. 

Table 12: Deviation range for fuel cell cost and interest rate for sensitivity analysis 

Fuel Cell Fuel Cell Cost 

(CostFC  in $/kW) 

Interest rate 

( i% ) 

PEMFC 1000 to 4000 3 to 25 

0 

1 

2 

3 

4 

5 

6 

7 

8 

PEMFC PAFC MCFC SOFC 

T
C

st
or

ag
e 

(m
ill

io
n 

$)
 

Annualized Cost O&Mc 



 

60 

 

PAFC 2000 to 4250 3 to 25 

MCFC 1250 to 4200 3 to 25 

SOFC 750 to 5000 3 to 25 

 

 In tornado diagram, the vertical axis lists the factors considered for the sensitivity 

analysis and the values on the horizontal axis represents the total annualized cost of the 

storage system. The factor at the top of the vertical axis is the most sensitive factor and 

the sensitivity decreases as we move downwards. The underlined value on the horizontal 

axis represents the total annualized cost of the storage system for baseline estimates of 

fuel cell cost (CostFC) and the interest rate (i). Figure 15 is the tornado diagrams, for the 

four types of fuel cells considered in this study, for the combined application case. The 

effect of varying the rate of interest (i %) and the cost of the fuel cells (CostFC) can be 

seen in Figure 15. 

The results of varying the interest rate from 3% to 25% is shown in figure 16. The 

low interest rate represents the interest rate that may be available for renewable energy 

systems under some government policies for widespread deployment of these renewable 

energy systems. We observe that even a small change in the interest rate has a significant 

effect on the total annualized cost of the storage system. This may be attributed to the 

large initial capital investment for the storage system. In the case of a PEMFC system, if 

the interest is lowered from 15% to 14% we see that the total annualized cost of the 

storage system reduces by over $225,000. Similar is the case with PAFC, MCFC and 

SOFC where the total annualized cost of the storage system reduces by $275,000, 

$250,000 and $245,000 respectively. 
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The lowest estimate of fuel cell cost represents the long term target costs of the 

fuel cell systems. This would be the best case scenario for the widespread deployment of 

these technologies. This may be attributed to technological developments and multiple 

large scale installations. The higher estimate represents the high estimates of costs of 

installations that could be built at the time the referenced study was developed. These 

values have been obtained from existing studies as mentioned in section 7.2.2. From the 

sensitivity study we observed that variation in the cost of the fuel cell system has 

significant effect on the total annualized cost of the storage system. This could be 

attributed to the fact that the capital cost of the fuel cell system is the major component of 

the capital cost of the storage system. In case of a PEM fuel cell system, if the target costs 

of $1000/kW are achieved, we observe that the total annualized of the storage system 

would reduce from 4.44 million dollars to almost 2.04 million dollars. 
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Figure 15: Sensitivity analysis for PEMFC, PAFC, MCFC and SOFC storage system with compressed tank 
storage. 
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Figure 16: Impact of varying the interest rate from 3% to 25% on total annualized cost of storage system 
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7.6 Comparison with other existing technologies 

In this section we compare hydrogen fuel cell storage system to other storage systems 

already available. The values for these technologies have been obtained from [14]. The 

technologies considered in the comparison are listed below: 

• Compressed air energy storage (CAES). 

• Pumped hydro storage (PHS). 

• Flywheel. 

• Zinc Bromide battery (Zn-Br) 

• Lithium ion battery (Li-ion) 

• Lead acid battery (Pb-acid). 

• Sodium – sulphur battery (NaS). 

• Nickel cadmium battery (Ni-Cd). 

Figure 17 shows that a storage system based on hydrogen fuel cell technology is 

more economical for energy management applications (like load shifting) with longer 

discharge duration than for power management applications (like rapid reserve) for 

shorter discharge duration. This may be attributed to the fact that the capital cost of 

the fuel cell system is dependent on the rated power of the system. As mentioned 

earlier energy management applications are energy intensive where enough energy 

has to be supplied for longer discharge duration and the power requirement is much 

lesser compared to power management applications that require high power to be 

supplied for shorter discharge duration. Thus, we see such different costs for the two 

applications.  
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Figure 17: Comparison of total annualized cost of storage system for various technologies 

From the figure we can see that for load shifting application, fuel cells are most 

economical after CAES and PHS. However technologies like CAES and PHS present a 

lot of limitations like site availability and development that limit their applications and 

deployment. Due to this reason the modularity of fuel cell storage system present 

significant advantages over CAES and PHS storage systems. Other than CAES and PHS, 

storage systems based on hydrogen fuel cell technology are economically better suited for 
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the load shifting application compared to flywheels and storage system based on 

batteries.  

For power management application of rapid reserve, the fuel cell system is amongst 

the most expensive system compared to other storage technologies. Flywheels seem to be 

economically better suited compared to fuel cells. The issue with flywheels is that they 

very bulky and their size would grow proportionally to the energy requirement. Storage 

systems based on batteries for example Pb-acid batteries seem to be a cheaper option 

compared to fuel cells but due to the presence of toxic lead content they are being 

replaced by other storage technologies. Other batteries like Zn-Br and NaS are as 

expensive fuel cells but they are known to have better reliability and higher efficiency 

when compared to fuel cells. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 The aim of this research was to study the impact of integrating a hydrogen fuel 

cell storage system in a wind farm to improve the reliability of the grid and for allowing 

higher penetration of renewable energy sources in the power system. The installation of 

an energy storage system strongly depends on the economic viability of the system. Four 

types of hydrogen fuel cells were considered for this study.  It is important to note that 

the cost estimates used for this study are lower bound as we have not included the 

balance of plant costs. 

Although PEMFC storage systems were found to be the cheapest for the study 

applications, it is uncertain if they can be scaled up to perform the study applications, as 

the system requirements are much more than the system size currently available. PAFC 

systems might not be the least expensive option available, but these are amongst the most 

developed fuel cell technology with large installation capacities worldwide. PEMFC and 

PAFC systems are a type of low temperature fuel cell technology that cycle on and off 

quicker than the other fuel cell systems considered in the study. This makes these systems 

suitable even for applications with shorter discharge durations. It was found that MCFC 

systems were the most expensive systems for the studied applications. They have the 

highest operation and maintenance costs due to the high operating temperature of the 

system. This high temperatures place a great demand on corrosion stability of the 

components and it adversely affects the life span of the cell components. SOFC systems 

are the latest entry to the hydrogen fuel cell technology. SOFC storage systems are more 
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expensive than PEMFC systems but less expensive than MCFC systems. They are high 

temperature systems with high power densities that enable compact designing. SOFC and 

MCFC systems are high temperature systems that are more suitable for applications with 

longer discharge durations as they take longer to cycle on and cycle off. The current costs 

of these systems are very high and thus they are not a viable substitute for the load 

shifting application as we have seen in section 7.  

  In the sensitivity analysis it was found that even a small change in the interest rate 

has a significant effect on the total annualized cost of the storage system. Thus, favorable 

government policies with low interest rates may be helpful in the widespread deployment 

of renewable energy sources. Technological development and large scale installations 

will help in the reduction of fuel cell system costs making them more competitive in the 

energy storage market.  

The results of this study enable cost comparison of storage systems based on 

hydrogen fuel cells and 8 other technologies. For energy management applications like 

load shifting, fuel cells are most economical storage system after CAES and PHS. On the 

other hand, for power management applications like spinning reserve, the total 

annualized cost of the hydrogen fuel cell storage system is more than the other 

technologies considered in the study. Hydrogen fuel cell storage systems have good 

potential for energy storage applications but they face uncertainty due to high system 

costs and low efficiency. This may be solved with the help technological developments 

and favorable government policies. 
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In future, we propose to explore the idea of integration of hydrogen fuel cells with 

other renewable energy sources like solar photovoltaic and biomass. R&D should be 

conducted to reduce the cost and to improve the efficiency of fuel cells systems as this 

would directly affect the total annualized cost of the storage system. Better operational 

practices to reduce the operation and maintenance costs of the fuel cell systems should be 

developed. In this thesis we studied the effects of varying interest rate and cost of fuel 

cell on the total annualized cost of the storage system. Studying the effect of varying 

efficiencies, storage costs of hydrogen and lifespan of the system would also be 

interesting. 
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