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ABSTRACT

AUTONOMOUS ROBOT SKILL ACQUISITION

MAY 2011

GEORGE DIMITRI KONIDARIS

B.Sc., UNIVERSITY OF THE WITWATERSRAND

B.Sc. Hons., UNIVERSITY OF THE WITWATERSRAND

M.Sc., UNIVERSITY OF EDINBURGH

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

Among the most impressive of aspects of human intelligence is skill acquisition—the abil-

ity to identify important behavioral components, retain them as skills, refine them through

practice, and apply them in new task contexts. Skill acquisition underlies both our ability

to choose to spend time and effort to specialize at particular tasks, and our ability to collect

x



and exploit previous experience to become able to solve harder and harder problems over

time with less and less cognitive effort.

Hierarchical reinforcement learning provides a theoretical basis for skill acquisition, in-

cluding principled methods for learning new skills and deploying them during problem

solving. However, existing work focuses largely on small, discrete problems. This dis-

sertation addresses the question of how we scale such methods up to high-dimensional,

continuous domains, in order to design robots that are able to acquire skills autonomously.

This presents three major challenges; we introduce novel methods addressing each of these

challenges.

First, how does an agent operating in a continuous environment discover skills? Although

the literature contains several methods for skill discovery in discrete environments, it offers

none for the general continuous case. We introduce skill chaining, a general skill discov-

ery method for continuous domains. Skill chaining incrementally builds a skill tree that

allows an agent to reach a solution state from any of its start states by executing a sequence

(or chain) of acquired skills. We empirically demonstrate that skill chaining can improve

performance over monolithic policy learning in the Pinball domain, a challenging dynamic

and continuous reinforcement learning problem.

Second, how do we scale up to high-dimensional state spaces? While learning in rela-

tively small domains is generally feasible, it becomes exponentially harder as the number

of state variables grows. We introduce abstraction selection, an efficient algorithm for se-

lecting skill-specific, compact representations from a library of available representations

when creating a new skill. Abstraction selection can be combined with skill chaining to

solve hard tasks by breaking them up into chains of skills, each defined using an appro-
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priate abstraction. We show that abstraction selection selects an appropriate representation

for a new skill using very little sample data, and that this leads to significant performance

improvements in the Continuous Playroom, a relatively high-dimensional reinforcement

learning problem.

Finally, how do we obtain good initial policies? The amount of experience required to

learn a reasonable policy from scratch in most interesting domains is unrealistic for robots

operating in the real world. We introduce CST, an algorithm for rapidly constructing skill

trees (with appropriate abstractions) from sample trajectories obtained via human demon-

stration, a feedback controller, or a planner. We use CST to construct skill trees from

human demonstration in the Pinball domain, and to extract a sequence of low-dimensional

skills from demonstration trajectories on a mobile robot. The resulting skills can be reliably

reproduced using a small number of example trajectories.

Finally, these techniques are applied to build a mobile robot control system for the uBot-5,

resulting in a mobile robot that is able to acquire skills autonomously. We demonstrate

that this system is able to use skills acquired in one problem to more quickly solve a new

problem.
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CHAPTER 1

INTRODUCTION

One of the great scientific challenges of our time is that of understanding the natural phe-

nomenon of human intelligence, and engineering artificial systems that display aspects of

that intelligence. Among the most impressive of these aspects is skill acquisition—the abil-

ity to identify important behavioral components, retain them as skills, refine them through

practice, and apply them in new task contexts.

This dissertation addresses the question of how we might build artificial agents (especially

robots) that are able to acquire skills autonomously, as part of a larger question that is

core to Artificial Intelligence: rather than repeatedly engineering systems that can solve

specific problems, how can we create learning agents that are flexible, adaptive and open-

ended? This work falls under the broad heading of reinforcement learning (Sutton and

Barto, 1998)—a machine learning paradigm concerned with the problem of learning how to

act—and builds on the recent development of hierarchical reinforcement learning methods

(outlined in Chapter 2). Existing work on hierarchical reinforcement learning has provided

a theoretical basis for skill acquisition, including principled methods for learning new skills

and deploying them during problem solving, but has focused on relatively small discrete

problems. This dissertation greatly extends the reach of hierarchical reinforcement learning
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by developing new methods for autonomous skill acquisition in high-dimensional, contin-

uous problems, leading to a mobile robot capable of acquiring new skills autonomously.

1.1 Skill Acquisition in Humans

Skill acquisition lies at the heart of two of the distinguishing characteristics of human in-

telligence. First, humans are able to perpetually improve their solutions to difficult control

tasks through practice, moving from inefficient, planned movements that require a great

deal of attention, to smooth, optimized movements that are executed efficiently without

conscious thought. This type of learning underlies much of human achievement because it

supports our unique ability to specialize at tasks by devoting time and effort to them.

Second, through the retention and refinement of solutions to important subproblems, hu-

mans become able to solve increasingly difficult problems over time. From shortly after

birth we begin assembling a vast library of motor and cognitive skills that gradually enables

us to engage in progressively more complex activities with progressively less cognitive ef-

fort. This ability to learn to become more efficient problem solvers is one of the key reasons

human intelligence is so flexible.

Thus, acquired skills have a profound impact on our ability to interact with the world.

Figure 1.1 presents some examples that illustrate their utility to human development and

intelligence.

Human infants are virtually helpless at birth, but over the course of their first few years of

life acquire motor skills of increasing complexity according to a developmental schedule—

for example, they are able to successfully reach toward and grasp objects at approximately
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(a) (b) (c)

(d) (e) (f)

Figure 1.1. Examples of acquired skills. Some motor skills widen the scope of the learner’s
behavior: A 6-month old baby reaches for a toy (a) (picture copyright Eliza Nelson, used
with permission); a young adult learns to drive a car (b). Specialized motor skills can re-
quire great effort to refine, and serve as the basis for an occupation: A luthier (c) (picture
by Hildegard Dodel, released into the public domain), and David Beckham, professional
footballer (d) (picture copyright Rajeev Patel, Creative Commons Attribution 2.0 Generic
Licence). Finally, acquired skills can enhance performance in more abstract, cognitive
tasks: the ability to write is a learned motor skill that underlies much of intelligent human
behavior (e), while Rubik’s Cube is an example of a puzzle in which expert play is dis-
tinguished by the use of acquired skills that transform it from a hard search problem to a
much easier one (f).

four months of age (Berthier and Keen, 2006). Each motor skill widens the scope of the

infant’s behavior, endowing it with additional behavioral competence that in turn allows
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it to acquire more complex behaviors. This process continues throughout its lifetime; for

example, American teenagers typically learn to drive at age 16, acquiring a new set of

motor skills which significantly broadens their ability to travel on their own—and thus go

on dates, attend college, and commute to work.

Later in life, adolescent and adult humans can choose to expend time and effort acquiring

and refining specific sets of skills through practice and use them as the basis for a profes-

sional occupation. This refinement of acquired skills underlies the human ability to spe-

cialize beyond the level of skill an amateur might achieve and is consequently foundational

to human technological progress and achievement.

An extreme example is provided by modern sportsmen. David Beckham, an English profes-

sional footballer, has achieved worldwide fame and a significant fortune due to his specific

ability at two particular types of kicks common in football games: free kicks and crosses.

Sir Alex Ferguson, Beckham’s manager when he was at Manchester United, said:

“David Beckham is Britain’s finest striker of a football not because of God-

given talent but because he practices with a relentless application that the vast

majority of less gifted players wouldn’t contemplate.” (Ferguson, 1999)

Although literally any healthy whole-bodied human over the age of five can kick a ball, a

combination of natural talent and decades of focused training on this specific set of motor

skills have resulted in a player with unique ability far beyond that of an amateur. More

generally, a combination of innate talent, years of experience, and a practice regime delib-

erately designed to gradually improve expertise seem to be required to reach expert-level

performance in most domains (Ericsson, 2006).
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So far our discussion has revolved around motor skills, without any reference to higher

cognitive function. But acquired skills also underly human cognitive capabilities. The

process of learning to write is a motor skill acquisition process that is fundamental to human

education and higher cognitive development; someone who fails to master it is unlikely to

complete their schooling.

Acquired skills can also be useful in more abstract contexts, as illustrated by the popular

Rubik’s Cube puzzle. Rubik’s Cube is a difficult puzzle with roughly 4 × 1019 states, al-

though the median optimal solution length is only about 18 moves (Korf, 1997). Despite

this large search space, expert Rubik’s Cube players are typically able to solve randomly

permuted cubes in under a minute; they accomplish this by memorizing a set of “algo-

rithms”, or move sequences that make changes to some parts of the cube while leaving the

remainder unchanged, or changed in a predictable way. (One such set of “algorithms” is

given by Singmaster (1981).) Thus, the right set of acquired skills can transform a diffi-

cult abstract puzzle into a relatively simple one that can be solved using minimal cognitive

effort.

1.2 Achieving Autonomous Robot Skill Acquisition

Our ultimate aim is to build agents—more specifically, robots—that are able to acquire

skills autonomously, with the goal of creating robots that have the same behavioral char-

acteristics that skill acquisition gives humans. Thus, we would like to be able to design

a robot system that, while solving a problem, can identify subproblems that may become

important in the future; capture them as skills and frame each skill as a learning problem;

use some form of policy learning to improve each skill policy over time; and finally, when
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faced with a new problem, deploy its existing skills as necessary to find a solution to that

problem faster that it would have been able to without them.

A robot that achieves autonomous skill acquisition in this manner would be a significant ad-

vance over the state of the art in intelligent robotics. General methods for autonomous skill

acquisition could aid greatly in overcoming the obstacles facing robotics and intelligent

systems today by circumventing the immense engineering effort of creating specialized

controllers for each and every task a robot may encounter. More generally, a computational

account of skill acquisition and an understanding of how to synthesize such agents should

ultimately shed some light on the processes underlying human intelligence.

As we shall see in Chapter 2, reinforcement learning has a rich literature that already con-

tains much of the technology we need to implement skill acquisition: several reinforcement

learning methods for policy learning in moderate-sized continuous domains exist, and hi-

erarchical reinforcement learning provides a clean, principled (though not yet complete)

theoretical basis for skill acquisition and deployment, although it has so far only been ap-

plied in fairly small discrete state spaces.

We face three key challenges if we are to scale such methods up to high-dimensional,

continuous domains (like robots):

1. How do we discover skills in continuous state spaces? All of the existing skill dis-

covery methods for general reinforcement learning domains are only applicable to

small, discrete domains, and are not easily extensible to continuous domains. We

require a general algorithm for skill discovery in continuous state spaces.
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2. How do we scale up to high-dimensional state spaces? Although we can perform

policy learning in moderate-sized continuous state spaces, no existing methods are

able to effectively scale up to larger problems (problems with more than roughly 15

state variables are generally beyond the reach of existing policy learning methods).

In most cases, we cannot even represent general policies for large problems without

making strong, problem-specific assumptions for the problem at hand—usually in

the form of a state space and function approximator carefully designed by a human

expert. We require a general method that can find small, relevant state spaces for

the skills a robot may decide to acquire without advance knowledge of the nature of

those skills.

3. How do we find a reasonable initial policy in a feasible amount of time? Even in

problems that are sufficiently small to be represented and learned, finding a satisficing

policy—one that achieves the goal of the task, however inefficiently—from scratch

can take more time than is feasible for an agent operating in the real world. We

need an effective method for creating a reasonable initial policy to circumvent the

infeasibility of finding one from scratch.

1.3 Contributions

This dissertation makes four contributions. The first three address each of the major chal-

lenges discussed above, and the fourth is a demonstration of a working mobile robot system

that performs autonomous skill acquisition:
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1. Skill chaining, a general skill discovery method for continuous reinforcement learn-

ing domains. When applied to a continuous domain, skill chaining incrementally

builds a skill tree that allows the agent to reach a solution state from any of its start

states by executing a sequence (or chain) of acquired skills. Each skill is constructed

so that the result of executing it is that the agent may execute its successor skill. This

breaks the solution to the domain into a sequence of subproblems that can be repre-

sented and refined in isolation. We describe skill chaining and empirically demon-

strate improved performance in a challenging dynamic and continuous domain in

Chapter 3.

2. Abstraction selection, an efficient algorithm for selecting skill-specific, compact rep-

resentations from a library of available representations when creating a new skill.

A key challenge in reinforcement learning is scaling up to high-dimensional state

spaces. One approach is to attempt to discard state features that are irrelevant to solv-

ing the problem, leaving only a small number of relevant state features; unfortunately,

many problems are intrinsically high-dimensional when approached monolithically.

Nevertheless, many real-world problems can be broken down into subproblems, each

of which are individually feasible to solve using a small set of relevant features. Ab-

straction selection can be combined with skill chaining to solve hard tasks by break-

ing them up into chains of skills, each defined using an appropriate abstraction. We

describe abstraction selection, demonstrate empirically that it selects an appropriate

representation when creating a new skill using very little sample data, and show that

this leads to significant performance improvements in Chapter 4.
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3. The combination of skill chaining and abstraction selection can in principle be used

to acquire a set of skills, each with a skill-specific abstraction, in high-dimensional

continuous domains. However, their application is limited because skill chaining

builds skills sequentially, and is therefore slow. Chapter 5 introduces CST, a method

that incrementally builds entire skill chains from sample trajectories (as might be ob-

tained from human demonstration, a feedback controller, or a planner), and merges

chains from multiple trajectories into skill trees. Each skill is created with an initial

policy matching that of the sample trajectories, thus bootstrapping policy learning.

We show that CST can build skill trees from human demonstration in a challenging

dynamic continuous domain, where the resulting trees result in significant perfor-

mance benefits. We also show that CST is useful as an algorithm for robot learning

from demonstration, that it creates appropriate trees from trajectories obtained by

human control of a mobile robot, and that the resulting skills can be refined using

reinforcement learning.

4. Finally, Chapter 6 uses CST to build a robot control system that is able to acquire

skills autonomously. We demonstrate that this system is able to use skills acquired

in one problem to more quickly solve a new problem.

First, however, Chapter 2 introduces the background necessary to understand the remainder

of this dissertation and briefly outlines related research.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter surveys reinforcement learning and robotics, providing a necessarily brief

overview of both fields. We thereafter outline existing research that is related to the high-

level goal of skill acquisition. Research more specifically related to each of the individual

algorithms developed in this thesis is discussed in the relevant chapter.

2.1 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 1998) is a machine learning paradigm con-

cerned with the problem of learning to maximize a numerical reward signal over time in a

given environment. As a reinforcement learning agent interacts with its environment it re-

ceives a scalar reward for each action taken, and its goal is to learn to act so as to maximize

the cumulative reward it receives over time.

When the agent’s environment consists of a finite number of discrete states, it is usually

modeled as a finite Markov Decision Process or MDP (Puterman, 1994) described by a

tuple:

M = 〈S,A, P,R〉,
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where S is the set of environmental states that the agent may find itself in; A is the set of

actions it may execute; P (s′|s, a) describes the probability of moving from state s ∈ S

to a state s′ ∈ S given action a ∈ A; and R(s, a) returns the scalar reward received for

executing action a ∈ A in state s ∈ S.

In many application domains (including robotics), we are instead faced with states de-

scribed by a vector of real-valued numbers. This is modeled as a continuous-state MDP,

where a state s ∈ S is a point in n-dimensional state space S ⊆ Rn.

The agent chooses its actions according to a policy π which maps states to actions.1 Given

policy π and start state s, we define return, which measures the agent’s cumulative dis-

counted reward for executing policy π from a given state s, as:

Rπ(s) =
∞∑
t=0

γtrt+1,

where rt+1 is the reward obtained by executing π at time t and 0 < γ ≤ 1 is a discount rate

that expresses the extent to which the agent prefers immediate reward over delayed reward.

Since the goal of a reinforcement learning agent is to maximize return, the agent aims to

find the optimal policy π∗ that corresponds to a maximum value for Rπ∗ from its set of start

states.

1This definition permits only deterministic policies. We may obtain stochastic policies by defining π(s, a)
as the probability of executing action a in state s.
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2.1.1 Value Functions and Value Function Approximation

Given policy π, a reinforcement learning agent may learn a value function Vπ mapping each

state to the expected return for executing π starting from that state. If the agent is given

or learns models of P and R, it may improve its performance by updating its policy using

policy iteration:

∀s, π(s) = arg max
a

∑
s′

P (s′|s, a)[R(s, a) + γVπ(s′)]. (2.1)

Policy iteration is usually performed implicitly: the agent simply defines its policy as equa-

tion 2.1. Under certain conditions (Sutton and Barto, 1998), policy iteration is guaranteed

to converge to the optimal policy.

When the agent does not have access to P and R, it may instead learn a state-action value

function Q, which maps state-action pairs to expected return. Given Q, the agent per-

forms policy iteration by modifying its policy at each state s so that it selects the action

a the maximizes Q(s, a). Although we phrase the remainder of this section in terms of

value functions, state-action value functions can be learned and represented using similar

methods.

In finite state spaces, value functions can be represented exactly using a table that directly

stores the value of each individual state. In continuous state spaces (or very large discrete

state spaces), we face two important difficulties. First, we must find a way to compactly

represent a value function defined on a continuous space. Second, that representation must

facilitate generalization: in a continuous state space we may never see the same state twice
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and must instead generalize from experiences in nearby states when encountering a novel

one.

The most common approximation scheme (and the one used in this thesis) is linear function

approximation (Sutton and Barto, 1998). Here, Vπ is approximated by the weighted sum of

a vector of basis functions Φ:

V̄π(s) = w ·Φ(s) =
n∑
i=1

wiφi(s). (2.2)

Thus learning entails obtaining a weight vector w that results in an accurate approximation

of Vπ. Since V̄π is linear in w, when the basis functions in Φ are orthogonal then there

is exactly one w that produces the best approximation to Vπ; however, we may represent

complex value functions this way because each φi may be arbitrarily complex.

In this thesis we use the Fourier Basis, where each feature is defined as:

φc(x) = cos(πc · x), (2.3)

where c = (c1, ..., cm), ci ∈ {0, ..., n} for an order n basis on m state variables. Each basis

function has a frequency along dimension i given by ci; the order parameter n is an upper

bound on that frequency. Thus, the Fourier Basis provides an easy way to model value

functions using components up to a given frequency (and therefore level of detail). When a

basis function has multiple elements of c that are non-zero, that function varies across each

of the corresponding state variables, with frequency specified by that dimension’s element

of c. Thus, the Fourier Basis models all possible interactions between state variables, up to

a given order. More information can be found in Konidaris and Osentoski (2008).
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The most common family of reinforcement learning methods are temporal difference meth-

ods (Sutton and Barto, 1998). When an agent takes action a from state s, we can evaluate

the difference between the return it eventually receives and that predicted by V̄ to obtain a

prediction error. However, since a measure of return is not immediately available (and may

take some time to obtain), we can instead use V̄ ’s own estimate of return at s ′, the state

immediately following s. This leads to an error estimate known as a temporal difference

error:

Et = V (s)− [rt+1 + γV (s ′)]. (2.4)

After each action we may perform a gradient descent step on the weights of our function

approximator to reduce this error:

wt+1 = wt + α[rt+1 + γV (s ′)− V (s)]∇wtV (s), (2.5)

where α is a step size parameter sometimes known as the learning rate. Since we are using

linear function approximation, this becomes

wt+1 = wt + α[rt+1 + γV (s ′)− V (s)]φ(s). (2.6)

This is a variant of the TD (temporal difference) family of algorithms. An extension of this

method, called TD(λ), maintains an eligibility trace vector e (initially 0) that represents the

discounted past activation of each element in w:

et+1 = γτλτet + φ(s), (2.7)
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where λ ∈ [0, 1] can be set to control the amount of “history” included in the update (setting

it 0 reverts to the one-step TD algorithm; setting it to 1 is equivalent to Monte Carlo value

function sampling (Sutton and Barto, 1998)). V̄ can then be updated as follows:

wt+1 = wt + α[rt+1 + γV (s ′)− V (s)]e. (2.8)

TD(λ) is in general more efficient that TD because it continuously updates visited states

with data from new experiences. If experience is expensive—as is especially true in robot

applications, where computation is much faster than action and repeated actions may result

in mechanical wear—we may also use P and R to generate simulated trajectories and use

them to perform offline learning. More details are available in Sutton and Barto (1998).

A related family of methods known as least-squares temporal difference (or LSTD) meth-

ods (Bradtke and Barto, 1996; Boyan, 1999) perform an explicit least-squares error mini-

mization for V rather than iterative stochastic gradient descent. Given a sequence of t states

s1, ..., st, we can define eligibility trace zt =
∑t

i=1 λ
t−iΦ(si) and compute matrix At and

vector bt:

At =
∑t

i=1 zi[Φ(si−1)− Φ(si)]
T

bt =
∑t

i=1 ziri,
(2.9)

from which we may obtain the w minimizing the least-squares projection error for V at

time t as w = A−1
t bt.

LSTD methods have two important advantages over gradient-descent based temporal dif-

ference methods: they make more efficient use of sample data, and they are parameter free.

However, they are not online methods, since w is not updated at every timestep. In addition,

even though A and b can be computed incrementally (Boyan, 1999), LSTD methods are
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more computationally expensive than temporal difference methods, requiring O(k2) time

per step and O(k3) to compute w for k basis functions, as opposed to the linear update

time of gradient-descent temporal difference methods. Recursive least-squares methods

can reduce the time required to compute w to O(k2), at the cost of a significant constant

penalty.

Nevertheless LSTD methods are clearly appropriate for robot applications where data is

expensive and free parameters present an obstacle to achieving autonomy.

2.1.2 Policy Search Methods

Performing reinforcement learning by estimating a value function and then deriving a pol-

icy from it is in some sense indirect. A more direct approach is to represent the policy

explicitly, using its own function approximator. π(s, a, θ) thus returns the probability of

selecting action a, given parameter vector θ and state s.2 This approach leads to a class of

reinforcement learning algorithms known as policy search methods.

Policy search methods provide a simple way to handle continuous actions, thus avoiding

a potentially expensive search over a to maximize Q(s, a), and similarly easily produce

stochastic policies, which are especially useful in non-Markov problems. In addition, be-

cause the policy and its free parameters are directly specified, we can build in domain-

specific structure or constraints that can greatly improve learning performance and help

2An alternative formulation (which we will not discuss further here, but for which similar properties hold)
defines π(s, θ) as returning the selected action a, which is convenient when the agent can execute real-valued
(rather than discrete) actions.
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avoid dangerous or obviously bad policies. For these reasons, policy search methods are

particularly well suited to robotics applications.

One approach to policy search is to directly search over the space of parameter vectors θ.

Any standard optimization technique (such as a genetic algorithm) can be applied, but at

present the most effective policy search method is cross-entropy (Mannor et al., 2003), a

variant of which has produced impressive performance when learning to play Tetris (Szita

and Lörincz, 2006). However, because estimates of return given a policy parameter are

noisy (due to stochasticity in the environment and in the policy), several policy evaluations

are required for each candidate θ value, which often make direct search approaches im-

practical. However, when a simulator is available such methods can be made effective via a

reduction of the variance of the estimates by fixing the sequence of random numbers used

for each evaluation (Ng and Jordan, 2000).

Rather than directly searching over θ, policy gradient methods repeatedly compute or esti-

mate a measure of the gradient of return with respect to the policy parameters ∂R
∂θ

at a given

θ, and ascend it find a (locally) optimal policy. This gradient can be empirically estimated

directly by sampling in the neighbourhood of a point. Kohl and Stone (2004) used such

an approach to optimize a parametrized Aibo walk to obtain performance beyond that of a

hand-tuned controller in about 1, 000 training episodes.

However, policy gradient methods more commonly make use of the policy gradient theo-

rem (Sutton et al., 2000):

∂R

∂θ
=

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
(Qπ(s, a)− b(s)), (2.10)
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where dπ is the summed probability (discounted by time) of an agent following policy π

reaching state s, and b (often called the baseline function) is any function defined over the

state set. Although we do not typically know dπ, if we simply sum over transitions experi-

enced following π we obtain an unbiased estimate of equation 2.10. The baseline function b

may be set to zero everywhere, but the choice of b can substantially affect the performance

of policy gradient algorithms by affecting the variance of the gradient estimator (Sutton

et al., 2000).

Sutton et al. (2000) showed that if the policy π is parameterized by θ, we can build a

compatible linear function approximator for Qπ, defining each of its basis function as:

φi =
∂π

∂θi

1

π(s, a, θ)
. (2.11)

The most common way to represent the policy is to use a Gibbs distribution over a linear

combination of features Ψ, setting π(s, a, θ) = eθa·Ψa(s)P
b e
θb·Ψb(s)

, where the features active for

action a are given by Ψa and their corresponding weight vector by θa. The compatible

basis functions then become:

φi =
∂π

∂θi

1

π(s, a, θ)
= Ψa(s)−

∑
b

Ψb(s). (2.12)

Using this scheme we see that the value function is normalized to be mean zero at each

state. This type of value function is known as an advantage function, defined as A(s, a) =

Q(s, a) − V (s) = Q(s, a) −
∑

aQ(s, a) (Sutton et al., 2000; Peters et al., 2003; Peters

and Schaal, 2008). Advantage functions represent the relative advantage of taking action a

instead of any other action from state s, and are easier to represent using function approx-
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imation (Baird, 1993). However, they cannot be learned directly using standard temporal

difference learning algorithms (Peters et al., 2003). Peters and Schaal (2008) describe a

least-squares method where Q(s, a) is represented and learned using state-action and state-

only basis functions and where A(s, a) can be obtained by omitting the state-only basis

functions. This effectively sets b(s) = V (s) while allowing us to use temporal difference

learning methods.

Given an estimate of ∂R
∂θ

, we may simply ascend the gradient by setting θ = θ + α∂R
∂θ

.

However, Kakade (2002) showed that this gradient descent rule is non-covariant; it uses a

distance metric in the space of θ that is representation-specific and does not guarantee the

steepest ascent. Instead, we should ascend the natural gradient F−1 ∂R
∂θ

, where F is the

Fischer Information Matrix. Peters and Schaal (2008) showed that the resulting update to

the policy weights then becomes:

θ = θ + αw, (2.13)

where w is the weight vector of the state-action basis functions representing Q(s, a) and

α is the learning rate. Although (like all policy gradient methods) it is only guaranteed to

converge to a local optimum, the resulting learning algorithm (called Natural Actor-Critic)

combining this update rule with their method for learning A(s, a) has shown impressive

performance in many real-world domains and is the method of choice for robot learning

applications.
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2.1.3 Hierarchical Reinforcement Learning using the Options Framework

The standard reinforcement learning framework assumes that actions take a single unit

of time; however, in many application scenarios (in particular robotics), actions may be

temporally extended—they may take an extended (and possibly varying) amount of time

to run. The options framework (Sutton et al., 1999) is a set of formalisms and methods for

learning and planning using temporally extended actions called options.

An option o is a closed loop control policy unit consisting of three components (Sutton

et al., 1999): an option policy πo mapping state-action pairs over which the option is defined

to an execution probability; an initiation set indicator function Io, which is 1 for states

where the option can be executed and 0 elsewhere; and a termination condition βo, giving

the probability of the option terminating at each state in which it is defined. The option

policy may be defined in its own state space So, which is usually a subset of the space in

which the primary reinforcement learning problem is posed.

A reinforcement learning problem with options can be modeled as a Semi-Markov Deci-

sion Process (Precup, 2000), where the transition and reward functions model temporally

extended actions. P (s′, τ |s, o) now describes the probability of ending in state s′ after time

τ when executing option o from state s; R(s, o) now describes the discounted reward ac-

cumulated before o completes execution. Given a set of options O, the temporal difference

error resulting from executing option o for time τ from state s to state s′ and accumulating

reward r is then:

Et = V (s)− [rt+τ + γτV (s′)]. (2.14)

Any temporal difference algorithm can therefore be adapted to handle SMDPs by discount-

ing γ appropriately (Bradtke and Duff, 1995).
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Thus, given a set of options O we are able to learn or plan to use them to maximize reward.

In addition, if we are given an option reward function Ro, then learning that option’s policy

πo is just another reinforcement learning problem, and can be solved using standard rein-

forcement learning techniques. We are thus able to build agents that are able to learn and

plan using options, and also learn the policies behind those options.

An important research goal in hierarchical reinforcement learning is to take this one step

further: to develop agents that not only learn their own option policies but also acquire

new options autonomously. Option acquisition algorithms must specify when to create an

option, how to define its initiation set, how to define its termination condition, and describe

its reward function.

Creation and termination are usually performed by the identification of subgoal states, with

an option created to reach a subgoal state and terminate when it has been reached. This type

of option is known as a subgoal option (Precup, 2000), and will be the only type considered

in this thesis. A subgoal is expressed as a synthetic option reward function Ro consisting

of an action penalty or discount factor and a positive reward for reaching the option’s goal.

The initiation set is then the set of states from which the goal state is reachable, and the

termination condition becomes either successfully reaching the goal or reaching a state

from which success is unlikely.

Previous research has selected goal states by a variety of methods: visit frequency and re-

ward gradient (Digney, 1998), visit frequency on successful trajectories (McGovern and

Barto, 2001), variable change frequency (Hengst, 2002), relative novelty (Şimşek and

Barto, 2004), salience (Barto et al., 2004; Singh et al., 2004), clustering algorithms and

value gradients (Mannor et al., 2004), local graph partitioning (Şimşek et al., 2005), global
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max-flow/min-cuts (Menache et al., 2002), causal decomposition (Jonsson and Barto, 2005),

sample trajectory analysis using Dynamic Bayesian Networks (Mehta et al., 2008), between-

ness centrality (Şimşek and Barto, 2008) and sample trajectory analysis based on frequency,

length and abstraction affordance of the extracted options (Zang et al., 2009). Other re-

search has focused on extracting options by exploiting commonalities in collections of

policies over a single state space (Thrun and Schwartz, 1995; Bernstein, 1999; Perkins and

Precup, 1999; Pickett and Barto, 2002).

Once Ro is available, then the option policy can be obtained by learning the corresponding

value function Vo. Learning is generally performed by an off-policy reinforcement learning

algorithm so that the agent can update all option policies simultaneously after taking an

action (Sutton et al., 1998).

Although the options framework has received a great deal of attention, almost all of the

research on acquiring new options has focused on small, discrete domains. Part of the

contribution of this thesis is the development of skill acquisition methods for continuous

reinforcement learning domains.

2.2 Robotics

Robotics became an important area of artificial intelligence research due to the view (pop-

ularized by Brooks (1991)) that artificial intelligence is a robot problem. This view holds

that intelligence exists to facilitate intelligent control, and cannot be separated from the

problem of learning and acting in real time in the real world (Brooks, 1991; Arkin, 1998;
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Pfeifer and Scheier, 1999; Murphy, 2000). The best way to study intelligence is thus to

construct complete agents that must interact with complex environments in real time.

Although the isolated study of hypothesised components of intelligence is characteristic of

artificial intelligence as a field, it carries several risks. It is not always clear that the chosen

partitioning is correct, and so we may be solving the wrong problems. The ability of those

components to interact may diminish over time as researchers focus narrowly, and so we

may be producing useless solutions. The knowledge structures and constraints that result

from a layered control architectures and real robot control are not usually considered, and

so we may be solving harder problems than necessary; conversely, we may abstract out

essential characteristics of a component, and so we may be solving easier problems than

necessary.

By contrast, the embodied intelligence view emphasises real time robot control architecture

research with a focus on the interaction of the components of an intelligent system. The

emphasis on reactivity and competence in complex environments led to a shift away from

deliberative architectures, where interactions with the world are carefully modelled and

planned internally, to reactive (or behavior-based) architectures, where multiple control

layers are built out of simple behaviors run in parallel, each directly connecting sensing

and action (Murphy, 2000).

Although no standard definition exists, a behavior is usually described as a module mapping

sensor data to control. A behavior contains all that is necessary for its own execution,

including behavior-specific sensor processing, internal state (if any), and mechanisms to

recognise when it can execute and when it should cease execution.
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The earliest behavior-based robots had small numbers of behaviors, which made hand-

engineered behavior coordination mechanisms feasible. For example, Brooks’ subsump-

tion architecture (Brooks, 1991) used the suppression of lower-level behaviors by higher-

level behaviors as its primary coordination method, and Arkin’s schema-based architecture

(Arkin, 1989) used vector summation to add control signals from active behaviors. Apart

from a great deal of design effort, these methods required significant designer insight into

the task the robot is required to complete; consequently robots with a large number of

behaviors and dynamic goals require more sophisticated behavior coordination methods.

Starting with Maes and Brooks (1990), a major research theme in robotics has been that of

action selection: how should a robot with a set of behaviors use them to achieve a given

goal? Most modern robot architectures employ a separate layer for action selection, using

either a planning or learning system to decide which behaviors to execute and when. These

architectures are considered hybrid architectures because they fuse reactive behaviors with

higher level decision making elements.

Skill acquisition is complementary to action selection: rather than sequencing existing

behaviors to achieve a goal, skill acquisition focuses on creating a new behavior that can

be stored and deployed in later tasks. The need to accumulate skills is based on the idea

that an intelligent robot should be living a life, not solving a problem—that it may need

to solve a range of tasks over its operational lifetime, and that it should therefore use its

experience solving some tasks to improve its performance on others. This view has recently

been revived by the developmental robotics community, which emphasises the autonomous

development of intelligent robots through lifelong learning (Weng et al., 2000).
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Reinforcement learning is naturally suited to both of these learning problems. Starting with

Mahadevan and Connell (1992), robot action selection research has widely assumed goals

specified via a reward function, and employed reinforcement learning methods to learn to

achieve them. More recently, research in developmental robotics has begun to make use

of the options framework for skill learning (Barto et al., 2004; Stout et al., 2005), since an

option can be viewed as a formal model of a behavior.

Reinforcement learning and the options framework thus provide a principled theoretical

framework, not only for behavior sequencing, but also for learning new behaviors and

integrating them into the agent’s behavioral repertoire. The goal of this thesis is to extend

the options framework with new methods that can handle the kind of high-dimensional,

continuous control problems posed by real robots.

2.3 Related Work

This section briefly covers research related to the high-level goal of robot skill acquisition;

research more specifically related to each of the individual algorithms developed in this

thesis is covered in the relevant chapter.

2.3.1 Instances of Real Time Robot Skill Learning

To the best of our knowledge, the earliest instance of robot skill learning was the seminal

use of reinforcement learning to learn box-pushing behaviors by Mahadevan and Connell

(1992). Although this work employed a fixed modular architecture and pre-designated

target skills, it showed that reinforcement learning could be used to learn individual skills
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in real time, and that those skills could be deployed as behaviors in a modular control

architecture.

Schaal et al. (2000) used locally weighted regression (Atkeson et al., 1997) to build systems

capable of learning complex robot control tasks (such as devil sticking and pole balancing)

using very short training times (seconds or minutes). Using data from a human demonstra-

tion, their robot was able to learn to balance a pole in only a single trial (Schaal, 1997). An

extension of this method (locally weighted projection regression) is able to deal with large

numbers of irrelevant inputs (Vijayakumar and Schaal, 2000). However, although these

systems are impressive, they are not reinforcement learning systems—learning is used to

build a forward dynamic model that is combined with a hand-designed, task-specific con-

troller. In addition, they make use of human demonstrations of the target task, and they use

given goals and hand-engineered state spaces.

Ng et al. (2003, 2004) employed a locally linear learned model of the dynamics of remote-

control helicopter flight and an offline policy search method called PEGASUS (Ng and

Jordan, 2000) to learn policies for hovering, inverted hovering, and various maneuvers on

a remote-controlled helicopter. Although the controllers did not autonomously determine

which skills to learn and made use of significant domain knowledge, they provide con-

vincing evidence that reinforcement learning methods can solve extremely hard control

problems using feasible amounts of data (in this case, gathered from a few minutes of flight

time). This work was later extended to use a trajectory-following reward function obtained

by human demonstration to learn helicopter controllers able to perform aerobatics, outper-

forming trained human experts (Abbeel et al., 2006).
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A notably successful application of real-time skill learning has been that of gait learning for

Sony AIBO robots. Here, the best performance achieved was through the use of a policy

gradient algorithm (Kohl and Stone, 2004), which proved better than existing hand-tuned

gaits. However, although this work was able to perform learning in real time, it was used

to optimize the parameters of a highly application-specific policy.

Other robot systems (Morimoto and Doya, 2000; Konidaris and Hayes, 2005) have achieved

real time learning, but only through the use of a hand-coded and task-specific hierarchy that

rendered learning a high-dimensional control policy feasible.

2.3.2 Intrinsically Motivated Reinforcement Learning

Intrinsic motivation in reinforcement learning refers to the augmentation of a standard (ex-

trinsic) reward function with additional internally generated reward signals designed to

facilitate task-general learning. Intrinsically motivated agents are thus rewarded for activ-

ities that they may not find immediately useful or extrinsically rewarding, in the hope that

such activities will result in the acquisition of knowledge that will prove useful in future

tasks. Work in this area differs primarily according to the type of activities designated

intrinsically rewarding, and the exact intrinsic reward mechanism used.

The earliest work on self-motived learning and curiosity focused on rewarding agents for

learning progressively more accurate models of their environment (Schmidhuber, 1991a,b);

more recent work has extended this broad approach to robotics (Oudeyer et al., 2007).

These approaches do not use acquired skills; by contrast, Vigorito and Barto (2008) em-

ployed intrinsically motivated exploration to efficiently learn a structured model that can

be used to derive a skill hierarchy. However, it is not clear that the general approach of
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learning a model of the environment will scale up; good models of complex robots in real

environments are extremely difficult to learn, even with a great deal of training data.

Another broad approach focuses on the intrinsically motivated acquisition of skill hierar-

chies (Singh et al., 2004; Barto et al., 2004; Bonarini et al., 2006), and has been identified

as particularly well suited to developmental robotics (Stout et al., 2005; Soni and Singh,

2006). In this work the intrinsic motivation component rewards the agent for efficiently

learning skill policies. This can be considered a mechanism for encouraging efficient ex-

ploration when learning a skill, and has been explicitly studied as such (Şimşek and Barto,

2006). We can thus consider this view of intrinsic motivation as complementary to skill

acquisition: it provides an efficient exploration process that will aid in skill policy learning

once a skill has been initially identified.

2.3.3 Qualitative State Representations

Qualitative representations of state have their roots in spatial map learning, where similar

methods have been successfully applied to learn action models, control laws, and topolog-

ical maps (Pierce and Kuipers, 1997).

A qualitative state representation of a single continuous variable is obtained when that

variable is partitioned using a set of landmark values; the variable is then discretized into a

finite set of state values corresponding to the resulting partitions. This process transforms

a continuous state space into a discrete state space.

Most of this work has been concerned with autonomously building qualitative state rep-

resentations from continuous features, and using the resulting discrete state space as an
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appropriate state space for reinforcement learning. Mugan and Kuipers (2007) describe a

system that learned a qualitative state representation for a continuous domain using land-

marks generated at runtime. A forward model of a form similar to a Dynamic Bayesian

Network (or DBN) for each qualitative state was learned using active exploration. Sto-

ber and Kuipers (2008) introduced a method that discovers the features themselves in a

pixel-based video system, by identifying moving objects using background subtraction and

tracking them using their static features. Each object’s dynamic features (and further fea-

tures obtained using derivative and difference operators) were used as state features, upon

which a fixed set of landmarks was then applied to obtain a qualitative state abstraction for

policy learning.

More recently, Mugan and Kuipers (2009) extended their earlier work to create new options

to reach newly discovered quantitative states, and leveraged their learned DBNs to obtain

an abstraction for each option. This work showed successful learning on a very simple

simulated robot platform, but although it is a fully autonomous skill acquisition system,

its commitment to first learning a model of the environment from which options can be

derived makes it unlikely to scale up to more interesting robots.

2.3.4 Grupen’s Motor Control Hierarchy

Grupen’s motor control hierarchy (Brock et al., 2005) is a well developed architecture for

hierarchical control and learning, primarily applied to grasping tasks on Dexter, a 29 degree

of freedom humanoid robot.

The first level of the hierarchy, the control basis (Huber et al., 1996), is a set of control-

theoretic motor programs designed to provide a basis for further learning by providing
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stable (if suboptimal) controllers for achieving anything the robot wishes to do. Each con-

troller can be bound to a sensorimotor coupling—a set of sensor inputs and motor outputs—

and then applied to achieve control. Controllers can be combined and run simultaneously

given a priority ordering, where lower priority controllers operate in the null space of higher

priority controllers (Platt et al., 2002). A task-specific controller can then be constructed

by creating a controller assemblage for that task.

If a task is to be learned, the next level of the hierarchy uses reinforcement learning over

a discrete dynamic event system or DEDS (Huber and Grupen, 1997; Huber, 2000), where

each task-relevant controller is treated as a discrete feature that is either currently running,

converged, or unable to run. Thus although control is by a set of controllers in a continuous

space, learning can take place in a small, discrete state space where decisions must be made

only when a controller state changes. This method is clearly strongly related to the options

framework, although it was developed earlier (Huber and Grupen, 1997).

Although the use of a DEDS leads to fast learning, it can result in inefficient task perfor-

mance because the controllers are typically constructed to cancel out the dynamic proper-

ties of the robot’s actuators. Recent work has examined using inefficient controller trajecto-

ries to bootstrap more direct learning that harnesses the dynamic properties of the actuator

(Rosenstein and Barto, 2004), though not explicitly in the context of a DEDS.

The primary limitation of constructing a DEDS is that learning is only feasible when a small

number of controllers is present, since the size of the state space increases exponentially

with the number of controllers present. Schema structured learning (Platt et al., 2006)

introduces the use of action schemas that represent abstract policies; learning then consists

of matching a task to a candidate schema through experience and then using the schema to
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constrain learning. Recent work has also focused on relational representations for learning

when a controller is likely to succeed (Hart et al., 2005; Hart, 2009b).

Hart (2009a) combined the control basis, DEDS, and an intrinsic motivation mechanism

to teach Dexter hierarchical manipulation skills. This work comes closest (to the best

of our knowledge) to full autonomous skill acquisition: the robot was equipped with an

intrinsic reward function (Hart, 2008) and learned to sequence a small set of controllers to

achieve intrinsically rewarding events; learned controllers were then added to the robot’s

behavioral repertoire. However, the intrinsic reward (achieved when a controller converged

to an external reference) was task-specific, and this framework relies on the presence of

a teacher or programmer who both designs a developmental schedule for the robot and

restricts the controllers available to it to make learning feasible. In addition, while the

robot applied reinforcement learning to learn to sequence existing controllers, it did not

do any low-level motor learning, and so once the controllers are sequenced the resulting

policies are never improved.

2.3.5 Robot Learning by Demonstration

In robot learning by demonstration—surveyed by Argall et al. (2009)—a robot must extract

a motor skill from a given set of successful skill trajectories. The trajectories are typically

gained either by watching a human teacher demonstrate a specific task or through human

teleoperation of the robot itself. In most cases the robot employs a supervised learning algo-

rithm to obtain a policy from the example trajectories without further refinement, although

in some cases the controller is subsequently improved through reinforcement learning using
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a hand-engineered reward function (Smart, 2002; Guenter et al., 2007; Peters and Schaal,

2008).

Rather than extract a single demonstrated skill, some systems derive multiple skills by

segmenting a single demonstration using either a learned Hidden Markov Model (HMM)

(Pook and Ballard, 1993; Hovland et al., 1996; Dixon and Khosla, 2004) or clustering

(Jenkins and Matarić, 2004). Such work directly addresses the skill acquisition problem,

but does not provide a mechanism for autonomously generating goals or creating initia-

tion sets. Skills acquired this way can therefore be replayed, but their policies cannot be

improved through experience.

2.4 Summary and Conclusions

Although robot learning is an active research area, there are three primary reasons why no

existing robots can be considered to have achieved fully autonomous skill acquisition. First,

in all cases the skill specification is given—no existing robot autonomously identifies target

skills. Second, successful skill learning almost always relies heavily on designer insight

to identify a task-specific state space, and in most cases upon the provision of suitable

solution trajectories demonstrated by a human expert. Finally, in almost all cases skills

are learned in isolation and never integrated back into a more general control architecture.

Grupen’s motor control hierarchy is the only robot control architecture of which we are

aware that is capable of something like fully autonomous skill acquisition, but in that work

skill learning consists of finding sequences of existing skills with pre-specified goals using

a hand-engineered task-specific hierarchy.

32



Thus, the question of how to achieve autonomous robot skill acquisition, clearly a key

component of an embodied artificial intelligence, is still open. In this chapter we have

argued that hierarchical reinforcement learning and the options framework provide a prin-

cipled theoretical framework for the skill acquisition problem. In the following chapters,

we extend the options framework by developing new methods that overcome the remain-

ing barriers to autonomy, and we use those methods to create a mobile robot capable of

performing skill acquisition fully autonomously.
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CHAPTER 3

SKILL DISCOVERY IN CONTINUOUS DOMAINS

The first important problem of robot skill acquisition is the problem of skill discovery—

what method should a robot use to discover useful skills through interaction with its envi-

ronment? In the context of the options framework, when should a robot create a new option,

and what should its policy, termination condition and initiation set be? As we have shown

in Chapter 2, the hierarchical reinforcement learning literature already describes several

methods for discovering options in discrete domains. However, none of these methods are

immediately extensible to or have been successfully applied in continuous domains.

This chapter introduces skill chaining, a skill discovery method for continuous domains.

Skill chaining produces chains of skills, each leading to one of a list of designated target

events, where the list can simply contain the end-of-episode event or more sophisticated

heuristic events (e.g., intrinsically interesting events (Singh et al., 2004; Barto et al., 2004)).

The goal of each skill in the chain is to enable the agent to reach a state from which its

successor skill can be successfully executed.

In the following sections we briefly discuss skill discovery in continuous domains and

formally define skill chaining. We then describe the implementation of skill chaining

in the Pinball domain—a challenging continuous reinforcement learning domain—and

34



demonstrate experimentally that Pinball agents using skill chaining significantly outper-

form agents that do not. We then cover related work and discuss the implications of the

results presented here.

3.1 Skill Discovery in Continuous Domains

Although the problem of skill discovery in discrete domains is well studied and its benefits

well understood, skill discovery in continuous domains remains relatively unexplored. In

this section we argue that skill discovery offers additional benefits in continuous domains

but poses greater challenges.

In discrete domains, the primary reason for creating an option to reach a subgoal state is to

make that state prominent in learning: a state that may once have been difficult to reach can

now be reached using a single decision (to invoke the option). This effectively modifies the

connectivity of the MDP by connecting the option’s subgoal to every state in its initiation

set. Another reason for creating options is transfer: if options are learned in an appropriate

space they can be used in later tasks to speed up learning. If the agent faces a sequence of

tasks in the same state space, then options learned in it are portable (Thrun and Schwartz,

1995; Bernstein, 1999; Perkins and Precup, 1999; Pickett and Barto, 2002); if it faces a

sequence of tasks in different but related state spaces, then the options must be learned

using features common to all the tasks (Konidaris and Barto, 2007).

In continuous domains, there is a further reason for creating new options. An agent using

function approximation to solve a task must necessarily obtain an approximate solution.

Creating new options that each have their own function approximator concentrated in a
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subset of the state space may result in better overall policies by freeing the primary value

function from having to simultaneously represent the complexities of the individual option

policies.

Thus, skill discovery offers an additional representational benefit in continuous domains.

However, several difficulties that are absent or less apparent in discrete domains become

important in continuous domains.

Target regions. Most existing skill discovery methods identify a single state as an option

target. In continuous domains where the agent may never see the same state twice, this

must be generalized to a target region. However, simply defining the target region as a

neighborhood about a point will not necessarily capture the goal of a skill. For example,

many of the above methods aim to generate target states that are difficult to reach—a too-

small neighborhood may make the target nearly impossible to reach; conversely, a too-large

neighborhood may include regions of the state space that are not difficult to reach at all.

Similarly, we cannot easily compute statistics over state space regions or over state-region

connectivity graphs without first defining the size and shape of those regions, which is a

non-trivial aspect of the problem.

Initiation sets. While in discrete domains it is common for an option’s initiation set to

expand arbitrarily as the agent learns a policy for successfully executing the option, in

continuous spaces that is not desirable. In discrete domains without function approximation

a policy to reach a subgoal can always be exactly represented; in continuous domains with

function approximation (or even discrete domains with function approximation), it may

only be possible to represent such a policy locally. We are thus required to determine the

extent of a new option’s initiation set either analytically or through trial-and-error learning.
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Representation. An option policy in both discrete and continuous domains should be

able to consistently solve a simpler problem than the overall task using a simpler policy.

A value table in a domain with a finite state set is a relatively simple data structure, and

updates to it take constant time. Thus, in a discrete domain it is perfectly feasible to create

a new value table for each learned option of the same dimension as the task value table.

In continuous domains with many variables, however, value function approximation may

require hundreds of even thousands of features to represent the overall tasks value function,

and updates are usually linear time. Therefore, lightweight options that use fewer features

than needed to solve the overall problem are desirable in high-dimensional domains, or

when we may wish to create many skills.

Characterization. Şimşek and Barto (2008) characterize useful subgoals as those likely

to lie on a solution path of the task the agent is facing. Options that are useful across

a collection of problems should have goals that have high probability of falling on the

solution paths of some of those problems (although not necessarily the one the agent is

currently solving). In a discrete domain where the agent faces a finite number of tasks, one

characterization of an options usefulness may be obtained by treating the MDP as a graph

and computing the likelihood that its goal lies on a solution path. Such a characterization

is much more difficult in a continuous domain.

In the following section we develop an algorithm for skill discovery in continuous domains

by addressing these challenges.
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3.2 Skill Chaining

Since a useful option lies on a solution path, it seems natural to first create an option to reach

the tasks goal. The high likelihood that the option can only do so from a local neighborhood

about this region suggests a follow-on step: create an option to reach the states where the

first option can be successfully executed.

This section describes skill chaining, a method that formalizes this intuition to create chains

of options to reach a given target event by repeatedly creating options to reach options

created earlier in the chain. First, we describe how to create an option given a target event.

3.2.1 Creating a Skill to Trigger a Target Event

Given an episodic task defined over state space S with reward function R, we assume we

are given a target event trigger function T :

T (s) =


1, if s is in the target region;

0, otherwise,
(3.1)

where s ∈ S. T is simply an indicator function that is 1 for states in the goal region and 0

otherwise. To create an option, oT , to trigger T (reach a state s where T (s) = 1), we must

define oT ’s termination condition βoT , reward function RoT (and thereby implicitly policy

πoT ), and initiation set IoT .

Since oT ’s goal is to reach an swhere T (s) = 1, we can use T as oT ’s termination condition

directly and set βoT = T . Thus, oT terminates when it triggers T .
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We use the task reward function R as oT ’s reward function but add an option completion

reward c for triggering T :

RoT (s) = R(s) + cT (s). (3.2)

We consider all states where T is 1 to be absorbing. We can then allocate oT a suitable

number of basis functions, and use a standard reinforcement learning algorithm to learn its

policy πoT .

Obtaining oT ’s initiation set IoT is more difficult because it should consist of the states

from which executing πoT triggers T , once πoT has been initialized. Therefore, we cannot

specify IoT in advance because it depends on πoT (which must itself be learned).

We can treat this as a standard classification problem by executing πoT and collecting la-

belled examples of states where it succeeds in triggering T and states where it fails. We

consider an option execution failed when it has not reached a termination state within smax

steps. These states can be used as training examples for a classifier suited to a potentially

nonstationary classification problem with continuous features. Once such a classifier has

been learned, we can use its output as IoT . Thus, once we have an initial policy πoT we can

proceed to learn IoT through experience.

3.2.2 Creating Skill Chains

Given an initial target event T0, which for the purposes of this discussion we consider

to indicate terminal states of the underlying task (i.e., T0 is 1 for terminal states and 0

elsewhere), the agent creates a chain of skills as follows. First, the agent creates option oT0

to trigger T0, learns a good option policy, and obtains a good estimate, ÎT0 , of its initiation

set. We then add new event T1 = ÎoT0
to the list of target events, so that when the agent
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triggers T1 it will create a new option oT1 to reach it (oT1 is defined as discussed above,

using T1 as a trigger event). Repeating this procedure results in a chain of skills leading

from any state in which the agent may start to task’s goal region, as depicted in Figure 3.1.

...
a b c

Figure 3.1. An agent creates skills using skill chaining. (a) First, the agent encounters
a target event and creates an option to reach it. (b) Entering the initiation set of this first
option triggers the creation of a second option whose target is the initiation set of the first
option. (c) Finally, after many trajectories the agent has created a chain of options to reach
the original target.

Note that although the options lie on a chain, the decision to to execute each option is

part of the agent’s overall learning problem. Thus, they may not necessarily be executed

sequentially; in particular, if an agent has learned a better policy for some parts of the chain,

it may learn to skip some options.
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3.2.3 Creating Skill Trees

The procedure above can create more general structures than chains. More than one option

may be created to reach a target event if that event remains on the target event list after the

first option is created to reach it. Each “child” option then creates its own chain, resulting

in a skill tree, depicted in Figure 3.2. This will most likely occur when there are multiple

solution trajectories (e.g., when the agent has multiple start states), or when noise or ex-

ploration create multiple segments along a solution path that cannot be covered by just one

option.

...
a b c

Figure 3.2. An agent creating a skill tree. (a) A skill chaining agent in an environment with
multiple start states and two initial target events. (b) When the agent initially encounters
target events it creates options to trigger them. (c) The initiation sets of these options
then become target events, later triggering the creation of new options so that the agent
eventually creates a skill tree covering all solution trajectories.
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To control the branching factor of this tree, we need to place three further conditions on

option creation. First, we do not create a new option when a target event is triggered from

a state already in the initiation set of an option targeting that event. Second, we require that

the initiation set of an option does not overlap that of its siblings or ancestors.1 Finally, we

may find it necessary to set a limit bmax on the branching factor of the tree by removing an

event from the target event list once it has bmax options targeting it.

3.2.4 More General Target Events

Although we have assumed the task’s end-of-episode trigger function is the only initial

target event, we are free to start with any list of target events. We may thus include measures

of novelty or other intrinsically motivating events (Singh et al., 2004; Barto et al., 2004)

as triggers, heuristic triggers, events that are interesting for domain-specific reasons (e.g.,

physically meaningful events for a robot) or more general skill discovery techniques that

can identify regions of interest before the goal is reached.

3.3 The Pinball Domain

The Pinball domain is a continuous, dynamic navigation task.2 It is an appropriate contin-

uous domain for skill discovery because its dynamic aspects, sharp discontinuities, and ex-

tended control characteristics make it difficult for control and for function approximation—

1Although these conditions seem computationally expensive, they can be implemented using at most one
execution of each initiation classifier set per visited state—which is required for action selection anyway.

2The Java source code for Pinball is available for download under the GNU General Public License, at:
http://www-all.cs.umass.edu/̃ gdk/pinball
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much more difficult than a simple navigation task, or typical benchmarks like Acrobot.

While a solution with a flat learning system is possible, there is scope for acquiring skills

that could result in a better solution. Our experiments use two instances of the Pinball

domain, shown in Figure 3.3.

Figure 3.3. The two Pinball domain instances used in our experiments.

The goal of Pinball is to maneuver the small ball (which always starts in the same place in

the first instance, and in one of two places in the second) into the large red hole. The ball is

dynamic (drag coefficient 0.995), so its state is described by four variables: x, y, ẋ and ẏ.

Collisions with obstacles are fully elastic and cause the ball to bounce, so rather than merely

avoiding obstacles the agent may choose to use them to efficiently reach the hole. There are

five primitive actions: incrementing or decrement ẋ or ẏ by a small amount (which incurs

a reward of −5 per action), or leaving them unchanged (which incurs a reward of −1 per

action); reaching the goal obtains a reward of 10, 000.
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3.3.1 Implementation Details

To learn to solve the overall task for both standard and option-learning agents, we used

Sarsa (γ = 1, ε = 0.01) with linear function approximation, using a 4th-order Fourier

Basis (Konidaris and Osentoski, 2008) (625 basis functions per action) with α = 0.001 for

the first instance and a 5th-order Fourier Basis (1296 basis functions per action) with α =

0.0005 for the second (in both cases α was systematically varied and the best performing

value used).

Option policy learning was accomplished using Q-learning (αo = 0.0005, γ = 1, ε = 0.01)

with a 3rd-order Fourier Basis (256 basis functions per action). Off-policy updates to an

option for states outside its initiation set were ignored (because its policy does not need

to be defined in those states), as were updates from unsuccessful on-policy trajectories

(because their start states were then removed from the initiation set).

Although most prior research has initialized new option policies using experience replay

(McGovern and Barto, 2001), Jong et al. (2008) point out that these extra updates may

be experimentally confounding. Therefore, in order to initialize the option policy before

attempting to learn its initiation set, a newly created option was first allowed a “gestation

period” g = 10 episodes where it could not be executed and its policy was updated using

only off-policy learning.

After its gestation period, the option was added to the agent’s action repertoire. For new

option o, this requires expanding the overall action-value function Q to include o and as-

signing appropriate initial values to Q(s, o). We therefore sampled the Q values of transi-

tions that triggered the option’s target event during its gestation, and initialized Q(s, o) to
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the maximum of these values. This method reliably resulted in an optimistic but still fairly

accurate initial value that encouraged the agent to execute the option.

Each option’s initiation set was learned by a logistic regression classifier (Bishop, 2006),

initialized to be true everywhere, using 2nd order polynomial features, learning rate η =

0.1, and k = 100 sweeps for each new data point. To balance positive and negative exam-

ples, each positive example was weighted by f+ (the fraction of positive examples in the

data set) and each negative example by f− (the fraction of negative examples in the data

set). When the agent executed the option, states in trajectories that reached its goal within

smax = 250 steps were used as positive examples, and the start states of trajectories that

did not were used as negative examples. We considered an option’s initiation set learned

well enough to be added to the list of targets when its weights changed on average less than

εI = 0.15 per episode for two consecutive episodes. Since the Pinball domain has such

strong discontinuities, to avoid over-generalization after this learning period we addition-

ally constrained the initiation set to be true only for points within a Euclidean distance of

δmax = 0.1 of a positive example. Each target event was assigned a maximum branching

factor bmax = 3.

Table 3.1 summarizes the parameter settings used for the Pinball implementation of skill

chaining, and organizes the parameters into groups. The parameters relating to task and

option value function learning are unavoidable for any skill acquisition method, although

parameter-free reinforcement learning methods are a topic of active research.

Skill chaining itself results in three parameters: maximum branching factor for the skill

tree bmax, gestation period g and maximum skill length smax. We expect that bmax may not

be necessary for real applications (and can therefore be set to∞), but if it is, it can be easily
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Description Parameter Value

Task Value Function Learning
Number of basis functions |Φ| 625 (1296)
Learning rate α 0.001 (0.0005)
Exploration rate ε 0.01

Option Value Function Learning
Number of basis functions |Φo| 256
Learning rate αo 0.0005
Exploration rate εo 0.01

Skill Chaining Parameters
Maximum skill tree branching factor bmax 3
Gestation period (episodes) g 10
Maximum skill length (steps) smax 250

Initiation Set Classifier Parameters
Number of features |ΦI | 81
Learning rate η 0.1
Number of sweeps k 100
Convergence threshold εI 0.15
Maximum positive example distance δmax 0.1

Table 3.1. Parameters for the Pinball domain implementation of skill chaining. When a
different parameter value is used for the second instance it is given in parentheses.

set to a small integer. Similarly our informal experiments showed learning to be robust to

changes in smax. The gestation period g is a consequence of using off-policy learning for

option policy initialization. It may be possible to eliminate g using another initialization

method, or using some measure of value function error. However, again from informal

experimentation g can be set to any small integer larger than two without greatly affecting

our results.
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The largest group of parameters are those related to the logistic regression classifier used

to learn option initiation sets. These parameters were found using a few hours’ worth of

informal experiments in the domain. However, any appropriate classifier can be employed

for initiation set learning, and more advanced classifiers (e.g., support vector machines

(Schölkopf and Smola, 2001)) have fewer parameters, at the cost of increased algorithmic

and computational complexity. We expect that for a particular domain an implementor

will select an appropriate classifier by considering the tradeoff between the number of

parameters and the complexity of the classifier.

3.4 Results

Figure 3.4 shows the performance (averaged over 100 runs) in the first Pinball instance for

agents using a flat policy (without options) against agents employing skill chaining, and

agents starting with given (pre-learned) options. Pre-learned options were obtained using

skill chaining over 250 episodes in the same Pinball task.

Figure 3.4 shows that the skill chaining agents performed significantly better than flat

agents by 50 episodes, and obtained consistently better solutions by 250 episodes, whereas

the flat agents did much worse and were less consistent. Agents that started with given

options did very well initially—with an initial episode return far greater than the average

solution eventually learned by agents that start without options—and proceed quickly to

the same quality of solution as the agents that discover the options themselves. This shows

that the options acquired, and not some by-product of acquiring them, were responsible for

the increase in performance.
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Figure 3.4. Performance in the first Pinball instance (averaged over 100 runs) for agents
employing skill chaining, agents with given options, and agents without options.

Figure 3.5 shows a sample solution trajectory from an agent performing skill chaining in

the first Pinball instance, with the options executed shown in different colors. The figure

illustrates that this agent discovered options corresponding to simple, efficient policies cov-

ering segments of its sample trajectory. It also illustrates that in some places (in this case,

the beginning of the trajectory) the agent has learned to bypass a learned option—the black

portions of the trajectory show where the agent employed primitive actions rather than a

learned option. In some cases this occured because poor policies were learned for those op-

tions. In this particular case, the presence of other options freed the overall policy (with its

more complex function approximator) to represent the remaining trajectory segment better

than an option could (with its less complex function approximator). Figure 3.6 shows the

initiation sets and three sample trajectories from the options used in the trajectory shown in
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Figure 3.5. A sample solution trajectory for the first Pinball instance. Acquired options
executed along the sample trajectory are shown in different colors; primitive actions are
shown in black.

Figure 3.5. These learned initiation sets show that the discovered option policies are only

locally valid, even though they are represented using Fourier basis functions, which have

global support.

Figures 3.7, 3.8 and 3.9 show similar results for the second Pinball instance, although

Figure 3.7 shows a slight and transient initial penalty for skill chaining agents, before they

go on to obtain far better and more consistent solutions than flat agents. The example

trajectory in Figure 3.8 and initiation sets in Figure 3.9 show that a skill tree has been

successfully formed.
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Figure 3.6. Initiation sets and sample policy trajectories for the options used in Figure 3.5.
Each initiation set is a density plot, with lightness increasing proportionally to the number
of points in the set for a given (x, y) coordinate, sampling ẋ and ẏ over {−1,−1

2
, 0, 1

2
, 1}.

3.5 Related Work

As we have already seen in Chapter 2, there has been a great deal of research on skill ac-

quisition in discrete domains. By contrast, we know of very little work on skill acquisition

in continuous domains where the skills or action hierarchy are not designed in advance.

Mugan and Kuipers (2009) used learned qualitative models of a continuous state space

to derive options. A qualitative model of a continuous variable discretizes it using a set

of important values (called landmarks) that partition the variable into a finite number of

states. The agent learns a forward model (in the form of a dynamic Bayesian network,

or DBN) for each qualitative state, and uses it to build an option to reach that qualitative

state. The option policies can then be obtained using dynamic programming. The use of a
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Figure 3.7. Performance in the second Pinball instance (averaged over 100 runs) for agents
employing skill chaining, agents with given options, and agents without options.

Figure 3.8. Sample solution trajectories from different start states for the second Pinball
instance. Acquired options executed along the sample trajectory are shown in different
colors; primitive actions are shown in black.
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Figure 3.9. Initiation sets and sample policy trajectories for the options used in Figure 3.8.
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DBN has the additional advantage of determining the relevant state variables and initiation

sets for the options. However, this approach requires a domain where creating options to

reach discretized values of individual state variables makes sense; such an assumption is

similar to but stronger than that underlying Factored MDPs (Boutilier et al., 1995). In addi-

tion, it remains unclear whether learning such models will be feasible for high-dimensional

problems.

Neumann et al. (2009) propose a method similar to ours, where an agent learns to solve

a complex task by sequencing motion templates. The motion templates are parametrized

policies (modeled as options) designed specifically for the task. The agent must learn

both the motion template parameters and which motion templates to execute for each state,

although its choices are constrained. In addition, because primitive actions are not available

and the agents must learn the correct parameters for each template, although their eventual

performance is better than that of flat learning, their initial performance is significantly

worse.

The notion of arranging controllers so that the execution of one allows another be executed

has been present in robotics for a long time, known as pre-image backchaining or sequential

composition (Lozano-Perez et al., 1984; Burridge et al., 1999). In such work the controllers

and their pre-images (initiation sets) are typically given; our work can be thought of as

learning controllers (and their initiation sets) that are suitable for sequential composition.

The most recent and most similar work in this line is by Tedrake (2009), who builds a

similar tree to ours in the model-based control setting, where the controllers are locally

valid LQR (linear quadratic regulator) controllers and their regions of stability (similar in

function to initiation sets) are Lyapunov functions which can be computed using convex
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optimization. The tree is built by selecting random starting points in the state space, using

motion planning to obtain a trajectory from the starting pointing to the nearest region of

stability, and then covering the trajectory with local LQR controllers. New starting points

are selected until the state space is probabilistically covered. This method is able to obtain

nonlinear but certifiably robust policies. By contrast, our work does not require a model

and may find superior (optimized) policies but does not make any formal guarantees.

3.6 Discussion and Conclusions

The performance gains demonstrated in this chapter show that skill chaining (at least us-

ing an end-of-episode initial target event) can significantly improve the performance of a

reinforcement learning agent in a challenging continuous domain, by breaking the solution

into subtasks and learning lower-order option policies for each one.

Further benefits could be obtained by including more sophisticated initial target events:

any target events can be substituted for (or added to) the end-of-episode one used here. We

expect that a method that identifies regions likely to lie on the solution trajectory before a

solution is found would result in the kinds of very early performance gains sometimes seen

in discrete skill discovery methods (e.g., Şimşek et al. (2005)).

In the experiment reported here, the primary benefit of skill chaining was that it reduces

the burden of representing the task’s value function, allowing each option to focus on rep-

resenting its own local value function and thereby achieving a better overall solution. This

implies that skill acquisition is best suited to high-dimensional problems where a single

policy cannot be well represented using a feasible number of basis functions in reasonable
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time. In tasks where a good solution can be well represented using a low-order function

approximator we do not expect to see any benefits when acquiring skills using skill chain-

ing.

Similar benefits may be obtainable using representation discovery methods (Mahadevan,

2008), where new basis functions are constructed to compactly represent complex value

functions. We expect that such methods will prove most effective for extended control

problems when used in conjunction with a skill acquisition algorithm, where they can tailor

a separate representation for each skill rather than a single representation for the entire

problem.

In this chapter we used a a “lightweight” function approximator to represent option value

functions. In very complex domains such as robotics where the state space may contain

hundreds or even thousands of state variables, we require a more sophisticated approach

that exploits the notion that although a difficult and extended control task may not be re-

ducible to a feasibly sized state space, it can often be split into subtasks that are.

A key advantage of hierarchical reinforcement learning for extended control problems in

high-dimensional spaces is the ability of each option to use not just its own function ap-

proximator, but also its own abstraction. In the next chapter, we introduce abstraction

selection, an approach where an agent with a library of abstractions can take advantage of

the experience used to initialize a new option to additionally select a suitable abstraction

with which to efficiently learn that option.
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CHAPTER 4

SELECTING SKILL-SPECIFIC ABSTRACTIONS

In the previous chapter we introduced a skill discovery method that can be applied to the

robot skill acquisition problem to identify target skills through interaction with the environ-

ment. Once such a skill has been identified, we can in principle apply any reinforcement

learning method to learn its policy; thereafter, we can learn its initiation set and use it, in

turn, to create new skills. However, real-time policy learning in high-dimensional continu-

ous reinforcement learning domains (like robots) remains extremely challenging.

A key approach to solving such problems is the use of an abstraction that reduces the

number of state variables used to solve the problem by discarding irrelevant variables. It

is typically difficult to find a single abstraction that applies to all of a complex problem:

the problem itself may simply be intrinsically high-dimensional and therefore hard to solve

monolithically. Nevertheless, it may at the same time consist of several subproblems—

which we can capture as skills—each of which can be learned more efficiently using only

a small (but skill-specific) set of state variables.

Thus, a complex human task such as driving to work that seems infeasible to learn as a sin-

gle overall problem might be broken into a series of small skills (unlocking the car, starting

the car, navigating to work, parking, walking inside, etc.), each of which is manageable on
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its own. This is a key advantage of skill hierarchies: we can break complex problems into

a series of subproblems, each of which can be solved using its own abstraction.

The question then becomes: how can we obtain skill-specific abstractions? In principle,

each skill could build its own abstraction from scratch during learning. However, for large

enough state spaces (e.g., robots), building such an abstraction may impose infeasible sam-

ple, computation and memory costs. In this chapter we propose an intermediate solution:

that an agent should have a library of abstractions available to it, from which it can select

an appropriate abstraction when learning a new skill. We introduce an algorithm for ab-

straction selection, where an agent uses sample trajectories (such as those obtained during

the gestation process in the previous chapter) to select an appropriate abstraction for a new

skill from a library of pre-built abstractions.

In the following sections we formally define the abstraction selection problem, frame it as

a model selection problem, and introduce an incremental abstraction selection algorithm.

We evaluate the algorithm empirically in the Continuous Playroom, a reasonably large con-

tinuous reinforcement learning domain, and show that it selects an appropriate abstraction

using very little sample data, thereby improving skill learning performance and rendering

the overall learning task feasible.

4.1 Abstraction Selection

Humans have many sensory inputs and degrees of freedom, which viewed naively represent

a very large state space. Although such a state space seems too large for feasible learning,

specific sensorimotor skills almost always involve a small number of sensory features. One

57



of the ways in which we might draw inspiration from human learning is the extent to which

humans learning motor skills seem to ignore most of the sensor and motor features in their

environment.

In reinforcement learning, the use of a smaller set of variables to solve a large problem is

modeled using the broad notion of abstraction. For this work, we consider an abstraction

M to be a pair of functions (σ, τ), where

σ : S → S ′

is a mapping from the overall state space S to a smaller state space S ′ (often simply a

projection onto a subspace spanned by a subset of the variables in S), and

τ : A→ A′

is a mapping from the full action space A to a smaller action space A′ (often simply a

subset of A). In addition, we assume that each abstraction has an associated vector of basis

functions Φ defined over S ′ which we can use to define a value function.

When performing policy learning using an abstraction, the agent’s sensor input is filtered

through its sensor abstraction, σ, and the policy π maps from S ′ (the output set of σ) to A′

(the input set of a motor abstraction, τ ). The motor abstraction τ then maps inputs in A′ to

primitive actions in A. This is depicted in Figure 4.1.

Typically, a reinforcement learning agent tries to build a single abstraction for the entire

problem; however, in the hierarchical reinforcement learning setting it may in principle try
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control

sensor abstraction

motor abstract ion

Figure 4.1. Policy learning using an abstraction. The agent’s sensor inputs are filtered
through its sensor abstraction σ, over which a policy π is defined mapping the abstract
sensor signals to motor outputs using the motor abstraction τ .

to build as many abstractions as it has skills. An agent that must solve many problems in

its lifetime may thus accumulate a library of abstractions that it can later deploy to solve

new problems.

We propose that when an agent creates a new option it should create it with an accompany-

ing abstraction, and that if it has a library of abstractions available it can select from among

them, refining the selected abstraction through experience if necessary.

An agent using a skill discovery method only creates an option with the goal of entering

a particular state region after first reaching that region. Thus, we have a sequence of tran-

sitions that ends at the new subgoal, and we may consider it a sample trajectory for the

option. Assuming the trajectory has m steps, it consists of a sequence of m state-action

pairs and resulting rewards:

T = {(s1, a1, r1), (s2, a2, r2), . . . , (sm, am, rm)}.
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Given a library of abstractions, we can apply abstraction i to the sample trajectory and

obtain:

Ti = {(si1, ai1, r1), (si2, ai2, r2), . . . , (sim, aim, rm)},

where (sik, a
i
k, rk) = (σi(sk), τi(ak), rk) is a state-action-reward tuple obtained from ab-

straction i describing the kth state-action pair in the trajectory.

4.1.1 Abstraction Selection as Model Selection

If we are given the entire trajectory at once (or can store it all in memory), we can compute

Monte Carlo state-value samples (si, Ri) for each 1 ≤ i ≤ m, where Ri =
∑m

j=i γ
j−irj .

Learning a value function is then simply a regression problem where we must learn a map-

ping from states to observed return. Selecting the appropriate set of basis functions in

regression is known as model selection (Bishop, 2006); we can thus cast our problem as a

model selection problem with the sets of basis functions corresponding to each abstraction

as candidate models.

A common model selection criterion is the Bayesian Information Criterion (or BIC) (Schwarz,

1978), which states that:

ln p(D|Mi) ≈ ln p(D|θMAP ,Mi)−
1

2
|Mi| lnm, (4.1)

where D is the data, Mi is abstraction i, p(D|θMAP ,Mi) is the likelihood of D given the

maximum a posteriori value function parameters θMAP for abstraction i, |Mi| is the number

of parameters in abstraction i and m is the sample size.

60



BIC has two important properties that make it well suited to our purposes. First, it controls

for different sized abstractions (through the second term on the right hand side of Equa-

tion 4.1). Second, if we wish we can use the results of Equation 4.1 and Bayes Rule to

obtain a probability that each abstraction is the correct one for a particular skill, naturally

incorporating prior beliefs the agent may have about suitable abstractions.

We are now faced with the task of building a suitable statistical model for the data. Since

we are using linear function approximation, a linear regression model is a natural fit. In

statistical models of linear regression we typically make two assumptions: that our samples

are independent, and that they are identically distributed with the target variable (in our case

the value function) drawn from a Gaussian distribution with mean w·Φj(s) at state s (where

Φj is a set of basis functions—in our case those associated with abstraction j) and variance

β−1. This leads to a likelihood function of the form:

p(D|Mi,w, β) =
m∏
i=1

N (w · Φj(si)−Ri, β
−1), (4.2)

and corresponding log-likelihood function

ln p(D|Mi,w, β) =
m

2
ln β − m

2
ln 2π − 1

2

m∑
i=1

β(w.Φj(si)−Ri)
2. (4.3)

Notice that we can maximize this equation by minimizing
∑m

i=1(w.Φj(si) − Ri)
2. Thus,

the maximum likelihood solution for the standard statistical model of regression is obtained

by minimizing the sum of squared errors over the sample data points.

Although this model is appealing, in the case of the Monte Carlo samples of return in a

Markov Decision Process both assumptions that we make to obtain it are violated. First,
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since the return samples are obtained along the same trajectory, they are not independent.

However, since the independence assumption is crucial to obtaining a model with a closed

form solution and avoid having to use an expensive iterative approximation algorithm such

as EM (Bishop, 2006), we retain it.

Second, in the case of an MDP Monte Carlo sample, all of the sample points do not have

the same variance; a sample point’s variance increases with the length of the trajectory

following it. For simplicity, we model this increasing variance geometrically, modeling the

increase in variance of step i using a multiplicative factor ρ−1
i , 0 ≤ ρi ≤ 1. Thus, sample i

in a trajectory of length m is assumed to have variance (βρ̄i)
−1, where:

ρ̄i =
m∏
j=1

ρi. (4.4)

The resulting log likelihood for model Mi is:

ln p(D|Mi,w, β) = −β
2
ei +

m

2
(ln

β

2π
) +

1

2

m∑
i=1

ln ρ̄i, (4.5)

where β−1 is the variance, w is the function approximation weight vector, and

ei =
m∑
j=1

ρ̄j[w · Φi(sj)−Rj]
2 (4.6)

is the summed weighted squared error. Thus, this corresponds to a weighted least squares

regression model with sample i assigned weight ρ̄i. Note again that since maximizing

Equation 4.5 with respect to w is equivalent to minimizing the (weighted) value function
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error (Equation 4.6), the resulting w vector can still be used as an initial value function

parameter.

Since we wish to do selection with very little data if possible, we must avoid overfitting.

We therefore regularize by assuming a zero-mean Gaussian prior with precision α for each

element of w (this can be discarded if desired by setting α = 0, which results in no regu-

larization). The maximum a posteriori (MAP) parameters are then:

β = e−1
i m

and w = (A+ ηI)−1b,
(4.7)

where
A =

∑m
j=1 ρ̄jΦi(sj)Φ

T
i (sj)

and b =
∑m

j=1 ρ̄jRjΦi(sj),
(4.8)

with η = α(β−1). We can also rewrite ei as:

ei = wTAw − 2w · b +Rc, (4.9)

with A and b defined as before, and Rc =
∑m

j=1 ρ̄jR
2
j .

4.1.2 Incremental Abstraction Selection

Thus far we have assumed that we are given the entire trajectory at once (or can store it all

in memory), and can thereby compute the Monte Carlo return Ri for each sample (si, ri).

However, this is neither desirable nor necessary. From Equations 4.7 and 4.9, we see that

in order to do selection incrementally, we are only required to compute sufficient statistics
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A,b andRc incrementally in order to solve for the model parameters w and β and weighted

error ei, and thereby compute the BIC approximation to log likelihood (Equation 4.1, via

Equation 4.5).

Following Boyan (1999), we can accomplish this by the incremental (least-squares weighted

TD(1)) algorithm given in Figure 4.2. The algorithm is run simultaneously for each ab-

straction while the agent is interacting with the environment, and then computes the BIC

for each abstraction in one step when a selection decision is required; the agent selects the

abstraction with the highest BIC.

More than one sample trajectory may be available, or may be required to produce robust

selection. Given p samples, the algorithm can be modified to run lines 1 to 14 (initial-

ization and incoming sample processing) separately for each sample trajectory, resulting

in separate sample statistics Ai, bi and Rci for each sample trajectory i ∈ [1, p]. We can

the run lines 15 to 21 (computing the parameters and returning the BIC measure) using

summed statistics A =
∑p

i=1 Ai, b =
∑p

i=1 bi, and Rc =
∑m

i=1Rci. This performs a fit

and computes the BIC measure over all p trajectories simultaneously.

The algorithm uses O(q2
i ) memory, O(q2

i ) time at each step and O(q3
i ) time at selection

for each sensorimotor abstraction i using a function approximator with qi = |Φi| features.

Since we most likely wish for selection to be fast relative to learning, we can use a function

approximator of the same type as used for learning but with fewer terms for selection, and

then upgrade it for learning. This additionally reduces the sample complexity for successful

selection, as we show in the following section.
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Initialization1

A = zero matrix(|Φi|, |Φi|)2

b = zero vector(|Φi|)3

z = zero vector(|Φi|)4

Rc = Rz = g = 05

Iteratively handle incoming samples—update sufficient statistics6

for each incoming sample (st, at, rt, ρt) do7

Φt = Φi(st)8

A = ρt(A + ΦtΦ
T
t )9

b = ρt(b + rtz + rtΦt)10

z = γρt(z + Φt)11

g = ρt(γ2g + 1)12

Rc = ρtRc + gr2
t + 2ρtrtRz13

Rz = γ(ρtRz + grt)14

Compute weights, error and variance after m samples15

w = (A + ηI)−1b16

e = wTAw − 2w · b +Rc17

β = m
e

18

Compute log likelihood and BIC, ignoring quantities constant across abstractions19

ll = −β
2
e+ m

2
ln β20

return ll − 1
2
|Φi| lnm21

Figure 4.2. An incremental algorithm for computing the BIC value of an abstraction i
given a successful sample trajectory.

4.2 The Continuous Playroom Domain

The Continuous Playroom is a real-valued version of the Playroom domain (Singh et al.,

2004). It consists of three effectors (an eye, a marker, and a hand), five objects (a red

button, a green button, a light switch, a bell, a ball, and a monkey) and two environmental

variables (whether the light is on, and whether the music is on).
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The agent is in 1x1 room, and may move any of its effectors 0.05 units in one of the usual

four directions. When both its eye and hand are over an object it may additionally interact

with it, but only if the light is on (unless the object is the light switch). Figure 4.3 shows

an example configuration.

Figure 4.3. An example Continuous Playroom.

Interacting with the green button switches the music on, while the red button switches the

music off. The light switches toggles the light. Finally, if the agent interacts with the ball

and its marker is over the bell, then the ball hits the bell. Hitting the bell frightens the

monkey if the light is on and the music is on and causes it to squeak, whereupon the agent

receives a reward of 100, 000 and the episode ends. All other actions cause the agent to

receive a reward of−1. At the beginning of each episode the objects are arranged randomly

in the room so that they do not overlap.
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The agent has 13 possible actions (3 effectors with 4 actions each, plus the interact action),

and a full description of the Playroom requires 18 state variables—x and y pairs for three

effectors and five objects (since we may omit the position of the monkey) plus a variable

each for the light and the music. Since the domain is randomly re-arranged at the beginning

of each episode, the agent must learn the relationships between its effectors and each object,

rather than simply the absolute location for its effectors. Moreover, the settings of the light

and music are crucial for decision making and must be used in conjunction with object and

effector positions. Thus, for task learning we use 120 state variables—for each of the four

settings of the lights and music we use a set of 30 variables representing the difference

between each combination of object and effector (∆x and ∆y for each object-effector pair,

so 5 objects ×3 effectors ×2 differences = 30).

The Continuous Playroom is a good example of a domain that should be easy—and is

easy for humans–but is made difficult by the large number of variables and the interactions

between them (e.g., between ∆x and ∆y values for an object-effector pair) that cannot all

be included in the overall task function approximator: a 1st order Fourier Basis over 120

variables that does not treat each variable as independent has 2120 features. Thus, it is a

domain in which options can greatly improve performance, but only if those options are

themselves feasible to learn.

4.2.1 Target Options and Abstraction Library

Originally, the playroom domain assumed that the agent was given 15 initial options, one

for moving each effector over each object (Singh et al., 2004). In this work, we assume that

the agent starts with primitive actions only, and that some option discovery method creates a
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new option for moving each effector over each object when the agent first successfully does

so. Our task is then to efficiently learn these option policies using abstraction selection.

We equip the agent with an abstraction library consisting of 17 abstractions. Since the

domain consists of objects and effectors, we include abstractions for each of the 15 object-

effector pairs, with each abstraction consisting of just two variables: ∆x and ∆y for the

object-effector pair. We also include a random abstraction (two state variables with values

selected uniformly at random over [0, 1] at each step), and a null abstraction, which uses all

120 variables.

This set of options and abstractions are difficult to perform abstraction selection over

because while the features of some abstractions (those referencing completely distinct

objects-effector pairs) are not correlated with the features of the correct abstraction and

are therefore easy to differentiate, the features of some (where either the effector or ob-

ject is shared) are correlated with the features of the correct abstraction. This correlation

makes them hard to differentiate from the correct abstraction. Figure 4.4 illustrates the

value functions that might arise in this case.

In domains where the feature values of the incorrect abstractions are uncorrelated to return

(e.g., when the features are random or uniform over the sample trajectory), we can expect

to perform abstraction selection with high accuracy using very few sample trajectories–

perhaps even just one. When there are correlations (such as those intentionally included in

the Playroom domain) selection becomes much harder.
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(a) (b) (c)

Figure 4.4. Value functions produced by the correct abstraction and a correlated abstraction
in the Playroom domain. The correct abstraction has a high value only when the effector is
directly over the object (a). However, in the same configuration of objects and effectors, an
abstraction that shares either an object or an effector with the correct abstraction will also
see a systematic relationship between its features and return (b), according to the relative
position of its object-effector pair and the correct abstraction’s object-effector pair. The
difference only becomes clear when the agent experiences a new Playroom configuration
(c), where the peak for the correlated abstraction moves. This temporarily introduces a
second peak into the value function, until new samples are obtained near the original peak.
These conflicting samples will introduce error and lower the the abstraction’s probability
of being selected.

4.2.2 Implementation Details

For overall task learning in the Playroom domain, we employ a 10th-order independent

Fourier Basis over the 120 task features (1320 basis functions per action), with Sarsa(λ)

(α = 0.00005, γ = 1, λ = 0.9, ε = 0.01).

When learning using an option with its own abstraction, we used a full 10th-order Fourier

Basis (121 basis functions per action) with Sarsa(λ) (α = 0.0025, γ = 1, λ = 0.9,

ε = 0.01). For option learning without an abstraction, we discard the lights and mu-

sic variables and learn using the 30 difference variables, using a 10th-order independent
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Fourier Basis (330 basis functions per action) and Sarsa(λ) (α = 0.001, γ = 1, λ = 0.9,

ε = 0.01). The learning rate and function approximation order parameters were chosen for

best performance in each case.

We use regularization parameter η = 0.0001 when performing abstraction selection. When

performing abstraction selection while learning a policy for the entire Playroom task, agents

initially created options when first encountering the a target region, without using an ab-

straction. Abstraction selection was performed when the agent had experienced at least 5

episodes, and had a confidence above 95% that it has the correct abstraction. The agent

could later switch abstractions if it decided on a different abstraction with at least 95%

confidence given more data.

Although the algorithm given in Figure 4.2 supports the use of a distinct ρ value for every

transition, for simplicity we assume a constant ρ, and determine the best value empirically.

4.3 Results

We first examine the effect of various values of ρ on the number of episodes required to

make an accurate selection. Plots showing the correct fraction of abstraction selections (av-

eraged over 100 runs) made for varying numbers of sample trajectories are given in Figure

4.5. We show graphs for trajectories obtained from the optimal option policy and trajecto-

ries obtained by selecting randomly from the 13 available actions at each timestep—since

reinforcement learning agents typically start with a random policy and progress toward an

optimal policy over time, the trajectories we see in practice will lie somewhere between

these two extremes.
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Figure 4.5. Selection accuracy as a function of the number of sample episodes observed
for various values of ρ. The sample episodes are generated using either optimal (a) and
random (b) policies.
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As expected, abstraction selection performs best with ρ = 1 when using optimal sample

trajectories (Figure 4.5a), and its performance degrades with decreasing ρ. This is because

the underlying policy is not stochastic and does not make errors, and hence the variance

of each value function sample along the trajectory is the same. However, we see in Figure

4.5b that, although increasing ρ generally improves abstraction selection performance when

using trajectories from a random policy, setting ρ = 1 obtains very poor results. This

reflects the fact that the variance of the value function samples increases with trajectory

length when the policy generating that trajectory is imperfect.

Since we obtain very good performance for both types of policies with 0.9 ≤ ρ < 1, we use

ρ = 0.95 for the remainder of our experiments. Given this setting, Figure 4.5 shows that

we require between 5 and 8 independent sample trajectories to select the correct abstraction

100% of the time, and between 4 and 6 samples to select the correct abstraction roughly

85% of the time.

Similar curves are shown in Figure 4.6 for various orders of function approximator. These

curves clearly show that increasing the order of the function approximator also increases

the amount of data required to accurately select an abstraction. This difference can be

partially ascribed to the higher number of degrees of freedom in the higher-order function

approximators, but may also be because their greater flexibility also allows them to model

multiple peaks (as shown in Figure 4.4), and thereby requires more samples to introduce

error for abstractions that are incorrect but correlated to the correct abstraction.

Given this data, we should use as low an order function approximator as is reasonable for

the task. We therefore us a 2nd-order Fourier Basis for selection in the remainder of this
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Figure 4.6. Selection accuracy as a function of the number of sample episodes observed for
various orders of function approximator. The sample episodes are generated using either
optimal (a) and random (b) policies.
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section (a 1st-order Fourier Basis is not sufficient to represent a reasonable policy for this

problem, even for selection).

Figure 4.7 plots agent selection confidence (again averaged over 100 runs) for the correct

abstraction, given trajectories from either an optimal or random policy. It shows that the

agent’s confidence increases as it obtains more sample trajectories, and that this confidence

closely tracks the probability of the agent selecting the correct abstraction (compare Figure

4.7 with the curves correspond to using a 2nd-order basis in Figure 4.6). Thus, we can

use BIC to compute a selection confidence and make a principled decision about when to

commit to an abstraction.1
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Figure 4.7. Mean agent selection confidence over time for the correct abstraction, given
increasing numbers of sample trajectories obtained using either an optimal or a random
policy.

1In practice, we find it best to additionally require a small minimum number of samples, since BIC can
occasionally assign high confidence to the wrong abstraction given very little sample data. We believe this
occurs due to the numerical instability of inverting A when a paucity of sample data causes it to be nearly
singular.
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Figure 4.8. Skill learning curves for agents that do not use an abstraction, agents that use
an appropriate abstraction, and agents that use the initial policy fit obtained via abstraction
selection using 20 sample trajectories from either optimal or random policies.

We show learning curves for an individual skill for agents that do not use an abstraction,

agents that use an appropriate abstraction, and agents that use the initial policy fit obtained

via abstraction selection in Figure 4.8. These results show that using an appropriate ab-

straction results in a significant performance boost over not using one—agents that do not

employ an abstraction are unable to learn good policies for the skill after 100 episodes.

Furthermore, using the value function fit obtained via abstraction selection to initialize the

skill value function leads to significant performance improvements, though these depend

on the quality of the sample trajectories used for abstraction selection. As expected, ini-

tializing the skill value function using the fit obtained from an optimal policy results in

very fast learning—the skill policy is learned virtually immediately—while using an initial

value function from a random policy initially results in slightly slower learning than learn-

ing from scratch with an appropriate abstraction. However, the penalty is temporary and
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its performance improves, overtaking learning from scratch within a few episodes. This is

likely because the value function fit obtained from random trajectories will be noisy and

inaccurate in places, causing value function errors that must be learned away before the

accurate parts of the value function provide a useful boost in performance.

Finally, Figure 4.9 compares the overall learning curves in the Playroom domain for agents

that use abstraction selection against those that do not use abstractions when learning option

policies. We also include curves for agents that are given pre-learned optimal option poli-

cies, and agents that are immediately given the correct abstraction so that we can compare

to the ideal case.
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Figure 4.9. Overall learning curves for the agents given optimal option policies, agents
given the correct abstraction in advance, agents using no abstractions and agents that
perform abstraction selection. The dashed line at 5 episodes indicates the first episode
where abstraction selection was allowed; before this line, agents using abstraction selec-
tion learned option policies without abstractions.
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Figure 4.9 shows that agents performing abstraction selection perform identically to those

that do not use abstractions initially, until about 5 episodes, whereafter the agents are al-

lowed to perform abstraction selection and their performance improves relative to agents

that do not use abstractions, matching the performance of agents that are given the correct

abstractions in advance by 10 episodes. The difference between agents that do not use

abstractions and agents that perform abstraction selection is substantial—roughly 100, 000

steps per episode.

4.4 Related Work

Most existing reinforcement learning research on state space reduction takes one of two

broad approaches. In state abstraction (surveyed by Li et al., 2006), a large state space

is compressed by performing variable removal or state aggregation while approximately

preserving some desirable property. However, without further information about the state

space we cannot examine the effects of abstraction on the properties we are interested in—

values or policies—without an existing value function, and so these methods have high

computational and sample complexity.

The major alternative approach is to initially assume that no states or state variables are

relevant, and then introduce perceptual distinctions (McCallum, 1996) by including them

when it becomes evident that they are necessary for learning the skill. This requires a

significant amount of data and computation to determine which variable to introduce, and

then introduces them one at a time, which may require too much experience to be practical

for large continuous state spaces.
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Recently, a new state-space construction paradigm called representation discovery (Ma-

hadevan, 2008) has received a great deal of attention in the reinforcement learning commu-

nity. Representation discovery aims to construct a set of basis functions that can compactly

represent the value function of a given task through experience. The two major repre-

sentation discovery methods that have been applied to continuous domains are Proto-Value

Functions (Mahadevan et al., 2006) and Predictive Projections (Sprague, 2009). Both meth-

ods have shown promising results but have sample and time complexity demands that make

them infeasible (at least for now) for real-time learning.

The notion of of selecting, rather than constructing, representations in reinforcement learn-

ing problems has also recently received some attention. van Seijen et al. (2007) describe a

method where an agent with multiple representations is augmented with actions to switch

between them. This fits neatly into the reinforcement learning framework, but does not

appear likely to scale up to large numbers of representations since each new representation

adds a new action to every state.

Diuk et al. (2009) introduce efficient algorithms for the Adaptive k-Meteorologist prob-

lem, where an agent is given a set of classifiers and must select the best predictor from

among them. This is applied to a reinforcement learning task to learn a forward model of

an action using at most D sensor features (where D is given in advance), which is accom-

plished by creating all possible classifiers of size D or less and selecting the one with the

lowest error. This method could be used to select feature subsets for value function approx-

imation, in which case it would result in an algorithm similar to ours (though developed

independently); it would have higher computational complexity but provide probabilistic

performance guarantees.
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Finally, feature selection algorithms (Kolter and Ng, 2009; Johns and Mahadevan, 2009;

Johns et al., 2010) select features from a feature dictionary to compactly but accurately

represent a value function. These algorithms were developed after the work reported here

and have only been applied to relatively small problems. They are expected to face scal-

ing difficulties for larger problems since they perform selection at the feature level rather

than the state-variable level (or the sets-of-state-variables level), and the size of the feature

dictionary increases exponentially with the number of state variables.

State abstraction, perceptual distinction and representation discovery methods are usually

applied monolithically to a single large problem. However, some hierarchical reinforce-

ment learning methods make use of skill-specific abstractions. Most prominently, the

MAXQ hierarchical reinforcement learning formalism (Dietterich, 2000) assumes a hand-

designed abstraction for each level in the skill hierarchy. On the other end of the spectrum,

Jonsson and Barto (2001) have shown that each option can learn its own abstraction from

scratch in discrete domains using a perceptual distinction method.

Until recently, hierarchical reinforcement learning methods with learned or selected ab-

stractions have been used only in relatively small discrete domains (e.g., Jong and Stone,

2005; Luo et al., 2008). Recent independent work by Mugan and Kuipers (2009) and Vig-

orito and Barto (2009) has shown that learning a Dynamic Bayes Net (DBN) is feasible for

small factored continuous domains; a set of skills, each with their own abstraction, can be

extracted from such a structure.
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4.5 Discussion and Conclusions

For our purposes, the key advantage abstraction selection provides is that it shifts the state-

space design problem out of the agent’s control loop: instead of having to design a relevant

abstraction for each skill as it is discovered, we can provide a library of abstractions and

have the agent select a relevant one for each new skill. As we have seen, this can sig-

nificantly bootstrap learning in high-dimensional state spaces, and it allows us to easily

incorporate background knowledge about the problem into the agent.

However, providing a library of abstractions to the agent in advance requires both extra de-

sign effort and significant designer knowledge of the environment the agent is operating in.

This immediately suggests that the abstraction library should be learned, rather than given.

Just as an agent should learn a library of applicable skills over its lifetime, so should it also

learn a library of suitable abstractions over its lifetime—because an agent’s abstraction

library determines which skills it can learn quickly. We expect that learning an abstrac-

tion library is feasible using unsupervised learning techniques, but only on a much longer

timescale than learning an individual skill. One approach might be to seed the library with

a set of basic abstractions, which the agent refines (perhaps using a representation discov-

ery algorithm) during skill learning. The resulting refined abstractions could then be added

back into the abstraction library, resulting in a fairly direct form of representation transfer

(Ferguson and Mahadevan, 2006; Taylor and Stone, 2007).

Abstraction selection and feature selection aim to solve the same problem, but differ in

the level at which selection is performed. The primary advantage that abstraction selection

has over selection at the feature level is that by pre-packaging features into groups, we

avoid having to deal with all the interaction terms between all state variables. Recall that a
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kth-order Fourier basis defined over n state variables results in (k+ 1)n basis functions, of

which all but (k+1)n are interaction terms. Feature selection in this space rapidly becomes

infeasible as the number of task variables grows because increasing n is an increase in the

exponent. By contrast, if we have l abstractions, each of size at most m � n, then each

abstraction has at most (k + 1)m basis functions, as we do not consider interaction terms

between variables not in the same abstraction. This results in l(k+1)m total features, and so

increasing the number of abstractions only adds multiples of (k + 1)m features. Moreover,

since each abstraction can be evaluated completed independently, given enough processors

we can perform abstraction selection using only the time required to deal with (k + 1)m

features. Of course, this relies on having sufficient background knowledge about the task to

remove most combination of variables from consideration; if we have no such knowledge

and must consider all combinations of variables as valid abstractions then we immediately

obtain exponentially many abstractions.2

In the Playroom domain, abstraction selection results in performance benefits when com-

pared to not using an abstraction. However, in this case the target options were specifi-

cally chosen so that it is possible to learn the individual option policies without using an

abstraction: each option policy can first minimize the x distance to the target and then,

independently, minimize the y distance. An option without an abstraction (that therefore

uses a function approximator that treats each feature as independent, as we are forced to

do for even moderate numbers of features) can thus still learn a reasonable option policy;

this allows us to make a comparison between agents that do and do not use abstractions.

2A potentially interesting compromise might be to perform selection at the state variable level, although
it remains unclear how interaction terms might be handled.
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However, in many domains feature interactions are essential for learning option policies.

In such domains abstraction selection may transform a problem that cannot be solved into

one that can, rather than merely resulting in performance benefits.

The most significant disadvantage abstraction selection has when compared to feature se-

lection is that the agent’s skill acquisition abilities are constrained by the abstractions

available to it—if it has unsuitable abstractions then it may not be able to acquire any

task-relevant skills at all. We expect that in such situations it may be best to attempt skill

acquisition using the most suitable abstraction available and gradually refine it over time

using a representation discovery method; although skill learning will be slow it should be

no slower than learning the abstraction from scratch. Moreover, once the abstraction has

been created it can be added to the abstraction library for use in learning later skills.

In the skill chaining method described in the previous chapter, the initiation set for each op-

tion was learned using trial-and-error. When using abstraction selection, we expect that the

available abstraction library will dominate the shape of each skill’s initiation set, because

each abstraction will only be able to support a policy locally. Although this may initially

seem like a drawback, we believe it to be a feature: when using both skill chaining and

abstraction selection, we can obtain a sequence of skills broken up by relevant abstraction,

which is a natural way to segment extended policies. Ultimately, we expect that this kind

of abstraction-based skill acquisition will provide a natural and simple way of scaling up

control learning methods to high-dimensional problems.
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CHAPTER 5

CONSTRUCTING SKILL TREES FROM DEMONSTRATION

Chapter 3 introduced skill chaining, a general method for skill discovery in continuous do-

mains. When combined with abstraction selection (introduced in Chapter 4), skill chaining

can in principle be used to acquire skills with their own abstractions in high-dimensional,

continuous domains like robotics. These methods should allow us to scale up to such

domains by adaptively segmenting complex policies that are high-dimensional when rep-

resented monolithically into sequences of much lower-dimensional skills with policies that

are easier to represent and learn.

However, performing skill chaining iteratively is slow: it creates skills sequentially, and

requires several episodes to learn a new skill’s policy followed by a further several episodes

to learn by trial and error where it can be successfully executed. While this is reasonable

for many problems, in domains where experience is expensive (such as robotics) we require

a faster method.

Moreover, there is a growing realization that learning policies for such domains completely

from scratch in reasonable time is infeasible, primarily because of the extremely high cost

of initially finding any successful policy at all through trial and error. Therefore, we require

methods that are able to bootstrap learning by providing a reasonable initial policy from
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which learning can proceed. The most prominent such methods mirror the way that humans

initially learn new control tasks, either through imitating others (Argall et al., 2009), or by

initially using a slow (and possibly computationally expensive) controller via kinematic

planning or feedback control (Rosenstein and Barto, 2004).

One way to rapidly create skills would be to obtain a sample trajectory from a bootstrapped

initial policy, and then segment that trajectory into skills. The question then becomes:

given a sample trajectory, how many options exist along it, and where do they begin and

end? In skill chaining, we segment a policy by creating a new option when either the most

suitable abstraction changes, or when the value function (and therefore policy) becomes

too complex to represent with a single option. We therefore require a principled way to

similarly segment a trajectory.

This is known as a multiple changepoint detection problem (Fearnhead and Liu, 2007).

In this chapter, we introduce a new skill acquisition method called CST, which uses an

incremental MAP changepoint detection method to segment a sample trajectory into a chain

of skills (each with an appropriate abstraction); the skill chains resulting from multiple

sample trajectories are then merged into a skill tree. CST is incremental and efficient, with

a time complexity that is kept to a constant per step using a particle filter. We show that CST

can construct a skill tree from demonstration trajectories in Pinball, and that the resulting

skills can be refined using reinforcement learning. We further show that it can be used to

segment trajectories obtained from a human demonstrator controlling a mobile robot into

chains of skills, where each skill is assigned an appropriate abstraction.
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5.1 Changepoint Detection

In changepoint detection we are given observed data and a set of candidate models, and

assume that the data are segmented such that the data within a segment are generated

by a single model. We are to infer the number and positions of the changepoints—the

points where the data switches from being generated by one model to being generated by

another—in the data, and select and fit an appropriate model for each segment. Figure 5.1

shows a simple example.
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Figure 5.1. Data with multiple segments. The observed data (a) are generated by three
different models (b; solid line, changepoints shown using dashed lines) plus noise. The
first and third segments are generated by a linear model, whereas the second is quadratic.

Unlike the standard regression setting, in reinforcement learning our data is sequentially but

not necessarily spatially segmented, and we would like to perform changepoint detection

online—processing transitions as they occur and then discarding them. Fearnhead and Liu

(2007) introduced online algorithms for both Bayesian and MAP changepoint detection;

we use the simpler method that obtains the MAP changepoints and models via an online

Viterbi algorithm.

Their algorithm proceeds as follows. We observe data tuples (xt, yt), for times t ∈ [1, T ],

and are given a set of models Q with prior p(q ∈ Q). We model the marginal probability
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of a segment length l with PMF g(l) and CDF G(l) =
∑l

i=1 g(i). Finally, we assume that

we can fit a segment from time j+ 1 to t using model q to obtain the probability of the data

P (j, t, q) conditioned on q.

This results in a Hidden Markov Model where the hidden state at time t is the model qt

and the observed data is yt given xt. The hidden state transition probability from time i to

time j with model q is given by g(j − i− 1)p(q) (reflecting the probability of a segment of

length j − i− 1 and the prior for q). The probability of an observed data segment starting

at time i+ 1 and continuing through j using q is P (i, j, q)(1−G(j− i− 1)), reflecting the

probability of fitting model q to the segment, and the probability of a segment of at least

j − i − 1 steps. Note that a transition between two instances of the same model (but with

different parameters) is possible. This model is depicted in Figure 5.2.

We can thus use an online Viterbi algorithm to compute Pt(j, q), the probability of the

changepoint previous to time t occuring at time j using model q:

Pt(j, q) = (1−G(t− j − 1))P (j, t, q)p(q)PMAP
j , (5.1)

and

PMAP
j = max

i,q

Pj(i, q)g(j − i)
1−G(j − i− 1)

, (5.2)

for each j < t.

At time j, the i and q maximizing Equation 5.2 are the MAP changepoint position and

model for the current segment, respectively. We then perform this procedure for time i,

repeating until we reach time 1, to obtain the changepoints and models for the entire se-

quence.
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qi qj

yi yi+1 yjyj-1...

i < j, q

P(i, j, qi)(1 - G(j - i - 1))

g(j - i - 1)p(qj)

Figure 5.2. The Hidden Markov Model modeling changepoint detection. The model qt
at each time t is hidden, but produces observable data yt. Transitions occur when the
model changes, either to a new model or the same model with different parameters. The
transition from model qi to qj occurs with probability g(j− i− 1)p(qj), while the emission
probability for observed data yi, ..., yj−1 is P (i, j, qi)(1−G(j− i−1)). These probabilities
are considered for all times i < j and models qi, qj ∈ Q.

Thus, at each time step t we compute Pt(j, q) for each model q and changepoint time j < t

(using PMAP
j ) and then compute PMAP

t and store it.1 This requires O(T ) storage and

O(TL|Q|) time per timestep, where L is the time required to compute P (j, t, q).

Since most Pt(j, q) values will be close to zero, we can employ a particle filter to discard

most combinations of j and q and retain a constant number per timestep. Each particle then

stores j, q, PMAP
j , sufficient statistics and its Viterbi path. We use the Stratified Optimal

Resampling algorithm of Fearnhead and Liu (2007) to filter down to M particles whenever

the number of particles reaches N .

1In practice all equations are computed in log form to ensure numerical stability.
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In addition, we can reduceL to a constant for most models of interest by storing a small suf-

ficient statistic and updating it incrementally in time independent of t, obtaining P (j, t, q)

from P (j, t − 1, q). This results in a time complexity of O(NL) and storage complexity

of O(Nc), where there are O(c) changepoints in the data. Pseudo-code for the resulting

algorithm is given in Figure 5.3.

5.2 Constructing Skill Trees from Demonstration Trajectories

In the following sections, we describe the application of changepoint detection to segment-

ing a single trajectory into a skill chain, and then the process of merging multiple skill

chains into a single skill tree.

5.2.1 Constructing a Skill Chain from a Sample Trajectory

To segment a trajectory into skills, we propose performing changepoint detection using the

sets of basis functions associated with each abstraction as models, and return Rt (sum of

discounted reward) from each time t as the target variable. This provides a natural mapping

to reinforcement learning because we are effectively performing changepoint detection on

the value function sample obtained from the trajectory; segmentation thus breaks that value

function up into simpler value functions, or detects a change in model (and therefore ab-

straction).

We must thus select an appropriate model of expected skill (segment) length, and an appro-

priate model for fitting the data. We assume a geometric distribution for skill lengths with
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Initialization1

particles = ∅2

Process each incoming data point3

for t = 1:T do4

Compute fit probabilities for all particles5

for p ∈ particles do6

p tjq = (1 - G(t - p.pos - 1)) × p.fit prob() × model prior(p.model) × p.prev MAP7

p.MAP = p tjq × g(t - p.pos) / (1 - G(t - p.pos - 1))8

Filter if necessary9

if |particles| >= N then10

particles = particle filter(particles, particles.MAP, M )11

Determine the Viterbi path12

if t == 1 then13

max path = []14

max MAP = 1/|Q|15

else16

max particle = maxp p.MAP17

max path = max particle.path ∪ max particle18

max MAP = max particle.MAP19

Create new particles for a changepoint at time t20

for q ∈ Q do21

new p = create particle(model = q, pos = t, prev MAP = max MAP, path =22

max path)
particles = particles ∪ new p23

Update all particles24

for p ∈ particles do25

p.update particle(xt, yt)26

Return the most likely path to the final point.27

return max path28

Figure 5.3. Fearnhead and Liu’s online MAP changepoint detection algorithm.

89



parameter p, so that g(l) = (1− p)l−1p and G(l) = (1− (1− p)l). This gives us a natural

way to set p since p = 1
k
, where k is the expected skill length.

Since reinforcement learning in continuous state spaces usually employs linear function ap-

proximation, it is natural to use a linear regression model with Gaussian noise as our model

of the data. Following Fearnhead and Liu (2007), we assume conjugate priors: the Gaus-

sian noise prior has mean zero, and variance with inverse gamma prior with parameters v
2

and u
2
.2 The prior for each weight is a zero-mean Gaussian with variance σ2δ. Integrating

the likelihood function over the parameters obtains:

P (j, t, q) =
π−

n
2

δm
|(Aq + D)−1|

1
2

u
v
2

(yq + u)
n+v

2

Γ(n+v
2

)

Γ(v
2
)
, (5.3)

where n = t−j, q has m basis functions, Γ is the Gamma function, D is an m by m matrix

with δ−1 on the diagonal and zeros elsewhere, and:

Aq =
t∑
i=j

Φq(xi)Φq(xi)
T (5.4)

yq = (
t∑
i=j

R2
i )− bTq (Aq + D)−1bq, (5.5)

where Φq(xi) is a vector of the m basis functions associated with q evaluated at state xi,

Ri =
∑T

j=i γ
j−irj is the return obtained from state i, and bq =

∑t
i=j RiΦq(xi).

Note that we are using each Rt as the target regression variable in this formulation, even

though we only observe rt for each state. However, to compute Equation 5.3 we need

2These parameters may seem cryptic, but they can be set indirectly using an expected variance σ2
v and

scaling parameter βv . The scaling parameter controls how sharply the distribution is peaked around σ2
v ;

values closer to zero indicate a flatter distribution. We can then set u = σ2
v + βv and v = βv

σ2
v
− 1.

90



only retain sufficient statistics Aq, bq and (
∑t

i=j R
2
i ) for each model. Each can be updated

incrementally using rt (the latter two using traces). Thus, the sufficient statistics required

to obtain the fit probability can be computed incrementally and online at each timestep,

without requiring any transition data to be stored. The algorithm for this update is given in

Figure 5.4.

input : xt: the current state
rt: the current reward

Initialization1

if t == 0 then2

Aq = zero matrix(q.m, q.m)3

bq = zero vector(q.m)4

sum rq = 05

zq = zero vector(q.m)6

tr 1q, tr 2q = 0;7

Compute the basis function vector for the current state8

Φt = Φq(xt)9

Update sufficient statistics10

Aq = Aq + ΦtΦ
T
t11

zq = γzq + Φt12

bq = bq + rtzq13

tr 1q = 1 + γ2 tr 1q14

sum rq = sum rq + r2
t tr 1q + 2γrt tr 2q15

tr 2q = γ tr 2q + rttr 1q16

Figure 5.4. Incrementally updating the changepoint detection sufficient statistics for model
q.

Note that Aq and bq are the same matrices used for performing a least-squares fit to the

data using model q and Rt as the regression target. They can thus be used to produce a
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value function fit (equivalent to a least-squares Monte Carlo estimate) for the skill segment

if so desired; again, without the need to store the trajectory.

In practice, segmenting a sample trajectory should be performed using a lower-order func-

tion approximator than is to be used for policy learning, since we see merely a single

trajectory sample rather than a dense sample over the state space.

5.2.2 Merging Skill Chains into a Skill Tree

Using this model we can segment a single trajectory into a skill chain; given multiple

skill chains from different trajectories, we would like to merge them into a skill tree by

determining which pairs of trajectory segments belong to the same skills and which are

distinct.

Since we wish to build skills that can be sequentially executed, we can only consider merg-

ing two segments when they have the same target—which means that the segments imme-

diately following each of them have been merged. Since we assume that all trajectories

have the same final goal, we merge two chains by starting at their final skill segments. For

each pair of segments, we determine whether or not they are a good statistical match, and

if so merge them, repeating this process until we fail to merge a pair of skill segments, after

which the remaining skill chains branch off on their own. This process is depicted in Figure

5.5. A similar process can be used to merge a chain into an existing tree by following the

chain with the highest merge likelihood when a branch in the tree is reached.

Since P (j, t, q) as defined in Equation 5.3 is the integration of the likelihood function of

our model given segment data over its parameters, we can reuse it as a measure of whether a
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(a) (b) (c)

(d)

Figure 5.5. Merging two skill chains into a skill tree. We begin by considering merging
the final trajectory segment in each of the chains (a). If these segments use the same model,
overlap, and can be well represented using the same function approximator, we merge them
and move on to the second segment in each chain (b). We continue merging until we find a
pair of segments that should not be merged (c). Merging then halts and the remaining skill
chains form separate branches of the tree (d).

pair of trajectories are better modeled as one skill or as two separate skills. Given sufficient

statistics Aa,ba and sum of squared return Ra from segment a (having na transitions) and

Ab,bb and Rb from segment b (having nb transitions), we can compute the probability of
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both data segments given a single skill model by evaluating Equation 5.3 using the sum of

these quantities: Aab = Aa+Ab, bab = ba+bb, Rab = Ra+Rb, and nab = na+nb. Note

that this model uses the same number of basis functions (m) as either model in isolation.

To evaluate the probability of data segments a and b coming from two different skill models,

we evaluate Equation 5.3 using Rab = Ra +Rb and nab = na + nb as before, but with:

Aab =

Aa 0

0 Ab

 , (5.6)

and

bab =

ba

bb

 . (5.7)

This is equivalent to using a larger set of basis functions, Φab = [Φa,Φb]
T , where the basis

functions from each segment are each non-zero only in their own segments. Thus, although

we may find a better fit using the two sets of basis functions independently, since we have a

higher number of basis functions (m is twice as large), we obtain a higher probability only

when the two segments really are much better fit separately.

When considering a merge between more than two segments (as occurs when merging a

chain into a tree at points where the tree has already split), we perform a similar operation

but evaluate the total probability of the data in all segments given that a pair of segments

have merged and the remainder are independent, evaluated for all candidate merging pairs

and the case where no merge occurs. This is necessary so that the probabilities obtained

from Equation 5.3 for each case are over the same data, and therefore comparable.
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Before merging, we perform a fast test to ensure that the trajectory pairs actually overlap

in state space—if they do not, we will often be able to represent them both simultaneously

with very low error and hence this metric may incorrectly suggest a merge.

If we are to merge skills obtained over multiple trajectories into trees we require the compo-

nent skills to be aligned, meaning that the changepoints occur in roughly the same places.

This will occur naturally in domains where changepoints are primarily caused by a change

in relevant abstraction. When this is not the case, they may vary since segmentation is then

based on function approximation boundaries, and hence two trajectories segmented inde-

pendently may be poorly aligned. Therefore, when segmenting two trajectories sequen-

tially in anticipation of a merge, we may wish to include a bias on changepoint locations in

the second trajectory. We model this bias as a Mixture of Gaussians, centering an isotropic

Gaussian at each location in state-space where a changepoint previously occurred. We

can include this bias during changepoint detection by multiplying Equation 5.1 with the

resulting PDF evaluated at the current state.

Note that, although segmentation is performed using a lower order function approximator

than skill policy learning, merging should be performed using the same function approxi-

mator used for learning. This necessitates the maintenance of two sets of sufficient statistics

during segmentation; fortunately, the major computational expense is computing P (j, t, q),

which during segmentation is only required using the lower-order approximator.
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5.3 Acquiring Skills from Human Demonstration in Pinball

In this section, we evaluate the performance benefits obtained using a skill tree generated

from a pair of human-provided solution trajectories in Pinball. We use the Pinball domain

instance shown in Figure 5.6 with 5 pairs (one trajectory in each pair for each start state) of

trajectories obtained from a human expert.

Figure 5.6. The Pinball instance used in our experiments, and a representative solution
trajectory pair.

5.3.1 Implementation Details

All skill chaining parameters were as in Chapter 3; for CST agents, we used only the

training examples from the demonstration trajectories for learning initiation sets (positive

examples are those in the skill segment, negative examples all others). After training they

were considered converged and updated thereafter as in Chapter 3.

We used an expected skill length of k = 100, δ = 0.0001, particle filter parametersN = 30

and M = 50, and a first-order Fourier Basis (16 basis functions) for segmentation. We

used expected variance mean σ2
v = 152 and scaling parameter βv = 0.0001 for the noise

prior. After segmenting the first trajectory we used isotropic Gaussians with variance 0.52
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to bias the segmentation of the second. The full 3rd-order Fourier basis representation was

used for merging. To obtain a fair comparison with skill chaining, we initialized the CST

skill policies using 10 episodes of experience replay of the demonstrated trajectories, rather

than using the sufficient statistics to perform a least-squares value function fit.

5.3.2 Results

Trajectory segmentation was successful for all demonstration trajectories, and all pairs were

merged successfully into skill trees when the alignment bias was used to segment the sec-

ond trajectory in the pair (two of the five could not be merged due to misalignments when

the bias was not used). Example segmentations and the resulting merged trajectories are

shown in Figure 5.7, and the resulting initiation sets are shown in their tree structure in

Figure 5.8.

Figure 5.7. Segmented skill chains from the sample pinball solution trajectories shown in
Figure 3.3, and the trajectory assignments obtained when the two chains are merged.

The learning curves obtained using the resulting skill trees to reinforcement learning agents,

averaged over 100 runs (20 runs using each demonstrated skill tree) are shown in Figure

5.9. These results compare the learning curves of CST agents, agents that perform skill
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Figure 5.8. The initiation sets for each option in the skill tree shown in Figure 5.7.
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chaining from scratch, and agents that are given fully pre-learned skills (obtained over 250

episodes of skill chaining). They show that the CST policies are not good enough to use

immediately, as the agents do worse than those given pre-learned skills for the first few

episodes (although they immediately do better than skill chaining agents). However, very

shortly thereafter—by the 10th episode—the CST agents are able to learn excellent poli-

cies, immediately performing much better than skill chaining agents, and shortly thereafter

actually temporarily exceeding the performance of agents with pre-learned skills. This is

likely because the skill tree structure obtained from demonstration has fewer but better

skills than that learned incrementally by skill chaining agents, resulting in a faster initial

startup while the agents given pre-learned skills learn to correctly sequence them.
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Figure 5.9. Learning curves in the PinBall domain, for agents employing skill trees created
from demonstration trajectories, skill chaining agents, and agents starting with pre-learned
skills.

In addition, segmenting demonstration trajectories into skills results in much faster learning

than attempting to acquire the entire demonstrated policy at once. The learning curve
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for agents that first perform experience replay on the overall task value function and then

proceed using skill chaining (not shown) is virtually identical to that of agents performing

skill chaining from scratch.

5.4 Acquiring Skills from Human Demonstration on the uBot

In the previous section, we showed that CST is able to segment demonstration trajectories

in Pinball, and merge them into tree suitable as a basis for further learning. In this sec-

tion, we show that CST can scale up by applying it to creating skill chains from human

demonstration on the uBot-5, a dynamically balancing mobile robot.

The robot’s task in this section is to enter a corridor, approach a door, push the door open,

turn right into a new corridor, and finally approach and push on a panel (illustrated in Figure

5.10). Twelve demonstration trajectories were obtained from an expert human operator.

5.4.1 Implementation Details

To simplify perception, we placed purple, orange and yellow colored circles on the door and

panel, beginning of the back wall, and middle of the back wall, respectively, as perceptually

salient markers indicating the centroid of each object. The distances (obtained using stereo

vision) between the uBot to each marker were computed at 8Hz and filtered. The uBot

was able to engage one of two motor abstractions at a time: either performing end-point

position control of its hand, or controlling the speed and angle of its forward motion.

Using these features, we constructed six sensorimotor abstractions, one for each pairing of

salient object and motor command set. When a marker was paired with the arm endpoint,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10. The task demonstrated on the uBot-5. Starting at the beginning of a corridor
(a), the uBot approaches (b) and pushes open a door (c), turns through the doorway (d),
then approaches (e) and pushes a panel (f).
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the abstraction’s state variables consisted of real-valued difference between the endpoint

and the marker centroid in 3 dimensions. Actions were real-valued vectors moving the

endpoint in 3 dimensions. When a marker was paired with the robot’s torso, the abstrac-

tion’s state variables consisted of two real values representing the distance and angle to the

marker centroid. Actions were real-valued vectors controlling the speed and direction of

the robot torso using differential drive. We assumed a reward function of −1 every 10th of

a second.

Particles were generated according to the currently executing motor abstraction, and a

switch in motor abstraction always caused a changepoint.3 The parameters used for per-

forming CST on the uBot were k = 50, M = 60, N = 120, σ2
v = 82 and βv = 0.00001, us-

ing a 1st order Fourier basis. For merging, we used a 5th order Fourier basis with σ2
v = 902

and βv = 0.00001.

When performing policy regression to fit the segmented policies for replay, we used ridge

regression over a 5th order Fourier basis to directly map to continuous actions. The regu-

larization parameter λ was set by 10-fold cross-validation, using a test set extracted from

the same trajectories as those used to perform the fit. Policy replay testing was performed

by varying the starting point of the robot by hand and used hand-coded stopping conditions

that corresponded to the subsequent skill’s initiation set.

3Informal experiments with removing this restriction did not seem to change the number or type of skills
found but in some cases changed their starting and stopping positions by a few timesteps.
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5.4.2 Results

Of the 12 demonstration trajectories gathered from the uBot, 3 had to be discarded because

the perceptual features were too noisy. Of the remaining 9, all segmented sensibly and 8

were able to be merged into a single skill chain.4

Figure 5.11 shows a segmented trajectory obtained using CST, with Table 5.1 providing

a brief description of the skills extracted along with their selected abstractions, and the

number of sample trajectories required for each skill to be replayed successfully 9 times

out of 10.

# Abstraction Description Trajectories
Required

a torso-purple Drive to door. 2
b endpoint-purple Push the door open. 1
c torso-orange Drive toward wall. 1
d torso-yellow Turn toward the end wall. 2
e torso-purple Drive to the panel. 1
f endpoint-purple Press the panel. 3

Table 5.1. A brief description of each of the skills extracted from the trajectory shown in
Figure 5.11, along with their selected abstractions, and the number of example trajectories
required for accurate replay.

Thus, CST is able to segment trajectories obtained from a robot platform, select an appro-

priate abstraction in each case, and then replay the resulting policies using a small number

of sample trajectories.

4In four of these trajectories, a delay starting the robot moving after opening the door caused a “wait skill”
to appear in the segmentation, marking out a period of time when the robot did nothing. We excised these
skills before merging.
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Figure 5.11. A demonstration trajectory from the uBot-5 segmented into skills.

The different numbers of example trajectories required to accurately replay the demon-

strated skills occurred because of the varying difficult of each skill. Pushing the door open

proved relatively easy—a general forward motion by the endpoint toward the purple cir-

cle will almost always succeed. By contrast, pushing the panel required greater precision,

since the endpoint was required to be within the panel area when it touched the wall, even

when the uBot was facing the wall at an angle. Finally, approaching a target turned out

to be difficult in some cases because small mistakes in its angular velocity when the uBot

neared the target could cause the target to drift out of the robot’s fairly narrow field of view.
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5.5 Related Work

The most relevant related work on skill acquisition in reinforcement learning is the algo-

rithm introduced by Mehta et al. (2008), which induces a task hierarchy from a single

demonstration trajectory, assigning an appropriate abstraction to each subtask. However,

this method is only applicable to discrete domains and assumes a factored MDP with given

dynamic Bayes network action models.

A sequence of policies represented using linear function approximators may be considered

a switching linear dynamical system. Methods exist for learning such systems from data

(Xuan and Murphy, 2007; Fox et al., 2008); these methods are able to handle multivariate

target variables and models that repeat in the sequence. However, they are consequently

more complex and computationally intensive than the much simpler changepoint detection

method we use, and they have not been used in the context of reinforcement learning or

skill acquisition.

A great deal of work exists in robotics under the general heading of learning from demon-

stration (Argall et al., 2009), where control policies are learned using sample trajectories

obtained from a human, robot demonstrator, or a planner. Most methods learn an entire

single policy from data, although some perform segmentation—for example, Jenkins and

Matarić (2004) segment demonstrated data into motion primitives, and thereby build a mo-

tion primitive library. They perform segmentation using a heuristic specific to human-like

kinematic motions; more recent work has used more principled statistical methods (Groll-

man and Jenkins, 2010; Butterfield et al., 2010) to segment the data into multiple models

as a way to avoid perceptual aliasing in the policy. Other methods use demonstration to

provide an initial policy that is then refined using reinforcement learning—e.g., Peters and
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Schaal (2008). Prior to our work, we know of no existing method that both performs tra-

jectory segmentation and results in motion primitives suitable for further learning.

5.6 Discussion and Conclusions

CST makes several key assumptions. The first is that the demonstrated skills form a tree,

when in some cases they may form a more general graph (e.g., when the demonstrated

policy has a loop). A straightforward modification of the procedure to merge skill chains

could accommodate such cases. We also assume that the domain reward function is known

and that each option reward can be obtained from it by adding in a termination reward. A

method for using inferred reward functions (e.g., Abbeel and Ng (2004)) could be incor-

porated into our method when this is not true. However, this requires segmentation based

on policy rather than value function, since rewards are not given at demonstration-time.

Because policies are usually multivariate, this would require a multivariate changepoint

detection algorithm, such as that by Xuan and Murphy (2007). Finally, we assume that

the best model for combining a pair of skills is the model selected for representing both

individually. This may not always hold—two skills best represented individually by one

model may be better represented together using another (perhaps more general) one. Since

the correct abstraction would presumably be at least competitive during segmentation, such

cases can be resolved by considering segmentations other than the final MAP solution when

merging.

In the context of robot learning from demonstration, segmenting trajectories into skills has

several advantages over methods that try to learn the entire policy monolithically. Each skill

is allocated its own abstraction, and therefore can be learned and represented efficiently—
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potentially allowing us to learn higher dimensional, extended policies. During learning,

an unsuccessful or partial episode can still improve skills whose goals where nevertheless

reached. Confidence-based learning methods (Chernova and Veloso, 2007) can be applied

to each skill individually. Finally, skills learned using agent-centric features (such as in

our uBot task) can be retained and transferred to new problem settings (Konidaris and

Barto, 2007), and thereby detached from a specific problem to be more generally useful by

allowing the robot to more quickly solve new tasks. These advantages may prove crucial

to scaling up robot learning by demonstration methods, and making them practical for

extended control tasks on high-dimensional robots.
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CHAPTER 6

AUTONOMOUS SKILL ACQUISITION ON A MOBILE ROBOT

Although CST can be applied to demonstration trajectories regardless of their source, the

previous chapter focused on learning from demonstration trajectories provided by a human

expert. In this chapter, we use CST as a component of the control system of a mobile

robot—the uBot-5—that uses reinforcement learning to find a solution to an instance of the

Red Room Domain. It thus generates its own demonstration trajectories, thereby achieving

autonomous skill acquisition. We show that this system is able to use skills acquired in that

instance to improve its performance in another.

6.1 The Red Room Domain

The Red Room Domain places the uBot-5 in a small artificial room that contains vari-

ous objects. The uBot is equipped with a set of innate controllers which it must learn to

sequence to complete its task.

6.1.1 The uBot-5

The uBot-5 (briefly introduced in Chapter 5, and shown in Figure 6.1) is a dynamically

balancing, 13 degree of freedom mobile manipulator (Deegan et al., 2006). Dynamic bal-
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ancing is performed using an LQR controller that keeps the robot upright and compensates

for forces exerted upon it during navigation and manipulation. The uBot-5 has two arms,

each terminated by a small ball that can be used for basic manipulation tasks.1

Figure 6.1. The uBot-5, a 13-DoF dynamically balancing mobile manipulator.

The uBot’s control system is implemented primarily in Microsoft Robotics Developer Stu-

dio (Johns and Taylor, 2008), and allows differential control of its wheels and position

control of each of its arm endpoints (though we only use the right arm in this work). Per-

ception is performed using the uBot’s twin cameras, and the ARToolkit augmented reality

1A grasping hand prototype is expected to be working shortly.
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tag system (Kato and Billinghurst, 1999), whereby augmented reality tags (ARTags) that

can be reliably detected using the robot’s cameras are placed in the environment to mark

important features of the task. The ARTags are placed in known configurations around im-

portant features, allowing the robot to localize each feature even when only a single ARTag

is visible.

The robot is equipped with both navigation and manipulation controllers. Given a target

feature, the navigation controller will first align the robot with that feature’s normal, and

then turn the robot to face the feature and approach it. This guarantees that the robot

is in a good position to manipulate the target object when it arrives. The uBot also has

controllers that move its endpoint to one of seven positions: withdrawn (allowing it to

execute a navigation action), extended, and then extended and moved to the left, right,

upwards, downwards, or outwards. Each of these controls the position of the endpoint

relative to the centroid of the target feature.

Before starting a navigation, the robot performs a visual scan of the room to determine the

positions of visible objects in the room. It then runs an orientation controller which turns it

away from the location it is currently facing and toward its intended target. This controller

is crucial in keeping the robot safely away from the walls of the domain and is thus not

learned or including in segmentation. When the robot navigates towards or is trying to

manipulate an object, it also runs a tracker which controls its pan-tilt head to keep one of

its target’s ARTags centered in its field of view.

As in Chapter 5, the uBot is given a library of abstractions. Each abstraction pairs one of

its motor modalities (wheels or arms) with a task feature. However, in this case both types

of abstractions are three-dimensional. Abstractions using the robot’s endpoint contain state
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variables expressing the difference between its position and target feature’s centroid in three

dimensional space. Abstractions using the robot’s torso and a target feature contain state

variables expressing the distance from the robot’s torso to the feature, the distance from

the robot’s torso to the wall upon which the feature is attached, and the angle between the

robot’s torso and the feature’s normal.

When performing task-level learning, the uBot builds a discrete model of the task as an

MDP. This model allows the uBot to plan using dynamic programming (Sutton and Barto,

1998) with learning rate α = 0.1. The value function is initialized optimistically to zero

for unknown state-action pairs, except for when the robot uses acquired skills, when the

state-action pairs corresponding to basic manipulation actions are initialized to a time cost

of three hours. This results in a robot that always prefers to use higher-level acquired

skills when possible, but can also make use of lower-level innate controllers when all other

options have been exhausted. Planning is performed online, in real time. The robot receives

a reward of −1 for each second that passes until it has solved the task.

To learn a skill policy given a demonstration trajectory, we fit a linear spline model to the

demonstrated trajectory. This allows us to replay the trajectory from new starting positions

reliably, while the parameters of the model can be tuned using a policy gradient algorithm.

6.1.2 The Red Room

The Red Room Domain consists of two tasks. We use the first task as a training task: the

uBot learns to solve it by sequencing its innate controllers, and extracts skills from the

resulting solution trajectories. We then compare the time the uBot takes to initially solve
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the second task using its innate controllers against the time required when using acquired

skills.

6.1.2.1 The First Task

The first task consists of a small room containing a button and a handle. When the handle is

pulled after the button has been pressed, a door in the side of the room opens, allowing the

uBot access to a compartment which contains a switch. The goal of the task is to press the

switch. Sensing and control for the objects in the room are performed using touch sensors,

with state tracked and communicated to the uBot via an MIT Handy Board (Martin, 1998).

A schematic drawing and photographs of the first room are given in Figure 6.2.

Button

Handle

Switch
Door

245 cm

355 cm

Figure 6.2. The first task in the Red Room Domain.
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At the task level, the state of the first task at time i is described as a tuple si = (ri, pi, hi),

where ri is the state of the room, pi is the position of the robot, and hi is the position of its

end-effector.

The state of the room at time i consists of four state bits, indicating the state of the button

(pressing the button flips this bit), the state of the handle (this bit is only flipped once, and

only when the button bit is set), whether or not the door is open, and whether or not the

switch has been pressed (this bit is also only flipped once since the task ends when it is set).

The uBot may find itself at one of five positions: its start position, in front of the button,

in front of the handle, through the door, and in front of the switch. Each of these positions

is marked in the room using ARTags—a combination of small and large tags are used to

ensure that each position is visible in the robot’s cameras from all of the relevant locations

in the room. The robot has a navigate action available to it that will move it from its current

position to any position visible when it performs a visual sweep with its head. Thus, the

robot may always move between the button and the switch, but can only move through the

door entrance once it is open; only then can it see the switch and move towards it.

Finally, the robot’s end-effector may be in one of seven positions: withdrawn (from where

it can execute a navigation action), extended, and then extended and moved to the left,

right, upwards, downwards, or outwards. The robot must always be facing an object to

interact with it. In order to actuate the button and the switch, the robot must extend its arm

and then move it outwards; in order to actuate the handle, it must extend its arm and then

move it downwards.
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6.1.2.2 The Second Task

The second Red Room task is similar to the first: the robot is placed in a room with a group

of manipulable objects and a door. In this case, the robot must first push the switch, and

then push the button to open the door. Opening the door hides a button in the second part

of the room. The robot must then navigate to the second part of the room and pull a lever to

close the door again, revealing the second button, which it must press to complete the task.

Button

Handle

Switch

Door

245 cm

355 cm

Button

Figure 6.3. The second task in the Red Room Domain.

Note that this room contains the same types of objects as the first task, and so the robot is

able to apply its acquired skills to manipulate objects when they are of a type it has encoun-

tered before. In general object classification could be done by visual pattern matching, but

in this case we simply label the objects for the robot.
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6.2 Results

The uBot’s first task is to sequence its innate controllers to solve the first Red Room task.

Since the robot starts with no knowledge of the underlying MDP, it must learn both how

to interact with each object and in which order interaction must take place from scratch.

Figure 6.4 shows the uBot’s learning curve for the first Red Room task: it is able to find

the optimal controller sequence after 5 episodes, reducing the time taken to solve the task

from approximately 13 minutes to around 3.

1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

Episodes

S
ec

on
ds

Figure 6.4. The uBot’s learning curve in the first Red Room task. It executes the optimal
sequence of controllers from the 5th episode on.

The resulting optimal sequence of controllers are then used to generate 5 demonstration

trajectories for use in CST (using a first-order Fourier Basis, k = 150, M = 60, N =

120, σv = 602, and βv = 0.000001). The resulting trajectories all segment into the same

sequence of 10 skills, and are all merged successfully (using a 5th order Fourier Basis,
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σv = 5002, and βv = 0.000001). An example segmentation is shown in Figure 6.5; a

description of each skill along with its relevant abstraction is given in Table 6.1.

Figure 6.5. A trajectory from the learned solution to the first Red Room task, segmented
into skills.

CST consistently extracted skills that corresponded to manipulating objects in the environ-

ment, and navigating towards them. In the navigation case, each controller execution was

split into two separate skills. These skills correspond exactly to the two phases of the navi-

gation controller: first, aligning the robot with the normal of a feature, and second, moving

the robot toward that feature. We do not consider the resulting navigation skills further

since they are room-specific and cannot be used in the second task.

In the object-manipulation case, a sequence of two controllers is collapsed into a single

skill: for example, extending the arm and then extending it further forward is collapsed
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# Abstraction Description

a torso-button Align with the button.
b torso-button Turn and approach the button.
c endpoint-button Push the button.
d torso-handle Align with the handle.
e torso-handle Turn and approach the handle.
f endpoint-handle Pull the handle.
g torso-entrance Align with the entrance.
h torso-entrance Turn and drive through the entrance.
i torso-switch Approach the switch.
j endpoint-switch Press the switch.

Table 6.1. A brief description of each of the skills extracted from the trajectory shown in
Figure 6.5, along with their selected abstractions.

into a single skill which we might label push the button. We fitted the resulting policies for

replay using a single demonstrated trajectory, and obtained reliable replay for all manipu-

lation skills.

Figure 6.2 shows the results obtained when the uBot first attempts to solve the second Red

Room task, given either its original innate controllers or, additionally, the manipulation

skills acquired in the first Red Room task. We performed eight runs of each condition. The

results show that using acquired manipulation skills, the uBot is able to initially complete

the new task in on average a little more than half the time required when only innate skills

were present. This difference is statistically significant (t-test, p < 0.01); moreover, the

sample completion times for the two conditions do not overlap.

This data thus demonstrates that skills acquired in one task can be deployed to improve the

robot’s problem-solving abilities in second task.
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Figure 6.6. The time taken by the uBot-5 to first complete the second Red Room task,
given innate controllers or acquired skills.

Note that one of the runs using skill acquisition is marked as an outlier (with a cross) in

Figure 6.2. During this run, the robot explored virtually all transitions available in the

MDP before finally finding the solution. This data point thus corresponds to a sample of

the worst-case behavior of the uBot using acquired skills; it still requires less time (by about

30 seconds) than the fastest sample run using only innate controllers.

6.3 Related Work

The great deal of work on various aspects of robot skill acquisition has already been covered

in Chapter 2; here we focus primarily on the few systems where acquired skills are used
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to more efficiently learn to solve new tasks. The most directly relevant work is by Hart

(2009a), where a robot learns according to a developmental schedule whereby it acquires

skills that are then used as primitives in later tasks. This work used an intrinsic reward

function (Hart, 2008) which was task specific, and relies upon the presence of a teacher

or programmer who both designs the developmental schedule for the robot and restricts

the controllers available to it to make learning feasible. In addition, the skills acquired

are chunked sequences of innate controllers and cannot be further improved via learning.

Similar work by Huber (2000) is used to build directed locomotion controllers from learned

component gaits.

6.4 Summary and Conclusions

We have demonstrated that CST is able to acquire skills using demonstration trajectories

obtained from the robot’s own solution to a problem, and that the resulting skills can be

used to improve its performance in a new task.

It is worth dwelling on the implications of the results presented here. Although the uBot

started off with the capacity to learn to, for example, push the button, this was accomplished

through the laborious trial-and-error of running through many combinations of manipula-

tion actions within a particular task. However, since this sequence of manipulation actions

happened to be useful in solving a problem, it was extracted as a single action that can

be deployed as a unit—requiring only a single action selection decision—when the robot

encounters a new problem. Had the uBot attempted transfer its entire policy from the first

Red Room to the second, it would have started off with a very poor policy. Instead, transfer
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was affected via the isolation and retention of skills—effectively policy components—that

are suitable for reuse in later tasks.

Thus, the uBot was able to acquire procedural knowledge autonomously through inter-

action with its environment; its performance in the second Red Room task shows that

acquiring such knowledge can allow robots to learn to solve problems more efficiently.
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CHAPTER 7

DISCUSSION AND CONCLUSION

The goal of this thesis was to improve the state of the art in hierarchical reinforcement

learning and skill acquisition, to the point where it is possible to create a robot that acquires

new skills autonomously.

In the pursuit of this goal, we developed three new algorithms: skill chaining, the first (to

the best of our knowledge) method for skill acquisition in general continuous reinforcement

learning problems; abstraction selection, which allows an agent to select an appropriate

abstraction from a library when acquiring a new skill, and hence aids in skill acquisition in

high-dimensional problems; and CST, and algorithm that performs both skill chaining and

abstraction selection efficiently and online, using demonstration trajectories.

Finally, we have described an example demonstration where a mobile robot has autonomously

acquired a set of new skills through interaction with an environment. This system shows

that the methods developed here are sufficient to realize autonomous skill acquisition on a

mobile robot in at least one instance. Thus, this work was at least partially successful in

achieving its goal.

However, each of the specific techniques developed here opens up several questions that

merit further attention.
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7.1 Future Work

While skill chaining provides a general method for skill acquisition in continuous rein-

forcement learning domains, it could be extended in several directions. Most obviously,

general heuristics that can identify target events before the agent has first reached a goal

state would significantly broaden the method’s applicability. Future work might also ex-

amine ways to deal with the large numbers of skills that might result from the presence

of multiple root target events. A possible solution might involve identifying target events

where two skill trees approximately overlap—for example, skill trees to reach two different

locations in the same room might both use opening the door to that room as an intermediate

target event—and then merging those trees below the common target event.

Future work may also address the question of how model-free skill acquisition techniques—

such as skill chaining—compare to the combination of a learned environmental model fol-

lowed by a model-based skill acquisition technique—such as LQR-Trees (Tedrake, 2009)—

and the circumstances under which each approach may be more efficient or more likely to

succeed.

Abstraction selection assumes the existence of a library of sensorimotor abstractions; this

raises the question of whether new techniques might make it feasible to instead simply build

the relevant abstraction as necessary, while the agent learns the skill; if they cannot, future

work might examine how an agent can acquire an abstraction library over its lifetime. Fu-

ture work might also examine how an agent can acquire information about the probability

of deploying an abstraction in various contexts, and so provide more informative priors to

a selection algorithm.
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All of these extensions would also be applicable to CST, since it combines the ideas under-

lying both skill chaining and abstraction selection. In addition, future work might consider

more principled ways to combine the changepoint distributions that result from each sample

trajectory, perhaps by maximizing likelihood over the entire set of trajectories rather than

for each trajectory sequentially. Additionally, an important question that remains open in

CST is that of safety: when can an agent determine that it has seen sufficiently many sam-

ple trajectories to be able to successfully and reliably execute a policy? The application of

confidence-based methods (Chernova and Veloso, 2007) seems to be an appropriate initial

direction for such work.

Finally, the robot demonstration in the previous chapter was fairly limited, and has signif-

icant scope for improvement. In addition to all of the extensions above, future work may

also address improving its rather rudimentary perception, adding grippers to the robot and

thus allowing for more interesting manipulation skills, creating a system that could choose

to explicitly practice acquired skills—perhaps following initial work by Stout and Barto

(2010)—and actively explore new environments to discover new skills.

7.2 Discussion

The techniques presented here, and especially the demonstration described in the preceding

chapter, have several limitations. Most importantly, the robot demonstration is a fairly

limited one, using an environment engineered for simplicity, a hand-designed abstraction

library, and a small number of acquired skills. These limitations, especially when viewed

in light of all of the extensions detailed in the previous section, demonstrate plainly that
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this work has only begun to scratch the surface of what is necessary to build robots that are

can acquire skills in an open-ended, reliable, and completely autonomous fashion.

However, the techniques and demonstration presented here are sufficient to provide support

for the two behavioral advantages described in Chapter 1: that skill acquisition allows an

agent to both discover solutions to new problems faster than it would have been able to

otherwise—as demonstrated in the Red Room in Chapter 6—and that it allows an agent

to achieve performance improvements on hard control problems through improving the

policies of its acquired skills—as demonstrated in the Pinball Domain in Chapter 3.

In addition to the behavioral advantages discussed in Chapter 1, we have also demonstrated

that skill acquisition in continuous domains confers two additional engineering advantages.

First, as demonstrated using skill chaining in Chapter 3, skill acquisition allows us to solve

continuous problems that are too hard to solve monolithically by adaptively breaking them

up into smaller problems, and then learning good policies for those subproblems. Thus,

skill acquisition eases the burden of learning complex policies monolithically.

Second, as demonstrated via abstraction selection in Chapter 4, skill acquisition provides a

natural way to solve high-dimensional problems that are not amenable to a solution using

a state abstraction, by adaptively breaking them into sequences of smaller problems, each

of which can be solved using an abstraction. Thus, skill acquisition eases the burden of

representing complex policies monolithically.

Together, these two advantages may prove crucial in scaling up reinforcement learning

methods to high-dimensional, continuous domains; more broadly, the ability to adaptively
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break a problem into subproblems that are easy to solve and then reassembling those solu-

tions may underlie many aspects of human intelligence.

Beyond immediate extensions to the techniques presented in this thesis, the work here

suggests some broader directions for future research. One of these is the need for skill

management. If we are to build agents that acquire their own skills across a variety of

different tasks and environments, we require methods that both restrict the set of available

skills at any given moment—so that the robot’s task is not made harder by too many avail-

able skills—while at the same time using the information contained in its skill library to

acquire new skills more efficiently.

Several strategies might be useful for skill management. Prior knowledge of the context in

which a skill is frequently deployed may rule it out or reduce the likelihood of its selection

in many contexts. We may devise methods for recognizing when one skill is simply a

(perhaps slightly perturbed) copy of another, and thereby both speed up (or indeed simply

avoid) policy learning and avoid the acquisition of a duplicate skill. Alternatively, an agent

might learn when a pair or sequence of policies are all distorted copies of each other, and

thereby acquire a parametrized option. Using such methods, an agent could build a compact

library of prototype skills that it could use for skill policy initialization when acquiring a

new skill.

More generally, methods that are able to achieve inter-skill transfer may prove useful in

achieving open-ended learning. Transfer in reinforcement learning (surveyed by Taylor and

Stone (2009)) has received significant research attention, including some work on learning

portable options for skill transfer (Konidaris and Barto, 2007). However, considering trans-

fer in the context of a single agent trying to become more efficient at skill acquisition results
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in a new and interesting setting where common features between tasks are clear, and the

problem of maintaining a compact library of prototype skills and then selecting among

them when initializing a new skill policy becomes critical.

Another broad direction for future research is that of building true skill hierarchies. In all

of the work described here, and more generally in almost all of the work using the options

framework, only the first level of a hierarchy is constructed: new skills are simply added to

the actions already available to the agent.

The other two major hierarchical reinforcement learning frameworks—MaxQ (Dietterich,

2000) and HAMs (Parr and Russell, 1997)—describe hierarchies with more than one level.

However, attempts to acquire either type of hierarchy through interaction with the environ-

ment have met with only very limited success. In addition, in both frameworks the size

of the state space actually increases with the level of the hierarchy, which is obviously

undesirable. Thus, the question of how to acquire true skill hierarchies remains open.

Ideally, a method for acquiring a skill hierarchy would result in a hierarchy with at least the

following properties: each level of the hierarchy is an easier problem (one with a smaller

state space and fewer actions) than the level below it; each level would form an MDP,

with all levels (except possibly the first) discrete; that MDP would be well-formed in the

sense that executing an action in it would never result in the agent reaching a configuration

that is not also a state at that level; at the highest levels, each state either has a symbolic

interpretation or form the basis for one; and finally, each layer (except possibly the first)

would contain sufficient information to allow planning at that level without a model of the

environment. The development of such a method would be a significant advance in the state

of the art of hierarchical reinforcement learning.
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Finally, another broad direction of interest is the use of robots and intelligent agents as

synthetic models of human skill acquisition. Although we have discussed human skill

acquisition in this thesis, no serious attempt was made to accurately model the human brain,

except at a very abstract level. Hierarchical reinforcement learning has recently received

some attention as a model of human skill acquisition (Botvinick et al., 2009), and synthetic

models might provide a useful mechanism for testing such models.

7.3 Conclusion

If we are to succeed in developing truly intelligent artificial systems, we are faced with the

problem of moving beyond well-engineered systems that are adept at a single, specialized

task. A unique trait of human intelligence is that it is flexible, adaptive and open-ended:

humans are able to learn to become proficient in tasks as diverse as playing tennis, driv-

ing a car, weather forecasting, playing the stock market, assembling a computer, flying a

plane, designing a circuit, creating furniture from wood, and proving a theorem. They are

indeed capable of going further than proficiency: a human who is trained to expert-level

proficiency in a task is often capable of using that training to exceed the level of expertise

of their trainers.

Thus, this research is concerned with the question of how to build agents that can use their

experience in solving some problems to later solve new, harder problems more efficiently.

We have chosen to focus on skill acquisition, which involves the acquisition of procedu-

ral knowledge—knowledge about how to act—through interaction with an environment,

because the primary function of the brain is control.
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This thesis reflects the belief that hierarchical reinforcement learning provides a principled

theoretical approach to skill acquisition, and has developed new methods that extend the

reach of skill acquisition algorithms to the point where they can begin to be applied to

high-dimensional, continuous domains. This thesis also reflects the belief that progress in

artificial intelligence is best achieved through the design of relatively complete, integrated

agents, especially robot systems. In this case, such an approach has both emulated the

hypothesized behavioral advantages of skill acquisition, and also shed light on some of the

engineering advantages of it. Although much remains to be done before we can even begin

to claim the ability to create flexible, adaptive and open-ended artificial agents, the research

presented here represents a small but hopefully concrete step in that direction.
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