
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

9-2010

Optimization-based Approximate Dynamic
Programming
Marek Petrik
University of Massachusetts Amherst, petrik@cs.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Petrik, Marek, "Optimization-based Approximate Dynamic Programming" (2010). Open Access Dissertations. 308.
https://scholarworks.umass.edu/open_access_dissertations/308

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/308?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

OPTIMIZATION-BASED APPROXIMATE DYNAMIC PROGRAMMING

A Dissertation Presented

by

MAREK PETRIK

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2010

Department of Computer Science

c© Copyright by Marek Petrik 2010

All Rights Reserved

OPTIMIZATION-BASED APPROXIMATE DYNAMIC PROGRAMMING

A Dissertation Presented

by

MAREK PETRIK

Approved as to style and content by:

Shlomo Zilberstein, Chair

Andrew Barto, Member

Sridhar Mahadevan, Member

Ana Muriel, Member

Ronald Parr, Member

Andrew Barto, Department Chair
Department of Computer Science

To my parents Fedor and Mariana

ACKNOWLEDGMENTS

I want to thank the people who made my stay at UMass not only productive, but also very

enjoyable. I am grateful to my advisor, Shlomo Zilberstein, for guiding and supporting me

throughout the completion of this work. Shlomo’s thoughtful advice and probing ques-

tions greatly influenced both my thinking and research. His advice was essential not only

in forming and refining many of the ideas described in this work, but also in assuring that

I become a productive member of the research community. I hope that, one day, I will be

able to become an advisor who is just as helpful and dedicated as he is.

The members of my dissertation committee were indispensable in forming and steering the

topic of this dissertation. The class I took with Andrew Barto motivated me to probe the

foundations of reinforcement learning, which became one of the foundations of this the-

sis. Sridhar Mahadevan’s exciting work on representation discovery led me to deepen my

understanding and appreciate better approximate dynamic programming. I really appre-

ciate the detailed comments and encouragement that Ron Parr provided on my research

and thesis drafts. Ana Muriel helped me to better understand the connections between

my research and applications in operations research. Coauthoring papers with Jeff Johns,

Bruno Scherrer, and Gavin Taylor was a very stimulating and learning experience. My re-

search was also influenced by interactions with many other researches. The conversations

with Raghav Aras, Warren Powell, Scott Sanner, and Csaba Szepesvari were especially il-

luminating. This work was also supported by generous funding from the Air Force Office

of Scientific Research.

Conversations with my lab mate Hala Mostafa made the long hours in the lab much more

enjoyable. While our conversations often did not involve research, those that did, moti-

vated me to think deeper about the foundations of my work. I also found sharing ideas

with my fellow grad students Martin Allen, Chris Amato, Alan Carlin, Phil Kirlin, Akshat

v

Kumar, Sven Seuken, Siddharth Srivastava, and Feng Wu helpful in understanding the

broader research topics. My free time at UMass kept me sane thanks to many great friends

that I found here.

Finally and most importantly, I want thank my family. They were supportive and helpful

throughout the long years of my education. My mom’s loving kindness and my dad’s

intense fascination with the world were especially important in forming my interests and

work habits. My wife Jana has been an incredible source of support and motivation in

both research and private life; her companionship made it all worthwhile. It was a great

journey.

vi

ABSTRACT

OPTIMIZATION-BASED APPROXIMATE DYNAMIC PROGRAMMING

SEPTEMBER 2010

MAREK PETRIK

Mgr., UNIVERZITA KOMENSKEHO, BRATISLAVA, SLOVAKIA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

Reinforcement learning algorithms hold promise in many complex domains, such as re-

source management and planning under uncertainty. Most reinforcement learning algo-

rithms are iterative — they successively approximate the solution based on a set of samples

and features. Although these iterative algorithms can achieve impressive results in some

domains, they are not sufficiently reliable for wide applicability; they often require ex-

tensive parameter tweaking to work well and provide only weak guarantees of solution

quality.

Some of the most interesting reinforcement learning algorithms are based on approximate

dynamic programming (ADP). ADP, also known as value function approximation, approx-

imates the value of being in each state. This thesis presents new reliable algorithms for

ADP that use optimization instead of iterative improvement. Because these optimization–

based algorithms explicitly seek solutions with favorable properties, they are easy to an-

alyze, offer much stronger guarantees than iterative algorithms, and have few or no pa-

rameters to tweak. In particular, we improve on approximate linear programming — an

vii

existing method — and derive approximate bilinear programming — a new robust ap-

proximate method.

The strong guarantees of optimization–based algorithms not only increase confidence in

the solution quality, but also make it easier to combine the algorithms with other ADP com-

ponents. The other components of ADP are samples and features used to approximate

the value function. Relying on the simplified analysis of optimization–based methods,

we derive new bounds on the error due to missing samples. These bounds are simpler,

tighter, and more practical than the existing bounds for iterative algorithms and can be

used to evaluate solution quality in practical settings. Finally, we propose homotopy meth-

ods that use the sampling bounds to automatically select good approximation features

for optimization–based algorithms. Automatic feature selection significantly increases the

flexibility and applicability of the proposed ADP methods.

The methods presented in this thesis can potentially be used in many practical applications

in artificial intelligence, operations research, and engineering. Our experimental results

show that optimization–based methods may perform well on resource-management prob-

lems and standard benchmark problems and therefore represent an attractive alternative

to traditional iterative methods.

viii

CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Planning Models . 3

1.2 Challenges and Contributions . 5

1.3 Outline . 8

PART I: FORMULATIONS

2. FRAMEWORK: APPROXIMATE DYNAMIC PROGRAMMING 12

2.1 Framework and Notation . 12

2.2 Model: Markov Decision Process . 13

2.3 Value Functions and Policies . 16

2.4 Approximately Solving Markov Decision Processes . 23

2.5 Approximation Error: Online and Offline . 31

2.6 Contributions . 34

3. ITERATIVE VALUE FUNCTION APPROXIMATION . 35

3.1 Basic Algorithms . 35

3.2 Bounds on Approximation Error . 39

ix

3.3 Monotonous Approximation: Achieving Convergence . 43

3.4 Contributions . 44

4. APPROXIMATE LINEAR PROGRAMMING: TRACTABLE BUT LOOSE
APPROXIMATION . 45

4.1 Formulation . 45

4.2 Sample-based Formulation . 49

4.3 Offline Error Bounds . 52

4.4 Practical Performance and Lower Bounds . 54

4.5 Expanding Constraints . 57

4.6 Relaxing Constraints . 62

4.7 Empirical Evaluation . 67

4.8 Discussion . 69

4.9 Contributions . 70

5. APPROXIMATE BILINEAR PROGRAMMING: TIGHT
APPROXIMATION . 71

5.1 Bilinear Program Formulations . 71

5.2 Sampling Guarantees . 81

5.3 Solving Bilinear Programs . 83

5.4 Discussion and Related ADP Methods . 85

5.5 Empirical Evaluation . 90

5.6 Contributions . 93

PART II: ALGORITHMS

6. HOMOTOPY CONTINUATION METHOD FOR APPROXIMATE LINEAR
PROGRAMS . 95

6.1 Homotopy Algorithm . 96

6.2 Penalty-based Homotopy Algorithm . 101

6.3 Efficient Implementation . 106

6.4 Empirical Evaluation . 108

6.5 Discussion and Related Work . 109

6.6 Contributions . 111

7. SOLVING APPROXIMATE BILINEAR PROGRAMS . 112

x

7.1 Solution Approaches . 113

7.2 General Mixed Integer Linear Program Formulation . 114

7.3 ABP-Specific Mixed Integer Linear Program Formulation 117

7.4 Homotopy Methods . 119

7.5 Contributions . 122

8. SOLVING SMALL-DIMENSIONAL BILINEAR PROGRAMS 123

8.1 Bilinear Program Formulations . 124

8.2 Dimensionality Reduction . 126

8.3 Successive Approximation Algorithm . 131

8.4 Online Error Bound . 136

8.5 Advanced Pivot Point Selection . 140

8.6 Offline Bound . 146

8.7 Contributions . 147

PART III: SAMPLING, FEATURE SELECTION, AND SEARCH

9. SAMPLING BOUNDS . 150

9.1 Sampling In Value Function Approximation . 151

9.2 State Selection Error Bounds . 154

9.3 Uniform Sampling Behavior . 161

9.4 Transition Estimation Error . 162

9.5 Implementation of the State Selection Bounds . 167

9.6 Discussion and Related Work . 170

9.7 Empirical Evaluation . 173

9.8 Contributions . 177

10. FEATURE SELECTION . 178

10.1 Feature Considerations . 179

10.2 Piecewise Linear Features . 180

10.3 Selecting Features . 183

10.4 Related Work . 187

10.5 Empirical Evaluation . 191

10.6 Contributions . 193

xi

11. HEURISTIC SEARCH . 194

11.1 Introduction . 195

11.2 Search Framework . 200

11.3 Learning Heuristic Functions . 204

11.4 Feature Combination as a Linear Program . 218

11.5 Approximation Bounds . 225

11.6 Empirical Evaluation . 231

11.7 Contributions . 234

12. CONCLUSION . 235

PART: APPENDICES

APPENDICES

A. NOTATION . 239

B. PROBLEM DESCRIPTIONS . 242

C. PROOFS . 250

BIBLIOGRAPHY . 335

xii

LIST OF FIGURES

Figure Page

1 Chapter Dependence . xviii

1.1 Blood Inventory Management . 1

1.2 Reservoir Management . 2

1.3 Optimization Framework . 7

2.1 Transitive-feasible value functions in an MDP with a linear state-space. 19

2.2 Approximate Dynamic Programming Framework. 24

2.3 Example of equivalence of pairs of state-action values. 27

2.4 Sample types . 28

2.5 Online and offline errors in value function approximation. 32

2.6 Value functions and the components of the approximation error. 33

4.1 Sampled constraint matrix A of the approximate linear program. 52

4.2 An example chain problem with deterministic transitions and reward
denoted above the transitions. 56

4.3 Approximation errors in approximate linear programming. 57

4.4 Illustration of the value function in the inventory management problem. 57

4.5 An example of 2-step expanded constraints (dashed) in a deterministic
problem. The numbers next to the arcs represent rewards. 58

xiii

4.6 Benchmark results for the chain problem. 67

4.7 Bound on L1 approximation error with regard to the number of expanded
constraints on the mountain car problem. 69

5.1 L∞ Bellman residual for the chain problem . 91

5.2 Expected policy loss for the chain problem . 91

5.3 Robust policy loss for the chain problem . 92

6.1 Comparison of performance of homotopy method versus Mosek as a
function of ψ in the mountain car domain. The Mosek solutions are
recomputed in increments for values of ψ. 109

6.2 Comparison of performance of homotopy method versus Mosek as a
function of ψ in the mountain car domain. The Mosek solutions are
computed for the final value of ψ only. 110

7.1 An illustration of θB and the property satisfied by θB(ψ̄). 122

8.1 Approximation of the feasible set Y according to Assumption 8.3. 128

8.2 Refinement of a polyhedron in two dimensions with a pivot y0. 136

8.3 The reduced set Yh that needs to be considered for pivot point
selection. 140

8.4 Approximating Yh using the cutting plane elimination method. 143

9.1 Value of a feature as a function of the embedded value of a state. 157

9.2 Comparison between the best-possible local modeling (LM) and a naive
Gaussian process regression (GP) estimation of εp/ε∗p. The results are
an average over 50 random (non-uniform) sample selections. The table
shows the mean and the standard deviation (SD). 175

9.3 Comparison between the local modeling assumption and the Gaussian
process regression for the Bellman residual for feature φ8 and action a5
(function ρ1) and the reward for action a1 (function ρ2). Only a subset of
k(S) is shown to illustrate the detail. The shaded regions represent
possible regions of uncertainties. 175

xiv

9.4 Comparison between the local modeling assumption and the Gaussian
process regression for the Bellman residual for feature φ8 and action a5
(function ρ1) and the reward for action a1 (function ρ). The shaded
regions represent possible regions of uncertainties. 175

9.5 Uncertainty of the samples in reservoir management for the independent
samples and common random numbers. 176

9.6 Transition estimation error as a function of the number of sampled states.
The results are an average over 100 permutations of the state order. 177

10.1 Examples of two piecewise linear value functions using the same set of 3
features. In blood inventory management, x and y may represent the
amounts of blood in the inventory for each blood type. 181

10.2 Sketch of error bounds as a function of the regularization coefficient. Here,
v1 is the value function of the full ALP, v3 is the value function of the
estimated ALP, and v∗ is the optimal value function. 184

10.3 Comparison of the objective value of regularized ALP with the true
error. 192

10.4 Comparison of the performance regularized ALP with two values of ψ and
the one chosen adaptively (Corollary 10.5). 192

10.5 Average of 45 runs of ALP and regularized ALP as a function of the
number of features. Coefficient ψ was selected using Corollary 10.5. 192

11.1 Framework for learning heuristic functions. The numbers in parentheses
are used to reference the individual components. 197

11.2 Examples of inductive methods based on the inputs they use. 208

11.3 Bellman residual of three heuristic functions for a simple chain
problem . 215

11.4 Three value functions for a simple chain problem . 215

11.5 Formulations ensuring admissibility. 220

11.6 Lower bound formulations, where the dotted lines represent paths of
arbitrary length. 224

xv

11.7 An approximation with loose bounds. 228

11.8 An example of the Lyapunov hierarchy. The dotted line represents a
constraint that needs to be removed and replaced by the dashed
ones. 229

11.9 Weights calculated for individual features using the first basis choice.
Column xi corresponds to the weight assigned to feature associated
with tile i, where 0 is the empty tile. The top 2 rows are based on data
from blind search, and the bottom 2 on data from search based on the
heuristic from the previous row. 233

11.10The discovered heuristic functions as a function of α in the third basis
choice, where xi are the weights on the corresponding features in the
order they are defined. 233

B.1 A sketch of the blood inventory management . 244

B.2 Rewards for satisfying blood demand. 245

B.3 The blood flow in blood inventory management. 246

C.1 MDP constructed from the corresponding SAT formula. 300

C.2 Function θB for the counterexample. 311

C.3 A plot of a non-convex best-response function g for a bilinear program,
which is not in a semi-compact form. 320

xvi

Sampling Bounds (9)

Small-Dim ABP (8)

Introduction (1) Heuristic Search (11)

Framework (2) Iterative Methods (3)

ALP (4) ABP (5)

Solving ABP (7)

Features (10)

Homotopy ALP (6)

Figure 1. Chapter Dependence

xvii

CHAPTER 1

INTRODUCTION

Planning is the process of creating a sequence of actions that achieve some desired goals.

Typical planning problems are characterized by a structured state space, a set of possible

actions, a description of the effects of each action, and an objective function. This thesis

treats planning as an optimization problem, seeking to find plans that minimize the cost

of reaching the goals or some other performance measure.

Automatic planning in large domains is one of the hallmarks of intelligence and is, as a

result, a core research area of artificial intelligence. Although the development of truly

general artificial intelligence is decades — perhaps centuries — away, problems in many

practical domains can benefit tremendously from automatic planning. Being able to adap-

tively plan in an uncertain environment can significantly reduce costs, improve efficiency,

and relieve human operators from many mundane tasks. The two planning applications

below illustrate the utility of automated planning and the challenges involved.

AB

A

0

St
oc

ha
st

ic
 S

up
pl

y

Blood Bank

Hospital 2

Hospital 1

A

B

St
oc

ha
st

ic
 D

em
an

d

Figure 1.1. Blood Inventory Management

1

Reservoir

Irrigation

Water Inflow

Electricity Price

Figure 1.2. Reservoir Management

Blood inventory management A blood bank aggregates a supply of blood and keeps an

inventory to satisfy hospital demands. The hospital demands are stochastic and hard to

predict precisely. In addition, blood ages when it is stored and cannot be kept longer than a

few weeks. The decision maker must decide on blood-type substitutions that minimize the

chance of future shortage. Because there is no precise model of blood demand, the solution

must be based on historical data. Even with the available historical data, calculating the

optimal blood-type substitution is a large stochastic problem. Figure 1.1 illustrates the

blood inventory management problem and Section B.2 describes the formulation in more

detail.

Water reservoir management An operator needs to decide how much and when to dis-

charge water from a river dam in order to maximize energy production, while satisfying

irrigation and flood control requirements. The challenges in this domain are in some sense

complementary to blood inventory management with fewer decision options but greater

uncertainty in weather and energy prices. Figure 1.2 illustrates the reservoir management

problem and Section B.3 describes the formulation in more detail.

Many practical planning problems are solved using domain-specific methods. This entails

building specialized models, analyzing their properties, and developing specialized algo-

rithms. For example, blood inventory and reservoir management could be solved using

the standard theory of inventory management (Axsater, 2006). The drawback of special-

ized methods is their limited applicability. Applying them requires significant human ef-

2

fort and specialized domain knowledge. In addition, the domain can often change during

the lifetime of the planning system.

Domain-specific methods may also be inapplicable if the domain does not clearly fit into

an existing category. For example, because of the compatibility among blood types, blood

inventory management does not fit well the standard inventory control framework. In

reservoir management, the domain-specific methods also do not treat uncertainty satisfac-

torily, neither do they work easily with historical data (Forsund, 2009).

This thesis focuses on general planning methods — which are easy to apply to a variety

of settings — as an alternative to domain–specific ones. Having general methods that

can reliably solve a large variety of problems in many domains would enable widespread

application of planning techniques. The pinnacle of automatic planning, therefore, is to

develop algorithms that work reliably in many settings.

1.1 Planning Models

The purpose of planning models is to capture prior domain knowledge, which is crucial in

developing appropriate algorithms. The models need to capture the simplifying properties

of given domains and enable more general application of the algorithms.

A planning model must balance domain specificity with generality. Very domain-specific

models, such as the traveling salesman problem, may be often easy to study but have

limited applicability. In comparison, very general models, such as mixed integer linear

programs, are harder to study and their solution methods are often inefficient.

Aside from generality, the suitability of a planning model depends on the specific prop-

erties of the planning domain. For example, many planning problems in engineering can

be modeled using partial differential equations (Langtangen, 2003). Such models can cap-

ture faithfully continuous physical processes, such as rotating a satellite in the orbit. These

models also lead to general, yet well-performing methods, which work impressively well

in complex domains. It is, however, hard to model and address stochasticity using partial

3

differential equations. Partial differential equations also cannot be easily used to model

discontinuous processes with discrete states.

Markov decision process (MDP) — the model used in this thesis — is another common

general planning model. The MDP is a very simple model; it models only states, actions,

transitions, and associated rewards. MDPs focus on capturing the uncertainty in domains

with complex state transitions. This thesis is concerned with maximizing the discounted

infinite-horizon sum of the rewards. That means that the importance of future outcomes

is discounted, but not irrelevant. Infinite-horizon discounted objectives are most useful in

long-term maintenance domains, such as inventory management.

MDPs have been used successfully to model a wide variety of problems in computer sci-

ence — such as object recognition, sensor management, and robotics — and in operations

research and engineering — such as energy management for a hybrid electric vehicle, or

generic resource management (Powell, 2007a). These problems must be solved approxi-

mately, because of their large scale and imprecise models. It is remarkable that all of these

diverse domains can be modeled, analyzed, and solved using a single framework.

The simplicity and generality of MDP models has several advantages. First, it is easy to

learn these models based on historical data, which is often abundant. This alleviates the

need for manual parsing of the data. Second, it is easy to add assumptions to the MDP

model to make it more suitable for a specific domain (Boutilier, Dearden, & Goldszmidt,

1995; Feng, Hansen, & Zilberstein, 2003; Feng & Zilberstein, 2004; Guestrin, Koller, Parr,

& Venkataraman, 2003; Hansen & Zilberstein, 2001; Hoey & Poupart, 2005; Mahadevan,

2005b; Patrascu, Poupart, Schuurmans, Boutilier, & Guestrin, 2002; Poupart, Boutilier, Pa-

trascu, & Schuurmans, 2002). One notable example is the model used in classical planning.

Models of classical planning are generally specializations of MDPs that add structure to

the state space based on logical expressions. These models are discussed in more detain in

Chapter 11.

4

1.2 Challenges and Contributions

Although MDPs are easy to formulate, they are often very hard to solve. Solving large

MDPs is a computationally challenging problem addressed widely in the artificial intelli-

gence — particularly reinforcement learning — operations research, and engineering liter-

ature. It is widely accepted that large MDPs can only be solved approximately. Approxi-

mate solutions may be based on samples of the domain, rather than the full descriptions.

An MDP consists of states S and actions A. The solution of an MDP is a policy π : S → A,

or a decision rule, which assigns an action to each state. A related solution concept is the

value function v : S → R, which represents the expected value of being in every state. A

value function v can be easily used to construct a greedy policy π(v). It is useful to study

value functions, because they are easier to analyze than policies. For any policy π, the

policy loss is the difference between return of the policy and the return of an optimal policy.

Because it is not feasible to compute an optimal policy, the goal of this work is to compute

a policy with a small policy loss l(π) ∈ R.

Approximate methods for solving MDPs can be divided into two broad categories: 1) policy

search, which explores a restricted space of all policies, 2) approximate dynamic programming,

which searches a restricted space of value functions. While all of these methods have

achieved impressive results in many domains, they have significant limitations, some of

which are addressed in this thesis.

Policy search methods rely on local search in a restricted policy space. The policy may

be represented, for example, as a finite–state controller (Stanley & Miikkulainen, 2004) or

as a greedy policy with respect to an approximate value function (Szita & Lorincz, 2006).

Policy search methods have achieved impressive results in such domains as Tetris (Szita &

Lorincz, 2006) and helicopter control (Abbeel, Ganapathi, & Ng, 2006). However, they are

notoriously hard to analyze. We are not aware of any theoretical guarantees regarding the

quality of the solution. This thesis does not address policy search methods in any detail.

Approximate dynamic programming (ADP) — also known as value function approxima-

tion — is based on computing value functions as an intermediate step to computing po-

lices. Most ADP methods iteratively approximate the value function (Bertsekas & Ioffe,

5

1997; Powell, 2007a; Sutton & Barto, 1998). Traditionally, ADP methods are defined pro-

cedurally; they are based on precise methods for solving MDPs with an approximation

added. For example, approximate policy iteration — an approximate dynamic program-

ming method — is a variant of policy iteration. The procedural approach leads to simple

algorithms that may often perform well. However, these algorithms have several theoret-

ical problems that make them impractical in many settings.

Although procedural (or iterative) ADP methods have been extensively studied and an-

alyzed, their is still limited understanding of their properties. They do not converge and

therefore do not provide finite-time guarantees on the size of the policy loss. As a result,

procedural ADP methods typically require significant domain knowledge to work (Powell,

2007a); for example they are sensitive to the approximation features (Mahadevan, 2009).

The methods are also sensitive to the distribution of the samples used to calculate the

solution (Lagoudakis & Parr, 2003) and many other problem parameters. Because the sen-

sitivity is hard to quantify, applying the existing methods in unknown domains can be

very challenging.

This thesis proposes and studies a new optimization–based approach to approximate dynamic

programming as an alternative to traditional iterative methods. Unlike procedural ADP

methods, optimization–based ADP methods are defined declaratively. In the declarative

approach to ADP, we first explicitly state the desirable solution properties and then de-

velop algorithms that can compute such solution. This leads to somewhat more involved

algorithms, but ones that are much easier to analyze. Because these optimization tech-

niques are defined in terms of specific properties of value functions, their results are easy

to analyze and they provide strong guarantees. In addition, the formulations essentially

decouple the actual algorithm used from the objective, which increases the flexibility of

the framework.

The objective of optimization–based ADP is to compute a value function v that leads to

a policy π(v) with a small policy loss l(π(v)). Unfortunately, the policy loss l ◦ π : (S →
R) → R as a function of the value function lacks structure and cannot be efficiently com-

puted without simulation. We, therefore, derive upper bounds f : (S → R) → R such that

6

v

l(π(v)) f (π(v))

Figure 1.3. Optimization Framework

f ≥ l on the policy loss that are easy to evaluate and optimize, as depicted in Figure 1.3.

We then develop methods that compute arg minv f as a proxy for arg minv l and analyze

the error due to the proxy optimization.

Approximate linear programming (ALP), which can be classified as an optimization–based

approach to ADP, has been proposed and studied previously (Schweitzer & Seidmann,

1985; de Farias, 2002). ALP uses a linear program to compute the approximate value

function in a particular vector space (de Farias, 2002). ALP has been previously used in a

wide variety of settings (Adelman, 2004; de Farias & van Roy, 2004; Guestrin et al., 2003).

ALP has better theoretical properties than iterative approximate dynamic programming

and policy search. However, the L1 norm must be properly weighted to guarantee a small

policy loss, and there is no reliable method for selecting appropriate weights (de Farias,

2002). Among other contributions, this thesis proposes modifications of ALP that improve

its performance and methods that simultaneously optimize the weights with the value

function.

Value function approximation — or approximate dynamic programming — is only one of

many components that are needed to solve large MDPs. Other important components are

the domain samples and features — or representation — used to approximate the value

function. The features represent the prior knowledge. It is desirable to develop methods

that are less sensitive to the choice of the features or are able to discover them automati-

cally. It is easier to specify good features for optimization–based algorithms than for itera-

tive value function optimization. The guarantees on the solution quality of optimization–

based methods can be used to guide feature selection for given domain samples.

7

The principal contribution of this thesis is the formulation and study of optimization–

based methods for approximate dynamic programming. The thesis also investigates how

these methods can be used for representation (feature) selection. The contributions are

organized as:

1. New and improved optimization–based methods for approximate dynamic program-

ming. [Part I]

(a) New bounds on the quality of an approximate value function. [Chapter 2]

(b) Lower bounds on the performance of iterative approximate dynamic program-

ming. [Chapter 3]

(c) Improved formulations of approximate linear programs. [Chapter 4]

(d) Tight bilinear formulation of value function approximation. [Chapter 5]

2. Algorithms for solving optimization–based dynamic programs. [Part II]

(a) Homotopy continuation methods for solving optimization–based formulation.

[Chapter 6]

(b) Approximate algorithms for optimization–based formulations. [Chapter 7]

(c) Methods for more efficiently solving some classes of bilinear programs involved

in value function approximation. [Chapter 8]

3. Methods for selecting representation. [Part III]

(a) Sampling bounds for optimization–based methods. [Chapter 9]

(b) Representation selection based on sampling bounds and the homotopy meth-

ods. [Chapter 10]

4. Connections between value function approximation and classical planning. [Chap-

ter 11]

1.3 Outline

The thesis is divided into three main parts. Part I is concerned with quality measures of

approximate value functions and how to formulate them as optimization problems. The

formulations are linear and nonlinear mathematical programs. In particular, Chapter 2

describes the Markov decision process framework, notation, and terms. It also defines

8

the crucial concepts with respect to the quality of approximate value functions. Chap-

ter 3 overviews the classic iterative methods for value function approximation and shows

that they intrinsically cannot offer the same guarantees as optimization–based methods.

Chapter 4 overviews approximate linear programming, an existing optimization–based

method, and identifies key problems with the formulation. The chapter also proposes and

analyzes methods for addressing these issues. Finally, Chapter 5 proposes approximate bi-

linear programs — a new formulation that offers the tightest possible guarantees in some

instances.

The second part, Part II, then describes methods that can be used to solve the mathematical

programs. These methods build on the specific properties of the formulations for increased

efficiency. In particular, Chapter 6 proposes a homotopy continuation method for solving

approximate linear programs. This method can be used to solve very large approximate

linear programs and can also be used to select the appropriate expressivity of the approx-

imation features. Chapter 7 overviews the difficulties with solving approximate bilinear

programs using existing methods and proposes new approximate algorithms. Because bi-

linear programs are inherently hard to solve, Chapter 8 describes methods that can be used

to approximately solve some classes of approximate bilinear programs.

Finally, Part III describes how the proposed optimization–based techniques can be used to

select and discover features in approximate dynamic programming. In particular, Chap-

ter 9 shows how the structure of a domain together with the structure of the samples can

be used to bound the performance-loss due to insufficient domain samples. Approximate

dynamic programming, and the optimization–based methods in particular, can overfit the

solution if given rich sets of features. Because flexible solution methods must be able to

handle rich representation spaces, Chapter 10 proposes methods that can be used to auto-

matically select appropriate feature composition for a given set of samples. Finally, Chap-

ter 11 describes connections between approximate dynamic programming and learning

heuristic functions in classical search.

A comprehensive list of all symbols used in the thesis can be found in Appendix A. Ap-

pendix B describes the benchmark problems used throughout the thesis. Most of the proofs

9

and technical properties are provided in Appendix C. Figure 1 shows the significant de-

pendencies between chapters and the suggested reading order. Finally, most chapters con-

clude with a short summary of the contributions presented in the chapter.

10

PART I

FORMULATIONS

CHAPTER 2

FRAMEWORK: APPROXIMATE DYNAMIC PROGRAMMING

This chapter introduces the planning framework used in this thesis. This framework is a

simplification of the general reinforcement learning framework, which often assumes that

the process and its model are unknown and are only revealed through acting. We, on the

other hand, generally assume that samples of behavior histories are available in advance.

Therefore, while some reinforcement learning algorithms interleave optimization and act-

ing, we treat them as two distinct phases.

Domain samples can either come from historical data or from a generative model. A gener-

ative model can simulate the behavior of the states in a domain, but does not necessarily

describe it analytically. Such generative models are often available in industrial applica-

tions.

Treating the sample generation and optimization as distinct processes simplifies the anal-

ysis significantly. There is no need to tradeoff exploration for exploitation. While there is

still some cost associated with gathering samples, it can be analyzed independently from

runtime rewards.

2.1 Framework and Notation

The thesis relies on an analysis of linear vector spaces. All vectors are column vectors

by default. Unless specified otherwise, we generally assume that the vector spaces are

finite-dimensional. We use 1 and 0 to denote vectors of all ones or zeros respectively of an

appropriate size. The vector 1i denotes the vector of all zeros except i-th element, which is

one. The operator I represents an identity matrix of an appropriate size.

12

Definition 2.1. Assume that x ∈ Rn is a vector. A polynomial Lp norm, a weighted L1

norm, an L∞ norm, and a span seminorm ‖ · ‖s are defined as follows respectively:

‖x‖p
p = ∑

i
|x(i)|p ‖x‖1,c = ∑

i
c(i)|x(i)|

‖x‖∞ = max
i
|x(i)| ‖x‖s = max

i
x(i)−min

i
x(i).

Span of a vector defines a seminorm, which satisfies all the properties of a norm except

that ‖x‖s = 0 does not imply x = 0. We also use:

[x]+ = max{x, 0} [x]− = min{x, 0}.

The following common properties of norms are used in the thesis.

Proposition 2.2. Let ‖ · ‖ be an arbitrary norm. Then:

‖cx‖ = |c|‖x‖

‖x + y‖ ≤ ‖x‖+ ‖y‖

|xTy| ≤ ‖x‖p‖y‖1−1/p

|xTy| ≤ ‖x‖1‖y‖∞

2.2 Model: Markov Decision Process

The particular planning model is the Markov decision process (MDP). Markov decision

processes come in many flavors based on the function that is optimized. Our focus is on

the infinite-horizon discounted MDPs, which are defined as follows.

Definition 2.3 (e.g. (Puterman, 2005)). A Markov Decision Process is a tuple (S ,A, P, r, α).

Here, S is a finite set of states, A is a finite set of actions, P : S × A × S 7→ [0, 1] is the

transition function (P(s, a, s′) is the probability of transiting to state s′ from state s given

action a), and r : S × A 7→ R+ is a reward function. The initial distribution is: α : S 7→
[0, 1], such that ∑s∈S α(s) = 1.

13

The goal of the work is to find a sequence of actions that maximizes γ-discounted cumu-

lative sum of the rewards, also called the return. A solution of a Markov decision process

is a policy, which is defined as follows.

Definition 2.4. A deterministic stationary policy π : S 7→ A assigns an action to each state

of the Markov decision process. A stochastic policy policy π : S ×A 7→ [0, 1]. The set of all

stochastic stationary policies is denoted as Π.

General non-stationary policies may take different actions in the same state in different

time-steps. We limit our treatment to stationary policies, since for infinite-horizon MDPs

there exists an optimal stationary and deterministic policy. We also consider stochastic poli-

cies because they are more convenient to use in some settings that we consider.

We assume that there is an implicit ordering on the states and actions, and thus it is possible

to represent any function on S and A as either a function, or as a vector according to the

ordering. Linear operators on these functions then correspond to matrix operations.

Given a policy π, the MDP turns into a Markov reward process; that is a Markov chain

with rewards associated with every transition. Its transition matrix is denoted as Pπ and

represents the probability of transiting from the state defined by the row to the state de-

fined by the column. For any to states s, s′ ∈ S :

Pπ(s, s′) = ∑
a∈A

P(s, s, s′)π(s, a).

The reward for the process is denoted as rπ, and is defined as:

rπ(s) = ∑
a∈A

r(s, a)π(s, a).

To simplify the notation, we use Pa to denote the stochastic matrix that represents the

transition probabilities, given a policy π, such that π(s) = a for all states s ∈ S . We also

use P(s, a) to denote the vector of [P(s, a, s1), P(s, a, s2) . . .].

14

The optimization objective, or a return, for a policy π is expressed as:

Es0∼α

[
∞

∑
t=0

γtr(st, at) s0 = s, a0 = π(s0), . . . , at = π(st)

]
,

where the expectation is over the transition probabilities. Using the matrix notation de-

fined above, the problem of fining an optimal policy can be restated as follows:

π∗ ∈ arg max
π∈Π

∞

∑
t=0

αT(γPπ)
trπ = arg max

π∈Π
αT (I− γPπ)

−1 rπ.

The equality above follows directly from summing the geometric sequence. The optimal

policies are often calculated using a value function, defined below.

A value function v : S → R assigns a real value to each state. This may be an arbitrary

function, but it is meant to capture the utility of being in a state. A value function for a

policy π is defined as follows:

vπ =
∞

∑
t=0

(γPπ)
trπ = (I− γPπ)

−1 rπ

The return for a policy π with a value function vπ can easily be shown to be αTvπ. The op-

timal value function v∗ is the value function of the optimal policy π∗. The formal definition

of an optimal policy and value function follows.

Definition 2.5. A policy π∗ with the value function v∗ is optimal if for every policy π:

αTv∗ = αT(I− γPπ∗)
−1rπ∗ ≥ αT(I− γPπ)

−1rπ.

The basic properties of value functions and policies are described in Section 2.3.

The action-value function q : S × A 7→ R for a policy π, also known as Q-function, is

defined similarly to value function:

qπ(s, a) = r(s, a) + γ ∑
s∈S

vπ(s).

15

An optimal action-value function q∗ is the action-value function of the optimal policy. We

use q(a) to denote a subset of elements of q that correspond to action a; that is q(·, a).

In addition, a policy π induces a state visitation frequency uπ : S → R, defined as follows:

uπ =
(

I− γPT
π

)−1
α.

The return of a policy depends on the state-action visitation frequencies and it is easy to

show that αTvπ = rTuπ. The optimal state-action visitation frequency is uπ∗ . State-action

visitation frequency u : S ×A → R are defined for all states and actions. Notice the missing

subscript and that the definition is for S ×A not just states. We use ua to denote the part

of u that corresponds to action a ∈ A. State-action visitation frequencies must satisfy:

∑
a∈A

(I− γPπ)
Tua = α.

2.3 Value Functions and Policies

We start the section by defining the basic properties of value functions and then discuss

how a value function can be used to construct a policy. These properties are important in

defining the objectives in calculating a value function. The approximate value function ṽ

in this section is an arbitrary estimate of the optimal value function v∗.

Value functions serve to simplify the solution of MDPs because they are easier to calculate

and analyze than policies. Finding the optimal value function for an MDP corresponds to

finding a fixed point of the nonlinear Bellman operator (Bellman, 1957).

Definition 2.6 ((Puterman, 2005)). The Bellman operator L : R|S| → R|S| and the value

function update Lπ : R|S| → R|S| for a policy π are defined as:

Lπv = γPπv + rπ

Lv = max
π∈Π

Lπv.

16

The operator L is well-defined because the maximization can be decomposed state-wise.

That is Lv ≥ Lπv for all policies π ∈ Π. Notice that L is a non-linear operator and Lπ is an

affine operator (a linear operator offset by a constant).

A value function is optimal when it is stationary with respect to the Bellman operator.

Theorem 2.7 ((Bellman, 1957)). A value function v∗ is optimal if and only if v∗ = Lv∗. Moreover,

v∗ is unique and satisfies v∗ ≥ vπ.

The proof of the theorem can be found in Section C.2. The proof of this basic property is

in Section C.2. It illustrates well the concepts used in other proofs in the thesis.

Because the ultimate goal of solving an MDP is to compute a good policy, it is necessary

to be able to compute a policy from a value function. The simplest method is to take the

greedy policy with respect to the value function. A greedy policy takes in each state the

action that maximizes the expected value when transiting to the following state.

Definition 2.8 (Greedy Policy). A policy π is greedy with respect to a value function v when

π(s) = arg max
a∈A

r(s, a) + γ ∑
s′∈S

P(s, a, s′)v(s′) = arg max
a∈A

1Ts (ra + γPav) ,

and is greedy with respect to an action-value function q when

π(s) = arg max
a∈A

q(s, a).

The following propositions summarize the main properties of greedy policies.

Proposition 2.9. The policy π greedy for a value-function v satisfies Lv = Lπv ≥ Lπ′v for all

policies π′ ∈ Π. In addition, the greedy policy with respect to the optimal value function v∗ is an

optimal policy.

The proof of the proposition can be found in Section C.3.

Most practical MDPs are too large for the optimal value function to be computed precisely.

In these cases, we calculate an approximate value function ṽ and take the greedy policy π

17

with respect to it. The quality of such a policy can be evaluated from its value function vπ

in one of the following two main ways.

Definition 2.10 (Policy Loss). Let π be a policy computed from value function approxima-

tion. The average policy loss measures the expected loss of π and is defined as:

‖v∗ − vπ‖1,α = αTv∗ − αTvπ (2.1)

The robust policy loss measures the robust policy loss of π and is defined as:

‖v∗ − vπ‖∞ = max
s∈S
|v∗(s)− vπ(s)| (2.2)

The average policy loss captures the total loss of discounted average reward when follow-

ing the policy π instead of the optimal policy, assuming the initial distribution. The robust

policy loss ignores the initial distribution and measures the difference for the worst-case

initial distribution.

Taking the greedy policy with respect to a value function is the simplest method for choos-

ing a policy. There are other — more computationally intensive — methods that can often

lead to much better performance, but are harder to construct and analyze. We discuss

these and other methods in more detail in Chapter 11.

The methods for constructing policies from value functions can be divided into two main

classes based on the effect of the value function error, as Chapter 11 describes in more

detail. In the first class of methods, the computational complexity increases with a value

function error, but solution quality is unaffected. A* and other classic search methods are

included in this class (Russell & Norvig, 2003). In the second class of methods, the so-

lution quality decreases with value function error, but the computational complexity is

unaffected. Greedy policies are an example of such a method. In the remainder of the the-

sis, we focus on greedy policies because they are easy to study, can be easily constructed,

and often work well.

A crucial concept in evaluating the quality of a value function with respect to the greedy

policy is the Bellman residual, which is defined as follows.

18

S
v
−

Lv

v ∈ K

ε

v ∈ K(ε)

Figure 2.1. Transitive-feasible value functions in an MDP with a linear state-space.

Definition 2.11 (Bellman residual). The Bellman residual of a value function v is a vector

defined as v− Lv.

The Bellman residual can be easily estimated from data, and is used in bounds on the

policy loss of greedy policies. Most methods that approximate the value function are at

least loosely based on minimization of a function of the Bellman residual.

In many of the methods that we study, it is advantageous to restrict the value functions so

that their Bellman residual must be non-negative, or at least bounded from below. We call

such value functions transitive-feasible and define them as follows.

Definition 2.12. A value function is transitive-feasible when v ≥ Lv. The set of transitive-

feasible value functions is:

K = {v ∈ R|S| v ≥ Lv}.

Assume an arbitrary ε ≥ 0. The set of ε-transitive-feasible value functions is defined as

follows:

K(ε) = {v ∈ R|S| v ≥ Lv− ε1}.

Notice that the optimal value function v∗ is transitive-feasible, which follows directly from

Theorem 2.7. Transitive-feasible value functions are illustrated in Figure 2.1. The following

lemma summarizes the main importance of transitive-feasible value functions:

19

Lemma 2.13. Transitive feasible value functions are an upper bound on the optimal value function.

Assume an ε-transitive-feasible value function v ∈ K(ε). Then:

v ≥ v∗ − ε

1− γ
1.

The proof of the lemma can be found in Section C.2.

Another important property of transitive-feasible value functions follows.

Proposition 2.14. The set K of transitive-feasible value functions is convex. That is for any

v1, v2 ∈ K and any β ∈ [0, 1] also βv1 + (1− β)v2 ∈ K.

The proof of the proposition can be found in Section C.2.

The crucial property of approximate value functions is the quality of the corresponding

greedy policy. The robust policy loss can be bounded as follows.

Theorem 2.15. Let ṽ be the approximate value function, and vπ be a value function of an arbitrary

policy π. Then:

‖v∗ − vπ‖∞ ≤
1

1− γ
‖ṽ− Lπ ṽ‖∞ + ‖ṽ− v∗‖∞

‖v∗ − vπ‖∞ ≤
2

1− γ
‖ṽ− Lπ ṽ‖∞

The proof of the theorem can be found in Section C.3. This theorem extends the classical

bounds on policy loss (Williams & Baird, 1994). The following theorem states the bounds

for the greedy policy in particular.

20

Theorem 2.16 (Robust Policy Loss). Let π be the policy greedy with respect to ṽ. Then:

‖v∗ − vπ‖∞ ≤
2

1− γ
‖ṽ− Lṽ‖∞.

In addition, if ṽ ∈ K, the policy loss is minimized for the greedy policy and:

‖v∗ − vπ‖∞ ≤
1

1− γ
‖ṽ− Lṽ‖∞.

The proof of the theorem can be found in Section C.3.

The bounds above ignore the initial distribution. When the initial distribution is known,

bounds on the expected policy loss can be used.

Theorem 2.17 (Expected Policy Loss). Let π be a greedy policy with respect to a value function

ṽ and let the state-action visitation frequencies of π be bounded as u ≤ uπ ≤ ū. Then:

‖v∗ − vπ‖1,α = αTv∗ − αTṽ + uT
π (ṽ− Lṽ)

≤ αTv∗ − αTṽ + uT [ṽ− Lṽ]− + ūT [ṽ− Lṽ]+ .

The state-visitation frequency uπ depends on the initial distribution α, unlike v∗. In addition, when

ṽ ∈ K, the bound is:

‖v∗ − vπ‖1,α ≤ −‖v∗ − ṽ‖1,α + ‖ṽ− Lṽ‖1,ū

‖v∗ − vπ‖1,α ≤ −‖v∗ − ṽ‖1,α +
1

1− γ
‖ṽ− Lṽ‖∞

The proof of the theorem can be found in Section C.3. The proof is based on the com-

plementary slackness principle in linear programs (Mendelssohn, 1980; Shetty & Taylor,

1987; Zipkin, 1977). Notice that the bounds in Theorem 2.17 can be minimized even with-

out knowing v∗. The optimal value function v∗ is independent of the approximate value

function ṽ and the greedy policy π depends only on ṽ.

21

Remark 2.18. The bounds in Theorem 2.17 generalize the bounds of Theorem 1.3 in (de Farias,

2002). Those bounds state that whenever v ∈ K:

‖v∗ − vπ‖1,α ≤
1

1− γ
‖v∗ − ṽ‖1,(1−γ)u.

This bound is a special case of Theorem 2.17 because:

‖ṽ− Lṽ‖1,u ≤ ‖v∗ − ṽ‖1,u ≤
1

1− γ
‖v∗ − ṽ‖1,(1−γ)u,

from v∗ ≤ Lṽ ≤ ṽ and αTv∗− αTṽ ≤ 0. The proof of Theorem 2.17 also simplifies the proof

of Theorem 1.3 in (de Farias, 2002)

The bounds from the remark above can be further tightened and revised as the following

theorem shows. We use this new bound later to improve the standard ALP formulation.

Theorem 2.19 (Expected Policy Loss). Let π be a greedy policy with respect to a value function

ṽ and let the state-action visitation frequencies of π be bounded as u ≤ uπ ≤ ū. Then:

‖v∗ − vπ‖1,α ≤
(

ūT(I− γP∗)− αT
)
(ṽ− v∗) + ūT [Lṽ− ṽ]+ ,

where P∗ = Pπ∗ . The state-visitation frequency uπ depends on the initial distribution α, unlike v∗.

In addition, when ṽ ∈ K, the bound can be simplified to:

‖v∗ − vπ‖1,α ≤ ūT(I− γP∗)(ṽ− v∗)

This simplification is, however, looser.

The proof of the theorem can be found in Section C.3.

Notice the significant difference between Theorems 2.19 and 2.17. Theorem 2.19 involves

the term [Lṽ− ṽ]+, while in Theorem 2.17 it is reversed to be ṽ− [Lṽ]+.

The bounds above play in important role in the approaches that we propose. Chapter 4

shows that approximate linear programming minimizes bounds on the expected policy

22

loss in Theorems 2.17 and 2.19. However, it only minimizes loose upper bounds. Then,

Chapter 5 shows that the tighter bounds on Theorems 2.17 and 2.16 can be optimized using

approximate bilinear programming.

2.4 Approximately Solving Markov Decision Processes

Most interesting MDP problems are too large to be solved precisely and must be approxi-

mated. The methods for approximately solving Markov decision processes can be divided

into two main types: 1) policy search methods, and 2) approximate dynamic programming

methods. This thesis focuses on approximate dynamic programming.

Policy search methods rely on local search in a restricted policy space. The policy may

be represented, for example, as a finite-state controller (Stanley & Miikkulainen, 2004) or

as a greedy policy with respect to an approximate value function (Szita & Lorincz, 2006).

Policy search methods have achieved impressive results in such domains as Tetris (Szita &

Lorincz, 2006) and helicopter control (Abbeel et al., 2006). However, they are notoriously

hard to analyze. We are not aware of any theoretical guarantees regarding the quality of

the solution.

Approximate dynamic programming (ADP) methods, also known as value function ap-

proximation, first calculate the value function approximately (Bertsekas & Ioffe, 1997;

Powell, 2007a; Sutton & Barto, 1998). The policy is then calculated from this value function.

The advantage of value function approximation is the it is easy to determine the quality of

a value function using samples, while determining a quality of a policy usually requires

extensive simulation. We discuss these properties in greater detail in Section 2.3.

A basic setup of value function approximation is depicted in Figure 2.2. The ovals repre-

sent inputs, the rectangles represent computational components, and the arrows represent

information flow. The input “Features” represents functions that assign a set of real val-

ues to each state, as described in Section 2.4.1. The input “Samples” represents a set of

simple sequences of states and actions generated using the transition model of an MDP, as

described in Section 2.4.2.

23

Calculate value
function

Compute policy

Value function

Execute policy Policy

Offline Online: samples

Features

Samples

Figure 2.2. Approximate Dynamic Programming Framework.

A significant part of the thesis is devoted to studying methods that calculate the value

function from the samples and state features. These methods are described and analyzed

in Chapters 3, 4, and 5. A crucial consideration in the development of the methods is the

way in which a policy is constructed from a value function.

Value function approximation methods can be classified based on the source of samples

into online and offline methods as Figure 2.2 shows. Online methods interleave execution

of a calculated policy with sample gathering and value function approximation. As a re-

sult, a new policy may be often calculated during execution. Offline methods use a fixed

number of samples gathered earlier, prior to plan execution. They are simpler to analyze

and implement than online methods, but may perform worse due to fewer available sam-

ples. To simplify the analysis, our focus is on the offline methods, and we indicate the

potential difficulties with extending the methods to the online ones when appropriate.

24

2.4.1 Features

The set of the state features is a necessary component of value function approximation.

These features must be supplied in advance and must roughly capture the properties of

the problem. For each state s, we define a vector φ(s) of features and denote φi : S → R to

be a function that maps states to the value feature i:

φi(s) = (φ(s))i.

The desirable properties of features to be provided depend strongly on the algorithm, sam-

ples, and attributes of the problem, and their best choice is not yet fully understood. The

feature function φi can also be treated as a vector, similarly to the value function v. We use

|φ| to denote the number of features.

Value function approximation methods combines the features into a value function. The

main purpose is to limit the possible value functions that can be represented, as the fol-

lowing shows.

Definition 2.20. Assume a given convex polyhedral setM ⊆ R|S|. A value function v is

representable (inM) if v ∈ M.

This definition captures the basic properties and we in general assume its specific instanti-

ations. In particular, we generally assume thatM can be represented using a set of linear

constraints, although most approaches we propose and study can be easily generalized to

quadratic functions.

Many complex methods that combine features into a value function have been developed,

such as neural networks and genetic algorithms (Bertsekas & Ioffe, 1997). Most of these

complex methods are extremely hard to analyze, computationally complex, and hard to

use. A simpler, and more common, method is linear value function approximation. In linear

value function approximation, the value function is represented as a linear combination of

nonlinear features φ(s). Linear value function approximation is easy to apply and analyze,

and therefore commonly used.

25

It is helpful to represent linear value function approximation in terms of matrices. To do

that, let the matrix Φ : |S| ×m represent the features, where m is the number of features.

The feature matrix Φ, also known as basis, has the features of the states φ(s) as rows:

Φ =

− φ(s1)

T −
− φ(s2)T −

...

 Φ =

| |

φ1 φ2 . . .

| |

The value function v is then represented as v = Φx andM = colspan (Φ)

Generally, it is desirable that the number of all features is relatively small because of two

main reasons. First, a limited set of features enables generalization from an incomplete set

of samples. Second, it reduces computational complexity since it restricts the space of rep-

resentable value functions. When the number of features is large, it is possible to achieve

these goals using regularization. Regularization restricts the coefficients x in v = Φx using

a norm as: ‖x‖ ≤ ψ. Therefore, we consider the following two types of representation:

Linear space: M = {v ∈ R|S| v = Φx}
Regularized: M(ψ) = {v ∈ R|S| v = Φx, Ω(x) ≤ ψ}, where Ω : Rm → R is a convex

regularization function and m is the number of features.

When not necessary, we omit ψ in the notation ofM(ψ). Methods that we propose require

the following standard assumption (Schweitzer & Seidmann, 1985).

Assumption 2.21. All multiples of the constant vector 1 are representable inM. That is,

for all k ∈ R we have that k1 ∈ M.

We implicitly assume that the first column of Φ — that is φ1 — is the constant vector 1.

Assumption 2.21 is satisfied when the first column of Φ is 1 — or a constant feature — and

the regularization (if any) does not place any penalty on this feature. The influence of the

constant features is typically negligible because adding a constant to the value function

does not influence the policy as Lemma C.5 shows.

26

s1

s2

a1

(s2, a1)

(s1, a2)

(s1, a1)

a1

a2

Figure 2.3. Example of equivalence of pairs of state-action values.

The state-action value function q can be approximated similarly. The main difference is

that the function q is approximated for all actions a ∈ A. That is for all actions a ∈ A:

q(a) = Φaxa.

Notice that Φa and xa may be the same for multiple states or actions.

Policies, like value functions, can be represented as vectors. That is, a policy π can be

represented as a vectors over state-action pairs.

2.4.2 Samples

In most practical problems, the number of states is too large to be explicitly enumerated.

Therefore, even though the value function is restricted as described in Section 2.4.1, the

problem cannot be solved optimally. The approach taken in reinforcement learning is to

sample a limited number of states, actions, and their transitions to approximately calculate

the value function. It is possible to rely on state samples because the value function is

restricted to the representable setM. Issues raised by sampling are addressed in greater

detail in Chapter 9.

Samples are usually used to approximate the Bellman residual. First, we show a formal

definition of the samples and then show how to use them.

Definition 2.22. One-step simple samples are defined as:

Σ̃ ⊆ {(s, a, (s1 . . . sn), r(s, a)) s ∈ S , a ∈ A},

27

Σ̃ Σ̄

Figure 2.4. Sample types

where s1 . . . sn are selected i.i.d. from the distribution P(s, a) for every s, a independently.

Definition 2.23. One-step samples with expectation are defined as follows:

Σ̄ ⊆ {(s, a, P(s, a), r(s, a)) s ∈ S , a ∈ A}.

Notice that Σ̄ are more informative than Σ̃, but are often unavailable. Membership of states

in the samples is denoted simply as s ∈ Σ or (s, a) ∈ Σ with the remaining variables, such

as r(s, a) considered to be available implicitly. Examples of these samples are sketched in

Figure 2.4.

We use |Σ̄|s to denote the number of samples in terms of distinct states, and |Σ̄|a to denote

the number of samples in terms of state–action pairs. The same notation is used for Σ̃.

As defined here, the samples do not repeat for states and actions, which differs from the

traditional sampling assumptions in machine learning. Usually, the samples are assumed

to be drawn with repetition from a given distribution. In comparison, we do not assume a

distribution over states and actions.

The sampling models vary significantly in various domains. In some domains, it may be

very easy and cheap to gather samples. In the blood inventory management problem, the

model of the problem has been constructed based on historical statistics. The focus of this

work is on problems with a model available. This fact simplifies many of the assumptions

on the source and structure of the samples, since they can be essentially generated for an

arbitrary number of states. In general reinforcement learning, often the only option is to

gather samples during the execution. Much work has focused on defining setting and

28

sample types appropriate in these settings (Kakade, 2003), and we discuss some of them

in Chapter 9.

In online reinforcement learning algorithms (see Figure 2.2), the samples are generated dur-

ing the execution. It is important then to determine the tradeoff between exploration and

exploitation. We, however, consider offline algorithms, in which the samples are generated

in advance. While it is still desirable to minimize the number of samples needed there is

no tradeoff with the final performance. Offline methods are much easier to analyze and

are more appropriate in many planning settings.

The samples, as mentioned above, are used to approximate the Bellman operator and the

set of transitive-feasible value functions.

Definition 2.24. The sampled Bellman operator and the corresponding set of sampled transitive-

feasible functions are defined as:

(L̄(v))(s̄) =

max{a (s̄,a)∈Σ̄} r(s̄, a) + γ ∑s′∈S P(s̄, a, s′)v(s′) when s̄ ∈ Σ̄

−∞ otherwise
(2.3)

K̄ = {v ∀s ∈ S v(s) ≥ (L̄v)(s)} (2.4)

The less-informative Σ̃ can be used as follows.

Definition 2.25. The estimated Bellman operator and the corresponding set of estimated

transitive-feasible functions are defined as:

(L̃(v))(s̄) =

max{a (s̄,a)∈Σ̃} r(s̄, a) + γ 1

n ∑n
i=1 v(si) when ∀s̄ ∈ Σ̃

−∞ otherwise
(2.5)

K̃ =
{

v ∀s ∈ S v(s) ≥ (L̃v)(s)
}

(2.6)

Notice that operators L̃ and L̄ map value functions to a subset of all states — only states

that are sampled. The values for other states are assumed to be undefined.

29

The samples can also be used to create an approximation of the initial distribution, or the

distribution of visitation-frequencies of a given policy. The estimated initial distribution ᾱ

is defined as:

ᾱ(s) =

α(s) s ∈ Σ̄

0 otherwise

Although we define above the sampled operators and distributions directly, in applica-

tions only their estimated versions are typically calculated. That means calculating ᾱTΦ

instead of estimating ᾱ first. The generic definitions above help to generalize the analysis

to various types of approximate representations.

To define bounds on the sampling behavior, we propose the following assumptions. These

assumptions are intentionally generic to apply to a wide range of scenarios. Chapter 9

examines some more-specific sampling conditions and their implications in practice. Note

in particular that the assumptions apply only to value functions that are representable.

The first assumption limits the error due to missing transitions in the sampled Bellman

operator L̄.

Assumption 2.26 (State Selection Behavior). The representable value functions satisfy for

some εp:

K ∩M ⊆ K̄ ∩M ⊆ K(εp) ∩M.

WhenM(ψ) is a function of ψ then we write εp(ψ) to denote the dependence.

The constant εp bounds the potential violation of the Bellman residual on states that are not

provided as a part of the sample. In addition, all value functions that are transitive-feasible

for the full Bellman operator are transitive-feasible in the sampled version; the sampling

only removes constraints on the set.

The second assumptions bounds the error due to sampling non-uniformity.

Assumption 2.27 (Uniform Sampling Behavior). For all representable value functions v ∈
M:

|(α− ᾱ)Tv| ≤ εc.

WhenM(ψ) is a function of ψ then we write εc(ψ) to denote the dependence.

30

This assumption is necessary to estimate the initial distribution from samples. This is im-

portant only in some of the methods that we study and strongly depends on the actual

domain. For example, the initial distribution is very easy to estimate when there is only

single initial state. The constant εc essentially represents the maximal difference between

the true expected return and the sampled expected return for a representable value func-

tion.

The third assumption quantifies the error on the estimated Bellman operator L̃.

Assumption 2.28 (Transition Estimation Behavior). The representable value functions sat-

isfy for some εs:

K̄(−εs) ∩M ⊆ K̃ ∩M ⊆ K̄(εs) ∩M,

where Σ̄ and Σ̃ (and therefore K̄ and K̃) are defined for identical sets of states. WhenM(ψ)

is a function of ψ then we write εs(ψ) to denote the dependence.

The constant ε limits the maximal error in estimating the constraints from samples. This

error is zero when the samples Σ̄ are available. Note that unlike εp, the error εs applies

both to the left and right sides of the subset definition.

2.5 Approximation Error: Online and Offline

One of the most important issues with approximating value function is estimating the ap-

proximation error. The approximation error is the difference between the return of the

optimal policy π∗ and the approximate policy π̃, as bounded by (2.2) or (2.1). Approxima-

tion errors are important for two main reasons: 1) they guide development and analysis of

algorithms, and 2) they provide guarantees for their quality.

We consider two main types of approximation error: online and offline. These errors are

evaluated at different stages of the approximation as Figure 2.5 shows. The online error

measures the quality of the solution — the value function — and serves to guide and

analyze the approximate algorithms. The offline error measures how well the algorithm

minimizes the online error bound and serves to provide guarantees on the solution quality.

Notice that the offline bounds rely on the representation and samples only and does not

31

Calculate value
function

Compute policy

Value function

Execute policy Policy

Offline Online: samples

Features

Samples

Offline Error

Online Error

Figure 2.5. Online and offline errors in value function approximation.

use the approximate value function. Other types of errors are clearly also possible, such as

an error of the policy, or an error that provides guarantees independent of samples. In case

that a policy is constructed from the value function using heuristic search, as Chapter 11

discusses, it makes sense to consider the online bound as a function of the policy, not the

value function.

The algorithms in this work minimize the online bounds on value function approximation,

as discussed in Section 2.3. The remainder of the thesis therefore focuses on developing

such algorithms and an analysis of the offline error bound. Therefore, when referring to a

approximation error, we generally mean the offline error bound.

The offline approximation error is due to the inherent limitations on the availability of com-

putational time, sufficient number of samples, and a precise model. If unlimited resources

were available, it would be possible to solve any MDP problem accurately. To provide a

deeper analysis of these tradeoffs, we decompose the approximation error into three parts

depending on the basic reasons that cause it. This decomposition is more conceptual than

formal in order to apply to all algorithms. It is, however, easy to write down formally for

the particular algorithms.

32

v∗

vd

vs

vt

Representational Sampling

Algorithmic

Figure 2.6. Value functions and the components of the approximation error.

The offline approximation error can be decomposed into three main parts as illustrated in

Figure 2.6. The figure shows approximate value functions on the state space represented by

the x-axis. The optimal value function is denoted as v∗. The value function that minimizes

the online error bound — on one of (2.1) or (2.2) — for all samples is denoted as vd and

its error is the representational error. Notice that a representational error is different from

the online approximation error.

It is typically impossible to compute vd, since it relies on the precise version of the Bell-

man residual. The solution is based instead on approximate Bellman operators, calculated

from the samples. The solution that minimizes the online error bound and only relies on

the estimated Bellman operator is denoted as vs. The difference between vs and vd is the

sampling error.

The sampling error can be further divided into two main components, based on its source.

The first component is the state selection error. State selection error arises from the incom-

plete sample of states in sampled Bellman operator L̄. The error is caused by the missing

state transitions. As we show in Chapters 4 and 5, the state selection error can be bounded

based on Assumptions 2.26 and 2.27.

The second component of sampling error is the transition estimation error. Transition esti-

mation error is caused by the imperfect estimation of the estimated Bellman operator L̃.

In simple domains with known transition models (when sample Σ̄ are available), this is

not typically an issue. In complex domains it may be impossible to express the constraints

33

analytically even when the transition model is known. As we show in Chapters 4 and 5,

the transition estimation error can be bounded using Assumption 2.28.

Many value function approximation algorithms do not calculate the closest approximation

using the estimated Bellman operator. One of the reasons, as we show in Chapter 5, is that

calculating such an approximation is NP complete. The value function calculated by the

algorithm is denoted as vt, and the difference between vs and vt is the algorithmic error.

2.6 Contributions

Most of the concepts discussed in this chapter have been introduced in previous work.

The main contributions is a slight extension of the bounds on robust policy loss in The-

orems 2.15 and 2.16. The bound on the expected policy loss in Theorem 2.17 is new. It

extends and simplifies bounds previously proposed in (de Farias, 2002) (Theorem 1.3).

The decomposition of the approximation error into the three component is also new.

34

CHAPTER 3

ITERATIVE VALUE FUNCTION APPROXIMATION

This chapter overviews the standard iterative methods for value function approximation.

These methods include some of the most popular algorithms in reinforcement learning,

such as least-squares policy iteration (Lagoudakis & Parr, 2003), λ-policy iteration (Bert-

sekas & Ioffe, 1997), fitted value iteration (Szepesvari & Munos, 2005; Munos & Szepes-

vari, 2008), fitted policy iteration (Antos, Szepesvri, & Munos, 2008), Q-learning, and

SARSA (Sutton & Barto, 1998).

We also describe basic offline error upper bounds on iterative algorithms and show that

they may be very loose. Lower bounds on their performance demonstrate that the basic it-

erative algorithms cannot offer guarantees as strong as the optimization–based algorithms,

which are described later. Approaches that rely on these bounds to improve performance

have been studied in (Petrik & Scherrer, 2008), but we do not discuss them in detail here

since iterative methods are not the main focus of this work.

3.1 Basic Algorithms

Basic iterative techniques for solving MDPs precisely include value iteration, and policy iter-

ation and are based on calculating the value function. We only describe the basic versions

of value and policy iterations; in practice, the methods are modified to improve their per-

formance (Puterman, 2005). While these methods are iterative, their convergence to the

optimal solution is guaranteed because L is a contraction (Theorem C.9) in the L∞ norm.

Linear programming can also be used to solve MDPs. Because the formulation is closely

related to approximate linear programming, we describe it in Chapter 4.

35

Iterative value function approximation algorithms are variations of the exact MDP algo-

rithms. Hence, they can be categorized as approximate value iteration and approximate

policy iteration. We discuss these in greater detail below. The ideas of approximate value

iteration could be traced to Bellman (Bellman, 1957), which was followed up by many ad-

ditional research efforts (Bertsekas & Tsitsiklis, 1996; Powell, 2007a; Sutton & Barto, 1998).

The iterative algorithms for value function approximation are almost always based on

domain samples. To keep the analysis simple, we assume that the set of samples for all

states is available, as described in Section 2.4.2. That means that the exact Bellman operator

L is available and can be used. One of the difficulties with iterative algorithms is that their

sampling behavior is hard to study.

Algorithm 3.1: Approximate value iteration: Value function approximation

1 k← 0 ;
2 vk ← 0 ;
3 while ‖vk − vk−1‖∞ > ε do
4 vk+1 ← Φ

(
ΦTΦ

)−1 ΦTLvk ;
5 k← k + 1 ;

6 return vk;

A simple variant of approximate value iteration (Powell, 2007a; Munos, 2007) is depicted in

algorithm 3.1. Approximate value iteration is also known as fitted value iteration (Munos

& Szepesvari, 2008), and is closely related to temporal difference learning and fitted value

iteration (Maei, Szepesvari, Bhatnagar, Precup, Silver, & Sutton, 2009). While the algorithm

shown assumes that all states and actions are known, in practice these values could be

based on samples.

Algorithm 3.2: Approximate value iteration: State-action value function approxima-
tion
1 k← 0 ;
2 qk ← 0 ;
3 while ‖qk(πk)− qk−1(πk−1)‖∞ > ε do
4 πk(s)← arg maxa∈A qk(s, a) ∀s ∈ S ; // Greedy policy

5 qk+1(πk)← Φπk

(
ΦT

πk
Φπk

)−1 ΦT
πk

Lqk(πk) ;
6 k← k + 1 ;

7 return qk;

36

Approximate value iteration described above requires that all (or most) available actions

are sampled for every state or that they can be easily generated. This is only feasible

when a model of the MDP is available. It is often desirable to be able to solve the MDP

with a single action sampled for every state. The typical approach to estimate the state-

action value function q instead. algorithm 3.2 shows an approximate value iteration that

approximates the state-action value function q. Here Φπk corresponds to the features for

the policy πk.

Algorithm 3.3: Approximate policy iteration: Value function approximation

1 k← 0;
2 vk ← 0 ;
3 while πk 6= πk−1 do
4 πk(s)← arg maxa∈A r(s, a) + γP(s, a)Tvk ∀s ∈ S ; // Greedy policy

5 vk ← Z(πk) ;
6 k← k + 1;

7 return vk;

A simple variant of approximate policy iteration (API) is summarized in algorithm 3.3 (Pow-

ell, 2007a; Munos, 2003). The function Z(π) denotes the method used to approximate the

value function for a policy π. The two most commonly used value function approximation

methods are the Bellman residual approximation (3.1) and least-squares approximation (3.2):

Z(π) = arg min
v∈M
‖(I− γPπ)v− rπ‖2 (3.1)

= Φ
(

ΦT(I− γPπ)
T(I− γPπ)Φ

)−1
ΦT(I− γPπ)

Trπ

Z(π) =

(
I− γΦ

(
ΦTΦ

)−1
ΦTPπ

)−1

Φ
(

ΦTΦ
)−1

ΦTrπ (3.2)

= Φ
(

ΦT(I− γP)Φ
)−1

ΦTr. (3.3)

The definitions above assume that the columns of Φ are linearly independent. Note that

the matrix in (3.2) may not be invertible (Scherrer, 2010).

The following proposition relates the least-squares formulation with the Bellman residual.

We use this property to motivate and compare approximate bilinear formulations. For a

more detailed analysis, see for example Johns, Petrik, and Mahadevan (2009).

37

Proposition 3.1. The least-squares formulation ofZ in (3.2) minimizes the L2 norm of a projection

of the Bellman residual. Let v be the least-squares solution, then it satisfies:

v = arg min
v∈M
‖ΦT(Lπv− v)‖2.

The proof of the proposition can be found in Section C.4.

The approximations above are based on the L2 norm and are common in practice, because

they are easy to compute and often lead to good results. From the perspective of theoretical

analysis, it is more convenient to approximate the value function using the L∞ norm as

follows:

Z(π) ∈ arg min
v∈M
‖(I− γPπ)v− rπ‖∞ (3.4)

This approximation can be calculated easily using the following linear program.

min
φ,v

φ

s.t. (I− γPπ)v + 1φ ≥ rπ

−(I− γPπ)v + 1φ ≥ −rπ

v ∈ M

(3.5)

We refer to approximate policy iteration with this approximation as L∞-API.

Approximate policy iteration can also be expressed in terms of state-action value function,

as algorithm 3.4 shows. This algorithm represents a simplified version of least-squares policy

iteration (Lagoudakis & Parr, 2003).

In the above description of approximate dynamic programming, we assumed that the

value function is approximated for all states and actions. This is impossible in practice

due to the size of the MDP. Instead, approximate dynamic programming relies only on a

subset of states and actions which are provided as samples, as described in Section 2.4.2.

38

Algorithm 3.4: Approximate policy iteration: State-action value function approxima-
tion
1 k← 0;
2 qk ← 0 ;
3 while πk 6= πk−1 do
4 πk(s)← arg maxa∈A q(s, a) ∀s ∈ S ; // Greedy policy

5 qk(πk)← Z(πk) ;
6 k← k + 1;

7 return qk;

Approximate dynamic programming is not guaranteed to converge in general and its anal-

ysis is typically in terms of limit behavior. We discuss this behavior and corresponding

bounds in the following section.

3.2 Bounds on Approximation Error

This section describes upper and lower bounds on the error of approximate policy and

value iteration. The lower bounds show that the approximate policy iteration guarantees

cannot match the guarantees of approximate linear and bilinear programming.

All bounds in this chapter assume that all samples are present — essentially that the Bell-

man operator is known and the sampling error is 0. Deriving sampling bounds for the

iterative algorithms is nontrivial and represents one of their drawbacks.

3.2.1 Upper Bounds

Much effort has been devoted to deriving bounds on the solution quality of approximate

policy and value iteration. These bounds typically consider L∞-API because the Bellman

operator provides the simplest guarantees in terms of the L∞ norm (Guestrin et al., 2003).

The standard error bounds for approximate policy iteration follows.

Theorem 3.2 (e.g. (Bertsekas & Tsitsiklis, 1996) Chapter 2.6). Let v̂k be the value function of

the policy in step k in L∞-API and let ṽk be the approximate value function. Then:

lim sup
k→∞
‖v∗ − v̂k‖∞ ≤

2γ

(1− γ)2 lim sup
k→∞

‖ṽk − vk‖∞.

39

This standard theorem, however, does not fit the simplified setting, in which the Bellman

residual is minimized. We prove a different version of the theorem below.

Theorem 3.3. Let v̂k be the value function of the policy πk in step k in L∞-API. Then:

lim sup
k→∞

‖v∗ − vk‖∞ ≤
2γ

(1− γ)3 lim sup
k→∞

min
v∈Φ
‖Lπk v− v‖∞.

The proof of the theorem can be found in Section C.4. This bound is probably loose by a

factor 1/(1− γ) compared to some other bounds in the literature (Munos, 2003).

The bounds on solution quality of iterative algorithms have several undesirable properties.

First, they require that the value functions of all policies π1, π2, . . . can be represented

well using the features. This makes it hard to design appropriate features for a problem

domain. It is more desirable to bound the error in terms of a single value, such as the

closest possible approximation of the optimal value function minv∈M ‖v∗ − v‖∞. Such

bounds are impossible to achieve as Section 3.2.2 shows.

Second, the bounds have multiplicative factors of at least 1/(1− γ)2. This constant may

be very large when the discount factor γ is close to one. For example, discount factors

of γ = 0.999 are common, in which case the bound may overestimate the true error by a

factor of almost 106. These approximation bounds can be loose as we show below. It is

possible to take advantage of the looseness of the bounds to improve the performance of

approximate policy iteration on some problems (Petrik & Scherrer, 2008).

Finally, the bounds hold only in the limit. This is an inherent limitation of the iterative

methods, which may not converge in general. As a result, there is no final solution that

can be analyzed and bounded. The methods may converge under some restrictive as-

sumptions as Section 3.3 shows.

We now show that the bounds on the approximation error bounds may be loose, in partic-

ular when γ → 1. First, there exists a naive bound on the approximation error that can be

dramatically tighter than the standard bounds when γ is close to 1.

40

Proposition 3.4. Assume a policy π ∈ Π. There exists a constant c ∈ R such that for all

γ ∈ (0, 1):

‖v∗ − vπ‖∞ ≤
c

1− γ
,

There exists an MDP such that for some c′ ∈ R, which is independent of γ:

1
(1− γ)2 ‖vπ − Lvπ‖∞ ≥

c′

(1− γ)3 .

Here, the left-hand side represents the bound from Theorem 3.2.

The proof of the proposition can be found in Section C.4. This proposition shows that

the bound is loose by a factor of at least 1/(1− γ)2. For example, in the MDP formulation

of Blackjack (Parr, Li, Taylor, Painter-Wakefield, & Littman, 2008) the discount factor γ =

0.999, in which case the error bound may overestimate the true error by a factor up to

1/(1− γ)2 = 106.

Proposition 3.4 implies that for every MDP, there exists a discount factor γ, such that The-

orem 3.2 is not tight. The looseness of the approximation error bounds may seem to con-

tradict Example 6.4 in (Bertsekas & Tsitsiklis, 1996) that shows that Theorem 3.2 is tight.

The discrepancy arises because we assume that the MDP has fixed rewards and number of

states, while the example in (Bertsekas & Tsitsiklis, 1996) assumes that the reward depends

on the discount factor and the number of states is infinite. Another way to put it is to say

that Example 6.4 shows that for any discount factor γ there exists an MDP (which depends

on γ) for which the bound Theorem 3.2 is tight. We, on the other hand, show that there

does not exist a fixed MDP such that the bound Theorem 3.2 is tight for all discount factors

γ.

3.2.2 Lower Bounds

As mentioned above, it is desirable to have bounds on the quality of the solution that do

not require approximating policies π1, π2, Unfortunately, bounds in terms of the closest

approximation of the optimal value function v∗ is impossible as the following theorem

shows.

41

Theorem 3.5. Let ṽ be a solution of approximate policy or value iteration taken at any iteration.

Then, there exists no constant c (independent of the representationM) such that:

‖v∗ − ṽ‖∞ ≤ c min
v∈M
‖v∗ − v‖∞

‖ṽ− Lṽ‖∞ ≤ c min
v∈M
‖v− Lv‖∞

This result applies to approximate policy iteration with both L2 Bellman residual and least-squares

minimizations. The bounds also apply when the iterative algorithms converge.

The proof of the theorem can be found in Section C.4. The theorem shows that ap-

proximate value and policy iterations may not converge to v∗, even if v∗ is representable

(v∗ ∈ M). Notice that this property differs from the standard divergence analysis of tem-

poral difference (TD) learning (Bertsekas & Tsitsiklis, 1996; Baird, 1995). TD learning is a

policy evaluation method that iteratively calculates a modified version of the least squares

projection. Our analysis shows divergence in the policy optimization phase of the algo-

rithms, not the policy evaluation one.

Theorem 3.5 applies to approximate policy iteration that minimizes the L2 norm, which

we chose because its popularity in practice. It is likely that similar bounds also apply to

L∞-API.

Although the iterative algorithms do not converge to the optimal value function even

when it is representable, their performance may depend on the initialization, as the fol-

lowing proposition shows.

Proposition 3.6. The optimal value function v∗ is a fixed point of approximate policy and value

iteration whenever it is representable (v∗ ∈ M).

The proof of the proposition can be found in Section C.4. This proposition implies that

when the iterative algorithms are initialized to the optimal value function they will also

converge to it. The solution quality of the iterative algorithms may be, therefore, improved

by choosing an appropriate initialization. Note, however, that these bounds assume that

there is no sampling error.

42

3.3 Monotonous Approximation: Achieving Convergence

Section 3.2.1 show that the error bounds can be quite loose in many settings. We show

now that it is possible to achieve tighter bounds under some restrictive assumptions on

the approximation features and problem structure. We also show that, interestingly, the

bounds can be tightened by using a discount factor that is different from γ. These results

mildly generalize convergence results that can be obtained with averagers (Gordon, 1995)

and the bounds on aggregation for MDPs (Bertsekas & Tsitsiklis, 1996).

Approximation error bounds can be tightened when the iterative algorithms converge. In

particular, the bound in Theorem 3.2 can be strengthened to:

‖v∗ − v̂‖∞ ≤
2

1− γ
‖Lṽk − ṽk‖∞,

where v̂ is the solution of approximate policy iteration (see Theorem 2.15). This bound

removes the dependence on the errors encountered during the optimization, but is not

very helpful in analyzing the properties of the policy. The convergence however does

not improve on Theorem 3.5 since in that case the approximate dynamic programming

methods converge to the optimal solution.

While plain convergence does not significantly improve the solution quality of approxi-

mate policy iteration, it is possible to get convergence and better bounds in some special

cases. For example, if the approximation operator Z is monotonous, the following theo-

rem shows that the methods converge to a solution closest to the optimal value function

within a multiplicative factor. This error bound is, in fact, close to properties of some of

the optimization–based algorithms.

Theorem 3.7. Let Z be a monotonous (see Definition C.1) approximation operator and assume

that either least-squares approximate policy or value iterations converge to ṽ. Then we have:

(I− ZP∗)−1(Z− I)v∗ ≤ ṽ− v∗ ≤ (I− ZP̃)−1(Z− I)ṽ∗

‖ṽ− v∗‖∞ ≤
1

1− γ
min
v∈M
‖v∗ − v‖∞,

where P∗ and P̃ are the transition matrices of policies greedy with regard to v∗ and v respectively.

43

The proof of the theorem can be found in Section C.4.

Monotonicity appears to be a reasonable property to be expected from the approximation

operator. It ensures that when the true value function improves, the approximation does

not become worse. Unfortunately, monotonicity is also quite limiting when used with

linear approximation — the only linear approximation method, which is monotonous is

aggregation.

Definition 3.8. A linear operator represents an aggregation if there exists a basis Φ =

[φ1 . . . φn] of the approximation space such that

∀s ∈ S ∃i φi(s) > 0 ⇒ ∀j 6= i φj(s) = 0.

Aggregation, in contrast with general approximation, firmly defines the ratios among the

states in a single aggregate state. Each individual state belongs to exactly one aggregate

state.

Theorem 3.9. A linear approximation is monotonous if and only if it represents an aggregation.

The proof of the theorem can be found in Section C.4. This theorem shows that while

monotonous approximations may have good properties, they are in general very restric-

tive.

3.4 Contributions

This chapter focuses on the weaknesses of existing algorithms and shows some new, but

simple, properties. In particular, the bound in Theorem 3.3 is very closely related to ex-

isting bounds and is proved using similar techniques. The lower bounds on the perfor-

mance in Theorem 3.5 are new, as well as the analysis that shows looseness of existing error

bounds in Proposition 3.4. We are not aware of previous work that studies monotonous ap-

proximators, such as Theorem 3.7, but this is closely related to the notion of averagers (Gor-

don, 1995). Finally, Theorem 3.9 is new.

44

CHAPTER 4

APPROXIMATE LINEAR PROGRAMMING: TRACTABLE BUT LOOSE
APPROXIMATION

This chapter describes the formulation and basic properties of approximate linear pro-

gramming (ALP). ALP is a classical optimization–based method, which offers stronger

guarantees and simpler analysis than the iterative methods. However, it often does not

perform well in practice. In addition to basic properties, we show fundamental modifica-

tions of ALP that improve its theoretical and practical performance.

The chapter is organized as follows. First, Section 4.1 describes the basic approximate

linear program formulations and the principles used to derive them. Then, Section 4.2 de-

scribes how to formulate approximate linear programs from samples and their properties.

Section 4.3 shows offline approximation error bounds for approximate linear programs

including sampling error bounds. Section 4.4 shows that the bounds, though better than

iterative methods, are not sufficient to guarantee good solution quality. Sections 4.5 and

4.6 propose improvements to ALP that provide both tighter bounds and better perfor-

mance. Finally, Section 4.7 shows empirical results and Section 4.8 discusses the practical

implications.

4.1 Formulation

The formulation in this chapter slightly refines the traditional ALP formulation (de Farias,

2002). Approximate linear programming minimizes the expected policy loss in Defini-

tion 2.10 by minimizing the online approximation error bound in Theorem 2.19, which

states that:

‖v∗ − vπ‖1,α ≤
(

ūT(I− γP∗)− αT
)
(ṽ− v∗) + ūT [Lṽ− ṽ]+ .

45

That means computing the approximate value function as follows:

min
π∈Π
‖v∗ − vπ‖1,α ≤ min

v∈M

(
ūT(I− γP∗)− αT

)
(ṽ− v∗) + ūT [Lṽ− ṽ]+ .

This objective function is nonlinear, because of the term ūT [Lṽ− ṽ]+. While this term can

be easily linearized, the standard approach it to restrict the search to transitive-feasible

value functions. Then, as Theorem 2.19 shows:

min
π∈Π
‖v∗ − vπ‖1,α ≤ min

v∈M∩K
ūT(I− γP∗)(ṽ− v∗)

An even simpler formulation, as Remark 2.18 shows, is:

min
π∈Π
‖v∗ − vπ‖1,α ≤ min

v∈M∩K
ūT(ṽ− v∗)

This represents the following mathematical program:

min
v

cTv

s.t. v ∈ K

v ∈ M(ψ)

(ALP)

Here, M(ψ) represents the set of representable value functions as defined in Defini-

tion 2.20, and cT = ūT(I − γP∗). Note that Remark 2.18 can be used to define an alter-

native — simpler and looser — formulation with cT = ūT. The remainder of the section

now shows how to formulate v ∈ K as a set of linear constraints.

The formulation above relies on knowing a bound on the state-visitation frequencies of the

solution policy ū and the optimal transition matrix P∗; these values are typically unknown.

Usually, heuristic choices are used instead. Because c can be scaled arbitrarily without

affecting the result, in the remainder of the section we assume that it sums to one. That is:

cT1 = 1.

46

An alternative intuition for formulating the approximate linear program is that it is mini-

mizing an upper bound on the optimal value function. Transitive-feasible value functions

overestimate the optimal value function without actually using it in the definition, and the

objective selects a minimal such function according to some linear measure.

A value function v is transitive-feasible if and only if it satisfies for all states s ∈ S and

actions a ∈ A:

v(s) ≥ r(s, a) + γ ∑
s′∈S

P(s, a, s′)v(s′).

To show that such a function is transitive-feasible, let s ∈ S be an arbitrary state:

v(s) ≥ r(s, a∗) + γ ∑
s′∈S

P(s, a∗, s′)v(s′) = max
a∈A

r(s, a∗) + γ ∑
s′∈S

P(s, a∗, s′) = (Lv)(s),

where a∗ is the appropriate maximizer. WhenM = R|S| — that is all value functions are

representable — the approximate linear program solves minv∈K ‖v∗ − v‖1,c and is formu-

lated as:
min

v ∑
s∈S

c(s)v(s)

s.t. v(s) ≥ r(s, a) + γ ∑
s′∈S

P(s′, s, a)v(s′) ∀(s, a) ∈ (S ,A)
(4.1)

The number of constraints of the linear program is |A| · |S| and the number of variables

is |S|. This linear program is used to solve MDPs precisely as the following proposition

shows.

Proposition 4.1 (e.g.(Puterman, 2005)). The optimal value function v∗ is an optimal solution of

the linear program (4.1) whenever c(s) > 0 for all s ∈ S .

When the value function is restricted to be representable using a basis matrix Φ, the ap-

proximate liner program becomes:

min
x1 ...xm

∑
s∈S

m

∑
i=1

c(s)φ(s′)ixi

s.t. v(s) ≥ r(s, a) + γ ∑
s′∈S

P(s′, s, a)
m

∑
i=1

φ(s′)ixi ∀(s, a) ∈ (S ,A)
(4.2)

47

Here, m is the number of features φi. Notice that the number of variables of the linear

program corresponds to the number of features. When the set of representable features is

regularized, there is an additional constraint: ‖x‖1,e ≤ ψ.

The linear program (4.2) can be expressed in matrix form. Let A be the constraint matrix

and b the right-hand side.

A =

I− γPa1

I− γPa2

...

 b =

ra1

ra2

...

 .

The approximate linear program representations in matrix form is:

min
x

cTΦx

s.t. AΦx ≥ b

When regularization is used, the additional constraint is ‖x‖1,e ≤ ψ. We discuss in more

detail how to formulate this constraint linearly in Chapter 6.

Approximate linear programs can be also formulated based on state-actions values q in-

stead of simple value functions. State–action formulation simplifies the calculation of a

greedy policy in some complex domains, when calculating it requires solving an opti-

mization problem. When only a value function is available, calculating the greedy action

entails:

max
a∈A

r(s, a) + γE [v(S)] ,

where the expectation is over the next state S using the transition probabilities. This sig-

nificantly complicates the computation. On the other hand, when the state–action value

function is available, the greedy action is computed as:

max
a∈A

q(s, a),

avoiding the expectation.

48

The state–action based ALP is closely related to the linear program (ALP), using the fact

that v(s) = maxa∈A q(s, a). The set of feasible state–action value functions satisfy:

qa ≥ ra + γPaqa′ ∀a, a′ ∈ A.

The representable state–action value functions in the ALP can use different features for all

actions of each state.

The actual linear program formulation is then the following.

min
v,q

cTv

s.t. v ≥ qa ∀a ∈ A

qa ≥ γPav + ra

q ∈ M

(4.3)

The value function v need not be representable. This is because in the case of sampled

constraints, the number of states for which v needs to be defined corresponds only to the

number of constraints in the linear program. The number of constraints must be small, as

the next section shows.

4.2 Sample-based Formulation

This section discusses how to formulate an approximate linear program from state sam-

ples. There are two main reasons why the approximate linear program needs to be for-

mulated based on samples. First, in some cases the full description of the domain is not

available, and only examples of states transitions can be used. Second, even when the full

description is available, it is usually impossible to even write down the linear program.

The number of constraints corresponds to the number of states and actions in the domain,

which can be very large. Samples make it easier to express and solve the linear program.

There are two main formulations, depending on the type of samples that are available. The

sample types and relevant assumptions on their properties are described in Section 2.4.2.

49

Sampled ALP In this formulation, the samples are used to construct the rows of the tran-

sition matrix. In comparison to the full formulation in (ALP), the linear program is missing

some constraints. This is expressed by constraining the value functions to be transitive fea-

sible with respect to the sampled Bellman operator as follows:

min
v

c̄Tv =
|S|
|Σ̄|s

(
∑
s∈Σ̄

c(s)1s

)T

v

s.t. v ∈ K̄

v ∈ M(ψ)

(s–ALP)

The formulation in terms of matrices is:

min
x

c̄TΦx

s.t. ĀΦx ≥ b̄

where for all (si, aj) ∈ Σ̄.

ĀΦ =

− φ(si)
T − γ ∑s′∈S P(si, aj, s′)φ(s′)T −

− ... −

b̄ =

r(si, aj)
...

c̄TΦ =

|S|
|Σ̄|s ∑

s∈Σ̄

c(s)1Ts Φ =
|S|
|Σ̄|s ∑

s∈Σ̄

c(s)φ(s)T

The value c̄ as defined above does not necessarily sum to one. This is, however, not an issue

since scaling the objective function does not influence the optimal solution. The constant
|S|
|Σ̄|s is also not influence the solution and serves only to ensure that the scale of c̄ is the same

as the scale of c. Figure 4.1 shows how the sampling reduces the number of constraints.

It shows that the number of constraints in the linear program (s–ALP) corresponds to |Σ|a
instead of |S| · |A|. This makes the linear program easier to solve.

Estimated ALP In this formulation, the samples are used to construct the rows of the

transition matrix. In comparison to the full formulation in (ALP), the linear program is

50

missing some constraints and the constraints are imprecise. That is, the number of con-

straints is the same as in the sampled formulation, but the constraints are potentially im-

precise. This is expressed by constraining the value functions to be transitive feasible with

respect to the estimated Bellman operator as follows:

min
v

c̃Tv =
|S|
|Σ̃|s

(
∑
s∈Σ̃

c(s)1s

)T

v

s.t. v ∈ K̃

v ∈ M(ψ)

(e–ALP)

The formulation in terms of matrices is:

min
x

c̃TΦx

s.t. ÃΦx ≥ b̃

where for all (si, aj) ∈ Σ̃.

ÃΦ =

− φ(si)
T − γ 1

m ∑s′∈s′1 ...s′m P(si, aj, s′)φ(s′)T −
− ... −

b̃ =

r(si, aj)
...

c̃TΦ =

|S|
|Σ̃|s ∑

s∈Σ̃

c(s)1Ts Φ =
|S|
|Σ̃|s ∑

s∈Σ̃

c(s)φ(s)T

The value c̃ as defined above does not necessarily sum to one. This is, however, not an issue

since scaling the objective function does not influence the optimal solution. This formula-

tion is very similar to sampled ALP. The main difference is that the rows of the constraint

matrix Ã are not known precisely, but are only estimated. The number of constraints in the

linear program (e–ALP) also corresponds to |Σ|a instead of |S| · |A|. This makes the linear

program easier to solve.

51

Full Sampled

S

Σ̄

Figure 4.1. Sampled constraint matrix A of the approximate linear program.

4.3 Offline Error Bounds

This section discusses the offline bounds on solutions of approximate linear programs.

Offline error bounds — described in more detail in Section 2.5 — determine the quality

guarantees of the value function approximation algorithm. The description of the formu-

lation above trivially shows the following proposition.

Theorem 4.2 (Offline Policy Loss). Assume Assumption 2.21 and let ṽ be the solution of the

approximate linear program in (ALP) and π be the greedy policy. Then:

‖v∗ − vπ‖1,α ≤ min
v∈M∩K

ūT(I− γP∗)(v− v∗) ≤ 2ūT1 min
v∈M
‖v∗ − v‖∞

when cT = ūT(I− γP∗). In addition,

‖v∗ − vπ‖1,α ≤ min
v∈M∩K

ūT(v− v∗) ≤ 2ūT1
1− γ

min
v∈M
‖v∗ − v‖∞,

when cT = ūT. Notice that the first bound is tighter by a factor 1− γ.

The proof of the theorem can be found in Section C.5.

For comparison with other bounds, note that ūT1 ≥ 1/(1 − γ) (see Lemma C.10). The

bound above is not practical because it relies on ū, which is often unavailable and cannot be

easily estimated. Because of that, ALP offline bounds typically focus on the approximate

value function instead of the policy. That is, the bounds are on ‖v∗ − ṽ‖ instead of ‖v∗ −
vπ‖ for some norm. Albeit this makes the bounds somewhat arbitrary, they are much

easier to analyze. The following is a standard approximation error bound.

52

Theorem 4.3 (e.g. (de Farias, 2002)). Assume Assumption 2.21 and let ṽ be the solution of the

approximate linear program (ALP).

‖v∗ − ṽ‖1,c ≤
2

1− γ
min
v∈M
‖v∗ − v‖∞.

The theorem follows simply from the properties of approximate linear programs, like The-

orem 4.2. The first part of the theorem is a specialization of Theorem 4.4, which is described

below.

The bounds presented above are all for the full linear program in (ALP) and do not account

for incomplete sets of samples. A generalized version, which accounts for sampling fol-

lows. Because of the difficulties with bounding the policy loss, we focus only on bounding

‖v− v∗‖1,c.

Theorem 4.4. Assume Assumptions 2.21, 2.26, 2.27, 2.28 and let v1, v2, v3 be the optimal solu-

tions of (ALP), (s–ALP), and (e–ALP) respectively. Then, the following inequalities hold:

‖v1 − v∗‖1,c ≤
2

1− γ
min
v∈M
‖v− v∗‖∞

‖v2 − v∗‖1,c ≤ ‖v1 − v∗‖1,c + 2
εp(ψ)

1− γ

≤ 2
1− γ

min
v∈M
‖v− v∗‖∞ + 2εc(ψ) + 2

εp(ψ)

1− γ

‖v3 − v∗‖1,c ≤ ‖v1 − v∗‖1,c + 2εc(ψ) +
3εs(ψ) + 2εp(ψ)

1− γ

≤ 2
1− γ

min
v∈M
‖v− v∗‖∞ + 2εc(ψ) +

3εs(ψ) + 2εp(ψ)

1− γ

The last bound can be tightened to 2εs from 3εs(ψ) when εc = 0.

The proof of the theorem can be found in Section C.5.

The offline error bounds in Theorem 4.4 can be used to guarantee the performance of an

ALP for a fixed number of samples and the regularization coefficient ψ. It does not, how-

ever, prescribe how to choose the regularization coefficient for a given set of samples. To

do that, we have to derive bounds for an actual value function v. When the samples are

known, these bounds are typically tighter than the offline error bound.

53

Theorem 4.5 (Online Error Bound). Let ṽ ∈ K̃ ∩M be an arbitrary feasible solution of the

estimated ALP (e–ALP). Then:

‖v∗ − ṽ‖1,c ≤ c̃Tṽ− cTv∗ +
2εs(ψ) + 2εp(ψ)

1− γ

The proof of the theorem can be found in Section C.5. Notice the missing constant εc when

compared to Theorem 4.4. This is because the bound involves c̃Tv, not cTv.

4.4 Practical Performance and Lower Bounds

While the ALP formulation offers a number of favorable theoretical properties over itera-

tive algorithms, it often under-performs in practice. The reason why ALP under-performs

can be traced to the approximation error bounds. The constants in the ALP performance

bounds (Theorem 4.2 and Theorem 4.4), is typically 1/(1− γ). While this is more favor-

able than the constant 1/(1− γ)2 in iterative algorithms (Theorem 3.2), this number can

be very high for discount factors close to 1. As we show below, the constant 1/(1− γ) in

the bounds is truly necessary and the bound may be tight in some problems.

Assuming that an upper bound on the policy visitation frequencies ū is available, approx-

imate linear program minimizes bounds in Theorem 2.19 or Remark 2.18 instead of Theo-

rem 2.17. In particular, instead of optimizing:

‖v∗ − vπ‖1,α ≤ −‖v∗ − ṽ‖1,α + ‖ṽ− Lṽ‖1,ū

ALP, in its simplest incarnation, optimizes:

‖v∗ − vπ‖1,α ≤ ‖v∗ − ṽ‖1,ū.

These ALP bounds may be quite loose, as the following proposition shows.

54

Proposition 4.6. For any ṽ ∈ K there exists no constant c ∈ R such that:

ūT(ṽ− v∗) ≤ cūT(ṽ− Lṽ),

even when Assumption 2.21 is satisfied. This holds for the precise Bellman operator L, not assuming

sampling. In addition, for all ṽ ∈ K:

(ṽ− v∗) ≥ (ṽ− Lṽ).

The proof of the proposition can be found in Section C.5. The tighter bounds in The-

orem 2.17 that use the Bellman residual can be minimized by approximate bilinear pro-

gramming, described in Chapter 5.

This demonstrates that ALP is minimizing loose bounds. The following simple example

illustrates when approximate linear program fails to approximate the value function well.

Consider the simple deterministic chain problem with a discount factor γ = 0.9, depicted

in Figure 4.2. There is a single action, one constant feature φ1, and a feature φ2 that corre-

sponds to the optimal value function with the exception that φ2(s5) = φ2(s6).

The optimal value function v∗, the closest approximation v1 in terms of L∞ norm, and the

solution v2 of an ALP are depicted in Figure 4.3. It is apparent that the approximation error

in this problem is too large to make the value useful. This example shows the following,

when assuming that c = α = 1s7 :

Proposition 4.7. There exists an MDP such that for the optimal solution ṽ of (ALP) we have that

‖ṽ− v∗‖1,α ≥
2

1− γ
min
v∈M
‖v− v∗‖∞.

This holds even when Assumption 2.21 is satisfied. In addition, if c = uπ (which is unknown), the

ALP bound on the policy loss is:

‖ṽ− v∗‖1,uπ ≥
2

(1− γ)2 min
v∈M
‖v− v∗‖∞.

55

1
0

11111

s7s6s5s4s3s2s1

Figure 4.2. An example chain problem with deterministic transitions and reward denoted
above the transitions.

There also exists an MDP such that for the greedy policy π with respect to the ALP solution the

policy loss is:

‖v∗ − vπ‖1,α ≥
2γ

1− γ
min
v∈M
‖v− v∗‖∞.

The proof of the proposition can be found in Section C.5. This proposition indicates

that the online error bound minimized by approximate linear programming is very loose.

In particular, when the discount factor γ is close to one, the term 1/(1− γ)2 grows very

rapidly. The guarantees provided by approximate linear programming are, as a result, very

loose. Note that the offline error bound on the policy loss is almost as loose as possible, as

Proposition 3.4 show (it cannot be a function of 1/(1− γ)2).

While it is possible to reduce the transitional error by requiring that an appropriate struc-

ture is present in the basis, this is not always practical. An example of such structure is the

Lyapunov vectors (de Farias, 2002). The existence of such vectors in all but the simplest

problem domains is typically hard to ensure.

The results of a direct application of ALP to blood inventory management are similarly

disappointing, as Section 4.7 describes in more detail. The solution is significantly worse

than a simple myopic optimization, which only optimizes over a single step and does not

consider the future. The solution of the ALP overestimates the value of the inventory and

does not dispense any blood.

The poor performance of ALP in the blood inventory management problem is due to the

fact that the solution significantly overestimates the value of the resources. While the op-

timal value function in this problem is not known, we hypothesize that the function is

56

1 2 3 4 5 6 7
0

5

10

15

20

25

State

V
al

ue

v*

v
1

v
2

Figure 4.3. Approximation errors in approximate linear programming.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

Resource

V
al

ue

True
Approximate

Transition

Figure 4.4. Illustration of the value function in the inventory management problem.

concave. When approximating a concave function by a linear one, the ALP formulation

can be seen as approximating the upper bound on the functions derivative. This leads to a

large approximation error, as demonstrated in Figure 4.4.

4.5 Expanding Constraints

The algorithmic error would be zero, if the approximate linear program constraints were

in the form v(s) ≥ v∗(s) instead of having a constraint for each transition. This is however

quite impractical even in very small problems. Using direct constraints results in many

potential constraints per state. This would dramatically increase the number of sampled

constraints needed to guarantee a small state sampling error. We therefore consider a

57

5

 4

6

3

5

 4 1

3

 2

1

Figure 4.5. An example of 2-step expanded constraints (dashed) in a deterministic prob-
lem. The numbers next to the arcs represent rewards.

hybrid formulation, in which the constraints represent multi-step transitions; we call these

constraints expanded. An example of 2-step expanded constraints is depicted in Figure 4.5.

Definition 4.8. A t-step expanded ALP constraint for a deterministic MDP for an action se-

quence E = (a1, a2, . . . , at) ∈ At and state si has the following form:

v(si) ≥ ∑
sj∈S

γtPE (sj si
)

v(sj) + rE(si).

The terms are defined as follows, using matrix notation for simplicity:

PE (sj si
)
= 1Ti

(
t

∏
k=1

γPak

)
1j

rE (si, E) = 1Ti

(
t

∑
l=1

(
l−1

∏
k=1

γPal

)
rak

)
,

where 1i is a i-th unit vector. We denote such a constraint as v(si) ≥ C(si, E). A full t-step

expanded constraint is:

v(si) ≥ max
E∈At
C(si, E).

Note that constraints can be expanded in the way defined above only for deterministic

MDPs, which are defined as follows.

Definition 4.9. A Markov decision process is deterministic when for every s ∈ S and every

action a ∈ A, there exists an s′ ∈ S such that P(s, a, s′) = 1.

58

The definition can be easily extended to stochastic MDPs by considering policies instead

of action sequences and is straightforward.

To simplify the analysis, we consider only full expanded constraints. That is, for every state

we have constraints that correspond to all actions. This can be done by simply writing the

max operator in terms of multiple constraints. For example, a ≥ max{b, c}may be written

as two constraints a ≥ b and a ≥ c. Next we describe the benefits of using expanded

constraints and we address the difficulties later. The set of constraints for all states is

denoted as Ct

This idea is somewhat related to temporally extended actions, or options, commonly stud-

ied in reinforcement learning (Stolle & Precup, 2002). Options, however, serve a different

purpose – to simplify and accelerate learning rather than reduce the algorithmic error. In

addition, unlike options, the expanded constraints have a fixed length.

The approximate linear program with expanded constraints is formulated as follows.

min
v

cTv

s.t. v ≥ γtPEv + rE ∀E ∈ At

v ∈ M

(ALP–e)

In solving realistic problems, the linear program is also based on a sampled set of all the

constraints. We do not analyze that case because its properties are very similar to regular

approximate linear programs with sampled constraints.

The analysis of the approximate linear programs with expanded constraints relies on the

following important property.

Lemma 4.10. Let ṽ be feasible in (ALP–e). Then the following holds:

ṽ ≥ Ltṽ

ṽ ≥ v∗,

59

where Lt represents t consecutive applications of the Bellman operator L. In addition, for any value

function v such that ‖v− v∗‖∞ ≤ ε there exists a v′ feasible in (ALP–e) defined as:

v′ = v +
ε

1− γt 1.

The proof of the lemma can be found in Section C.5.

Expanding the constraints with a larger horizon guarantees improvement in the approx-

imation error bounds. These offline approximation bounds from Theorem 4.3 can be ex-

tended using Lemma 4.10 as follows

Proposition 4.11. Assume Assumption 2.21 and let ṽ be the solution of the t-step expanded ap-

proximate linear program (ALP–e).

‖v∗ − ṽ‖1,c ≤
2

1− γt min
v∈M
‖v∗ − v‖∞.

This bound does not guarantee a reduction of the policy loss of the greedy policy in Theorem 4.2.

The proof of the proposition can be found in Section C.5. In fact the approximation error

is guaranteed to not increase with increased t.

Corollary 4.12. Let v be a solution of an ALP with t-step expanded constraints and let v′ be a

solution of an ALP with t′-step expanded constraints such that t′ = dt for some positive d ∈ N+.

Then:

‖v′ − v∗‖1,c ≤ ‖v− v∗‖1,c.

The corollary follows trivially from the fact that v ≥ (Lt)dv. Note that this does not guar-

antee an improvement in the actual policy loss.

Expanding all constraints may improve the solution quality, but at a steep computational

cost. The number of constraints required per states scales exponentially with the number

of steps for which the constraints are expanded. As a result, assuming that full constraints

60

are added for many steps into the future is not realistic if it needs to be done for all states.

In this section, we propose a scheme for selecting only some constraints for expansion.

To obtain the bounds on improvement achievable by expanding constraints, we compare

solutions of an ALP with and without some constraints expanded. Let A1v ≥ b1 represent

constraints that are not expanded and let A2v ≥ b2 be the expanded constraints. Then, let

Ā1v ≥ b̄1 be a fully expanded version of the constraint A1v ≥ b1. This leads to two linear

programs:

min
v

cTv

s.t. A1v ≥ b1

A2v ≥ b2

v ∈ M

(4.4)

and
min

v
cTv

s.t. Ā1v ≥ b̄1

A2v ≥ b2

v ∈ M

(4.5)

We can now state the following proposition.

Proposition 4.13. Let v1 be the optimal solution of (4.4) and let v̄1 be the optimal solution of

(4.5). Let λ1 and λ2 be the Lagrange multipliers that correspond to constraints A1v ≥ b1 and

A2v ≥ b2 respectively. Then the bound on the improvement from expanding constraints A1v ≥ b1

is at most:

‖v1 − v∗‖1,c − ‖v̄1 − v∗‖1,c ≤ ‖λT
1 A1‖1‖v1 − v2‖∞

≤ ‖ [Av1 − b1]+ ‖∞

1− γ
‖λT

1 A1‖1.

The proof of the proposition can be found in Section C.5.

61

The proposition shows that the dual variables λ (or Lagrange multipliers) may be used

to bound the potential improvement in the approximation that can be gained from ex-

panding some of the constraints. In the trivial case, the proposition states that expanding

constraints for which λ = 0 has no effect on the solution. Thus, it is sufficient to obtain

a solution of the linear program in which the sum of the Lagrange multipliers of unex-

panded constraints is sufficiently small. A simple greedy algorithm that accomplishes this

is depicted in Algorithm 4.1. Note that after expanding a constraint, the previous solution

of the ALP may be used as the starting point. Since this solution is feasible (see Corol-

lary 4.12) and is likely close to the optimum, resolving the ALP is typically very easy.

Algorithm 4.1: Iterative Expansion Algorithm

1 while ‖v1 − v∗‖1,c − ‖v̄1 − v∗‖1,c ≥ ε do
2 v← arg minv∈M cTv ;
3 λi ← dual variables ;
4 a1 . . . ad ← arg maxai ‖λiai‖1 ;
5 Expand constraints a1 . . . ad;

6 return v

We showed in this section a practical approach for obtaining expanded constraints in

stochastic domains, as well as a method for selecting a subset of constraints to expand.

In the next section we describe an approach that can also address the problem with virtual

loops without requiring expansion of the constraints.

4.6 Relaxing Constraints

In this section, we describe a method for eliminating the virtual loops without requiring

constraint expansion. This method is generally inferior to constraint expansion in terms of

solution quality, since it cannot use the extra information. However, it is useful in problems

in which rolling out constraints is not feasible and it is possible to obtain a good solution

while violating only constraints with small weight.

This formulation is also based on minimization of the online error bounds. Recall that the

standard linear program (ALP) minimizes (from Remark 2.18):

62

min
π∈Π
‖v∗ − vπ‖1,α ≤ min

v∈M∩K
ūT(ṽ− v∗),

while restricting the value functions to be transitive-feasible. Propositions 4.6 and 4.7 show

that this bound can be particularly loose. We, therefore, propose to instead optimize the

error bound from Theorem 2.19:

min
π∈Π
‖v∗ − vπ‖1,α ≤ min

v∈M

(
ūT(I− γP∗)− αT

)
(ṽ− v∗) + ūT [Lṽ− ṽ]+ ,

which does not require that the value function is transitive feasible. This objective function

is nonlinear, because of the term ūT [Lṽ− ṽ]+, but this can be easily linearized.

[Lṽ− ṽ]+ (s) =
[

max
a∈A

γP(s, a)Tv + r(s, a)− v(s)
]
+

=

[
max

{a 1T=1,a≥0}
γP(s, a)Tv + r(s, a)− v(s)

]
+

=

[
min

{λ λ≥γP(s,a(i))v+r(s,ai)−v(s), ∀i=1...|A|}
λ

]
+

Here, we treat a as a vector and take the dual of the linear program. Note that ūT [Lṽ− ṽ]−

cannot be linearized as easily. The linear program is then:

min
v,λ

cTv + ∑
s∈S

ū(s)λ(s)

s.t. ∑
s∈S

1̄sλs ≥ b−Av

λs ≥ 0

v ∈ M

(ALP-r)

where:

cT =
(

ūT(I− γP∗)− αT
)

1̄s (s′, a′) =

1 if s = s′

0 otherwise
.

63

Intuitively, this formulation is motivated by the simple chain example, described in Sec-

tion 4.4. It shows that a single constraint in an ALP may degrade the quality of the whole

solution because it forces transitive-feasible value functions to be very large. This can be

addressed by allowing a small violation of a small number of constraints. One possibility

of relaxing the constraints is to use: Av ≥ b− ε1 for some small ε. This will however only

lower the value function with little effect on quality.

Another motivation for (ALP-r) is its dual linear program, which is:

max
u

bTu

s.t. ΦTATu = ΦTc

u ≥ 0

1̄Ts u ≤ ū(s)

Except for the last constraint, this is identical to the linear program (C.2) — the dual of

the linear program used to solve MDPs directly. The variables u correspond to the state–

action visitation frequencies and the vector d then correspond to upper bounds on the dual

values u. This is exactly ū in our definition. The relaxation approach may be, therefore,

seen as a regularization of the dual variables.

We can now show the following bound.

Theorem 4.14 (Offline Policy Loss). Let ṽ be the solution of the approximate linear program in

(ALP-r) and π be the greedy policy. Then:

‖v∗ − vπ‖1,α ≤ min
v∈M

(
ūT(I− γP∗)− αT

)
(ṽ− v∗) + ūT [Lṽ− ṽ]+

≤
(

1Tū(1− γ)− 1 + 2(1 + γ)1Tū
)

min
v∈M
‖v− v∗‖∞

when cT = ūT(I− γP∗) and the second inequality holds when uT(I− γP∗) ≥ αT. Note that the

bound does not require Assumption 2.21 and does not involve transitive-feasible functions.

The proof of the theorem can be found in Section C.5.

64

While the linear program formulation (ALP-r) provides guarantees, it is relies on constants

that are not known and are hard to estimate. In the remainder of the section, we study the

properties of the following generic problem.

min
v,λ

cTv + dTλ

s.t. λ ≥ b−Av

λ ≥ 0

v ∈ M

(ALP-rx)

In this formulation, we assume that 1Tc = 1 and d is an arbitrary value. We study the

properties of (ALP-rx) with respect to the choice of d. To achieve a good performance of

this formulation, it is necessary to select good values of the vector d. The values d can

represent bounds on the dual solution, as the dual formulation of (ALP-rx) shows.

max
u

bTu

s.t. ΦTATu = ΦTc

u ≥ 0

u ≤ d

An important property of the linear program (ALP-rx) is that given a sufficiently large

vector d, if the optimal value function v∗ is representable in the approximation space d,

then it will also be the optimal solution of the relaxed linear program.

Proposition 4.15. Assume Assumption 2.21 and that

d >
1Tc

1− γ
1.

Then the sets of optimal solutions of (ALP) and (ALP-rx) are identical.

65

The proof of the proposition can be found in Section C.5.

The online approximation bounds above indicate that the values d should be upper bounds

on the state visitation frequencies u in the MDP. One way of obtaining the values is to treat

them as a parameter and use the value that minimizes the policy loss. This is practical

in problems in which the solution time is dominated by the time required to gather the

samples, and the time to solve the ALP is small. Clearly, this is not a satisfactory method.

The relaxed linear program formulation can be used when violating a small number of

constraints significantly improves the solution. The formulation then automatically selects

the appropriate constraints that need to be violated. The following proposition shows a

bound on the total weight of the violated constraints.

Proposition 4.16. Assume Assumption 2.21 and let IV be the set of violated constraints and let IA

be the set of active constraints by the optimal solution of the relaxed approximate linear program.

Then:

d(IV) ≤
1Tc

1− γ
≤ d(IA) + d(IV),

where d(·) denotes the sum of the weights defined by d on the selected constraints.

The proof of the proposition is very similar to the proof of Proposition 4.15.

The proposition implies that setting

d >
1Tc

(k + 1)(1− γ)
1

guarantees that at most k constraints are violated. The relaxation does not guarantee an

improvement on the ALP solution. It is possible to construct an instance in which the

solution can be improved only by violating all constraints.

In many problems, it may be possible to use the structure to derive bounds on the state–

action violation frequencies ū. For example, if it is impossible to return to the same state s

of the MDP in less than k steps, then ū(s) ≤ 1/(1− γk). When the probability of returning

is small in the first few steps, the following bound can be used.

66

1 2 3 4 5 6 7
−5

0

5

10

15

20

25

State

V
al

ue

v* v
1

v
alp

v
alp2

v
ralp

v
ls

v
br

Figure 4.6. Benchmark results for the chain problem.

Definition 4.17. The bound on the return probability pj(s) after k steps for any state s ∈ S
is defined as:

pk(s) ≥ max
π∈Π

1Ts Pk
π1s.

Proposition 4.18. Let pk be the probability of returning for the first time to state s. Then:

u(s) ≤
∞

∑
k=1

γk pk(s) ≤
k̄

∑
k=1

γk pk(s) +
γk̄

1− γ
.

The proof is trivial and is based on Lemma C.13 and the following inequality:

u(s) = 1Ts (I− γP)−1 1s =
∞

∑
k=0

1Ts (γP)k1s ≤
∞

∑
k=0

∞

∑
k=0

pk(s)

4.7 Empirical Evaluation

We experimentally evaluate the proposed approaches on three problems of increasing

complexity. We first demonstrate the soundness of the main ideas on the simple chain

problem described in the introduction. Then we evaluate the approach on a modified

version of the mountain-car problem, a standard benchmark in reinforcement learning.

Finally, we describe an application of the method to a blood-management problem, a com-

plex multi-attribute optimization problem.

67

The empirical results for the chain problem are depicted in Figure 4.6. Here vbr is the value

function that minimizes the Bellman residual, vls is a solution of LSPI (Lagoudakis & Parr,

2003). The value function valp is the solution of (ALP), valp2 is the solution of (ALP–e)

expanded by 2 steps, and vralp is the solution of (ALP-rx). The values d in the relaxed ALP

are 1 except the last state in which it is 10. These values are upper bounds, since all states

except the last one are transient. These results show that at least in the simple problem,

constraint roll-outs and relaxed formulation perform very well.

In the mountain car benchmark (Sutton & Barto, 1998), an underpowered car needs to

climb a hill. To do so, it first needs to back up to an opposite hill to gain sufficient momen-

tum. In our modified version of the mountain car, the reward of 1 is received just before

the top of the hill. In the traditional formulation, the task stops as soon as the reward is

received. In our modified problem, the car continues for an extra 0.1 distance, but cannot

receive the reward again. The task is described in more detail in Section B.1.3.

We used piecewise linear value function approximation, described in Section 10.2. This

representation is in particular suitable for use with ALP, because, unlike tiling, is does

not have continuous regions with a constant value. We used 200 randomly chosen states

with all actions included per each state. We used 3000 uniformly generated samples. The

approximation error of the solution with regard to number of constraints expanded by al-

gorithm 4.1 in Figure 4.7. We evaluated the relaxed linear program formulation on this

problem with d = 0.6 · 1, which is an upper bound on the dual value, assuming that all

states are transient. The average error over 10 runs was 4.474, with only 0.35% of con-

straints violated. The average discounted return of the ALP policy was 0.338, the average

discounted return of policy after 90 expanded constraints was 0.438, and the average dis-

counted return of the relaxed ALP formulation was 0.42.

The blood inventory management problem, described for example in more detail in Sec-

tion B.2 concerns managing a blood supply inventory and determining the optimal blood-

type substitution. A simple greedy solution in this problem achieves return of 70331, stan-

dard ALP solution achieves 19108, and the bound on the optimal solution is 94169. Re-

laxed ALP solution, with the assumption that a loop on any state is at least 20 states long,

68

0 20 40 60 80
0

2

4

6

8

10

12

14

Expanded Constraints

L 1 E
rr

or

Figure 4.7. Bound on L1 approximation error with regard to the number of expanded
constraints on the mountain car problem.

improves on the greedy solution with value 87055. This is a complex optimization prob-

lem and its solution requires that a number of trade-offs, which significantly influence the

solution quality.

4.8 Discussion

The modifications that we propose, while improving the performance, increase the com-

putational complexity and rely on prior information. In addition, approximate linear pro-

gramming is sensitive to the choice of the objective function c and there is very little prac-

tical guidance in setting its value. Finally, approximate linear programming minimizes the

weighted L1 norm instead of L∞ norm required by the online bounds (2.1) and (2.2).

While ALP does not provide as strong bounds on the policy loss as approximate bilinear

programming, it is nevertheless worth studying. Approximate linear program is a convex

mathematical program, which can be solved in polynomial time and is straightforward

to analyze. Finally, when the value function is used with heuristic search, there is no

justification for minimizing the Bellman residual; and therefore ALP may be preferable to

approximate bilinear programs. We take advantage of this simplicity to derive homotopy

continuation methods in Chapter 6, which are used for feature selection in Chapter 10.

69

4.9 Contributions

The chapter presents a new derivation of approximate linear programs based on mini-

mization of the online error bounds. This formulation generalizes existing work on ap-

proximate linear programming — de Farias (2002) in particular — and shows new per-

formance bounds. These bounds can be used to improve the performance of ALP. Theo-

rem 4.2 shows a new performance bound that mildly generalizes existing bounds to a new

tighter representation. Theorems 4.5 and 4.4 are new comprehensive approximation error

bounds for ALP that include all the representation, sampling and algorithmic components.

The results in Sections 4.5 and 4.6 present new improvements over existing methods.

70

CHAPTER 5

APPROXIMATE BILINEAR PROGRAMMING: TIGHT APPROXIMATION

This chapter shows how to formulate value function approximation as a separable bilin-

ear program. The bilinear program formulation is loosely based on approximate linear

programs, but provides a much tighter approximation. We propose and study several

closely-related formulations. These formulations minimize the bounds in Theorems 2.16

and 2.17.

The remainder of the chapter is organized as follows. In Section 5.1 we describe the pro-

posed approximate bilinear programming (ABP) formulations and the guarantees it pro-

vides. Section 5.2 extends the formulation and guarantees to sampled ABPs. Basic meth-

ods for solving bilinear programs are described in Section 5.3, but a more detailed descrip-

tion can be found in Chapter 7.

A drawback of approximate bilinear program formulation is its computational complexity,

which may be exponential. We show in Section 5.3 that this is unavoidable, because mini-

mizing the approximation error bound is in fact NP hard. Section 5.4 shows that ABP can

be seen as an improvement of approximate linear programming and approximate policy

iteration. Section 5.5 experimentally evaluates properties of ABPs on simple benchmark

problems.

5.1 Bilinear Program Formulations

This section shows how to formulate value function approximation as a separable bilinear

program. Bilinear programs are a generalization of linear programs with an additional

bilinear term in the objective function. A separable bilinear program consists of two linear

programs with independent constraints and are fairly easy to solve and analyze.

71

Definition 5.1 (Separable Bilinear Program). A separable bilinear program in the normal

form is defined as follows:

min
w,x y,z

sT1 w + rT1 x + xTCy + rT2 y + sT2 z

s.t. A1x + B1w = b1 A2y + B2z = b2

w, x ≥ 0 y, z ≥ 0

(BP–m)

The objective of the bilinear program (BP–m) is denoted as f (w, x, y, z). We separate the

variables using a vertical line and the constraints using different columns to emphasize

the separable nature of the bilinear program. In this thesis, we only use separable bilinear

programs and refer to them simply as bilinear programs.

We present three different approximate bilinear formulations that minimize the following

bounds on the approximate value function.

1. Robust policy loss: Minimizes ‖v∗− vπ‖∞ by minimizing the bounds in Theorem 2.16:

min
π∈Π
‖v∗ − vπ‖∞ ≤ min

v∈M
1

1− γ
‖v− Lv‖∞

2. Expected policy loss: Minimizes ‖v∗− vπ‖1,α by minimizing the bounds in Theorem 2.17:

min
π∈Π
‖v∗ − vπ‖1,α ≤ αTv∗ + min

v∈M

(
−αTṽ +

1
1− γ

‖v− Lv‖∞

)
min
π∈Π
‖v∗ − vπ‖1,α ≤ αTv∗ + min

v∈M

(
−αTṽ + ‖v− Lv‖1,ū(v)

)
.

3. The sum of k largest errors: This formulation represents a hybrid between the robust

and expected formulations. It is more robust than simply minimizing the expected

performance but is not as sensitive to worst-case performance.

The appropriateness of each formulation depends on the particular circumstances of the

domain. For example, minimizing robust bounds is advantageous when the initial dis-

tribution is not known and the performance must be consistent under all circumstances.

On the other hand, minimizing expected bounds on the value function is useful when the

initial distribution is known.

72

The expected policy loss minimization is related to the relaxed formulation of the approx-

imate linear program Equation ALP-r. As we show below, the bilinear program formu-

lation is tighter and does not require as much prior knowledge. In fact, we also propose

a formulation that does not require the bound on the state–visitation frequencies ū of the

greedy policy.

In the formulations described below, we initially assume that samples of all states and

actions are used. This means that the precise version of the operator L is available. To solve

large problems, the number of samples would be much smaller; either simply subsampled

or reduced using the structure of the MDP. Reducing the number of constraints in linear

programs corresponds to simply removing constraints. In approximate bilinear programs

it also reduces the number of some variables, as Section 5.2 describes.

The formulations below denote the value function approximation generically by v ∈ M.

That restricts the value functions to be representable using features. Representable value

functions v can be replaced by a set of variables x as v = Φx. This reduces the number of

variables to the number of features.

5.1.1 Robust Policy Loss

The solution of the robust approximate bilinear program minimizes the L∞ norm of the

Bellman residual ‖v− Lv‖∞. This minimization can be formulated as follows.

min
π λ,λ′,v

πTλ + λ′

s.t. Bπ = 1 Av− b ≥ 0

π ≥ 0 λ + λ′1 ≥ Av− b

λ, λ′ ≥ 0

v ∈ M

(ABP–L∞)

All the variables are vectors except λ′, which is a scalar. The matrix A represents con-

straints that are identical to the constraints in (ALP). The variables λ correspond to all

73

state-action pairs. These variables represent the Bellman residuals that are being mini-

mized. This formulation offers the following guarantees.

Theorem 5.2. Given Assumption 2.21, any optimal solution (π̃, ṽ, λ̃, λ̃′) of the approximate bi-

linear program (ABP–L∞) satisfies:

π̃Tλ̃ + λ̃′ = ‖Lṽ− ṽ‖∞ ≤ min
v∈K∩M

‖Lv− v‖∞

≤ 2 min
v∈M
‖Lv− v‖∞

≤ 2(1 + γ) min
v∈M
‖v− v∗‖∞.

Moreover, there exists an optimal solution π̃ that is greedy with respect to ṽ for which the policy

loss is bounded by:

‖v∗ − vπ̃‖∞ ≤
2

1− γ

(
min
v∈M
‖Lv− v‖∞

)
.

The proof of the theorem can be found in Section C.6. It is important to note that the the-

orem states that solving the approximate bilinear program is equivalent to minimization

over all representable value functions, not only the transitive-feasible ones. This follows by

subtracting a constant vector 1 from ṽ to balance the lower bounds on the Bellman residual

error with the upper ones. This reduces the Bellman residual by 1/2 without affecting the

policy. Finally, note that whenever v∗ ∈ M, both ABP and ALP will return the optimal

value function v∗. The theorem follows from the following lemmas.

First, define the following linear program, which solves for the L∞ norm of the Bellman

update Lπ for value function v and policy π.

f1(π, v) = min
λ,λ′

πTλ + λ′

s.t. 1λ′ + λ ≥ Av− b

λ ≥ 0

(5.1)

The linear program (5.1) corresponds to the bilinear program (ABP–L∞) with a fixed policy

π and value function v.

74

Lemma 5.3. Let v ∈ K be a transitive-feasible value function and let π be a policy. Then:

f1(π, v) ≥ ‖v− Lπv‖∞,

with an equality for a deterministic policy π.

The proof of the lemma can be found in Section C.6.

When the policy π is fixed, the approximate bilinear program (ABP–L∞) becomes the fol-

lowing linear program:

f2(π) = min
λ,λ′,v

πTλ + λ′

s.t. Av− b ≥ 0

1λ + λ′ ≥ Av− b

λ ≥ 0

v ∈ M

(5.2)

Using Lemma C.19 , this linear program corresponds to:

f2(π) = min
v∈M∩K

f1(π, v).

Then it is easy to show that:

Lemma 5.4. Given a policy π, let ṽ be an optimal solution of the linear program (5.2). Then:

f2(π) = ‖Lπ ṽ− ṽ‖∞ ≤ min
v∈M∩K

‖Lπv− v‖∞.

When v is fixed, the approximate bilinear program (ABP–L∞) becomes the following linear

program:

f3(v) = min
π

f2(π, v)

s.t. Bπ = 1

π ≥ 0

(5.3)

75

Note that the program is only meaningful if v is transitive-feasible and that the function

f2 corresponds to a minimization problem.

Lemma 5.5. Let v ∈ M ∩ K be a transitive-feasible value function. There exists an optimal

solution π̃ of the linear program (5.3) such that:

1. π̃ represents a deterministic policy

2. Lπ̃v = Lv

3. ‖Lπ̃v− v‖∞ = minπ∈Π ‖Lπv− v‖∞ = ‖Lv− v‖∞

The proof of the lemma can be found in Section C.6.

5.1.2 Expected Policy Loss

This section describes bilinear programs that minimize expected policy loss for a given

initial distribution ‖v− Lv‖1,α. The initial distribution can be used to derive tighter bounds

on the policy loss. We describe two formulations. They respectively minimize an L∞ and

a weighted L1 norm on the Bellman residual.

The expected policy loss can be minimized by solving the following bilinear formulation.

min
π λ,λ′,v

πTλ + λ′ − (1− γ)αTv

s.t. Bπ = 1 Av− b ≥ 0

π ≥ 0 λ + λ′1 ≥ Av− b

λ, λ′ ≥ 0

v ∈ M

(ABP–L1)

Notice that this formulation is identical to the bilinear program (ABP–L∞) with the excep-

tion of the term −(1− γ)αTv.

76

Theorem 5.6. Given Assumption 2.21, any optimal solution (π̃, ṽ, λ̃, λ̃′) of the approximate bi-

linear program (ABP–L1) satisfies:

1
1− γ

(
π̃Tλ̃ + λ̃′

)
− αTṽ =

1
1− γ

‖Lṽ− ṽ‖∞ − αTv ≤ min
v∈K∩M

(
1

1− γ
‖Lv− v‖∞ − αTv

)
≤ min

v∈M

(
1

1− γ
‖Lv− v‖∞ − αTv

)

Moreover, there exists an optimal solution π̃ that is greedy with respect to ṽ for which the policy

loss is bounded by:

‖v∗ − vπ̃‖1,α ≤
2

1− γ

(
min
v∈M

1
1− γ

‖Lv− v‖∞ − ‖v∗ − v‖1,α

)
.

The proof of the theorem can be found in Section C.6. Notice that the bound in this

theorem is tighter than the one in Theorem 5.2. In particular, ‖v∗ − ṽ‖1,α > 0, unless the

solution of the ABP is the optimal value function.

The bilinear program formulation in (ABP–L1) can be further strengthened when an upper

bound on the state-visitation frequencies is available.

min
π λ,v

πTUλ− αTv

s.t. Bπ = 1 Av− b ≥ 0

π ≥ 0 λ = Av− b

v ∈ M

(ABP–U)

Here U : |S| · |A| × |S| · |A| is a matrix that maps a policy to bounds on state-action

visitation frequencies. It must satisfy that:

π(s, a) = 0⇒ (πTU)(s, a) = 0 ∀s ∈ S ∀a ∈ A.

77

Remark 5.7. One simple option is to have U represent a diagonal matrix of ū, where ū is

the bound for all policies π ∈ Π. That is:

U((s, a), (s′, a′)) =

ū(s) s′ = s

0 otherwise
∀s, s′ ∈ S a, a′ ∈ A.

The formal guarantees for this formulation are as follows.

Theorem 5.8. Given Assumption 2.21 and that for all π ∈ Π : ∑a∈A(π
TU)(s, a) ≥ uT

π(s),

any optimal solution (π̃, ṽ, λ̃, λ̃′) of the bilinear program (ABP–U) then satisfies:

π̃TUλ̃− αTṽ = ‖ṽ− Lṽ‖ū − αTṽ ≤ min
v∈K∩M

(
‖v− Lv‖ū − αTv

)
.

Assuming that U is defined as in Remark 5.7, there exists an optimal solution π̃ that is greedy with

respect to ṽ and:

‖v∗ − vπ̃‖1,α ≤ min
v∈M∩K

(
‖v− Lv‖1,ū(v) − ‖v∗ − v‖1,α

)
≤ max{1, γū(v)T1} min

v∈M∩K
‖v− v∗‖∞

≤
(

2 + γ + 1Tū(v)− 1
1− γ

)
min
v∈M
‖v− v∗‖∞

Here, ū(v) represents an upper bound on the state-action visitation frequencies for a policy greedy

with respect to value function v.

Unlike Theorems 5.2 and 5.6, the bounds in this theorem do not guarantee that the solution

quality does not degrade by restricting the value function to be transitive-feasible. Also,

To prove the theorem we first define the following linear program that solves for the L1

norm of the Bellman update Lπ for value function v.

f1(π, v) = min
λ,λ′

πTUλ

s.t. 1λ′ + λ ≥ Av− b

λ ≥ 0

(5.4)

78

The linear program (5.1) corresponds to the bilinear program (ABP–U) with a fixed policy

π and value function v. Notice, in particular, that αTv is a constant.

Lemma 5.9. Let value function v be feasible in the bilinear program (ABP–U), and let π be an

arbitrary policy. Then:

f1(π, v) ≥ ‖Lπv− v‖1,ū,

with an equality for a deterministic policy.

The proof of the lemma can be found in Section C.6.

The proof of Theorem 5.8 is similar to the proof of Theorem 5.2, but uses Theorem 2.17

instead of Theorem 2.16 to bound the policy loss and relies on Lemma 5.9. The existence

of a deterministic and greedy optimal solution π̃ follows also like Theorem 5.2, omitting

λ′ and weighing λ by ū. The last two inequalities follow from the following lemma.

Lemma 5.10. The following inequalities hold for any representable and transitive–feasible value

functions:

min
v∈M∩K

(
‖v− Lv‖1,ū(v) − ‖v∗ − v‖1,α

)
≤ max{1, γū(v)T1} min

v∈M∩K
‖v− v∗‖∞

≤
(

2 + γ + 1Tū(v)− 1
1− γ

)
min
v∈M
‖v− v∗‖∞

The proof of the lemma can be found in Section C.6.

5.1.3 Hybrid Formulation

While the robust bilinear formulation (ABP–L∞) guarantees to minimize the robust error

it may be overly pessimistic. The bilinear program (ABP–U), on the other hand, optimizes

the average performance, but does not provide strong guarantees. It is possible to combine

the advantages (and disadvantaged) of these programs using a hybrid formulation. The

79

hybrid formulation minimizes the average over the largest elements with weight at most

k of the Bellman residual. To do that, define:

‖x‖k,c = max
{y 1Ty=k,1≥y≥0}

n

∑
i=1

y(i)c(i)|x(i)|,

where n is the length of vector x and c ≥ 0. It is easy to show that this norm represents the

c-weighted L1 norm of the k largest components of the vector. As such, it is more robust

than the plain L1 norm, but is not as sensitive to outliers as the L∞ norm. Notice that the

solution may be fractional when k /∈ Z — that is, some elements are counted only partially.

The bilinear program that minimizes the hybrid norm is defined as follows.

min
π λ,λ′,v

πTUλ + kλ′

s.t. Bπ = 1 Av− b ≥ 0

π ≥ 0 λ + λ′U−11 ≥ Av− b

λ, λ′ ≥ 0

v ∈ M

(ABP–h)

Here U is a matrix that maps a policy to bounds on state-action visitation frequencies, for

example, as defined in Remark 5.7.

Theorem 5.11. Given Assumption 2.21 and U that is defined as in Remark 5.7, any optimal

solution (π̃, ṽ, λ̃, λ̃′) of (ABP–h) then satisfies:

π̃TUλ̃ + kλ̃′ = ‖Lṽ− ṽ‖k,ū(π̃) ≤ min
v∈M∩K

‖Lṽ− ṽ‖k,ū(v).

Here, ū(v) represents the upper bound on the state-action visitation frequencies for policy greedy

with respect to value function v.

The implication of these bounds on the policy loss are not yet known, but it is likely that

some form of policy loss bounds can be developed.

80

The proof of the theorem is almost identical to the proof of Theorem 5.2 lemma. We first

define the following linear program, which solves for the required norm of the Bellman

update Lπ for value function v and policy π.

f1(π, v) = min
λ,λ′

πTUλ + kλ′

s.t. λ′U−11 + λ ≥ Av− b

λ, λ′ ≥ 0

(5.5)

The linear program (5.5) corresponds to the bilinear program (ABP–h) with a fixed policy

π and value function v.

Lemma 5.12. Let v ∈ K be a transitive-feasible value function and let π be a policy and U be

defined as in Remark 5.7. Then:

f1(π, v) ≥ ‖v− Lπv‖k,ū,

with an equality for a deterministic policy π.

The proof of the lemma can be found in Section C.6.

5.2 Sampling Guarantees

In most practical problems, the number of states is too large to be explicitly enumerated.

Even though the value function is restricted to be representable, the problem cannot be

solved. The usual approach is to sample a limited number of states, actions, and their

transitions to approximately calculate the value function. This section shows basic prop-

erties of the samples that can provide guarantees of the solution quality with incomplete

samples.

Theorem 5.2 shows that sampled robust ABP minimizes ‖v− L̃v‖∞ or ‖v− L̄v‖∞, depend-

ing on the samples used. It is then easy to derive sampling bounds that rely on the sam-

pling assumptions defined above.

81

Theorem 5.13. Let the optimal solutions to the sampled and precise Bellman residual minimization

problems be:

v1 ∈ arg min
v∈M∩K

‖v− Lv‖∞ v2 ∈ arg min
v∈M∩K

‖v− L̂v‖∞ v3 ∈ arg min
v∈M∩K

‖v− L̃v‖∞

Value functions v1, v2, v3 correspond to solutions of instances of robust approximate bilinear pro-

grams for the given samples. Also let v̂i = vπi , where πi is greedy with respect to vi. Then, given

Assumptions 2.21, 2.26, and 2.28, the following holds:

‖v∗ − v̂1‖∞ ≤
2

1− γ
min
v∈M
‖v− Lv‖∞

‖v∗ − v̂2‖∞ ≤
2

1− γ

(
min
v∈M
‖v− Lv‖∞ + εp

)
‖v∗ − v̂3‖∞ ≤

2
1− γ

(
min
v∈M
‖v− Lv‖∞ + εp + 2εs

)

The proof of the theorem can be found in Section C.6.

These bounds show that it is possible to bound policy loss due to incomplete samples. As

mentioned above, existing bounds on constraint violation in approximate linear program-

ming (de Farias & van Roy, 2004) typically do not easily lead to policy loss bounds. The

bounds are also much tighter than Theorem 4.3, since the ε terms do not involve 1/(1− γ),

which can be very large.

Sampling guarantees for other bilinear program formulations are very similar. Because

they also rely on an approximation of the initial distribution and the policy loss, they re-

quire additional assumptions on uniformity of state-samples.

To summarize, this section identifies basic assumptions on the sampling behavior and

shows that approximate bilinear programming scales well in the face of uncertainty caused

by incomplete sampling. More detailed analysis in Chapter 9 focuses on identifying problem-

specific assumptions and sampling modes that guarantee the basic conditions, namely sat-

isfying Assumptions 2.28 and 2.26.

82

5.3 Solving Bilinear Programs

This section describes methods for solving approximate bilinear programs. Bilinear pro-

grams can be easily mapped to other global optimization problems, such as mixed inte-

ger linear programs (Horst & Tuy, 1996). We focus on a simple iterative algorithm for

solving bilinear programs approximately, which also serves as a basis for many optimal

algorithms.

Solving a bilinear program is an NP-complete problem (Bennett & Mangasarian, 1992).

The membership in NP follows from the finite number of basic feasible solutions of the

individual linear programs, each of which can be checked in polynomial time. The NP-

hardness is shown by a reduction from the SAT problem.

There are two main approaches to solving bilinear programs optimally. In the first ap-

proach, a relaxation of the bilinear program is solved. The solution of the relaxed problem

represents a lower bound on the optimal solution. The relaxation is then iteratively refined,

for example by adding cutting plane constraints, until the solution becomes feasible. This

is a common method used to solve integer linear programs. The relaxation of the bilinear

program is typically either a linear or semi-definite program (Carpara & Monaci, 2009).

In the second approach, feasible, but suboptimal, solutions of the bilinear program are

calculated approximately. The approximate algorithms are usually some variation of algo-

rithm 5.1. The bilinear program formulation is then refined — using concavity cuts (Horst

& Tuy, 1996) — to eliminate previously computed feasible solutions and solved again. This

procedure can be shown to find the optimal solution by eliminating all suboptimal feasible

solutions.

The most common and simplest approximate algorithm for solving bilinear programs is

algorithm 5.1. This algorithm is shown for the general bilinear program (BP–m), where

f (w, x, y, z) represents the objective function. The minimizations in the algorithm are lin-

ear programs which can be easily solved. Interestingly, as we will show in Section 5.4,

algorithm 5.1 applied to ABP generalizes a version of API.

83

Algorithm 5.1: Iterative algorithm for solving (BP–m)

1 (x0, w0)← random ;
2 (y0, z0)← arg miny,z f (w0, x0, y, z) ;
3 i← 1 ;
4 while yi−1 6= yi or xi−1 6= xi do
5 (yi, zi)← arg min{y,z A2y+B2z=b2 y,z≥0} f (wi−1, xi−1, y, z) ;
6 (xi, wi)← arg min{x,w A1x+B1w=b1 x,w≥0} f (w, x, yi, zi) ;
7 i← i + 1

8 return f (wi, xi, yi, zi)

While algorithm 5.1 is not guaranteed to find an optimal solution, its empirical perfor-

mance is often remarkably good (Mangasarian, 1995). Its basic properties are summarized

by the following proposition.

Proposition 5.14 (e.g. (Bennett & Mangasarian, 1992)). algorithm 5.1 is guaranteed to con-

verge, assuming that the linear program solutions are in a vertex of the optimality simplex. In

addition, the global optimum is a fixed point of the algorithm, and the objective value monotonically

improves during execution.

The proof is based on the finite count of the basic feasible solutions of the individual linear

programs. Because the objective function does not increase in any iteration, the algorithm

will eventually converge.

algorithm 5.1 can be further refined in case of approximate bilinear programs. For ex-

ample, the constraint v ∈ M in the bilinear programs serves just to simplify the bilinear

program and a value function that violates it may still be acceptable. The following propo-

sition motivates the construction of a new value function from two transitive-feasible value

functions.

Proposition 5.15. Let ṽ1 and ṽ2 be feasible value functions in (ABP–L∞). Then the value function

ṽ(s) = min{ṽ1(s), ṽ2(s)}

is also feasible in bilinear program (ABP–L∞). Therefore ṽ ≥ v∗ and

‖v∗ − ṽ‖∞ ≤ min {‖v∗ − ṽ1‖∞, ‖v∗ − ṽ2‖∞} .

84

The proof of the proposition can be found in Section C.6. The proof of the proposition

is based on Jensen’s inequality and is provided in the appendix. Note that ṽ may have a

greater Bellman residual than either ṽ1 or ṽ2.

Proposition 5.15 can be used to extend algorithm 5.1 when solving ABPs. One option is to

take the state-wise minimum of values from multiple random executions of algorithm 5.1,

which preserves the transitive feasibility of the value function. However, the increasing

number of value functions used to obtain ṽ also increases the potential sampling error.

5.4 Discussion and Related ADP Methods

This section describes connections between approximate bilinear programming and two

closely related approximate dynamic programming methods: ALP, and L∞-API, which are

commonly used to solve factored MDPs (Guestrin et al., 2003). Our analysis sheds light

on some of their observed properties and leads to a new convergent form of approximate

policy iteration.

Approximate bilinear programming addresses some important issues with ALP: 1) ALP

provides value function bounds with respect to L1 norm, which does not guarantee small

policy loss, 2) ALP’s solution quality depends significantly on the heuristically-chosen ob-

jective function c in (ALP) (de Farias, 2002), 3) the performance bounds involve a constant

1/(1− γ) which can be very large when γ is close to 1 and 4) incomplete constraint sam-

ples in ALP easily lead to unbounded linear programs. The drawback of using approxi-

mate bilinear programming, however, is the higher computational complexity.

The first and the second issue in ALP can be addressed by choosing a problem-specific

objective function c (de Farias, 2002). Unfortunately, all existing bounds require that

c is chosen based on the optimal ALP solution for c. This is impossible to compute in

practice. Heuristic values for c are used instead. Robust approximate bilinear program

(ABP–L∞), on the other hand, has no such parameters. On the other hand, the expected-

85

loss bilinear program (ABP–U) can be seen as a method for simultaneously optimizing c

and the approximate linear program.

The fourth issue in approximate linear programs arises when the constraints need to be

sampled. The ALP may become unbounded with incomplete samples because its objective

value is defined using the L1 norm on the value function, and the constraints are defined

using the L∞ norm of the Bellman residual. In approximate bilinear programs, the Bellman

residual is used in both the constraints and objective function. The objective function of

ABP is then bounded below by 0 for an arbitrarily small number of samples.

The NP-completeness of ABP compares unfavorably with the polynomial complexity of

ALP. However, most other approximate dynamic programming algorithms are not guar-

anteed to converge to a solution in finite time. As we show below, the exponential time

complexity of ABP is unavoidable (unless P = NP).

The following theorem shows that the computational complexity of the ABP formulation

is asymptotically the same as the complexity of tightly approximating the value function.

Theorem 5.16. Assume 0 < γ < 1, and a given ε > 0. Then it is NP-complete to determine:

min
v∈K∩M

‖Lv− v‖∞ < ε min
v∈M
‖Lv− v‖∞ < ε.

The problem remains NP-complete when Assumption 2.21 is satisfied. It is also NP-complete to

determine:

min
v∈M
‖Lv− v‖∞ − ‖v∗ − v‖1,α < ε min

v∈M
‖Lv− v‖1,ū − ‖v∗ − v‖1,α < ε,

assuming that ū is defined as in Remark 5.7.

The proof of the theorem can be found in Section C.6.1. As the theorem states, the value

function approximation does not become computationally simpler even when Assump-

tion 2.21 holds. Notice that ALP can determine whether minv∈K∩M ‖Lv − v‖∞ = 0 in

polynomial time.

86

The proof of Theorem 5.16 is based on a reduction from SAT and can be found in Sec-

tion C.6.1. The policy in the reduction determines the true literal in each clause, and the

approximate value function corresponds to the truth value of the literals. The approxima-

tion basis forces literals that share the same variable to have consistent values.

Approximate bilinear programming can also improve on API with L∞ minimization (L∞-

API for short), which is a leading method for solving factored MDPs (Guestrin et al., 2003).

Minimizing the L∞ approximation error is theoretically preferable, since it is compatible

with the existing bounds on policy loss (Guestrin et al., 2003). The bounds on value func-

tion approximation in API are typically (Munos, 2003):

lim sup
k→∞
‖v∗ − v̂k‖∞ ≤

2γ

(1− γ)2 lim sup
k→∞

‖ṽk − vk‖∞.

The bounds are described in more detail in . These bounds are looser than the bounds

on solutions of ABP by at least a factor of 1/(1− γ). Often the difference may be up to

1/(1− γ)2 since the error ‖ṽk− vk‖∞ may be significantly larger than ‖ṽk− Lṽk‖∞. Finally,

the bounds cannot be easily used, because they only hold in the limit.

We propose Optimistic Approximate Policy Iteration (OAPI), a modification of API (shown in

algorithm 3.3). In OAPI, Z(π) is calculated using the following optimization problem:

min
φ,v

φ

s.t. Av ≥ b (≡ (I− γPπ)v ≥ rπ ∀π ∈ Π)

−(I− γPπ)v + 1φ ≥ −rπ

v ∈ M

(5.6)

In fact, OAPI corresponds to algorithm 5.1 applied to ABP because the linear program

(5.6) corresponds to (ABP–L∞) with a fixed π (see (5.2)). Then, using Proposition 5.14, we

get the following corollary.

Corollary 5.17. Optimistic approximate policy iteration converges in finite time. In addition, the

Bellman residual of the generated value functions monotonically decreases.

87

OAPI differs from L∞-API in two ways: 1) OAPI constrains the Bellman residuals by 0

from below and by φ from above, and then it minimizes φ. L∞-API constrains the Bellman

residuals by φ from both above and below. 2) OAPI, like API, uses only the current policy

for the upper bound on the Bellman residual, but uses all the policies for the lower bound

on the Bellman residual.

L∞-API cannot return an approximate value function that has a lower Bellman residual

than ABP, given the optimality of ABP described in Theorem 5.2. However, even OAPI, an

approximate ABP algorithm, performs comparably to L∞-API, as the following theorem

states.

Theorem 5.18. Assume that L∞-API converges to a policy π and a value function v that both

satisfy: φ = ‖v− Lπv‖∞ = ‖v− Lv‖∞. Then

ṽ = v +
φ

1− γ
1

is feasible in the bilinear program (ABP–L∞), and it is a fixed point of OAPI. In addition, the greedy

policies with respect to ṽ and v are identical.

The proof of the theorem is below. Notice that while the optimistic and standard policy

iterations can converge to the same solutions, the steps in their computation may not be

identical. The actual results will depend on the initialization.

To prove the theorem, we first consider L∞-API2 as a modification of L∞-API. L∞-API2 is

shown in algorithm 3.3, where Z(π) is calculated using the following program:

min
φ,v

φ

s.t. (I− γPa)v + 1φ ≥ ra ∀a ∈ A

−(I− γPπ)v + 1φ ≥ −rπ

v ∈ M

(5.7)

The difference between linear programs (3.5) and (5.7) is that (3.5) involves only the cur-

rent policy, while (5.7) bounds (I − γPa)v + 1φ ≥ ra from below for all policies. Linear

88

program (5.7) differs from linear program (5.6) by not bounding the Bellman residual from

below by 0.

Proposition 5.19. L∞-API and L∞-API2 generate the same sequence of policies if the initial poli-

cies and tie-breaking is the same.

Proof. The proposition follows simply by induction from Lemma C.20. The basic step fol-

lows directly from the assumption. For the inductive step, let π1
i = π2

i , where π1 and π2

are the policies with (3.5) and (5.7). Then from Lemma C.20, we have that the correspond-

ing value functions v1
i = v2

i + c1. Because π1
i+1 and π2

i+1 are chosen greedily, we have that

π1
i+1 = π2

i+1.

The proof of Theorem 5.18 follows.

Proof. The proof is based on two facts. First, ṽ is feasible with respect to the constraints in

(ABP–L∞). The Bellman residual changes for all the policies identically, since a constant

vector is added. Second, because Lπ is greedy with respect to ṽ, we have that ṽ ≥ Lπ ṽ ≥
Lṽ. The value function ṽ is therefore transitive-feasible.

From Proposition 5.19, L∞-API can be replaced by L∞-API2, which will converge to the

same policy π. L∞-API2 will converge to the value function

ṽ = v +
φ

1− γ
1.

From the constraints in (5.7) we have that ṽ ≥ Lπ ṽ. Then, since π is the greedy policy with

regard to this value function, we have that ṽ ≥ Lπ ṽ ≥ Lṽ. Thus ṽ is transitive-feasible and

feasible in (BP–m) according to Lemma C.19. The theorem then follows from Lemma C.20

and from the fact that the greedy policy minimizes the Bellman residual, as in the proof of

item 5.5.

To summarize, OAPI guarantees convergence, while matching the performance of L∞-API.

The convergence of OAPI is achieved because given a non-negative Bellman residual, the

greedy policy also minimizes the Bellman residual. Because OAPI ensures that the Bellman

89

residual is always non-negative, it can progressively reduce it. In comparison, the greedy

policy in L∞-API does not minimize the Bellman residual, and therefore L∞-API does not

always reduce it. Theorem 5.18 also explains why API provides better solutions than ALP,

as observed in (Guestrin et al., 2003). From the discussion above, ALP can be seen as an

L1-norm approximation of a single iteration of OAPI. L∞-API, on the other hand, performs

many such ALP-like iterations.

5.5 Empirical Evaluation

In this section, we validate the approach by applying it to simple reinforcement learning

benchmark problems. The experiments are intentionally designed to avoid interaction

between the approximation in the formulation and approximate solution methods. As

Theorem 5.18 shows, even OAPI, the very simple approximate algorithm for ABP, can

perform as well as existing methods on factored MDPs.

ABP is an off-policy approximation method, like LSPI (Lagoudakis & Parr, 2003) or ALP.

That means that the samples can be gathered independently of the control policy. It is

necessary, though, that multiple actions are sampled for each state to enable the selection

of different policies.

First, we demonstrate and analyze the properties of ABP on a simple chain problem with

200 states, described in Section B.1.2. We experimented with the full state-action sample

and randomly chose the features. All results are averages over 50 runs with 15 features. In

the results, we use ABP to denote a close-to-optimal solution of robust ABP, ABPexp for the

bilinear program (ABP–L1), and ABPh for (ABP–h) with k = 5. API denotes approximate

policy iteration that minimizes the L2 norm.

Figure 5.1 shows the Bellman residual attained by the methods. It clearly shows that the

robust bilinear formulation most reliably minimizes the Bellman residual. The other two

bilinear formulations are not much worse. Notice also the higher standard deviation of

ALP and API. Figure 5.2 shows the expected policy loss, as specified in Definition 2.10,

for the calculated value functions. It confirms that the ABP formulation outperforms the

robust formulation, since its explicit objective is to minimize the expected loss. Similarly,

90

ABP ABPexp ABPh ALP API
0

0.5

1

1.5

2

2.5

‖v
∗
−
ṽ
‖ ∞

Figure 5.1. L∞ Bellman residual for the chain problem

ABP ABPexp ABPh ALP API
−0.5

0

0.5

1

1.5

‖v
∗
−
v π

‖ 1
,α

Figure 5.2. Expected policy loss for the chain problem

Figure 5.3 shows the robust policy loss. As expected, it confirms the better performance of

the robust ABP formulation in this case.

Note that API and ALP may achieve lower policy loss on this particular domain than ABP

formulations, even though their Bellman residual is significantly higher. This is possible

since ABP simply minimizes bounds on the policy loss.

In the mountain-car benchmark, an underpowered car needs to climb a hill (Sutton &

Barto, 1998), and is described in Section B.1.3.

91

ABP ABPexp ABPh ALP API
0

1

2

3

4

5

6

‖v
∗
−
v π

‖ ∞

Figure 5.3. Robust policy loss for the chain problem

(a) L∞ error of the Bellman residual

Features 100 144
OAPI 0.21 (0.23) 0.13 (0.1)
ALP 13. (13.) 3.6 (4.3)
LSPI 9. (14.) 3.9 (7.7)
API 0.46 (0.08) 0.86 (1.18)

(b) L2 error of the Bellman residual

Features 100 144
OAPI 0.2 (0.3) 0.1 (1.9)
ALP 9.5 (18.) 0.3 (0.4)
LSPI 1.2 (1.5) 0.9 (0.1)
API 0.04 (0.01) 0.08 (0.08)

Table 5.1. Bellman residual of the final value function. The values are averages over 5
executions, with the standard deviations shown in parentheses.

92

The experiments are designed to determine whether OAPI reliably minimizes the Bellman

residual in comparison with API and ALP. We use a uniformly-spaced linear spline to ap-

proximate the value function. The constraints were based on 200 uniformly sampled states

with all 3 actions per state. We evaluated the methods with the number of the approxima-

tion features 100 and 144, which corresponds to the number of linear segments.

The results of robust ABP (in particular OAPI), ALP, API with L2 minimization, and LSPI

are depicted in Table 5.1. The results are shown for both L∞ norm and uniformly-weighted

L2 norm. The run-times of all these methods are comparable, with ALP being the fastest.

Since API (LSPI) is not guaranteed to converge, we ran it for at most 20 iterations, which

was an upper bound on the number of iterations of OAPI. The results demonstrate that

ABP minimizes the L∞ Bellman residual much more consistently than the other methods.

Note, however, that all the considered algorithms would perform significantly better given

a finer approximation.

5.6 Contributions

The main contributions described in this chapter are the bilinear formulations of the value

function approximation and their analysis. In particular, we have shown that it is pos-

sible to minimize tight bounds on the policy loss. While solving this approximation is

intractable (not in polynomial time), practical problems can be often solved in reasonable

time. The bilinear formulation, however, does not add complexity, since solving the ap-

proximation is NP complete.

93

PART II

ALGORITHMS

CHAPTER 6

HOMOTOPY CONTINUATION METHOD FOR APPROXIMATE LINEAR
PROGRAMS

Approximate linear programs are often very hard to solve because the number of con-

straints may be very large. A common problem with approximate dynamic programming

is designing good features for the domain. One approach, which we describe in detail

in Chapter 10, is to provide a large number of features and automatically choose the most

suitable ones. This approach requires that regularized approximate linear programs with a

large number of constraints and variables (variables correspond to constraints) are solved.

This chapter proposes a homotopy continuation method for efficiently solving such linear

programs.

We consider here regularized approximate linear programs. In these, the set of repre-

sentable value functions is defined as:

M = {Φx ‖x‖1,e ≤ ψ},

where ψ is the regularization coefficient. The norm is weighted using a weight e. The

homotopy continuation methods trace the optimal solution of the approximate linear pro-

gram as a function of ψ. This can be efficient when the number of non-zero elements of x

is small for small ψ. In addition, the homotopy method can be used to select the value of

ψ, as described in Section 10.3.

The remainder of the chapter is organized as follows. First, Section 6.1 describes a basic

homotopy continuation method that resembles the simplex method. This formulation can

be problematic when the solutions of the linear program are degenerate. We propose an

alternative approach in Section 6.2 based on penalty methods. Then, Section 6.3 describes

95

a computationally efficient method for tracing the optimal solution. Section 6.5 describes

the connections to other methods for solving regularized programs. Finally, Section 6.4

shows the efficiency of the homotopy method on some benchmark problems.

6.1 Homotopy Algorithm

This section presents a basic homotopy continuation method for solving regularized lin-

ear programs. The method exploits the sparsity of the solutions of regularized linear pro-

grams.

This algorithm can be seen as an extension of the standard simplex algorithm (Vanderbei,

2001). Simplex algorithm uses basic feasible solutions of the size of the number of vari-

ables, regardless of how many are non-zero. Because we are interested in solving very

large linear programs, this is often infeasible. The homotopy method that we propose

computes basic feasible solutions that correspond in size to the number of non-negative

variables; it ignores the variables that are zero — typically the majority of them.

We consider the following formulation of the regularized approximate linear program

(ALP):

min
x

cTΦx

s.t. AΦx ≥ b

eTx ≤ ψ

x ≥ 0

(ALP–R)

Remark 6.1. The variables in the linear program (ALP–R) are constrained to be non-negative

(x ≥ 0). This restriction does not impact generality but significantly simplifies the deriva-

tion of the homotopy algorithms; these constraints allow the L1 norm to be represented

as a single linear constraint. As a result, it is not necessary to use non-differentiable con-

vex analysis (Osborne, Presnell, & Turlach, 2000), but the algorithm can be derived using

standard convex optimization theory.

96

The methods that we propose in this chapter work for any generic linear program. There-

fore, the remainder of the chapter considers general linear programs:

min
x

cTx

s.t. Ax ≥ b

eTx ≤ ψ

x ≥ 0

(LP–L1)

This notation overloads symbols from the remainder of the thesis. For a matrix A, we use

Aj to denote the j-th row and A·i as i-the column. We also use x(i) to denote the i-the

element of the vector. The dual formulation of the linear program (LP–L1) is:

max
y,λ

bTy− ψλ

s.t. ATy− eλ ≤ c

y, λ ≥ 0

(6.1)

Definition 6.2. The optimal solution of the linear program (LP–L1) as a function of ψ is

denoted as x : R→ R|Φ|, assuming that the solution is a singleton. That is, x(ψ) represents

an optimal solution for the regularization coefficient ψ. This is the optimal solution, not the

optimal objective value. We also use y(ψ) and λ(ψ) similarly to denote the sets of optimal

solutions for the primal and dual programs respectively for the given the regularization

coefficient.

The algorithm keeps a set of active variables B(x) and a set of active constraints C(x). A

variable is considered to be active if it is non-zero. A constraint is considered to be active

when the corresponding dual value is non-negative. Active and inactive variables and

constraints are formally defined as follows:

B(x) = {i x(i) > 0} N (x) = {i x(i) = 0} C(x) = {j y(j) > 0} D(x) = {j y(j) = 0}

97

When obvious, we drop the index x. That is we use B in place of B(x) when the value of x

is apparent from the context.

Assumption 6.3. The optimal solution of the linear program (LP–L1) is feasible and bounded

for values of ψ ∈ [0, ∞). In addition, it is “easy” to solve for ψ = 0.

The optimality conditions for the linear program (LP–L1) can be either derived from KKT con-

ditions (e.g. (Bertsekas, 2003; Boyd & Vandenberghe, 2004)), or from the complementary

slackness optimality conditions (Vanderbei, 2001).

−eTx ≥ −ψ

Ax ≥ b

ATy ≤ c + λe

yT(b− Ax) = 0

λ (eTx− ψ) = 0

xT(c− ATy + eλ) = 0

x, y, λ ≥ 0

Using the active and inactive variables and constraints, the optimality equations can be

reformulated as follows:

c =

 cB

cN

 x =

xB

xN

 b =

bC

bD

 y =

yC

yD

 A =

ABC ANC

ABD AND

Without loss of generality, we assume that the active constraints and variables are the

first in the respective structures. Alternatively, this could be expressed generally using a

permutation matrix P. We implicitly assume that the regularization vector e is partitioned

properly for the active variables.

98

For a given set of active variables and constraints and using the fact that the inactive vari-

ables x and y are 0, the optimality conditions can be then written as:

eTxB = ψ

ABCxB = bC ABDxB ≤ bD

AT
BCyC = cB + λeB AT

NCyC ≤ cN + λeN

x, y, λ ≥ 0

The equality constraints are implied by the complementary slackness conditions and the

fact that xB > 0 and yC > 0. We are assuming that the regularization constraint ‖x‖1,e ≤ ψ

is active. If it becomes inactive at ψ̄, the solution is optimal for any value of ψ ≥ ψ̄. The

equalities follow from the complementarity conditions, omitted here. Notice that other

constraints may also hold with equality.

Assumption 6.4. Only one constraint or variable enters the basis at the same time, and

also at most one variable enters the program at the time.

The homotopy method is shown in algorithm 6.1. The primal update of the algorithm

traces the solution in the linear segments and the dual update determines the direction to

take in the non-linearities of the solution trace. The algorithm implementation is written

with the focus on simplicity; an efficient implementation would use factorized matrices.

The main idea of the homotopy method is to first calculate θL(0) and then trace the optimal

solution for increasing values of ψ. The optimal solution w(ψ) of the ALP is a piecewise

linear function of ψ. At any point in time, the algorithm keeps track of a set of active – or

non-zero – variables w and a set of active constraints, which are satisfied with equality. In

the linear segments, the number of active constraints and variables are identical, and the

non-linearity arises when variables and constraints become active or inactive. Therefore,

the linear segments are traced until a variable becomes inactive variables or a constraint

becomes active. Then, the dual solution is traced until a constraint becomes inactive or a

variable becomes active.

The analysis above shows the following two properties of the homotopy method.

99

Algorithm 6.1: Homotopy Continuation Method for Solving ALP
1 ψ0 ← 0 ;
// Find an initial feasible solutions

2 x0 ← x(ψ0) ;
3 y0 ← y(ψ0) ;
// Determine the initial active sets, and set N and D to be their complements

4 B0 = {i x0 > 0} C0 ← {j y(j) > 0} // The regularization constraint is active, or the

solution is optimal

5 while ψi < ψ̄ and λi > 0 do
6 i← i + 1 ;

// Here |C| = |B|+ 2
// Calculate the space (line) of dual solutions --- the update direction

7

(
∆yi

∆λi

)
← null

(
AT
BC e

)
such that yi−1(ψ) = 0⇒ ∆yi(ψ) ≥ 0 ; // This is always possible

because there is always at most one such constraint, given the assumptions.

// Decide based on a potential variable improvement

// Calculate the maximum length of the update τ, breaking ties arbitrarily.

8 t1 ←
(

maxk∈C
−∆yi

k
yi−1

k

)−1
; // Some y becomes 0.

9 t2 ←
(

maxk∈N
−(ANC∆yi)k
(ANCyi−1)k

)−1
; // Some x needs to be added to the active set.

10 t3 ← λ
−∆λ ; // Regularization constraint

11 τ = min {t1, t2, t3} // Resolve the non-linearity update, where Kl is the set of

maximizers for tl
12 if τ = t1 then
13 C i ← C i−1 \ K1, Di ← (C i)C

14 else if τ = t2 then
15 Bi ← Bi−1 ∪ K2, N i ← (Bi)C

16 else if τ = t3 then
17 The regularization constraint is inactive, return the solution.

// Update the dual solutions

18 yi ← yi−1 + τ∆yi, λi ← λi−1 + τ∆λi ;
// Here |C| = |B|+ 1
// Calculate the update direction

19 ∆x ←
(

ABC
eB

)−1 (0
∆ψ

)
;

// Calculate the maximum length of the update τ, breaking ties arbitrarily.

20 t4 ←
(

maxk∈D
−aTk ∆xi

aTk xi−1−b

)−1
; // A constraint becomes active

21 t5 ←
(

maxk∈B
−∆xi

k
aTk xi−1−b

)−1
; // A variable τ = min {t4, t5}

// Update the primal solutions

22 xi ← xi−1 + τ∆xi ;
// Resolve the non-linearity update, where Kl is the set of maximizers for tl

23 if τ = t4 then
24 C i ← C i−1 ∪ K4, Di ← (C i)C

25 else if τ = t5 then
26 Bi ← Bi−1 \ K5, N i ← (Bi)C

100

Proposition 6.5. Given Assumption 6.4, the function x(ψ) is piecewise linear. Algorithm 7 then

converges to the optimal solution in a finite number of steps.

The proof of the proposition can be found in Section C.7.

Remark 6.6. Relaxing the assumptions that exactly one constraint or variable are leaving

or entering the problem. The solutions correspond to anti-cycling algorithms for solving

linear programs.

6.2 Penalty-based Homotopy Algorithm

This section describes an alternative homotopy method for a penalty-based formulation (Man-

gasarian, 2004) of the linear program. This formulation simplifies the homotopy algorithm

and makes it more efficient when dealing with degenerate solutions. In particular, the

homotopy method on the regular ALP assumes a careful balance between the number

of active constraints and the active variables. It is possible to address degenerate solu-

tions using anti-cycling-like approaches for the simplex method (Vanderbei, 2001). These

methods, however, are complicated and may need many steps to escape from degenerate

solutions.

Degenerate primal solutions are caused by multiple feasible optimal solutions. Therefore,

we address the problem with degenerate solutions by regularizing the dual solution. The

dual program (LP–L1):

max
y,λ

bTy− ψλ

s.t. ATy− eλ ≤ c

y, λ ≥ 0

(6.2)

then becomes:
max

y,λ
bTy− ψλ +

1
χ

yTy

s.t. ATy− eλ ≤ c

y, λ ≥ 0

(6.3)

101

Note the regularization coefficient yTy. As we show below, it is possible to choose a

sufficiently large coefficient χ without affecting the optimal solution. The corresponding

primal formulation is:

min
x

f2(x) = cTx + χ
1
2

∥∥[Ax− b]+
∥∥2

2

s.t. eTx ≤ ψ

x ≥ 0

(6.4)

This convex quadratic program corresponds to the quadratic penalty formulation of the

linear program. It has been studied previously and it is often easier to solve than the

original linear program (Mangasarian, 2004). The parameter χ represents the penalty for

constraint violation — typically it is a large number.

Notice that feasible solutions in this formulation may violate the constraints for an arbi-

trarily large value of χ. However, it can be shown that there is a sufficiently large value χ

that guarantees that the dual solution of the linear program (6.4) is the same as the dual

solution of the linear program (LP–L1).

Theorem 6.7. For any linear program (6.4) and all values ψ, there exists a value χ > 0 such that

the optimal solution of the program (6.4) is also optimal in the linear program (ALP–R).

This is a straightforward extension of previous results (Pinar, 1996; Mangasarian, 2004); It

follows by taking a maximal value over all values ψ ∈ [0, ψ̄]. The proof uses the analysis

of the dual formulation.

Given an optimal dual solution it is easy to obtain the primal optimal solution using the

active constraints. Just as in the regular homotopy continuation method, we make the

following assumption.

Definition 6.8. The optimal solution of the linear program (6.4) as a function of ψ is de-

noted as x : R → R|Φ|, assuming that the solution is a singleton. Notice that this is the

optimal solution, not the optimal objective value.

The homotopy method traces the trajectory of x(ψ) starting with ψ = 0. That means that

we have to guarantee that the values satisfy the optimality conditions at each point of the

102

trajectory. As Proposition 6.9 shows, the trajectory of x(ψ) is piecewise linear. Clearly, the

function f2(x(ψ)) is non-increasing in ψ.

To trace the trajectory of x(ψ), we first write down the Lagrangian of the solution:

L(x, λ, µ) = cTx + χ
1
2

∥∥[Ax− b]+
∥∥2

2 − λ(ψ− eTx)− xTµ

= cTx + χ
1
2
(A·Cx− bC)

2 − λ(ψ− eTx)− xTµ

= cTx + χ
1
2

(
xTAT

·CA·Cx− 2bTC A·Cx + bTC bC
)
− λ(ψ− eTx)− xTµ

Here λ is the dual variable that correspond to the constraint eTx ≤ ψ and µi are the dual

variables corresponding to constraints xi ≥ 0.

To take advantage of the sparsity of the solutions, we define active and inactive constraints

and variables. In general, the inactive constraints and variables can be largely ignored

when tracing the optimal solution in linear segments. The active variables and constraints

are defined as follows:

Active variables All non-zero variables and potentially and variable that may be non-zero

in adjacent segments. These are variables that are non-zero currently adjacent linear

segments of non-linearity points.

{i xi > 0} ⊆ B ⊆ {i µi = 0} (6.5)

Inactive variables Complement of active variables.

N = BC (6.6)

Active constraints All violated constraints and some exactly-satisfied constraints. These

are constraints that may be violated currently or in adjacent linear segments of non-

linearity points.

{j aTj x < bj} ⊆ C ⊆ {j aTj x ≤ bj} (6.7)

103

Inactive constraints Complement of active constraints.

D = CC (6.8)

The homotopy algorithm in Section 6.1 uses dual variables instead to define the active

constraints. A similar definition would be possible also in this case, but we do not pro-

vide it for the sake of simplicity. The unrestricted sets of all constraints or variables are

represented using “·”.

For a given set of active and inactive variables and constraints, the Lagrangian can be

written as:

L(x, λ, µ) = cTx + χ
1
2

(
xTAT

·CA·Cx− 2bTC A·Cx + bTC bC
)
− λ(ψ− eTx)− xTµ

= χ
1
2

(
xT
BAT
BCABCxB + xT

N AT
NCANCxN+

+2xT
N AT

NCABCxB − 2bTC ABCxB − 2bTC ANCxN + bTC bC
)
+

+ cTBxB + cTN xN − λ(ψ− eTBxB − eTN xN)− xT
BµB

The optimality conditions are then:

∇xB L = cB − χAT
BCbC + χAT

BCABCxB + λeB − µB = 0 (6.9)

∇xN L = cN − χAT
NCbC + χAT

NCABCxB + λeN − µN = 0 (6.10)

Additionally, the optimal solution must also satisfy the following constraints:

xB ≥ 0 xN = 0

µB = 0 µN ≥ 0

A·Cx ≤ bC A·Dx > bD

λ ≥ 0

(6.11)

104

The optimal values of all variables are parameterized as functions of ψ. The optimality

condition for xB(ψ) can be calculated from the equations (6.9) as follows:

χAT
BCABCxB(ψ) = −λ(ψ)eB + χAT

BCbC − cB

xB(ψ) =
(

χAT
BCABC

)−1 (
−eBλ(ψ) + χAT

BCbC − cB
)

xB(ψ) = −
(

χAT
BCABC

)−1
(eBλ(ψ) + cB) +

(
AT
BCABC

)−1
AT
BCbC (6.12)

Assuming that the constraint eTx ≤ ψ is satisfied with equality (Vanderbei, 2001), the value

of λ(ψ) can be computed from the equations (6.12) as follows:

ψ = eTBxB

χψ = −eTB
(

AT
BCABC

)−1
(eBλ(ψ) + cB) + χeTB

(
AT
BCABC

)−1
AT
BCbC

λ(ψ)eTB
(

AT
BCABC

)−1
eB = eTB

(
AT
BCABC

)−1 (
χAT
BCbC − cB

)
− χψ

λ(ψ) =
eTB
(

AT
BCABC

)−1 (
χAT
BCbC − cB

)
− χψ

eTB
(

AT
BCABC

)−1 eB
(6.13)

Note that xB and λ can be computed simultaneously by combining (6.12) and (6.13). This

is more practical to compute, but we show separate derivations to simplify the proofs of

the properties of the algorithm.

The variables µN can be calculated from (6.10) as follows:

µN (ψ) = cN − χAT
NCbC + χAT

NCABCxB(ψ) + eNλ(ψ) (6.14)

The difference between values of the regularization coefficient is ∆ψ = ψ′ − ψ. Then, the

differences in optimal values of other variables are calculated as follows:

∆λ = λ(ψ′)− λ(ψ) =
− χ∆ψ

eTB
(

AT
BCABC

)−1 eB
(6.15)

∆xB = x(ψ′)− x(ψ) = −
(

χAT
BCABC

)−1
eB∆λ (6.16)

∆µN = µN (ψ′)− µN (ψ) = χAT
NCABC∆xB + eN∆λ (6.17)

105

In addition, ∆xN = 0 and ∆µB = 0. Notice that the update directions of all variables are

linear in ∆ψ. The solution is linear an can be traced as long as the variables satisfy the

equalities in (6.11). At that point it may be necessary to update the active sets of variables

and constraints. The detailed update described in algorithm 6.2. The derivation above can

be summarized by the following proposition.

Proposition 6.9. The optimal solution x(ψ) of the linear program (6.4) with respect to ψ is a

piecewise linear function.

Theorem 6.10. algorithm 6.2 converges to the optimal solution in a finite number of steps.

The proof of the theorem can be found in Section C.7.

6.3 Efficient Implementation

This section shows a basic approach for efficiently updating the matrices involved in the

penalty-based homotopy method. This is a basic approach and better results may be ob-

tained using an LU decomposition, similarly to the standard simplex method.

Sherman-Morrison-Woodbury formula

(A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1 (6.18)

Schur complement

M =

A B

C D

S = A− BD−1C (6.19)

M−1 =

 S−1 −S−1B D−1

−D−1CS−1 D−1 + D−1CS−1BD−1

 (6.20)

Inverse of Schur complement

S =
(

A− BD−1C
)−1

= A−1 − A−1B
(

D + CA−1B
)−1

CA−1 (6.21)

106

Algorithm 6.2: Homotopy method for (6.4).

// Set the initial regularization parameter ψ
1 ψ0 ← 0 ;
// Calculate an initial solutions (Easy to calculate)

2 x0 ← x(0) ; // (6.4)
3 λ0 ← λ(0) ; // (6.13)
4 µ0 ← µ(0); // (6.14)
5 Initialize, maximizing the active sets: B0,N 0, C0,D0 ; // (6.5),(6.6),(6.7),(6.8)
// Loop through non-linearity points while the regularization

constraint is active

6 i← 0 ; // Counter

7 while λi > 0 do
8 i← i + 1 ;
9 Calculate update directions: ∆xi, ∆λi, ∆µi ; // (6.16),(6.15),(6.17)

// Calculate the maximal length of the update τ, breaking ties

arbitrarily.

10 t1 ←
(

maxk∈N
−∆µi

k
µi−1

k

)−1

t2 ←
(

maxk∈B
−∆xi

k
xi−1

k

)−1

; // Variable change

11 t3 ←
(

maxk∈D
−aTk ∆xi

aTk xi−1−b

)−1
t4 ←

(
maxk∈C

−aTk ∆xi

aTk xi−1−b

)−1
; // Constraint change

12 t5 ← λ
−∆λ ; // Regularization constraint

13 τ = min {t1, t2, t3, t4, t5} ;
// Update solutions

14 xi ← xi−1 + τ∆xi, λi ← λi−1 + τ∆λi, µi ← µi−1 + τ∆µi ;
// Resolve the non-linearity update, where Kl is the set of

maximizers for tl
15 if τ = t1 then
16 Bi ← Bi−1 ∪ K1, N i ← (Bi)C

17 else if τ = t2 then
18 Bi ← Bi−1 \ K2, N i ← (Bi)C

19 else if τ = t3 then
20 C i ← C i−1 \ K3, Di ← (C i)C

21 else if τ = t4 then
22 C i ← C i−1 ∪ K4, Di ← (C i)C

23 else if τ = t5 then
24 The regularization constraint is inactive, return the solution.

107

The inverse matrix that needs to be calculated in algorithm 6.2 is
(

AT
BCABC

)−1. The update

of the matrix in various situations will be:
Adding active variables The new matrix is denoted as Ā and the columns that correspond

to the additional variable are Q.

Ā =
(

A Q
)

ĀTA =

(
AT

QT

) (
A Q

)
=

(
ATA AQ
QTA QTQ

)
S̄ = ATA− AQ

(
QTQ

)−1
QTA

S̄−1 =
(

ATA
)−1
−
(

ATA
)−1

AQ
(

QTQ + QTA
(

ATA
)−1

AQ
)−1

QTA
(

ATA
)−1

(6.22)

(
ĀTA

)−1
=

 S̄−1 −S̄−1 AQ
(

QTQ
)−1

−
(

QTQ
)−1

QTAS̄−1
(

QTQ
)−1

+
(

QTQ
)−1

QTAS̄−1 AQ
(

QTQ
)−1

(6.23)

Removing active variables Simply a reverse of adding variables.
Adding active constraints The new matrix is denoted as Ā and the columns that corre-

spond to the additional variable are Q.

Ā =

(
A
Q

)
ĀTA =

(
AT QT

) (A
Q

)
= ATA + QQT (6.24)

(
ĀTA

)−1
=
(

ATA
)−1
−
(

ATA
)−1

Q
(

I + QT
(

ATA
)−1

Q
)−1

QT
(

ATA
)−1
− (6.25)

−
(

ATA
)−1

(6.26)

Removing active constraints Simply a reverse of adding constraints.

6.4 Empirical Evaluation

We evaluate the empirical performance of the homotopy methods on the mountain car

benchmark problem, described in more detail in Section B.1.3. The main utility of the

homotopy method is that it can be used to select the value of ψ, as described in Section 10.3.

As we show here, it may, however, perform better than commercial linear program solvers

when the coefficients of the approximate solution are sparse.

We evaluate the relaxed homotopy method, because it is easier to implement. This imple-

mentation does not suffer when a large number of constants become active. With the right

tie–breaking, the regular homotopy method is likely to perform identically.

108

0 2 4 6
10

−2

10
0

10
2

Regularization: ψ

T
im

e
(s

)

Mosek(R) Solver
Homotopy

Figure 6.1. Comparison of performance of homotopy method versus Mosek as a function
of ψ in the mountain car domain. The Mosek solutions are recomputed in increments for
values of ψ.

The result on the mountain car domain show that the homotopy method performs signifi-

cantly faster than a commercially available linear program solver Mosek. Figure 6.1 com-

pares the computational time of homotopy method and Mosek, when solving the problem

for multiple values of ψ in increments of 0.5 on the standard mountain car problem (Sut-

ton & Barto, 1998) with 901 piecewise linear features and 6000 samples. Even for any single

value ψ, the homotopy method solves the linear program about 3 times faster than Mosek,

as Figure 6.2 illustrates.

The performance of the homotopy method depends significantly on the structure of the

problem and is not likely to outperform general linear program solver for a fixed value

of ψ. More understanding of how the properties of the problem domain influence the

solution sparsity will be necessary to understand when using a homotopy method may

be advantageous. However, the strength of the homotopy method is that it computes the

optimal solution for a range of value ψ, which can be used to select its proper value, as

Section 10.3 shows.

6.5 Discussion and Related Work

Regularization using the L1 norm has recently gained popularity in solving regression

problems. The goal in regression is to approximate a function from samples, which is a

109

1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

Features

T
im

e
(s

)

Mosek(R) Solver
Homotopy

Figure 6.2. Comparison of performance of homotopy method versus Mosek as a function
of ψ in the mountain car domain. The Mosek solutions are computed for the final value of
ψ only.

much simpler setting than value function approximation. The L1 norm encourages spar-

sity, unlike the more standard L2 norm. That is, the optimal solutions tend to have only a

small number of non-zero coefficients. The practical consequences are the lower compu-

tational requirements and classifiers that are easier to use. The second motivation is that

the L1 regularization problem is closely related to Dantzig selector (Candes & Tao, 2007),

which was proposed to solve regression problems:

min
β
‖β‖1

s.t. ‖X∗(y− Xβ)‖∞ ≤ (1 + t−1)
√

2 log pσ

(6.27)

This formulation is guaranteed to find a representation close to the true representation

β∗, even when the number of features is greater than the number of samples. This re-

quires some technical assumptions that roughly correspond to the features being close to

orthogonal.

Because of the similarity of the Dantzig selector to L1 regularized ALPs, it is interesting

to discuss the solution methods for Dantzig selector. The initial work proposed to use a

modification of an interior-point method for this purpose (Candes & Tao, 2007). However,

(Friedlander & Saunders, 2007) argues that the computational complexity of solving for

the Dantzig selector may be much higher than solving the related LASSO optimization

problem (Hastie, Tibshirani, & Friedman, 2009).

110

LARS is a popular method for solving LASSO regularized problems by using a homo-

topy continuation method. It is efficient when the optimal solution is sparse — that is it

has only a small number of positive entries. To replicate the success of LARS, homotopy

continuation methods have recently been developed for Dantzig selector. DASSO (James,

Radchenko, & Lv, 2009) and Primal dual pursuit (Asif, 2008, 2009) are some notable ones.

Both methods essentially implement the same algorithm. These methods are in spirit sim-

ilar to the Simplex-like homotopy method that we propose, but are specifically tailored to

solving the Dantzig selector and are thus unsuitable for solving ALPs.

A connection between solving parametric linear programs and solving regularized linear

programs, such as regularized ALP, is described in (Yao & Lee, 2007). The authors pro-

pose to use a parametric simplex algorithm for computing the whole homotopy path. The

parametric simplex algorithm, however, does not take advantage of the potential sparsity

of the solutions for a low value of the regularization parameter. Therefore it is not suitable

for our purpose. The algorithm we propose could be seen as a sparse modification of the

simplex algorithm.

6.6 Contributions

The homotopy method presented in this chapter is new. The basic homotopy method is

closely related to DASSO and similar homotopy methods and does not represent the signif-

icant contribution. The main contribution in this chapter is the new simplified homotopy

method for solving linear programs, which is based on a quadratic penalty formulation.

This method is easier to implement than the basic one, and does not suffer from problems

when the solutions are highly degenerate. In addition, it corresponds to formulations that

have been extensively studied previously.

111

CHAPTER 7

SOLVING APPROXIMATE BILINEAR PROGRAMS

This chapter studies methods for solving approximate bilinear programs. Bilinear pro-

grams are an example of a global optimization problem because they represent minimiza-

tion of a concave function. Because global optimization problems are usually intractable,

it is important to study methods that can solve them approximately. Here, we describe

precise and approximate methods for solving general bilinear programs and show how

the structure of ABPs can be used to derive simpler formulations and methods.

Most of the existing approaches for solving bilinear programs focus on optimal solutions

to relatively small bilinear programs. ABPs are, on the other hand, usually large and ap-

proximate solutions are sufficient, since the optimal solution is an approximation of the

optimal value function anyway. This chapter proposes new methods that can be used to

approximately compute ABPs and describes why the more traditional methods are im-

practical.

The chapter is organized as follows. First, Section 7.1 describes the basic approaches to

solving bilinear programs. This elaborates on the brief discussion in Chapter 5 and also

describes the most common method for solving bilinear programs, which is based on con-

cavity cuts. Section 7.2 shows how general bilinear programs can be formulated as mixed

integer linear programs — the most studied global optimization problem formulation.

This formulation is, however, cumbersome and Section 7.3 proposes an ABP-specific for-

mulation. Section 7.4 studies the properties of a generic homotopy method for regularized

approximate bilinear programs. These properties are necessary to enable feature selection,

discussed in Chapter 10.

112

7.1 Solution Approaches

Solving a bilinear program is an NP-complete problem (Bennett & Mangasarian, 1992).

The membership in NP follows from the finite number of basic feasible solutions of the

individual linear programs, each of which can be checked in polynomial time. The NP-

hardness is shown by a reduction from the SAT problem (Bennett & Mangasarian, 1992).

Bilinear programs are non-convex and are typically solved using global optimization tech-

niques. The common solution methods are based on concave cuts (Horst & Tuy, 1996),

branch-and-bound (Carpara & Monaci, 2009), and successive approximation (Petrik & Zil-

berstein, 2007a). There are, however, no commercial solvers available for solving bilinear

programs. Bilinear programs can be formulated as concave quadratic minimization prob-

lems (Horst & Tuy, 1996), or mixed integer linear programs (Horst & Tuy, 1996; Petrik &

Zilberstein, 2007b), for which there are numerous commercial solvers available. Because

we are interested in solving very large bilinear programs, we describe simple approximate

algorithms next.

There are two main approaches to solving bilinear programs. In the first approach, a re-

laxation of the linear program is solved. The solution of the relaxed problem represents a

lower bound on the optimal solution. The relaxation is then iteratively refined until the so-

lution becomes feasible. In the second approach, feasible solutions of the bilinear program

are calculated. These are successively refined to calculate optimal solutions. An example

of such a method is based on concavity cuts.

Concavity cuts (Horst & Tuy, 1996) are the most common method for solving bilinear pro-

grams. These are cuts that are added between the iterations of algorithm 5.1. They elim-

inate the computed local solutions. New iterations of the iterative algorithm may then

discover better solutions. While concavity cuts can be applied to solve approximate bi-

linear programs, it is not always practical to use them. Computing a cut requires solving

a linear program multiple times. The number of linear programs that need to be solved

corresponds to the number of samples in ABP and each of the linear programs is about as

large as an ALP. This may be quite time consuming and the number of cuts required to

achieve the optimality may be very large.

113

The solution methods that rely on the relaxed formulation are typically based on methods

for solving integer linear programs. This is possible because bilinear programs can be easy

translated to integer linear programs, as shown in Sections 7.2 and 7.3. The relaxation of

the bilinear program is either a linear or semi-definite program. This relaxation is used

either to calculate lower bounds in the branch and bound method or calculate suboptimal

solutions. The relaxations are progressively refined using cutting plane methods.

The solution methods that refine locally optimal solutions of bilinear programs are based

on algorithm 5.1. This algorithm iteratively finds a local optimum and adds cuts that elimi-

nate the current suboptimal solution. Therefore, when a local search algorithm is executed

again on the bilinear program a different locally optimal solution is found. This locally

optimal solution is guaranteed to be different — albeit not better — than the previous one.

The algorithm stops when the set of feasible solutions is empty.

7.2 General Mixed Integer Linear Program Formulation

This section shows how to formulate a general bilinear program as a mixed integer linear

program. The formulation we derive here can be seen in a sense as a dual formulation of

the bilinear program. The formulation relies on the dual variables of the individual linear

programs, but is not truly dual since it is not a bilinear program.

This section shows a derivation for the following general bilinear program:

min
w,x y,z

sT1 w + rT1 x + xTCy + rT2 y + sT2 z

s.t. A1x + B1w ≥ b1 A2y + B2z ≥ b2

(7.1)

This formulation is not in the normal form (see Chapter 8) and is not directly related to

any ABP representation; it is chosen to simplify the derivation. This general formulation

overloads some symbols from the remainder of the thesis. In particular, the variables λ

introduced below are unrelated to the identically named variables in approximate bilinear

programs.

114

The bilinear program consists of two linear programs:

min
w,x

sT1 + rT1 + xTCy

s.t. A1x + B1w ≥ b1

and
min

y,z
xTCy + rT2 y + sT2 z

s.t. A2 + B2z ≥ b2

An optimal solution of (7.1) must be also optimal in the individual linear programs. Oth-

erwise, the objective function of the bilinear program can be improved by improving the

objective function of one of the linear programs. As a result, the necessary conditions for

the optimality of a solution of (7.1) are:

AT
1 λ1 = r1 + Cy AT

2 λ2 = r2 + CTx

BT
1 λ1 = s1 BT

2 λ2 = s2

λT
1 (A1x + B1w− b1) = 0 λT

2 (A2y + B2z− b2) = 0

λ1 ≥ 0 λ2 ≥ 0

These necessary optimality conditions can be derived either using complementary slack-

ness conditions (Vanderbei, 2001) or Karush-Kuhn-Tucker conditions (Boyd & Vanden-

berghe, 2004).

Using the inequalities above, the optimal solution of the bilinear program is expressed as:

sT1 w + rT1 x + xTCy + rT2 y + sT2 z = sT1 w + xT(Cy + r1) + rT2 y + sT2 z

= sT1 w + sT2 z + λT
1 b1 − λT

1 B1w

= sT1 w + sT2 z + λT
1 b1 − sT1 w

= sT2 z + λT
1 b1

115

This leads to the following optimization problem:

min
w,x,λ1 y,z,λ2

sT2 z + λT
1 b1

s.t. A1x + B1w ≥ b1 A2 + B2z ≥ b2

AT
1 λ1 = r1 + Cy AT

2 λ2 = r2 + CTx

BT
1 λ1 = s1 BT

2 λ2 = s2

λT
1 (A1x + B1w− b1) = 0 λT

2 (A2y + B2z− b2) = 0

λ1 ≥ 0 λ2 ≥ 0

The program is linear with the exception of the complementarity constraints that involve

λT
1 and λT

2 . In the special case when C = I, the original variables can be replaced by

y = AT
1 λ1 − r1 and x = AT

2 λ1 − r2 leading to the following:

min
w,λ1 z,λ2

sT2 z + λT
1 b1

s.t. A1AT
2 λ2 − A1r2 + B1w ≥ b1 A2AT

1 λ1 − A2r1 + B2z ≥ b2

AT
1 λ1 = r1 + Cy AT

2 λ2 = r2 + CTx

BT
1 λ1 = s1 BT

2 λ2 = s2

λT
1 A1AT

2 λ2 − λT
1 A1r2 + λT

1 B1w− λT
1 b1 = 0

λT
2 A2AT

1 λ1 − λT
2 A2r1 + λT

2 B2z− λT
2 b2 = 0

λ1 ≥ 0 λ2 ≥ 0

This is not a linear program, since it contains complementarity constraints, such as

λT
2 A2AT

1 λ1 − λT
2 A2r1 + λT

2 B2z− λT
2 b2 = 0.

It is not a separable bilinear program either, because the bilinear terms are now in the

constraints, not the objective function. However, the complementarity constraints can be

116

easily linearized using a set of integer variables. In particular, xy = 0 for non-negative x

and y can be replaced by

x ≤ M(1− q) y ≤ Mq

for q ∈ {0, 1} and some sufficiently large constant M. The mixed integer linear program is

then:

min
w,λ1,z,λ2,q1,q2

sT2 z + λT
1 b1

s.t. A1AT
2 λ2 − A1r2 + B1w ≥ b1 A2AT

1 λ1 − A2r1 + B2z ≥ b2

AT
1 λ1 = r1 + Cy AT

2 λ2 = r2 + CTx

BT
1 λ1 = s1 BT

2 λ2 = s2

A1AT
2 λ2 − A1r2 + B1w− b1 ≤ (1− q1)M

A2AT
1 λ1 − A2r1 + B2z− b2 ≤ (1− q2)M

λ1 ≤ Mq1 λ2 ≤ Mq2

λ1 ≥ 0 λ2 ≥ 0

q1 ∈ {0, 1}n q2 ∈ {0, 1}n

(7.2)

Here M needs to be an upper bound (scalar) on λ1 and λ2. While such a bound may be

difficult to estimate, any very large constant works in practice.

There are two main difficulties with this mixed integer linear program formulation. First,

it is very large. Even though the increase in size is only linear in comparison with the

bilinear program, this is significant because the approximate bilinear programs tend to be

large. The number of integer variables is also large. Second, the structure of this mixed

integer linear program is quite complex, making it hard to exploit the specific the structure

of the approximate bilinear programs.

7.3 ABP-Specific Mixed Integer Linear Program Formulation

The formulation in Section 7.2 is general but very impractical for approximate bilinear

programs. In this section, we present a more compact and structured mixed integer linear

117

program formulation, which relies on the specific properties of approximate bilinear pro-

grams. In particular, it uses the property that there is always a solution with an optimal

deterministic policy (see Theorem 5.2).

As in other parts of the thesis, we only show a formulation of the robust bilinear program

(ABP–L∞); the same approach applies to all other formulations that we propose. For ease

of reference, the robust approximate bilinear program is:

min
π λ,λ′,v

πTλ + λ′

s.t. Bπ = 1 Av− b ≥ 0

π ≥ 0 λ + λ′1 ≥ Av− b

λ, λ′ ≥ 0

v ∈ M

(ABP–L∞)

To formulate the mixed integer linear program, assume that there is τ ≥ λ∗ for the optimal

solution λ∗. The mixed integer linear program formulation that corresponds to (ABP–L∞)

is:
min

z,π,λ,λ′,v
1Tz + λ′

s.t. z ≥ λ− τ(1− π)

Bπ = 1

λ + λ′1 ≥ Av− b

Av− b ≥ 0

λ, λ′ ≥ 0

v ∈ M

π ∈ {0, 1}n

(ABP-MILP)

For an appropriate n.

The following theorem states the correctness of this formulation:

118

Theorem 7.1. Let (π1, λ1, λ′1) be an optimal (greedy-policy) solution of (ABP–L∞). Then:

(
π1, λ1, λ′1, z′ = min

z≥λ1−(τ−π1)
1Tz
)

is an optimal solution of (ABP-MILP) and vice versa, given that τ ≥ λ1. When in addition f1 and

f2 are the optimal objective values of (ABP–L∞) and (ABP-MILP), then f1 = f2.

The proof of the theorem can be found in Section C.8.

This mixed integer linear program formulation is much simpler than the general version.

It is much smaller and easier to analyze. Finally, it preserves the structure of the bilinear

program and can be used to derive insights into the bilinear formulation.

The actual performance of these solution methods strongly depends on the actual structure

of the problem. As usual in solving NP hard problems, there is very little understanding

of the theoretical properties that could guarantee faster solution methods. Our informal

experiments, however, show that the ABP-specific formulation can solve problems that are

orders of magnitude larger than problems that can be solved by the general formulation.

7.4 Homotopy Methods

In this section, we analyze the properties of a homotopy method for solving regularized

bilinear programs. While we do not propose a specific method, we focus on the properties

of the optimal objective value as a function of ψ.

Approximate bilinear programs can be, just like approximate linear programs, formulated

in terms of a regularization coefficient ψ. For the sake of clarity, we only focus on the robust

formulation (ABP–L∞). The set of representable value functions is in that case:

M = {Φx ‖x‖1,e ≤ ψ}.

We consider only L1 regularization for the representable value functions. The main ad-

vantage of the L1 norm in our setting is that it can be formulated using linear constraints.

119

Many of the results in this section also apply to regularization using other norms. The

regularized formulation of the approximate bilinear program is:

min
π λ,λ′,x

πTλ + λ′

s.t. Bπ = 1 AΦx− b ≥ 0

π ≥ 0 λ + λ′1 ≥ AΦx− b

λ, λ′ ≥ 0

‖x‖1,e ≤ ψ

(7.3)

First, we analyze the properties of the formulation. An advantageous property of L1 reg-

ularized approximate linear programs, is that their optimal objective value is a convex

function of the regularization coefficient ψ. Convexity is an important property in auto-

matically calculating ψ, as described in Section 10.3. Approximate bilinear programs, un-

like approximate linear programs, are not convex optimization problems. We now analyze

the optimal solution of (7.3) as a function of ψ.

The remainder of the section shows that the optimal objective function of (7.3) is not a

convex function of ψ. However, we show that additional assumptions on the structure of

the problem enable its use in the feature selection, as proposed in Section 10.3.

Definition 7.2. The optimal solution of (7.3) as a function of ψ is denoted as x(ψ), λ(ψ),

λ′(ψ), π(ψ), assuming that the solution is a singleton. This is the optimal solution, not the

optimal objective value. The optimal objective value of (7.3) is denoted as θB(ψ):

θB(ψ) = min
v∈M(ψ)∩K

‖v− Lv‖∞.

The following proposition states that the function θB(ψ) is not a convex function of ψ.

Proposition 7.3. The function θB(ψ) is not necessarily convex or concave.

The proof of the proposition can be found in Section C.8. The intuitive reason for the

non-convexity of θB is that it is a minimum over a set of convex functions. Clearly, for

120

a fixed policy, the function is convex, since ABP reduces to a linear program for a fixed

policy π. The ABP formulation minimizes the Bellman residual over the set of policies;

and a minimum of a set of convex functions may not be convex.

The importance of the convexity of θB is in finding the optimal value ψ using the homotopy

method. When the function is convex, there is only a single minimum and the homotopy

method may terminate once the function θB does stops decreasing. This is not possible

when the function is non-convex.

While the function θB may not be always convex it still possible to determine ψ̄ such that

the minimum of the function θB is in the interval [0, ψ̄]. The following theorem states this

property when the rewards for all actions in every state are the same.

Theorem 7.4. Assume that for every state s ∈ S we have that r(s, a1) = r(s, a2) for all a1, a2 ∈ A.

Also assume that e(1) = 0 and e(i) > 0 for all i > 0. For any ψ̄ and ψ ≥ ψ̄ the function θB satisfies

that:

θB(ψ) ≥ θB(0)−
ψ

ψ̄
(θB(0)− θB(ψ̄)).

The proof of the theorem can be found in Section C.8. The theorem states that the function

θB is very close to being convex. In particular, it satisfied the convexity assumption for

point ψ1 = 0 and arbitrary ψ2. Figure 7.1 illustrates this property of θB.

Notice that any MDP can be transformed to have rewards independent of actions by intro-

ducing additional auxiliary states. These additional states may, however, influence by the

set of representable value functions.

The property in Theorem 7.4 satisfied for MDPs that do have different rewards for actions

in the same state. It requires that when ψ = 0, the Bellman residual is the same for all

actions of a state (the Bellman residual for an action is: v − Lav). Then, when taking a

convex combination of the initial value function with another value function, the action

with the minimal Bellman residual is the same for the whole set of convex combinations.

There are a variety of possible homotopy algorithms that could be developed for bilinear

programs. These can be based on linear program relaxations of the bilinear programs. One

121

ψ̄

θB

ψ

ψ
ψ̄
(θB(0)− θB(ψ̄))

Figure 7.1. An illustration of θB and the property satisfied by θB(ψ̄).

option extend the linear program homotopy method algorithm 6.2 to algorithm 5.1. This

entails tracing the optimal solution of the linear, and switching the policy to a greedy one

during the computation. This method does not guarantee the optimality, however. The

best homotopy method for solving bilinear program will need to be based on a success-

ful method for solving bilinear programs and can be expected to be a small extension of

the linear program homotopy method. It is first necessary to determine the appropriate

method for solving bilinear programs directly.

7.5 Contributions

Most of the derivations in this chapter are new, though they often rely on standard tech-

niques. The derivation of the general mixed integer linear formulation uses some specific

properties of the approximate bilinear formulation. The main contributions are the mixed

integer linear formulation, described in Section 7.3 and the properties with respect to ψ,

which are described in Section 7.4. While we do not present any specific homotopy method

for solving bilinear programs, these could be derived from the homotopy method for solv-

ing linear programs.

122

CHAPTER 8

SOLVING SMALL-DIMENSIONAL BILINEAR PROGRAMS

Approximate bilinear formulations are inherently hard to solve as the NP hardness results

show. Chapter 7 presents several approaches for solving bilinear programs, which may

work very well in some circumstances, but not always. The complexity of solving a bilinear

program is due to the size of the bilinear terms. In this chapter, we consider simplifying

bilinear programs by explicitly restricting the number of variables involved in the bilinear

formulation.

Not all approximate bilinear programs can be formulated to have a small number of bilin-

ear terms. The results in this chapter only apply to the bilinear program (ABP–U). This

formulation minimizes a weighted L1 on the Bellman residual. The benefit of this approach

is not only simpler bilinear programs to be solved, but also a smaller risk of overfitting.

This chapter presents an anytime approximate algorithms for solving bilinear programs

with a small dimensionality of the bilinear term. First, Section 8.1 defines the bilinear

programs, as we use them in this chapter. Then Section 8.2 shows how to reduce the

number of bilinear terms — called dimensionality — in a general program and how this

applies to approximate bilinear programs. The basic version of the actual approximate

algorithm — successive approximation algorithm — is presented in Section 8.3. Section 8.4

shows how to calculate the approximation error of the bilinear algorithm and Section 8.5

shows how to sharpen the bounds and improve the algorithm. Finally, Section 8.6 shows

an offline error bound that can provide worst-case guarantees.

123

8.1 Bilinear Program Formulations

This chapter departs from the notation of bilinear programs and considers bilinear pro-

grams as maximization. This is due to historical reasons and to maintain consistency with

previous work (Petrik & Zilberstein, 2009).

Definition 8.1. A separable bilinear program in the normal form is defined as follows:

max
w,x,y,z

f (w, x, y, z) = sT1 w + rT1 x + xTCy + rT2 y + sT2 z

s.t. A1x + B1w = b1

A2y + B2z = b2

w, x, y, z ≥ 0

(8.1)

The size of the program is the total number of variables in w, x, y and z. The number of

variables in y determines the dimensionality of the program1.

Unless otherwise specified, all vectors are column vectors. We use boldface 0 and 1 to de-

note vectors of zeros and ones respectively of the appropriate dimensions. This program

specifies two linear programs that are connected only through the nonlinear objective func-

tion term xTCy. The program contains two types of variables. The first type includes the

variables x, y that appear in the bilinear term of the objective function. The second type

includes the additional variables w, z that do not appear in the bilinear term. As we show

later, this distinction is important because the complexity of the algorithm we propose de-

pends mostly on the dimensionality of the problem, which is the number of variables y

involved in the bilinear term.

The bilinear program in (8.1) is separable because the constraints on x and w are indepen-

dent of the constraints on y and z. That is, the variables that participate in the bilinear

term of the objective function are independently constrained. The theory of non-separable

bilinear programs is much more complicated and the corresponding algorithms are not

as efficient (Horst & Tuy, 1996). Thus, we limit the discussion in this work to separable

1It is possible to define the dimensionality in terms of x, or the minimum of dimensions of x and y.

124

bilinear programs and often omit the term “separable”. As discussed later in more detail,

a separable bilinear program may be seen as a concave minimization problem with multi-

ple local minima. It can be shown that solving this problem is NP-complete, compared to

polynomial time complexity of linear programs.

In addition to the formulation of the bilinear program shown in (8.1), we also use the

following formulation, stated in terms of inequalities:

max
x,y

xTCy

s.t. A1x ≤ b1 x ≥ 0

A2y ≤ b2 y ≥ 0

(8.2)

The latter formulation can be easily transformed into the normal form using standard

transformations of linear programs (Vanderbei, 2001). In particular, we can introduce slack

variables w, z to obtain the following identical bilinear program in the normal form:

max
w,x,y,z

xTCy

s.t. A1x− w = b1

A2y− z = b2

w, x, y, z ≥ 0

(8.3)

As we show later, the presence of the variables w, z in the objective function may prevent a

crucial function from being convex. Since this has an unfavorable impact on the properties

of the bilinear program, we introduce a compact form of the problem.

Definition 8.2. We say that the bilinear program in (8.1) is in a compact form when s1 and

s2 are zero vectors. It is in a semi-compact form if s2 is a zero vector.

125

The compactness requirement is not limiting because any bilinear program in the form

shown in (8.1) can be expressed in a semi-compact form as follows:

max
w,x,y,z,x̂,ŷ

sT1 w + rT1 x +

(
xT x̂

)C 0

0 1

y

ŷ

+ rT2 y

s.t. A1x + B1w = b1 A2y + B2z = b2

x̂ = 1 ŷ = sT2 z

w, x, y, z ≥ 0

(8.4)

Clearly, feasible solutions of (8.1) and (8.4) have the same objective value when ŷ is set

appropriately. Notice that the dimensionality of the bilinear term in the objective function

increases by 1 for both x and y. Hence, this transformation increases the dimensionality of

the program by 1.

8.2 Dimensionality Reduction

In this section, we show the principles behind automatically determining the necessary

dimensionality of a given problem. This the procedure applies to bilinear programs that

minimize L1 norm, but also works for general bilinear programs.

The dimensionality is inherently part of the model, not the problem itself. There may be

equivalent models of a given problem with very different dimensionality. Thus, proce-

dures for reducing the dimensionality are not necessary when the modeler can create a

model with minimal dimensionality. However, this is nontrivial in many cases. In addi-

tion, some dimensions may have little impact on the overall performance. To determine

which ones can be discarded, we need a measure of their contribution that can be com-

puted efficiently. We define these notions more formally later in this section.

We assume that the feasible sets have bounded L2 norms, and assume a general for-

mulation of the bilinear program, not necessarily in the semi-compact form. Given As-

sumption 8.7, this can be achieved by scaling the constraints when the feasible region is

bounded.

126

Assumption 8.3. For all x ∈ X and y ∈ Y, their norms satisfy ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1.

We discuss the implications of and problems with this assumption after presenting Theo-

rem 8.4. Intuitively, the dimensionality reduction removes those dimensions where g(y)

is constant, or almost constant. Interestingly, these dimensions may be recovered based

on the eigenvectors and eigenvalues of CTC. We use the eigenvectors of CTC instead of

the eigenvectors of C, because our analysis is based on L2 norm of x and y and thus of C.

The L2 norm ‖C‖2 is bounded by the largest eigenvalue of CTC. In addition, a symmetric

matrix is required to ensure that the eigenvectors are perpendicular and span the whole

space.

Given a problem represented using (8.1), let F be a matrix whose columns are all the eigen-

vectors of CTC with eigenvalues greater than some λ̄. Let G be a matrix with all the re-

maining eigenvectors as columns. Notice that together, the columns of the matrices span

the whole space and are real-valued, since CTC is a symmetric matrix. Assume without

loss of generality that the eigenvectors are unitary. The compressed version of the bilinear

program is then the following:

max
w,x,y1,y2,z

f̃ (w, x, y1, y2, z) = rT1 x + sT2 w + xTCFy1 + rT2

(
F G

)y1

y2

+ sT2 z

s.t. A1x + B1w = b

A2

(
F G

)y1

y2

+ B2z = b2

w, x, y1, y2, z ≥ 0

(8.5)

Notice that the program is missing the element xTCGy2, which would make its optimal

solutions identical to the optimal solutions of (8.1). A more practical approach to reducing

the dimensionality would be based on singular vector decomposition. This approach is

based on singular value decomposition and may be directly applied to any bilinear pro-

gram. The following theorem quantifies the maximum error when using the compressed

program.

127

ŷ

Y

‖y‖2 ≤ 1

Figure 8.1. Approximation of the feasible set Y according to Assumption 8.3.

Theorem 8.4. Let f ∗ and f̃ ∗ be optimal solutions of (8.1) and (8.5) respectively. Then:

ε = | f ∗ − f̃ ∗| ≤
√

λ̄.

Moreover, this is the maximal linear dimensionality reduction possible with this error without con-

sidering the constraint structure.

The proof of the theorem can be found in Section C.9.

Alternatively, the bound can be proved by replacing the equality A1x + B1w = b1 by

‖x‖2 = 1. The bound can then be obtained by Lagrange necessary optimality conditions.

In these bounds we use L2-norm; an extension to a different norm is not straightforward.

Note also that this dimensionality reduction technique ignores the constraint structure.

When the constraints have some special structure, it might be possible to obtain an even

tighter bound. As described in the next section, the dimensionality reduction technique

generalizes the reduction that Becker, Zilberstein, Lesser, and Goldman (2004) used implic-

itly.

The result of Theorem 8.4 is based on an approximation of the feasible set Y by ‖y‖2 ≤ 1, as

Assumption 8.3 states. This approximation may be quite loose in some problems, which

may lead to a significant multiplicative overestimation of the bound in Theorem 8.4. For

example, consider the feasible set depicted in Figure 8.1. The bound may be achieved

128

in a point ŷ, which is far from the feasible region. In specific problems, a tighter bound

could be obtained by either appropriately scaling the constraints, or using a weighted L2

with a better precision. We partially address this issue by considering the structure of

the constraints. To derive this, consider the following linear program and corresponding

theorem:
max

x
cTx

s.t. Ax = b x ≥ 0
(8.6)

Theorem 8.5. The optimal solution of (8.6) is the same as when the objective function is modified

to

cT(I− AT
(

AAT
)−1

A)x.

Proof. The objective function is:

max
{x Ax=b, x≥0}

cTx =

= max
{x Ax=b, x≥0}

cT(I− AT
(

AAT
)−1

A)x + cTAT
(

AAT
)−1

Ax

= cTAT
(

AAT
)−1

b + max
{x Ax=b, x≥0}

cT(I− AT
(

AAT
)−1

A)x.

The first term may be ignored because it does not depend on the solution x.

The following corollary shows how the above theorem can be used to strengthen the di-

mensionality reduction bound. For example, in zero-sum games, this stronger dimension-

ality reduction splits the bilinear program into two linear programs.

Corollary 8.6. Assume that there are no variables w and z in (8.1). Let:

Qi = (I− AT
i

(
Ai AT

i

)−1
Ai)), i ∈ {1, 2},

where Ai are defined in (8.1). Let C̃ be:

C̃ = Q1CQ2,

129

where C is the bilinear-term matrix from (8.1). Then the bilinear programs will have identical

optimal solutions with either C or C̃.

Proof. Using Theorem 8.5, we can modify the original objective function in (8.1) to:

f (x, y) = rT1 x + xT(I− AT
1

(
A1AT

1

)−1
A1))C(I− AT

2

(
A2AT

2

)−1
A2))y + rT2 y.

For the sake of simplicity we ignore the variables w and z, which do not influence the

bilinear term. Because both (I − AT
i
(

Ai AT
i
)−1 Ai) for i = 1, 2 are orthogonal projection

matrices, none of the eigenvalues in Theorem 8.4 will increase.

The bilinear program that minimizes the expected policy loss:

min
π λ,v

πTUλ− αTv

s.t. Bπ = 1 Av− b ≥ 0

π ≥ 0 λ = Av− b

v ∈ M

(ABP–U)

Although this bilinear program represents a minimization, this is immaterial to the di-

mensionality reduction procedure. The formulation above uses the approximation only

conceptually by requiring that v, λ ∈ M; to reduce the dimensionality the representation

must be used explicitly as:

min
π λ,x

πTU(AΦx− b)− αTΦx

s.t. Bπ = 1 AΦx− b ≥ 0

π ≥ 0 ‖x‖2 ≤ ψ

(8.7)

Here, v = Φx. The matrix C = UAΦ has at most m non-zero eigenvectors — where m is

the number of features — because its rank is at most m. Using Theorem 8.4, there exists an

identical bilinear program with dimensionality m.

130

The dimensionality reduction proposed in this chapter requires that the feasible regions

are bounded. This is the main reason why the bilinear program in (8.7) includes regular-

ization constraints. While the dimensionality reduction in this chapter does require that

the feasible sets have a bounded L2 norm, this is only necessary for excluding dimensions

with non-zero eigenvalue. It is also possible to solve the approximate bilinear program

with a large number of features, when the regularization can be used to eliminate dimen-

sions with non-zero eigenvalues. The algorithm for solving bilinear programs described

in this chapter can be practical for ABPs with up to about 50 features.

8.3 Successive Approximation Algorithm

The rest of this section presents a new anytime algorithm for solving bilinear programs.

The goal of the algorithm to is to produce a good solution quickly and then improve the

solution in the remaining time. Along with each approximate solution, the maximal ap-

proximation bound with respect to the optimal solution is provided. As we show below,

our algorithm can benefit from results produced by suboptimal algorithms, such as Algo-

rithm 5.1, to quickly determine tight approximation bounds.

We begin with an overview of a successive approximation algorithm for bilinear problems,

which takes advantage of a small number of bilinear terms. It is particularly suitable when

the input problem is large in comparison to its dimensionalit. We address the issue of

dimensionality reduction in Section 8.2.

We begin with a simple intuitive explanation of the algorithm, and then show how it can

be formalized. The bilinear program can be seen as an optimization game played by two

agents, in which the first agent sets the variables w, x and the second one sets the variables

y, z. This is a general observation that applies to any bilinear program. In any practical

application, the feasible sets for the two sets of variables may be too large to explore ex-

haustively. In fact, when this method is applied to DEC-MDPs, these sets are infinite and

continuous. The basic idea of the algorithm is to first identify the set of best responses of

one of the agents, say agent 1, to some policy of the other agent. This is simple because

once the variables of agent 2 are fixed, the program becomes linear, which is relatively easy

131

to solve. Once the set of best-response policies of agent 1 is identified, assuming it is of a

reasonable size, it is possible to calculate the best response of agent 2.

This general approach is also used by the coverage set algorithm (Becker et al., 2004). One

distinction is that the representation used in CSA applies only to DEC-MDPs, while our

formulation applies to bilinear programs–a more general representation. The main dis-

tinction between our algorithm and CSA is the way in which the variables y, z are chosen.

In CSA, the values y, z are calculated in a way that simply guarantees termination in finite

time. We, on the other hand, choose values y, z greedily so as to minimize the approxi-

mation bound on the optimal solution. This is possible because we establish bounds on

the optimality of the solution throughout the calculation. As a result, our algorithm con-

verges more rapidly and may be terminated at any time with a guaranteed performance

bound. Unlike the earlier version of the algorithm (Petrik & Zilberstein, 2007a), the ver-

sion described here calculates the best response using only a subset of the values of y, z.

As we show, it is possible to identify regions of y, z in which it is impossible to improve

the current best solution and exclude these regions from consideration.

We now formalize the ideas described above. To simplify the notation, we define feasible

sets as follows:

X = {(x, w) A1x + B1w = b1}

Y = {(y, z) A2y + B2z = b2}.

We use y ∈ Y to denote that there exists z such that (y, z) ∈ Y. In addition, we assume that

the problem is in a semi-compact form. This is reasonable because any bilinear program

may be converted to semi-compact form with an increase in dimensionality of one, as we

have shown earlier.

Assumption 8.7. The sets X and Y are bounded, that is, they are contained in a ball of a

finite radius.

While Assumption 8.7 is limiting, coordination problems under uncertainty typically have

bounded feasible sets because the variables correspond to probabilities bounded to [0, 1].

132

Assumption 8.8. The bilinear program is in a semi-compact form.

The main idea of the algorithm is to compute a set X̃ ⊆ X that contains only those elements

that satisfy a necessary optimality condition. The set X̃ is formally defined as follows:

X̃ ⊆
{
(x∗, w∗) ∃(y, z) ∈ Y f (w∗, x∗, y, z) = max

(x,w)∈X
f (w, x, y, z)

}
.

As described above, this set may be seen as a set of best responses of one agent to the

variable settings of the other. The best responses are easy to calculate since the bilinear

program in (8.1) reduces to a linear program for fixed w, x or fixed y, z. In our algorithm,

we assume that X̃ is potentially a proper subset of all necessary optimality points and

focus on the approximation error of the optimal solution. Given the set X̃, the following

simplified problem is solved.

max
w,x,y,z

f (w, x, y, z)

s.t. (x, w) ∈ X̃

A2y + B2z = b2

y, z ≥ 0

(8.8)

Unlike the original continuous set X, the reduced set X̃ is discrete and small. Thus the

elements of X̃ may be enumerated. For a fixed w and x, the bilinear program in (8.8)

reduces to a linear program.

To help compute the approximation bound and to guide the selection of elements for X̃,

we use the best-response function g(y), defined as follows:

g(y) = max
{w,x,z (x,w)∈X,(y,z)∈Y}

f (w, x, y, z) = max
{x,w (x,w)∈X}

f (w, x, y, 0),

with the second equality for semi-compact programs only and feasible y ∈ Y. Note

that g(y) is also defined for y /∈ Y, in which case the choice of z is arbitrary since it

133

does not influence the objective function. The best-response function is easy to calcu-

late using a linear program. The crucial property of the function g that we use to cal-

culate the approximation bound is its convexity. The following proposition holds because

g(y) = max{x,w (x,w)∈X} f (w, x, y, 0) is a maximum of a finite set of linear functions.

Proposition 8.9. The function g(y) is convex when the program is in a semi-compact form.

Proposition 8.9 relies heavily on the separability of (8.1), which means that the constraints

on the variables on one side of the bilinear term are independent of the variables on the

other side. The separability ensures that w, x are valid solutions regardless of the values

of y, z. The semi-compactness of the program is necessary to establish convexity, as shown

in C.25 in Section C.9.1. The example is constructed using the properties described in

the appendix, which show that f (w, x, y, z) may be expressed as a sum of a convex and a

concave function.

We are now ready to describe Algorithm 8.1, which computes the set X̃ for a bilinear prob-

lem B such that the approximation error is at most ε0. The algorithm iteratively adds the

best response (x, w) for a selected pivot point y into X̃. The pivot points are selected hierar-

chically. At an iteration j, the algorithm keeps a set of polyhedra S1 . . . Sj which represent

the triangulation of the feasible space Y, which is possible based on Assumption 8.7. For

each polyhedron Si = (y1 . . . yn+1), the algorithm keeps a bound εi on the maximal differ-

ence between the optimal solution on the polyhedron and the best solution found so far.

This error bound on a polyhedron Si is defined as:

εi = e(Si) = max
{w,x,y|(x,w)∈X,y∈Si}

f (w, x, y, 0)− max
{w,x,y|(x,w)∈X̃,y∈Si}

f (w, x, y, 0),

where X̃ represents the current, not final, set of best responses.

Next, a point y0 is selected as described below and n + 1 new polyhedra are created by

replacing one of the vertices by y0 to get: (y0, y2, . . .), (y1, y0, y3, . . .), . . . , (y1, . . . , yn, y0).

This is depicted for a 2-dimensional set Y in Figure 8.2. The old polyhedron is discarded

and the above procedure is then repeatedly applied to the polyhedron with the maximal

approximation error.

134

Algorithm 8.1: BestResponseApprox(B, ε0) returns (w, x, y, z)
// Create the initial polyhedron S1.

1 S1 ← (y1 . . . yn+1), Y ⊆ S1 ;
// Add best-responses for vertices of S1 to X̃

2 X̃ ← {arg max(x,w)∈X f (w, x, y1, 0), ..., arg max(x,w)∈X f (w, x, yn+1, 0)} ;
// Calculate the error ε and pivot point φ of the initial polyhedron

3 (ε1, φ1)← PolyhedronError(S1) ; // Section 8.4,Section 8.5

// Initialize the number of polyhedra to 1

4 j← 1 ;
// Continue until reaching a predefined precision ε0

5 while maxi=1,...,j εi ≥ ε0 do
// Find the polyhedron with the largest error

6 i← arg maxk=1,...,j εk ;
// Select the pivot point of the polyhedron with the largest error

7 y← φi ;
// Add the best response to the pivot point y to the set X̃

8 X̃ ← X ∪ {arg max(x,w)∈X f (w, x, y, 0)} ;
// Calculate errors and pivot points of the refined polyhedra

9 for k = 1, . . . , n + 1 do
10 j← j + 1 ;

// Replace the k-th vertex by the pivot point y
11 Sj ← (y, y1 . . . yk−1, yk+1, . . . yn+1) ;
12 (εj, φj)← PolyhedronError(Sj) ; // Section 8.4,Section 8.5

// Take the smaller of the errors on the original and the refined

polyhedron. The error may not increase with the refinement,

although the bound may

13 εj ← min{εi, εj} ;

// Set the error of the refined polyhedron to 0, since the region is

covered by the refinements

14 εi ← 0 ;

15 (w, x, y, z)← arg max{w,x,y,z (x,w)∈X̃,(y,z)∈Y} f (w, x, y, 0) ;
16 return (w, x, y, z) ;

For the sake of clarity, the pseudo-code of Algorithm 8.1 is simplified and does not address

any efficiency issues. In practice, g(yi) could be cached, and the errors εi could be stored in

a prioritized heap or at least in a sorted array. In addition, a lower bound li and an upper

bound ui is calculated and stored for each polyhedron Si = (y1 . . . yn+1). The function e(Si)

calculates their maximal difference on the polyhedron Si and the point where it is attained.

The error bound εi on the polyhedron Si may not be tight, as we describe in Remark 8.13.

As a result, when the polyhedron Si is refined to n polyhedra S′1 . . . S′n with online error

bounds ε′1 . . . ε′n, it is possible that for some k: ε′k > εi. Since S′1 . . . S′n ⊆ Si, the true error on

S′k is less than on Si and therefore ε′k may be set to εi.

135

y1

y3

y2
y0

Figure 8.2. Refinement of a polyhedron in two dimensions with a pivot y0.

Conceptually, the algorithm is similar to CSA, but there are some important differences.

The main difference is in the choice of the pivot point y0 and the bounds on g. CSA does

not keep any upper bound and it evaluates g(y) on all the intersection points of planes

defined by the current solutions in X̃. That guarantees that g(y) is eventually known pre-

cisely (Becker et al., 2004). A similar approach was also taken for POMDPs (Cheng, 1988).

The upper bound on the number of intersection points in CSA is (|X̃|dim Y). The principal

problem is that the bound is exponential in the dimension of Y, and experiments do not

show a slower growth in typical problems. In contrast, we choose the pivot points to min-

imize the approximation error. This is more selective and tends to more rapidly reduce the

error bound. In addition, the error at the pivot point may be used to determine the overall

error bound. The following proposition states the soundness of the triangulation. The cor-

rectness of the triangulation establishes that in each iteration the approximation error over

Y is equivalent to the maximum of the approximation errors over the current polyhedra

S1 . . . Sj.

Proposition 8.10. In the proposed triangulation, the sub-polyhedra do not overlap and they cover

the whole feasible set Y, given that the pivot point is in the interior of S.

The proof of the proposition can be found in Section C.9.

8.4 Online Error Bound

The selection of the pivot point plays a key role in the performance of the algorithm, in

both calculating the error bound and the speed of convergence to the optimal solution. In

this section we show exactly how we use the triangulation in the algorithm to calculate an

136

error bound. To compute the approximation bound, we define the approximate best-response

function g̃(y) as:

g̃(y) = max
{x,w (x,w)∈X̃}

f (w, x, y, 0).

Notice that z is not considered in this expression, since we assume that the bilinear pro-

gram is in the semi-compact form. The value of the best approximate solution during the

execution of the algorithm is:

max
{w,x,y,z (x,w)∈X̃,y∈Y}

f (w, x, y, 0) = max
y∈Y

g̃(y).

This value can be calculated at runtime when each new element of X̃ is added. Then the

maximal approximation error between the current solution and the optimal one may be

calculated from the approximation error of the best-response function g(·), as stated by

the following proposition.

Proposition 8.11. Consider a bilinear program in a semi-compact form. Then let w̃, x̃, ỹ be an

optimal solution of (8.8) and let w∗, x∗, y∗ be an optimal solution of (8.1). The approximation error

is then bounded by:

f (w∗, x∗, y∗, 0)− f (w̃, x̃, ỹ, 0) ≤ max
y∈Y

(g(y)− g̃(y)) .

Proof.

f (w∗, x∗, y∗, 0)− f (w̃, x̃, ỹ, 0) = max
y∈Y

g(y)−max
y∈Y

g̃(y) ≤ max
y∈Y

g(y)− g̃(y)

Now, the approximation error is maxy∈Y g(y)− g̃(y), which is bounded by the difference

between an upper bound and a lower bound on g(y). Clearly, g̃(y) is a lower bound on

g(y). Given points in which g̃(y) is the same as the best-response function g(y), we can

use Jensen’s inequality to obtain the upper bound. This is summarized by the following

lemma.

137

Lemma 8.12. Let yi ∈ Y for i = 1, . . . , n + 1 such that g̃(yi) = g(yi). Then

g
(

∑n+1
i=1 ciyi

)
≤ ∑n+1

i=1 cig(yi) when ∑n+1
i=1 ci = 1 and ci ≥ 0 for all i.

The actual implementation of the bound relies on the choice of the pivot points. Next we

describe the maximal error calculation on a single polyhedron defined by S = (y1 . . . yn).

Let matrix T have yi as columns, and let L = {x1 . . . xn+1} be the set of the best responses

for its vertices. The matrix T is used to convert any y in absolute coordinates to a relative

representation t that is a convex combination of the vertices. This is defined formally as

follows:

y = Tt =

. . .

y1 y2 . . .

. . .

 t

1 = 1Tt

0 ≤ t

where the yi’s are column vectors.

We can represent a lower bound l(y) for g̃(y) and an upper bound u(y) for g(y) as:

l(y) = max
x∈L

rTx + xTCy

u(y) = [g(y1), g(y2), . . .]Tt = [g(y1), g(y2), . . .]T

 T

1T

−1y

1

 ,

The upper bound correctness follows from Lemma 8.12. Notice that u(y) is a linear func-

tion, which enables us to use a linear program to determine the maximal-error point.

Remark 8.13. Notice that we use L instead of X̃ in calculating l(y). Using all of X̃ would

lead to a tighter bound, as it is easy to show in three-dimensional examples. However, this

also would substantially increase the computational complexity.

138

Now, the error on a polyhedron S may be expressed as:

e(S) ≤ max
y∈S

u(y)− l(y) = max
y∈S

u(y)−max
x∈L

rTx + xTCy

= max
y∈S

min
x∈L

u(y)− rTx− xTCy.

We also have

y ∈ S⇔
(

y = Tt ∧ t ≥ 0 ∧ 1Tt = 1
)

.

As a result, the point with the maximal error bound may be determined using the follow-

ing linear program in terms of variables t, ε:

max
t,ε

ε

s.t. ε ≤ u(Tt)− rTx− xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

(8.9)

Here x is not a variable. The formulation is correct because all feasible solutions are

bounded below the maximal error and any maximal-error solution is feasible.

Proposition 8.14. The optimal solution of (8.9) is equivalent to maxy∈S |u(y)− l(y)|.

We thus select the next pivot point to greedily minimize the error. The maximal difference

is actually achieved in points where some of the planes meet, as Becker et al. (2004) have

suggested. However, checking these intersections is very similar to running the simplex

algorithm. In general, the simplex algorithm is preferable to interior point methods for

this program because of its small size (Vanderbei, 2001).

algorithm 8.2 shows a general way to calculate the maximal error and the pivot point on

the polyhedron S. This algorithm may use the basic formulation in (8.9), or the more

advanced formulations in equations (8.10), (8.11), and (8.17) defined in Section 8.5.

In the following section, we describe a more refined pivot point selection method that can

in some cases dramatically improve the performance.

139

Algorithm 8.2: PolyhedronError(B, S)

1 P ← one of (8.9), or (8.10), or (8.11), or (8.17) ;
2 t← the optimal solution of P ;
3 ε← the optimal objective value of P ;
// Coordinates t are relative to the vertices of S, convert them to

absolute values in Y
4 φ← Tt ;
5 return (ε, φ) ;

−6 −4 −2 0 2 4 6

5

10

15

20

h

Yh Yh

Figure 8.3. The reduced set Yh that needs to be considered for pivot point selection.

8.5 Advanced Pivot Point Selection

As described above, the pivot points are chosen greedily to both determine the maximal

error in each polyhedron and to minimize the approximation error. The basic approach

described in Section 8.3 may be refined, because the goal is not to approximate the function

g(y) with the least error, but to find the optimal solution. Intuitively, we can ignore those

regions of Y that will not guarantee any improvement of the current solution, as illustrated

in Figure 8.3. As we show below, the search for the maximal error point could be limited

to this region as well.

We first define a set Yh ⊆ Y that we will search for the maximal error, given that the optimal

solution f ∗ ≥ h.

Yh = {y g(y) ≥ h, y ∈ Y}.

The next proposition states that the maximal error needs to be calculated only in a superset

of Yh.

140

Proposition 8.15. Let w̃, x̃, ỹ, z̃ be the approximate optimal solution and w∗, x∗, y∗, z∗ be the op-

timal solution. Also let f (w∗, x∗, y∗, z∗) ≥ h and assume some Ỹh ⊇ Yh. The approximation error

is then bounded by:

f (w∗, x∗, y∗, z∗)− f (w̃, x̃, ỹ, z̃) ≤ max
y∈Ỹh

g(y)− g̃(y).

Proof. First, f (w∗, x∗, y∗, z∗) = g(y∗) ≥ h and thus y∗ ∈ Yh. Then:

f (w∗, x∗, y∗, z∗)− f (w̃, x̃, ỹ, z̃) = max
y∈Yh

g(y)−max
y∈Y

g̃(y)

≤ max
y∈Yh

g(y)− g̃(y)

≤ max
y∈Ỹh

g(y)− g̃(y)

Proposition 8.15 indicates that the point with the maximal error needs to be selected only

from the set Yh. The question is how to easily identify Yh. Because the set is not convex in

general, a tight approximation of this set needs to be found. In particular, we use methods

that approximate the intersection of a superset of Yh with the polyhedron that is being

refined, using the following methods:

1. Feasibility [(8.10)]: Require that pivot points are feasible in Y.

2. Linear bound [(8.11)]: Use the linear upper bound u(y) ≥ h.

3. Cutting plane [(8.17)]: Use the linear inequalities that define YC
h , where

YC
h = R|Y| \Yh is the complement of Yh.

Any combination of these methods is also possible.

Feasibility The first method is the simplest, but also the least constraining. The linear

program to find the pivot point with the maximal error bound is as follows:

141

max
ε,t,y,z

ε

s.t. ε ≤ u(Tt)− rTx + xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

y = Tt

A2y + B2z = b2

y, z ≥ 0

(8.10)

This approach does not require that the bilinear program is in the semi-compact form.

Linear Bound The second method, using the linear bound, is also very simple to imple-

ment and compute, and it is more selective than just requiring feasibility. Let:

Ỹh = {y u(y) ≥ h} ⊇ {y g(y) ≥ h} = Yh.

This set is convex and thus does not need to be approximated. The linear program used to

find the pivot point with the maximal error bound is as follows:

max
ε,t

ε

s.t. ε ≤ u(Tt)− rTx + xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

u(Tt) ≥ h

(8.11)

The difference from (8.9) is the last constraint. This approach requires that the bilinear

program is in the semi-compact form to ensure that u(y) is a bound on the total return.

Cutting Plane The third method, using the cutting plane elimination, is the most com-

putationally intensive one, but also the most selective one. Using this approach requires

additional assumptions on the other parts of the algorithm, which we discuss below. The

142

f2

f1

y2

y3

y1

Y−Yh

Figure 8.4. Approximating Yh using the cutting plane elimination method.

method is based on the same principle as α-extensions in concave cuts (Horst & Tuy, 1996).

We start with the set YC
h because it is convex and may be expressed as:

(
max

w,x
sT1 w + rT1 x + yTCTx + rT2 y

)
≤ h (8.12)

A1x + B1w = b1 (8.13)

w, x ≥ 0 (8.14)

To use these inequalities in selecting the pivot point, we need to make them linear. But

there are two obstacles: (8.12) contains a bilinear term and is a maximization. Both of these

issues can be addressed by using the dual formulation of (8.12). The corresponding linear

program and its dual for fixed y, ignoring constants h and rT2 y, are:

max
w,x

sT1 w + rT1 x + yTCTx

s.t. A1x + B1w = b1

w, x ≥ 0

(8.15)

and
min

λ
bT1 λ

s.t. AT
1 λ ≥ r1 + Cy

BT
1 λ ≥ s1

(8.16)

143

Using the dual formulation, (8.12) becomes:

(
min

λ
bT1 λ + rT2 y

)
≤ h

AT
1 λ ≥ r1 + Cy

BT
1 λ ≥ s1

Now, we use the fact that for any function φ and any value θ the following holds:

min
x

φ(x) ≤ θ ⇔ (∃x) φ(x) ≤ θ.

Finally, this leads to the following set of inequalities.

rT2 y ≤ h− bT1 λ

Cy ≤ AT
1 λ− r1

s1 ≤ BT
1 λ

The above inequalities define the convex set YC
h . Because its complement Yh is not neces-

sarily convex, we need to use its convex superset Ỹh on the given polyhedron. This is done

by projecting YC
h , or its subset, onto the edges of each polyhedron as depicted in Figure 8.4

and described in Algorithm 8.3. The algorithm returns a single constraint which cuts off

part of the set YC
h . Notice that only the combination of the first n points fk is used. In

general, there may be more than n points, and any subset of points fk of size n can be used

to define a new cutting plane that constraints Yh. This did not lead to significant improve-

ments in our experiments. The linear program to find the pivot point with the cutting

plane option is as follows:

144

Algorithm 8.3: PolyhedronCut({y1, . . . , yn+1}, h) returns constraint σTy ≤ τ

// Find vertices of the polyhedron {y1, . . . , yn+1} inside of YC
h

1 I ← {yi yi ∈ YC
h } ;

// Find vertices of the polyhedron outside of YC
h

2 O ← {yi yi ∈ Yh} ;
// Find at least n points fk in which the edge of Yh intersects an edge of the

polyhedron

3 k← 1 ;
4 for i ∈ O do
5 for j ∈ I do
6 fk ← yj + maxβ{β β(yi − yj) ∈ (YC

h)} ;
7 k← k + 1 ;
8 if k ≥ n then
9 break ;

10 Find σ and τ, such that [f1, . . . , fn]σ = τ and 1Tσ = 1 ;
// Determine the correct orientation of the constraint to have all y in Yh

feasible

11 if ∃yj ∈ O, and σTyj > τ then
// Reverse the constraint if it points the wrong way

12 σ← −σ ;
13 τ ← −τ ;

14 return σTy ≤ τ

max
ε,t,y

ε

s.t. ε ≤ u(Tt)− rTx + xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

y = Tt

σTy ≤ τ

(8.17)

Here, σ, and τ are obtained as a result of running algorithm 8.3.

Note that this approach requires that the bilinear program is in the semi-compact form to

ensure that g(y) is convex. The following proposition states the correctness of this proce-

dure.

Proposition 8.16. The resulting polyhedron produced by Algorithm 8.3 is a superset of the inter-

section of the polyhedron S with the complement of Yh.

Proof. The convexity of g(y) implies that YC
h is also convex. Therefore, the intersection

145

Q = {y σTy ≥ τ} ∩ S

is also convex. It is also a convex hull of points fk ∈ YC
h . Therefore, from the convexity of

YC
h , we have that Q ⊆ YC

h , and therefore S−Q ⊇ Yh.

8.6 Offline Bound

In this section we develop an approximation bound that depends only on the number of

points for which g(y) is evaluated and the structure of the problem. This kind of bound

is useful in practice because it provides performance guarantees without actually solving

the problem. In addition, the bound reveals which parameters of the problem influence

the algorithm’s performance. The bound is derived based on the maximal slope of g(y)

and the maximal distance among the points.

Theorem 8.17. To achieve an approximation error of at most ε, the number of points to be evaluated

in a regular grid with k points in every dimension must satisfy:

kn ≥
(
‖C‖2

√
nn

ε

)
,

where n is the number of dimensions of Y.

The theorem follows using basic algebraic manipulations from the following lemma.

Lemma 8.18. Assume that for each y1 ∈ Y there exists y2 ∈ Y such that ‖y1 − y2‖2 ≤ δ and

g̃(y2) = g(y2). Then the maximal approximation error is:

ε = max
y∈Y

g(y)− g̃(y) ≤ ‖C‖2δ.

Proof. Let y1 be a point where the maximal error is attained. This point is in Y, because

this set is compact. Now, let y2 be the closest point to y1 in L2 norm. Let x1 and x2 be the

146

best responses for y1 and y2 respectively. From the definition of solution optimality we can

derive:

rT1 x1 + rT2 y2 + xT
1 Cy2 ≤ rT1 x2 + rT2 y2 + xT

2 Cy2

rT1 (x1 − x2) ≤ −(x1 − x2)
TCy2.

The error now can be expressed, using the fact that ‖x1 − x2‖2 ≤ 1, as:

ε = rT1 x1 + rT2 y1 + xT
1 Cy1 − rT1 x2 − rT2 y1 − xT

2 Cy1

= rT1 (x1 − x2) + (x1 − x2)
TCy1

≤ −(x1 − x2)
TCy2 + (x1 − x2)

TCy1

≤ (x1 − x2)
TC(y1 − y2)

≤ ‖y1 − y2‖2
(x1 − x2)T

‖(x1 − x2)‖2
C

(y1 − y2)

‖y1 − y2‖2

≤ ‖y1 − y2‖2 max
{x ‖x‖2≤1}

max
{y ‖y‖2≤1}

xTCy

≤ δ‖C‖2

The above derivation follows from Assumption 8.3, and the bound reduces to the matrix

norm using Cauchy-Schwartz inequality.

Not surprisingly, the bound is independent of the local rewards and transition structure of

the agents. Thus it in fact shows that the complexity of achieving a fixed approximation

with a fixed interaction structure is linear in the problem size. However, the bounds are

still exponential in the dimensionality of the space. Notice also that the bound is additive.

8.7 Contributions

There are several contributions described in this chapter. The first contribution in the chap-

ter is the iterative algorithm that can be used to solve bilinear programs. This algorithm

can be used to solve bilinear program that have a small number of bilinear terms. The

147

second main contribution is the dimensionality reduction method that can be used to au-

tomatically reduce the number of bilinear terms based on the structure of the problem.

This approach can be used to reduce the number of bilinear terms in some formulations of

approximate bilinear programs.

148

PART III

SAMPLING, FEATURE SELECTION,
AND SEARCH

CHAPTER 9

SAMPLING BOUNDS

Sampling is an important part of value function approximation. The remainder of the the-

sis generally assumes that the sampled states and actions satisfy Assumptions 2.26, 2.27,

and 2.28, which are quite general. This chapter describes structures of MDPs than can be

used to satisfy these assumptions. We establish both worst-case and probabilistic bounds

that leverage existing machine learning regression methods. These bounds rely on the

guarantees of optimization–based algorithms for value function approximation coupled

and the regularization of the value function.

The sampling bounds in this chapter apply to domains in which samples cannot be gath-

ered at all. Instead, they are provided in advance and the solution must be controlled for

the missing ones. For example, the bounds can be used to choose the appropriate features,

as discussed in Chapter 10.

The sampling bounds we proposed could also apply to domains with an available model,

in which samples can be gathered in an arbitrary order for any state and action. Because it

may be expensive — computationally or otherwise — to gather samples, it is still necessary

to use as few of them as possible. The methods that we propose can be used to greedily

choose samples that minimize the bounds. It may be, however, more interesting to develop

methods that minimize the sampling error globally.

In comparison to previous work, the bounds proposed in this chapter explicitly consider

value function approximation and can be used to derive bounds on the policy loss. In par-

ticular, to obtain bounds on the policy loss are obtained in conjunction with Theorem 4.4

and Theorem 5.13, depending on the value function approximation method used.

This chapter is organized as follows. First, Section 9.1 outlines the basic considerations

and the framework we consider in developing the sampling bounds. As discussed in Sec-

150

tion 2.5, the sampling error consists of two main components: 1) the state selection error,

and 2) the transition estimation error. Section 9.2 presents bounds on the state selection

error (Assumption 2.26). Section 9.3 analyzes the errors due to the estimation of the ini-

tial distribution (Assumption 2.27). Section 9.4 presents bounds on transition estimation

error (Assumption 2.28) and proposes to use common random numbers to reduce the er-

ror. Then, Section 9.5 shows how the sampling framework can be implemented. Section 9.6

draws connections to other work on sampling considerations in value function approxima-

tion and compares it to the proposed approach. Finally, Section 9.7 presents experimental

evaluation of the sampling methods.

9.1 Sampling In Value Function Approximation

Sampling, as an optimization with incomplete information, is an issue that has been widely

addressed in the machine learning community for the problems of regression and classi-

fication. The challenge in these problems is to guarantee that a solution based on a small

subset of the data generalizes also to the remainder of the data (Devroye, Gyorfi, & Lugosi,

1996; Vapnik, 1999; Bousquet, Boucheron, & Lugosi, 2004).

The goal of regression in machine learning is to estimate a function on a domain from a set

of its values. We now formulate value function approximation as a regression problem in

order to illustrate the differences. Our treatment of regression here is very informal; please

see for example Gyorfi, Kohler, Lrzyzak, and Walk (2002) for a more formal description.

Regression in value function approximation can be seen as the problem of estimating a

function f : S → R that represents the Bellman residual:

f (s) = (v− Lv)(s)

for some fixed value function v. Regression methods typically assume that a subset of the

function values is known. That is why f (s) must represent the Bellman residual — which

is known from the samples — and not the value function — which is unknown.

151

Again, the goal of regression is to find a function f̃ ∈ F based on sampled values of f (si)

for s1 . . . sn ∈ S drawn i.i.d. according to a distribution µ. Commonly, the function f̃

is chosen by minimizing the sample error ∑n
i=1(f (si)− f̃ (si))

2 to minimize the true error

∑s∈S (f (s)− f̃ (s))2. The sampling bounds are then on the difference between the sample

error and the true error:∣∣∣∣∣ 1n n

∑
i=1

(f (si)− f̃ (si))
2 − ∑

s∈S
µ(s)(f (s)− f̃ (s))2

∣∣∣∣∣ .

Most bounds on this error rely on the redundancy of the samples with respect to the set of

functions in F . That is, given a sufficient number of samples s1 . . . sn, additional samples

have very little influence on which function f̃ is chosen from the set of possibilities.

The problem with value function approximation is that there is no fixed distribution µ over

the states that limits the importance of function values. An important distribution over the

states in bounding the policy loss is the state visitation frequency (1− γ)uπ for a policy π.

Here, (1− γ) is just a normalization coefficient. Unfortunately, this distribution depends

on the policy, which depends on the value function. In the regression, this would mean

that µ is not fixed, but it instead depends on the result f̃ . As a result, at no point it is simply

possible to assume that additional samples will have a small influence on the choice of the

function f̃ — the cumulative distribution may shift heavily in favor of the non-sampled

states with every new sample.

Because of the difference between regression and value function approximation setting,

we need different assumptions than the assumptions that are standard in regression. In

particular, the assumptions in regression do not concern the space which is not sampled,

since most likely, it is not likely according to µ. On the other hand, the assumptions for

sampling bounds for value function approximation must be uniform over the state space,

since the distribution µ may change arbitrarily. Therefore, the assumptions for value func-

tion approximation must be stronger. Yet, as we show later in the chapter, regression

results methods can be used to compute tight bounds on the sampling error.

To derive bounds on the sampling error we assume that the representable value functions

are regularized. Our focus is on regularization that uses the L1 norm, but the extension

152

to other polynomial norms is trivial using the Holder’s inequality. The advantages of

the L1 norm are that 1) it can be easily represented using a set of linear constraints, and

2) it encourages sparsity of the solution coefficients. We use the following refinement of

Assumption 2.21.

Assumption 9.1. The set of representable functions for the L1 norm are defined as:

M(ψ) = {Φx ‖x‖1,e ≤ ψ}.

such that φ1 = 1 and e(1) = 0 and e(i) > 0 for all i > 1. Note that the norm is weighted by

e.

Assumption 9.1 implies Assumption 2.21. We also use the following weighted L∞ norm:

‖x‖∞,e−1 = max
i

|x(i)|/e(i) when |x(i)| > 0

0 otherwise
.

The following lemma relates the weighted L1 and L∞ norm and will be useful in deriving

bounds.

Lemma 9.2. Let v ∈ M(ψ) as defined in Assumption 9.1. Then for any y of an appropriate size:

|yTv| ≤ |y|T|v| ≤ ψ‖y‖∞,e−1

The assumptions that we introduce must capture the structure of the MDP. Because many

structures have been studied in the context of metric spaces, it is convenient to map the

state space to a metric space (in particular Rn). This makes it possible to take advantage of

the structures proposed for metric spaces.

Definition 9.3 (State Embedding Function). The state embedding function k : S → Rn

maps states to a vector space with an arbitrary norm ‖ · ‖. The state–action embedding

function k : (S × A) → Rn maps states and actions the a vector space with an arbitrary

norm ‖ · ‖. It is also possible to define a state–action–feature embedding function similarly.

153

The state embedding function is a part of the assumed structure of the MDP. In many ap-

plications, the definition of the function follows naturally from the problem. The meaning

of the function k is specified when not apparent from the context.

9.2 State Selection Error Bounds

The state selection error — defined in Assumption 2.26 — is due to value function error

in states that are not covered by the samples. With no assumptions over the structure of

the transitions and rewards over the state space, the error may be arbitrarily large. Even

simply bounding the maximal and minimal reward does not lead to useful bounds. It is,

therefore, necessary to propose structures that can be used to bound the sampling error.

In this thesis, we are interested in problems with very large, or infinite state spaces. To

avoid unnecessary technical issues, we assume that the state space is finite, but very large.

Even when the state space is very large, it may be possible that the optimal policy does

not reach a large number of states from the initial states. It is then unnecessary to bound

the approximation error on states that are not visited. Methods that are suitable for such

domains are discussed in more detail in Section 9.6 and Chapter 11. In this chapter, we

assume that any policy will visit a very large number of states — much larger than it is

possible to sample.

The state selection error bound assumes that the transitions for the sampled states are

known precisely — i.e. samples Σ̄ are available. The transition estimation error for samples

Σ̃ is additive and can be treated independently.

One of the main difficulties in deriving the sampling bounds is to capture use the fact that

the value functions are transitive–feasible with respect to the sampled Bellman residual.

More formally, this means that it is necessary to guarantee the following:

min
s∈S

(v− Lv)(s) ≥ −εp,

or also the following:

154

min
s∈S

(v− Lv)(s)−min
s∈Σ̄

(v− L̄v)(s) ≥ −εp.

We propose two methods that can capture this fact. We start with a simple local modeling

assumption and then extend it to regression-based models.

9.2.1 Local Modeling Assumption

The local modeling assumption assumes that states that are close in the embedded space

are also similar in terms of transitions and rewards. The idea is to define a mapping that

maps every state to a single similar sampled state. Because of the similarity to the sampled

states, the Bellman constraint violation in the unsampled state cannot be very large, as we

show formally below. The following theorem shows how mapping every state to a sampled

state can bound the state selection error.

Theorem 9.4. Assume Assumption 9.1 and that there is a sample mapping function χ : S → Σ̄

such that for all v ∈ M(ψ):

max
s∈S
|(v− Lv)(s)− (v− L̄v)(χ(s))| ≤ ε(ψ).

Then, the state selection error in Assumption 2.26 can be bounded as: εp(ψ) ≤ ε(ψ).

The proof of the theorem can be found in Section C.10. The actual local modeling assump-

tion is as follows.

Assumption 9.5. Assume that samples Σ̄ are available. Assume also that features and

transitions satisfy Lipschitz-type constraints:

‖φ(s̄)− φ(s)‖∞,e−1 ≤ Kφ‖k(s)− k(s̄)‖

|r(s̄)− r(s)| ≤ Kr‖k(s)− k(s̄)‖

‖P(s̄, a)Tφi − P(s, a)Tφi‖∞,e−1 ≤ Kp‖k(s)− k(s̄)‖ ∀a ∈ A

Here φi denotes a vector representation of a feature across all states.

155

The assumption states that the parameters of the MDP are Lipschitz continuous and is

very similar to the local modeling assumption in metric E3 (Kakade, 2003; Kakade, Kearns,

& Langford, 2003). An alternative assumption with almost identical implications would

bound the difference ‖P(s̄, a)− P(s, a)‖1.

Assumption 9.5 characterizes the general properties of the MDP, but ignores the properties

of the actual sample. The following assumption unifies the assumptions on the MDP and

the sampling in terms of mapping states to sampled states.

Assumption 9.6 (Sufficient Sampling). Assume a function χ : S → Σ̄ such that for all

s ∈ S :

‖φ(χ(s))− φ(s)‖∞,e−1 ≤ σφ

|r(χ(s))− r(s)| ≤ σr

‖P(χ(s), a)Tφi − P(s, a)Tφi‖∞,e−1 ≤ σp ∀a ∈ A

We define this intermediate assumption because it is helpful in establishing bounds on εc,

which are described later in this chapter. Assumption 9.6 is used to prove the following

proposition.

Proposition 9.7. Assume Assumption 9.1, Assumption 9.5, and a state mapping function

χ(s) = arg min
s̄∈Σ̄
‖k(s)− k(s̄)‖.

such that maxs∈S ‖k(s)− k(χ(s))‖ ≤ q for some q ∈ R. Then, Assumption 2.26 holds with the

following constant:

εp(ψ) = qKr + qψ(Kφ + γKp).

The proof of the proposition can be found in Section C.10. The importance of this bound

is that the state sampling error grows linearly with the increasing coefficient ψ. This bound

does not address methods for computing arg mins̄∈Σ̄ ‖k(s)− k(s̄)‖. The simplest method

156

k(s)

φ(s)

Figure 9.1. Value of a feature as a function of the embedded value of a state.

of actually computing this value would be to use a triangulation of the available samples

k(Σ). Because of the limited practical utility of this bound, we do not discuss these techni-

cal details.

9.2.2 Regression Bounds

The difficulty with the local modeling assumption is exactly that it is local; it assumes the

worst case and does not consider the global properties of the MDP parameters. Here, we

propose a more sophisticated method for estimating the sampling error, which does not

rely on the locality assumption, but instead utilizes machine learning regression methods.

To develop better methods, we first need to extend Theorem 9.4. This extension will show

that as long as the parameters of the MDP are in some sense linear in states between the

samples, there is no state selection error. Figure 9.1 compares this assumption with the

local modelling assumption. The circles represent sampled values, the shaded cones rep-

resent the uncertainty using the local model, and the line represents values that do not

incur any error. Because it is unlikely that the parameters are truly linear, we show that

the error can be quantified by the deviation from the linearity.

157

Here, we focus on providing general guidelines; the actual implementation relies on Gaus-

sian processes and is discussed in Section 9.5. The following theorem extends Theorem 9.4

to utilize existing regression methods.

Theorem 9.8. Assume Assumption 9.1 and a sample mapping function χ : (S × A) → Σ̄n+1,

where n is the dimensionality of the state–action embedding function k(S ,A) and Σ̄n+1 denotes

subsets of length n + 1. The sample mapping function χ satisfies for all s, a ∈ S ,A:

k(s, a) = ∑
(si ,ai)∈χ(s,a)

βi(s, a)k(si, ai)

1 = ∑
(si ,ai)∈χ(s,a)

βi(s, a)

for some function βi(s, a) : S ×A → R+ and in addition for some σφ, σr ∈ R:

∥∥∥∥∥(φ(s)− γP(s, a)TΦ
)
− ∑

(si ,ai)∈χ(s,a)
βi(s, a)

(
φ(si)− γP(si, ai)

TΦ
)∥∥∥∥∥

∞,e−1

≤ σφ∣∣∣∣∣r(s, a)− ∑
(si ,ai)∈χ(s,a)

βi(s, a)r(si, ai)

∣∣∣∣∣ ≤ σr.

Then, the following holds:

εp(ψ) ≤ σr + σφψ.

The proof of the theorem can be found in Section C.10. There are a few important dif-

ferences between Theorem 9.4 and Theorem 9.8. The crucial one is that χ in Theorem 9.8

maps a state to multiple samples, unlike the one Theorem 9.4 which maps every state to

a single sample. The difference between defining the function χ for states or states and

actions is only a superficial one.

Theorem 9.8 applies when the assumption is satisfied with certainty. Worst–case guaran-

tees are often too strict. It may be desirable to allow a limited chance of failure in order to

improve the mean performance. In addition, most regression methods only probabilistic

guarantees. The following corollary trivially extends the theorem above to the probabilistic

case.

158

Corollary 9.9. Assume Assumption 9.1 and that the hypothesis of Theorem 9.8 is satisfied with

probability 1− δ for some δ ∈ (0, 1) . Then:

P
[
εp(ψ) ≤ σr + σφψ

]
≥ 1− δ.

The probability here is with respect to the sample and the prior expectation over the model.

The MDP can then be estimated using standard regression methods for the following two

functions:

ρ1(s, a, i) = φi(s)− γP(s, a)Tφi

ρ2(s, a) = r(s, a)

This is a form of specialized Bellman residual for the features and the rewards. It is impor-

tant that these values do not depend on the value function and can be estimated directly

from the data. To make the regression model useful, it needs to satisfy the following as-

sumption.

Assumption 9.10. Let ρ̃1 and ρ̃2 be the output of the regression algorithm on Σ̄ for the

following functions:

ρ1(s, a, i) = φi(s)− γP(s, a)Tφi

ρ2(s, a) = r(s, a).

Then, these functions must satisfy that:

P
[

max
s∈S ,a∈A,i∈1...|φ|

|ρ̃1(s, a, i)− ρ1(s, a, i)|+ |ρ̃2(s, a)− ρ2(s, a)| − ε(s, a, i) < 0
]
≥ 1− δ.

The random variables in this probability are ρ̃1 and ρ̃2.

159

This requirement is similar to the standard PAC learning bounds, but differs in some cru-

cial ways. In particular, the PAC bounds usually require that :

P [E [|ρ̃1(s, a, i)− ρ1(s, a, i)|] < ε] ≥ 1− δ.

This bounds the expected error instead of the maximal error. This assumption translates

to the state selection error as the following corollary shows.

Corollary 9.11. Assume a sample mapping function χ : (S ×A)→ Σ̄n+1, where n is the dimen-

sionality of the state–action embedding function k(S ,A) and Σ̄n+1 denotes subsets of length n + 1.

The sample mapping function χ satisfies for all s, a ∈ S ,A:

k(s, a) = ∑
(si ,ai)∈χ(s,a)

βi(s, a)k(si, ai)

1 = ∑
(si ,ai)∈χ(s,a)

βi(s, a)

for some function βi(s, a) : S × A → R+ and in addition for some σφ, σr ∈ R with probability

1− δ:

max
j=1...|φ|

∣∣∣∣∣ρ̃1(s, a, j)− ∑
(si ,ai)∈χ(s,a)

βi(s, a)ρ̃1(sa, ai, j)

∣∣∣∣∣ ≤ σφ∣∣∣∣∣ρ̃2(s, a)− ∑
(si ,ai)∈χ(s,a)

βi(s, a)ρ̃2(si, ai)

∣∣∣∣∣ ≤ σr.

Then, with probability 1− δ, the following holds:

εp(ψ) ≤ σr + σφψ.

To actually implement the bounds from this section, it is necessary to define the regression

method for learning ρ and also to define the sample mapping function χ. There are many

options for implementing them; we show one possibility in Section 9.5.

160

9.3 Uniform Sampling Behavior

In this section, we discuss methods that bounds the error due to the imprecise estimation of

the ALP initial distribution — formally defined in Assumption 2.27. This error is not very

important, because most methods that we study do not use the initial distribution and if

they do, it is typically a single state — that is easy to estimated. The initial distribution is,

for example, needed in some ALP formulations. Because this choice is inherently heuristic,

it is often unimportant how precise the estimation is. Our analysis is, therefore, quite

limited and shows mostly that a small error in the estimation results in a small error in the

value function.

These bounds require additional assumptions on the sampling procedure. That is the sam-

pling must not only cover the whole space, but also must be uniformly distributed over it.

In addition, we have to rely on a form of the local modelling assumption to ensure that a

crucial state of the distribution is not missing. The actual uniformity assumption follows.

Assumption 9.12 (Uniform Sampling). Assume Assumption 9.6 and the corresponding

function χ. Let χ−1 : Σ̄ → 2S be the inverse function that represents the closest states in S
to samples Σ̄. Assume that for all s̄ ∈ Σ̄:

|S|
|Σ̄| (1− σs) ≤ |χ−1(s̄)| ≤ |S||Σ̄| (1 + σs)

This assumption requires that the sets of closest states for all samples are of similar size.

This assumption can be satisfied only in specific situations, which we do not analyze here.

The following theorem shows the implication that the assumption can guarantee the de-

sirable distribution estimation behavior.

Theorem 9.13. Assume Assumption 9.1, Assumption 9.6, and Assumption 9.12 and let v ∈
M(ψ) be a representable value function. Then, Assumption 2.27 is satisfied with the following

constant:

εc = σs‖ΦTc̄‖∞,e−1 ψ + 2σφψ

when c = α and e = (0 1T)T.

161

The proof of the theorem can be found in Section C.10.

This error bound is somewhat related to the transition estimation error. The transition

estimation error bounds the error in estimating the transitions from the states and may be

very important in many domains; the bounds on the transition estimation error follow.

9.4 Transition Estimation Error

This section shows how to bound the transition estimation error — formally defined in

Assumption 2.28. This error is due to states that are included in the samples, but their

transition probabilities are estimated imprecisely.

We first propose simple bounds on the transition estimation error. These simple bounds,

without assuming any special structure, turn out to depend linearly on the number of

samples, which can be very large. As we also show, these bounds are asymptotically tight

and therefore indicate that the transition estimation error may be very high in some cases.

To reduce the transition estimation error and the corresponding bound, we propose to use

common random numbers — a technique popular in some simulation communities — to

tighten the bounds and improve the performance (Glasserman & Yao, 1992).

The transition estimation error bounds hold only with a limited probability; is it always

passible that the sample is misleading and that the transition probabilities are computed

incorrectly. We demonstrate the importance of the transition estimation error in the reser-

voir management problem in Section 9.7.

The transition estimation error εs, as we treat it, is independent of the state sampling error

εp — that is the errors are additive. This section, therefore, assumes that for any (s, a) ∈ Σ̃

there is a (s, a) ∈ Σ̄, and vice versa.

Theorem 9.14. Assume that samples Σ̃ are available and that the number of samples per each state

and action pair is at least n. Also assume that e = (01T)T. Then, the transition estimation error

εs (Assumption 2.28) is bounded as:

162

P [εs(ψ) > ε] ≤ Q
(

2|φ| exp
(

2(ε/(ψ · γ))2

Mφn

)
, |Σ̃|a

)
≤ 2|Σ̃|a|φ| exp

(
2(ε/(ψ · γ))2

Mφn

)
,

where |Σ̃|a is the number of sampled state-action pairs,

Mφ = max
s∈S
‖φ(s)‖∞.

and

Q(x, y) = 1− (1− x)y.

The proof of the theorem can be found in Section C.10. The proof of the theorem closely

resembles the proofs in statistical learning theory (Bousquet et al., 2004) with one crucial

difference. In statistical learning theory, the approximation error must be bound for the

set of all potential classification or regression functions, just as we need to bound the error

over all sampled states and actions. The important difference is in the dependence of the

errors. Because the classifiers are evaluated using the same samples, the error over them

are potentially dependent. In our setting, the samples are gathered independently for each

sampled state and this independence leads to somewhat tighter bounds using the function

Q instead of the union bound.

The function Q grows close to linearly in y when x is close to 0. A significant weakness

of this bound is that it depends, close to linearly, on the number of samples and features.

While the number of features is often small, the number of samples is usually very large.

As a result, the bound can be very loose. Unfortunately, the transition estimation error

is actually inevitable and is not only due to the looseness of the bounds as the following

shows.

Proposition 9.15. The bound in Theorem 9.14 is asymptotically tight with respect to |Σ̃|a.

The proof of the proposition can be found in Section C.10. Interestingly, the bounds in

Theorem 9.14 show that there is a tradeoff between the state selection error and the transi-

163

tion estimation error. With an increasing number of states sampled, the state selection error

tends to decrease. However, the bounds on the transition estimation error will increase,

when the number of transitions estimated per state remains the same. We show next that

sometimes this tradeoff can be circumvented by deriving bounds that are independent of

the number of samples.

9.4.1 Common Random Numbers

The results above indicate that the transition estimation error may be very large when

the number of sampled states and actions is large. The transition estimation error, and

the corresponding bound, can be decreased by assuming that the Bellman residual of the

solution is close to 0 for a small number of states and actions. This is, however, not true in

general. Here, we instead propose to use common random numbers to estimate transitions;

this approach is applicable to a large class of industrial problems.

Common random numbers are applicable to problems with external uncertainty, which

is not affected by the actions taken. We use the random variable ω ∈ Ω to denote this

external uncertainty for some. In the reservoir management problem (see Section B.3), the

variable ω may represent the weather — an external variable that cannot be influenced.

In blood inventory management (see Section B.2), the variable ω represents the external

uncertainty of supplies and demands, which is independent of the current state of the

inventory.

We now specify how the state transition probabilities depend on the external source stochas-

ticity. Let the random variable ω be defined such that:

P(s, a, z(s, a, ω)) = P [ω] ∀s ∈ S , a ∈ A,

where z : S ×A×Ω → S is the deterministic transition function. This definition applies

to discrete ω; the definition for the continuous case would be similar.

164

The ordinary samples in this setting would are defined as:

Σ̃ ⊆ (s, a, (s1 . . . sn), r(s, a)) s, s′ ∈ S , a ∈ A},

where s1 . . . sn are selected i.i.d. from the distribution P(s, a) for every s, a independently.

The common random number samples are denoted as Σ̃c and defined as:

Σ̃c ⊆ (s, a, (z(s, a, ω1) . . . z(s, a, ωn)), r(s, a)) s, s′ ∈ S , a ∈ A},

where ω1 . . . ωn ∈ Ω are selected i.i.d. according to the appropriate distribution. This

distribution is independent of the current state and action. The common random number

samples are used in the construction of ABP and ALP identically as the regular samples.

Practically, using the common random numbers in the reservoir management means that

weather is sampled independently of the level of the water in the reservoir. The constraints

are then constructed for each water level, averaging the effects of the weather. Intuitively,

this is desirable because the comparison between the values of various water levels are

more fair when the weather is assumed to be identical.

To simplify the notation, we use

Xi(ωj) = |P(si, ai)
Tφ f − P(si, ai, z(si, ai, ωj))

Tφ f |

for some feature f and i ∈ Σ̃. These random variables are not necessarily independent, as

they would be if the state transitions were sampled independently. This random variables

are have unknown values for the samples, since P(si, ai)
Tφ f is not known. The random

variables Xi are, however, useful for theoretical analysis.

The following definition of a growth set defines a suitable structure for bounding the tran-

sition estimation error for common random numbers.

Definition 9.16 (Growth Set). The growth set for the number of states m is defined as:

τ(m) = {s ∈ S ωj ∈ Ω, Xi(ωj) ≥ Xi′(ωj), i ∈ S}.

165

Note that the definition is for all states, not only the sampled ones, although it could be

defined for the samples only.

The purpose the definition of the growth set is more explanatory than practically useful at

this point. It is currently a longstanding challenge in statistical learning theory to derive

measures of complexity that both lead to sharp upper bounds and can be easily computed

for a class of problems (Bousquet et al., 2004; Devroye et al., 1996). While the proposed

growth set can be roughly estimated in some domains, it cannot be derived from the sam-

ples alone.

The following theorem shows the theoretical importance of using the common random

numbers. The important difference is that the bound does not depend on the number of

sampled states, but on the growth function instead.

Theorem 9.17. Assume that samples Σ̃ are generated using common random numbers and that

the number samples of common numbers is m. Then:

{I {z(s, a, ω)v ≥ ε} ω ∈ Ω, v ∈ M(ψ), ε ∈ R+}.

Then, the transition estimation error εs (Assumption 2.28) is bounded as:

P [εs(ψ) > ε] ≤ 2|φ| exp
(

2(ε/(ψ · γ · |τ(m)|))2

Mφm

)
,

where |Σ̃|a is the number of sampled state-action pairs and

Mφ = max
s∈S
‖φ(s)‖∞.

The proof of the theorem can be found in Section C.10. The common random numbers in

samples introduce correlation among the constraints, which introduces additional struc-

ture into the problem. This can be then used to bound the error.

166

It is not always trivial to determine the growth function of the set of functions. It is impor-

tant to study the growth functions in the particular domains, but it may be also possible

to derive complexity measures that can be estimated directly from the sample. Such an

example for classification problems is the Rademacher complexity (Bousquet et al., 2004).

9.5 Implementation of the State Selection Bounds

This section describes a specific approach for bounding the state sampling error. Section 9.2

shows just a general framework which can be used with an arbitrary regression method.

In particular, we propose to use Gaussian processes (Rasmussen & Williams, 2006) which

can be used to satisfy all the necessary requirements.

Gaussian processes represent a general Bayesian method for solving general regression and

classification problems. These methods assume an a priori distribution over the value

functions and compute a posteriori estimation based on the samples. The initial and a

posteriori distribution are multivariate Normal distributions — hence the name. Gaussian

process, in particular, is an infinitely-dimensional Normal distribution. Technically, the

MDPs we consider are all finite, but since the structure of the problem is computed in the

embedded real space, it is necessary to use infinitely–dimensional distributions.

The use of a Gaussian process implies that the assumptions on the parameters of the MDP

are defined in terms of prior beliefs. These beliefs do not include simply the mean and

the variance of the features and rewards, but also crucially the covariance. The covariance

function among states defines the generalization properties. There are many possibilities

for choosing these covariance functions, or kernels (Rasmussen & Williams, 2006), and we

discuss them in greater detail below.

It is important to note that there is no inherent reason why the values used to estimate the

Bellman residual should be normally distributed. The Normal distribution in our setting

simply represents the prior belief on the parameter values. However, when only Σ̃ are

available, it may be necessary to model the estimation error using a normal distribution.

There is some justification for this, as we discuss below.

167

The following assumption captures the assumptions necessary to apply the Gaussian pro-

cess for estimating the parameters of the MDP.

Assumption 9.18. Let κφ : (S ,A, N|φ|)× (S ,A, N|φ|) → R represent the covariance func-

tion for the feature values and let κr : (S ,A) × (S ,A) → R represent the covariance

function for the rewards. The values parameters of the MDP are distributed according to

the following distributions:

P(s, a)φi = ρ1 ∼ N (0, κφ)

r(s, a) = ρ2 ∼ N (0, κr)

where κφ and κr represent positive semidefinite covariance functions.

The assumption implies that the feature values are independent of the rewards for the

states and actions. This is not a requirement, and if it makes sense for the domain, the

dependence may be included. We also assume that the variance of the function value is

zero, because the samples available are Σ̄. We discuss how to combine these results with

bounds on the estimation error later in this section.

The important property of Gaussian processes is that it is possible, and easy, to bound

the probability of a significant deviation from the estimated mean. That is to derive the

bounds, it is necessary to provide bounds on:

P
[

max
s∈S ,a∈A,i

|ρ̃1(s, a, i)− ρ1(s, a, i)|+ |ρ̃2(s, a)− ρ2(s, a)| < ε

]
≥ 1− δ.

These are standard bounds, which can be found in the literature (Rasmussen & Williams,

2006). In the remainder of the section, we assume that the a posteriori distribution, given

the samples is available.

To use Theorem 9.8, we must define the sample mapping function χ. One simple option

is to triangulate the samples and we assume that the state space is triangulated. While

using a triangulation may potentially loosen the bounds, it is in general convenient to deal

with. Let T = {T1 . . . Tm} denote a triangulation of the set k(Σ̄) where Ti represent the

168

polyhedrons. To simplify notation, we use Ti(j) to refer to the state–action sample s, a of the

j-th vertex of the i-th polyhedron, not its embedded value k(s, a). The function χ(s, a) can

now be defined as follows.

χ(s, a) = {Ti(1) . . . Ti(n + 1)} where k(s, a) ∈ Ti.

That is, every state and action are mapped to the vertices of the polyhedron the sample is

contained in.

The following proposition is a trivial consequence of the analysis above and shows how

Gaussian processes can be used in our context.

Proposition 9.19. Assume a triangulation T = {T1 . . . Tm} of k(S) where n is the dimension of

k(S). In addition, assume that ρ̃1 and ρ̃2 are Gaussian processes with a posteriori 1− δ confidence

lower bounds l1, l2 and upper bounds u1, u2. Note that the confidence bounds on a set of values is

not the same as the union of individual confidence bounds. Then, the hypothesis of Theorem 9.8

holds with the minimal possible value of the following constants:

σφ ≥ max
Tj∈T

max
i∈|φ|

max
β1...βn+1∈ B

n+1

∑
l=1

βl ρ̃1(Tj(l), i)− l1

(
n+1

∑
l=1

βlTj(l), i

)

σφ ≥ max
Tj∈T

max
i∈|φ|

max
β1 ...βn+1∈ B

u1

(
n+1

∑
l=1

βlTj(l), i

)
−

n+1

∑
l=1

βl ρ̃1(Tj(l), i)

σr ≥ max
Tj∈T

max
β1 ...βn+1∈ B

n+1

∑
l=1

βl ρ̃2(Tj(l))− l2

(
n+1

∑
l=1

βlTj(l), i

)

σr ≥ max
Tj∈T

max
β1 ...βn+1∈ B

u2

(
n+1

∑
l=1

βlTj(l)

)
−

n+1

∑
l=1

βl ρ̃2(Tj(l))

where B = {β1 . . . βn+1 ∑n+1
l=1 βl = 1, βl ≥ 0}.

The proof of the proposition can be found in Section C.10. Informally, the bound is in

terms of the maximal deviation of the approximated function from the piecewise linear

approximation from the samples.

The method for finding the minimum and maximum of the mean of the Gaussian process

and also the maximum deviation with confidence δ is independent of the approach that

169

we propose. It depends in particular in the actual covariance function that is used. We

provide details on some covariance functions in Section 9.7

So far, we have assumed that the more informative samples, containing the distribution,

were available in computing the transitions. This is not always the case and it may be

necessary for ρ1, ρ2 to also consider the transition estimation error. This can be achieved

by changing the a priori distribution to have non-zero variance for value functions. A

careful analysis of such a case is not yet available.

9.6 Discussion and Related Work

Sampling in MDPs has been studied extensively. The greatest focus has been, however,

on methods for finite-state MDPs. These approaches cannot gather samples arbitrarily,

but instead must act in the environment. The penalty for gathering samples is the lost

opportunity of acting optimally. Because these approaches do not use value function ap-

proximation — the state space is assumed to be sufficiently small for precisely computing

the value — they are not directly related to the sampling methods proposed in this thesis.

The tradeoff between exploration — that is sampling to learn the environment — and ex-

ploration — that is collecting reward — is a very important study in reinforcement learn-

ing. Below, we provide a non-exhaustive list of approaches that trade off exploration with

exploitation. Other significant methods have been proposed.

E3 An algorithm that explicitly explores the state space for unknown states. These results

require some limited “mixing” rate of the MDP (Kearns & Singh, 1998) and apply to

both discounted and average reward objectives.

R-max A simplified version of E3 algorithm (Brafman & Tennenholtz, 2002). It also ex-

tends the analysis to stochastic games. The exploration in the algorithm is implicit

through assuming that the reward in unexplored states is the largest possible (hence

the name: R-max).

Metric E3 Extends E3 to metric spaces to provide generalization (Kakade et al., 2003). This

algorithm uses the local modeling assumption, which is closely related to the assump-

tions that we make.

170

UCRL2 Unlike the other two algorithms, they also consider the distribution probabilities

when an action is taken in an “unknown” state. That is instead of simply two possi-

ble modes (exploration and exploitation), there is a continuum. This leads to better

bounds on the regret. It also does not require mixing rates on MDPs but uses a no-

tion of a diameter (Auer, Jaksch, & Ortner, 2009). This is an extension of the previous

version: UCRL.

MBIE Similar to R-max, but it interleaves value iteration with the exploration (Strehl &

Littman, 2005, 2008). Most other algorithms assume that the policy is completely re-

computed after exploring a state, while MBIE only updates values of a small number

of states.

BOSS Similar to MBIE and UCRL2, but also adds a Bayes bias to speed up learning. Sam-

ples many MDPs and uses an extended value iteration to compute the maximum

over multiple possible sampled MDPs (Asmuth, Li, Littman, Nouri, & Wingate,

2009).

CORL Learns a parametric model of the MDP from acting in the environment (Brunskill,

Leffler, Li, Littman, & Roy, 2009). This model addresses a limited — albeit quite

interesting — class of MDPs with an infinite state space. Unlike, other methods,

this algorithm also considers value function approximation. The approximation is

treated only implicitly through assumptions on the approximate value function.

There are many possible objectives under which the exploration and exploitation can be

studied. One is the notion of regret — that is the loss of the algorithm compared to the

execution of the optimal policy that knows the MDP. This objective does not generalize to

discounted objective. When discounting is used, it is often impossible to make up for the

initial exploration period. The alternative models therefore often focus on bounding the

number of steps that are needed to stop exploring and start performing the policy (Kakade,

2003). This number of steps is known as sample complexity.

Typically, the goal of the theoretical analysis of the exploration–exploitation trade–off is

to show that the sample complexity is polynomial in the relevant parameters of the MDP,

such as |S|, |A|, 1/(1 − γ), the error, and the confidence. Algorithms with polynomial

171

sample complexity are known as PAC-MDP. A similar framework is KWIK (knows what

it knows). This is similar to bounding the sample complexity, but does not require that the

exploration steps happen initially; it, however, requires that the algorithm identifies when

the step performed is an exploration step (Li, Littman, & Walsh, 2008).

In our work, we chose to use a simpler model for a few main reasons. First, many of the

industrial problems that we are interested in have models available. It is then possible

to gather the samples in an arbitrary fashion. This is because the samples are not a re-

sult of not knowing the environment; instead sampling is simply a means of reducing the

computational complexity.

Second, the results on exploration and exploitation tradeoff have so far focused on prob-

lems with a sufficiently small number of states to be enumerated. Therefore, value function

approximation — the main subject of this thesis — is not necessary. Nevertheless, the sam-

pling bounds are quite loose and existing lower bound results are also pessimistic (Strehl,

Li, & Littman, 2009). In particular, the lower bounds on the sample complexity depend

linearly on |S| · |A| and probably quadratically on 1/(1− γ). Sample complexity is the

number of steps after which the policy is close to optimal with high probability.

Another approach to bounding the sampling error is to not sample at all. Most sufficiently

large domains are too large for all the states to be enumerated. Sometimes it is possible

to reformulate the constraints so that it is sufficient to enumerate only a small subset of

all states. These approaches require additional structure of the domain, typically a states

space that is factored and transitions that are sparse (Guestrin et al., 2003). Appropriate

structure that can be used to simplify sampling and solve practical problems is yet to be

found.

Some previous work has analyzed the sampling error in value function approximation.

Regularized iterative methods have been shown to converge under some restricted condi-

tions (Farahmand, Ghavamzadeh, Szepesvari, & Mannor, 2009). These methods assume

that the samples are gathered from executing the policy. In comparison with our work,

these bounds are looser and the assumptions are stricter. In addition, the bounds can-

172

not be computed online. However, the bounds apply to a more general setting since the

samples cannot be gathered arbitrarily.

Sampling bounds have been also previously analyzed in for approximate linear program-

ming (de Farias & van Roy, 2004). These bounds are however quite limited, because 1)

they assume that the optimal state visitation frequency u∗ is known, 2) they do not bound

the policy loss but only ‖v∗ − ṽ‖1,c, 3) only bound state sampling error and ignore the

transition-estimation error, and finally 4) require that the features contain Lyapunov fea-

tures. In addition, some of our bounds are independent of the number of features — a

useful property in feature selection proposed in Chapter 10.

9.7 Empirical Evaluation

This section demonstrates experimentally the approaches for estimating the state selection

and transition estimation errors. We demonstrate that the methods work for the reservoir

management problem, described Section B.3. We compare the approach to the local mod-

eling assumption. This comparison is not completely fair, since the required parameters

for the local modeling assumption are estimated from a supersample, but it gives a rough

comparison.

The utility of a particular set of assumptions ultimately depends on whether it matches real

problems. To evaluate our assumptions, we consider the reservoir management problem,

described in Section B.3. This is a real problem estimated using historical data. We use it to

evaluate whether the assumptions are realistic. The state embedding function in this case

is identical as the function defined in Section B.3. The results of the comparison between

the estimated values and true value of the model are shown in Figure 9.3.

For simplicity, we assumed a model that has a forecast of inflows and electricity prices

of length 0. That is the states are identified only by the volume of water in the reservoir.

The simple state-action embedding function for this case is described in Section B.3. The

state samples were for volumes 720000 to 1000000 in increments of 25000. There were

26 actions with discharges of 500 to 12000 in increments of 500. To evaluate the errors,

173

and estimate the parameters for the local modeling assumption we used state samples for

volumes 720000 to 1000000 in increments of 5000.

The Gaussian processes we used to approximate the functions ρ1 and ρ2 were identical.

We use the squared exponential covariance defined as:

κ(s1, s2) = exp
(‖k(s1)− k(s2)‖

2

)

These values were chosen a priori and were not optimized based on the sample. We as-

sume that the domain of ρ1 is R3 such that actions and features are mapped to a 3 di-

mensional real space. The actions and features are mapped linearly to the real space from

the discrete values described in Section B.3. The volume was mapped by k(S) to interval

[0, 10]. Since there are many more acceptable values of water level than actions or features,

the covariance between the water levels was assumed to be much stronger.

Figure 9.2 compares the 0.997 confidence interval of the Gaussian process regression with

the local model estimation as a multiple of the true error ε∗p. Note that the maximum of a

confidence over multiple values of the Gaussian process is not the same as the confidence

of the set. To evaluate the Gaussian process regression, we assumed the Matern covariance

function with independent normal noise and computed the hyper-parameters from the

samples. This is a standard approach used in Gaussian regression (Rasmussen & Williams,

2006); it does not preserve all the theoretical guarantees, but it allows to derive bounds

from samples alone and prevents manual overfitting. In particular, the true error was

overestimated by the Gaussian process in 85% of feature samples and 100% of reward

samples. The constants Kφ, Kp, Kr in the local modeling assumption and the true error εp

were estimated from a 5 to 1 supersample. These results indicate that the Gaussian process

regression leads to tighter bounds than the local modeling assumption, even when the

latter is estimated from data that is usually not available.

To evaluate the application of common random numbers, we used the reservoir manage-

ment problem, defined in Section B.3. Figure 9.5 shows the uncertainty in estimating the

value ρ1 based on samples. It compares the results of using common random number ver-

174

Features (ρ1) Rewards (ρ2)
Mean SD Mean SD

LM 19.54 14.23 27.41 12.2
GP 5.064 4.230 1.852 0.236

Figure 9.2. Comparison between the best-possible local modeling (LM) and a naive Gaus-
sian process regression (GP) estimation of εp/ε∗p. The results are an average over 50 ran-
dom (non-uniform) sample selections. The table shows the mean and the standard devia-
tion (SD).

1 1.5 2 2.5 3 3.5 4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

φ
8

Sampled State
Local Modeling

Gaussian Process

True Value

No Error

6 7 8 9 10
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

k(S)

r(
s)

Local Modeling

Sampled State

Gaussian Process

True Value

No Error

Figure 9.3. Comparison between the local modeling assumption and the Gaussian process
regression for the Bellman residual for feature φ8 and action a5 (function ρ1) and the reward
for action a1 (function ρ2). Only a subset of k(S) is shown to illustrate the detail. The
shaded regions represent possible regions of uncertainties.

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k(S)

φ
8

Gaussian Process

Local Modeling

True Value

Sampled State

0 2 4 6 8 10
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

k(S)

r(
s)

Gaussian Process

True Value

Local Modeling

Sampled State

Figure 9.4. Comparison between the local modeling assumption and the Gaussian process
regression for the Bellman residual for feature φ8 and action a5 (function ρ1) and the reward
for action a1 (function ρ). The shaded regions represent possible regions of uncertainties.

175

90 100 110 120 130 140 150
−4000

−2000

0

2000

4000

6000

8000

10000

State

Uncertainty For Common Random Numbers

Uncertainty For Independent Samples

True Value

Figure 9.5. Uncertainty of the samples in reservoir management for the independent sam-
ples and common random numbers.

sus using independent sampling. The grey regions represent the span of the functions for

5 independent runs, each assuming 5 samples per state.

We also analyzed the transition estimation error as a function of the number of sampled

states. For this purpose, we also assume 5 samples per each state. The sampling load

for common random number is then typically lower, since sampling from the uncertainty

model is often computationally difficult. We assume that the true model consists of 200

samples per state using common random numbers. It was not possible to compute the

true values analytically. The results in Figure 9.6 show that the transition estimation error

for independently–sampled constraints increases logarithmically, for the samples that use

common random numbers, the error flattens after reaching the complexity of the random

response function. This behavior is explained by Theorem 9.17.

The results of sampling on the blood inventory management problem were very similar.

In fact, approximate linear programming did not lead to useful results even with a large

number of samples if they were not sampled using common random numbers. The results

reported in Chapter 4 therefore rely on common random number samples.

176

0 50 100 150 200 250 300
500

1000

1500

2000

2500

3000

3500

4000

Sampled States |Σ|

T
ra
n
si
ti
on

E
st
im

at
io
n
E
rr
or

ε s

Independent Samples
Common Random Numbers

Figure 9.6. Transition estimation error as a function of the number of sampled states. The
results are an average over 100 permutations of the state order.

9.8 Contributions

This chapter presents a new method for estimating the sampling error in optimization–

based algorithms. Virtually all the results presented in this chapter are new. These new

sampling bounds are easier to compute than existing bounds for iterative algorithms. In

particular, the bounds can utilize existing algorithms for function regression. It is impor-

tant to note that our bounds apply directly to the policy loss; previous bounds for approx-

imate linear programming only apply to auxiliary measures.

177

CHAPTER 10

FEATURE SELECTION

The majority of value function approximation methods assume that a small set of useful

features is provided with the problem. These features must capture the essential properties

of the problem in order to guarantee good solutions. It is desirable to lift this requirement

and discover the relevant features automatically. This is, unfortunately, impossible in gen-

eral, as the No Free Lunch theorem for machine learning states (Wolpert, 1996; Bousquet

et al., 2004). Without features that are specified in advance, it is impossible to generalize

beyond the current sample.

While features must be provided, it is important to focus on convenient ways of providing

them. One option is to relax the requirement that the number of features is small. The

possibility of using very rich feature spaces makes is significantly easier to capture the

properties of the value function. In this chapter, we focus on methods that can use very

large numbers of features. We call this approach “feature selection” though our focus in

not on actually selecting features, just on using large feature spaces.

There are two main difficulties with using large number of features, which have been al-

ready addressed in the previous chapters. First, solving value function approximation

with many features may be hard to solve. The feature selection methods rely on homo-

topy methods proposed in Chapters 6 and 7 for regularized approximate linear and bi-

linear programs. Second, solving value function approximation with many features may

compromise generalization to unseen samples. The features selection methods therefore

use the sampling bounds from Chapter 9.

The remainder of the chapter is organized as follows. First, Section 10.1 overviews the

basic considerations in selecting features. Section 10.2 describes piecewise linear features,

178

which are suitable for some of the application domains that we consider. Then, Section 10.3

presents an approach for feature selection for based on regularized approximate represen-

tation. This method relies strongly on the properties of optimization–based algorithms.

Connections to related approaches for methods with a more flexibility in specifying fea-

tures are discussed in Section 10.4, and finally, the approach is evaluated empirically in

Section 10.5.

10.1 Feature Considerations

There are two main reasons for restricting the approximate value function v to be repre-

sentable (v ∈ M) : 1) it reduces the computational complexity of finding v, and 2) it helps

to achieve generalization from a limited number of samples. This restriction is the source

of the representational error — a fundamental component of the offline approximation

error.

Usually, the simplicity and generality goals are satisfied by choosing M to be a small-

dimensional linear space:

M = {Φx x ∈ Rm},

where the matrix Φ : |S| ×m has a “small” number of columns (e.g. m = 50). This feature-

set makes it easy to solve the optimization problems in approximate linear and bilinear

programs. It is, however, often hard to specify and the existing sampling bounds are not

practically applicable.

For example, in some industrial applications, the features represent piecewise linear func-

tions in a multi-dimensional continuous space, as discussed in Section 10.2. Features in

this setting correspond to slope of the linear regions of the function. Designing a small

number of features — that is linear regions — in a multidimensional space is difficult. The

usual approach is, therefore, to treat each dimension of independently (Powell, 2007b).

This may be interpreted as assuming that the utility of multiple resources is independent

and may significantly degrade the solution quality.

179

A more flexible approach is to provide a large number of features and add a regularization

function. Then:

M = {Φx x ∈ Rm, ‖x‖ ≤ ψ}.

Here ‖ · ‖ is some norm. This choice of the representation can satisfy both requirements. As

Chapter 9 shows, regularization (‖x‖ ≤ ψ) can provide strong guarantees on the sampling

error. Chapter 6 shows that when the regularization relies on the L1 norm, the homotopy

method may efficiently solve the problems (as long as the optimal solution is sparse).

The most common norm for regularization uses the L2-norm. There are several advantages

to using the L1 norm in our setting. The L1 norm preserves linearity of approximate linear

and bilinear programs. In addition, it encourages solution sparsity which increases the ef-

ficiency of the homotopy methods and leads to simpler solutions. The experimental results

show that the solutions are typically sparse; and we do not study this issue theoretically.

10.2 Piecewise Linear Features

This section overviews some based structures that can be used to define features and fo-

cuses specifically on piecewise linear feature, which are used in most of the experimental

results. Piecewise linear functions must be used in some of the resource management do-

mains — described in Section B.2 — to enable the computation of the greedy policy.

While the features may be arbitrary, it is often convenient to define them using functions in

metric spaces. To do that, we use the state embedding function k : S → Rm (Definition 9.3).

This function is also used in the sampling results in Chapter 9. Intuitively, it should map

“similar” states to vectors that are close together. In many domains, this function naturally

follows from the definition of the problem.

An example of a piecewise function in the blood inventory management problem — de-

scribed in Section B.2 — is depicted in Figure 10.1. In this simple example, the state em-

bedding function k maps states into R2 and can be defined as

k(s) =

IAB

I0

 ,

180

0

0.5

1

0

0.5

1
−0.5

0

0.5

1

xy 0

0.5

1

0

0.5

1
−1

0

1

2

xy

Figure 10.1. Examples of two piecewise linear value functions using the same set of 3
features. In blood inventory management, x and y may represent the amounts of blood in
the inventory for each blood type.

where IX represents the amount of blood of type X in the inventory.

The most straight-forward definition of a piecewise linear function is based on a triangu-

lation of the Rn. This is possible only when k(S) is bounded, which is not a significant

limitation in most applications. The value function for any states is then the linear inter-

polation of the values of the vertices of the corresponding polyhedron.

Because this is not a significant part of our approach, we only define these features only

informally as follows. Let the triangulation be T = {T1 . . . Tl} be a set of non-overlapping

convex polyhedrons. The vertices of each polyhedron are defined as Ti(1) . . . Ti(n + 1) —

each of them is a vector. We use x ∈ T to denote that a point is contained within polyhe-

dron T. Then, the set of piecewise linear functions is defined as:

φij(s) =

yj k(s) ∈ Tj, k(s) = ∑n+1

l=1 ylT′(l)

0 otherwise

There is one feature for every vertex of the triangulation and the set of representable value

functions is then simply a linear combination of these features. Note that the example in

Figure 10.1 extends beyond the edges of the triangulation.

This definition has some significant limitations. First, the linear representation requires

that the triangulation (that is the regions of linearity) is specified in advance. This is a

181

problem limitation when the number of linear regions needs to be small in order to guar-

antee reasonably small sampling error. Second, the definition is cumbersome and it s hard

to manipulate. Finally, it cannot be expected that if a value function is close to linear it

could be faithfully represented using sparse coefficients. To address these issue we pro-

pose a different representation.

The piecewise linear basis system is defined as follows:

Definition 10.1 (Piece-wise Linear Basis System). Assume a function k : S → Rn that maps

states into a Euclidean space. The set of basis functions is defined for vectors u1, . . . ∈ Rn

and scalars t1,... ∈ R as:

φi(s) =
[
uT

i k(s) + ti

]
+

.

In addition, there is φ0(s) = 1.

The set of representable value functions is then defined as a linear combination of these

features. This definition can also be easily used represent an infinite set of features.

The class of value functions that can be represented using the piecewise linear functions

from Definition 10.1 is different than the class of functions representable using triangulation–

based functions. We are not aware of deeper analysis of their approximation powers. An

arbitrary number of features defined in this manner can be used easily with the regularized

feature selection methods, proposed in Section 10.3.

It may often be necessary for the value function to be convex or concave. This is easy to

ensure with piecewise linear functions, as the following proposition shows.

Proposition 10.2. Let v = Φx ∈ M be piecewise linear as defined in Definition 10.1. Define a

function f (y) = v(s) when y = k(s) on k(S) ⊆ Rn. When x ≥ 0, the function f is convex and

when x ≤ 0 the function is concave. In addition, let I be a subset of features and k(S) ⊆ Z ⊆ Rn.

Then the above holds for arbitrary values if xi when i ∈ I and φi(s) is linear on Z.

The proof is straightforward using that fact that the function [·]+ is convex. Note that, for

example, when k(s) ≥ 0 for all s ∈ S the coefficient associated with the feature:

φ(s) =
[
1Tk(s) + 0

]
+

182

may be positive or negative without influencing the convexity or concavity of the function

f . This is because φ(s) is linear on the set Z = {x ≥ 0}.

10.3 Selecting Features

In this section, we present the main approach for solving approximate linear or bilinear

programs with a large number of features. The ideas for solving linear and bilinear formu-

lations are very similar; the main difference is that non-concavity of approximate bilinear

programs complicates the derivation. Therefore, we first describe the approach for ALPs

and then show how to generalize to ABPs.

The feature selection is based on regularized value functions. Even when value functions

are regularized, this does not automatically guarantee a small sampling error. In particular,

when the value of the regularization coefficient ψ is very large, the regularization may

not play a significant role. Feature selection, therefore, entails selecting the appropriate

coefficient ψ.

The choice of the regularization coefficient ψ has two main effects on the solution quality.

First, with an increasing ψ also the set of representable value functions M(ψ) increases.

That means that a larger set of value functions can be represented and the representational

error decreases (or does not increase). Second, with an increasing ψ also the sampling error

— represented by εc, εp, εs — increases, as Chapter 9 shows. The increase in the sampling

error may often offset the decrease in the representational error. When the value of ψ

decreases, the effects are reversed.

There is, therefore, no universally good value of ψ; it depends on the properties of the

problem at hand. To solve reliably problems with many features, we propose methods

that can compute ψ automatically based on the properties of the domain.

The main idea of our feature selection approach is to select ψ that balances off bounds on

the sampling and representational errors. The true errors are to difficult (if not impossible)

to compute to be used. This tradeoff is captured in Figure 10.2. The line v3 − v1 denotes

the sampling error and the line v1 − v∗ denotes the representational error. The red line is

183

0 2 4 6 8 10
0

2

4

6

ψ
E

rr
or

 B
ou

nd

Global minimum

v
3
 − v*

v
3
 − v

1

v
1
−v*

Figure 10.2. Sketch of error bounds as a function of the regularization coefficient. Here, v1
is the value function of the full ALP, v3 is the value function of the estimated ALP, and v∗

is the optimal value function.

the bound on the total error — sum sampling and representational error. Our goal is find

ψ that minimizes the bound on the total error — that is the global minimum.

Since we assume that the solutions are computed using homotopy methods and the func-

tion of the optimal solution is piecewise linear — as we discuss below — the minimum

can be simply chosen from the solutions encountered during the optimization. The crucial

question, however, is when to terminate the homotopy method. We show in the following

how this is possible using convexity (or a similar property) of the error bounds in terms of

ψ.

10.3.1 Approximate Linear Programming

For the ease of reference, the regularized estimated approximate linear program (ALP–R) is

defined as follows:
min

x
c̃TΦx

s.t. ÃΦx ≥ b̃

‖x‖1,e ≤ ψ

(e-ALP-R)

For most of the approach this section, is possible to use an arbitrary regularization norm

(such as L2 for example), but the L1 norm provides the strongest guarantees.

The feature selection happens online using the homotopy algorithm to find a value of

ψ that minimizes the comprehensive error bounds, such as Theorem 4.5. Note that it is

184

irrelevant how the constants/functions εc(ψ), εs(ψ), εp(ψ) are computed, but Chapter 9

describes some approaches. The offline bounds in Theorem 4.4 could also be used, but we

require that a bound on minv∈M(ψ) ‖v− v∗‖∞ is known, which is quite impractical.

The approach for selecting the optimal value of ψ is based on tracing the optimal objective

of the approximate linear program as a function of the regularization coefficient ψ. This

function is defined as follows.

Definition 10.3. The objective value of (e-ALP-R) with L1 regularization as a function of ψ

is denoted as θL(ψ).

A crucial property of the function θL is its convexity, as the following proposition shows.

Proposition 10.4. The function θL(ψ) is convex and piecewise linear.

The proof of the proposition can be found in Section C.11.

The convexity makes it possible to compute the optimal value ψ that minimizes the error

bounds. The homotopy algorithm solves for the optimal value of the (e-ALP-R) for all

values of the regularization coefficient ψ. To find the global minimum of the bounds, it is

sufficient to use the homotopy method to trace θL(ψ) while its derivative is less than the

sampling bound. The following corollary summarizes this.

Corollary 10.5. Assume that εc(ψ), εp(ψ), and εs(ψ) are convex functions of ψ. Then, the error

bound

‖v(ψ)− v∗‖1,c ≤ f (ψ)

for an optimal solution v(ψ) of (e-ALP-R) is:

f (ψ) = θL(ψ)− cTv∗ + εc(ψ) + 2
εs(ψ) + εp(ψ)

1− γ
.

The function f (ψ) is convex and its sub-differential1 ∇ψ f is independent of v∗. Therefore, a global

minimum ψ∗ of f is attained when 0 ∈ ∇ψ f (ψ∗) or ψ∗ = 0.

1Function f may be non-differentiable

185

The corollary follows directly from Proposition 10.4 and Theorem 4.5. In addition, the

functions εs(ψ), εp(ψ), εc(ψ) are linear functions of ψ in bounds derived in Chapter 9.

10.3.2 Approximate Bilinear Programming

The application to approximate bilinear programs is more complex, since the correspond-

ing function θB is not necessarily convex (see Proposition 7.3). For the ease of reference,

the regularized estimated approximate bilinear program (ABP–L∞) is defined as follows:

min
π λ,λ′,v

πTλ + λ′

s.t. B̃π = 1 ÃΦx− b̃ ≥ 0

π ≥ 0 λ + λ′1 ≥ ÃΦx− b̃

λ, λ′ ≥ 0

‖x‖1,e ≤ ψ

(e-ABP–L∞)

We study only the robust formulation, but the results for other formulations are very

similar.

The optimal solution of (e-ABP–L∞) is denoted as θB(ψ):

θB(ψ) = min
v∈M(ψ)∩K

‖v− Lv‖∞,

following Definition 7.2. This function may not be convex, as Proposition 7.3 shows. It is,

however, piecewise linear.

Proposition 10.6. The function θB(ψ) is piecewise linear.

Proof. The proof is straightforward using that: 1) the optimal objective function of a reg-

ularized linear program is piecewise linear (Proposition 6.5), and 2) θB(ψ) = minπ fπ(ψ)

where fπ(ψ) is a linear function (Lemma 5.4). A minimum of a finite set of piecewise linear

functions is also linear.

186

While θB may not be convex, it is possible to establish similar properties of the regulariza-

tion functions as for ALPs. This makes it possible to determine the termination points for

the homotopy method. However, the optimal value of ψ may not be in this terminal point.

We use Theorem 7.4 and to establish the following.

Corollary 10.7. Assume that εp(ψ), and εs(ψ) are convex functions of ψ and that for every state

s ∈ S we have that r(s, a1) = r(s, a2) for all a1, a2 ∈ A. Then, the error bound

‖v(ψ)− Lv(ψ)‖∞ ≤ f (ψ)

for an optimal solution v(ψ) of (e-ABP–L∞) is:

f (ψ) = θB(ψ) + 2εs(ψ) + εp(ψ).

Let ψ̄ be minimal such that:

θB(0)− θB(ψ̄)

ψ̄
≤ d

dψ
(εp + 2εs).

The global minimum ψ∗ of f is attained on the interval [0, ψ̄] and is in one of the finite nonlinearity

points of θB given that εp(ψ), εs(ψ) are linear.

The result in Corollary 10.7 is much stronger than the feature selection method in Corol-

lary 10.5. In particular, it does not contain the coefficient 1/(1− γ), which can be very

large. Is also applies to ‖v − Lv‖∞ which can be directly used to bound the policy loss

(Theorem 2.16). It does not require that bounds on uπ are known. It is again, like in many

other settings, much harder to solve.

10.4 Related Work

Regularization using the L1 norm has been widely used in regression problems by meth-

ods such as LASSO (Hastie et al., 2009) and Dantzig selector (Candes & Tao, 2007). The

187

value-function approximation setting is, however, quite different and the regression meth-

ods are not directly applicable. Regularization has been previously used in value function

approximation (Farahmand et al., 2009; Kolter & Ng, 2009). In comparison with LARS-

TD (Kolter & Ng, 2009), a regularized value function approximation method, we explic-

itly show the influence of regularization on the sampling error, provide a well-founded

method for selecting the regularization parameter, and solve the full control problem.

The methods for more flexible feature definition are often called basis construction. The

empirical work on basis construction is very encouraging. For example, Mahadevan (Ma-

hadevan, 2005c) has recently reported significant improvements in solution quality of op-

timized basis selection compared with a handcrafted initial basis. The performance of this

method on a simple problem however reveals that it sometimes constructs a poor basis

that does not improve monotonically with the number of iterations.

The work on basis construction within the reinforcement learning community has pro-

duced mostly value solution techniques for problems with unknown models. Many of the

proposed reinforcement learning algorithms have shown to produce promising experi-

mental results (Mahadevan, Maggioni, Ferguson, & Osentoski, 2006; Johns & Mahadevan,

2007; Parr, Painter-Wakefield, Li, & Littman, 2007). Closely related work in operations

research has addressed the problem of aggregation in linear programs.

For example, in recent work that is representative of several reinforcement learning efforts,

Mahadevan has used spectral analysis of the discrete state space to build the approxima-

tion basis (Mahadevan, 2005a, 2005b, 2005c). The method is also known as representation

policy iteration (RPI). These bases can be shown to provide a good approximation for func-

tions that are “smooth” on a given manifold in terms of a Sobolev norm, a generalization of

L2 norm. The basis is constructed using the top eigenvectors of the Laplacian of the transition

graph. The transition graph is constructed by simulating a random policy and connecting

states whenever there is a transition between them. RPI has been extended to problems

with continuous state spaces (Mahadevan & Maggioni, 2005), where the transition graph

is constructed using a k-nearest-neighbors method to determine the samples that represent

188

each of its nodes. The resulting approximate model can be solved using LSPI (Lagoudakis

& Parr, 2003).

While the approach has been applied successfully to various artificial domains, it suffers

from some deficiencies. First, the value function may not be smooth with regard to the con-

structed graph (Petrik, 2007). The precise conditions that guarantee smoothness have not

yet been formalized. Moreover, the use of the transition graph is only weakly motivated

and does not lead to any performance guarantees. One concern is that when the graph is

created, the direction and probability of the transitions are ignored. The lack of directional-

ity was partially remedied in (Johns & Mahadevan, 2007), but without any bounds on the

resulting performance. Finally, the approach does not account for the fact that there may

be multiple policies for the input problem. Therefore, even if convergence can be proved,

it would most likely be limited to problems with a single policy. A related value method

uses neighborhood component analysis (NCA) to create the basis functions (Keller, Manor, &

Precup, 2006; Bertsekas & Castalion, 1989).

An alternative approach for continuous problems, commonly used in operations research,

is to discretize the state-space and estimate the transition matrix. This leads to error

bounds based on the continuity of the value function and the discretization used (Rust,

1997). The difficulty with this method, however, is that the error bounds are based on the

optimal value function that is not known. Iterative improvement of the basis for a similar

problem was proposed by Trick and Stanley (1993) and Trick and Zin (1997). However, the

convergence of this method has not yet been theoretically studied.

Most of the previously described methods rely on global analysis of the state space. A

simpler alternative is to solve the problem with an arbitrary basis and then improve the

basis based on the obtained solution. One option is to add the Bellman residual of the ob-

tained value function to the basis (Parr et al., 2007). This method was shown to converge

for problems with a single policy, but only at the rate of value iteration, which is slow for

discount factors close to 1. Our analysis shows that the basis obtained in this case is the

same as the Krylov basis (Petrik, 2007). The inherent problem with the approach is that it is

not guaranteed to converge for problems with multiple policies. A similar approach was

189

proposed for factored MDPs, when the one-step transition function can be represented as

a Bayesian network (Guestrin et al., 2003). Approximate linear programming is attractive

in this case, because the number of constraints can be significantly reduced when the struc-

ture of the problem is considered and a specific basis is assumed. A method for iteratively

adding new basis functions — including multiplier-update type vectors — was proposed

in (Patrascu et al., 2002; Patrascu, 2004; Poupart et al., 2002).

In related work in operations research, aggregation is often used to reduce problem size

in linear programs (Litvinchev & Tsurkov, 2003; Rogers, Plante, Wong, & Evans, 1991). It

is often used when the available data is insufficient for building a precise model (Zipkin,

1977). The two main types of aggregation are variable aggregation, and constraint aggrega-

tion, in which both variables and constraints are aggregated. Unlike aggregation in MDPs,

aggregation in linear programs is often weighted. Thus, approximate linear programming,

as introduced above, is a form of variable aggregation. In addition to aggregation, research

efforts in this area also seek various methods of disaggregation, that is, obtaining a solu-

tion in the original space. Most of this research has focused on developing a priori and a

posteriori error bounds (Litvinchev & Tsurkov, 2003; Mendelssohn, 1980; Shetty & Taylor,

1987; Zipkin, 1977, 1978). These bounds are in general tighter than the existing approx-

imate linear programming bounds. However, they often rely on assumptions that make

them impractical for MDPs.

Vakhutinsky, Dudkin, and Ryvkin (1979) have developed an iterative approximation al-

gorithm for an input-output model formulated as a linear program. The algorithm is for-

mulated for general linear programs, and is based on variable aggregation and optimal

disaggregation. Only local convergence is guaranteed. A general framework for itera-

tive variable aggregation and disaggregation is developed in (Litvinchev & Tsurkov, 2003)

(Chapter 2). It is based on gradient descent on the optimization basis with regard to the

current solution. Its drawback is that the number of constraints is as large as in the original

problem and convergence is not proved.

An interesting iterative aggregation-disaggregation algorithm for solving MDPs has been

developed using both variable and constraint aggregation (Mendelssohn, 1982). The al-

190

gorithm uses optimal disaggregation (Zipkin, 1978) and multiplier-method type update of

the dual variables. However, the convergence properties of this method need to be further

investigated.

10.5 Empirical Evaluation

We demonstrate and analyze the properties of feature selection for ALP on a simple chain

problem with 200 states, in which the transitions move to the right by one step with a

centered Gaussian noise with standard deviation 3. The reward for reaching the right-

most state was +1 and the reward in the 20th state was -3. This problem is small to enable

calculation of the optimal value function and to control sampling. We uniformly selected

every fourth state on the chain and estimated the sampling bound εp(ψ) = 0.05ψ. The

approximation basis in this problem is represented by piecewise linear features, of the

form φ(si) = [i− c]+, for c from 1 to 200; these features were chosen due to their strong

guarantees for the sampling bounds. The experimental results were obtained using the

proposed homotopy algorithm.

Figure 10.3 demonstrates the solution quality of (e-ALP-R) on the chain problem as a func-

tion of the regularization coefficient ψ. The figure shows that although the objective of

(e-ALP-R) keeps decreasing as ψ increases, the sampling error overtakes that reduction. It

is clear that a proper selection of ψ improves the quality of the resulting approximation. To

demonstrate the benefits of regularization as it relates to overfitting, we compare the per-

formance of ALP with and without regularization as a function of the number of available

features in Figure 10.5. While ALP performance improves initially, it degrades severely

with more features. The value ψ in the regularized ALP is selected automatically using

Corollary 10.5 and the sampling bound of εp(ψ) = 0.5ψ. Figure 10.4 demonstrates that

regularized ALP may also overfit, or perform poorly when the regularization coefficient ψ

is not selected properly. To find the proper value of ψ, as described in Corollary 10.5, the

problem needs to be solved using the homotopy method described in Chapter 6.

191

0 1 2 3

0

5

10

Regularization Coefficient ψ

L 1 E
rr

or

True Error
RALP Objective

Figure 10.3. Comparison of the objective value of regularized ALP with the true error.

0 50 100 150 200
0

2

4

6

8

10

Features

T
ru

e
L 1 E

rr
or

RALP: ψ = 0.1
RALP: ψ = 3
RALP: Adaptive ψ

Figure 10.4. Comparison of the performance regularized ALP with two values of ψ and
the one chosen adaptively (Corollary 10.5).

0 10 20 30 40 50
0

10

20

30

Features

T
ru

e
L 1 E

rr
or

ALP
RALP

Figure 10.5. Average of 45 runs of ALP and regularized ALP as a function of the number
of features. Coefficient ψ was selected using Corollary 10.5.

192

10.6 Contributions

The main contribution described in this chapter is the feature selection method. While this

is only a short part of the chapter, the result mostly summarizes results from other chap-

ters. The other minor contribution of this chapter is the new definition of piecewise linear

functions. The piecewise linear functions can represent functions that are close to linear

using sparse coefficients; this makes them convenient to use with the L1 regularization.

193

CHAPTER 11

HEURISTIC SEARCH

This chapter draws a connection between the work described in this thesis — mostly in the

context of reinforcement learning domains — and work on automated planning. Like the

reinforcement learning community, the planning community also aims to solve sequential

decision processes, but with a somewhat different considerations. While value function

approximation is most often used to solve long-horizon maintenance problems — such as

ones involved in managing resources — planning domains are typically about achieving

a goal in shortest number of steps. In addition, the models of planning domains are often

much richer than plain MDPs and this structure aids in developing solution methods.

There are many similarities between approximate dynamic programming and methods

used to solve planning problems. For example, the planning community relies on a heuris-

tic function, which also assigns a value to each state just like a value function. The main

difference is in how the heuristic function is used. Value functions in ADP are typically

used to construct a greedy policy, while the planning community relies on more sophisti-

cated methods, such as heuristic search. This chapter contrasts the approximate dynamic

programming methods with heuristic search in more detail. We also show in this chapter

how approximate linear programming — an optimization–based method — can be used

to solve planning problems.

The chapter intentionally stands apart from the remainder of the thesis to make it easier

to understand the connections without requiring a deep understanding of optimization–

based value function approximation.

194

11.1 Introduction

An important challenge in planning research is to develop general-purpose planning sys-

tems that rely on minimal human guidance. General-purpose planners — also referred to as

domain independent — can be easily applied to a large class of problems, without relying

on domain-specific assumptions. Such planners often take as input problems specified us-

ing PDDL (Gerevini & Long, 2005), a logic-based specification language inspired by the

well-known STRIPS formulation (Fikes & Nilsson, 1971; Russell & Norvig, 2003).

Planning plays an important role in many research areas such as robotics, reinforcement

learning, and operations research. Examples of planning problems in the various research

fields are:

Mission planning — How to guide an autonomous spacecraft? These problems are often

modeled using highly-structured and discrete state and action spaces. They have

been addressed extensively by the classical planning community (Ghallab, Nau, &

Traverso, 2004).

Inventory management — What is the best amount of goods to keep in stock to minimize

holding costs and shortages? These problems are often modeled using large contin-

uous state spaces and have been widely studied within operations research (Powell,

2007a).

Robot control — How to control complex robot manipulations? These stochastic planning

problems have a shallow state-space structure often with a small number of actions,

and have been studied by the reinforcement learning community (Sutton & Barto,

1998).

Interestingly, despite the diverse objectives in these research areas, many of the solution

methods are based on heuristic search (Ghallab et al., 2004). However, different research

fields sometimes emphasize additional aspects of the problem that we do not address here.

Reinforcement learning, for example, considers model learning to be an integral part of the

planning process.

Planning problems can be solved in several different ways. One approach is to design

a domain-specific solution method. Domain-specific methods are often very efficient but

195

require significant effort to design. Another approach is to formulate the planning prob-

lem as a generic optimization problem, such as SAT, and solve it using general-purpose SAT

solvers (Kautz & Selman, 1996). This approach requires little effort, but often does not

exploit the problem structure. Yet another approach, which is the focus of this chapter, is

to use heuristic search algorithms such as A* or branch-and-bound (Bonet & Geffner, 2001;

Russell & Norvig, 2003). Heuristic search algorithms represent a compromise between do-

main specific methods and a generic optimization. The domain properties are captured

by a heuristic function which assigns an approximate utility to each state. Designing a

heuristic function is usually easier than designing a domain-specific solver. The heuristic

function can also reliably capture domain properties, and therefore heuristic search algo-

rithms can be more efficient than generic optimization methods.

The efficiency of heuristic search depends largely on the accuracy of the heuristic function,

which is often specifically designed for each planning problem. Designing a good heuristic

function, while easier than designing a complete solver, often requires considerable effort

and domain insight. Therefore, a truly autonomous planning system should not rely on

hand-crafted heuristic functions. To reduce the need for constructing heuristics manually,

much of the research in autonomous planning concentrates on automating this process.

The goal of automatic heuristic construction is to increase the applicability of heuristic

search to new domains, not necessarily to improve the available heuristics in well-known

domains.

The construction of heuristic functions often relies on learning from previous experience.

While constructing a good heuristic function can be useful when solving a single problem,

it is especially beneficial when a number of related problems must be solved. In that case,

early search problems provide the necessary samples for the learning algorithm, and the

time spent on constructing a good heuristic can be amortized over future search problems.

The focus of this chapter is on constructing heuristic functions within a planning frame-

work. The specific context of construction within the planning system is also crucial in

designing the learning algorithms. Planning, despite being similar to generic optimization

problems, such as SAT, usually encompasses a number of other components. A general

196

Calculate Heuristic (2)
(R) Value iteration
(L) Policy iteration

ALP

Plan Actions (3)
(R)(L) Greedy

Rollouts
A*

Heuristic function

Execute Policy (4)
One step
Until goal

Policy
Offline

Online: samples

Description (1a)
PDDL

STRIPS

Features (1b)
 (R) Individual states
(L) Arbitrary features

 Pattern databases

Samples (1c)
(R) Experience

(L) Arbitrary samples
Uniform sampling

In
d

u
ct

iv
e

Le
ar

n
in

g
A

n
al

yt
ic

Le
ar

n
in

g

Figure 11.1. Framework for learning heuristic functions. The numbers in parentheses are
used to reference the individual components.

framework for learning heuristics in planning systems is shown in Figure 11.1. The ovals

represent inputs, the rectangles represent computational components, and the arrows rep-

resent information flow. The computational components list sample implementations and

the inputs list sample information sources.

The inputs are formally defined in Section 11.3. Intuitively, the problem description (1a)

denotes a precise model in some description language that can be easily manipulated. The

description languages are often logic-based, such as STRIPS or PDDL. The features (1b)

represent functions that assign a set of real values to each state. Finally, the samples (1c)

represent simple sequence of states and actions that respect the transition model.

The methods for constructing heuristics can be divided into two broad categories based

on the input they require: 1) analytic methods and 2) inductive methods (Zimmerman &

Kambhampati, 2003). Analytic methods use the formal description of the domain in order

197

to derive a relaxed version of the problem, which in turn is used to derive a heuristic. For

example, an integer linear program may be relaxed to a linear program (Bylander, 1997),

which is much easier to solve. A STRIPS problem may be abstracted by simply ignoring

selected literals (Yoon, Fern, & Givan, 2008). When applicable, analytic methods work

well, but the required description is sometimes unavailable.

Inductive methods rely on a provided set of features and transition samples of the domain.

A heuristic function is calculated as a function of these state features based on transition

samples. Inductive methods are easier to apply than analytic ones, since they rely on fewer

assumptions. Moreover, the suitable structure needed to use abstraction is rarely present

in stochastic domains (Beliaeva & Zilberstein, 2005).

Inductive heuristic learning methods can be further classified by the source of the samples

into online and offline methods. Online methods interleave execution of a calculated plan

with sample gathering. As a result, a new plan may be often recalculated during plan

execution. Offline methods use a fixed number of samples gathered earlier, prior to plan

execution. They are simpler to analyze and implement than online methods, but may

perform worse due to fewer available samples.

To illustrate the planning framework, consider two common planning techniques that can

learn heuristic functions: Real-Time Dynamic Programming (RTDP) (Barto, Bradtke, &

Singh, 1995) and Least Squares Policy Iteration (LSPI) (Lagoudakis & Parr, 2003). Both

methods are examples of inductive learning systems and do not rely on domain descrip-

tions. The component implementations of RTDP and LSPI are marked with “(R)” and “(L)”

respectively in Figure 11.1. The methods are described in more detail in Section 11.3.3.

RTDP is an online method that is often used to solve stochastic planning problems. While

it is usually considered a type of heuristic search, it can also be seen as an inductive method

for learning heuristic functions. Because features are independent for each state, it is possi-

ble to represent an arbitrary heuristic function as shown in Section 11.3.2. However, RTDP

updates the heuristic function after obtaining each new sample during execution, thus it

does not generalize to unseen states.

198

LSPI is an offline method that uses a fixed set of predetermined samples. It has been

developed by the reinforcement learning community, which often refers to the heuristic

function as the value function. The features may be arbitrary and therefore could limit the

representable heuristic functions. However, unlike RTDP, LSPI also generalizes value to

states that have not been visited.

Figure 11.1 represents a single planning system, but it is possible to combine multiple

learning systems. Instead of directly using the calculated heuristic function to create a

policy, the heuristic function can be used as an additional feature within another planning

system. This is convenient, because it allows analytic methods to create good features to

be used with inductive learning.

The remainder of the chapter presents a unified framework for learning heuristic func-

tions. In particular, it focuses on calculating heuristics — component (2) of the general

framework — but it also describes other components and their interactions. Section 11.2

introduces the framework and the search algorithms used in components (3) and (4). Sec-

tion 11.3 describes the existing inductive and analytic approaches to learning heuristic

functions. The chapter focuses on inductive learning methods — the analytic methods

are described because they can serve as a good source of features. Section 11.4 describes

an inductive method for constructing heuristic functions using linear programming. The

linear programming method is further analyzed in Section 11.5. Experimental results are

presented in Section 11.6.

This chapter concentrates on using previous experience to create or improve heuristic func-

tions. Previous experience can be used in a variety of ways. For example, some plan-

ners use samples to learn control rules that speed up the computation (Ghallab et al.,

2004). Early examples of such systems are SOAR (Laird, Rosenbloom, & Newell, 1986)

and PRODIGY (Minton, Knoblock, Kuokka, Gil, Joseph, & Carbonell, 1989). Other no-

table approaches include learning state invariants (Rintanen, 2000), abstracting planning

rules (Sacerdott, 1974), and creating new planning rules (Leckie & Zuckerman, 1998). In

comparison, learning a heuristic function offers a greater flexibility, but it is only relevant

to planning systems that use heuristic search.

199

11.2 Search Framework

This section formally defines the search framework and describes common search algo-

rithms. The section also discusses metrics of heuristic-function quality that can be used to

measure the required search effort. The search problem is defined as follows:

Definition 11.1. A search problem is a tupleP = (S ,A, P, r), where S is a finite set of states

with a single initial state σ and a single goal state τ. A is a finite set of actions available in

each state, and the function P(s, a) = s′ specifies the successor state s′ of some state s 6= τ

when action a is taken. The set finite of all successors of s is denoted as C(s). The function

r(s, a) ∈ R specifies the reward. A discount factor 0 < γ ≤ 1 applies to future rewards.

The discount factor γ is considered only for the sake of generality; the framework also

applies to search problems without discounting (i.e. γ = 1). The assumption of a single

goal or initial state is for notational convenience only. Problems with many goals or initial

states can be easily mapped into this framework.

The solution of a search problem is a policy π : S → A ∪ {ν}, which defines the action

to take in each state. Here, ν represents an undefined action and by definition π(τ) = ν.

The policy is chosen from the set of all valid policies Π. In a deterministic search problem,

a policy defines a path from a state s1 to the goal. The path can be represented using the

following sequence:

({si ∈ S , ai ∈ A ∪ {ν}})n
i=1,

such that for i < n:

ai ∈ A ai = π(si)

t(si, ai) = si+1 sn = τ

The return, or value, of such a sequence for a given policy π is:

vπ(s1) =
n−1

∑
i=1

γir(si, ai).

200

The optimal value, denoted as v∗(s1), is defined as:

v∗(s) = max
π∈Π

vπ(s).

The optimal value of a state is the maximal possible value over any goal-terminated se-

quence starting in that state. The objective is to find a policy π∗ that defines a path for the

initial state σ with the maximal discounted cumulative return vπ∗(σ).

Notice that the optimal policy only needs to define actions for the states connecting the

initial state σ to the goal state τ. For all other states the policy may have the value ν. For

simplicity, assume that there is always a path from σ to any state s and that there is a

path from any state s to the goal τ. It is easy to modify the techniques for problems with

dead ends and unreachable states. To guarantee the finiteness of the returns when γ = 1,

assume that there are no cycles with positive cumulative rewards.

11.2.1 Heuristic Search

Heuristic methods calculate a policy for search problems from a heuristic function and

an initial state. A heuristic function v : S → R returns for each state s an estimate of its

optimal value v∗(s). An important property of a heuristic function is admissibility, which

guarantees optimality of some common algorithms. A heuristic function v is admissible

when

v(s) ≥ v∗(s) for all s ∈ S .

Notice we consider maximization problems instead of more traditional minimization prob-

lems to be consistent with the reinforcement learning literature. Therefore, an admissible

heuristic is an overestimate of the optimal return in our case.

Admissibility is implied by consistency, which is defined as:

v(s) ≥ r(s, a) + γv(P(s, a)) for all s ∈ S , a ∈ A.

Consistency is often necessary for some heuristic search algorithm to be efficient.

201

Algorithm 11.1: A* Heuristic Search Algorithm
Input: Heuristic function v, initial state σ

1 O ← s0 ; // Initialize the open set

2 s′ ← arg maxs∈O f (s) ; // f (s) = g(s) + v(s)
3 while s′ 6= τ do
4 O ← O \ {s′} ; // Remove state s′ from the open set

5 O ← O ∪ C(s′) ; // Append the one with the greatest g value

6 s′ ← arg maxs∈O f (s) ; // f (s) = g(s) + v(s)

The simplest heuristic search algorithm is greedy best-first search. This search simply returns

the following policy:

π(s) = argmax
a∈A

{r(s, a) + γv(s)},

with ties broken arbitrarily. Greedy search does not require the initial state and defines a

valid action for each state.

Many contemporary heuristic search methods are based on the A* algorithm, a simplified

version of which is depicted in algorithm 11.1. It is a best-first search, guided by a function

f : S → R, defined as:

f (s) = g(s) + v(s).

The total reward (possibly negative) achieved in reaching s from the initial state σ is de-

noted as g(s). States are chosen from an open set O according to their f value. The succes-

sors of the chosen states are consequently added to the open set. A* is guaranteed to find

the optimal solution when the heuristic function is admissible.

A* is an optimally efficient search algorithm since it expands the minimal number of states

needed to prove the optimality of the solution with a consistent heuristic function. When

the heuristic function is inconsistent, the efficiency of A* could be improved using simple

modifications such as PATHMAX (Zhang, Sturtevant, Holte, Schaeffer, & Felner, 2009).

Despite the theoretical optimality of A*, its applicability is often limited by the exponential

growth of the open list O. A* modifications have been proposed that address its large

memory requirements. One common modification is Iterative Deepening A* (IDA*), which

repeatedly searches the graph in a depth-first manner with a decreasing threshold on the

value f of states (Korf, 1985). Others have proposed modifications that do not guarantee

202

optimality, such as weighted A* (Pohl, 1970; Hansen & Zhou, 2007; Thayer & Ruml, 2008).

Because most of these algorithms retain the basic characteristics of A* and use the same

heuristic function, the rest of the chapter focuses on A* as a general representative of these

heuristic search methods.

The presented framework also applies to stochastic domains, formulated as Markov deci-

sion processes (MDP) (Puterman, 2005). An MDP is a generalization of a search problem,

in which the successor state is chosen stochastically after taking an action. A* is not di-

rectly applicable in stochastic domain, but some modification have been proposed. The

most commonly used heuristic search algorithm for MDPs is the greedy best-first search

method described above. More sophisticated algorithms used in stochastic domains are

RTDP and LAO*, which are discussed in Section 11.3.2. However, in some domains, even

greedy search can be overly complicated (Powell, 2007a).

11.2.2 Metrics of Heuristic Quality and Search Complexity

This section discusses the influence of a heuristic function quality on the search complexity.

To start, it is necessary to define a measure of the heuristic quality. The measure must

accurately capture the time complexity of the search process and also must be easy to

estimate and optimize. For example, the number of states that A* expands is a very precise

measure but is hard to calculate. As it turns out, a precise and simple quality measure does

not exist yet, but approximations can be used with good results.

The discussion in this section is restricted to admissible heuristic functions. This is a limi-

tation when a suboptimal solution is sought and admissibility is not crucial. However, the

analysis of inadmissible heuristics is hard and involves trading off solution quality with

time complexity. Moreover, admissible heuristic functions can be used with suboptimal

algorithms, such as weighted A* (Pohl, 1970), to obtain approximate solutions faster.

Early analysis shows bounds on the number of expanded nodes in terms of a worst-case

additive error (Pohl, 1977; Gaschnig, 1979):

ε = max
s∈S
|v(s)− v∗(s)|.

203

The bounds generally show that even for a small value of ε, a very large number of nodes

may be expanded unnecessarily. A more general analysis with regard to errors weighted

by the heuristic function shows similar results (Pearl, 1984). In addition, most of these

bounds assume a single optimal solution, which is often violated in practice.

Recent work shows tight bounds on the number of nodes expanded by A* in problems

with multiple solutions (Dinh, Russell, & Su, 2007). In particular, the number of expanded

nodes may be bounded in term of

ε = max
s∈S
|v(s)− v∗(s)|
|v∗(s)| .

This work assumes that there is a relatively small number of optimal solutions clustered

together.

The existing bounds usually require a small number of goal states and states that are close

to them. These assumptions have been questioned because many benchmark problems do

no satisfy them (Helmert & Roger, 2008; Helmert & Mattmuller, 2008). When the assump-

tions do not hold, even a good heuristic function according to the measures may lead A*

to explore exponentially many states. In light of this evidence, the utility of the existing

quality bounds is questionable.

Because a widely acceptable measure of the quality of heuristic functions does not yet exist,

we focus on two objectives that have been studied in the literature and are relatively easy

to calculate. They are:

L1, the average–case error: ‖v− v∗‖1 = ∑s∈S |v(s)− v∗(s)|, and

L∞, the worst–case error: ‖v− v∗‖∞ = maxs∈S |v(s)− v∗(s)|.

11.3 Learning Heuristic Functions

This section overviews existing methods for learning heuristic functions in planning do-

mains. Most of these methods, however, can also be applied to search. As mentioned

earlier, methods that use experience to learn control rules or other structures are beyond

204

the scope of this chapter (Zimmerman & Kambhampati, 2003). First, to classify the meth-

ods based on the inputs in Figure 11.1, we define the inputs more formally below.

Description (1a) The domain description defines the structure of the transitions and re-

wards using a well-defined language. This description allows to easily simulate the do-

main and to thoroughly analyze its properties. Domain descriptions in planning usually

come in one of three main forms (Ghallab et al., 2004): 1) Set-theoretic representation such

as STRIPS, 2) classical representation such as PDDL, or 3) state-variable representation such as

SAS+. Extensive description of these representations is beyond the scope of this chapter.

The details can be found in (Ghallab et al., 2004).

Features (1b) A feature is a function φ : S → R that maps states to real values. One is

typically given a set of features:

Φ = {φ1 . . . φk}.

The heuristic function is then constructed using a combination function θ̄:

v(s) = θ̄(φ1(s), φ2(s), . . . , φk(s)). (11.1)

The space of combination functions Θ is often restricted to linear functions because of their

simplicity. Using linear θ, the heuristic function is expressed as:

v(s) = θ(φ1(s), φ2(s), . . . , φk(s)) =
k

∑
i=1

xiφi(s).

The actual combination function θ̄ may be either fixed for the domain or may be computed

from other inputs.

One simple way to obtain features is state aggregation. In aggregation, the set of all states

S is partitioned into S1 . . . Sm. A feature φj is then defined as:

φj(si) = 1⇔ si ∈ Sj.

205

A trivial example of an aggregation is when aggregates are singletons as Si = {si}. Such

features allow to express an arbitrary heuristic function, but do not generalize the heuristic

values.

Samples (1c) Samples are sequences of state-action pairs of one of the following types.

1. Arbitrary goal-terminated paths:

Σ1 = (sj
i , aj

i)
nj
i=1 snj = τ

This set also contains all shorter sample paths that start with a state later in the se-

quence, which are also arbitrary goal-terminated samples.

2. Optimal goal-terminated paths:

Σ2 = (sj
i , aj

i)
nj
i=1 snj = τ

We assume also that Σ2 ⊆ Σ1. Just as in Σ1, all paths that start with a state later in

the sequence are included in Σ2.

3. One-step samples:

Σ̃ = (sj
1, aj

1, sj
2)

We assume that Σ̃ also contain all transitions pairs from Σ1 and Σ2.

In general, the effort to needed gather an individual sample decreases from Σ1 to Σ̃. How-

ever, the utility of the samples also decreases in the same way.

Samples may come either from previously solved problem instances or from randomly

selected state transitions. Samples that come from previously solved problems are in the

form Σ1 or Σ2. Randomly gathered samples are usually in the form Σ̃ and have a relatively

low utility, but are much simpler to obtain. The availability of the various samples de-

pends on the application. For example, it is rare to have optimal goal-terminated paths in

online learning algorithms such as RTDP. Sampling is also more complicated in stochastic

domains, such as Markov decision processes, because many samples may be required to

determine the transition probabilities.

206

The inputs of the learning procedure determine its applicability and theoretical properties.

Therefore, the procedures used in component (2) are classified according to their inputs as

follows:

Inductive methods: Rely on state features (1b) or transition samples (1b) or both, but do

not require a domain description. The methods usually cannot use the description

even if it is provided. They are further classified as follows:

Feature-based methods: Only require features (1b) without using any samples. The

methods are typically very simple and require high-quality features in order to

produce admissible heuristic functions. The methods are described in detail in

Section 11.3.1.

Sample-based methods: Use samples (1c) to learn the heuristic function for states

that have been directly sampled. The methods cannot take advantage of fea-

tures to generalize to unseen states. The methods are described in detail in

Section 11.3.2.

Sample and feature-based methods: Use samples (1c) to combine provided features

(1b) to construct a heuristic value for states that have not been sampled. The fea-

tures may be arbitrary, but the quality of the heuristic function highly depends

on their quality. The methods are described in detail in Section 11.3.3.

Analytic methods: Rely on a domain description (1a), such as SAS+. These methods often

cannot take advantage of features and samples, even if they are provided. They can

be further classified as follows:

Abstraction-based methods: Create a heuristic function without using samples or

features. Instead, they simplify the problem using abstraction and solve it to ob-

tain the heuristic function. The methods are described in detail in Section 11.3.4.

Other methods: There is a broad range of analytic methods for many different prob-

lem formulations. A notable example is the simplification of mathematical pro-

grams by relaxations. For example, a linear program relaxation of an inte-

ger linear program defines an admissible heuristic function (Vanderbei, 2001).

These relaxation methods have been also previously used in planning with suc-

207

Sample-based Feature-based

Dovetailing

Adding

MinimizingRTDP-Bel

ALP

LSPIRTDP

LRTA*

VPI-RTDP

Figure 11.2. Examples of inductive methods based on the inputs they use.

cess (Benton, van den Briel, & Kambhampati, 2007), but are not discussed in

detail here.

The classification roughly follows Zimmerman and Kambhampati (2003). As mentioned

above, the main focus of the chapter is on inductive methods. However, the inductive

methods require features which may be hard to come by. The analytic methods, particu-

larly those that are abstraction-based, can be a good source of the features.

Selected inductive heuristic learning methods are classified in Figure 11.2. The feature

and sample-based method, lying at the intersection of the two sets, are most complex and

interesting to study. The intersection contains also many reinforcement-learning methods,

which are inherently incompatible with A*, as discussed in Section 11.3.3. Note, that the

classification in the figure is with respect to the implementation of component (2) and it

ignores the differences in other components.

11.3.1 Feature-based Methods

Feature based methods are inherently simple because the heuristic function is computed

statically regardless of the specific problem structure. As a result, they are useful only

208

when the features φi represent admissible heuristic functions. The three major feature-

based methods are:

1. Minimum of heuristic functions1

2. Dovetailing

3. Sum of heuristic functions

Feature-based methods must use a fixed combination function θ̄ in (11.1) since there are no

other inputs available.

The most common feature-based method is to simply take the minimum value of the fea-

tures. The combination function θ̄ is defined as:

v(s) = θ̄(φ1(s), . . . , φk(s)) = min{φ1(s), . . . , φk(s)},

The main advantage of this method is that if the features φi are admissible heuristic func-

tions then the resulting heuristic function v is also admissible. Dovetailing is a refinement

of the minimization which can reduce memory requirements by defining each feature only

for subset of the state space (Culberson & Schaeffer, 1994).

The minimization method is simple but usually provides only a small improvement over

the provided heuristic functions. An alternative is to statically add the available features:

v′(s) = θ̄(φ1(s), . . . , φk(s)) =
k

∑
i=1

φi(s).

There are, however, additional requirements in this case to ensure that v′ is admissible.

It is not sufficient to use arbitrary admissible heuristic functions as features. Designing

suitable features is often complicated as has been shown in the area of additive pattern

databases (Yang, Coulberson, Holte, Zahavi, & Felner, 2008).

1This would be a maximum in a cost minimization problem.

209

11.3.2 Sample-based Methods

Sample-based methods are sometimes regarded as heuristic-search method, not as meth-

ods for learning heuristic functions. Nevertheless, they fit very well into the framework

in Figure 11.1. They use samples to learn a heuristic function for the states visited online,

but can be easily applied in offline settings as well. The main research question and the

differences between the algorithms relate to the selection of the samples, which is usually

guided by some predetermined heuristic function.

The two main sample-based methods are LRTA* (Korf, 1988) and RTDP (Barto et al., 1995).

RTDP can be seen as a generalization of LRTA* and therefore we focus on it and its many

refinements. The section also includes a comparison with a significant body of theoretical

work on sampling algorithms in reinforcement learning such as E3 or R-Max.

RTDP, shown in algorithm 11.2, refines the heuristic values of the individual states by

a backward propagation of heuristic values, essentially using value iteration (Puterman,

2005). The method builds a table of visited states with values v(s). When a state s is

expanded with children s1 . . . sk, it is stored in a table along with the value

v(s)← max
a∈A

r(s, a) + γv(s).

When the function v(s) is initialized to an upper bound on v∗ RTDP will converge in the

limit to v(s) = v∗(s) for all visited states.

Modifications of RTDP may significantly improve its performance. Some notable RTDP

extensions are Labeled RTDP (Bonet & Geffner, 2003b), HDP (Bonet & Geffner, 2003a),

Bounded RTDP (McMahan, Likhachev, & Gordon, 2005), Focused RTDP (Smith & Sim-

mons, 2006), and VPI-RTDP (Sanner et al., 2009). The algorithms differ in how the next

states are chosen in ”ChooseNextState”, and in the convergence criterion. The procedure

”ChooseNextState” is modified from greedy to one that promotes more exploration in the

right places. Bounded RTDP, Focused RTDP, and VPI-RTDP determine the exploration by

additionally using a lower bound on the value v∗. Note that v represents an upper bound

on v∗.

210

Algorithm 11.2: Real-Time Dynamic Programming (RTDP) see e.g. (Sanner,
Goetschalckx, Driessens, & Shani, 2009)

Input: v — an initial heuristic
Input: Σ1 — arbitrary goal terminated samples

1 v(s)← v̂(s) ∀s ; /* Component (1c) */

2 while Convergence criterion is not met do
3 visited.Clear() ;
4 Pick initial state s ;
5 while s 6= τ do
6 visited.Push(s);
7 v(s)← maxa∈A r(s, a) + γv(s) ; /* Component (2) */

8 s← ChooseNextState(s, h) ; /* Component (3), greedy in RTDP */

/* Component (2): */

9 while ¬ visited.IsEmpty do
10 s← visited.Pop() ;
11 v(s)← maxa∈A r(s, a) + γv(s) ;

The LAO* algorithm, described also in Section 11.2, can be seen as a sample-based method

for learning heuristic functions. LAO* is based on policy iteration (Puterman, 2005), unlike

value-iteration-based RTDP.

Many similar methods exist in reinforcement learning, such as R-Max (Brafman & Ten-

nenholtz, 2002), E3 (Kearns & Singh, 2002), UCT (Kocsis & Szepesvri, 2006), UCRL2 (Auer

et al., 2009). Just like RTDP, they modify sample-selection in value iteration, but their mo-

tivation is quite different. In particular, the RL methods differ in the following ways: 1)

they assume that the model is unknown, and 2) they have a well-defined measure of opti-

mality, namely regret. Overall, RTDP focuses on the optimization part while the RL methods

focus on the learning part. That is, while the RL methods aim to work almost as well as

value iteration in unknown domains, RTDP methods attempt to improve on value iteration

in fully known domains.

The difficulty with the purely sample-based methods is that the heuristic function is only

calculated for sampled states. Generalization in RTDP could be achieved by using state

features to represent the function v(s). Regular RTDP can be seen as using features φ1 . . . φn

defined as:

211

φi(sj) =

1 i = j

0 i 6= j
,

which are combined linearly. It would be possible to extend RTDP to use arbitrary features,

which would effectively turn it into Approximate Value Iteration (AVI). AVI is a common

method in reinforcement learning but is in general unsuitable for constructing heuristic

functions to be used with A*, as we discuss in Section 11.3.3.

11.3.3 Feature and Sample-based Methods

Feature and sample-based methods use the features to generalize from the visited state

and the samples to combine the features adaptively. These methods are most general and

most complex among the inductive heuristic learning methods.

As mentioned above, the heuristic function v is constructed using a combination function

θ from some predetermined set Θ:

v(s) = θ̄(φ1(s), φ2(s), . . . , φk(s)).

The objective is to determine the θ̄ ∈ Θ that would result in the best heuristic function.

That is, for some measure of heuristic quality ω : RS → R, the heuristic selection problem

is:

θ̄ = argmin
θ∈Θ

ω (θ(φ1(·), φ2(·), . . . , φk(·))) .

The objective function ω is chosen as discussed in Section 11.2.2.

The space of combination functions Θ is typically restricted to linear functions for simplic-

ity. The heuristic function is then expressed as:

v(s) = θ(φ1(s), φ2(s), . . . , φk(s)) =
k

∑
i=1

xiφi(s),

and the construction of the heuristic function becomes:

θ̄ = argmin
x∈Rk

ω

(
k

∑
i=1

xiφi(·)
)

.

212

That is, the objective is to determine the weights xi for all features. As described in detail

below, these methods are closely related to linear value function approximation in rein-

forcement learning (Powell, 2007a; Sutton & Barto, 1998). The linear feature combination

in the vector form is:

v = Φx,

where Φ is a matrix that represents the features as explained in Section 11.4. The ordering

of the states and actions is arbitrary but fixed.

The samples in feature and sample-based methods may be incomplete. That is, there are

potentially many transitions that are not sampled. The samples are also incomplete in

classical planning when the search problem is fully known. The limited set of samples

simplifies solving the problem. This is in contrast with reinforcement learning in which

more samples cannot be obtained. The presence of the model opens up the possibility of

choosing the “right” samples.

Few feature and sample-based methods have been proposed within classical planning.

The symbolic RTDP method (Feng et al., 2003) enables RTDP to generalize beyond the

visited states in some domains. Yoon et al. (2008) propose a method that calculates a

heuristic function from a linear combination of state features. The coefficients x are cal-

culated using an iterative regression-like method. They also propose to construct state

features from relaxed plans, obtained by deleting some of the preconditions in actions. An-

other feature and sample-based method, RTDP-Bel, was proposed in the context of solving

POMDPs (Bonet & Geffner, 2009). RTDP-Bel endows RTDP with a specific set of features,

which allow generalization in the infinite belief space of a POMDP. The resulting heuristic

function is not guaranteed to be admissible.

Reinforcement learning The notion of a heuristic function in search is very similar to the

notion of value function in reinforcement learning (Sutton & Barto, 1998). Value function

is also maps states to real values that represent the expected sum of discounted reward

achievable from that state. In fact, the value function in an approximation of v∗. The ob-

jective of most methods in reinforcement learning is to learn the value function as a com-

213

bination of provided features and a set of transition samples using approximate dynamic

programming (Powell, 2007a). The policy is then calculated from the value function using

greedy search.

Approximate Dynamic Programming (ADP) fits well into the category of feature and

sample-based methods. It has also been used in some interesting planning settings (Dze-

roski, de Raedt, & Driessens, 2001; Fern, Yoon, & Givan, 2006). Yet, there is a significant

incompatibility between ADP and classical planning applications. The policy in ADP is

calculated using greedy best-first search, while in classical learning it is calculated using

heuristic search. This results in two main difficulties with using ADP for learning heuris-

tic functions: (1) ADP calculates functions that minimize the Bellman residual, which has

little influence on the quality of the heuristic, and (2) they do not consider admissibility.

As Section 11.2.2 shows, there are difficulties with assessing the quality of a heuristic func-

tion when used with A*. It is much simpler if the heuristic function is instead used with

greedy search. Greedy search has a fixed time complexity and the heuristic influences only

the quality of the policy. The quality of the policy is bounded by the Bellman residual of v.

The Bellman residual B(s) for a state s and a heuristic function v is defined as:

B(s) = v(s)−max
a∈A

(v(P(s, a))− r(s, a)) .

The quality of the greedy solution is a function of (Munos, 2003):

maxs∈S B(s)
1− γ

.

The bounds requires a discount factor γ < 1, which is not the case on most planning

problems.

Most approximate dynamic programming methods minimize a function of the Bellman

residual to get a good greedy policy. A heuristic function with a small Bellman residual

may be used with A*, but it may be very far away from the true heuristic function. In par-

ticular, adding a constant to the heuristic changes the Bellman residual by factor of 1− γ,

which is very small when γ→ 1, but significantly increases the number of nodes expanded

214

1 2 3 4 5 6 7
−1

0

1

2

3

State

R
es

id
ua

l

Figure 11.3. Bellman residual of three
heuristic functions for a simple chain
problem

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

State

V
al

ue

Figure 11.4. Three value functions for a
simple chain problem

by A*. Figures 11.3 and 11.4 illustrate this issue on a simple test problem. The horizontal

axes represent the state space and vertical axes represent respectively the Bellman residual

and value of the corresponding state. The solid line is the optimal value function v∗. No-

tice that the dotted function has a very small Bellman residual, but a large true error. On

the other hand, the dashed function has a large Bellman residual, but the error of the value

is small.

Because of the above-mentioned issues, most reinforcement learning methods are unsuit-

able for calculating heuristic functions to be used with A*. One notable exception is ap-

proximate linear programming which is described in detail in Section 11.4. Approximate

linear programming does not minimize the Bellman residual but bound on the error of the

heuristic function.

The natural question in feature-based methods is the source of the features. Unfortunately,

there is no good answer yet and the methods are usually domain-specific. Often, existing

heuristic functions for the domain are a good source of features. This is practical when

obtaining heuristic functions in a domain is easy, such as when analytic methods are ap-

plicable.

11.3.4 Abstraction-based Methods

Abstraction-based methods can quickly generate many relevant heuristic functions in do-

mains with a suitable structure. They work by solving a simplified version of the problem,

215

and can be traced at least to work by Samuel (Samuel, 1959). There has been significant

progress in recent years automatic construction of heuristic functions using state abstrac-

tion in either deterministic (Holte, Mkadmi, Zimmer, & MacDonald, 1996a) or stochastic

domains (Beliaeva & Zilberstein, 2005). Effective methods have been developed based on

hierarchical heuristic search (Holte, Grajkowski, & Tanner, 2005) and pattern databases (Cul-

berson & Schaeffer, 1996). These method are often able to solve challenging problems that

were unsolvable before.

Abstraction-based approaches can be classified into two main types as follows (Valtorta,

1984):

Homomorphism Additional transitions among states are allowed. This leads to a shorter

path to the goal and an admissible heuristic function.

Embedding Sets of states are grouped together and treated as a single state. This leads to a

much smaller problem, which can be solved optimally. The solution of the simplified

problem represents an admissible heuristic function.

A key advantage of abstraction-based methods is that they guarantee admissibility of the

heuristic function.

Formally, when using abstraction on a search problem P = (S ,A, P, r), a new search

problem P ′ = (S ′,A′, P′, r′) is defined, with a mapping function b : S− > S ′. The optimal

value functions v∗ and v∗′ must satisfy for all s ∈ S :

v∗′(b(s)) ≥ v∗(s).

That means that the optimal value function in P ′ represents an admissible heuristic func-

tion in P .

Abstraction methods can also be defined formally as follows. An abstraction is called a

homomorphism when:

216

S = S ′

b(s) = s ∀s ∈ S

P(s, a) = s′ ⇒ P′(s, a) = s′ ∀s ∈ S , a ∈ A

An abstraction is called an embedding when:

|S ′| ≤ |S|

P(s, a) = s′ ⇔ P′(b(s), a) = b(s′) ∀s ∈ S , a ∈ A

Although abstraction can be defined for arbitrary search spaces, additional structure is

required to make it efficient. Such structure is can be provided by a description using a

logic-based language.

Embedding provides two main advantages over homomorphism. First, assume that a

search problem P is abstracted using homomorphism into P ′ and solved using blind search

to obtain a heuristic v′. Then, the combined effort of blindly solving P ′ and solving P
using A* with v′ equals to solving P using blind search (Valtorta, 1984). In such settings,

homomorphism provably does not provide any improvement. Second, a heuristic function

computed using homomorphism may be difficult to store, while embedding provides a

natural method for storing the heuristic function. Because the number of abstract states is

typically small, the heuristic function is easy to store and to reuse over multiple searches.

As a result, homomorphism is useful only when the relaxed value may be calculated faster

than using blind search.

Despite difficulties with homomorphism, it has been used successfully in general purpose

planning by Yoon et al. (2008). While they calculate the heuristic function is using a form

of blind search, the policy is calculated from the heuristic function using a greedy search.

As a result, Valtorta theorem does not apply. The method leads to good results since the

constructed heuristic function is sufficiently accurate.

Embedding is very useful in general-purpose planning, because it is easily applied to do-

mains represented using logic relations (Holte, Perez, R.M.Zimmer, & MacDonald, 1996b;

217

Holte et al., 2005). Such languages are discussed in Section 11.3. Embeddings in problems

described by logic languages are created by simply ignoring selected predicates (Edelkamp,

2002, 2007). Embedding used in structured problems is often known as pattern databases (Cul-

berson & Schaeffer, 1996, 1998; Edelkamp, 2001).

When designing a pattern database, it is crucial to properly choose the right abstraction.

This is a challenging problem, but some recent progress has been made recently (Drager,

Fingbeiner, & Podelski, 2006; Edelkamp, 2006; Haslum, Bonet, & Geffner, 2005; Haslum,

Botea, Helmert, Bonet, & Koenig, 2007; Helmert & Mattmuller, 2008). The existing methods

use a local search in the space of potential abstraction to determine the best one. They often

have good empirical results in specific domains, but their behavior is not well-understood

and is very hard to analyze.

Because it is easy to obtain many pattern databases from different abstractions, it is desir-

able to be able combine them into a single heuristic function. Research on additive pattern

databases tried to develop pattern databases that can be combined using the simple addi-

tive feature-based method (Yang et al., 2008), described in Section 11.3.1. Additive pattern

databases guarantee that the sum of the heuristic function produces an admissible heuris-

tic function, but constructing them is non-trivial. Therefore, combining pattern databases

using feature and sample-based methods seems to be more promising.

11.4 Feature Combination as a Linear Program

The section describes in detail a method for learning heuristic functions based on approx-

imate linear programming (ALP) (Petrik & Zilberstein, 2008). ALP, a common method in

reinforcement learning, uses a linear program to calculate the heuristic function. The ALP

approach can be classified as feature and sample-based and is related to methods described

in Section 11.3.3. However, unlike most other feature and sample-based methods, ALP is

guaranteed to produce admissible heuristic functions.

Linear programming, the basis for the ALP formulation, is a mathematical optimization

method in which the solution is constrained by a set of linear inequalities. The optimal

218

solution then minimizes a linear function of the set of constraints. A general form of a

linear program is:

min
x

cTx

s.t. Ax ≥ b
(11.2)

where c is the objective function and Ax ≥ b are the constraints. Linear programs can

express a large variety of optimization problems and can be solved efficiently (Vanderbei,

2001).

The heuristic function in ALP is obtained as a linear combination of the features φi. The set

of feasible heuristic functions then forms a linear vector spaceM, spanned by the columns

of matrix Φ, which is defined as follows:

Φ =

φ1(s1) φ2(s1) · · ·
φ1(s2) φ2(s2) · · ·

...

 .

That is, each row of Φ defines the features for the corresponding state. The heuristic func-

tion may then be expressed as:

v = Φx,

for some vector x. Vector x represents the weights on the features, which are computed

by solving the ALP problem. An important issue in the analysis is the representability of

functions using the features, defined as follows.

Definition 11.2. A heuristic function, v, is representable inM if v ∈ M ⊆ R|S|, i.e. there

exists such a z that v = Φz.

It is important to use a relatively small number of features in an ALP because of two main

reasons. First, it makes the linear programs easy to solve. Second, it allows to use a small

sample of all ALP constraint. This is important, since the total number of ALP constraints

is greater than the number of all states in the search problem. Constraint sampling is

explained in detail later in the section.

219

2
5

1

9

3

2

1

τs1

Figure 11.5. Formulations ensuring admissibility.

The remainder of the section describes multiple ALP formulations and their trade-offs.

Section 11.4.1 describes two formulations of the constraints that ensure the admissibility

of v. Section 11.4.2 introduces a new function θ that represents a lower bound on v∗. The

difference between v and θ can be used to determine the accuracy of the heuristic func-

tion v. The difference is then used when formulating the linear program, as described in

Section 11.4.3.

11.4.1 Upper Bound Constraints

This section describes two sets of linear constraints that can ensure the admissibility of the

heuristic function. The feasible set is represented by a set of linear inequalities.

The two basic formulations are depicted in Figure 11.5. The first formulation, is to simply

bound the heuristic value by the value received in the sampled states, and is represented

by the dotted line in the figure. Formally, this is stated as:

h(sj
i) ≥

nj

∑
k=i

γk−ir(sj
k, aj

k) ∀j ∈ Σ2, ∀i ∈ 1 . . . nj (11.3)

Clearly, this formulation ensures the admissibility of the heuristic function. Notice that this

will possibly mean multiple inequalities for each state, but only the dominating ones need

to be retained. Thus let vi denote the largest right-hand side for state si. The function must

be restricted to the vector subspace spanned by columns of Φ. For notational convenience,

we formulate the problem in a way that is independent of samples. Let v and v∗ be column

vectors with each row corresponding to a state. Then the inequality may be written as:

v = Φx ≥ v∗,

220

treating v as a vector. In general, only some of the inequalities are provided based on

the available samples; with all samples v = v∗. To simplify the notation, we denote this

feasible set as K1, and thus v ∈ K1.

The second formulation is based on approximate linear programming, and is represented

by the solid lines in Figure 11.5. In this case, the sample paths do not need to be terminated

by the goal node. However, the heuristic function is actually required to be consistent,

which is a stronger condition than admissibility. That is, for each observed sequence of

two states, the difference between their heuristic values must be greater than the reward

received. Formally,

h(sj
i) ≥ γv(sj

i+1) + r(sj
i , aj

i) ∀j ∈ Σ2, ∀i ∈ 1 . . . (nj − 1)

h(τ) ≥ 0
(11.4)

In this case, we can define an action-transition matrix Ta for action a. The matrix captures

whether it is possible to move from the state defined by the row to the state defined by the

column.

Ta(i, j) = 1⇔ t(si, a) = sj.

A transition matrix T for all actions can then be created by vertically appending these

matrices as follows:

T =

Ta1

...

 .

Similarly, we define a vector ra of all the rewards for action a, such that ra(i) = r(si, a). The

vector r of all the rewards for all the actions can then be created by appending the vectors:

r =

ra1

...

 .

The constraints on the heuristic function in matrix form become:

v ≥ γTav + ra ∀a ∈ A,

221

together with the constraint v(τ) ≥ 0. To include the basis Φ to which the heuristic func-

tion is constrained, the problem is formulated as:

(I− γTa)Φx ≥ ra ∀a ∈ A

h(τ) ≥ 0

To simplify the notation, we denote the feasible set as K2, and thus v ∈ K2.

The formulation in (11.4) ensures that the resulting heuristic function will be admissible.

Proposition 11.3. Given a complete set of samples, the heuristic function v ∈ K2 is admissible.

That is, for all s ∈ S , v(s) ≥ v∗(s).

The proof of the proposition can be found in Section C.12.

In addition to admissibility, given incomplete samples, the heuristic function obtained

from (11.4) is guaranteed not to be lower than the lowest heuristic value feasible in (11.3),

as the following proposition states.

Proposition 11.4. Let Σ2 be a set of samples that does not necessarily cover all states. If v is

infeasible in (11.3), then v is also infeasible in (11.4).

The proof of this proposition is simple and relies on the fact that if an inequality is added

for every segment of a path that connects it to the goal, then the value in this state cannot

be less than the sum of the transition rewards.

Proposition 11.4 shows that given a fixed set of samples, (11.4) guarantees admissibility

whenever (11.3) does. However, as we show below, it may also lead to a greater approxi-

mation error. We therefore analyze a hybrid formulation, weighted by a constant α:

∀j ∈ Σ2, ∀i ∈ 1 . . . (nj − 1) :

v(sj
i) ≥ αγv(sj

i+1) + αr(sj
i , aj

i) + (1− α)v∗(sj
i)

(11.5)

Here v∗(sj
i) is the value of state sj

i in sequence j. When it is not available, an arbitrary lower

bound may be used. For α = 0, this formulation is equivalent to (11.3), and for α = 1, the

222

formulation is equivalent to (11.4). We denote the feasible set as K3, and thus v ∈ K3. The

key property of this formulation is stated in the following lemma, which is used later in

the chapter to establish approximation bounds, and is straightforward to prove.

Lemma 11.5. The optimal value function v∗ is a feasible solution of (11.5) for an arbitrary α.

11.4.2 Lower Bound Constraints

This section shows how to obtain a lower bound on the value of each state. This is impor-

tant because it allows us to evaluate the difference between the heuristic value and the true

value of each state. The lower bounds on the values of some selected states are obtained

from the optimal solutions.

The formulation we consider is similar to (11.3).

θ(sj
i) ≤

nj

∑
k=i

γk−ir(sj
k, aj

k) ∀j ∈ Σ1, ∀i ∈ 1 . . . nj (11.6)

That is, the bounds are on the values of states that were solved optimally and any nodes

that are on the path connecting the start state with the goal state. These bounds can also

be written in matrix notation, as in (11.3):

θ = Φy ≥ v∗.

We denote this feasible set G1, and thus θ ∈ G1. Additional bounds may be introduced as

well. Given an admissible heuristic function, bounds can be deduced for any state that is

expanded, even when it is not on an optimal path. While these bounds may not be tight

in many cases, they will only increase the probability that the function θ is a lower bound.

Notice that these constraints are sampled in the same manner as the constraints that ensure

feasibility.

Proposition 11.6. When the set of samples is complete and θ satisfies (11.6), then

θ(s) ≤ v∗(s) ∀s ∈ S .

223

1

10

≤ 9

s2

τs1

Figure 11.6. Lower bound formulations, where the dotted lines represent paths of arbitrary
length.

The proof of this proposition is straightforward.

In addition to the formulation above, a variation of (11.4) can also be considered. For

this, assume that every state is reachable from the initial state σ. Then, the bounds can be

written for ∀j ∈ Σ1, ∀i ∈ 1 . . . (nj − 1) as:

θ(sj
i+1) ≤ γθ(sj

i)− r(sj
i , aj

i)

θ(σ) ≤v∗(σ).
(11.7)

Unlike (11.4), these constraints alone do not guarantee that the function θ will be a lower

bound on the optimal value of the states. Figure 11.6 depicts a situation in which these

bounds are satisfied, but there is a feasible solution that is not an upper bound. Similarly,

as in (11.4), the bounds may be formulated as:

(I− γTa)Φy ≥ ra ∀a ∈ A

θ(σ) ≤ v∗(σ)

We denote this feasible set G2, and thus θ ∈ G2.

11.4.3 Linear Program Formulation

Given the above, we are ready to formulate the linear program for an admissible heuristic

function. As discussed in Section 11.2.2, two simple metrics used for judging the quality of

a heuristic function are the L1 norm and L∞ norm. Linear program formulations for each

of the norm follow.

224

The linear program that minimizes the L1 norm of the heuristic function error is the fol-

lowing:

min
v

1Tv

s.t. v ∈ K3

(11.8)

The formulation corresponds exactly to approximate linear programming when α = 1. It

is easy to show that the optimal solution of (11.8) minimizes ‖v− v∗‖1 (de Farias, 2002).

But to A linear program that minimizes the L∞ norm of the heuristic function error is the

following:

min
δ,v

δ

s.t. v(s)− θ(s) ≤ δ ∀s ∈ S

v ∈ K3

θ ∈ G1

(11.9)

It is easy to show that (11.9) minimizes ‖v − v∗‖∞. This is because from the definition

v(s) ≥ θ(s) for all s. In addition, even when the linear program is constructed from the

samples only, this inequality holds. Notice that the number of constraints v(s)− θ(s) ≤ δ is

too large, because one constraint is needed for each state. Therefore, in practice these con-

straints will be sampled as well as the remaining states. In particular, we use those states

s for which v∗(s) is known. While it is possible to use G2 instead of G1, that somewhat

complicates the analysis. We summarize below the main reasons why the formulation in

(11.9) is more suitable than (11.8).

11.5 Approximation Bounds

We showed above how to formulate the linear programs for optimizing the heuristic func-

tion. It is however important whether these linear programs are feasible and whether their

solutions are close to the best heuristic that can be represented using the features in ba-

sis Φ. In this section, we extend the analysis used in approximate linear programming to

show new conditions for obtaining a good heuristic function.

225

We are interested in bounding the maximal approximation error ‖v − v∗‖∞. This bound

limits the maximal error in any state, and can be used as a rough measure of the extra

search effort required to find the optimal solution. Alternatively, given that ‖v− v∗‖∞ ≤ ε,

then the greedily constructed solution with this heuristic will have the approximation error

of at most mε, where m is the number of steps required to reach the goal. This makes it pos-

sible to solve the problem without search. For simplicity, we do not address here the issues

related to limited sample availability, which have been previously analyzed (de Farias,

2002; de Farias & van Roy, 2004; Ben-Tal & Nemirovski, 2008; Goldfarb & Iyengar, 2003)

The approximation bound for the solution of (11.8) with the constraints in (11.4) comes

from approximate linear programming (de Farias, 2002). In the following, we use 1 to

denote the vector of all ones. Assuming 1 is representable inM, the bound is:

‖v∗ − v‖c ≤
2

1− γ
min

x
‖v∗ −Φx‖∞,

where ‖ · ‖c is an L1 error bound weighted by a vector c, elements of which sum to 1. The

approximation bound contains the multiplicative factors, because even when Φx is close

to v∗ it may not satisfy the required feasibility conditions. This bound only ensures that

the sum of the errors is small, but errors in some of the states may still be very large. The

bound can be directly translated to an L∞ bound, assuming that c = 1, that is a vector of

all ones. The bound is as follows:

‖v∗ − v‖∞ ≤ |S|
2

1− γ
min

x
‖v∗ −Φx‖∞.

The potential problem with this formulation is that it may be very loose when: (1) the

number of states is large, since it depends on the number of states |S|; or (2) the discount

factor γ is close to 1 or is 1.

We show below how to address these problems using the alternative formulation of (11.9)

and taking advantage of additional structure of the approximation space.

226

Lemma 11.7. Assume that 1 is representable inM. Then there exists a heuristic function v̂ that

is feasible in (11.5) and satisfies:

‖v̂− v∗‖∞ ≤
2

1− γα
min

x
‖v∗ −Φx‖∞.

The proof of the lemma can be found in Section C.12.

Using similar analysis, the following lemma can be shown.

Lemma 11.8. Assume 1 is representable inM. Then there exists a lower bound θ̂ that is feasible

in (11.6), such that:

‖θ̂ − v∗‖∞ ≤ 2 min
x
‖v∗ −Φx‖∞.

This lemma can be proved simply by subtracting ε1 from θ that is closest to v∗. The above

lemmas lead to the following theorem with respect to the formulation in (11.9).

Lemma 11.9. Assume that 1 is representable inM, and let v̂, θ̂, δ be an optimal solution of (11.9).

Then:

δ = ‖v̂− v∗‖∞ ≤
(

2 +
2

1− γα

)
min

x
‖v∗ −Φx‖∞.

Therefore, by solving (11.9) instead of (11.8), the error is independent of the number of

states. This is a significant difference, since the approach is proposed for problems with a

very large number of states.

Proof. Assume that that the solution δ does not satisfy the inequality. Then, using Lemmas

11.8 and 11.7, it is possible to construct a solution v̂, θ̂, δ̂. This leads to a contradiction,

because δ̂ < δ.

Even when (11.9) is solved, the approximation error depends on the factor 1/(1− γα). For

γ = α = 1, the bound is infinite. In fact the approximate linear program may become

infeasible in this case, unless the approximation basis Φ satisfies some requirements. In

227

1

1

s2

s3

s1

Figure 11.7. An approximation with loose bounds.

the following, we show which requirements are necessary to ensure that there will always

be a feasible solution.

To illustrate this problem with the approximation, consider the following simple example

with states S = {s1, s2, s3} and a single action A = {a}. The goal is the state τ = s3, and

thus there is no transition from this state. The transitions are t(si, a) = si+1, for i = 1, 2.

The rewards are also r(si, a) = 1 for i = 1, 2. Now, let the approximation basis be

Φ =

1 0 1

0 1 0

T

.

This example is depicted in Figure 11.7, in which the square represents the aggregated

states in which the heuristic function is constant. The bounds of (11.4) in this example are

h(s1) ≥ γv(s2) + 1

h(s2) ≥ γv(s3) + 1

h(s3) ≥ 0

The approximation basis Φ requires that v(s1) = v(s3). Thus we get that:

v(s1) ≥ γv(s2) + 1 ≥ γ2v(s3) + γ + 1 = γ2v(s1) + γ + 1.

As a result, despite the fact that v∗(s1) = 2, the heuristic function is v(s2) = (1 + γ)/(1−
γ2). This is very imprecise for high values of γ. A similar problem was addressed in

standard approximate linear programming by introducing so called Lyapunov vectors.

We build on this idea to define conditions that enable us to use (11.5) with high γ and α.

228

τ

65 43

2s2 s3

s4

σ

Figure 11.8. An example of the Lyapunov hierarchy. The dotted line represents a constraint
that needs to be removed and replaced by the dashed ones.

Definition 11.10 (Lyapunov vector hierarchy). Let u1 . . . uk ≥ 0 be a set of vectors, and T

and r be partitioned into Ti and ri respectively. This set of vectors is called a Lyapunov

vector hierarchy if there exist βi < 1 such that:

Tiui ≤ βiui

Tjui ≤ 0 ∀j < i

The second condition requires that no states in partition j transit to a state with positive ui.

An example of such a hierarchy would be an abstraction, depicted in Figure 11.8. Let the

state space S be partitioned into l subsets Si, with i ∈ 1 . . . l. Assume that the transitions

satisfy:

∀a ∈ A : t(s, a) = s′ ∧ s ∈ Si ∧ s′ ∈ Sj ⇒ j < i.

That is, there is an ordering of the partitions consistent with the transitions. Let ui be a

vector of the size of the state space, defined as:

ui(s) = 1⇔ s ∈ Si,

and zero otherwise. It is easy to show that these vectors satisfy the requirements of Def-

inition 11.10. When the approximation basis Φ can be shown to contain such ui, it is, as

we show below, possible to use the formulation with γ = α = 1 with low approximation

error.

229

Lemma 11.11. Assume that there exists a Lyapunov hierarchy u1 . . . ul , such that each ui is rep-

resentable inM. Then there exists a heuristic function v̂ in Φ that is feasible in (11.5), such that:

‖v̂− v∗‖∞ ≤
(

l

∏
i=1

(1 + αγ)maxs∈S ui(s)
(1− αγβi)mins∈S ui

i(s)

)
2 min

x
‖v∗ −Φx‖∞,

where ui
i is the vector ui restricted to states in partition i.

The proof of the lemma can be found in Section C.12.

The bound on the approximation error of the optimal solution of (11.9) may be then re-

stated as follows.

Theorem 11.12. Assume that there exists a Lyapunov hierarchy u1 . . . ul , and for each ui there

exists zi such that ui = Φzi. Then for the optimal solution v̂, δ of (11.9):

δ = ‖v̂− v∗‖∞ ≤
(

1 +
l

∏
i=1

(1 + αγ)maxs∈S ui(s)
(1− αγβi)mins∈S ui

i(s)

)
2ε,

where ε = minx ‖v∗ −Φx‖∞.

The proof follows from Lemma 11.11 similarly to Lemma 11.9. The theorem shows that

even when γ = 1, it is possible to guarantee the feasibility of (11.9) by including the Lya-

punov hierarchy in the basis.

A simple instance of a Lyapunov hierarchy is a set of features that depends on the number

of steps from the goal. Therefore, the basis Φ must contain a vector ui, such that ui(j) = 1 if

the number of steps to get to sj is i and 0 otherwise. This is practical in problems in which

the number of steps to the goal is known in any state. Assuming this simplified condition,

Theorem 11.12, may be restated as follows.

‖v̂− v∗‖∞ ≤
(

1 +
l

∏
i=1

1 + αγ

1− αγβi

)
2 min

x
‖v∗ −Φx‖∞.

This however indicates an exponential growth in error with the size of the hierarchy with

γ = α = 1. Unfortunately, it is possible to construct an example in which this bound is

230

tight. We have not observed such behavior in the experiments, and it is likely that finer

error bounds could be established. As a result of the analysis above, if the basis contains

the Lyapunov hierarchy, the approximation error is finite even for γ = 1.

In some problems it is hard to construct a basis that contains a Lyapunov hierarchy. An al-

ternative approach is to include only constraints that obey the Lyapunov hierarchy present

in the basis. These may include multi-step constraints, as indicated in Figure 11.8. As a

result, only a subset of the constrains is added, but this may improve the approximation

error significantly. Another option is to define features that depend on the actions, not

only on states. This is a non-trivial extension, however, and we leave the details to future

work. Finally, when all the rewards are negative and the basis contains only a Lyapunov

hierarchy, then it can be shown that no constraints need to be removed.

11.6 Empirical Evaluation

We evaluate the approach on the sliding eight tile puzzle problem–a classic search prob-

lem (Reinefeld, 1993). The purpose of these experiments is to demonstrate the applicability

of the ALP approach. We used the eight-puzzle particularly because it has been studied

extensively and because it can be solved relatively quickly. This allows us to evaluate the

quality of the heuristic functions we obtain in different settings. Since all the experiments

we describe took less than a few seconds, scaling to large problems with many sample

plans is very promising. Scalability mostly relies on the ability to solve efficiently large

linear programs–an area that has seen significant progress over the years. In all instances,

we use the formulation in (11.9) with different values of α.

The heuristic construction method relies on a set of features available for the domain. Good

features are crucial for obtaining a useful heuristic function, since they must be able to

discriminate states based on their heuristic value. In addition, the set of features must be

limited to facilitate generalization. Notice that although the features are crucial, they are

in general much easier to select compared with a good admissible heuristic function. We

consider the following basis choices:

231

1. Manhattan distance of each tile from its goal position, including the empty tile. This

results in 9 features that range in values from 0 to 4. This basis does not satisfy the

Lyapunov property condition. The minimal admissible heuristic function from these

features will assign value -1 to the feature that corresponds to each tile, except the

empty tile, which is 0.

2. Abstraction based on the sum of the Manhattan distances of all pieces. For example,

feature 7 will be 1 if the sum of the Manhattan distances of the pieces is 7 and 0

otherwise. This basis satisfies the Lyapunov hierarchy condition as defined above,

since all the rewards in the domain are negative.

3. The first feature is the Nilsson sequence score (Nilsson, 1971) and the second feature

is the total Manhattan distance minus 3. The Nilsson sequence score is obtained by

checking around the non-central square in turn, allotting 2 for every tile not followed

by its proper successor and 0 for every other tile, except that a piece in the center

scores 1. This value is not an admissible heuristic.

First, we evaluate the approach in terms of the number of samples that are required to learn

a good heuristic function. We first collect samples from a blind search. To prevent expand-

ing too many states, we start with initial states that are close to the goal. This is done by

starting with the goal state and performing a sequence of 20 random actions. Typical re-

sults obtained in these experiments are shown in Figure 11.9, all performed with α = 1.

The column labeled “States” shows the total number of node-action pairs expanded and

used to learn the heuristic function, not necessarily unique ones. The samples are gath-

ered from solving the problem optimally for two states. The results show that relatively

few nodes are required to obtain a heuristic function that is admissible, and very close to

the optimal heuristic function with the given features. Notice that the heuristic function

was obtained with no prior knowledge of the domain and without any a priori heuristic

function. Very similar results were obtained with the second basis.

Next, we compare the two formulations for the upper bounds, (11.3) and (11.4), with re-

gard to their approximation error. Notice that a big advantage of the formulation depicted

by (11.4) is the ability to use transitions from states that are not on a path to the goal. The

232

x0 x1 x2 x3 x4 x5 x6 x7 x8 States
0 -1 -1 -1 -1 0 0 -1 0 958
0 -1 -1 -1 -1 -1 0 -1 0 70264
0 -1 -1 0 -1 -1 -1 -1 -1 63
0 -1 -1 -1 -1 -1 -1 -1 -1 162

Figure 11.9. Weights calculated for individual features using the first basis choice. Column
xi corresponds to the weight assigned to feature associated with tile i, where 0 is the empty
tile. The top 2 rows are based on data from blind search, and the bottom 2 on data from
search based on the heuristic from the previous row.

α 1 0.99 0.9 0.8 0
x1 0 -0.26 -1 -1 -1
x2 -0.25 -0.25 -0.59 -0.6 -0.6
x3 0 0 2.52 2.6 2.6
δ 17 16.49 13.65 13.6 13.6
p 1 1 0.97 0.96 0.95
δ′ 19 17 15 14.4 14.4

Figure 11.10. The discovered heuristic functions as a function of α in the third basis choice,
where xi are the weights on the corresponding features in the order they are defined.

data is based on 100 goal terminated searches and 1000 additional randomly chosen states.

The results are shown in Figure 11.10. Here, δ is the objective value of (11.9), which is

the maximal overestimation of the heuristic function in the given samples. Similarly, δ′

is the maximal overestimation obtained based on 1000 state samples independent of the

linear program. The approximate fraction of states in which the heuristic function is ad-

missible is denoted by p. These results demonstrate the tradeoff that α offers. A lower

value of α generally leads to a better heuristic function, but at the expense of admissibility.

The bounds with regard to the sampled constraints, as presented in (de Farias, 2002) do

not distinguish between the two formulations. A deeper analysis of this is an important

part of future work. Interestingly, the results show that the Nilsson sequence score is not

admissible, but it becomes admissible when divided by 4.

The ALP approach has also been applied to Tetris, a popular benchmark problem in re-

inforcement learning (Szita & Lorincz, 2006). Because Tetris is an inherently stochastic

problem, we used the Regret algorithm (Mercier & Hentenryck, 2007) to solve it using

233

a deterministic method. The Regret algorithm first generates samples of the uncertain

component of the problem and then treats it as a deterministic problem. It is crucial in

Tetris to have a basis that contains a Lyapunov hierarchy, since the rewards are positive.

Since we always solve the problem for a fixed number of steps forward, such a hierar-

chy can be defined based on the number of steps remaining as in Figure 11.8. Our initial

experiments with Tetris produced promising results. However, to outperform the state-of-

the-art methods–such as approximate linear programming (Farias & van Roy, 2006) and

cross-entropy methods (Szita & Lorincz, 2006)–we need to scale up our implementation

to handle millions of samples. This is mostly a technical challenge that can be addressed

using methods developed by (Farias & van Roy, 2006).

11.7 Contributions

The main contribution described in this chapter is the connection between heuristic search

and value function approximation. In particular, it shows how to use approximate linear

programming to compute admissible heuristic functions. The chapter also presents a new

classification and overview of methods for learning heuristic functions. These methods

are similar to value function approximation but typically concern problems with more

structure.

234

CHAPTER 12

CONCLUSION

This thesis proposed a new approach to value function approximation, or approximate

dynamic programming, using optimization–based formulations. We examined various

formulations that focus on optimizing diverse properties. Each of the formulations has

its own advantages and disadvantages and may be, therefore, applicable in different cir-

cumstances. For example, the approximate linear programming formulation is relatively

loose, but represents a convex optimization problem. Linear programs are easy to solve,

for example using the proposed homotopy method, and are convenient to analyze. Ap-

proximate bilinear programs, on the other hand, guarantee much tighter approximation

with very little extra prior knowledge. Unfortunately, bilinear programs are much harder

to solve and analyze.

An important advantage of the optimization–based approach is that it decouples the for-

mulation from the algorithms used to solve it. The formulation captures the properties

of the value function that need to be attained. The formulations are in terms of generic

mathematical optimization problems, for which many algorithms have been proposed. In

addition, specific properties of the formulations can be used to develop more efficient so-

lution methods. Nevertheless, it is possible to analyze the formulations without knowing

the intricacies of the specific algorithm. It is also possible to develop solution algorithms

without influencing the analysis of the formulation.

The practical benefits of the proposed methods in practice are yet to be fully evaluated.

We applied the methods to a number of benchmark and practical problems, and got very

encouraging results. However, the true practical evaluation of the optimization–based

approach will require that the results are replicated in many other domains and settings.

235

The work on optimization–based methods for value function approximation is by no means

complete. This thesis presents many basic results that will need to be significantly refined

in order to become practical in wider array of settings. We mention a non–exhaustive list

of significant topics that require future work:

Better bounds on policy loss Existing bounds on policy loss are often very loose. Since

these bounds are at the heart of optimization–based methods, improving them could

dramatically improve the performance of the methods. There has been very little

work on policy loss bounds.

Policy visitation–frequencies approximation Some approximate linear and bilinear for-

mulations rely heavily on being able to approximate the policy visitation frequen-

cies. There are no known methods that can currently approximate the visitation fre-

quencies. This is quite different than approximating value functions. The Bellman

residual, which depends only on a single step in the MDP, can be used to evaluate

the quality of the greedy policy with respect to the value function. No such concept

exists for state visitation frequencies.

Approximate algorithms for solving approximate bilinear programs The approximate al-

gorithms for solving bilinear programs presented in this thesis are quite limited. Fur-

ther work is needed to explore potential approximate methods for solving bilinear

programs with this structure. These algorithms can be based either on solving bilin-

ear programs or on the mixed integer linear program formulation that we proposed.

Better sampling bounds The sampling bounds described in the thesis are quite loose in

most circumstances. Additional problem–specific assumptions will be required in

order to make the bounds useful.

Structure–based offline error bounds The bounds and the whole approach presented in

the thesis ignores the structure of the problem and assumes that it can be captured by

the features. While we present methods that work with very large and rich feature

spaces, we did not address how the structure of the domain may influence the quality

of the given features. That is, new offline bounds are needed — bounds that will

236

not be with respect to the closest approximation of the optimal value function, but

bounds that will be in terms of the MDP domain structure.

Optimization–based approximate dynamic programming presents a novel approach to ap-

proximately solving a large class of planning and learning problems. We believe that this

approach opens up many opportunities to understand better the fundamental issues in-

volved in value function approximation.

237

PART

APPENDICES

APPENDIX A

NOTATION

All vectors are assumed to be column vectors, unless specified otherwise. We use the

following matrix and block matrix notation. Matrices are denoted by square brackets,

with columns separated by commas and rows separated by semicolons. Columns have

precedence over rows. For example, the notation [A, B; C, D] corresponds to the matrix(
A B
C D

)
.

1 Vector of all ones of the size appropriate to the context.

1i Vector of all zeros except the i-th element, which is one, of the size appropriate to the

context.

0 Vector of all zeros of the size appropriate in the context.

α Initial-state distribution.

β Lyapunov-style constant used to derive bounds.

γ Discount factor in [0, 1].

σ A bound on the violation of the transitive–feasible constraints when sampling.

π A policy in the given MDP.

Π A set of possible policies to a given MDP.

ρ The maximal difference between the upper bound on v∗ and a lower bound, such as

‖h− v∗‖∞ or ‖v− θ‖∞.

ρ The regression operator used for estimating the sampling error.

Σ Set of samples used to determine the approximate value function — generic samples.

Σ̄ Set of informative samples that contain the transition distribution.

σ Initial state in search problems.

Σ1, Σ2 Samples used for computing heuristic functions.

φ(s) Features of state s. Represents a vector.

239

φi Feature i as a vector for all states.

Φ Approximation basis, represented as a matrix.

θ Lower bound on the optimal value function.

τ Goal state in search problems.

ξ Coefficients of the approximation features Φ for the lower bound on the value function,

such that θ = Φξ.

χ Operator that maps states to samples and is used in estimating the sampling error.

θB Optimal objective value of the regularized ABP, as a function of ψ

ψ Regularization coefficient for regularized formulations: ‖x‖1,e ≤ ψ.

k The state embedding function. Maps states to Rn.

A Matrix that represents the constraints on transitive-feasible value functions.

A Set of available actions, uniform over all states.

B Matrix that represents the constraints on the stochasticity of policies.

c Objective function typically used in the approximate linear programming formulation.

Alternatively, this is used also as an arbitrary distribution over the states in the MDP.

C Set of children of a state in a search problem.

d Distance (sum of rewards) between any two states in a search problem.

e Regularization weights for regularized formulations: ‖x‖1,e ≤ ψ.

I Identity matrix of the size appropriate to the context.

K Set of transitive-feasible value functions.

L Bellman operator

Gi One of the value function feasibility sets that ensure that v ≤ v∗.

nj Length of sample j in terms of the number of states and actions.

N A (multivariate) normal distribution.

Pa A matrix that represents the probability of transiting from the state defined by the row

to the state defined by the column, such that: Pa(i, j) = P(si, a, sj).

P Transition operator for an MDP.

Pπ A matrix that represents the probability of transiting from the state defined by the row

to the state defined by the column, such that: Pπ(i, j) = P(si, π(si), sj).

r Vector of rewards in the MDP, defined for each state and action pair.

240

ra Vector the rewards for action a, such that ra(i) = r(si, a).

rπ Vector the rewards for action a, such that rπ(i) = r(si, π(si)).

S Set of states of the problem.

Pπ Transition function for a fixed policy.

u State-action visitation frequencies.

ua Subset of state-action visitation frequencies for action a.

uπ State visitation frequencies for a policy π.

u,ū Lower and upper bounds on uπ.

v Arbitrary value function, may represent a value function of a policy. We also use v to

represent a heuristic function. While this notation is inconsistent with the search

literature, it makes our treatment of the problem consistent.

ṽ An approximate value function.

v∗ The optimal value function, such that v∗ ≥ v for all v. This function is unique.

q State-action value function, also known as Q-function.

x Coefficients associated with the approximation features Φ, such that v = Φx. It is also

used as a generic optimization variable for general linear programs.

M Set of representable value functions.

z The state transition function, used to define common random numbers.

241

APPENDIX B

PROBLEM DESCRIPTIONS

In this appendix, we briefly describe the problems that are used to evaluate the proposed

formulations and algorithms. Most of these problems are relatively simple to facilitate

easy computation of the optimal solutions and to minimize engineering challenges, which

are in general independent of our work. We also, however, describe two problems that are

based on real data and have a potential for deployment in the future.

B.1 Simple Benchmark Problems

B.1.1 One-directional Chain

This is a simple linear chain problem with 200 states, in which the transitions move to the

right by one step with a centered Gaussian noise with standard deviation 3. The reward for

reaching the right-most state was +1 and the reward in the 20th state was -3. This problem

is small to enable calculation of the optimal value function and to control sampling.

The approximation basis in this problem is represented by piecewise linear features, of

the form φ(si) = [i− c]+, for c from 1 to 200. The discount factor in the experiments was

γ = 0.95.

B.1.2 Two-directional Chain

This is a simple linear chain problem with 200 states, in which the transitions move to the

right or left (2 actions) by one step with a centered Gaussian noise of standard deviation

3. The rewards were set to sin(i/20) for the right action and cos(i/20) for the left action,

where i is the index of the state. This problem is small enough to calculate the optimal

value function and to control the approximation features.

242

The approximation basis in this problem is represented by piecewise linear features, of

the form φ(si) = [i− c]+, for c from 1 to 200. The discount factor in the experiments was

γ = 0.95 and the initial distribution was α(130) = 1.

B.1.3 Mountain Car

In the mountain-car benchmark an underpowered car needs to climb a hill (Sutton & Barto,

1998). We use a modified version of this task. To do so, it first needs to back up to an

opposite hill to gain sufficient momentum. The state-space is S = R2 and represents the

position xt and velocity yt of the car. The dynamics of the environment are:

xt+1 = bx(xt + yt+1)

yt+1 = by(yt + 0.001at +−0.0025cos(3xt)).

Here, bx(x) = min{max{x,−1.2}, 0.5} and by(y) = min{max{y,−0.07}, 0.07}. The value

at represents the action. The actions are A = {−1, 0, 1}.

In the original formulation, the task stops as soon as the reward is received. In our modi-

fied problem, the car continues for an extra 0.1 distance. The dynamics of the problem do

not allow it to receive the reward again, however. Formally, the reward is defined as:

r((x, y), a) =

1 if x > 0.4

0 otherwise
.

In this domain, a car is faced with a task of climbing a hill that is too steep for its engine.

Therefore, to ascend the hill, it must first back up to an opposite hill to gain momentum.

The problem is described by the car’s position and velocity. The transitions are determin-

istic and guided by simplified laws of physics.

B.2 Blood Inventory Management

The blood inventory management problem concerns managing a blood supply inventory

and determining the optimal blood-type substitution. Here, we provide only brief descrip-

243

AB+

A+

AB-

O-

AB+

AB-

AB+

AB+

A+

AB-

O-

AB-

T T+1

Demand

Supply

Inventory Inventory

Figure B.1. A sketch of the blood inventory management

tion of the basic model. For more detailed description and motivation, please see (Powell,

2007a). Note, however, that the formulation that we use is somewhat different to make the

problem somewhat more challenging, as we detail below. The blood inventory manage-

ment problem is sketched in Figure B.1.

Blood inventory management is a multi-dimensional resource management problem. The

blood allocation decision is made weekly. The state-space represents the inventory of

blood, divided into 8 blood types (A+,A-,B+,B-,AB+,AB-,0+,0-) and 4 ages, and the blood

demands for each blood type. A state-space is therefore S = R40. The actions represent

the assignment of blood to the demand and is: A = R(40+8). That means for each blood

type in the inventory the amount used and for each demand the amount satisfied. The

transition from state to state adds stochastic supply and generates new stochastic demand.

For more details on the formulation and blood type compatibilities, please see (Powell,

2007a).

The problem that we consider is a slightly modified version of the originally proposed

model. The myopic solution of the original model is about 273000 and easy to obtain upper

bound on the optimal solution is 275000. This indicates that the possible improvement

from advanced planning is relatively small. The main reason is that the blood supply is

almost entirely capable of satisfying the demand.

244

Type Critical Urgent Elective
Unsatisfied 0 0 0
Same type 50 25 5
Compatible type 45 27.5 4.5

Figure B.2. Rewards for satisfying blood demand.

To make the problem more interesting as a benchmark domain, we restrict the supply by

50% and add priorities for blood supply. We also introduce priorities for blood demands:

1) critical, 2) urgent, and 3) elective. The rewards for satisfying the demand, based on the

priority and blood compatibility are summarized in Figure B.2. For this formulation, the

myopic solution is about 70000 while the bound on the optimal one is about 94000.

This problem presents an interesting difficulty when compared to most other reinforce-

ment learning applications. It has an infinite state-space and therefore simply computing

the greedy policy for a value function is difficult. To make the computation possible, the

we need to approximate the state–action value function q (such as in (4.3)) and it must be

approximated using piecewise linear functions, which are described in Section 10.2.

The myopic solution represents the greedy policy for v = 0. We describe this solution first

for simplicity. The action for every states is computed using the following linear program:

max
y,z ∑

ij
rijyij

s.t. ∑
j

yij + zk ≤ C(i) ∀i ∈ T

∑
i

yij ≤ D(j) ∀j ∈ T

yij, zi ≥ 0 ∀i, j ∈ T

This maximum-flow linear program is sketched in Figure B.3. Here, indices i represent the

blood types in the inventory and indices j represent the blood types in the demand. The set

T denotes all blood types (for the sake of simplicity we ignore the age of the blood in the

inventory). Then, r(i, j) is the reward for using blood type (and age) i to satisfy demand j.

D(j) is the demand for blood type j, C(j) is the amount of blood in the inventory, yij is the

245

AB+

A-

D(A-) D(AB+)

C(A-) C(AB+)

y11

y12

z1
z2

y21 y22

Figure B.3. The blood flow in blood inventory management.

amount of blood used to satisfy the demand and zk is the blood amount carried over to the

next step.

To solve the greedy step using a linear program for any value function, we piece–wise

linear features as described in Section 10.2:

φk(s) =
[
uT

k k(s) + tk

]
+

.

In this problem, the function k is essentially an identity function. Assume that a value

function is v = Φx. The linear program then becomes:

max
y,z ∑

ij
rijyij + ∑

k
lkxk

s.t. ∑
j

yij + zk ≤ C(i) ∀i ∈ T

∑
i

yij ≤ D(j) ∀j ∈ T

yij, zi ≥ 0 ∀i, j ∈ T

lk ≥ uT
k z− tk

lk ≥ 0

The variable lk here represents the value of the linear feature. It is easy to show correctness

of this linear program as long as all xi are non-positive except those for which tk = 0.

246

The simplest method for generating constraints is to simply sample actions or include

actions that are greedy with respect to some particular value function. It is also possible to

include maximum-flow linear programs directly to approximate linear programs. In that

case, the term lkxk is not linear. To obtain a linear representation, we can consider the dual

of the linear program. Let the value of the flow for a dual variable a be g(a, v) for a value

function v. Then, it is easy to show that the optimal solutions of the following two linear

programs are identical:

min
v

cTv

s.t. v ≥ min
a

g(a, v)

v ∈ M
and

min
v,a

cTv

s.t. v ≥ g(a, v)

v ∈ M

B.3 Reservoir Management

In this section, we formally describe the reservoir management problem. We also define

general notation that can be used to represent other similar domains. In these problems,

there is large uncertainty that is not under the control of the decision maker, but is instead

external.

The state in the reservoir management is defined by the tuple (l, s, i, e). Here l ∈ R is the

water level in the reservoir, s ∈ Z is the season of the year (such as the day or week of the

year), i ∈ Rt is the forecast of the inflows, and e ∈ Rt is the forecast of the energy prices.

The actions represent the discharge d ∈ R and are assumed to be discretized.

247

The transitions (l, s, i, e)→ (l′, s′, i′, e′) is defined as follows:

l′ ← l + i(1)− d s′ ← (s + 1) mod 365

i(k)← i(k + 1) e(k)← e(k + 1)

i(t)← Qi(i) e(t)← Qe(e)

Here, Qi and Qe are random variables distributed according to the model and t represents

the last element.

To be able to generate samples, we used the available data to estimate stochastic mod-

els of the transitions. The data for inflows, desirable volume, and discharge comes from

the Yellowtail River Dam in Montana. We used linear regression of the logarithm of the

inflows.

The reward model is defined as follows.

r((l, s, i, e), d) = e(1)d− pd(d)− pl(l)

That is the monetary gain from generating electricity less the penalty for discharge outside

of the desirable bounds pd : R → R and the penalty for the water lever outside of the

desirable bounds pl : R → R. The actual reward function we used in the experiments is

as follows:

r((l, s, i, e), d) = [log(l)− 13.7]+ + [13.6− log(l)]+ +

0.03 ∗ [log(d)− 9.1]+ + [6.8− log(d)]+ + 0.0000001 ∗ d ∗ e,

where e is the current price of electricity. Therefore, the controller ignores the volume and

discharge of the reservoir as long as it is within reasonable boundaries. These boundaries

were obtained to be centered about 95% of the values during the actual historical operation.

This function is motivated by the operations of the reservoir, but does not precisely capture

the tradeoffs.

248

The simplest state embedding function can be defined as:

k(l, s, i, e) =
(

l

)
.

That is, the states are mapped to a real space that represents the volume in the reservoir.

249

APPENDIX C

PROOFS

250

C.1 Basic Properties of Normed Vector Spaces

Definition C.1. A linear operator Z : Rn → Rm is monotonous if for all x and y:

x ≥ y⇒ Zx ≥ Zy.

Lemma C.2. For any vector x the following inequalities hold:

‖x‖s ≤ 2 min
c
‖x + c1‖∞ ≤ 2‖x‖∞

‖x‖∞ ≤ ‖x‖2

‖x‖2 ≤
√

n‖x‖1 ≤ n
√

n‖x‖∞

‖x‖1,c ≤ ‖x‖∞,

where n is the length of vector x and 1Tc = 1 and c ≥ 0.

Proof. The inequalities in the lemma are standard results of linear analysis. Because most

proofs are straightforward, we only prove selected ones. Assume without loss of general-

ity that x ≥ 0, since for polynomial norms ‖|x|‖ = ‖x‖. Then from Jensen’s inequality:

‖x‖2
1 = n2

(
∑

i

xi

n

)2

≥ n2 ∑
i

x2
i

n
= n ∑

i
x2

i = n‖x‖2
2.

C.2 Properties of the Bellman Operator

Lemma C.3. The operator Lπ is linear for any policy π.

The lemma follows directly from the definitions.

Lemma C.4. For any ε, and a value function v, the sets of greedy policies for v and v + ε1 are

identical.

The lemma follows directly from the definition of a greedy policy in Definition 2.8.

251

Lemma C.5 (Bellman Operator). For any value function v we have:

L(v + ε1) = Lv + γε1.

Proof. Let π be the greedy policy with respect to v + ε1. Let P and r be the corresponding

policy and rewards. Because P is a stochastic matrix, P1 = 1. We have:

L(v + ε1) = γP(v + ε1) + r

= γε1 + γPv + r

= γε1 + Lv.

The last equality follows from Lemma C.4.

Definition C.6. A matrix P is called stochastic when all its elements are non-negative and

all its rows sum to 1.

Notice that the transition matrix Pπ of an MDP is a stochastic matrix.

Lemma C.7 (Monotonicity). Let P be a stochastic matrix. Then both the linear operators P and

(I− γP)−1 are monotonous:

x ≥ y⇒ Px ≥ Py

x ≥ y⇒ (I− γP)−1x ≥ (I− γP)−1y

for all x and y.

Proof. Since P is a stochastic matrix, we have that γPx ≥ γPy when x ≥ y. Using induc-

tion, the same can be shown for (γP)i for any i ≥ 0. Now

(I− γP)−1x =
∞

∑
i=0

(γP)ix ≥
∞

∑
i=0

(γP)iy = (I− γP)−1x.

252

Lemma C.8 (Monotonicity). Bellman operator is monotonous. That is:

x ≥ y⇒ Lx ≥ Ly.

Proof. Let x ≥ y, and let ψ be the optimal policy for value function y. Then:

max
π∈Π

(rπ + γPπx)−max
π∈Π

(rπ + γPπy) ≥ rψ + γPψx− rψ + γPψy

= Lψ(x− y) ≥ x− y ≥ 0,

where the last inequality follows from Lemma C.7.

Theorem 2.7. [(Bellman, 1957)] A value function v∗ is optimal if and only if v∗ = Lv∗. Moreover,

v∗ is unique and satisfies v∗ ≥ vπ.

Proof. First, notice that for any value function v of a policy π, we have Lv ≥ v, because

the maximization may be pair wise, and γPv + r = v. Now we show that if the value

function is optimal, then v∗ = Lv∗. Let v∗ be the optimal value function. For the sake of a

contradiction, assume that

Lv∗ = γPv∗ + r ≥ v∗ + x,

where x ≥ 0. Then we have, from monotonicity if (I− γP)−1:

γPv∗ + r ≥ v∗ + x

r ≥ (I− γP)v∗ + x

(I− γP)−1r ≥ v∗ + (I− γP)−1x

v ≥ v∗ + x,

for some v. This is a contradiction with the optimality of v∗. In addition, this construction

show that if for some policy Lv > v then there exists a policy with a strictly dominant

value function. Therefore, since the number of policies if finite, there must exists a policy

such that v∗ = Lv∗. We show the optimality of this policy next.

253

Now, we show that if v∗ = Lv∗ then the value function is optimal. Let Lv∗ = v∗ and

assume there exists v > v∗. Let P and r be the transition matrix and the reward function

associated with the value function v. Then:

γP∗ + r ≤ v∗

r ≤ (I− γP)v∗

(I− γP)−1v ≤ v∗

v ≤ v∗

Here, the fist inequality follows from the fact that L may be seen as a element-wise maxi-

mization. Then, the rest follows from monotonicity of (I− γP)−1. This is a contradiction

with the assumption that v > v∗.

The Bellman operator is a contraction under the L∞ norm and the span seminorm.

Theorem C.9 ((Bellman, 1957)). For a Bellman operator L with a discount factor γ and arbitrary

vectors v1 and v2, the following holds for any policy π ∈ Π:

‖Lπv1 − Lπv2‖∞ ≤ γ‖v1 − v2‖∞

‖Lv1 − Lv2‖∞ ≤ γ‖v1 − v2‖∞

‖Lv1 − Lv2‖s ≤ γ‖v1 − v2‖s

For a proof of this property, see for example Theorem 6.6.6 in (Puterman, 2005). The con-

traction may be stronger when the Bellman operator satisfies certain properties. The proofs

are identical for span seminorm and L∞ norm since the policy is invariant to addition of a

constant.

The primal linear formulation of the MDP is (Puterman, 2005):

min
v

cTv

s.t. Av ≥ b
(C.1)

254

The dual of the linear formulation of the MDP (Puterman, 2005). The dual linear program

is:
max

u
bTu

s.t. ATu = c

u ≥ 0

(C.2)

Using the same notation as the approximate linear program formulation (ALP) with c set

to α. The optimal solution of (C.2) corresponds to the optimal state visitation frequencies,

as described in Section 2.2.

Lemma C.10. Let uπ be the state-action visitation frequency of policy π. This value is feasible in

(C.2) and:

1Tu =
1

1− γ
.

Proof. Let ua(s) = uπ(s, π(s, a)) for all states s ∈ S and actions a ∈ A. The lemma follows

as:

∑
a∈A

uT
a (I− γPa) = cT

∑
a∈A

uT
a (I− γPa)1 = cT1

(1− γ) ∑
a∈A

uT
a 1 = 1

uT1 =
1

1− γ
.

Lemma C.11. Assume two MDPs Φ1 = (S ,A, P, r, α) and Φ2 = (S ,A, P, r + c1, α). The

optimal policies of these MDPs are the same for arbitrary value of c.

255

Proof. The proof follows from the dual linear program formulation of an MDP (C.2). Then

from Lemma C.10, we get:

arg min
u∈U

(b + c1)Tu = arg min
u∈U

bTu + c1Tu = arg min
u∈U

bTu,

where U represents the feasible set of (C.2).

Lemma 2.13. Transitive feasible value functions are an upper bound on the optimal value

function. Assume an ε-transitive-feasible value function v ∈ K(ε). Then:

v ≥ v∗ − ε

1− γ
1.

Proof. Let P∗ and r∗ be the transition matrix and the reward vector of the policy. Then, we

have using Lemma C.7:

v ≥ Lv− ε1

v ≥ γP∗v + r∗ − ε1

(I− γP∗)v ≥ r∗ − ε1

v ≥ (I − γP∗)−1 r∗ − ε

1− γ

Proposition 2.14. The set K of transitive-feasible value functions is convex. That is for any

v1, v2 ∈ K and any β ∈ [0, 1] also βv1 + (1− β)v2 ∈ K.

256

Proof. The set of transitive-feasible functions is defined to satisfy:

K =

{
v v ≥ max

π∈Π
Lπv

}
.

An equivalent formulation is that:

K =

{
v min

π∈Π
v− Lπv ≥ 0

}
=

⋂
π∈Π

{v v− Lπv ≥ 0} .

An intersection of a finite number of convex sets is also a convex set.

Lemma C.12. Assume Assumption 2.21. Then there exists v′ ∈ M∩K such that

‖v′ − v∗‖1,c ≤ ‖v′ − v∗‖∞ ≤
2

1− γ
min
v∈M
‖v− v∗‖∞,

where 1Tc = 1 and c ≥ 0.

Proof. Let v ∈ M be such that ‖v− v∗‖∞ ≤ ε. Let v′ = v + ε 1+γ
1−γ 1. Clearly:

‖v′ − v∗‖∞ ≤ ‖v− v∗‖∞ + ε
1 + γ

1− γ
=

ε

1− γ
,

and v′ ∈ M from Assumption 2.21. To show that v′ ∈ K, we have from Lemma C.8,

Theorem 2.7, and Lemma C.5:

v∗ −
(

ε− ε
1 + γ

1− γ

)
1 ≤ v′ ≤ v∗ +

(
ε + ε

1 + γ

1− γ

)
1

v∗ − γ

(
ε− ε

1 + γ

1− γ

)
1 ≤ Lv′ ≤ v∗ + γ

(
ε + ε

1 + γ

1− γ

)
1

Putting these equations together shows that v′ − Lv′ ≥ 0 and thus v′ ∈ K. The bound on

the weighted L1 norm follows from Lemma C.2.

257

Lemma C.13. Assume a fixed policy π. Let uα be the state visitation frequencies for an initial

distribution α. Then:

u1s(s) ≥ uα(s)

for any α. Note that u here represents state visitation frequencies, not state–action visitation fre-

quencies as it is used in the remainder of the thesis.

Proof. We have that:

uα(s) = 1Ts (I− γP)−1 1s

=
∞

∑
k=0

αT(γP)k1s

= αT1s + γαTP
∞

∑
k=0

(γP)k1s

= αT1s + ∑
s′∈S

γαTP1s′1Ts′
∞

∑
k=0

(γP)k1s

= αT1s + γαTP

(
1su1s(s) + ∑

s′∈S\{s}

∞

∑
k=0

1s′1Ts′ (γP)k1s

)

= αT1s + γαTP1s′
(
1su1s(s) + 1S\{s}u

1S\{s}(s)
)

.

The lemma then follows from noticing that γαTP1s′ < 1 and inductively analyzing which

term of u1s(s) or u1S\{s}(s) is greater.

258

C.3 Value Functions and Policies

Lemma C.14. The following holds for any value function v:

‖v∗ − v‖∞ ≤
1

1− γ
‖v− Lv‖∞.

Proof. The lemma follows directly from Theorem C.9 as:

‖v∗− v‖∞ = ‖v∗− Lv+ Lv− v‖∞ ≤ ‖v∗− Lv‖∞ + ‖Lv− v‖∞ ≤ γ‖v∗− v‖∞ + ‖Lv− v‖∞.

The lemma then follows by moving γ‖v∗ − v‖∞ to the left-hand side.

Proposition 2.9. The policy π greedy for a value-function v satisfies Lv = Lπv ≥ Lπ′v for all

policies π′ ∈ Π. In addition, the greedy policy with respect to the optimal value function v∗ is an

optimal policy.

Proof. The first part of the proposition follows directly from the definition of a greedy

policy. To show the second part, we have for all π′ ∈ Π:

Lπv∗ = Lv∗ = v∗ ≥ vπ′

γPπv∗ + rπ = v∗

v∗ = (I− γPπ)
−1 rπ ≥ vπ = (I− γPπ′)

−1 rπ′ .

That is the definition of an optimal policy.

Theorem 2.15. Let ṽ be the approximate value function, and vπ be a value function of an

arbitrary policy π. Then:

‖v∗ − vπ‖∞ ≤
1

1− γ
‖ṽ− Lπ ṽ‖∞ + ‖ṽ− v∗‖∞

‖v∗ − vπ‖∞ ≤
2

1− γ
‖ṽ− Lπ ṽ‖∞

259

Proof. The first inequality may be shown as follows:

‖vπ − v∗‖∞ ≤ ‖vπ − ṽ‖∞ + ‖ṽ− v∗‖∞

Now, using Theorem C.9:

‖vπ − ṽ‖∞ = ‖Lπvπ − Lπ ṽ + Lπ ṽ− ṽ‖∞

≤ ‖Lπvπ − Lπ ṽ‖∞ + ‖Lπ ṽ− ṽ‖∞

≤ γ‖vπ − ṽ‖∞ + ‖Lπ ṽ− ṽ‖∞

‖vπ − ṽ‖∞ ≤ 1
1− γ

‖Lπ ṽ− ṽ‖∞.

This gives us:

‖vπ − v∗‖∞ ≤
1

1− γ
‖Lπ ṽ− ṽ‖∞ + ‖ṽ− v∗‖∞.

The second inequality follows from Lemma C.14.

Theorem 2.16. [Robust Policy Loss] Let π be the policy greedy with respect to ṽ. Then:

‖v∗ − vπ‖∞ ≤
2

1− γ
‖ṽ− Lṽ‖∞.

In addition, if ṽ ∈ K, the policy loss is minimized for the greedy policy and:

‖v∗ − vπ‖∞ ≤
1

1− γ
‖ṽ− Lṽ‖∞.

Proof. The bound in Theorem 2.15 is minimized by the greedy policy from the definition

of Definition 2.8:

v− Lv ≥ v− Lπ′v ≥ 0.

The policy loss bound follows from Theorem 2.15 and:

‖vπ − v∗‖∞ ≤ ‖vπ − ṽ‖∞

260

since ṽ ≥ v∗ as Lemma 2.13 shows, ignoring the term ‖ṽ− v∗‖∞.

Theorem 2.17. [Expected Policy Loss] Let π be a greedy policy with respect to a value function ṽ

and let the state-action visitation frequencies of π be bounded as u ≤ uπ ≤ ū. Then:

‖v∗ − vπ‖1,α = αTv∗ − αTṽ + uT
π (ṽ− Lṽ)

≤ αTv∗ − αTṽ + uT [ṽ− Lṽ]− + ūT [ṽ− Lṽ]+ .

The state-visitation frequency uπ depends on the initial distribution α, unlike v∗. In addition, when

ṽ ∈ K, the bound is:

‖v∗ − vπ‖1,α ≤ −‖v∗ − ṽ‖1,α + ‖ṽ− Lṽ‖1,ū

‖v∗ − vπ‖1,α ≤ −‖v∗ − ṽ‖1,α +
1

1− γ
‖ṽ− Lṽ‖∞

Proof. The bound is derived as:

αTv∗ − αTvπ = αTv∗ − αTvπ + (uT
π(I− γPπ)− αT)ṽ

= αTv∗ − rTπuπ + (uT
π(I− γPπ)− αT)ṽ

= αTv∗ − rTπuπ + uT
π(I− γPπ)ṽ− αTṽ

= αTv∗ − αTṽ + uT
π ((I− γPπ)ṽ− rπ)

= αTv∗ − αTṽ + uT
π (ṽ− Lṽ) .

We used the fact that uT
π(I− γPπ)− αT = 0 from the definition of state-action visitation

frequencies. The inequalities for ṽ ∈ K follow from Lemma C.19, Lemma C.10, and the

trivial version of the Holder’s inequality:

αTv∗ − αTṽ = −‖v∗ − ṽ‖1,α

uT
π (ṽ− Lṽ) ≤ ‖uπ‖1 ‖ṽ− Lṽ‖∞ =

1
1− γ

‖ṽ− Lṽ‖∞

261

Theorem 2.19. [Expected Policy Loss] Let π be a greedy policy with respect to a value function ṽ

and let the state-action visitation frequencies of π be bounded as u ≤ uπ ≤ ū. Then:

‖v∗ − vπ‖1,α ≤
(

ūT(I− γP∗)− αT
)
(ṽ− v∗) + ūT [Lṽ− ṽ]+ ,

where P∗ = Pπ∗ . The state-visitation frequency uπ depends on the initial distribution α, unlike v∗.

In addition, when ṽ ∈ K, the bound can be simplified to:

‖v∗ − vπ‖1,α ≤ ūT(I− γP∗)(ṽ− v∗)

This simplification is, however, looser.

Proof. The proof extends Theorem 2.17 as:

uT
π(ṽ− Lṽ) ≤ uT

π [ṽ− Lṽ]+ ≤ ūT [ṽ− Lṽ]+

= ūT(ṽ− Lṽ) + ūT [Lṽ− ṽ]+

≤ ūT(ṽ− L∗ṽ) + ūT [Lṽ− ṽ]+

= ūT(ṽ− L∗ṽ + L∗v∗ − v∗) + ūT [Lṽ− ṽ]+

= ūT(I− γP∗)(ṽ− v∗) + ūT [Lṽ− ṽ]+ ,

where L∗ = Lπ∗ .

A similar bound can be derived as follows.

Proposition C.15. Assume a value function ṽ and let π be the greedy policy. Also let u∗ be

the optimal state-action visitation frequencies with bounds u∗ ≤ u∗ ≤ ū∗ and P∗ = Pπ∗ and

r∗ = rπ∗ . Then:

‖v∗ − vπ‖1,α = (u∗)T(r∗ − (I− P∗)ṽ) + αTṽ− αTvπ

= (u∗)T(r∗ − (I− P∗)ṽ) + ‖ṽ− vπ‖1,α

≤ (u∗)T [r∗ − (I− P∗)ṽ]− + (ū∗)T [r∗ − (I− P∗)ṽ]+ + ‖ṽ− vπ‖1,α.

Notice that u∗ depends on the initial distribution α, unlike v∗.

262

It is not clear yet whether this bounds can be used to find approximate value functions.

Proof. The bound can be derived as follows:

αTv∗ − αTvπ = αTv∗ − αTvπ − ((u∗)T(I− γP∗)− αT)ṽ

= (r∗)Tu∗ − αTvπ − ((u∗)T(I− γP∗)− αT)ṽ

= (r∗)Tu∗ − αTvπ − (u∗)T(I− γP∗)ṽ + αTṽ

= αTṽ− αTvπ + (u∗)T ((I− γP∗)ṽ− r∗) .

We used the fact that (u∗)T(I− γP∗)− αT = 0 from the definition of state-action visitation

frequencies.

263

C.4 Iterative Value Function Approximation

Proposition 3.1. The least-squares formulation of Z in (3.2) minimizes the L2 norm of a

projection of the Bellman residual. Let v be the least-squares solution, then it satisfies:

v = arg min
v∈M
‖ΦT(Lπv− v)‖2.

Proof. Define Z = Φ
(
ΦTΦ

)−1 ΦT and let v be a solution of Z(π) for a policy π. It is easy

to show that v = Φx for some x and Zv = v. Then:

v = Z(π) =

(
I− γΦ

(
ΦTΦ

)−1
ΦTPπ

)−1

Φ
(

ΦTΦ
)−1

ΦTrπ

= (I− γZPπ)
−1 Zrπ

Then, we have that:

(I− γZPπ) v = Zrπ

(Z− γZPπ) v = Zrπ

Z (I− γPπ) v = Zrπ

Φ
(

ΦTΦ
)−1

ΦT (I− γPπ) v = Φ
(

ΦTΦ
)−1

ΦTrπ

ΦT (I− γPπ) v = ΦTrπ

Using that
(
ΦTΦ

)−1 is a regular matrix. The theorem then follows since ΦT (I− γPπ) v =

ΦTrπ is the optimality condition for minv∈M ‖ΦT(Lπv− v)‖2.

264

Theorem 3.3. Let v̂k be the value function of the policy πk in step k in L∞-API. Then:

lim sup
k→∞

‖v∗ − vk‖∞ ≤
2γ

(1− γ)3 lim sup
k→∞

min
v∈Φ
‖Lπk v− v‖∞.

Proof. We use Lk = Lπk to simplify the notation. Let εk = minv∈M ‖Lπk v − v‖∞. From

assumptions of the theorem:

−εk1 ≤ ṽk − Lkṽk ≤ εk1

−εk1 ≤ (I− Lk)ṽk ≤ εk1

vk − εk (I− γPk)
−1 1 ≤ ṽk ≤ vk + εk (I− γPk)

−1 1

vk − ε̃k1 ≤ ṽk ≤ vk + ε̃k1

Notice the definition of ε̃k = 1/(1 − γ)εk. The Bellman operators involved satisfy the

following basic assumptions:

Lk+1ṽk ≥ Lkṽk

v∗ ≥ vk+1

Lk+1vk+1 = vk+1

Lvk ≥ Lk+1vk

Then, using the facts above, Lemma C.7, and Lemma C.5, we have that:

Lk+1vk ≥ Lk+1(ṽk − ε̃k1)

= Lk+1ṽk − γPk+1ε̃k1

≥ Lṽk − γε̃k1

≥ Lvk − 2γε̃k1

≥ Lkvk − 2γε̃k1

≥ vk − 2γε̃k1

265

Lk+1vk ≥ Lk+1(ṽk − εk (I− γPk)
−1 1)

= Lk+1ṽk − γPk+1 (I− γPk)
−1 εk1

≥ Lkṽk − γPk+1 (I− γPk)
−1 εk1

≥ Lkvk − (γPk+1 + γPk) (I− γPk)
−1 εk1

≥ vk − (γPk+1 + γPk) (I− γPk)
−1 εk1

Reformulating the last inequality above, the value function vk+1 is bounded as:

(γPk+1 + γPk) (I− γPk)
−1 εk1 ≥ (I− γPk+1)vk + rk

vk+1 ≥ vk − (I− γPk+1)
−1 (γPk+1 + γPk) (I− γPk)

−1 εk1

= Lvk −
2γε̃k

1− γ
1

To get a contraction, we need to bound the value vk+1 in terms of the Bellman operator.

Using the inequality above and that Lk+1vk ≥ Lvk − 2γε̃1, we get:

vk+1 = Lk+1vk+1 ≥ Lk+1vk −
2γ2ε̃k

1− γ
1

≥ Lvk −
2γ2ε̃k

1− γ
1− 2γε̃k

= Lvk −
2γε̃k

1− γ
1

Plugging the inequality to the error bounds shows that the approximate policy update is

truly a contraction offset by a constant:

‖v∗ − vk+1‖∞ ≤
∥∥∥∥v∗ − Lvk +

2γε̃k

1− γ
1
∥∥∥∥

∞

= ‖Lv∗ − Lvk‖∞ +
2γε̃k

1− γ

≤ γ‖v∗ − vk‖∞ +
2γε̃k

1− γ

The theorem then follows by taking the limit of both sides of the equation.

266

Proposition 3.4. Assume a policy π ∈ Π. There exists a constant c ∈ R such that for all

γ ∈ (0, 1):

‖v∗ − vπ‖∞ ≤
c

1− γ
,

There exists an MDP such that for some c′ ∈ R, which is independent of γ:

1
(1− γ)2 ‖vπ − Lvπ‖∞ ≥

c′

(1− γ)3 .

Here, the left-hand side represents the bound from Theorem 3.2.

Proof. Let

v∗(γ) = (I− γP∗)−1r∗

vπ(γ) = (I− γPπ)
−1 rπ.

Notice that P∗ and r∗ are also functions of the discount factor, but we omit the symbol to

simplify notation. Consider, therefore, that the optimal policy π∗ is chosen to maximize

the bound:

‖v∗(γ)− vπ(γ)‖∞ = ‖ (I− γP∗)−1 r∗ − (I− γPπ)
−1 rπ‖∞

≤ ‖ (I− γP∗)−1 r∗‖∞ + ‖ (I− γPπ)
−1 rπ‖∞

≤ 1
1− γ

max
π∗∈Π

‖r∗‖∞ +
1

1− γ
‖rπ‖∞

Thus setting

c = max
π∗∈Π

‖r∗‖∞ + ‖rπ‖∞

proves the first part of the proposition.

267

The second part of the proposition can be shown using the following example. Consider

an MDP with two states S = {s1, s2} and two actions A = {a1, a2} with the following

transition matrices and rewards.

P1 =

1 0

0 1

 P2 =

0 1

0 1

r1 =

(
1 2

)
r2 =

(
2 2

)

Let policy π take action a1 in all states, while the optimal policy has the transition matrix

and reward P2, r2.

Theorem 3.5. Let ṽ be a solution of approximate policy or value iteration taken at any iteration.

Then, there exists no constant c (independent of the representationM) such that:

‖v∗ − ṽ‖∞ ≤ c min
v∈M
‖v∗ − v‖∞

‖ṽ− Lṽ‖∞ ≤ c min
v∈M
‖v− Lv‖∞

This result applies to approximate policy iteration with both L2 Bellman residual and least-squares

minimizations. The bounds also apply when the iterative algorithms converge.

The theorem follows from the following propositions.

Proposition C.16. Let v∗ ∈ M. API may not converge to v∗ when using Bellman residual

approximation, assuming that it does not start with the optimal policy.

Proof. This proof is based on a counterexample with three states and two policies π1 and

π2. Let the current policy transition matrix and reward be P1 and r1. Let the optimal policy

transition matrix be P2 and reward r2. These may be defined as:

P1 =

0 1 0

0 1 0

0 0 1

 r1 =

−5

1

2

 P2 =

0 0 1

0 1 0

0 0 1

 r2 =

5

1

2

 .

268

Now, the corresponding values :

v1 =

4

10

20

 ∈ =

23

10

20

 .

The approximation basis then may be chosen as follows. Notice that the basis contains the

optimal value function for policy π2.

Φ =

23 1

10 0

20 1

 .

Using approximate policy iteration as defined above and the basis M to approximate the

value of the current policy using Bellman residual minimization, we get:

v1 = M(BTB)−1BTr1 =

11.63

18.32

6.13

 ,

where B = (I− γP1)M.

Therefore, policy π1 is preferable to policy π2, given the approximate value function. This

is because for state s1, the decision is based on

(γv(s2) + r1)− (γv(s3) + r2) = (−5 + 0.9 ∗ 18.32)− (5 + 0.9 ∗ 6.13) = 0.97.

Therefore, the algorithm does not find the optimal policy, though it is a part of the basis.

Next, we show a similar property of least-squares approximation.

Proposition C.17. Let v∗ ∈ M. Then API may not converge to v∗ when using least squares

approximation, assuming that it does not start with the optimal policy. This is also true for AVI.

269

Proof. The proof is based on a counterexample with four states and two policies. Here, we

use M to denote the basis. The two transition matrices are:

P1 =

1 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1

r1 =

0.1

0.1

0.1

0.6

P2 =

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

r2 =

−1.0

−1.0

−1.0

0.6

.

The true values of the two policies are:

v1 =

1.00

1.00

1.00

6.00

v2 =

1.66

2.96

4.40

6.00

,

Thus the optimal policy is π2. The approximation basis is:

M =

1.66 3.00

2.96 2.90

4.40 0.00

6.00 0.00

.

The approximate value ṽ for π1 and the Q–values q1 and q2 are:

ṽ = (I− γZP1)
−1Zr1 =

−0.20

0.04

0.77

1.06

q1 =

−0.08

−0.08

0.14

1.55

q2 =

−0.96

−0.30

−0.05

1.55

,

where Z = (M(MT M)−1MT. Vector q1 dominates q2 and therefore the algorithm does not

converge to the optimal policy.

270

Value ṽ is also a fixed point of AVI, because π1 is the optimal greedy policy and:

ṽ = (I− γZP1)
−1Zr1

ṽ = γZP1ṽ + Zr1.

Notice that while the policy iteration does not converge to the optimal value, it is indicated

by a large Bellman residual or approximation error.

Proposition 3.6. The optimal value function v∗ is a fixed point of approximate policy and value

iteration whenever it is representable (v∗ ∈ M).

Proof. The proposition follows from v∗ being a fixed point with regard to the optimal

greedy one-step update. We show the proposition in detail for least-squares approxima-

tion. First, let P be the transition matrix of a one-step optimal policy. Notice that this is

in fact the optimal policy. We show that the value function in the next iteration is v∗. The

value function satisfies:

(I− γZP)v = Zr. (C.3)

Equation (C.3) has a unique solution, because (I − γZP) is regular. This is because all

eigenvalues of γZP are less than 1 since Z is a projection matrix. Now Z(γPv∗ + r) =

Zv∗ = v∗, thus v∗ is the solution of (C.3) and also the value function in the next iteration.

Lemma C.18. For any monotonous projection Z and transition matrix P, the matrix (I−γZP)−1

is also monotonous.

The lemma follows from the fact that ZP is monotonous and (I− γZP)−1 = ∑∞
i=0(γZP)i.

271

Theorem 3.7. Let Z be a monotonous (see Definition C.1) approximation operator and assume

that either least-squares approximate policy or value iterations converge to ṽ. Then we have:

(I− ZP∗)−1(Z− I)v∗ ≤ ṽ− v∗ ≤ (I− ZP̃)−1(Z− I)ṽ∗

‖ṽ− v∗‖∞ ≤
1

1− γ
min
v∈M
‖v∗ − v‖∞,

where P∗ and P̃ are the transition matrices of policies greedy with regard to v∗ and v respectively.

Proof. First, we show this for AVI. Both inequalities depend on monotonicity of Z. Let T∗

and T̃ be the update operators greedy with regard to v∗ and ṽ respectively.

ṽ− v∗ = ZT̃ṽ− T∗v∗

= ZT̃ṽ− ZT̃v∗ + ZT̃v∗ − T∗v∗

≤ ZT̃ṽ− ZT̃v∗ + ZT∗v∗ − T∗v∗

= γZP̃(ṽ− v∗) + (Z− I)v∗

Now, we have using the monotonicity of (I− γZP)−1:

ṽ− v∗ ≤ (I− γZP̃)−1(Z− I)T∗v∗.

The opposite direction may be shown similarly.

ṽ− v∗ = ZT̃ṽ− T∗v∗

= ZT̃ṽ− ZT∗v∗ + ZT∗v∗ − T∗v∗

≥ ZT∗ṽ− ZT∗v∗ + ZT∗v∗ − T∗v∗

= γZP∗(ṽ− v∗) + (Z− I)T∗v∗

From this, we have using Lemma C.18:

ṽ− v∗ ≥ (I− γZP∗)−1(Z− I)v∗.

272

To show this for API, we need to show that if ṽ is a fixed point of approximate policy

iteration, it is also a fixed point of value iteration. This is because ṽ = γZPṽ + Zr.

ṽ = (I− γZP)−1Zr

(I− γZP)ṽ = Zr

ṽ = γZPṽ + Zr.

Theorem 3.9. A linear approximation is monotonous if and only if it represents an aggregation.

Proof. Because this theorem is not crucial in the work and its proof is quite technical, we

only outline it here. The proof is based on analyzing the individual cases of the approxi-

mation feature properties.

Let x be the first column of Φ, y be the second one, and y1, y2 . . . be the remaining ones.

Assume without loss of generality that Φ is constructed so that:

x(1) = 1 x(n) = 0

y(1) = 0 y(n) = 1

yi(1) = 0 yi(n) = 0,

where n is the number of rows in Φ. Now consider the following options:

1. x ≥ 0 ∧ y ≥ 0

(a) ∃i xTyi 6= 0: set all xTyj = 0 and xTy = 0 and yTyj = 0 using Gram-Schmidt

orthogonalization. Proceed to 1(c) or 2(c), depending on the non-negativity of

the vectors.

(b) ∀i xTyi = 0 but xTy > 0: It is then easy to show that either yi’s span the differ-

ence between x and y or that the projection of
(

1 0 . . .

)T

is not monotonous.

When yi’s span the difference, the argument can be inductively applied to other

vectors and rows showing that the operator is indeed an aggregation.

273

(c) xTyi = 0 and xTy ≤ 0: Then x = 0 and y = 0, since they are non-negative.

2. x(i) < 0 for some i (x and y) are exchangeable.

(a) ∃i xTyi 6= 0: subtract yi from x. set all xTyj = 0 and xTy = 0 and yTyj = 0

using Gram-Schmidt orthogonalization. Proceed to 1(c) or 2(c), depending on

the non-negativity of the vectors.

(b) ∀i xTyi = 0 but xTy > 0: It is then easy to show that either yi’s span the differ-

ence between x and y or that the projection of
(

1 0 . . .

)T

is not monotonous.

When yi’s span the difference, the argument can be inductively applied to other

vectors and rows showing that the operator is indeed an aggregation.

(c) xTyi = 0 and xTy ≤ 0:

i. xTy = 0: Easy to show, since the projection of
(

1 0 . . .

)T

will have neg-

ative elements.

ii. xTy 6= 0: Orthogonalize x and y and proceed with the appropriate case.

274

C.5 Approximate Linear Programming

Theorem 4.2. [Offline Policy Loss] Assume Assumption 2.21 and let ṽ be the solution of the

approximate linear program in (ALP) and π be the greedy policy. Then:

‖v∗ − vπ‖1,α ≤ min
v∈M∩K

ūT(I− γP∗)(v− v∗) ≤ 2ūT1 min
v∈M
‖v∗ − v‖∞

when cT = ūT(I− γP∗). In addition,

‖v∗ − vπ‖1,α ≤ min
v∈M∩K

ūT(v− v∗) ≤ 2ūT1
1− γ

min
v∈M
‖v∗ − v‖∞,

when cT = ūT. Notice that the first bound is tighter by a factor 1− γ.

Proof. The first inequalities of the proposition use the fact that v ∈ K. Then [Lv− v]+ = 0

can be used to reformulate the bounds in Theorem 2.19 and Remark 2.18. To show the L∞

bound, let v̂ be the minimizer of minv∈M ‖v∗ − v‖∞ and let ‖v∗ − v̂‖∞ = ε. Then:

v∗ − ε1 ≤ v̂ ≤ v∗ + ε1

v∗ − γε1 ≤ Lv̂ ≤ v∗ + γε1

−(1− γ)ε1 ≤ v̂− Lv̂ ≤ (1− γ)ε1.

That means that v̂ ∈ K((1− γ)ε) and using Lemma C.5 we have that:

v′ = v +
ε

1− γ
1 ∈ K.

Then v′ is feasible in (ALP) and is therefore an upper bound on the solution. The proposi-

tion then follows by simple algebraic manipulation.

Notice also that a similar bound can be derived with cT =
(
ūT(I− P∗)− αT

)
.

275

Theorem 4.4. Assume Assumptions 2.21, 2.26, 2.27, 2.28 and let v1, v2, v3 be the optimal

solutions of (ALP), (s–ALP), and (e–ALP) respectively. Then, the following inequalities hold:

‖v1 − v∗‖1,c ≤
2

1− γ
min
v∈M
‖v− v∗‖∞

‖v2 − v∗‖1,c ≤ ‖v1 − v∗‖1,c + 2
εp(ψ)

1− γ

≤ 2
1− γ

min
v∈M
‖v− v∗‖∞ + 2εc(ψ) + 2

εp(ψ)

1− γ

‖v3 − v∗‖1,c ≤ ‖v1 − v∗‖1,c + 2εc(ψ) +
3εs(ψ) + 2εp(ψ)

1− γ

≤ 2
1− γ

min
v∈M
‖v− v∗‖∞ + 2εc(ψ) +

3εs(ψ) + 2εp(ψ)

1− γ

The last bound can be tightened to 2εs from 3εs(ψ) when εc = 0.

Proof. To simplify the notation, we omit ψ in the notation of ε in the proof.

Proof of ‖v1 − v∗‖1,c:

Let v be the minimizer of minv∈M ‖v− v∗‖∞. Then from Lemma C.12, Lemma 2.13, and

‖x‖1,c ≤ ‖x‖∞ there exists v′ ∈ M∩K such that:

‖v′ − v∗‖∞ ≤
2

1− γ
‖v− v∗‖∞

From Lemma 2.13, we have that:

‖v1 − v∗‖1,c = cT(v1 − v∗) = cTv1 − cTv∗ ≤ cTv′ − cTv∗

= ‖v1 − v∗‖1,c.

Proof of ‖v2 − v∗‖1,c:

Let v′2 be the solution (s–ALP) but with cTv as the objective function. From Lemma 2.13 we

have:

v2 ≥ v∗ − εp

1− γ
1

v′2 ≥ v∗ − εp

1− γ
1.

276

The difference between v2 and v′2 can be quantified as follows, using their same feasible

sets and the fact that v2 is minimal with respect to c̄:

cTv2 ≤ c̄Tv2 + εc ≤ c̄Tv′2 + εc ≤ cTv′2 + 2εc.

Since K(εp) ⊇ K we also have that cTv′2 ≤ cTv1. Then, using that v1 ∈ K̄ and v1 ≥ v∗:

‖v2 − v∗‖1,c ≤
∥∥∥∥v2 − v∗ +

εp

1− γ
1− εp

1− γ
1
∥∥∥∥

1,c

≤
∥∥∥∥v2 − v∗ +

εp

1− γ
1
∥∥∥∥

1,c
+

εp

1− γ

≤ cT
(

v2 − v∗ +
εp

1− γ
1
)
+

εp

1− γ

≤ cT (v2 − v∗) + 2
εp

1− γ

≤ cT
(
v′2 − v∗

)
+ 2εc + 2

εp

1− γ

≤ cT (v1 − v∗) + 2εc + 2
εp

1− γ

≤ ‖v1 − v∗‖1,c + 2εc + 2
εp

1− γ

Proof of ‖v3 − v∗‖1,c:

Let v′3 be the solution (e–ALP) but with c as the objective function. Using Lemma 2.13 we

have:

v3 ≥ L̃v ≥ L̄v− εs1 ≥ Lv− (εs + εp)1

v3 ≥ v∗ − εs + εp

1− γ
1

All of these inequalities also hold for v′3 since it is also feasible in (e–ALP). From Lemma C.5:

v1 +
εs

1− γ
1 ∈ K̃.

Therefore:

cTv′3 ≤ cTv1 +
εs

1− γ

277

The difference between v3 and v′3 can be bounded as follows, using their same feasible sets

and the fact that v3 is minimal with respect to c̄:

cTv3 ≤ c̄Tv3 + εc ≤ c̄Tv′3 + εc ≤ cTv′3 + 2εc

Then:

‖v3 − v∗‖1,c ≤
∥∥∥∥v3 − v∗ +

εs + εp

1− γ
1− εs + εp

1− γ
1
∥∥∥∥

1,c

≤
∥∥∥∥v3 − v∗ +

εs + εp

1− γ
1
∥∥∥∥

1,c
+

εs + εp

1− γ

≤ cT
(

v3 − v∗ +
εs + εp

1− γ
1
)
+

εs + εp

1− γ

≤ cT (v3 − v∗) + 2
εs + εp

1− γ

≤ cT
(
v′3 − v∗

)
+ 2εc + 2

εs + εp

1− γ

≤ cT (v1 − v∗) + 2εc +
3εs + 2εp

1− γ

≤ ‖v1 − v∗‖1,c + 2εc +
3εs + 2εp

1− γ

Theorem 4.5. [Online Error Bound] Let ṽ ∈ K̃ ∩M be an arbitrary feasible solution of the

estimated ALP (e–ALP). Then:

‖v∗ − ṽ‖1,c ≤ c̃Tṽ− cTv∗ +
2εs(ψ) + 2εp(ψ)

1− γ

Proof. To simplify the notation, we omit ψ in the notation of ε in the proof. Using Lemma 2.13

we have:

v3 ≥ L̃v ≥ L̄v− εs1 ≥ Lv− (εs + εp)1

v3 ≥ v∗ − εs + εp

1− γ
1.

278

Then, using the above:

‖v− v∗‖1,c =

∥∥∥∥v∗ − v +
εs + εp

1− γ
1− εs + εp

1− γ
1
∥∥∥∥

1,c

≤
∥∥∥∥v− v∗ +

εs + εp

1− γ
1
∥∥∥∥

1,c
+

εs + εp

1− γ

= cTv− cv∗ + 2
εs + εp

1− γ

= c̃Tv− cv∗ + εc + 2
εs + εp

1− γ

Proposition 4.6. For any ṽ ∈ K there exists no constant c ∈ R such that:

ūT(ṽ− v∗) ≤ cūT(ṽ− Lṽ),

even when Assumption 2.21 is satisfied. This holds for the precise Bellman operator L, not assuming

sampling. In addition, for all ṽ ∈ K:

(ṽ− v∗) ≥ (ṽ− Lṽ).

Proof. We show a simple example. Consider and MDP with two states s1 and s2 and a

single action. The transitions and rewards are defined as:

P(s1, s2) = 1 P(s2, s2) = 1

r(s1) = 1 r(s2) = (1− γ).

The optimal value function is v∗ = 1. There is only one feature φ = 1. The optimal solution

of (ALP) for cT1 > 0 is:

ṽ =
1

1− γ
1.

279

Now, for any ūT1 = 1:

ūT(ṽ− v∗) =
1

1− γ

ūT(ṽ− Lṽ) =
1

1− γ

which proves the first part of the proposition. The remainder of the proposition follows

from Remark 2.18.

Proposition 4.7. There exists an MDP such that for the optimal solution ṽ of (ALP) we have

that

‖ṽ− v∗‖1,α ≥
2

1− γ
min
v∈M
‖v− v∗‖∞.

This holds even when Assumption 2.21 is satisfied. In addition, if c = uπ (which is unknown), the

ALP bound on the policy loss is:

‖ṽ− v∗‖1,uπ ≥
2

(1− γ)2 min
v∈M
‖v− v∗‖∞.

There also exists an MDP such that for the greedy policy π with respect to the ALP solution the

policy loss is:

‖v∗ − vπ‖1,α ≥
2γ

1− γ
min
v∈M
‖v− v∗‖∞.

Proof. The proof of the proposition is simple. Consider an MDP with 2 states: S = {s1, s2}
and 1 action: A = {a1}. The transition matrix and reward for the single action are defined

as:

P =

0 1

0 1

 r =

1

0

 .

There is only one feature φ1 = 1. The proposition then follows directly from the optimal

and approximate value functions for the MDP when

α =

0

1

 .

280

The last part of the proof can be shown by adding a state s3 with transition probabilities

and rewards:

P(s3, a1) = s2 r(s3, a1) = 1

P(s3, a2) = s3 r(s3, a1) = 1− ε,

for some ε→ 0 and the initial distribution:

α =

0

0

1

 .

Lemma 4.10. Let ṽ be feasible in (ALP–e). Then the following holds:

ṽ ≥ Ltṽ

ṽ ≥ v∗,

where Lt represents t consecutive applications of the Bellman operator L. In addition, for any value

function v such that ‖v− v∗‖∞ ≤ ε there exists a v′ feasible in (ALP–e) defined as:

v′ = v +
ε

1− γt 1.

Proof. The property ṽ ≥ Ltṽ uses the fact that the constraints are defined for any sequence

of actions, including the ones taken in the multiple applications of the Bellman operator L.

The proof then follows identically to comparable properties of regular ALPs: Lemma C.5,

Lemma C.12, and Lemma 2.13.

281

Proposition 4.11. Assume Assumption 2.21 and let ṽ be the solution of the t-step expanded

approximate linear program (ALP–e).

‖v∗ − ṽ‖1,c ≤
2

1− γt min
v∈M
‖v∗ − v‖∞.

This bound does not guarantee a reduction of the policy loss of the greedy policy in Theorem 4.2.

Proof. Since v ∈ K, the proposition follows directly from the following facts.

u∗l = 0

[r∗ − (I− P∗)ṽ]+ = 0

arg min
v∈K
‖v− vπ‖1,α = arg min

v∈K
αTv− αTvπ = arg min

v∈K
αTv

Proposition 4.13. Let v1 be the optimal solution of (4.4) and let v̄1 be the optimal solution

of (4.5). Let λ1 and λ2 be the Lagrange multipliers that correspond to constraints A1v ≥ b1 and

A2v ≥ b2 respectively. Then the bound on the improvement from expanding constraints A1v ≥ b1

is at most:

‖v1 − v∗‖1,c − ‖v̄1 − v∗‖1,c ≤ ‖λT
1 A1‖1‖v1 − v2‖∞

≤ ‖ [Av1 − b1]+ ‖∞

1− γ
‖λT

1 A1‖1.

Proof. First, let v2 be the optimal solution of:

min
x

cTx

s.t. Ā1v ≥ b̄1

282

From the optimality of v1, and in particular from the dual feasibility and complementary

slackness we have:

c = AT
1 λ1 + AT

2 λ2

λT
2 A2v1 = λT

2 b2

We also have that:

λT
2 A2v1 − λT

2 A2v2 = λT
2 b2 − λT

2 A2v2 = λT
2 (b2 − A2v2) ≤ 0,

from the feasibility of v2 and from λ2 ≥ 0. Using the equations above, Lemma C.19, and

the trivial version of Holder inequality we have:

‖v1 − v∗‖1,c − ‖v̄1 − v∗‖1,c =

= cT(v1 − v∗)− cT(v1 − v∗) ≤ cT(v1 − v2)

= (λT
1 A1 + λT

2 A2)(v1 − v2)

= λT
1 A1(v1 − v2) + λT

2 A2(v1 − v2)

≤ λT
1 A1(v1 − v2)

≤ ‖λT
1 A1‖1‖v1 − v2‖∞.

The proposition follows from the standard Bellman residual bound on the value function

approximation.

Theorem 4.14. [Offline Policy Loss] Let ṽ be the solution of the approximate linear program in

(ALP-r) and π be the greedy policy. Then:

‖v∗ − vπ‖1,α ≤ min
v∈M

(
ūT(I− γP∗)− αT

)
(ṽ− v∗) + ūT [Lṽ− ṽ]+

≤
(

1Tū(1− γ)− 1 + 2(1 + γ)1Tū
)

min
v∈M
‖v− v∗‖∞

when cT = ūT(I− γP∗) and the second inequality holds when uT(I− γP∗) ≥ αT. Note that the

bound does not require Assumption 2.21 and does not involve transitive-feasible functions.

283

Proof. The first inequality follows directly from the derivation of (ALP-r). To prove the

second inequality, assume that

ε = min
v∈M
‖v− v∗‖∞

with ṽ being the minimizer. Then, we have:

−v∗ − ε1 ≤ −ṽ ≤ −v∗ + ε1

v∗ − εγ1 ≤ Lṽ ≤ v∗ + εγ1

v∗ − ε(1 + γ)1 ≤ Lṽ− ṽ ≤ v∗ + ε(1 + γ)1

Now, when uT(I− γP∗) ≥ αT, we have:

v∗ − ε1 ≤ ṽ ≤ v∗ + ε1

ε1 ≤ ṽ− v∗ ≤ ε1

ε
(

ūT(I− γP∗)− αT
)

1 ≤
(
ūT(I− γP∗)− αT

)
(v− v∗) ≤ ε

(
ūT(I− γP∗)− αT

)
1.

Proposition 4.15. Assume Assumption 2.21 and that

d >
1Tc

1− γ
1.

Then the sets of optimal solutions of (ALP) and (ALP-rx) are identical.

Proof. We show that an optimal solution of (ALP-rx) that satisfies the hypothesis must be

transitive feasible. Then since the objective functions of (ALP) and (ALP-rx) are the same,

also their optimal solutions must match.

284

The proof is by contradiction. Assume that there is an optimal solution v1 of (ALP-rx) and

that it violates the constraint associated with coefficient di by ε̄. Let v2 = v1 + ε1 where

0 < ε ≤ ε̄
1−γ . Then:

cT(v2 − v∗) + dT [Lv2 − v2]+ = (v1 − v∗) + εcT1 + dT [Lv2 − v2]+

≤ (v1 − v∗) + εcT1 + dT [Lv1 − v1]+ + (1− γ)εcT1di

< (v1 − v∗) + εcT1 + dT [Lv1 − v1]+ + εcT1

using Lemma C.5. This contradicts the assumption that v1 is optimal.

285

C.6 Approximate Bilinear Programs

Theorem 5.2. Given Assumption 2.21, any optimal solution (π̃, ṽ, λ̃, λ̃′) of the approximate

bilinear program (ABP–L∞) satisfies:

π̃Tλ̃ + λ̃′ = ‖Lṽ− ṽ‖∞ ≤ min
v∈K∩M

‖Lv− v‖∞

≤ 2 min
v∈M
‖Lv− v‖∞

≤ 2(1 + γ) min
v∈M
‖v− v∗‖∞.

Moreover, there exists an optimal solution π̃ that is greedy with respect to ṽ for which the policy

loss is bounded by:

‖v∗ − vπ̃‖∞ ≤
2

1− γ

(
min
v∈M
‖Lv− v‖∞

)
.

Proof. Let v̄ be a value function with the minimal ‖Lv̄− v̄‖∞ feasible in approximate bilin-

ear program (ABP–L∞), and let π̄ be a greedy policy with respect to v̄. Because v̄ ≥ v∗, as

Lemma C.19 shows, we get:

t = ‖Lv̄− v̄‖∞ = ‖Lv̄v̄− v̄‖∞.

Let f ∗ be the optimal objective value of (ABP–L∞). Because both v̄ and π̄ are feasible in

(ABP–L∞), we have that f ∗ ≤ t. Now, assume that ṽ is an optimal solution of (ABP–L∞)

with an objective value f̃ = ‖Lṽ − ṽ‖∞ > t. Then, from item 5.5, f̃ > t ≥ f ∗, which

contradicts the optimality of ṽ.

To show that the optimal policy is deterministic and greedy, let π∗ be the optimal policy.

Then consider the state s for which π̃ does not define a deterministic greedy action. From

the definition of greedy action ā:

(Lāṽ)(s) ≤ (Lπ̃ ṽ)(s).

286

From the bilinear formulation (ABP–L∞), it is easy to show that there is an optimal solution

such that:

(Laṽ)(s) ≤ λ̃′ + λ̃(s, a)

λ̃(s, ā) ≤ λ̃(s, a).

Then setting π̃(s, ā) = 1 and all other action probabilities to 0, the difference in the objective

value function:

λ̃(s, ā)− ∑
a∈A

λ̃(s, a) ≤ 0.

Therefore, the objective function for the deterministic greedy policy does not increase. The

remainder of the theorem follows directly from Proposition C.21, Proposition C.22, and

Proposition C.23. The bounds on the policy loss then follow directly from Theorem 2.16.

The last inequality can be easily established using the same derivation as Theorem 4.14.

Lemma 5.3. Let v ∈ K be a transitive-feasible value function and let π be a policy. Then:

f1(π, v) ≥ ‖v− Lπv‖∞,

with an equality for a deterministic policy π.

Proof. The dual of the linear program (5.1) is the following program.

max
x

xT(Av− b)

s.t. x ≤ π

1Tx = 1

x ≥ 0

(C.4)

Note that replacing 1Tx = 1 by 1Tx ≤ 1 preserves the properties of the linear program

and would add an additional constraint in (ABP–L∞): λ′ ≥ 0.

287

First we show that f1(π, v) ≥ ‖Lπv− v‖∞. Because v is feasible in the approximate bilinear

program (ABP–L∞), Av− b ≥ 0 and v ≥ Lv from Lemma C.19. Let state s be the state in

which t = ‖Lπv− v‖∞ is achieved. That is:

t = v(s)− ∑
a∈A

π(s, a)

(
r(s, a) + ∑

s′∈S
γP(s′, s, a)v(s′)

)
.

Now let x(s, a) = π(s, a) for all a ∈ A. This is a feasible solution with value t, from the

stochasticity of the policy and therefore a lower bound on the objective value.

To show the equality for a deterministic policy π, we show that f1(π, v) ≤ ‖Lv − v‖∞,

using that π ∈ {0, 1}. Then let x∗ be an optimal solution of (C.4). Define the index of x∗

with the largest objective value as:

i ∈ arg max
{i x∗(i)>0}

(Av− b)(i).

Let solution x′(i) = 1 and x′(j) = 0 for j 6= i, which is feasible since π(i) = 1. In addition:

(Av− b)(i) = ‖Lπv− v‖∞.

Now (x∗)T(Av− b) ≤ (x′)T(Av− b) = ‖Lπv− v‖∞, from the fact that i is the index of the

largest element of the objective function.

Lemma 5.5. Let v ∈ M∩ K be a transitive-feasible value function. There exists an optimal

solution π̃ of the linear program (5.3) such that:

1. π̃ represents a deterministic policy

2. Lπ̃v = Lv

3. ‖Lπ̃v− v‖∞ = minπ∈Π ‖Lπv− v‖∞ = ‖Lv− v‖∞

Proof. The existence of an optimal π that corresponds to a deterministic policy follows

from Lemma 5.4, the correspondence between policies and values π, and the existence of

a deterministic greedy policy.

288

Since v ∈ K, we have for some policy π that:

v ≥ Lv = Lπv ≥ Lπ̃v.

Assuming that Lπ̃ < Lv leads to a contradiction since π is also a feasible solution in the

linear program (5.3) and:

v− Lπ̃ > v− Lv

‖v− Lπ̃‖∞ > ‖v− Lv‖∞.

This proves the lemma.

Theorem 5.6. Given Assumption 2.21, any optimal solution (π̃, ṽ, λ̃, λ̃′) of the approximate

bilinear program (ABP–L1) satisfies:

1
1− γ

(
π̃Tλ̃ + λ̃′

)
− αTṽ =

1
1− γ

‖Lṽ− ṽ‖∞ − αTv ≤ min
v∈K∩M

(
1

1− γ
‖Lv− v‖∞ − αTv

)
≤ min

v∈M

(
1

1− γ
‖Lv− v‖∞ − αTv

)

Moreover, there exists an optimal solution π̃ that is greedy with respect to ṽ for which the policy

loss is bounded by:

‖v∗ − vπ̃‖1,α ≤
2

1− γ

(
min
v∈M

1
1− γ

‖Lv− v‖∞ − ‖v∗ − v‖1,α

)
.

Proof. The proof of the theorem is almost identical to the proof of Theorem 5.2 with two

main differences. First, the objective function of (ABP–L1) is insensitive to adding a con-

stant to the value function:

‖(ṽ + k1)− L(v + k1)‖∞ − αT(v + k1) = ‖ṽ− Lv‖∞ − αTv.

289

Hence the missing factor 2 when going from minimization over K ∩M to minimization

overM. The second difference is in the derivation of the bound on the policy loss, which

follows directly from Theorem 2.17.

Lemma 5.9. Let value function v be feasible in the bilinear program (ABP–U), and let π be an

arbitrary policy. Then:

f1(π, v) ≥ ‖Lπv− v‖1,ū,

with an equality for a deterministic policy.

Proof. The dual of the linear program (5.4) program is the following.

max
x

xT(Av− b)

s.t. x ≤ UTπ

x ≥ 0

(C.5)

We have that f1(π, v) ≥ ‖Lπv − v‖1,ū since x = UTπ is a feasible solution. To show

the equality for a deterministic policy π, let x∗ be an optimal solution of linear program

(C.5). Since Av ≥ b and U is non-negative, an optimal solution satisfies x = UTπ. The

optimal value of the linear program thus corresponds to the definition of the weighted L1

norm.

Lemma 5.10. The following inequalities hold for any representable and transitive–feasible value

functions:

min
v∈M∩K

(
‖v− Lv‖1,ū(v) − ‖v∗ − v‖1,α

)
≤ max{1, γū(v)T1} min

v∈M∩K
‖v− v∗‖∞

≤
(

2 + γ + 1Tū(v)− 1
1− γ

)
min
v∈M
‖v− v∗‖∞

290

Proof. To simplify our notation, we use ū instead of ū(v), although it is a function of v.

First, assume that v ∈ M∩K, and it is a minimizer of:

ε = min
v∈M∩K

‖v− v∗‖∞.

Then:

v∗ ≤ v ≤ v∗ + ε1

−v∗ ≥ −Lv ≥ −val∗ − ε1

0 ≤ v− Lv ≤ γε1

0 ≤ ūT(v− Lv) ≤ γε1Tū

0 ≤ v− v∗ ≤ ε1

0 ≤ αT(v− v∗) ≤ ε1

Putting these inequalities together and realizing that v is a feasible solution in the left–hand

side minimization proves the first inequality.

To show the second inequality, assume that v ∈ M, and it is be a minimizer of:

ε = min
v∈M
‖v− v∗‖∞.

It is also easy to show that when v ∈ K, then:

‖v− Lv‖1,ū(v) − ‖v∗ − v‖1,α = ū(v)T(v− Lv)− αT(v− v∗)

Using a similar derivation as above, we get that:

−(1 + γ)ε1Tū− ε ≤ ūT(v− Lv)− αT(v− v∗) ≤ (1 + γ)ε1Tū + ε

To get a transitive–feasible value function, let v̂ = v + ε
1−γ . Then:

0 ≤ ūT(v̂− Lv̂)− αT(v̂− v∗) ≤
(

1Tū− 1
1− γ

)
+ ūT(v− Lv)− αT(v− v∗)

291

Putting these inequalities together and realizing that v̂ is a feasible solution in the left–hand

side minimization proves the second inequality.

Lemma 5.12. Let v ∈ K be a transitive-feasible value function and let π be a policy and U be

defined as in Remark 5.7. Then:

f1(π, v) ≥ ‖v− Lπv‖k,ū,

with an equality for a deterministic policy π.

Proof. The dual of the linear program (5.1) program is the following.

max
x

xT(Av− b)

s.t. x ≤ UTπ

1T
(

UT
)−1

x ≤ k

x ≥ 0

(C.6)

First change the variables in the linear program to x = UTz to get:

max
z

zTU(Av− b)

s.t. z ≤ π

1Tz ≤ k

z ≥ 0

(C.7)

using the fact that U is diagonal and positive.

The norm‖Lπv− v‖k,c can be expressed as the following linear program:

max
y

yTXU(Av− b)

s.t. y ≤ 1

1Ty ≤ k

y ≥ 0

(C.8)

292

Here, the matrix X : |S| × |S| · |A| selects the subsets of the Bellman residuals that corre-

spond the policy as defined:

X(s, (s′, a′)) =

π(s′, a′) when s = s′

0 otherwise
.

It is easy to shows that v− Lπv = X(Av− b). Note that XU = UX from the definition of

U.

Clearly, when π ∈ {0, 1} is deterministic the linear programs (C.7) and (C.8) are identical.

When the policy π is stochastic, assume an optimal solution y of (C.8) and let z = XTy.

Then, z is feasible in (C.7) with the identical objective value, which shows the inequality.

Lemma C.19. A value function v satisfies Av ≥ b if an only if v ≥ Lv. In addition, if v is feasible

in (ABP–L∞), then v ≥ v∗.

Proof. The backward implication of the first part of the lemma follows directly from the

definition. The forward implication follows by an existence of λ = 0, λ′ = ‖ [Av− r]+ ‖∞,

which satisfy the constraints. The constraints on π are independent and therefore can be

satisfied independently. The second part of the lemma also holds in ALPs (de Farias, 2002)

and is proven identically.

The minimization minv∈M ‖Lv − v‖∞ for a policy π can be represented as the following

linear program.

min
φ,v

φ

s.t. (I− γPπ)v + 1φ ≥ rπ

−(I− γPπ)v + 1φ ≥ −rπ

v ∈ M

(C.9)

293

Consider also the following linear program.

min
φ,v

φ

s.t. (I− γPπ)v ≥ rπ

−(I− γPπ)v + 1φ ≥ −rπ

v ∈ M

(C.10)

Next we show that the optimal solutions of (C.9) and (C.10) are closely related.

Lemma C.20. Assume Assumption 2.21 and a given policy π. Let φ1, v1 and φ2, v2 optimal

solutions of linear programs (C.9) and (C.10) respectively. Define:

v̄1 = v1 +
φ1

1− γ
v̄2 = v1 −

φ2

2(1− γ)
1

Then:

1. 2φ1 = φ2

2. v̄1 is an optimal solution in (C.10).

3. v̄2 is an optimal solution in (C.9).

4. Greedy policies with respect to v1 and v̄1 are identical.

5. Greedy policies with respect to v2 and v̄2 are identical.

Proof. Let φ̄1 = 2φ1 and φ̄2 = φ2
2 . We first show φ̄1, v̄1 is feasible in (C.10). It is representable

since 1 ∈ M and it is feasible by the following simple algebraic manipulation:

(I− γPπ)v̄1 = (I− γPπ)v1 + (I− γPπ)
φ1

1− γ
1

= (I− γPπ)v1 + φ11

≥ −φ11 + rπ + φ11

= rπ

294

and

−(I− γPπ)v̄1 + φ̄11 = −(I− γPπ)v̄1 + 2φ11

= −(I− γPπ)v1 − (I− γPπ)
φ1

1− γ
1 + 2φ11

= −(I− γPπ)v1 − φ11 + 2φ11

≥ −φ11− rπ + 2φ11

= −rπ

Next we show that φ̄2, v̄2 is feasible in (C.9). This solution is representable, since 1 ∈ M,

and it is feasible by the following simple algebraic manipulation:

(I− γPπ)v̄2 + φ̄21 = (I− γPπ)v2 − (I− γPπ)
φ2

2(1− γ)
1 +

φ2

2
1

= (I− γPπ)v2 −
φ2

2
1 +

1
2

φ̄21

= (I− γPπ)v2

≥ rπ

and

−(I− γPπ)v̄2 + φ̄21 = −(I− γPπ)v̄2 +
φ2

2
1

= −(I− γPπ)v2 − (I− γPπ)
φ2

1− γ
1 +

φ2

2
1

= −(I− γPπ)v2 + φ21

≥ −rπ

It is now easy to shows that φ̄1, v̄1 is optimal by contradiction. Assume that there exists a

solution φ2 < φ̄1. But then:

2φ̄2 ≤ φ2 < φ̄1 ≤ 2φ1,

which is a contradiction with the optimality of φ1. The optimality of φ̄2, v̄2 can be shown

similarly.

295

Proposition C.21. Assumption 2.21 implies that:

min
v∈M∩K

‖Lv− v‖∞ ≤ 2 min
v∈M
‖Lv− v‖∞.

Proof. Let v̂ be the minimizer of φ̂ = minv∈M ‖Lv − v‖∞, and let π̂ be a policy that is

greedy with respect to v̂. Define:

ṽ = v̂ +
φ̂

1− γ
.

Then from Lemma C.20:

1. Value function ṽ is an optimal solution of (C.10): ṽ ≥ Lπ ṽ

2. Policy π̂ is greedy with regard to ṽ: Lπ̂ ṽ ≥ Lṽ

3. ‖Lπ ṽ− ṽ‖∞ = 2φ̂

Then using a simple algebraic manipulation:

ṽ ≥ Lπ̂ ṽ = Lṽ

and the proposition follows from Lemma C.19.

Proposition C.22. Let ṽ be a solution of the approximate bilinear program (ABP–L∞) and let:

v′ = v− 1/2
(1− γ)

‖Lv− v‖∞1.

Then:

1. ‖Lv′ − v′‖∞ = ‖Lv−v‖∞
2 .

2. Greedy policies with respect to v and v′ are identical.

The proposition follows directly from Lemma C.20.

Proposition C.23. Assumption 2.21 implies that:

min
v∈M
‖Lv− v‖∞ ≤ (1 + γ) min

v∈M
‖v− v∗‖∞.

296

Proof. Assume that v̂ is the minimizer of minv∈M ‖v− v∗‖∞ ≤ ε. Then:

v∗ − ε1 ≤ v ≤ v∗ + ε1

Lv∗ − γε1 ≤ Lv ≤ Lv∗ + γε1

Lv∗ − γε1− v ≤ Lv− v ≤ Lv∗ + γε1− v

Lv∗ − v∗ − (1 + γ)ε1 ≤ Lv− v ≤ Lv∗ − v∗ + (1 + γ)ε1

−(1 + γ)ε1 ≤ Lv− v ≤ (1 + γ)ε1.

Theorem 5.13. Let the optimal solutions to the sampled and precise Bellman residual minimiza-

tion problems be:

v1 ∈ arg min
v∈M∩K

‖v− Lv‖∞ v2 ∈ arg min
v∈M∩K

‖v− L̂v‖∞ v3 ∈ arg min
v∈M∩K

‖v− L̃v‖∞

Value functions v1, v2, v3 correspond to solutions of instances of robust approximate bilinear pro-

grams for the given samples. Also let v̂i = vπi , where πi is greedy with respect to vi. Then, given

Assumptions 2.21, 2.26, and 2.28, the following holds:

‖v∗ − v̂1‖∞ ≤
2

1− γ
min
v∈M
‖v− Lv‖∞

‖v∗ − v̂2‖∞ ≤
2

1− γ

(
min
v∈M
‖v− Lv‖∞ + εp

)
‖v∗ − v̂3‖∞ ≤

2
1− γ

(
min
v∈M
‖v− Lv‖∞ + εp + 2εs

)

Proof. We show bounds on ‖vi − Lvi‖∞; the remainder of the theorem follows directly

from Theorem 5.2. The second inequality follows from Assumption 2.26 and Lemma C.5,

as follows:

v2 − Lv2 ≤ v2 − L̄v2

≤ v1 − L̄v1

≤ v1 − Lv1 + εp1

297

The second inequality follows from Assumptions 2.26, 2.28 and Lemma C.5, as follows:

v3 − Lv3 ≤ v2 − L̄v2 + εp1

≤ v2 − L̃v2 + εs1 + εp1

≤ v1 − L̃v1 + εs1 + εp1

≤ v1 − Lv1 + 2εs1 + εp1

Here, we use the fact that vi ≥ Lvi and that vi’s minimize the corresponding Bellman

residuals.

Proposition 5.15. Let ṽ1 and ṽ2 be feasible value functions in (ABP–L∞). Then the value

function

ṽ(s) = min{ṽ1(s), ṽ2(s)}

is also feasible in bilinear program (ABP–L∞). Therefore ṽ ≥ v∗ and

‖v∗ − ṽ‖∞ ≤ min {‖v∗ − ṽ1‖∞, ‖v∗ − ṽ2‖∞} .

Proof. Consider a state s and action a. Then from transitive feasibility of the value functions

ṽ1 and ṽ2 we have:

ṽ1(s) ≥ γ ∑
s′∈S

P(s′, a, a)ṽ1(s′) + r(s, a)

ṽ2(s) ≥ γ ∑
s′∈S

P(s′, a, a)ṽ2(s′) + r(s, a).

From the convexity of the min operator we have that:

min

{
∑

s′∈S
P(s′, a, a)ṽ1, ∑

s′∈S
P(s′, a, a)ṽ2(s′)

}
≥ ∑

s′∈S
P(s′, a, a)min{ṽ1(s′), ṽ2)(s′)}.

298

Then the proposition follows by the following simple algebraic manipulation:

ṽ = min{ṽ1(s), ṽ2(s)} ≥ γ min

{
∑

s′∈S
P(s′, a, a)ṽ1, ∑

s′∈S
P(s′, a, a)ṽ2(s′)

}
+ r(s, a)

≥ γ ∑
s′∈S

P(s′, a, a)min{ṽ1(s′), ṽ2)(s′)}+ r(s, a)

= γ ∑
s′∈S

P(s′, a, a)ṽ(s) + r(s, a).

C.6.1 NP-Completeness

Proposition C.24 (e.g. (Mangasarian, 1995)). A bilinear program can be solved in NP time.

There is an optimal solution of the bilinear program such that the solutions of the indi-

vidual linear programs are basic feasible. The set of all basic feasible solutions is finite,

because the feasible regions of w, x and y, z are independent. The value of a basic feasible

solution can be calculated in polynomial time.

Theorem 5.16. Assume 0 < γ < 1, and a given ε > 0. Then it is NP-complete to determine:

min
v∈K∩M

‖Lv− v‖∞ < ε min
v∈M
‖Lv− v‖∞ < ε.

The problem remains NP-complete when Assumption 2.21 is satisfied. It is also NP-complete to

determine:

min
v∈M
‖Lv− v‖∞ − ‖v∗ − v‖1,α < ε min

v∈M
‖Lv− v‖1,ū − ‖v∗ − v‖1,α < ε,

assuming that ū is defined as in Remark 5.7.

Proof. The membership in NP follows from Theorem 5.2 and Proposition C.24. We show

NP-hardness by a reduction from the 3SAT problem. We first don’t assume Assump-

tion 2.21. We show the theorem for ε = 1. The appropriate ε can be obtained by simply

scaling the rewards in the MDP.

299

a3
a2a1 a3

a2
a1

s(C2)s(C1)

(l11 ∨ l12 ∨ l13) ∧ (l21 ∨ l22 ∨ l23)

Figure C.1. MDP constructed from the corresponding SAT formula.

The main idea is to construct an MDP and an approximation basis, such that the approx-

imation error is small whenever the SAT is satisfiable. The value of the states will corre-

spond to the truth value of the literals and clauses. The approximation features φ will be

used to constraint the values of literals that share the same variable. The MDP constructed

from the SAT formula is depicted in Figure C.1.

Consider a SAT problem with clauses Ci:

∧
i=1,...,n

Ci =
∧

i=1,...,n

(li1 ∨ li2 ∨ li3) ,

where lij are literals. A literal is a variable or a negation of a variable. The variables in the

SAT are x1 . . . xm. The corresponding MDP is constructed as follows. It has one state s(lij)

for every literal lij, one state s(Ci) for each clause Ci and an additional state s̄. That is:

S = {s(Ci) i = 1, . . . , n} ∪ {s(lij) i = 1, . . . , n, j = 1, . . . , 3} ∪ {s̄}.

There are 3 actions available for each state s(Ci), which determine the true literal of the

clause. There is only a single action available in states s(lij) and s̄. All transitions in the

MDP are deterministic. The transition t(s, a) = (s′, r) is from the state s to s′, when action

a is taken, and the reward received is r. The transitions are the following:

300

t(s(Ci), aj) =
(
s(lij), 1− γ

)
(C.11)

t(s(lij), a) =
(
s(lij),−(1− γ)

)
(C.12)

t(s̄, a) = (s̄, 2− γ) (C.13)

Notice that the rewards depend on the discount factor γ, for notational convenience.

There is one approximation feature for every variable xk such that:

φk(s(Ci)) = 0

φk(s̄) = 0

φk(s(lij)) =

1 if lij = xk

−1 if lij = ¬xk

An additional feature in the problem φ̄ is defined as:

φ̄(s(Ci)) = 1

φ̄(s(lij)) = 0

φ̄(s̄) = 1.

The purpose of state s̄ is to ensure that v(s(ci)) ≥ 2− γ, as we assume in the remainder of

the proof.

First, we show that if the SAT problem is satisfiable, then minv∈M∩K ‖Lv− v‖∞ < 1. The

value function ṽ ∈ K is constructed as a linear sum of the features as: v = Φy, where

y = (y1, . . . , ym, ȳ). Here yk corresponds to φk and ȳ corresponds to φ̄. The coefficients yk

are constructed from the truth value of the variables as follows:

yk =

γ if xk = true

−γ if xk = false

ȳ = 2− γ.

301

Now define the deterministic policy π as:

π(s(Ci)) = aj where lij = true .

The true literals are guaranteed to exist from the satisfiability. This policy is greedy with

respect to ṽ and satisfies that ‖Lπ ṽ− ṽ‖∞ ≤ 1− γ2.

The Bellman residuals for all actions and states, given a value function v, are defined as:

v(s)− γv(s′)− r,

where t(s, a) = (s′, r). Given the value function ṽ, the residual values are:

t(s(Ci), aj) =
(
s(lij), 1− γ

)
:

2− γ− γ2 + (1− γ) = 1− γ2 if lij = true

2− γ + γ2 + (1− γ) = 1 + γ2 if lij = false

t(s(lij), a) =
(
s(lij), (1− γ)

)
:

γ− γ2 + 1− γ = 1− γ2 if lij = true

−γ + γ2 + 1− γ = (1− γ)2 > 0 if lij = false

t(s̄, a) = (s̄, 1− γ) : (1− γ) + γ− 1 = 0

It is now clear that π is greedy and that:

‖Lṽ− ṽ‖∞ = 1− γ2 < 1.

We now show that if the SAT problem is not satisfiable then minv∈K∩M ‖Lv− v‖∞ ≥ 1−
γ2

2 . Now, given a value function v, there are two possible cases for each v(s(lij)): 1) a

positive value, 2) a non-positive value. Two literals that share the same variable will have

the same sign, since there is only one feature per each variable.

302

Assume now that there is a value function ṽ. There are two possible cases we analyze: 1)

all transitions of a greedy policy are to states with positive value, and 2) there is at least

one transition to a state with a non-positive value. In the first case, we have that

∀i ∃j, ṽ(s(lij)) > 0.

That is, there is a function q(i), which returns the positive literal for the clause j. Now,

create a satisfiable assignment of the SAT as follows:

xk =

true if liq(i) = xk

false if liq(i) = ¬xk

,

with other variables assigned arbitrary values. Given this assignment, all literals with

states that have a positive value will be also positive. Since every clause contains at least

one positive literal, the SAT is satisfiable, which is a contradiction with the assumption.

Therefore, there is at least one transition to a state with a non-positive value.

Let C1 represent the clause with a transition to a literal l11 with a non-positive value, with-

out loss of generality. The Bellman residuals at the transitions from these states will be:

b1 = ṽ(s(l11))− γṽ(s(l11)) + (1− γ) ≥ 0− 0 + (1− γ) = 1− γ

b1 = ṽ(s(C1))− γṽ(s(l11))− (1− γ) ≥ 2− γ− 0− 1 + γ = 1

Therefore, the Bellman residual ṽ is bounded as:

‖Lṽ− ṽ‖∞ ≥ max{b1, b2} ≥ 1.

Since we did not make any assumptions on ṽ, the claim holds for all representable and

transitive-feasible value functions. Therefore, minv∈M∩K ‖Lv− v‖∞ ≤ 1− γ2 is and only

if the 3-SAT problem is feasible.

303

It remains to show that the problem remains NP-complete even when Assumption 2.21

holds. Define a new state s̄1 with the following transition:

t(s̄2, a) = (s̄2,−γ

2
).

All previously introduced features φ are zero on the new state. That is φk(s̄1) = φ̄(s̄1) = 0.

The new constant feature is: φ̂(s) = 1 for all states s ∈ S , and the matching coefficient is

denoted as ȳ1. When the formula is satisfiable, then clearly minv∈M∩K ‖Lv− v‖∞ ≤ 1− γ2

since the basis is now richer and the Bellman error on the new transition is less than 1− γ2

when ȳ1 = 0.

Now we show that when the formula is not satisfiable, then:

min
v∈M∩K

‖Lv− v‖∞ ≥ 1− γ2

2
.

This can be scaled to an appropriate ε by scaling the rewards. Notice that

0 ≤ ȳ1 ≤
γ

2
.

When ȳ1 < 0, the Bellman residual on transitions s(Ci) → s(lij) may be decreased by

increasing ȳ1 while adjusting other coefficients to ensure that v(s(Ci)) = 2 − γ. When

ȳ1 >
γ
2 then the Bellman residual from the state s̄1 is greater than 1− γ2

2 . Given the bounds

on ȳ1, the argument for yk = 0 holds and the minimal Bellman residual is achieved when:

v(s(Ci))− γv(s(lij))− (1− γ) = v(s(s̄1))− γv(s(s̄1)) +
γ

2

2− γ− γȳ1 − (1− γ) = ȳ1 − γȳ1 +
γ

2

ȳ1 =
γ

2
.

Therefore, when the SAT is unsatisfiable, the Bellman residual is at least 1− γ2

2 .

The NP-completeness of minv∈M ‖Lv− v‖∞ < ε follows trivially from Proposition C.21.

The proof for ‖v− Lv‖∞− αTv is almost identical. The difference is a new state ŝ, such that

304

φ(ŝ) = 1 and α(ŝ) = 1. In that case αTv = 1 for all v ∈ M. The additional term thus has

no effect on the optimization.

The proof can be similarly extended to the minimization of ‖v − Lv‖1,ū. Define ū(Ci) =

1/n and ū(lij) = 0. Then the SAT problem is satisfiable if an only if ‖v− Lv‖1,ū = 1− γ2.

Note that ū, as defined above, is not an upper bound on the visitation frequencies uπ. It is

likely that the proof could be extended to cover the case ū ≥ uπ by more carefully design-

ing the transitions from Ci. In particular, there needs to be high probability of returning to

Ci and ū(lij > 0.

305

C.7 Homotopy Methods for Solving Linear Programs

Proposition 6.5. Given Assumption 6.4, the function x(ψ) is piecewise linear. Algorithm 7 then

converges to the optimal solution in a finite number of steps.

Proof. We only provide a sketch of the proof here since this method is quite standard and is

not the focus of this work. The formal proof would be similar to the convergence of other

homotopy methods, such as DASSO (James et al., 2009). The dual solution in Algorithm 7

guarantees that the solution can move for some ε > 0. That is it guarantees it will not

move against one of the constraints satisfied with equality. If there is an optimal solution

such that the regularization constraint may become inactive for ψ̄ (when min λ(ψi) > 0),

then it is also optimal for any value ψ ≥ ψ̄.

Theorem 6.10. algorithm 6.2 converges to the optimal solution in a finite number of steps.

Proof. Need to show that the algorithm will make progress in every step. Clearly, the solu-

tion is uniquely determined by the active set of variables and the regularization coefficient

ψ. Therefore there is a finite number of steps between non-linearity points such that they

decrease ψ. In the remainder of the proof we universally assume that the regularization

constraint is active, unless specified otherwise. To show that we show it is possible to

move at least ε from a non-linearity point, we analyze the cases independently.

Variables become active/inactive Assume that the current set of active variables is B,

and variables I are added to get a new active set B̄:

B̄ = B ∪ I .

We need to show that ∆xI ≥ 0.

306

First, from the negative value of µI have that:

∆µI ≤ 0

χAT
ICABC∆xB + eI∆λ ≤ 0

−AT
ICABC

(
AT
BCABC

)−1
eB∆λ + eI∆λ ≤ 0(

−AT
ICABC

(
AT
BCABC

)−1
eB + eI

)
∆λ ≤ 0

AT
ICABC

(
AT
BCABC

)−1
eB − eI ≤ 0

AT
ICABC

(
AT
BCABC

)−1
eB ≤ eI (C.14)

Here we used the fact that ∆λ ≤ 0 from (6.15).

In order to show that it is possible to move in the new direction ∆xI , we must show that

∆xI ≥ 0. We have that:

AB̄C =
(

ABC AIC

)
The new direction ∆xB̄ must satisfy the following equalities from (6.16):

∆xB̄ = −
(

χAT
B̄CAB̄C

)−1
eB̄∆λ

∆xB̄ =
(

AT
B̄CAB̄C

)−1
eB̄c((

ABC AIC

)T (
ABC AIC

))∆xB

∆xI

 =

eB

eI

 c

AT
BCABC AT

BCAIC

AT
ICABC AT

ICAIC

∆xB

∆xI

 =

eB

eI

 c,

for some constant c > 0. That is:

AT
BCABC∆xB + AT

BCAIC∆xI = ceB (C.15)

AT
ICABC∆xB + AT

ICAIC∆xI = ceI (C.16)

307

Putting together (C.14), (C.15), and (C.16), we get:

AT
BCABC∆xB + AT

BCAIC∆xI = ceB

AT
ICABC∆xB + AT

ICABC
(

AT
BCABC

)−1
AT
BCAIC∆xI = cAT

ICABC
(

AT
BCABC

)−1
eB

AT
ICABC∆xB + AT

ICABC
(

AT
BCABC

)−1
AT
BCAIC∆xI < ceI

ceI − AT
ICAIC∆xI + AT

ICABC
(

AT
BCABC

)−1
AT
BCAIC∆xI < ceI

AT
IC

(
ABC

(
AT
BCABC

)−1
AT
BC

)
AIC∆xI < AT

ICAIC∆xI

AT
IC

(
I− ABC

(
AT
BCABC

)−1
AT
BC

)
AIC∆xI > 0

The proof that progress is made when the variables become inactive is very similar, and

essentially corresponds to a reversed version of the proof above.

Constraints become active / inactive Assume that the current set of active constraints is

C and constraints J are added to the new active set C̄:

C̄ = C ∪ J ,

and the new direction is ∆x̄B . That is:

ABC̄ =

ABC

ABJ

We need to show that:

ABJ ∆x̄B ≤ 0.

That is the constraints that recently became active also stay active on the current linear

segment. We have for the current update direction ∆x that for some constant c ≥ 0:

ABJ ∆xB < 0

ABJ
(

AT
BCABC

)−1
eBc < 0

ABJ
(

AT
BCABC

)−1
eB ≤ 0 (C.17)

308

Then, we have for some c ≥ 0 that:

∆x̄B =
(

AT
BC̄ABC̄

)−1
ec(

AT
BCABC + AT

BJ ABJ
)

∆x̄B = ec(
I +

(
AT
BCABC

)−1
AT
BJ ABJ

)
∆x̄B =

(
AT
BCABC

)−1
ec(

ABJ + ABJ
(

AT
BCABC

)−1
AT
BJ ABJ

)
∆x̄B = ABJ

(
AT
BCABC

)−1
ec(

I + ABJ
(

AT
BCABC

)−1
AT
BJ

)
ABJ ∆x̄B = ABJ

(
AT
BCABC

)−1
ec(

I + ABJ
(

AT
BCABC

)−1
AT
BJ

)
ABJ ∆x̄B < 0

The last step follows from (C.17). The proof that progress is made when the constraints

become inactive is very similar, and essentially corresponds to a reversed version of the

proof above.

309

C.8 Bilinear Program Solvers

Proposition 7.3. The function θB(ψ) is not necessarily convex or concave.

Proof. The proof is based on a simple counterexample. Consider an MDP with 4 states

s1 . . . s4. There are two actions with the following transition matrices:

P1 =

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

P2 =

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

The rewards for the states are defined as:

r1 =

1

1.5

1.5

2

r1 =

0

1.5

1.5

2

.

The approximation features are defined as follows:

Φ =

1 0

1 0.1

1 1

1 0.

With the discount factor γ = 0.95, the function θB is neither convex, nor concave as Fig-

ure C.2.

310

0 5 10 15 20 25 30 35

0.7

0.8

0.9

1

1.1

ξ

ψ

Figure C.2. Function θB for the counterexample.

Theorem 7.4. Assume that for every state s ∈ S we have that r(s, a1) = r(s, a2) for all

a1, a2 ∈ A. Also assume that e(1) = 0 and e(i) > 0 for all i > 0. For any ψ̄ and ψ ≥ ψ̄ the

function θB satisfies that:

θB(ψ) ≥ θB(0)−
ψ

ψ̄
(θB(0)− θB(ψ̄)).

Proof. Because the rewards are independent of the action, we use r(s) = r(s, a) for all

actions. First, from Lemma 5.4, we have that:

‖v− Lv‖∞ = min
π∈Π
‖πT(Av− b)‖∞.

When ψ0 = 0, is is easy to show that v = 1τ and that:

v(s)− γP(s, a1)
Tv− r(s) = τ − γτ1− r(s)

= v(s)− γP(s, a2)
Tv− r(s)

Now, assume without loss of generality that for some v1 ∈ M(ψ1):

v1(s)− γP(s, a1)
Tv1 + r(s) ≤ v1(s)− γP(s, a)Tv1 + r(s).

Then let vβ = βv0 + (1− β)v1 for β ∈ [0, 1] be a convex combination of v0 and v1. Also

assume that:

v1(s)− γP(s, a1)
Tv1 ≤ v1(s)− γP(s, a2)

Tv1

311

for any a2 ∈ A. The Bellman residual of the value function vβ then satisfies that:

vβ(s)− γP(s, a1)
Tvβ − r(s) =

= β(v0(s)− γP(s, a1)
Tv0 − r(s)) + (1− β)(v1(s)− γP(s, a1)

Tv1 − r(s))

= β(v0(s)− γP(s, a2)
Tv0 − r(s)) + (1− β)(v1(s)− γP(s, a1)

Tv1 − r(s))

≤ β(v0(s)− γP(s, a2)
Tv0 − r(s)) + (1− β)(v1(s)− γP(s, a2)

Tv1 − r(s))

= vβ(s)− γP(s, a2)
Tvβ − r(s).

Therefore, there exists a policy π that is greedy with respect to vβ for all values of β ∈ [0, 1].

It is also easy to show that vβ ∈ M((1− β)ψ1) ∩ K, which follows from the convexity of

K (Proposition 2.14) andM.

Now, define the following function:

g(β) = ‖vβ − Lvβ‖∞ = max
s∈S

1Ts (v− Lπv),

where π is the greedy policy defined above. The function g is convex, since it is a maxi-

mum of a set of linear functions; using linearity of Lπ. This implies that:

θB(βψ0 + (1− β)ψ1) ≤ g(β).

To derive a contradiction, assume that there exists ψv that violates the inequality for from

ψ̄. Then:

θB(ψv) < θB(0)−
ψv

ψ̄
(θB(0)− θB(ψ̄))

ψv

ψ̄
(θB(ψv)− θB(0) + ψvθB(0)) < θB(ψ̄)

(1− β)θB(ψv) + βθB(0) < θB(ψ̄)

Above, β is chosen so that (1− β) = ψv
ψ̄

. That mean that ψ̄ = (1− β)ψv and using convexity

of g:

θB(ψ̄) ≤ g(ψ̄) ≤ (1− β)θB(ψv) + βθB(0) < θB(ψ̄),

312

which is a contradiction.

Theorem 7.1. Let (π1, λ1, λ′1) be an optimal (greedy-policy) solution of (ABP–L∞). Then:

(
π1, λ1, λ′1, z′ = min

z≥λ1−(τ−π1)
1Tz
)

is an optimal solution of (ABP-MILP) and vice versa, given that τ ≥ λ1. When in addition f1 and

f2 are the optimal objective values of (ABP–L∞) and (ABP-MILP), then f1 = f2.

Proof. First, we show that (π1, λ1, λ′1, z = minz≥λ1−(τ−π1) 1Tz) is feasible in (ABP-MILP)

and has the same objective value. Since π1 is a greedy policy (see Theorem 5.2), then

π1 ∈ {0, 1}S×A. That is π1 is feasible in (ABP-MILP). Let then:

z2(s, a) =

λ(s, a) if π1(s, a) = 1

0 otherwise
.

To show that z2 is feasible in (ABP-MILP) analyze the following two cases:

1. π(s, a) = 1:

z2(s, a) + τ(s, a)(1− π1(s, a)) = z2(s, a) = λ1(s, a)

2. π(s, a) = 0:

z2(s, a) + τ(s, a)(1− π1(s, a)) ≥ τ(s, a) ≥ λ1(s, a).

The objective values are then identical by a simple algebraic manipulation.

Second, we need to show that for any solution of (ABP-MILP), there is a solution of

(ABP–L∞) with the same objective value. This follows by simple algebraic manipula-

tion.

313

C.9 Solving Small-Dimensional Linear Programs

Proposition 8.10. In the proposed triangulation, the sub-polyhedra do not overlap and they cover

the whole feasible set Y, given that the pivot point is in the interior of S.

Proof. We prove the theorem by induction on the number of polyhedron splits that were

performed. The base case is trivial: there is only a single polyhedron, which covers the

whole feasible region.

For the inductive case, we show that for any polyhedron S the sub-polyhedra induced by

the pivot point ŷ cover S and do not overlap. The notation we use is the following: T

denotes the original polyhedron and ŷ = Tc is the pivot point, where 1Tc = 1 and c ≥ 0.

Note that T is a matrix and c, d, ŷ are vectors, and β is a scalar.

We show that the sub-polyhedra cover the original polyhedron S as follows. Take any

a = Td such that 1Td = 1 and d ≥ 0. We show that there exists a sub-polyhedron that

contains a and has ŷ as a vertex. First, let

T̂ =

 T

1T

This matrix is square and invertible, since the polyhedron is non-empty. To get a represen-

tation of a that contains ŷ, we show that there is a vector o such that for some i, o(i) = 0:

a

1

 = T̂d = T̂o +
(

βŷ

)
o ≥ 0,

for some β > 0. This will ensure that a is in the sub-polyhedron with ŷ with vertex i

replaced by ŷ. The value o depends on β as follows:

o = d− βT̂−1

ŷ

1

 .

314

This can be achieved by setting:

β = min
i

d(i)
(T̂−1ŷ)(i)

.

Since both d and c = T̂−1ŷ are non-negative. This leaves us with an equation for the

sub-polyhedron containing the point a. Notice that the resulting polyhedron may be of a

smaller dimension than n when o(j) = 0 for some i 6= j.

To show that the polyhedra do not overlap, assume there exists a point a that is common to

the interior of at least two of the polyhedra. That is, assume that a is a convex combination

of the vertices:

a = T3c1 + h1ŷ + β1y1

a = T3c2 + h2ŷ + β2y2,

where T3 represents the set of points common to the two polyhedra, and y1 and y2 repre-

sent the disjoint points in the two polyhedra. The values h1, h2, β1, and β2 are all scalars,

while c1 and c2 are vectors. Notice that the sub-polyhedra differ by at most one vertex. The

coefficients satisfy:

c1 ≥ 0 c2 ≥ 0

h1 ≥ 0 h2 ≥ 0

β1 ≥ 0 β2 ≥ 0

1Tc1 + h1 + β1 = 1 1Tc2 + h2 + β2 = 1

Since the interior of the polyhedron is non-empty, this convex combination is unique.

First assume that h = h1 = h2. Then we can show the following:

315

a = T3c1 + hŷ + β1y1 = T3c2 + hŷ + β2y2

T3c1 + β1y1 = T3c2 + β2y2

β1y1 = β2y2

β1 = β2 = 0

This holds since y1 and y2 are independent of T3 when the polyhedron is nonempty and

y1 6= y2. The last equality follows from the fact that y1 and y2 are linearly independent.

This is a contradiction, since β1 = β2 = 0 implies that the point a is not in the interior of

two polyhedra, but at their intersection.

Finally, assume WLOG that h1 > h2. Now let ŷ = T3ĉ + α1y1 + α2y2, for some scalars

α1 ≥ 0 and α2 ≥ 0 that represent a convex combination. We get:

a = T3c1 + h1ŷ + β1y1 = T3(c1 + h1ĉ) + (h1α1 + β1)y1 + h1α2y2

a = T3c2 + h2ŷ + β2y2 = T3(c2 + h2ĉ) + h2α1y1 + (h2α2 + β2)y2.

The coefficients sum to one as shown below.

1T(c1 + h1ĉ) + (h1α1 + β1) + h1α2 = 1Tc1 + β1 + h1(1Tĉ + α1 + α2) = 1Tc1 + β1 + h1 = 1

1T(c2 + h2ĉ) + α1 + (h2α2 + β2) = 1Tc2 + β2 + h2(1Tĉ + α1 + α2) = 1Tc2 + β2 + h2 = 1

Now, the convex combination is unique, and therefore the coefficients associated with each

vertex for the two representations of a must be identical. In particular, equating the coeffi-

cients for y1 and y2 results in the following:

h1α1 + β1 = h2α1 h1α2 = h2α2 + β2

β1 = h2α1 − h1α1 β2 = h1α2 − h2α2

β1 = α1(h2 − h1) > 0 β2 = α2(h1 − h2) < 0

316

We have that α1 > 0 and α2 > 0 from the fact that ŷ is in the interior of the polyhedron S.

Then, having β2 ≤ 0 is a contradiction with a being a convex combination of the vertices

of S.

Theorem 8.4. Let f ∗ and f̃ ∗ be optimal solutions of (8.1) and (8.5) respectively. Then:

ε = | f ∗ − f̃ ∗| ≤
√

λ̄.

Moreover, this is the maximal linear dimensionality reduction possible with this error without con-

sidering the constraint structure.

Proof. We first show that indeed the error is at most
√

λ̄ and that any linearly compressed

problem with the given error has at least f dimensions. Using a mapping that preserves

the feasibility of both programs, the error is bounded by:

ε ≤

∣∣∣∣∣∣∣ f
w, x,

(
F G

)y1

y2

 , z

− f̃

w, x, y1,

y2

z

∣∣∣∣∣∣∣ =

∣∣∣xTCGy2

∣∣∣ .

Denote the feasible region of y2 as Y2. From the orthogonality of [F, G], we have that

‖y2‖2 ≤ 1 as follows:

y =

(
F G

)y1

y2

FT

GT

 y =

y1

y2

GTy = y2

‖GTy‖2 = ‖y2‖2

Then we have:

ε ≤ max
y2∈Y2

max
x∈X

∣∣∣xTCGy2

∣∣∣ ≤ max
y2∈Y2

‖CGy2‖2

≤ max
y2∈Y2

√
yT2 GTCTCGy2 ≤ max

y2∈Y2

√
yT2 Ly2 ≤

√
λ̄

317

The result follows from Cauchy-Schwartz inequality, the fact that CTC is symmetric, and

Assumption 8.3. The matrix L denotes a diagonal matrix of eigenvalues corresponding to

eigenvectors of G.

Now, let H be an arbitrary matrix that satisfies the preceding error inequality for G. Clearly,

H ∩ F = ∅, otherwise ∃y, ‖y‖2 = 1, such that ‖CHy‖2 > ε. Therefore, we have |H| ≤
n − |F| ≤ |G|, because |H| + |F| = |Y|. Here | · | denotes the number of columns of the

matrix.

C.9.1 Sum of Convex and Concave Functions

In this section we show that the best-response function g(y) may not be convex when the

program is not in a semi-compact form. The convexity of the best-response function is

crucial in bounding the approximation error and in eliminating the dominated regions.

We show that when the program is not in a semi-compact form, the best-response func-

tion can we written as a sum of a convex function and a concave function. To show that

consider the following bilinear program.

max
w,x,y,z

f = rT1 x + sT1 w + xTCy + rT2 y + sT2 z

s.t. A1x + B1w = b1

A2y + B2z = b2

w, x, y, z ≥ 0

(C.18)

This problem may be reformulated as:

f = max
{y,z (y,z)∈Y}

max
{x,w (x,w)∈X}

rT1 x + sT1 w + xTCy + rT2 y + sT2 z

= max
{y,z (y,z)∈Y}

g′(y) + sT2 z,

where

g′(y) = max
{x,w (x,w)∈X}

rT1 x + sT1 w + xTCy + rT2 y.

318

Notice that function g′(y) is convex, because it is a maximum of a set of linear functions.

Since f = max{y (y,z)∈Y} g(y), the best-response function g(y) can be expressed as:

g(y) = max
{z (y,z)∈Y}

g′(y) + sT2 z = g′(y) + max
{z (y,z)∈Y}

sT2 z

= g′(y) + t(y),

where

t(y) = max
{z A2y+B2z=b2, y,z≥0}

sT2 z.

Function g′(y) does not depend on z, and therefore could be taken out of the maximization.

The function t(y) corresponds to a linear program, and its dual using the variable q is:

min
q

(b2 − A2y)Tq

s.t. BT
2 q ≥ s2

(C.19)

Therefore:

t(y) = min
{q BT

2 q≥s2}
(b2 − A2y)Tq,

which is a concave function, because it is a minimum of a set of linear functions. The

best-response function can now be written as:

g(y) = g′(y) + t(y),

which is a sum of a convex function and a concave function, also known as a d.c. func-

tion (Horst & Tuy, 1996). Using this property, it is easy to construct a program such that

g(y) will be convex on one part of Y and concave on another part of Y, as the following

example shows. Note that in semi-compact bilinear programs t(y) = 0, which guarantees

the convexity of g(y).

319

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

y

m
ax

x f(
x,

y)

Figure C.3. A plot of a non-convex best-response function g for a bilinear program, which
is not in a semi-compact form.

Example C.25. Consider the following bilinear program:

max
x,y,z

−x + xy− 2z

s.t. −1 ≤ x ≤ 1

y− z ≤ 2

z ≥ 0

(C.20)

A plot of the best response function for this program is shown in Figure C.3.

320

C.10 Sampling Bounds

Theorem 9.4. Assume Assumption 9.1 and that there is a sample mapping function χ : S → Σ̄

such that for all v ∈ M(ψ):

max
s∈S
|(v− Lv)(s)− (v− L̄v)(χ(s))| ≤ ε(ψ).

Then, the state selection error in Assumption 2.26 can be bounded as: εp(ψ) ≤ ε(ψ).

Proof. Assume that v ∈ M(ψ) ∩ K̄. Then, using the fact that the Bellman residual is non-

negative for the sampled states, we have that:

−εp = min
s∈S

(v− Lv)(s) ≥ min
s∈S

(v− Lv)(s)−min
s′∈Σ̄

(v− L̄v)(s′)

≥ min
s∈S

max
s′∈Σ̄

(v− Lv)(s)− (v− L̄v)(s′)

≥ min
s∈S

(v− Lv)(s)− (v− L̄v)(χ(s))

≥ −max
s∈S
|(v− Lv)(s)− (v− L̄v)(χ(s))|

≥ −εp(ψ)

Proposition 9.7. Assume Assumption 9.1, Assumption 9.5, and a state mapping function

χ(s) = arg min
s̄∈Σ̄
‖k(s)− k(s̄)‖.

such that maxs∈S ‖k(s)− k(χ(s))‖ ≤ q for some q ∈ R. Then, Assumption 2.26 holds with the

following constant:

εp(ψ) = qKr + qψ(Kφ + γKp).

321

Proof. First, we can set the following values in Assumption 9.6.

σφ = qKφ σr = qKr σp = qKp

The following shows the derivation for σp; the other derivations are very similar.

σp ≤ ‖φ(s)− φ(χ(s))‖∞,e−1 ≤ Kφ‖k(χ(s))− k(s)‖ ≤ qKφ.

Now, we show that the hypothesis of Theorem 9.4 holds, as follows.

max
s∈S
|(v− Lv)(s)− (v− L̄v)(χ(s))|

≤ max
s∈S ,a∈A

|(v− γPav− ra)(s)− (v− γPav− ra)(χ(s))|

≤ max
s∈S ,a∈A

|1Ts (Φx− γPaΦx− ra)− 1Tχ(s)(Φx− γPaΦx− ra)|

≤ max
s∈S ,a∈A

|(1Ts − 1Tχ(s))Φx|+ |(1Ts − 1Tχ(s))γPaΦx|+

+ |(1Ts − 1Tχ(s))ra|

≤ max
s∈S ,a∈A

‖(1Ts − 1Tχ(s))Φ‖∞,e−1‖x‖1,e+

+ ‖(1Ts − 1Tχ(s))γPaΦ‖∞,e−1‖x‖1,e + ‖(1Ts − 1Tχ(s))ra‖∞,e−1

≤ qKr + qψ(Kφ + γKp)

We used the fact that L and L̄ are identical for states that are sampled and Lemma 9.2.

Theorem 9.8. Assume Assumption 9.1 and a sample mapping function χ : (S ×A) → Σ̄n+1,

where n is the dimensionality of the state–action embedding function k(S ,A) and Σ̄n+1 denotes

subsets of length n + 1. The sample mapping function χ satisfies for all s, a ∈ S ,A:

k(s, a) = ∑
(si ,ai)∈χ(s,a)

βi(s, a)k(si, ai)

1 = ∑
(si ,ai)∈χ(s,a)

βi(s, a)

322

for some function βi(s, a) : S ×A → R+ and in addition for some σφ, σr ∈ R:

∥∥∥∥∥(φ(s)− γP(s, a)TΦ
)
− ∑

(si ,ai)∈χ(s,a)
βi(s, a)

(
φ(si)− γP(si, ai)

TΦ
)∥∥∥∥∥

∞,e−1

≤ σφ∣∣∣∣∣r(s, a)− ∑
(si ,ai)∈χ(s,a)

βi(s, a)r(si, ai)

∣∣∣∣∣ ≤ σr.

Then, the following holds:

εp(ψ) ≤ σr + σφψ.

Proof. Assume v ∈ K̄ ∩M(ψ). The let s̄, ā be a minimizer of:

−εp = min
s∈S ,a∈A

(v− Lav) (s) = min
s∈S ,a∈A

v(s)− γP(s, a)Tv− r(s, a).

To simplify the notation, define:

q(s, a) = φ(s)− γP(s, a)TΦ.

Then, using that for s, a ∈ Σ̄, q(s, a)Tx− r(s, a) ≥ 0 and βi ≥ 0, the theorem is derived as

follows:

−εp = v(s̄)− γP(s̄, ā)Tv− r(s̄, ā) = φ(s̄)Tx− γP(s̄, ā)TΦx− r(s̄, ā)

≥
(

q(s̄, ā)Tx− r(s̄, ā)
)
− ∑

(si ,ai)∈χ(s,a)
βi(s, a)

(
q(si, ai)

Tx− r(si, ai)
)

≥ −
∣∣∣∣∣q(s̄, ā)Tx− ∑

(si ,ai)∈χ(s,a)
βi(s, a)q(si, ai)

Tx

∣∣∣∣∣−
∣∣∣∣∣r(s̄, ā)−

n+1

∑
i=1

βi(s, a)− r(si, ai)

∣∣∣∣∣
≥ −

∥∥∥∥∥q(s̄, ā)− ∑
(si ,ai)∈χ(s,a)

βi(s, a)q(si, ai)

∥∥∥∥∥
∞,e−1

‖x‖1,e −
∣∣∣∣∣r(s̄, ā)−

n+1

∑
i=1

βi(s, a)r(si, ai)

∣∣∣∣∣
≥ −σr − σφψ

Here, we used Lemma 9.2 and the fact that (q(s, a))(1) = (1−γ) from Assumption 9.1.

323

Theorem 9.13. Assume Assumption 9.1, Assumption 9.6, and Assumption 9.12 and let v ∈
M(ψ) be a representable value function. Then, Assumption 2.27 is satisfied with the following

constant:

εc = σs‖ΦTc̄‖∞,e−1 ψ + 2σφψ

when c = α and e = (0 1T)T.

Proof. Recall that:

c̄TΦ =
|S|
|Σ̄|s ∑

s∈Σ̄

c(s)φ(s) cTΦ = ∑
s∈S

c(s)φ(s)

The main idea of the proof is to individually bound the error due to the difference between
s and χ(s) and also the uniformity of sampling.

∥∥∥ΦTc−ΦTc̄
∥∥∥

∞,e−1
=

∥∥∥∥∥∑
s∈S

c(s)φ(s)− |S||Σ̄|s ∑
s∈Σ̄

c(s)φ(s)

∥∥∥∥∥
∞,e−1

=

∥∥∥∥∥∑
s∈S

c(s)φ(s)− |S||Σ̄|s ∑
s∈Σ̄

c(s)φ(s)+

+

(
∑
s∈S

c(s)φ(s)− c(χ(s))φ(χ(s))

)
−
(

∑
s∈S

c(s)φ(s)− c(χ(s))φ(χ(s))

)∥∥∥∥∥
∞,e−1

=

∥∥∥∥∥− |S||Σ̄|s ∑
s∈Σ̄

c(s)φ(s)+

+

(
∑
s∈S

c(s)φ(s)− c(χ(s))φ(χ(s))

)
+

(
∑
s∈S

c(χ(s))φ(χ(s))

)∥∥∥∥∥
∞,e−1

≤
∥∥∥∥∥− |S||Σ̄|s ∑

s∈Σ̄
c(s)φ(s) + ∑

s∈S
c(χ(s))φ(χ(s))

∥∥∥∥∥
∞,e−1

+

∥∥∥∥∥∑
s∈S

(c(s)φ(s)− c(χ(s))φ(χ(s)))

∥∥∥∥∥
∞,e−1

Now,

∥∥∥∥∥∑
s∈S

(c(s)φ(s)− c(χ(s))φ(χ(s)))

∥∥∥∥∥
∞,e−1

≤
∣∣∣∣∣∑s∈S(c(s)− c(χ(s)))

∣∣∣∣∣ σφ ≤ 2σφ,

324

using the fact that e = (0 1T)T and c = α. And finally:

∥∥∥∥− |S||Σ̄|s ∑
s∈Σ̄

c(s)φ(s) + ∑
s∈S

c(χ(s))φ(χ(s))

∥∥∥∥∥
∞,e−1

=

∥∥∥∥∥∥− |S||Σ̄|s ∑
s∈Σ̄

c(s)φ(s) + ∑
s̄∈Σ̄

∑
s∈χ−1(s̄)

c(χ(s))φ(χ(s))

∥∥∥∥∥∥
∞,e−1

=

∥∥∥∥∥− |S||Σ̄|s ∑
s∈Σ̄

c(s)φ(s) + ∑
s̄∈Σ̄

∣∣∣χ−1(s̄)
∣∣∣ c(s̄)φ(s̄)

∥∥∥∥∥
∞,e−1

=

∣∣∣∣∣
∣∣χ−1(s̄)

∣∣ |Σ̄|s
|S| − 1

∣∣∣∣∣
∥∥∥∥∥∑

s̄∈Σ̄

|S|
|Σ̄|s

c(s̄)φ(s̄)

∥∥∥∥∥
∞,e−1

≤ σs‖c̄TΦ‖∞,e−1

The theorem then follows by putting the inequalities together and using Lemma 9.2 to

bound |(c− c̄)Φv|.

Theorem 9.14. Assume that samples Σ̃ are available and that the number of samples per each

state and action pair is at least n. Also assume that e = (01T)T. Then, the transition estimation

error εs (Assumption 2.28) is bounded as:

P [εs(ψ) > ε] ≤ Q
(

2|φ| exp
(

2(ε/(ψ · γ))2

Mφn

)
, |Σ̃|a

)
≤ 2|Σ̃|a|φ| exp

(
2(ε/(ψ · γ))2

Mφn

)
,

where |Σ̃|a is the number of sampled state-action pairs,

Mφ = max
s∈S
‖φ(s)‖∞.

and

Q(x, y) = 1− (1− x)y.

325

Proof. The probability for the transition estimation error that we need to bound is defined

as follows, where n is the number of samples per each state–action pair in Σ̃.

P [εs(ψ) > ε] ≤ P
[

max
v∈M

max
s∈Σ̃
|(L̄v)(s)− (L̃v)(s)| > ε

]
≤ P

[
max
v∈M

max
s,a∈S̃
|(L̄av)(s)− (L̃sv)(s)| > ε

]
= P

[
max
v∈M

max
s,a∈S̃
|γP(s, a)Tv + r(s, a)− γ

1
n

n

∑
f=1

P(s, a, sj)
Tv− r(s, a)| > ε

]

= P

[
max
v∈M

max
s,a∈S̃
|P(s, a)Tv− 1

n

n

∑
j=1

P(s, a, sj)
Tv| > ε/γ

]

= P

[
max
v∈M

max
s,a∈S̃
|P(s, a)Tv− 1

n

n

∑
j=1

P(s, a, sj)
Tv| > ε/γ

]

= P

[
max
s,a∈S̃

max
f=1...|φ|

ψ|P(s, a)Tφ f −
1
n

n

∑
j=1

P(s, a, sj)
Tφ f | > ε/γ

]

≤ |φ| max
f=1...|φ|

P

[
max
s,a∈S̃
|P(s, a)Tφ f −

1
n

n

∑
j=1

P(s, a, sj)
Tφ f | > ε/(γ · ψ)

]

Here, we used the union bound for features. Note that the error for φ1 = 0 is 0. Now, let

Xi = |P(si, ai)
Tφ f −

1
n

n

∑
j=1

P(si, ai, sij)
Tφ f |,

for some feature f and i ∈ Σ̃ for simplicity. We then have using the fact that the random

variables Xi are independent:

P

[
max
s,a∈S̃
|P(s, a)Tφ f −

1
n

n

∑
j=1

P(s, a, sij)
Tφ f | > ε/(γ · ψ)

]
= P

[
max
i∈S̃

Xi > ε/(γ · ψ)
]

= Q(P [Xi > ε/(γ · ψ)] , |Σ|a).

The theorem then follows from Hoeffding’s inequality applied to P [Xi > ε/(γ · ψ)] and

the linear upper bound on the function Q(x, ·).

Proposition 9.15. The bound in Theorem 9.14 is asymptotically tight with respect to |Σ̃|a.

326

Proof. To prove the tightness of the bound, consider the following MDP. The states are

S = {s̄0, s̄1, s1, s2, . . .} and there is a single action A = {a1}. The transitions are defined as

follows:

P(s̄0, a1, s̄0) = 1 P(s̄1, a1, s̄1) = 1

P(si, a1, s̄0) = 0.5 P(si, a1, s̄1) = 0.5

The rewards are all zero. Consider a feature defined as follows:

φ2(s̄0) = 0 φ2(s̄1) = 1 φ2(si) = 0,

with the φ1 = 1. The theorem then follows by simply computing the probability of the

violation of the error as a function of the number of states si included in the sample. The

error can then be bounded as:

P

[
max
i∈Σ̃

1
m

m

∑
j=1

Xi(ωj)− E [Xi]

]
= P

[
max
i∈Σ̃

1
m

m

∑
j=1

Xi(ωj)

]

≤ P

[
m

∑
j=1

max
i∈Σ̃

1
m

Xi(ωj)

]

≤ P

[
m

∑
j=1

max
i∈τ(m)

1
m

Xi(ωj)

]

≤ P

[
m

∑
j=1

∑
i∈τ(m)

1
m

Xi(ωj)

]

≤ |τ(m)|P
[

1
m

m

∑
j=1

Xi(ωj) >
ε

|τ(m)|

]

Theorem 9.17. Assume that samples Σ̃ are generated using common random numbers and

that the number samples of common numbers is m. Then:

{I {z(s, a, ω)v ≥ ε} ω ∈ Ω, v ∈ M(ψ), ε ∈ R+}.

327

Then, the transition estimation error εs (Assumption 2.28) is bounded as:

P [εs(ψ) > ε] ≤ 2|φ| exp
(

2(ε/(ψ · γ · |τ(m)|))2

Mφm

)
,

where |Σ̃|a is the number of sampled state-action pairs and

Mφ = max
s∈S
‖φ(s)‖∞.

Proof. The first part of the proof follows similarly to the proof of Theorem 9.14. To simplify

the notation, we use

Xi(ωj) = |P(si, ai)
Tφ f −

1
n

n

∑
j=1

P(si, ai, z(si, ai, ωj))
Tφ f |

for some feature f and i ∈ Σ̃. These random variables are not necessarily independent, as

they are in Theorem 9.14. Now, we have from E [Xi] = 0 that:

P

[
max
i∈Σ̃

1
m

m

∑
j=1

Xi()

]

Proposition 9.19. Assume a triangulation T = {T1 . . . Tm} of k(S) where n is the dimension of

k(S). In addition, assume that ρ̃1 and ρ̃2 are Gaussian processes with a posteriori 1− δ confidence

lower bounds l1, l2 and upper bounds u1, u2. Note that the confidence bounds on a set of values is

328

not the same as the union of individual confidence bounds. Then, the hypothesis of Theorem 9.8

holds with the minimal possible value of the following constants:

σφ ≥ max
Tj∈T

max
i∈|φ|

max
β1...βn+1∈ B

n+1

∑
l=1

βl ρ̃1(Tj(l), i)− l1

(
n+1

∑
l=1

βlTj(l), i

)

σφ ≥ max
Tj∈T

max
i∈|φ|

max
β1 ...βn+1∈ B

u1

(
n+1

∑
l=1

βlTj(l), i

)
−

n+1

∑
l=1

βl ρ̃1(Tj(l), i)

σr ≥ max
Tj∈T

max
β1 ...βn+1∈ B

n+1

∑
l=1

βl ρ̃2(Tj(l))− l2

(
n+1

∑
l=1

βlTj(l), i

)

σr ≥ max
Tj∈T

max
β1 ...βn+1∈ B

u2

(
n+1

∑
l=1

βlTj(l)

)
−

n+1

∑
l=1

βl ρ̃2(Tj(l))

where B = {β1 . . . βn+1 ∑n+1
l=1 βl = 1, βl ≥ 0}.

Proof. To prove the theorem, we have to define the sample selection function χg to be

used with Theorem 9.8. The corollary simply follows by setting χg to map a states to the

polyhedron of the samples that it is included in.

329

C.11 Feature Selection

Proposition 10.4. The function θL(ψ) is convex and piecewise linear.

Proof. Assume without loss of generality that x ≥ 0. Then (ALP–R) becomes:

min
x

cTΦ

s.t. AΦx ≥ b

eTx ≤ ψ

x ≥ 0

The proof is straight-forward from the dual formulation of (ALP–R). The dual formulation

is:
max

y
bTy− ψλ

s.t. ΦTATy + eλ ≤ ΦTc

y ≥ 0

λ ≥ 0

Because, ψ does not influence the feasibility of a solution. Therefore, the function θL

represents a maximum of a finite set of linear functions (corresponding to the basic feasible

solutions) and is therefore convex and piecewise linear.

330

C.12 Heuristic Functions

Proposition 11.3. Given a complete set of samples, the heuristic function v ∈ K2 is admissible.

That is, for all s ∈ S , v(s) ≥ v∗(s).

Proof. Let v∗ = (I− γP∗)−1r∗. Then, any feasible solution satisfies:

γP∗v + r∗ ≤ v

0 ≤ (I− γP∗)v− r∗

0 ≤ v− (I− γP∗)−1r∗

(I− γP∗)−1r∗ ≤ v

v∗ ≤ v.

We used the monotonicity of (I− γP∗)−1, which can be shown easily from its geometric

series expansion.

Lemma 11.7. Assume that 1 is representable inM. Then there exists a heuristic function v̂ that

is feasible in (11.5) and satisfies:

‖v̂− v∗‖∞ ≤
2

1− γα
min

x
‖v∗ −Φx‖∞.

Proof. Let a closest representable heuristic function be ṽ, defined as:

ε = ‖ṽ− v∗‖∞ = min
x
‖v∗ −Φx‖∞.

This function may not satisfy the inequalities (11.5). We show that it is possible to construct

v̂ that satisfies the inequalities. From the assumption, we have that:

v∗ − ε1 ≤ ṽ ≤ v∗ + ε1.

331

and for a ∈ A
0 ≤ Ta1 ≤ γα1,

directly from the definition of the inequalities (11.5). We use 0 to denote a zero vector of

the appropriate size. Now let v̂ = ṽ + d1, for some d. Appropriate value of d to make v̂

feasible can be derived using Lemma 11.5 as:

v̂ = ṽ + d1

≥ v∗ − ε1 + d1

≥ Tv∗ + r + (d− ε)1

≥ T(ṽ− ε1) + r + (d− ε)1

≥ Tṽ− εγα1 + r + (d− ε)1

= Tṽ + r + (d− (γα + 1)ε)1

= T(v̂− d1) + r + (d− (γα + 1)ε)1

≥ Tv̂ + r + ((1− γα)d− (1 + γα)ε)1.

Therefore, v̂ ≥ Tv̂ + r if:

((1− γα)d− (1 + γα)ε)1 ≥ 0

d ≥ 1 + γα

1− γα
ε.

Since d ≥ ε, also v̂(τ) ≥ 0 is satisfied. Finally:

‖d̂− v∗‖∞ ≤ ‖ṽ− v∗‖∞ + ‖d1‖∞ ≤
2

1− γα
ε.

332

Lemma 11.11. Assume that there exists a Lyapunov hierarchy u1 . . . ul , such that each ui is

representable in M. Then there exists a heuristic function v̂ in Φ that is feasible in (11.5), such

that:

‖v̂− v∗‖∞ ≤
(

l

∏
i=1

(1 + αγ)maxs∈S ui(s)
(1− αγβi)mins∈S ui

i(s)

)
2 min

x
‖v∗ −Φx‖∞,

where ui
i is the vector ui restricted to states in partition i.

Proof. First, let

ε = 2‖ṽ1 − v∗‖∞ = 2 min
x
‖Φx− v∗‖∞.

Construct ṽ = ṽ1 + ε1 such that:

v∗ ≤ ṽ ≤ v∗ + ε.

The proof follows by induction on the size l of the Lyapunov hierarchy. Assume that the

inequalities are satisfied for all i′ < i, with the error ε and the property that the current

ṽ ≥ v∗. Then let v̂ = ṽ + d1, for some d. Then, using Lemma 11.5, we have:

v̂ = ṽ + dui ≥ v∗ + dui ≥ Tiv∗ + rdui

≥ Tiṽ− γαε1 + r + dui

≥ Ti(v̂− dui)− γαε1 + r + dui

≥ Tiv̂ + r− αβiγdui + dui − γαεe

To satisfy v̂ ≥ Tiv̂ + ri, set d to:

αβiγdui + dui ≥ γαε1

d ≥ γα

1− αβiγ

1
mins∈S ui

i(s)
ε.

Therefore the total approximation error for v̂ is:

‖v̂− v∗‖∞ ≤
γα

1− αβiγ

maxs∈S ui(s)
mins∈S ui

i(s)
ε

333

The lemma follows because d ≥ 0 and ui ≥ 0, and thus the condition ṽ ≥ v∗ is not

violated. In the end, all the constraints are satisfied from the definition of the Lyapunov

hierarchy.

334

BIBLIOGRAPHY

Abbeel, P., Ganapathi, V., & Ng, A. Y. (2006). Learning vehicular dynamics, with appli-
cation to modeling helicopters. In Advances in Neural Information Processing Systems, pp.
1–8.

Adelman, D. (2004). A price-directed approach to stochastic inventory/routing. Opera-
tions Research, 52, 499–514.

Antos, A., Szepesvri, C., & Munos, R. (2008). Learning near-optimal policies with
Bellman-residual minimization based fitted policy iteration and a single sample path.
Machine Learning, 71, 89–129.

Asif, S. (2008). Primal dual pursuit: A homotopy-method based algorithm for the Dantzig
selector. Master’s thesis, School of Electrical and Computer Engineering, Georgia Insti-
tute of Technology.

Asif, S. (2009). Dantzig selector homotopy with dynamic measurements. In IS&T/SPIE
Computational Imaging VII.

Asmuth, J., Li, L., Littman, M., Nouri, A., & Wingate, D. (2009). A bayesian sampling
approach to exploration in reinforcement learning. In Uncertainty in Artificial Intelligence.

Auer, P., Jaksch, T., & Ortner, R. (2009). Near-optimal regret bounds for reinforcement
learning. In Advances in Neural Information Processing Systems.

Axsater, S. (2006). Inventory Control (2nd edition). Springer.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxi-
mation. In International Conference on Machine Learning, pp. 30–37.

Barto, A., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72(1), 81–138.

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. V. (2004). Solving transition indepen-
dent decentralized Markov decision processes. Journal of Artificial Intelligence Research, 22,
423–455.

Beliaeva, N., & Zilberstein, S. (2005). Generating admissible heuristics by abstraction for
search in stochastic domains. In Abstraction, Reformulation and Approximation, pp. 14–29.
Springer Berlin / Heidelberg.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Ben-Tal, A., & Nemirovski, A. (2008). Selected topics in robust optimization. Mathematical
Programming, Series B, 112, 125–158.

335

Bennett, K. P., & Mangasarian, O. L. (1992). Bilinear separation of two sets in n-space.
Tech. rep., Computer Science Department, University of Wisconsin.

Benton, J., van den Briel, M., & Kambhampati, S. (2007). A hybrid linear programming
and relaxed plan heuristic for partial satisfaction planning problems. In International Con-
ference on Automated Planning and Scheduling (ICAPS).

Bertsekas, D. P. (2003). Nonlinear programming. Athena Scientific.

Bertsekas, D. P., & Castalion, D. A. (1989). Adaptive aggregation methods for infinite
horizon dynamic programming. IEEE Transations on Automatic Control, 34, 589–598.

Bertsekas, D. P., & Ioffe, S. (1997). Temporal differences-based policy iteration and appli-
cations in neuro-dynamic programming. Tech. rep. LIDS-P-2349, LIDS.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena Scientific.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1-2),
5–33.

Bonet, B., & Geffner, H. (2003a). Faster heuristic search algorithms for planning under
uncertainty and full feedback. In International Joint Conference on Artificial Intelligence.

Bonet, B., & Geffner, H. (2003b). Labeled rtdp: Improving the convergence of real-time
dynamic programming. In International Conference on Autonomous Planning (ICAPS).

Bonet, B., & Geffner, H. (2009). Solving POMDPs: RTDP-Bel vs. point-based algorithms.
In International Joint Conference on Artificial Intelligence (IJCAI).

Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning the-
ory. Advanced Lectures on Machine Learning, 3176, 169–207.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure in policy con-
struction. In Mellish, C. (Ed.), International Joint Conference on Artificial Intelligence, pp.
1104–1111, San Francisco. Morgan Kaufmann.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX - a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, 3, 213–231.

Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy, N. (2009). Provable efficient
learning with typed parametric models. Journal of Machine Learning Research, 10, 1955–
1988.

Bylander, T. (1997). A linear programming heuristic for optimal planning. In National
Conference on Artificial Intelligence, pp. 694–699.

Candes, E., & Tao, T. (2007). The Dantzig selector:statistical estimation when p is much
larger than n. Annals of Statistics, 35, 2313–2351.

Carpara, A., & Monaci, M. (2009). Bidimensional packing by bilinear programming.
Mathematical Programming Series A, 118, 75–108.

336

Cheng, H. T. (1988). Algorithms for Partially Observable Markov Decision Processes. Ph.D.
thesis, University of British Columbia.

Culberson, J. C., & Schaeffer, J. (1994). Efficiently searching the 15-puzzle. Tech. rep.,
Department of Computer Science, University of Alberta.

Culberson, J. C., & Schaeffer, J. (1996). Searching with pattern databases. In Advances in
Artifical Intelligence, pp. 402–416. Springer Berlin / Heidelberg.

Culberson, J. C., & Schaeffer, J. (1998). Pattern databases. Computational Intelligence, 14(3),
318–334.

de Farias, D. P. (2002). The Linear Programming Approach to Approximate Dynamic Program-
ming: Theory and Application. Ph.D. thesis, Stanford University.

de Farias, D. P., & van Roy, B. (2004). On constraint sampling in the linear program-
ming approach to approximate dynamic programming. Mathematics of Operations Re-
search, 29(3), 462–478.

Devroye, L., Gyorfi, L., & Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition.
Springer.

Dinh, H., Russell, A., & Su, Y. (2007). On the value of good advice: The complexity of A*
searchwith accurate heuristics. In AAAI.

Drager, K., Fingbeiner, B., & Podelski, A. (2006). Directed model checking with distance-
preserving abstractions. In International SPIN Workshop, LNCS, Vol. 3925, pp. 19–34.

Dzeroski, S., de Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Ma-
chine Learning, 43, 7–52.

Edelkamp, S. (2001). Planning with pattern databases. In ECP.

Edelkamp, S. (2002). Symbolic pattern databases in heuristic search planning. In AIPS.

Edelkamp, S. (2006). Automated creation of pattern database search heuristics. In Work-
shop on Model Checking and Artificial Intelligence.

Edelkamp, S. (2007). Symbolic shortest paths planning. In International Conference on
Automated Planning and Scheduling (ICAPS).

Farahmand, A. M., Ghavamzadeh, M., Szepesvari, C., & Mannor, S. (2009). Regularized
policy iteration. In Koller, D., Schuurmans, D., Bengio, Y., & Bottou, L. (Eds.), Advances in
Neural Information Processing Systems 21, pp. 441–448.

Farias, V., & van Roy, B. (2006). Probabilistic and Randomized Methods for Design Under
Uncertainty, chap. 6: Tetris: A Study of Randomized Constraint Sampling. Springer-
Verlag.

Feng, Z., Hansen, E. A., & Zilberstein, S. (2003). Symbolic generalization for on-line plan-
ning. In Uncertainty in Artificial Intelligence (UAI), pp. 209–216.

Feng, Z., & Zilberstein, S. (2004). Region-based incremental pruning. In Conference on
Uncertainty in Artificial Intelligence.

337

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration with a policy language
bias: Solving relational Markov decision processes. Journal of Artificial Intelligence Research
(JAIR), 25, 85–118.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(189-208), 189–208.

Forsund, F. R. (2009). Hydropower Economics. Springer US.

Friedlander, M. P., & Saunders, M. A. (2007). Discussion:the Dantzig selector:statistical
estimation when p is much larger than n. The Annals of Statistics, 35(6), 2385–2391.

Gaschnig, J. (1979). Ph.D. thesis, Carnegie-Mellon University.

Gerevini, A., & Long, D. (2005). Plan constraints and preferences in pddl3. Tech. rep.,
Dipartimento di Elettronica per l’Automazione, Universita degli Studi di Brescia.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice.
Morgan Kaufmann.

Glasserman, P., & Yao, D. D. (1992). Some guidelines and guarantees for common random
numbers. Management Science, 38(6), 884–908.

Goldfarb, D., & Iyengar, G. (2003). Robust convex quadratically constrained programs.
Mathematical Programming, 97, 495–515.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. Tech. rep.,
Carnegie Mellon University. CMU-CS-95-103.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient solution algorithms
for factored MDPs. Journal of Artificial Intelligence Research, 19, 399–468.

Gyorfi, L., Kohler, M., Lrzyzak, A., & Walk, H. (2002). A Distribution-Free Theory of Non-
parametric Regression. Springer.

Hansen, E. A., & Zhou, R. (2007). Anytime heuristic search. Journal of Artificial Intelligence
Research, 28, 267–297.

Hansen, E. A., & Zilberstein, S. (2001). LAO *: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2), 35–62.

Haslum, P., Bonet, B., & Geffner, H. (2005). New admissible heuristics for domain-
independent planning. In National Conference on AI.

Haslum, P., Botea, A., Helmert, M., Bonet, B., & Koenig, S. (2007). Domain-independent
construction of pattern database heuristics for cost-optimal planning. In National Confer-
ence on Artificial Intelligence.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (2nd edition).

Helmert, M., & Mattmuller, R. (2008). Accuracy of admissible heuristic functions in se-
lected planning domains. In National Conference on Artificial Intelligence.

338

Helmert, M., & Roger, G. (2008). How good is almost perfect. In National Conference on
AI.

Hoey, J., & Poupart, P. (2005). Solving POMDPs with continuous or large discrete obser-
vation spaces. In International Joint Conference on Artificial Intelligence.

Holte, R. C., Grajkowski, J., & Tanner, B. (2005). Hierarchical heuristic search revisited. In
Abstraction, Reformulation and Approximation, pp. 121–133. Springer Berlin / Heidelberg.

Holte, R. C., Mkadmi, T., Zimmer, R., & MacDonald, A. (1996a). Speeding up problem
solving by abstraction: a graph oriented approach. Artificial Intelligence, 85, 321–361.

Holte, R. C., Perez, M., R.M.Zimmer, & MacDonald, A. (1996b). Hierarchical A*: Search-
ing abstraction hierarchies efficiently. In National Conference on Artificial Intelligence
(AAAI), pp. 530–535.

Horst, R., & Tuy, H. (1996). Global optimization: Deterministic approaches. Springer.

James, G. M., Radchenko, P., & Lv, J. (2009). DASSO: Connections between the Dantzig
selector and lasso. Journal of the Royal Statistical Society, Series B, 71, 127–142.

Johns, J., & Mahadevan, S. (2007). Constructing basis functions from directed graphs for
value function approximation. In International Conference on Machine Learning.

Johns, J., Petrik, M., & Mahadevan, S. (2009). Hybrid least-squares algorithms for approx-
imate policy evaluation. Machine Learning, 76(2), 243–256.

Kakade, S., Kearns, M., & Langford, J. (2003). Exploration in metric spaces. In International
Conference on Machine Learning (ICML).

Kakade, S. M. (2003). On the Sample Complexity of Reinforcement Learning. Ph.D. thesis,
University College London.

Kautz, H. A., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic,
and stochastic search. In National Conference on Artificial Intelligence (AAAI).

Kearns, M., & Singh, S. (1998). Near-optimal reinforcement learning in polynomial time.
In International Conference on Machine Learning, pp. 260–268. Morgan Kaufmann.

Kearns, M., & Singh, S. (2002). Near-polynomial reinforcement learning in polynomial
time. Machine Learning, 49, 209–232.

Keller, P. W., Manor, S., & Precup, D. (2006). Automatic basis function construction for ap-
proximate dynamic programming and reinforcement learning. In International Conference
on Machine Learning.

Kocsis, L., & Szepesvri, C. (2006). Bandit based Monte-Carlo planning. In European Con-
ference on Machine Learning (ECML).

Kolter, J. Z., & Ng, A. Y. (2009). Regularization and feature selection in least-squares
temporal difference learning. In International Conference on Machine Learning (ICML).

Korf, R. (1985). Depth-first iterative deepening: An optimal admissible tree search. Arti-
ficial Intelligence, 27(1), 97–109.

339

Korf, R. E. (1988). Real-time heuristic search. In National Conference on AI (AAAI).

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine
Learning Research, 4, 1107–1149.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAR: The anatomy of
of a general learning mechanism. Machine Learning, 1, 11–46.

Langtangen, H. P. (2003). Computational Partial Differential Equations (2nd edition).
Springer.

Leckie, C., & Zuckerman, I. (1998). Inductive learning of search control rules for planning.
Artificial Intelligence, 101(1-2), 63–98.

Li, L., Littman, M. L., & Walsh, T. J. (2008). Knows what it knows: A framework for
self-aware learning. In International Conference on Machine Learning.

Litvinchev, I., & Tsurkov, V. (2003). Aggregation in Large-Scale Optimization (Applied Opti-
mization). Springer.

Maei, H., Szepesvari, C., Bhatnagar, S., Precup, D., Silver, D., & Sutton, R. (2009). Con-
vergent temporal-difference learning with arbitrary smooth function approximation. In
Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., & Culotta, A. (Eds.), Advances
in Neural Information Processing Systems 22, pp. 1204–1212.

Mahadevan, S. (2005a). Proto-value functions: Developmental reinforcement learning. In
International Conference on Machine Learning.

Mahadevan, S. (2005b). Representation policy iteration. In Conference on Uncertainty in
Artificial Intelligence.

Mahadevan, S. (2005c). Samuel meets Amarel: Automating value function approximation
using global state space analysis. In National Conference on Artificial Intelligence.

Mahadevan, S. (2009). Learning representation and control: New frontiers in approximate
dynamic programming. Foundations and Trends in Machine Learning, 1(4).

Mahadevan, S., & Maggioni, M. (2005). Value function approximation with diffusion
wavelets and Laplacian eigenfuctions. In Advances in Neural Information Processing Sys-
tems.

Mahadevan, S., Maggioni, M., Ferguson, K., & Osentoski, S. (2006). Learning represen-
tation and control in continuous Markov decision processes. In National Conference on
Artificial Intelligence.

Mangasarian, O. L. (1995). The linear complementarity problem as a separable bilinear
program. Journal of Global Optimization, 12, 1–7.

Mangasarian, O. L. (2004). A Newton method for linear programming. Journal of Opti-
mization Theory and Applications, 121, 1–18.

McMahan, H. B., Likhachev, M., & Gordon, G. J. (2005). Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In
International Conference on Machine Learning (ICML).

340

Mendelssohn, R. (1980). Improved bounds for aggregated linear programs. Operations
Research, 28, 1450–1453.

Mendelssohn, R. (1982). An iterative aggregation procedure for Markov decision pro-
cesses. Operations Research, 30(1), 62–73.

Mercier, L., & Hentenryck, P. V. (2007). Performance analysis of online anticipatory algo-
rithms for large multistage stochastic integer programs. In International Joint Conference
on AI, pp. 1979–1985.

Minton, S., Knoblock, C., Kuokka, D. R., Gil, Y., Joseph, R. L., & Carbonell, J. G. (1989).
PRODIGY 2.0: The manual and tutorial. Tech. rep., Carnegie Mellon University.

Munos, R. (2003). Error bounds for approximate policy iteration. In International Confer-
ence on Machine Learning, pp. 560–567.

Munos, R. (2007). Performance bounds for approximate value iteration. To appear in
SIAM.

Munos, R., & Szepesvari, C. (2008). Finite-time bounds for fitted value iteration. Journal
of Machine Learning Research, 9, 815–857.

Nilsson, N. (1971). Problem-Solving Methods in Artificial Intelligence. McGraw Hill.

Osborne, M. R., Presnell, B., & Turlach, B. A. (2000). A new approach to variable selection
in least squares problems. IMA Journal of Numerical Analysis, 20, 389–404.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., & Littman, M. L. (2008). An analysis of
linear models, linear value function approximation, and feature selection for reinforce-
ment learning. In International Conference on Machine Learning.

Parr, R., Painter-Wakefield, C., Li, L., & Littman, M. (2007). Analyzing feature generation
for value-function approximation. In International Conference on Machine Learning.

Patrascu, R., Poupart, P., Schuurmans, D., Boutilier, C., & Guestrin, C. (2002). Greedy
linear value-approximation for factored Markov decision processes. In National Conference
on Artificial Intelligence (AAAI).

Patrascu, R.-E. (2004). Linear Approximations For Factored Markov Decision Processes. Ph.D.
thesis, University of Waterloo.

Pearl, J. (1984). Heristics. Addison-Wesley, Reading, MA.

Petrik, M. (2007). An analysis of Laplacian methods for value function approximation in
MDPs. In International Joint Conference on Artificial Intelligence, pp. 2574–2579.

Petrik, M., & Scherrer, B. (2008). Biasing approximate dynamic programming with a lower
discount factor. In Advances in Neural Information Processing Systems (NIPS).

Petrik, M., & Zilberstein, S. (2007a). Anytime coordination using separable bilinear pro-
grams. In Conference on Artificial Intelligence, pp. 750–755.

Petrik, M., & Zilberstein, S. (2007b). Average reward decentralized Markov decision pro-
cesses. In International Joint Conference on Artificial Intelligence, pp. 1997–2002.

341

Petrik, M., & Zilberstein, S. (2008). Learning heuristic functions through approximate
linear programming. In International Conference on Automated Planning and Scheduling
(ICAPS), pp. 248–255.

Petrik, M., & Zilberstein, S. (2009). A bilinear programming approach for multiagent
planning. Journal of Artificial Intelligence Research, 35, 235–274.

Pinar, M. C. (1996). Linear programming via a quadratic penalty function. Mathematical
Methods of Operations Research, 44(3), 345–370.

Pohl, I. (1970). Heuristic search viewed as path finding in a graph. Artificial Intelligence,
1, 193–204.

Pohl, I. (1977). Practical and theoretical considerations in heuristic search algorithms.
Machine Intelligence, 8, 55–72.

Poupart, P., Boutilier, C., Patrascu, R., & Schuurmans, D. (2002). Piecewise linear value
function approximation for factored MDPs. In National Conference on Artificial Intelligence.

Powell, W. B. (2007a). Approximate Dynamic Programming. Wiley-Interscience.

Powell, W. B. (2007b). Approximate dynamic programming for high-dimensional prob-
lems. In Tutorial presented at the IEEE Symposium on Approximate Dynamic Programming and
Reinforcement Learning.

Puterman, M. L. (2005). Markov decision processes: Discrete stochastic dynamic programming.
John Wiley & Sons, Inc.

Rasmussen, C. E., & Williams, C. (2006). Gaussian Processes for Machine Learning. MIT
Press.

Reinefeld, A. (1993). Complete solution of the eight-puzzle and the benefit of node order-
ing in IDA*. In International Joint Conference on AI, pp. 248–253.

Rintanen, J. (2000). An iterative algorithm for synthesizing invariants. In National Confer-
ence on Artificial Intelligence (AAAI).

Rogers, D. F., Plante, R. D., Wong, R. T., & Evans, J. R. (1991). Aggregation and disaggre-
gation techniques and methodology in optimization. Operations Research, 39(4), 553–582.

Russell, S., & Norvig, P. (2003). Artificial Intelligence A Modern Approach (2nd edition).
Prentice Hall.

Rust, J. (1997). Using randomization to break the curse of dimensionality. Econometrica,
65, 487–516.

Sacerdott, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5(2), 115–135.

Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3), 210–229.

Sanner, S., Goetschalckx, R., Driessens, K., & Shani, G. (2009). Bayesian real-time dynamic
programming. In Intenational Joint Conference on Artificial Intelligence (IJCAI).

342

Scherrer, B. (2010). Should one compute the temporal difference fix point or minimize the
Bellman residual?. In International Conference on Machine Learning (ICML).

Schweitzer, P. J., & Seidmann, A. (1985). Generalized polynomial approximations in
Markovian decision processes. Journal of Mathematical Analysis and Applications, 110, 568–
582.

Shetty, C. M., & Taylor, R. W. (1987). Solving large-scale linear programs by aggregation.
Computers and Operations Research, 14, 385–393.

Smith, T., & Simmons, R. G. (2006). Focused real-time dynamic programming. In National
Proceedings in Artificial Intelligence (AAAI).

Stanley, K. O., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary
complexification. Journal of Artificial Intelligence Research, 21, 63–100.

Stolle, M., & Precup, D. (2002). Learning options in reinforcement learning. Lecture Notes
in Computer Science, 2371, 212–223.

Strehl, A. L., Li, L., & Littman, M. (2009). Reinforcement learning in finite MDPs: PAC
analysis. Journal of Machine Learning Research, 10, 2413–2444.

Strehl, A. L., & Littman, M. L. (2005). A theoretical analysis of model-based interval
estimation. In International Conference on Machine Learning.

Strehl, A. L., & Littman, M. L. (2008). An analysis theoretical analysis of model-based
interval estimation for Markov decision processes. Journal of Computer System Science,
74(8), 1309–1331.

Sutton, R. S., & Barto, A. (1998). Reinforcement learning. MIT Press.

Szepesvari, C., & Munos, R. (2005). Finite time bounds for sampling-based fitted value
iteration. In International Conference on Machine Learning (ICML).

Szita, I., & Lorincz, A. (2006). Learning Tetris using the noisy cross-entropy method.
Neural Computation, 18(12), 2936–2941.

Thayer, J. T., & Ruml, W. (2008). Faster than weighted a*: An optimistic approach to
bounded suboptimal search. In International Conference on Automated Planning and Schedul-
ing.

Trick, M., & Stanley, E. (1993). A linear programming approach to solving stochastic
dynamic programs..

Trick, M. A., & Zin, S. E. (1997). Spline approximations to value functions: A linear
programming approach. Macroeconomic Dynamics, 1(1), 255–277.

Vakhutinsky, I. Y., Dudkin, L. M., & Ryvkin, A. A. (1979). Iterative aggregation–a new
approach to the solution of large-scale problems. Econometrica, 47(4), 821–841.

Valtorta, M. (1984). A result on the computational complexity of heuristic estimates for
the A* algorithm. Information Sciences, 34, 48–59.

343

Vanderbei, R. J. (2001). Linear Programming: Foundations and Extensions (2nd edition).
Springer.

Vapnik, V. (1999). The Nature of Statistical Learning Theory. Springer.

Williams, R. J., & Baird, L. C. (1994). Tight performance bounds on greedy policies based
on imperfect value functions. In Yale Workshop on Adaptive and Learning Systems.

Wolpert, D. (1996). The lack of apriori distinctions between learning algorithms. Neural
Computation, 8, 1341–1390.

Yang, F., Coulberson, J., Holte, R., Zahavi, U., & Felner, A. (2008). A general theory of
assitive state space abstraction. Journal of Artificial Intelligence Research, 32, 631–662.

Yao, Y., & Lee, Y. (2007). Another look at linear programming for feature selection via
methods of regularization. Tech. rep. 800, Ohio State University.

Yoon, S., Fern, A., & Givan, R. (2008). Learning control knowledge for forward search
planning. Journal of Machine Learning Research, 9, 638–718.

Zhang, Z., Sturtevant, N. R., Holte, R., Schaeffer, J., & Felner, A. (2009). A* search with
inconsistent heuristics. In International Joint Conference on Artificial Intelligence (IJCAI).

Zimmerman, T., & Kambhampati, S. (2003). Learning-assisted automated planning. AI
Magazine, 24(2), 73–96.

Zipkin, P. H. (1977). Aggregation in Linear Programming. Ph.D. thesis, Yale.

Zipkin, P. H. (1978). Bounds on the effect of aggregating variables in linear programs.
Operations Research, 28(2), 403–418.

344

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	9-2010

	Optimization-based Approximate Dynamic Programming
	Marek Petrik
	Recommended Citation

	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Planning Models
	Challenges and Contributions
	Outline

	 Part I: Formulations
	Framework: Approximate Dynamic Programming
	Framework and Notation
	Model: Markov Decision Process
	Value Functions and Policies
	Approximately Solving Markov Decision Processes
	Approximation Error: Online and Offline
	Contributions

	Iterative Value Function Approximation
	Basic Algorithms
	Bounds on Approximation Error
	Monotonous Approximation: Achieving Convergence
	Contributions

	Approximate Linear Programming: Tractable but Loose Approximation
	Formulation
	Sample-based Formulation
	Offline Error Bounds
	Practical Performance and Lower Bounds
	Expanding Constraints
	Relaxing Constraints
	Empirical Evaluation
	Discussion
	Contributions

	Approximate Bilinear Programming: Tight Approximation
	Bilinear Program Formulations
	Sampling Guarantees
	Solving Bilinear Programs
	Discussion and Related ADP Methods
	Empirical Evaluation
	Contributions

	 Part II: Algorithms
	Homotopy Continuation Method For Approximate Linear Programs
	Homotopy Algorithm
	Penalty-based Homotopy Algorithm
	Efficient Implementation
	Empirical Evaluation
	Discussion and Related Work
	Contributions

	Solving Approximate Bilinear Programs
	Solution Approaches
	General Mixed Integer Linear Program Formulation
	ABP-Specific Mixed Integer Linear Program Formulation
	Homotopy Methods
	Contributions

	Solving Small-Dimensional Bilinear Programs
	Bilinear Program Formulations
	Dimensionality Reduction
	Successive Approximation Algorithm
	Online Error Bound
	Advanced Pivot Point Selection
	Offline Bound
	Contributions

	 Part III: Sampling, Feature Selection, and Search
	Sampling Bounds
	Sampling In Value Function Approximation
	State Selection Error Bounds
	Uniform Sampling Behavior
	Transition Estimation Error
	Implementation of the State Selection Bounds
	Discussion and Related Work
	Empirical Evaluation
	Contributions

	Feature Selection
	Feature Considerations
	Piecewise Linear Features
	Selecting Features
	Related Work
	Empirical Evaluation
	Contributions

	Heuristic Search
	Introduction
	Search Framework
	Learning Heuristic Functions
	Feature Combination as a Linear Program
	Approximation Bounds
	Empirical Evaluation
	Contributions

	Conclusion

	 Part : Appendices
	Notation
	Problem Descriptions
	Simple Benchmark Problems
	Blood Inventory Management
	Reservoir Management

	Proofs
	Basic Properties of Normed Vector Spaces
	Properties of the Bellman Operator
	Value Functions and Policies
	Iterative Value Function Approximation
	Approximate Linear Programming
	Approximate Bilinear Programs
	Homotopy Methods for Solving Linear Programs
	Bilinear Program Solvers
	Solving Small-Dimensional Linear Programs
	Sampling Bounds
	Feature Selection
	Heuristic Functions

	Bibliography

