
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

9-2011

Scaling Multi-Agent Learning in Complex
Environments
Chongjie Zhang
University of Massachusetts Amherst, chongjie@cs.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Zhang, Chongjie, "Scaling Multi-Agent Learning in Complex Environments" (2011). Open Access Dissertations. 489.
https://scholarworks.umass.edu/open_access_dissertations/489

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/489?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F489&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

SCALING MULTI-AGENT LEARNING IN COMPLEX
ENVIRONMENTS

A Dissertation Presented

by

CHONGJIE ZHANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2011

Department of Computer Science

c© Copyright by Chongjie Zhang 2011

All Rights Reserved

SCALING MULTI-AGENT LEARNING IN COMPLEX
ENVIRONMENTS

A Dissertation Presented

by

CHONGJIE ZHANG

Approved as to style and content by:

Victor Lesser, Chair

Andrew Barto, Member

Shlomo Zilberstein, Member

Jonathan Machta, Member

Andrew Barto, Department Chair
Department of Computer Science

ACKNOWLEDGMENTS

I am deeply grateful to my advisor Victor Lesser, who has given his time and talent in

ways that simply cannot be adequately acknowledged. Victorhas provided constant, im-

measurable intellectual challenge and inspiration. His energy and enthusiasm are renowned

and I benefited greatly from them time and again. Victor has served all of the roles of

teacher, guide, encourager, and friend. He has not only cared about my research develop-

ment, but also my personal life and my family, especially at difficult times. I am very happy

to be one of his students, and I am thankful for the opportunity to learn from Victor.

I also especially want to thank my other thesis members Professors Andrew Barto,

Shlomo Zilberstein, and Jon Machta. They have served to greatly improve the content and

presentation of this thesis. I am grateful to Andrew Barto for his insightful and rigorous

comments both on my work and on this thesis and for his tremendous support. I am thankful

to Shlomo Zilberstein for his insightful questions on this thesis and for his motivating

discussions. I would also like to thank Jon Machta for probing and stimulating questions

during my defense.

I am indebted to our Multi-Agent Systems (MAS) Lab. Dan Corkill has provided in-

sightful comments for every paper I submitted. I enjoyed hiscountless motivating dis-

cussions about research and programming and thank him for sharing his insight, wisdom,

and practical advice. I also would like to thank former MAS members, Sherief Abdal-

lah, Shelley Zhang, and Haizheng Zhang, with whom I have beencollaborating over the

years. I want to thank my colleagues in MAS lab: Bo An, Hala Mostafa, Yoonheui Kim,

and Huzaifa Zafar, and in Resource-Bounded Reasoning Lab: Akshat Kumar, Alan Carlin,

William Yeoh and Chris Amato, for many interesting and useful discussions. I thank our

lab manager Michele Robert for assisting in a variety of administrative paperworks.

iv

I owe the Department of Computer Science at the University ofMassachusetts Amherst

(UMass), a great deal of gratitude for their extended support. UMass was a good fit in bal-

ancing my life as a graduate student, and a family guy. I particularly thank those professors

who have taught or worked with me over these years that have been the most rewarding

educational experience of my life: Andrew Barto, Shlomo Zilberstein, Sridhar Mahadevan,

Neil Immerman, Prashant Shenoy, David Jensen, and Andrew McCallum.

Finally, I would like to thank my family, whose encouragement and timely distractions

kept me sane, productive, and allowed me to thoroughly enjoymy time as a graduate stu-

dent. I thank my parents, my in-laws, my brother, and my sister for their endless support

and encouragement for pursuing what I am capable of. I also thank my wonderful daughter,

Sophia, who has been rooting for me like nobody else. I thank her for her tolerance and

her smiles. Most of all, my wife, Xiaoxi Xu, is an essential partner to whatever success I

am able to claim. She inspires me and envisions things for me that I could never imagine

alone. She has encouraged, cajoled, and hounded me, as necessary, to bring this work to

fruition. Thanks for seeing this through with me.

v

ABSTRACT

SCALING MULTI-AGENT LEARNING IN COMPLEX
ENVIRONMENTS

SEPTEMBER 2011

CHONGJIE ZHANG

B.Sc., UNIVERSITY OF INTERNATIONAL BUSINESS AND ECONOMICS

M.Sc., LOUISIANA STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor Lesser

Cooperative multi-agent systems (MAS) are finding applications in a wide variety of

domains, including sensor networks, robotics, distributed control, collaborative decision

support systems, and data mining. A cooperative MAS consists of a group of autonomous

agents that interact with one another in order to optimize a global performance measure. A

central challenge in cooperative MAS research is to design distributed coordination poli-

cies. Designing optimal distributed coordination policies offline is usually not feasible for

large-scale complex multi-agent systems, where 10s to 1000s of agents are involved, there

is limited communication bandwidth and communication delay between agents, agents

have only limited partial views of the whole system, etc. This infeasibility is either due

to a prohibitive cost to build an accurate decision model, ora dynamically evolving envi-

ronment, or the intractable computation complexity.

This thesis develops a multi-agent reinforcement learningparadigm to allow agents to

effectively learn and adapt coordination policies in complex cooperative domains without

vi

explicitly building the complete decision models. With multi-agent reinforcement learning

(MARL), agents explore the environment through trial and error, adapt their behaviors to

the dynamics of the uncertain and evolving environment, andimprove their performance

through experiences. To achieve the scalability of MARL andensure the global perfor-

mance, the MARL paradigm developed in this thesis restrictsthe learning of each agent

to using information locally observed or received from local interactions with a limited

number of agents (i.e., neighbors) in the system and exploits non-local interaction infor-

mation to coordinate the learning processes of agents. Thisthesis develops new MARL

algorithms for agents to learn effectively with limited observations in multi-agent settings

and introduces a low-overhead supervisory control framework to collect and integrate non-

local information into the learning process of agents to coordinate their learning. More

specifically, the contributions of already completed aspects of this thesis are as follows:

Multi-Agent Learning with Policy Prediction: This thesis introduces the concept of pol-

icy prediction and augments the basic gradient-based learning algorithm to achieve

two properties: best-response learning and convergence. The convergence property

of multi-agent learning with policy prediction is proven for a class of static games

under the assumption of full observability.

MARL Algorithm with Limited Observability: This thesis develops PGA-APP, a prac-

tical multi-agent learning algorithm that extends Q-learning to learn stochastic poli-

cies. PGA-APP combines the policy gradient technique with the idea of policy pre-

diction. It allows an agent to learn effectively with limited observability in complex

domains in presence of other learning agents. The empiricalresults demonstrate that

PGA-APP outperforms state-of-the-art MARL techniques in both benchmark games.

MARL Application in Cloud Computing: This thesis illustrates how MARL can be ap-

plied to optimizing online distributed resource allocation in cloud computing. Em-

pirical results show that the MARL approach performs reasonably well, compared

vii

to an optimal solution, and better than a centralized myopicallocation approach in

some cases.

A General Paradigm for Coordinating MARL: This thesis presents a multi-level su-

pervisory control framework to coordinate and guide the agents’ learning process.

This framework exploits non-local information and introduces a more global view

to coordinate the learning process of individual agents without incurring significant

overhead and exploding their policy space. Empirical results demonstrate that this

coordination significantly improves the speed, quality andlikelihood of MARL con-

vergence in large-scale, complex cooperative multi-agentsystems.

An Agent Interaction Model: This thesis proposes a new general agent interaction model.

This interaction model formalizes a type of interactions among agents, calledjoint-

even-driveninteractions, and define a measure for capturing the strength of such

interactions. Formal analysis reveals the relationship between interactions between

agents and the performance of individual agents and the whole system.

Self-Organization for Nearly-Decomposable Hierarchy: This thesis develops a distributed

self-organization approach, based on the agent interaction model, that dynamically

form a nearly decomposable hierarchy for large-scale multi-agent systems. This self-

organization approach is integrated into supervisory control framework to automat-

ically evolving supervisory organizations to better coordinating MARL during the

learning process. Empirically results show that dynamically evolving supervisory

organizations can perform better than static ones.

Automating Coordination for Multi-Agent Learning: We tailor our supervision frame-

work for coordinating MARL in ND-POMDPs. By exploiting structured interaction

in ND-POMDPs, this tailored approach distributes the learning of the global joint

policy among supervisors and employs DCOP techniques to automatically coordi-

nate distributed learning to ensure the global learning performance. We prove that

viii

this approach can learn a globally optimal policy for ND-POMDPs with a property

calledgroupwise observability.

ix

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .iv

ABSTRACT vi

LIST OF TABLESxv

LIST OF FIGURES xvi

CHAPTER

1. INTRODUCTION 1

1.1 Motivating Examples 3

1.1.1 Cloud Computing 4
1.1.2 Sensor Networks 5
1.1.3 Other Domains 6

1.2 Approach 8

1.2.1 Multi-Agent Learning with Limited Observability 10
1.2.2 Coordinating Multi-Agent Learning 13

1.3 Main Contributions 16
1.4 Guide to the Thesis 19

I BACKGROUND AND RELATED WORK 21

2. MULTI-AGENT LEARNING FRAMEWORKS .22

2.1 Agent Model 24
2.2 Markov Decision Processes 25

2.2.1 Definition 26

x

2.2.2 Solution Concept 27
2.2.3 Reinforcement Learning 28
2.2.4 Partially Observable Environments 31

2.3 Decentralized Markov Decision Processes 34

2.3.1 Definition 34
2.3.2 Solution Concept 36
2.3.3 Learning in DEC-POMDP 37

2.4 Static Games 39

2.4.1 Definition 40
2.4.2 Solution Concept 41
2.4.3 Learning in Repeated Games 43

2.5 Stochastic Games 44

2.5.1 Definition 44
2.5.2 Solution Concept 45
2.5.3 Learning in Stochastic Games 47

2.6 Summary 48

3. PREVIOUS WORK .. 50

3.1 Multi-Agent Credit Assignment 51
3.2 Multi-Agent Reinforcement Learning Algorithms 54

3.2.1 Fully Cooperative Stochastic Games 55
3.2.2 General-Sum Stochastic Games 57

3.3 Scaling up Multi-Agent Learning 60
3.4 Summary 63

II MULTI-AGENT LEARNING ALGORITHMS 64

4. A MULTI-AGENT LEARNING APPROACH TO ONLINE
DISTRIBUTED RESOURCE ALLOCATION .65

4.1 Introduction 65
4.2 Problem Description 67
4.3 Fair Action Learning Algorithm 69
4.4 Learning Distributed Resource Allocation 70

4.4.1 Local Allocation Decision 71

xi

4.4.2 Task Routing Decision 73

4.5 Experiments 75

4.5.1 Experiment Design 75
4.5.2 Results & Discussions 77

4.6 Related Work 80
4.7 Summary 81

5. MULTI-AGENT LEARNING WITH POLICY PREDICTION82

5.1 Gradient Ascent 83

5.1.1 Notation 83
5.1.2 Normal-Form Games 84
5.1.3 Learning using Gradient Ascent in Iterated Games 85

5.2 Gradient Ascent With Policy Prediction 86
5.3 Analysis of IGA-PP 87
5.4 A Practical Algorithm 94

5.4.1 Experiments: Normal-Form Games 97
5.4.2 Experiments: Distributed Task Allocation 98
5.4.3 Experiments: Network Routing 99

5.5 Summary 100

III COORDINATING MULTI-AGENT LEARNING 102

6. AN ORGANIZATIONAL CONTROL FRAMEWORK FOR
COORDINATING MULTI-AGENT LEARNING .103

6.1 Organizational Supervision 106
6.2 Communication Protocol 107
6.3 Supervisory Policy Adaptation 110
6.4 Experimental Results 113

6.4.1 Distributed Task Allocation 113

6.4.1.1 Experimental Setup 114
6.4.1.2 Results & Discussions 116

6.4.2 Network Routing 121

6.4.2.1 Experimental Setup 121

xii

6.4.2.2 Results & Discussions 123

6.5 Summary 125

7. SELF-ORGANIZATION FOR COORDINATING MULTI-AGENT
LEARNING127

7.1 Background 128

7.1.1 Average-Reward, Factored DEC-MDP 128
7.1.2 Decentralized Reinforcement Learning 130

7.2 Supervisory Organization Formation 131

7.2.1 Joint-Event-Driven Interactions 132
7.2.2 Distributed Agent Clustering through Negotiation 136
7.2.3 Extended Supervision Framework 139

7.3 Experiments 141

7.3.1 Experimental Setup 141
7.3.2 Experimental Results 144

7.4 Summary 146

8. AUTOMATING COORDINATION FOR MULTI-AGENT LEARNING IN
ND-POMDPS.147

8.1 Introduction 147
8.2 Background 149

8.2.1 Illustrative Domain 149
8.2.2 Networked Distributed POMDPs 150
8.2.3 Basic Learning Approaches 152

8.3 Coordinated Multi-Agent Reinforcement Learning 153

8.3.1 Optimality Analysis 156
8.3.2 Optimal Joint Action Selection 159

8.4 Experiments 161
8.5 Summary 165

IV CONCLUSIONS AND FUTURE WORK 167

9. SUMMARY AND CONTRIBUTIONS .168

xiii

10. FUTURE DIRECTIONS AND OPEN PROBLEMS .171

10.1 Theoretical Models and Analysis 172

10.1.1 Extended Interaction Model 172
10.1.2 Effectiveness Analysis 175
10.1.3 Self-Organization Analysis 176

10.2 Automating Supervision 177
10.3 Other Supervision Modes 179
10.4 Transfer Learning 181
10.5 Performance Evaluation 182

BIBLIOGRAPHY 185

xiv

LIST OF TABLES

Table Page

4.1 Distributed resource allocation approaches 75

4.2 Performance with light load 79

4.3 Performance with heavy load 79

6.1 Performance of different structures with uneven centerload 119

6.2 Performance of different structures with corner load 119

6.3 Performance of different structures with boundary load. 119

7.1 Performance under side load 145

7.2 Performance under corner load 146

xv

LIST OF FIGURES

Figure Page

1.1 A network of shared clusters 4

1.2 A encompassing view of our MARL paradigm 8

1.3 A scalable, approximate learning approach for cooperative MAS 10

1.4 A supervision process of the organization-based control framework 14

1.5 Dynamic supervision framework with self-organization. 15

2.1 An agent model 24

2.2 A multi-agent scenario: multiple agents all distinguished from their
environment 25

2.3 Examples of static games 40

4.1 The network topology with 16 clusters 76

4.2 Utility rate under light task load 77

4.3 Utility rate under heavy task load 78

5.1 The phase portraits of the IGA-PP dynamics: a) whenU has real
eigenvalues and b) whenU has imaginary eigenvalues with negative
real part 90

5.2 Example dynamics whenU has imaginary eigenvalues with negative real
part 93

xvi

5.3 Convergence of PGA-APP (on the top row) and WPL (on the bottomrow) in
games. Plot (a), (c), (d) and (f) shows the dynamics of the probability of the
first action of each player, and plot (b) and (e) shows the dynamics of the
probability of each action of the first player. Parameters:θ = 0.8, ξ = 0,
γ = 3, η = 5/(5000 + t) for PGA-APP (η is tuned and decayed slower for
WPL), wheret is the current number of iterations, and a fixed exploration
rate = 0.05. Value functionQ is initialized with zero. For two-action games,
players’ initial policies are (0.1, 0.9) or (0.9, 0.1), respectively, and, for
three-action games, their initial policies are (0.1, 0.8, 0.1) and (0.8, 0.1, 0.1).
96

5.4 Normal-form games. 97

5.5 Performance in distributed task allocation 99

5.6 Performance in network routing 100

6.1 An organizational structure for multi-level supervision 104

6.2 Unsupervised MARL vs. Supervised MARL with MASPA 110

6.3 ATST for different structures with uneven center load 116

6.4 ATST for different structures with corner load 117

6.5 ATST for different structures with boundary load 117

6.6 The 10 x 10 grid topology 122

6.7 Performance under network load = 7.0 124

6.8 Time of Convergence at various loads 124

6.9 Delivery time at various loads 125

7.1 Self-organization negotiation protocol. 138

7.2 Extended supervision framework. 139

7.3 Iterations of three activities: information gathering (IG), supervisory control
(SC), and organization adaptation (OA). 140

7.4 ATST under side load 144

7.5 ATST under corner load 144

xvii

8.1 A 4-chain sensor configuration 150

8.2 Sensor network configurations 162

8.3 Solution quality over (a) different ratios of learning time of IL and CL to
CBDP’s policy computation time on 15-3D with horizonT = 10, (b)
over different horizons on 15-3D, and (c) different network
configurations withT = 10. Note that IL and CL in (b) and (c) use the
same learning time as CBDP’s policy computation time. 163

8.4 Trade-off of solution quality and communication 164

8.5 Solution quality for a range of horizons on 25-grid 165

xviii

CHAPTER 1

INTRODUCTION

A cooperative multi-agent system (MAS) is composed of a set of autonomous agents

that interact with one another in a shared environment in order to reach a shared goal or

optimize a global performance measure. Each agent perceives the state of the environment

through its sensors, makes decisions, and acts upon the environment with its actuators.

Cooperative multi-agent systems are finding applications in a wide variety of practical

domains, including sensor networks, robotics, distributed control, collaborative decision

support systems, supply chains, and data mining. They arguably offer the most natural

way of viewing, characterizing, and realizing many distributed, dynamic, and open co-

operative intelligent systems. For example, in sensor networks or robotic teams, because

of limited communication bandwidth, the control authorityis naturally distributed among

sensors or robots, which work together to achieve some common goal (e.g., tracking ve-

hicles or weather phenomena). In electricity grids, electricity distribution management is

decentralized among power stations, which coordinate their power control configurations

in order to satisfy variable demands from all customers and minimize losses.

A central challenge in cooperative MAS research is to designdistributed decision poli-

cies for agents to coordinate their actions in order to efficiently achieve their common

goal. A common offline approach is to build a model (e.g., decentralized Markov decision

process) for distributed decision problems in a cooperative MAS and then compute coor-

dination policies for agents from the model. However, this approach is usually infeasible

for large-scale complex MAS applications, which involve tens to thousands of agents with

limited communication bandwidth and partial views of the whole system. Firstly, it is very

1

expensive, time-costly, or even not possible to obtain an accurate model of practical MAS

applications. This is especially true for applications operating in open environments where

the environmental characteristics are not known a priori and may evolve over time. Sec-

ondly, even when we have such models, the computation for optimal policies for agents is

usually intractable.

Multi-agent reinforcement learning (MARL) potentially provides an attractive approach

for agents to developing effective coordination policies without explicitly building a com-

plete decision model. MARL allows agents to explore environment through trial and error,

adapt their behaviors to the dynamics of the uncertain and evolving environment, and grad-

ually improve their performance through experiences. MARLhas gained a great deal of

interest over the recent years, but its open research challenges are still in flux. One key chal-

lenge of MARL is its non-stationary environment where agents are concurrently learning

and adapting to one another. This non-stationarity violates a fundamental assumption for

the convergence guarantee of most existing learning techniques. Therefore, new algorithms

may be required that are tailored MARL and deal with non-stationarity. The convergence

guarantee of existing MARL algorithms [55, 39, 56, 29, 92, 23, 133, 22, 3, 124] is lim-

ited to a limited MAS settings. In addition, these algorithms mainly focus on whether

they converge or not to an equilibrium, but not on which equilibrium they converge to,

which is especially important for cooperative MAS. Anotherkey challenge of MARL is its

scalability to realistic problems, which, already problematic in single-agent reinforcement

learning, is an even greater cause for concern in large-scale multi-agent settings. Many

state-of-the-art techniques [59, 17, 31, 46, 67, 102] to speeding up or scaling up MARL are

either restricted to specific domains or not scalable in large agent networks. In summary,

state-of-the-art techniques for MARL are still inadequateto address the MARL challenges

in large-agent complex cooperative systems.

Although realistic MAS application systems are very large and complex, they usually

possess some structures of interactions among agents. One common interaction property,

2

called interaction locality, exists in most large systems, where each agent interacts with

only a limited number of neighboring agents. As argued by Herbert Simon [90] in “Archi-

tecture of Complexity”, many complex systems also have a nearly decomposable, hierar-

chical structure. A nearly decomposable systems contains sub-systems, where interactions

within the subsystems are strong, while interactions between themselves are relative weak

but not negligible. Human decision makers often exploit such a type of structure and form

organizations (e.g., companies) to solve large-scale problems (e.g., managing manufactur-

ing factories).

This thesis develops a new learning paradigm thatexploits interaction locality and non-

local supervisory control in a coherent way to scale up MARL in complex domains. This

paradigm employs MARL algorithms for agents to learn local coordination policies only

based on information from their local interactions. To improve the overall learning perfor-

mance, this paradigm uses an emergent supervisory organization with low overhead that

exploits non-local information to dynamically coordinateand shape the learning processes

of individual agents while still leaving agents to react autonomously to local feedbacks.

This thesis addresses two aspects of this learning paradigm: designing effective MARL

algorithms for agents to learn with limited observations ina non-stationary environment,

and developing a multi-level supervisory control framework to collect and integrate non-

local information into the learning process of agents. We empirically demonstrate that our

paradigm yields effective performance in diverse large-scale problem domains, including

distributed task allocation, network routing, and sensor networks.

1.1 Motivating Examples

The focus of this thesis is developing a new paradigm for applying MARL to large-

scale, autonomous, cooperative multi-agent systems. To motivate the research from the

practical perspective, this section describes examples ofapplication domains where the

approaches developed in this thesis can be applied.

3

Figure 1.1. A network of shared clusters

1.1.1 Cloud Computing

As “Software as a service” becomes a popular business model,it is becoming increas-

ingly difficult to build large cloud computing infrastructures that can host effectively the

wide spread use of such services.Shared clustersbuilt using commodity PCs or worksta-

tions offer a cost-effective solution for constructing such infrastructures. Unlike a dedicated

cluster, where each computing node is dedicated to a single application, a shared cluster

can run the number of applications significantly larger thanthe number of nodes, necessi-

tating resource sharing among applications. Resource management approaches developed

for shared clusters [8, 7, 113] are centralized, which limits the cluster scale.

To build larger shared computing infrastructures, one common model is to organize a

set of shared clusters into a network and enable resource sharing across shared clusters,

as shown in Figure 1.1. Each clusterCk is regarded as an agent. Each agent has a set of

computing nodes, each of which provides a set of resources. The labelaij on the edge

between agentCi andCj indicates communication delay. The resource allocation decision

is now distributed to each agent. Each agent still uses a cluster-wide technique for manag-

ing its local resources. Each agent receives tasks from either the external environment or a

neighbor. At each time step, an agent makes decisions on whattasks are allocated locally

4

and to which neighbors the tasks not allocated locally should be forwarded. To reduce the

communication overhead, the number of tasks an agent can transfer at each time step is

limited. To allocate a task, an agent should have available resources to satisfy its resource

requirements. When a task is allocated locally, the agent gains utility at each time step,

which is specified by the task utility rate. If an allocated task is finished, all resources it oc-

cupies will be freed and available for future tasks. The maingoal of the system is to derive

decision policies for each agent that maximize the average utility rate of the whole system.

The effectiveness of one agent’s policy is dependent on the policies of other agents, thus

the need for coordinated policies of agents.

As will be discussed in Chapter 4, a MARL algorithm was used for each agent to learn

and adapt its decision policies in such an environment. To simplify the learning, each

agent’s decisions were decomposed into two connected learning problems: local allocation

problem (deciding what tasks to be allocated locally) and task routing problem (deciding

where to forwarded a task). Because of limited communication bandwidth, it was not fea-

sible to compute real-time global performance measure for agents. Therefore, the learning

of each agent is based on its local observations and reward signals. To avoid poor initial

policies during learning, heuristic strategies were developed to speed up the learning in

both problems. Experimental results showed that the MARL approach worked effectively

and even outperformed the centralized approach in some cases. However, MARL did not

scale well and converged slowly with even 16 agents, which motivated the research of this

thesis to scale up MARL.

1.1.2 Sensor Networks

Advances in processor, memory and radio technology have enabled cheap sensors ca-

pable of sensing, communication and processing. Due spatial diversity and fast response,

a network of small, inexpensive, low-performance sensors may be able to outperform a

system using a single, very expensive, high-performance sensor. As a result, networks

5

of distributed sensors are now rapidly emerging as a feasible solution to a wide range of

data gathering applications, such as tracking weather phenomena [48] and vehicle move-

ment [36].

To optimize sensing performance, networked sensors needs to be coordinated among

themselves. Due to limited communication bandwidth and battery power, the coordination

control of sensor network is decentralized, which leads to large-scale distributed decision-

making problems. Each sensor not only decides where to sense, but also decisions over

when to communicate information to other sensors, and when to sense the environment,

thus maximizing the amount and quality of information gathered, while bounding power

consumption.

Sensor networks are basically cooperative multi-agent systems. Due to uncertainty

in environments and partial observability of sensors, decision-making problems in sensor

networks can be modeled as Decentralized Partially Observable Markov Decision Pro-

cess (DEC-POMDP) or its restricted versions (e.g., Networked Distributed POMDP (ND-

POMDP)) [114]. Offline techniques [114, 61, 49] has been developed for such problems.

However, these techniques require accurate models, which are usually costly to obtain in

practice. As will be discussed in Chapter 8, our coordinatedmulti-agent learning approach

can be applied to such problems, which does not need to build an environment model and

can scale to larger networks.

1.1.3 Other Domains

Cooperative multi-agent learning can find applications in many real-world problems

in addition to our motivating example. We present some examples of complex practical

problems where our MARL paradigm can be applied.

Queuing networks Queueing problems are a special type of stochastic dynamic system,

where an agent who manages a set of queues of jobs must decide which one to serve

at every time step. These problems have been widely studied in the literature, as they

6

provide abstractions of many practical problems in industry. Queueing networks [18]

are an extension of this model to problems involving many agents (servers) simulta-

neously.The network defines a process where jobs that are served in one queue are

then assigned to another one. The cloud computing example isone type of queuing

networks.

Network Management and Routing There are many possible applications of MARL al-

gorithms in networking tasks (e.g., packet routing [24]). An interesting potential

application is the routing of queries in peer-to-peer systems [130]. We can consider

each node as an agent that can decide to fulfill a query, or forward it to one of the

neighboring nodes. The state of this system is specified by the information (e.g.,

documents) stored in each node and the query. A node cannot observe (or even store)

the state of every node in the network, and should not flood theentire system with

queries. Using our learning approach, we could tackle such problems effectively,

requiring only limited observability and limited communication between the nodes.

Electricity Distribution Management Here the problem is to maintain an optimal power

grid configuration that all customers supplied and minimizes losses; while at the

same time dealing with possible damage to the network, variable demand from cus-

tomers, scheduled maintenance operations, and equipment failures and upgrades

[274]. Schneider et al. [230] present a reinforcement learning approach to managing

a power grid.

Computing Games In recent years, there has been a significant increase in interest in

the applications of AI techniques to computer games. There are many games that

require distributed decision-making for coordination. One of such games is called

Freecraft, a strategic war game and an open-source version of the popular Warcraft

game. The objective of this game is to coordinate the actionsof a set of units (agents)

with different skills in order to defeat an enemy force.

7

DEC-POMDP POSG

Equilibrium
Policies

Optimal
Joint Policy

Using local
rewards

Approximating

MARL
Supervision
Framework

Coordinating

Deriving

Factored
DEC-MDP

Factoring

Figure 1.2.A encompassing view of our MARL paradigm

1.2 Approach

As with application examples described in previous section, manu realistic multi-agent

systems are large, dynamic, and complex: they involve 10s to1000s of agents, there is

limited communication bandwidth and communication delay between agents, and agents

have only limited partial views of the whole system, etc. This thesis seeks to answer the

following key question:can a network of agents effectively learn to perform collectively in

such complex cooperative domains to optimize the global performance?

The decision-making optimization problem that arises in cooperative multi-agent sys-

tems can be generally formulated as a decentralized partially observable Markov decision

process (DEC-POMDP) [15]. In a DEC-POMDP, all agents share aglobal reward function.

It seems natural to use this global reward signal for agents to learn in cooperative systems.

However, due to limited communication bandwidth in most realistic systems, it is often

infeasible to calculate the global reward signal in a real-time manner for the learning. In

addition, the global reward signal is usually not sufficiently tailored to the behavior of an

individual agent, resulting in learning very slowly [120].As shown in Figure 1.2, we use

a factored DEC-MDP to approximate a general DEC-POMDP by designing local reward

signals for agents, which are efficiently computable and sufficiently tailored to their behav-

iors. As will be defined in Chapter 7, a factored DEC-MDP further assumes the global state

8

is factored by agents’ local states and each agent fully observes its local state. By using

local reward signals, the learning essentially treats a DEC-MDP as a partially observable

stochastic game (POSG) [34]. POSG is a generalization of DEC-POMDP, where every

agent can have its own reward function. Multi-agent learning algorithm is employed to

learn equilibrium policies in the POSG, which canbe stochastic. The learned equilibrium

policies are used as an approximate solution for the original DEC-POMDP problem. As il-

lustrated in application examples described in previous section, the property ofinteraction

locality commonly exists in many practical large-scale collaborative multi-agent systems,

where each agent directly interacts with only a limited number of neighboring agents. By

exploiting this property, our MARL paradigm restricts the learning of each agent to us-

ing local rewards and observations from local interactionsso that its policy space will not

explode exponentially as the number of agents increases.

As shown in Figure 1.2, in our MARL paradigm, we also develop asupervision frame-

work, which derived from the factored DEC-MDP model. This isbecause exploiting in-

teraction locality alone usually can not address all challenges faced by MARL in complex

cooperative MAS applications. For example, due to non-stationary learning environments,

theoretical convergence results of existing learning algorithms do not hold for general

POSGs. In addition, as a POSG usually have multiple equilibria, MARL may converge

to an equilibrium that yields very poor global performance.Further more, even with a

limited neighborhood of agents, the policy space of each learning agent still remains large

because of the need to represent characteristics of neighbors.

Our supervision framework has the potential to address these challenges of scaling

MARL. It exploits non-local information and low-overhead,periodic multi-level organiza-

tional control to coordinate and guide the agents’ learningprocess. This supervision frame-

work introduces a more global view into the learning processof individual agents without

incurring significant overhead and exploding their policy spaces; it coordinates the learning

behavior of tightly coupled agents by constraining their learning processes while still leav-

9

Multi-Agent Learning

(Exploiting interaction locality and

local and neighborhood information)

Organizational Control for Coordinating

Multi-Agent Learners

(Exploiting nearly decomposable structure

and non-local information)

Figure 1.3. A scalable, approximate learning approach for cooperativeMAS

ing agents to react autonomously to local reward signals. This coordination results in both

speeding up and increasing the likelihood of convergence byreducing the occurrence of

oscillatory behavior among agents learning in a non-stationary environment and focusing

agents’ exploration. Additionally, it also results in improved overall solution quality due to

coordination directives that are based on a more global viewof current learning.

In summary, as illustrated in Figure 1.3, our paradigm first uses MARL for agents to

learn local coordination policies, which exploits interaction locality and local or neighbor-

ing information to restrict the size of policy search spacesof individual learning agents, and

then uses a low-overhead organizational control framework, which exploits nearly decom-

posable structure and non-local information, for coordinating learning processes of indi-

vidual agents to ensure its global learning performance. This thesis will present techniques

for both aspects of our paradigm: effective MARL algorithmsfor limited observability and

the general supervision framework for coordinating MARL.

1.2.1 Multi-Agent Learning with Limited Observability

By learning, we mean the process of an agent adapting its behavior through experience

to improve its ability to achieve a goal or maximize long-term reward. Learning occurs

10

through the agent’s interaction with the environment: observing percepts and gaining re-

wards from the world, and taking actions to affect it. In a MAS, the learning of an agent

is complicated by the presence of other agents concurrentlyacting, adapting and affecting

the environment, which is referred asmulti-agent learning(MAL) 1. As agents interact

and concurrently learn their policies, the environment becomes non-stationary from the

perspective of each individual agent. The convergence guarantee for single-agent rein-

forcement learning does not hold for multi-agent settings.

In this thesis, one of our goals is to develop effective multi-agent learning algorithms

for agents with limited information about other agents and the environment. We first em-

pirically investigate multi-agent learning in complex cooperative MAS applications. As

will be discussed in Chapter 4, we design a gradient-based MARL algorithm that extends

Q-learning with the idea from Generalized Infinitesimal Gradient Ascent (GIGA) algo-

rithm [133]. This algorithm only requires each agent observing its immediate reward for

selecting an action. We apply this algorithm to optimizing online distributed task alloca-

tion in Cloud Computing. Empirical results demonstrate an impressive performance of this

algorithm in convergence and solution quality. However, aswith GIGA, this algorithm

does not converge in competitive scenarios, which can occurin cooperative MAS when we

design local reward signals (instead of using the single global reward) for agents’ learning.

To consider both cooperative and non-cooperative scenarios, we introduce the concept

of policy prediction and augment the basic GIGA algorithm. In this thesis, we study our

multi-agent learning algorithms in the framework of stochastic games. Stochastic games

are POSGs where all agents can observe the state of the environment. Although fully

observability may not be realistic for many practical MAS application, MAL algorithms

developed for stochastic games usually also perform well inPOSGs.

1In this thesis, we will use MAL and MARL interchangeably

11

Stochastic games were first studied extensively in the field of game theory, but can be

viewed as a generalization of Markov decision processes (MDPs). MDPs have served as

the foundation of much of the research in single-agent control learning. Stochastic games

subsume both MDPs as well as the more well-known game theoretic model of static games

(or matrix games). Like static games, stochastic games do not always have a well-defined

notion of optimal behavior for a particular agent, since itsperformance may depend on

behaviors of other agents. The most common solution conceptin these games is Nash

equilibria, intuitively defined as a particular behavior for all the agents where each agent is

acting optimally with respect to the other agents’s behavior. All stochastic games have at

least one Nash equilibria. However, Nash equilibria are only sensible if all the agents are

fully rational, optimal, and unlimited (having fully observations and complete knowledge

about other agents and the environment). Although, in this thesis, we do not make Nash

equilibria the explicit goal of multi-agent learning, we will use it as a tool to understand the

dynamics of multi-agent learning algorithms.

We first examine the convergence property of our MAL algorithm in stochastic games

when agents have unlimited observations of other agents andthe environment. We then

consider how limited observability of the learning agent affects the multi-agent learning

scenario. We extend the techniques developed in the unlimited setting to address the more

challenging problem of learning with only observation of the reward signal of choosing a

given action. Our goal is to develop MAL techniques that are theoretically justifiable in

analyzable and unlimited settings but still perform effectively in practical and challenging

problems.

As we design MAL algorithms, we seek to avoid making assumptions about the goals

or rewards of the other agents, and do not expect a priori thattheir behaviors are cooperative

or adversarial. This generality, however, may prevent thisaspect of our thesis work from

being the most appropriate approach for some multi-agent environments where stricter as-

sumptions can be potentially exploited, such as cooperative multi-agent systems. The next

12

section will focus on addressing challenges of MARL in complex cooperative multi-agent

systems.

1.2.2 Coordinating Multi-Agent Learning

Developing effective MARL algorithms are essential to address MARL challenges. Ex-

isting MARL algorithms, including those developed in this thesis, can potentially scale up

in large MASs by exploiting interaction locality so that each agent learns based on its local

observations and local reward signals. However, there are still challenges faced by MARL

in large complex cooperative MAS applications. Firstly, the theoretical convergence guar-

antee of existing MAL algorithms is still limited for special classes of stochastic games

(e.g., repeated static games), and does not hold for generalPOSGs. Secondly, due to inter-

action locality and communication delay, agents have limited and even outdated views of

the system. Thirdly, the “tragedy of the commons” problem often exists for MARL using

local reward signals in cooperative MASs, that is, greedy policies at agents can harm the

global performance. Finally, even with a limited neighborhood of agents, the policy space

still remains large because of the need to represent characteristics of neighboring agents.

As a result, MARL may converge slowly, converge to inferior policies, or even diverge in

realistic settings.

In this thesis, we develop a supervision framework for coordinating MARL to tackle

these challenges (see Figure 1.4 and 1.5). This framework exploits non-local information

and uses low-overhead multi-level organizational controlto coordinate and guide learning

processes of agents. The supervision framework defines a multi-level organizational struc-

ture and a communication protocol for exchanging information between lower-level agents

(or subordinates) and higher-level supervising agents (orsupervisors) within an organiza-

tion. As shown in Figure 1.4, subordinates periodically (e.g., every 500 learning cycles)

report their abstract states and rewards to their supervisors, who then generate abstract

states of their own clusters and exchange them with neighbors. Based on abstracted states

13

2

1
3

5 7

4

9

6 8

Learning

Agent

Network

Supervisors

1. Generate abstracted

 states and rewards

2. Report abstracted

 states and rewards

4. Make decisions and create

 supervisory information

5. Pass down supervisory

 information

6. Integrate supervisory

 information

1

2

3

4

5

6

7

8

9

3. Create and exchange

 cluster abstracted state

Figure 1.4.A supervision process of the organization-based control framework

of their subordinates and neighboring clusters, supervisors create and pass down supervi-

sory information. Subordinates then integrate supervisory information into their learning

processes, which will be conducted in a coordinated way. This framework is general and

can be used with most existing MARL algorithms, including those developed in this thesis.

This framework exploits a hierarchy of control and data abstractions, which is conceptually

different from existing hierarchical multi-agent learning algorithms that use a hierarchy of

task abstractions [59].

This supervision framework has the potential to address MARL challenges in complex

cooperative MASs. To deal with non-stationarity, this framework exploits non-local infor-

mation and guides and coordinates agents’ exploration of their state-action spaces to reduce

occurrence of oscillatory behaviors and improve the likelihood of convergence. It can also

provide non-information for learning agents to expand their local views and speed up in-

formation propagation in the system. Through supervisory information generated from a

more global view, supervisors can force or steer learning agents to make joint movement

of their policy updates to deal with “tragedy of the commons”problems and allow them

to converge to a better equilibrium. To speed up learning processes of agents with large

14

Organization
Adaptation

Organizational
Supervision

Agent Learning
and Acting

Organization

Supervisory
information

Interactions
between agents

Abstracted states
and rewards

Information gathering

Figure 1.5.Dynamic supervision framework with self-organization

policy search spaces, this framework uses supervisory information to have learning agents

focus their exploration in certain subset of their policy space.

To facilitate this supervision framework to be applied to practical MARL applications,

in this thesis, we also attempt to address two important problems of this framework: finding

supervisory organizations for coordinating agents’ learning processes and automating su-

pervision process to generate supervisory information with little or no domain knowledge.

Self-Organization Through experiments, we observe that different supervisory orga-

nizations yield different performance for coordinating MARL. Interesting questions arise

from this observation: can supervisory organizations automatically form while agents are

concurrently learning their decision policies? do such dynamically evolving organizations

perform better than static supervisory organizations? Thekey problem of forming super-

visory organizations is to decide which agents need to be clustered together so that their

exploration strategies can be coordinated. Inspired by theconcept ofnearly decomposable

systems[89] (where interactions between subsystems are generallyweaker than interac-

tions within subsystems), we develop a self-organization approach to dynamically forming

a nearly decomposable hierarchical structure. Such a hierarchical structure can potentially

reduce coordination complexity and improve coordination quality. In our approach, we first

develop an agent interaction model based on factored DEC-MDP. The interaction model

characterizes a type of agent interactions and defines a measure for capturing the strength

15

of interactions among agents, given their current state of learning. Based on the interaction

model, we then design a negotiation-based self-organization algorithm that incrementally

group agents together that strongly interact with each other and adapts supervisory orga-

nizations for coordinating MARL during the learning process. Experimental results show

that our dynamically evolving organizations outperform predefined organizations for coor-

dinating MARL.

Automating Supervision Our supervision framework provides a way of integrating

domain knowledge to improve the MARL performance through dynamically generating

supervisory information based on agents’ learning status.To broaden the applicability of

this supervision framework, it is highly desirable to automate the process of generating

supervisory information for supervisors. In this thesis, our attempt in this research direc-

tion focuses on a class of cooperative multi-agent decisionmaking problems, which can be

modeled by Networked Distributed POMDPs (ND-POMDPs) (a restricted version of DEC-

POMDP). We tailor our supervision framework for coordinating MARL in ND-POMDP

problems: making supervisors learn policies for their own subordinates and employing

distributed constraint optimization (DCOP) techniques toautomatically coordinate super-

visors’ learning without employing domain knowledge or heuristics. By using a message-

passing DCOP algorithm, this approach can be implemented ina distributed way as an

anytime algorithm that trades off solution quality and costof communication and com-

putation. We formally prove its convergence and optimalitywere for a restricted class of

ND-POMDPs and empirically demonstrate its effectiveness in sensor networks for tracking

mobile targets.

1.3 Main Contributions

This thesis makes a number of important contributions to thestate of the art in the

area of multi-agent learning by looking at large-scale complex multi-agent decision-making

16

problems from both theoretical and heuristic perspectives. The main contributions can be

summarized as follows:

MARL Application in Cloud Computing: Resource allocation in computing clusters are

traditionally centralized, which limits the cluster scale. Effective resource allocation

in a network of computing clusters may enable building larger computing infrastruc-

tures for cloud computing. We design a simple gradient-based MARL algorithm that

extends Q-learning to learning stochastic policies. We illustrate how this algorithm

can be applied to optimizing this online distributed resource allocation problem. The

learning is distributed to each cluster, using local information only and without access

to the global system reward. We empirically show that the MARL approach performs

reasonably well, compared to an optimal solution, and better than a centralized my-

opic allocation approach in some cases. This part of the workwas published in IJCAI

2009 [129].

Multi-Agent Learning with Policy Prediction: Best response and convergence are two

properties desirable for a MARL algorithm. We introduce theconcept of policy pre-

diction and augment the basic gradient-based learning algorithm to achieve these two

properties. We demonstrate that multi-agent learning withpolicy prediction is theo-

retically grounded in a class of general-sum stochastic games under the assumption

of full observability. The first stages of this work was published in AAAI 2010 [124].

MARL Algorithms with Limited Observability: We present a policy gradient learning

technique extending Q-learning to learn stochastic policies in multi-agent settings.

This policy gradient technique is augmented with the idea ofpolicy prediction. The

resulting new MARL algorithm is intended to address the question of how an agent

effectively learns with limited observability in complex domains with other learn-

ing agents. The empirical results demonstrate that our new MARL algorithm out-

17

performs state-of-the-art MARL techniques in both benchmark games and complex

problems. This algorithm was published in AAAI 2010 [124].

A General Paradigm for Coordinating MARL: We introduce a new paradigm that builds

upon conventional MARL techniques for scaling MARL to largeagent networks.

This paradigm is based on a multi-level supervisory controlframework to coordinate

and guide the agents’ learning process. This framework exploits non-local informa-

tion and introduces a more global view into the learning process of individual agents

without incurring significant overhead and exploding theirpolicy spaces; it coordi-

nates the learning behavior of tightly coupled agents by constraining their learning

processes while still leaving agents to react autonomouslyto local reward signals.

This coordination during learning results in both speedingup and increasing the like-

lihood of convergence by reducing the occurrence of oscillatory behavior among

agents learning in a non-stationary environment and focusing agents’ exploration.

Additionally, it also results in improved overall quality of learned coordination poli-

cies due to supervisory coordination directives that are based on a more global view

of current learning. This was published in AAMAS 2009 [123].

An Agent Interaction Model: We propose a new general agent interaction model based

on a decentralized Markov decision process (DEC-MDP) model(which generalizes

distributed decision-making problems in cooperative MAS). Our interaction model

formalizes a type of interactions among agents, calledjoint-even-driveninteractions,

and define a measure for capturing the strength of such interactions. We formally

analyze how interactions between agents affect the performance of individual agents

and the whole system. This interaction model can be used to decompose decision-

making problems in large-scale multi-agent systems and simplify the complexity of

coordinating agents’ behaviors. This was published in AAMAS 2010 [128].

18

Self-Organization for Nearly-Decomposable Hierarchy: We develop a distributed self-

organization approach, based on our agent interaction model, that dynamically form

a nearly decomposable hierarchy for large-scale multi-agent systems. We extends

our supervisory control framework to integrate this self-organization approach to au-

tomatically evolving supervisory organizations to bettercoordinating MARL during

the learning process. Empirically results show that dynamically evolving supervisory

organizations can perform better than static ones. This waspublished in AAMAS

2010 [128].

Automating Coordination for Multi-Agent Learning: We tailor our supervision frame-

work for coordinating MARL in ND-POMDPs. By exploiting structured interaction

in ND-POMDPs, this tailored approach distributes the learning of the global joint

policy among supervisors and employs DCOP techniques to automatically coordi-

nate distributed learning to ensure the global learning performance. We prove that

this approach can learn a globally optimal policy for ND-POMDPs with a property

calledgroupwise observability. Experimental results show that, with communication

during learning and execution, our approach significantly outperforms the nearly-

optimal non-communication policies computed offline. Thiswork was published in

AAAI 2011 [125].

1.4 Guide to the Thesis

The rest of this thesis is structured into four parts. The first part describes background

knowledge, which contains Chapter 2 and 3. Chapter 2 introduces formal frameworks

for studying multi-agent learning that will provide the background necessary to under-

stand the detail research we will present in later chapters.Chapter 3 discusses related

research on multi-agent learning in cooperative systems. The second part presents our

work in multi-agent reinforcement learning algorithms, which contains Chapter 4 and 5.

Chapter 4 provides a simple gradient-based MARL algorithm and applies it to optimiz-

19

ing distributed task allocation in Cloud Computing. Chapter 5 presents our multi-agent

learning algorithms which are both formally analyzed and empirically evaluated. The third

part discusses our work in coordinating multi-agent learning, which contains Chapter 6,

7, and 8. Chapter 6 presents a supervision framework exploits low-overhead, periodic,

non-local multi-level organizational control to coordinate and guide the agents’ learning

process to improve MARL performance in cooperative systems. Chapter 7 describes a

self-organization approach built on a new agent interaction model to dynamically evolving

supervisory organizations to better coordinate agents’ learning processes. Chapter8 show

that distributed constraint optimization techniques can be used to automate coordinating

MARL in ND-POMDPs. The last part is Chapter 9 summarizes our work in this thesis and

discusses future research directions.

20

Part I

BACKGROUND AND RELATED
WORK

CHAPTER 2

MULTI-AGENT LEARNING FRAMEWORKS

A framework generalizes the structure of a class of problemswith some assumptions

and concepts. Multi-agent learning frameworks introducedin this chapter models the dis-

tributed decision making problems in multi-agent systems.They provides a formal foun-

dation for generating, analyzing, and evaluating new multi-agent learning algorithms. In

addition, using such frameworks, we can develop general techniques for improving multi-

agent learning in a large class of cooperative systems.

In this thesis, we are studying multi-agent learning for solving decision-making prob-

lems in large-scale cooperative multi-agent systems, where agents work together to opti-

mize the system performance. In particular, we focus on decentralized systems, where an

agent has only a partial view of the system, that is, an agent does not have full observability

of the state of all other agents in the system. The model ofdecentralized partially observ-

able Markov decision processes(DEC-POMDP) generalizes such distributed problems. In

a DEC-POMDP, all agents share the same reward function, which is called aglobal reward

function. However, in many large-scale decentralized systems (e.g., network routing or

distributed task allocation in our motivating example), learning agents do not have access

to the global reward signals, because they can not be computed in real-time. Even when

they are available for some systems, they are usually not specifically tailored to individual

agents’ performance and are not good feedbacks for agents’ learning. Therefore, we need

to design local reward signals, which are more specifically tailored for individual agents’

behaviors and more easily computable. As shown in Figure 1.2, with local reward sig-

nals, learning in a DEC-POMDP is converted to learning in a more general framework,

22

partially observable stochastic game(POSG), where each agent can have its own reward

function. The equilibrium solution of POSG is used as an approximate solution for DEC-

POMDP. Therefore, we will study multi-agent learning in thePOSG framework. A POSG

can have multiple equilibria solutions, some of which may yields very bad global perfor-

mance. The DEC-POMDP framework is useful for investigatinggeneral techniques for

multi-agent learning to converge faster and a better equilibrium solution in POSGs that are

converted from DEC-POMDPs by using local reward signals.

As with single-agent reinforcement learning studied in theMDP framework, in this

thesis, we will focus the framework ofstochastic games, which are POSGs where all agents

fully observe the state of the environment. Multi-agent learning algorithms developed for

stochastic games usually also perform well in POSGs. Stochastic games model multi-agent,

multi-state sequential decision-making problems in both cooperative and non-cooperative

systems. Although stochastic games were first introduced inthe field of game theory,

they are now being an increasingly popular framework to study multi-agent reinforcement

learning (MARL). Many current MARL algorithms with theoretical convergence results,

including our algorithm in Chapter 5, are initially designed and formally analyzed in one

special cases of stochastic games, calledstatic games. Static games consist of a set of

interacting agents, each of which has a single state.

In this chapter, we will review these frameworks and some keyconcepts and results that

we make use of later in this thesis. We begin in Section 2.1 with a very brief overview of the

general model of an agent and agent learning, which underlies all of the frameworks we dis-

cuss. Although this thesis deals with multi-agent settings, it is still useful to understand the

MDP model and single-agent reinforcement learning. This isbecause DEC-POMDPs can

be viewed as a generalization of Markov decision processes (MDP) to the multi-agent cases

and most practical MARL algorithms extends single-agent reinforcement learning (e.g., Q-

learning). In Section 2.2, we describe the MDP model, the relevant solution concepts, and

some standard learning algorithms. We then present the DEC-POMDP framework and dis-

23

cuss multi-agent learning in this framework in Section 2.3.In Section 2.4, we then review

the framework of static games and its solution concept. Finally, we discuss the stochastic

game framework in Section 2.5.

2.1 Agent Model

Environment

Sensors

Actuators

Reasoning
Element

Percepts

Actions

Agent

Figure 2.1. An agent model

An agent is an autonomous entity that has three key components: perception, reasoning,

and action. These three components operate and interact with some environment as shown

graphically in Figure 2.1. An agent receives a percept from the environment through its

sensors, reasons what action to take based on its observation, and then performs the action

through its actuators, which in turn affects the environment. The frameworks we describe

in this chapter define a specific structure for the environment: what actions are available to

the agent in the environment, how it is affected by the agent’s actions, what percepts the

agent can receive from the environment, and whether other agents are involved. Markov

decision processes (MDPs) provide a model for the basic agent framework of Figure 2.1,

where a single agent interacts with the environment.

The learning, which is the focus of this work, is used to improve the reasoning ability

of choosing optimal actions based on its percepts. One of themain reasons for learning

is that an agent does not know the details of the environment.The agent only receives

information about the environment through its interaction, that is, by selecting actions and

24

Environment

Sensors

Actuators

Reasoning
Element

Percepts

Actions

Agent 1 Agent 2Actions

Percepts

Agent nActions

Percepts

.

.

.

Figure 2.2. A multi-agent scenario: multiple agents all distinguishedfrom their environ-
ment

observing their effects through its perceptual inputs. However, to learn effectively, the agent

needs some feedbacks for its actions, which is the agent’s reward. This reward depends on

the state of the environment and the agent’s action. The reasoning element of the agent

contains the learning process that repeatedly interacts with the environment with the goal

of maximizing the rewards it receives over time.

In this thesis, we are interested in learning in multi-agentsettings. Figure 2.2 depicts

a multi-agent scenario graphically. Instead of a single agent perceiving, reasoning, and

acting in an environment, there are multiple complete agents. These agents also receive

perceptions, reason, and act on the environment. Additionally, they may be learning agents

as well, adapting their actions to maximize their own rewardsignals over time. Stochastic

games or DEC-POMDPs correspond to the full multi-agent framework depicted in Fig-

ure 2.2. We now review the models of MDPs, DEC-POMDPs, and Stochastic games in

turn.

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) are the foundation for much of the research in

the single agent control learning. They provides a formal framework for modeling single-

agent decision-making problems with uncertainty. In this section, we will review the MDP

model and its corresponding solution concepts. Reinforcement learning allows an agent

25

to learn the solution without knowing the details of a MDP. Asour multi-agent learning

algorithms are extensively built on reinforcement learning, we will briefly describe some

MDP-based learning algorithms. Since, in this thesis, we are interested in learning with

limited observability. In this section, we also discuss thelearning in partial observable

environments.

2.2.1 Definition

Definition 1. A Markov decision processis defined by a tuple〈S, A, T, R〉, where

• S is a set of states,

• A is a set of actions,

• T : S × A× S → [0, 1] is a transition function,

• R : S × A→ ℜ is a reward function.

The transition function defines a probability distributionover next states as a function

of the current state and the agent’s action. The reward function defines the reward received

after selecting an action in the given state. Markov decision processes are called such

because both their transition functions and reward functions satisfy the Markov Property,

that is, the next state and the reward solely depend on the current state and action, and

not on the history of states and actions. An agent interacts with an MDP environment by

alternating between perception and action. The agent observes the statest at timet, and

selects an actionat. The agent then receives the rewardrt = R(st, at), and observes the

next state,st+1with the probability specified by the transition functionT (st+1|st, at). A

sequence

s0, a0, r0, s1, a1, r1, . . . st, at, rt, . . .

refers to a single execution trace of an agent in a MDP environment.

The MDP framework is a single-agent formalization of the agent environment. The

agent’s perception is the current state of the environment from the setS. The agent’s

26

reasoning process is responsible for selecting an action from the setA in a given state. This

closes the loop of agent perception, reasoning, and action.The learning process processes

the observed next state and reward for taking an action in a state to improve the reasoning

performance.

2.2.2 Solution Concept

The core problem of MDPs is to find an optimalpolicy for an agent. A policyπ : S →

A is a mapping function that specifies an actionπ(s) ∈ A in each states ∈ S. Once a

Markov decision process is combined with a policy in this way, this fixes the action for

each state and the resulting combination behaves like a Markov chain. Note that the policy

defined here for MDPs is deterministic (always choosing a particular action for each state).

We will define stochastic policies later, which are important for stochastic games.

An optimal policy for an MDP maximizes some function of the rewards received by

executing the policy over a potentially infinite horizon. Typically, there are two types of

functions:discounted rewardandaverage reward.

Discounted Reward

In the discounted reward formulation, immediate reward is preferred over future reward.

Specifically, the value of a policyπ starting at states, with a discount factorγ ∈ [0, 1), is,

V π(s) =
∞

∑

t=0

γt
E{rt|s0 = s, π},

whereE{rt|s0 = s, π} is the expected reward received at timet given the initial state

is s and the agent follows the policyπ. V π is called the policy’s state value function.

This formulation is similar to the economic principle of interest and investment, where

utility now is traded against larger future utility. It can also be understood as describing the

possibility that the process itself will terminate after any step with probabilitygamma, after

which no additional reward can be accumulated. Another reason for considering discounted

reward is that it leads to a finite expected reward and simplifies the mathematics.

27

Using this reward formulation, the goal for an agent is to findan optimal policyπ∗

that maximizes the discounted future reward for all states.If we know the state transition

function T and the reward functionR, we then can calculate the optimal policy using a

standard family of algorithms, e.g., value iteration [14] and policy iteration [37]. In this

thesis, we are more concerned about how to learn the optimal policy if we do not know the

transition function and the reward function.

Average Reward

For many open systems that runs for a very long time, we are usually more interested

in maximizing the average reward over the time, instead of the discounted reward. In this

formulation, the value of a policy is defined relative to the average expected reward per

time step under the policy. Mathematically, the value of a policy π at state s is,

V π(s) = lim
T→∞

1

T

T
∑

t=0

E{rt|s0 = s, π},

A common assumption, which usually accompanies examinations of this reward formu-

lation, is that the MDP isunichain. An MDP is unichain if and only if, for all policies,

there exists an ergodic set of states (i.e., any state in the set can be reached with non-zero

probability from any other state in the set), and all states outside this set are transient (i.e.,

after some finite point in time it will never be visited again). This assumption forces the

value of a policy to be independent of the initial state. Fromany initial state, the policy is

guaranteed to end up in the ergodic class, and any state in theergodic class must have the

same average reward for a given policy.

2.2.3 Reinforcement Learning

When the transition function or reward function of an MDP is unknown, an agent can

not directly compute the optimal policy and needs to learn itthrough interacting with the

environment. Reinforcement learning (RL) [100] is a field concerned with such learn-

ing in MDP environments. A broad spectrum of single-agent RLalgorithms exists, e.g.,

28

model-free methods based on online estimation of value functions [117, 75, 98, 12, 108],

and model-learning methods that estimate a model, and then learn using model-based tech-

niques [99, 68]. As our multi-agent learning algorithms arebuilt on top of Q-learning [117],

we will briefly describe Q-learning here.

The Q-learning algorithm learns the optimal state-action value function. The state-

action function (Q-value function)Qπ : S × A → ℜ defines the expected discounted

reward of choosing a particular action from a particular state and then following the policy

π. Formally,Qπ(s, a) =
∑∞

t=0 γt
E{rt+k|sk = s, ak = a, π}. The optimal Q-value function

Q∗ satisfies the Bellman optimality equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

T (s′|s, a) max
a′∈A

Q∗(s′, a′). (2.1)

This equation states that the optimal value of takinga in u is the expected immediate reward

plus the expected (discounted) optimal value attainable from the next state.

The policy is deterministic and picks the action with the highest Q-value for every state:

π(s) = arg max
a∈A

Q(s, a). (2.2)

The agent can achieve the learning goal by first computingQ∗ and then choosing actions

by the policy, which is optimal (i.e., maximizes the expected reward) when applied toQ∗.

Since the transition function is unknown, Q-learning turnsEquation 2.1 into an iterative

approximation procedure. The current estimate ofQ∗ is updated using estimated samples

of the right-hand side of Equation 2.1. These samples are computed using actual experience

interacting with the environment, in the form of the observed next statesk+1 and rewards

rk+1 after taking actionak in statesk:

Q(sk, ak)← Q(sk, ak) + αk[rk+1 + γ max
ak+1∈A

Q(sk+1, ak+1)−Q(sk, ak)]. (2.3)

29

Since its update rule does not require knowledge about the transition and reward func-

tions, Q-learning is model-free. The learning rateαk ∈ (0, 1] specifies how far the current

estimateQ(sk, ak) is adjusted towards the update targetrk+1 +γ maxak+1∈A Q(sk+1, ak+1).

The learning rate is typically time-varying, decreasing with time. Separate learning rates

may be used for each state-action pair. The expression inside the square brackets is the

temporal difference, i.e., the difference between estimates ofQ(sk, ak) at two successive

time steps,k + 1 andk.

The sequenceQk provably converges toQ∗ under the following conditions [117, 41,

110]:

• Explicit, distinct values of the Q-function are stored and updated for each state-action

pair.

• The time series of learning rates used for each state-actionpair sums to infinity,

whereas the sum of its squares is finite.

• The agent keeps trying all actions in all states with nonzeroprobability.

The third condition means that the agent must sometimes explore other actions than

those determined by the current policy. To achieve this, oneapproach is to choose at each

step a random action with probabilityǫ ∈ (0, 1) and the greedy action with probability

(1 − ǫ). This approach is calledǫ-greedy exploration. Another approach is to use the

Boltzmann exploration strategy, which in states selects actiona with probability:

π(s, a) =
eQ(s,a)/τ

∑

a′ eQ(s,a′)/τ

whereτ > 0 is the temperature that controls the randomness of the exploration. When

τ → 0, this is equivalent with the policy specified by Equation 2.2. Whenτ → ∞, action

selection is purely random. Forτ ∈ (0,∞), higher-valued actions have a greater chance of

being selected than lower-valued ones.

30

2.2.4 Partially Observable Environments

In many real-world environments, it will not be possible foran agent to have perfect

and complete perception of the state of the environment. Unfortunately, complete observ-

ability is necessary for learning methods based on MDPs. In this section, we consider the

learning case in which the agent makes observations of the state of the environment, but

these observations may be noisy and provide incomplete information. We will first review

the model ofpartially observable Markov decision processes(POMDP), an extension of

the basic MDP framework for dealing with partially observability, and then discuss the

learning in partially observable environments.

POMDP

Definition 2. A partially observable Markov decision processis defined by a tuple

〈S, A, Z, T, O, R, b0〉, where

• S is a set of states,

• A is a set of actions,

• Z is a set of observations,

• T : S ×A×S → [0, 1] is a transition function, whereT (s′|s, a) is the probability of

transiting to the next states′ ∈ S after a actiona ∈ A is taken by an agent in state

s ∈ S,

• O : S × A × Z → [0, 1] is the observation function, whereO(z|s, a) denotes the

probability of perceiving observationz when executing actiona and arriving in state

s,

• R : S × A → ℜ is a reward function, whereR(s, a) is the reward that an agent

receives for taking actiona in states,

31

• b0 is the initial state distribution, whereb0(s) denotes the probability of starting in

states.

A POMDP is really just an MDP, because the underlying dynamics of the POMDP are

still Markovian. We have a set of states, a set of actions, transitions and immediate rewards.

The actions’ effects on the state in a POMDP is exactly the same as in an MDP. The only

difference is in whether or not we can observe the current state of the process. In a POMDP,

we add a set of observationsZ to the model. So instead of directly observing the current

state, the state gives us an observation which provides a hint about what state it is in. The

observations can be probabilistic, so we need to also specify the observation modelO. This

observation model simply tells us the probability of each observation for each state in the

model.

However, adding partial observability to an MDP is not a trivial addition. Since we

have no direct access to the current state, selecting actions based on the current state (as in

a MDP) is no longer valid. An agent has to act based on the history of executed actions and

perceived observations. Hence, a policy in POMDP is defined as a mapping from action-

observation histories to actions. Since the number of possible histories grows exponentially

in the number of time steps, many POMDP algorithms use the concept of belief. Formally,

the beliefb is the probability distribution over the current states, whereb(s) denotes the

probability that the state iss at the current time step. The belief update for the next time

step can be computed from the belief at the current time step:given the actiona at the

current time step and the observationz at the next time step, the updated beliefba
z for the

next time step is obtained by

ba
z(s

′) = O(z|s′, a)
∑

s

T (s′|s, a)b(s)/P (z|b, a),

whereP (z|b, a) =
∑

s′∈S O(z|s′, a)
∑

s T (s′|s, a)b(s).

32

Hence, the belief serves as a sufficient statistic for fully summarizing histories, and the

policy can be equivalently defined as a mapping from beliefs to actions. Using beliefs,

we can view POMDPs as belief-state MDPs, and the value function of an optimal policy

satisfies the Bellman equation

V ∗(b) = max
a

[
∑

s

b(s)R(s, a) + γ
∑

s′,z

T (s′|s, a)O(z|s′, a)V ∗(ba
z)].

Learning in Partially Observable Environments

Approaches to learning in partially observable environments can be classified into two

categories: learning with memory or without memory. Learning approaches with memory

use previous actions and observations to disambiguate the current state. Such approaches

build an internal representation of the state of environment by combining previous observa-

tions and even actions. Several different forms of internalrepresentations have been used.

As discussed in previous section, one representation is using the belief state to summariz-

ing the history of observations and actions. Approaches [26, 64] using this representation

employ some techniques (e.g., hidden Markov model techniques) to learn a model of the

environment, including the hidden state, and then use POMDPalgorithms to find a policy

mapping belief states into action. Instead of using the whole memory, another represen-

tation [54, 65] is to use finite history windows of observations and actions to restore the

Markov property. Recurrent neural networks [54] are also used to learn Q-values to retain

”history observations”.

A common drawback of all the above approaches to learning with memory is compu-

tationally expensive and can require a large amount of data.For example, finite-history-

window approaches result in policy search spaces exponentially increasing with the win-

dow size, and approaches based on belief states can result ina continuous state space.

Another drawback of these approaches is always based on strong assumptions about the

environment. For example, it is assumed that the number of states is known in advance.

Learning approaches without memory are often preferred in practical applications.

33

The most naive approach to learning without memory is to ignore partial observability

and treat the observations as if they were the states of the environment and try to learn to

behave. So the policyπ is defined as a mapping from the immediate observation to an

action. The resulting problem is not Markovian, and single-agent reinforcement learning

algorithms, including Q-learning, cannot be guaranteed toconverge. But small breaches of

the Markov requirement are usually well handled by Q-learning.

However, the general hope that the performance of reinforcement learning algorithms

will degrade gracefully as the degree of non-Markoviannessis increased in a given de-

cision problem is unfounded, because it is easy to constructsimple environments where

failure to distinguish between just two states can lead to anarbitrary high absolute loss in

performance [93]. Singh, Jaakkola, and Jordan [93] showed that, in a POMDP, the best

stationary stochastic policy could be arbitrary better than the best stationary deterministic

policy (mapping an observation to an action). Stochastic policies are mappings from ob-

servations to probability distributions over actions. In this paper, we will use stochastic

policies to deal with partial observability.

2.3 Decentralized Markov Decision Processes

In this thesis, we are interested in learning in cooperativemulti-agent systems, where a

group of agents work together to optimize the global performance. In this section, we will

first review the framework of decentralized partially observable Markov decision processes

(DEC-POMDP) to model the sequential decision-making problem in cooperative multi-

agent systems. With this framework, we will also discuss howmulti-agent learning is used

to develop policies for agents in cooperative multi-agent systems.

2.3.1 Definition

The DEC-POMDP system starts with some initial state. The agents select actions based

on their observations. The system then moves to a new random state whose distribution

34

depends on the previous state and the joint action chosen by the agents. The procedure is

repeated at the new state and continues for a finite or infinitenumber of horizons. Formally,

Definition 3. Ann-agent DEC-POMDP is defined by a tuple〈S, A, T, Z, O, R, h〉, where

• S is a set of states, with distinguished initial states0.

• A = A1 × · · · × An is a set of joint actions, whereAi is the action set for agenti.

• T : S × A × S → [0, 1] is the transition function.T (s′|s, a) is the probability of

transiting to the next states′ after a joint actiona ∈ A is taken by agents in states.

• Z = Z1 × · · · × Zn is a set of joint observations, whereZi is the observation set of

agenti.

• O : S×A×Z → [0, 1] is the observation function, whereO(z|s, a) denotes the prob-

ability of perceiving joint observationz after executing joint actiona and arriving in

states.

• R : S×A→ ℜ is the reward function.R(s, a) is the reward for taking actiona ∈ A

in states ∈ S.

• If the DEC-POMDP has a finite horizon, that horizon is represented by a positive

integerh.

This framework was first proposed by Bernstein et al. [15]. DEC-POMDP [15] is a

natural extension of POMDP to multi-agent settings by allowing multiple agents to collab-

oratively seeking to maximize a global performance. Each agent has an explicit action set.

Instead of a single agent, there are multiple agents, whose joint action and the current state

determine the distribution of the next state and rewards to the agents.

In DEC-POMDPs, agents together may not fully observe the system state (so we have

only partial observability). We can define a generalizationof MDP problems by requiring

joint observability. A DEC-POMDP is jointly fully observable if the joint observation made

35

by the agents together fully determines the current state, that is, if,∀z ∈ Z∀s ∈ S∀a ∈ A,

O(z|s, a) > 0 thenP (s|z) = 1. A DEC-POMDP that is jointly fully observable is called a

decentralized Markov decision process (DEC-MDP).

2.3.2 Solution Concept

As with POMDPs, since an agent has no direct access to the current state in DEC-

POMDPs or DEC-MDPs, selecting actions based on the current state (as in a MDP) is no

longer valid. An agent needs act based on perceived observations. As with POMDPs, a

local policy for agenti, πi : Zi∗ → Ai, can be defined as a mapping from local histories of

observations̄(zi) = zi1, . . . , zih overZi to actions inAi. In this way, the size of the policy

space of each agent increases exponentially with the numberof perceived observations.

To promote the learning efficiency in DEC-POMDP environment, in this thesis, we use

memory-less policies that maps an immediate observation toan action. As discussed in

Section 2.2.4, stochastic policies can cope with the uncertainty of observations in certain

degree and perform better than deterministic policies in partial observable environment.

In this thesis, we define a policyπ : Zi × Ai → [0, 1] for agenti as a mapping of an

observationzi ∈ Z to a probability distribution over actionsAi. We useπ = 〈π1, . . . , πn〉

to refer to a joint policy for all the agents, withπi being agenti’s policy within that joint

policy. Solving a DEC-MDP means finding a joint policy for agents that maximizes the

expected total reward, which can be formulated by the following ways.

For a finite-horizon DEC-POMDP, the agents act for a fixed number of steps, which

is called the horizon and denoted byh. The value of a joint policyπ for a finite-horizon

DEC-POMDP at states ∈ S is

V π(s) =

h−1
∑

t=0

E{rt|s0 = s, π},

whereE{rt|s0 = s, π} is the expected reward received at timet given the initial state iss

and the agents follow the joint policyπ.

36

For a infinite-horizon DEC-POMDP where the agents operate over an unbounded num-

ber of time steps, as with MDPs, the expected total reward formulations of discounted

reward and average reward also can be applied to DEC-POMDPs to quantify the value of

a joint policy. In the discounted reward framework, the value of the joint policyπ at state

s ∈ S, with discount factorγ, is

V π(s) =
∞

∑

t=0

γt
E{rt|s0 = s, π},

Similarly, the average reward formulation in stochastic games is defined as,

V π(s) = lim
T→∞

1

T

T
∑

t=0

E{rt|s0 = s, π}.

2.3.3 Learning in DEC-POMDP

For many complex cooperative multi-agent systems, it is very expensive, time-costly, or

even not possible to obtain an accurate transition model or reward model of DEC-POMDP.

This is especially true for applications operating in open environments where the environ-

mental characteristics are not known a priori and may evolveover time. Learning provides

an potential approach to developing policies for agents in cooperative systems.

Credit Assignment

To learn a policy using experience through interacting withthe environment, an agent

needs some reward feedbacks for their actions. In DEC-POMDPs, one potential way is

to provide the global reward signal based on the joint actionand the system state, which

is usually the global performance measure of the system. However, for many large-scale

multi-agent systems, it is usually infeasible to calculatethe global performance measure in

a real-time fashion. Therefore, local reward signals are needed for agenti to learn effec-

tively, which can be efficiently computed and should be sufficient tailored to their behav-

37

iors. The problem of designing such reward signals is calledmulti-agentcredit assignment.

Chapter 3 Section 3.1 surveys related work in multi-agent credit assignment.

In this thesis, we assume that cooperative multi-agent systems use a credit assignment

approach where as the local performance of an agent improves, given that the other agents

use fixed policies, the global performance also improves, that is, the local performance is

positively related to the global performance. One of such approaches is to linearly factor

the global reward, which is used in Chapter 7. Formally,

Definition 4. Ann-agent DEC-MDP is said to belinearly reward factored if there exists

functionsR1, . . . , Rn, whereRi : S ×A→ ℜ is the reward function for agenti, such that,

R(s, a) =
∑n

i=1 wiRi(s, a), wherewi is a positive weight.

Decentralized Learning

With local reward signals, decentralized learning provides an approximate, potentially

scalable approach for DEC-POMDP problems, where each agentlearns its local policy

based on local observations and local rewards. By ignoring the actions and rewards of the

other agents, this approach results in exponential storageand computational savings in the

policy space and the value function.

The independent learnersapproach [27] employs Q-learning for each agent to learn its

local policy. Although each agent has its action set, local observations, and local reward

signals, its learning environment is not a MDP. Because the actions of the other agents are

ignored in the representation of the Q-functions, and theseagents also change their behavior

while learning, the system becomes non-stationary from theperspective of an individual

agent. As a result, the standard convergence proof for Q-learning does not hold anymore.

Despite the lack of guaranteed convergence, this method hasbeen applied successfully in

multiple cases [101, 86, 24].

Although small breaches of the Markov requirement are well handled by Q-learning,

there are many applications, including our motivating example described in detail in Chap-

38

ter 4, where the non-stationary environment causes Q-learning to oscillate and perform

badly. In fact, decentralized learning treats DEC-POMDPs as partially observable stochas-

tic games (POSG), where each agent can have its own specific reward function, and uses

the equilibrium solution of POSG to approximate the optimalsolution of DEC-POMDPs.

Therefore, new techniques needs to be developed to learn effective policies in POSG. Chap-

ter 3 will review some state-of-the-art multi-agent learning algorithms. Chapter 5 will

present our multi-agent learning algorithm for stochasticgames.

However, the field of multi-agent learning is still young andcurrent multi-agent re-

inforcement learning algorithms, including our algorithms, still do not have theoretical

convergence guarantees in POSG. In addition, using local reward signals may generate the

tragedy of the commons problem, that is, greedy policies at agents can harm the global

performance. Furthermore, as shown in Chapter 4, even with only using local observa-

tions, the policy space still remains large for many complexapplications. As a result,

decentralized learning may converge slowly, converge to inferior policies, or even diverge

in DEC-POMDP problems, which is one major motivation for this thesis. Chapter 6 and

7 will present a supervision framework that employs low-overhead organizational control

to coordinate decentralized learning, which improves multi-agent reinforcement learning’s

speed, quality, and likelihood of convergence of partial observable stochastic games for

complex DEC-POMDP problems.

2.4 Static Games

As discussed in previous section, learning in DEC-POMDPs isoften converted to learn-

ing in POSG. Before introducing POSG or stochastic games (described in next section),

we want to review a simpler multi-agent framework, static orstrategic games. Static games

were first examined in the field of game theory to specifically model strategic interactions

of multiple decision makers. Because of their simplicity ofmodeling interactions among

multiple agents, static games have been increasingly adopted as a framework to formally

39

R1 =
1 -1

-1 1

R2 =
-1 1

1 -1

(a) Matching Pennies

(c) Rock-Paper-Scissors

R1 =
0 -1

1 0

1

-1

-1 1 0

R2 =
0 1

-1 0

-1

1

1 -1 0

(d) Shapley's Game

R1 =
0 1

0 0

0

1

1 0 0

R2 =
0 0

1 0

1

0

0 1 0

R1 =
1 0

0 5

R2 =
1 0

0 5

(b) Coordination Game

Figure 2.3.Examples of static games

analyze multi-agent learning algorithms (as we will show inChapter 5). In this section, we

will briefly review this framework and its solution concept,Nash equilibrium, and discuss

the learning in this framework.

2.4.1 Definition

A static or strategic game [115, 73] is one in which all agentsmake decisions (or select

a strategy) simultaneously, without knowledge of the strategies that are being chosen by

other players. Even though the decisions may be made at different points in time, the game

is simultaneous because each player has no information about the decisions of others; thus,

it is as if the decisions are made simultaneously. Formally,

Definition 5. A n-playerstatic gameis a tuple(A1, . . . , An, R1, . . . , Rn), where

• Ai is the set of actions available to playeri (and A = A1 × · · · × An is the joint

action space),

• andRi : A→ ℜ is the payoff or reward function of playeri.

40

Each player select an action from their available set and receives a payoff that depends

on all players actions (the joint action). Static games are represented by the normal form,

where the payoff functions can be written asn-dimensional matrices. The actions then cor-

respond to specifying the value of a particular dimension, and the joint actions correspond

to particular entries in the payoff matrices. Figure 2.3 contains a number of example static

games. As shown in the figure, the normal form only specifies angame’s payoff functions

using matrices and not the individual players’ action sets,which are just assumed to be

indices into the payoff matrices.

Static games can be classified according to the structure of their payoff functions. Two

common classes of games areteam gamesand zero-sum games. In team games (e.g.,

coordination game in Figure 2.3(b)), all agents have the same payoff function, so a joint

action in the best interest of one agent is in the best interest of all the agents. In zero-sum

games, there are two agents, and one’s reward is always the negative of the other. The

games (a) and (c) in Figure 2.3 are examples of such a game. Thetermgeneral-sum games

is used to refer to all types of games, including zero-sum games and non-zero-sum games.

Note that Shapley game in Figure 2.3(d) is neither team gamesnor zero-sum.

2.4.2 Solution Concept

The goal of an agent or player in a static game is to find a strategy that maximizes

its expected payoff. Apure strategyis one that deterministically selects a single action.

However, pure strategies in static games can potentially beexploited. For example, in

matching pennies shown in Figure 2.3. If one agent plays either action deterministically,

then the other player can guarantee to win by playing the appropriate action. Therefore,

mixed strategies are often more interesting in static games. A mixed strategyfor player

i, πi : Ai → [0, 1], specifies a probability distribution over actions, whereπi(ai) is the

probability of choosing actionai ∈ Ai. These are the strategies we focus on. We use

π = 〈π1, . . . , πn〉 to refer to a joint strategy for all of the players. With a joint strategyπ,

41

the expected payoff of playeri will be

Vi(π) =
∑

a∈A

Ri(a)

n
∏

i=1

π(ai).

In MDPs, a solution is defined as the policy with the highest value according to some

reward formulation, such as discounted reward or average reward. In static games, no single

optimal strategy exists. A strategy can only be evaluated ifthe other players strategies are

known. This can be illustrated in the game of matching pennies (Figure 2.3 (a)). In this

game, if player 2 is going to play the first action, then the optimal strategy of player 1 is

to play the first action, but if player 2 is going to play the second action, then the optimal

strategy of player 1 is to play the second action. Therefore,one player can have optimal

strategies only given the other players’ strategies, whichis calledbest-responsestrategies.

Definition 6. Given a joint strategyπ−i of the other players, thebest-response function

BRi(π−i) for player i is the set of all strategies that are optimal. Formally,π∗
i ∈ BRi(π−i)

if and only ifVi(〈π∗
i , π−i) ≥ Vi(〈πi, π−i), ∀πi ∈ Πi, whereΠi is the set of all mixed strate-

gies for playeri.

In static games, one common solution is a joint strategy where every player’s strat-

egy is a best response for the other players’ strategies so that no player can improve its

expected payoff by unilaterally changing its own strategy.This solution is called aNash

Equilibrium [71].

Definition 7. A Nash Equilibrium in a n-player static game is a joint strategyπ = π1 ×

· · · × πn with πi ∈ BRi(π−i), ∀i = 1, . . . , n.

One appealing property of this solution is that every staticgame has at least one (possi-

bly mixed) Nash equilibrium. Some games have multiple Nash equilibria. For example, as

shown in Figure 2.3, the game of matching pennies has one Nashequilibrium where both

players play two actions randomly, that is,π1 = 〈0.5, 0.5〉 andπ2 = 〈0.5, 0.5〉, while the

42

coordination game has two Nash equilibria, both player deterministically playing the first

action or the second action.

For zero-sum games, an equilibrium can be computed efficiently using linear program-

ming. However, finding equilibria in two-player general-sum games requires a more dif-

ficult quadratic programming solution [60]. Beyond two-player equilibrium solutions are

even more difficult to find. McKelvey and McLennan [66] surveya variety of techniques

for computing equilibria in matrix games, including n-player general-sum matrix games.

2.4.3 Learning in Repeated Games

Since we are interested in learning, we will focus on agents repeatedly playing the

same static game. In game theory, this is called arepeated game. Its main difference from

a one-shot static game is that the agents can use some of the game iterations to gather

information about the other agents’ strategies or the reward functions, and make more

informed decisions thereafter. As in MDPs, each agent in a repeated game has an explicit

action set. But, unlike MDPs, the environment has no state. With imperfect information,

each agent can only perceive the actions of the other agents,or maybe just its own reward.

In such cases, the agent needs to learn its strategy through experience to maximize its

expected payoff.

Learning in repeated games is one case of multi-agent learning. One challenging ques-

tion is that if all agents concurrently learn their strategies in repeated games, will their

strategies converge to a Nash equilibrium? The challenge isthat, when multiple agents

concurrently learn their strategies, the environment is non-stationary or Markovian from

the perspective of an individual learning agent. Although repeated games is stateless, the

reward function of an learning agent depends on the other players’ strategies. If other

players are changing or adapting their strategy during the learning, then the agent’s re-

ward function is not Markovian any more. As a result, single-agent reinforcement learning

algorithms may not converge in repeated games. Therefore, learning in repeated games

43

requires new or significantly modified machine learning techniques. Chapter 3 will re-

view some state-of-the-art multi-agent learning algorithms and Chapter 5 will present our

multi-agent learning algorithms analyzed and evaluated inrepeated games.

2.5 Stochastic Games

As MDPs for single-agent reinforcement learning, stochastic games are more interest-

ing for studying multi-agent learning than POSG. In this section, we will focus on stochas-

tic games. Stochastic games [87] are a superset of MDPs and static games, which can have

multiple agents and multiple states. They were first introduced in the field of game theory,

and have now become a formal framework for studying multi-agent reinforcement learn-

ing. In this section, we will briefly describe this frameworkand its solution concept, and

discuss multi-agent learning in stochastic games.

2.5.1 Definition

A stochastic game is a dynamic game with probabilistic transitions played by one or

more players. The game is played in a sequence of stages. At the beginning of each stage

the game is in some state. The players select actions and eachplayer receives a payoff

that depends on the current state and the chosen actions. Thegame then moves to a new

random state whose distribution depends on the previous state and the actions chosen by

the players. The procedure is repeated at the new state and play continues for a finite or

infinite number of stages. Formally,

Definition 8. Ann-agentstochastic gameis defined by a tuple〈A1, . . . , An, S, T, R1, . . . , Rn, 〉,

where

• Ai is the set of actions available to playeri (and A = A1 × · · · × An is the joint

action space).

• S is a set of states.

44

• T : S×A×S → ℜ is the transition function.T (s′|s, a) is the probability of transiting

to the next states′ ∈ S after a joint actiona ∈ A is taken by agents in states ∈ S.

• Ri : S × A → ℜ is the payoff or reward function of playeri. Agenti receives an

individual rewardRi(s, a) for the joint actiona ∈ A in states ∈ S.

Essentially, stochastic games are a generalization of Markov decision processes to the

multi-agent cases. Each agent has an explicit action set. Instead of a single agent, there

are multiple agents, whose joint action and the current state determine the next state and

rewards to the agents. Also, note that each agent has its own independent reward function.

When all players have the same reward function, such stochastic games are calledmulti-

agent Markov decision processes(MMDP) [20], or team stochastic games. MMDP or team

games is used to model decision-making problems in fully cooperative multi-agent systems

where all agents individually observe the state of the environment.

Stochastic games can also be thought of as an extension of theconcept of static games

to multiple states. Each stochastic game has a static game associated with each state. The

immediate payoffs for playeri at a particular states are determined by the functionRi(s, ·).

After selecting actions and receiving their rewards from the static game, the players are

transitioned to another state and associated static game, which is determined by their joint

action. The same classification for static games can be used with stochastic games.Team

gamesare ones where all the agents have the same reward function.Zero-sum gamesare

two-player games where one player’s reward is always the negative of the other’s for all

states and all joint actions.General-sum gamesrefer to all types of reward structures.

2.5.2 Solution Concept

Stochastic games borrow solution concepts from both MDPs and matrix games. Like

MDPs, the goal for playeri in a stochastic game is to find a policy that maximizes its

long-term reward. Since deterministic strategies can be exploited in static games, deter-

ministic policies can also be exploited in stochastic games. Therefore, we cannot restricted

45

ourselves to deterministic policies as is common with the study of MDPs. Throughout this

work, we consider the full space of stochastic policies. Astochastic policyfor player i,

πi, is a mapping that defines the probability of selecting an action from a particular state.

Formally,πi ∈ S × Ai → [0, 1], where
∑

a∈Ai
π(s, a) = 1, ∀s ∈ S.

Here are some notations. We useπ = 〈π1, . . . , πn〉 to refer to a joint policy for all the

players, withπi being playeris policy within that joint policy. We use the notationΠi to be

the set of all possible stochastic policies available to player i, andΠ = 〈Π1, . . . , Πn〉 to be

the set of joint policies of all the players. We also use the notationπ−i to refer to a particular

joint policy of all of the players except playeri. Finally, the notation〈πi, π−i〉 refers to the

joint policy where playeri follows πi while the other players follow their policy fromπ−i.

The reward formulations of discounted reward and average reward also can be applied

to stochastic games to quantify the value of a joint policy toeach player. In the discounted

reward framework, the value of the joint policyπ to playeri at states ∈ S, with discount

factorγ, is

V π
i (s) =

∞
∑

t=0

γt
E{rt

i|s0 = s, π},

whereE{rt
i|s0 = s, π} is the expected reward to playeri received at timet given the

initial state iss and the agents follow the joint policyπ. Similarly, the average reward

formulation in stochastic games is defined as,

V π
i (s) = lim

T→∞

1

T

T
∑

t=0

E{rt
i|s0 = s, π}.

Notice that a policy for a player can only be evaluated in the context of all the other

players’ policies. This is the same difficulty faced by static games and the same solution

concepts from static games can be applied to stochastic games. We can define the concept

of best response as following.

Definition 9. Given a joint policyπ−i of the other players, the best-response function

BRi(π−i) for player i is the set of all policies that are optimal. Formally,π∗
i ∈ BRi(π−i)

if and only ifV
〈π∗

i ,π−i

i (s) ≥ V
〈πi,π−i

i (s), ∀s ∈ Sand∀πi ∈ Πi.

46

We can also define Nash equilibrium using the concept of best response.

Definition 10. A Nash Equilibrium in an-player static game is a joint strategyπ = π1 ×

· · · × πn with πi ∈ BRi(π−i), ∀i = 1, . . . , n.

2.5.3 Learning in Stochastic Games

The goal of a learning agent in stochastic games is to learn a policy that maximizes its

long-term reward. As in MDPs, each learning agent in stochastic games has a explicit set

of actions and can observe the state of the environment, but usually initially does not know

the transition function of the environment and its reward function. Learning agents may

also observe the actions of the other agents. To learn the policy to maximize its long-term

reward, an agent needs to estimate this long-term value. As with MDPs, one approach is to

use to Q-learning to learn its Q-value function defined on joint actions using experience of

interacting with the environment and other agents.

Consider situations where only one agent is learning its policy and all the other agents

use fixing stationary policies. the resulting decision process for the learning agent is a

Markov decision process. The MDP’s states and the player’s action set are the same as

in the original stochastic game. The new transition function is composed of the stochastic

game’s transition function with the other players’ policies. Similarly, the reward function of

the agent is composed of its reward function in the stochastic game with the other players’

policies. Therefore, if the other agents are stationary andnot learning, the problem for the

learning agent simply reduces to learn to act in an MDP and Q-learning allows it to learn

the optimal policy that maximizes its long-term reward

If multiple agents are concurrently learning their policies in a stochastic game, the

learning environment becomes non-stationary from the perspective of individual learning

agents. As with repeated games, the reward function of a learning agent is not Markovian.

In addition, in stochastic games, the transition function for an individual agent is also not

Markovian any more, because it is defined on actions of other agents who are changing or

47

adapting their policies over the time. As a result, the basicassumption behind single-agent

reinforcement learning techniques, including Q-learning, is violated in multi-agent learn-

ing. For this reason, multi-agent learning requires new or significantly modified learning

algorithms.

As in static games, the evaluation of an agent’s policy depends on the other agents’ poli-

cies. The optimality of an individual policy is meaningful only in the context of the other

agents’ policies. Therefore, Nash equilibrium is a potential solution concept for multi-

agent learning, although there are a lot of debates about whether this solution concept is

appropriate [88]. The analysis of the dynamics of multi-agent learning in stochastic games

is much more difficult than that in repeated games. The convergence to Nash equilibria (or

other solution concepts) of multi-agent learning is still an open and challenging problem.

Chapter 3 will review some state-of-the-art multi-agent learning algorithms. Chapter 5 will

present our multi-agent learning algorithm for stochasticgames.

2.6 Summary

In this chapter, we presented the framework of DEC-POMDPs asa general model of

multi-agent interaction in cooperative systems and discussed multi-agent learning in this

framework. To better understand DEC-POMDP and multi-agentreinforcement learning,

we reviewed the subsumed framework of Markov decision processes, studied in the rein-

forcement learning community. We also introduced the key solution concepts and algo-

rithms for MDPs: discounted and average reward, value functions, optimal policies, and

simple reinforcement learning techniques. To deal with multi-agent learning in large-scale

cooperative systems where the global reward signal is not available or not specifically tai-

lored to individual agents’ performance, local reward signals were introduced for agents to

learn their policies. As a result, we converted the problem of learning in DEC-POMDPs to

learning in partially observable stochastic games. Therefore, we also introduced stochastic

games and static games, one special cases of stochastic games, which were studied in the

48

field of game theory. We presented an overview of the key solution concepts in static games

and stochastic games: best-responses and Nash equilibria and discussed learning in these

frameworks. In the next chapter, we will survey techniques for learning in cooperative

multi-agent systems.

49

CHAPTER 3

PREVIOUS WORK

In this chapter we explore related work on learning in cooperative multi-agent systems.

In cooperative multi-agent systems, all agents work together to optimize the global perfor-

mance measure. As discussed in Section 2.3.3 of previous chapter, due to limited com-

munication in many large-scale cooperate systems, it is usually infeasible to calculate the

global performance measure in a real-time fashion to be usedas learning feedbacks. Local

reward signals are needed for agents to learn effectively, which can be efficiently computed

and sufficiently tailored to individual agents’ behaviors.The design of local reward signals

is usually referred as thecredit assignmentproblem. So we begin by discussing the credit

assignment problem in multi-agent learning.

As discussed in previous chapter, stochastic games providea formal framework for

studying multi-agent learning algorithms. We will examinemulti-agent reinforcement

learning algorithms in this framework. We first review algorithms specifically targeted

to fully cooperative scenarios. As fully cooperative systems can be converted to non-

cooperative scenarios by using unequal-share credit assignment, we then also discuss multi-

agent learning in the general stochastic game framework.

Improving the suitability of multi-agent reinforcement learning to problems of practical

interest is an essential research step. Thescalability is a key challenge for multi-agent

reinforcement learning, which is also one of the main focuses of this thesis. In this chapter,

we will explore approaches to scaling up multi-agent learning to large systems.

50

This chapter focuses on the literatures of multi-agent reinforcement learning where

agents are concurrently learning. Other learning techniques for cooperative multi-agent

systems, such as evolutionary algorithms and centralized learning, are surveyed in [74].

3.1 Multi-Agent Credit Assignment

Reinforcement learning has the credit assignment problem in both single-agent and

multi-agent domains. In single-agent multi-step domains,the credit assignment problem

is concerned with how an action taken at a particular time step affects the final outcome.

This problem can be calledtemporal credit assignment. For example, if a player wins

a checker game, temporal credit assignment deals with how each move made during the

game contribute to her/his win. Many reinforcement learning algorithms have been derived

to assign proper credits for state-action pairs, includingQ-learning, Sarsa, and TD(λ) [117,

75, 98, 12, 108]. The goal of these algorithms is to have an agent’ learning converge to the

optimal policy.

In cooperative multi-agent settings, multiple agents are concurrently learning to opti-

mize the global performance. In addition to the temporal credit assignment problem, we

also need to deal with thestructural credit assignmentproblem, which determines how a

single agent’s actions contributes to the system performance. In order for a reinforcement

learning agent to learn properly in cooperative multi-agent domains, this credit assignment

problem needs to be resolved and the agent needs to receive the appropriate reinforcement.

As shown in [4], the temporal credit assignment problem in single-agent mutli-step set-

tings is equivalent with the structural credit assignment problem in multi-agent single-step

settings. This work also argues that it may be possible to view a multi-agent multi-step

problem as only a structural credit assignment.

One straightforward and simple solution to the credit assignment problem in coop-

erative multi-agent systems is to directly provide the global performance measure as the

reward signal for every learning agent in the system. In thisway, each learner optimizes its

51

performance, equivalently optimizing the global performance of the system. However, in

many practical large-scale cooperative systems, because of limited communication band-

width and computational resources, it is infeasible to calculate the global performance mea-

sure in a real-time fashion. Even when its calculation is possible, it still may not be desir-

able to use the global reward for multi-agent learning in many situations. If some learning

agents make major contributions to a cooperative task, it isusually helpful for improving

the global system performance to specially reward those learners for their actions or pun-

ish others for laziness. As argued in [120], using the globalreward signal does not scale

well to increasingly difficult problems because the learners do not have sufficient feedback

tailored to their own specific actions.

In contrast to using the global reward signal, local rewardscan be designed and used

to evaluate each agent’s performance solely based on its individual behavior. Using local

reward signals can discourage laziness and spur each agent to improve its individual perfor-

mance. The drawback of using local rewards is that greedy behaviors may develop, which

sometimes harms the cooperation among agents and degrades the global performance. As

shown by experiments in [9, 10], using local rewards can leadto faster learning rates,

but not necessarily to better system performance results than using the global reward. For

example, in one problem (foraging), using local rewards produces better results, while, in

another problem (soccer), using the global reward is better.

The work [62] argues that agents’ concurrent learning processes can be improved by

combining individual local reward signal with some social reward signals. One type of

social reward, calledobservational reinforcement, is obtained by observing other agents

and imitating their behaviors, which may help improve the overall team behavior by re-

producing rare behaviors. An agent additionally receives another type of social reward,

calledvicarious reinforcement, whenever other agents are directly rewarded. The purpose

of vicarious reinforcement is to spread individual rewardsto other agents, and thus bal-

ance between local and global rewards. The work shows that a weighted combination of

52

these social reward signals with individual local reward signal produces better global per-

formance results in a foraging application.

Another work [5] presents a learning technique, called “Q Updates with Immediate

Counterfactual Rewards learning” (QUICR-learning), which uses agent-specific rewards

that ensure fast convergence in multi-agent coordination domains. Rewards in QUICR-

learning are both heavily agent-sensitive, making the learning task easier, and aligned with

the system level goal, ensuring that agents receiving high rewards are helping the system

as a whole. QUICR-learning uses standard temporal difference methods but because of its

unique reward structure, provides significantly faster convergence than standard Q-learning

in large multi-agent systems

A different approach [33] is taken for credit assignment in cooperative multi-agent

learning. This approach assumes that the reward signal observed by each agent is a sum

of the agent’s direct contribution and some random Markov process that estimates the con-

tributions of teammates. The agent may therefore employ a Kalman filter to separate the

two components and compute the agent’s true contribution tothe global reward. The au-

thors show that this true contribution component provides abetter feedback for learning in

simple cooperative multi-agent domains.

This thesis deals with large-scale, complex cooperative multi-agent systems, where it is

usually infeasible or prohibitively expensive to calculate the global performance measure in

real-time. To trade off the local learning performance and the global system performance,

the reward signal used for each agent’s learning usually implicitly combines the local re-

ward and the social reward. Although this credit assignmentapproach may improve the

multi-agent learning performance, it can inadvertently create non-cooperative multi-agent

learning environments, where the dynamics of the learning is more challenging and com-

plex (as discussed in next section). In addition, this unequal-share credit assignment can

also create the problem of “tragedy of the commons”, that is,increasing the reward of an

agent may degrade the global performance, and does not solvethe scalability issue of multi-

53

agent learning. This thesis is intended to address these challenging issues of multi-agent

learning in complex cooperative multi-agent systems, as discussed in Chapter 6.

3.2 Multi-Agent Reinforcement Learning Algorithms

The central challenge for multi-agent learning is that eachlearner is adapting its behav-

iors in the context of other co-adapting learners. When applying single-agent learning to

stationary environments (e.g., MDP problems), the agent experiments with different poli-

cies by interacting with the environment until discoveringa globally optimal policy. In

dynamic environments, the agent may at best try to keep up with the changes in the en-

vironment and constantly track the shifting optimal behavior. One simplistic approach to

dealing with co-adaptation is to treat the other learners aspart of a dynamic environment

to which the given learner must adapt. This idea was used in early multi-agent learning

literature [84, 85, 132]. However, as agents concurrently learn, they modify their behav-

iors, which in turn can ruin other agents’ learned behaviors. As a result, the environment

becomes non-stationary from the perspective of individualagents, which violates the basic

assumptions behind most traditional machine learning techniques [82, 118]. For this rea-

son, entirely new multi-agent learning algorithms may be required to deal with this issues.

A framework is needed to provide a formal foundation for generating, analyzing, and

evaluating new multi-agent learning algorithms. As discussed in previous chapter, stochas-

tic games offers such a framework for studying multi-agent learning [55]. In stochastic

games, an important concept is that of Nash equilibrium, which is a joint strategy (one

strategy for each agent) where no agent has any rational incentive (in terms of better re-

ward) to unilaterally change its strategy away from the equilibrium. The formal analysis of

many multi-agent learning algorithms focuses on the convergence to a Nash equilibrium.

In the remaining of this section, we will first survey multi-agent learning in fully coop-

erative scenarios (i.e. team games or MMDP), where all agents receives the same global

reward signal (Section 3.2.1). In such cases, increasing one’s reward implies increasing

54

everybody else’s reward. Therefore, it is relatively straightforward to check that the multi-

agent learning approach has converged to the globally optimal Nash equilibrium. Although

this thesis focuses on multi-agent learning in cooperativemulti-agent systems, our MARL

paradigm advocates designing and using local reward signals for individual agents’ learn-

ing. By using local rewards, increasing the reward of an agent may not necessarily result

in increasing the reward of all its teammates. Such credit assignment can inadvertently

convert cooperative scenarios to non-cooperative ones. Therefore, we are also interested

in learning algorithms for general multi-agent settings. Section 3.2.2 covers multi-agent

learning in general-sum stochastic games, where the relationship among reward signals

received by learners is less clear.

3.2.1 Fully Cooperative Stochastic Games

In a fully cooperative stochastic game (or team games), the agents have the same reward

function and the learning goal is to maximize the common discounted return. If a central-

ized controller were available, the task would reduce to a multi-agent Markov decision

process (MMDP), the action space of which would be the joint action space of the stochas-

tic game. The Team Q-learning algorithm [57] assumes that the optimal joint actions are

unique (which is rarely the case). Then, if all the agents learn the common Q-function in

parallel with Q-learning, they can learn the optimal joint policy and maximize their return.

The Distributed Q-learning algorithm [51] solves the fullycooperative multi-agent

decision-making problem with limited computation. Each agent maintains a local policy

and a local Q-function, depending only on its own action. Thelocal Q-values are updated

only when the update leads to an increase in the Q-value. Thisensures that the local Q-value

always captures the maximum of the joint-action Q-values. By using this algorithm, the

local policies of the agents provably converge to an optimaljoint policies in deterministic

repeated games. The work [44, 45] points out possible flaws inthis distributed Q-learning

55

approach when dealing with stochastic environments, and present a modified exploration

strategy that improves cooperation among agents.

Joint Action Learners[27] (JAL) learn joint-action values and employ empirical models

of the other agents’ policies. They propose two benchmark games (climb and penalty) and

show that, using Q-learning, the convergence to global optimum is not always achieved in

these games even if each agent can immediately perceive the actions of all other agents in

the environment. They then develop several heuristics to increase the learner’s Q-values for

the actions with high likelihood of getting good rewards given the models. Brafman and

Tennenholtz [25] introduce a stochastic sampling technique that is guaranteed to converge

to optimal Nash equilibria. The algorithm is polynomial in the number of actions of the

agents, but it assumes a priori coordination of the agents’slearning processes: the agents

agree to a joint exploration phase of some length, then agreeto a joint exploitation phase

(where each agent settles on the behavior that yielded maximum reward).

Optimal Adaptive Learning (OAL) [116] is developed for multi-step team stochastic

games, which is guaranteed to converge to optimal Nash equilibria if there are a finite

number of actions and states. In OAL, virtual games are constructed on top of each stage

game of the stochastic game. In these virtual games, optimaljoint actions are rewarded with

1, and the rest of the joint actions with 0. An algorithm is introduced that, by biasing the

agent towards recently selected optimal actions, guarantees convergence to a coordinated

optimal joint action for the virtual game, and therefore to acoordinated joint action for

the original stage game. This is the first algorithm guaranteed to find the global optimum

in fully cooperative stochastic games. Unfortunately, theoptimality guarantee comes at a

cost in scalability: the number of virtual games that need tobe solved is exponential in the

number of agents.

56

3.2.2 General-Sum Stochastic Games

There are two broad classes of learning algorithms with verydifferent explicit goals:

equilibrium learners and best-response learners. Equilibrium learners explicitly seek to es-

timate and converge to their policy in one of the game’s Nash equilibria. Best-response

learners seek to directly learn and play a best-response to the other players’ policies.

Although not explicitly and directly seeking to converge toNash equilibria, many best-

response learning techniques are shown to converge to Nash equilibria in some limited

settings. In this section, we review both classes of learning algorithms respectively.

Equilibrium Learners

There has been a line of research over the past decade in regards to the development of

equilibrium learning algorithms, as well as determining their conditions for convergence.

The Minimax-Q [55] algorithm extends the traditional Q-Learning algorithm for MDPs to

zero-sum stochastic games. This algorithm provably converges to the stochastic game’s

equilibrium solution, assuming the other agent executes all of its actions infinitely often.

Nash-Q[38, 21, 39] extends the Minimax-Q algorithm to two-player general-sum stochas-

tic games. The extension requires that each agent maintain Qvalues for all of the agents.

Also, the linear programming solution used to find the equilibrium of zero-sum games is

replaced with the quadratic programming solution for finding an equilibrium in two-player

general-sum games. This algorithm is the first to address thecomplex problem of general-

sum stochastic games. But the algorithm requires a number ofvery limiting assumptions.

With the Nash-Q algorithm, agents do not learn just a single table of Q-values, but also

tables for all other agents. This extra information is used later to approximate the actions

of the other agents. An alternative approach [69] is proposed, where agents approximate

the policies, rather than the tables of Q-values, of the other agents.

Friend-or-Foe-Q (FFQ) [56] is an equilibrium learner that extends Minimax-Q to in-

clude a small class of general-sum games. Motivated by the assumptions of Nash-Q, which

57

required that either the game be effectively zero-sum, so each intermediate game has a

saddle point equilibrium, or the game was a team game, so eachintermediate game has a

global optimum. This extension handles both of these classes of games, as well as others,

that do not by themselves fit under the Nash-Q assumptions. Like Minimax-Q, FFQ is

guaranteed to converge to their policy in an equilibrium forthe stochastic game.

Another equilibrium learning technique is Correlated-Q (CE-Q) [29] that seeks to learn

to play according to an equilibrium by using the broader class of correlated equilibria. Nash

equilibria are independent stochastic distributions overplayer’s actions. Correlated equi-

libria allow for stochastic distributions over joint actions, where players do no randomize

independently. CE-Q is more efficient than Nash-Q, since it does not require the complex

quadratic programming Nash equilibrium solver.

The final equilibrium learning technique is AWESOME [28] that uses fictitious play, but

monitors the other agents and, when it concludes that they are nonstationary, switches from

the best-response in fictitious play to a centrally precomputed Nash equilibrium (hence the

name: Adapt When Everyone is Stationary, Otherwise Move to Equilibrium). In repeated

games, AWESOME is provably convergent.

Best-Response Learners

Best-response learning algorithms do not explicitly consider equilibria. Instead, they

simply attempt to learn a best-response to the other player’s current policies. A major con-

sideration for looking at best-response learning is that agents are not always fully rational.

Playing an equilibrium policy is only sensible when the other agents also play according to

the equilibrium. When considering agents with limited perception, they may not be capa-

ble of learning or playing the equilibrium. Best-response algorithms have the possibility of

both coping with limited teammates as well as exploiting limited opponents.

Q-Learning [117] is a single-agent learning algorithm specifically designed to find opti-

mal policies in MDPs. In spite of its original intent, it has been widely used for multi-agent

58

learning [101, 86, 82, 27]. However, Q-learning traditionally cannot learn or play stochas-

tic policies. This prevents Q-learners from converging to equilibria solutions for games

only having mixed equilibria (e.g., zero-sum games). A particular value-based learning

algorithm, called individual Q-learning [52], which extends Q-learning and uses stochas-

tic approximation, can lead strategies to converging to Nash distributions almost surely

in 2-player zero-sum games and 2-player team games. Evolutionary game theory has been

linked to Q-learning and provides useful insights into the learning dynamics [19, 112, 111].

A learning algorithm, called Frequency Adjusted Q-learning (FAQ-learning), is proposed

as a variation of Q-learning that complies with the prediction of the evolutionary model de-

rived in [112, 111]. The convergence of FAQ-learning is analyzed in three types of games:

Matching pennies, Prisoners’ Dilemma and Battle of Sexes [42].

Another best-response learning algorithm isInfinitesimal Gradient Ascent (IGA)[92],

which has one of the first theoretical results on convergencefor a gradient-based multi-

agent learning algorithm. The authors analyze the gradientascent algorithm in two-player,

two-action, general-sum repeated games by examining the dynamics of the strategies in the

case of an infinitesimal step size. Its main conclusion is that, if both players use IGA, their

average payoffs will converge in the limit to the expected payoffs for some Nash equilib-

rium. However, its notion of convergence is still weak. It isbecause, although the players’

average payoffs converges, their strategies may not converge to a Nash equilibrium. As a

result, their expected payoffs may vary greatly for different periods. To address this con-

vergence problem, the work [23] introduce the WoLF principle (“Win or Learn Fast”) to

IGA and propose an algorithm calledWoLF-IGA, which varies the learning rate from small

and cautious values when winning, to large and aggressive values when losing to the other

agents. The WoLF-IGA algorithm guarantees Nash convergence in two-player, two-action,

general-sum repeated games.

The work [133] looks at gradient ascent using the evaluationcriterion of regret and ex-

tends IGA beyond two-player, two-action games. A new algorithm,GIGA (Generalized In-

59

finitesimal Gradient Ascent), is proposed, which updates strategies using an unconstrained

gradient, and then projects the resulting strategy vector back into the simplex of legal prob-

ability distributions. It is proved that GIGA has no-regretfor online convex programming,

a superclass containing normal-form games. Since GIGA is identical to IGA in two-player,

two-action games, GIGA also has the weak form of convergencein this subclass of games.

GIGA-WoLF [22] introduces the WoLF principle into GIGA to achieve GIGA’s no-regret

result and part of WoLF-IGA’s convergence result. Another multi-agent learning algorithm

is Weighted Policy Learner (WPL)[3], which uses a similar idea to the WoLF principle.

WPL empirically outperforms both WoLF-IGA and GIGA-WoLF. Chapter 5 will present

two multi-agent learning algorithms, one possessing the same convergence guarantee as

WoLF-IGA, and another empirically outperforms state-of-the-art multi-agent learning al-

gorithms.

3.3 Scaling up Multi-Agent Learning

Scalability is a problem for many learning techniques, but especially so for multi-agent

learning. The dimensionality of the search space grows rapidly with the number and com-

plexity of agent behaviors, the number of agents involved, and the size of the network of

interactions between them. As shown in [129], even with onlyusing local observations, the

policy space still remains large for many complex applications. In addition, with unequal-

share credit assignment, increasing the reward of an agent may not necessarily result in the

system performance, which may generate the “tragedy of the commons problem”, that is,

greedy policies at agents can harm the global performance. With additional factors in real-

istic settings, such as a non-stationary environment, communication delay between agents,

and partial observability, multi-agent learning in large-scale complex cooperative systems

can be very slow, have inferior quality, and even diverge.

To improve the performance of multi-agent learning in complex systems, there several

classes of approaches has been proposed. One kind of approaches, calledreward shaping,

60

have been proposed, which gradually changes the reward function from favoring easier

behaviors to favoring more complex ones based on those easy behaviors. The work [10]

uses a shaped reinforcement reward function (earlier suggested by [63]) which depends

on the number of partial steps fulfilled towards accomplishing the joint task. The author

shows that using a shaped reward leads to similar results to using a local reward, but in a

significantly shorter time.

One approach is to reduce the policy search space. TPOT-RL [96] reduced the state

space by mapping states onto a limited number of action-dependent features. Another tech-

nique is hierarchical MARL [59], where the explicit task structure was used to restrict the

space of policies. Each agent learned joint abstract action-values by communicating with

others only the state of high-level subtasks, rather than primitive action they may perform.

Learning techniques [31, 46] based on coordination graphs exploit the dependency struc-

ture between agents to decompose the global payoff functioninto a sum of local terms. The

computation of the global value function is distributed by passing messages. However, this

message passing results in heavy communication overhead for each value function update,

which is not scalable for large agent networks.

Another approach is to employ pre-specified heuristics to guide the policy search.

Heuristically Accelerated Minimax-Q (HAMMQ) [17] incorporated heuristics into the Minimax-

Q algorithm to speed up its convergence rate. HAMMQ shared the convergence property

with Minimax-Q [55]. However, HAMMQ was intended for use only in a two-agent con-

figuration. Its authors used hand-coded domain heuristics,which did not capture the dy-

namics of other learning agents. Another work [102] used both local and global heuristics

to accelerate the learning process in a decentralized multi-robot system. The local heuristic

was derived from local information of an agent (i.e., robot), while the global heuristic was

derived from the global data obtained from other agents. Theglobal data needed to be ex-

actly the same among agents. This consistency was maintained by broadcasting messages

among all agents, which incurred heavy communication overhead and did not scale well.

61

In addition, this work was developed specifically for the multi-robot patrolling problem.

A reinforcement learning based algorithm [67] was proposedfor independent agents to

learn both individual policies and when and how to coordinate. This algorithm exploited

sparse interaction between agents to minimize the couplingof the learning processes for

the different agents. However, the algorithm was describedfor only two-agent settings.

Multi-agent reinforcement learning (MARL) faces theproblem of reinvention, that is,

as agents are treated as separate subproblems, they usuallyseparately discover and rep-

resent all aspects of the solution, even though optimally there may be a high degree of

overlapping information among the policies of agents. Several techniques have been pro-

posed to avoid this reinvention problem in order to improve the MARL performance. One

technique is to share information among cooperative learning agents [101]. Several ways

of sharing information have been studied: 1) sharing sensation, 2) sharing episodes, and 3)

sharing learned policies. The author shows that (a) additional sensation from another agent

is beneficial if it can be used efficiently, (b) sharing learned policies or episodes among

agents speeds up learning at the cost of communication, and (c) for joint tasks, agents en-

gaging in partnership can significantly outperform independent agents although they may

learn slowly in the beginning. Another technique, calledimitation [79], allows an agent to

learn how to act well (perhaps optimally) by passively observing the actions of cooperative

teachers or other more experienced agents in its environment. An alternative evolutionary

approach approach, calledhypercube-based neuroevolution of augmenting topologies(Hy-

perNEAT), is proposed to address this reinvention problem. HyperNEAT encodes the team

as a pattern of related policies rather than as a set of individual agents. To capture this

pattern, a policy geometry is introduced to describe the relationship between each agent’s

policy and its canonical geometric position within the team. Because policy geometry can

encode variations of a shared skill across all of the policies it represents, the problem of

reinvention is avoided. Furthermore, because the policy geometry of a particular team can

62

be sampled at any resolution, it acts as a heuristic for generating policies for teams of any

size, producing a powerful new capability for multiagent learning.

3.4 Summary

Multi-agent learning is still a new field and most of its research challenges are still open

to explore. With multi-agent learning, agents are concurrently learning their policies and

adapting to each other. This co-adaptation of learners results in a non-stationary environ-

ment for an individual learning agent, which is a unique challenge not normally found in

single-agent learning. In Chapter 5, we will present new multi-agent learning algorithms

that are intended to address this challenge.

Unequal credit assignment can convert an ordinary cooperative scenario into a general-

sum or non-cooperative scenario. Most state-of-the-art multi-agent learning algorithms

focus on whether they converge or not to an equilibrium, and not on which equilibrium

they converge to. As a result, in many cases, the learning mayconverge to inferior equilib-

ria but not optima. In addition, scalability is still a key challenge for multi-agent systems to

be applied to practical problems. Many state-of-the-art techniques to speeding up MARL

are either restricted to specific domains or not scalable in large agent networks. In Chap-

ter 6 and 7, we will present a supervision framework that employs low-overhead organiza-

tional control to coordinate decentralized learning, which improve multi-agent reinforce-

ment learning’s speed, quality, and likelihood of convergence in complex DEC-POMDP

problems. Some techniques, such as TPOT-RL, that reduce thestate space can be used

together with our proposed framework for further speeding up MARL.

63

Part II

MULTI-AGENT LEARNING
ALGORITHMS

CHAPTER 4

A MULTI-AGENT LEARNING APPROACH TO ONLINE
DISTRIBUTED RESOURCE ALLOCATION

Learning is a key component of multi-agent systems (MAS), which allows an agent to

adapt to the dynamics of other agents and the environment andimproves the agent perfor-

mance or the system performance (for cooperative MAS). The main purpose of this thesis is

to develop MARL techniques that can scale up and be more easily applied to large complex

MAS applications. This chapter is intended to demonstrate applicability and effectiveness

of multi-agent learning for complex cooperative multi-agent domains where each agent has

a limited view and can not access to the global reward signal in a real-time manner. Mean-

while, we also would like to investigate outstanding issuesof applying MARL in complex

applications. We design a gradient-based multi-agent learning algorithm that extends Q-

learning to learn stochastic policies and apply it to optimize distributed resource allocation

problem in cloud computing. The work of this chapter was published in IJCAI 2009 [129].

4.1 Introduction

As “Software as a service” becomes a popular business model,it is becoming increas-

ingly difficult to build large cloud computing infrastructures that can host effectively the

wide spread use of such services.Shared clustersbuilt using commodity PCs or worksta-

tions offer a cost-effective solution for constructing such infrastructures. Unlike a dedicated

cluster, where each computing node is dedicated to a single application, a shared cluster

can run the number of applications significantly larger thanthe number of nodes, necessi-

tating resource sharing among applications. Resource management approaches developed

for shared clusters [8, 7, 113] are centralized, which limits the cluster scale.

65

To build larger shared computing infrastructures, one common model is to organize a set

of shared clusters into a network and enables resource sharing across shared clusters. The

resource allocation decision is now distributed to each shared cluster. Each cluster still uses

a cluster-wide technique for managing its local resources.However, as task (also referred

to applications services) allocation requests vary acrossclusters, an cluster may need to

dynamically decide what tasks to allocated locally and where to forward unallocated tasks

to cooperatively optimize the global utility of the whole system. To achieve scalability,

each cluster has limited number of neighboring clusters that it interacts with.

We describe this decision problem as a distributed sequential resource allocation prob-

lem (DSRAP). We consider DSRAP is a novel and practical application for multi-agent

learning. In DSRAP, each agent (referred to a cluster) has only a partial view of the whole

system and does not have access to the system-level utility (because it is not directly mea-

surable in real-time). All agents make decisions concurrently and autonomously. Each

agent’s decision depends not only on its local state but alsoon other agents’ states and

policies.

We use a multi-agent learning algorithm, called Fair ActionLearning (FAL), which

is a approximate variant of the Generalized Infinitesimal Gradient Ascent (GIGA) algo-

rithm [133], for each agent to learn local decision policies. FAL is intended for limited ob-

servable environments and only requires the observation ofthe reward signals. To simplify

the learning, we decomposes each agent’s decisions into twoconnected learning problems:

local allocation problem(deciding what tasks to be allocated locally) andtask routing

problem(deciding where to forwarded a task). To avoid poor initial policies during learn-

ing, heuristic strategies are developed to speed up the learning. The learning approach is

tested in a network of simulated clusters and compared with acentralized greedy allocation

approach, which is optimal in some cases. Experimental results show that our multi-agent

learning works effectively and even outperforms the centralized approach in some cases.

Although we discuss our approach in this particular problem, it can be more generally use-

66

ful in other online resource allocation problems, for example, when shared resources are

storage devices in distributed file systems, documents in peer-to-peer information retrieval,

or energy in sensor networks.

The rest of this chapter is structured as follows. Section 4.2 defines DSRAP. Section 4.3

introduces the Fair Action Learner algorithm. Section 4.4 presents decision-making pro-

cesses of each agent and learning models for both decisions.Section 4.5 describe experi-

ment design and analyzes experimental results. Related work is presented in Section 4.6.

Finally, Section 4.7 concludes our work.

4.2 Problem Description

The runtime model of DSRAP is described as follows. Each agent receives tasks from

either the external environment or a neighbor. At each time step, an agent makes decisions

on what tasks are allocated locally and to which neighbors the tasks not allocated locally

should be forwarded. Due to the task transfer time cost, there is communication delay

between two agents. To reduce the communication overhead, the number of tasks an agent

can transfer at each time step is limited. To allocated a task, an agent should have available

resources to satisfy its resource requirements. When a taskis allocated locally, the agent

gains utility at each time step, which is specified by the taskutility rate. If a task can not

be allocated within its maximum waiting time, it will be removed from the system. If an

allocated task is finished, all resources it occupies will befreed and available for future

tasks. The main goal of DSRAP is to derive decision policies for each agent that maximize

the average utility rate (AUR) of the whole system.

We denote a DSRAP with a tuple〈C ,A, T ,B,R〉, where

• C = {C1, . . . , Cm} is a set of shared clusters.

• A = {aij} ∈ ℜm×m is the adjacent matrix of clusters and each elementaij is the task

transfer time between clusterCi and clusterCj.

67

• T = {t1, . . . , tl} is a set of task types.

• B = {Dij} is the task arrival pattern andDij is the arrival distribution of tasks of

typetj at clusterCi.

• R = {R1, . . . , Rq}is a set of resource types (e.g., CPU and network) that each cluster

provides.

Each clusterCi = {ni1, ni2, . . . , nik} contains a set of computing nodes. Each comput-

ing nodenij has a set of resources, represented as{〈R1, vij1〉, . . . , 〈Rq, vijq〉}, whereRh

(h = 1, . . . q) is the resource type andvijh ∈ ℜ is the capacity of resourceRh on nodenij .

We assume there exist standards that quantify each type of resource. For example, we can

quantify a fast CPU as150 and a slow one with a half speed as75.

A task type characterizes a set of tasks. A task typeti is also denoted as a tuple

〈Ds
i , D

u
i , Dw

i , Dd1

i , . . . , D
dq

i 〉, where

• Ds
i is the task service time distribution

• Du
i is the task utility rate (utility per time step) distribution

• Dw
i is the distribution of the task maximum waiting time before being allocated

• D
dj

i is the demand distribution of resourcej of a task.

A task is denoted as a tuple〈t, u, w, d1, . . . , dq〉, where

• t is the task type.

• u is the utility rate of the task.

• w is the maximum waiting time before being allocated.

• di is the demand of resourcei = 1, . . . , q.

68

Based on the model of DSRAP developed above, the average utility rate of the whole

system to be maximized can be defined as following:

AUR = lim
n→∞

∑n
i=1

∑m
j=1

∑

x∈Ti(Cj)
u(x)

n
(4.1)

whereTi(Cj) is the set of tasks that allocated to clusterCj at timei andu(x) is the utility

of taskx. Note that, due to its partial view of the system, each individual cluster can not

observe the system’s AUR.

4.3 Fair Action Learning Algorithm

In the single-agent setting, reinforcement learning algorithms, such as Q-learning, learn

optimal value functions and optimal policies in MDP environments when lookup tables

are used to represent the state-action value function. However, in the multi-agent setting,

due to the non-stationary environment (all agents are simultaneously learning their own

policies), the usual conditions for single-agent RL algorithms’ convergence to an optimal

policy do not necessarily hold [27]. As a result, the learning of agents may diverge due to

lack of synchronization. Several multi-agent reinforcement learning (MARL) algorithms

have been developed to address this issue [133, 22], with convergence guarantee in specific

classes of games with two agents.

Algorithm 1 : Fair Action Learning (FAL) Algorithm

begin1

r ← the cost for actiona at states;2

update Q-value function with< s, a, r >;3

r̄ ← average reward=
∑

a∈A π(s, a)Q(s, a);4

foreachactiona ∈ A do5

∆(s, a)← ζ(Q(s, a) + r̄) ;6

end7

π(s)← limit(π(s) + ∆(s));8

end9

69

To address DSRAP, we propose a multi-agent reinforcement learning algorithm, called

Fair Action Learning (FAL). The FAL algorithm is a direct policy search technique and a

variant of the GIGA algorithm [133] that approximates the policy gradient of each state-

action pair with the difference of the expected Q-value on that state and its Q-value. Al-

gorithm 1 describes its policy update rule, whereζ is the policy learning rate. FAL learns

stochastic policies. As argued in [94], stochastic policies can work better than deterministic

policies in partially observable environments (e.g., DSRAP), if both are limited to act based

on the current percept. To improve the expected value for each state, FAL will increase the

probability of actions that receive an expected reward above the current average. Therefore

FAL will converge to a policy where, for each state, all actions receive the same expected

reward and are fairly treated. (It is possible that FAL converges to a deterministic policy

when an action is always more favorable than other actions).In a multi-agent setting, this

property will help agents to converge to an equilibrium.

To normalizeπ(s) such that it sums to 1, thelimit function from GIGA [133] is applied

with minor modifications so that every action is explored with minimum probabilityǫ:

π(s) = limit(π(s)) = argminx:valid(x)|π(s)− x|

i.e., limit(π(s)) returns a valid policy that is closest toπ(s).

4.4 Learning Distributed Resource Allocation

Algorithm 2 shows the general decision-making process of each agent, which repeats at

each time step. This algorithm uses two functions:selectAndAllocateandchooseANeighb-

orAndForward. The first function selects and allocates a subset of received tasks to its

local cluster to maximize its local utility. As the global utility is the sum of all local utili-

ties, optimizing this function can potentially improve thesystem performance. The second

function chooses a neighbor and forwards an unallocated task to maximize the allocation

70

Algorithm 2 : General Decision-Making Algorithm

begin1

TASKS← set of tasks received in current time cycle;2

ALLOCATED← selectAndAllocate(TASKS);3

TASKS← TASKS\ ALLOCATED ;4

foreach taskt ∈ TASKSdo5

chooseANeighborAndForward(t) ;6

end7

end8

probability of the task. This function aims to route tasks tounsaturated agents and balance

the task load in the system.

4.4.1 Local Allocation Decision

Algorithm 3 : selectAndAllocate(TASKS)

begin1

ALLOCABLE ← getAllocable(TASKS);2

ALLOCATED← ∅ ;3

while ALLOCABLE6= ∅ do4

ALLOCABLE ← ALLOCABLE ∪ {VOID} ;5

update current states;6

t← task selected based on policyπ1(s, ·);7

if t = VOID then8

ALLOCABLE ← ∅;9

else10

allocate(t);11

ALLOCATED ← ALLOCATED ∪{t} ;12

TASKS← TASKS\{t} ;13

ALLOCABLE ← getAllocable(TASKS);14

learn(s, t);15

end16

end17

return ALLOCATED;18

end19

Algorithm 3 shows the local allocation decision-making process. This algorithm incre-

mentally selects and allocate tasks locally. It uses three functions:getAllocable, allocate,

and learn. FunctiongetAllocablefilters tasksbased on current local resource availability

71

and returns allocable tasks. Functionallocateis responsible for allocating resources to the

task and update local resource availability information. Function learn updates its allo-

cation decision policy for selecting a task. Here we useπ1 to denote the local allocation

policy. VOID is a unique, fake task with no resource requirements and zeroutility rate.

Selecting this task indicates that the process of selectinga subset of tasks to be allocated

locally is finished.

Now we define the state space, the action space, and the rewardfunction for learning

this decision policy. A decision states = 〈st, sc〉 consists of two feature vectorsst and

sc, describing the task set to be allocated and availability ofvarious resources in a cluster

respectively. As the task type of a task approximately represents information about the

task, we use task types to characterize the task set to be allocated. The feature vector

st = 〈y1, y2, . . . , ym〉, where each featureyi corresponds to task typei andm is the number

of task types. If the task set contains a task with typei, thenyi = 1. To representsc, we first

categorize availability of each resource into multiple levels and then use combinations of

levels of different resources as features. The value of a feature is the number of computing

nodes in the cluster that have corresponding availability level for each resource.

An action of this decision is to select a task to allocate. So each taskt corresponds to an

action. In a real environment, it is not frequent to see two tasks that are exactly the same.

To reduce the action space, the type of the task is used to approximately represent the task

itself. Therefore, the action set is mapped to the set of tasktypes. Then the binary feature

vectorst of an abstract states determines available actions for states. It is possible that one

task set to be allocated may have several tasks with the same type. When such a task type is

selected, the task of this type with the greatest utility rate will selected and allocated. The

reward for allocating taskt is the utility rate associated witht.

An agent receives tasks from both the external environment and its neighbors. Other

agents’ decision policies will affect task arrivals at the agent. As all agents concurrently

learn their policies, the learning environment of each agent becomes non-stationary. We use

72

FAL algorithm to learn local allocation decision policiesπ1(s, a). Asπ1(s, a) is stochastic,

the following rule is used to update Q-value function:

Q(sn, an) ← (1− α)Q(sn, an) +

α[rn + γ
∑

a π(sn+1, a)Q(sn+1, a)]

This new update rule is just like that of Q-learning except that instead of the maximum over

next state-action pair it uses the expected value under the current policy.

Accelerating the Learning Process

Even when using the approximated state space and action space developed above, the

state-action space of each agent is still extremely large. Assume that a cluster hasn com-

puting nodes,m types of resources, and receivesk types of tasks and availability of each

resource is discretized intod levels, the size of the state-action space isk2kndm

. In ad-

dition, any pure knowledge-free reinforcement learning exploration strategies could entail

running arbitrarily poor initial policies, which should beavoided in the practical system.

To address those issues, we proposed several heuristics to speed up learning. Policies are

initialized with a greedy allocation algorithm, which allocates all tasks in an decreasing

order of their utilities if resources permit. The learning is online and theǫ-greedy strategy

is used to ensure that each action will be explored with a minimum rate. To avoid unwanted

system performance, we set a utilization threshold for eachcluster. If the utilization of ev-

ery resource is below this threshold, then the manager stopsǫ-greedy exploration and uses

the greedy algorithm for exploration. In addition, rejecting too many tasks will degrade the

system performance and thus we also limit the exploration rate of selectingVOID task.

4.4.2 Task Routing Decision

Task routing addresses the question: to which neighbor should an agent forward an

unallocated task to get it to a unsaturated cluster before itexpires? As each agent interacts

with a limited number of neighbors, it may not know where are unsaturated clusters that

73

can be multiple hops away from it. An agent can learn to route tasks via interacting with its

neighbors. The learning objective for task routing is to maximize the probability of each

task to be allocated in the system.

The statesx is defined by the characteristics of the taskx that an agent is forwarding.

More specifically,sx can be represented by a feature vector〈tx, wx〉, wheretx is the type

of the taskx andwx is the remaining waiting time of the taskx. An actionj corresponds

to choosing neighborj for forwarding a task. The value functionQi(sx, j) returns the

expected probability that the taskx will be allocated if an agenti forwards it to its neighbor

j.

Upon sending a task to agentj, agenti immediately gets the reward singler(sx, j)

from agentj. The rewardr(〈tx, wx〉, j) is the estimated probability that the taskx will be

allocated based on agentj’s both policies for local allocation and task routing:

r(sx, j) = pj(x) + (1− pj(x))
∑

k∈neighbors ofj

π2j(s
′
x, k) ∗Qj(s

′
x, k)

wherepj(x) is the probability that agentj will allocate taskx locally,π2j is the task routing

policy of agentj, ands′x is the state where agentj makes a decision for forwarding taskx.

If the statesx = 〈tx, wx〉, thens′x = 〈tx, wx−aij〉, whereaij is the time cost for transferring

a task between agenti and agentj.

The probabilitypj(x) depends on agentj’s allocation policyπ1j :

pj(x) =
∑

st

q(〈sc, st〉|t)π1j(〈sc, st〉, t)

where t is the type of taskx, sc is the current feature vector of resource availability,

q(〈sc, st〉|t) is the probability that agentj is on state〈sc, st〉 when it allocates tasks with

typet, andπ1j is the local allocation policy of agentj. The probabilityq(〈sc, st〉|t) can be

directly estimated during the learning.

74

Greedy FDL SDL BDL
Local Best-first Learning1 Best-first Learning1

Routing Random Random Learning2 Learning2

Table 4.1.Distributed resource allocation approaches

The simple version of Q-learning algorithm is used to updateagenti’s Q-value function:

Qi(sx, j) = (1− α) ∗Qi(sx, j) + α ∗ r(xs, j)

whereα is a learning rate (usually 0.5 in our experiments). With modified Q-value function,

the FAL algorithm updates the task routing policyπ2i.

To speed up the learning, we use an idea, calledbackward exploration[50], of using

information about the traversed path for exploration in thereverse direction. When agent

i transfer taskx to its neighborj, the message that contains passx can take along reward

informationr(sx, i) of agenti for allocatingx. This reward information can be used by

agentj to update its own estimate pertaining toi. Later when agentj has to make a

decision, it has the updated Q-value fori. As a result, backward exploration speeds up the

learning.

4.5 Experiments

4.5.1 Experiment Design

To evaluate the performance of learning models developed above, we compared five

resource allocation approaches:greedy allocation, first-decision (local allocation) learn-

ing (FDL), second-decision (task routing) learning(SDL), both-decision learning(BDL),

andcentralized allocation. The first four approaches are distributed techniques. As shown

in Table 4.1, they use different algorithms for each decision-making. Thebest-firstalgo-

rithm, at each time step, first sorts all received tasks in a descending order of utility rate and

then uses the best-fit algorithm in Sharc [113] to allocate tasks one by one.Learning1 and

75

1 2 3 4 5 6 7 8

52 56 88 64 44 80 60 76

16 15 14 13 12 11 10 9

32 72 52 84 64 76 60 64

<40, 4, 20, 8> <28, 4, 16, 4>

<28, 24, 8, 6> <32, 16, 4, 8>

Figure 4.1.The network topology with 16 clusters

Learning2 respectively refer to the learning algorithms we developedfor local allocation

and task routing. Therandomalgorithm for task routing picks a random neighbor to for-

ward an unallocated task. Thecentralized allocationapproach has only one manager that

fully controls all computing nodes and usesbest-firstalgorithm to directly allocate tasks to

resources without any routing.

We have tested approaches on several network topologies with 2, 4, 8, and 16 clusters,

all of which show similar results. Here we present detailed results for a network topology

with 16 clusters pictured in Figure 4.1, each of which uses Sharc to manage its local re-

sources. The number outside a circle represents the number of computing nodes of that

cluster. The CPU capacity and network capacity vary on different computing nodes, whose

range is in[50, 150].

Our experiments use four types of tasks:ordinary, IO-intense, compute-intense, and

demanding. Their feature vectors are respectively〈20, 1, 9, 8〉, 〈35, 6, 15, 48〉, 〈30, 5, 45, 8〉

and〈50, 25, 47, 43〉, each of which shows the mean of service time, utility rate, CPU de-

mand, and network demand. All tasks have waiting timew = 10. The service time is under

exponential distribution and the rest is under Poisson distribution. Note that the more de-

manding tasks usually have much higher utility rates.

Only four clusters, shaded in Figure 4.1, receive tasks fromexternal environment. We

tested two different task loads:heavyand light. The vector besides each shaded node

76

Figure 4.2. Utility rate under light task load

shows, under heavy load, the average number of tasks of four types arriving on that node.

Under light task loads, these average numbers are half of those of heavy task loads. Task

arrivals of each type on each cluster are under a Poisson distribution. Communication

limitation for each cluster is40 tasks per time step.

In our experiments, availability of each resource is categorized into three levels. All

performance measures shown below are computed every 5000 time steps. Results are then

averaged over 10 simulation runs and the deviation is computed across the runs.

4.5.2 Results & Discussions

Figure 4.2 shows utility rate trends of the whole cluster network as it runs with dif-

ferent approaches in a lightly loaded environment. The curved lines of FDL, SDL, and

BDL demonstrate that local allocation learning, task routing learning and their combina-

tion monotonically improve system performance. Under light load where the demand for

resources is less than the supply, the best solution is to allocate all received tasks within the

system. In such a setting, the centralized allocation approach generates the optimal solu-

tion. For distributed allocation approaches, how to route tasks and balance the loads across

clusters becomes very important. From Figure 4.2, it can be seen that the performance of

SDL and BDL is close to the optimal approach and much better than FDL and the greedy

approach. So learning task routing policy works effectively.

77

Figure 4.3.Utility rate under heavy task load

When task loads are well-balanced across clusters, resources of each cluster usually

can meet tasks’ demand and the best-first algorithm is almostoptimal for local allocation

decisions. In some sense, the similar performance between SDL and BDL verifies the ef-

fectiveness of learning local allocation policies. However, when task loads are not well

distributed across the clusters, some clusters received more tasks than their capacity. In

such a situation, the best-first algorithm will not be optimal, because it does not take into

account future task arrival patterns in its current decisions. In contrast, the learning ap-

proach implicitly estimates future task arrival patterns and give up some tasks with low

utilities and reserve resources for future tasks with high utilities. Therefore, FDL will out-

performs the greedy algorithm.

Figure 4.3 show utility rate trends of the cluster network under the heavy load. Most

analysis results for the lightly loaded case also holds in the heavily loaded case. In this

more complicated case, one significant observation is that BDL outperforms the centralized

allocation approach. Under the heavy load, the overall demand for resources exceeds their

supply by the whole cluster network. Without considering future task arrivals, the best-first

centralized allocation approach is not optimal in such a situation. On the other hand, the

learning approach implicitly takes account of future tasksfor making current decisions and

can work better than the best-first algorithm, which is verified by the performance of FDL

and the greedy approach. Combined with effective learned routing policies, the advantage

78

Approaches Utility CPU Network Hops
Greedy 4900± 28 0.62± 0.00 0.60± 0.00 1.80± 0.01
FDL 5281± 41 0.60± 0.00 0.58± 0.00 3.88± 0.04
SDL 5851± 37 0.74± 0.00 0.71± 0.00 1.50± 0.02
BDL 5857± 39 0.70± 0.00 0.67± 0.00 4.30± 0.06

Centralized 6038± 47 0.77± 0.00 0.74± 0.00 0.00± 0.00

Table 4.2.Performance with light load

Approaches Utility CPU Network Hops
Greedy 6364± 30 0.79± 0.00 0.76± 0.00 2.31± 0.01
FDL 7249± 29 0.71± 0.00 0.69± 0.00 4.33± 0.06
SDL 7273± 27 0.92± 0.00 0.89± 0.00 2.13± 0.01
BDL 8719± 49 0.87± 0.00 0.85± 0.00 5.33± 0.05

Centralized 7700± 33 0.95± 0.00 0.93± 0.00 0.00± 0.00

Table 4.3.Performance with heavy load

of learning local allocation offsets disadvantages due to partial information and distributed

resource control in distributed approaches, which allows BDL to performs better than the

centralized allocation approach.

Table 4.2 and 4.3 respectively summarize the performance measures (including utility

rates, CPU utilization, network utilization, and task routing hops) of different approaches

under light and heavy load during the last 5000 time period ofsimulations. Under light

load, although BDL performs very well in a distributed way, the difference between its

utility rate and the optimal one (generated by the centralized approach) is still noticeable,

which is around3%. Several factors contribute to this gap. First, due to partial observation,

distributed learned routing policies can not be perfect. Inaddition, the communication

of each agent is limited. As a result, some tasks are not allocated before their deadline.

Second, to reduce the policy search space, both learning models use both approximate

state space and action space, which introduces further uncertainty that has the effect of

decreased performance. We tested more accurate models, such as discretizing availability

of each resource into more levels and using more task features in addition to the type task

79

to represent actions. Although experiment results are slightly better, the learning converges

much slower and has poor policies for a long period. Third, the learning never stops its

exploration.

Note that BDL has both lower CPU and network utilization thanSDL, although it per-

forms better. This is because, with a learned local allocation policy, an agent is willing

to give up tasks with low utility and reserve resources for future high-utility tasks, which

causes resources to be idle for a higher percentage of the time. This reason also explains

that the greedy approach and SDL have less hops per task than both FDL and BDL. The

hopsdescribes the average number times that a task has been transfered before being allo-

cated. The giving-up behavior causes more tasks to be forwarding in the system, especially

under heavy load.

4.6 Related Work

Several distributed scheduling algorithms based on heuristics are developed for allocat-

ing tasks with deadlines and resource requirements in [80].Unlike our approach, both their

basis algorithms,focused address algorithmandbidding algorithm, assume each agent can

interact with all other agents and request resource information from them in a real-time

manner. As a result, these algorithms have potential scalability issues.

A different resource allocation model is formulated in [83], which assumes a strict sep-

aration between agents and resources. Jobs arrive at agentswho use reinforcement learning

to make decisions about where to execute them and the resources are passive (i.e., do not

make decisions) and dedicated. Therefore, there is no direct interaction between agents.

The work in [109] has a similar model, but there is a resource arbiter who dynamically

decides resource allocation based on value functions of agents, which are learned indepen-

dently.

Reinforcement learning has been applied to network routing[24, 50]. In their problems,

each package has a pre-specified destination, so the routingis targeted. In contrast, in our

80

problem, agents do not know the destination for an task, which is supposed to be learned.

In addition, our task routing learning is also affected by the local allocation learning.

4.7 Summary

In this chapter, we provided a practical application domainfor multi-agent learning.

The empirical results showed that multi-agent learning wasa promising and practical ap-

proach to online resource allocation in real computing infrastructures with a network of

shared clusters. Compared with a single global learning, multi-agent learning scales up to

many applications by partitioning state and action spaces over agents and through concur-

rent learning over more computational hardware. This work also plausibly suggests that

multi-agent learning may be an approach to address online optimization problems in dis-

tributed systems, such as large-scale grid computing, sensor networks, and peer-to-peer

information retrieval.

Through this application work, we also observe limitationsof this MARL approach.

This approach converges slowly with even 16 agents and does not scale well as the num-

ber of agents increases, which motivates our research to develop a supervision framework

to coordinate and improve MARL (which will be presented in Part III). In addition, al-

though the FAL algorithm performs effectively in this application, it may not converge in

competitive scenarios. As shown in Figure 1.2, our MARL paradigm tends to design local

reward signals (instead of using the single global reward) for agents’s learning, which are

more efficiently computed and specifically tailored to theirbehaviors. By using local re-

ward signals, competitive learning scenarios may occur event in cooperative MAS. In the

next chapter, we will describe our MARL algorithms that consider both competitive and

non-competitive multi-agent settings.

81

CHAPTER 5

MULTI-AGENT LEARNING WITH POLICY PREDICTION

In our previous chapter, we design a gradient-based multi-agent reinforcement learning

(MARL) algorithm, called Fair Action Learner (FAL), and apply it to a complex MAS

application. Although FAL performs effectively in that application, it may not converge

in competitive scenarios. As shown in Figure 1.2, our MARL paradigm tends to design

local reward signals (instead of using the single global reward) for agents’s learning in

large complex applications, which are more efficiently computed and specifically tailored

to their behaviors. By using local reward signals, competitive learning scenarios may occur

event in cooperative MAS. In the next chapter, we will present our MARL algorithms

that consider both competitive and non-competitive multi-agent settings. The work of this

chapter was published in AAAI 2010 [124].

Several MARL algorithms have been proposed and studied [92,23, 40, 22, 28, 11],

all of which have some theoretical results of convergence ingeneral-sum games. A com-

mon assumption of these algorithms is that an agent (or player) knows its own payoff

matrix. To guarantee convergence, each algorithm has its own additional assumptions,

such as requiring an agent to know a Nash Equilibrium (NE) andthe strategy of the other

players[23, 11, 28], or observe what actions other agents executed and what rewards they

received [40, 28]. For practical applications, these assumptions are very constraining and

unlikely to hold, and, instead, an agent can only observe theimmediate reward after select-

ing and performing an action.

In this chapter, we first propose a new gradient-based algorithm that uses policy predic-

tion in a basic gradient ascent algorithm. The key idea behind this algorithm is that a player

82

adjusts its strategy in response to forecasted strategies of the other players, instead of their

current ones. We analyze this algorithm in two-person, two-action, general-sum iterated

game and prove that if at least one player uses this algorithm(if not both, assume the other

player uses the standard gradient ascent algorithm), then players’ strategies will converge

to a Nash equilibrium. Like other MARL algorithms, besides the common assumption, this

algorithm also has additional requirements that a player knows the other player’s strategy

and current strategy gradient (or payoff matrix) so that it can forecast the other player’s

strategy.

Motivated by our theoretical convergence analysis, we thenpropose a new practical

MARL algorithm exploiting the idea of policy prediction. Our practical algorithm only

requires an agent to observe its reward of choosing a given action. We show that our

practical algorithm can learn an optimal policy when other players use stationary policies.

Empirical results show that it converges in more situationsthan that covered by our formal

analysis. Compared to state-of-the-art MARL algorithms, WPL [3], WoLF-PHC [23] and

GIGA-WoLF [22], it empirically converges faster and in a wider variety of situations.

In the remainder of this chapter, we first review the basic gradient ascent algorithm and

then introduce our gradient-based algorithm followed by its theoretical analysis. We then

describe a new practical MARL algorithm and evaluate it in benchmark games, distributed

task allocation problem and network routing. Finally, thischapter is summarized.

5.1 Gradient Ascent

In this section, we will first define some notations that will be used in this chapter. We

then present a brief overview of normal-form games and review the basic gradient ascent

algorithm.

5.1.1 Notation

- ∆ denotes the valid strategy space, i.e., [0, 1].

83

- Π∆ : ℜ → ∆ denotes the projection to the valid space,

Π∆[x] = argminz∈∆|x− z|.

- P∆(x, v) denotes the projection of a vectorv onx ∈ ∆,

P∆(x, v) = lim
η→0

Π∆(x + ηv)− x

η

5.1.2 Normal-Form Games

A two-player, two-action, general-sum normal-form game isdefined by a pair of matri-

ces

R =

r11 r12

r21 r22

andC =

c11 c12

c21 c22

specifying the payoffs for therow player and thecolumnplayer, respectively. The players

simultaneously select an action from their available set, and the joint action of the players

determines their payoffs according to their payoff matrices. If the row player and the col-

umn player select actioni, j ∈ {1, 2}, respectively, then the row player receives a payoff

rij and the column player receives the payoffcij.

The players can choose actions stochastically based on someprobability distribution

over their available actions. This distribution is said to be a mixed strategy. Letα ∈ [0, 1]

andβ ∈ [0, 1] denote the probability of choosing the first action by the rowand column

player, respectively. With a joint strategy(α, β), the row player’s expected payoff is

Vr(α, β) = r11(αβ) + r12(α(1− β)) + r21((1− α)β)

+ r22((1− α)(1− β)) (5.1)

84

and the column player’s expected payoff is

Vc(α, β) = c11(αβ) + c12(α(1− β)) + c21((1− α)β)

+ c22((1− α)(1− β)). (5.2)

A joint strategy(α∗, β∗) is said to be aNash equilibriumif (i) for any mixed strategyα

of the row player,Vr(α
∗, β∗) ≥ Vr(α, β∗), and (ii) for any mixed strategyβ of the column

player,Vc(α
∗, β∗) ≥ Vc(α

∗, β). In other words, no player can increase its expected payoff

by changing its equilibrium strategy unilaterally. It is well-known that every game has at

least one Nash equilibrium.

5.1.3 Learning using Gradient Ascent in Iterated Games

In an iterated normal-form game, players repeatedly play the same game. Each player

seeks to maximize it own expected payoff in response to the strategy of the other player.

Using the gradient ascent algorithm, a player can increase its expected payoff by moving

its strategy in the direction of the current gradient with some step size. The gradient is

computed as the partial derivative of the agent’s expected payoff with respect to its strategy:

∂αVr(α, β) =
∂Vr(α, β)

∂α
= urβ + br

∂βVc(α, β) =
∂Vc(α, β)

∂β
= ucα + bc (5.3)

whereur = r11+r22−r12−r21, br = r12−r22, uc = c11+c22−c12−c21, andbc = c21−c22.

If (αk, βk) are the strategies on thekth iteration and both players use gradient ascent,

then the new strategies will be:

αk+1 = Π∆[αk + η∂αVr(αk, βk)]

βk+1 = Π∆[βk + η∂βVc(αk, βk)] (5.4)

85

whereη is the gradient step size. If the gradient moves the strategyout of the valid probabil-

ity space, then the functionΠ∆ will project it back. This will only occur on the boundaries

(i.e., 0 and 1) of the probability space.

Singh, Kearns, and Mansour (2000) analyzed the gradient ascent algorithm by examin-

ing the dynamics of the strategies in the case of an infinitesimal step size (limη→0). This

algorithm is calledInfinitesimal Gradient Ascent (IGA). Its main conclusion is that, if both

players use IGA, their average payoffs will converge in the limit to the expected payoffs

for some Nash equilibrium.

Note that the convergence result of IGA focuses on the average payoffs of the two

players. This notion of convergence is still weak, because,although the players’ average

payoffs converge, their strategies may not converge to a Nash equilibrium (e.g., in zero-sum

games). In the next section, we will describe a new gradient ascent algorithm with policy

prediction that allows players’ strategies to converge to aNash equilibrium.

5.2 Gradient Ascent With Policy Prediction

As shown in Equation 5.4, the gradient used by IGA to adjust the strategy is based on

current strategies. Suppose that one player knows its change direction of the opponent’s

strategy, i.e., strategy derivative, in addition to its current strategy. Then the player can

forecast the opponent’s strategy and adjust its strategy inresponse to the forecasted strategy.

Thus the strategy update rules is changed to:

αk+1 = Π∆[αk + η∂αVr(αk, βk + γ∂βVc(αk, βk))]

βk+1 = Π∆[βk + η∂βVc(αk + γ∂αVr(αk, βk), βk)] (5.5)

The new derivative terms withγ serve as a short-term prediction (i.e., with lengthγ) of

the opponent’s strategy. Each player computes its strategygradient based on the forecasted

strategy of the opponent. If the prediction lengthγ = 0, the algorithm is actually IGA.

86

Because of using policy prediction (i.e.,γ > 0), we call this algorithm IGA-PP (for theo-

retical analysis, we also consider the case of an infinitesimal step size (limη→0)). As will

be shown in the next section, if one player uses IGA-PP and theother uses IGA-PP or IGA,

their strategies will converge to a Nash equilibrium.

The prediction lengthγ will affect the convergence of the IGA-PP algorithm. With a too

large prediction length, a player may not predict the opponent strategy in a right way. Then

the gradient based on the wrong opponent strategy deviates too much from the gradient

based on the current strategy, and the player adjusts its strategy in a wrong direction. As a

result, in some cases (e.g.,uruc > 0), players’ strategies converge to a point that is not a

Nash equilibrium. The following conditions restrictγ to be appropriate.

Condition 1: γ > 0,

Condition 2: γ2uruc 6= 1,

Condition 3: for anyx ∈ {br, ur +br} andy ∈ {bc, uc +bc}, if x 6= 0, thenx(x+γury) >

0, and ify 6= 0, theny(y + γucx) > 0.

Condition 3 basically says the term withγ will not change the sign of thex or y, and a

sufficiently smallγ > 0 will always satisfy them.

5.3 Analysis of IGA-PP

In this section, we will prove the following main result.

Theorem 1. If, in a two-person, two-action, iterated general-sum game, both players fol-

low the IGA-PP algorithm (with sufficiently smallγ > 0), then their strategies will asymp-

totically converge to a Nash equilibrium.

Similar to the analysis in [92, 23], our proof of this theoremis accomplished by exam-

ining the possible cases of the dynamics of players’ strategies following IGA-PP, as done

87

by Lemma 3, 4, and 5. To facilitate the proof, we first prove that if players’ strategies con-

verge by following IGA-PP, then they must converge to a Nash equilibrium, i.e., Lemma 2.

Note that our proof assumes that each player learns and acts based on expected rewards, in-

stead of the immediate rewards, which results in deterministic processes. This assumption

is different from reinforcement learning (i.e., Q-learning) that uses immediate rewards and

results in stochastic processes.

For brevity, let∂αk
denote∂αVr(αk, βk), and∂βk

denote∂βVc(αk+, βk). We reformulate

the update rules of IGA-PP from Equation 5.5 using Equation 5.3:

αk+1 = Π∆[αk + η(∂αk
+ γur∂βk

)]

βk+1 = Π∆[βk + η(∂βk
+ γuc∂αk

)] (5.6)

Lemma 1. If the projected partial derivatives at a strategy pair(α∗, β∗) are zero, that is,

P∆(α∗, ∂α∗) = 0 andP∆(β∗, ∂β∗) = 0, then(α∗, β∗) is a Nash equilibrium.

Proof. Assume that(α∗, β∗) is not a Nash equilibrium. Then at least one player, say the

column player, can increase its expected payoff by changingits strategy unilaterally. Let

the improved point be(α∗, β). Because the strategy space∆ is convex and the linear

dependence ofVc(α, β) on β, then, for anyǫ > 0, (α∗, (1 − ǫ)β∗ + ǫβ) must also be

an improved point, which implies the projected gradient ofβ at (α∗, β∗) is not zero. By

contradiction,(α∗, β∗) is a Nash equilibrium.

Lemma 2. If, in following IGA-PP with sufficiently smallγ > 0, limk→∞(αk, βk) =

(α∗, β∗), then(α∗, β∗) is a Nash equilibrium.

Proof. The strategy pair trajectory converges at(α∗, β∗) if and only if the projected gra-

dients used by IGA-PP are zero, that is,P∆(α∗, ∂α∗ + γur∂β∗) = 0 andP∆(β∗, ∂β∗ +

γuc∂α∗) = 0. Now we are showing thatP∆(α∗, ∂α∗ + γur∂β∗) = 0 andP∆(β∗, ∂β∗ +

γuc∂α∗) = 0 will imply P∆(α∗, ∂α∗) = 0 and P∆(β∗, ∂β∗) = 0, which, according to

88

Lemma 1, will finish the proof and indicates(α∗, β∗) is a Nash equilibrium. Assumeγ > 0

is sufficiently small that satisfies Condition 2 and 3. Consider three possible cases when

the projected gradients used by IGA-PP are zero.

Case 1: both gradients are zero, that is,∂α∗+γur∂β∗ = 0 and∂β∗+γuc∂α∗ = 0. By solving

them, we get(1− γ2uruc)∂α∗ = 0 and∂β∗ = −γuc∂α∗ , which implies∂α∗ = 0 and

∂β∗ = 0, due to Condition 2 (i.e.,γ2uruc 6= 1). Therefore,P∆(α∗, ∂α∗) = 0 and

P∆(β∗, ∂β∗) = 0.

Case 2: at least one gradient is greater than zero. Without loss of generality, assume∂α∗ +

γur∂β∗ > 0. Because its projected gradient is zero, its strategy is on the boundary of

the strategy space∆, which impliesα∗ = 1. Now we consider three possible cases

of the column player’s partial strategy derivative∂β∗ = ucα
∗ + bc = uc + bc.

1. ∂β∗ = 0, which impliesP∆(β∗, ∂β∗) = 0. ∂α∗ +γur∂β∗ > 0 andα∗ = 1 implies

P∆(α∗, ∂α∗) = 0.

2. ∂β∗ = uc + bc > 0, due to Condition 3, implies∂β∗ + γuc∂α∗ > 0. Because the

projected gradient ofβ∗ is zero, thenβ∗ = 1, which impliesP∆(β∗, ∂β∗) = 0.

∂α∗ + γur∂β∗ = ur + br + γur(uc + bc) > 0 and Condition 3 implies∂α∗ =

ur + br > 0, which, combined withα∗ = 1, impliesP∆(α∗, ∂α∗) = 0.

3. ∂β∗ = uc + bc < 0. The analysis of this case is similar to the case above with

∂β∗ > 0, exceptβ∗ = 0 .

Case 3: at least one gradient is less than zero. The proof of this caseis similar to Case 2.

Without loss of generality, assume∂α∗ + γur∂β∗ < 0, which impliesα∗ = 0. Then

using Condition 3 and analyzing three cases of∂β∗ = ucα
∗ + bc = bc will also get

P∆(α∗, ∂α∗) = 0 andP∆(β∗, ∂β∗) = 0.

89

To prove IGA-PP’s Nash convergence, we now will examine the dynamics of the strat-

egy pair following IGA-PP. The strategy pair(α, β) can be viewed as a point inℜ2 con-

strained to lie in the unit square. Using Equation 5.3, 5.6, and an infinitesimal step size,

it is easy to show that theunconstraineddynamics of the strategy pair is defined by the

following differential equation

α̇

β̇

=

γuruc ur

uc γucur

α

β

+

γurbc + br

γucbr + bc

(5.7)

We denote the2× 2 matrix in Equation 5.7 asU .

In the unconstrained dynamics, there exists at most one point of zero-gradient, which

is called the center (or origin) and denoted(αc, βc). If the matrixU is invertible, by setting

the left hand side of Equation 5.7 to zero, using Condition 2 (i.e.,γ2uruc < 1), and solving

for the center, we get

(αc, βc) = (
−br

ur
,
−bc

uc
). (5.8)

Note that the center is in general not at (0, 0) and may not evenbe in the unit square.

D

A

B

C

a) A saddle at the center

B

AD

C

b) A stable focus at the center

Figure 5.1. The phase portraits of the IGA-PP dynamics: a) whenU has real eigenvalues
and b) whenU has imaginary eigenvalues with negative real part

90

From dynamical systems theory [76], if the matrixU is invertible, qualitative forms of

the dynamical system specified by Equation 5.7 depend on eigenvalues ofU , which are

given by

λ1 = γuruc +
√

uruc andλ2 = γuruc −
√

uruc. (5.9)

If U is invertible,uruc 6= 0. If uruc > 0, thenU has two real eigenvalues; otherwise,U has

two imaginary conjugate eigenvalues with negative real part (becauseγ > 0). Therefore,

based on linear dynamical systems theory, ifU is invertible, Equation 5.7 has two possible

phase portraits shown in Figure 5.1. In each diagram, there are two axes across the center.

Each axis is corresponding to one player, whose strategy gradient on this axis are zero.

Becauseur, uc 6= 0 in Equation 5.7, two axes are off the horizonal or the vertical line and

not orthogonal to each other. These two axes produce four quadrants.

To prove Theorem 1, we only need to show that IGA-PP always leads the strategy pair

to converge a Nash equilibrium in three mutually exclusive and exhaustive cases:

• uruc = 0, i.e.,U is not invertible,

• uruc < 0, i.e., having asaddleat the center,

• uruc > 0, i.e., having astable focusat the center.

Lemma 3. If U is not invertible, for any initial strategy pair, IGA-PP (with sufficiently

smallγ) leads the strategy pair trajectory to converge to a Nash equilibrium.

Proof. If U is not invertible,det(U) = (γ2uruc − 1)uruc = 0. A sufficiently smallγ

will always satisfy Condition 2, i.e.,γ2uruc 6= 1. Therefore,ur or uc is zero. Without

loss of generality, assumeur is zero. Then the gradient for the row player is constant (See

Equation 5.7), i.e.,br. As a result, ifbr = 0, then its strategyα keeps on its initial value;

otherwise, its strategy will converge toα = 0 (if br < 0) or α = 1 (if br > 0). After the

row player’s strategyα becomes a constant, due tour = 0, the column player’s strategy

gradient also becomes a constant. Then its strategyβ stays on a value (if the gradient is

zero) or converges to one or zero, depending on the sign of thegradient. According to

Lemma 2, the joint strategy converges to a Nash equilibrium.

91

Lemma 4. If U has real eigenvalues, for any initial strategy pair, IGA-PPleads the strategy

pair trajectory to converge to a point on the boundary that isa Nash equilibrium.

Proof. From Equation 5.9, real eigenvalues impliesuruc > 0. Assumeur > 0 anduc > 0

(the analysis for the case withur < 0 anduc < 0 is analogous and omitted). In this case,

the dynamics of the strategy pair has the qualitative form shown in Figure 5.1a.

Consider the case when the center is inside the unit square. If the initial point is at the

center where the gradient is zero, it converges immediately. For an initial point in quadrant

B or D, if it is on the dashed line, the trajectory will asymptotically converge to the center;

otherwise, the trajectory will eventually enter either quadrantA or C. Any trajectory in

quadrantA (or C) will converge to the top-right corner (or the bottom-left corner) of the

unit square. Therefore, by Lemma 2, any trajectory always converges a Nash equilibrium.

Cases when the center on the boundary or outside the unit square can be shown similarly

to converge, and are discussed in [92].

Lemma 5. If U has two imaginary conjugate eigenvalues with negative realpart, for any

initial strategy pair, the IGA-PP algorithm leads the strategy pair trajectory to asymptoti-

cally converge to a point that is a Nash equilibrium.

Proof. From dynamical systems theory [76], ifU has two imaginary conjugate eigenvalues

with negative real part, the unconstrained dynamics of Equation 5.7 has a stable focus at the

center, which means, starting from any point, the trajectory will asymptotically converge to

the center(αc, βc) in a spiral way. From Equation 5.9, the imaginary eigenvalues implies

uruc < 0. Assumeur > 0 anduc < 0 (the case withur < 0 anduc > 0 is analogous),

whose general phase portrait is shown in Figure 5.1b. One observation is that the direction

of the gradient of the strategy pair changes in a clockwise way through the quadrants.

By Lemma 2, we only need to show the strategy pair trajectory will converge a point

in the constrained dynamics. We analyze three possible cases to consider depending on the

location of the center(αc, βc).

92

(α
0
, β

0
)

a) Center within the unit square

b) Center on the boundary

Figure 5.2.Example dynamics whenU has imaginary eigenvalues with negative real part

1. Center in the interior of the unit square. First, we observe that all boundaries

of the unit square are tangent to some spiral trajectory, andat least one boundary is

tangent to a spiral trajectory, whose remaining part after the tangent point lies entirely

within the unit square, e.g., two dashed trajectories in Figure 5.2a.

If the initial strategy pair coincidentally is the center, it will always stay because

its gradient is zero. Otherwise, the trajectory starting from the initial point either

does not intersect any boundary, which will asymptoticallyconverge to the center,

or intersects with a boundary. In the latter case, when the trajectory hits a boundary,

it then travels along the boundary until it reaches the pointat which the boundary

is tangent to some spiral, whose remaining part after the tangent point may or may

not lie entirely within the unit square. If it does, then the trajectory will converge

to the center along that spiral. If it does not, the trajectory will follow the tangent

spiral to the next boundary in the clockwise direction. Thisprocess repeats until the

boundary is reached that is tangent to a spiral, whose remaining part after the tangent

point lies entirely within the unit square. Therefore, the trajectory will eventually

asymptotically converge to the center.

93

2. Center on the boundary. Consider the case where the center is on the left-side

boundary of the unit square, as shown in Figure 5.2b. For convenience, assume

the top left corner only belongs to the left boundary and the bottom left corner only

belongs to the bottom boundary. If the initial strategy paircoincidentally is the center,

it will always stay because of its gradient is zero. Otherwise, because of clockwise

directions of the gradient, no matter where the trajectory starts, it will always finally

hit the left boundary below the center, and then travels up along the left boundary and

asymptotically converge to the center. A similar argument can be constructed when

the center is on some other boundary of the unit square.

3. Center outside the unit square. In this case, the strategy trajectory will converge

to some corner of the unit square depending on the location ofthe unit square, as

discussed in [92].

Theorem 2. If, in a two-person, two-action, iterated general-sum game, one player uses

IGA-PP (with a sufficiently smallγ) and the other player uses IGA, then their strategies

will converge to a Nash equilibrium.

The proof of this theorem is omitted, which is similar to thatof Theorem 1.

5.4 A Practical Algorithm

Based on the idea of IGA-PP, we now present a new practical MARL algorithm, called

Policy Gradient Ascent with approximate policy prediction(PGA-APP), shown in Algo-

rithm 4. The PGA-APP algorithm only requires the observation of the reward of the se-

lected action. To drop the assumptions of IGA-PP, PGA-APP needs to address the key

question: how can an agent estimate its policy gradient withrespect to the opponent’s

forecasted strategy without knowing the current strategy and the gradient of the opponent?

94

For clarity, let us consider the policy update rule of IGA-PPfor the row player, shown

by Equation 5.6. IGA-PP’s policy gradient of the row player (i.e.,∂αk
+ γur∂βk

) contains

two components: its own partial derivative (i.e.,∂αk
) and the product of a constant and the

column player’s partial derivative (i.e.,γur∂βk
) with respect to the current joint strategies.

PGA-APP estimates these two components, respectively.

To estimate the partial derivative with respect to the current strategies, PGA-APP uses

Q-learning to learn the expected value of each action in eachstate. The value function

Q(s, a) returns the expected reward (or payoff) of executing actiona in states. The policy

π(s, a) returns the probability of taking actiona in states. As shown by Line 5 in Algo-

rithm 4, Q-learning only uses the immediate reward to updatethe expected value. With

the value functionQ and the current policyπ, PGA-APP then can calculate the partial

derivative, as shown by Line 8. To illustrate that the calculation works properly, let us

consider a two-person, two-action repeated game, where each agent has a single state. Let

α = πr(s, 1) andβ = πc(s, 1) be the probability of the first action of the row player and the

column player, respectively. ThenQr(s, 1) is the expected value of the row player playing

the first action, which will converge toβ ∗ r11 +(1−β)∗ r12 by using Q-learning. It is easy

to show that, when Q-learning converges,(Qr(s, 1)− V (s))/(1− πr(s, 1)) = urβ + br =

∂Vr(α,β)
∂α

, which is the partial derivative of the row player (as shown by Equation 5.3).

Using Equation 5.3, we can expand the second component,γur∂βk
= γurucα + γurbc.

So it is actually a linear function of the row player’s own strategy. PGA-APP approximates

the second component by the term−γ|δ(s, a)|π(s, a), as shown in Line 9. This approxi-

mation has two advantages. First, when players’ strategiesconverge to a Nash equilibrium,

this approximated derivative will be zero and will not causethem to deviate from the equi-

librium. Second, the negative sign of this approximation term is intended to simulate the

partial derivative well for the case withuruc < 0 (where IGA does not converge) and al-

lows the algorithm to converge in all cases (properly smallγ will allow convergence in

other cases, i.e.,uruc ≥ 0). Line 12 projects the adjusted policy to the valid space.

95

0 1 2 3 4 5

x 10
5

0

0.2

0.4

0.6

0.8

1

Iterations

P
ro

ba
bi

lit
y

(f) Three−player Matching Pennies by WPL

player 1
player 2
player 3

0 1 2 3 4 5

x 10
5

0

0.2

0.4

0.6

0.8

1

Iterations

P
ro

ba
bi

lit
y

(c) Three−player Matching Pennies by PGA−APP

player 1
player 2
player 3

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Iterations

P
ro

ba
bi

lit
y

of
 fi

rs
t a

ct
io

n

(a) Matching Pennies by PGA−APP

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

Iterations

P
ro

ba
bi

lit
y

(b) Shapley’s Game by PGA−APP

action 1
action 2
action 3

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Iterations

P
ro

ba
bi

lit
y

(e) Shapley’s Game by WPL

action 1
action 2
action 3

player 1
player 2

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Iterations

P
ro

ba
bi

lit
y

of
 fi

rs
t a

ct
io

n

(d) Matching Pennies by WPL

player 1
player 2

Figure 5.3. Convergence of PGA-APP (on the top row) and WPL (on the bottomrow) in games.
Plot (a), (c), (d) and (f) shows the dynamics of the probability of the first action of each player, and
plot (b) and (e) shows the dynamics of the probability of eachaction of the first player. Parameters:
θ = 0.8, ξ = 0, γ = 3, η = 5/(5000 + t) for PGA-APP (η is tuned and decayed slower for WPL),
wheret is the current number of iterations, and a fixed exploration rate = 0.05. Value functionQ
is initialized with zero. For two-action games, players’ initial policies are (0.1, 0.9) or (0.9, 0.1),
respectively, and, for three-action games, their initial policies are (0.1, 0.8, 0.1) and (0.8, 0.1, 0.1).

In some sense, PGA-APP extends Q-learning and is capable of learning mixed strate-

gies. A player following PGA-APP withγ < 1 will learn an optimal policy if the other

players are playing stationary policies. It is because, with a stationary environment, using

Q-learning, the value functionQ will converge to the optimal one, denoted byQ∗, with a

suitable exploration strategy. Withγ < 1, the approximate derivative term in Line 9 will

never change the sign of the gradient, and policyπ converges to a policy that is greedy with

respect toQ. So whenQ is converging toQ∗, π converges to a best response.

Learning parameters will affect the convergence of PGA-APP. For competitive games

(with uruc < 0), the larger the derivative prediction lengthγ, the faster the convergence.

But for non-competitive games (withuruc ≥ 0), too largeγ will violate Condition 3 and

cause players’ strategies to converge to a point that is not aNash equilibrium. With higher

learning ratesθ andη, PGA-APP learns a policy faster at the early stage but the policy

may oscillate at late stages. Properly decayingθ andη makes PGA-APP converge better.

96

Algorithm 4 : PGA-APP Algorithm

Let θ andη be the learning rates,ξ be the discount factor,γ be the derivative1

prediction length;
Initialize value functionQ and policyπ;2

repeat3

Select an actiona in current states according to policyπ(s, a) with suitable4

exploration ;
Observing rewardr and next states′, update5

Q(s, a)← (1− θ)Q(s, a) + θ(r + ξ maxa′ Q(s′, a′));
Average rewardV (s)←∑

a∈A π(s, a)Q(s, a);6

foreachactiona ∈ A do7

if π(s, a) = 1 then δ̂(s, a)← Q(s, a)− V (s) else8

δ̂(s, a)← (Q(s, a)− V (s))/(1− π(s, a)) ;
δ(s, a)← δ̂(s, a)− γ|δ̂(s, a)|π(s, a) ;9

π(s, a)← π(s, a) + ηδ(s, a) ;10

end11

π(s)← Π∆[π(s)];12

until the process is terminated;13

However, the initial value and the decay of learning rateη need to be set appropriately for

the value of the learning rateθ, because we do not want to take larger policy update steps

than steps with which values are updated.

5.4.1 Experiments: Normal-Form Games

Player 1 gets one dollar for

matching player 2;

player 2 gets one dollar for

matching player 3;

player 3 gets one dollar for

not matching player 1;

otherwise, players get zero.

(c) Three-Player
Matching Pennies

R =
1 -1

-1 1

C =
-1 1

1 -1

(a) Matching Pennies (b) Shapley's Game

R =
0 1

0 0

0

1

1 0 0

C =
0 0

1 0

1

0
0 1 0

Figure 5.4.Normal-form games.

We have evaluated PGA-APP, WoLF-PHC [23], GIGA-WoLF [22], and WPL [3] on a

variety of normal-form games. Due to space limitation, we only show results of PGA-APP

and WPL in three representative benchmark games: matching pennies, Shapley’s game,

97

and three-player matching pennies, as defined in Figure 5.4.The results of WoLF-PHC

and GIGA-WoLF have been shown and discussed in [22, 3]. As shown in Figure 5.3, using

PGA-APP, players’ strategies converge to a Nash equilibrium in all cases, including games

with three players or three actions that are not covered by our formal analysis. Therefore,

PGA-APP empirically has a stronger convergence property than WPL, WoLF-PHC and

GIGA-WoLF, each of which does not converge in one of two games: Shapley’s game and

three-player matching pennies. Through experimenting with various parameter settings,

we also observe that PGA-APP generally converges faster than WPL, WoLF-PHC and

GIGA-WoLF. One possible reason is that, as shown in Figure 5.1b, the strategy trajectory

following IGA-PP spirals directly into the center, while the trajectory following IGA-WoLF

moves along an elliptical orbit in each quadrant and slowly approaches to the center, as

discussed in [23].

5.4.2 Experiments: Distributed Task Allocation

We used our own implementation of the distributed task allocation problem (DTAP)

that was described in [3]. Agents are organized in a network.Each agent may receive tasks

from either the environment or its neighbors. At each time unit, an agent makes a decision

for each task received during this time unit whether to execute the task locally or send it

to a neighbor for processing. A task to be executed locally will be added to the local first-

come-first-serve queue. The main goal of DTAP is to minimize the average total service

time (ATST) of all tasks, including routing time, queuing time, and execution time.

We applied WPL, GIGA-WoLF, and PGA-APP, respectively, to learn the policy of de-

ciding where to send a task: the local queue or one of its neighbors. The agent’s state

is defined by the size of the local queue, which is different from the experiments in [3]

(where each agents has a single state). All algorithms use value-learning rateθ = 1 and

policy-learning rateη = 0.0001. PGA-APP used prediction lengthγ = 1.

98

Times
0 5000 100001500020000250003000035000

A
T

S
T

0

50

100

150

200
WPL
GIGA_WoLF
PGA_APP

Figure 5.5. Performance in distributed task allocation

Experiments were conducted using uniform two-dimension grid networks of agents

with different sizes: 6x6, 10x10, and 18x18, and with different task arrival patterns, all of

which show similar comparison results. For brevity, we onlypresent here the results for

the 10x10 grid (with 100 agents), where tasks arrive at the 4x4 sub-grid at the center at an

average rate 0.5 tasks/time unit. Communication delay between two adjacent agents is one

time unit. All agents can execute a task at a rate of 0.1 task/time unit.

Figure 5.5 shows the results of these three algorithms, all of which converge. PGA-APP

converges faster and to a better ATST: WPL converges to34.25 ± 1.46 and GIGA-WoLF

to 30.30± 1.64, while PGA-APP converges to24.89± 0.82 (results are averaged over 20

runs).

5.4.3 Experiments: Network Routing

We also evaluated PGA-APP in network routing. A network consists of a set of agents

and links between them. Packets are periodically introduced into the network under a

Poisson distribution with a random origin and destination.When a packet arrives at an

agent, the agent puts it into the local queue. At each time step, an agent makes its routing

decision of choosing which neighbor to forward the top packet in the queue. Once a packet

99

reaches its destination, it is removed from the network. Themain goal in this problem is to

minimize the Average Delivery Time (ADT) of all packets.

We used the experimental setting that was described in [123]. The network is a 10x10

irregular grid with some removed edges. The time cost of sending a packet down a link is a

unit cost. The packet arrival rate to the network is 4. Each agent uses the learning algorithm

to learn its routing policy.

Time
0 20000 40000 60000 80000 100000A

ve
ra

ge
 D

el
iv

er
y

T
im

e

0

2000

4000

6000

8000

10000 WPL
GIGA_WoLF
PGA−APP

Figure 5.6.Performance in network routing

Figure 5.6 shows the results of applying WPL, GIGA-WoLF, andPGA-APP to this

problem. All three algorithms demonstrate convergence, but PGA-APP converges faster

and to a better ADT: WPL converges to11.60 ± 0.29 and GIGA-WoLF to10.22 ± 0.24,

while PGA-APP converges to9.86± 0.29 (results are averaged over 20 runs).

5.5 Summary

The co-adaption of multiple learners in multi-agent systems presents a unique challenge

not normally found in single-agent learning: the learning environment is non-stationary

from the perspective of an individual agent. In this chapter, we were attempting to address

this challenge and presented new multi-agent learning algorithms. As competitive learning

scenarios can occur in cooperative MAS when we design local reward signals (instead of

using the single global reward) for agents’ learning, our MARL algorithms consider both

100

competitive and non-competitive scenarios. We introducedIGA-PP, a new gradient-based

algorithm, by using policy prediction in basic gradient ascent. We proved that, in two-

player, two-action, general-sum matrix games, IGA-PP in self-play or against IGA would

lead players’ strategies to converge to a Nash equilibrium.Based on the theoretical analysis

of IGA-PP, we then proposed PGA-APP, a new practical MARL algorithm, only requiring

the observation of the reward of selecting an action. Empirical results in normal-form

games, distributed task allocation problem and network routing showed that PGA-APP

converged faster and in a wider variety of situations than state-of-the-art MARL algorithms.

As shown in Figure 1.2, effective multi-agent learning algorithms are a key component

for our MARL paradigm to developing effective local policies for agents in cooperative

multi-agent systems. However, as shown in next chapter, MARL exploiting interaction

locality alone may not always perform well in large systems.In the next chapter, we will

present a supervision framework that coordinates multi-agent learning to improve the learn-

ing performance in large-scale cooperative multi-agent systems.

101

Part III

COORDINATING MULTI-AGENT
LEARNING

CHAPTER 6

AN ORGANIZATIONAL CONTROL FRAMEWORK FOR
COORDINATING MULTI-AGENT LEARNING

As shown in previous chapters, multi-agent reinforcement learning (MARL) techniques

potentially provides an approximate, scalable approach todeveloping distributed coordina-

tion policies for agents in cooperate multi-agent systems.In order to achieve scalability of

MARL [2, 24, 130], as we did for our application examples discussed in previous chapters,

the learning of each agent has been restricted to using information received only from its

immediate neighbors to update its estimates of the world states (i.e., Q-values for state-

action pairs). However, this constraint results in long latency as state information propa-

gates to agents further away. Such latency can result in neighborhood information being

outdated, leading to mutually inconsistent views among agents. As a result, such a limited

view for each agent and the non-stationarity of the environment (all agents are simultane-

ously learning their own policies) causes MARL algorithms to converge slowly and even

diverge in some cases. The slowness of MARL convergence is further degraded by the

large policy search space of each agent. Each agent’s policynot only includes its local

state and actions but also some characteristics of the states and actions of its neighboring

agents [2], or the state size of each agent may be proportional to the number of agents in

the system [24]. In this paper, we will present a supervisionframework for coordinating

MARL to address these challenges. The work of this chapter was published in AAMAS

2009 [123].

Our supervision framework, called Multi-Agent Supervisory Policy Adaptation (MASPA),

employs low-overhead organizational control to guide multi-agent learning and accelerate

103

Figure 6.1. An organizational structure for multi-level supervision

its convergence. MASPA is composed of three components: a multi-level supervision orga-

nization (a meta-organization built on top of the agents’ overlay network), a communication

protocol for exchanging information between lower-level agents and higher-level supervis-

ing agents, and a policy adaptation mechanism that integrates organizational control infor-

mation into MARL algorithms (e.g., those developed in previous chapters, GIGA [133],

WPL [1], etc.) to guide the exploration process of each learning agent.

The key idea of MASPA is as follows. Each level in the supervision organization is

an overlay network in itself. For example, Figure 6.1 shows athree-level supervision or-

ganizational structure. The abstracted states of lower-level agents travel upwards so that

higher-level supervising agents can generate a broader view of the state of the network.

This broader view comes from not only information about the states of lower-level agents

but also information from neighboring supervising agents.In turn, this broader view results

in creating supervisory information which is passed down the hierarchy. This supervisory

information guides the learning of agents in collectively exploring their state-action spaces

more efficiently, and consequently results in faster convergence. To provide up-to-date

supervisory information, the process above is periodically repeated.

In this way, MASPA deals with scalability issues by using approximate partial global

views that can be acquired with relatively low overhead. Theuse of these dynamic views

104

does not increase the state space of individual agent, but rather are used to generate direc-

tives for each agent so that its exploration is both more informed and more coordinated

with other agents. To our knowledge, MASPA is the first framework that surrounds and

coordinates multi-agent learning with organizational control. It has a hierarchy of control

and data abstraction, which is conceptually different fromexisting hierarchical multi-agent

learning algorithms that uses a hierarchy of task abstraction. In addition, MASPA can be

used together with approaches that reduces the policy search space to further speed up the

learning.

As other approaches to improving MARL algorithms, the use ofMASPA requires some

additional knowledge. This knowledge is used to decide whatorganizational structure

needs to be formed, what abstracted state information is useful, and how to convert this

information into supervisory information. However, MASPAitself is a general framework

that dynamically guides the learning of agents. We verified the generality of MASPA with

its applications in different domains (distributed task allocation and network routing) with

different MARL algorithms. Experimental results show thatit not only dramatically speeds

up the rate of MARL convergence, but also increases its likelihood of convergence.

MASPA assumes agents will voluntarily share their state information. It also implicitly

assumes the original multi-agent system can be formed into anearly decomposable hierar-

chy [89] of at least one level. This assumption implies that if agents in the original MAS

are far apart in spatial terms, their behaviors are also far apart in causal terms. For example,

in Figure 6.1, knowing detailed information about agents incluster6 will not significantly

affect the behaviors of agents in cluster1. Our assumptions hold in many real cooperative

systems. Sensor network is one example, where the whole system is designed to cooperate

and usually decomposable according to proximity. Other examples include package rout-

ing in the Internet, peer-to-peer file sharing or information retrieval, and resource sharing

in grid computing.

105

To focus on the essence of MASPA coordinating multiagent learning and isolate its

impact on the system performance, this chapter uses pre-defined supervision organiza-

tion structures. Supervision organizations can be dynamically formed during the learning

through a bottom-up self-organization approach [127]. Forsimplicity, this chapter limits

the discussion to the case where learning only happens at thebottom level and supervising

agents use pre-specified heuristics to make decisions, but,in principle, MASPA does not

restrict supervising agents learning their supervision policies.

The rest of the chapter is organized as follows: Section 6.1 presents a multi-level orga-

nizational structure for automated supervision mechanism. Section 6.2 defines a commu-

nication protocol for agents at different levels. Section 6.3 describe the supervisory pol-

icy adaptation that integrates supervisory information into MARL algorithms. Section 6.4

empirically evaluates our framework on distributed task allocation problem and network

routing. Finally, Section 6.5 concludes this work and discusses some future work.

6.1 Organizational Supervision

Supervision mechanisms commonly exist in human organizations, such as enterprises

and governments. The purpose of these mechanisms is to run anorganization effectively

and efficiently to fulfill the organization goals. Supervision involves gathering information,

making decisions, and providing directions to regulate andcoordinate actions of organiza-

tion members. The practical effectiveness of supervision mechanisms in human organiza-

tions, especially in large organizations, inspired us to introduce a similar mechanism into

multi-agent systems in order to improve the efficiency of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay structure, MASPA adopts

a multi-level, clustered organizational structure. Agents in the original overlay network,

called workers, are clustered based on some measure (e.g., geographical distance). Each

cluster is supervised by one agent, called the supervisor, and its member agents are called

subordinates (note that subordinates at the lowest level are workers). The supervisor role

106

can be played by a dedicated agent or one of the workers. If thenumber of supervisors is

large, a group of higher-level supervisors can be added, andso on, forming a multi-level

supervision structure.1 In this chapter, our discussion focuses on the situation where each

agent belongs to only one cluster.

Two supervisors at the same level are adjacent if and only if at least one subordinate

of one supervisor is adjacent to at least one subordinate of the other. Communication

links, which can be physical or logical, exist between adjacent workers, between adjacent

supervisors, and between subordinates and their supervisors. Figure 6.1 shows a three-level

organizational structure. The bottom level is the overlay network of workers which forms 9

clusters. A shaded circle represents a supervisor, which isresponsible for a corresponding

cluster. Note that links between subordinates and their supervisors are omitted in this figure.

6.2 Communication Protocol

Each agent can demonstrate both fast and slow dynamics in howits features change.

Fast dynamics of an agent are exhibited by the changes of suchfeatures as those that rep-

resent interactions with other agents, its local state, andits policy (or value function). Slow

dynamics are exhibited by the changes of an agent’sabstracted state. The abstract state is

defined by a vector of features, which can be projected from features with fast dynamics

by using such techniques as:

• Using partial components of a feature and ignoring other components that do not

affect slow dynamics

• Using some statistics (e.g., mean, mode, etc.) of a feature generated over the temporal

or spatial scale

1The top supervision level can have multiple supervisors.

107

• Replacing a fast-changing feature with its distribution parameters if its changes fol-

low some statistical distribution

Similarly, each cluster also has fast and slow dynamics. Fast dynamics of a cluster are

exhibited by that of its members. Slow dynamics of a cluster are captured by the changes

of its supervisor’s abstracted state. The abstracted stateof a supervisor is projected either

from the abstracted states of its subordinates or directly from features with fast dynamics

of its subordinates. MASPA assumes that a supervisor can make rational decisions based

on its own and neighbors’ abstracted states.

MASPA uses three types of communication messages:report, suggestion, andrule. A

report is used by a subordinate to pass its abstracted state upwards to provide its supervisor

with a broader view. A supervisor also sends its report to itsadjacent supervisors at the

same level in addition to its immediate supervisor (if any).The supervisor’s view is based

on not only the agents that it supervises (directly or indirectly) but also its neighboring

supervisors. This peer-supervisor communication allows each supervisor to make rational

local decisions when directions from its immediate supervisor are unavailable.

Based upon this information, a supervisor employs its expertise, integrates directions

from its superordinate supervisor, and provides supervisory information to its subordinates.

Rules and suggestions are used to transmit supervisory information. We define arule as a

tuple〈c, F 〉, where

• c: a condition specifying a set of satisfied states

• F : a set of forbidden actions for states specified byc

A suggestionis defined as a tuple〈c, A, d〉, where

• c: a condition specifying a set of satisfied states

• A: a set of actions

• d: the suggestion degree, whose range is[−1, 1]

108

A suggestion with a negative degree, called anegative suggestion, urges a subordinate not

to do the specified actions. In contrast, a suggestion with a positive degree, called apositive

suggestion, encourages a subordinate to do the specified action. The greater the absolute

value of the suggestion degree, the stronger the impact of the suggestion on the supervised

agent.

Each rule (or suggestion) contains a condition specifying states where it can be applied.

Subordinates are required to obey rules from their supervisors. Rules are “hard” constraints

on subordinates’ behavior. In contrast, suggestions are “soft” constraints and allow a super-

visor to express its preference for subordinates’ behavior. A supervisor has a more global

view but may lack detailed information about its subordinates’ local policies and its own

surrounding environment. Using suggestions, the supervisor is able to affect a subordi-

nate’s policy yet allow the subordinate to override its directives when needed. The implicit

assumption is that a supervisor’s suggestions will be correct most of the time so that the

penalty of bad suggestions is outweighed by good suggestions. Therefore, a subordinate

does not rigidly adopt suggestions. The effect of a suggestion on a subordinate’s local de-

cision making may vary, depending on its current policy and state. A supervisor will refine

or cancel rules and suggestions as new or updated information becomes available.

A set of rules are in conflict if they forbid all possible actions on some state(s). Two

suggestions are in conflict if one is positive and the other isnegative and they share some

state(s) and action(s). A rule conflicts with a suggestion ifa state-action pair is forbid-

den by the rule but is encouraged by the suggestion. In our supervision mechanism, we

assume each supervisor is rational and will not generate rules and suggestions that are in

conflict. However, in a multi-level supervision structure,a supervisor’s local decision may

conflict with its superordinate (the supervisor’s supervisor) direction. Rules have higher

priority than suggestions. There are several strategies for resolving conflicts between rules

or between suggestions, such as always taking its superordinate or local rule, stochasti-

cally selecting a rule, or requesting additional information to make a decision. The strategy

109

Figure 6.2.Unsupervised MARL vs. Supervised MARL with MASPA

choice depends on the application domain. Note that it may not always be wise to select the

superordinate decision, because, although the superordinate supervisor has a broader view,

its decision is based on abstracted information. The strategy used here for resolving con-

flicts picks the most constraining rule and combines suggestions by summing the degrees

of the strongest positive suggestion and the strongest negative suggestion.

6.3 Supervisory Policy Adaptation

Using MARL, each agent gradually improves its action policyas it interacts with other

agents and the environment. Apurepolicy deterministically chooses one action for each

state. Amixed or stochasticpolicy specifies a probability distribution over the available

actions for each state. A policy can be represented as a function π(s, a), which specifies

the probability that an agent will execute actiona at states. As argued in [94], mixed

policies can work better than pure policies in partially observable environments, if both

are limited to act based on the current percept. Due to partial observability, most MARL

algorithms are designed to learn mixed policies. The rest ofthis section shows how mixed

policy MARL algorithms can take advantage of higher-level information specified by rules

and suggestions to speed up convergence.

110

As shown in Figure 6.2 (a), a typical MARL algorithm containstwo components: pol-

icy (or action-value function) update and action selectionbased on the learned policy. One

common method to speed up learning is to supply an agent with additional reward to en-

courage some particular actions, which is called reward shaping [72]. This use of the spe-

cial reward affects both policy update and action selection. In a single-agent setting, there

are potential function forms of reward shaping that leave the optimal policy/value-function

unchanged [72]. However, due to the non-stationary learning environment in a multi-agent

setting, reward shaping may generate a policy that is undesirable in that they may distract

from the main goal, which is supported by the normal reward.

MASPA directly biases the action selection for explorationwithout changing the policy

update process. As shown in Figure 6.2 (b), MASPA’ supervisory policy adaptation inte-

grates rules and suggestions into the policy learned by an unsupervised MARL algorithm

and then outputs an adapted policy. This adapted policy is intended to control exploration.

Our integration assumes policies learned by an unsupervised MARL are stochastic. The

report generator computes the abstract state of the agent.

Let R andG be the rule set and suggestion set, respectively, that a worker received and

π be its learned policy. We defineR(s, a) = {〈c, F 〉 ∈ R| states satisfies the conditionc

anda ∈ F} andG(s, a) = {〈c, A, d〉 ∈ G| states satisfies the conditionc anda ∈ A}.

As we assume a supervisor is rational, it will not generate more than one suggestion for a

subordinate that satisfies a state-action pair. Thus,|G(s, a)| ≤ 1. The functiondeg(s, a)

that returns the degree of the satisfied suggestion is definedas following:

deg(s, a) =

0 if |G(s, a)| = 0

d if |G(s, a)| = 1 and〈c, A, d〉 ∈ G(s, a)

Then the adapted policyπA for the action selection is generated by the supervisory

policy adaptation:

111

πA(s, a) =

0 if R(s, a) 6= ∅

π(s, a) + π(s, a) ∗ η(s) ∗ deg(s, a) else ifdeg(s, a) ≤ 0

π(s, a) + (1− π(s, a)) ∗ η(s) ∗ deg(s, a) else ifdeg(s, a) > 0

The state-dependent functionη(s) ranges from[0, 1]. As similarly defined in the super-

vised actor-critic architecture [81], it determines the receptivity for suggestions and allows

the agent to selectively accept suggestions based on its current state. For instance, if an

agent becomes more confident in the effectiveness of its local policy on states because

it has more experience with it, thenη(s) decreases as learning progresses. In our exper-

iments, we setη(s) = k/(k + visits(s)) wherek is a constant andvisits(s) returns the

number of visits on the states.

With the supervisory policy adaptation, a rule explicitly specifies undesirable actions

for some states and is used to prune the state-action space. Suggestions, on the other hand,

are used to bias agent exploration. To integrate suggestions into MARL, MASPA uses the

strategy that the lower the probability of a state-action pair, the greater the effect a positive

suggestion has on the pair and the less the effect a negative suggestion has on it. The

underlying idea is intuitive. If the agent’s local policy already agrees with the supervisor’s

suggestions, as indicated by the policy having high (or low)probabilities for state-action

pairs from the positive (or negative) suggestions, it is going to change its local policy very

little (if at all); otherwise, the agent follows the supervisor’s suggestions and makes a more

significant change to its local policy.

To normalizeπA such that it sums to 1 for each state, thelimit function from GIGA [133]

is applied with minor modifications so that every action is explored with minimum proba-

bility ǫ:

πA = limit(πA) = argminx:valid(x)|πA − x|

i.e., limit(πA) returns a valid policy that is closest toπA.

112

Our normalization also implicitly solves the issue of rulesin conflict. If a set of rules

forbids all actions on a state, then the probability of each action is set to0. After normaliza-

tion, the probabilities of all actions are equal, that is, the action choice becomes completely

random. This strategy is reasonable when the agent does not know the consequence of

violating each rule.

6.4 Experimental Results

We have tested MASPA in two different domains: distributed task allocation problem

(DTAP) and network routing. In the following experiments, we manually cluster agents

in the overlay network using Manhattan distance. The agent closest to the center of each

cluster is elected as the supervisor. Supervisors also playthe worker role. We assume there

are links that allows direct communication between subordinates and their supervisors and

between adjacent supervisors.

6.4.1 Distributed Task Allocation

We evaluated MASPA in a simplified DTAP [2] with Poisson task arrival and exponen-

tial service time. Agents are organized in an overlay network. Each agent receives tasks

from the environment at a certain rate. At each time unit, an agent makes a decision for

each task received during this time unit whether to execute the task locally or send it to a

neighboring agent for processing. A task to be executed locally will be added to the local

queue with unlimited queue length, where tasks are executedon a first-come-first-serve

basis. Agents interact via communication messages and communication delay between

two agents is proportional to the distance between them, onetime unit per distance unit.

The main goal of DTAP is to minimize the total service time of all tasks, averaged by the

number of tasks,ATST =
P

T∈T̄τ
TST (T)

|T̄τ |
, whereT̄τ is the set of tasks received during a

time periodτ andTST (T) is the total service time that taskT spends in the system, which

includes the routing time, queuing time, and execution time.

113

6.4.1.1 Experimental Setup

We chose one representative MARL algorithm, the Weighted Policy Learner (WPL)

algorithm [1], for each worker to learn task allocation policies, and compared its perfor-

mance with and without MASPA. WPL is a gradient ascent algorithm where the gradient

is weighted byπ(a) if it is negative; otherwise, it will weighted by(1 − π(a)). So effec-

tively, the probability of choosing a good action increasesby a rate that decreases when the

probability approaches to 1. Similarly, the probability ofchoosing a bad action decreases

by a rate that decreases when the probability approaches to 0. A worker’s state is defined

by the current work load (or total work units) in the local queue.

The abstracted state of a worker is projected from its statesand defined by its average

work load over a period of timeτ (τ = 500 in our experiments). The abstracted state

of a supervisor is defined by the average load of its cluster, which can be computed from

the abstracted states of its subordinates. A subordinate sends a report, which contains its

abstracted state, to its supervisor everyτ time period. Supervisors use simple heuristics to

generate rules and suggestions. With an abstracted state〈l̄〉, a supervisor generates a rule

that specifies, for all states whose work load exceedsl̄, a worker should not add a new task

to the local queue. This rule helps balance load within the cluster. A supervisor also gen-

erates positive (or negative) suggestions for its subordinates to encourage (or discourage)

them forwarding more tasks to a neighboring cluster that hasa lower (or higher) average

load. The suggestion degree for each subordinate depends onthe difference between the

average load of two clusters, the number of agents on the boundary, and the distance of

the subordinate to the boundary. Therefore, suggestions are used to help balance the load

across clusters.

Three measurements are evaluated: the average total service time (ATST), the average

number of messages (AMSG) per task, and the time of convergence (TOC). ATST indi-

cates the overall system performance, which can reflect the effectiveness of learning and

supervision mechanism and can also be used to verify system stability (convergence) by

114

showing a monotonic decrease in ATST as agents gain more experiences. AMSG shows

the overall communication overhead for finishing one task, which including both for task

routing and MASPA supervision. To calculate TOC, we take sequential ATST values with

certain size and then calculate the ratio of those values’ deviation to their mean. If the ratio

is less than a threshold (e.g.,0.025), then we consider the system stable. TOC is the start

time of the selected points.

Experiments were conducted using uniform two-dimension grid networks of agents

with different sizes: 6x6, 10x10, and 27x27, all of which show similar results. But as

the size of the system increases, the MASPA impact on the system performance becomes

greater. For brevity, we only present here the results for the 27x27 grid (with 729 agents).

For simplicity, we assume that all agents have the same execution rate and that tasks are

not decomposable. The mean of task service time isµ = 10. We tested three patterns of

task arrival rates:

Uneven Center Load where 121 agents in the centric 11x11 grid receive tasks and other

agents receive no tasks from the external environment. In the centric 11x11 grid, the

task arrival rate of agents on the outermost 6 columns isλ = 0.8 and the rate of the

rest agents isλ = 0.2.

Corner Load where only agents in the 12x12 grid at the up-left corner receive tasks from

the external environment. In that 12x12 grid, the agents in the 9x9 grid at the up-left

corner has the task arrive rateλ = 0.2 and the rest agents has the rateλ = 0.7.

Boundary Load where the 200 outermost agents receive tasks with rateλ = 0.33 and

other agents receive no tasks from the external environment.

In each simulation run, ATST and AMSG are computed every 500 time units to measure

the progress of the system performance. Results are then averaged over 10 simulation runs

and the variance is computed across the runs. All agents use WPL with learning rate0.001.

Our experiments use the parameterη(s) = 1000/(1000 + visits(s)).

115

Times
0 10000 20000 30000 40000 50000

A
T

S
T

500

1000
1500
2500 None

Local

One−level

Two−level

Figure 6.3.ATST for different structures with uneven center load

We compared four structures:no supervision, local supervision, one-level supervision,

and two-level supervision. In the local supervisionstructure, agents are their own super-

visors. With this structure, each agent gains a view only about itself and its neighbors,

which is not much different from its view in the organizationwithout supervision. We

use thelocal supervisionstructure to evaluate whether domain knowledge combined with

a limited view, which is used to create rules and suggestions, still improves the system

performance. In contrast, the performance of the two following structures with supervi-

sion show the benefits of having a broader view combined with domain knowledge. The

one-level supervisionstructure has 81 clusters, each of which is a 3x3 grid and the agent at

each cluster center is elected as the supervisor. Thetwo-level supervisionstructure forms

from theone-level supervisionstructure by grouping 81 supervisors into 9 clusters, each

of which is a 3x3 grid. The supervision structures with threeor more levels did not show

further improvement over the two-level supervision in our DTAP experiments. This is be-

cause a wide-range task transfer causes a long routing time which offsets the reduction of

the queuing time in each agent.

6.4.1.2 Results & Discussions

Figure 6.3, 6.4 and 6.5 plot the trend of ATST, as agents learn, for different organization

structures with different task arrival patterns. Note thatthey axis in the plots is logarithmic.

116

Times
0 10000 20000 30000 40000 50000

A
T

S
T

500

1000
1500
2500 None

Local

One−level

Two−level

Figure 6.4.ATST for different structures with corner load

Times
0 10000 20000 30000 40000 50000

A
T

S
T

10

30

50

70

90

110 None

Local

One−level

Two−level

Figure 6.5.ATST for different structures with boundary load

117

As expected, MASPA improves both the likelihood and speed ofthe learning convergence.

The broader the view MASPA observes, the greater the system performance it improves.

In addition, several other observations are also noted.

Under both uneven center load and corner load, the system without MASPA does not

seem to converge. From Figure 6.3 and 6.4, we see that both simulations ends before

50000 time units. This happens because, using random exploration, agents in the grid do

not learn and propagate quickly enough knowledge about where light-loaded agents are. As

a result, for example, under uneven center load patter, moreand more tasks loop and reside

in the center 11x11 grid where agents receive external tasks. This makes the system load

severely unbalanced and the system capability not well utilized, which causes the system

load to monotonically increase. Our simulations ran out of all computing resources and

terminated before showing any signs of convergence. In contrast, observing broader views,

MASPA guides and coordinates the exploration of agents and allows them to learn quickly

to effectively route tasks.

Under both uneven center load and corner load,local supervisiondoes not prevent

system divergence. This is because uneven task arrival rates in both patterns cause many

agent’s local view of the system to become inconsistent withthe global system view. For

example, under uneven center load pattern, many overloadedagents at the center columns

find their neighbors having even higher loads. As a result,local supervisiongenerates

incorrect directives for them to explore their actions. Forsimilar reasons, explained at

a cluster level instead of a worker level, the system withone-level supervisiondoesn’t

perform well under corner load pattern.

Broader views for MASPA do not necessarily significantly improve the system per-

formance. For example, under uneven center load,one-level supervisionand two-level

supervisionshow similar performance, and, under boundary load pattern, all supervision

structures demonstrate similar performance. This is because, in both cases, broader views

do not provide much additional information for MASPA. For example, under the bound-

118

ary load pattern, local work loads in the whole network quickly form some pattern, where

an agent farther away from the network boundary usually has alighter local load. Then,

based on their local view, most agents generate suggestionsfor themselves to forward tasks

to neighbors closer to the network center, which are coincidentally similar to suggestions

generated from a broader view (e.g., one-level or two-levelsupervision).

Supervision ATST AMSG TOC
None N/A N/A N/A
Local N/A N/A N/A

One-level 33.41± 0.66 10.21± 0.25 7500
Two-level 34.08± 0.62 10.60± 0.22 6000

Table 6.1.Performance of different structures with uneven center load

Supervision ATST AMSG TOC
None N/A N/A N/A
Local N/A N/A N/A

One-level 265.50± 6.59 24.83± 1.34 38500
Two-level 51.37± 0.88 16.33± 0.26 14000

Table 6.2.Performance of different structures with corner load

Supervision ATST AMSG TOC
None 29.26± 0.71 6.90± 0.21 17500
Local 28.21± 0.59 7.02± 0.09 8500

One-level 27.64± 0.60 6.94± 0.16 7500
Two-level 27.49± 0.60 7.14± 0.14 6500

Table 6.3.Performance of different structures with boundary load

Table 6.1, Table 6.2, and Table 6.3 show the different measures for each supervision

structure at their own convergence time point. In addition to increasing the convergence

rate, MASPA also decreases the system ATST. In most cases, the broader the views MASPA

observes, the lower the ATST the system generates. We can also observe that MASPA does

not incur heavy communication overhead. For example, with the boundary load pattern,

119

one-level supervisionhas less than 0.6% communication overhead. With the corner load

pattern,two-level supervisionactually produces lower AMSG thanone-level supervision.

This is becausetwo-level supervisionleads workers to learn more quickly and effectively

to forward tasks to the right workers, which dramatically reduces the number of messages

for routing tasks and offsets the overhead from an additional level of supervision.

During the experiments, we observed that supervisory information corresponding to

coarse-grained control tend to be more helpful than that corresponding to fine-grained con-

trol in improving the system performance. Moreover, fine-grained may even decrease sys-

tem performance. Coarse-grained control considers and operates on the whole cluster as

one entity, while fine-grained control operates on individual cluster members. “Moving

more tasks from my cluster to one of neighboring clusters” and “balancing the load within

the cluster” are examples of coarse-grained control . “Moving more tasks from a high-

loaded agent to a low-loaded agent along the shortest path” is an example of fine-grained

control. One explanation for this observation is that supervisory information corresponding

to coarse-grained control results in more coordination among agents’ exploration, speeding

up the learning convergence. In contrast, in our simulation, due to lack of detailed informa-

tion of each cluster member, fine-grained control for some individual members is not able

to fully evaluate the impact on and from other agents. As a result, the fine-grained control

may interfere with the normal learning process of other agents and the dynamics of other

agents may degrade the fine-grained control.

We have explored different values of cluster size and found that system performance

decreases with cluster size that are either too small (e.g.,≤ 5) or too large (e.g.,≥ 100).

This is because, with too small a cluster size, supervisors do not collect enough information

to create correct rules and suggestions. When a cluster sizeis too large, the representation

of cluster abstracted states for DTAP (i.e. averaging loadsof subordinates) ignores the

variance among subordinates. As a result, supervisors are not able to create proper rules

and suggestions for every subordinate. Therefore, there isa trade-off for the cluster size.

120

In addition, cluster sizes that produce the best performance vary in different environments

(e.g., different task arrival patterns).

Similarly, there is a trade-off in the length of the report period. A too short report period

causes a large variance of the abstracted state (also increases communication overhead) and

results in oscillating suggestions and rules. A too long report period causes the supervisory

information received by workers to be out-dated and as a result, decreases the convergence

rate.

6.4.2 Network Routing

We also evaluated our framework using a network routing simulator adopted from

Boyan and Littman [24]. It is a discrete time simulator of communication networks with

various topologies. A communication network consists of a homogeneous set of nodes (or

agents) and links between them. Packets are periodically introduced into the network under

a Poisson distribution with a random origin and destination. No two packets have the same

agent as their origin and destination. When a packet arrivesat an agent, the agent puts it

into the local FIFO (first in first out) queue. At each time step, an agent makes its routing

decision to forward the top packet in the queue to one of its neighbors. Once a packet

reaches its destination, it is removed from the network. In our experiments, we set the time

cost of sending a packet down a link as a unit cost. So the delivery time of packet consists

of its transmission cost and its waiting time in queues. The main goal of a network routing

algorithm for this problem is to minimize the Average Delivery Time (ADT) of all packets.

6.4.2.1 Experimental Setup

Each agent uses a Policy Gradient Descent (PGD) algorithm tolearn its routing policies.

The PGD algorithm is a variant of the GIGA algorithm [133], which minimizes the total

discounted cost and approximates the policy gradient of each state-action pair with the

normalized difference of its Q-value and the expected Q-value on that state. PGD learns

stochastic policies, but, unlike multi-agent OLPOMDP [103] and GAPS [77] that were also

121

Figure 6.6. The 10 x 10 grid topology

applied to network routing problem, it does not require a global reward signal. The states

is defined by the destination of the packet that an agent is forwarding. We defineQx(s, a)

as the estimated time that an agentx takes to deliver a packet to the destinations through its

neighbora, including any time that the packet would have to spend in theagentx’s queue.

The ”cost signal”r(s, a) for forwarding a packet with destinations to its neighbora is

qa + w + t, wherew is the waiting time of the packet inx’s queue andt is the transmission

time between agentx anda. The Q-learning algorithm is used to updatex’s estimates.

The MASPA implementation in network routing is similar to that in DTAP. The main

difference is the way that MASPA messages are generated. In the network routing prob-

lem, we do not use rules. The abstracted state of a worker (or supervisor) is defined a

vector〈t1, t2, . . . , tm〉, whereti is the average estimated time that the worker (or the su-

pervisor’s cluster) takes to deliver a packet to destination agents in clusteri. So, by using

statisticmean, the abstract state of a worker can be computed from its Q-value table and

a supervisor’s abstracted state can be projected from its subordinates’ abstracted states. A

simple heuristic is used for generating suggestions. A supervisor always produces positive

(or negative) suggestions for its subordinates to encourage (or discourage) them forward-

122

ing packets to clusters with lower (or higher) estimated delivery time to some destination

cluster. The suggestion degree for each subordinate depends on the difference between the

average estimated delivery time of neighboring clusters and the distance of the subordinate

to the boundary.

We have tested the PGD algorithm with and without MASPA on several network topolo-

gies with various number of nodes, all of which show similar results. For brevity, we con-

centrate on the result analysis for the 10 x 10 grid network pictured in Figure 6.6. The

Q-routing [24] algorithm is used as baseline, which learns deterministic policies. Two

measurements are evaluated: the average delivery time (ADT) and the time of convergence

(TOC). The ADT is computed every 1000 time units. To calculate TOC, we take50 se-

quential ADT values and then calculate the ratio of those values’ deviation to their mean.

If their mean is less than the maximum expected ADT (we use 300) and the ratio is less

than a threshold (we use 0.05), then we consider the system stable. TOC is the start time

of the selected points.

Results are then averaged over 10 simulation runs. All agents use the PGD algorithm

with a learning rateζ = 0.1. Workers send reports to their supervisors every 500 time units.

Our experiments use the parameterη(s) = 20000/(20000 + visits(s)).

6.4.2.2 Results & Discussions

Figure 6.7 shows the performance trend as agents learn undernetwork load= 7.0. The

network load is the average number of packages entering the network at each time unit.

All three algorithms, after initial periods of inefficiencyduring which they randomly ex-

plore the environment, gradually improve their performance and stabilize. At the very early

period, MASPA does not improve the performance much. This isbecause, due to almost

complete random exploration, subordinates do not provide accurate environment informa-

tion to their supervisor, which may result in some improper suggestions. As information

123

Time
0 100000 200000 300000 400000 500000

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

0

2000

4000

6000

8000

10000
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 6.7.Performance under network load = 7.0

Network Load
0 1 2 3 4 5 6 7 8 9

T
im

e
of

 C
on

ve
rg

en
ce

0

100000

200000

300000

400000

500000
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 6.8. Time of Convergence at various loads

accuracy increases, MASPA properly biases the policy search of the PGD algorithm and

speeds up the convergence. Due to policy oscillation, Q-routing shows slow convergence.

Figure 6.8 shows the TOC of three algorithms under various network loads. As ex-

pected, MASPA consistently speeds up the convergence of thePGD algorithm. The higher

the network load, the greater the speed improvement. For example, when load≥ 5.5,

MASPA decreases the TOC by around40% or more. Under low network loads, optimal

policies usually follows shortest paths, so they are deterministic. The PGD algorithms use

gradient update and gradually converge to deterministic policies, slower than Q-routing that

124

Network Load
0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

0

50

100

150

200

250

300

350
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 6.9.Delivery time at various loads

directly learns deterministic policies. However, under high loads, where optimal policies

are usually stochastic, the Q-routing policies show oscillation during the learning and the

PGD algorithm with MASPA converges faster to stochastic policies.

Figure 6.9 shows the ADT at the convergence time point under various network loads.

Under low loads, as both PGD algorithms, with and without MASPA, converge to deter-

ministic policies, they show almost the same performance. Due to random exploration

with some probability, they perform slightly worse than Q-routing. However, under high

loads, MASPA improves the PGD performance. For example, when load≥ 6.5, MASPA

decreases the ADT by at least10%, and when load= 8.0, MASPA reduces the ADT by

around30%. As both PGD algorithms converge to stochastic policies, which allows agents

to simultaneously exploit multiple paths to deliver packets to a single destination, they

perform much better than Q-routing under high loads.

6.5 Summary

In this chapter, we presented MASPA, a distributed supervision framework, that enables

efficient learning in large-scale multi-agent systems. In MASPA, the automated supervi-

sion mechanism fuses activity information of lower-level agents and generates supervisory

125

information that guides and coordinates agents’ learning process. This supervision mech-

anism continuously interacts with and dynamically controls the learning process. Simula-

tion results obtained in two different domains with different MARL algorithms verified the

generality of MASPA and demonstrated that MASPA significantly accelerates the learning

process with relatively low communication overhead.

To facilitate this supervision framework to be applied to practical MARL applications,

in next two chapters, we will attempt to address two important aspects of this framework:

finding supervisory organizations for coordinating agents’ learning processes and automat-

ing supervision process to dynamically generate supervisory information with little or no

domain knowledge.

126

CHAPTER 7

SELF-ORGANIZATION FOR COORDINATING MULTI-AGENT
LEARNING

In our previous chapter, we present a general supervision framework for addressing

challenges of scaling MARL to large complex MAS applications. This framework em-

ploys low-overhead, multi-level organizational control to dynamically coordinate agents’

learning processes in order to improve the speed, likelihood, and quality of their learning

convergence. One important question arising from this supervision framework is how to

find a proper supervisory organization for coordinating MARL, which will be addressed

in this chapter. More specifically, we will answer the following questions: can supervi-

sory organizations automatically form while agents are concurrently learning their decision

policies? do such dynamically evolving organizations perform better than static supervi-

sory organizations? This chapter will present a distributed self-organization approach [128]

to automatically and incrementally form supervisory organizations for better coordinating

agent’s learning processes while they are concurrently learning their decision policies. The

work of this chapter was published in AAMAS 2010 [128].

This chapter makes a twofold contribution. First, we formalize joint-event-driven in-

teractions among agents using a DEC-MDP model and define a measure for capturing the

strength of such interactions. Second, we develop a distributed self-organization approach,

based on the interaction measure, that dynamically adapts supervision organizations for

coordinating decentralized reinforcement learning (DRL)during the learning process. Un-

like the work in [2], our self-organization process does notchange the connectivity of the

original agent network, but form a hierarchical supervisory organization on top of it. The

key problem of the organization adaptation is to decide which agents need to be clustered

127

together so that their exploration strategies can be coordinated. Our approach to this prob-

lem is inspired by the concept ofnearly decomposable systems[89], where interactions

between subsystems are generally weaker than interactionswithin subsystems. In order to

improve the quality and reduce the complexity of coordinating DRL, our approach attempts

to group agents together that strongly interact with each other. Unlike most of the previous

work on self-organization (e.g., [35, 91]), our approach uses dynamic, rather than static, in-

formation about agents’ behaviors based on their current state of learning. In our approach,

the organization adaptation and individual agents’ learning concurrently progress and inter-

act with each other. Experimental results show that our dynamically evolving organizations

outperform predefined organizations for coordinating DRL.

The rest of the chapter is organized as follows. Section 7.1 reviews some background

knowledge. Section 7.2 develops a distributed self-organization approach for dynamically

evolving supervisory organizations to better coordinate DRL, and extends the supervision

framework proposed in previous chapter to integrate our approach. Section 7.3 empirically

evaluates our approach. Finally, Section 7.4 summarizes the contribution of this work.

7.1 Background

This section reviews a DEC-MDP model for representing collaborative MAS, DRL for

learning efficient approximate policies for agents in collaborative MAS, and the supervision

framework for improving the performance of DRL.

7.1.1 Average-Reward, Factored DEC-MDP

As discussed in Section 2.3, we will learn memoryless stochastic policies that mapping

the immediate observation to an action in DEC-POMDP, which,in some sense, we assume

that the global state of a DEC-POMDP is factored and each agent can fully observe its

local state. In addition, since it is usually infeasible or not scalable to use the global reward

signal for learning in a DEC-POMDP, we assume local reward signals exist that are specifi-

128

cally tailored and efficiently computable for individual agents. Therefore, we the following

use factored DEC-MDP to model the multiagent sequential decision-making problem in a

collaborative MAS.

Definition 11. Ann-agent factored DEC-MDP is defined by a tuple〈S, A, T,R〉, where

• S = S1×· · ·×Sn is a finite set of world states, whereSi is the state space of agenti

• A = A1× · · ·×An is a finite set of joint actions, whereAi is the action set for agent

i

• T : S×A×S → ℜ is the transition function.T (s′|s, a) is the probability of transiting

to the next states′ after a joint actiona ∈ A is taken by agents in states

• R = {R1, R2, . . . , Rn} is a set of reward functions.Ri : S ×A→ ℜ provides agent

i with an individual rewardri ∈ Ri(s, a) for taking actiona in states. The global

reward is a weighted sum of all local rewards:R(s, a) =
∑n

i=1 wiRi(s, a), wherewi

is a positive weight.

A policy π : S × A → ℜ is a function which returns the probability of taking action

a ∈ A for any given states ∈ S. Similar to [78], the value function for a policyπ is defined

relative to the average expected reward per time step under the policy:

ρ(π) = lim
N→∞

1

N
E[

N−1
∑

t=0

R(st, at)|π] (7.1)

where the expectation operatorE(·) averages over stochastic transitions ands
t anda

t are

the global state and the action taken at timet, respectively. The optimal policy is a policy

that yields the maximum valueρ(π).

Assume that the Markov chain of states under policyπ is ergodic. The expected reward

ρ(π) then does not depend on the starting state. Letp(s|π) be the probability of being in

129

states under the policyπ, which can be calculated as the average probability of beingin

states at each time step over the infinite execution sequence:

p(s|π) = lim
N→∞

1

N

N−1
∑

t=0

P (st = s) (7.2)

Lemma 6. SupposeR(s) is the global reward function. Then the value of policyπ is

ρ(π) =
∑

s∈S

p(s|π)
∑

a∈A

π(s, a)R(s, a) (7.3)

The lemma follows immediately from Equation 7.2 and the definition of the policy

value in Equation 7.1 based on the assumption that the state process is ergodic.

7.1.2 Decentralized Reinforcement Learning

DRL is used by agents to learn efficient approximate policiesin a factored DEC-MDP

environment, especially when the transition and reward function is unknown. Each agent

learns its local policy based on its local observation and reward in presence of other agents,

who are also learning a policy under the same conditions. Thelocal policyπi : Si×Ai → ℜ

for agenti returns the probability of taking actionai ∈ Ai in local statesi ∈ Si. As each

agent only observes local reward signals, the value function of a local policyπi of agenti

is defined as:

ρi(πi) = lim
N→∞

1

N
E[

N−1
∑

t=0

rt
i|πi] (7.4)

where the expectation operatorE(·) averages over both stochastic transitions and nondeter-

ministic rewards andrt
i is the local reward received at timet. The local rewardrt

i = Ri(s
t)

depends on the global states
t and appears nondeterministic from the local perspective. The

objective of agenti is to learn an optimal policyπ∗
i to maximizeρi(πi).

Similar to Lemma 6, we can also reformulate the value function of the local policy.

130

Lemma 7. SupposeE[ri(si)|π] is the expected local reward of taking actionai in statesi

given a joint policyπ.

ρi(πi|π−i) =
∑

si∈Si

p(si|π)
∑

ai∈Ai

πi(si, ai)E[ri(si, ai)|π], (7.5)

wherep(si|π) as the probability of being in local statesi under the joint policyπ andπ−i

is the set of policies of all agents except agenti.

Due to factored reward, we have the following lemma that can directly be proved from

the definitions of factored DEC-MDP and value functions of both joint and local policies.

Lemma 8. The value of a joint policy is a weighted sum of the values of local policies, that

is,

ρ(π) =
∑

i

wiρi(πi|π−i), (7.6)

where the joint policyπ = (π1, . . . , πn) andπ−i is the set of policies of all agents except

agenti.

7.2 Supervisory Organization Formation

In our previous chapter, we present a supervision frameworkthat is intended to im-

prove the speed, quality, and likelihood of DRL convergence. This framework employed

low-overhead, periodic organizational control to coordinate and guide agents’ exploration

during the learning process. This section describes our approach to dynamically evolv-

ing a hierarchical supervisory organization for better coordinating DRL when agents are

concurrently learning their decision policies. Organization formation is best described via

answering two questions: how agent clusters are formed, andhow a cluster supervisor is

selected. Our approach adopts a relatively simple strategyfor supervisor selection. Each

cluster selects an agent as its supervisor that minimizes the communication overhead be-

tween supervisors and their subordinates. A new supervisorthen establishes connections

to supervisors of neighboring clusters based on the connectivity of their subordinates.

131

Agent clustering is to decide what agents should be grouped together so that their learn-

ing exploration strategies can be better coordinated by onesupervisor. Because of limited

resources of computation and communication, it is usually not feasible to put all agents

together and use a fully centralized coordination mechanism. To deal with bounded re-

sources and maintain satisficing performance of coordination, our clustering strategy is to

cluster highly interdependent agents together, whose interactions have a great impact on

the system performance, and meanwhile to minimize interactions across clusters. Thus

the resulting system has a nearly decomposable, hierarchical structure, which reduces the

complexity of coordinating DRL in a distributed way.

To measure the interdependency between agents, we characterize a type of interactions

among agents, calledjoint-event-driven interactions, in a DEC-MDP model. We also define

a measure for the strength of such interactions, calledgain of interactions, and analyze how

interactions between agents contribute to the system performance by using this measure.

Based on this measure, we then propose a distributed, negotiation-based agent clustering

algorithm to form a nearly decomposable organization structure. Finally, we discuss how

to extend supervision framework proposed in [123] to integrate our self-organization ap-

proach. For clarity, this chapter focuses the discussion onforming a two-level hierarchy.

Our organization formation approach can be iteratively applied in order to form a multi-

level hierarchy.

7.2.1 Joint-Event-Driven Interactions

Definition 12. A primitive event ej = 〈sj, aj〉 occurs when agentj executes actionaj in

statesj. A joint event ~eX = 〈ej1, ej2 , . . . , ejh
〉 contains a set of primitive events generated

by agentsX = {j1, j2, . . . , jh}. A joint event~eX occurs iff all of its primitive events occur.

Note that our definition of a joint event is different from that of an event in [13], where

an event occurs if any one of its primitive events occurs. Forbrevity, events discussed in

this chapter refer to joint events. An event is used to capture the fact that some agents

132

did some specific activities. A primitive event can be generated by either an agent or the

external environment. For convenience, we treat the external environment as an agent.

Definition 13. A joint-event-driven interaction iXj = 〈~eX , ej〉 from a set of agentsX

onto agentj is a tuple that includes a joint event~eX and a primitive eventej . A joint-event-

driven interactioniXj is effective iff the event~eX affects the distribution over the resulting

state of eventej , that is,∃sj ∈ Sj such thatp(st+1
j = sj|et

j = ej) 6= p(st+1
j = sj|et

j =

ej , ~e
t
X = ~eX), wheret is the time.

Here we define an interaction between agents as an affecting relationship, which is uni-

directional. An effective interaction on an agent basically changes its transition function. If

there exists an effective interaction〈〈eX〉, ej〉, then we say that agentsX effectively interact

with agentj.

Now we define a measure for the strength of interactions amongagents. LetEj
X =

{~eX |∃ej ∈ Sj ×Aj such that interaction〈~eX , ej〉 is effective} be all joint events generated

by a set of agentsX that effectively interact with agentj.LetVj(sj|π) =
∑

aj
πj(sj, aj)E[rj(sj, aj)|π]

be the expected value of being in statesj, whereπj is the policy of agentj, andE[rj(sj , aj)|π]

is the expected reward of executing actionaj in statesj.

Definition 14. Thegain of interactions from a set of agentsX to agentj, given a joint

policyπ, is
g(X, j|π) =

∑

~eX∈Ej

X

p(~eX |π)
∑

sj

p(sj |~eX , π)Vj(sj|π),

wherep(~eX |π) is the probability that event~eX occurs andp(sj|~eX) is the probability of

being in statesj after~eX occurs.

The value of the gain of interactions is affected by two factors: how frequently agents

effectively interact (reflecting onp(~eX |π)) and how well they are coordinated (reflecting on
∑

sj
p(sj|~eX)Vj(sj|π)). For example, in our experiments of distributed task allocation, if

agentsX frequently interact with agentj but they are not well coordinated, then the value

of g(X, j) tends to be a large negative value (all expected rewards are negative). Here

133

ill-coordination means that agentsX frequently generate events that cause agentj to be

in states with low expected rewards. For instance, they sendtasks to agentj when it is

overloaded.

Obviously, if agentsX do not effectively interact with agentj, theng(X, j|π) = 0

(becauseEj
X = ∅). Now let us consider a special type of interactions among agents, called

mutually exclusive interactions.

Definition 15. Two nonempty disjoint agent setsX andY are said tomutually exclusively

interact with agentj, iff Ej
X = ∅∨Ej

Y = ∅∨p(st+1
j = sj , e

t
j = ej, ~e

t
X = ~eX , ~et

Y = ~eY) = 0,

for all sj ∈ Sj, ej ∈ Sj ×Aj , ~eX ∈ Ej
X , ~eY ∈ Ej

Y .

If X andY mutually exclusively interact with agentj, then no two effective interactions

generated byX andY , respectively, will simultaneously occur to affect the state transition

of agentj. In many applications [24, 131, 130], agents have such a typeof interactions. For

example, in network routing [24], the state space is defined by the destination of packages

and each decision of an agent is triggered by one routing packet sent by one agent, so

any two agents mutually exclusively interact with any thirdagent. Mutually exclusive

interaction has the following property.

Proposition 1. If X andY mutually exclusively interact with agentj, theng(X∪Y, j|π) =

g(X, j|π) + g(Y, j|π).

Proof. Let EX andEY be all events generated byX andY , respectively.

134

g(X ∪ Y, j|π) =
∑

~eXY ∈Ej

X∪Y

p(sj, ~eXY |π)Vj(sj|π)

=
∑

~eX∈Ej

X

∑

~eY ∈EY

∑

sj

p(sj , ~eX , ~eY |π)Vj(sj|π)

+
∑

~eX∈EX

∑

~eY ∈Ej
Y

∑

sj

p(sj, ~eX , ~eY |π)Vj(sj|π)

−
∑

~ej
X
∈EX

∑

~eY ∈Ej
Y

∑

sj

p(sj , ~eX , ~eY |π)Vj(sj|π)

=
∑

~eX∈Ej

X

∑

sj

p(sj, ~eX |π)Vj(sj |π)

+
∑

~eY ∈Ej

Y

∑

sj

p(sj, ~eY |π)Vj(sj|π)

= g(X, j|π) + g(Y, j|π)

Let X be all agents in a system andXj ⊆ X be a set of agents that effectively interact

with agentj.

Proposition 2. If every two agents inXj mutually exclusively interact with agentj, then

ρj(πj |π−j) =
∑

x∈Xj

g({x}, j|π).

Proof.

ρj(πj|π−j) =
∑

sj

p(sj|π)Vj(sj |π)|π)

=
∑

~eX∈Ej

Xj

p(~eX |π)
∑

sj

p(sj |~eX)Vj(sj |π)

= g(Xj, j|π)

=
∑

x∈Xj

g({x}, j|π)

135

Corollary 1. If every pair of agents inX mutually exclusively interact with any third agent,

then
∑

j∈X

∑

x∈X

wjg({x}, j|π) = ρ(π).

This corollary follows immediately from Lemma 8 and Proposition 2. Proposition 2

and Corollary 1 show how interactions contribute to the local and global performance,

respectively, that is, the greater the absolute value of theweighted gain of interactions be-

tween two agents, the greater the (positive or negative) potential impact of their interactions

on both the local and global performance. Although the properties of the gain of interac-

tions we have just shown are valid in a restricted case, it canalso be shown that the global

performance measure can be tightly bounded by a weighted sumof gains of interactions

among agents, which are approximately mutually exclusive.Therefore, the weighted gain

can generally reflect the strength of interactions between agents, which is the basis of our

self-organization approach.

7.2.2 Distributed Agent Clustering through Negotiation

Our clustering algorithm is intended to form a nearly decomposable organization struc-

ture, where interactions between clusters are generally weaker than interactions within clus-

ters, to facilitate coordinating DRL. We assume all reward weights are equal and use the

absolute value of the gain of interactions to measure the strength of interactions among

agents. Supervisory organizations formed by using this measure will favorably generate

rules and suggestions to improve ill-coordinated interactions (i.e. with a large negative

gain) and maintain well-coordinated interactions (i.e., with a large positive gain), which

potentially improve the performance of DRL. Our algorithm does not require interactions

between agents to be mutually exclusive.

Due to bounded computational and communication resources,we limit the cluster size

to control the quality and complexity of coordination. Our clustering problem is formulated

136

as follows: given a set of agentsX and the maximum cluster sizeθ, subdivideX into a set

of clustersC = {C1, C2, . . . , Cm}, such that

1. ∀i = 1, . . . , m, |Ci| ≤ θ,

2. ∪Ci = X and∀i 6= j, Ci ∩ Cj = ∅,

3. The total utility of clustersU(C) =
∑

Ci∈C
U(Ci) is maximal, whereU(Ci) is the

utility of a clusterCi defined as follows:

U(Ci) =
∑

xi,xj∈Ci andxi 6=xj

|g({xi}, xj)| (7.7)

Note that the total utilityU(C) has no direct relation to the system performance mea-

sureρ(π). The purpose of our clustering algorithm is not to directly improve the system

performance, but to form proper supervisory organizationsfor coordinating learners that

are ill-coordinated so as to potentially improve the learning performance.

Our clustering approach is distributed and based on an iterative negotiation process that

involves a two roles: a buyer and a seller. Abuyeris a supervisor who plans to expand its

control and recruit additional agents into its cluster. Aselleris a supervisor who has agents

that the buyer would like to have. Supervisors can be buyers and sellers simultaneously.

A transactionis to transfer a nonempty subset of boundary subordinates from a seller’s

cluster to a buyer’s cluster. Thelocal marginal utility is the difference between a cluster’s

utility before a transaction and the utility after the transaction. Thesocial marginal utility

is the sum of the local marginal utilities of both the buyer and the seller.

Based on these terms, our clustering problem can be translated into deciding which

sellers the buyers should attempt to get agents from and which buyers the sellers should

sell their agents to so thatU(C) is maximized.

The input to our clustering algorithm is an initial supervisory organization and the gain

of interactions between agents. Figure 7.1 shows the dynamics of the negotiation protocol.

137

Seller 1

Seller 2Buyer 1

Buyer 2
1. Advertise

1. Advertise

2. Bid 2. Bid1. Advertise 1. Advertise

3. Offer

Figure 7.1.Self-organization negotiation protocol

Each supervisor only negotiates with its immediate supervisors. As our system is coopera-

tive, our negotiation decisions are based on marginal social utility calculation. A round of

negotiation consists of the following sub-stages:

1. Seller advertising: the supervisor of each clusterCi sends an advertisement to each

neighboring buyer. The advertisement contains local marginal utility U lm(Ci/X) =

U(Ci)−U(Ci/X) of giving up each nonempty subsetX of its subordinates adjacent

to the buyer’s cluster.

2. Buyer bidding: the supervisor of each clusterCj waits for a period of time, collecting

advertisements from neighboring supervisors. When the period is over, it calculates

local marginal utilityU lm(Cj ∪X) = U(Cj ∪X)−U(Cj) and then social marginal

utility Usm(Cj, Ci, X) = U lm(Cj∪X)−U lm(Ci/X) for introducing each nonempty

subsetX of subordinates of a seller of clusterCi. If Usm(Cj, Ci, X) is the greatest

social marginal utility andUsm(Cj, Ci, X) > 0, then the buyer sends a bid to the

supervisor of clusterCi with the social marginal utilityUsm(Cj , Ci, X); otherwise,

do nothing.

3. Selling: given the multiple responses from buyers duringa period time, the supervi-

sor of clusterCi chooses to transfer a subset of subordinatesX to the clusterCj if

138

Organization
Adaptation

Organizational
Supervision

Agent Learning
and Acting

Organization

Supervisory
information

Interactions
between agents

Abstracted states
and rewards

Information gathering

Figure 7.2.Extended supervision framework

Usm(Cj, Ci, X) is the maximal social marginal utility that the seller receives during

this round.

The basic idea of our approach is similar to the LID-JESP algorithm [70] and the dis-

tributed task allocation algorithm in [48]. LID-JESP is used to generate offline policies for

agents in a special DEC-POMDP, called ND-POMDP. However, wefocus on agent clus-

tering. Our negotiation strategy is also similar to that in [91], but uses one less sub-stage in

each round of negotiation.

Proposition 3. When our clustering algorithm is applied, the total utilityU(C) strictly

increases until local optimum is reached.

Sketch.By construction, only non-neighboring supervisors can transfer some subordinates

to their neighboring clusters and they will only do this if the social marginal utility is posi-

tive, which results in an increase of the total utilityU(C). In addition, a supervisor’s trans-

ferring subordinates to a neighboring cluster will not affect the utility of other neighboring

clusters and non-neighboring clusters. Thus with each cycle the total utility is strictly in-

creasing until local optimum is reached.

7.2.3 Extended Supervision Framework

The gain of interactions is defined on the transition function, the reward function, and

a specific joint policy. However, as all agents are learning their decision policies, interac-

139

SC

IG

OA

IG

SC

IG

OA

.

epoch 1 epoch 2

Figure 7.3. Iterations of three activities: information gathering (IG), supervisory control (SC), and
organization adaptation (OA)

tions between agents may change over the time. To deal with this issue, we decompose

the system runtime into a sequence of epochs. The gain of interactions between agents is

approximately estimated from their execution trace duringan epoch. Each epoch contains

three activities:information gathering, andsupervisory controlandorganization adapta-

tion. The supervision framework proposed in [123] is now extended to allow dynamically

evolving supervisory organizations for better coordinating DRL when agents are concur-

rently learning their decision policies. As shown in Figure7.2, the extended framework

contains these three interacting activities. Three activities iterate in the way as shown in

Figure 7.3 during the whole system runtime.

Both information gathering activity and supervisory control activity have been dis-

cussed in detail in the previous chapter. With this extendedframework, during the informa-

tion gathering phase, each agent collects information about interactions from its neighbors,

in addition to its execution sequence and reward information. After a period of time, agents

will move to supervisory control phase, at the beginning of which each agent will calculate

the gain of interactions with its neighbors and report it along with other information (i.e.,

abstracted states and rewards) to its supervisor. To avoid interfering the DRL supervision,

organization adaption only happens after the supervisory control phase. However, since

there is no communication between learning agents and theirsupervisors during the infor-

mation gathering stage, organization adaption can be conducted concurrently with the next

phase of information gathering. During this phase, using information of subordinates’ in-

140

teractions with their neighbors, supervisors run our negotiation-based clustering algorithm

and supervisor selection strategy to dynamically adapt thecurrent supervisory organization.

The resulting organization will be used for the next supervisory control activity. Initially,

the system starts with a very simple supervisory organization, where each agent is its own

supervisor. Then the supervisory organization is periodically evolving as agents are learn-

ing and acting.

7.3 Experiments

We evaluated our approach in a distributed task allocation problem (DTAP) [123] with

Poisson task arrival distribution and exponentially distributed service time. Agents are

organized in a network. Each agent may receive tasks from either the environment or its

neighbors. At each time unit, an agent makes a decision for each task received during this

time unit whether to execute the task locally or send it to a neighbor for processing. A task

to be executed locally will be added to the local queue. Agents interact via communication

messages and communication delay between two agents is proportional to the distance

between them. The main goal of DTAP is to minimize the averagetotal service time (ATST)

of all tasks, including routing time, queuing time, and execution time.

7.3.1 Experimental Setup

We chose one representative MARL algorithm, the Weighted Policy Learner (WPL)

algorithm [1], for each worker to learn task allocation policies. WPL is a gradient ascent

algorithm where the gradient is weighted byπ(s, a) if it is negative; otherwise, it will

weighted by(1 − π(s, a)). A worker’s state is defined by a tuple〈l, f〉, wherel is the

current work load (or total work units) in the local queue andf is a boolean flag indicating

whether there is a task to be made a decision. Each neighbor corresponds to an action

which forwards a task to that neighbor, and an agent itself corresponds to the action that

put a task to the local queue. The rewardr(s, a) of doing an actiona for an task is the

141

negative value of the expected service time to complete the task after doinga in states,

which is estimated from previous finished tasks. All agents use WPL with learning rate

0.001.

The abstracted state of a worker is projected from its statesand defined by its average

work load over a period of timeτ (τ = 500 in our experiments). The abstracted state

of a supervisor is defined by the average load of its cluster, which can be computed from

the abstracted states of its subordinates. A subordinate sends a report, which contains its

abstracted state, to its supervisor everyτ time period. Supervisors use simple heuristics to

generate rules and suggestions. With an abstracted state〈l̄〉, a supervisor generates a rule

that specifies, for all states whose work load exceedsl̄, a worker should not add a new task

to the local queue. This rule helps balance load within the cluster. A supervisor also gen-

erates positive (or negative) suggestions for its subordinates to encourage (or discourage)

them forwarding more tasks to a neighboring cluster that hasa lower (or higher) average

load. The suggestion degree for each subordinate depends onthe difference between the

average load of two clusters, the number of agents on the boundary, and the distance of the

subordinate to the boundary. Therefore, suggestions are used to help balance the load across

clusters. The implementation detail of generating supervisory information is discussed in

[122]. Our experiments use the receptivity functionη(s) = 1000/(1000+visits(s)), where

visits(s) is the number of visits on states.

To allow its supervisor to run our negotiation-based self-organization algorithm, each

agent calculates the gain of interactions from other agents. As mentioned in Section 7.2.3,

because of learning, each agent needs to approximately estimate each component in the

definition of the gain of interactions from the history of itslocal executions and interac-

tions with other agents in order to calculate it. In DTAP, oneagent only interacts with its

neighbors by forwarding tasks to them and its state does not affect states of its neighbors.

Let ~ej
k be the event of agentk, forwarding a task to agentj, that effectively interacts with

agentj. To calculateg({k}, j|π), agentj estimatesp(~ej
k|π) as the ratio of the number of

142

tasks received from agentk to the total number of received tasks andp(sj|~ej
k) as the ratio

of the number of visits on statesj resulting from~ej
k to the total number of visits on this

state, and uses its current learned policyπj and reward functionrj.

Three measurements are evaluated: average total service time (ATST), average number

of messages (AMSG) per task, time of convergence (TOC), and average cluster size (ACS).

ATST indicates the overall system performance. AMSG takes into account all messages

for routing task, coordination, and self-organization negotiation. To calculate TOC, we

take sequential ATST values with certain size. If the ratio of those values’ deviation to

their mean is less than a threshold (we use threshold of0.025), we consider the system

stable. TOC is the start time of the selected points. ACS is the average cluster size in the

system at TOC.

Experiments were conducted using a 18x18 grid network with 324 agents. All agents

have the same execution rate and tasks are not decomposable.The mean of task service

time isµ = 10. We tested two patterns of task arrival:

Side Load where agents in a 3x3 grid at the middle of each side receive tasks with rate

λ = 0.8 and other agents receive no tasks from the external environment.

Corner Load where only agents in the 8x8 grid at the upper left corner receive tasks from

the external environment. Within that grid, the 36 agents atthe upper left corner has

the task arrival rateλ = 0.25 and the rest agents has the rateλ = 0.7.

We compared the DRL performance under four cases:None, Fixed-Small, Fixed-Large,

and Self-Org. In theNonecase, no supervision is used to coordinate DRL. BothFixed-

SmallandFixed-Largecases use a fixed organization, the former with 36 clusters, each of

which is a 3x3 grid, and the latter with 9 clusters, each of which is a 6x6 grid. TheSelf-Org

case uses our self-organization approach to dynamically evolving supervision organization.

143

In each simulation run, ATST and AMSG are computed every 500 time units to measure

the progress of the system performance. Results are then averaged over 10 simulation runs

and the variance is computed across the runs.

7.3.2 Experimental Results

Times

0 5000 10000 15000 20000

A
T

S
T

10

40

70
100
130

None
Fixed−Small
Fixed−Large
Self−Org

Figure 7.4. ATST under side load

Times

0 5000 10000 15000 20000

A
T

S
T

20

320

620
920

None
Fixed−Small
Fixed−Large
Self−Org

Figure 7.5. ATST under corner load

Figure 7.4 and 7.5 plot the trends of ATST, as agents learn, for different organization

structures with different task arrival patterns. Note thatthey axis in the plots is logarithmic.

The supervision framework generally improves both the likelihood and speed of the learn-

ing convergence. Supervision with self-organized structure has a better learning curve than

144

that with predefined organization structures. This is because our self-organization approach

clusters highly interdependent agents together, and focused coordination on them tends to

greatly improve the system performance. TheFixed-Smallcase has a small cluster size and

consequently some highly interdependent agents are not coordinated well. In contrast, the

Fixed-Largecase has a large cluster size, which enlarges both the view and control of each

supervisor and potentially improve the system performance. However, with a large clus-

ter size, an abstracted state of a cluster (generated by a supervisor) tends to lose detailed

information about its subordinates, and also weakily interdependent agents are mixed with

highly interdependent agents, both of which degrade the coordination quality.

Under corner load, the system with bothNoneand Fixed-Smallcases seems not to

converge. For theNonecase, due to communication delay and limited views, agents in the

top-left conner do not learn quickly enough knowledge aboutwhere light-loaded agents

are. As a result, more and more tasks loop and reside in the top-left 8x8 grid. This makes

the system load severely unbalanced and the system capability not well utilized, which

causes the system load to monotonically increase. For theFixed-Smallcase, because of

a small cluster size, a supervisor’s local view of the systemmay not be consistent with

the global view. Some supervisors of overloaded clusters find their neighbors having even

higher loads and consider their own clusters are “lightly” loaded. As a result, they generate

incorrect directives for their subordinates, which degrade their normal learning.

Structure ATST AMSG TOC ACS
None 33.47± 1.67 5.81± 0.07 13000 0

Fixed-Small 29.09± 1.27 6.04± 0.11 10000 9
Fixed-Large 29.30± 1.46 6.16± 0.14 8500 36

Reorg 28.98± 1.15 6.59± 0.08 6500 14.50± 0.55

Table 7.1.Performance under side load

Table 7.1 and 7.2 show different measures for each supervision structure at their respec-

tive convergence time points. Due to the system divergence,both theNoneandFixed-Small

cases have no data under corner load. In addition to improving the convergence rate, the

145

Structure ATST AMSG TOC ACS
None N/A N/A N/A 0

Fixed-Small N/A N/A N/A 9
Fixed-Large 44.94± 2.10 11.26± 0.10 12500 36

Self-Org 42.87± 2.06 11.41± 0.05 10500 25.33± 2.16

Table 7.2.Performance under corner load

supervision framework also decreases the system ATST. Self-organization further improves

the coordination performance, as indicated by its ATST and TOC. Because of negotiations,

the self-organization case has a slightly heavier communication overhead than those of

fixed organizations.

7.4 Summary

In this chapter, we address an important aspect of our supervisory framework to al-

low supervisory organizations to automatically evolve forbetter dynamically coordinating

MARL. We formally define and analyze a type of interactions, called joint-event-driven in-

teractions, among agents in a DEC-MDP. Based on this analysis, we develop a distributed

self-organization approach that dynamically adapts hierarchical supervision organizations

for coordinating DRL during the learning process. Experimental results demonstrate that

dynamically evolving hierarchical organizations outperform predefined organizations in

terms of both the probability and the quality of convergence. In the next chapter, we will

deal with another important aspect of our supervisory framework: automating the supervi-

sion process for coordinating MARL without domain knowledge.

146

CHAPTER 8

AUTOMATING COORDINATION FOR MULTI-AGENT
LEARNING IN ND-POMDPS

In Chapter 6, we present a general supervision framework foraddressing challenges

of scaling MARL to large complex MAS applications. Previouschapter addresses one

important aspect of our supervision framework to allow supervisory organizations to au-

tomatically evolve for better dynamically coordinating MARL. Another important aspect

of our supervision framework is how to coordinate MARL with little or no domain knowl-

edge. As will be presented in this chapter, our attempt in this research direction focuses

on a class of cooperative multi-agent decision making problems, which can be modeled by

Networked Distributed POMDPs (ND-POMDPs) (a restricted version of DEC-POMDP).

We tailor our supervision framework for coordinating MARL in ND-POMDP problems:

making supervisors learn policies for their own subordinates and employing distributed

constraint optimization (DCOP) techniques to automatically coordinate supervisors’ learn-

ing without employing domain knowledge or heuristics. The work of this chapter was

published in AAAI 2011 [125].

8.1 Introduction

Decentralized partially observable MDP (DEC-POMDP) provides a powerful frame-

work for modeling cooperative multi-agent decision makingproblems under uncertainty.

Due to the intractability of optimally solving general DEC-POMDPs, research has focused

on restricted versions of DEC-POMDP that are easier to solveyet rich enough to repre-

sent many practical applications. Networked Distributed POMDP (ND-POMDP) [114] is

147

one such model that is inspired by a real-world sensor network coordination problem [53].

ND-POMDP assumes transition and observation independenceand locality of interaction.

A rich portfolio of algorithms have been developed for solving ND-POMDPs [114, 61,

49]. One good feature of these techniques is that, although computing policies is central-

ized or requires extensive communication, executing computed policies does not require

explicit communication. However, this feature may preventagents from better coordina-

tion during execution when communication is allowed. In fact, in many practical appli-

cations, communications (at least between neighboring agents) are necessary for agents to

perform tasks. For example, for target tracking in sensor networks, agents need to fuse their

observations and actions to determine sensing results. Thework [104] introduced commu-

nication in ND-POMDPs to periodically synchronize the belief state and extended existing

algorithms to obtain policies with longer horizons. However, extensive communication is

required for global synchronization, which is not scalable. In addition, all these algorithms

for ND-POMDPs are offline techniques and require accurate models of the environment,

which are usually costly to obtain in practice.

In this chapter, we present a model-free, scalable learningapproach to developing

policies for ND-POMDPs. Our approach synthesizes multi-agent reinforcement learn-

ing (MARL) and distributed constraint optimization (DCOP). By exploiting locality of

interactions in ND-POMDPs, our approach factors a global joint action-value function

and distributes the learning of the joint policy, which potentially scales up the learning

to large-scale ND-POMDPs. Using communication between neighboring agents, our ap-

proach employs DCOP techniques to coordinate distributed learning to ensure the global

performance. Our previous chapter presents a general supervisory framework for coor-

dinating MARL, but did not provide a general coordination algorithm without exploiting

domain knowldge. In this chapter, we demonstrate that DCOP algorithms can be used as

general techniques for coordinating MARL in ND-POMDPs.

148

Coordinated reinforcement learning based on coordinationgraphs [30] has been ex-

plored in [31, 46] for factored MDPs. In contrast to these previous work, in this chapter,

we explore coordinated multi-agent reinforcement learning in a principled way in ND-

POMDPs and prove that our coordinated learning approach canlearn the globally optimal

policy for ND-POMDPs with a property, calledgroupwise observability. In addition, we

also demonstrate that a max-sum algorithm [97] can be used for an approximate solution

to our distributed coordination problem in learning, whichrequires limited communica-

tion overhead (typically scaling linearly with the number of agents) and computation. This

DCOP algorithm can be readily implemented as an anytime algorithm to trade off solu-

tion quality and cost of computation and communication. Unlike the message-passing

algorithm in [46], this algorithm can be directly used for coordinating interactions involv-

ing more than two agents. Experimental results show that, even in ND-POMDPs without

groupwise observability, our approach scales to larger domains and performs significantly

better and with orders of magnitude time savings (in the offline mode) over the previous

best offline algorithm. Note that, as our approach needs communication during execution,

a direct comparison among approaches is not appropriate. However, the offline results do

provide a way to evaluate our approach by providing a baseline (i.e., nearly-optimal per-

formance without communication).

8.2 Background

This section briefly introduces an illustrative problem in the sensor network domain,

the ND-POMDP model, and basic learning approaches.

8.2.1 Illustrative Domain

This illustrative problem is motivated by a real-world challenge, where a network of

agents (sensors) are used to track targets. Figure 8.1 showsa specific problem instance

consisting of four sensors. Here, each sensor node can scan in one of four directions:

149

Figure 8.1. A 4-chain sensor configuration

North, South, East or West. To track a target and obtain the associated reward, two sensors

with overlapping scanning areas must coordinate by scanning the same area simultaneously.

For example, sensor1 needs to scan East and sensor2 needs to scan West simultaneously

to track a target in location1. Thus, sensors have to act in a coordinated fashion. The

movement of targets is unaffected by sensor agents. Sensorshave imperfect observability

of the target, so there can be false positive and negative observations. Sensors receive a

reward on successfully tracking a target, and they incur a cost, when they either scan an

area in an uncoordinated fashion or when the target is absent.

8.2.2 Networked Distributed POMDPs

Observe that sensors in this domain are mostly independent.Their state transitions,

given the target location and the observations, are independent of the actions of the other

agents. The only dependence arises from the fact that two agents must coordinate by scan-

ning the same region to track a target. This dependence can betranslated into a joint reward

function. Such dependence is usually localized among a few agents (only two agents in this

sensor network problem). The ND-POMDP model [114] was introduced to express such a

type of interactions.

Definition 16. AnND-POMDP is defined by the tuple〈I, S, A, Ω, P, O, R, b〉, where

I = {1, . . . , n} is a set of agent indices.

S = ×i∈ISi × Su. Si refers to the local state of agenti. Su refers to a set of uncontrol-

lable states that are independent of the actions of the agents. In the sensor network

150

example,Si is empty, whileSu corresponds to the set of locations where targets can

be present.

A = ×i∈IAi, whereAi is the set of actions for agenti. For the sensor network example,

A1 = {N, W, E, S, Off}.

Ω = ×i∈IΩi is the joint observation set.

P P (s′|s, a) = Pu(s
′
u|su) ·

∏

i∈I Pi(s
′
i|si, su, ai), wherea = 〈a1, . . . , an〉 is the joint

action performed in joint states = 〈su, s1, . . . , sn〉 resulting in joint states′ =

〈s′u, s′1, . . . , s′n〉. (This models the transition independence.)

O O(ω|s, a) =
∏

i∈I Oi(ωi|si, su, ai), wheres is the joint state resulting after taking

joint actiona and receiving joint observationω. (This models the observation inde-

pendence.)

R R(s, a) =
∑

l Rl(sl, su, al). The reward function is decomposable among sub groups

of agents referred byl. If k = |l| agentsi1, . . . , ik are involved in a particular

sub groupl, thensl denotes the state of groupl, i.e., 〈sl1, . . . , slk〉. Similarly,al =

〈al1, . . . , alk〉. In the sensor domain, the reward function is expressed as the sum of

rewards between sensor agents that have overlapping areas(k = 2) and the reward

functions for an individual agent’s cost for sensing(k = 1). Based on the reward

function, an interaction hypergraphG = (I, E) can be constructed, whereI is a

vertex (i.e., agent) set andE is a set of hyperlinks. A hyperlinkl ∈ E connects the

subset of agents which form the reward componentRl. Note that this interaction

hypergraph will be used to develop our learning approach in later sections.

b b = (bu, b1, . . . , bn) is the initial belief for joint states = 〈su, s1, . . . , sn〉 ∈ S and

b(s) = b(su) ·
∏

i∈I bi(si), wherebu andbi are the initial distribution overSu andSi.

The goal for ND-POMDPs is to compute a joint policyπ that maximizes the total ex-

pected reward of all agents over a finite horizonT starting fromb. Without communication,

151

agents can only act based on its local observations. In this case, a joint policyπ is defined

by 〈π1, . . . , πn〉, whereπi refers to the individual policy of agenti that maps its history of

observations to an actionai ∈ Ai. If communication is allowed, a joint policyπ can also be

defined by one policy, calledglobal policy, that maps from a history of joint observations

to a joint actiona ∈ A. This is because agents can exchange their observations andselect

actions based on joint observations. Obviously, the optimal global policy inherently per-

forms better than the optimal set of individual policies. Inthis chapter, we assume agents

can communicate (at least with their neighbors) during the execution time and focus on

representing and learning the optimalglobal policyin a scalable way.

8.2.3 Basic Learning Approaches

To learn the joint policy, we need to define Q-function (or Q-value function). Let Q-

function Q(~h, a) represent the expected reward of doing joint actiona with history~h of

joint observations and actions and behaving optimally fromthen on. The globally joint

policy π can be derived fromQ(~h, a) by settingπ(~h) = argmaxa∈AQ(~h, a).

In principle, we can directly estimateQ(~h, a) by using standard single-agent Q-learning:

Q(~ht, at) = (1− α)Q(~ht, at) + α[rt + γ max
a

Q(~ht+1, a)] (8.1)

whereα ∈ (0, 1) is the learning rate,rt is the immediate reward of doingat for observation

history~ht, γ ∈ [0, 1] is the discount factor, which is usually set to 1 for a finite horizon.

We call this approachglobally joint learning. Although this approach leads to an optimal

policy, it is practically intractable, because the policy space is exponential in the number of

agents and the agents might not have access to the needed information (i.e., observations,

actions, and rewards of all other agents) for learning and selecting actions.

At the other extreme, we can have theindependent learningapproach [27] in which

agents ignore the actions and rewards of the other agents, and concurrently learn their own

action-value functions solely based on their local observations and rewards. To provide lo-

152

cal rewards in ND-POMDPs, we can split the reward componentRl evenly among agents

in groupl. This approach is distributed, results in big storage and computational savings in

the policy space, and does not require communication duringlearning and execution. How-

ever, this approach lacks coordination and might lead to oscillations or converge to local

optimal policies. For example, in Figure 8.1, if location1,location2, and location3 always

have targets with sensing reward 50, 60, and 50, respectively, then, by using independent

learning approach, sensor2 and sensor3 will learn to alwayssense location2, which is lo-

cally optimal with average expected reward 60. However, theoptimal policy is that sensor1

and sensor2 always sense location1 and sensor3 and sensor4 always sense location3, whose

global expected reward is 100. Therefore, some form of coordination is needed in order to

learn the globally optimal policy.

8.3 Coordinated Multi-Agent Reinforcement Learning

As discussed in the previous section, directly learning theglobally joint policy in a

centralized way is infeasible from a practical perspective, while independent learning is

a distributed, scalable approach, but may yield poor globalperformance. In this section,

we present a coordinated multi-agent learning approach forND-POMDPs that attempts to

achieve both scalability and optimality (or near-optimality). This approach distributes the

learning by exploiting structured interactions in ND-POMDPs and coordinates distributed

learning to ensure the global performance.

Our approach optimizes a decomposable Q-functionQ̂(~h, a) that is used to approximate

the global Q-functionQ(~h, a). This Q-functionQ̂(~h, a) is defined as a sum of smaller local

Q-functions based on hyperlinks in the interaction hypergraph of ND-POMDPs, that is,

Q̂(~h, a) =
∑

l∈E

Ql(~hl, al), (8.2)

153

whereQl(~hl, al) is the expected reward for agents on hyperlinkl by doing joint actionat
l

at joint history~ht
l and behavingglobally optimally from then on in respect to maximizing

Q̂(~h, a). We will show in the next subsection that this approximationbecomes exact for

ND-POMDPs with a property calledgroupwise observability, which will lead to the theo-

retical result of optimality for our approach. In fact, thisapproximation is reasonable for

general ND-POMDPs. This is because the global reward in ND-POMDPs is the sum of

local rewards of groups defined on hyperlinks in the interaction hypergraph, and, as a re-

sult,Q(~h, a) andQ̂(~h, a) are strongly positively correlated. Therefore, maximizing Q̂(~h, a)

can potentially optimizeQ(~h, a). Our experimental results will verify this hypothesis on

ND-POMDPs without the groupwise observability property.

Q-learning is used to learn the optimalQ̂(~h, a). With the decomposition in (8.2), the

global Q-learning update rule in (8.1) can be rewritten as

∑

l∈E Ql(~h
t
l , a

t
l) = (1− α)

∑

l∈E Ql(~h
t
l , a

t
l) + α[

∑

l∈E rt
l + γ maxa Q̂(~ht+1, a)] (8.3)

Note that the discounted future reward,maxa Q̂(~ht+1, a), can not be directly written

as the sum of local discounted future rewards, because it depends on the joint action that

maximizes the global value. Fortunately, we can accomplishthis by defining the joint

actiona∗ = argmaxaQ̂(~ht+1, a) andmaxa Q̂(~ht+1, a) = Q̂(~ht+1, a∗) =
∑

l∈E Ql(~h
t+1
l , a∗

l).

We are now able to decompose all terms in (8.3) and write the update rule for each groupl:

Ql(~h
t
l , a

t
l) = (1− α)Ql(~h

t
l , a

t
l) + α[rt

l + γQl(~h
t+1
l , a∗

l)] (8.4)

Similar to Sparse Cooperative Q-Learning [46], update rulein (8.4) is based on local

reward and Q-function, except fora∗
l . Note that the local contributionQl(~h

t+1
l , a∗

l) of

groupl to the global action value might be lower thanmaxal
Ql(~h

t+1
l , al), the maximizing

value of its local Q-function, because it is unaware of the dependencies among groups.

154

We will use distributed constraint optimization (DCOP) techniques to computea∗
l , which

will be discussed later. Update rule in (8.4) is different from coordinated reinforcement

learning approach in [31], where local Q-function update depends on the global reward

signal and the global Q-value, which are not usually specifically tailored to local behaviors,

thus resulting in slower learning convergence.

Using update rule in (8.4), our approach distributes the learning of the global function̂Q

among groups. Our approach assumes that each group has a delegate agent (which can be

chosen arbitrarily from a group) that learnsQl on behalf of the group. The basic learning

process is as follows. During each learning cyclet, after executing actionsat
l , agents in

groupl receive and transmit their observations to the delegate agent of their group and the

delegate agent receives its group reward signalrt
l . Using its updated observation history

~ht+1
l , the delegate agent then computes the next best actional∗ for ~ht+1

l by using a DCOP

technique and updates its Q-functionQl using rule (8.4). Finally, it distributes the next

actions to its group members, which will beal∗ or some exploration actions.

The learned global Q-function is distributedly represented by local Q-functions of del-

egate agents. As a result, during execution, agents’ actionselections are computed online

in a distributed manner by a DCOP algorithm from local Q-fuctions. Note that local Q-

functionQl(~h
t
l , a

t
l) is defined on the observation history of groupl, which scales exponen-

tially with the horizon. To deal with a large horizon, one approach is to use a fixed-size win-

dow of observations, as we did in our experiments. Other moresophisticated approaches

(i.e., utile suffix memory [65]) for dealing with partial observability can also be used with

our approach.

In next two subsections, we will formally analyze the optimality of our approach and

discuss how to compute joint action selections for learningor execution.

155

8.3.1 Optimality Analysis

In this section, we first define a property for ND-POMDPs, called groupwise observ-

ability, and then prove that our approach can learn an optimal policyfor ND-POMDPs with

this property.

Definition 17. An ND-POMDP is said to havegroupwise observability if, for all l ∈ E,

the set of observationsωl = 〈ωl1, . . . , ωlk〉 made by agents on hyperlinkl together fully

determine the current uncontrolled state, that is, if∀l∀ωl∃su : Pr(su|ωl) = 1.

Note that this property does not imply that agents can observe their local states or

states of other agents. It does imply that, for each agenti ∈ l, Pi(s
′
i|si, su, ai, ωl) =

Pi(s
′
i|si, ai, ωl) andOi(ωi|si, su, ai, ωl) = Oi(ωi|si, ai, ωl), which means, given joint ob-

servationωl, observation and transition of agenti on l are completely independent of ob-

servations and actions of other agents, and, as a result, itslocal belief update only depends

on its local action and observation. This further implies that, in ND-POMDPs with group-

wise observability, the local belief of agenti ∈ l can be fully determined by its initial local

state and the history of joint observations and actions of agents onl.

The theoretical result of optimality of our approach is as follows.

Theorem 3. For ND-POMDPs with groupwise observability, under basic assumption of Q-

learning and by using update rule (8.4),Ql(~hl, al) will converge to the optimalQ∗
l (

~hl, al),

for all l ∈ E, and the policyπ∗(~h) = argmaxa

∑

l∈E Q∗
l (

~hl, al) is globally optimal.

The proof for this theorem can be conducted by showing that Q-function Q̂ defined

in Equation (8.2) is exactly the same as the objective function Q of ND-POMDPs. This

is because, if the approximation of̂Q is exact, then our coordinated learning approach

described above is essentially a distributed version of update rule (8.1) that uses Q-learning,

which leads to the global optimalQ∗(~h, a). The exactness of this approximation for ND-

POMDPs with groupwise observability will be shown by Proposition 5.

156

Our proof first defines a Q-function with state variables, then shows it is decomposable,

and finally uses this result to prove the approximation ofQ̂ to Q is exact for ND-POMDPs

with groupwise observability.To simplify the equations, we introduce some abbreviations:

pt
i ≡ Pi(s

t+1
i |st

i, s
t
u, a

t
i) ·Oi(ω

t+1
i |st+1

i , st+1
u , at

i)

pt
u ≡ Pu(s

t+1
u |st

u)

rt
l ≡ Rl(sl, su, al)

Qt ≡ Qt(st,~ht, at)

Qt∗ ≡ max
a

Qt(st,~ht, a)

Qt
l ≡ Qt

l(s
t
l, s

t
u,

~hl

t
, at

l)

The global Q-functionQ(st,~ht, at) with state will satisfy the Bellman equation:

Q(st,~ht, at) = R(st, at) + γ
∑

st+1,wt+1

pt
up

t
1 . . . pt

nQt∗,

where~ht+1 is~ht appended by〈at, ωt+1〉.

Let bt be the belief state at timet. As bt is fully determined by the initial beliefb and

history~ht of joint observations and actions, we have

Q(~ht, at) =
∑

s∈S

bt(s)Q(st,~ht, at). (8.5)

Similarly, we define a Q-function for each hyperlinkl:

Ql(s
t
l, s

t
u,

~hl

t
, at) = rt

l + γ
∑

st+1

l
,ωt+1

l

pt
up

t
l1 . . . pt

lkQ
t+1∗
l ,

where~hl

t+1
is ~hl

t
appended by〈at

l, ω
t+1
l 〉 andQt+1∗

l denotesQl(s
t+1
l , ~hl

t+1
, a∗

l), wherea∗
l

is thegloballyoptimal joint action taken by agents onl in the next global state and history

of joint observations and actions of all agents.

157

For ND-POMDPs with groupwise observability, asbt
u(su) is fully determined by history

~hl

t
of joint observations and actions, and, fori ∈ l, bt

i(si) is fully determined by the initial

belief bi(si) and history~hl

t
, we then have

Q(~hl

t
, at

l) =
∑

sl,su

bt
l(su, sl)Ql(sl, su, ~hl

t
, at

l). (8.6)

Proposition 4. In ND-POMDPs, the global functionQt(st,~ht, at) for any finite horizonT

is decomposable, that is,

Qt(st,~ht, at) =
∑

l∈E

Qt
l(s

t
l, s

t
u,

~hl

t
, at

l). (8.7)

Proof. Proof is by mathematical induction. Proposition holds fort = T − 1 because

rt =
∑

l∈E rt
l and there is no future reward. Assume it holds fort where1 ≤ t ≤ T − 1,

that is,Qt =
∑

l∈E Qt
l .

Now let us show that proposition holds fort− 1.

Qt−1 = R(st−1, at−1) + γ
∑

st,wt

pt−1
u pt−1

1 . . . pt−1
n Qt∗

=
∑

l∈E

rt−1
l + γ

∑

st,wt

pt−1
u pt−1

1 . . . pt−1
n

∑

l∈E

Qt∗
l

=
∑

l∈E

[rt−1
l + γ

∑

st
l
,st

u,wt
l

pt−1
u pt−1

11 . . . pt−1
lk Qt∗

l]

=
∑

l∈E

Qt−1
l

Based on Proposition 4, Equation 8.5 and 8.6, we can show an exact decomposition of

the Q-function without state.

158

Proposition 5. In ND-POMDPs with groupwise obserbability, the global Q-value function

Qt(~ht, at) for any finite horizonT is decomposable, that is,

Qt(~ht, at) =
∑

l∈E

Qt
l(

~hl

t
, at

l). (8.8)

Proof.

Q(~ht, at) =
∑

su,s1,...,sn

bt
u(su)b

t
1(s1) . . . bt

n(sn)·

∑

l∈E

Qt
l(sl, su, ~hl

t
, at

l)

=
∑

l∈E

∑

sl,su

bt
l(su, sl)Q

t
l(sl, su, ~hl

t
, at

l)

=
∑

l∈E

Qt
l(

~hl

t
, at

l).

This proposition completes the proof of Theorem 3.

8.3.2 Optimal Joint Action Selection

Our learning approach requires computing the joint action that maximizes the global

Q-value function for updating local Q-functions or for acting during execution. We can

formulate this problem as a DCOP, which is defined by a set of discrete variablesa =

{a1, . . . , an}, whereai ∈ Ai is controlled by agenti and represents its action choice, and

a set of functionsQ = {Ql|l ∈ E}, whereQl is the Q-value function for hyperlinkl.

Note that history~h is fixed for every computation, so we will ignore it in the following

discussion and denoteQl(~h, al) by Ql(al). The goal is to find the joint actiona∗, such

that the global Q-value function, the sum of all Q-functions, is maximized, that is,a∗ =

argmaxa
∑

l∈E Ql(al). We can represent this DCOP as a factor graph by creating a node for

159

each variable and for each function and connecting a function node to a variable node if the

corresponding function is dependent upon that variable. The resulting graph is bipartite.

A variable elimination algorithm [30] can be used to computean optimal solution for

this DCOP, but it requires extensive communication and computation (scaling exponen-

tially with the induced width of the agent interaction graph). In this chapter, we investigate

the max-sum algorithm [97] for an approximate solution, which requires much less com-

munication and computation and can be readily implemented as an anytime algorithm to

trade off the quality and efficiency of computing joint actions. Unlike the max-plus algo-

rithm in [46], this algorithm can be directly used for coordinating interactions involving

more than two agents.

The max-sum algorithm operates directly on the factor graph, and does so by specifying

the messages that should be passed from variable to functionnodes, and from function

nodes to variable nodes, which are defined as follows:

- Message from variable nodei to function node l:

qi→l(ai) =
∑

g∈Fi\l

rg→i(ai) + cil

whereFi is a vector of function indexes, indicating which function nodes are con-

nected to variable nodei, andcil is a normalizing constant to prevent the messages

from increasing endlessly in cyclic graphs.

- Message from function nodel to variable nodei:

rl→i(ai) = max
al\ai

[Ql(al) +
∑

g∈Vl\i

qg→l(ag)]

whereVl is a vector of variable indexes, indicating which variable nodes are con-

nected to function nodel andal\ai = {ag : g ∈ Vl\i}.

160

Here variable nodei is agenti who needs to select its action and function nodel is the

delegate agent of hyperlinkl that hosts the Q-value functionQl. If the factor graph is cycle-

free, the algorithm is guaranteed to converge to the optimalglobal solution such that each

agenti can find its optimal actiona∗
i by locally calculatinga∗

i = argmaxai
zi(ai), where

zi(ai) =
∑

g∈Fi
rg→i(ai). Otherwise, there is no guarantee of convergence. However,ex-

tensive empirical results show that, even in this case, the algorithm frequently provides

good solutions. Before convergence, the valuezi(ai) of agenti calculated from incoming

messages is actually an approximation of the exact value of actionai given other agents act

optimally. Therefore, the max-sum algorithm can be implemented as an anytime algorithm

by controlling the number of rounds of passing messages, which will trade off the quality

and efficiency (or communication cost) of the action selection. In addition, the max-sum

algorithm is essentially distributed. Its messages are small (linearly scaling with the max-

imum number of actions of agents), the number of messages typically varies linearly with

the number of agents and hyperlinks, and its computational complexity scales exponen-

tially with the maximum size of hyperlinks (which typicallyis much less than the total

number of agents).

8.4 Experiments

To evaluate our coordinated learning (CL) approach in general ND-POMDPs, we ex-

perimented it in the illustrative sensor network domain, which does not have the groupwise

observability property. We compared CL with the independent learning (IL) approach (de-

scribed in the Background Section) and CBDP [49], one of the most efficient algorithms

for ND-POMDPs. We conducted experiments with configurations shown in Figure 8.2.

The first three configurations are introduced in [61], but we changed their initial beliefs to

an uniform distribution over ten states to increase problemdifficulty. The 25-grid sensor

network has two targets with the same sensing rewards as 15-3D, but has a larger state

space and longer target paths.

161

15-3D

7-H
11-Helix

25-Grid

Figure 8.2.Sensor network configurations

Since both CL and IL are model-free, we develop a simulator for ND-POMDPs to learn

and evaluate policies. The evaluation process is as follows: for each ND-POMDP, we use

CBDP to solve it and get its joint policy, then run both learning approaches in a simula-

tor for that ND-POMDP, whose learning time is set to some ratio of CBDP’s computation

time, and, finally evaluate learned policies and CBDP’s policy in the simulator. The solu-

tion quality for each horizon is indicated by the expected global reward for that horizon.

Solution quality is computed over 10000 simulation runs. Results are then averaged over

10 experiments and the deviation is computed, which is very small (under 5) and not shown

properly in the following figures. The learning rateα is set to 0.001 and discount factor

γ = 1. Both learning approaches learned policies that map fixed-windows of observations

(with size≤ 4) to an action even for scanarios with horizon greater than5. To trade off

the speed and solution quality, we restricted the max-sum algorithm passing messages at

most 4 rounds for each joint action computation (except for experiments of controlling

communication).

Figure 8.3 (a) shows the solution quality of CL and IL with different learning time

on the configuration 15-3D with horizonT = 10. The configuration 15-3D is the most

162

0.0001 0.001 0.01 0.1 1 2 4
200

400

600

800

1000

1200

1400

(a) Learning Time Ratio

S
o

lu
ti

o
n

 Q
u

al
it

y

CBDP
Independent Learning (IL)
Coordinated Learning (CL)

2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

(b) Horizon

S
o

lu
ti

o
n

 Q
u

al
it

y

CBDP
Independent Learning (IL)
Coordinated Learning (CL)

7−H 11−Helix 15−Mod
0

200

400

600

800

1000

1200

1400

1600

(c) Network Configurations

S
o

lu
ti

o
n

 Q
u

al
it

y

CBDP
Independent Learning (IL)
Coordinated Learning (CL)

Figure 8.3. Solution quality over (a) different ratios of learning timeof IL and CL to
CBDP’s policy computation time on 15-3D with horizonT = 10, (b) over different hori-
zons on 15-3D, and (c) different network configurations withT = 10. Note that IL and CL
in (b) and (c) use the same learning time as CBDP’s policy computation time.

complex problem instance for CBDP. Thex axis represents the ratio of learning time to

CBDP’s computation time, which is plotted with a logarithmic scale. The performance

of both CL and IL generally increases with more training time. We observe that CL can

learn policies, whose performance surpasses that of CBDP’spolicy, with learning time two

orders of magnitude less than CBDP’s computation time. However, IL performs much

worse than CL and CBDP. One reason is that, as we have discussed, IL can only converge

to local optima, which is far away from the global optimal solution on the configuration

15-3D. This result actually illustrates the importance of the coordination during learning

and execution. Another reason is that IL (and CL) uses fixed-window policy that maps up

to 4 observations to an action, while CBDP’s policies with horizon T = 10 maps up to

9 observations to an action. We did observe that IL could perform comparably or better

than CBDP on smaller problems with small horizon (e.g., one the domain 11-Helix with 5

horizon).

Figure 8.3 (b) shows the solution quality over a range of horizons on the configuration

15-3D. We can see that the solution quality of CL linearly increases with the horizon size,

whose increase rate is greater than CBDP. This indicates that CL can potentially scale

better than CBDP with the horizon size. Figure 8.3 (c) shows the solution quality on other

163

1 2 3 4 5 6 7 8 9 10
950

1000

1050

1100

1150

1200

1250

Max Communication Rounds

S
o

lu
ti

o
n

 Q
u

al
it

y

CBDP
Coordinated Learning (CL)

Figure 8.4.Trade-off of solution quality and communication

configurations, where 15-Mod is the modified version of 15-3Dwith different target paths.

Consistent with results on 15-3D, CL performs best, then CBDP, and finally IL.

By controlling the maximum round of message passing betweenagents and their group

delegates for computing joint actions, we can trade off solution quality and cost of com-

munication and computation. Figure 8.4 show the solution quality of CL over different

maximum rounds of message passing on the domain 15-3D with horizon 10 and the same

learning time as CBDP’s computation time. We can observe that CL still performs sig-

nificantly better than CBDP, even when using only one-round message passing. Note that

when using fixed learning time, more rounds of message passing do not necessarily yield

better learning performance. This is because, although using more rounds of message pass-

ing computes better joint actions, it results in more communication and computation at each

learning cycle and learning with less total cycles.

We also evaluated CL and IL on the 25-grid problem, where CBDPcould not scale even

to horizon 2. The learning time is set to 200 seconds for horizon 5 and linearly increases

164

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

Horizon

S
o

lu
ti

o
n

 Q
u

al
it

y

Independent Learning (IL)
Coordinated Learning (CL)

Figure 8.5.Solution quality for a range of horizons on 25-grid

with the horizon. Figure 8.5 shows solution quality over horizons up to 100. The solution

quality of CL almost doubled that of IL and increases linearly with the horizon.

8.5 Summary

In this chapter, we demonstrate that DCOP algorithms can be used as general tech-

niques for automatically coordinating MARL in ND-POMDPs without depending on do-

main knowledge. Our model-free learning approach for ND-POMDPs decomposes and

distributes the learning of the optimal global joint policyby exploiting its structured in-

teractions through a decomposable reward function and independence among agents. Dis-

tributed learning is coordinated through joint action selection computed by distributed con-

straint optimization (DCOP) techniques, which ensure the optimality of the learning for

ND-POMDPs withgroupwise observability. By exploiting the property of locality of in-

teractions in ND-POMDPs, the learning complexity potentially scales linearly with the

number of agents. To trade off solution quality and communication and computation effi-

ciency, a max-sum algorithm is used to compute an approximate solution for our DCOP.

165

Experimental results show that, even in ND-POMDPs without groupwise observability, by

exploiting extra communication during learning and execution, this approach significantly

outperforms off-line construction of nearly-optimal no-communication policies.

166

Part IV

CONCLUSIONS AND FUTURE
WORK

CHAPTER 9

SUMMARY AND CONTRIBUTIONS

Multi-agent systems (MAS) are increasingly being advocated for use in building robust

adaptive complex systems. Uncertainty and complexity are inherent in most real-world

MAS applications, where the environment characteristics are usually unknown and tens

to thousands of agents interact with limited communicationbandwidth and limited ob-

servability. In this thesis, we has primarily focused on addressing a central challenge in

MAS research:how to design coordination policies for autonomous agents that act in such

uncertain, complex environments to optimize global performance? We have developed a

new multi-agent learning paradigm that allows agents to concurrently learn to effectively

coordinate in large domains. To scale up the learning, this paradigm exploits locality of

interaction and non-local information in a coherent way. Using this paradigm, agents con-

currently learn their policies based on local observations, and, meanwhile, their learning

processes are coordinated by a non-local control mechanismto ensure the global learning

performance. In this thesis, we has developed both efficientalgorithms for multi-agent

learning (MAL) with limited observability and a scalable control framework for coordinat-

ing MAL. We also have applied and evaluated this learning paradigm in diverse problem

domains, including distributed task allocation, network routing, and sensor networks.

Multi-Agent Learning Techniques: In a MAS, as agents interact and concurrently

learn their policies, the environment becomes non-stationary from the perspective of each

individual agent. The convergence guarantee for single-agent reinforcement learning does

not hold for multi-agent settings. We developed a gradient-based MAL algorithm by ex-

tending Q-learning and applied it to optimizing online distributed resource allocation in

168

Cloud Computing. Empirical results demonstrated an impressive performance of this al-

gorithm in convergence and solution quality. However, thisalgorithm may not converge in

competitive scenarios, which can occur in cooperative MAS when we design local reward

signals (instead of using the single global reward) for agents’ learning.

To consider both cooperative and non-cooperative scenarios, we introduced the concept

of policy prediction and augmented the basic gradient-based learning algorithm to achieve

two properties: best-response learning and convergence. These two properties were ana-

lyzed for a class of stochastic games under the assumption offull observability. Inspired

by this analysis, we have developed a multi-agent reinforcement learning algorithm for

more challenging scenarios where agents observe only the reward signal of choosing an

action. Empirical results demonstrated that this algorithm outperformed state-of-the-art

MAL techniques in term of convergence.

Coordinating Multi-Agent Learning: The theoretical convergence guarantee of ex-

isting MAL algorithms is still limited for simple stochastic games. By exploiting locality

of interaction alone, MAL algorithms still converge slowly, converge to inferior equilibria,

or even diverge in large-scale complex settings. We developed a distributed supervisory

control framework that has the potential to address these issues with scaling MAL. This

framework exploits non-local information and multi-levelorganizational control to coor-

dinate and guide the agents’ learning process. It introduces a more global view into the

learning process of individual agents without incurring significant overhead and exploding

their policy spaces; it coordinates the learning behaviorsof tightly coupled agents by con-

straining their learning processes while still leaving agents to react autonomously to local

reward signals. The organizational structure can dynamically evolve by a self-organization

approach as the learning progresses in order to more effectively coordinate the learning

agents. This coordination results in both speeding up and increasing the likelihood of con-

vergence by reducing the occurrence of oscillatory behavior among agents learning with

limited observability in a non-stationary environment andfocusing agents’ exploration.

169

Additionally, it also results in improved overall solutionquality due to coordination direc-

tives that are based on a more global view of current learning.

In addition, We also attempted to address one challenge of this framework: automat-

ically coordinating MARL. We tailored our supervision framework to a class of multi-

agent decision making problems, called networked distributed POMDPs (ND-POMDPs) so

that distributed constraint optimization techniques can be used to automatically coordinate

multi-agent learning without employing domain knowledge or heuristics. Its convergence

and optimality were proved for a restricted class of ND-POMDPs. By using a message-

passing algorithm, this approach can be implemented in a distributed way as an anytime

algorithm that trades off solution quality and cost of communication and computation.

170

CHAPTER 10

FUTURE DIRECTIONS AND OPEN PROBLEMS

There are five main aspects to extend our existing research: 1) developing theoretical

models (e.g., agent interaction model) to understand the applicability of the supervision

framework and the concurrent evolution of a supervisory organization and agents’ deci-

sion policies; 2) designing general techniques to allow automated supervision with little or

no domain knowledge; 3) expanding supervision modes by allowing supervisors to shape

rewards for learners, provide non-local state informationto learners, and control learning

parameters (e.g., learning rate) of agents; 4) developing techniques for a new form of trans-

fer learning to allow agents to dynamically share learned knowledge with other agents that

are concurrently learning in the network; and 5) evaluatingthe paradigm performance in

more realistic, complicated environments.

We begin discussion of the different research directions byintroducing a model for

agent interaction. As will be discussed, we feel this model will inform many of the pro-

posed future research directions. Although our agent interaction model only captures the

instantaneous state of the learning process and not the dynamics of the learning process

or the supervision process, it is still a foundational step to understand and improve the

effectiveness of the supervisory control for improving MARL. This interaction model rep-

resents a generalization from our previous work [126] in itsability to capture more complex

interaction patterns among agents than what was possible inour earlier work.

171

10.1 Theoretical Models and Analysis

The complexity of multi-agent systems arises from the interactions among agents. The

analysis of interactions is a key to understanding how a MARLalgorithm performs in MAS.

We have developed an interaction model that defines and quantifies interactions among

agents and analyzes how interactions are related to the system performance. The analysis

of our current interaction model is restricted to a special type of interaction, called com-

pletely mutually exclusive interactions, where no two agents concurrently interact with a

third agent.One of future research directions is to extend this model to ageneral setting,

which we believe will not only be the basis for dynamically evolving supervisory organiza-

tions [126], but also a key to developing automated supervision techniques with little or no

domain knowledge, and understanding why and when our supervision framework performs

effectively.

10.1.1 Extended Interaction Model

Our quantified agent interaction model builds on a factored DEC-MDP [32] model that

represents the multi-agent sequential decision-making problem in a collaborative MAS.

Our interaction model is different from the work by Allen [6], which quantifies interactions

between agents only based on the problem definition and without taking account of agents’

policies.

Definition 18. Ann-agent factored DEC-MDP is defined by a tuple〈S, A, T,R〉, where

• S = S1×· · ·×Sn is a finite set of world states, whereSi is the state space of agenti

• A = A1× · · ·×An is a finite set of joint actions, whereAi is the action set for agent

i

• T : S × A × S → ℜ is the transition function.T (s′|s, a) is the probability of

transitioning to the next states′ after a joint actiona ∈ A is taken by agents in state

s

172

• R = {R1, R2, . . . , Rn} is a set of reward functions.Ri : S ×A→ ℜ provides agent

i with an individual rewardri ∈ Ri(s, a) for taking actiona in states. The global

reward is the sum of all local rewards:R(s, a) =
∑n

i=1 Ri(s, a)

A (joint) policy π : S × A → ℜ is a function which returns the probability of taking

(joint) actiona ∈ A for any given states ∈ S. The goal is to derive an optimal policy

that maximizes the average expected reward per time step, which measures the system

performance. MARL is used by agents to learn efficient approximate policies in a factored

DEC-MDP environment, especially when the transition and reward function is unknown.

Each agent learns its local policy based on its local observation and the reward in presence

of other agents, who are also learning a policy under the sameconditions. The local policy

πi : Si × Ai → ℜ for agenti returns the probability of taking actionai ∈ Ai in local

statesi ∈ Si. The objective of agenti is to learn an optimal policyπ∗
i to maximize its own

average expected reward per time step.

Our interaction model characterizes a type of interaction among agents, calledjoint-

event-driven interactions, in a DEC-MDP model.

Definition 19. A primitive event ej = 〈sj, aj〉 generated by agentj is a tuple that includes

a state and an action on that state. Ajoint event ~eX = 〈ej1, ej2, . . . , ejh
〉 contains a set of

primitive events generated by agentsX = {j1, j2, . . . , jh}. A joint event~eX occurs iff all

of its primitive events occur.

For brevity, events discussed in this paper refer to joint events. Our definition of a joint

event is different from that of an event in [13], where an event occurs if any one of its

primitive events occurs. An event is used to capture the factthat some agents did some

specific activities. A primitive event can be generated by either an agent or the external

environment. For convenience, we treat the external environment as an agent.

Definition 20. A joint-event-driven interaction iXj = 〈~eX , ej〉 from a set of agentsX

onto agentj is a tuple that includes a joint event~eX and a primitive eventej . A joint-event-

173

driven interactioniXj is effective iff the event~eX affects the distribution over the resulting

state of eventej , that is,∃sj ∈ Sj such thatp(st+1
j = sj|et

j = ej) 6= p(st+1
j = sj|et

j =

ej , ~e
t
X = ~eX), wheret is the time.

We define a measure for the strength of interactions among agents. LetEj
X = {~eX |∃ej ∈

Sj × Aj such that interaction〈~eX , ej〉 is effective} be all joint events generated by a set of

agentsX that effectively interact with agentj. LetVj(sj |π) =
∑

aj
πj(sj , aj)E[rj(sj , aj)|π]

be the expected value of being in statesj, whereπj is the policy of agentj, andE[rj(sj , aj)|π]

is the expected reward of executing actionaj in statesj.

Definition 21. Thevalue of interactions from a set of agentsX to agentj, given a joint

policyπ, is
vi(X, j|π) =

∑

~eX∈Ej

X

p(~eX |π)
∑

sj

p(sj|~eX , π)Vj(sj|π),

wherep(~eX |π) is the probability that event~eX occurs andp(sj|~eX) is the probability of

being in statesj after~eX occurs.

The value of interactions will be used to analyze the effectiveness of our supervision

framework. As mentioned earlier, it is also used in the supervisory organization adaptation

for deciding which agents should be jointly supervised. Thevalue of interactions is affected

by two factors: how frequently agents effectively interact(reflecting onp(~eX |π)) and how

well they are coordinated (reflecting on
∑

sj
p(sj |~eX)Vj(sj |π)). For example, in our ex-

periments of distributed task allocation, if agentsX frequently interact with agentj but

they are not well coordinated, then the value ofg(X, j) tends to be a large negative value

(all expected rewards are negative). Here ill-coordination means that agentsX frequently

generate events that cause agentj to be in states with low expected rewards. For instance,

in a distributed task allocation problem, they send tasks toagentj when it is overloaded.

Definition 22. Two nonempty disjoint agent setsX andY are said toǫ-mutually-exclusively

interact with agentj iff Ej
X = ∅∨Ej

Y = ∅∨∑

~eX∈Ej

X

∑

~eY ∈Ej

Y
p(st+1

j = sj , ~e
t
X = ~eX , ~et

Y =

174

~eY) ≤ (1− ǫ) ·min(
∑

~eX∈Ej

X
p(st+1

j = sj, ~e
t
X = ~eX),

∑

~eY ∈Ej

Y
p(st+1

j = sj, ~e
t
Y = ~eY)), for

all sj ∈ Sj , where0 ≤ ǫ ≤ 1.

This introduction ofǫ-mutually-exclusive interaction represents a significantextension

of our early work.

10.1.2 Effectiveness Analysis

If X andY ǫ-mutually-exclusively interact withǫ = 1, which is called completely

mutually exclusive interactions, with agentj, then no two effective interactions generated

by X andY , respectively, will simultaneously occur to affect the state transition of agentj.

We can prove that if any two agents completely mutually exclusively interact with a third

agent in a factored DEC-MDP, then the sum of values of all possible interactions from

one agent to another is equal to the measure of the system performance [126]. This result

reveals how interactions contribute to the global performance for this case whereǫ = 1.

This summation relationship between values of interactions among agents and the sys-

tem performance measure explains why our supervision framework performs effectively to

improve the speed, quality, and likelihood of the learning convergence in experiments of

our preliminary work. For example, in our experiments of thedistributed task allocation

problem (DTAP), every two agents completely mutually exclusively interact with a third

agent. Based on the current learning state of agents, the heuristic we used generates su-

pervisory information that guides agents to explore the state-action space, which reduces

the frequency of interactions with large negative values. This supervision information also

increases the frequency of interactions with small negative values. However, since the func-

tion between the frequency of interactions and the value of interactions in DTAP is convex,

the overall value of interactions among agents still increases. Therefore, our supervision

framework coordinates and guides agents to learn policies that lead to the better system

performance. Even if agents may be able to learn such policies on their own eventually,

using our supervision framework significantly speeds up thelearning process.

175

Future research can develop theoretical results for general cases with arbitraryǫ. We

speculate that values of interactions among agents have a nearly summation relationship to

the global performance measure for largeǫ, but not for smallǫ. If this is the case, our su-

pervision framework, with heuristics for generating supervisory information that manages

the frequency of interactions, will perform effectively inproblems with largeǫ where the

function between the frequency and value of interactions isconvex (which normally holds

for various problems). Then interesting questions arise: what supervisory information will

perform effectively in problems with smallǫ? How can supervisors automatically generate

such supervisory information online?

10.1.3 Self-Organization Analysis

As described in Section 4.3, we developed a self-organization approach to dynamically

evolving the supervisory organization that is coordinating and guiding agents’ learning.

Our self-organization approach is based on our interactionmodel developed above. Our

approach is intended to form a nearly decomposable organization structure, where interac-

tions between clusters are generally weaker than interactions within clusters, to facilitate

coordinating MARL. We use the absolute value of the value of interactions to measure the

strength of interactions among agents. Supervisory organizations formed by using this mea-

sure will favorably generate rules and suggestions to improve ill-coordinated interactions

(i.e., with a large negative value) and maintain well-coordinated interactions (i.e., with a

large positive value). Experimental results showed that a dynamically evolving supervisory

organization can better speed up the learning process than predefined, static organizations.

Empirical results can be plausibly explained by observations in human organizations that

a nearly decomposable organization structure can improve the coordination quality and

reduce the coordination complexity. Future research can develop formal results by using

our interaction model to understand why and when a dynamically evolving supervisory

organization performs better.

176

Through experiments, we found that our supervision framework with a dynamically

evolving supervisory organization performed better than that with a fixed “learned” su-

pervisory organization. A “learned” organization is obtained by running our supervision

framework with the self-organization approach until the system converges, starting with

a simple organization, called local supervisory organization, where each agent is its own

supervisor and has a very limited view. We also found that ourself-organization approach

starting with a local supervisory organization performs better than that with a “learned”

one where each supervisor has a larger cluster and a broader viewer of the system. Those

empirical results plausibly imply that, to optimize its performance, our supervision frame-

work may require different supervisory organizations at different learning stages of agents.

At the early learning stage of agents, supervisory organizations with a small cluster (i.e.,

each supervisor has a very limited view) outperform those with a large cluster. We hypothe-

size that, at the early learning stage, agents’ policies change very fast and state information

gathered by supervisors with a larger cluster has more variance and is more unreliable. This

unreliable state information of subordinates can lead to improper supervisory information,

which may mislead subordinates’ learning. As the self-organization approach is based on

our interaction model,we will work on formally understanding through the model why

and when the concurrent evolution of the supervisory organization and decision policies of

agents perform better than learning policies under a fixed, learned organization.

10.2 Automating Supervision

In our earlier work, the supervisory control framework exploited domain knowledge

to generate supervisory control information based on the current learning state of agents

for coordinating agents’ learning processes. Automating supervision reduces this depen-

dency on domain knowledge and facilitates the application of the framework. Distributed

constraint optimization (DCOP) techniques can be used to automatically coordinate dis-

tributed learning in some restricted class of problems. However, for certain circumstances,

177

such approaches may have increased communication overheadand policy search spaces.

To improve the applicability of the proposed learning paradigm, It is highly desirable to

develop general techniques for automating coordination with little or no domain knowl-

edge. Our research for this direction will be conducted in two phases. First, we plan to

develop general heuristic-based techniques based on our interaction model to automate

supervision. As heuristics usually do not perform effectively for all cases, we will then

develop more general approaches, such as using learning algorithms to learn how to su-

pervise agents’ learning.

As supervision is concerned with how to coordinate interactions among agents, we can

use our interaction model as a basis to develop techniques toautomate the generation of

supervisory information. Our interaction model is based onthe DEC-MDP model, which

is domain-independent. The first technique we will explore is one in which each supervi-

sor is trying to balance its cluster’s interactions with itsneighboring clusters by generating

supervisory information that increases the frequency of interactions with large values, and

decreases the frequency of interactions with small values.Based on the analysis in Sec-

tion 10.1, when the function between the frequency and the value of interactions is convex

(which holds for most practical problems) and interactionsamong agents areǫ-mutually-

exclusive with largeǫ, then this technique has a high probability of performing effectively

to improve the quality or speed of the MARL convergence.

As heuristics-based techniques are usually simple and effective, but may not work well

for some cases (e.g., where interactions among agents areǫ-mutually-exclusive with small

ǫ), we need to develop additional techniques. One direction we will pursue is to formalize

each supervisor’s decision making as a Markov Decision Process (MDP) and then solve it

offline or learn its policy directly by using MARL algorithms. The challenge is to define

the state space, action space, and reward function. The goalof each supervisor is to find

rules andsuggestions to its subordinates to maximize its local utility. The action space

178

is defined by the set of rules and suggestions and its reward isthe aggregated reward of its

subordinates.

A supervisor’s decision making needs to take account of information from its subordi-

nates and its neighboring clusters. It is more feasible and scalable for each supervisor to

define its decision state with theabstract state, instead of real states, of subordinates and

neighboring clusters. Each agent can demonstrate both fastand slow dynamics in how its

features change. Fast dynamics of an agent are exhibited by the changes of such features

as those that represent interactions with other agents, itslocal state, and its policy (or value

function). Slow dynamics are exhibited by the changes of an agent’sabstract state. The

abstract state is defined by a vector of features, which can beprojected from features with

fast dynamics by using such techniques as:

• Using partial components of a feature and ignoring other components that do not

affect slow dynamics

• Using statistics (e.g., mean, mode) of a feature generated over the temporal or spatial

scale

• Replacing a fast-changing feature with its distribution parameters if its changes fol-

low some statistical distribution

Similarly, each cluster also has fast and slow dynamics. Fast dynamics of a cluster are

exhibited by that of its members. Slow dynamics of a cluster are captured by the changes

of its supervisor’s abstract state. The abstract state of a supervisor is projected either from

the abstract states of its subordinates or directly from features with fast dynamics of its

subordinates.

10.3 Other Supervision Modes

Our preliminary work laid out a general supervision framework for coordinating MARL.

However, our current implementation provides only one way of supervising MARL (by

179

coordinating agents’ exploration policies).One of future research directions is to develop

other ways of supervising MARL:

• Expanding the view of learning agents by providing non-local information

• Shaping rewards of learning agents

• Manipulating the learning parameters (e.g., the learning rate)

Expanding agents’ view by providing non-local informationwill relieve the burden of

agents learning such information. Because of bounded communication and computation

resources in practical, large-scale multi-agent systems,each agent interacts only with a lim-

ited number of agents, called neighbors, and, to be scalable, the learning of each agent has

been restricted to using information received only from itsneighbors. With our supervision

framework, each supervisor obtains a broader view of the system with low communication

overhead (since this information is only periodically provided), so it can directly provide

non-local state information about non-neighboring agentsand the system environment to

its subordinates. How does a supervisor decide and compute what non-local information is

useful for a particular subordinate? How do subordinates integrate non-local state informa-

tion into their learning process? One potential way is to reshape or extend in a controlled

fashion subordinates’ state space that more accurately represents the world state. Is it pos-

sible to integrate non-local information into the local decision state without expanding the

size of the state space?

In a single-agent setting, reward shaping [72] is a common approach to speeding up

reinforcement learning by supplying an agent with additional reward signals to encourage

some particular actions. Similar ideas may also be applicable for multi-agent settings.

Within a supervisory organization, each supervisor can compute an aggregated reward of

its cluster from information of its subordinates. This cluster reward reflects how well-

coordinated the collective actions of agents in the clusterare, which is closer to the system

performance measure than the local reward of any individualagent. However, it may not

be a good idea to use the cluster reward as the local reward signal of subordinates, because

180

the cluster reward has only a weaker relationship with the state-action pair of an individual

agent. One trade-off approach is to combine the cluster reward rc and the local rewardrl,

e.g., resulting in the new rewardr′ = η ∗ rc +(1− η) ∗ rl, where0 ≤ η ≤ 1, as the learning

signal for an individual agent. The parameterη can be adjusted dynamically based on the

learning progress.

Almost all MARL algorithms have the learning rate parameter. Properly setting [16]

and adapting the learning rate can improve both the speed andlikelihood of the MARL

convergence. For example, the infinitesimal gradient ascent (IGA) algorithm [92] does

not converge to a Nash equilibrium in some multi-agent settings (e.g., repeated zero-sum

games), but the GIGA-WoLF algorithm [23], which is an extension of IGA, has a better

convergence property than IGA by properly varying the learning rate, although the con-

vergence property is still restricted to a very limited setting. Although it is still not clear

how each supervisor should manipulate the learning rate forits subordinates within a su-

pervisory organization, we feel that its broader view of thesystem provides a basis for its

decision.

10.4 Transfer Learning

The idea oftransfer learninghas recently been applied to reinforcement learning tasks

to speed up the learning. In conventional transfer approaches [58, 95, 119, 105, 47, 106],

the core idea of transfer learning is that experience gainedin learning to perform one task,

called a source task, can help improve learning performancein a related, but different, task,

called a target task. To be effective, those approaches normally require thorough experience

in the source task.In multi-agent settings, our supervision framework provides opportu-

nities to develop transfer learning techniques for agents to share their learned experience

in order to speed up their learning, even when agents do not have full experiences with all

states in their policy space.

181

Through experiments, we found that, due to a slightly different initial environment,

learning agents in a MAS may have very different explorationexperiences, even when they

have similar state-action space. For example, a group of agentsA have a lot of experience

in a set of statesS1, while a group of agentsB have a lot of experience in a set of states

S2. However, because of a non-stationary environment (due to concurrent learning), after

some period of time, groupA begins to explore some states ofS2 and groupB begins to

explore some states ofS1. In such situations, sharing learning experience betweenA and

B will reduce the time for exploration and speed up their learning process.

With our supervision framework, a supervisor can act as a demand-supply matching

center for its subordinates. When a learning agent believesit has rich experience in some

states, it may upload this learned knowledge to its supervisor. The learned knowledge can

be represented by the value function or the policy. In contrast, when an agent begins to

explore some new states, it may send a request to its supervisor to see if there is similar ex-

perience that has been gained by some other agents in the cluster. How does an agent know

whether its experience in some states is rich enough? One simple measure is the number

of visits in a state. Will this measure be good enough? If several agents offer their learned

knowledge, how should they be combined together, e.g., using the most experienced one or

their weighted average? When state-action spaces among agents are not the same, how is

the mapping between agents defined or learned? To reduce communication overhead of a

supervisor and its subordinates, we will also need to define projection functions to generate

abstract states from real local states.

10.5 Performance Evaluation

We will evaluate the performance of our proposed framework using four domains to

assess the broad impact of our work. The first domain is based on cooperative graphi-

cal games [43] and provides the minimum complexity needed toevaluate our framework.

Additionally, three different realistic multi-agent testbeds will be used to verify the gener-

182

ality of our proposed frameworks: 1) cloud computing [129],2) peer-to-peer information

retrieval [130], and 3) wireless network routing [121].

Evaluating and analyzing the performance of an adaptive, self-organizing network of

agents is challenging due to the large number of parameters at play. We will focus our

study on the effects of following evaluation dimensions: the network structure (e.g., small-

world, scale-free, random), the underlying learning algorithm (e.g., WPL [3], GIGA-WoLF

[23]), the dynamics of the system (e.g., agents joining and leaving, change of incoming

task patterns), the agent population (heterogeneity, distribution over the network), and the

complexity of applications (e.g., varying theǫ parameter of interaction patterns).

We intend to evaluate how our supervision framework improves the performance of

MARL algorithms in terms of the quality, speed, and likelihood of the learning conver-

gence. The overall system reward at the convergence time point indicates the convergence

quality. The convergence speed is measured by the number of learning cycles to reach

the convergence time point. We can define the core concept “convergence” at three differ-

ent levels: the overall system reward averaged over time, the individual expected reward

change averaged over time and agents, and the individual policy change averaged over

time and agents. At the coarse level, defining on the overall system reward may hide the

underlying agent dynamics. At the finest level, the convergence defining on individual poli-

cies is hard to reach because of the dynamic and open environment. We also evaluate the

communication overhead incurred by our supervision framework in term of the number of

messages used for the supervision after the learning converges.

To obtain intuitive explanations on the performance of our supervision framework, we

plan to visualize the learning dynamics using different levels of detail. For initial verifi-

cation, the individual policy evolution over time will be used, which is more suitable for

small scale MAS. In large scale MAS we will investigate more aggregate measures, such

as the policy entropy of individual agents. We will also use open-source network anal-

183

ysis software (e.g. Network Workbench [107]) to visualize and analyze the supervisory

organization adaptation.

184

BIBLIOGRAPHY

[1] Abdallah, Sherief, and Lesser, Victor. Learning the task allocation game. InAA-
MAS’06(2006).

[2] Abdallah, Sherief, and Lesser, Victor. Multiagent reinforcement learning and self-
organization in a network of agents. InAAMAS’07(2007).

[3] Abdallah, Sherief, and Lesser, Victor. A multiagent reinforcement learning al-
gorithm with non-linear dynamics.Journal of Artificial Intelligence Research 33
(2008), 521–549.

[4] Agogino, A., and Tumer, K. Unifying temporal and structural credit assignment
problems. InProceedings of the Third International Joint Conference onAu-
tonomous Agents and Multiagent Systems(New York, NY, July 2004).

[5] Agogino, Adrian K., and Tumer, Kagan. Quicr-learning for multi-agent coordina-
tion. In In Proceedings of the 21st National Conference on ArtificialIntelligence
(2006).

[6] Allen, Martin William. Interactions in decentralized environments. Open Access
Dissertations(2009).

[7] Aron, Mohit, Druschel, Peter, and Zwaenepoel, Willy. Cluster reserves: a mecha-
nism for resource management in cluster-based network servers. InMeasurement
and Modeling of Computer Systems(2000), pp. 90–101.

[8] Arpaci-dusseau, Andrea C., and Culler, David E. Extending proportional-share
scheduling to a network of workstations. InProceedings of Parallel and Distributed
Processing Techniques and Applications(1997).

[9] Balch, Tucker. Learning roles: Behavioral diversity inrobot teams. InAAAI Work-
shop on Multiagent Learning(1997).

[10] Balch, Tucker. Reward and diversity in multirobot foraging. In IJCAI-99 Workshop
on Agents Learning About, From and With other Agents(1999).

[11] Banerjee, Bikramjit, and Peng, Jing. Generalized multiagent learning with perfor-
mance bound.Autonomous Agents and Multi-Agent Systems 15, 3 (2007), 281–312.

[12] Barto, Andrew G., Sutton, Richard S., and Anderson, Charles W. Neuronlike adap-
tive elements that can solve difficult learning control problems. Artificial neural
networks: concept learning(1990), 81–93.

185

[13] Becker, Raphen, Lesser, Victor, and Zilberstein, Shlomo. Decentralized Markov
Decision Processes with Event-Driven Interactions. InAAMAS’04(2004), vol. 1,
pp. 302–309.

[14] Bellman, Richard E.Dynamic Programming. Princeton University Press, 1957.

[15] Bernstein, Daniel S., Givan, Robert, Immerman, Neil, and Zilberstein, Shlomo. The
complexity of decentralized control of markov decision processes.Mathematics of
Operations Research 27, 4 (2002), 819–840.

[16] Bernstein, Daniel S., and Zilberstein, Shlomo. Reinforcement learning for weakly-
coupled mdps and an application to planetary rover control.In Proceedings of the
Sixth European Conference on Planning(Toledo, Spain, 2001).

[17] Bianchi, Reinaldo A. C., Ribeiro, Carlos H. C., and Costa, Anna H. R. Heuristic
selection of actions in multiagent reinforcement learning. In IJCAI’07 (Hyderabad,
India, 2007).

[18] Bolch, Gunter, Greiner, Stefan, de Meer, Hermann, and Trivedi, Kishor S.Queueing
networks and markov chains. Wiley, 1998.

[19] Borgers, Tilman, and Sarin, Rajiv. Learning through reinforcement and replicator
dynamics. Else working papers, ESRC Centre on Economics Learning and Social
Evolution, 1997.

[20] Boutilier, Craig. Planning, learning and coordination in multiagent decision pro-
cesses. InTARK ’96: Proceedings of the 6th conference on Theoretical aspects
of rationality and knowledge(San Francisco, CA, USA, 1996), Morgan Kaufmann
Publishers Inc., pp. 195–210.

[21] Bowling, Michael. Convergence problems of general-sum multiagent reinforcement
learning. InIN PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CON-
FERENCE ON MACHINE LEARNING(2000), Morgan Kaufmann, pp. 89–94.

[22] Bowling, Michael. Convergence and no-regret in multiagent learning. InNIPS’05
(2005), pp. 209–216.

[23] Bowling, Michael, and Veloso, Manuela. Multiagent learning using a variable learn-
ing rate.Artificial Intelligence 136(2002), 215–250.

[24] Boyan, Justin A., and Littman, Michael L. Packet routing in dynamically changing
networks: A reinforcement learning approach. InNIPS’94(1994), vol. 6, pp. 671–
678.

[25] Brafman, Ronen I., and Tennenholtz, Moshe. Efficient learning equilibrium. In
Advances in Neural Information Processing Systems (NIPS-2002)(2002).

[26] Chrisman, Lonnie. Reinforcement learning with perceptual aliasing: The percep-
tual distinctions approach. InIn Proceedings of the Tenth National Conference on
Artificial Intelligence(1992), AAAI Press, pp. 183–188.

186

[27] Claus, Caroline, and Boutilier, Craig. The dynamics ofreinforcement learning in
cooperative multiagent systems. InAAAI’98 (1998), AAAI Press, pp. 746–752.

[28] Conitzer, Vincent, and Sandholm, Tuomas. Awesome: A general multiagent learning
algorithm that converges in self-play and learns a best response against stationary
opponents.Machine Learning 67, 1 (2007), 23–43.

[29] Greenwald, Amy, and Hall, Keith. Correlated-q learning. In In AAAI Spring Sympo-
sium(2003), AAAI Press, pp. 242–249.

[30] Guestrin, Carlos, Koller, Daphne, and Parr, Ronald. Multiagent planning with fac-
tored mdps. InNIPS-14(2001), pp. 1523–1530.

[31] Guestrin, Carlos, Lagoudakis, Michail G., and Parr, Ronald. Coordinated reinforce-
ment learning. InICML ’02: Proceedings of the Nineteenth International Confer-
ence on Machine Learning(San Francisco, CA, USA, 2002), Morgan Kaufmann
Publishers Inc., pp. 227–234.

[32] Guestrin, Carlos Ernesto.Planning under uncertainty in complex structured envi-
ronments. PhD thesis, Stanford University, Stanford, CA, USA, 2003.

[33] han Chang, Yu, Ho, Tracey, and Kaelbling, Leslie Pack. All learning is local: Multi-
agent learning in global reward games. InProceedings of Neural Information Pro-
cessing Systems (NIPS-03)(2003).

[34] Hansen, Eric A., Bernstein, Daniel S., and Zilberstein, Shlomo. Dynamic program-
ming for partially observable stochastic games. InProceedings of the 19th national
conference on Artifical intelligence(2004), AAAI’04, AAAI Press, pp. 709–715.

[35] Horling, Bryan, and Lesser, Victor. Using quantitative models to search for appro-
priate organizational designs.Autonomous Agents and Multi-Agent Systems 16, 2
(2008), 95–149.

[36] Horling, Bryan, Mailler, Roger, and Lesser, Victor. A Case Study of Organizational
Effects in a Distributed Sensor Network. InProceedings of the International Confer-
ence on Intelligent Agent Technology (IAT 2004)(Beijing, China, 2004), pp. 51–57.

[37] Howard, Ronald A. Dynamic Programming and Markov Processes. The M.I.T.
Press, 1960.

[38] Hu, J, and Wellman, M P. Multiagent reinforcement learning: Theoretical frame-
work and an algorithm. InProceedings of the Fifteenth International Conference on
Machine Learning(1998), pp. 242–250.

[39] Hu, Junling, and Wellman, Michael P. Nash q-learning for general-sum stochastic
games.JOURNAL OF MACHINE LEARNING RESEARCH 4(2003), 1039–1069.

[40] Hu, Junling, and Wellman, Michael P. Nash q-learning for general-sum stochastic
games.Journal of Machine Learning Research 4(2003), 1039–1069.

187

[41] Jaakkola, Tommi, Jordan, Michael I., and Singh, Satinder P. On the convergence
of stochastic iterative dynamic programming algorithms.Neural Computation 6, 6
(1994), 1185–1201.

[42] Kaisers, Michael, and Tuyls, Karl. Faq-learning in matrix games: Demonstrating
convergence near nash equilibria, and bifurcation of attractors in the battle of sexes.
In AAAI’11 (2011).

[43] Kakade, Sham, Kearns, Michael, Langford, John, and Ortiz, Luis. Correlated equi-
libria in graphical games. InEC ’03: Proceedings of the 4th ACM conference on
Electronic commerce(New York, NY, USA, 2003), ACM, pp. 42–47.

[44] Kapetanakis, Spiros, and Kudenko, Daniel. Improving on the reinforcement learning
of coordination in cooperative multi-agent systems. InProceedings of the Second
Symposium on Adaptive Agents andMulti-agent Systems (AISB02) (2002).

[45] Kapetanakis, Spiros, and Kudenko, Daniel. Reinforcement learning of coordina-
tion in cooperative multi-agent systems. InProceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI02)(2002).

[46] Kok, Jelle R., and Vlassis, Nikos. Collaborative multiagent reinforcement learning
by payoff propagation.Journal of Machine Learning Research 7(2006), 1789–1828.

[47] Konidaris, George, and Barto, Andrew G. Building portable options: Skill transfer
in reinforcement learning. InIJCAI (2007), pp. 895–900.

[48] Krainin, Michael, An, Bo, and Lesser, Victor. An Application of Automated Nego-
tiation to Distributed Task Allocation. InIAT’07 (2007), pp. 138–145.

[49] Kumar, Akshat, and Zilberstein, Shlomo. Constraint-based dynamic programming
for decentralized pomdps with structured interactions. InAAMAS(2009).

[50] Kumar, Shailesh, and Miikkulainen, Risto. Confidence based dual reinforcement
q-routing: An adaptive online network routing algorithm. In IJCAI ’99 (1999),
pp. 758–763.

[51] Lauer, Martin, and Riedmiller, Martin. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. InIn Proceedings of the Seventeenth In-
ternational Conference on Machine Learning(2000), Morgan Kaufmann, pp. 535–
542.

[52] Leslie, David S., and Collins, E. J. Individual q-learning in normal form games.
SIAM Journal on Control and Optimization 44, 2 (2005), 495–514.

[53] Lesser, V., Ortiz, C., and Tambe, M., Eds.Distributed Sensor Networks: A Multia-
gent Perspective (Edited book), vol. 9. Kluwer Academic Publishers, 2003.

[54] Lin, Long-Ji, and Mitchell, Tom M. Memory approaches toreinforcement learn-
ing in non-markovian domains. Tech. rep., Tech. rep. CMU-CS-92-138, Carnegie
Mellon University, School of Computer Science., 1992.

188

[55] Littman, Michael L. Markov games as a framework for multi-agent reinforcement
learning. InProceedings of the Eleventh International Conference on Machine
Learning(1994), pp. 157–163.

[56] Littman, Michael L. Friend-or-foe q-learning in general-sum games. InICML ’01
(2001), pp. 322–328.

[57] Littman, Michael L. Value-function reinforcement learning in markov games.Cog-
nitive Systems Research 2, 1 (2001), 55–66.

[58] Liu, Yaxin, and Stone, Peter. Value-function-based transfer for reinforcement learn-
ing using structure mapping. InAAAI (2006).

[59] Makar, Rajbala, Mahadevan, Sridhar, and Ghavamzadeh,Mohammad. Hierarchical
multi-agent reinforcement learning. InAutonomous Agents’01(2001), pp. 246–253.

[60] Mangasarian, O. L., and Stone, H. Two-person nonzero-sum games and quadratic
programming.Journal of Mathematical Analysis and Applications 9, 3 (1964), 348
– 355.

[61] Marecki, Janusz, Gupta, Tapana, Varakantham, Pradeep, Tambe, Milind, and Yokoo,
Makoto. Not all agents are equal: Scaling up distributed pomdps for agent networks.
In AAMAS(2008), pp. 485–492.

[62] Mataric, Maja. Learning to behave socially. InFrom Animals to Animats: Interna-
tional Conference on Simulation of Adaptive Behavior(1994), MIT Press, pp. 453–
462.

[63] Mataric, Maja J. Reinforcement learning in the multi-robot domain.Autonomous
Robots 4(1997), 73–83.

[64] Mccallum, R. Andrew. Overcoming incomplete perception with utile distinction
memory. In In Proceedings of the Tenth International Conference on Machine
Learning(1993), Morgan Kaufmann, pp. 190–196.

[65] Mccallum, R. Andrew. Instance-based utile distinctions for reinforcement learning
with hidden state. InIn Proceedings of the Twelfth International Conference on
Machine Learning(1995), Morgan Kaufmann, pp. 387–395.

[66] McKelvey, Richard D., and McLennan, Andrew. Computation of equilibria in finite
games. InHANDBOOK OF COMPUTATIONAL ECONOMICS(1996), Elsevier,
pp. 87–142.

[67] Melo, Francisco S., and Veloso, Manuela. Learning of coordination: exploiting
sparse interactions in multiagent systems. InProceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems - Volume 2(Richland,
SC, 2009), AAMAS ’09, International Foundation for Autonomous Agents and Mul-
tiagent Systems, pp. 773–780.

189

[68] Moore, Andrew W., and Atkeson, Christopher G. Prioritized sweeping: Reinforce-
ment learning with less data and less time. InMachine Learning(1993), pp. 103–
130.

[69] Nagayuki, Yasuo, Ishii, Shin, and Doya, Kenji. Multi-agent reinforcement learn-
ing: An approach based on the other agent’s internal model. In Proceedings of the
International Conference on Multi-Agent Systems (ICMAS-00) (2000).

[70] Nair, Ranjit, Varakantham, Pradeep, Tambe, Milind, and Yokoo, Makoto. Net-
worked distributed pomdps: a synthesis of distributed constraint optimization and
pomdps. InAAAI’05 (2005), pp. 133–139.

[71] Nash, John. Equilibrium points in n-person games.Proceedings of the National
Academy of Sciences 36, 1 (1950), 48–49.

[72] Ng, Andrew Y., Harada, Daishi, and Russell, Stuart. Policy invariance under reward
transformations: theory and application to reward shaping. In ICML’99 (1999),
pp. 278–287.

[73] Osborne, Martin J., and Rubinstein, Ariel.A course in game theory. The MIT Press,
1994.

[74] Panait, Liviu, and Luke, Sean. Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems 11(2005), 2005.

[75] Peng, Jing, and Williams, Ronald J. Incremental multi-step q-learning.Mach. Learn.
22, 1-3 (1996), 283–290.

[76] Perko, Lawrence.Differential equations and dynamical systems. Springer-Verlag
Inc., 1991.

[77] Peshkin, Leonid, and Savova, Virginia. Reinforcementlearning for adaptive routing.
In International Joint Conference on Neural Networks (IJCNN)(2002).

[78] Petrik, Marek, and Zilberstein, Shlomo. Average-reward decentralized markov de-
cision processes. InIJCAI (2007), pp. 1997–2002.

[79] Price, Bob, and Boutilier, Craig. Implicit imitation in multiagent reinforcement
learning. InICML’99 (1999), pp. 325–334.

[80] Ramamritham, K., Stankovic, J. A., and Zhao, W. Distributed scheduling of tasks
with deadlines and resource requirements.IEEE Trans. Comput. 38, 8 (1989), 1110–
1123.

[81] Rosenstein, Michael T., and Barto, Andrew G. Supervised actor-critic reinforcement
learning. InLearning and Approximate Dynamic Programming: Scaling Up to the
Real World(2004), J. Si, A. Barto, W. Powell, and D. Wunsch, Eds., John Wiley and
Sons, pp. 359–380.

190

[82] Sandholm, Tuomas, and Crites, Robert H. On multiagent q-learning in a semi-
competitive domain. InIJCAI ’95: Proceedings of the Workshop on Adaption and
Learning in Multi-Agent Systems(London, UK, 1996), Springer-Verlag, pp. 191–
205.

[83] Schaerf, Andrea, Shoham, Yoav, and Tennenholtz, Moshe. Adaptive load balancing:
A study in multi-agent learning.Journal of Artificial Intelligence Research 2(1995),
475–500.

[84] Schmidhuber, Jurgen. Realistic multi-agent reinforcement learning. InLearning in
Distributed Artificial Intelligence Systems. Working Notes of the 1996 ECAI Work-
shop(1996).

[85] Schmidhuber, Jurgen, and Zhao, Jieyu. Multi-agent learning with the success-story
algorithm. InECAI Workshop LDAIS(1997), Springer, pp. 82–93.

[86] Sen, Sandip, Sen, Ip, Sekaran, Mahendra, and Hale, John. Learning to coordinate
without sharing information. InIn Proceedings of the Twelfth National Conference
on Artificial Intelligence(1994), pp. 426–431.

[87] Shapley, Lloyd Stowell. Stochastic games. InProceedings of the National Academy
of Sciences(1953), vol. 39, pp. 1095–1100.

[88] Shoham, Yoav, Powers, Rob, and Grenager, Trond. If multi-agent learning is the
answer, what is the question?ARTIFICIAL INTELLIGENCE 171(2007).

[89] Simon, H. A. Nearly-decomposable systems. InThe Sciences of the Artificial(1969),
pp. 99–103.

[90] Simon, H. A.The Sciences of the Artificial. MIT Press, 1981.

[91] Sims, Mark, Goldman, Claudia, and Lesser, Victor. Self-Organization through
Bottom-up Coalition Formation. InAAMAS’03(2003), pp. 867–874.

[92] Singh, Satinder, Kearns, Michael, and Mansour, Yishay. Nash convergence of gra-
dient dynamics in general-sum games. InProceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence(2000), Morgan, pp. 541–548.

[93] Singh, Satinder P., Jaakkola, Tommi, and Jordan, Michael I. Learning without state-
estimation in partially observable markovian decision processes. InIn Proceed-
ings of the Eleventh International Conference on Machine Learning (1994), Morgan
Kaufmann, pp. 284–292.

[94] Singh, Satinder P., Jaakkola, Tommi, Littman, MichaelL., and Szepesvari, Csaba.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine Learning 38, 3 (2000), 287–308.

[95] Soni, Vishal, and Singh, Satinder P. Using homomorphisms to transfer options
across continuous reinforcement learning domains. InAAAI (2006).

191

[96] Stone, Peter, and Veloso, Manuela. Team-partitioned,opaque-transition reinforce-
ment learning. InAutonomous Agents’99(1999), pp. 206–212.

[97] Stranders, Ruben, Farinelli, Alessandro, Rogers, Alex, and Jennings, Nicholas R.
Decentralised coordination of mobile sensors using the max-sum algorithm. InIJ-
CAI (2009), pp. 299–304.

[98] Sutton, Richard S. Learning to predict by the methods oftemporal differences.
Mach. Learn. 3, 1 (1988), 9–44.

[99] Sutton, Richard S. Integrated architecture for learning, planning, and reacting based
on approximating dynamic programming. InProceedings of the seventh interna-
tional conference (1990) on Machine learning(San Francisco, CA, USA, 1990),
Morgan Kaufmann Publishers Inc., pp. 216–224.

[100] Sutton, Richard S., and Barto, Andrew G.Reinforcement Learning: An Introduction.
MIT Press, 1998.

[101] Tan, Ming. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In In Proceedings of the Tenth International Conference on Machine Learning
(1993), Morgan Kaufmann, pp. 330–337.

[102] Tangamchit, P., Dolan, J., and Khosla, P. Learning-based task allocation in decen-
tralized multirobot systems. InDARS’00(2000), pp. 381–390.

[103] Tao, Nigel, Baxter, Jonathan, and Weaver, Lex. A multi-agent policy-gradient ap-
proach to network routing. InICML ’01 (2001), pp. 553–560.

[104] Tasaki, M., Yabu, Y., Iwanari, Y., Yokoo, M., Tambe, M., Marecki, J., and Varakan-
tham, P. Introducing communication in dis-pomdps with locality of interaction. In
Proceedings of the 2008 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology(2008), vol. 2, pp. 169 –175.

[105] Taylor, Matthew E., and Stone, Peter. Cross-domain transfer for reinforcement learn-
ing. In ICML (2007), pp. 879–886.

[106] Taylor, Matthew E. and Stone, Peter. Transfer learning for reinforcement learning
domains: A survey.Journal of Machine Learning Research 10, 1 (2009), 1633–
1685.

[107] Team, NWB. Network workbench tool. Inhttp://nwb.slis.indiana.edu(2006).

[108] Tesauro, Gerald. Practical issues in temporal difference learning.Machine Learning
8 (May 1992), 257–277.

[109] Tesauro, Gerald. Online resource allocation using decompositional reinforcement
learning. InAAAI (2005), pp. 886–891.

[110] Tsitsiklis, John N., and Sutton, Richard. Asynchronous stochastic approximation
and q-learning. InMachine Learning(1994), pp. 185–202.

192

[111] Tuyls, Karl, Hoen, Pieter Jan, and Vanschoenwinkel, Bram. An evolutionary dy-
namical analysis of multi-agent learning in iterated games. Autonomous Agents and
Multi-Agent Systems 12(January 2006), 115–153.

[112] Tuyls, Karl, Verbeeck, Katja, and Lenaerts, Tom. A selection-mutation model for
q-learning in multi-agent systems. InProceedings of the second international joint
conference on Autonomous agents and multiagent systems(New York, NY, USA,
2003), AAMAS ’03, ACM, pp. 693–700.

[113] Urgaonkar, Bhuvan, and Shenoy, Prashant. Sharc: Managing cpu and network band-
width in shared clusters.IEEE Trans. on Parallel and Distributed Systems (TPDS)
14, 11 (2003).

[114] Varakantham, Pradeep, Tambe, Milind, and Yokoo, Makoto. Networked distributed
pomdps: A synthesis of distributed constraint optimization and pomdps. InAAAI
(2005), pp. 133–139.

[115] von Neumann, John, and Morgenstern, Oskar.Theory of Games and Economic
Behavior. John Wiley and Sons, 1944.

[116] Wang, Xiaofeng, and Sandholm, Tuomas. Reinforcementlearning to play an opti-
mal nash equilibrium in team markov games. InAdvances in Neural Information
Processing Systems(2002), MIT Press, pp. 1571–1578.

[117] Watkins, C. J. C. H., and Dayan, P. Q-learning.Machine Learning 8, 3/4 (1992),
279–292.

[118] Weinberg, Michael, and Rosenschein, Jeffrey S. Best-response multiagent learning
in non-stationary environments. InAAMAS ’04: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems(Washing-
ton, DC, USA, 2004), IEEE Computer Society, pp. 506–513.

[119] Wilson, Aaron, Fern, Alan, Ray, Soumya, and Tadepalli, Prasad. Multi-task rein-
forcement learning: a hierarchical bayesian approach. InICML (2007), pp. 1015–
1022.

[120] Wolpert, David, and Tumer, Kagan. Optimal payoff functions for members of col-
lectives. InAdvances in Complex Systems(2001).

[121] Zafar, Huzaifa, Lesser, Victor, Corkill, Daniel, andGanesan, Deepak. Using Orga-
nization Knowledge to Improve Routing Performance in Wireless Multi-Agent Net-
works. InProceedings of Seventh International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2008)(Estoril, Portugal, 2008), Parkes Padgham
and Parsons Mller, Eds., IFMAAS, pp. 821–828.

[122] Zhang, Chongjie, Abdallah, Sherief, and Lesser, Victor. MASPA: Multi-agent auto-
mated supervisory policy adaptation. InUniversity of Massachusetts Amherst Com-
puter Science Technical Report #08-03(2008).

193

[123] Zhang, Chongjie, Abdallah, Sherief, and Lesser, Victor. Integrating organizational
control into multi-agent learning. InAAMAS’09(2009).

[124] Zhang, Chongjie, and Lesser, Victor. Multi-agent learning with policy prediction. In
AAAI’10 (2010).

[125] Zhang, Chongjie, and Lesser, Victor. Coordinated multi-agent reinforcement learn-
ing in networked distributed pomdps. InAAAI’11 (2011).

[126] Zhang, Chongjie, Lesser, Victor, and Abdallah, Sherief. Self-organization for co-
ordinating decentralized reinforcement learning. InUniversity of Massachusetts
Amherst Computer Science Technical Report UM-CS-2009-007(2009).

[127] Zhang, Chongjie, Lesser, Victor, and Abdallah, Sherief. Self-organization for dy-
namically supervising distributed learning. InUniversity of Massachusetts Amherst
Computer Science Technical Report UM-CS-2009-007(2009).

[128] Zhang, Chongjie, Lesser, Victor, and Abdallah, Sherief. Self-organization for coor-
dinating decentralized reinforcement learning. InAAMAS’10(2010).

[129] Zhang, Chongjie, Lesser, Victor, and Shenoy, Prashant. A Multi-Agent Learning
Approach to Online Distributed Resource Allocation. InIJCAI’09 (2009).

[130] Zhang, Haizheng, and Lesser, Victor. A reinforcementlearning based distributed
search algorithm for hierarchical content sharing systems. In AAMAS’07(2007).

[131] Zhang, Ying, Liu, Juan, and Zhao, Feng. Information-directed routing in sensor
networks using real-time reinforcement learning.Combinatorial Optimization in
Communication Networks 18(2006), 259–288.

[132] Zhao, Jieyu, and Schmidhuber, Jurgen. Incremental self-improvement for life-time
multi-agent reinforcement learning. InFrom Animals to Animats 4: Proceedings
of the Fourth International Conference on Simulation of Adaptive Behavior(1996),
MIT Press, pp. 516–525.

[133] Zinkevich, Martin. Online convex programming and generalized infinitesimal gra-
dient ascent. InICML’03 (2003), pp. 928–936.

194

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	9-2011

	Scaling Multi-Agent Learning in Complex Environments
	Chongjie Zhang
	Recommended Citation

	dissertation.dvi

