
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

9-2010

Bounds on Service Quality for Networks Subject
to Augmentation and Attack
George Dean Bissias
University of Massachusetts Amherst, gbiss@cs.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Bissias, George Dean, "Bounds on Service Quality for Networks Subject to Augmentation and Attack" (2010). Open Access
Dissertations. 264.
https://scholarworks.umass.edu/open_access_dissertations/264

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/264?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

BOUNDS ON SERVICE QUALITY FOR NETWORKS
SUBJECT TO AUGMENTATION AND ATTACK

A Dissertation Presented

by

GEORGE DEAN BISSIAS

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2010

Computer Science

c© Copyright by George Dean Bissias 2010

All Rights Reserved

BOUNDS ON SERVICE QUALITY FOR NETWORKS
SUBJECT TO AUGMENTATION AND ATTACK

A Dissertation Presented

by

GEORGE DEAN BISSIAS

Approved as to style and content by:

Brian Neil Levine, Chair

Lixin Gao, Member

Ramesh Kumar Sitaraman, Member

Don Towsley, Member

Andrew Barto, Department Chair
Computer Science

ACKNOWLEDGMENTS

This work is the product of collaborations with many students and faculty at

the University of Massachusetts. Professor Arnold L. Rosenberg provided invaluable

guidance during my initial investigation into graph vulnerability. Professor Ramesh

K. Sitaraman spent many hours with me discussing graph vulnerability and augmen-

tation, and he helped guide the formulation and treatment of the Dynamic Network

Augmentation Problem. I would like to thank Professor Mark Corner and John

Burgess for allowing me to contribute to their work on DTN attack vulnerability.

Finally, for my advisor Brian Neil Levine, there is no way to fully convey his contri-

bution to this thesis or my professional development. He has devoted time, funding,

and patience to my case for the past seven years, and has always been supportive of

my ideas: good and bad. He is not manager or an employer. He is a scholar and true

mentor.

iv

ABSTRACT

BOUNDS ON SERVICE QUALITY FOR NETWORKS
SUBJECT TO AUGMENTATION AND ATTACK

SEPTEMBER 2010

GEORGE DEAN BISSIAS

B.Sc., UNIVERSITY OF NEW MEXICO

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Brian Neil Levine

Assessing a network’s vulnerability to attack and random failure is a difficult

and important problem that changes with network application and representation.

We furnish algorithms that bound the robustness of a network under attack. We

utilize both static graph-based and dynamic trace-driven representations to construct

solutions appropriate for different scenarios.

For static graphs we first introduce a spectral technique for developing a lower

bound on the number of connected pairs of vertices in a graph after edge removal,

which we apply to random graphs and the power grid of the Philippines. To address

the problem of resource availability in networks we develop a second technique for

v

bounding the number of nominally designated client vertices that can be disconnected

from all server vertices after either edge or vertex removal (or both). This algorithm

is also tested on the power grid and a wireless mesh network, the Internet AS level

graph, and the highway systems of Iowa and Michigan.

Dynamic networks are modeled as disruption tolerant networks (DTNs). DTNs

are composed of mobile nodes that are intermittently connected via short-range

wireless radios. In the context of both human and vehicular mobility networks we

study both the effect of targeted node removal and the effect of augmentation with

stationary relays.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Affecting Connectivity in Graphs . 4

1.1.1 Standard Graphs . 5
1.1.2 Client-Server Graphs . 6
1.1.3 Large Graph Solution . 9

1.2 Service Quality in Dynamic Networks . 10

1.2.1 DTN Augmentation . 12

1.3 Data Sets . 13

1.3.1 Net Equality . 13
1.3.2 Power Grid of the Philippines . 14
1.3.3 Internet Autonomous Systems Graph . 15
1.3.4 Highway Networks of Iowa and Michigan . 15
1.3.5 DieselNet DTN . 16
1.3.6 Haggle DTN . 17

vii

1.4 Notation and Terminology . 18
1.5 Contributions . 19

2. BACKGROUND . 21

2.1 Motivation . 21

2.1.1 Node Attacks . 21
2.1.2 Link Attacks . 23
2.1.3 Adding Network Relays . 24

2.2 Graph Vulnerability . 24

2.2.1 Similar Edge and Vertex Deletion Problems 26
2.2.2 Experimental Approaches . 28

2.3 Other Analysis on Attacking DTNs . 30
2.4 Similar Efforts in DTN Augmentation . 31
2.5 Foundations of Analysis . 32

2.5.1 The Laplacian . 32
2.5.2 Separation Algorithms . 33

3. GRAPH CONNECTIVITY AFTER EDGE REMOVAL 34

3.1 Spectral Decomposition . 37

3.1.1 Applying Program MinPairsProg(G, ε) . 38
3.1.2 Real Cuts with METIS . 41
3.1.3 Random Graph Evaluation . 42
3.1.4 Evaluation on a power grid . 44

3.2 Bolstering a Graph Prior to Attack . 51

4. CLIENT CONNECTIVITY AFTER MIXED REMOVAL 54

4.1 SDP Formulation . 58
4.2 Solving the SDP Formulation . 62

4.2.1 Lower Bound via Branch and Cut . 63

viii

4.2.2 Upper Bound via Rounding . 63

4.3 Empirical Evaluation . 65

4.3.1 Net Equality Wireless Mesh Network . 65

4.3.1.1 Philippine Power Grid . 67

4.3.2 Topological Influence on Serviceability . 68

5. CLIENT CONNECTIVITY IN LARGE GRAPHS 70

5.1 A Divide-and-Conquer Solution for Client Removal 70

5.1.1 Decomposition . 72
5.1.2 Family Serviceability . 74
5.1.3 Aggregation . 76
5.1.4 Managing Subproblem Size . 79

5.2 Evaluation on the Internet AS Graph . 81

5.2.1 Random Graph Model . 84

5.3 Evaluation on Airport Connectivity . 86

5.3.1 Iowa . 87

5.3.1.1 Random Graph Model . 87

5.3.2 Michigan . 90

5.3.2.1 Random Graph Model . 92

6. VULNERABILITY OF DTNS . 93

6.1 Network Details . 94
6.2 Routing Strategy . 96

6.2.1 Graph Model . 96

6.3 Experimental Findings . 97

ix

7. GREEDY DTN AUGMENTATION . 101

7.1 Greedy Placement Compared to Prior Work . 102
7.2 Problem Description . 104

7.2.1 Decoupling Routing from Placement . 104
7.2.2 Relaxing D-Placement . 106

7.3 Solving R-Placement . 107
7.4 Experimental Goals and Procedure . 110

7.4.1 Simulation . 112

7.5 Evaluation . 113

7.5.1 Visualizing Placement . 114
7.5.2 Frequency-based placement is nearly D-optimal in

DieselNet . 116
7.5.3 Impact on End-to-End Performance . 118

7.6 Algorithms . 119

8. COMPUTATIONAL COMPLEXITY . 122

8.1 Problem MinConn . 122
8.2 Problem MinPairs . 125
8.3 Problem Placement . 127

BIBLIOGRAPHY . 129

x

LIST OF FIGURES

Figure Page

1.1 (a) A portion of the map of the power grid in the Philippines (b)
DieselNet bus routes . 14

1.2 Airports are shown as blue dots over highways in (a) Iowa and (b)
Michigan. Colors vary between different routes. Waypoints are not
shown. 17

3.1 (a) Graph representation of a simple network. (b) Decomposition into
four blocks. 35

3.2 MinPairs problem formulation. 36

3.3 Upper and lower bound on edge removal in 15 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500
trials. 45

3.4 Upper and lower bound on edge removal in 25 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500
trials. 46

3.5 Upper and lower bound on edge removal in 50 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500
trials. 47

3.6 Upper and lower bound on edge removal in 75 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500
trials. 48

xi

3.7 Degree distributions for 25 node graphs with (a) ∼ 75 edges and (b)
∼ 150 edges. 49

3.8 Degree distributions for 50 node graphs with (a) ∼ 306 edges and (b)
∼ 612 edges. 49

3.9 Disconnecting the Power Grid of the Philippines. The red line (with
circles) indicates the result of an actual segmentation. The blue
line (with squares) is our spectral lower bound. 50

4.1 Separating the AS graph into blocks. Tier 1 ASes (in green) are
servers and Tier 2 ASes (in blue) are clients. 55

4.2 MinConn problem formulation. 58

4.3 Net Equality Wireless Mesh connectivity with (a) link removal and (b)
client removal. 66

4.4 Connectivity in the Power Grid of the Philippines with (a) link
removal and (b) client removal. 68

4.5 Cumulative vertex degree distribution in (a) the Net Equality Wireless
Mesh Network and (b) the Power Grid of the Philippines 69

5.1 Client decomposition into gateways and children. 71

5.2 Client decomposition into gateways and children. 75

5.3 AS graph: (a) degree distribution over all vertices, (b) degree
distribution of both clients and servers, (c) client connectivity
after client removal, and (d) result of synthetic random graph
experiment. 83

5.4 Airport connectivity and graph properties in Iowa. 88

5.5 Airport connectivity and graph properties in Michigan. 91

xii

6.1 Plots (a) & (b) show the average percentage of unique peers contacted
over all trace days in DieselNet and Haggle respectively. Plot (c)
shows a CDF of bandwidth between node pairs in both DieselNet
and Haggle. 95

6.2 Robustness of the DieselNet DTN as measured in the (a) flat graph by
comparing brute force node removal and greedy (b) trace driven
simulation for both greedy and random node removal. 98

6.3 Robustness of the Haggle DTN as measured in the (a) flat graph by
comparing brute force node removal and greedy (b) trace driven
simulation for both greedy and random node removal. 98

7.1 Comparison of genetic programming and greedy placement strategies
in DieselNet in terms of (a) packet delivery rate and (b) packet
delivery delay. The red curve with circles represents the results
from our greedy placement, while the blue curve with triangles
represents the results from a placement using genetic
programming. 103

7.2 (a) DTN D: at fixed time, with demand M for commodities indicated
by color and labeled s for source and d for destination. (b) Stage
1: uncapacitated demand satisfaction without relays (c) M1,
one-hop demand, formed from uncapacitated solution. (d) Stage 2:
relays partially accommodating demand M1 while respecting
capacity. 112

7.3 Average delay for 15MB throughput given various number of
relays. 114

7.4 The 50 most commonly chosen locations over the first 30 trace days
for (a) bounding placement (b) frequency placement. 115

7.5 Redundancy of top 50 location choices for the first 30 days for (a)
bounding placement (b) frequency placement. 116

xiii

7.6 Aggregate relay flow by day where maximum average delay is limited
to the bounding delay on that day and plotted as a CCDF over all
days (28 for Trained, 58 for others). 118

7.7 End-to-end performance in Simulations Frequency, Frequency×2,
None, and Trained for (a) packet delivery rate and (b) average
delay. 119

xiv

CHAPTER 1

INTRODUCTION

Graph vulnerability has been defined in many ways. It can refer to random failure

or intentional disruption, may be measured according to countless metrics, and be

constrained to vertex or edge removal. Depending on the definition, the problem

can be shown to be NP-complete or polynomial in terms of time complexity. The

diversity of problem statements reflects the diversity of motivation for its study. A

chemist may wish to measure the porosity of a material, an electrical engineer the

redundancy of a circuit, a biologist the robustness of a neural system, or a computer

scientist the fault tolerance of a network. We define vulnerability problems that

are well suited to studying the latter problem, network fault tolerance. However,

the problem is general enough that its impact likely extends beyond the networking

community. We also investigate how graphs respond to augmentation in the context

of network throughput. Graph augmentation is a dual problem to the vulnerability

problem that addresses the addition of vertices or edges to a graph.

Many results concerning graph vulnerability have come from the mathematics

literature. Percolation theory deals with random failure in random graphs, usually of

infinite size. The theory of graph separators offers bounds on the number of vertices

or edges that must be removed in order to achieve a certain balance in component

1

sizes. Unfortunately, these techniques fail to directly capture the vulnerability of

most real-world graphs. We introduce algorithms that address the shortcomings of

earlier work. In particular, we offer heuristics for deriving upper and lower bounds

on vulnerability in any graph and subject to a variety of metrics with broad appeal

to the networking community. To measure the quality and provide context for these

heuristics, our work is validated empirically and is accordingly supplemented with

experiments on real and synthetic graphs.

There are numerous network models that operate with varying degrees of sophisti-

cation. At one extreme are standard graph models, which are capable of representing

the connectivity of static networks. On the end, are network simulators, which

represent the dynamics of both connectivity and packet movement in a given network.

Each is appropriate under different circumstances that depend on network topology,

dynamics, and deployment. We study vulnerability and augmentation problems in

three classes of network model: the standard graph G = (V,E), client-server graph

G = (S ∪ C,E), and disruption tolerant network (DTN) labeled D = (N,K,C). We

use standard notation for graphs, each vertex in the set V corresponds to a node in the

network and each edge in the set E corresponds to an undirected link. Client-server

graphs are identical to standard graphs except that the vertex set is divided into a

set of servers S and clients C. Under this model, we assume that some homogenous

resource is available at every vertex in S and all clients in C desire access to this

resource. The graph is not bipartite, that is to say, clients are generally adjacent

to both servers and other clients. Both standard and client server graphs are most

appropriate for modeling connectivity in static networks.

2

A DTN is a network comprised of mobile nodes that are only intermittently

connected. Applications that can tolerate short disruptions can be implemented over

such networks using routing algorithms that are robust to packet delay and route

failure. Here we define DTNs by a collection of nodes N , node positions K, and

connection events C. Positions are triples with (n, k, t) ∈ K indicating that node n

is at location k at time t. Two nodes in n1, n2 ∈ N are considered to be connected

when they share the same location at a given time. This occurs when there exists

some time t and location k such that both (n1, k, t) ∈ K and (n2, k, t) ∈ K. We call

such occurrences connection events and label them with quadruples (n1, n2, b, t) ∈ C

indicating that nodes n1 and n2 can pass b bits of data at time t (in both directions).

Each of the models: graph, client-server graph, and DTN operate with a unique

currency, which is the metric that best captures service quality in that model. We

utilize the following metrics throughout this document,

• Standard Graphs: Pairs(G), the number of pairs of vertices that are con-

nected in graph G.

• Client-Server Graphs: Conn(G), the number of clients connected to some

server in client server graph G.

• Disruption Tolerant Networks:

– Thru(D,M), the maximum aggregate throughput between nodes in DTN

D given end-to-end demand matrix M .

3

– Delay(D,M, P ∗), the minimum aggregate delay between nodes in DTN D

given end-to-end demand matrix M , and minimum aggregate throughput

P ∗.

To begin, we present formal statements for each of the problems studied, and

introduce notation crucial to our analysis. Our work is divided between the study

of connectivity in graphs on one hand and throughput and delay in trace driven

simulations on the other. The main difference is that graphs are most appropriate

for modeling static properties of a network, while trace driven simulation is more

appropriate in modeling the dynamics of a network.

1.1 Affecting Connectivity in Graphs

The first half of this thesis explores connectivity in static graphs where we focus on

the communication capability of nodes in a given communication network. Specifically,

we seek to assess how much of the network is still able to communicate after removing

a given number of nodes or links. It is convenient to think of such a network as a

graph G(V,E) where each vertex in the set V corresponds to a node in the network

and each edge in the set E corresponds to a link. By V(H) and E(H) we denote the

vertices and edges associated with graph H. The graphs G	S and G⊕S denote the

graph G with elements of S ∈ S added or removed respectively, where S is the power

set of V ∪E. In other words, set S ∈ S may be any combination of edges, vertices, or

both. In terms of element removal, the vertices and edges in S need not be consistent.

That is to say, if vertex v is in S, then the edges adjacent to v are assumed to also be

removed and we do not require that those edges be explicitly included in S.

4

1.1.1 Standard Graphs

We first tackle the problem of measuring connectivity in a graph subject to edge

removal. This model treats all vertices equally and implicitly defines well-connected

graphs as those with few and large connected components. Its concern is with the

existence of a connection between pairs of vertices rather than the quality of that

connection. Our goal is to solve the following problem.

PROBLEM 1: MinPairs(G, ε)

• Given: graph G = (V,E) and ε ∈ R.

• Find: minimum Pairs(G	R), over all R where R ⊆ E and |R| = ε .

Our approach to solving Problem MinPairs is to examine the spectrum of a

graph’s Laplacian matrix, which allows us to develop a lower bound on the solution

to MinPairs. We compare this bound to actual cuts made by the METIS [96] graph

partitioning library and find that the two bounds are close for relatively small graphs.

We test this technique on two different families of random graphs: the Erdos Renyi

(ER) and Barabasi-Albert (BA) graphs. Each family spans multiple graph sizes as

well as quantities of edges. To the best of our knowledge, this is the first systematic

characterization of the worst-case vulnerability of synthetic graphs subject to edge

removal. Our results show that ER and BA graphs have roughly similar robustness

properties when the graphs are small and comparably sized. Results are seen to

weaken significantly when the size of the graph, the total number of edges, or number

of edges removed increases. We also apply our bounds to the Power Grid of the

Philippines. Our bounds are somewhat weak but informative nevertheless. The

5

results show that while the grid can be disconnected relatively easily, it is difficult

to create a significant number of small components. We show that even after any

25 transmission lines are removed, each station is connected to a third of all other

stations on average. We consider this a positive result because among the 404 total

stations in the grid, there are 44 generators. Therefore, all stations have power so

long as they are connected to at least one generator. We hypothesize that the typical

station will thus be connected to at least one generator as it seems likely that at

least one generator will exists in a large component. Unfortunately, the standard

graph model is not capable of providing any further insight into this problem. This

limitation and others motivates our study of client-server graphs.

Finally, we also investigate how our lower bound will change after graph aug-

mentation. Specifically, we show how our spectral lower bound can be modified to

anticipate how it will change subject to any augmentation of a fixed number of edges.

1.1.2 Client-Server Graphs

Our analysis on standard graphs is lacking because it cannot capture the hierarchy

between nodes that is inherent to most networks. One way to enrich the basic graph is

to differentiate between client and server vertices. Networks fundamentally facilitate

the dispersion of resources. For a given resource, there are server and client nodes.

Servers host a resource, while clients can consume or propagate the resource. In the

presence of many different resources, each node may act as either client or server

depending on the context. We focus on client-server graphs, or those graphs that

exhibit a clear delineation between client and server vertices. We further assume that

all servers are hosting the same resource.

6

The power grid provides an example. Generator nodes serve electricity and

substation nodes receive and distribute it. If any substation is disconnected from all

generators, then it and all of its customers will lose power. Wireless mesh networks

can also be modeled as client-server graphs. In such a network, a small number of

gateways (servers) are directly connected to the Internet, while a large number of

relays (clients) connect only to gateways or other relays. Internet connectivity is

established for any given relay only when there exists some path to a gateway. There

are many other examples of client-server graphs that affect the lives of millions every

day: telecommunications networks, Internet autonomous systems, and interstate

highways are just a few.

A client-server graph is formulated as a graph G = (V,E) where the vertex set V

is further decomposed into two sets V = S ∪C denoting server and client vertices. By

determining how many clients can be disconnected from all servers we can characterize

the ability of a network to disperse resources after vertex or edge removal. Specifically,

our objective is to count the minimum number of clients that remain connected to at

least one server after the removal of some fixed number of edges or clients. In this

context, we define a service path as any path in G that begins at a client vertex and

ends at a server vertex. Client vertex v is said to have a service path when there exists

a service path beginning at v. Vertex v is then said to be serviceable. The following

is our formulation of the vulnerability problem in the context of client-server graphs.

PROBLEM 2: MinConn(G, ν, ε)

• Given: client-server graph G = (S ∪ C,E) and ν, ε ∈ R.

7

• Find: minimum Conn(G	 (A∪B)), over all A,B, where A ⊆ C, |A| = ν, and

B ⊆ E, |B| = ε.

In Chapter 4, we solve Problem MinConn(G, ν, ε) in three parts. We first cast it as a

semidefinite program, which returns a fractional solution analogous to those provided

by linear programming. Second, we introduce a branch-and-cut algorithm that

strengthens the result of the semidefnite program. Finally, we describe a procedure

for rounding the fractional solution to a concrete set of edges and vertices whose

removal renders a nearly optimal objective value.

We applied our solution to both a residential Wireless Mesh Network and the

Power Grid of the Philippines. The results are two-fold: a lower bound on the number

of clients connected to a server after vertex or edge removal, and a corresponding

upper bound that additionally supplies the edge and vertex removal set. The results

are particularly strong for the Wireless Mesh Network in that the upper and lower

bounds remain quite close for intermediate values of nodes and links removed. We

find interesting watershed moments during link removal where connectivity suddenly

drops when one additional link is removed. Because there are two such moments,

we hypothesize that these are moments when each of the gateways is completely

disconnected from the rest of the network. Roughly half the clients are disconnected

from all gateways after removing just 12 links (< 5%). Direct client removal is less

dramatic but more damaging. We show that removing 12 clients could potentially

disconnect more than 70% of the remaining clients.

For the Philippine Power Grid, agreement between upper and lower bounds is not

quite as strong. Nevertheless, we are able to draw significant conclusions for up to

8

50 links or clients removed. For example, removing just over 6% of the transmission

lines will disconnect at least 20% but not more than 50% of the substations from

all generators. On the other hand, we also find that almost 50% of the substations

can be disconnected from all generators after strategically removing a certain 20

(approximately 5%) other substations.

1.1.3 Large Graph Solution

The basic branch-and-cut solution to Problem MinConn(G, ν, ε) shows weaken-

ing performance as the size of the graph increases, but we would like to evaluate

the connectivity properties of still larger graphs. To address this issue, Chapter 5

develops a more sophisticated algorithm that offers a better solution to Problem

MinConn(G, ν, ε) for large graphs. Our algorithm specifically solves Problem Min-

Conn(G, ν, 0), that is, it does not address edge removal. This approach proceeds in

two stages. First, an aggregation algorithm consolidates groups of vertices of the

given graph into a single pair of numbers: weight and value. The second stage then

models these weight-value paris as a version of the Knapsack Problem, whose solution

is subsequently used to establish both lower and upper bounds on client serviceability.

We applied this approach to the Autonomous Systems (AS) level graph of the

Internet and the highway systems of Iowa and Michigan. In the AS graph, two

types of AS nodes are frequently distinguished: Tier 1 and Tier 2. Tier 1 nodes

essentially form the backbone of the Internet while Tier 2 nodes act as downstream

conduits. Therefore, it seems appropriate to model the AS graph as a client server

graph with Tier 1 nodes being servers and Tier 2 nodes being clients. Our approach

delivers tight upper and lower bounds on client connectivity to servers even for large

9

numbers of clients removed. Actually, its weakest performance comes with small

numbers of clients removed, which arises from error introduced during the aggregation

phase. Nevertheless, we are able to establish relatively tight bounds on Tier 2 node

connectivity in the AS graph. Specifically, we show that the AS graph is quite robust

to the removal of Tier 2 nodes. Even when 900 (> 16%) Tier 2 nodes are removed,

better than half the Internet remains connected.

We also used the large graph solution to analyze the number of people with

highway access to airports in the states of Iowa and Michigan. For this application

we solve a weighted version of MinConn called WeightedMinConn(G, ν, ε) where each

v ∈ C is assigned a weight w(v). The objective is to minimize the weighted sum of the

serviceable clients in G	 (A∪B), where A ⊆ C and B ⊆ E, with
∑

v∈Aw(v) ≤ ν and

|B| = ε. The weighted variant of the problem is useful in our road network analysis

where each vertex represents a geographical area and is weighted by its population

density. We show that when 200 roadblocks are erected state-wide it is possible to

disconnect between 500K and 1.7M people (15–50% total population) from every

airport in Iowa. In Michigan we find that only 2.8M to 4.3M people (28–43% total

population) will maintain airport connectivity after erecting 300 road blocks.

1.2 Service Quality in Dynamic Networks

Mobile networks are quickly becoming ubiquitous: smartphones, netbooks and

in-dash vehicular computers have proliferated in recent years. For most applications

running on these devices, Internet connectivity key. However, if mobile nodes are to

receive uninterrupted wireless coverage over a large geographic area, they require the

10

support of a large infrastructure of cell towers or access points. Cellular data coverage

is currently expensive for carriers to deploy and has a recurring cost of about USD$50

per device per month per user. WiMAX towers are tens of thousands of dollars and

require allocation of a band, and therefore they similarly cannot be easily deployed by

common users wishing to support mobile networking. More accessible are WiFi APs,

but such nodes rely on an underlying high speed backbone, such as that provided by

an institution or carrier. Studies have shown that WiFi networks typically provide

intermittent access [65], even when deployed in an unbroken mesh [20]. An attractive

solution is to develop protocols for disruption tolerant networking (DTN) whereby

mobile devices share the burden of delivering packets in a network using a store, carry

and forward paradigm.

Recall the definition of DTN D = (N,K,C). DTNs are much more descriptive

than standard graphs, but they’re also much more difficult to analyze because of this

additional complexity. In Chapter 6, we begin by assessing how the metric Thru(D),

or maximum throughput, degrades as nodes in N are removed.

PROBLEM 3: MinThru(D,M, ν)

• Given: DTN D(N,K,C), demand matrix M , and ν ∈ R

• Find: minimum Thru(D 	R), over all R where R ⊆ N and |R ∩N | = ν.

Our approach is to first show experimentally that a greedy attack, removing

the nodes implicated in the most contact events, is nearly optimal in a simplified,

graph-based, version of Problem MinThru. We then apply this heuristic to traces

taken from two real world DTNs: DieselNet [107] and the Haggle Project [88]. The

11

results show that the greedy attack is more damaging than a random attack, but that

DTNs are fairly robust in either case. For both data sets, the greedy attack tends to

lower throughput linearly in the number of nodes attacked.

1.2.1 DTN Augmentation

Disruption tolerant networks are uniquely robust to attack because nodes are

mobile, and they are therefore constantly establishing new connections. The same

reasoning suggests that adding some collection of stationary nodes, or relays, can

bolster connectivity in a DTN and further protect the network from attack. In

Chapter 7 we examine the following problem.

PROBLEM 4: Placement(D, L,M,m, P ∗)

• Given: DTN D = (N,K,C), a set of potential relay locations L, a demand

matrix M , a number of relays m ∈ N, and a minimum throughput P ∗.

• Find: minimum Delay(D⊕R,M,P ∗), over all supplementary sets of stationary

nodes R ⊆ L, |R| ≤ m.

Relay nodes have the potential to augment DTNs by providing cheap additional

infrastructure. Prior to our work, very little was known about the best relay placement

strategy. Our major contributions are in devising a scheme to validate potential

placement strategies and actually demonstrating the efficacy of several strategies.

In particular, we first alleviate much complexity by defining a decoupled placement

problem, which is accomplished by assuming a fixed routing protocol. The optimal

solution to this problem is labeled D-optimal. This allows us to show that choosing

12

those locations that are most frequently visited is a highly effective strategy in DTNs

with node hubs. For example, assuming RAPID routing [19] and choosing the 50

most frequented locations over 30 days of traces yields a placement that, when tested

on the remaining 28 days of traces, delivers 40% of desired flow with D-optimal delay

40% of the time.

1.3 Data Sets

We apply our techniques to a variety of real world data in order to gain a deeper

understanding of the underlying networks and also the quality of our algorithms

themselves. Just as with our algorithms, the sets can be broken into two groups: static

and dynamic. Among the static sets are the Net Equality Wireless Mesh network, the

Power Grid of Philippines, the Internet Autonomous Systems graph, and the highway

networks of Iowa and Michigan. While these graphs are not actually static — their

topology does change over time — they are not considered intermittently connected

as is the case for the second group: DTNs. We choose two very different types of

DTNs to try to show the similarities that are inherent in all networks of this nature.

1.3.1 Net Equality

The Net Equality Project [5] works to provide Internet access to low-income

communities where residents live in dwellings within close proximity, such as apartment

complexes. They deploy a small number of gateway nodes with full access to the

Internet and relatively inexpensive Meraki Mini access points (relays) around the

community. A resident has access to the Internet wherever he or she is in range of

13

either a gateway or a relay that is ultimately connected to a gateway. We analyzed a

snapshot of the Hacienda CDC project taken in 2007. At the time, 69 relays and 2

gateways were connected by 279 links serving approximately 1,200 residents.

1.3.2 Power Grid of the Philippines

Our Power Grid map of the Philippines was drawn in 2006 [6]. A portion is

included in Figure 1.1(a). We extracted the underlying graph by observation from

a large printed copy of the map. First, generators and substations were identified

and labeled as servers and clients respectively. Then an edge was added to the graph

for each connected pair of vertices. The result was a grid that comprised 44 power

generators and 360 substations connected by 796 transmission lines.

(a) (b)

Figure 1.1. (a) A portion of the map of the power grid in the Philippines (b)
DieselNet bus routes

14

1.3.3 Internet Autonomous Systems Graph

We analyzed a snapshot of the Internet at the Autonomous Systems (AS) level.

ASes in the Internet are administrative domains managed by a business entity such

as AT&T or Sprint. Two types of AS nodes are distinguished: Tier 1 and Tier 2. A

Tier 1 AS is an autonomous system that connects to the rest of the Internet solely

by means of peer relationships with other ASes. A peer relationship is essentially a

business agreement between two ASes to exchange data quid pro quo. Accordingly,

Tier 1 ASes have been said to form the backbone of the Internet [101]. All other

ASes rely on some combination of peer and monetized relationships to provide full

connectivity to the Internet. Such ASes are frequently labeled Tier 2. Being private

agreements, peering relationships are not always advertised and are thus difficult to

infer. Gao [73] has pioneered a technique for making such inferences, which form the

basis of classification algorithm developed by CAIDA [1].

1.3.4 Highway Networks of Iowa and Michigan

We also addressed airport connectivity in the states of Iowa and Michigan. To do

so, we began by obtaining U.S. highway information from the Oak Ridge National

Laboratory [3]. This was found in a single large file composed of more than 200K

different routes in North America. Each route is delineated by a sequence of coor-

dinates. We call these coordinates waypoints. From the Socioeconomic Data and

Applications Center (SEDAC) [2], we obtained population density estimates from the

2000 census that are accurate to within several hundred meters.

For each state, we extracted the routes and corresponding waypoints that fall

within the bounding box containing that state. A graph representing the highway

15

connectivity of each state was then generated by creating a client vertex for each

waypoint and an edge for any two adjacent waypoints in a given route. Because one

route will often end at the beginning of another, we consolidated waypoints that are

within 100 meters of each other into a single vertex. Our next step was to create a

server vertex for each airport, which we linked to all waypoints within a (roughly)

six mile radius. The coordinates for airports in these states are found at the data

warehouse site socrata.com [4]. The final step in graph construction was to assign a

value to each waypoint corresponding to the estimated population density near that

point using the SEDAC data. Since people might arrive at an initial waypoint near

their place of residence by means other than automobile, we averaged the measured

population density between all waypoints within approximately 15 miles of each other

and assigned each waypoint a value corresponding to this population density. This

means that the sum of all waypoint values in a given state is approximately equal to

the population of that state. Figure 1.2 shows all the routes we use for each state as

well as the available airports.

1.3.5 DieselNet DTN

The DieselNet [107] DTN is a network of buses serving a large area of western

Massachusetts. The area of operation covers approximately 150 square miles. Traces

came from a three-month period ranging from the beginning of February 2007 to

the beginning of May 2007. All weekends and holidays were dropped to allow a

homogeneous road schedule that left a total of 58 days. On each day, we eliminated

buses that make no contact with other buses. The result was an average of more than

15 buses on the road each day. Figure 1.2 shows a map of the area of operation that

16

−98 −96 −94 −92 −90
40

41

42

43

44

Longitude

L
a

tit
u

d
e

(a) Iowa

−88 −86 −84 −82
41

42

43

44

45

46

Longitude

L
a

tit
u

d
e

(b) Michigan

Figure 1.2. Airports are shown as blue dots over highways in (a) Iowa and (b)
Michigan. Colors vary between different routes. Waypoints are not shown.

is overlaid with lines depicting the routes upon which the DTN is active. Each bus is

outfitted with a small computer comprising an 802.11 wireless transmitter/receiver

and hard drive. During the course of the day, buses record their location at 10 second

intervals as well as any contact events with other buses. During contact events, buses

attempt to send as much data as possible via wireless transmission in duplex mode.

The average transmission size is 1.7MB with a standard deviation of 1MB.

1.3.6 Haggle DTN

The Haggle traces were drawn from a human mobility experiment at Infocom

2005, using 41 volunteers carrying iMotes that connected to one another, as well as

connecting to Bluetooth-capable devices in the environment [88]. To allow better

comparison of Haggle data to DieselNet data, we removed connection events from

17

the Haggle data that lasted less than one second or involved the singular appearance

of a node since meaningful data transfer is likely to require setup time and nodes

incapable of routing data may be ignored. After these transformations, we were left

with events involving 41 Class 1 devices. Finally, we note that Haggle data, unlike

DieselNet data, only reports contact times and durations without sending any data.

To compare the bandwidth distribution among nodes between the two networks, we

assigned a constant transmission rate to Haggle data equal to median bandwidth

observed in DieselNet.

1.4 Notation and Terminology

In our theoretical development, we assume the vertices of every graph are ordered

and identified by the natural numbers. That is to say, we assume that for any graph

G = (V,E), each vertex is identified by an arbitrary and unique integer value between

1 and |V |. This practice is useful when, for example, indexing vertices in summations.

When dealing with matrix variables, we use Matlab notation. Specifically, for

matrix variable X, X(i, j) is the entry in row i and column j of X. The symbol “:”

acts as a wildcard character so that X(i, :) is the row vector equal to row i of X,

and X(:, j) is the column vector equal column j of X. We also make use of the diag

operator as follows: for matrix X, diag(X) is a vector containing the elements found

along the diagonal of X. In contrast, for vector x, diag(x) is the matrix of zeros with

x along its diagonal. We also make use of the ones(m,n) and zeros(m,n) functions,

which return an m× n matrix of all ones and zeros respectively.

18

A formulation is a mathematically rigorous problem statement that specifies an

objective function and complete set of constraints, which define a problem that may

or may not be solvable. A program is a formulation that is phrased as, and solvable

by, a mathematical program.

1.5 Contributions

The thrust of the thesis is toward deriving and applying techniques for understand-

ing vulnerability in real-world networks. In some cases, as with graph vulnerability,

prior work does exist, but it does not provide a deep enough framing or analysis of

the underlying problem. In other cases, as with the study of DTNs, there has simply

never been an attempt to quantify the effect of addition or removal of nodes in such

a network. Below we summarize our contributions in each of these areas.

• Spectral Technique for Graph Vulnerability : here we look at the graph vul-

nerability problem using a classical approach, but applying a novel measure,

pair-wise connectivity.

– offer a purely algebraic lower bound on the number of connected pairs of

vertices in a graph after link removal that cannot be accurately captured

by existing techniques.

– project how this bound can improve after link augmentation

• Vulnerability in Client-server Graphs: this is a departure from the classical

framework that allows us to model the distribution of services in a network.

– provide a new framework for assessing vulnerability in graphs.

19

– first to offer upper and lower bounds on vulnerability for any graph with

simultaneous edge and vertex removal

– address problems with large graphs by introducing a topological decompo-

sition appropriate for many sparse networks

– apply this technique in diverse settings revealing surprising properties of

real-world networks that are essential to our modern society

• Robustness of DTNs to Node Attack : this work identified the intermittent

connectivity of DTNs as the key to their resilience to node attack.

– first to demonstrate that DTNs are relatively resilient to node attack as

validated by experiments on two different real-world DTNs

• DTN Augmentation with Relays : with a small amount of prior work indicating

the utility of adding relays to a DTN, we explored the optimal placement within

a large geographical area.

– the first to study optimal placement of relays in DTNs

– offer bounds on optimal tradeoff between packet delivery rate and delay

– validate the use of greedy heuristic for relay placement

20

CHAPTER 2

BACKGROUND

We begin by motivating each of the problems studied in this thesis. We subse-

quently elucidate areas of the literature that relate to each problem and provide a

comparison to our work wherever it is appropriate.

2.1 Motivation

2.1.1 Node Attacks

Problems MinConn and MinThru evaluate node removal in networks. It’s impor-

tant to study such attacks because they are common in a wide variety of networks.

Wireless networks have become increasingly popular as network devices become

smaller, cheaper, and more reliable [7]. Also increasing in popularity are DTNs [68],

which are wireless networks comprised of mobile nodes. Chakrabarti and Mishra [44],

Yang et al. [146], and Perrig et al. [121] discus various security issues unique to wireless

networks; they note specifically a susceptibility to denial-of-service attacks, spoofing

attacks, and physical tampering. Arbaugh et al. [14] point out the inadequacy of

existing wireless security measures such as WEP. Falsified updates can also bring down

resources in unauthenticated routing protocols supporting intranets [133], mobile ad

21

hoc networks [86,129], and sensor networks [95]. In wireless networks, disruption by

jamming the physical layer is as easy as it is unpreventable [103,145].

Power grids are crucial to the networking infrastructure as well as modern society

at large. A major blackout in North America in 2003 ignited interest in the study

of worst case fault tolerance in power grids. The current sociopolitical environment

has also instigated fears of targeted attack. Amin [12] cites centralized ownership

of regions of power grids as a reason for topological vulnerability. Cyber attacks

on grid communications are also cited as being a serious threat to power control

centers [13, 141]. The industry consensus is a need to identify attack and failure

scenarios before they happen [12,136].

The highway system in North America is another crucial piece of infrastructure.

We rely on highways for connectivity to jobs, markets, hospitals, and airports. A report

released by the Department of Homeland Security in 2006 identified eight unrelated

suspicious events that seemed to indicate terrorist attention to major pieces of domestic

highway infrastructure [84]. There is significant concern that such locations could be

the target of traditional improvised explosive devices (IEDs) or vehicle borne IEDs. As

part of a major coordinated effort towards securing our national highway system, the

United States Government Accountability Office recommends the development of cost

effective mechanisms for monitoring critical pieces of infrastructure [31]. Specifically,

they call for individual vulnerability assessments on the nationally critical Tier 2

structures list.

22

2.1.2 Link Attacks

The threat of link removal by attack or failure is significant. Though nodes tend

to be well secured, there are several ways to target links for physical destruction. In

wired networks, fiber optic cables and other media are conspicuously susceptible to

intentional or inadvertent destruction. It is impractical to provide the same level of

physical security that is given to Internet routers to the tens of thousands of miles of

Internet fiber in the ground. In fact, fibers are cut easily and commonly [123]. In

2004, earth excavators (e.g., backhoes) caused 7,795 reported incidents of accidental

damage to Telecom and CATV facilities in the U.S. [15]. Moreover, the location

of fiber is largely a matter of public record in order to avoid such accidents. For

example, Gorman el al. [76] mapped the location of major fiber lines by researching

publicly available records.

In addition to physical security concerns, both nodes and links in many scenarios

are subject to protocol exploits. Part of our evaluation focuses on traces of the BGP

routes available between Internet Autonomous Systems. The currently deployed

BGP protocol is not secure; the vulnerabilities have been documented by numerous

researchers for years [29, 30, 97, 116, 132]. BGP vulnerabilities include falsification

of route updates, which can remove available links. BGP attacks are commonly

performed: the addition of routes is a favorite tool of spammers [125] and deletion is

not significantly more difficult. What is challenging is the deployment of a secure BGP

protocol, and it is the focus of the latest research related to this problem [41,45,87,139].

Falsified updates can also bring down resources in unauthenticated routing protocols

supporting intranets [133], mobile ad hoc networks [86,129], and sensor networks [95].

23

In wireless networks, disruption by jamming the physical layer is as easy as it is

unpreventable [103,145].

2.1.3 Adding Network Relays

While still a new topic, a growing set of works has examined the performance gains

that are possible in a sparse mobile network that results from adding infrastructure.

Banerjee et al. [21] design and deploy energy-efficieny solar-powered relays and

demonstrate the network improvement from using a single relay in a DTN. While

that paper proposed a longer range, hailing radio and shorter range data radio, Jun

et al. [93] examine the use of the opposite case. Nain et al. present the asymptotic

routing performance for large numbers of relays [89]. Banerjee et al. [22] show that

incorporating additional Internet access points (that can be placed anywhere in a

geographic area) can be twice as valuable as adding the same number of mesh points

(that can only be placed contiguously); and APs are five times as valuable as adding

the same number of relays. However, relays do not require an underlying wired or

wireless infrastructure, and are therefore cheaper and easier to deploy. In the same

paper, Banerjee et al. show the performance of placing boxes according to locations

most visited by mobile nodes, but those experiments did not validate the quality of

such an approach other than against other infrastructure.

2.2 Graph Vulnerability

Problems MinPairs and MinConn consider edge and vertex removal in graphs

and report the minimum number of pairs of connected vertices and serviceable clients

24

respectively. They share common ground in a vast subfield termed graph vulnerability

(see Grubesic et al. for a recent review [78]). In general, graph vulnerability problems

consider how a certain graph metric or invariant changes with the removal of edges or

vertices chosen according to some strategy. Problem MinConn is unique both in its

phrasing and in its solution. Problems very similar to MinPairs have recently gained

attention from other authors. Dinh et al. [60] introduce the β-edge and β-vertex

disruptor problems that seek a subset of edges or vertices that disconnect a fraction

of at least (1-β) strongly connected pairs of vertices. The undirected and unweighted

version of the edge and vertex β-disruptor problems are very similar to the duals

of problems MinPairs(G, e) and MinPairs(G, v) respectively. Unfortunately, their

approach is not appropriate for worst-case analysis. They use recursive bisection (or

near bisection) to find the best disruptor. For many graphs, this approach is suitable,

but it cannot be used to develop tight lower bounds for our problems. This is easily

seen by considering a pathological example where a graph, G = (V,E), is composed

of three equal sized cliques each connected to the others by a single edge. In this case,

it’s possible to lower the overall pair-wise connectivity in the graph by a factor of 3 by

removing just 3 edges, but recursive bisection will never find these edges. Instead, the

best cut of comparable balance will be of order (n/3)2 edges. Arulselvan et al. [17]

focus on minimizing pair-wise connectivity after node deletion. Their approach was

similar to the approach we took to solve MinPairs in that they began by bounding the

objective from below and sought to solve the resulting relaxation using mathematical

programming. Unfortunately their solution was computationally intense (evaluating

graphs with about 100 nodes took over an hour) and does not yield a lower bound.

25

2.2.1 Similar Edge and Vertex Deletion Problems

Early theoretical work from Chung [50, 51] offered theoretical bounds on the

diameter of a graph after edge removal. Diameter is a useful metric when the graph

in question never becomes disconnected. Dekker and Colbert [57] pointed out that

symmetry is crucial to robustness in the face of adversarial attack. More recently,

interest in preferential attachment models in the context of network vulnerability has

yielded theoretical results specific to the BA model [42,53] and the mathematically

distinct LCD model [35, 36]. The consensus is that, relative to the ER graph,

graphs that are grown according to a preferential attachment rule are more robust to

random failure, but more vulnerable to targeted attacks. Recently, Kleinberg [99,100]

developed a unique framework for detecting failure in a network. His strategy was to

calculate the size of cut (link or node) that would separate a witness pair of connected

nodes.

A traditional approach to studying the vulnerability of a complex network is to use

graph partitioning techniques such as finding graph separators of small width [128].

An α-separator of a graph G = (V,E) is a collection of either edges or vertices whose

removal separates a graph into two disconnected subgraphs, each having size at most

d(1− α)|V |e. The number of edges or vertices in the cut is called the separation

width. Finding either an α-edge-separator or α-vertex-separator of minimum width is

NP-hard. Bui and Jones have shown it is NP-hard even to find a good approximation

to the α-separator problem [117]. The objective of graph separation is to completely

partition the graph into appropriately-sized pieces by removing vertices and edges. In

26

contrast, our goal is not to partition the graph completely, but to study the manner in

which service availability degrades as a function of the number of failed components.

Even though standard graph partitioning does not appear to be directly applicable,

some of the techniques developed in that context have been key to our approach.

Specifically, Wolkowicz and Zhao [144] developed techniques for using semidefinite

programming for graph partitioning. We utilize some of those ideas in our algorithm,

specifically the notion of a lift matrix to represent our block decomposition of the

client-server graph.

Problem MinPairs(G, 0, e) can be weakly bounded by the α-separators problem.

Because the vertices in the separated half of the graph may or may not be connected

we can derive the simple bound stated in Proposition 1.

PROPOSITION 1: For edge separators, if G is initially connected and α is the

largest bipartition coefficient with separation width less than or equal to k in G, then

α|V |+ (1− α)2|V |2 ≤MinPairs(G, k) ≤ α2|V |2 + (1− α)2|V |2.

So the greatest α that renders a separation width of no greater than k provides

α|V |-approximation for MinPairs. This ratio is exact when the partition of size α|V |

is a single connected component and no other vertices are connected.

Though graph theoretical techniques are effective for finding graph separators in

some specific types of graphs [128], there are two major approaches to constructing

separators in arbitrary graphs. Spectral techniques [10, 32, 46, 52, 54, 77] exploit

numerical properties of the graphs adjacency matrix. Flow techniques [16,98,106,131]

27

generalize the concept of min-cut, for example multicommodity min-cut, to optimize

α.

2.2.2 Experimental Approaches

Synthetic graphs offer a means of testing algorithms as well as generalizing graph

properties. In the latter case, one can assess the vulnerability of a static real network

by comparing it to a similar synthetic graph, with known properties. The idea is that

a measured similarity in structure suggests a similarity in vulnerability as well. This

technique is fundamentally different from the techniques we use to assess vulnerability

in static networks because our graphs are constructed to be isomorphic to the networks

we study while synthetic graphs only seek approximate similarity. The literature is

full of measures of vulnerability applied to particular models. For these reasons we

review several network models chosen to reflect recent developments in the literature.

See Bonato [37] for a survey. Faloutsos et al. [67] showed experimentally that the

degree distribution of the nodes of the Internet obeys a power law. That is, the

probability of a node having degree k is proportional to k−β, for some β. Barabasi

and Albert [24] proposed a new random graph (commonly called the BA graph)

that models this phenomenon. A BA graph is grown by preferentially attaching new

nodes to existing nodes with probability proportional to the existing node’s degree.

This graph differs significantly from the common ER random graph (i.e., Gn,p [24])

of Erdos and Renyi [34] in both construction and degree distribution. The authors

showed that a BA graph is scale free in that the degree distribution will remain

linear with a constant slope on a log-log scale as the size of the graph increases. The

28

implication of Barabasi and Albert’s work is that the similarity of degree distributions

between the Internet and BA graph indicates similar topological properties [24].

Lai et al. [102] evaluated link removal in BA and ER graphs subject to removal

of short-range and long-range links. Neither attack is very effective: the average

shortest path length of 1.0 increased by no more than 0.1 links when as many as

4% of the links were removed. Guillaume et al. [80] evaluated the vulnerability of

scale free graphs of a fixed degree distribution as well as ER graphs subject to a

randomized link attack in terms of the largest connected component size (LCCS).

The strategy involved randomly removing links between nodes of degree at least two.

In this context, they found that the scale free graph had approximately the same

robustness as the ER graph. Ding et al. [59] used spectral techniques to decompose

the web graph, while Gkantsidis et al. [75] performed similar analysis on the Internet

AS graph. Magoni and Zhou et al. [113, 148] independently analyzed the Internet

AS graph and showed that by removing approximately 3% of the ASes (including

Tier-1’s and Tier-2’s) the size of the largest connected component decreases by a

factor of 3. Flaxman et al. [72] provides a framework for strengthening existing

graphs by supplementing them with regular subgraphs. Cohen et al. [55] provided a

modification to classical percolation theory in order to study the effects of removing

vertices with highest degree, and demonstrated that even though scale-free graphs

are robust to random failure they are highly sensitive to targeted attack.

The Internet AS level [61, 75, 118,138,148,149] and router level [113] graphs have

been found consistently to have low resilience, in terms of the LCCS, against the

highest degree first node attack (HDN). Similar results have been established for

29

the Internet AS level graph in terms of graph diameter [8]. The BA graph displays

somewhat higher resilience than the AS graph when subjected to the HDN attack in

terms of the LCCS [72, 85, 149]. For the same attack and metric, Park et al. [118]

quantified the BA graph’s vulnerability, and Bollobas [36] and Holme [85] showed

that the BA graph is more vulnerable than the ER graph. Lee and Kim [104] studied

the affect of random node and path removal in both the AS and router level Internet.

Path attacks had universally higher failure rates, where nodes were said to have

failed when they had no neighbors. In contrast to the commercial Internet, Internet2

was demonstrated to be rather robust subject to the HDN attack in terms of the

LCCS [38].

2.3 Other Analysis on Attacking DTNs

The field of disruption tolerant networking (DTN) is relatively new, and therefore,

the study of attacks on DTNs has been limited. Jain et al. [90] study random failure

in DTNs and offer a variety of techniques to compensate for such failures including

message splitting and replication and use of erasure coding. To the best of our

knowledge, this is the only work predating ours to systematically examine failure

in DTNs. Our work is distinct in that it considers intentional attack as opposed as

random failure.

Subsequent work has focused on protocol exploits and equitable routing. Li et

al. [108] examine how malicious nodes in a DTN can trick many routing protocols

that exploit periodic node movements. They argue that by altering its movement, a

malicious node can create a more central role for itself in the DTN. Their solution is

30

to form a web of trust among honest nodes in the DTN so as to eliminate the threat

form malicious ones. Uddin et al. [137] introduce several denial-of-service attacks

achievable in DTNs. The go on to introduce countermeasures for those attacks and

evaluate the tradeoff that exists between security and performance. Zhu et al. [150],

consider malicious nodes to be those members of the DTN that would prefer not to

forward messages. They implement an incentive scheme to encourage participation

among these reluctant entities. Solis et al. [134] look at nodes that behave in opposite

fashion by hogging resources. They propose a stratification of DTN users in order to

assign messages sent by hogs a lower priority.

2.4 Similar Efforts in DTN Augmentation

Two papers are most relevant to our work. Zhao et al. [147], who specifically

address the placement problem, introduce a heuristic that has the goal of increasing

throughput; however, that analysis did not address delivery delay, and it lacked

validation and evaluation based on a real network scenario. We could not extend

this technique for our analysis as it became computationally intractable as packet

delay constraints were added to the model. Lochert et al. [112] examine the use of

stationary relays in VANETs. They propose a genetic algorithm for placement and

evaluate this algorithm via simulated mobility in a large city using ns-2. A bit vector

is formed with one entry for each potential relay location, after which they conduct

an entire round of simulations each time the vector is mutated. Their approach is

very computationally intense and seeks only to optimize delay, never the less, we

compare their solution to ours in Chapter 7. We find very little difference between

31

their solution and a frequency-based placement in terms of both packet delivery rate

and delay.

Another set of works add mobile ferries to the network. For example, Jun et

al. [94] examine how nodes can optimize routing by leveraging the known schedule of

a ferry. And Burns et al. [40] design a system where ferries move autonomously to

meet demand in a DTN. A series of DTN routing protocols have been proposed based

on historical mobility patterns [18, 56,105,135]. Jain et al. [91] show that routing in

a DTN is not as simple as choosing among available paths, and show how to encode

DTN properties into a linear program. We specifically use the RAPID protocol [19] in

this paper to evaluate relays. RAPID aims to directly affect QoS metrics by tailoring

routing accordingly. Routing decisions at local nodes are based on the estimated

probability that a given node can satisfy the metric of interest.

A set of other work has examined coding [49,111]. For example, Wang et al. [140]

compared erasure-coding routing in DTNs to packet flooding, simple replication, and

a history-based method. They observed that overall delay was lowest for the history-

based strategy, while the coding strategy ensured the best worst-case performance.

And Widmer and Le Boudec [142] show that coding with replication provides a higher

delivery rate than replication alone, but at the cost of higher delay.

2.5 Foundations of Analysis

2.5.1 The Laplacian

From a numerical perspective it is difficult to avoid the graph Laplacian, which is

the difference of the graph’s adjacency matrix, A, and a diagonal matrix comprising

32

the row sums of A. The Laplacian differentiates edges internal to and external to any

subset of vertices. In seminal work, Fiedler [70,71] related the ratio of the size of a

graph separator to the size of the largest partitioned block (i.e., subgraph). This ratio is

often called the graph expansion. Donath and Hoffman [62] developed a generalization

of graph expansion to an arbitrary number of separators, which was subsequently

generalized by Barnes and Hoffman [28]. Pothen et al. [122] elaborated on the

connection to graph separators. Most work since has found an audience in the VLSI

and parallel computing communities. Spectral techniques [64,81] are most popular, but

are not always very accurate, as was noted by Guattery and Miller [79]. Alternatively,

Wolkowitcz and Zhao [144] use the Laplacian as a constraint in a Semidefinite program,

a technique of great important to our analysis. See Mohar [114,115], Alon [10,11], or

Seary and Richards [130] for a review of Laplacian techniques.

2.5.2 Separation Algorithms

Several available programming libraries [83, 96, 119, 124] implement the most

recent algorithms for graph partitioning due to link removal. In particular, we use the

Metis library [96] to provide upper bounds for our analysis. Each package employs a

variant of multilevel graph partitioning [96], which operates in three nominal stages.

During the first stage, the nodes of the graph are merged to create a relatively small

representational graph. The second stage uses a heuristic to create a nearly optimal

partition. In the third stage, a heuristic is used to balance the partitions, which are

subsequently expanded. The process is repeated until a separated graph of full size

remains with a small separator of specified balance.

33

CHAPTER 3

GRAPH CONNECTIVITY AFTER EDGE REMOVAL

Many static networks are considered functional only when the vast majority of

pairs of nodes in those networks are connected by one or more paths. This is true of

the power grid, Internet, and wired telephone networks. After link deletion, paths are

disrupted and pair-wise connectivity among nodes breaks down. We model such a

network by a graph G = (V,E) with vertices in V corresponding to nodes and edges

in E corresponding to links. Problem MinPairs(G, ε) gives the number of connected

pairs of vertices after the removal of at most ε edges. Such a measurement gives a

good idea of the communication capability of the underlying network after attack.

Unfortunately, we show in Chapter 8 that MinPairs is NP-hard, so the focus of this

chapter is in developing a lower bound on the solution to the problem. We begin

by introducing a framework for representing MinPairs, which will subsequently be

honed into solution for this problem.

For any G = (V,E), a block B is a subset of V such that G(B) is disconnected

from G(V \B). Suppose that there are m vertices in an initially connected graph G

and we wish to create a partition into p disconnected blocks by removing at most

ε edges. This is accomplished by placing each vertex in V into one of the p blocks,

B1, . . . , Bp, so that no more than ε edges pass between those blocks (see Figure 3.1).

34

(a) (b)

Figure 3.1. (a) Graph representation of a simple network. (b) Decomposition into
four blocks.

This set of edges passing between blocks must be removed in order to realize the

desired partition. We label those edges the edge cut. For the resulting partition,

assume that block i has size mi with m1 ≤ . . . ≤ mp and
∑p

j=1mj ≤ m. Let A be

the adjacency matrix of G, D be the matrix with row sums of A along the diagonal,

and L = D − A. Also, let X be an m× p block indicator matrix where,

X(i, j) =

{
1, node i ∈ Bj

0, otherwise
. (3.1)

It follows immediately that

∑
j

X(:, j) = mj and
∑
i

X(i, :) = 1,

where the operator “:” is defined as in Section 1.4. For a given partition X let the

the edge cut set be given by CE. Problem MinPairs(G, ε) can be reformulated as

follows.

35

FORMULATION 1: MinPairsForm(G, ε)

• Given: graph G = (V,E) and ε ∈ R.

• Find: minimum
∑

i=1,...,p

‖ X(:, i) ‖2 such that,

(1)
m∑
i=1

p∑
j=1

X(i, j) ≤ m. (Vertex Count)

(2) |CE| ≤ ε. (Edge Cut Size)

(3) X(i, j) ∈ {0, 1} (0–1 property)

(a) Minimize (b) Subject To

Figure 3.2. MinPairs problem formulation.

Each column vector, X(:, i), is in indicator vector for the vertices included in block

Bi. The objective of Formulation MinPairsForm seeks to minimize the sum of squares

of these vector lengths because we would like to minimize the sum of squares of the

sizes of the blocks B1, . . . , Bp. This quantity is equivalent to the number of pairs of

vertices communicating within all blocks but not between them. The optimization is

subject to the second constraint, which specifies that the number of edges passing

between blocks, |CE|, is no greater than ε. The first and third constraints ensure that

the block indicator matrix X represents a valid partition. Figure 3.2 shows how the

objective and second constraints relate to our original example.

36

3.1 Spectral Decomposition

Our approach to solving the problem will be to first relax the edge cut con-

straint, and formulate a quadratic programming problem whose solution bounds

MinPairsForm from below by means of spectral decomposition. We begin with a

lower bound on |CE| due to Donath and Hoffman [62], which we ultimately use to

relax MinPairsForm. The matrix L is known as the graph Laplacian of G. A great

deal is known about the eigenvalues λ1 ≤, . . . ,≤ λm and corresponding eigenvectors

u1, . . . , um of L. Since L is symmetric and positive semidefinite, its eigenvalues are

real and non-negative. Its eigenvectors form a complete orthonormal basis so the

spectral theorem dictates that L =
∑m

i=1 λiuiu
T
i . Therefore, |CE| can be rewritten as

|CE| =
1

2

p∑
j=1

X(:, j)T

(
m∑
i=1

λiuiu
T
i

)
X(:, j)

=
1

2

p∑
j=1

m∑
i=1

λiX(:, j)T (uiu
T
i)X(:, j)

=
1

2

p∑
j=1

m∑
i=1

λi(u
T
i X(:, j))2 (3.2)

Let sij = (uixj)
2/mj. Then, after substituting sij we have

|CE| =
1

2

p∑
j=1

m∑
i=1

λi(u
T
i X(:, j))2

=
1

2

p∑
j=1

mj

m∑
i

λisij (3.3)

37

It can be verified that ∑
i

sij = 1 and
∑
j

sij ≤ 1.

Consider the second expression in Equation 3.3, which is minimized when s11 = 1

since m1 and λ1 are smallest. But
∑

i sij = 1 so si1 = 0,∀i > 1. The same logic

shows that letting sjj = 1 for all j ≤ p while forcing the remaining sij = 0 when i 6= j

will minimize the entire sum. Finally we arrive at the spectral bound

1

2

p∑
j

λjmj ≤
1

2

p∑
j=1

X(:, j)TLX(:, j) = |CE|. (3.4)

If we equate mj = |X(:, j)|, then the solution to Formulation MinPairsForm can be

bounded from below by the following quadratic program.

PROGRAM 1: MinPairsProg(G, ε)

• Given: Graph G = (V,E) and ε ∈ R

• Find: minimum
∑

jm
2
j such that,

(1)
∑p

j=1mj ≤ m (Vertex Count).

(2) 1
2

∑p
j λjmj ≤ ε (Edge Cut Size).

(3) mj ∈ R+ (Block Size Positivity).

3.1.1 Applying Program MinPairsProg(G, ε)

Program MinPairsProg can be solved by means of quadratic programming, or

more generally, as a convex program. We show here, however, that the problem

38

is simple to solve using the method of Lagrange Multipliers, which yields a single

algebraic solution. We evaluate the quality of the spectral bound on two random

graphs and the Power Grid of the Philippines. This is accomplished by comparing its

lower bound to an upper bound achieved by means of the METIS graph partitioning

suite. To begin, consider the vector formulation of Problem MinPairsProg where

m and λ are the vectors with index i equal to the size of partition mi and eigenvalue

λi, respectively.

FORMULATION 2: FunctionalForm(G, ε, k)

• Given: Graph G = (V,E) and ε ∈ R

• Find: minimum f(m) where f, g, h : Rk → R and such that

1. f(m) = mTm,

2. g(m) = 1
2
mTλ− ε,

3. h(m) = mT1−m,

4. g(m) = 0

5. h(m) = 0

The variable k designates the number of blocks of G after ε edges are removed, and

mi denotes the size of ith block. When G is initially connected, the number of blocks

cannot exceed ε+ 1 after removing up to ε edges. So, for a given ε, we begin by fixing

k ≡ ε+ 1.

In our solution, we seek to identify the values of each entry, mi, by the method of

Lagrange Multipliers (LM). LM looks for places on the intersection of level curves

39

g(m) = 0 and h(m) = 0 where the gradients of g, h, and f have the same orientation.

At such points, f is also on a level curve and thus has a critical point. Therefore, we

seek the solution to the following problem.

PROBLEM 5: Lagrange(G, ε, k)

• Given: GraphG = (V,E), ε ∈ R, and f , g, and h as defined in FunctionalForm(G, ε, k)

• Find: solution to the following system of equations,

1. f∇ = ∇f(m)

2. g∇ = ∇g(m)

3. h∇ = ∇h(m)

4. g(m) = 0

5. h(m) = 0

6. φ = f∇ − αg∇ − βh∇ = 0

LEMMA 1: There is exactly one optimal solution, labeled F(G, ε, k), to Problem

Lagrange(G, ε, k).

PROOF: We may deduce from Problem 2 that:

f∇ = 2m (3.5)

g∇ =
1

2
λ (3.6)

h∇ = 1 (3.7)

40

The eigenvalues λi are derived from a real symmetric matrix and are, therefore, all

non-negative. It is well known (see Fiedler [69]) that the multiplicity of the zero

eigenvalue equals the number of connected components in G. It follows that, λ0 = 0

for all G. So together with condition φ0 = 0 we know that β = m0/2. Substituting

this value for β into each of the remaining conditions for φi we have

mi =
αλi
4

+m0.

Substituting these values into constraint h(m) we have m0 in terms of α,

m0 =
m

k
− α

4k

k∑
i=1

λi.

Let x =
∑k

i=1 λi and y =
∑k

i=1 λ
2
i . Using constraint g(m) = 0 we can solve for α,

α =
4(2εk −mx)

yk − x2
.

�

Point F(G, ε, k) will not always correspond to a reasonable partition. In some

cases, an index mi may be less than zero. Here we cannot make sense of the given

partition, but we can conclude that no solution with all positive indices can render a

lower objective value whilst satisfying the cut size constraint.

3.1.2 Real Cuts with METIS

The METIS graph partitioning library is a software suite that finds small, but not

the smallest, edge cuts in graphs according to various conditions. We use a variant

41

that seeks to achieve a specific quantity of blocks in the modified graph where each

block is further restricted to a specified size. This information is supplied by the user

to METIS as a balance vector, b, where |b| is the number of desired blocks and bi is the

desired size of block i. For each graph we randomly generated 100,000 balance vectors

(a random number of blocks each with randomly chosen size) and then calculated

the best edge cut for b in G using METIS. An upper bound on MinPairs(G, ε) was

formed for each value of ε by choosing the lowest balance vector b that returned an

edge cut less than or equal to ε. We call this process the Real Cut Algorithm.

3.1.3 Random Graph Evaluation

In this section, we use our upper and lower bounds to evaluate the robustness

of two common random graph models. The first graph is the Erdos-Renyi (ER)

graph, Gnp, which contains n vertices where every pair of vertices is connected with

probability p by an undirected edge. The second graph is the Barabasi-Albert (BA)

graph, Gnm, which contains n vertices that are preferentially attached by undirected

edges according the following algorithm. Initially the graph consists of an m-vertex

clique. New vertices are added to the graph one-by-one and are attached to m

existing vertices each chosen randomly with probability proportional to their degree.

Bollobas [36] and Holme [85] have shown using asymptotic analysis that the BA

graph is more vulnerable than the ER graph to removal of the highest degree vertex,

but currently little is known about how the two models relate in small finite graphs

and subject to edge removal.

We applied our bounds to a family of ER graphs generated for various quantities

of vertices, n, and edge probabilities, p. We also generated bounds for a BA family

42

with the same values for n and with m chosen so that each BA graph has roughly

the same number of edges as the corresponding ER graph. Figures 3.3 – 3.6 show

the results of 500 trial runs for each set of parameters. They are box-and-whisker

plots with boxes representing the center 50% of the data (between the 25th and 75th

percentiles) and whiskers representing the extent of the remaining data.

Several conclusions can be drawn from these plots. The first relates to the general

performance of our bounds. We see that the bounds universally weaken as i) the

number of edges removed increases, ii) the size of the graph, n, grows larger, and iii)

the total number of edges in the graph increases. In each case, this weakening can be

attributed to the increase in the number of degrees of freedom in the solution space.

That is to say, there are more possible solutions, therefore, the value of the optimal

solution becomes more difficult to characterize.

The second conclusion we draw is that the deviation between individual trials is

higher in the ER graphs than in the BA graphs, particularly for smaller values of n.

This difference indicates that the robustness of BA graphs is remarkably consistent

for a fixed size and edge quantity relative to the ER graphs. Unfortunately, it’s

difficult to determine a mechanism behind this phenomenon, though it could indicate

that the algorithm that generates BA graphs is somewhat less random than the ER

algorithm. That is to say, a relatively small number of variations of BA graphs may

dominate the set of most likely constructions.

Finally, we see that, to within the accuracy provided by our bounds, the ER

and BA graphs exhibit almost identical robustness to edge removal in terms of the

quantity of connected pairs of vertices. To the best of our knowledge, ours is the

43

first work to demonstrate this similarity for edge removal and over a wide variety of

graph parameters. We emphasize that these results are drawn for small graphs and

are not necessarily indicative of asymptotic performance. The similarity is interesting

because the ER and BA graphs are constructed according to two very different

procedures. Specifically, the expected degree distributions will be very different as n

grows large. An ER graph will tend toward a Poisson distribution while a BA graph

will tend toward a power-law distribution. However, as Figures 3.7 and 3.8 show,

these distributions are not realized for the small graphs that we evaluate. For 25 and

50 nodes graphs, the degree distributions are very similar, which implies that the

topologies are similar as well. As n grows large, these distribution will deviate, and

we expect that the similarity in robustness will vanish. It remains an open question

to identify what random graph model will emerge as the most robust in that case.

3.1.4 Evaluation on a power grid

We also tested our technique on the graph corresponding to the Power Grid of

the Philippines (see Section 1.3). From Figure 3.9 we see that the lower bound stayed

roughly within a factor of three of the upper bound. The results themselves seem

to indicate that the Power Grid of the Philippines is susceptible to partitioning by

power line removal. When 50 lines are removed, even the upper bound shows only

about 80,000 pairs of stations being connected. This is down more than 100% from

the total pair-wise connectivity found before removal. It also implies that the size of

the largest connected component cannot be larger than about 290 stations, which

is only about 70% of the entire grid. But in order for all stations to receive power

the grid does not need total connectivity. There are some 44 generators among the

44

20

40

60

80

100

% Edges Removed

 19 42

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 p:0.25 e:26

20

40

60

80

100

% Edges Removed

 16 34

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 p:0.30 e:32

20

40

60

80

100

% Edges Removed

 14 30

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 p:0.35 e:37

20

40

60

80

100

% Edges Removed

 12 26

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 p:0.40 e:42

20

40

60

80

100

% Edges Removed

 11 23

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 p:0.45 e:47

20

40

60

80

100

% Edges Removed

 9 21

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 p:0.50 e:53

(a) ER: 15 vertices

20

40

60

80

100

% Edges Removed

 19 41

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 m:2 e:27

20

40

60

80

100

% Edges Removed

 13 28

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 m:3 e:39

20

40

60

80

100

% Edges Removed

 13 28

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 m:3 e:39

20

40

60

80

100

% Edges Removed

 10 22

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 m:4 e:50

20

40

60

80

100

% Edges Removed

 10 22

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 m:4 e:50

20

40

60

80

100

% Edges Removed

 8 18

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:15 m:5 e:60

(b) BA: 15 vertices

Figure 3.3. Upper and lower bound on edge removal in 15 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500 trials.

45

20

40

60

80

100

% Edges Removed

 11 23

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 p:0.25 e:75

20

40

60

80

100

% Edges Removed

 9 19

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 p:0.30 e:90

20

40

60

80

100

% Edges Removed

 8 16

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 p:0.35 e:105

20

40

60

80

100

% Edges Removed

 7 14

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 p:0.40 e:120

20

40

60

80

100

% Edges Removed

 6 13

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 p:0.45 e:135

20

40

60

80

100

% Edges Removed

 5 11

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 p:0.50 e:150

(a) ER: 25 vertices

20

40

60

80

100

% Edges Removed

 9 19

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 m:4 e:90

20

40

60

80

100

% Edges Removed

 9 19

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 m:4 e:90

20

40

60

80

100

% Edges Removed

 7 15

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 m:5 e:110

20

40

60

80

100

% Edges Removed

 6 13

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 m:6 e:129

20

40

60

80

100

% Edges Removed

 5 12

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 m:7 e:147

20

40

60

80

100

% Edges Removed

 5 10

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:25 m:8 e:164

(b) BA: 25 vertices

Figure 3.4. Upper and lower bound on edge removal in 25 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500 trials.

46

20

40

60

80

100

% Edges Removed

 5 9 14

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 p:0.25 e:306

20

40

60

80

100

% Edges Removed

 4 8 12

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 p:0.30 e:368

20

40

60

80

100

% Edges Removed

 3 7 10

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 p:0.35 e:429

20

40

60

80

100

% Edges Removed

 3 6 9

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 p:0.40 e:490

20

40

60

80

100

% Edges Removed

 3 5 8

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 p:0.45 e:551

40

60

80

100

% Edges Removed

 2 5 7

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 p:0.50 e:613

(a) ER: 50 vertices

20

40

60

80

100

% Edges Removed

 4 9 14

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 m:7 e:322

20

40

60

80

100

% Edges Removed

 3 7 11

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 m:9 e:405

20

40

60

80

100

% Edges Removed

 3 7 10

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 m:10 e:445

20

40

60

80

100

% Edges Removed

 3 6 8

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 m:12 e:522

20

40

60

80

100

% Edges Removed

 3 5 8

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 m:13 e:559

20

40

60

80

100

% Edges Removed

 2 5 7

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:50 m:15 e:630

(b) BA: 50 vertices

Figure 3.5. Upper and lower bound on edge removal in 50 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500 trials.

47

20

40

60

80

100

% Edges Removed

 3 7 10

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 p:0.25 e:694

20

40

60

80

100

% Edges Removed

 3 6 9

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 p:0.30 e:833

20

40

60

80

100

% Edges Removed

 2 5 7

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 p:0.35 e:971

20

40

60

80

100

% Edges Removed

 2 4 6

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 p:0.40 e:1110

40

60

80

100

% Edges Removed

 2 4 6

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 p:0.45 e:1249

40

60

80

100

% Edges Removed

 2 3 5

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 p:0.50 e:1388

(a) ER: 75 vertices

20

40

60

80

100

% Edges Removed

 3 7 10

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 m:10 e:695

20

40

60

80

100

% Edges Removed

 3 5 8

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 m:13 e:884

20

40

60

80

100

% Edges Removed

 2 5 7

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 m:15 e:1005

20

40

60

80

100

% Edges Removed

 2 4 6

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 m:17 e:1122

20

40

60

80

100

% Edges Removed

 2 4 6

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 m:20 e:1290

20

40

60

80

100

% Edges Removed

 2 3 5

%

C
o
n
n
e
c
t
e
d

P
a
i
r
s

n:75 m:22 e:1397

(b) BA: 75 vertices

Figure 3.6. Upper and lower bound on edge removal in 75 node random graphs of
the (a) Erdos-Renyi and (b) Barabasi-Albert varieties over 500 trials.

48

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Adjacent Edges

F
r
a
c
t
i
o
n

o
f

N
o
d
e
s

ER
BA

(a) ∼ 75 edges

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Adjacent Edges

F
r
a
c
t
i
o
n

o
f

N
o
d
e
s

ER
BA

(b) ∼ 150 edges

Figure 3.7. Degree distributions for 25 node graphs with (a) ∼ 75 edges and (b)
∼ 150 edges.

15 18 21 24 27 30 33 36 39 42
0

0.2

0.4

0.6

0.8

1

Adjacent Edges

F
r
a
c
t
i
o
n

o
f

N
o
d
e
s

ER
BA

(a) ∼ 306 edges

15 18 21 24 27 30 33 36 39 42
0

0.2

0.4

0.6

0.8

1

Adjacent Edges

F
r
a
c
t
i
o
n

o
f

N
o
d
e
s

ER
BA

(b) ∼ 612 edges

Figure 3.8. Degree distributions for 50 node graphs with (a) ∼ 306 edges and (b)
∼ 612 edges.

49

0 25 50 75 100 125 150
0

2.5

5

7.5

10

12.5

15
x 10

4

Links Removed

C
o
n
n
e
c
t
e
d

P
a
i
r
s

6% 9% 13% 16%

15%

31%

46%

61%

77%

Figure 3.9. Disconnecting the Power Grid of the Philippines. The red line (with
circles) indicates the result of an actual segmentation. The blue line (with squares) is
our spectral lower bound.

404 total stations that can actually provide power to the remaining substations. So

even if substantial division can be created within the grid, most substations will

continue to receive power. The lower bound tells us that even when any 25 power

lines are removed, there is still significant cohesion among the connected components

with each station maintaining connectivity with 1/3 of all other stations on average.

This suggests that the Power Grid of the Philippines may actually be quite robust to

attack, but looking at basic connectivity between pairs of stations does not provide

the full picture. In Chapter 4 we will introduce a new graph model that is capable of

distinguishing between power generators and substations and will allow us to better

understand the robustness of the grid.

50

3.2 Bolstering a Graph Prior to Attack

In many applications, it’s possible to augment a graph knowing that it may

experience either intentional or accidental edge loss in the future. Using the Power

Grid of the Philippines as an example, the local government might be aware that

the lines are aging and therefore they would expect some quantity to fail with high

probability in the near future. Instead of replacing all lines, they might wish to

augment the existing grid so as to add a measure of redundancy. In a different

scenario, the government may instead know that some subversive group is planning to

attack the grid but that this group has limited resources. In this section we show how

to use our existing spectral lower bound on MinPairs(G, ε) to provide a lower bound

on MiniMaxPairs(G, ε1, ε2). The new lower bound can be interpreted as follows,

if MiniMaxPairs(G, ε1, ε2) = c, then even after choosing the best ε2 new edges to

augment G, we will not be able to guarantee connectivity greater than c connected

pairs after ε1 edges have been removed. We begin with the following classical result

regarding the eigenvalues of the Laplacian of a graph.

THEOREM 1: (Eigenvalues Interlace, see Mohar [114])

Let G = (V,E) be a graph and G1 = G⊕ {d} be the same graph with any single

edge d added. If the ordered and nondecreasing eigenvalues of the Laplacian matrix

associated with G and G1 are given by λ1, λ2 . . . and λ11, λ
1
2 . . . respectively, then

λ1 = λ11 ≤ λ2 ≤ λ12 ≤ λ3 ≤ λ13 . . .

51

Informally, the theorem states that the spectrum of G1 is bounded above by the

spectrum of G shifted over by one index. Let Gj denote a graph that is the same

as G but with j arbitrarily added edges, and label its ordered and nondecreasing

eigenvalues λj1, λ
j
2 . . ., so that we have,

COROLLARY 1: Let Gj be a j-edge augmentation of graph G. For any edge cut

producing block sizes m1,m2, . . . ,mk in Gj we have,

1

2

k∑
i=1

miλ
j
i ≤

1

2

k+j∑
i=j+2

miλi

PROOF: The first eigenvalue remains zero because the first eigenvalue of the Lapla-

cian of a connected graph is always 0 [69]. The other eigenvalues can be bounded by

applying Theorem 1 multiple times so that λji ≤ λi+j for every i ≤ |V | − j.

�

Using Corollary 1 we can place an upper bound on the edge cut constraint in

Program MinPairsProg after any edge augmentation of a fixed size. The intuition is

that we know that adding edges will make it harder to create more blocks and more

diffuse blocks after edge removal. Our new bound gives the most optimistic bound on

block size and quantity after edge augmentation. The following program incorporates

the new edge cut bound so that its solution to this program is a relaxation of the

solution to Problem MiniMaxPairs.

PROGRAM 2: MiniMaxPairsProg(G, ε1, ε2)

52

• Given: Graph G = (V,E), number of edges to remove ε1 ∈ R, and number of

edges to add ε2 ∈ R

• Find: minimum
∑
i

m2
i such that,

(1)
p∑
i=1

mi ≤ m (Vertex Count).

(2) 1
2

p+ε2∑
i=ε2+2

λimi ≤ ε1 (Edge Cut Size).

(3) mi ∈ R+ (Block Size Positivity).

Program MiniMaxPairsProg quantifies the extent to which edge augmentation

can improve our earlier bound on Problem MinPairs. If we were to actually aug-

ment G with all possible combinations of ε2 new edges to form graph H, then the

greatest bound found by Program MinPairsProg(H, ε1) will not be greater than the

bound returned by MiniMaxPairsProg(G, ε1, ε2). This new program is identical to

Program MinPairsProg in every respect except that the spectrum has been shifted.

Accordingly, it can be solved using the same techniques developed for solving Program

MinPairsProg.

53

CHAPTER 4

CLIENT CONNECTIVITY AFTER MIXED REMOVAL

Program MinPairsProg has two failing points. First, it trades exact information

about partition cost for weaker, spectral, information. In fact, it only uses the

eigenvalues of L. Second, in deriving the spectral bound on the size of the edge cut,

it searches the space of block sizes as opposed to actual vertex assignments. The

ramification of this abstraction is an inability to handle vertex removal. We next set

out to address both problems. To do so, we first extend Formulation 1 to handle

metric Conn(G) and cast it in terms of client-server graphs. Our ultimate goal is

to derive upper and lower bounds on MinConn(G, ν, ε) by means of a semidefinite

program (SDP). Recall that the metric Conn(G) operates on a client-server graph

G = (V,E), such that V = S ∪C, where it measures the quantity of clients in C with

some path to at least one server in S. Problem MinConn(G, ν, ε) seeks the smallest

value of Conn after some combination of ν clients and ε edges have been removed

from G.

For Problem MinConn we also use the block indicator matrix X first introduced

in Chapter 3 except in this instance we designate just three blocks: B1, B2, and B3,

with |Bi| = mi. Again, we assume that there are a total of m vertices (i.e., |V | = m).

The block indicator matrix for G is a |V | × 3 matrix X, where

54

Figure 4.1. Separating the AS graph into blocks. Tier 1 ASes (in green) are servers
and Tier 2 ASes (in blue) are clients.

X(i, j) =

{
1, node i ∈ Bj

0, otherwise
. (4.1)

It follows that
m∑
i=1

X(i, :) = 1,

and
3∑
j=1

X(:, j) = mj,

with the operator “:” being used as described in Section 1.4.

We next seek to frame the MinConn problem in terms of the three blocks we

have created above, which is illustrated in Fig. 4.1. These blocks will correspond to a

segmentation of serviceable, non-serviceable, and removed clients in G. Specifically,

the first block is the server block, to which all server vertices are fixed, and clients

55

with paths to these servers are placed. Clients without paths to servers are placed in

the second block. Finally, the third block is the null block, which is where clients

that have been removed from the graph are placed. The set of removed vertices and

edges are called the vertex and edge cuts, and they are labeled CV and CE respectively.

Figure 4.1 provides an example for the AS graph where Tier 1 nodes are regarded as

servers and Tier 2 nodes as clients. We have the following QCQP formulation.

FORMULATION 3: MinConnQCQP(G, ν, ε)

• Given: client-server graph G = (S ∪ C,E) and ν, ε ∈ R.

• Find: minimum ‖ X(:, 1) ‖ such that,

(1) X(i, 1) = 1, ∀i ∈ S. (All servers in Block 1)

(2)
∑|V |

i=1

∑3
j=1X(i, j) = |V |. (Vertex Count)

(3) |CV | ≤ ν. (Vertex Cut Size)

(4) |CE| ≤ ε. (Edge Cut Size)

(5) X(i, j) ∈ {0, 1} (0–1 property)

Note that CV ≡ B3 so

|CV | =
|V |∑
i=1

X(:, 3). (4.2)

Finding an expression for |CE| is just a bit more complicated. We begin with a short

digression. Vector X(:, j) indicates the vertex membership of block j. That is to say,

X(i, j) = 1 if vertex i is in block j and is 0 otherwise. For an arbitrary matrix M ,

56

the quantity X(:, j)TMX(:, j) gives the sum of entries in the sub-matrix indicated

by X(:, j). Define D to be the matrix with row sums of adjacency matrix A along

its diagonal, and further define the Laplacian matrix L = D − A. The quantity

X(:, j)TDX(:, j) gives twice the total number of edges incident to vertices indicated

by X(:, j), and X(:, j)TAX(:, j) gives twice the number of edges fully contained in

block j. It follows that X(:, j)TLX(:, j) gives twice the number of edges incident to,

but not fully contained in, block j.

To quantify |CE|, we seek to bound the number of edges between blocks 1 and

2, that is, all edges connecting the two blocks. This quantity is captured by the

following

|CE| =
1

2

2∑
j=1

X(:, j)TLX(:, j)− 1

2
X(:, 3)TLX(:, 3). (4.3)

The first term gives the total number of edges that lie between any of the three blocks.

The second term subtracts the number of edges that pass between the null block and

the others.

Figure 4.2 demonstrates the objective and edge and client cut constraints delineated

by Formulation MinConnQCQP. The objective is to move as many client vertices out

of the first block as possible without violating these two constraints. The edge cut

constraint can be visualized as the number of edges that pass between the first and

second blocks. The client cut constraint is much simpler, it is the quantity of clients

placed in block three.

57

Figure 4.2. MinConn problem formulation.

4.1 SDP Formulation

The QCQP formulation cannot be solved directly because there is no mechanism

to enforce orthogonality between block vectors; hence there is no way to force each

vertex into a single partition. Directly enforcing orthogonality is not possible in

a QCQP. Therefore, we must graduate to a richer language, that of semidefinite

programming. Every semidefinite program with an N ×N constraint matrix can be

solved in time O(N3) [82]. A semidefinite program is any problem of the form

Minimize: C • Z

Subject to: A • Z = b, and Z � 0,

58

where Z is the optimization variable and A, C, and b are arbitrary constants. Dot

notation is used to indicate the Frobenius inner product : A • B = trace(ATB) =∑
ij AijBij. The expression Z � 0 indicates that Z is a positive semidefinite matrix.

That the optimization variable, Z, is a positive semidefinite matrix is the fundamental

assumption in semidefinite programming. A positive semidefinite matrix is any matrix

M such that xTMx ≥ 0 for all real vectors x. Our analysis relies on the fact that for

all real vectors y, the outer product matrix Y = yyT is always positive semidefinite.

The Frobenius inner product gives the component-wise product of two matrices.

So, for example, the ijth entry of A • Z is equal to the product of the ijth entry

of A and the ijth entry of Z. Our goal is to implement each of the constraints in

Formulation MinConnForm in terms of a semidefinite optimization variable. To

that end, let vec(X) be the vector formed by concatenating the columns of X. Let

y =

 1

vec(X)

 . (4.4)

Define the lift matrix associated with X as Y = yyT . Wolcowicz and Zhao [144]

were the first to use this representation in the context of graph separators. First

order terms are found along the first row and column, while second order terms are

easily extracted from the remainder of the matrix. For notational simplicity, we

number the rows and columns of Y beginning with index zero. We will also use the

function φ(i, b) = i+ |V |(b− 1), which maps the entry X(i, b) to its corresponding

entry in vec(X(i, b)). The matrix Y comprises all pairwise products of block indices

of the form X(i, b1)X(j, b2), as well as single indices X(i, b1). Term X(i, b1)X(j, b2)

59

indicates that vertex i appears in block b1 and vertex j appears in block b2. We

have, Y (φ(i, b1), φ(j, b2)) = X(i, b1)X(j, b2), while Y (0, φ(i, b1)) = Y (φ(i, b1), 0) =

X(i, b1). Now suppose that for some matrix B, B(φ(i, b1), φ(j, b2)) = β, then the

term βX(i, b1)X(j, b2) will appear in row φ(i, b1) and column φ(j, b2) of matrix B •Y .

Constraints can thus be built as scaled single and pairwise products of block indices.

THEOREM 2: There exists an SDP whose solution provides a lower bound to the

solution to our QCQP formulation.

PROOF: It will suffice to rewrite the objective and each of the constraints of our

QCQP formulation as an SDP in terms of the lift matrix Y , where Y is relaxed to

the space of all semidefinite matrices. To that end let n = |V |, and define 1i×j and

0i×j to be the matrices of all ones and zeros, respectively, and having size i× j. The

operator diag is defined as in Matlab so that it either extracts the diagonal of a

matrix or forms a diagonal matrix from a vector. Also, let Ii×i be the identity matrix

of size i× i and the symbol “⊗” denote the Kronecker product of two matrices. The

Kronecker product A⊗B is equal to A after replacing each of the ijth entries, aij , of

A with the matrix aijB. The following is a suitable SDP formulation.

PROGRAM 3: MinConnSDP(G, ν, ε)

• Given: graph G = (S ∪ C,E) and ν, ε ∈ R.

• Find: minimum O • Y such that,

60

(1) Fi1 • Y, ∀i ∈ S. (Servers in Block 1)

(2) S • Y = n. (Vertex Count)

(3) V • Y = ν. (Vertex Cut Size)

(4) E • Y = ε. (Edge Cut Size)

(5) Aij • Y, ∀i, j. (0–1 property)

(6) U • Y = 1. (Upper Left Equal 1)

(7) Zi • Y, ∀i. (Sum Vertex Values is 1)

where

- O = diag(

[
0 11×n 01×2n

]
)

- S = diag(1|y|×|y|) except that S(0, 0) = 0

- V = diag(

[
0 01×2n 11×n

]
)

- E =

0 01×2n 01×n

02n×1
1
2
I2×2 ⊗ L 02n×n

0n×n 0n×2n −1
2
L

- Aij = 0|y|×|y| except that Aij(φ(i, j), 0) = 1 and Aij(φ(i, j), φ(i, j)) = −1

- Fij = 0|y|×|y| except that Fij(φ(i, j), φ(i, j)) = 1

- U = diag(1|y|×|y|) except that U(0, 0) = 1

- Zi = 0|y|×|y| except that Zi(φ(i, j), φ(i, j)) = 1 for all j ∈ {1, 2, 3}

61

Constraints for the edge cut and the 0-1 property were first introduced by Wol-

cowicz and Zhao [144], but we have modified the edge cut constraint to subtract

the number of edges passing to the null block. The last two constraints, in bold,

are new; we have introduced them for the purposes of numerical stability. When

translating constraints for mathematical programs, it is often necessary to use de-

compositions that involve simpler and sometimes redundant (in the space of binary

vectors) constraints.

�

4.2 Solving the SDP Formulation

Semidefinite Programs can be solved by standard software suites. We use SDPT3

for MATLAB. This yields a tight lower bound for very small graphs. However, as

the size of the input graph increases, the solver fails to assign each vertex to a single

block. Instead, vertices are fractionally assigned to all blocks. We address this issue

by fixing a small number of vertices to a single block as part of a branch-and-cut

algorithm. Our solution procedure is described as follows.

PROCEDURE 1: MinConnBC (G, ν, ε)

• Solve Program MinConnSDP(G, ν, ε) using SDPT3.

• Use branch-and-cut procedure to find a lower bound.

• Derive Upper bound by rounding.

The next section provides the details of this approach.

62

4.2.1 Lower Bound via Branch and Cut

Let S be the value of the semidefinite programming solution from Section 4.1. S

offers a lower bound on the optimal solution to MinConn(G, ν, ε). This bound can be

strengthened by fixing a small set of vertices T , each to one of the three blocks. In

doing so, we move the semidefinite variable Y closer to being a binary matrix, which

shrinks the search space and ultimately leads to a tighter bound. On the other hand,

we cannot be certain that the resulting solution is optimal because it’s possible that

the optimal solution does not admit the placement we have chosen. However, if we

evaluate all |Y |3 possible permutations of vertices T , then we can be certain that the

lowest solution among them is no greater than optimal.

We choose the vertices of T one-by-one. The first vertex, v0, is chosen to be that

whose placement is most ambivalent in S — that is, closet to one-third in each block.

For each branch on v0, the next vertex, v1, is chosen as the most ambivalent vertex

assignment in the given branch. This process is continued until the entire set T is

formed. Any given vertex i is fixed to block j by adding the constraint Fij • Y = 1

to the SDP. To stem the exponential growth of solution branches, we can leverage

the structure of the graph G itself to prune some of these branches. First, we can

eliminate any branch that places more than ε pairs of connected vertices in different

blocks (not including the null block). Second, we can cut any branch that places a

vertex i in block 2 when i is adjacent to some server.

4.2.2 Upper Bound via Rounding

Our goal is to round some solution matrix Y ∗ from the solution tree formed via

branch-and-cut into a concrete solution to Problem MinConn(G, ν, ε). In principle,

63

any partial solution from the tree is a valid candidate, but in practice we find it

difficult to round most solutions while simultaneously keeping the objective value

low and satisfying the edge cut constraint. So we try multiple solution matrices

and choose the best rounded solution among them. The best candidates are those

matrices Y ∗ that are nearly binary, and for small graphs these are readily found

in the solution tree. However, for large graphs, a binary solution does not emerge

immediately, so we choose the best branches at the last level of the solution tree and

follow them exclusively until a nearly binary matrix Y ∗ is found.

We now proceed under the assumption that a suitable matrix Y ∗ has been

identified. Given Y ∗, define Z∗ to be the block matrix formed by extracting the

diagonal of Y ∗ and being fashioned in a manner analogous to the block matrix X.

Matrix Z∗ is therefore an |V | × 3 matrix with each row corresponding to a single

vertex and possessing net weight 1. Entry Z∗(i, b) indicates the presence of vertex i

in block b, which may be fractional. Rounding Z∗ means rounding each row so that a

single column in that row is equal to 1. This constitutes an unambiguous assignment

for each vertex.

Finally, we apply the Kernighan-Lin Algorithm [128] to reduce the number of

edges in the cut. The the Kernighan-Lin Algorithm is an iterative procedure that

begins by swapping every possible pair of vertices (v0, v1) one-at-a-time where v1 is in

block 1 and v2 is in block 2. The pair that lowers the edge cut by the most is chosen

and the vertices in the pair are fixed to their respective blocks. This procedure is

repeated until there are no unfixed vertices remaining in one or both blocks. This

64

procedure is attractive because it preserves the objective value and is known to

produce small edge cuts when the initial partition is a good one.

4.3 Empirical Evaluation

We compared the lower and upper bounds found by executing Procedure Min-

ConnBC (G, ν, ε) in two different real world networks: a wireless mesh network from

the Net Equality Project and the Philippine Power Grid.

4.3.1 Net Equality Wireless Mesh Network

In the context of a wireless mesh network, vertex removal implies that a relay has

been disabled while link removal implies that the connection between two nodes has

been disrupted. Here, a relay node is a client and gateway node a server; our trace

had no information about the number of users (laptops, desktops, etc.) connected

to clients. We investigated how the number of serviceable clients decreases as other

clients and links are removed from the network.

The Net Equality Project [5] works to provide Internet access to low-income

communities where residents live in dwellings within close proximity, such as apartment

complexes. They deploy a small number of gateway nodes that provide direct access

to the Internet and relatively inexpensive Meraki Mini access points (relays) around

the community, where most relays are multiple hops from gateways. A resident has

access to the Internet wherever he/she is in range of either a gateway or a relay

that is ultimately connected to a gateway. We analyzed a snapshot of the Hacienda

CDC housing development taken in 2007. At the time, 69 relays and 2 gateways

65

were connected by 279 links serving approximately 1,200 residents. We studied the

removal of up to 18 clients and 20 links in the Net Equality Network.

Figure 4.3(a) shows the degradation of client serviceability in the network as

links are removed. The blue triangles give a lower bound on the number of relays

connected to the Internet after the indicated number links have been removed. Circles

in red provide a complimentary upper bound on the number of serviceable clients.

These values correspond to partial (lower bound) and complete (upper bound) block

assignments for each vertex. Two major features dominate Figure 4.3(a), the first

is a severe drop in client serviceability after allowing 12 links to be removed. The

second is another drop when 19 links can be removed. These points coincide with

events where large subgraphs are finally disconnected from both gateways. This

behavior provides valuable insight into the fault tolerance and attack vulnerability of

the Net Equality graph. Communication difficulties between a handful of relays will

not usually cause a major disruption, but degradation is not smooth, in general.

0 5 10 15 20
0

10

20

30

40

50

60

70

Links RemovedC
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

2% 4% 5%

14%

29%

43%

58%

72%

87%

(a)

0 5 10 15 20
0

10

20

30

40

50

60

70

Clients RemovedC
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

7% 14% 22%

14%

29%

43%

58%

72%

87%

(b)

Figure 4.3. Net Equality Wireless Mesh connectivity with (a) link removal and (b)
client removal.

66

Figure 4.3(b) offers a view of client removal. Again, triangles in blue indicate a

lower bound on the number of remaining clients that are serviceable when the given

number of clients have been removed. Circles in red offer a complimentary upper

bound. In contrast to the link removal problem, client removal exhibits a much more

uniform decline in serviceability. However, while the rate of deterioration is roughly

uniform, it is much more severe for the same number clients removed as links. For

example, removing 8 clients can disconnect as many as 39 clients from all servers,

while removing 8 links will disconnect no more than 10 clients.

4.3.1.1 Philippine Power Grid

We also analyzed a network representing the Power Grid of the Philippines from

2006 [6]. The Grid comprised 44 power generators and 360 substations connected

by 796 transmission lines. We modeled the Grid as a client-server graph with

power generators corresponding to servers, substations corresponding to clients, and

transmission lines corresponding to edges. We studied, independently, the effect of

removing up to 50 transmission lines (links) or 50 substations (clients).

Figure 4.4(a) shows how power service degrades as the number of links removed

increases. The lower bound departs somewhat from the upper, but does serve to

establish that removing as many as 50 of transmission lines will not disconnect more

than 50% of the substations. On the other hand, the plot also indicates that it

is possible to disconnect roughly 20% of the substations after removing some 50

transmission lines.

Figure 4.4(b) shows client serviceability degradation with client removal. The

most noticeable feature is the greater impact client removal has on client serviceability

67

0 10 20 30 40 50
0

100

200

300

400

Links RemovedC
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

1% 3% 4% 5% 6%

28%

56%

83%

(a)

0 10 20 30 40 50
0

100

200

300

400

Clients RemovedC
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

3% 6% 8% 11% 14%

28%

56%

83%

(b)

Figure 4.4. Connectivity in the Power Grid of the Philippines with (a) link removal
and (b) client removal.

compared with link removal. The bounds also depart from each other more gradually

than in the case of link removal. The figure shows that almost 50% of the substations

can be disconnected by strategically removing just 20 other substations. In other

words, removing fewer than 5% of the substations can leave half the remaining grid

without service.

4.3.2 Topological Influence on Serviceability

Removing one client is always at least a damaging to serviceability as removing

one link, so it makes sense that client removal is more damaging than link removal in

both the Wireless Mesh and Power Grid networks. But the Wireless Mesh Network

exhibits profound robustness even after a relatively large quantity of links have been

removed while the Power Grid does not. Upon examination we find that clients in

the former have a much more rich degree distribution than clients in the latter. Even

though the Wireless Mesh Network has just 20% of the clients as the Power grid,

68

2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Adjacent Links

F
r
a
c
t
i
o
n

o
f

C
l
i
e
n
t
s

(a)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Adjacent Links

F
r
a
c
t
i
o
n

o
f

C
l
i
e
n
t
s

(b)

Figure 4.5. Cumulative vertex degree distribution in (a) the Net Equality Wireless
Mesh Network and (b) the Power Grid of the Philippines

more than half the clients in the Wireless Mesh network share a link with at least

eight other nodes. In contrast, more than half the nodes in the Power Grid share four

or fewer links with adjacent nodes. We hypothesize that it is this dramatic difference

in degree distribution between the two networks that develops such a significant

difference in robustness.

69

CHAPTER 5

CLIENT CONNECTIVITY IN LARGE GRAPHS

For large graphs, even the branch-and-cut procedure MinConnBC will fail because

the semidefinite programming solver will fail to converge when attempting to solve

MinConnSDP or it will return an extremely weak bound. Such failures typically

occur when the size of the graph being analyzed becomes too large. In this section, we

provide an additional solution to bound MinConn(G, ν, 0) that uses MinConnSDP as

a subroutine in a divide-and-conquer algorithm. The subproblems are small enough

that the semidefinite program will have no problem returning a high quality solution.

Our approach is the first capable of providing both upper and lower bounds on

connectivity after vertex removal in graphs with thousands of vertices. The limitation

of this extension is that our analysis does not apply to edge cuts and it will not work

well for every graph. Success is very topologically dependent.

5.1 A Divide-and-Conquer Solution for Client Removal

Let G be a client-server graph. Our strategy is to solve MinConn(G, ν, 0) by

breaking G into subgraphs G1, . . . , Gn by groups of clients that act as gateways for

other clients. The connectivity properties of subgraph Gi can be found by solving

a series of subproblems of the form MinConnBC (Gi, νi, 0). Once the connectivity

70

Figure 5.1. Client decomposition into gateways and children.

properties of each subgraph Gi have been quantified, the solution to MinConn(G, ν, 0)

is formed by judiciously choosing those subproblems that render the lowest client-

server connectivity.

Our objective is to count the minimum number of clients that remain connected

to at least one server after the removal of some fixed number of clients. Therefore,

we seek to count the minimum number of clients that retain a service path after

the removal of some fixed number of other clients. Generally, the serviceability of

a client can depend on the serviceability of every other client. However, in real

world networks, this is rarely the case. We begin by describing how to isolate the

serviceability of a subgraph in an arbitrary client-server graph.

For arbitrary G = (S ∪ C,E) define the set of gateways, Y ⊆ C, as those clients

that are adjacent to at least one server in S. The remaining clients, labeled children,

are placed in the child set L. Figure 5.1 shows such a decomposition on a hypothetical

instance of the AS graph. A subset of children, L′, are said to be siblings when they

form a single connected component after all gateways are removed. For each set

71

of siblings L′, there is a corresponding subset of gateways, Y ′ that are adjacent to

the children in that set. We call such a subset Y ′ the gateways of siblings L′ and

conversely, we call siblings L′ the children of gateways Y ′. Together, the set Y ′ ∪L′ is

called a family. The serviceability of the children in a family depends entirely on their

connectivity to the gateways of that family. We begin by identifying all families in

G, then independently measure how their serviceability is affected by client removal,

and finally combine the results for each family.

5.1.1 Decomposition

The individual families of G are enumerated by first splitting clients into gateways

and children, then finding groups of children that share the same gateways. These

groups will form the basis of our delineation of a family. Algorithm 1 is responsible

for performing this decomposition. In this algorithm, subroutine NEIGHBORS(G, c)

returns the set of vertices in G that share an edge in E with vertex c. Subrou-

tine COMPONENTS(G) returns a set of sets of vertices, with each set of vertices

corresponding to a connected component of G. Subroutine CLOSURE(F) returns

the transitive closure of the union operation on each set F ∈ F — i.e., subroutine

CLOSURE(F) combines overlapping sets in F until all families in F are pair-wise

disjoint.

Lines 1–4 are devoted to delineating two sets Y and L, which contain all gateways

and children respectively. In line 6, families of G are initially formed as the connected

components of the subgraph of G induced by the set of all children L. In lines 8–14,

each family is enlarged to include the gateways for each set of siblings. Finally, in line

72

Algorithm 1 FAMILIES(G)

1: Y ← ∅ (gateways)
2: for s ∈ S do
3: Y ← Y ∪ NEIGHBORS(G, s)
4: end for
5: L← C \W (children)
6: B ← COMPONENTS(G(L)) (siblings)
7: F ← ∅ (families)
8: for B ∈ B do
9: F ← ∅

10: for b ∈ B do
11: F ← F ∪ NEIGHBORS(G(L ∪ Y), b) ∪ {b}
12: end for
13: F ← F ∪ {F}
14: end for
15: return CLOSURE(F)

15, we combine families that share common gateways so that each family is disjoint

from every other family.

LEMMA 2: If F is a family in G and c is a child in F , then c is serviceable iff there

is a path from c to some gateway in F .

PROOF: If there is a path from c to some gateway, then c must also have a service

path since all gateways are adjacent to at least one server. Conversely, suppose

that c is serviceable. Every service path from c must contain some gateway because

gateways are the only clients that are adjacent to servers.

�

73

5.1.2 Family Serviceability

According to the above lemma, we can decouple the serviceability of clients that

are placed in different families. The serviceability of each family can be found by

solving a series of subproblems on the subgraph induced by this family. Gateways

within a family act as servers in a new subproblem. Consider an arbitrary family F

with gateway set Y and child set L. In general, we would like to solve the following

intermediate problem, which gives the quantity of serviceable clients in F after

removing a fixed number of clients from F .

PROBLEM 6: PartialMinConn(G,F, ν)

• Given: client-server graph G = (S ∪ C,E), family F = Y ∪D and ν ∈ R.

• Find: minimum number of clients in F that are serviceable in G	 A, over all

A ⊆ F such that |A| ≤ ν.

The solution to Problem PartialMinConn can be bounded from below by solving

a series of subproblems using MinConnSDP. We begin by providing an intuition for

how these subproblems can be constructed and subsequently show how to derive the

bound. By removing Y , all clients in F will be disconnected from all servers. So

when ν = |Y |, PartialMinConn(G,F, ν) = |F |. When no gateways are removed, we

have a client-server subproblem on G(F) with gateways being servers. But gateways

are also clients, so it is possible that they will themselves be removed. In general, we

must consider removing ν clients from Y ∪L. This leads to a quantity of subproblems

that is combinatorial in the size of the gateway set. There is one subproblem for

each possible choice of unremoved gateways. For each Yi ⊆ Y being the set of

74

Figure 5.2. Client decomposition into gateways and children.

remaining gateways for a given subproblem, we construct a new client-server graph

Gi = G(Yi ∪ L) and solve MinConnSDP(Gi, ν − |Yi|, 0). The following procedure

formalizes the process.

PROCEDURE 2: PartialProc(G,F, ν)

• For each Yi ∈ Y , let Gi = G(Yi, L).

• For each ν = 0 to |Y | − |Yi|, find MinConnSDP(Gi, ν, 0)

• Return minimum value over all subproblems.

Procedure PartialProc enumerates all combinations of removed gateways in Y ,

forms an associated client-server subgraph for each combination, and finally solves a

subproblem on that graph using MinConnSDP that is fashioned so that no more than ν

75

clients are removed from F in total. The subproblem that returns the lowest value will

provide a lower bound on the optimal solution to Problem PartialMinConn(G,F, ν)

because we have exhaustively enumerated all possible subproblems on family F and,

according to Theorem 2, the solution to MinConnSDP will always bound the solution

to MinConn from below. Figure 5.2 provides a simple example of the subproblems

generated by a single family when the maximum cut size is ν = 2. Four subgraphs

are initially formed: G1, G2, G3 and G4. Each subgraph corresponds to a choice of

some set of removed gateways. The first leaves gateways intact and cuts 2 clients

from among the children, the second and third remove one gateway and one child,

and the fourth simply removes both gateways.

5.1.3 Aggregation

Our goal in this section is to consolidate local knowledge from the solution to

PartialMinConn for each family, into a global measurement for MinConn on G. To

do so, we formulate a knapsack-like problem by issuing a pair of scalars to each family

called the maximum weight, W , and unit value, U . We then present a procedure that

bounds MinConn(G, ν) from below by solving this problem for appropriate choices

of W and U . Our first task is to derive the maximum weight and unit value for each

family. Consider any family Fi = Yi ∪ Li, by applying Procedure PartialProc we can

evaluate how serviceability decreases with client removal in Fi. For each ν = 1 to

|Yi|, let Siν = PartialProc(G,Fi, ν). Define Wi ≡ |Yi| and

Ui ≡ min
ν
{PartialProc(G,Fi, ν)/ν} ≤ PartialMinConn(G,Fi, ν)/ν.

76

By construction, we have νUi ≤ PartialMinConn(G,Fi, ν). Algorithm 2 details the

construction of the unit value for an arbitrary family F . The subroutine POWER(Y)

returns the power set of set Y , or a set of all possible subsets of Y .

Algorithm 2 MULTIPLIER(Y, L)

1: if L ≡ ∅ or |Y | ≡ 1 then
2: return |Y ∪ L| / |Y |
3: end if
4: x← |Y |, y ← |L|, U ← y/x (best initial guess)
5: P ← POWER(Y)
6: for P ∈ P do
7: for i = 1 to |Y | − |P | do
8: r ← MinnConnSDP(G(Y ∪ L)	 P, i, 0)
9: y∗ ← y − r (clients out of service)

10: x∗ ← i+ |P | (clients removed)
11: if x∗ ∗ U > y∗ then
12: U ← y∗/x∗ (choose highest ratio)
13: end if
14: end for
15: end for
16: return U

Algorithm 2 begins by testing for trivial cases where we can immediately identify

the unit value multiplier. For all other cases (line 4), we begin by setting the

multiplier to the most obvious ratio where all gateways are removed. It is possible

that a better solution exists, and by iterating on all possible subproblems of this

family, we progressively refine this choice of unit value multiplier. Line 8 finds the

solution to each subproblem by running it through MinConnSDP(G, ν, 0). Note

that in Chapter 4 we worked with relatively large graphs that did not immediately

yield a strong solution to the semidefinite program, and therefore required Procedure

MinConnBC for strengthening the result. For the subproblems in Algorithm 2,

77

however, we find that the problems are small enough that further analysis is not

necessary. The solution to MinConnSDP(G, ν, 0) gives a lower bound on the number

of clients that remain serviceable after removing some ν clients. For y∗, however, we

require an upper bound on the total number of clients that are removed from service

after removing ν clients. Line 9 reverses the output from MinConnSDP from number

of clients connected to number disconnected. The remaining lines replace the old

multiplier value only if the new value is greater.

Having maximum weight and unit value for each family, we now show how to

use these values to bound the solution to MinConn(G, ν, 0). Consider the optimal

solution to MinConn(G, ν, 0), and label A the set of clients removed by this solution.

Set A will contain some subset of clients from each family Fi. Let Ai = Fi ∩A, or the

set of clients removed from family Fi. Since νUi ≤ PartialMinConn(G,Fi, ν) for any

ν, it follows that |Ai|Ui ≤ PartialMinConn(G,Fi, |Ai|). Aggregating over all families

it follows that

MinConn(G, ν, 0) ≥
∑
i

|Ai|Ui.

This means that we can bound the solution to MinConn(G, ν, 0) from below by

solving the knapsack problem that takes some integer portion of Wi from each family

so that the sum does not exceed ν and so that the aggregate value is maximized.

Procedure MinConnDC formalizes this process.

PROCEDURE 3: MinConnDC (G, ν, 0)

• Form an exhaustive and disjoint decomposition of G into families F = F1, F2, . . .

according to Algorithm 1

78

• For each Fi, identify maximum weight Wi and unit value Ui using Algorithm 2.

• Derive upper bound by greedily choosing the gateway set with maximum weight

no greater than the current available weight and that corresponds to the family

with highest unit value. Continue while the aggregate weight is less than ν.

• Derive lower bound by solving linear program SelectLP(W,U, ν), which is a

standard knapsack linear program except for an additional constraint that keeps

the value of a family above 0.

PROGRAM 4: SelectLP(W,U,w)

• Given: weight and value multiplier vectors W and V , and maximum aggregate

weight w.

• Find: maximum
∑
i

X(i) Ui such that,

(1)
∑
i

X(i) ≤ w.

(2) X(i) Ui −Wi ≤ 0,∀i.

(3) X(i) ∈ {0,Wi}, ∀i.

5.1.4 Managing Subproblem Size

Algorithm 2 iterates over the power set of Y . This set becomes quite large for

even small sets, so we aim to keep the number of gateways at 5 or fewer. However,

we continue to require that families remain pair-wise disjoint so we must find a way

79

to split families with large gateway sets. For the purpose of creating a lower bound

on MinConn(G, ν, 0), it’s clear that removing edges will only lower the value of the

solution and will not jeopardize the bound. So, we judiciously choose edges to remove

so that there are 5 or fewer gateways corresponding to each family in the new graph.

Since we are dealing with relatively small subgraphs, a simple spectral approach will

suffice.

Ding et. al [59] showed how to use the eigenvector corresponding to the second

smallest eigenvalue of the Laplacian Matrix of a graph to find nearly-disconnected

components of that graph. Consider the graph H = G(F) for any family F . The

spectrum of the Laplacian of H has one eigenvalue equal to 0 for each connected

component in H. In this case, zero-valued eigenvalues are the smallest because the

Laplacian is always real and symmetric so its eigenvalues are always non-negative.

Any eigenvector belonging to a 0 eigenvalue will have the same value for all indices

that correspond to vertices in the same connected component. Matrix perturbation

theory predicts that graphs that have nearly disconnected components will show

similar eigenvector values between indices corresponding to vertices in each component

when considering the eigenvector corresponding to the second smallest eigenvalue.

The following procedure outlines the steps that we took to to break families with

large gateway sets into groups of families with no more than 5 gateways.

Let F = (Y, L) be a family in client-server graph G and define subroutine

EIGENVECTOR(H) to be a function that returns the eigenvector corresponding

to the second smallest eigenvalue of the Laplacian of H. If |Y | > 5, then it can be

disassembled with the following steps.

80

• Compute x← EIGENVECTOR(G(F))

• Let k =
⌈
|Y |/5

⌉
, and break Y into k subsets labeled Y1, . . . , Yk where |Yi| = 5

for i < k and |Yk| = |Y | − 5(k − 1).

• Assign clients of Y to one of the subsets so that clients in the same subset have

similar entries in eigenvector x.

• Create k new families F1, . . . , Fk so that family Fi has set Yi as its gateways,

and create child sets Li for each family Fi with Li initially empty.

• Assign each child in L to the family Fi whose average eigenvector entry matches

closest to its own eigenvector entry.

5.2 Evaluation on the Internet AS Graph

Our first evaluation is on a snapshot of the Internet at the Autonomous Systems

(AS) level taken by the CAIDA project in April 2005 [58]. Their taxonomy identifies

inferred Tier-1 and Tier-2 ASes. We create a client-server graph with Tier-1 and

Tier-2 ASes labeled as servers and clients, respectively, and with an edge set derived

from the corresponding list of peering relationships. We assume that the backbone

of the Internet (the Tier-1 ASes) remains fully intact, but that Tier-2 ASes are

vulnerable to removal due to attack or administrative-level disenfranchisement. In all,

there were 5,396 clients and 44 servers. Figure 5.3(a) shows the degree distribution

over all vertices while Figure 5.3(b) shows a breakdown of those distributions between

clients and servers. The client degree distribution dominates the server distribution

since there are just 44 servers. These plots indicate that clients have a strongly

81

power-law degree distribution with a small number having very high degree and the

rest having low degree (more than 90% have fewer than 10 incident edges). Servers,

on the other hand, show the opposite phenomenon. More than 60% have at least 100

incident edges and fewer than 5% have less than 20 incident edges.

Let G denote the client-server graph that models the AS graph. We use MinCon-

nDC to compute upper and lower bounds on MinConn(G, n, 0) for various values

of n. Figure 5.3(c) shows the results where the number of clients removed, n, varies

from 0 to 2,500 in increments of 50. The blue curve in triangles is the lower bound

delivered as the solution to our knapsack problem. The red curve in circles is an

upper bound developed by actually removing from G those client vertices identified by

the knapsack solution. In contrast to the performance of MinConnBC (G, n, 0) from

Chapter 4, the Knapsack solution has somewhat weak performance for small values

of n, but tightens considerably for larger values. The initial weaker performance can

be attributed to the error introduced by splitting families with large gateway sets.

Algorithm 1 returned 2,759 families total, and among those there were 9 that had

more than 5 gateways vertices. Because of the large number of subproblems associated

with large gateway sets, we decomposed each of these according to the algorithm in

Section 5.1.4. The largest set was found in one family that had 292 gateways. The

rest had fewer than 30 gateways. By splitting the largest gateway set almost 60 times

we introduced error. The lower bound makes it seem easier to disconnect service

paths to a larger number of clients than is actually possible. However, once n is large

enough that this large gateway set can actually be removed, the upper bound settles

close to the lower. We believe that this type of tradeoff will be typical when applying

82

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Adjacenct Links

F
r
a
c
t
i
o
n

o
f

N
o
d
e
s

(a) (b)

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

Clients RemovedC
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

9% 19% 28% 37%

19%

37%

56%

74%

93%

(c)

0

10

20

30

40

50

60

70

80

90

% Clients Removed

 5 9 13 17

%

C
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

(d)

Figure 5.3. AS graph: (a) degree distribution over all vertices, (b) degree distribution
of both clients and servers, (c) client connectivity after client removal, and (d) result
of synthetic random graph experiment.

83

MinConnDC to any client-server graph with such hierarchical structure. Accuracy

will largely depend on the extent to which the graph can be decomposed into families

with the small gateway sets.

In our analysis we identified a small handful of families responsible for almost

all of the complexity in the graph. They had large gateways sets and large sets of

children. The remaining families had small gateway sets and small sets of children.

They appear as commodities to the knapsack algorithm. Overall, the AS graph

exhibits strong serviceability in the face of significant deterioration of Tier-2 clients.

Even when 900 (> 16%) Tier-2 clients are removed, better than half the Internet

remains in service. This result appears in sharp contrast to research outlined in

Section 2.2.2 where both Tier 1 and Tier 2 nodes can be removed. There, far fewer

than 50% of all nodes remain in the connected component even when only 3% of the

nodes have been removed [113,148].

5.2.1 Random Graph Model

The degree distributions reflected in Figure 5.3(b) suggest that the AS graph can

be modeled as a BA random graph (see Section 3.1.3 for a definition) with servers

chosen from among the vertices with highest degree. To test this hypothesis, we

randomly generated 100 BA graphs with n = 5,440 (the size of the AS graph) and

m chosen so that each graph had approximately 14,428 edges (the quantity of edges

in the AS graph). We randomly selected 44 servers from among the vertices of each

random graph with the probability of selecting any given vertex being proportional to

its degree. In this fashion, we ensured that the highest degree vertices were most likely

to be labeled as servers. The remaining vertices were labeled clients. Figure 5.3(d)

84

shows box and whisker plots for the result of client removal in these graphs. The

boxes show points falling between the 25th and 75th percentiles, and the whiskers

show the extent of the remaining data.

The upper bound boxes in Figure 5.3(d) exhibit almost no variability for up to

9% of clients removed. For higher quantities, the number of clients that remain

connected to a server varies widely from 0% to 90%. In contrast, the corresponding

lower bound exhibits roughly uniform variability for up to 5% of clients removed. For

larger quantities, none of the random graphs are guaranteed to maintain any server

connectivity. Overall, the agreement between upper and lower bounds is poor. The

plots show that, according to the lower bound, it’s possible that no clients will remain

connected with more than 5% of clients removed, but in terms of the upper bound,

we can never find an actual cut set that lowers client connectivity to less than 90%

for up to 9% of clients removed.

It’s difficult to determine why the upper bounds for the random graphs become

volatile across random trials for more than 9% of clients removed. A similar sudden

drop is exhibited in the AS graph after approximately 15% of clients have been

removed. This could mean that the dramatic drop is due to the same artifact found in

the AS graph that arises from large gateway sets being divided. In terms of resilience,

the bounds presented for random graphs are generally too weak to draw any strong

conclusions about robustness to client removal relative to the AS graph. However,

after 13% of clients are removed from any of the random graphs tested, no clients

will remain connected to servers. But in the AS graph, at least half the clients will

maintain server connectivity even when 15% of clients are removed. This indicates

85

that the AS graph is more resilient than the random graphs to large quantities of

removed clients.

5.3 Evaluation on Airport Connectivity

We next address airport connectivity in the states of Iowa and Michigan. Airports

are chosen as only an example of critical infrastructure, and as in our above cases,

there are limitations to our analysis. We make the simplifying assumption that each

airport is equally resourceful. We also do not claim this is the most effective attack

on infrastructure, but it does serve to bound the severity of a particular kind of

coordinated attack on a very import piece of national infrastructure. First, we formed

a client-server graph with clients corresponding to key route intersection points, called

waypoints, in the given state and whose value was approximately equal to the portion

of the state’s population residing near the waypoint (see Section 1.3 for details). Our

objective was to bound the quantity of people who maintain highway access to any

airport after the removal of some fixed number of waypoints. We imagine that the

waypoints are removed by either natural disaster of coordinated attack.

We constructed a solution to the WeightedMinConn Problem for this scenario

by modifying MinConnDC as follows: i) client values were incorporated by first

modifying Algorithm MULTIPLIER to return the highest ratio of client values to

gateways removed; ii) the objective function of Program MinConnSDP was altered

to minimize the aggregate value of connected clients.

86

5.3.1 Iowa

To apply our WeightedMinConn solution, we constructed a client-server graph

corresponding to the state of Iowa. The boundary of the state was delineated by

the coordinates (-104.3701, 42.6738) and (-96.2842, 46.1566). In total there were

1,947 waypoints and 272 airports. The entire network was connected by 4,163 edges

representing route segments. Algorithm FAMILIES returned 493 families total with

just three families having more than 5 gateways. They had gateway sizes 8, 19, and

501. Breaking the family with 501 gateways into 101 subfamilies was the main source

of error. It causes the lower bound to retreat substantially from the upper for small

numbers of removed waypoints.

Figure 5.4(c) shows that despite the somewhat loose agreement between upper

and lower bounds, we can still draw interesting conclusions about how airport

access degrades with waypoint removal. For example, when just 200 waypoints

(approximately 10%) are blocked, it is possible to disconnect at least 500K (15%)

people from every airport, but no more than 1.7M (50%) can possibly be disconnected

in the worst case. There is also a sudden drop in the upper bound after approximately

575 waypoints are removed. This is the point when the largest family (the one that

began with 501 gateways) is finally completely disconnected. It’s a critical point

where the number of people connected drops by about 500K.

5.3.1.1 Random Graph Model

We developed a random graph model for the state of Iowa by attempting to match

the qualitative properties of the graph. Figure 5.4(b) shows the distribution of both

client and server vertex degrees. This distribution is quite different than that seen for

87

 1 2 3 4 5 6 >=7
0

0.1

0.2

0.3

0.4

0.5

Adjacenct Links

F
r
a
c
t
i
o
n

o
f

N
o
d
e
s

(a) (b)

0 150 300 450 600 750 900
0

0.5

1

1.5

2

2.5

3
x 10

6

Clients RemovedC
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

15% 23% 31% 39% 46%

17%

34%

51%

68%

86%

(c)

0

10

20

30

40

50

60

70

80

90

100

% Clients Removed

 5 9 13 17 21 25 29

%

C
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

(d)

Figure 5.4. Airport connectivity and graph properties in Iowa.

88

the AS graph. Here, the clients exhibit an approximately normal degree distribution

while the degrees of servers appears almost uniformly random. Accordingly, we

randomly generated 100 ER graphs (see Section 3.1.3 for a definition) with n = 2,219

and p chosen so that the expected number of edges was 4,163. The ER model seemed

like a good choice since the expected degree distribution of an ER random graph is

the qualitatively similar Poisson distribution. For each graph, we chose 272 vertices to

be servers uniformly at random. This choice was made to reflect the roughly uniform

distribution of server degree in the Iowa graph.

Figure 5.4(d) shows box and whisker plots for the result of client removal in each

of the 100 random graphs. The variability between trials for both the upper and

lower bounds is much more consistent than in the random graph model of the AS

graph. After approximately 15% of clients are removed, we again observe a sudden

drop in the quantity of clients connected to servers for the upper bound. This occurs

for smaller quantities of removed clients in the random graphs than in the Iowa graph.

For Iowa, we see the largest drop in the upper bound when about 27% of clients are

removed. The agreement between upper and lower bounds is also fairly weak for the

random graph model. When 10% of clients have been removed, the upper bound

predicts that at least 70% of clients will remain connected to servers. On the other

hand, the lower bound shows that it’s possible that only about 10% of clients will

maintain server connectivity. The bounds generated for the random graphs are too

weak for small quantities of removed clients for us to compare their resilience to the

Iowa graph. However, the bounds do indicate that after 21% of clients have been

removed from any of the random graphs, no more than 10% of remaining clients will

89

be connected to some server. In contrast, after removing the same number of clients

in the Iowa graph, at least 15% of remaining clients will still be connected. This

implies that the Iowa graph is more robust to client removal, particularly for large

quantities of removed clients.

5.3.2 Michigan

We performed similar analysis for the state of Michigan where the corresponding

client-server graph contained 2,207 waypoints and 285 airports. A total of 5,205

route segments connected these points. We chose to focus on the lower peninsula

of Michigan (the “mitten”) bounded by the coordinates (-87.4072, 41.5327) and

(-82.2656, 45.7593). After applying Algorithm FAMILIES there were 806 families

total with 15 having more than 5 gateway vertices. The three largest gateway sets

were 129, 112, and 53. All other families had fewer than 25 gateways. Figure 5.5(c)

shows how airport connectivity degraded with waypoint removal. Again, the families

with large gateway sets were the major source of error in the lower bound. They

forced a large gap between upper and lower bounds for up to 300 removed waypoints.

Subsequently, the bounds tightened significantly. From the plot we can see that

no more than 4.3 million people (43%) will maintain airport connectivity after 300

waypoints have been removed, and it’s possible that as few as 2.8 million (28%) will

maintain connectivity. In other words, at least half the residents of Michigan will

lose airport access if fewer than 14% of the waypoints are removed.

90

 1 2 3 4 5 6 >=7
0

0.1

0.2

0.3

0.4

0.5

Adjacenct Links

F
r
a
c
t
i
o
n

o
f

N
o
d
e
s

(a) (b)

0 100 300 500 700 900 1100
0

2

4

6

8

10
x 10

6

Clients RemovedC
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

14% 23% 32% 41%

21%

42%

62%

83%

(c)

0

10

20

30

40

50

60

70

80

90

100

% Clients Removed

 5 9 13 17 21 25 29

%

C
l
i
e
n
t
s

C
o
n
n
e
c
t
e
d

t
o

S
e
r
v
e
r

(d)

Figure 5.5. Airport connectivity and graph properties in Michigan.

91

5.3.2.1 Random Graph Model

Figure 5.5(b) shows that the degree distribution of clients and servers in the

Michigan graph is very similar to the corresponding distributions in the Iowa graph.

For this reason, we developed a random graph model that is fundamentally identical

to the random graph model used for the Iowa graph. Specifically, we randomly

generated 100 ER graphs each with 2,492 vertices and with p chosen so that each

graph had 5,205 edges in expectation. Servers were again chosen uniformly at random

from among the existing vertices.

Figure 5.5(d) shows box and whisker plots for the result of client removal in each

of the 100 random graphs. The qualitative results are very similar to the results

presented for client removal in the Iowa random graph model. Variation between

trials in both the upper and lower bounds is largely uniform except for a drop that

appears in the upper bound after approximately 17% of clients have been removed. A

similar drop appears in the upper bound corresponding to the Michigan graph after

about 14% of clients have been removed.

Overall, however, bounds for the Michigan graph are quite different from the

bounds found for the corresponding random graphs. First, the agreement between

upper and lower bounds in the random graphs is far worse than the agreement in the

Michigan graph. Second, while the agreement between bounds for the random graphs

is too weak to draw any strong conclusions for small numbers of clients removed, we

see that after 20% of clients are removed, the number of clients that remain connected

to a server drops below 10%. In contrast, at least 20% of clients are still connected

in the Michigan graph after removing any 20% of clients.

92

CHAPTER 6

VULNERABILITY OF DTNS

In this chapter, we evaluate the impact of node attacks on end-to-end throughout

in DTNs and find that such attacks are relatively benign. We hypothesize that this

robustness derives from DTN mobility and the high degree of packet replication

utilized by DTN routing protocols. This renders DTNs much less fragile than

MANETs. This is not to say that a DTN’s absolute performance is better than a

MANET’s — rather that packet delivery rate degrades more gracefully in a DTN

under attack. Let D = (N,K,C) be a DTN on node set N , node positions K, and

connection events C. We seek to address the following problem.

PROBLEM 7: MinThru(D,M, ν)

• Given: DTN D(N,K,C), demand matrix M , and ν ∈ R

• Find: minimum Thru(D 	R), over all R where R ⊆ N and |R ∩N | = ν.

We are interested in identifying the most damaging attack in terms of throughput,

which corresponds to finding the optimal solution to Problem MinThru(D,M, ν).

Accordingly, an attacker in this chapter is assumed to have knowledge of the optimal

solution to Problem MinThru(D,M, ν) and will attack DTN D by removing those

93

nodes that deliver this optimal solution. We prove in Chapter 8 that identifying the

most damaging attack in a DTN is NP-hard even when modeling the DTN as a static

graph and considering any of a broad class of metrics. This result suggests that we

should not expect to be able to bound the impact of the optimal attack, but should

instead be satisfied with a good approximation. We adopt an attack heuristic that

seeks to eliminate the most temporally connected pairs of nodes in a DTN. With this

strategy and using an effective DTN routing protocol, the DieselNet network achieves

50% of demand when 20% of the network nodes are removed and 30% of demand

with 50% of nodes are removed. Haggle demonstrates similar but slightly stronger

robustness. While our simulation results are limited to a particular protocol and

attack heuristic, we believe many of our conclusions hold in general for the numerous

DTN routing protocols that have been proposed.

6.1 Network Details

We make use of public traces from two experimental DTNs: the DieselNet [39]

testbed and the Haggle Project [88], with 60 days of traces available from the former

and 10 traces available from the latter. There are other DTNs that are being

constructed or have been operational for a period of time [92,120,143]; unfortunately,

none make their data publicly available. Our scope is restricted to pure DTNs.

The nodes in the networks we studied were only intermittently connected. Fig-

ures 6.1(a) & 6.1(b) show the average quantity of unique node contacts over all trace

days. Only 75% of node pairs in DieselNet met consistently while 90% of node pairs

met consistently in Haggle. Figure 6.1(c) shows the average daily bandwidth achieved

94

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 N

od
es

Peers Encountered
(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

of
 N

od
es

Peers Encountered
(b)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

P
er

ce
nt

ag
e

of
 p

ai
rs

 o
f n

od
es

Daily Outbound Bandwidth Size (in MB)

DieselNet Node Pairs
Haggle Node Pairs

(c)

Figure 6.1. Plots (a) & (b) show the average percentage of unique peers contacted
over all trace days in DieselNet and Haggle respectively. Plot (c) shows a CDF of
bandwidth between node pairs in both DieselNet and Haggle.

95

for all pairs of nodes. In DieselNet 80% of node pairs exchange at least 60 MBs of

data each day, while in Haggle, 80% of nodes exchange at least 90 MB each day. We

believe that Haggle enjoys higher average aggregate throughput between pairs of

nodes because the network is roughly twice as large as the DieselNet DTN.

6.2 Routing Strategy

For routing we used the RAPID routing protocol [19]. RAPID is a history-based

routing protocol that maintains information at each node regarding past contact

events with other nodes. When a pair of nodes establish contact they combine

meta information concerning past contact events. Each half of the contact pair then

prioritizes its own packets according to how likely it is that the other node will be

able to deliver those packets according to a certain service metric.

6.2.1 Graph Model

A DTN is dynamic both in terms of connectivity and payload. Therefore, the

ideal model would also be capable of capturing these aspects of a network’s dynamics.

However, as we show formally in Chapter 8, even studying attack vulnerability in

much simpler models is NP-hard. In this chapter we resort to a graph representation

of pair-wise connectivity in a DTN for our analysis. This problem is still NP-hard,

but it proves easier to analyze. We use this graph representation to evaluate a greedy

attack heuristic. For DTN D = (N,K,C) define the flat graph corresponding to D,

as G = (V,E). Graph G is formed in the following manner: each node u ∈ N is

assigned a unique vertex V(u) ∈ V . For any two nodes u, v ∈ N : if ∃b, t such that

96

(u, v, b, t) ∈ C, then undirected edge (V(u),V(v)) is placed in E. In lieu of solving

Problem MinThru directly, we instead look for the set of vertices whose removal

in the flat graph most lowers metric Pairs(G), or the number of connected paris

of vertices in that graph. This makes sense because connectivity in the flat graph

is a distillation of connectivity in D and rich connectivity is critical to maximizing

throughput. More formally we analyze,

PROBLEM 8: MinPairs(G, ν)

• Given: Graph G = (V,E) and ν ∈ N.

• Find: minimum Pairs(G	R) over all R, such that |R| ≤ ν.

In Chapter 8 we show Problem MinPairs(G, ν) is NP-hard. We also show that any

similar problem on a different metric is NP-hard provided that the metric achieves a

single global minimum when G contains no edges. This suggests that measuring a

graph’s susceptibility to attack is difficult given most useful metrics. This does not

preclude the possibility of finding a good approximation, but we show experimentally

that the greedy attack is very close to the optimal attack for small ν, or the number

of attacked nodes.

6.3 Experimental Findings

A brute force attack will always deliver the set of k vertices that most lower

Pairs(G), but the complexity of this approach grows exponentially with k. Fortunately,

the greedy attack appears nearly as effective. In Figures 6.2(a) and 6.3(a) we show

the median impact of the Brute and Greedy attacks on the flat graphs corresponding

97

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of Attackers

P
er

ce
nt

 C
on

ne
ct

iv
ity

Greedy
Brute Force

(a)

0% 10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

Busses Removed

P
a
c
k
e
t
s

D
e
l
i
v
e
r
e
d

Greedy

Random

(b)

Figure 6.2. Robustness of the DieselNet DTN as measured in the (a) flat graph by
comparing brute force node removal and greedy (b) trace driven simulation for both
greedy and random node removal.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of Attackers

P
er

ce
nt

 C
on

ne
ct

iv
ity

Greedy
Brute Force

(a)

0% 10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

People Removed

P
a
c
k
e
t
s

D
e
l
i
v
e
r
e
d

Greedy

Random

(b)

Figure 6.3. Robustness of the Haggle DTN as measured in the (a) flat graph by
comparing brute force node removal and greedy (b) trace driven simulation for both
greedy and random node removal.

98

to seven traces each for DieselNet and Haggle. The figures indicate that the Brute

and Greedy attacks nearly coincide for both types of traces up to k = 5. Hence forth,

we operate under the assumption that the greedy attack will continue to model the

brute force attack well for higher values of k. We next apply the greedy attack to

nodes in both the DieselNet and Haggle traces by choosing to remove those nodes

with the greatest number of temporal connections.

Our analysis involved actual greedy removal of the most frequently contacted

nodes (buses or people) in a given trace. We subsequently tested the packet delivery

rate for each trace using a set of randomly generated packets. For DieselNet, we

generated 100 packets at the beginning of every 6 hour interval throughout the day.

For each packet, source and destination buses were selected uniformly at random

from the set of buses still on the road at the time. Each packet was also given a TTL

of 6 hours. For Haggle, trace duration varied widely so we divided each trace into

5 epochs each of equal duration. At the beginning of each epoch, we generated 100

packets with source and destination hosts selected uniformly at random from the

people still present in the trace. The TTL for these packets was set to the previously

determined epoch length.

In general, our experimental results indicate that greedy removal is relatively

benign in terms of packet delivery rate under the RAPID protocol, but it does severely

hinder packet delivery as the number of nodes removed approaches 50%. Figure 6.2(b)

shows the effect on packet delivery rate averaged over all traces with random and

greedy node selection in DieselNet. Figure 6.3(b) shows the results of the same

experiment when conducted on the Haggle traces. For each plot, we decreased the

99

reported fraction of delivered packets proportional to the fraction of nodes removed

since any packet with a source or destination node that has been removed will never be

delivered. The figures show that when no nodes have been removed from the network,

the number of delivered packets is slightly higher in Haggle than in DieselNet. We

believe, from the results in Figures 6.1(a) and 6.1(b), this is due to a better “mixing”

of participants at Infocom compared to a scheduled bus network. Overall, the Haggle

results agree with the DieselNet results: DTNs are robust to attack in terms of the

degradation to packet delivery rate. In particular, even when nearly 50% of the nodes

are removed from either network, the packet delivery rate remains close to 30% in

DieselNet and 40% in Haggle.

100

CHAPTER 7

GREEDY DTN AUGMENTATION

In the last chapter, we showed that DTNs are relatively robust to attack in terms

of network throughput. However, even in an unperturbed DTN, bandwidth is scarce

and delay is high (often on the order of minutes not seconds). In order to improve

throughput and decrease delay, we consider DTN augmentation in this chapter. In

contrast to static networks, DTNs are easily augmented because of the mobility of

existing nodes. By placing a stationary relay in a geographic location that is often

visited by mobile nodes, one can effectively add a new node and temporal links to

the network. Relays hold packets left by one mobile node that are later picked up by

another. Because relays need not be mobile or contiguous, they are much cheaper to

deploy and can cover large areas. When solar-powered, they are also independent of

the power grid [21]. Most previous work on relays for supporting mobile networks has

focused on the design of the relay, including energy efficiency [21], asymptotic routing

performance for large numbers of boxes [89], and performance comparison against

other infrastructure [23]. In this Chapter we focus on finding the relay placement

that offers the lowest delay for a given demand. This problem is very hard because

even evaluating the quality of a placement requires knowledge of the perfect routing

strategy. We fix the routing protocol and formulate a new problem statement relative

101

to this protocol whose solution is labeled D-optimal. We then introduce a dynamic

program that provides a placement that bounds the D-optimal delay from below.

This algorithm can be used to find good placements in arbitrary DTNs, but we use it

to formally evaluate a greedy placement strategy in DieselNet. Specifically, we show

that a greedy placement strategy will come within 40% of D-optimality 40% of the

time.

7.1 Greedy Placement Compared to Prior Work

We begin with an illustration of the efficacy of a greedy relay placement in

DieselNet. Lochert et al. [112] introduced a genetic programming algorithm for relay

placement that seeks to minimize end-to-end delay in simulation. Their approach

was to produce an initial population of bit-vectors with index i of any given vector

corresponding to the presence or absence of a relay at location i. We reproduced

this experiment with trace driven simulation for 50 relays in the DieselNet DTN

running the RAPID protocol (see Section 7.4.1) and compared the results to a greedy

placement according to frequency of location visitation.

Figure 7.1 shows the result of our experiment. Each simulation generated just

100 packets in order to keep run times low. We feel that this is a reasonable measure

because we are most interested in delay that arises from the absence of a route from

source to destination rather than from heavy network congestion. For the genetic

program we began with a population of 10 bit-vectors and evolved for 5 rounds.

These results were not significantly different than the results for a population of 3

vectors evolved for 3 generations. The greedy placement chose those 50 locations

102

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Delivery Rate

F
ra

c
ti

o
n

 o
f

T
ra

c
e

 D
a

y
s

Greedy

Genetic

(a)

0 25 50 75 100 125 150 175
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. Delivery Time (Min)

F
ra

c
ti

o
n

 o
f

T
ra

c
e

 D
a

y
s

Greedy

Genetic

(b)

Figure 7.1. Comparison of genetic programming and greedy placement strategies
in DieselNet in terms of (a) packet delivery rate and (b) packet delivery delay. The
red curve with circles represents the results from our greedy placement, while the
blue curve with triangles represents the results from a placement using genetic
programming.

most frequently visited by buses. In all simulations, the TTL for every packet was set

to 6 hours. The results reported are for a period of 29 days of traces in DieselNet. It’s

not possible to fix either delivery rate or delay with either placement strategy, so it’s

difficult to derive a direct comparison. On one hand, Figure 7.1(a) shows the greedy

strategy consistently outperforming the genetic programming strategy in terms of the

fraction of delivered packets. On the other hand, Figure 7.1(b) shows that the genetic

programming approach always delivers packets with less delay. Overall, however,

the results are close for both strategies even though the greedy solution requires no

simulation while the genetic programming solution requires many tens of simulations.

Our goal in this Chapter is show that a greedy placement strategy, as well as others,

is nearly D-optimal in DieselNet.

103

7.2 Problem Description

Recall from Chapter 1 that a DTN is defined by D = (N,S,C), which is composed

of a node set N , node positions K, and connection events C. Our focus is on

the problem of relay placement in DTNs: given x relays, where should they be

geographically placed to most improve the performance of a particular DTN? We call

this problem the Relay Placement Problem. In Chapter 1 we formally defined this

problem by the following.

PROBLEM 9: Placement(D, L,M,m, P ∗)

• Given: DTN D = (N,K,C), a set of potential relay locations L, a demand

matrix M , a number of relays m ∈ N, and a minimum throughput P ∗.

• Find: minimum Delay(D⊕R,M,P ∗), over all supplementary sets of stationary

nodes R ⊆ L, |R| ≤ m.

7.2.1 Decoupling Routing from Placement

Problem Placement is complicated by its entanglement with optimal routing. Zhao

et al [147] have shown that this joint problem of optimizing routing and placement is

NP-Hard, even if the schedule of meetings between mobile nodes and relays is known

a priori. Balasubramanian et al. [19] have shown that optimizing routing alone is

NP-Hard and that the problem even resists close approximation. Indeed, according

to these results, it is NP-hard just to evaluate the quality of a given solution to

Problem Placement, which takes the Relay Placement Problem out of NP provided

that P 6= NP . This entanglement motivates the development of a new problem, the

104

Decoupled Placement Problem, which is optimal with respect to some 1-hop demand

matrix M1.

PROBLEM 10: D-Placement(D, L,M1,m, P ∗)

• Given: DTN D = (N,K,C), a set of potential relay locations L, a one-hop

demand matrix M1, a number of relays m ∈ N, and a minimum throughput P ∗.

• Find: A set of locations L′ ⊆ L, |L′| = m, minimizing delay and subject to the

throughput being greater than or equal to P ∗.

We label the optimal solution D-optimal. The associated delay and placement

are called D-optimal as well. Problem D-Placement concerns one-hop demand as

opposed to the end-to-end demand that is satisfied in Problem Placement. In order to

clearly differentiate the two we define the relay flow to be the total amount of one-hop

demand passing through placed relays. Accordingly, we refer to the throughput

parameter P ∗ from Problem D-placement as the target relay flow.

Chapter 8 shows that even finding the D-optimal solution is NP-hard. So instead

we solve a relaxed version of the problem: R-Placement. Specifically, we relax Problem

D-Placement by assuming that i) if demand is allocated to one relay, there will be

enough additional demand to allocate demand to other relays, ii) no two buses appear

at the same relay location at the same time. We then present a dynamic program that

solves Relaxation R-Placement to within arbitrary accuracy. Because this algorithm

provides a lower bound for the D-optimal solution to the relay placement problem,

we refer to it as the bounding solution and the placement it delivers as the bounding

placement.

105

7.2.2 Relaxing D-Placement

Chapter 8 proves that D-Placement is itself NP-hard. Algorithmically, the problem

is similar to several canonical problems. The placement aspect is reminiscent of the

Knapsack, Facility Location, or Vertex Cover Problems. Indeed, we reduce a variant

of Vertex Cover to the Decoupled Placement Problem in Chapter 8. On the other

hand, our desire to minimize delay recalls the Job Shop Scheduling Problem. At this

point, it’s not clear whether D-Placement can be effectively approximated. Rather

than attempt to approximate the Decoupled Placement Problem directly, we elect to

relax the problem by making the following assumptions.

1. Ample Demand. If two relays are each individually capable of satisfying a

unit of demand, then there is enough demand to accommodate both.

2. No Co-location. buses arrive at relays at different times, so that each bus

has full access to the bandwidth available through that relay.

Let E denote the egress matrix derived from some DTN D and one-hop demand

matrix M1. For every location x in some finite set X and time interval t, matrix

entry E(x, t) is the greatest aggregate flow achievable through x during interval t.

Given the assumptions above, we can construct matrix E by considering each location

independently from the others. Our approach is to front load location x by assigning

flow to the earliest time intervals possible. This ensures that we have maximum

throughput for minimum delay. Algorithm FRONT LOAD (see Section 7.6) performs

this calculation for each location and time in order to form matrix E. The idea is to

update the store of flow at each location, and then to pass that flow as quickly as

106

possible (since this will ensure the lowest delay). FRONT LOAD takes the following

arguments as input: M1(b1, b2; t) is the maximum flow between buses b1 and b2 during

time interval t, A(i, t) is the set of buses adjacent to relay i during interval t, and

B(x, t) is the number of bytes of capacity at location x during interval t.

For any location x and time interval t, E(x, t) provides an upper bound on the

amount of one-hop demand that can be satisfied by location x during time interval t.

It follows that the solution to the Decoupled Placement Problem can be bounded

from below by the solution to the following problem.

PROBLEM 11: R-Placement(E,m, P ∗)

• Given: egress matrix E(x, t), number of relays m ∈ N, and minimum through-

put P ∗.

• Find: m row indices of E(x, t) and m termination times, which collectively

achieve P ∗ and minimize Y .

7.3 Solving R-Placement

We approximate the solution to Problem R-Placement(E,m, P ∗) with dynamic

program ALLOCATE (see Section 7.6), which seeks to find the set of optimal locations

and the optimal allocation of flow through those locations. It is essentially a routing

scheme for one-hop demand. We now provide the details of constructing Algorithm

ALLOCATE and bounding its error with respect to the optimal solution to Problem

R-Placement. To begin, assume that time progresses discretely in steps t = 1, 2 . . .

where it is understood that each step corresponds to some fixed interval of time I

107

independent of t. Define discrete cumulative flow in units of U bytes as f1, f2 . . . with

fi = iU . Let Y (x, fi) give the minimum total delay for relay location x and flow fi.

We have,

Y (x, fi) =
∑
t≤t∗

tE(x, t),

where

t∗ = arg min
t′

∑
t≤t′

E(x, t) ≥ fi.

Algorithm ALLOCATE constructs a table of total delay values, δ. Each entry,

δ(m,L, fi), of the table gives the smallest total delay achievable by sending as many

as fi units of flow in total through at most m relays chosen from the set L. In contrast

to table δ, let ∆(k, L, f) be a continuous function of a continuous flow variable f ,

which gives the smallest total delay achievable by sending as many as f bytes of flow

through at most k relays chosen from the set L. The largest gap between the total

delay reported for δ(m,L, fi) and that reported by ∆(m,L, f) with fi−1 ≤ f ≤ fi

represents the approximation error that Algorithm ALLOCATE introduces in solving

Problem R-Placement

In developing Algorithm ALLOCATE, we wish to devise an algorithm for con-

structing the table δ. Our idea is to construct δ iteratively beginning with |L| = n

tables, {δ1 . . . δn}, each with one row and exactly one relay location λ, where entry

δ(1, {λ}, fi) = Y (λ, fi) or the total delay through location λ for flow of fi. Each

round of iterations pairs off existing tables. If there is an odd table out, then it

simply passes to the next round. Combining two tables is essentially merging the

information about two disjoint sets of locations. Suppose that we have tables δi

and δj and we wish to combine them to form table δk. We will iterate over all

108

possible distributions of relays and flows between the two tables. For the step where

we combine δi(mi, Li, fi) and δj(mj, Lj, fj) the value of δk(mi +mj, Li ∪ Lj, fi + fj)

should be set to δi(mi, Li, fi) + δj(mj, Lj, fj) iff that value exceeds its current value.

In this manner each entry of the new table can be filled in. Iteration ceases when

only one (the solution) table remains.

THEOREM 3: For any choice of k and L, δ(k, L, fi) ≤ TU + ∆(k, L, f) when

fi ≤ f , T is the total number of time intervals, and U is granularity of flow values.

PROOF:

For a given fi, the functions ∆(k, L, fi) and δ(k, L, fi) can be broken down as

δ(k, L, fi) = min∑
Fj=fi

∑
j

δ(1, L, Fj)

and

∆(k, L, fi) = min∑
xj=fi

∑
j

∆(1, L, xj)

where Fj is the discrete flow and xj the continuous flow assigned to relay j. Because

the function δ can assume only discrete values of flow, it’s possible that the true

minimum total delay is less than what is rendered. However, since the function ∆ is

non-increasing with x and δ(1, L, fi) is accurate at discrete flows, fi, we have

109

∆(k, L, fi−1) = min∑
xj=fi−1

∑
j

∆(1, L, xj)

= min∑
Fj=fi−1

∑
j

δ(1, L, Fj)

≤ min∑
Fj=fi

∑
j

δ(1, L, Fj)

= δ(k, L, fi)

= min∑
xj=fi

∑
j

∆(1, L, xj)

= ∆(k, L, fi),

(7.1)

or ∆(k, L, fi−1) ≤ δ(k, L, fi) ≤ ∆(k, L, fi). Going from ∆(k, L, fi−1) to ∆(k, L, fi),

we will pass no more than one additional unit (U bytes) of flow through all boxes.

This additional flow cannot increase the total delay by more than a factor of T .

Hence,

∆(k, L, fi)−∆(k, L, fi−1) ≤ TU.

�

The preceding analysis shows that we can make this gap as small as we like by

continuing to refine the set F . On the other hand, this makes ALLOCATE less

efficient computationally.

7.4 Experimental Goals and Procedure

Our hypothesis is that choosing relay locations in greedy fashion, according to

the frequency that they are visited, will be a good placement strategy. To validate

this hypothesis, we evaluated a total of 58 days of bus data from DieselNet [107].

110

These traces include both bus-to-bus contact events and single-bus GPS readings

throughout each day. This analysis requires multiple steps, which are outlined in the

procedure below.

PROCEDURE 4:

1. End-to-end Demand Create a single random demand matrix M between

each bus, which passes a total of 2000 packets each 1K in size.

2. One-hop Demand For each trace day, run a simulation, with unlimited

bandwidth and no relays that produces one-hop demand matrix M1, and which

attempts to meet demand M according to the contacts between buses recorded

for that day (Figures 7.2(b and c)).

3. Bounding Placement and Delay For each trace day, a fixed quantity of re-

lays, and one-hop demand M1, find the minimum delay and bounding placement

provided by Algorithm ALLOCATE (Figure 7.2(d)).

4. Evaluate Performance Rerun the simulator for each trace day and each place-

ment strategy, but this time with bandwidth limited and with maximum delay

set to the minimum average delay from bounding solution (via ALLOCATE).

With this procedure, we will compare the greedy solution to the optimal solution

to R-Placement(E,m, P ∗) by showing that a greedy strategy can deliver 40% of the

target relay flow P ∗ with D-optimal delay on 40% of the trace days. Better results

are achieved when constraints on maximum delay are relaxed.

111

s

s

s

d

C

d

A

B

d

D

(a)

6

5

3

8

7

1

2

4

(b)

6

5

3

8

7

1

2

4

(c)

1

2

3

4

5

6

7

8

C

3

6

7

1

4

7

8

5

2

6

3

5

1

2
A

D

8

4
B

(d)

Figure 7.2. (a) DTN D: at fixed time, with demand M for commodities indicated by
color and labeled s for source and d for destination. (b) Stage 1: uncapacitated demand
satisfaction without relays (c) M1, one-hop demand, formed from uncapacitated
solution. (d) Stage 2: relays partially accommodating demand M1 while respecting
capacity.

7.4.1 Simulation

We used the RAPID routing protocol [19] for all simulations. RAPID is a history-

based routing protocol that maintains information at each node regarding past contact

events with other nodes, and in this case, other relays. When a pair of nodes or relays

establish contact they combine meta information concerning past contact events.

Each half of the contact pair then prioritizes its own packets according to how likely it

is that the other node will be able to deliver them according to a certain service metric.

In our simulations we elected to have RAPID attempt to minimize average delay. For

step 1 of Procedure 4, we injected 2000 packets, each 1K in size, into the network

at the beginning of the day at source buses chosen uniformly and independently

at random. The corresponding destination buses were also chosen uniformly and

112

independently at random. All mobility traces came from the DieselNet [107] bus

network (see Section 1.3).

The wireless radios used in the DieselNet testbed have an approximately 140 meter

range, so we created potential relay locations by tessellating the area of operation with

140 meter squares. Only those squares intercepted by at least two buses (indicated by

registration from GPS units on-board each bus) were kept as potential relay locations.

We were able to use real transmission values for connection events between buses,

but naturally had no transfer data for GPS events. In order to estimate transmission

values between buses and relays, we used the mean transfer value over all connection

events for the given day.

7.5 Evaluation

Our evaluation proceeds according to Procedure 4, where each step of the procedure

is followed for all 58 days of traces. After completing steps 1 and 2 we are left with

the one-hop demand matrix M1. For every trace day, we arbitrarily fix the target

relay flow P ∗ = 15MB, which is to say that 15MB of demand is satisfied from matrix

M1. In step 3, Algorithm ALLOCATE identifies good candidates for relay placement,

which we call the bounding placement. Figure 7.3 shows how average delay decreases

with the quantity of relays allocated. The figure indicates that there is a significant

reduction in average delay when moving from 10 to 20 relays. However, moving

from 40 to 50 relays produces no discernible improvement. This suggests that for

P ∗ = 15MB, 50 relays saturates the network. Hence forth, we fix the number of

relays at 50. The bounding placement heavily favors regions where buses congregate,

113

0

50

100

150

200

250

300

350

10 20 30 40 50
Number of Relays

A
vg

. D
el

iv
er

y
D

el
ay

 (
M

in
u

te
s)

Figure 7.3. Average delay for 15MB throughput given various number of relays.

which supports our decision to analyze frequency-based placement. The next section

demonstrates this similarity.

7.5.1 Visualizing Placement

Recall that the bounding placement is the placement returned by Algorithm

ALLOCATE while the frequency placement is a greedy placement according to

the frequency of bus visitation at a given location. The frequency and bounding

placement strategies operate with vastly different sets of information and depth of

analysis. While the frequency solution relies entirely on GPS data, the bounding

solution additionally utilizes complete knowledge of one-hop demand. In light of

these differences, the similarity of the two placements is striking. Figures 7.4(a) and

7.4(b) show the 50 most commonly chosen relay locations for bounding and frequency

solutions over the first 30 days of traces. Comparing the placements to the bus routes

114

(a) (b)

Figure 7.4. The 50 most commonly chosen locations over the first 30 trace days for
(a) bounding placement (b) frequency placement.

depicted in Figure 1.2, we see that the relays span a length of road running through

Amherst Center and various adjacent side streets.

Figures 7.5(a) and 7.5(b) show the fraction of trace days that choose each of the

50 most popular locations for the bounding and frequency placements respectively.

That is to say, the figures show the popularity of the 50 most commonly chosen

locations across all trace days. There are a small number of locations (roughly

20 according to both strategies) that are chosen on the majority of days. These

locations constitute hubs, whose existence provide support for the rationality of a

frequency-based placement scheme. The relatively high frequency of the other 30

locations makes a case for broadening the scope of our frequency analysis. To test

this idea, we create a new placement strategy that trains on the first 30 days by

115

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n

 o
f

D
ay

s

Location

(a)

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
 o

f
D

ay
s

Location

(b)

Figure 7.5. Redundancy of top 50 location choices for the first 30 days for (a)
bounding placement (b) frequency placement.

simply observing the popularity of each location on each day, then tests on the latter

28 days. We call this the trained placement.

7.5.2 Frequency-based placement is nearly D-optimal in DieselNet

In this section we apply our bounding techniques to validate frequency-based

placement strategies in trace driven simulation. Our ultimate goal is to show that

these strategies perform well relative to the D-optimal solution. Recall that the relay

flow is the total amount of one-hop demand passing through placed relays, and the

target relay flow is equal to the value of parameter P ∗ in Problem D-placement. This

section shows that the trained placement strategy achieves 40% of the target relay

flow with D-optimal delay on 40% of the trace days.

The bounding solution provided by Algorithm ALLOCATE delivers a bounding

delay, D, which is the average delay associated with satisfying the target relay flow.

116

Because ALLOCATE is a solution to R-Placement, which is itself a relaxation of

D-Placement, we can conclude that for the same target relay flow, the D-optimal delay

is no less than D. This makes the bounding delay an important parameter for testing

all placement strategies; by restricting relay flow delay to D and measuring what

fraction of target relay flow is actually delivered, we can compare each placement

strategy to the D-optimal strategy. Our approach is to test each placement strategy

in trace driven simulations as described in Section 7.4.1 where we additionally fix the

maximum relay flow delay to the bounding delay. We test the following placement

strategies.

• Frequency: relays placed at most frequently visited locations each day and

relay flow delay limited to D

• Frequency×2: relays placed at most frequently visited locations each day and

relay flow delay limited 2D

• Trained: relays placed at most frequently visited locations over first 30 days

and relay flow delay limited D

Figure 7.6 shows the fraction of target relay flow that each strategy was able

to pass within the bounding delay (twice this delay for frequency×2). The trained

solution is consistently superior to the other two strategies. It delivers up to 40% of

the target relay flow with D-optimal delay. The frequency solution was consistently

worse, but frequency×2 had the best worst-case performance with fully 90% of trace

days achieving at least 15% of target relay flow with D-optimal delay.

117

Figure 7.6. Aggregate relay flow by day where maximum average delay is limited to
the bounding delay on that day and plotted as a CCDF over all days (28 for Trained,
58 for others).

7.5.3 Impact on End-to-End Performance

In the previous section we saw that frequency-based placements can be nearly

D-optimal in DieselNet on a significant portion of the trace days. But measuring the

proximity to the D-optimal solution can only show how well a strategy satisfies one-

hop demand. In this section we apply our placement strategies to the full end-to-end

routing problem.

Figures 7.7(a) and 7.7(b) show the packet delivery rate and average delay, re-

spectively, for each of our placement strategies. For contrast, we added the results

from the none placement, which also takes the bounding delay as its maximum delay,

but uses no relays. Not surprisingly, none placement does not perform well, it has

the lowest delivery rate and the second worst average delay. Improving over the

results shown in Figure 7.6, frequency×2 performs the best in terms of delivery rate

except that it has no days delivering more than 85% of their packets. Because of its

118

(a) (b)

Figure 7.7. End-to-end performance in Simulations Frequency, Frequency×2, None,
and Trained for (a) packet delivery rate and (b) average delay.

construction, frequency×2 has far higher average delay than all the other strategies.

The trained strategy consistently delivers more packets than frequency, which was

also predicted by Figure 7.6. Figure 7.7(b) reveals that there is no penalty in terms

of average delay for the trained placement.

7.6 Algorithms

119

Algorithm 3 FRONT LOAD(M1, B,A)

∀to, x, E(x, to)← 0 Initialize Egress for each
out-time
∀t, bi, bo, d(t, bi, bo)←M1(bi, bo; t) Initialize Demand between
input and output buses
for x ∈ {1, . . . , L} do
∀bi, I(bi)← 0 Initialize Ingress for the given input bus
for t ∈ {1, . . . , T} do
∀bi ∈ A(x, t), I(bi)← I(bi) +B(x, t) Add bytes to each relay,
for each adjacent bus at time t
for bo ∈ A(x, t); ti ∈ {1, . . . , t}; bi ∈ A(x, ti) do
δ ← max{B(x, t),min{I(bi), d(ti, bi, bo)}} Pass as many bytes as
Egress without exceeding B
E(x, t)← E(x, t) + δ
I(bi)← I(bi)− δ
d(ti, bi, bo)← d(ti, bi, bo)− δ

end for
end for

end for

120

Algorithm 4 ALLOCATE(m,L, F)

TABLES← ∅
for λ ∈ L do

for fi ∈ F do
δ(1, {λ}, fi)← Y (λ, fi)

end for
TABLES← TABLES ∪ {δ(1, {λ}, :)}

end for
while |TABLES| > 1 do

PAIRS← MATCH(TABLES)
while |PAIRS| > 0 do

PAIR← POP(PAIRS)
δ0(m0, L0, :)← PAIR[0]; δ1(m1, L1, :)← PAIR[1]
for m∗ ∈ {1, . . . ,m0 +m1} do
δ(m∗, L0 ∪ L1)←∞

end for

for fj ∈ {f1, . . . , fi} do
for fk ∈ {fi − fj, . . . , fi} do

for mj ∈ {0, . . . ,m0} do
m∗ ← min{m′ −mj,m1}
for mk ∈ {0, . . . ,m∗} do
mj ← max{1,mj +mk}
δL ← δ(m1, L1, fj); δR ← δ(m2, L2, fk)
δ(m′, L, fi)← min{δ(m′, L, fi), δL + δR}

end for
end for

end for
end for
TABLES← {δ(:, L0 ∪ L1, :)}

end while
end while
return TABLES[0]

121

CHAPTER 8

COMPUTATIONAL COMPLEXITY

8.1 Problem MinConn

Wolcowicz and Zhao [144] studied a problem fundamentally similar to MinConn:

Graph Partitioning. They sought to discover the fewest number of edges whose

removal could partition a graph into disconnected blocks with sizes n1, . . . , nb. Their

idea was to first assign an indicator vector to each block x1, . . . , xb, where xij = 1

iff vertex j is assigned to block i. The ideal optimization algorithm would assign

the xi so that |xi| = ni and the number of edges between vertices in different blocks

was minimized. Counting the number of edges between blocks can be accomplished

follows: label edges passing between blocks as external. These edges compose the

edge cut ; its cardinality is called the edge cut size. It can be verified that L • xi(xi)T

gives the number of external edges incident to vertices in block i [28]. It follows that

1
2

∑
i L • xi(xi)T gives the edge cut size. A simpler version of this problem can be

realized for both edge and vertex partitions on two blocks as follows.

PROBLEM 12: EdgePartition(H,n1, n2)

• Given: Graph H = (V,E) and desired blocks sizes n1 and n2, with n1 + n2 =

|V |.

122

• Find: minimum quantity of edges whose removal creates two blocks with sizes

n1 and n2.

PROBLEM 13: V ertexPartition(H,n1, n2)

• Given: Graph H = (V,E) and desired blocks sizes n1 and n2, with n1 + n2 =

|V |.

• Find: minimum quantity of vertices whose removal creates two blocks with

sizes n1 and n2.

Bui and Jones [117] showed that weaker versions of these problems are NP-

hard. The version they analyzed looked for the smallest cut that separates a graph

into two blocks, each no smaller than α|V |, with α ≤ 1
2
. To show that problems

MinConn(Θ, ν, 0) and MinConn(Θ, 0, ε) are also NP-hard, it will suffice to reduce

them to the latter.

THEOREM 4: EdgeSeparator(H,n1, n2) ≤MinConn(G, 0, ε).

PROOF: Consider the decision problem DEdgeSeparator(H,n1, n2, k), which re-

turns 1 when there exists an edge separator of size k or less that achieves balance

(n1, n2). Assume without loss of generality that n1 ≤ n2. We will show that any

instance of DEdgeSeparator can be efficiently transformed into an instance of the

decision problem DMinConn(G, 0, ε, c). DMinConn(G, 0, ε, c) returns 1 when at

least c clients are disconnected from all servers after removing any ε edges and returns

0 otherwise.

123

For any instance (H,n1, n2, k) ∈ DEdgeSeparator, with H = (VH , EH), fashion a

corresponding instance of DMinConn: (G, 0, ε, c) as follows. For G = (SG ∪ CG, EG),

let CG = VH and initialize EG = EH . Let SG = {s} be a single vertex, and add to

EG one edge between s and each client in CG. Finally, set c = n1 and ε = n1 + k.

Ignore, for the moment, s and all adjacent edges, call this graph G∗. What remains

in G∗ is a graph isomorphic to H. Therefore, any optimal cut corresponding to a

solution to DEdgeSeparator in H will also exist in G∗. That is, the smallest cut in H

that creates blocks of size n1 and n2 in H will also create blocks of size n1 and n2 in

G∗. So

(H,n1, n2, k) ∈ DEdgeSeparator ⇔ (G∗, 0, k, n1) ∈ DMinConn.

But any block of size n1 in G must additionally cut the n1 edges adjacent to s before

being completely disconnected from the other block. The result follows by combining

the size, k, of the block cut in G∗ with the size, n1, of this server cut so that ε = n1+k.

�

COROLLARY 4: V ertexSeparator(H,n1, n2) ≤MinConn(G, ν, 0).

PROOF: The proof of Theorem 4 also applies here if we change edge cuts to

vertex cuts and replace each undirected edge of the form (s, ci) ∈ EG with the path

(s, xi) ∼ (xi, ci) where each xi is an additional client vertex.

�

124

8.2 Problem MinPairs

Problem MinPairs(G, e) is nearly the dual of the undirected and unweighted

version of the β-edge-disruptor problem. It seeks a subset of edges that disconnect a

fraction of at least (1-β) strongly connected pairs of vertices. The authors showed

that this problem is NP-hard by reducing to it the Balanced Cut (or Edge-Separator)

Problem.

PROBLEM 14: β-Disruptor(H, β)

• Given: Graph H = (V,E) and desired fraction of disconnected pairs β ∈ [0, 1].

(excluding reflexive pairs of the form (v, v) with v ∈ V).

• Find: minimum quantity of edges whose removal leaves at least β|V | discon-

nected pairs of vertices.

THEOREM 5: β-Disruptor(H, β) ≤ MinPairs(G, ε)

PROOF: Let (H,n), with H = (V,E), be any instance of the β-Disruptor problem.

We solve this problem with at most |E| invocations of Problem MinPairs(G, ε) as

follows. Let G = H and for each ε′ ∈ {1, 2 . . . |E|} let x = MinPairs(G, ε′). If

x−
√
x ≥ β|V | return ε.

�

The proof can be easily extended to show that MinPairs(G, ν) is also NP-hard.

But we provide a different proof that generalizes the problem to address a wide variety

of metrics. Recall the Vertex Cover problem,

125

PROBLEM 15:VC (G, k)

• Given: Graph G = (V,E) and integer k ≤ |V |.

• Find:

– 1 if there exists a set S ⊆ V, |S| ≤ k, such that every edge in e ∈ E has at

least one endpoint in S.

– 0 otherwise.

The Vertex Cover problem has been shown to be NP-complete [74]. We next

introduce a bit of terminology and then a generalized graph vulnerability decision

problem.

DEFINITION 1: The set of all graphs is given by G. A function on G is any

function of the form f : G → R. We call f well defined if it achieves its minimum

only when G contains no edges.

PROBLEM 16: DMinMetric(G, ν, f, c)

• Given: Graph G = (V,E), ν ∈ N, and f : G → R.

• Find:

– 1 if there exists a set S ⊆ V, |S| ≤ ν, such that f(GS) ≤ c.

– 0 otherwise.

THEOREM 6: Problem MinMetric is NP-hard whenever f(G) is well defined and

computable in time polynomial in G and k.

126

PROOF: Let graph G = (V,E) and integer k constitute an instance of the Vertex

Cover Problem. For a given f , construct a corresponding instance of the DMinMetric

problem by leaving G unchanged and letting ν = k and c = f((V, ∅)). Suppose

that VC(G, k) = 1 for some set S ⊆ V, |S| ≤ k. This implies that there are

no edges in GS. Hence, the same choice of S will render f(GS) = c. Therefore,

DMinMetric(G, ν, f, c) = 1.

Conversely, suppose that VC(G, k) = 0. It must be the case that

DMinMetric(G, ν, f, c) = 0 as well because if it did not then there would be some

set S ⊆ V, |S| ≤ ν such that f(GS) ≤ c. But since f is well defined we know

that GS contains no edges. This set S could thus be used to form a vertex cover

for G of size less than ν. Hence, VC(G, ν) = 1. It follows by contradiction that

DMinMetric(G, ν, f, c) = 0.

�

8.3 Problem Placement

Our final discussion attempts to characterize the computational complexity of

Problem D-Placement. Recall the Maximum Coverage Problem

PROBLEM 17: Maximum Coverage (MC)

• Given: Collection of sets U and integer k ≤ |V |.

• Find: maximum |
⋃
S∈χ S| over all χ ⊆ U , |χ| = k.

127

THEOREM 7: Problem D-Placement(D, L,M1,m, P ∗) is NP-hard.

PROOF: We reduce the Problem MC, to Problem D-Placement(D, L,M1,m, P ∗).

Construct instance I = (D, L,M1,m, P ∗) of ΠD as follows. Assume that there is a

single time step in D and let m = k. For each i ∈ U , create two nodes ni1 and ni2 in

D and assign a single unit of one-hop demand between them. Map each set S ∈ χ to

a relay location λ ∈ L, and let both ni1 and ni2 be adjacent to λ iff i ∈ S. Consider

the set of optimal locations K and two-hop routing R2 from D-Placement. Exactly u

items in U can be covered by k sets in χ iff there exists finite average delay P ∗ = u.

�

128

BIBLIOGRAPHY

[1] www.caida.org.

[2] http://sedac.ciesin.columbia.edu.

[3] http://www-cta.ornl.gov/transnet/highways.html.

[4] http://www.socrata.com.

[5] www.haciendacdc.org.

[6] www.transco.ph/gridmap/2006

[7] I.F. Akyildiz, W. Su, Sankarasubramaniam.Y., and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 2001.

[8] R. Albert, H. Jeong, and A. Barabasi. Error and attack tolerance of complex networks.
Nature, 406:378–382, 2000.

[9] David Alderson, Lun Li, Walter Willinger, and John C. Doyle. Understanding
internet topology: principles, models, and validation. IEEE/ACM Trans. Netw.,
13(6):1205–1218, 2005.

[10] Noga Alon. On the edge-expansion of graphs. Combinatorics Probability and Com-
puting 11, 1993.

[11] Noga Alon. Spectral techniques in graph algorithms. Springer-Verlag, 1998.

[12] M. Amin. Security challenges for the electricity infrastructure. Computer, 2002.

[13] M. Amin. North america’s electricity infrastructure: are we ready for more perfect
storms? IEEE Symposium on Security and Privacy, 2003.

[14] William A. Arbaugh, Narendar Shankar, and Y.C. Justin Wan. Your 802.11 wireless
network has no clothes. IEEE Wireless Communications, 2002.

[15] Susanne Aref and Barry Miller. Analysis on 2004 data Submitted into Damage
Information and Reporting Tool (DIRT). Technical report, Common Ground Alliance,
December 2005.

129

[16] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embed-
dings and graph partitioning. Proceedings of the ACM Symposium on Theory of
computing, 2004.

[17] Ashwin Arulselvan, Clayton W. Commander, Lily Elefteriadou, and Panos M. Pardalos.
Detecting critical nodes in sparse graphs. Computers and Operations Research, 2008.

[18] Aruna Balasubramanian, Brian Neil Levine, and Arun Venkataramani. DTN Routing
as a Resource Allocation Problem. In Proc. ACM SIGCOMM, August 2007.

[19] Aruna Balasubramanian, Brian Neil Levine, and Arun Venkataramani. Dtn routing as
a resource allocation problem. ACM Special Interest Group on Data Communication,
2007.

[20] Aruna Balasubramanian, Ratul Mahajan, Arun Venkataramani, Brian Neil Levine,
and John Zahorjan. Interactive wifi connectivity for moving vehicles. ACM Special
Interest Group on Data Communication.

[21] Nilanjan Banerjee, Mark D. Corner, and Brian Neil Levine. An Energy-Efficient
Architecture for DTN Throwboxes. In Proc. IEEE Infocom, May 2007.

[22] Nilanjan Banerjee, Mark D. Corner, Don Towsley, and Brian N. Levine. Relays, base
stations, and meshes: Enhancing mobile networks with infrastructure. International
Conference on Mobile Computing and Networking, 2008.

[23] Nilanjan Banerjee, Mark D. Corner, Don Towsley, and Brian Neil Levine. Relays, Base
Stations, and Meshes: Enhancing Mobile Networks with Infrastructure. Proceedings
of ACM MobiCom, 2008.

[24] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks.
Science, 286:590–512, 1999.

[25] Albert-laszlo Barabasi, Reka Albert, and Hawoong Jeong. Scale-free characteristics
of random networks: the topology of the world-wide web. 2000.

[26] Albert-Laszlo Barabasi, Zoltan Dezso, Erzsebet Ravasz, Soon-Hyung Yook, and Zoltan
Oltvai. Scale-free and hierarchical structures in complex networks. American Institute
of Physics Conference Proceedings 661: Modeling of Complex Systems, 2003.

[27] Albert-Laszlo Barabasi, Erzsebet Ravasz, and Tamas Vicsek. Deterministic scale-free
networks. Physica A: Statistical Mechanics and its Applications, 2001.

[28] E. R. Barnes and A. J. Hoffman. Partitioning, spectra and linear programming.
Progress in Combinatorial Optimization, 1984.

130

[29] Steven M. Bellovin. Using Link Cuts to Attack Internet Routing. Work-in-progress
Reports. Usenix Security Symposium, April 2003.

[30] Steven M. Bellovin and Emden R. Gansner. Using Link Cuts to Attack Internet
Routing. Technical report, http://www.research.att.com/~smb/papers/reroute.
pdf, 2003.

[31] Cathleen A. Berrick, Steve Morris, and Gary M. Malavenda. Federal efforts to
strengthen security should be better coordinated and targeted on the nation’s most
critical highway infrastructure. Technical report, United States Government Account-
ability Office, 2009.

[32] Sergei L. Bezrukov. Edge isoperimetric problems on graphs. 2002.

[33] G. Bianconi and A.-L. Barabasi. Competition and multiscaling in evolving networks.
Europhysics Letters, 54:436–442, 2001.

[34] Bela Bollobas. Random Graphs, chapter 2. Cambridge University Press, 2001.

[35] Bela Bollobas. Mathematical results on scale-free random graphs. 2003.

[36] Bela Bollobas and Oliver Riordan. Robustness and vulnerability of scale-free random
graphs. Internet Mathematics, 1(1):1–35, 2003.

[37] Anthony Bonato. A servey of models of the web graph. 2004.

[38] A. Broido and K. Claffy. Internet topology: connectivity of IP graphs. Proceedings of
SPIE ITCom, 2001.

[39] John Burgess, Brian Gallagher, David Jensen, and Brian Neil Levine. MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networks. In Proc. IEEE INFOCOM,
April 2006.

[40] Brendan Burns, Oliver Brock, and Brian Neil Levine. Mv routing and capacity building
in disruption tolerant networks. The IEEE Conference on Computer Communications,
2005.

[41] Kevin Butler, William Aiello, and Patrick McDaniel. Optimizing BGP Security by
Exploiting Path Stability. In Proc. ACM Computer and Comunnications Security
(CCS), pages 298–310, October 2006.

[42] Duncan S. Callaway, M. E. J. Newman, Steven H. Strogatz, and Duncan J. Watts.
Network robustness and fragility: Percolation on random graphs. Physical Review
Letters, 2000.

131

[43] J. M. Carlson and John Doyle. Highly optimized tolerance: a mechanism for power
laws in designed systems. Physics Review E, 1999.

[44] Satyabrata Chakrabarti and Amitabh Mishra. Qos issues in ad hoc wireless networks.
IEEE Communications Magazine, 2001.

[45] Haowen Chan, Debabrata Dash, Adrian Perrig, and Hui Zhang. Modeling Adoptability
of Secure BGP Protocols. In Proc. ACM SIGCOMM, pages 279–290, September 2006.

[46] P. Chan, M. Schlag, and J. Zien. Spectral k-way ratio-cut partitioning and clustering.
ACM/IEEE Design Automation Conference, 1993.

[47] Hyunseok Chang, Sugih Jamin, and Walter Willinger. Internet connectivity at the
as-level: an optimization-driven modeling approach. ACM Special Interest Group on
Data Communication, 2003.

[48] Hyunseok Chang, Sugih Jamin, and Walter Willinger. What causal forces shape
Internet connectivity at the AS-level. Technical report, University of Michigan, 2003.

[49] Ling-Jyh Chen, Chen-Hung Yu, Tony Sun, Yung-Chih Chen, and Hao-hua Chu. A
hybrid routing approach for opportunistic networks. ACM Special Interest Group on
Data Communication, 2006.

[50] F. R. K. Chung. Graphs with small diameter after edge deletion. Discrete Applied
Mathematics, 1991.

[51] F. R. K. Chung and M. R. Garey. Diameter bounds for altered graphs. Journal of
Graph Theory, 1984.

[52] Fan Chung. Discrete isoperimetric inequalities. Proc. Sympos. Appl. Math, 1991.

[53] Fan Chung, Linyuan Lu, and Van Vu. Eigenvalues of random power law graphs. 2003.

[54] Fan Chung and Kevin Oden. Weighted graph laplacians and isoperimetric inequalities.
2000.

[55] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. Breakdown of
the Internet under intentional attack. Physical Review Letters, 2001.

[56] James Davis, Andy Fagg, and Brian Neil Levine. Wearable Computers and Packet
Transport Mechanisms in Highly Partitioned Ad hoc Networks. In Proc. IEEE Intl.
Symp on Wearable Computers (ISWC), pages 141–148, October 2001.

[57] Anthony H. Dekker and Bernard D. Colbert. Network robustness and graph topology.
2004.

132

[58] Xenofontas Dimitropoulos, Dmitri Krioukov, George Riley, and KC Claffy. Revealing
the autonomous system taxonomy: The machine learning approach. Passive and
Active Measurement Conference, 2006.

[59] Chris H Q Ding, Xiaofeng He, and Hongyuan Zha. A spectral method to separate
disconnected and nearly-disconnected Web graph components. The Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001.

[60] Thang N. Dinh, Ying Xuan, My T. Thai, E.-K. Park, and Taieb Znati. On approxi-
mation of new opimization methods for assessing network vulnerability. Proceedings
of the IEEE Communications Society, 2010.

[61] Danny Dolev, Sugih Jamin, Osnat Mokryn, and Yuval Shavitt. Internet resiliency to
attacks and failures under BGP policy routing. Technical report, Hebrew University,
2003.

[62] W.E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM
Journal of Research and Development, 17:420–425, 1973.

[63] John C. Doyle, David L. Alderson, Lun Li, Steven Low, Matthew Roughan, Stanislav
Shalunov, Reiko Tanaka, and Walter Willinger. The ”robust yet fragile” nature of
the Internet. Proceedings of the National Academy of Sciences of the United States of
America, 2005.

[64] R. Elsasser, T. Lucking, and B. Monien. New spectral bounds on k-partitioning of
graphs. Proceedings of the thirteenth annual ACM symposium on Parallel algorithms
and architectures, 2001.

[65] Jakob Eriksson, Hari Balakrishnan, and Samuel Madden. Cabernet: Vehicular
Content Delivery Using WiFi. In Proceedings of ACM MobiCom, San Francisco, CA,
September 2008.

[66] Alex Fabrikant, Elias Koutsoupias, and Christos H. Papadimitriou. Heuristically
optimized trade-offs: a new paradigm for power laws in the Internet. ACM Symposium
on Theory of Computing, 2002.

[67] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-
tionships of the Internet topology. Special Interest Group on Data Communications,
1999.

[68] Stephen Farrell, Vinny Cahill, Dermot Geraghty, Ivor Humphreys, and Paul McDon-
ald. When tcp breaks: Delay- and disruption-tolerant networking. IEEE Internet
Computing, 2006.

133

[69] M Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
1973.

[70] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23:298–305, 1973.

[71] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory. Czechoslovak Mathematical Journal, 1974.

[72] Abraham Flaxman, Alan Frieze, and Juan Vera. Adversarial deletion in a scale free
random graph process. Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, 2005.

[73] Lixin Gao. On inferring autonomous system relationships in the internet. IEEE/ACM
Transactions On Networking, 2001.

[74] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[75] Christos Gkantsidis, Milena Mihail, and Ellen Zegura. Spectral analysis of internet
topologies. Proceedings of IEEE Conference on Computer Communications, 2003.

[76] S.P. Gorman, Schintler L., R. Kulkarni, and R. Stough. The revenge of distance:
Vulnerability analysis of critical information infrastructure. Journal of Contingencies
and Crisis Management, To appear.

[77] Leo Grady and Eric Schwartz. Isoperimetric graph partitioning for data clustering
and image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(3), 2006.

[78] Tony H. Grubesic, Timothy C. Matisziw, Alan T. Murray, and Diane Snediker.
Comparative approaches for assessing network vulnerability. International Regional
Science Review, 2008.

[79] Stephen Guattery and Gary L. Miller. On the performance of spectral graph parti-
tioning methods. Symposium on Discrete Algorithms, 1995.

[80] Jean-Loup Guillaume, Matthieu Latapy, and Clemence Magnien. Comparison of
failures and attacks on random and scale-free networks. International Conference on
Principles of Distributed Systems, 2005.

[81] Lars Hagen and Andrew B. Kahng. New spectral methods for ratio cut partitioning
and clustering. IEEE Transactions on Computer-Aided Design, 1992.

[82] C. Helmberg. Semidefinite programming. European Journal of Operational Research,
1999.

134

[83] B. Hendrickson and R. Leland. The Chaco User’s Guide, 2.0 edition, 1995.

[84] Alvin Hickson. Terrorist threat to u.s. highway system. Technical report, U.S.
Department of Homeland Security Transportation Security Administration, 2006.

[85] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack
Vulnerability of Complex Networks. APS Physics Review E, 65(5):056109.1–056109.14,
May 2002.

[86] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: a secure on-demand
routing protocol for ad hoc networks. Wireless Networks, 11(1-2):21–38, 2005.

[87] Yih-Chun Hu, Adrian Perrig, and Marvin Sirbu. SPV: secure path vector routing for
securing BGP. In Proc. ACM SIGCOMM, pages 179–192, 2004.

[88] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and
Christophe Diot. Pocket Switched Networks and Human Mobility in Conference
Environments. In Proc. ACM Workshop on Delay-Tolerant Networking, pages 244–251,
Aug. 2005.

[89] Mouhamad Ibrahim, Ahmad Al Hanbali, and Philippe Nain. Delay and Resource
Analysis in MANETs in Presence of Throwboxes. In Proc. Performance 2007, October
2007.

[90] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin Fall. Using redundancy to
cope with failures in a delay tolerant network. ACM Special Interest Group on Data
Communication, August 2005.

[91] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a delay tolerant network.
ACM Special Interest Group on Data Communication, 2004.

[92] P. Juang et al. Energy-Efficient Computing for Wildlife Tracking: design tradeoffs
and early experiences with ZebraNet. SIGOPS Oper. Syst. Rev., 36(5):96–107, 2002.

[93] H. Jun, M. H. Ammar, M. D. Corner, and E. Zegura. Hierarchical Power Management
in Disruption Tolerant Networks with Traffic-Aware Optimization. In Proc. ACM
SIGCOMM Workshop on Challenged Networks (CHANTS), September 2006.

[94] Hyewon Jun, Wenrui Zhao, Mostafa Ammar, Ellen Zegura, and Chungki Lee. Trading
latency for energy in densely deployed wireless ad hoc networks using message ferrying.
Elsevier Journal of Ad Hoc Networks, 2006. To Appear.

[95] Chris Karlof and David Wagner. Secure routing in wireless sensor networks: attacks
and countermeasures. Ad hoc Networks (Elsevier), 1(2–3):293–315, September 2003.

135

[96] G. Karypis and V. Kumar. Metis: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices, 4.0 edition, 1998.

[97] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. Secure Border Gateway Protocol (S-BGP)
— Real World Performance and Deployment Issues. In Proc. ISOC Symposium on
Network and Distributed System Security (NDSS), February 2000.

[98] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single
commodity flows. Annual ACM Symposium on Theory of Computing, 2006.

[99] J. Kleinberg. Detecting a network failure. Internet Mathematics, 1(1):37–56, 2000.

[100] Jon Kleinberg, Mark Sandler, and Aleksandrs Slivkins. Network failure detection and
graph connectivity. Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms, 2003.

[101] JEAN-JACQUES LAFFONT, SCOTT MARCUS, PATRICK REY, and JEAN TI-
ROLE. Internet peering. The American Economic Review, 2001.

[102] Ying-Cheng Lai, Adilson Motter, Takashi Nishikawa, Kwangho Park, and Liang Zhao.
Complex networks: dynamics and security. Pramana Journal of Physics, 2005.

[103] Yee Wei Law, Lodewijk van Hoesel, Jeroen Doumen, Pieter Hartel, and Paul Havinga.
Energy-efficient link-layer jamming attacks against wireless sensor network MAC
protocols. In Proc. ACM workshop on Security of ad hoc and sensor networks (SASN),
pages 76–88, Nov 2005.

[104] Heejo Lee and Jong Kim. Attack resiliency of network topologies. Parallel and
Distributed Computing : Applications and Technologies, 2004.

[105] Jeremie Leguay, Timur Friedman, and Vania Conan. Dtn routing in a mobility pattern
space. ACM Special Interest Group on Data Communication, 2005.

[106] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. 1999.

[107] Aruna Balasubramanianm Brian Neil Levine and Arun Venkataramani. Enabling
Interactive Applications for Hybrid Networks. The Annual International Conference
on Mobile Computing and Networking, 2008.

[108] Feng Li, Jie Wu, and Avinash Srinivasan. Thwarting blackhole attacks in distruption-
tolerant networks using encounter tickets. IEEE International Conference on Com-
puter Communications, pages 2428–2436, April 2009.

136

[109] Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Willinger. Towards
a theory of scale-free graphs: definition, properties, and implications (extended
version). Technical report, California Institute of Technology, 2005.

[110] Lun Li, David Alderson, Walter Willinger, and John Doyle. A first principles approach
to understanding the Internet’s router-level topology. ACM Spectial Interest Group
on Data Communication, 2004.

[111] Yong Liao, Kun Tan, Zhensheng Zhang, and Lixin Gao. Estimation based erasure-
coding routing in delay tolerant networks. The International Wireless Communications
and Mobile Computing Conference, 2006.

[112] Christian Locher, Bjorn Scheuermann, Christian Wewetzer, Andreas Luebke, and
Martin Mauve. Data aggregation and roadside unit placement for a vanet traffic
information system. ACM International Workshop on VehiculAr Inter-NETworking,
2008.

[113] Damien Magoni. Tearing down the internet. IEEE Journal on Selected Areas in
Communications, 2003.

[114] Bojan Mohar. The laplacian spectrum of graphs. Proceedings of the Sixth Quadrennial
Conference on the Theory and Applications of Graphs, 1998.

[115] Bojan Mohar and Svatopluk Poljak. Eigenvalues in combinatorial optimization.
Springer-Verlag, 1993.

[116] S. Murphy. BGP Security Vulnerabilities Analysis. Technical Report draft-ietf-idr-
bgp-vuln-00, IETF draft, February 2002.

[117] Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge
partitions in NP-hard. Information Processing Letters, 1992.

[118] Seung-Taek Park, Alexy Khrabrov, David M. Pennock, Steve Lawrence, C. Lee Giles,
and Lyle H. Ungar. Static and dynamic analysis of the internet’s suseptibility to
faults and attacks. IEEE Conference on Computer Communications, 2003.

[119] F. Pellegrini. SCOTCH and LIBSCTOCH User’s Guide, 4.0 edition, 2006.

[120] A. Pentland, R. Fletcher, and A. Hasson. DakNet: Rethinking Connectivity in
Developing Nations. IEEE Computer, 37(1):78–83, Jan 2004.

[121] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor
networks. Wireless sensor networks, 2004.

[122] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 1990.

137

[123] Kevin Poulsen. The backhoe: A real cyberthreat. Wired, Jan 2006.

[124] R. Preis and R. Diekmann. The PARTY Partitioning- Library User Guide, 1.1 edition,
1996.

[125] Anirudh Ramachandran and Nick Feamster. Understanding the network-level behavior
of spammers. In Proc. ACM SIGCOMM, pages 291–302, 2006.

[126] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabasi. Hierarchical
organization of modularity in metabolic networks. Science, 2002.

[127] Y. Rekhter and P. Gross. RFC 1772: Application of the Border Gateway Protocol in
the Internet, March 1995.

[128] Arnold L. Rosenberg and Lenwood S. Heath. Graph Separators with Applications.
Springer, 2001.

[129] Kimaya Sanzgiri, Bridget Dahill, Daniel LaFlamme, Brian Neil Levine, Clay
Shields, and Elizabeth Belding-Royer. Authenticated Routing for Ad hoc Networks.
IEEE/ACM Journal of Selected Areas in Communications: Special issue on Wireless
Ad hoc Networks (JSAC), 23(3):598–610, March 2005.

[130] Andrew J. Seary and William D. Richards. Partitioning networks by eigenvectors. In
Proceedings of the International Conference on Social Networks, 1995.

[131] Norbert Sensen. Lower bounds and exact algorithms for the graph partitioning
problem using multicommodity flows. European Symposium on Algorithms, 2001.

[132] B. Smith and J. Garcia-Luna-Aceves. Securing the Border Gateway Routing Protocol.
In Proc. of Global Internet, pages 103–116, November 1996.

[133] Bradley R. Smith, Shree Murthy, and J.J. Garcia-Luna-Aceves. Securing Distance
Vector Routing Protocols. In Proc. ISOC NDSS, Feb 1997.

[134] John Solis, N. Asokan, Kari Kostiainen, Philip Ginzboorg, and Jörg Ott. Controlling
resource hogs in mobile delay-tolerant networks. Computer Communications, 33(1):2–
10, January 2010.

[135] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra. Spray
and wait: An efficient routing scheme for intermittently connected mobile networks.
Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking,
2005.

[136] Carson W. Taylor. The anatomy of a power grid blockout. IEEE Power and Energy
Magazine, 2006.

138

[137] Md Yusuf Sarwar Uddin, Ahmed Khurshid, and Hee Dong Jung. Denial in dtns.
Technical report, University of Illinois, 2010.

[138] Danica Vukadinovic, Polly Huang, and Thomas Erlebach. On the spectrum and
structure of internet topology graphs. Second international workshop on Innovative
Internet Computing Systems, 2001.

[139] Tao Wan, Evangelos Kranakis, and P.C. van Oorschot. Pretty Secure BGP (psBGP).
In Proc. ISOC Symposium on Network and Distributed System Security (NDSS),
2005.

[140] Yong Wang, Sushant Jain, Margaret Martonosi, and Kevin Fall. Erasure-coding
based routing for opportunistic networks. ACM Special Interest Group on Data
Communication, 2005.

[141] David Watts. Security and vulnerability in electric power systems. 35th North
American Power Symposium, 2003.

[142] Jorg Widmer and Jean-Yves Le Boudec. Network coding for efficient communication
in extreme networks. ACM SIGCOMM workshop on Delay-tolerant networking, 2005.

[143] Wizzy digital courier. http://www.wizzy.org.za.

[144] Henry Wolkowicz and Qing Zhao. Semidefinite programming relaxations for the graph
partitioning problem. Discrete Applied Mathematics, 1996.

[145] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. The Feasibility
of Launching and Detecting Jamming Attacks in Wireless Networks. In Proc. ACM
Mobihoc, pages 46–57, May 2005.

[146] H Yang, H Y. Luo, F Ye, S W. Lu, and L. Zhang. Security in mobile ad hoc networks:
Challenges and solutions. Topics in Wireless Security, 2004.

[147] Wenrui Zhao, Yang Chen, Mostafa Ammar, Mark D. Corner, Brian Neil Levine, and
Ellen Zegura. Capacity Enhancement using Throwboxes in DTNs. Proceedings of
IEEE International Conf on Mobile Ad hoc and Sensor Systems (MASS), 2006.

[148] Shi Zhou and R. J. Mondragon. Redundancy and robustness of AS-level Internet
topology and its models. Electronics Letters, 2004.

[149] Shi Zhou and Raul J. Mondragon. The missing links in the BGP-based AS connectivity
maps. Passive and Active Measurement Workshop, 2003.

[150] Haojin Zhu, Xiaodong Lin, Rongxing Lu, Yanfei Fan, and Xuemin Shen. Smart: A
secure multilayer credit-based incentive scheme for delay-tolerant networks. IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, 58(8), October 2009.

139

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	9-2010

	Bounds on Service Quality for Networks Subject to Augmentation and Attack
	George Dean Bissias
	Recommended Citation

	tmp.1291226121.pdf.J6Z9S

