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ABSTRACT

IMPROVING DATA CENTER RESOURCE MANAGEMENT,
DEPLOYMENT, AND AVAILABILITY WITH VIRTUALIZATION

SEPTEMBER 2011

TIMOTHY WOOD

B.S., RUTGERS UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy

The increasing demand for storage and computation has driven the growth of large data

centers–the massive server farms that run many of today’s Internet and business applica-

tions. A data center can comprise many thousands of servers and can use as much energy

as a small city. The massive amounts of computation power contained in these systems

results in many interesting distributed systems and resource management problems. In

this thesis we investigate challenges related to data centers, with a particular emphasis on

how new virtualization technologies can be used to simplify deployment, improve resource

efficiency, and reduce the cost of reliability, all in application agnostic ways.

We first study problems that relate to the initial capacity planning required when de-

ploying applications into a virtualized data center. We demonstrate how models of virtu-

alization overheads can be utilized to accurately predict the resource needs of virtualized

vi



applications, allowing them to be smoothly transitioned into a data center. We next study

how memory similarity can be used to guide placement when adding virtual machines to

a data center, and demonstrate how memory sharing can be exploited to reduce the mem-

ory footprints of virtual machines. This allows for better server consolidation, reducing

hardware and energy costs within the data center.

We then discuss how virtualization can be used to improve the performance and effi-

ciency of data centers through the use of “live” migration and dynamic resource allocation.

We present automated, dynamic provisioning schemes that can effectively respond to the

rapid fluctuations of Internet workloads without hurting application performance. We then

extend these migration tools to support seamlessly moving applications across low band-

width Internet links.

Finally, we discuss the reliability challenges faced by data centers and present a new

replication technique that allows cloud computing platforms to offer high performance, no

data loss disaster recovery services despite high network latencies.
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CHAPTER 1

INTRODUCTION

Modern data centers are comprised of tens of thousands of servers, and perform the

processing for many Internet business applications. Data centers are increasingly using

virtualization to simplify management and make better use of server resources. This thesis

discusses the challenges faced by these massive data centers, and presents how virtualiza-

tion can provide innovative solutions.

1.1 Background and Motivation

Internet and business applications are increasingly being moved to large data centers

that hold massive server and storage clusters. Current data centers can contain tens or hun-

dreds of thousands of servers, and plans are already being made for data centers holding

over a million servers [65]. Some data centers are built to run applications for a single

company, such as the search engine clusters run by Google. Other data centers are operated

by service providers that are able to rent storage and computation resources to other cus-

tomers at very low cost due to their large scale. Cloud computing, which refers to hosting

platforms that rent data center resources to customers, is becoming increasingly popular for

running Internet websites or business applications. In all of these data centers, the massive

amounts of computation power required to drive these systems results in many challenging

and interesting distributed systems and resource management problems.

Virtualization promises to dramatically change how data centers operate by breaking the

bond between physical servers and the resource shares granted to applications. Virtualiza-

tion can be used to “slice” a single physical host into one or more virtual machines (VMs)
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that share its resources. This can be useful in a hosting environment where customers or

applications do not need the full power of a single server. In such a case, virtualization pro-

vides an easy way to isolate and partition server resources. The abstraction layer between

the VM and its physical host also allows for greater control over resource management.

The CPU and memory allocated to a virtual machine can be dynamically adjusted, and live

migration techniques allow VMs to be transparently moved between physical hosts without

impacting any running applications.

As data centers continue to deploy virtualized services, new problems have emerged

such as determining optimal VM placements and dealing with virtualization overheads. At

the same time, virtualization allows for new and better solutions to existing data center

problems by allowing for rapid, flexible resource provisioning. The central theme of this

thesis is to explore how virtualization can allow for application agnostic solutions when

dealing with challenges related to application deployment, resource management, and reli-

ability. Specifically, we try to answer the following questions:

• How can we transition applications running on native hardware to virtual machines

while ensuring they receive sufficient resources despite virtualization overheads?

• On what servers should we deploy new VMs in order to obtain the greatest level of

server consolidation?

• How can we efficiently manage server resources despite highly varying application

workloads?

• How can we effectively connect and manage multiple data centers?

• How can we ensure application reliability despite unexpected disasters that can bring

down entire data centers?

The data center environment makes these challenges particularly difficult since it re-

quires solutions with high scalability and extreme speed to respond quickly to fluctuating

2



MOVE Mem Buddies Sandpiper CloudNet Pipe Cloud

Deployment Resource Management Availability

Figure 1.1. The systems described in this proposal explore the challenges and relationships
between service deployment, resource management, and reliability.

Internet workloads. By tackling these problems, data centers can be made more efficient

and reliable, significantly reducing their hardware costs and energy utilization.

1.2 Thesis Contributions

Many of the challenges described in this thesis are not new problems related solely to

virtualized data centers. They are classical resource management problems that are often

further compounded by the massive scale of modern data centers. However, in each case,

we propose novel techniques that combine the flexibility and speed of virtualization with

intelligent control algorithms and modeling techniques.

1.2.1 Contribution Summary

This thesis proposes virtualization based techniques to simplify deployment, automate

resource management, and provide greater resilience in modern data centers. The funda-

mental thesis of this dissertation is that virtualization can provide powerful, application

agnostic techniques to improve data center agility, efficiency, and reliability. To this end

we have designed five key systems which provide new algorithms and mechanisms for

advanced virtualized data centers:

• MOVE: An automated model generation technique that quantifies the cost of virtual-

ization layer overheads to ease the transition to virtualized data centers [143].

• Memory Buddies: A VM placement scheme that maximizes memory sharing be-

tween VMs in order to provide greater server consolidation and improve memory

management [146].
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• Sandpiper: Automated hotspot detection and mitigation techniques that utilize dy-

namic resource allocation and live VM migration to prevent server overload [145,

141].

• CloudNet: A virtual network based infrastructure that seamlessly connects multiple

data centers and enables optimized migration of virtual machines between geograph-

ically separated data centers [139, 144].

• PipeCloud: A new approach to data replication that enables cloud based disas-

ter recovery to provide synchronous consistency guarantees while maintaining the

same level of performance as asynchronous approaches, despite higher WAN laten-

cies [142, 140].

These systems cover a spectrum of overlapping data center challenges as illustrated in

Figure 1.1.

1.2.2 Planning and Placement

Virtualization provides many benefits, but it also incurs a cost in the form of overheads

caused by the hypervisor. These costs come from various activities within the virtualiza-

tion layer such as binary code rewriting, traps caused by OS memory operations, and, most

commonly, I/O operation overhead. The actual overhead varies depending on the virtual-

ization platform being used, and different applications can see different types of overhead

depending on the nature of the application’s activities.

In Chapter 3 we propose the use of virtualization overhead models to help predict how

resource requirements of an application will change when it is transitioned to a virtualized

environment. We present MOVE, an automated model generation technique that builds

general purpose models that map the relationship between a native and virtual platform.

This simplifies the deployment of new applications to virtualized data centers since their

resource requirements can be easily predicted ahead of time. MOVE creates “generic”

4



models which can be applied to traces of any application which must be transitioned to the

virtual environment.

After the resource requirements of a new virtual machine are known, it must be placed

on a host within the data center. Minimizing the number of servers required to host a

given set of VMs can reduce the hardware and energy costs of a data center. Bin-packing

algorithms have been used to determine VM placements, but existing techniques often

require knowledge of the applications running within each virtual machine to determine

how they should be placed.

Chapter 4 presents how exploiting memory sharing between virtual machines can pro-

vide significant server consolidation benefits. We describe the Memory Buddies system

which uses a novel Bloom filter based fingerprinting technique to efficiently predict the

potential for sharing between large numbers of virtual machines, and uses that information

to guide server placement. This improves the energy efficiency of data centers and allows

them to be more reactive to changing workloads. Memory Buddies works at the virtualiza-

tion layer and thus requires no advance knowledge of the applications or operating systems

running in each VM.

1.2.3 Data Center Resource Management

The dynamic workloads seen by many of the applications running within data centers

mean that before long, the initial placement and resource shares given to a virtual machine

may become insufficient for its growing demand. Hotspots form within a data center when

the resource requirements of one or more VMs on a physical host exceed the host’s capacity.

The large scale nature and the speed with which workloads can change means that data

centers require automated resource management techniques to prevent these hotspots.

Chapter 5 describes how to dynamically adjust resource shares and migrate virtual ma-

chines between hosts in order to balance load. Our Sandpiper system includes techniques

to automatically detect hotspot formation, calculate new resource shares required for over-
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loaded VMs, and either initiate migrations to balance load or adjust resource allocations to

meet each VM’s needs. We consider both a completely black-box approach and one which

exploits application level information to improve decision making.

As more data centers are built across the world, it becomes increasingly desirable to

seamlessly connect them into large jointly managed resource pools. Having the flexibility

to group multiple data centers and dynamically move applications between them would

enable new approaches to cross data center resource management.

We propose the CloudNet infrastructure in Chapter 6 to seamlessly and securely con-

nect multiple data center sites into flexible resource pools. We then study how virtual

machine migration techniques can be adapted to work over the WAN, and present opti-

mizations to allow transparent migration of arbitrary applications over low bandwidth, high

latency links.

1.2.4 Reliability and Disaster Recovery

Data centers must provide not only performance guarantees, but reliability ones as well.

Disaster Recovery (DR) services attempt to protect applications by continuously replicat-

ing state to a secondary data center that can be switched to in the event of catastrophic

data center failure. These services come at high cost both economically and in terms of

application performance, particularly if no-data-loss consistency guarantees are required.

Chapter 7 proposes a new replication approach which offers synchronous consistency

guarantees but uses speculative execution to provide performance on par with asynchronous

approaches. Our PipeCloud system uses this replication protocol to protect virtual ma-

chines in a black-box manner that makes no assumptions about the applications or oper-

ating system inside. PipeCloud replicates VM disks to a backup cloud data center and

automates the failover and recovery process when a disaster is detected.
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1.3 Thesis Outline

This thesis is structured as follows. Chapter 2 provides background on data centers and

virtualization to set the context of our work. The thesis then starts with the challenges faced

during the planning and deployment phases of running a modern data center. Chapter 3 de-

scribes how to predict the way that resource requirements will change when transitioning

an application to a virtualized data center. This is followed in Chapter 4 with an explanation

of how memory sharing can be used to guide VM placement when deploying or consoli-

dating servers within a data center. Chapter 5 discusses resource management challenges

in data centers, and describes the use of VM migration to handle server hotspots caused by

changes in application resource requirements. In Chapter 6 we broaden our view to con-

sider multiple data centers and describe the infrastructure and tools required to move live

applications between them. Chapter 7 discusses our work on reliability and using cloud

platforms for disaster recovery. Finally, Chapter 8 summarizes the full thesis contributions

and discusses potential future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents background material on virtualization technologies and data cen-

ters to set the context for our contributions. More detailed related work sections are also

provided in the remaining chapters.

2.1 Data Centers

Data centers have grown in popularity as the processing power required by businesses

exceeds what they can maintain within their own corporate infrastructure. Data centers

have sprung up to act as large server farms that use economy of scale to provide compu-

tation and storage resources to one or more businesses with greater efficiency. A business

may own and operate its own data centers, or a data center may be operated by a service

provider that in turn rents shares of its resources to other businesses.

Data center operators face challenges from the initial capacity planning stages of de-

ploying and provisioning new applications, to efficiently allocating resources to meet the

application performance guarantees of live systems. At the same time, they must deal with

the problems of maintaining the hardware reliability, cooling, and energy needs of running

thousands of servers. All of these issues are compounded by both the massive scale of

modern data centers, and the fast paced workload dynamics of many data center applica-

tions.

Table 2.1 lists four key problem areas for data center operators. Administrators first

must deal with infrastructure challenges such as determining data center architectures and

providing sufficient cooling and power for large numbers of servers. A current trend in
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Area Challenges
Infrastructure
Deployment

Resource Mgmt
Reliability

Applications

server & network architecture, cooling & power management
capacity planning, service placement, application modeling
storage, server, & network provisioning, monitoring
high availability, fault tolerance, security
clustering frameworks, performance, configuration management

Table 2.1. Administrators face challenges related to data center infrastructure, deployment,
resource management, and reliability. This proposal covers aspects of the issues listed in
bold.

data center architecture is the use of large scale, modular data centers composed of shipping

containers filled with servers [65], but more radical proposals range from micro data centers

placed inside condominium closets [28] to floating barges filled with servers running off

of power generated from ocean currents [31]. The increasing energy consumption of data

centers is a growing concern, and work is being done in the “green computing” area to

better manage the power and cooling systems in data centers [25, 77, 100].

Next, data center operators must deal with the deployment and planning problems

related to estimating a data center’s capacity and initial provisioning for new applica-

tions [149]. This may require models of an application’s resource requirements [113, 148],

and an understanding of how they are impacted by different hardware configurations [114].

As data centers attempt to improve resource utilization through server consolidation, it also

becomes necessary for data center operators to understand how the placement of applica-

tions impacts performance and resource consumption [124].

Efficient resource management is a key concern for data center operators looking to

both meet application Service Level Agreements (SLAs) and reduce costs. Shared host-

ing platforms attempt to multiplex physical resources between multiple customer appli-

cations [24, 125]. However, without virtualization, it is difficult to provide strong isola-

tion between applications, and operating systems must be modified to fairly allocate re-

sources [134, 126].
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Reliability becomes an important concern when running mission critical applications

within data centers. The large scale of modern data centers means that hardware compo-

nents fail on a constant basis [97], requiring both low level fault tolerance techniques like

RAID, and high level reliability mechanisms within applications. Security is also an is-

sue, especially for shared data center environments, leading to much research on isolating

services and building trusted platforms [45, 40].

Finally, the massive scale of data centers has led to new distributed application ar-

chitectures. Clustering of web servers and databases becomes necessary when a single

commodity server cannot meet customer demands [89, 75]. Large scale data mining is

also an increasingly popular use for data centers, with search engines becoming some of

the largest consumers of data center resources. These systems employ clustering frame-

works like MapReduce and Dryad to distribute work across many hundreds or thousands

of nodes [33, 58].

This work focuses on three of these areas: deployment, resource management, and

reliability, with an emphasis on how virtualization can provide improved solutions.

2.2 Server Virtualization

Virtualization is not a new technology, but it has regained popularity in recent years

because of the promise of improved resource utilization through server consolidation. The

virtualization of commodity operating systems in [21] has led to the wide range of both

commercial and open source virtualization platforms available today [10, 131, 72, 55, 95].

Virtualization can be performed at the application level (e.g., Oracle’s VirtualBox or

VMware’s Player software), within an operating system (e.g., KVM or Linux Vservers),

or even below the operating system (e.g., VWware ESX). In this thesis we focus on the

Xen and VMware full system virtualization platforms. VMware’s ESX platform is a full

virtualization technique that provides a “bare-metal” hypervisor that manages a set of vir-

tual machines running unmodified operating systems [131]. Xen uses a paravirtualization
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technique that requires small changes to be applied to the operating systems within each

VM and a host OS to run device drivers, but allows for a simpler hypervisor layer [10].

Both systems support fine grain management of memory and CPU resources, as well as

the ability to transparently migrate running virtual machines from one physical server to

another [30, 91, 133]. In this thesis we make frequent use of the resource management and

migration tools provided by each virtualization platform.

2.3 Virtualization in Data Centers

Server virtualization has become popular in data centers since it provides an easy mech-

anism to cleanly partition physical resources, allowing multiple applications to run in isola-

tion on a single server. Virtualization helps with server consolidation and provides flexible

resource management mechanisms, but can introduce new challenges.

Determining where to run applications in a shared environment remains a challenge [124],

and virtualization adds new difficulties due to the variable virtualization overheads seen by

different applications and platforms [27]. Our work explores a new factor to consider when

placing VMs, the potential for memory sharing, and helps build models that characterize

VM overheads.

Some commercial systems now exist for automating the management of VM resources

[138, 37], and a variety of research projects have proposed schemes for management of

processing [43, 105] and memory [150, 80] resources. Our work was some of the first to

combine automated management of VM resources with dynamic migration to balance load

within commercial data centers.

Reliability is an important feature for data center applications, and virtualization has

been used to provide increased resiliency in the face of crash failures [32, 132]. Our work

extends these ideas to provide disaster recovery services across data centers, allowing ap-

plications to fail over from one to another with no data loss. We propose a new replication
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approach based on the ideas of external synchrony [92], which uses speculative execution

to combine the best aspects of synchronous and asynchronous approaches.
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CHAPTER 3

TRANSITIONING TO VIRTUAL DATA CENTERS

Virtualization technologies promise great opportunities for reducing energy and hard-

ware costs through server consolidation. However, to safely transition an application run-

ning natively on real hardware to a virtualized environment, one needs to estimate the

additional resource requirements incurred by virtualization overheads. In this chapter we

propose the use of automated model generation systems to characterize the relationship

between native and virtual platforms, easing the transition to virtualized data centers.

3.1 Background and Motivation

Modern data centers employ server virtualization to slice larger, underutilized physical

servers into smaller virtual ones. By allowing for greater resource multiplexing, virtualiza-

tion can decrease energy utilization and hardware costs. While many businesses would like

to lower costs by moving their applications from running on physical hardware to virtual

machines, they must ensure that this transition will not disrupt application performance by

incorrectly estimating the resource requirements of the virtualized application. A naı̈ve so-

lution is to simply monitor the workload of native applications and attempt to provision the

virtual servers based on the observed peak resource requirements. However, this does not

account for the different types of overhead caused by the virtualization layer, and can lead

to either over- or under-provisioning depending on the nature of the application.

In this chapter we present MOVE1, an automated model generation system which deter-

mines the relationship between the native and virtual platforms being used. The overhead

1Modeling Overheads of Virtual Environments
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of the virtual platform is characterized by running a series of microbenchmarks on both

platforms and building a regression model that relates the resource requirements of one

platform to the other. Although it is created using data from synthetic benchmarks, the

result is a general model which can be applied to traces from any other application in order

to predict what its resource requirements will be on the virtual platform.

3.2 Virtualization Overheads

Server consolidation is an approach to reduce the total number of servers in response to

the problem of server sprawl, a situation in which multiple, under-utilized servers take up

more space and consume more resources than can be justified by their workloads. A typical

approach for evaluating which workloads can be efficiently consolidated together is based

on multi-dimensional “binpacking” of resource usage traces. Under such an approach, each

application is characterized by its CPU, I/0 and memory usage over time. Then a binpack-

ing algorithm finds a combination of workloads with resource requirements which do not

exceed the available server resources. After the initial workload placement, specialized

workload management tools are used [56, 52] to dynamically adjust system resources to

support the required application performance.

In our work, we are concerned with the initial workload placement phase that requires

as an input the application resource usage traces. We assume that all applications are cur-

rently running on a native platform, and thus we must be able to predict how resource

requirements (in particular, CPU requirements) will increase due to virtualization over-

heads. It is important to know what an application’s resource needs are going to be prior to

transitioning it to the virtual environment. If these overheads are not accounted for during

initial planning, an application could be deployed to a server with insufficient resources,

resulting in unacceptable application performance.

Virtualization overheads depend on the type and implementation specifics of the vir-

tualization solution [115, 137, 67, 10]. Often, the “amount” of CPU overhead is directly
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proportional to the “amount” of performed I/O processing [27, 45], however different types

of I/O and different virtualization platforms may incur different overheads.

Xen and VMware ESX Server demonstrate the two popular I/O models for VMs. In

ESX (and Xen in its original design [10]), the hypervisor itself contains device driver code

and provides safe, shared access for I/O hardware (see Figure 3.1 a). Later, the Xen team

proposed a new architecture [39] that allows unmodified device drivers to be hosted and

executed in isolated “driver domains” (see Figure 3.1 b).

Virtual
Machine

Hypervisor

NIC Disk

Net Driver Disk Driver

(a) VMware I/O Model

Virtual
Machine

Hypervisor

NIC Disk

Domain-0

Net Driver

Disk Driver

(b) Xen I/O Model

Figure 3.1. Two popular Virtualization I/O models.

In Xen, the management domain (Domain-0) hosts unmodified Linux device drivers

and plays the role of the driver domain. This I/O model results in a more complex CPU

usage model with two components: CPU consumed by the guest virtual machine and CPU

consumed by Dom-0 which performs I/O processing on behalf of the guest domain. We

demonstrate our approach using Xen running paravirtualized VMs because it presents the

additional challenge of modeling both the virtualized application and the driver domain

(Dom-0) separately.

Given resource utilization traces of an application running natively, we aim to esti-

mate what its resource requirements would be if the application were transitioned to a

virtual environment on a given hardware platform. For example, let a collection of ap-

plication resource usage profiles (over time) in the native system be provided as shown
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in Figure 3.2 (top): i) CPU utilization, ii) transferred and received networking packets,

iii) read and written disk blocks.

Time
CP

U
Time

Ne
t

Time

Di
sk

Time

VM
 C

PU

Time

Do
m

0 
CP

U

Native App Traces

Virtual App Traces

Figure 3.2. Using native application traces to predict resource needs in virtual environ-
ments.

The goal of MOVE is to estimate the CPU requirements of the virtual machine running

the application and of Dom-0 which performs I/O processing on behalf of the guest VM.

Intuitively, we expect that CPU utilization of the VM is highly correlated and proportional

to the native CPU usage profile of the application, while Dom-0 CPU utilization is mostly

determined by a combination of I/O profiles (both network and disk).

We focus on estimating only CPU utilization since other metrics (such as disk and

network request rates) are not directly impacted by the virtualization layer–running an ap-

plication in a virtualizated environment will not cause more packets to be sent over the

network or more disk requests to be generated. Instead, the virtualization layer incurs addi-

tional processing overheads when I/O is performed; it is these overheads which our models

seek to capture. 2

Our Approach: MOVE is an automated model generation system which determines

the relationship between the native and virtual platforms being used. The overhead of the

2Virtualization also incurs a memory overhead. Both Xen and ESX Server require a base allocation for
Dom-0 or the Service Console, plus a variable amount per VM.
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virtual platform is characterized by running a series of microbenchmarks on both platforms

and building a model that relates the resource requirements on one platform to the other.

Although it is created using data from synthetic benchmarks, the result is a general model

which can be applied to traces from any other application in order to predict what its re-

source requirements will be on the virtual platform.

3.3 Profiling Native & Virtual Platforms

In order to characterize the overhead of a specific virtualization platform, we propose

running a set of microbenchmarks which define a platform profile. The same microbench-

marks are then run on a native hardware system in order to produce a second profile. As

the microbenchmarks run, resource utilization traces are gathered to define the platform

profile. These profiles are later used to define the model that relates the native and virtual

platforms.

3.3.1 Microbenchmark Requirements

The microbenchmarks used to generate platform profiles must meet two main criteria:

• Microbenchmarks must be able to apply a range of workload intensities.

• Microbenchmarks should function nearly-identically in native and virtual environ-

ments.

The first requirement allows the microbenchmarks to mimic the variable loads commonly

seen by enterprise applications, while the second ensures that the activities occurring on

both the native and virtual platforms are identical during the microbenchmarks, allowing

us to relate the resource consumption on one to the other. Therefore, we concentrate on

creating a set of microbenchmarks that can generate repeatable workloads at varying in-

tensities.
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3.3.2 Microbenchmark Workloads

The selected microbenchmarks have to create a set of workloads that utilize different

system resources and have a different range of workload intensities. MOVE uses a client-

server style setup for its benchmarks. In general, a client machine issues a set of requests

to the benchmark server running on the system being profiled. The clients adjust the rate

and type of requests to control the amount of CPU computation and I/O activities per-

formed on the test system. At a high level, our microbenchmarks are comprised of three

basic workload patterns that either cause the system to perform CPU intensive computation,

send/receive network packets, or read/write to disk.

• Our computation intensive workload calculates Fibonacci series when it receives a

request. The number of terms in the series is varied to adjust the computation time.

• The network intensive workload has two modes depending on the type of request.

In transmit mode, each incoming request results in a large file being sent from the

system being tested to the client. In receive mode, the clients upload files to the

benchmark application. The size of transferred files and the rate of requests is varied

to adjust the network utilization rate.

• The disk intensive workload has read and write modes. In both cases, a random file

is either read from or written to a multilevel directory structure. File size and request

rate can be adjusted to control the disk I/O rate.

Each workload is created by adjusting the request type sent to the server from the client

machines. We split each of the basic benchmark types, CPU-, network-, and disk-intensive,

into five different intensities ranging from 10% load to 90% load. The maximum load that

a server can handle is determined by increasing the throughput of benchmark requests until

either the virtual machine or Dom-0 CPU becomes saturated during testing. To create more

complex and realistic scenarios, we use a combination workload that exercises all three of

the above components. The combination workload simultaneously sends requests of all

18



types to the benchmarked server. The relative intensity of each request type is varied in

order to provide more realistic training data which does not focus exclusively on a single

form of I/O.

The microbenchmarks are implemented as a set of PHP scripts running on an Apache

web server in the benchmarked server. Basing the microbenchmarks on Apache and PHP

has the benefit that they can be easily deployed and executed on a wide range of hardware

platforms within a software environment which data center administrators are already fa-

miliar with. MOVE’s microbenchmark suite allows us to generate a diverse set of simple

and more complex workloads that exercise different system components.

The client workloads are generated using httperf [88] and Apache JMeter [5]. These

tools provide flexible facilities for generating variable and fixed rate HTTP workloads. The

workloads can then be easily “replayed” in different environments. Both tools can emulate

an arbitrary number of clients accessing files on a webserver.

3.3.3 Platform Resource Usage Profiles

MOVE generates platform profiles by gathering resource utilization traces while the

microbenchmarks are running. Within the native system, we currently gather information

about eleven different resource metrics related to CPU utilization, network activity, and

disk I/O. The full list of metrics is shown in Table 3.1. These statistics can all be gathered

easily in Linux with the sysstat monitoring package [119].

CPU Network Disk
User Space % Rx packets/sec Read req/sec
Kernel % Tx packets/sec Write req/sec
IO Wait % Rx bytes/sec Read blocks/sec

TX bytes/sec Write blocks/sec

Table 3.1. Resource Utilization Metrics

We monitor three CPU related metrics since different types of activities may have dif-

ferent virtualization overheads. For example, user space processing such as simple arith-
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metic operations performed by an application are unlikely to have much overhead in current

virtualization platforms. In contrast, tasks which occur in kernel space, such as context

switches, memory management, and I/O processing, are likely to have a higher level of

overhead since they can require traps to the hypervisor.

We measure both the packet rates and byte rates of the network interfaces since different

platforms may handle I/O virtualization in different ways. For example, prior to Xen ver-

sion 3.0.3, incoming network packets were passed between Dom-0 and the guest domain

by flipping ownership of memory pages, thus the overhead associated with receiving each

packet was independent of its size [45]. Newer versions of Xen directly copy packets from

Dom-0 to the guest domain rather than using page flipping, thus the overhead is also related

to the number of bytes received per second, not just the number of packets. We differenti-

ate between sending and receiving since these paths may have different optimizations. We

split disk measurements into four categories based on similar reasoning.

A resource usage trace is gathered for each benchmark set containing values for all

metrics listed in Table 3.1, plus the time interval, and benchmark ID. After the resource

metrics have been gathered on the native system, the Dom-0 and VM CPU utilizations are

measured for the identical benchmark on the virtualized platform.

3.4 Generating Overhead Models

This section describes how to create models which characterize the relationship be-

tween a set of resource utilization metrics gathered from an application running natively

on real hardware and the CPU requirements of the application if it were run on a virtual

platform. Two models are created: one which predicts the CPU requirement of the virtual

machine running the application, and one which predicts the Dom-0 CPU requirements

when it performs I/O processing on behalf of the guest domain.

The model creation employs the following three key components:

• A robust linear regression algorithm that is used to lessen the impact of outliers.
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• A stepwise regression approach that is employed to include only the most statistically

significant metrics in the final model.

• A model refinement algorithm that is used for post-processing the training data to

eliminate or rerun erroneous benchmarks and to rebuild a more accurate model.

Model Creation

To find the relationship between the application resource usage in native and virtualized

systems we use the resource usage profile gathered from a set of microbenchmarks run in

both the virtual and native platforms of interest (see Section 3.3.3).
Using values from the collected profile, we form a set of equations which calculate the

Dom-0 CPU utilization as a linear combination of the different metrics:

U1
dom0 = c0 + c1 ∗M1

1 + c2 ∗M1
2 + ...+ c11 ∗M1

11

U2
dom0 = c0 + c1 ∗M2

1 + c2 ∗M2
2 + ...+ c11 ∗M2

11 (3.1)

.... ....

where

• M j
i is a value of metric Mi collected during the time interval j for a benchmark

executed in the native environment;

• U j
dom0 is a measured CPU utilization for a benchmark executed in virtualized envi-

ronment with the corresponding time interval j.

Let cdom0
0 , cdom0

1 , ..., cdom0
11 denote the coefficients that approximate the solution for the equa-

tion set (3.1). Then, an approximated utilization Û j
dom0 can be calculated as

Û jdom0 = cdom0
0 +

11∑
i=1

M j
i · c

dom0
i (3.2)

To solve for cdom0
i (0 ≤ i ≤ 11), one can choose a regression method from a variety of

known methods in the literature. A popular method for solving such a set of equations is
Least Squares Regression that minimizes the error:

e =
√∑

j

(Û jdom0 − U
j
dom0)

2
j
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The set of coefficients cdom0
0 , cdom0

1 , ..., cdom0
n is the model that describes the relationship

between the application resource usage in the native system and CPU usage in Dom-0 on

behalf of the virtualized application.

We form a set of equations similar to Eq. 3.1 which characterize the CPU utilization

of the VM by replacing U i
dom0 with U i

vm. The solution cvm0 , cvm1 , ..., cvmn defines the model

that relates the application resource usage in the native system and CPU usage in the VM

running the application. To deal with outliers and erroneous benchmark executions in col-

lected data, and to improve the overall model accuracy, we apply a more advanced variant

of the regression technique as described below.

Robust Stepwise Linear Regression: To decrease the impact of occasional bad mea-

surements and outliers, we employ iteratively reweighted least squares [50] from the Ro-

bust Regression family. The robust regression technique uses a bisquare weighting function

which lessens the weight and the impact of data points with high error.

In order to create a model which utilizes only the statistically significant metrics and

avoids “overfitting” the data, we use stepwise linear regression to determine which set of

input metrics are the best predictors for the output variable [34]. Step-wise regression starts

with an “empty” model that includes none of the eleven possible metrics. At each iteration,

a new metric is considered for inclusion in the model. The best metric is chosen by adding

the metric which results in the lowest mean squared error when it is included. Before the

new metric is included in the model, it must pass an F-test which determines if including

the extra metric results in a statistically significant improvement in the model’s accuracy.

If the F-test fails, then the algorithm terminates since including any further metrics cannot

provide a significant benefit. The coefficients, for the selected metrics are calculated using

the robust regression technique described previously. The coefficient for each metric not

included in the model is set to zero.

Model Refinement: MOVE’s use of robust linear regression techniques helps lessen

the impact of occasional bad data points, but it may not be effective if all measurements
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within a microbenchmark are corrupt (this can happen due to unexpected background pro-

cesses on the server, timing errors at the client, or network issues). If some microbench-

marks have failed or collected data were corrupted then it can inevitably impact the model

accuracy.

In order to automate the model generation process and eliminate the need for manual

analysis of these bad data points, we must automatically detect erroneous microbenchmarks

and either rerun them or remove their data points from the training set. At runtime, it can

be very difficult to determine whether a benchmark is executed correctly, since the resource

utilization cannot be known ahead of time, particularly on the virtual platform which may

have unpredictable overheads. Instead, we wait until all benchmarks have been run and

an initial model has been created to post process the training set and determine if some

benchmarks have anomalous behavior.

First, we compute the mean squared error and standard deviation of the squared errors

when applying the calculated model to the full microbenchmark set. We then apply the

calculated model to the data from each benchmark run individually; if its error rate is

significantly larger than the mean square error across all the benchmarks then it is likely that

the benchmark did not run correctly. MOVE’s automated system detects this and attempts

to rerun the failed benchmark and regenerate the model.

Model Usage: Once a model has been created, it can then be applied to resource uti-

lization traces of other applications in order to predict what their CPU requirements would

be if transferred to the virtual environment. Resource usage traces of the application are

obtained by monitoring the application in its native environment over time. The traces must

contain the same resource metrics as presented in Table 3.1, except that CPU utilizations

of VM and Dom-0 are unknown and need to be predicted. Applying the model coeffi-

cients cdom0
0 , cdom0

1 , ..., cdom0
11 and cvm0 , cvm1 , ..., cvmn to the application usage traces in native

environment (using Equation 3.1), we obtain two new CPU usage traces that estimate the

application CPU requirements in Dom-0 and the virtual machine.
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3.5 Experimental Evaluation

In this section, we first try to justify a set of our choices presented in earlier Sections 3.3

and 3.4: why these metrics? why these microbenchmarks? why this model creation pro-

cess? After that, we evaluate the effectiveness of our models under several realistic web

application workloads on two different hardware platforms.

3.5.1 Implementation Details

Our implementation and evaluation has centered on the Xen virtualization platform. In

our evaluation, both the native systems and virtual machines run the Red Hat Enterprise

Linux 5 operating system with Linux kernel 2.6.18-8. We use paravirtualized Xen version

3.0.3-rc5.

Monitoring resource utilization in the native environment is done with the sysstat pack-

age [119] commonly used in Linux environments. The virtual CPU utilizations are mea-

sured using xentop and xenmon, standard resource monitoring tools included with the Xen

distribution. Statistics are gathered for 30 second monitoring windows in both environ-

ments. We have experimented with both finer grain and longer intervals and found similar

results. The system is configured that Dom-0 resides on a separate CPU.

We evaluate our approach using two realistic web applications:

• RUBiS [23] is an auction site prototype modeled after eBay.com. A client workload

generator emulates the behavior of users browsing and bidding on items. We use the

Apache/PHP implementation of RUBiS version 1.4.3 with a MySQL database.

• TPC-W [122] represents an e-commerce site (modeled after Amazon.com) imple-

mented with Java servlets running on Tomcat with a MySQL database.

Both applications have an application and a database tier. We profile and predict the

resource requirements of the application server tier; the databases are hosted on a separate

server which is sufficiently provisioned so that it will not become a bottleneck.

We have tested our approach on two different hardware platforms:
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• HP ProLiant DL385, 2 processors: AMD Opteron model 252 2.6GHz with 1MB L2

single-core, 64-bit; 2 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB 15K U320 Disk.

• HP ProLiant DL580 G2, 4 processors: Intel Xeon 1.6 GHz with 1MB L2 cache,

32-bit; 3 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB 15K U320 Disk.

3.5.2 Importance of Modeling I/O

MOVE generates models based on up to eleven different resource utilization metrics,

here we evaluate whether such complexity is warranted, or if a simple model based solely

on scaling CPU requirements is a viable approach. In the simplified approach, a model is

created using the same model generation techniques as described in Section 3.4, except that

instead of using all eleven metrics, only a single Total CPU metric is used to predict the

CPU needs in virtual environment. We produce a model using each technique to predict the

CPU requirements and demonstrate it using the CPU needs of the guest domain, since, in-

tuitively, it is more likely that the simplified model will perform better when predicting VM

CPU needs than when predicting Dom-0 since the latter is scheduled almost exclusively for

handling I/O.

Since our models are created with stepwise regression, not all of the eleven possible

metrics are included in MOVE’s final model. The Dom-0 model uses five metrics: Kernel

CPU, I/O Wait, Rx Packets/sec, Tx Packets/sec, and Disk Write Req/sec. Dom-0’s CPU

utilization is dominated by I/O costs, so a large number of I/O related metrics are important

for an accurate model. In contrast the virtual machine model uses only three metrics:

User Space CPU, Kernel CPU, and RX Packets. We compare MOVE’s multi-resource VM

model to the CPU-Scaling based model which uses only the Total CPU metric (equal to the

sum of User Space and Kernel CPU).

We evaluate the performance of these two models by training them on our microbench-

mark set and then comparing the error when the models are applied back to the training
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data. Figure 3.3 (a) shows the error CDF for each model, showing the probability that our

predictions were within a certain degree of accuracy for the virtual machine.
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Figure 3.3. (a) Using CPU as the only prediction metric leads to high error. (b) Using a
subset of benchmarks leads to poor accuracy when applied to data sets with different type
of I/O.

MOVE’s multiple resource model performs significantly better than the CPU scaling

approach; the 90th error percentile using our approach is 5% while the scaling approach

is 65%. Without information about I/O activities, the simple model cannot effectively

distinguish between the different types of benchmarks, each of which has different levels

of overhead. Even though the VM model only includes one I/O metric, splitting CPU into

User and Kernel time acts as a surrogate for detecting high levels of I/O. Our results suggest

that I/O activity can cause significant changes in the CPU requirements of both Dom-0 and

the guest domain: Dom-0 since it must process the I/O requests, and the guest because of

the increased number of hypercalls required for I/O intensive applications.

Figure 3.4 presents profiles of some of our CPU and network intensive microbench-

marks. The CPU intensive application exhibits only a small virtualization overhead oc-

curring for the VM CPU requirements and Dom-0 also has relatively low CPU needs. In

contrast, the network intensive application has a significantly higher requirement in Dom-0

as well as a much larger increase in VM CPU requirements relative to the native CPU uti-

lization. This further demonstrates why creating a model using only the native CPU metric

is incapable of capturing the differences in overhead caused by I/O requests.

26



100 150 200 250 300
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

 

 
Native
Dom−0
VM

(a) CPU Intensive

200 300 400
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

 

 
Native
Dom−0
VM

(b) Network Intensive

Figure 3.4. I/O intensive applications exhibit higher virtualization overheads.

3.5.3 Benchmark Coverage

In this experiment we examine how the three different benchmark types each add useful

information and examine the training set error of our model. Figure 3.3 (b) illustrates how

using only a single type of microbenchmark to build a model can produce very high error

rates when applied to applications with different workload characteristics.

For example, training the model solely with the CPU intensive microbenchmarks pro-

vides accuracy within 1% when applied back to the same kind of CPU intensive workloads,

but the median error rises to 670% when applied to the network intensive data. This hap-

pens because the CPU benchmark includes only very low network rates. When a model

based solely on that data tries to predict the CPU needs of the network intensive applica-

tions, it must extrapolate well beyond the range of data it was trained with, resulting in

wildly inaccurate numbers. The bottom row in the table corresponds to using all of the

benchmark data to create a model. This provides a high degree of accuracy in all cases

– while a specialized model may provide higher accuracy on data sets very similar to it,

we seek to build a general model which will be effective on workloads with a range of

characteristics.

Figure 3.5(a) shows the error CDF when all of our benchmark data is used to create a

model and then the model is validated by applying back to the training set. The error is

quite low, with 90% of the predictions being within 3% for Dom-0 and 7% for the virtual
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Figure 3.5. (a) CDF error of the training set on the Intel 4 -CPU machine. (b) Automatic
benchmark elimination can increase model accuracy

machine. This confirms our hypothesis that a single linear model can effectively model the

full range of training data.

3.5.4 Benchmark Error Detection

Our profiling system runs a series of microbenchmarks with identical workloads on

both the native and virtual platforms. This experiment tests our anomalous benchmark

detection algorithm. To be effective, it should be able to detect which benchmarks did

not run correctly so that they can be either rerun or eliminated from the training set. If

the detection scheme is too rigorous, it may eliminate too many data points, reducing the

effectiveness of the model.

We first gather a set of training data where 10 percent of the benchmarks are corrupted

with additional background processes. Figure 3.5(b) shows the change in model accuracy

after the error detection algorithm eliminates the malfunctioning microbenchmarks. We

then gather a second training set with no failed benchmarks and run the error detection

algorithm on this clean data set. We find that the model performance before and after the

error detection algorithm is identical since very few data points are eliminated.

While it is possible for these errors to be manually detected and corrected, our goal is to

automate the model creation procedure as much as possible. The error detection algorithm

reduces the human interaction required to create high quality models.
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3.5.5 Model Accuracy

To test the accuracy of a model, we use MOVE to generate a model for our Intel native

and virtualized platform. We then use this generic model to predict the resource needs of

the RUBiS and TPC-W web applications.

We first create a variable rate workload for RUBiS by incrementally spawning clients

over a thirty minute period. The system is loaded by between 150 and 700 simultane-

ous clients. This workload is repeated twice to evaluate the amount of random variation

between experiments. We record measurements and make predictions for 30 second in-

tervals. Figure 3.6 compares the actual CPU utilization of the RUBiS application to the

amount predicted by MOVE’s model. Note that the virtual machine running RUBiS is

allocated two virtual CPUs, so the percent utilization is out of 200.
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Figure 3.6. Prediction accuracy of the RUBiS web application.

Figure 3.7(a) shows a CDF of MOVE’s prediction error. We find that 90% of our

predictions for Dom-0 are within 4% accuracy, and within 11% for predicting the virtual

machine’s CPU utilization. Some of this error is due to model inaccuracy, but it can also

be due to irregularities in the data used as input to the model. For example, there is a spike

in the predicted CPU requirements of both Dom-0 and the VM around time interval 10.

This spike was caused by a background process running for a short period when RUBiS

was run in the native environment. Since the predicted values are based on these native
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measurements, they mistakenly predict the virtual CPU requirements to spike in the same

way.
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Figure 3.7. Error rates on the Intel platform.

We have also validated MOVE’s model on the TPC-W application. We create a chang-

ing workload by adjusting the number of emulated clients from 250 to 1100 in a random

(but repeatable) pattern. Figure 3.7(b) presents the error distribution for TPC-W. The error

for this application is almost identical to RUBiS, with 90th percentile error rates of 5% and

10% for Dom-0 and the virtual machine respectively.

3.5.6 Cross Platform Modeling

In many server consolidation scenarios, the transition from a native to a virtual platform

is accompanied by a change in the underlying hardware. However, using a single model

for multiple hardware platforms may be ineffective if they have different overhead costs.

Attempting to apply the model for the Intel system to the AMD system results in high error

rates as shown in Figure 3.9(a). To investigate why these two platforms exhibit such a large

difference, we compare the CPU required by the RUBiS application in the native and virtual

environments on both platforms in Figure 3.8. Not including the Dom-0 requirements, the

Intel system requires approximately 1.7 times as much CPU in the virtual case as it does

natively. On the AMD system, the increase is only about 1.4 times. The different scaling

between the native and virtual traces in each platform suggest that a single model cannot

be used for both platforms.

30



0 10 20 30 40 50 60 70
0

50

100

150

200

Time (30 second intervals)
C

P
U

 U
til

iz
at

io
n

 

 

Native
Virtual

(a) Intel

0 10 20 30 40 50
0

20

40

60

80

100

Time (30 second intervals)

C
P

U
 U

til
iz

at
io

n

 

 

Native
Virtual

(b) AMD

Figure 3.8. Comparison of CPU overhead on different hardware platforms.

We test MOVE’s ability to determine the relationship between native and virtual sys-

tems running on different hardware platforms by executing an identical set of microbench-

marks on the Intel and AMD platforms in both the native and virtual environments. Using

this data, we create two models, one which relates a native usage profile of the Intel plat-

form to a virtual usage profile of the AMD system and one which relates the native AMD

system to the virtualized Intel system.
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Figure 3.9. (a) Using a single model for different architectures is ineffective, (b) but cross
platform models are feasible.

Figure 3.9(b) presents the 90th error percentiles when these cross platform models are

used to predict the CPU needs of both the TPC-W and RUBiS workloads. The cross plat-

form models are very effective at predicting Dom-0 CPU needs, however the VM prediction

error is higher, particularly for the AMD to Intel model. We propose two factors which may

cause this jump in error. First, the AMD system has a significantly faster CPU than the Intel
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system, so translating the CPU component from one platform to the other requires a sig-

nificant scale up factor. As a result, small variations in the CPU needs of the AMD system

can result in larger fluctuations in the predicted CPU for the Intel system, leading to higher

absolute error values. Secondly, cross platform models for predicting virtual machine CPU

are typically more difficult than Dom-0 models. This is because Dom-0 models are pre-

dominantly based on I/O metrics such as packet reception rates and disk operations, which

have similar costs on both platforms. In contrast, the VM model is primarily based on the

CPU related metrics which may not have a linear relationship between the two platforms

due to differences in the processor and cache architectures. However, it should be noted

that in many cases, the AMD to Intel model performs better than the 90th error percentile

indicates; the median error is only 5%, and all of the points with high error occur at the

peaks of the RUBiS workload where the virtual CPU consumption exceeds 160%.

3.6 Discussion

In this section, we discuss the impact of the application behavior on the accuracy of the

prediction results and challenges introduced by dynamic frequency scaling.

Impact of application behavior on resource use: The timing for an application’s

operations in the native and virtualized environments may be slightly different if the appli-

cation has a strong “feedback loop” behavior.

a
b

a

Re
qu

es
ts

b

Time

Open Loop Closed LoopOriginal
?or

Figure 3.10. Resource requirements in different environments is influenced by the amount
of feedback in an application’s workload.

Figure 3.10 illustrates the difference between an application with (closed loop) and

without (open loop) feedback. In the original application trace, a series of requests arrive,

with their processing time indicated by the width of the rectangles. The value of a repre-
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sents the time from the start of one request until the start of the next, while b is the time from

the end of one request to the start of the next. When the same application is run on a dif-

ferent platform, the time to process a request may increase due to virtualization overhead.

The two move/figures on the right represent how the trace would appear if the application

does or does not exhibit feedback. With an open loop, the time between the start of each

request will remain a, even if the request processing time increases. This would occur if the

requests are being submitted by a client on another machine sending at a regular rate. For

an application with feedback, requests are processed then a constant delay, b, occurs before

the next request is processed. The figure illustrates that when request processing times in-

crease, applications with feedback may process fewer requests in a given time interval (due

to a slowdown), i.e., its CPU overhead is “spread” across a longer time period, resulting in

lower average CPU utilization.

It is impossible to tell if an application’s workload has a feedback loop just by looking at

resource utilization traces of the original application. So the estimated resource utilization

produced by our model for the application with a “feedback loop” might be higher than in

reality since such an application might consume CPU resources in virtualized environment

“slower” than in native one due to the increased latency on the application’s critical path.

Understanding Application Performance: While our models can accurately predict

the changes in resource requirements for a virtualized application, they cannot directly

model how application performance (ie. response time) will change. Unfortunately, this

is a difficult challenge, akin to making performance predictions under different hardware

platforms. Our approach tells system administrators the minimum amount of resources

which must be allocated to a VM in order to prevent significantly reduced performance due

to resource starvation. The application may still see some performance penalty due to the

longer code path as requests go through the virtualization layer. To accurately predict this

performance change would necessitate carefully tailored, application specific models.
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Our approach helps in estimating the resource requirements that are necessary for the

initial application placement in a virtualized environment. After the initial workload place-

ment, specialized workload management tools may be used [56, 52] to dynamically adjust

system resources to support the required application performance.

3.7 Related Work

Virtualization Overheads: Virtualization is gaining popularity in enterprise environ-

ments as a software-based solution for building shared hardware infrastructures. VMware

and IBM have released benchmarks [129] for quantifying the performance of virtualized

environments. These benchmarks aim to provide some basis for comparison of different

hardware and virtualization platforms in server consolidation exercises. However, they

both are lacking the ability to characterize virtualization overhead compared to a native

platform.

Application performance and resource consumption in virtualized environments can

be quite different from its performance and usage profile on native hardware because of

additional virtualization overheads (typically caused by I/O processing) and interactions

with the underlying virtual machine monitor (VMM). Several earlier papers which de-

scribe various VMM implementations include performance results that measure the im-

pact of virtualization overhead on microbenchmark or macrobenchmark performance (e.g.,

[11, 82, 133, 115, 3, 137, 67, 115, 27, 94]). The reported virtualization overhead greatly de-

pends on the hardware platform that is used in such experiments. For example, previously

published papers [11, 39] evaluating Xen’s performance have used networking benchmarks

in systems with limited network bandwidth and high CPU capacity. However, there are

cases where throughput degrades because CPU processing is the bottleneck instead of the

network [86, 45]. In many virtualization platforms, the “amount” of CPU overhead is di-

rectly proportional to the “amount” of performed I/O processing [27, 45]. For example, it

has been shown that networking packet rates are highly correlated with the measured CPU
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overhead [45]. Recent work attempts to reduce the performance penalty of network I/O by

bypassing parts of the virtualization layer [79, 135] or optimizing it [106]. However, since

these optimizations typically target only one source of virtualization overhead (network

I/O), our modeling system can still be employed to provide useful information about the

level of overhead incurred by a wider range of activities.

This extensive body of previous work has motivated us to select a set of microbench-

marks that “probe” system resource usage at different I/O traffic rates (both networking

and disk) and then employ these usage profiles for predicting variable CPU overhead of

virtualized environments.

Trace-based Approaches: In our work, we chose to represent application behavior

via resource usage traces. Many research groups have used a similar approach to charac-

terize application behavior and applied trace-based methods to support what-if analysis in

the assignment of workloads to consolidated servers [126, 104, 109, 41]. There are a few

commercial tools [51, 130, 57] that employ trace-based methods to support server consol-

idation exercises, load balancing, ongoing capacity planning, and simulating placement of

application workloads to help IT administrators improve server utilization. Since many vir-

tualization platforms introduce additional virtualization overhead, the trace-based capacity

planning and management solutions provide a capability to scale the resource usage traces

of original workloads by a specified CPU-multiplier. For some applications it might be

a reasonable approach, however, in general, additional CPU overhead highly depends on

system activities and operations performed by the application. Simplistic trace-scaling may

result in significant modeling error and resource over-provisioning.

System Profiling: Finally, there is another body of work [84, 112, 20, 108] that is

closely related to our thinking and the approach presented in this chapter. This body of

works goes back to 1995, when L. McVoy and C. Staelin have introduced the lmbench

– a suite of operating system microbenchmarks that provides a set of portable programs

for use in cross-platform comparisons. Each microbenchmark was purposely created to
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capture some unique performance problem present in one or more important applications.

Although such microbenchmarks can be useful in understanding the end-to-end behavior

of a system, the results of these microbenchmarks provide little information to indicate how

well a particular application will perform on a particular system. In [20, 108], the authors

argue for an application-specific approach to benchmarking. The authors suggest a vector-

based approach for characterizing an underlying system by a set of microbenchmarks (e.g.,

lmbench) that describe the behavior of the fundamental primitives of the system. The re-

sults of these microbenchmarks constitute the system vector. Then they suggest to construct

an application vector that quantifies the way that the application makes use of the various

primitives supported by the system. The product of these two vectors yields a relevant per-

formance metric. There is a similar logic in our design: we use a set of microbenchmarks

to characterize underlying system and virtualization solution. Then we apply the derived

model (analogy to a system vector) to the application usage traces (analogy to the applica-

tion vector) and use it for predicting the resource requirements of applications when they

are transferred to a virtual environment.

3.8 MOVE Conclusions

This chapter has motivated the need for improved estimates of application resource

requirements when they are consolidated to virtual environments. To this end, we designed

MOVE, an automated approach for profiling different types of virtualization overhead on

a given platform with regression-based models that map the native system profile into a

virtualized one. This model can then be used to accurately assess the required resources

and make workload placement decisions in virtualized environments.

Although MOVE uses data only from synthetic benchmarks, the result is a general

model which can be applied to traces from any other application in order to predict what

its resource requirements will be on the virtual platform. Our evaluation has shown that

MOVE effectively characterizes the different virtualization overheads of two diverse hard-
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ware platforms and that the models have median prediction error of less than 5% for both

RUBiS and TPC-W.
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CHAPTER 4

MEMORY SHARING GUIDED VM PLACEMENT

The previous chapter discussed how to predict the resource requirements of an appli-

cation when it is moved to a virtual environment. The next step in deploying applications

within a virtualized data center is to determine where to run each virtual machine and how

to colocate them together. One of the primary bottlenecks that limits how many VMs can

be grouped on a single server is the available memory. In this chapter we present how mem-

ory sharing between virtual machines can be used to guide VM placement and consolidate

applications onto a smaller number of physical hosts.

4.1 Background and Motivation

Modern hypervisors use a technique called content-based page sharing (CBPS) [133,

69] to intelligently share RAM across VMs. In this technique, duplicate copies of a page

resident on a host are detected and a single copy of the page is shared, thereby reducing the

memory footprint of resident VMs. Today this technique is widely deployed in VMware

ESX, with experimental support in Xen [87, 69]. The potential benefits of content-based

page sharing are well documented; for instance, the original VMware ESX paper [133]

reports memory savings of as much as 33% in measured production environments. Support

for memory sharing at finer, sub-page granularity can save more than 65% [47].

However, a CBPS mechanism by itself only shares redundant pages after a set of VMs

have been placed onto a physical host—the mechanism does not address the problem of

which VMs within the data center to colocate onto each host so that page sharing can

be maximized. This leaves this responsibility to system administrators who must make
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placement decisions based on knowledge of the applications and operating systems run-

ning within each virtual machine. Unfortunately, relying on this expert knowledge cannot

scale to the massive size of modern data centers. Thus, to fully realize the benefits of this

mechanism, a data center should implement an intelligent colocation strategy that automat-

ically identifies virtual machines with high sharing potential and then maps them onto the

same host. Such a colocation strategy can be employed both during the initial placement

of a new VM as well as during a server consolidation phase in order to consolidate existing

VMs onto a smaller number of physical hosts.

In this chapter we present Memory Buddies, a system for intelligent VM colocation

within a data center to aggressively exploit page sharing benefits. The key contribution

of this work is a memory fingerprinting technique that allows Memory Buddies to quickly

identify VMs with high page sharing potential. The memory fingerprints are compact rep-

resentations of the memory contents of virtual machines; these fingerprints may be com-

pared to determine the number of redundant pages between VMs and thus the potential for

memory savings.

Our second contribution is an intelligent VM colocation algorithm that utilizes our

memory fingerprinting techniques to identify VMs with high page sharing potential and

colocate them onto the same host. Finally, we have gathered a large set of real memory us-

age data from nearly two dozen Linux and Mac OS X servers, laptops, and desktops in our

department to help study the true potential for sharing between diverse sets of machines.

4.2 Problem and System Overview

Consider a typical virtualized data center where each physical server runs a hypervi-

sor and one or more virtual machines. Each VM runs an application or an application

component and is allocated a certain slice of the server’s physical resources such as RAM

and CPU. All storage resides on a network file system or a storage area network, which

39



eliminates the need to move disk state if the VM is migrated to another physical server

[30].

The hypervisor uses a content-based page sharing mechanism, which detects duplicate

memory pages in resident VMs and uses a single physical page that is shared by all such

VMs. If a shared page is subsequently modified by one of the VMs, it is unshared using

copy-on-write [133]. Thus, if VM1 contains M1 unique pages, and VM2 contains M2

unique pages, and S of these pages are common across the two VMs, then page sharing

can reduce the total memory footprint of two VMs to M1 + M2 − S from M1 + M2. The

freed up memory can be used to house other VMs, and enables a larger set of VMs to be

placed on a given cluster.

Problem formulation: Assuming the above scenario, the VM colocation problem is

one where each VM must be colocated with a set of other “similar” VMs with the most

redundant pages; the best placement strategy will allow the set of VMs to be packed onto

the smallest number of servers. Several instantiations of the smart colocation problem arise

during: (i) initial placement, (ii) server consolidation and (iii) offline planning.

During initial placement the data center servers must map a newly arriving VM onto

existing servers so as to extract the maximum page sharing. For server consolidation, VMs

need to be repacked onto a smaller number of servers (allowing the freed up servers to be

retired or powered off). Offline planning is a generalization of initial placement where a

set of virtual machines must be partitioned into subsets and mapped onto a set of physical

server to minimize the total number of servers.

In each case, the problem can be reduced to two steps: (i) identify the page sharing

potential of a VM with several candidate VM groups and (ii) pick the group/server that

provides the best sharing/memory savings. In scenarios such as server consolidation, live

migration techniques will be necessary to move each VM to its new home (server) without

incurring application down-time [91, 30].
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Figure 4.1. Memory Buddies System Architecture. The Nucleus sends memory fingerprint
reports to the Control Plane, which computes VM placements and interacts with each hosts
to place or migrate VMs according.

Finally, any data center that aggressively exploits page sharing should also implement

hotspot mitigation to address any significant loss of page sharing due to application termi-

nation or major application phase changes—such loss of page sharing can create memory

pressure and cause swapping. Hotspot mitigation techniques offload VMs to other servers

to reduce memory pressure.

System Overview: Low-level page sharing mechanisms only detect and share dupli-

cate pages belonging to resident VMs—they do not address the problem of which VMs to

colocate on a host to maximize sharing. Memory Buddies detects sharing potential between

virtual machines and then uses the low-level sharing mechanisms to realize these benefits.

The Memory Buddies system, which is depicted in Figure 4.1, consists of a nucleus,

which runs on each server, and a control plane, which runs on a distinguished control

server. Each nucleus generates a memory fingerprint of all memory pages within the VMs

resident on that server. This fingerprint represents the page-level memory contents of a VM

in a way which allows efficient calculation of the number of pages with identical content

across two VMs. In addition to per-VM fingerprints, we also calculate aggregate per-server

fingerprints which represent the union of the VM fingerprints of all VMs hosted on the

server, allowing us to calculate the sharing potential of candidate VM migrations.
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The control plane is responsible for virtual machine placement and hotspot mitigation.

To place a virtual machine it compares the fingerprint of that VM against server fingerprints

in order to determine a location for it which will maximize sharing opportunities. It then

places the VM on this server if there are sufficient resources available. The control plane in-

teracts with VMs through a VM management API such as VMware’s Virtual Infrastructure

or the libvirt API [76].

The following sections describe the memory fingerprinting and control plane algorithms

in detail.

4.3 Memory Fingerprinting

The nucleus runs on each physical server, computing memory fingerprints for each VM

resident on that server, as well as for the server as a whole. Ideally the nucleus would

be implemented at the hypervisor level, allowing re-use of many mechanisms already in

place to implement content-based page sharing. Our experiments were performed with

VMware ESX Server, however, and so lacking source code access1 we have implemented

the fingerprinting aspect of the nucleus within each VM, as a paired guest OS kernel module

and user-space daemon.

4.3.1 Fingerprint Generation

Content-based page sharing implementations for both Xen and VMware ESX use hashes

of page contents in order to locate pages with identical content which are thus candidates

for sharing. In the Memory Buddies nucleus Hsieh’s SuperFastHash algorithm [53] is used

to generate 32 bit hashes for each 4KB page. In order to measure potential sharing be-

1Our initial efforts had focused on the open-source Xen platform, where it was possible to make experi-
mental modifications to the hypervisor. However, Xen’s page sharing implementation is experimental and not
compatible with its live migration mechanism; since our work requires both mechanisms, the work presented
in this chapter makes use of VMware ESX Server.
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Figure 4.2. Bloom filter with four hash functions, containing a single key a.

tween VMs, rather than self-sharing, i.e., sharing within a single VM2, we gather the set of

unique page hashes for a VM’s pages to generate the raw memory fingerprint. Maintained

in sorted order, such a fingerprint may be easily compared against the fingerprint of another

VM or server, yielding a count of the pages duplicated between the two VMs and thus the

potential memory sharing between them.

4.3.2 Succinct Fingerprints

The memory fingerprints we have described consist of a list of page hashes; the in-

tersection between two such fingerprints may be computed exactly, but they are unwieldy

to use. Not only are they large—e.g. 1 MB of fingerprint for each 1 GB of VM address

space—but they must be sorted in order to be compared efficiently. To reduce this over-

head, we also provide a succinct fingerprint which represents this set of hashes using a

Bloom filter. [14, 71]. A Bloom filter is a lossy representation of a set of keys, which may

be used to test a value for membership in that set with configurable accuracy. The filter

parameters may be set to trade off this accuracy against the amount of memory consumed

by the Bloom filter.

As shown in Figure 4.2, a Bloom filter consists of an m-bit vector and a set of k hash

functions H = h1, h2, h3, ..., hk (k = 4 in the figure). For each element a, the bits corre-

sponding to positions H(a) = h1(a), h2(a), ..., hk(a) are set to 1; to test for the presence of

a, we check to see whether all bits in H(a) are set to 1. If this test fails we can be certain

2Our results indicate that a single virtual machine often contains significant numbers of duplicated pages,
a fact that we exploit in Chapter 6 to optimize VM migration.
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that a is not in the set. However, we observe that the test may succeed—i.e. result in a false

positive—if all bits in H(a) were set by the hashes of some other combination of variables.

The probability of such errors depends on the size of the vector m, the number k of bits set

per key, and the probability that any bit in the vector is 1.

If the number of elements stored is n, the probability ‘pe’ of an error when testing a

single key against the filter is given by pe =
(

1−
(
1− 1

m

)kn)k
≈
(
1− e−kn

m

)k
.

Thus given n, the number of pages belonging to a VM, proper choice of the size of the bit

vectorm and the number of hash functions k can yield a sufficiently small error probability.

Two Bloom filters may be compared to estimate the size of the intersection of their key sets;

this is covered in more detail in Section 4.3.3. In addition, multiple Bloom filters can be

combined by taking the logical OR of their bit vectors; Memory Buddies uses this to create

aggregate fingerprints for all VMs running on each host.

While Memory Buddies supports both fingerprint mechanisms, we note that in practice

neither full hash lists nor succinct fingerprints will produce an absolutely accurate predic-

tion of page sharing behavior, for several reasons. First, the fingerprints are snapshots of

time-varying behavior, and lose accuracy as the actual memory contents change after the

fingerprint was taken. A second reason is that comparison of snapshots only indicates how

many pages could be shared; for various reasons the page sharing logic within the hyper-

visor may fail to share some pages which might otherwise be sharable. Finally, additional

sharing occurs due to multiple copies of a single page within a VM; we ignore this self-

sharing since the hypervisor will be able to detect and utilize it regardless of where the VM

is placed.

4.3.3 Fingerprint Comparison

To estimate page sharing potential, we need to compare the memory fingerprints of two

or more virtual machines and compute their intersection: i.e. the number of identical pages

between the two. With raw memory fingerprints consisting of the full list of memory page
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Figure 4.3. Root Mean Squared Error (RMSE) of page sharing estimate for different mem-
ory and Bloom filter sizes.

hashes, this may be done by sorting the lists, comparing them, and counting the number

of matches. Comparing two concise fingerprints is somewhat more complicated, although

faster.

To calculate the size of this intersection, we examine the case of two Bloom filters

holding u1 and u2 unique entries each, plus c entries common between the two. We then

take the bitwise AND of the two filter vectors; the elements of this resulting vector will be

1 for (a) each bit set by the c common elements, and (b) each bit set by one or more keys

in each of the unique sets. We omit the mathematical derivation, which can be found in

related work [19], but note that the expected number of shared elements is [81]:

share =
ln(z1 + z2 − z12 − ln(z1 ∗ z2) + ln(m)

k(ln(m)− ln(m− 1))
(4.1)

where z1 and z2 are the numbers of zeros in the two Bloom filters, z12 is the number of

zeros in the AND of the two filters, m is the size of each of the filter vectors, and k is the

number of hash functions used.

The estimate contains a correction for the expected number of false matches between

the two vectors, and is thus considerably more accurate than the test of a single key against

the same Bloom filter. No closed-form solutions for the accuracy of this estimate have

been derived to date; however we are able to measure it for particular cases via Monte

Carlo simulation. In Figure 4.3 we see error results for different numbers of keys and
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Bloom filter sizes; the number of keys is expressed as a total amount of memory (e.g., 1

GB = 256K page hashes or keys) and the filter size is expressed as a fraction of the size

needed for the full hash list (e.g., 256K hashes requires 1024KB at 4 bytes per hash). The

error rate is the percent of total pages which are incorrectly considered to be shared or

unshared by the Bloom filter. We see that with a filter as small as 5% of the size of the

hash list—i.e. only slightly more than 1 bit per page—the expected error is less than 0.5%,

allowing us to estimate sharing quite precisely with succinct fingerprints. In addition to

the savings in communication bandwidth for reporting these succinct fingerprints, they are

also much faster to compare, as they are both much smaller and, unlike hash lists, require

no sorting before comparison.

4.4 Sharing-aware Colocation

The VM and server fingerprints are periodically computed and transmitted to the control

plane by each nucleus; the control plane thus has a system-wide view of the fingerprints

of all VMs and servers in the data center. The control plane implements a colocation

algorithm that uses this system-wide knowledge to identify servers with the greatest page

sharing potential for each VM that needs to be placed.

The control plane provides support for three types of placement decisions: initial place-

ment of new VMs, consolidation strategies for live data centers, and offline planning tools

for data center capacity planning.

4.4.1 Initial Placement

When a new virtual machine is added to a data center, an initial host must be selected.

Picking a host based simply on current resource utilization levels can be inefficient. The

placement algorithm in Memory Buddies instead attempts to deploy VMs to the hosts

which will allow for the greatest amount of sharing, reducing total memory consumption,

allowing more VMs to be hosted on a given number of servers.
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Each new VM is initially placed on a staging host where its resource usage and memory

fingerprint can stabilize after startup and be observed. Each VM periodically reports mem-

ory fingerprints as well as the resource usages on each server. Monitored resources include

memory, CPU, network bandwidth and disk; both the mean usage over the measurement

interval as well as the peak observed usage are reported. The placement algorithm uses

these reported usages to identify the best candidates for placing each new VM.

The algorithm first determines the set of feasible hosts in the data center. A feasible

host is one that has sufficient available resources to house the new VM—recall that each

VM is allocated a slice of the CPU, network bandwidth and memory on the host, and only

hosts with at least this much spare capacity should be considered as possible targets. Given

a set of feasible hosts, the algorithm must estimate the page sharing potential on each host

using our fingerprint comparison technique—the fingerprint for the VM is compared with

the composite fingerprint of the physical server directly using hash lists, or the number

of shared pages is estimated using Equation 4.1 if compact Bloom filters are being used.

The algorithm then simply chooses the feasible server that offers the maximum sharing

potential as the new host for that VM.

4.4.2 Server Consolidation

Memory Buddies’ server consolidation algorithm opportunistically identifies servers

that are candidates for shutting down and attempts to migrate virtual machines to hosts

with high sharing opportunities. In doing so, it attempts to pack VMs onto servers so as to

reduce aggregate memory footprint and maximize the number of VMs that can be housed

in the data center. Once the migrations are complete, the consolidation candidates can be

retired from service or powered down until new server capacity is needed, thereby saving

on operational (energy) costs. The consolidation algorithm comprises three phases:

Phase 1: Identify servers to consolidate. The consolidation algorithm runs periodically

(e.g., once a day) and can also be invoked manually when needed. A list of hosts which are
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Figure 4.4. A 2-step migration: VM3 is first migrated from Server 2 to Server 3 to free up
space for VM1. VM1 can then be migrated from Server 1 to Server 2.

candidates for consolidation is determined by examining memory utilization statistics for

each host; a server becomes a candidate for consolidation if its mean usage remains below

a low threshold for an extended duration.3 Currently our system only considers memory

usages when identifying consolidation candidates; however, it is easy to extend it to check

usages of all resources to identify lightly loaded servers.

Phase 2: Determine target hosts. Once the set of consolidation candidates has been

identified, the algorithm must determine a new physical server to house each VM. To do so,

we order VMs in decreasing order of their memory sizes and consider them for migration

one at a time. For each VM, the algorithm first determines the set of feasible servers in the

data center as described in Section 4.4.1. The host which will provide the greatest level of

sharing (while still ensuring sufficient resources) is then selected for each VM.

In certain cases, it is possible that there are no feasible servers for a VM. This can

happen if the VM has a large CPU, network or memory footprint and existing servers in

the data center are heavily utilized. In this case, the consolidation algorithm must con-

sider a multi-way move, where one or more VMs from an existing server are moved to

other servers to free up additional capacity and make this server feasible for the VM under

consideration, as illustrated in Figure 4.4. As migration does impose some overhead, the

algorithm attempts to minimize the number of moves considered in multi-way planning.

3In addition, the system can also check that the peak usage over this duration stayed below a threshold, to
ensure that the server did not experience any load spikes during this period.
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Phase 3: Migrate VMs to targets. Once new destinations have been determined for

each VM on the consolidation servers, our algorithm can perform the actual migrations.

Live migration is used to ensure transparency and near-zero down-times for the application

executing inside the migrated VMs.

To ensure minimum impact of network copying triggered by each migration on appli-

cation performance, our algorithm places a limit on the number of concurrent migrations;

once each migration completes, a pending one is triggered until all VMs have migrated

to their new hosts. The original servers are then powered off and retired or moved to a

shutdown pool so they can be reinitialized later if memory requirements increase.

4.4.3 Offline Planning Tool for Smart VM Colocation

The Memory Buddies system can also be used for offline planning to estimate the re-

quired data center capacity to host a set of virtual machines. The planning tool can be

used to answer “what if” questions about the amount of sharing potential for different VM

configurations, or to generate initial VM placements.

The offline planner takes as input:

1. A list of the data center’s hosts and their resource capacities.

2. Resource utilization statistics (CPU, network, and disk) for each system to be placed.

3. Memory fingerprints for each system.

The systems to be placed within the data center may either already be running as virtual

machines, or may be sets of applications currently running on physical hosts which are

to be moved to a virtualized setting (e.g. desktop virtualization). If the systems to be

hosted in the data center are not yet running on virtual machines, then additional modeling

techniques may be required to estimate the resource requirements of the applications after

virtualization overheads are added [143]. In either case, the memory fingerprints are gath-
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ered by deploying the memory tracer software (our kernel module implementation of the

nucleus) on each system to be moved to the data center.

The planning tool can be used to analyze “what if” scenarios where a data center ad-

ministrator wants to know about the resource consumption of different sets of VMs hosted

together. The tool can output the amount of both inter-VM and self-sharing likely to occur

for a given set of VMs. This provides valuable information about the expected amount of

memory sharing from colocating different applications or operating systems.

The offline planner can generate VM placements that match each VM to a host such

that the resource capacities of the host are not violated, while maximizing the amount of

sharing between VMs. This is analogous to a bin packing problem where the resource

constraints define the size of each bin. A variety of heuristics can be used for this sort

of problem. Memory Buddies uses a dynamic programming technique which determines

what subsets of VMs will fit on each host to maximize sharing while respecting constraints.

These constraints may be simple resource consumption thresholds such as not using more

than 80% of the CPU or requiring a portion of the server’s memory to be kept free to prevent

changes in sharing or memory requirements causing hotspots. Constraints can also be used

to enforce business rules such as only colocating a single customer’s VMs on a given host

or to ensure fault tolerance by preventing multiple replicas of an application from being

placed together. The tool’s output provides a list of which VMs to place on what hosts, as

well as the total memory consumption and expected rate of sharing.

4.5 Hotspot Mitigation

The Memory Buddies hotspot mitigation technique works in conjunction with the con-

solidation mechanism to provide a sharing-aware mechanism for resolving memory pres-

sure caused by changes in virtual machine behavior. Our system must detect such hotspots

when they form and mitigate their effects by re-balancing the load among the physical

hosts. We note that memory hotspots are only one form of such overload; other kinds of
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hotspots can occur due to demand for CPU, network, and disk resources. Such overloads

are best dealt with by other techniques [145] and are not considered in this work.

A memory hotspot may arise for several reasons. First, it may be due to increased

demand for memory by one or more virtual machines. Changing behavior on the part of

applications or the guest OS (e.g. the file system buffer cache) may result in a need for more

memory, which the hypervisor will typically attempt to meet by contracting the memory

balloon and returning memory to the guest. The second possible cause is due to a loss of

page sharing. If changes in virtual machine behavior cause its memory contents to change

(a so-called “phase change”) in such a way as to reduce memory sharing, then overall

memory usage on a physical server may increase even though the amount of memory seen

by each guest OS remains constant.

The control plane relies on statistics reported by the Memory Buddies nucleus to de-

tect memory hotspots. If implemented at the hypervisor level, the nucleus would have

direct access to information on the availability of physical memory; in our prototype we

must instead infer this information from guest behavior and externally reported hypervisor

statistics. In particular, we monitor both the level of swap activity on each guest OS, as

well as the number of shared pages reported by the hypervisor.

When swap activity rises above a certain threshold, a hotspot is flagged by the control

plane, which then attempts to resolve it by re-distributing VMs among physical servers. In

choosing a VM to move and a destination for that VM, we use the same algorithm as for

initial placement. In particular, we examine all VMs on the overloaded system, and for

each VM calculate the maximum gain in sharing which could be obtained by migrating

that VM to another feasible host. We then choose to migrate the VM which provides the

highest absolute gain in sharing—i.e. which provides the maximum system-wide increase

in available memory.
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Figure 4.5. Our implementation uses VMware ESX since it supports migration and page
sharing. As it is a closed source hypervisor, the nucleus is implemented as a memory tracer
component running within each VM.

If there are no feasible destinations for the virtual machines on the overloaded host, a

server must be brought in from the shutdown pool so that it can host one or more of the

VMs.

4.6 Implementation

The Memory Buddies implementation uses VMware ESX for the virtualization layer

as it supports both page sharing and virtual machine migration. While the ESX hyper-

visor already gathers page hashes to determine sharable pages [133], this information is

unavailable to our software because of ESX’s closed nature. As a result, our system im-

plementation moves the nucleus component from the hypervisor into each virtual machine

in the form of a memory tracing kernel module that supports Linux, Windows, and Mac

OS X. This software gathers the lists of hashes and sends them (or compact Bloom filters)

to the control plane. Figure 4.5 illustrates the specifics of our implementation. We have

deployed our tracer and control plane on a testbed for evaluation.

Memory Tracer: We have developed memory analysis tools that run on Linux, Mac

OS X, and Windows. The Linux tracer supports both 2.4 and 2.6 kernels, the Mac tracer

runs under OS X 10.5 on Intel and G4 systems, and the Windows tracer supports XP Service

Pack 2 and 32-bit Vista systems. All of the tracers work by periodically stepping through

the full memory of the machine being traced, generating 32 bit hashes for each page in

memory. When used in our testbed, the tracer is run within each virtual machine, and the
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resulting hash lists (or Bloom filters) are sent to the control plane for processing every few

minutes. An alternate version of our tracer has been designed solely for gathering memory

traces, and has been distributed to volunteers within our department to be run on a variety

of physical machines. We analyze the sharing potential in Section 4.7.2.

Under memory pressure, a VMware ESX host may make use of the balloon driver [133]

to reclaim memory from running VMs. We note that as the guest OS in unaware of the

balloon driver activity, our memory tracer may analyze such reclaimed memory pages. In

practice, however, this is not a concern, as reclaimed memory will uniformly appear zeroed,

and thus will not affect fingerprints based on unique page hashes.

Control Plane: The control plane is a Java based server which communicates with

the VMware Virtual Infrastructure management console via a web services based API.

The API is used by the control plane to discover which hosts are currently active and

where each virtual machine resides. Extra resource statistics are retrieved from the VMware

management node such as the total memory allocation for each VM. This API is also used

to initiate virtual machine migrations between hosts. The control plane primarily consists

of statistic gathering, sharing estimation, and migration components which comprise about

3600 lines of code.

Memory Buddies Testbed: The testbed is a cluster of P4 2.4GHz servers connected

over gigabit ethernet which combines the Control Plane with a set of virtual machines, each

running the Memory Tracer. Each server runs VMware ESX 3.0.1 and the VMware Virtual

Infrastructure 2.0.1 management system is on an additional node.

4.7 Experimental Evaluation

We have evaluated the Memory Buddies system to study the benefits of exploiting page

sharing information when determining virtual machine placement.

Section 4.7.1 discusses our evaluation workloads and experiment specifications. Sec-

tion 4.7.2 analyzes the sharing characteristics of the memory traces we have gathered. Our
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first case study measures the benefits of Memory Buddies for Internet Data Centers (section

4.7.3) on both our testbed and through trace driven simulation. Section 4.7.4 evaluates the

hotspot mitigation algorithm on our testbed and we explore offline planning with a desktop

virtualization case study in section 4.7.5. Finally, Section 4.7.6 shows the performance

tradeoffs of the fingerprinting techniques available in Memory Buddies.

4.7.1 Experimental Workloads

We conduct two sets of experiments to evaluate Memory Buddies. First, we demon-

strate the performance of our consolidation and hotspot mitigation algorithms on a small

prototype Memory Buddies data center running realistic applications. Second, to demon-

strate that these results apply to larger data centers and to real-world applications, we gather

memory traces from live machines in our department and use these traces to evaluate the

efficacy of our techniques.

Our prototype data center experiments are based on the following applications:

• RUBiS [23] is an open source multi-tier web application that implements an eBay-

like auction web site and includes a workload generator that emulates users browsing

and bidding on items. We use the Apache/PHP implementation of RUBiS version

1.4.3 with a MySQL database.

• TPC-W [122] models an Amazon style e-commerce website implemented with Java

servlets and run on the Jigsaw server with a DB2 backend.

• SpecJBB 2005 [111] is a Java based business application benchmark which emulates

a 3-tier system with a workload generator.

• Apache Open For Business (OFBiz) [99] is an open source suite of enterprise web ap-

plications with accouting, finance, and sales functionality used by many businesses.

We utilize the eCommerce component and a workload generator based on the JWe-

bUnit testing framework to emulate client browsing activities.
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Figure 4.6. Percentage of memory pages duplication between VMs on a collection of 30
diverse laptops, desktops, and servers. 33% of pages were sharable with exactly one other
machine, and 37% with one or more machines.

To ensure that inter-VM sharing is predominantly due to code pages, we randomize the data

used by different instances of same application— the workloads and database contents are

different for each VM instance to avoid sharing of data pages. For the multi-tier applica-

tions, we run all tiers within a single virtual machine. All Apache web servers are version

2.2.3 with PHP 4.4.4-9, MySQL databases are 5.0.41, Jigsaw is version 2.2.6, and the DB2

server was DB2 Express-C 9.1.2.

We extend our evaluation with a study of memory traces collected by our tracer tool.

We have distributed the memory tracer application to volunteers within our department

and gathered a total of over 130,000 memory fingerprints from more than 30 systems. 4

We use these traces both to analyze the sharing potential between actual systems and to

allow emulation of larger data centers. Finally, we use these memory traces to analyze the

accuracy and overhead of our different fingerprint comparison techniques.

4.7.2 Memory Trace Analysis

We have analyzed a subset of the traces gathered from machines within our department

to provide a summary of the level of page sharing available across a diverse set of ma-

chines. Here we examine the fingerprints gathered on June 10th 2008 from 24 Linux and

4We have released a portion of these traces and the code to process them to researchers worldwide on the
UMass Trace Repository website.
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Figure 4.7. Sharing aware vs sharing oblivious placement. Sharing aware detects similar
virtual machines and groups them on the same hosts.

Application Measured Sharing Pred. Sharing
TPC-W 38% 41%

OpenForBiz 18% 22%
RUBiS 16% 15%

SpecJBB 5% 5%

Table 4.1. Application types and their memory sharing levels. Measured sharing is ob-
tained from the live statistics of the hypervisor, while predicted sharing is computed from
the memory traces.

6 Mac OS X systems (our collection of Windows traces is currently too small to provide

significant results).

Figure 4.6 shows the number of pages which appear on only one, two, or more systems.

This indicates that, as expected, the majority of pages are unique, only appearing on a

single host. However, a significant portion of the pages reside on two or more machines.

This suggests that in an ideal case where all systems could be colocated onto a single

host, the total memory requirements of running these machines could be reduced by about

37%, giving an upper bound on the amount of sharing which could ever occur. We also

note that while many pages appear on two systems (33%), very few reside on three or

more machines. This emphasizes that random placement of virtual machines is unlikely to

realize the full benefits of memory sharing.
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4.7.3 Case Study: Internet Data Center

Many web hosting services rent virtual machine servers to customers since they can

be much cheaper than providing dedicated servers. These virtual servers are an excellent

candidate for exploiting page sharing since the base servers often run similar operating

systems and software, such as a LAMP stack or a J2EE environment. In this case study

we first test Memory Buddies’ ability to more effectively place different classes of appli-

cations typically found in an Internet data center. We utilize four different applications to

vary the sharing rate between virtual machines, and a testbed with four hosts. Note that

while the core application data is identical within an application class, the workloads and

database contents are different for each VM instance. Table 4.1 lists the different appli-

cation types and the level of sharing between pairs of virtual machines of the same type;

actual sharing values vary within a few percent depending on paging activities. We present

both the predicted sharing reported by our memory tracer and the actual level of sharing

achieved by the hypervisor. For the first two applications, the predicted level of sharing

is too high; this error occurs when the hypervisor does not choose to share some identical

pages, typically because it expects them to change too quickly. For RUBiS, the tracer un-

der predicts slightly, probably because our memory tracer is unable to access all memory

regions. SpecJBB obtains the smallest amount of sharing because it is the most memory

intensive application, quickly filling the VM’s memory with randomly generated data as

the benchmark runs.

We compare two placement algorithms: our sharing aware approach attempts to place

each virtual machine on the host that will maximize its page sharing and the sharing obliv-

ious scheme does not consider sharing opportunities when placing virtual machines, and

instead places each virtual machine on the first host it finds with sufficient spare capac-

ity. Although the sharing oblivious approach does not explicitly utilize sharing information

to guide placement, page sharing will still occur if it happens to place virtual machines

together with common pages. In addition, this means that self-sharing within each VM
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occurs in both scenarios, so the improvements we see are caused by intelligent colocation

leading to better inter-vm sharing. For simplicity, we assume that memory is the bottleneck

resource and do not consider CPU or network bandwidth as a constraint.

Initially, we create one virtual machine of each type and place it on its own physical

host. Additional VMs of each type are then spawned on a fifth host and migrated to one

of the four primary hosts. We compare the number of virtual machines which can be

successfully hosted using both our sharing aware algorithm which migrates each new VM

to the host with the greatest sharing potential and a sharing oblivious placement algorithm

which migrates each VM to the first host it finds with sufficient memory, without regard to

sharing. The experiment terminates when no new virtual machines can be placed.

Each virtual machine is configured with 384 MB of RAM, and the hosts have 1.5 GB

of spare memory since VMware reserves 0.5 GB for itself. Thus we expect each host

to be able to run about four VMs without sharing. Figure 4.7 displays the final place-

ments reached by each algorithm. The three web applications, TPC-W, OFBiz, and RU-

BiS, demonstrate a benefit from utilizing sharing, allowing more VMs to be packed than

the base four. The sharing oblivious algorithm places four VMs on each host, except for

host C on which it fits an extra VM due to the sharing between TPC-W instances. The

sharing aware approach is able to place a total of 20 virtual machines, while the Oblivious

approach can only fit 17. For this scenario, exploiting sharing increased the data center’s

capacity by a modest 17%.

We next use the memory traces gathered from these applications to simulate a larger

data center. We increase the total number of hosts to 100 and measure the number of

virtual machines which can be placed depending on whether sharing information is used.

Our trace driven simulator utilizes the same control plane and algorithms as described

previously. On this larger scale testbed, the sharing-aware approach places a total of 469

VMs, while the sharing oblivious approach can only host 406, giving a benefit of about

16% when using sharing. This matches well with the results from our testbed; the slight
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Figure 4.8. Hotspot mitigation: When a change in workload occurs, Memory Buddies
migrates VMs to consolidate VMs with higher sharing potential on the same hosts.

change in performance is due to the sharing oblivious approach getting ”lucky” and placing

more VMs together which happen to share pages.

Result: By reducing the total memory requirements on each host, the effective capacity

of a data center can be increased. Our testbed and trace driven simulations obtain benefits

of 16-17% due to increased inter-vm sharing when Memory Buddies guides VM placement.

4.7.4 Hotspot Mitigation

Workload variations occur over time for most web applications and this can reduce the

potential for memory sharing between colocated VMs in data centers. We have reproduced

a typical data center scenario to demonstrate Memory Buddies’ ability to detect and respond

to a memory hotspot when application phase changes. The experiment employs two hosts,

the first running two virtual machines (VM1 and VM2) and the second running only one

(VM3). All of the virtual machines are allocated 512MB of memory and serve static files

generated following the SPECweb99 specification [90] with Apache web servers. Initially,

we use httperf [88] to send an identical set of requests to each server resulting in a high

potential for sharing between VMs.

Figure 4.8 shows the amount of memory shared by each VM with the other VMs resid-

ing on the same host as reported by VMWare ESX. Since VM1 and VM2 are colocated,

they initially have a high level of sharing at about 400MB. After 60 seconds of load injec-

tion, we trigger a phase change for the requests being sent to VM2. As a result, the sharing
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between VM1 and VM2 decreases significantly putting more memory pressure on the host.

This triggers Memory Buddies hotspot mitigation mechanism at time 360 seconds. Since

VM1 and VM3 continue to receive the same workload, there is a high potential for sharing

between them. Therefore Memory Buddies determines that VM1 should be migrated to

Host 2. After the migration completes, the sharing rate between VM1 and VM3 gradually

increases again as ESX Server CBPS identifies sharable pages.

Result: Memory Buddies’ monitoring system is able to detect changes in sharing po-

tential brought on by application phase transitions. This type of hotspot is automatically

resolved by determining a different host with a higher sharing potential for one of the VMs.

4.7.5 Case Study: Desktop Virtualization

Desktop virtualization consists of moving traditional desktop environments to virtual

machines colocated in a data center. The user can then access his desktop environment

using a thin-client interface from various locations. System administrators that are planning

to deploy desktop virtualization need to estimate the memory requirements to host all the

desktop VMs on the servers. The potential effects of intra and inter-VM memory sharing

are not known a priori which makes it very hard to plan adequate memory resources. In

this case study, we show how we can use our tools to answer “what if” questions in order

to predict the memory requirements of colocated desktop virtual machines.

We have deployed our memory tracer on a set of real workstations running Windows,

Linux and MacOS X on PowerPC and Intel platforms. We have collected memory traces

from each machine every 30 minutes over several weeks. This data has been consolidated

in a database to allow for easier mining. Table 4.2 summarizes the various desktop config-

urations we have considered.

By combining the traces of the different machines in the database, we can quickly com-

pute how much memory sharing can be achieved for a particular combination of VMs. The

number of unique hashes found in the combined traces represent the number of physical
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OS CPU RAM
Darwin 9.0.0 PowerBook 6, PowerPC 1152
Darwin 9.2.0 Macmini1, i386 1024
Darwin 9.4.0 MacBook2, i386 2048
Darwin 9.4.0 iMac7, i386 2048
Linux 2.6.9 Intel Family 15 Model 2 1010

Linux 2.6.18 Intel Family 6 Model 2 2018
Windows NT 5.1 x86 Family 6 Model 15 511

Table 4.2. Machine configurations (as reported by their operating system) considered in
the desktop virtualization case study.

memory pages that will be needed by the hypervisor in case of perfect sharing. This upper-

bound of sharing includes both inter and intra-VM sharing. We use the collected data and

our tools to answer a number of “what if” questions with different combinations of OS

colocation. Table 4.3 shows the results we obtained for 4 questions: what is the potential

sharing (i) if 3 VMs have a different OS, (ii) if 2 VMs have the same OS but different ver-

sions and 1 VM has a different OS, (iii) if 3 VMs have the same OS but different versions

and 1 VM has a different OS, (iv) all VMs have the same OS version but possibly different

hardware platforms.

Shareable Predicted
OS combination Total memory pages server memory

Linux 2.6.9, Darwin 9.0.0, Win NT 5.1 4223 MB 13.2% 3666 MB
Darwin 9.4.0, Darwin 9.0.0, Win NT 5.1 5248 MB 35.3% 3397 MB

Darwin 9.*, Win NT 5.1 6272 MB 36.8% 3966 MB
Darwin 9.4.0 (3 MacBook2 + 1 iMac7) 8192 MB 40.0% 4917 MB

Table 4.3. Server memory usage prediction for various colocation configuration. Total
memory represents the total memory required without sharing and predicted memory is the
required memory on the server when all possible sharable pages are actually shared.

When heterogeneous OSes are combined (first line of the table), the sharing potential

only comes from intra-VM sharing and remains at a modest 13%. When we replace Linux

by another version of MacOS X, inter-VM sharing starts to play a significant role and mem-

ory sharing jumps to 35% overall. Adding different versions of the same operating system
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VM Hash List Bloom Size (KB)
RAM Size (KB) w/0.2% Error
1GB 1024 92
4GB 4096 124
8GB 8192 368

Table 4.4. Per VM communication cost in KB for hash lists and Bloom filters with a 0.2%
error rate.

(Darwin 9.0, 9.2 and 9.4) maintains a substantial inter-VM sharing for an overall memory

sharing close to 37%. When homogeneous software configurations are used even on differ-

ent hardware platforms, we observe memory sharing up to 40%. These numbers represent

the optimal memory sharing case and actual sharing might be lower depending on the hy-

pervisor implementation of page sharing. Note that the predicted server memory does not

account for the hypervisor memory requirements that are usually fixed and implementation

dependent.

If the machine workload varies greatly over time, it is possible to perform these compu-

tations with different traces taken at different points in time to evaluate the memory sharing

evolution over time. We found in our experiments that the predicted memory sharing did

not change significantly over time for desktop machines. Computing the memory server

prediction for a given configuration usually only takes few seconds but this may vary de-

pending on the database size and number of traces to analyze. It is then possible to use the

technique to answer a broad range of “what if” questions like sharing potential over time

or in the presence of workload variations.

Result: Memory Buddies can be used offline to compute memory sharing and answer

“what if” questions when planning for desktop virtualization. We found that colocating

different OSes only uses intra-VM sharing. However mixing different versions of the same

OS leads to substantial inter-VM sharing. As expected, the maximum sharing is observed

when similar versions of an OS are colocated.
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Figure 4.9. Bloom filter accuracy vs efficiency tradeoff. Smaller Bloom filter bit vectors
reduce the accuracy of sharing estimates, but also significantly reduce the computation time
required for comparison.

4.7.6 Fingerprint Efficiency and Accuracy

Memory Buddies allows a tradeoff between the accuracy, speed and space required for

estimating sharing potential depending on whether hash lists or Bloom filters are used.

We first measure the accuracy of Bloom filter comparisons when varying the size of the

Bloom filter’s bit vector. We use pairs of traces gathered in our department study from sys-

tems with 512MB, 1GB, and 2GB of RAM. We report the average error in percent of total

pages for four pairs of traces of each size. Figure 4.9(a) illustrates how the comparison er-

ror rapidly decreases as filter size rises, although larger memory sizes require bigger filters

to prevent hash collisions. These results confirm the simulation data shown previously in

Figure 4.3; a Bloom filter of only a few hundred KB is sufficient for an error rate of about

0.1%.

We next measure the time to compare two fingerprints to calculate the potential for

sharing when using our exact and compact techniques. In both approaches, the computation

time increases when using VMs with larger amounts of RAM, because either there are more

hashes to be compared or a Bloom filter with a larger bit vector is required in order to meet

a target accuracy level. Figure 4.9(b) demonstrates how the comparison time for a pair of

VMs increases with memory size. The exact comparison technique using hash lists first

sorts the two lists before comparing them. Since sorting can be the dominant cost, we
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Figure 4.10. Splitting each page into multiple chunks allows Memory Buddies to detect
sub-page level sharing between similar pages.

also present the time when lists are presorted by each VM prior to sending the hash lists

to the control plane. Presorting the lists decreases the comparison time by about an order

of magnitude, but incurs overhead on each host in the system. Switching to Bloom filters

reduces the time further, but at the expense of reduced accuracy.

The total communication overhead of the system is dependent on the number of VMs

running in the data center, the amount of RAM used by each VM, and the fingerprinting

method used. Table 4.4 compares the cost of storing or transmitting Bloom filter based

memory fingerprints or hash lists of various sizes. Fingerprints only need to be gathered

once every few minutes, incurring minimal network cost if there is a small number of

VMs. For very large data centers, the overhead of transmitting full hash lists can become

prohibitive, while the Bloom filter approach remains manageable.

Result: Employing Bloom filters in large data centers can reduce sharing estimation

time by an order of magnitude and can reduce network overheads by over 90%, while still

maintaining a high degree of accuracy.

4.7.7 Sub-Page Sharing

While VMware ESX currently only supports memory sharing at the granularity of full

pages, recent research has demonstrated that significant benefits can be obtained by sharing

portions of similar, but not identical pages [47]. We have added preliminary support to

Memory Buddies for detecting sub-page level sharing between systems by breaking each
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page into a series of n chunks, each of which is mapped to a 32bit hash. As a result,

Memory Buddies produces a fingerprint n times as large for each system, but it can use its

existing fingerprint comparison tools to detect similarity between different VMs.

To demonstrate the benefits of sub-page sharing, we have analyzed the amount of shar-

ing achieved between two systems running 64bit Ubuntu Linux, each with 2GB of RAM,

when the number of hashes per page is varied between one and thirty two. Figure 4.10

illustrates how subpage level sharing can triple the total amount of sharable memory. The

number of hashes per page could be selected by the system operator to balance the added

overhead of larger fingerprints against the increased accuracy in sub-page level sharing

estimation.

Result: Although Memory Buddies does not currently use a hypervisor that supports

sub-page level sharing, it can efficiently detect similar pages by generating multiple hashes

per page. This can provide significant benefits in total sharing.

4.8 Related Work

Transparent page sharing in a virtual machine hypervisor was implemented in the Disco

system [21]; however it required guest operating system modification, and detected iden-

tical pages based on factors such as origin from the same location on disk. Content-based

page sharing was introduced in VMware ESX [133], and later in Xen [69]. These imple-

mentations use background hashing and page comparison in the hypervisor to transparently

identify identical pages, regardless of their origin. Since our prototype lacks access to the

memory hashes gathered by the hypervisor, we duplicate this functionality in the guest OS.

In Memory Buddies, however, we extend the use of these page content hashes in order to

detect the potential for memory sharing between distinct physical hosts, rather than within

a single host.

The Difference Engine system was recently proposed as a means to enable even higher

degrees of page sharing by allowing portions of similar pages to be shared [47]. Although
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Memory Buddies has preliminary support for detecting sub-page sharing across machines

by using multiple hashes per page, it currently relies on ESX’s sharing functions which do

not support sub-page level sharing. We believe that as the technologies to share memory

become more effective and efficient, the benefits of using page sharing to guide placement

will continue to rise.

Process migration was first investigated in the 80’s [98, 121]. The re-emergence of vir-

tualization led to techniques for virtual machine migration performed over long time scales

in [107, 137, 70]. The means for “live” migration of virtual machines incurring downtimes

of only tens of milliseconds have been implemented in both Xen [30] and VMware [91].

At the time of writing, however, only VMware ESX server supports both live migration

and page sharing simultaneously.

Virtual machine migration was used for dynamic resource allocation over large time

scales in [105, 117, 43]. Previous work [145] and the VMware Distributed Resource Sched-

uler [138] monitor CPU, network, and memory utilization in clusters of virtual machines

and use migration for load balancing. The Memory Buddies system is designed to work

in conjunction with these multi-resource load balancing systems by providing a means to

use page sharing to help guide placement decisions. Moreover, offline planning of mem-

ory resources for desktop virtualization can be predicted accurately rather than relying on

generic rules of thumb that are recommended by manufacturers.

Bloom filters were first proposed in [14] to provide a tradeoff between space and accu-

racy when storing hash coded information. Guo et al. provide a good overview of Bloom

filters as well as an introduction to intersection techniques [44]. Bloom filters have also

been used to rapidly compare search document sets in [59] by comparing the inner prod-

uct of pairs of Bloom filters. The Bloom filter intersection technique we use provides a

more accurate estimate based on the Bloom filter properties related to the probability of

individual bits being set in the bit vector. This approach was used in [81] to detect similar

workloads in peer to peer networks.
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4.9 Memory Buddies Conclusions

Data center operators wish to deploy applications onto servers as efficiently as possible,

but relying on system administrator knowledge is impractical due to the large scale of

modern data centers. One of the key constraints in determining which applications can be

placed on which servers is the memory limitations of each machine. In this chapter, we have

presented Memory Buddies, a system that improves data center efficiency by automatically

consolidating VMs based on their potential to share identical regions of memory. This

reduces the memory footprint of each VM and allows more applications to be packed onto

each server.

We have made three contributions: (i) a fingerprinting technique—based on hash lists

or Bloom filters—to capture VM memory content and identify high page sharing potential,

(ii) a smart VM colocation algorithm that can be used for both initial placement of virtual

machines or to consolidate live environments and adapt to load variations using a hotspot

mitigation algorithm, and (iii) a collection of memory traces of real-world systems that we

are making available to other researchers to validate and explore further memory sharing

experiments.

We have shown that Memory Buddies can increase the effective capacity of a data cen-

ter by intelligently grouping VMs with similar memory contents, enabling a high degree of

inter-vm page sharing. We have also demonstrated that Memory Buddies can effectively

detect and resolve memory hotspots due to changes in sharing patterns. Thus the Memory

Buddies system assists with both the initial deployment of applications into a virtualized

data center and with live resource management, an area discussed further in the next chap-

ter.
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CHAPTER 5

DYNAMIC VIRTUAL MACHINE PROVISIONING

Once applications have been deployed to virtual machines within a data center, they still

need to be carefully managed to ensure a high level of performance. The highly dynamic

workload fluctuations seen by many data center applications means that the resource needs

of an application can vary significantly over time. In this chapter we propose the use

of dynamic VM resizing and live migration to balance load and prevent hotspots in data

centers.

5.1 Background and Motivation

One of the key benefits of virtualization is the ability to flexibly and dynamically al-

locate resources to virtual machines. This is especially useful for data centers running

Internet applications where customer websites may see highly variable and unpredictable

load. Provisioning virtual machines for the maximum expected load can be wasteful if

average load is low, but it can also be insufficient since “flash crowds” may cause huge

unexpected traffic spikes. In order to maximize efficiency and still maintain high levels

of application performance, an automated solution is needed to balance resources among

many systems with differing workloads.

Two techniques for dynamically provisioning virtual machines are dynamic resizing

and live migration. The abstraction layer provided by the virtualization platform makes

it easy to dynamically adjust the amount of physical resources dedicated to each virtual

machine. In addition, since VMs are not tied directly to physical resources, they can be

migrated between physical servers in order to balance load across the data center.
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In this chapter we present Sandpiper, a system which uses both VM resizing and

migration to efficiently handle the dynamic workloads seen by data center applications.

Sandpiper automates the procedure of detecting when virtual machines are becoming over-

loaded, calculating how many resources need to be assigned in order to meet application

demands, and actualizing those resource requirements through a combination of live mi-

grations and dynamic resource allocations.

5.2 System Overview

Historically, approaches to dynamic provisioning have either focused on dynamic repli-

cation, where the number of servers allocated to an application is varied, or dynamic

slicing, where the fraction of a server allocated to an application is varied. With the re-

emergence of server virtualization, application migration has become an option for dy-

namic provisioning. Since migration is transparent to applications executing within vir-

tual machines, our work considers this third approach—resource provisioning via dynamic

migrations in virtualized data centers. We present Sandpiper1, a system for automated re-

source allocation and migration of virtual servers in a data center to meet application SLAs.

Sandpiper assumes a large cluster of possibly heterogeneous servers. The hardware config-

uration of each server—its CPU, network interface, disk and memory characteristics—is

assumed to be known to Sandpiper. Each physical server (also referred to as a physical

machine or PM) runs a virtual machine monitor and one or more virtual machines. Each

virtual server runs an application or an application component (the terms virtual servers

and virtual machine are used interchangeably). Sandpiper currently uses Xen to implement

such an architecture. Each virtual server is assumed to be allocated a certain slice of the

physical server resources. In the case of CPU, this is achieved by assigning a subset of the

host’s CPUs to each virtual machine, along with a weight that the underlying Xen CPU

1A migratory bird.
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Figure 5.1. The Sandpiper architecture

scheduler uses to allocate CPU bandwidth. In case of the network interface, Xen is yet to

implement a similar fair-share scheduler; a best-effort FIFO scheduler is currently used and

Sandpiper is designed to work with this constraint. In case of memory, a slice is assigned

by allocating a certain amount of RAM to each resident VM. All storage is assumed to be

on a network file system or a storage area network, thereby eliminating the need to move

disk state during VM migrations [30].

Sandpiper runs a component called the nucleus on each physical server; the nucleus

runs inside a special virtual server (domain 0 in Xen) and is responsible for gathering

resource usage statistics on that server (see Figure 5.1). It employs a monitoring engine that

gathers processor, network interface and memory swap statistics for each virtual server. For

gray-box approaches, it implements a daemon within each virtual server to gather OS-level

statistics and perhaps application logs.

The nuclei periodically relay these statistics to the Sandpiper control plane. The control

plane runs on a distinguished node and implements much of the intelligence in Sandpiper.

It comprises three components: a profiling engine, a hotspot detector and a migration &

resizing manager (see Figure 5.1). The profiling engine uses the statistics from the nuclei

to construct resource usage profiles for each virtual server and aggregate profiles for each

physical server. The hotspot detector continuously monitors these usage profiles to detect

hotspots —informally, a hotspot is said to have occurred if the aggregate usage of any re-

source (processor, network or memory) exceeds a threshold or if SLA violations occur for

70



a “sustained” period. Thus, the hotspot detection component determines when to signal the

need for resource adjustments and invokes the resource manager upon hotspot detection,

which attempts hotspot mitigation via resizing or dynamic migrations. It implements algo-

rithms that determine how much of a resource to allocate the virtual servers (i.e., determine

a new resource allocation to meet the target SLAs), what virtual servers to migrate from

the overloaded servers, and where to move them. The resource manager assumes that the

virtual machine monitor implements a migration mechanism that is transparent to applica-

tions and uses this mechanism to automate migration decisions; Sandpiper currently uses

Xen’s migration mechanisms that were presented in [30].

5.3 Monitoring and Profiling in Sandpiper

Sandpiper supports both black- and gray-box monitoring techniques that are combined

with profile generation tools to detect hotspots and predict VM resource requirements.

5.3.1 Unobtrusive Black-box Monitoring

The monitoring engine is responsible for tracking the processor, network and memory

usage of each virtual server. It also tracks the total resource usage on each physical server

by aggregating the usages of resident VMs. The monitoring engine tracks the usage of each

resource over a measurement interval I and reports these statistics to the control plane at

the end of each interval.

In a pure black-box approach, all usages must be inferred solely from external obser-

vations and without relying on OS-level support inside the VM. Fortunately, much of the

required information can be determined directly from the Xen hypervisor or by monitoring

events within domain-0 of Xen. Domain-0 is a distinguished VM in Xen that is respon-

sible for I/O processing; domain-0 can host device drivers and act as a “driver” domain

that processes I/O requests from other domains [11, 45]. As a result, it is possible to track

network and disk I/O activity of various VMs by observing the driver activity in domain-
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0 [45]. Similarly, since CPU scheduling is implemented in the Xen hypervisor, the CPU

usage of various VMs can be determined by tracking scheduling events in the hypervisor

[46]. Thus, black-box monitoring can be implemented in the nucleus by tracking various

domain-0 events and without modifying any virtual server. Next, we discuss CPU, network

and memory monitoring using this approach.

CPU Monitoring: By instrumenting the Xen hypervisor, it is possible to provide

domain-0 with access to CPU scheduling events which indicate when a VM is scheduled

and when it relinquishes the CPU. These events are tracked to determine the duration for

which each virtual machine is scheduled within each measurement interval I. The Xen

3 distribution includes a monitoring application called XenMon [46] that tracks the CPU

usages of the resident virtual machines using this approach; for simplicity, the monitoring

engine employs a modified version of XenMon to gather CPU usages of resident VMs over

a configurable measurement interval I. On a multi-cpu system, a VM may only be granted

access to a subset of the total CPUs. However, the number of CPUs allocated to a virtual

machine can be adjusted dynamically.

It is important to realize that these statistics do not capture the CPU overhead incurred

for processing disk and network I/O requests; since Xen uses domain-0 to process disk and

network I/O requests on behalf of other virtual machines, this processing overhead gets

charged to the CPU utilization of domain 0. To properly account for this request processing

ovehead, analogous to proper accounting of interrupt processing overhead in OS kernels,

we must apportion the CPU utilization of domain-0 to other virtual machines. We assume

that the monitoring engine and the nucleus impose negligible overhead and that all of the

CPU usage of domain-0 is primarily due to requests processed on behalf of other VMs.

Since domain-0 can also track I/O request events based on the number of memory page

exchanges between domains, we determine the number of disk and network I/O requests

that are processed for each VM. Each VM is then charged a fraction of domain-0’s usage
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based on the proportion of the total I/O requests made by that VM. A more precise approach

requiring a modified scheduler was proposed in [45].

Network Monitoring: Domain-0 in Xen implements the network interface driver and

all other domains access the driver via clean device abstractions. Xen uses a virtual firewall-

router (VFR) interface; each domain attaches one or more virtual interfaces to the VFR

[11]. Doing so enables Xen to multiplex all its virtual interfaces onto the underlying phys-

ical network interfaces.

Consequently, the monitoring engine can conveniently monitor each VM’s network

usage in Domain-0. Since each virtual interface looks like a modern NIC and Xen uses

Linux drivers, the monitoring engines can use the Linux /proc interface (in particular

/proc/net/dev) to monitor the number of bytes sent and received on each interface.

These statistics are gathered over interval I and returned to the control plane.

Memory Monitoring: Black-box monitoring of memory is challenging since Xen al-

locates a user-specified amount of memory to each VM and requires the OS within the VM

to manage that memory; as a result, the memory utilization is only known to the OS within

each VM. It is possible to instrument Xen to observe memory accesses within each VM

through the use of shadow page tables, which is used by Xen’s migration mechanism to de-

termine which pages are dirtied during migration. However, trapping each memory access

results in a significant application slowdown and is only enabled during migrations[30].

Thus, memory usage statistics are not directly available and must be inferred.

The only behavior that is visible externally is swap activity. Since swap partitions reside

on a network disk, I/O requests to swap partitions need to be processed by domain-0 and

can be tracked. By tracking the reads and writes to each swap partition from domain-0, it

is possible to detect memory pressure within each VM.

Our monitoring engine tracks the number of read and write requests to swap partitions

within each measurement interval I and reports it to the control plane. Since substan-

73



tial swapping activity is indicative of memory pressure, our current black-box approach is

limited to reactive decision making and can not be proactive.

5.3.2 Gray-box Monitoring

Black-box monitoring is useful in scenarios where it is not feasible to “peek inside”

a VM to gather usage statistics. Hosting environments, for instance, run third-party ap-

plications, and in some cases, third-party installed OS distributions. Amazon’s Elastic

Computing Cloud (EC2) service, for instance, provides a “barebone” virtual server where

customers can load their own OS images. While OS instrumentation is not feasible in such

environments, there are environments such as corporate data centers where both the hard-

ware infrastructure and the applications are owned by the same entity. In such scenarios,

it is feasible to gather OS-level statistics as well as application logs, which can potentially

enhance the quality of decision making in Sandpiper.

Sandpiper supports gray-box monitoring, when feasible, using a light-weight monitor-

ing daemon that is installed inside each virtual server. In Linux, the monitoring daemon

uses the /proc interface to gather OS-level statistics of CPU, network, and memory usage.

The memory usage monitoring, in particular, enables proactive detection and mitigation of

memory hotspots. The monitoring daemon also can process logs of applications such as

web and database servers to derive statistics such as request rate, request drops and service

times. Direct monitoring of such application-level statistics enables explicit detection of

SLA violations, in contrast to the black-box approach that uses resource utilizations as a

proxy metric for SLA monitoring.

5.3.3 Profile Generation

The profiling engine receives periodic reports of resource usage from each nucleus. It

maintains a usage history for each server, which is then used to compute a profile for each

virtual and physical server. A profile is a compact description of that server’s resouce us-

age over a sliding time window W . Three black-box profiles are maintained per virtual
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server: CPU utilization, network bandwidth utilization, and swap rate (i.e., page fault rate).

If gray-box monitoring is permitted, four additional profiles are maintained: memory uti-

lization, service time, request drop rate and incoming request rate. Similar profiles are also

maintained for each physical server, which indicate the aggregate usage of resident VMs.

Each profile contains a distribution and a time series. The distribution, also referred

to as the distribution profile, represents the probability distribution of the resource usage

over the window W . To compute a CPU distribution profile, for instance, a histogram of

observed usages over all intervals I contained within the window W is computed; normal-

izing this histogram yields the desired probability distribution (see Figure 5.2).

While a distribution profile captures the variations in the resource usage, it does not

capture temporal correlations. For instance, a distribution does not indicate whether the

resource utilization increased or decreased within the window W . A time-series profile

captures these temporal fluctuations and is simply a list of all reported observations within

the window W . For instance, the CPU time-series profile is a list (C1, C2, ..., Ck) of the k

reported utilizations within the window W . Whereas time-series profiles are used by the

hotspot detector to spot increasing utilization trends, distribution profiles are used by the

migration manager to estimate peak resource requirements and provision accordingly.
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5.4 Hotspot Detection

The hotspot detection algorithm is responsible for signaling a need for VM resizing

whenever SLA violations are detected implicitly by the black-box approach or explicitly

by the gray-box approach. Hotspot detection is performed on a per-physical server basis in

the black-box approach—a hotspot is flagged if the aggregate CPU or network utilizations

on the physical server exceed a threshold or if the total swap activity exceeds a threshold.

In contrast, explicit SLA violations must be detected on a per-virtual server basis in the

gray-box approach—a hotspot is flagged if the memory utilization of the VM exceeds a

threshold or if the response time or the request drop rate exceed the SLA-specified values.

To ensure that a small transient spike does not trigger needless migrations, a hotspot is

flagged only if thresholds or SLAs are exceeded for a sustained time. Given a time-series

profile, a hotspot is flagged if at least k out the n most recent observations as well as the

next predicted value exceed a threshold. With this constraint, we can filter out transient

spikes and avoid needless migrations. The values of k and n can be chosen to make hotspot

detection aggressive or conservative. For a given n, small values of k cause aggressive

hotspot detection, while large values of k imply a need for more sustained threshold vio-

lations and thus a more conservative approach. Similarly, larger values of n incorporate a

longer history, resulting in a more conservative approach. In the extreme, n = k = 1 is the

most aggressive approach that flags a hostpot as soon as the threshold is exceeded. Finally,

the threshold itself also determines how aggressively hotspots are flagged; lower thresholds

imply more aggressive migrations at the expense of lower server utilizations, while higher

thresholds imply higher utilizations with the risk of potentially higher SLA violations.

Sandpiper employs time-series prediction techniques to predict future values [16]. Specif-

ically, Sandpiper relies on the auto-regressive family of predictors, where the n-th order

predictor AR(n) uses n prior observations in conjunction with other statistics of the time

series to make a prediction. To illustrate the first-order AR(1) predictor, consider a se-

quence of observations: u1, u2, ..., uk. Given this time series, we wish to predict the
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demand in the (k + 1)th interval. Then the first-order AR(1) predictor makes a prediction

using the previous value uk, the mean of the the time series values µ, and the parameter φ

which captures the variations in the time series [16]. The prediction ûk+1 is given by:

ûk+1 = µ+ φ(uk − µ) (5.1)

As new observations arrive from the nuclei, the hot spot detector updates its predictions

and performs the above checks to flag new hotspots in the system.

5.5 Resource Provisioning

A hotspot indicates a resource deficit on the underlying physical server to service the

collective workloads of resident VMs. Before the hotspot can be resolved, Sandpiper must

first estimate how much additional resources are needed by the overloaded VMs to fulfill

their SLAs; these estimates are then used to determine if local resource allocation adjust-

ments or migrations are required to resolve the hotspot.

5.5.1 Black-box Provisioning

The provisioning component needs to estimate the peak CPU, network and memory

requirement of each overloaded VM; doing so ensures that the SLAs are not violated even

in the presence of peak workloads.

Estimating peak CPU and network bandwidth needs: Distribution profiles are used to

estimate the peak CPU and network bandwidth needs of each VM. The tail of the usage

distribution represents the peak usage over the recent past and is used as an estimate of fu-

ture peak needs. This is achieved by computing a high percentile (e.g., the 95th percentile)

of the CPU and network bandwidth distribution as an initial estimate of the peak needs.

Since both the CPU scheduler and the network packet scheduler in Xen are work-

conserving, a VM can use more than its fair share, provided that other VMs are not using

their full allocations. In case of the CPU, for instance, a VM can use a share that exceeds
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the share determined by its weight, so long as other VMs are using less than their weighted

share. In such instances, the tail of the distribution will exceed the guaranteed share and

provide insights into the actual peak needs of the application. Hence, a high percentile of

the distribution is a good first approximation of the peak needs.

However, if all VMs are using their fair shares, then an overloaded VM will not be allo-

cated a share that exceeds its guaranteed allocation, even though its peak needs are higher

than the fair share. In such cases, the observed peak usage (i.e., the tail of the distribution)

will equal its fair-share. In this case, the tail of the distribution will under-estimate the ac-

tual peak need. To correct for this under-estimate, the provisioning component must scale

the observed peak to better estimate the actual peak. Thus, whenever the CPU or the net-

work interface on the physical server are close to saturation, the provisioning component

first computes a high-percentile of the observed distribution and then adds a constant ∆ to

scale up this estimate.

Example Consider two virtual machines that are assigned CPU weights of 1:1 resulting

in a fair share of 50% each. Assume that VM1 is overloaded and requires 70% of the CPU

to meet its peak needs. If VM2 is underloaded and only using 20% of the CPU, then the

work-conserving Xen scheduler will allocate 70% to VM1. In this case, the tail of the

observed distribution is a good inddicator of VM1’s peak need. In contrast, if VM2 is using

its entire fair share of 50%, then VM1 will be allocated exactly its fair share. In this case,

the peak observed usage will be 50%, an underestimate of the actual peak need. Since

Sandpiper can detect that the CPU is fully utilized, it will estimate the peak to be 50 + ∆.

The above example illustrates a fundamental limitation of the black-box approach—it

is not possible to estimate the true peak need when the underlying resource is fully utilized.

The scale-up factor ∆ is simply a guess and might end up over- or under-estimating the

true peak.

Estimating peak memory needs: Xen allows an adjustable amount of physical memory

to be assigned to each resident VM; this allocation represents a hard upper-bound that can
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not be exceeded regardless of memory demand and regardless of the memory usage in other

VMs. Consequently, our techniques for estimating the peak CPU and network usage do not

apply to memory. The provisioning component uses observed swap activity to determine if

the current memory allocation of the VM should be increased. If swap activity exceeds the

threshold indicating memory pressure, then the the current allocation is deemed insufficient

and is increased by a constant amount ∆m. Observe that techniques such as Geiger and

hypervisor level caches that attempt to infer working set sizes by observing swap activity

[62, 80] can be employed to obtain a better estimate of memory needs; however, our current

prototype uses the simpler approach of increasing the allocation by a fixed amount ∆m

whenever memory pressure is observed.

5.5.2 Gray-box Provisioning

Since the gray-box approach has access to application-level logs, information contained

in the logs can be utilized to estimate the peak resource needs of the application. Unlike

the black-box approach, the peak needs can be estimated even when the resource is fully

utilized.

To estimate peak needs, the peak request arrival rate is first estimated. Since the number

of serviced requests as well as the the number of dropped requests are typically logged, the

incoming request rate is the summation of these two quantities. Given the distribution

profile of the arrival rate, the peak rate is simply a high percentile of the distribution. Let

λpeak denote the estimated peak arrival rate for the application.

Estimating peak CPU needs: An application model is necessary to estimate the peak

CPU needs. Applications such as web and database servers can be modeled as G/G/1

queuing systems [125]. The behavior of such a G/G/1 queuing system can be captured

using the following queuing theory result [68]:

λcap ≥
[
s+

σ2
a + σ2

b

2 · (d− s)

]−1

(5.2)

79



where d is the mean response time of requests, s is the mean service time, and λcap is the

request arrival rate. σ2
a and σ2

b are the variance of inter-arrival time and the variance of

service time, respectively. Note that response time includes the full queueing delay, while

service time only reflects the time spent actively processing a request.

While the desired response time d is specified by the SLA, the service time s of requests

as well as the variance of inter-arrival and service times σ2
a and σ2

b can be determined from

the server logs. By substituting these values into Equation 5.2, a lower bound on request

rate λcap that can be serviced by the virtual server is obtained. Thus, λcap represents the

current capacity of the VM.

To service the estimated peak workload λpeak, the current CPU capacity needs to be

scaled by the factor λpeak
λcap

. Observe that this factor will be greater than 1 if the peak arrival

rate exceeds the currently provisioned capacity. Thus, if the VM is currently assigned a

CPU weight w, its allocated share needs to be scaled up by the factor λpeak
λcap

to service the

peak workload.

Estimating peak network needs: The peak network bandwidth usage is simply estimated

as the product of the estimated peak arrival rate λpeak and the mean requested file size b;

this is the amount of data transferred over the network to service the peak workload. The

mean request size can be computed from the server logs.

Estimating memory needs: Using OS level information about a virtual machine’s mem-

ory utilization allows the gray box approach to more accurately estimate the amount of

memory required by a virtual machine. The gray box approach can proactively adjust

memory allocations when the OS reports that it is low on memory (but before swapping

occurs). This data is also used to safely reduce the amount of memory allocated to VMs

which are not using their full allotment, something which is impossible to do with only

black box information about swapping.
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5.6 Hotspot Mitigation

Once a hotspot has been detected, Sandpiper must determine if the hotspots can be

resolved with local resource adjustments, or if migrations are required to balance load

between hosts.

5.6.1 VM Resizing

While large changes in resource needs may require migration between servers, some hot

spots can be handled by adjusting the resource allocation of the overloaded VM. Sandpiper

first attempts to increase the resource allocation for an overloaded VM by either adding

additional CPUs, network interfaces, or memory depending on which resource utilizations

exceeded the warning thresholds.

If the profiling engine detects that a VM is experiencing an increasing usage of CPU,

Sandpiper will attempt to allocate an additional virtual CPU to the VM. Xen and other

virtualization platforms support dynamic changes in the number of CPUs a VM has access

to by exploiting hot-swapping code that already exists in many operating system kernels.

A similar approach can be used to add network interfaces to a VM, although this is not

currently supported by Sandpiper.

In many cases, memory hotspots can also be resolved through local provisioning ad-

justments. When a VM has insufficient memory as detected by either swapping (black

box) or OS statistics (gray box), Sandpiper will first attempt to increase the VM’s memory

allocation on its current host. Only if there is insufficient spare memory will the VM be

migrated to a different host.

5.6.2 Load Balancing with Migration

If there are insufficient spare resources on a host, the migration manager invokes its

hotspot mitigation algorithm to determine which virtual servers to migrate and where in

order to dissipate the hotspot. Determining a new mapping of VMs to physical servers that

avoids threshold violations is NP-hard—the multi-dimensional bin packing problem can be
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reduced to this problem, where each physical server is a bin with dimensions corresponding

to its resource constraints and each VM is an object that needs to be packed with size equal

to its resource requirements. Even the problem of determining if a valid packing exists is

NP-hard.

Consequently, our hotspot mitigation algorithm resorts to a heuristic to determine which

overloaded VMs to migrate and where such that migration overhead is minimized. Reduc-

ing the migration overhead (i.e., the amount of data transferred) is important, since Xen’s

live migration mechanism works by iteratively copying the memory image of the VM to

the destination while keeping track of which pages are being dirtied and need to be resent.

This requires Xen to intercept all memory accesses for the migrating domain, which signif-

icantly impacts the performance of the application inside the VM. By reducing the amount

of data copied over the network, Sandpiper can minimize the total migration time, and thus,

the performance impact on applications. Note that network bandwidth available for appli-

cation use is also reduced due to the background copying during migrations; however, on a

gigabit LAN, this impact is small.

Capturing Multi-dimensional Loads: Once the desired resource allocations have

been determined by either our black-box or gray-box approach, the problem of finding

servers with sufficient idle resource to house overloaded VMs is identical for both. The mi-

gration manager employs a greedy heuristic to determine which VMs need to be migrated.

The basic idea is to move load from the most overloaded servers to the least-overloaded

servers, while attempting to minimize data copying incurred during migration. Since a VM

or a server can be overloaded along one or more of three dimensions–CPU, network and

memory–we define a new metric that captures the combined CPU-network-memory load

of a virtual and physical server. The volume of a physical or virtual server is defined as the

product of its CPU, network and memory loads:

Vol =
1

1− cpu
∗ 1

1− net
∗ 1

1− mem
(5.3)
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where cpu, net and mem are the corresponding utilizations of that resource normalized

by the number of CPUs and network interfaces allocated to the virtual or physical server.2

The higher the utilization of a resource, the greater the volume; if multiple resources are

heavily utilized, the above product results in a correspondingly higher volume. The volume

captures the degree of (over)load along multiple dimensions in a unified fashion and can be

used by the mitigation algorithms to handle all resource hotspots in an identical manner.

Migration Phase: To determine which VMs to migrate, the algorithm orders physical

servers in decreasing order of their volumes. Within each server, VMs are considered in de-

creasing order of their volume-to-size ratio (VSR); where V SR is defined as Volume/Size;

size is the memory footprint of the VM. By considering VMs in VSR order, the algorithm

attempts to migrate the maximum volume (i.e., load) per unit byte moved, which has been

shown to minimize migration overhead [116].

The algorithm proceeds by considering the highest VSR virtual machine from the high-

est volume server and determines if it can be housed on the least volume (least loaded)

physical server. The move is feasible only if that server has sufficient idle CPU, network

and memory resources to meet the desired resource allocation of the candidate VM as de-

termined by the provisioning component (Section 5.5). Since we use VSR to represent

three resource quantities, the least loaded server may not necessarily “fit” best with a par-

ticular VM’s needs. If sufficient resources are not available, then the algorithm examines

the next least loaded server and so on, until a match is found for the candidate VM. If no

physical server can house the highest VSR VM, then the algorithm moves on to the next

highest VSR VM and attempts to move it in a similar fashion. The process repeats until the

utilizations of all resources on the physical server fall below their thresholds.

2If a resource is fully utilized, its utilization is set to 1−ε, rather than one, to avoid infinite volume servers.
Also, since the black-box approach is oblivious of the precise memory utilization, the value of mem is set
to 0.5 in the absence of swapping and to 1 − ε if memory pressure is observed; the precise value of mem is
used in the gray-box approach.
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The algorithm then considers the next most loaded physical server that is experiencing

a hotspot and repeats the process until there are no physcial servers left with a hotspot. The

output of this algorithm is a list of overloaded VMs and a new destination server for each;

the actual migrations are triggered only after all moves have been determined.

Swap Phase: In cases where there aren’t sufficient idle resources on less loaded servers

to dissipate a hotspot, the migration algorithm considers VM swaps as an alternative. A

swap involves exchanging a high VSR virtual machine from a loaded server with one or

more low VSR VMs from an underloaded server. Such a swap reduces the overall utiliza-

tion of the overloaded server, albeit to a lesser extent than a one-way move of the VM. Our

algorithm considers the highest VSR VM on the highest volume server with a hotspot; it

then considers the lowest volume server and considers the k lowest VSR VMs such that

these VMs collectively free up sufficient resources to house the overloaded VM. The swap

is considered feasible if the two physical servers have sufficient resources to house the

other server’s candidate VM(s) without violating utilization thresholds. If a swap cannot

be found, the next least loaded server is considered for a possible swap and so on. The pro-

cess repeats until sufficient high VSR VMs have been swapped with less loaded VMs so

that the hotspot is dissipated. Although multi-way swaps involving more than two servers

can also be considered, our algorithm presently does not implement such complex swaps.

The actual migrations to perform the swaps are triggered only after a list of all swaps is

constructed. Note that a swap may require a third server with “scratch” RAM to temporar-

ily house a VM before it moves to its final destination. An alternative is to (i) suspend

one of the VMs on disk, (ii) use the freed up RAM to accommodate the other VM, and

(iii) resume the first VM on the other server; doing so is not transparent to the temporarily

suspended VM.
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5.7 Implementation and Evaluation

The implementation of Sandpiper is based on Xen. The Sandpiper control plane is

implemented as a daemon that runs on the control node. It listens for periodic usage reports

from the various nuclei, which are used to generate profiles. The profiling engine currently

uses a history of the past 200 measurements to generate virtual and physical server profiles.

The hotspot detector uses these profiles to detect hotspots; currently a hotspot is triggered

when 3 out of 5 past readings and the next predicted value exceed a threshold. The default

threshold is set to 75%. The migration manager implements our provisioning and hotspot

mitigation algorithms; it notifies the nuclei of any desired migrations, which then trigger

them. In all, the control plane consists of less than 750 lines of Python code.

The Sandpiper nucleus is a Python application that extends the XenMon CPU moni-

tor to also acquire network and memory statistics for each VM. The monitoring engine in

the nucleus collects and reports measurements once every 10 seconds—the default mea-

surement interval. The nucleus uses Xen’s Python management API to trigger migrations

and adjust resource allocations as directed by the control plane. While black-box monitor-

ing only requires access to domain-0 events, gray-box monitoring employs two additional

components: a Linux OS daemon and an Apache module.

The gray-box linux daemon runs on each VM that permits gray-box monitoring. It

currently gathers memory statistics via the /proc interface—the memory utilization, the

number of free pages and swap usage are reported to the monitoring engine in each inter-

val. The gray-box apache module comprises of a real-time log analyzer and a dispatcher.

The log-analyzer processes log-entries as they are written to compute statistics such as the

service time, request rate, request drop rate, inter-arrival times, and request/file sizes. The

dispatcher is implemented as a kernel module based on Linux IP Virtual server (IPVS) ver

1.2.1; the goal of the kernel module is to accurately estimate the request arrival rate during

overload periods, when a high fraction of requests may be dropped. Since requests can

be dropped at the TCP layer as well as at the HTTP layer during overloads, the use of a
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Figure 5.3. Sandpiper increases the number of virtual CPU cores allocated to a VM. A
migration is required to move from a 2 to 4 core PM.

transport-level dispatcher such as IPVS is necessary for accurately estimating the drop (and

hence arrival) rates. Ordinarily, the kernel dispatcher simply forwards incoming requests

to Apache for processing. In all, the nucleus comprises 650 lines of Python code.

Our evaluation of Sandpiper is based on a prototype data center consisting of twenty

2.4Ghz Pentium-4 servers connected over a gigabit Ethernet. These servers run Linux 2.6

and Xen 3.0.2-3 and are equipped with at least 1GB of RAM. Experiments involving multi-

core systems run on Intel Quad-Core servers with 4GB of RAM and Xen 3.1. A cluster of

Pentium-3 Linux servers is used to generate workloads for our experiments. One node in

the cluster is designated to run the Sandpiper control plane, while the rest host one or more

VMs, all of which run the Sandpiper nucleus in domain- 0. In the following experiments,

our VMs run Apache 2.0.54, PHP 4.3.10, and MySQL 4.0.24.

5.7.1 VM Resizing

While migrations are necessary for large changes in resource allocations, it is less ex-

pensive if resources can be adjusted locally without the overhead of migration. This exper-

iment demonstrates Sandpiper’s ability to detect increasing CPU requirements and respond

by allocating additional CPU cores to the virtual machine.

Initially, a VM running a CPU intensive web application is allocated a single CPU core.

During the experiment, the number of clients accessing the web server increases. Sandpiper

responds by increasing the number of virtual CPUs allocated to the VM. The VM starts on
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VM Peak 1 Peak 2 Peak 3 RAM (MB) Start PM
1 200 130 130 256 1
2 90 90 90 256 1
3 60 200 60 256 2
4 60 90 90 256 2
5 10 10 130 128 3

Table 5.1. Workload in requests/second, memory allocations, and initial placement.

a dual core host; as the load continues to rise, a migration is required to move the VM to a

host with four available CPUs as shown in Figure 5.3.

Result: Resizing a VM’s resource allocation incurs little overhead. When additional

resources are not available locally, migrations are required.

5.7.2 Migration Effectiveness

Our next experiment exercises Sandpiper’s hotspot detection and migration algorithms;

we subject a set of black-box servers to a series of workloads that repeatedly place the

system in overload. Our experiment uses three physical servers and five VMs with memory

allocations as shown in Table 5.1. All VMs run Apache serving dynamic PHP web pages.

The PHP scripts are designed to be CPU intensive so that a low client request rate places

a large CPU load on a server without significant network or memory utilization. We use

httperf to inject a workload that goes through three phases, each of which causes a hotspot

on a different physical machine. The peak request rates for each phase are shown in Table

5.1.

Figure 5.4 presents a time series of the load placed on each VM along with the triggered

migrations. In the first phase, a large load is placed on VM1, causing the CPU utilization

on PM1 to exceed the CPU threshold. The system detects a hotspot at t=166 seconds.

The migration manager examines candidates for migration in VSR order. VM1 has the

highest VSR, so it is selected as a candidate. Since PM3 has sufficient spare capacity to

house VM1, it is migrated there, thereby eliminating the hotspot less than 20 seconds after
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Figure 5.4. A series of migrations resolve hotspots. Different shades are used for each
migrating VM.

detection. This represents the ideal case for our algorithm: if possible, we try to migrate

the most loaded VM from an overloaded PM to one with sufficient spare capacity.

In the second phase, PM2 becomes overloaded due to increasing load on VM3. How-

ever, the migration manager is unable to migrate this VM because there is insufficient

capacity on the other PMs. As a result, at t=362 seconds, the VM on PM2 with the second

highest VSR VM4, is migrated to PM1 that now has spare capacity. This demonstrates a

more typical case where none of the underloaded PMs have sufficient spare capacity to run

the overloaded PM’s highest VSR VM, so instead we migrate less overloaded VMs that

can fit elsewhere.

In the final phase, PM3 becomes overloaded when both its VMs receive identical large

loads. Unlike the previous two cases where candidate VMs had equal memory footprints,

VM5 has half as much RAM as VM1, so it is chosen for migration. By selecting the VM

with a lower footprint, Sandpiper maximizes the reduction in load per megabyte of data

transfered.

Result: To eliminate hotspots while minimzing the overhead of migration, our place-

ment algorithm tries to move the highest VSR VM to the least loaded PM. This maximizes

the amount of load displaced from the hotspot per megabyte of data transferred.
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5.7.3 Virtual Machine Swaps

Next we demonstrate how VM swaps can mitigate hotspots. The first two VMs in our

setup are allocated 384 MB of RAM on PM1; VM3 and VM4 are assigned 256 MB each

on PM2. The load on VM1 steadily increases during the experiment, while the others are

constant. As before, clients use httperf to request dynamic PHP pages.

Figure 5.5 shows that a hotspot is detected on PM1 due to the increasing load on VM1.

However, there is insufficient spare capacity on PM2 to support a migrated VM. The only

viable solution is to swap VM2 with VM4. To facilitate such swaps, Sandpiper uses spare

RAM on the control node as scratch space.

By utilizing this scratch space, Sandpiper never requires either physical server to si-

multaneously run both VMs. It does require us to perform three migrations instead of two;

however, Sandpiper reduces the migration cost by always migrating the smaller footprint

VM via the scratch server. As shown in Figure 5.5, the load on PM2 drops at t=219 due to

the migration of VM4 to scratch. VM2 is then migrated directly from PM1 to PM2 at t=233,

followed by a migration of VM4 from scratch to PM1, which takes an additional 10s.

The figure also depicts the CPU overhead of a migration—as indicated by a rise in CPU

utilization of the initiating server whenever a migration begins. This suggests using lower

CPU hotspot thresholds to safely absorb the additional overheads caused by a migration.

Result: Swaps incur more overhead, but increase the chances of mitigating hotspots in

clusters with high average utilization.
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Figure 5.6. Swaps and migrations to handle network- and memory-intensive loads. Ini-
tially, VM1 and VM2 are on PM1, the rest on PM2. After two swaps, PM1 hosts VM1 and
VM4.

5.7.4 Mixed Resource Workloads

Sandpiper can consolidate applications that stress different resources to improve the

overall multiplexing of server resources. Our setup comprises two servers with two VMs

each. Both VMs on the first server are network-intensive, involving large file transfers,

while those on the second server are CPU-intensive running Apache with dynamic PHP

scripts. All VMs are initially allocated 256 MB of memory. VM2 additionally runs a main-

memory database that stores its tables in memory, causing its memory usage to grow over

time.

Figures 5.6(a) and (b) show the resource utilization of each PM over time. Since PM1

has a network hotspot and PM2 has a CPU hotspot, Sandpiper swaps a network-intensive

VM for a CPU-intensive VM at t=130. This results in a lower CPU and network utilization

on both servers. Figure 5.6(d) shows the initial utilizations of each VM; after the swap, the

aggregate CPU and network utilizations on both servers falls below 50%.

In the latter half, memory pressure increases on VM2 due to its main-memory database

application. As shown in 5.6(c), Sandpiper responds by increasing the RAM allocation in
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Figure 5.7. The black-box system lags behind the gray-box system in allocating memory.
The gray-box approach proactively increases memory and safely reduces the VM’s memory
allocation when demand falls.

steps of 32MB every time swapping is observed; when no additional RAM is available,

the VM is swapped to the second physical server at t=430. This is feasible because two

cpu-intensive jobs are swapped, leaving CPU and network utilization balanced, and the

second physical server has more RAM than the first. Memory allocations are reactive since

only black-box stats are available. Next we demonstrate how a gray-box approach can

proactively respond to memory pressure.

Result: Sandpiper can respond to network, CPU, or memory hotspots and can collocate

VMs that stress different resources to improve overall system utilization.

5.7.5 Gray v. Black: Memory Allocation

We compare the effectiveness of the black- and gray-box approaches in mitigating

memory hotspots using the SPECjbb 2005 benchmark. SPECjbb emulates a three-tier

web application based on J2EE servers. We use SPECjbb to apply an increasingly intense

workload to a single VM. The workload increases every two minutes, causing a significant

increase in memory usage. After twenty minutes, the application reaches its peak intensity,

after which the workload decreases at a similar rate.

The VM is initially assigned 256MB of RAM, and resides on a physical machine with

384 MB total RAM. We also run a second, idle physical server which has 1GB RAM. We

run the experiment with two separate pairs of servers, Black and Gray, that correspond to
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the black- and gray-box approaches, respectively. The Gray system is configured to signal

a hotspot whenever the amount of free RAM in the virtual machine falls below 32MB.

Fig. 5.7(a) plots the memory allocation of the VM over time. Both systems gradually

increase the VM’s memory until all unused RAM is exhausted. Since Black can only

respond to swapping, it lags in responsiveness. At t=380 seconds, Gray determines that

there is insufficient RAM for the VM and migrates it to the second PM with 1GB RAM;

Black initiates the same migration shortly afterward. Both continue to increase the VM’s

memory as the load rises. Throughout the experiment, Black writes a total of 32MB to

swap, while Gray only writes 2MB. Note that a lower memory hotspot threshold in Gray

can prevent swapping altogether, while Black can not eliminate swapping due to its reactive

nature.

During the second phase of the trial, Gray is able to detect the decreasing memory

requirements and is able to safely reduce the VM’s memory allocation. Since the black-

box system can only detect swapping, it cannot reduce the memory allocation without fear

of causing swapping and worse performance.

Result: A key weakness of the black-box approach is its inability to infer memory usage.

Using this information, the gray-box system can reduce or eliminate swapping and can

safely decrease a VM’s memory allocation.

5.7.6 Gray v. Black: Apache Performance

Recall from Section 5.5 that when resources are fully utilized, they hamper the black-

box approach from accurately determining the needs of overloaded VMs. This experiment

demonstrates how a black-box approach may incur extra migrations to mitigate a hotspot,

whereas a gray-box approach can use application-level knowledge for faster hotspot miti-

gation.

Our experiment employs three physical servers and four VMs. Initially, VM1 through

VM3 reside on PM1, VM4 resides on PM2, and PM3 is idle. We use httperf to generate

92



100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

(a) (b) (d)(c)

VM1 VM2 VM3 VM4

CP
U 

Ut
iliz

at
io

n

Key:

Figure 5.8. The black-box system incorrectly guesses resource requirements since CPU
usage is saturated, resulting in an increased resolution time. The gray-box system infers
usage requirements and transitions directly from a) to d).

requests for CPU intensive PHP scripts on all VMs. At t=80s, we rapidly increase the

request rates on VM1 and VM2 so that actual CPU requirement for each virtual machine

reaches 70%, creating an extreme hotspot on PM1. The request rates for VM3 and VM4

remain constant, requiring 33% and 7% CPU respectively. We use an aggressive 6 second

measurement interval so that Sandpiper can respond quickly to the increase in workload.

Without accurate estimates of each virtual machine’s resource requirements, the black-

box system falters in its decision making as indicated in Figure 5.8. Since the CPU on PM1

is saturated, each virtual machine receives an equal portion of processing time and appears

equivalent to Sandpiper. Sandpiper must select a VM at random, and in the worst case, tries

to eliminate the hotspot by migrating VM3 to PM3. Since VM1 and VM2 continue to reside

on PM1, the hotspot persists even after the first migration. Next, the black-box approach

assumes that VM2 requires only 50% of the CPU and migrates it to PM2. Unfortunately,

this results in PM2 becoming overloaded, so a final migration must be performed to move

VM4 to PM3.

We repeat this scenario with the Apache gray-box module running inside of each vir-

tual machine. Since the gray-box monitor can precisely measure the incoming request rates,

Sandpiper can accurately estimate the CPU needs of VM1 and VM2. By using this informa-

tion, Sandpiper is able to efficiently respond to the hotspot by immediately migrating VM3

to PM2 and VM2 to PM3. Figure 5.9 depicts the improved performance of the gray-box
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Figure 5.9. The gray-box system balances the system more quickly due to more informed
decision making. The black-box system must perform migrations sequentially and incurs
an additional migration.

approach. Note that since Sandpiper requires the hotspot to persist for k out of n intervals

before it acts, it is not until t = 98s that either system considers itself overloaded. Once a

hotspot is flagged, the gray-box approach can mitigate it within 40 seconds with just two

migrations, while the black-box approach requires 110 seconds and three migrations to do

so. Although response time increases equally under both systems, the gray-box approach is

able to reduce response times to an acceptable level 61% faster than the black-box system,

producing a corresponding reduction in SLA violations.

Result: Application-level statistics enable the gray-box approach to better infer re-

source needs and improves the quality of migration decisions, especially in scenarios where

resource demands exceed server capacity.

5.7.7 Prototype Data Center Evaluation

Next we conduct an experiment to demonstrate how Sandpiper performs under realistic

data center conditions. We deployed a prototype data center on a cluster of 16 servers that

run a total of 35 VMs. An additional node runs the control plane and one node is reserved as

a scratch node for swaps. The virtual machines run a mix of data center applications ranging

from Apache and streaming servers to LAMP servers running Apache, PHP, and MySQL

within a single VM. We run RUBiS on our LAMP servers—RUBiS is an open-source
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Figure 5.10. Sandpiper eliminates all hotspots and reduces the number of intervals experi-
encing sustained overload by 61% .

multi-tier web application that implements an eBay-like auction web site and includes a

workload generator that emulates users browsing and bidding on items.

Of the 35 deployed VMs, 5 run the RUBiS application, 5 run streaming servers, 5 run

Apache serving CPU-intensive PHP scripts, 2 run main memory database applications, and

the remaining 15 serve a mix of PHP scripts and large HTML files. We use the provided

workload generators for the RUBiS applications and use httperf to generate requests for the

other servers.

To demonstrate Sandpiper’s ability to handle complex hotspot scenarios, we orchestrate

a workload that causes multiple network and CPU hotspots on several servers. Our work-

loads causes six physical servers running a total of 14 VMs to be overloaded—four servers

see a CPU hotspot and two see a network hotspot. Of the remaining PMs, 4 are moderately

loaded (greater than 45% utilization for at least one resource) and 6 have lighter loads of

between 25 and 40% utilization. We compare Sandpiper to a statically allocated system

with no migrations.

Figure 5.10 demonstrates that Sandpiper eliminates hotspots on all six servers by inter-

val 60. These hotspots persist in the static system until the workload changes or a system

administrator triggers manual migrations. Due to Xen’s migration overhead, there are brief

periods where Sandpiper causes more physical servers to be overloaded than in the static

case. Despite this artifact, even during periods where migrations are in progress, Sand-

piper reduces the number of intervals spent in sustained overload by 61%. In all, Sandpiper
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Figure 5.11. Sandpiper overhead and scalability

performs seven migrations and two swaps to eliminate all hotspots over a period of 237

seconds after hotspot detection.

Result: Sandpiper is capable of detecting and eliminating simultaneous hotspots along

multiple resource dimensions. Despite Xen’s migration overhead, the number of servers

experiencing overload is decreased even while migrations are in progress.

5.7.8 System Overhead and Scalability

Sandpiper’s CPU and network overhead is dependent on the number of PMs and VMs

in the data center. With only black-box VMs, the type of application running in the VM

has no effect on Sandpiper’s overhead. If gray-box modules are in use, the overhead may

vary depending on the size of application-level statistics gathered.

Nucleus Overheads: Sandpiper’s nucleus sends reports to the Control Plane every

measurement interval (10 seconds by default). The table in Figure 5.11(a) gives a break-

down of overhead for each report type. Since each report uses only 288 bytes per VM,

the resulting overhead on a gigabit LAN is negligible. To evaluate the CPU overhead,

we compare the performance of a CPU benchmark with and without our resource monitors

running. Even on a single physical server running 24 concurrent VMs, our monitoring over-

heads only reduce the CPU benchmark performance by approximately one percent. This

is comparable to the overheads reported by XenMon, which much of our code is based on

[46].
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Figure 5.12. (a) Using time series predictions (the dotted lines) allows Sandpiper to better
select migration destinations, improving stability. (b) Higher levels of overload requires
more migrations until there is no feasible solution.

Control Plane Scalability: The main source of computational complexity in the con-

trol plane is the computation of a new mapping of virtual machines to physical servers after

detecting a hotspot. Although the problem is NP-hard, we only require an approximate so-

lution, and our heuristics make the problem tractable for reasonable system sizes. For very

large data centers with tens or hundreds of thousands of virtual machines, the servers can be

broken up into pools, each controlled independently by its own control plane. For clusters

of up to 500 virtual servers, the algorithm completes in less than five seconds as shown in

Figure 5.11(b).

5.7.9 Stability During Overloads

This section demonstrates how Sandpiper ensures stable system behavior by avoiding

“thrashing” migrations. First, Sandpiper avoids migrations to physical machines with rising

loads, since this can trigger additional migrations if the load rises beyond the threshold;

time-series predictions are used to determine future load trends when selecting a physical

server. Thus, Figure 5.12(a) shows that when a migration decision is required at t=140 sec,

Sandpiper will prefer PM2 over PM1 as a target. Even though PM2 has a higher current

load, the 120 second prediction window indicates a rising load on PM1.

Next, we demonstrate Sandpiper’s behavior in the presence of increasing number of

hotspots. We simulate a data center with fifty physical servers, each with three virtual
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servers. We increase the number of simultaneous hotspots from 20 to 45; the mean uti-

lizations are set to 85% and 45% for servers with and without hotspots. Figure 5.12(b)

depicts the mean number of migrations performed to resolve these hotspots over multiple

runs. If fewer than half of the servers are overloaded, then all hotspots can typically be

resolved with one migration per overloaded server. After this threshold, swaps are required

and it is increasingly difficult to fully resolve overload until it becomes infeasible. With

35 overloaded servers, Sandpiper was able to eliminate all hotspots 73% of the time (over

multiple runs); with 40 overloaded servers, a complete solution was found only 3% of the

time. In the extreme case, Sandpiper is still able to resolve 22 of the 45 hotspots before giv-

ing up. In all cases, Sandpiper first finds a solution before initiating migrations or swaps;

when no feasible solutions are found, Sandpiper either implements a partial solution or

gives up entirely rather than attempting wasteful migrations. This bounds the number of

migrations which will ever be performed and explains the decrease in migrations beyond

40 overloaded servers, where there is no feasible solution.

5.7.10 Tuning Sandpiper

Sandpiper has several parameters which the system administrator can tune to make

hotspot detection and mitigation more or less aggressive. Our experiments suggest the

following rules of thumb:

Setting Thresholds: If overload thresholds are set too high, then the additional over-

head during migration can cause additional SLA violations. Our experiments show that the

average throughput of a CPU-intensive Apache server can drop by more than 50% during

a migration. We suggest a CPU threshold of 75% to absorb the CPU overhead of migra-

tion while maximizing server utilization. We also suggest a 75% threshold for network

utilization based on experiments in [30] which indicate that the network throughput of a

highly loaded server can drop by about 20% during portions of a migration (due to network

copying overheads).
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Sustained Overload Requirement: Our experiments (not reported here) reveal that

Sandpiper is not sensitive to a particular choice of the measurement interval I so long as

it is between a few seconds and a few tens of seconds. For a measurement interval of 10s,

we suggest k = 3 and n = 5 for the “k out of n” check; this corresponds to requiring

the time period of about 3 migrations to exceed the resource threshold before we initiate a

migration. The ∆ paramter is used in the black-box system to increase resource allocations

when utilization is saturated. This should be set equal to the maximum increase in resource

requirements that a service is likely to see during a measurement interval and may vary

based on workload; we use 10% in our experiments. Using more advanced time series

forecasting techniques would allow Sandpiper to dynamically determine ∆.

5.8 Related Work

Our work draws upon recent advances in virtual machines and dynamic provisioning

in data centers to address a question of increasing research and commercial interest: can

virtual machine migration enable robust and highly responsive provisioning in data centers?

The Xen migration work [30] alludes to this motivation. What is missing is a convincing

validation and algorithms to effect migration, which is the focus of this chapter.

The idea of process migration was first investigated in the 80’s [121]. Support for

migrating groups of processes across OSes was presented in [93], but applications had to

be suspended and it did not address the problem of maintaining open network connections.

Virtualization support for commodity operating systems in [42] led towards techniques

for virtual machine migration over long time spans, suitable for WAN migration [107].

More recently, Xen [30] and VMWare [91] have implemented “live” migration of VMs

that involve extremely short downtimes ranging from tens of milliseconds to a second.

VM migration has been used for dynamic resource allocation in Grid environments [105,

117, 43]. A system employing automated VM migrations for scientific nano-technology

workloads on federated grid environments was investigated in [105]. The Shirako system

99



provides infrastructure for leasing resources within a federated cluster environment and

was extended to use virtual machines for more flexible resource allocation in [43]. Shirako

uses migrations to enable dynamic placement decisions in response to resource broker and

cluster provider policies. In contrast, we focus on data center environments with stringent

SLA requirements that necessitate highly responsive migration algorithms for online load

balancing. VMware’s Distributed Resource Scheduler [138] uses migration to perform

automated load balancing in response to CPU and memory pressure. DRS uses a userspace

application to monitor memory usage similar to Sandpiper’s gray box monitor, but unlike

Sandpiper, it cannot utilize application logs to respond directly to potential SLA violations

or to improve placement decisions.

Dedicated hosting is a category of dynamic provisioning in which each physical ma-

chine runs at most one application and workload increases are handled by spawning a

new replica of the application on idle servers. Physical server granularity provisioning has

been investigated in [6, 101]. Techniques for modeling and provisioning multi-tier Web

services by allocating physical machines to each tier are presented in [125]. Although ded-

icated hosting provides complete isolation, the cost is reduced responsiveness - without

virtualization, moving from one physical machine to another takes on the order of several

minutes [125] making it unsuitable for handling flash crowds. Our current implementation

does not replicate virtual machines, implicitly assuming that PMs are sufficiently provi-

sioned.

Shared hosting is the second variety of dynamic provisioning, and allows a single phys-

ical machine to be shared across multiple services. Various economic and resource models

to allocate shared resources have been presented in [25]. Mechanisms to partition and share

resources across services include [8, 25]. A dynamic provisioning algorithm to allocate

CPU shares to VMs on a single physical machine (as opposed to a cluster) was presented

and evaluated through simulations in [85]. In comparison to the above systems, our work
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assumes a shared hosting platform and uses VMs to partition CPU, memory, and network

resources, but additionally leverages VM migration to meet SLA objectives.

Estimating the resources needed to meet an appliction’s SLA requires a model that

inspects the request arrival rates for the application and infers its CPU, memory, and net-

work bandwidth needs. Developing such models is not the focus of this work and has been

addressed by several previous efforts such as [64, 6].

5.9 Sandpiper Conclusions

This chapter argued that virtualization provides new and more effective tools for on-

line resource management in data centers. The speed of VM migrations and the ability

to dynamically adjust resource shares allows for more agile responses to varying work-

load demands. We designed Sandpiper to automate the task of monitoring and detecting

hotspots, determining a new mapping of physical to virtual resources, and resizing or mi-

grating VMs to eliminate server overload. Sandpiper supports both a black-box strategy

that is fully OS- and application-agnostic as well as a gray-box approach that can exploit

OS- and application-level statistics.

Our evaluation of Sandpiper demonstrates the effectiveness of VM migration as a tech-

nique for rapid hotspot elimination. Using solely black-box methods, Sandpiper is capable

of eliminating simultaneous hotspots involving multiple resources. We found that utilizing

gray-box information can improve the responsiveness of our system, particularly by allow-

ing for proactive memory allocations and better inferences about resource requirements.

Sandpiper improves the agility of data centers by automating the response to unpredictable

workload changes.
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CHAPTER 6

SEAMLESS CONNECTIVITY AND OPTIMIZED WAN
MIGRATION

As more data centers are deployed across the Internet, businesses desire to run applica-

tions using pools of resources from several data centers. Unfortunately, current data centers

and cloud platforms provide limited mechanisms for seamlessly connecting and managing

the resources of multiple data center sites. The limitations on connectivity between data

center sites means that the VM migration techniques that were so useful in the previous

two chapters cannot be used to move applications between geographically separated data

centers. In this chapter we expand our view from looking at a single data center to consid-

ering multiple data centers owned by a business or the set of data centers that make up a

cloud computing platform and its customers. We propose a virtual network infrastructure

which can be used to bridge multiple data center sites in a seamless and secure way, and

an optimized form of VM migration that minimizes the performance and bandwidth cost

of moving live applications across the Internet.

6.1 Background and Motivation

From an IT perspective, it would be ideal if both in-house data centers and private and

public clouds could be considered as a flexible pool of computing and storage resources that

are seamlessly connected to overcome their geographical separation. The management of

such a pool of resources requires the ability to flexibly map applications to different sites as

well as the ability to move applications and their data across and within pools. The agility

with which such decisions can be made and implemented determines the responsiveness

with which enterprise IT can meet changing business needs.
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As shown in the previous chapters, virtualization is a key technology that has enabled

such agility within a data center. However, this same flexibility is also desirable across

geographically distributed data centers. Such cross data center management requires ef-

ficient migration of both memory and disk state between such data centers, overcoming

constraints imposed by the WAN connectivity between them.

In this chapter we propose CloudNet, the combination of a virtual network infrastruc-

ture and optimized VM migration tools that allow applications to be seamlessly moved

across the Internet. CloudNet’s optimized migration technique reduces the impact of mi-

gration on application performance, accounts for the limited bandwidth available on In-

ternet links, and automates network redirection so that active network connections are not

disrupted.

6.2 WAN Migration Use Cases

Virtual machine migration has become an important tool within data centers. We be-

lieve that WAN migration of VMs would likewise enable new resource management tech-

niques, simplify deployment into cloud data centers, and promote new application archi-

tectures. Consider the following use cases that illustrate the potential benefits of efficient

WAN migration:

Cloud bursting: Cloud bursting is a technique where an enterprise normally employs local

servers to run applications and dynamically harnesses cloud servers to enhance capacity

during periods of workload stress. The stress on local IT servers can be mitigated by

temporarily migrating a few overloaded applications to the cloud or by instantiating new

application replicas in the cloud to absorb some of the workload increase. These cloud

resources are deallocated once the workload peak has ebbed. Cloud bursting eliminates the

need to pre-provision for the peak workload locally, since cloud resources can be provi-

sioned dynamically when needed, yielding cost savings due to the cloud’s pay-as-you go

model. Current cloud bursting approaches adopt the strategy of spawning new replicas of
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the application. This limits the range of enterprise applications that may use cloud burst-

ing to stateless applications or those that include elaborate consistency mechanisms. Live

migration permits any application to exploit cloud bursting while experiencing minimal

downtime.

Enterprise IT Consolidation: Many enterprises with multiple data centers have attempted

to deal with data center “sprawl” and cut costs by consolidating multiple smaller sites into

a few large data centers. Such consolidation requires applications and data to be moved

from one site to another over a WAN; a subset of these applications may also be moved to

cloud platforms if doing so is more cost-effective than hosting locally. Typically such trans-

formation projects have incurred application down-times, often spread over multiple days.

Hence, the ability to implement these moves with minimal or no down-time is attractive

due to the corresponding reduction in the disruption seen by a business.

Follow the sun: “Follow the sun” is a new IT strategy that is designed for project teams that

span multiple continents. The scenario assumes multiple groups spanning different geogra-

phies that are collaborating on a common project and that each group requires low-latency

access to the project applications and data during normal business hours. One approach

is to replicate content at each site—e.g., a data center on each continent—and keep the

replicas consistent. While this approach may suffice for content repositories or replicable

applications, it is often unsuitable for applications that are not amenable to replication. In

such a scenario, it may be simpler to migrate one or more VM containers with applica-

tions and project data from one site to another every evening; the migration overhead can

be reduced by transferring only incremental state and applying it to the snapshot from the

previous day to recreate the current state of the application.

These scenarios represent the spectrum from pre-planned to reactive migrations across

data centers. Although the abstraction of treating resources that span data centers and cloud

providers as a single unified pool of resources is attractive, the reality of these resources
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being distributed across significant geographic distances and interconnected via static wide

area network links (WANs) conspire to make the realization of this vision difficult.

6.3 Cloudnet Overview

In this section, we present an overview of the key abstractions and design building

blocks in CloudNet.

6.3.1 Resource Pooling: Virtual Cloud Pools

At the heart of CloudNet is a Virtual Cloud Pool (VCP) abstraction that enables server

resources across data centers and cloud providers to be logically grouped into a single

server pool as shown in Figure 6.1. The notion of a Virtual Cloud Pool is similar to that of

a Virtual Private Cloud, which is used by Amazon’s EC2 platform and was also proposed

in our previous research [139]. Despite the similarity, the design motivations are differ-

ent. In our case, we are concerned with grouping server pools across data centers, while

Amazon’s product seeks to provide the abstraction of a private cloud that is hosted on a

public cloud. Both abstractions use virtual private networks (VPNs) as their underlying

interconnection technology—we employ Layer 2 VPNs to implement a form of network

virtualization/transparency, while Amazon’s VPC uses layer 3 VPNs to provide control

over the network addressing of VM services.

The VCPs provided by CloudNet allow cloud resources to be connected to as securely

and seamlessly as if they were contained within the enterprise itself. Further, the cloud

to enterprise mappings can be adjusted dynamically, allowing cross data center resource

pools to grow and change depending on an enterprise’s needs. In the following sections we

discuss the benefits of these abstractions for enterprise applications and discuss how this

dynamic infrastructure facilitates VM migration between data centers.
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Figure 6.1. Two VCPs isolate resources within the cloud sites and securely link them to
the enterprise networks.

6.3.2 Dynamic, Seamless Cloud Connections

CloudNet uses Multi-Protocol Label Switching (MPLS) based VPNs to create the ab-

straction of a private network and address space shared by multiple data centers. Since

addresses are specific to a VPN, the cloud operator can allow customers to use any IP

address ranges that they prefer without concern for conflicts between cloud customers.

CloudNet makes the level of abstraction even greater by using Virtual Private LAN Ser-

vices (VPLS) that bridge multiple MPLS endpoints onto a single LAN segment. This al-

lows cloud resources to appear indistinguishable from existing IT infrastructure already

on the enterprise’s own LAN. VPLS provides transparent, secure, and resource guaranteed

layer-2 connectivity without requiring sophisticated network configuration by end users.

This simplifies the network reconfiguration that must be performed when migrating VMs

between data centers.

VPNs are already used by many large enterprises, and cloud sites can be easily added

as new secure endpoints within these existing networks. VCPs use VPNs to provide secure

communication channels via the creation of “virtually dedicated” paths in the provider

network. The VPNs protects traffic between the edge routers at each enterprise and cloud

site. Within a cloud site, the traffic for a given enterprise is restricted to a particular VLAN.

This provides a secure end-to-end path from the enterprise to the cloud and eliminates the

need to configure complex firewall rules between the cloud and the enterprise, as all sites

can be connected via a private network inaccessible from the public Internet.
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As enterprises deploy and move resources between cloud data centers, it is necessary

to adjust the topology of the client’s VCP. In typical networks, connecting a new data

center to a VPN endpoint can take hours or days, but these delays are administrative rather

than fundamental to the network operations required. CloudNet utilizes a VPN Controller

to automate the process of VPN reconfiguration, allowing resources at a new cloud data

center to be connected to a VPN within seconds.

6.3.3 Efficient WAN Migration

Currently, moving an application to the cloud or another data center can require sub-

stantial downtime while application state is copied and networks are reconfigured before

the application can resume operation. Alternatively, some applications can be easily repli-

cated into the cloud while the original continues running; however, this only applies to a

small class of applications (e.g. stateless web servers or MapReduce style data processing

jobs). These approaches are insufficient for the majority of enterprise applications which

have not been designed for ease of replication. Further, many legacy applications can re-

quire significant reconfiguration to deal with the changed network configuration required

by current approaches. In contrast, the live VM migration supported by CloudNet provides

a much more attractive mechanism for moving applications between data centers because

it is completely application independent and can be done with only minimal downtime.

Most recent virtualization platforms support efficient migration of VMs within a local

network [30, 91]. By virtue of presenting WAN resources as LAN resources, CloudNet’s

VCP abstraction allows these live migration mechanisms to function unmodified across

data centers separated by a WAN. However, the lower bandwidth and higher latencies over

WAN links result in poor migration performance. In fact, VMWare’s preliminary support

for WAN VM migration requires at least 622 Mbps of bandwidth dedicated to the transfer,

and is designed for links with less than 5 msec latency [128]. Despite being intercon-

nected using “fat” gigabit pipes, data centers will typically be unable to dedicate such high

107



Asynchronous Copy Synchronous

Live Memory 
Transfer

N
et

M
em

D
is

k

Time (not to scale)

ARPVPN Setup
Pause VM

Figure 6.2. The phases of a migration for non-shared disk, memory, and the network in
CloudNet .

bandwidth for a single application transfer and enterprises will want the ability to migrate

a group of related VMs concurrently. CloudNet uses a set of optimizations to conserve

bandwidth and reduce WAN migration’s impact on application performance.

Current LAN-based VM migration techniques assume the presence of a shared file sys-

tem which enables them to migrate only memory data and avoid moving disk state. A

shared file system may not always be available across a WAN or the performance of the

application may suffer if it has to perform I/O over a WAN. Therefore, CloudNet coordi-

nates the hypervisor’s memory migration with a disk replication system so that the entire

VM state can be transferred if needed.

Current LAN-based live migration techniques must be optimized for WAN environ-

ments, and cloud computing network infrastructure must be enhanced to support dynamic

relocation of resources between cloud and enterprise sites; these challenges are the primary

focus of this chapter.

6.4 WAN VM Migration

Consider an organization which desires to move one or more applications (and possibly

their data) between two data centers. Each application is assumed to be run in a VM, and

we wish to live migrate those virtual machines across the WAN. CloudNet uses these steps

to live migrate each VM:

Step 1: Establish virtual connectivity between VCP endpoints.
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Step 2: If storage is not shared, transfer all disk state.

Step 3: Transfer the memory state of the VM to a server in the destination data center as it

continues running without interruption.

Step 4: Once the disk and memory state have been transferred, briefly pause the VM for

the final transition of memory and processor state to the destination host. This process must

not disrupt any active network connections between the application and its clients.

While these steps, illustrated in Figure 6.2, are well understood in LAN environments,

migration over the WAN poses new challenges. The constraints on bandwidth and the

high latency found in WAN links makes steps 2 and 3 more difficult since they involve

large data transfers. The IP address space in step 4 would typically be different when the

VM moves between routers at different sites. Potentially, application, system, router and

firewall configurations would need to be updated to reflect this change, making it difficult

or impossible to seamlessly transfer active network connections. CloudNet avoids this

problem by virtualizing the network connectivity so that the VM appears to be on the same

virtual LAN. We achieve this using VPLS VPN technology in step 1, and CloudNet utilizes

a set of migration optimizations to improve performance in the other steps.

6.4.1 Migrating Networks, Disk, and Memory

Here we discuss the techniques used in CloudNet to transfer disk and memory, and to

maintain network connectivity throughout the migration. We discuss further optimizations

to these approaches in Section 6.4.2.

6.4.1.1 Dynamic VPN Connectivity to the Cloud

A straightforward implementation of VM migration between IP networks results in sig-

nificant network management and configuration complexity [48]. As a result, virtualizing

network connectivity is key in CloudNet for achieving the task of WAN migration seamlessly

relative to applications. However, reconfiguring the VPNs that CloudNet can take advan-

tage of to provide this abstraction has typically taken a long time because of manual (or
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Figure 6.3. The VPN Controller remaps the route targets (A,B,C) advertised by each cloud
data center to match the proper enterprise VPN (E1 or E2). To migrate VM1 to Cloud Site
2, the VPN controller redefines E1’s VPN to include route target A and C, then performs
the disk and memory migration.

nearly manual) provisioning and configuration. CloudNet explicitly recognizes the need to

set up new VPN endpoints quickly, and exploits the capability of BGP route servers [127]

to achieve this.

In many cases, the destination data center will already be a part of the customer’s virtual

cloud pool because other VMs owned by the enterprise are already running there. However,

if this is the first VM being moved to the site, then a new VPLS endpoint must be created

to extend the VCP into the new data center.

Creating a new VPLS endpoint involves configuration changes on the data center routers,

a process that can be readily automated on modern routers [63, 29]. A traditional, but naive,

approach would require modifying the router configurations at each site in the VCP so they

all advertise and accept the proper route targets. A route target is an ID used to determine

which endpoints share connectivity. An alternative to adjusting the router configurations

directly, is to dynamically adjust the routes advertised by each site within the network it-

self. CloudNet takes this approach by having data center routers announce their routes to

a centralized VPN Controller. The VPN Controller acts as an intelligent route server and

is connected via BGP sessions to each of the cloud and enterprise data centers. The con-

troller maintains a ruleset indicating which endpoints should have connectivity; as all route

control messages pass through this VPN Controller, it is able to rewrite the route targets

in these messages, which in turn control how the tunnels forming each VPLS are created.
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Figure 6.3 illustrates an example where VM1 is to be migrated from enterprise site E1 to

Cloud Site 2. The VPN Controller must extend E1’s VPLS to include route targets A and

C, while Enterprise 2’s VPLS only includes route target B. Once the change is made by

the VPN Controller, it is propagated to the other endpoints via BGP. This ensures that each

customer’s resources are isolated within their own private network, providing CloudNet’s

virtual cloud pool abstraction. Likewise, the VPN Controller is able to set and distribute

fine grained access control rules via BGP using technologies such as Flowspec (RFC 5575).

Our approach allows for fast VCP reconfiguration since changes only need to be made

at a central location and then propagated via BGP to all other sites. This provides simpler

connectivity management compared to making changes individually at each site, and allows

a centralized management scheme that can set connectivity and access control rules for all

sites.

In our vision for the service, the VPN Controller is operated by the network service

provider. As the VPLS network in CloudNet spans both the enterprise sites and cloud

data centers, the cloud platform must have a means of communicating with the enterprise’s

network operator. The cloud platform needs to expose an interface that would inform the

network service provider of the ID for the VLAN used within the cloud data center so

that it can be connected to the appropriate VPN endpoint. Before the VPN Controller

enables the new endpoint, it must authenticate with the cloud provider to ensure that the

enterprise customer has authorized the new resources to be added to its VPN. These security

details are orthogonal to our main work, and in CloudNet we assume that there is a trusted

relationship between the enterprise, the network provider, and the cloud platform.

6.4.1.2 Disk State Migration

LAN based live migration assumes a shared file system for VM disks, eliminating the

need to migrate disk state between hosts. As this may not be true in a WAN environment,
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CloudNet supports either shared disk state or a replicated system that allows storage to be

migrated with the VM.

If we have a “shared nothing” architecture where VM storage must be migrated along

with the VM memory state, CloudNet uses the DRBD disk replication system to migrate

storage to the destination data center [35]. In Figure 6.3, once connectivity is established

to Cloud 2, the replication system must copy VM1’s disk to the remote host, and must con-

tinue to synchronize the remote disk with any subsequent writes made at the primary. In

order to reduce the performance impact of this synchronization, CloudNet uses DRBD’s

asynchronous replication mode during this stage. Once the remote disk has been brought

to a consistent state, CloudNet switches to a synchronous replication scheme and the live

migration of the VM’s memory state is initiated. During the VM migration, disk updates

are synchronously propagated to the remote disk to ensure consistency when the mem-

ory transfer completes. When the migration completes, the new host’s disk becomes the

primary, and the origin’s disk is disabled.

Migrating disk state typically represents the largest component of the overall migra-

tion time as the disk state may be in the tens or hundreds of gigabytes. Fortunately, disk

replication can be enabled well in advance of a planned migration. Since the disk state for

many applications changes only over very long time scales, this can allow the majority of

the disk to be transferred with relatively little wasted resources (e.g., network bandwidth).

For unplanned migrations such as a cloud burst in response to a flash crowd, storage may

need to be migrated on demand. CloudNet’s use of asynchronous replication during bulk

disk transfer minimizes the impact on application performance.

6.4.1.3 Transferring Memory State

Most VM migration techniques use a “pre-copy” mechanism to iteratively copy the

memory contents of a live VM to the destination machine, with only the modified pages

being sent during each iteration [30, 91]. At a certain point, the VM is paused to copy the
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Figure 6.4. (a) Low bandwidth links can significantly increase the downtime experienced
during migration. (b) The number of pages to be sent quickly levels off. Intelligently
deciding when to stop a migration eliminates wasteful transfers and can lower pause time.
(c) Each application has a different level of redundancy. Using finer granularity finds more
redundancy, but has diminishing returns.

final memory state. WAN migration can be accomplished by similar means, but the lim-

ited bandwidth and higher latencies can lead to decreased performance–particularly much

higher VM downtimes–since the final iteration where the VM is paused can last much

longer. CloudNet augments the existing migration code from the Xen virtualization plat-

form with a set of optimizations that improve performance, as described in Section 6.4.2.

The amount of time required to transfer a VM’s memory depends on its RAM alloca-

tion, working set size and write rate, and available bandwidth. These factors impact both

the total time of the migration, and the application-experienced downtime caused by paus-

ing the VM during the final iteration. With WAN migration, it is desirable to minimize both

these times as well as the bandwidth costs for transferring data. While pause time may have

the most direct impact on application performance, the use of synchronous disk replication

throughout the memory migration means that it is also important to minimize the total time

to migrate memory state, particularly in high latency environments.
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As bandwidth reduces, the total time and pause time incurred by a migration can rise

dramatically. Figure 6.4(a) shows the pause time of VMs running several different appli-

cations, as the available bandwidth is varied (assumes shared storage and a constant 10

msec round trip latency). Note that performance decreases non-linearly; migrating a VM

running the SPECjbb benchmark on a gigabit link incurs a pause time of 0.04 seconds, but

rises to 7.7 seconds on a 100 Mbps connection. This nearly 200X increase is unacceptable

for most applications, and happens because a migration across a slower link causes each it-

eration to last longer, increasing the chance that additional pages will be modified and thus

need to be resent. This is particularly the case in the final iteration. This result illustrates

the importance of optimizing VM migration algorithms to better handle low bandwidth

connections.

Migrations over the WAN may also have a greater chance of being disrupted due to

network failures between the source and destination hosts. Because the switch-over to the

second site is performed only after the migration is complete, CloudNet will suffer no ill

effects from this type of failure because the application will continue running on the origin

site, unaffected. In contrast, some pull or ”post-copy” based migration approaches start

running the application at the destination prior to receiving all data, which could lead to the

VM crashing if there is a network disconnection.

6.4.1.4 Maintaining Network Connections

Once disk and memory state have been migrated, CloudNet must ensure that VM1’s

active network connections are redirected to Cloud 2. In LAN migration, this is achieved

by having the destination host transmit an unsolicited ARP message that advertises the

VM’s MAC and IP address. This causes the local Ethernet switch to adjust the mapping

for the VM’s MAC address to its new switch port [30]. Over a WAN, this is not normally a

feasible solution because the source and destination are not connected to the same switch.

Fortunately, CloudNet’s use of VPLS bridges the VLANs at Cloud 2 and E1, causing the
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ARP message to be forwarded over the Internet to update the Ethernet switch mappings at

both sites. This allows open network connections to be seamlessly redirected to the VM’s

new location.

In the Xen virtualization platform, this ARP is triggered by the VM itself after the mi-

gration has completed. In CloudNet, we optimize this procedure by having the destination

host preemptively send the ARP message immediately after the VM is paused for the final

iteration of the memory transfer. This can reduce the downtime experienced by the VM by

allowing the ARP to propagate through the network in parallel with the data sent during the

final iteration. However, on our evaluation platform this does not appear to influence the

downtime, although it could be useful with other router hardware since some implemen-

tations can cache MAC mappings rather than immediately updating them when an ARP

arrives.

6.4.2 Optimizing WAN VM Migration

In this section we propose a set of optimizations to improve the performance of VM

migration over the WAN. The changes are made within the virtualization hypervisor; while

we use the Xen virtualization platform in our work [30], they would be equally useful for

other platforms such as VMWare which uses a similar migration mechanism [91].

6.4.2.1 Smart Stop and Copy

The Xen migration algorithm typically iterates until either a very small number of pages

remain to be sent or a limit of 30 iterations is reached. At that point, the VM is paused,

and all remaining pages are sent. However, our results indicate that this tends to cause the

migration algorithm to run through many unnecessary iterations, increasing both the total

time for the migration and the amount of data transferred.

Figure 6.4(b) shows the number of pages remaining to be sent at the end of each itera-

tion during a migration of a VM running a kernel compilation over a link with 622 Mbps

bandwidth and 5 msec latency. After the fourth iteration there is no significant drop in the
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number of pages remaining to be sent. This indicates that (i) a large number of iterations

only extends the total migration time and increases the data transferred, and (ii) the migra-

tion algorithm could intelligently pick when to stop iterating in order to decrease both total

and pause time. For the migration shown, picking the optimal point to stop the migration

would reduce pause time by 40% compared to the worst stopping point.

CloudNet uses a Smart Stop and Copy optimization to reduce the number of unneces-

sary iterations and to pick a stopping point that minimizes pause time. Unfortunately, these

two goals are potentially conflicting. Stopping after only a few iterations would reduce

total time, but running for an extra few rounds may result in a lower pause time, which

can potentially have a larger impact on application performance. The Smart Stop algo-

rithm is designed to balance this trade-off by minimizing pause time without significantly

increasing total time.

We note that in most cases (e.g. Figure 6.4(b)), after about five iterations the migration

reaches a point of diminishing returns, where in a given iteration, approximately the same

amount of data is dirtied as is sent. To detect this point, the first stage of Smart Stop

monitors the number of pages sent and dirtied until they become equal. Prior to this point

there was a clear gain from going through another iteration because more data was sent

than dirtied, lowering the potential pause time.

While it is possible to stop the migration immediately at the point where as many pages

are dirtied as sent, we have found that often the random fluctuations in how pages are

written to can mean that waiting a few more iterations can result in a lower pause time

with only a marginal increase in total time. Based on this observation, Smart Stop switches

mode once it detects this crossover, and begins to search for a local minimum in the number

of pages remaining to be sent. If at the start of an iteration, the number of pages to be sent is

less than any previous iteration in a sliding window, Smart Stop pauses the VM to prevent

any more memory writes and sends the final iteration of memory data.
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6.4.2.2 Content Based Redundancy

Content based redundancy (CBR) elimination techniques have been used to save band-

width between network routers [4], and we use a similar approach to eliminate the redun-

dant data while transferring VM memory and disk state.1 Disks can have large amounts

of redundant data caused by either empty blocks or similar files. Likewise, a single virtual

machine can often have redundant pages in memory from similar applications or duplicated

libraries.

There are a variety of mechanisms that can be used to eliminate redundancy in a net-

work transfer, and a good comparison of techniques is found in [1]. CloudNet can support

any type of redundancy elimination algorithm; for efficiency, we use a block based ap-

proach that detects identical, fixed size regions in either a memory page or disk block. We

have also tested a Rabin Fingerprint based redundancy elimination algorithm, but found it

to be slower without substantially improving the redundancy detection rate.

CloudNet’s block based CBR approach splits each memory page or disk block into

fixed sized blocks and generates hashes based on their content using the Super Fast Hash

Algorithm [53]. If a hash matches an entry in fixed size, FIFO caches maintained at the

source and destination hosts, then a block with the same contents was sent previously. After

verifying the pages match (in case of hash collisions), the migration algorithm can simply

send a 32bit index to the cache entry instead of the full block (e.g. 4KB for a full memory

page).

Dividing a memory page into smaller blocks allows redundant data to be found with

finer granularity. Figure 6.4(c) shows the amount of memory redundancy found in several

applications during migrations over a 100 Mbps link as the number of blocks per page was

varied. Increasing the number of sub-pages raises the level of redundancy that is found, but

1Commercial products such as those from RiverBed Technologies can also perform CBR using a trans-
parent network appliance. Such products may not be suitable in our case since memory and/or disk migration
data is likely to use encryption to avoid interception of application state. In such cases, end-host based
redundancy elimination has been proposed as an alternative [1]—an approach we use here also.
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it can incur greater overhead since each block requires a hash table lookup. In CloudNet we

divide each page into four sub-pages since this provides a good tradeoff of detection rate

versus overhead.

Disk transfers can also contain large amounts of redundant data. Our redundancy elim-

ination code is not yet fully integrated with DRBD, however, we are able to evaluate the

potential benefit of this optimization by analyzing disk images with an offline CBR elimi-

nation tool.

We currently only detect redundancy within a single VM’s memory or disk. Previous

work has demonstrated that different virtual machines often have some identical pages in

memory, e.g. for common system libraries [47, 146]. Likewise, different virtual machines

often have large amounts of identical data on disk due to overlap in the operating system

and installed applications. Some of this redundancy could be found by using a network

based appliance to detect redundancy across the migration traffic of multiple virtual ma-

chines. However, a network based approach can only find a redundant disk or memory

block if it matches a packet sent during a previous migration. In order to find redundancy

in the disks or memories of VMs which are not being moved, such an approach could be

complemented with a distributed, content addressable cache run across the hosts at each

site [103]. Fortunately, the single VM redundancy detection technique used in CloudNet is

still able to save a significant amount of bandwidth without this added complexity.

6.4.2.3 Using Page Deltas

After the first iteration, most of the pages transferred are ones which were sent previ-

ously, but have since been modified. Since an application may be modifying only portions

of pages, another approach to reduce bandwidth consumption is to keep a cache of previ-

ously transmitted pages, and then only send the difference between the cached and current

page if it is retransmitted. This technique has been demonstrated in the Remus high avail-

ability system to reduce the bandwidth required for VM synchronization [32] in a LAN.

118



Delta Size (B)
F

re
qu

en
cy

0
20

K
40

K

0 1000 2000 3000 4000

(a) Kernel Compile

Delta Size (B)

F
re

qu
en

cy

0
20

K
40

K

0 1000 2000 3000 4000

(b) TPC-W

Figure 6.5. During a kernel compile, most pages only experience very small modifications.
TPC-W has some pages with small modifications, but other pages are almost completely
changed.

We enhance this type of communicating deltas in a unique manner by complementing it

with our CBR optimization. This combination helps overcome the performance limitations

that would otherwise constrain the adoption of WAN migration

We have modified the Xen migration code so that if a page, or sub page block, does not

match an entry in the cache using the CBR technique described previously, then the page

address is used as a secondary index into the cache. If the page was sent previously, then

only the difference between the current version and the stored version of the page is sent.

This delta is calculated by XOR’ing the current and cached pages, and run length encoding

the result.

Figure 6.5 shows histograms of delta sizes calculated during migrations of two appli-

cations. A smaller delta means less data needs to be sent; both applications have a large

number of pages with only small modifications, but TPC-W also has a collection of pages

that have been completely modified. This result suggests that page deltas can reduce the

amount of data to be transferred by sending only the small updates, but that care must be

taken to avoid sending deltas of pages which have been heavily modified.

While it is possible to perform some WAN optimizations such as redundancy elimi-

nation in network middleboxes [4], the Page Delta optimization relies on memory page

address information that can only be obtained from the hypervisor. As a result, we make

all of our modifications within the virtualization and storage layers. This requires no extra

support from the network infrastructure and allows a single cache to be used for both redun-
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Figure 6.6. Our CloudNet testbed is deployed across three data centers. Migrations are
performed between the data centers in IL and TX, with application clients running in CA.

dancy elimination and deltas. Further, VM migrations are typically encrypted to prevent

eavesdroppers from learning the memory contents of the VM being migrated, and network

level CBR generally does not work over encrypted streams [1]. Finally, we believe our

optimization code will be a valuable contribution back to the Xen community.

6.5 Evaluation

This section evaluates the benefits of each of our optimizations and studies the perfor-

mance of several different application types during migrations between data center sites

under a variety of network conditions. We also study migration under the three use case

scenarios described in the introduction: Section 6.5.4 illustrates a cloud burst, Section 6.5.8

studies multiple simultaneous migrations as part of a data center consolidation effort, and

Section 6.5.9 looks at the cost of disk synchronization in a follow-the-sun scenario.

6.5.1 Testbed Setup

We have evaluated our techniques between three data center sites spread across the

United States, and interconnected via an operational network, as well as on a laboratory

testbed that uses a network emulator to mimic a WAN environment.

Data Center Prototype: We have deployed CloudNet across three data centers in Illi-

nois, Texas, and California as shown in Figure 6.6. Our prototype is run on top of the

ShadowNet infrastructure which is used by CloudNet to configure a set of logical routers
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located at each site [26]. At each site we have Sun servers with dual quad-core Xeon CPUs

and 32GB of RAM. We use Juniper M7i routers to create VPLS connectivity between all

sites. We use the California site to run application clients, and migrate VMs between Texas

and Illinois. Network characteristics between sites are variable since the data centers are

connected via the Internet; we measured an average round trip latency of 27 msec and a

max throughput of 465 Mbps between the sites used for migrations.

Lab Testbed: Our lab testbed consists of multiple server/router pairs linked by a VPLS

connection. The routers are connected through gigabit ethernet to a PacketSphere Network

Emulator capable of adjusting the bandwidth, latency, and packet loss experienced on the

link. We use this testbed to evaluate WAN migrations under a variety of controlled network

conditions.

6.5.2 Applications and Workloads

Our evaluation studies three types of business applications. We run each application

within a Xen VM and allow it to warm up for at least twenty minutes prior to migration.

SPECjbb 2005 is a Java server benchmark that emulates a client/server business ap-

plication [111]. The majority of the computation performed is for the business logic per-

formed at the application’s middle tier. SPECjbb maintains all application data in memory

and only minimal disk activity is performed during the benchmark.

Kernel Compile represents a development workload. We compile the Linux 2.6.31

kernel along with all modules. This workload involves moderate disk reads and writes,

and memory is mainly used by the page cache. In our simultaneous migration experiment

we run a compilation cluster using distcc to distribute compilation activities across several

VMs that are all migrated together.

TPC-W is a web benchmark that emulates an Amazon.com like retail site [122]. We

run TPC-W in a two tier setup using Tomcat 5.5 and MySQL 5.0.45. Both tiers are run

within a single VM. Additional servers are used to run the client workload generators,
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emulating 600 simultaneous users accessing the site using the “shopping” workload that

performs a mix of read and write operations. The TPC-W benchmark allows us to analyze

the client perceived application performance during the migration, as well as verify that

active TCP sessions do not reset during the migration.

6.5.3 VPN Endpoint Manipulation

Before a migration can begin, the destination site may need to be added to the cus-

tomer’s VPN. This experiment measures the time required for CloudNet’s VPN Controller

to add the third data center site to our Internet-based prototype by manipulating route tar-

gets. Figure 6.7 shows a timeline of the steps performed by the VPN Controller to recon-

figure its intelligent route server. The controller sends a series of configuration commands

followed by a commit operation to the router, taking a total of 24.21s to be processed on our

Juniper M7i routers; these steps are manufacturer dependent and may vary depending on

the hardware. As the intelligent route server does not function as a general purpose router,

it would be possible to further optimize this process if reduction in VPN reconfiguration

time is required.

Once the new configuration has been applied to the router maintained by the VPN

controller, the updated information must be propagated to the other routers in the network.

The information is sent in parallel via BGP. On our network where three sites need to have

their routes updated, the process completes in only 30 milliseconds, which is just over one

round trip time. While propagating routes may take longer in larger networks, the initial

intelligent route server configuration steps will still dominate the total cost of the operation.
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Figure 6.8. Response times rise to an average of 52 msec during the memory migration,
but CloudNet shortens this period of reduced performance by 45%. Response time drops
to 10msec once the VM reaches its destination and can be granted additional resources.

6.5.4 Cloud Burst: Application Performance

Cloud Bursting allows an enterprise to offload computational jobs from its own data

centers into the cloud. Current cloud bursting techniques require applications to be shut

down in the local site and then restarted in the cloud; the live WAN migration supported by

CloudNet allows applications to be seamlessly moved from an enterprise data center into

the cloud.

We consider a cloud bursting scenario where a live TPC-W web application must be

moved from an overloaded data center in Illinois to one in Texas without disrupting its

active clients; we migrate the VM to a more powerful server and increase its processor

allocation from one to four cores once it arrives at the new data center location. In a real

deployment a single VM migration would not have access to the full capacity of the link

between the data centers, so we limit the bandwidth available for the migration to 85Mbps;

the VM is allocated 1.7GB of RAM and has a 10GB disk. We assume that CloudNet has

already configured the VPN endpoint in Texas as described in the previous section. After

this completes, the DRBD subsystem begins the initial bulk transfer of the virtual machine

disk using asynchronous replication; we discuss the disk migration performance details in

Section 6.5.5 and focus on the application performance during the memory migration here.

The full disk transfer period takes forty minutes and is then followed by the memory

migration. Figure 6.8 shows how the response time of the TPC-W web site is affected

during the final 1.5 minutes of the storage transfer and during the subsequent memory mi-
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gration when using both default Xen and CloudNet with all optimizations enabled. During

the disk transfer period, the asynchronous replication imposes negligible overhead; average

response time is 22 msec compared to 20 msec prior to the transfer. During the VM migra-

tion itself, response times become highly variable, and the average rises 2.5X to 52 msec in

the default Xen case. This overhead is primarily caused by the switch to synchronous disk

replication—any web request which involves a write to the database will see its response

time increased by at least the round trip latency (27 msec) incurred during the synchronous

write. As a result, it is very important to minimize the length of time for the memory mi-

gration in order to reduce this period of lower performance. After the migration completes,

the response time drops to an average of 10 msec in both cases due to the increased capacity

available for the VM.

While both default Xen and CloudNet migrations do suffer a performance penalty dur-

ing the migration, CloudNet’s optimizations reduce the memory migration time from 210

to 115 seconds, a 45% reduction. CloudNet also lowers the downtime by half, from 2.2

to 1 second. Throughout the migration, CloudNet’s memory and disk optimizations con-

serve bandwidth. Using a 100MB cache, CloudNet reduces the memory state transfer from

2.2GB to 1.5GB. Further, the seamless network connectivity provided by the CloudNet in-

frastructure prevents the need for any complicated network reconfiguration, and allows the

application to continue communicating with all connected clients throughout the migration.

This is a significant improvement compared to current cloud bursting techniques which typ-

ically cause lengthy downtime as applications are shutdown, replicated to the second site,

and then rebooted in their new location.

6.5.5 Disk Synchronization

Storage migration can be the dominant cost during a migration in terms of both time

and bandwidth consumption. The DRBD system used by CloudNet transfers disk blocks to

the migration destination by reading through the source disk at a constant rate (4MB/s) and
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Figure 6.9. CloudNet’s optimizations affect different classes of application differently
depending on the nature of their memory accesses. Combining all optimizations greatly
reduces bandwidth consumption and time for all applications.

Data Tx (GB) Total Time (s) Pause Time (s)
TPC-W 1.5→ 0.9 135→ 78 3.7→ 2.3
Kernel 1.5→ 1.1 133→ 101 5.9→ 3.5
SPECjbb 1.2→ 0.4 112→ 35 7.8→ 6.5

Table 6.1. CloudNet reduces bandwidth, total time, and pause time during migrations over
a 100Mbps link with shared disk.

transmitting the non-empty blocks. This means that while the TPC-W application in the

previous experiment was allocated a 10GB disk, only 6.6GB of data is transferred during

the migration.

The amount of storage data sent during a migration can be further reduced by employ-

ing redundancy elimination on the disk blocks being transferred. Using a small 100MB

redundancy elimination cache can reduce the transfer to 4.9GB, and a larger 1GB cache

can lower the bandwidth consumption to only 3.6GB. Since the transfer rate is limited by

the disk read speed, disk migration takes the same amount of time with and without Cloud-

Net’s optimizations; however, the use of content based redundancy significantly reduces

bandwidth costs during the transfer.
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Figure 6.10. Smart Stop reduces the iterations in a migration, significantly lowering the
number of “useless” page transfers that end up needing to be retransmitted in the default
case.

6.5.6 Memory Transfer

Here we discuss the benefits provided by each of our optimizations for transferring

memory state. To understand each optimization’s contribution, we analyze migration per-

formance using VMs allocated 1GB of RAM running each of our three test applications;

we create the VMs on a shared storage device and perform the migrations over a 100 Mbps

link with 20 msec RTT in our local testbed.

Figure 6.9 shows each of CloudNet’s optimizations enabled individually and in combi-

nation. We report the average improvement in total time, pause time, and data transferred

over four repeated migrations for each optimization. Overall, the combination of all op-

timizations provides a 30 to 70 percent reduction in the amount of data transferred and

total migration time, plus up to a 50% reduction in pause time. Table 6.1 lists the absolute

performance of migrations with the default Xen code and with CloudNet’s optimizations.

Smart Stop: The Smart Stop optimization can reduce the data transferred and total time

by over 20% (Figure 6.9). Using Smart Stop lowers the number of iterations from 30 to an

average of 9, 7, and 10 iterations for Kernel Compile, TPC-W, and SPECjbb respectively.

By eliminating the unnecessary iterations, Smart Stop saves bandwidth and time.

Smart Stop is most effective for applications which have a large working set in memory.

In TPC-W, memory writes are spread across a database, and thus it sees a large benefit from

the optimization. In contrast, SPECjbb repeatedly updates a smaller region of memory, and

126



Redundancy (% of RAM)

Zeroes

  0  10   20   30   40   50   60   70

Non-0 Duplicates

TPC-W

Kernel
Compile

SPECjbb

Figure 6.11. Different applications have different levels of redundancy, in some cases
mostly from empty zero pages.

these updates occur fast enough that the migration algorithm defers those pages until the

final iteration. As a result, only a small number of pages would have been sent during the

intermediate iterations that Smart Stop eliminates.

Figure 6.10 shows the total number of pages sent in each iteration, as well as how much

of the data is final–meaning it does not need to be retransmitted in a later iteration–during

a TPC-W migration. After the second iteration, TPC-W sends over 20MB per iteration, but

only a small fraction of the total data sent is final–the rest is resent in later iterations when

pages are modified again. Smart Stop eliminates these long and unnecessary iterations to

reduce the total data sent and migration time.

Smart Stop is also able to reduce the pause time of the kernel compile by over 30%

(Figure 6.9(a)). This is because the compilation exhibits a variance in the rate at which

memory is modified (Figure 6.4(b)). The algorithm is thus able to pick a more intelligent

iteration to conclude the migration, minimizing the amount of data that needs to be sent in

the final iteration.

Redundancy Elimination: Figure 6.11 shows the amount of memory redundancy

found in each applications during migrations over a 100 Mbps link when each memory

page is split into four blocks. SPECjbb exhibits the largest level of redundancy; how-

ever, the majority of the redundant data is from empty “zero” pages. In contrast, a kernel

compilation has about 13% redundancy, of which less than half is zero pages. The CBR

optimization eliminates this redundancy, providing substantial reductions in the total data

transferred and migration time (Figure 6.9). Since CBR can eliminate redundancy in por-
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Data Transfer (MB) Page Delta
Iter 1 Iters 2-30 Savings (MB)

TPC-W 954 315 172
Kernel 877 394 187
SPECjbb 932 163 127

Table 6.2. The Page Delta optimization cannot be used during the first iteration, but it
provides substantial savings during the remaining rounds.

tions of a page, it also can significantly lower the pause time since pages sent in the final

iteration often have only small modifications, allowing the remainder of the page to match

the CBR cache. This particularly helps the kernel compile and TPC-W migrations which

see a 40 and 26 percent reduction in pause time respectively. SPECjbb does not see a large

pause time reduction because most of the redundancy in its memory is in unused zero pages

which are almost all transferred during the migration’s first iteration.

Page Deltas: The first iteration of a migration makes up a large portion of the total data

sent since during this iteration the majority of a VM’s memory–containing less frequently

touched pages–is transferred. Since the Page Delta optimization relies on detecting mem-

ory addresses that have already been sent, it can only be used from the second iteration

onward, and thus provides a smaller overall benefit, as seen in Figure 6.9.

Table 6.2 shows the amount of memory data transferred during the first and remaining

iterations during migrations of each application. While the majority of data is sent in the

first round, during iterations 2 to 30 the Page Delta optimization still significantly reduces

the amount of data that needs to be sent. For example, TPC-W sees a reduction from

487MB to 315MB, a 36 percent improvement.

Currently, the Page Delta optimization does not reduce migration time as much as it

reduces data transferred due to inefficiencies in the code. With further optimization, the

Page Delta technique could save both bandwidth and time.

Results Summary: The combination of all optimizations improves the migration per-

formance more than any single technique. While the Page Delta technique only comes into
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Figure 6.12. Decreased bandwidth has a large impact on migration time, but CloudNet’s
optimizations reduce the effects in low bandwidth scenarios.

effect after the first iteration, it can provide significant reductions in the amount of data sent

during the remainder of the migration. The CBR based approach, however, can substan-

tially reduce the time of the first iteration during which many empty or mostly empty pages

are transferred. Finally, Smart Stop eliminates many unnecessary iterations and combines

with both the CBR and Page Delta techniques to minimize the pause time during the final

iteration.

6.5.7 Impact of Network Conditions

We next use the network emulator testbed to evaluate the impact of latency and band-

width on migration performance.

Bandwidth: Many data centers are now connected by gigabit links. However, this is

shared by thousands of servers, so the bandwidth that can be dedicated to the migration of

a single application is much lower. In this experiment we evaluate the impact of bandwidth

on migrations when using a shared storage system. We vary the link bandwidth from 50 to

1000 Mbps, and maintain a constant 10 msec round trip delay between sites.
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(c) TPC-W Latency Impact

Figure 6.13. (a-b) CloudNet’s optimizations significantly reduce bandwidth consumption.
(c) Increased latency has only a minor impact on the migration process, but may impact
application performance due to synchronous disk replication.

Figure 6.12 compares the performance of default Xen to CloudNet’s optimized mi-

gration system. We present data for TPC-W and SPECjbb; the kernel compile performs

similar to TPC-W. Decreased bandwidth increases migration time for both applications,

but our optimizations provide significant benefits, particularly in low bandwidth scenarios.

CloudNet also substantially reduces the amount of data that needs to be transferred during

the migration because of redundancy elimination, page delta optimization and the lower

number of iterations, as seen in Figure 6.13(a-b).

CloudNet’s code presently does not operate at linespeed when the transfer rate is very

high (e.g. about 1Gbps or higher per VM transfer). Thus in high bandwidth scenarios,

CloudNet reduces the data transferred, but does not significantly affect the total migration

or pause time compared to default Xen. We expect that further optimizing the Cloud-

Net code will improve performance in these areas, allowing the optimizations to benefit

even LAN migrations.

Latency: Latency between distant data centers is inevitable due to speed of light de-

lays. This experiment tests how latency impacts migration performance as we adjust the
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delay introduced by the network emulator over a 100Mbps link. Even with TCP settings

optimized for WAN environments, slow start causes performance to decrease some as la-

tency rises. CloudNet’s optimizations still provide a consistent improvement regardless of

link latency as shown in Figure 6.13(c). While latency has only a minor impact on total

migration and pause time, it can degrade application performance due to the synchronous

disk replication required during the VM migration. Fortunately, CloudNet’s optimizations

can significantly reduce this period of lowered performance.

Results Summary: CloudNet’s optimized migrations perform well even in low band-

width (50 to 100Mbps) and high latency scenarios, requiring substantially less data to be

transferred and reducing migration times compared to default Xen. In contrast to com-

mercial products that require 622 Mbps per VM transfer, CloudNet enables efficient VM

migrations in much lower bandwidth and higher latency scenarios.

6.5.8 Consolidation: Simultaneous Migrations

We next mimic an enterprise consolidation where four VMs running a distributed devel-

opment environment must be transitioned from the data center in Texas to the data center

in Illinois. Each of the VMs has a 10GB disk (of which 6GB is in use) and is allocated

1.7GB of RAM and one CPU, similar to a “small” VM instance on Amazon EC22. The

load on the cluster is created by repeatedly running a distributed kernel compilation across

the four VMs. The maximum bandwidth available between the two sites was measured as

465Mbps with a 27 msec round trip latency; note that bandwidth must be shared by the

four simultaneous migrations.

We first run a baseline experiment using the default DRBD and Xen systems. During

the disk synchronization period a total of 24.1 GB of data is sent after skipping the empty

disk blocks. The disk transfers take a total of 36 minutes. We then run the VM memory

2Small EC2 instances have a single CPU, 1.7GB RAM, a 10GB root disk, plus an additional 150GB disk.
Transferring this larger disk would increase the storage migration time, but could typically be scheduled well
in advance.
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Figure 6.14. CloudNet saves nearly 20GB of bandwidth when simultaneously migrating
four VMs.

migrations using the default Xen code, incurring an additional 245 second delay as the four

VMs are transferred.

Next, we repeat this experiment using CloudNet’s optimized migration code and a 1GB

CBR cache for the disk transfer. Our optimizations reduce the memory migration time to

only 87 seconds, and halves the average pause time from 6.1 to 3.1 seconds. Figure 6.14

compares the bandwidth consumption of each approach. CloudNet reduces the data sent

during the disk transfers by 10GB and lowers the memory migrations from 13GB to 4GB.

In total, the data transferred to move the memory and storage for all four VMs falls from

37.4GB in the default Xen case to 18.5GB when using CloudNet’s optimizations.

Results Summary: CloudNet’s optimizations reduce pause time by a factor of 2, and

lower memory migration time–when application performance is impacted most–by nearly

3X. The combination of eliminating redundant memory state and disk blocks can reduce

the total data transferred during the migration by over 50%, saving nearly 20GB worth of

network transfers.

6.5.9 Follow-the-Sun: Disk Synchronization

In a follow-the-sun scenario, one or more applications are moved between geographic

locations in order to be co-located with the workforce currently using the application. In

this experiment we consider moving an application with a large amount of state back and

forth between two locations. We focus on the disk migration cost and demonstrate the
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benefits of using incremental state updates when moving back to a location which already

has a snapshot from the previous day.

We use the TPC-W web application, but configure it with a much larger 45GB database.

The initial migration of this disk takes 3.6 hours and transfers 51GB of data to move the

database and root operating system partitions. We then run a TCP-W workload which

lasts for 12 hours to represent a full workday at the site. After the workload finishes, we

migrate the application back to its original site. In this case, only 723MB of storage data

needs to be transferred since the snapshot from the previous day is used as a base image.

This reduces the migration time to under five minutes, and the disk and memory migrations

can be performed transparently while workers from either site are accessing the application.

This illustrates that many applications with large state sizes typically only modify relatively

small portions of their data over the course of a day. Using live migration and incremental

snapshots allows applications to be seamlessly moved from site to site for relatively little

cost and only minimal downtime.

6.6 Related Work

Cloud Computing: Armbrust et al provide a thorough overview of the challenges and

opportunities in cloud computing [7]. There are several types of cloud platforms, but we

focus on Infrastructure as a Service (IaaS) platforms which rent virtual machine and storage

resources to customers. InterCloud explores the potential for federated cloud platforms to

provide highly scalable services [22]; CloudNet seeks to build a similar environment and

uses WAN migration to move resources between clouds and businesses.

Private Clouds & Virtual Networks: The VIOLIN and Virtuoso projects use overlay

networks to create private groups of VMs across multiple grid computing sites [105, 118].

VIOLIN also supports WAN migrations over well provisioned links, but does not have a

mechanism for migrating disk state. Overlay network approaches require additional soft-
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ware to be run on each host to create network tunnels. CloudNet places this responsibility

on the routers at each site, reducing the configuration required on end hosts.

Our vision for Virtual Private Clouds was initially proposed in [139]. Subsequently,

Amazon EC2 launched a new service also called “Virtual Private Clouds” which similarly

uses VPNs to securely link enterprise and cloud resources. However, Amazon uses IPSec

based VPNs that operate at layer-3 by creating software tunnels between end hosts or IPSec

routers. In contrast, CloudNet focuses on VPNs provided by a network operator. Network

based VPNs are typically realized and enabled by multiprotocol label switching (MPLS)

provider networks, following the “hose model” [36] and are commonly used by enterprises.

Provider based VPNs can be either layer-3 VPNs following RFC 2547, or layer-2 virtual

private LAN Service (VPLS) VPNs according to RFC 4761. CloudNet relies on network

based VPLS as it simplifies WAN migration, has lower overheads, and can provide addi-

tional functionality from the network provider, such as resource reservation.

LAN Migration: Live migration is essentially transparent to any applications running

inside the VM, and is supported by most major virtualization platforms [91, 30, 55]. Work

has been done to optimize migration within the LAN by exploiting fast interconnects that

support remote memory access technology [54]. Jin et al. have proposed using memory

compression algorithms to optimize migrations [61]. Breitgand et al. have developed a

model based approach to determine when to stop iterating during a memory migration [18],

similar to Smart Stop. Their approach can allow them to more precisely predict the best

time to stop, but it requires knowledge of the VM’s memory behavior, and it is not clear how

the model would perform if this behavior changes over time. CloudNet’s CBR and Page

Delta optimizations are simple forms of compression, and more advanced compression

techniques could provide further benefits in low bandwidth WAN scenarios, although at the

expense of increased CPU overhead. The Remus project uses a constantly running version

of Xen’s live migration code to build an asynchronous high availability system [32]. Remus

obtains a large benefit from an optimization similar to CloudNet’s Page Delta technique
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because it runs a form of continuous migration where pages see only small updates between

iterations.

WAN Migration: VMware has announced limited support for WAN migration, but

only under very constrained conditions: 622 MBps link bandwidth and less than 5 msec

network delay [128]. CloudNet seeks to lower these requirements so that WAN migration

can become an efficient tool for dynamic provisioning of resources across data centers.

Past research investigating migration of VMs over the WAN has focused on either storage

or network concerns. Bradford et al. describe a WAN migration system focusing on ef-

ficiently synchronizing disk state during the migration; they modify the Xen block driver

to support storage migration, and can throttle VM disk accesses if writes are occurring

faster than what the network supports [17]. Shrinker uses content based addressing to de-

tect redundancy across multiple hosts at the destination site during VM migrations [103].

This could allow it to reduce bandwidth costs compared to CloudNet, but exposes it to

security concerns due to hash collisions, although the likelihood of this can be bounded.

The VM Turntable Demonstrator showed a VM migration over intercontinental distances

with latencies of nearly 200 msec; they utilize gigabit lightpath links, and like us, find

that the increased latency has less impact on performance than bandwidth [123]. Harney

et al. propose the use of Mobile IPv6 to reroute packets to the VM after it is moved to a

new destination [49]; this provides the benefit of supporting layer-3 connections between

the VM and clients, but the authors report a minimum downtime of several seconds due

to the Mobile IP switchover, and the downtime increases further with network latency. In

this work, we leverage existing mechanisms to simplify storage migration and network re-

configuration, and propose a set of optimizations to reduce the cost of migrations in low

bandwidth and high latency environments.
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6.7 CloudNet Conclusions

The scale of cloud computing is growing as business applications are increasingly being

deployed across multiple global data centers. This chapter presented CloudNet, a prototype

cloud computing platform that coordinates with the underlying network provider to create

seamless connectivity between enterprise and data center sites, as well as supporting live

WAN migration of virtual machines. CloudNet supports a holistic view of WAN migra-

tion that handles persistent storage, network connections, and memory state with minimal

downtime even in low bandwidth, high latency settings.

While existing migration techniques can wastefully send empty or redundant memory

pages and disk blocks, CloudNet is optimized to minimize the amount of data transferred

and lowers both total migration time and application-experienced downtime. Reducing this

downtime is critical for preventing application disruptions during WAN migrations. Cloud-

Net’s use of both asynchronous and synchronous disk replication further minimizes the im-

pact of WAN latency on application performance during migrations. We have demonstrated

CloudNet’s performance on both a prototype deployed across three data centers separated

by over 1,200km and a local testbed. During simultaneous migrations of four VMs between

operational data centers, CloudNet’s optimizations reduced memory transfer time by 65%,

and saved 20GB in bandwidth for storage and memory migration. CloudNet simplifies

the initial deployment of applications by enabling seamless migration between data cen-

ters, and we believe that WAN migration may become an important resource management

technique for handling resources spread across multiple data centers.
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CHAPTER 7

HIGH PERFORMANCE, NO DATA LOSS DISASTER RECOVERY

One of the potential uses of the WAN VM migration techniques proposed in the pre-

vious chapter is for moving applications between data centers in anticipation of planned

data center downtime. However, there is not always sufficient advance notice to move ap-

plications between sites, particularly in the event of unexpected power outages or natural

disasters. In these cases, businesses must rely on disaster recovery services which con-

tinuously replicate application data to a secondary location. In this chapter we discuss

how virtualized cloud data centers can be an ideal platform for disaster recovery services

form an economic perspective, but that the high latency between cloud data centers can

significantly reduce performance if synchronous replication is required. We propose a new

replication technique that uses speculative execution to provide synchronous consistency

guarantees but performance on par with asynchronous approaches.

7.1 Background and Motivation

Businesses and government enterprises utilize Disaster Recovery (DR) systems to min-

imize data loss as well as the downtime incurred by catastrophic system failures. Current

DR mechanisms range from periodic tape backups that are trucked offsite, to continuous

synchronous replication of data between geographically separated sites. Typical DR so-

lutions incur high infrastructure costs since they require a secondary data center for each

primary site as well as high bandwidth links to secondary sites. Further, the “larger” the

potential impact of a disaster, the greater is the need for geographic separation between the
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primary and the secondary replica site. The resulting wide area latency can, however, place

a large burden on performance.

The recent emergence of commercial cloud computing has made cloud data centers an

attractive option for implementing cost-effective DR due to their “resource-on-demand”

model and high degree of automation [142]. During normal operation, the cost of provid-

ing DR in the cloud can be minimized, and additional resources only need to be brought

online—and paid for—when a disaster actually occurs. In addition, the cloud platform’s

ability to rapidly activate resources on-demand helps minimize the recovery cost after a

disaster. The automation that is designed into accessing cloud services enables the DR

service to support Business Continuity, with substantially lower recovery times.

Despite these attractive economics, a major barrier to using cloud data centers for DR

is their large geographic separation from primary sites—the increased latency in commu-

nicating with distant cloud sites can become a major performance bottleneck. This is am-

plified by the limited control cloud users have over the actual placement of their cloud

resources. Consequently, a synchronous replication scheme will expose every data write

to the performance impact of this wide-area latency, forcing system administrators to seek

alternative solutions. Often, such alternatives trade off loss of data for performance by us-

ing asynchronous replication, in which a consistent “snapshot” is replicated to the backup

site. Asynchronous replication improves performance since the primary site can proceed

without waiting for the replication to complete. However, disk writes at the primary site

subsequent to the last replicated snapshot will be lost in case of a disaster. Consequently,

to implement cloud-based DR for mission-critical business applications, we must design a

mechanism that combines the performance benefits of asynchronous replication with the

no-data-loss consistency guarantee of synchronous replication.

In this chapter we propose Pipelined Synchronous Replication as an approach to pro-

vide high performance disaster recovery services over WAN links connecting enterprises

and cloud platforms. Pipelined synchrony targets client-server style applications, and ex-
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ploits the fundamental observation that an external client is only concerned with a guar-

antee that data writes related to its requests are committed to storage (both at the primary

and the secondary) before a response is received from the system. Because it can poten-

tially take a large amount of time for the secondary site to receive the write, commit and

acknowledge, there is a substantial opportunity to overlap processing during this time in-

terval which synchronous approaches ignore. The opportunity is even more compelling

when we observe that multi-tier applications can take advantage of pipelined synchronous

replication by overlapping remote replication with complex processing across the multi-

ple tiers that are typical in such environments. The key challenge in designing pipelined

synchrony is to efficiently track all writes triggered by processing of a request as it trick-

les through the (multi-tier) system, and to inform the external entity (i.e., a client) only

when all these writes have been made “durable”. We achieve this by holding up network

packets destined for the client until all disk writes that occurred concurrently with request

processing have been acknowledged by the backup. This approach imposes causality (i.e.,

via Lamport’s happened-before relation) across externally-bound network packets and disk

writes, providing the same consistency guarantee as if the disk writes had been performed

synchronously. Since we seek to implement pipelined synchrony in an Infrastructure-as-

a-Service (IaaS) cloud environment that relies on Virtual Machines (VMs) to encapsulate

user applications, an additional challenge is to employ black-box techniques when provid-

ing cloud-based DR.

Our pipelined synchronous replication-based disaster recovery system, PipeCloud, ef-

fectively exploits cloud resources for a cost-effective disaster recovery service. PipeCloud

makes the following contributions: (i) a replication system that offers clients synchronous

consistency guarantees at much lower performance cost by pipelining request processing

and write propagation; (ii) a communication based synchronization scheme that allows the

state of distributed or multi-tier applications to be replicated in a consistent manner; and
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(iii) a black-box implementation that efficiently protects the disks of virtual machines with-

out any modifications to the running applications or operating system.

Our results illustrate the significant performance benefits of using pipelined synchrony

for disaster recovery. PipeCloud substantially lowers response time and increases the

throughput of a database by twelve times compared to a synchronous approach. When

protecting the TPC-W E-commerce web application with a secondary replica 50ms away,

PipeCloud reduces the percentage of requests violating a one second SLA from 30% to

3%, and provides throughput equivalent to an asynchronous approach. We demonstrate

that PipeCloud offers the same consistency to clients as synchronous replication when dis-

asters strike, and evaluate the potential of using cloud services such as EC2 as a backup

site.

7.2 Disaster Recovery Challenges

The two key metrics that determine the capabilities of a Disaster Recovery (DR) system

are Recovery Point Objective (RPO) and Recovery Time Objective (RTO). The former refers

to the acceptable amount of application data that can be lost due to a disaster: a zero RPO

means no data can be lost. RTO refers to the amount of downtime that is permissible before

the system recovers. A zero RTO means that failover must be instantaneous and transparent

and is typically implemented using hot standby replicas.

In scenarios where a small downtime is tolerable (i.e., RTO>0), the cost of DR can be

reduced substantially by eliminating hot standbys. The limiting factors in optimizing the

RTO in this case depend on engineering considerations: how swiftly can we provision hard-

ware resources at the backup site to recreate the application environment? Once resources

have been provisioned, what is the bootstrapping latency for the application software en-

vironment? Since disasters happen mid-execution, is a recovery procedure such as a file

system check necessary to ensure that the preserved application data is in a usable state? As

indicated earlier, leveraging cloud automation can significantly improve the RTO metric;
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we have also shown that the cloud’s economics driven by on-demand resource utilization

are a natural fit for substantially lowering the cost of DR deployments [142].

Next, in Section 7.2.1, we discuss the impact of latency between the primary and sec-

ondary sites on the RPO that can be achieved with different replication strategies. In Sec-

tion 7.2.2 we introduce a broader RPO definition which takes into consideration the client’s

view of a DR system. Finally, in Section 7.2.3 we describe the specific DR operational as-

sumptions and system model considered in our work.

7.2.1 Replication Strategies and Latency

When preserving stored data to a secondary location, the network round trip time (RTT)

between the primary and secondary locations significantly impacts the choice of replication

algorithm, and thus, the ability to provide an RPO as close as possible to zero (i.e., no

data loss). Latency considerations lead to a choice between two primary modes of data
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Figure 7.2. (a) Latency significantly reduces performance for synchronous replication.
Table (b) lists round trip latency and approximate distance from UMass to Amazon data
centers.

replication for disaster survivability: synchronous and asynchronous replication [60]. With

synchronous (sync) replication, no data write is reported as complete until it has succeeded

in both the primary and secondary sites. With asynchronous (async) replication, writes

only need to succeed locally for the application to make progress, and they will be trickled

back opportunistically to the secondary replica. The timelines in Figure 7.1 (a) illustrate

the behavior of sync and async replication.

With sync replication, applications obtain an RPO of zero by construction: no applica-

tion progress is permitted until data has been persisted remotely. However, a higher latency

results in corresponding increase in the response time and lower throughput for client-

server type applications. Figure 7.2 (a) shows the performance impact of increasing the

latency between the primary and backup sites. For this experiment, we used DRBD [35], a

standard block device replication tool which supports both sync and async modes, to protect

a MySQL database. The response time of performing inserts into the database increases

linearly with the RTT. Even for relatively short distances, e.g., from Massachusetts to the

EC2 data center in Virginia (16msec, Figure 7.2 (b)), the response time degrades notice-

ably. For these reasons, while mission-critical applications need to resort to synchronous

replication, they incur a high performance cost. To mitigate this overhead, the secondary

site is often chosen to be geographically close (within tens of km) to the primary. How-
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ever, replication to nearby facilities is unlikely to withstand many kinds of disasters that

have struck infrastructure in recent memory: hurricanes, earthquakes and tsunamis, and re-

gional energy blackouts. Another way to mitigate application overhead while maintaining

a zero RPO is to commit significant financial resources to have a dedicated infrastructure.

This may allow the use of chained topologies, that progressively separate replicated data

from the primary site [38]. We emphasize that these deployments are far removed from the

capabilities of most users.

Async replication sacrifices RPO guarantees, as illustrated with the “unsafe replies”

of the second timeline in Figure 7.1 (a). However, asynchrony also decouples applica-

tion performance from data preservation. The area of asynchronous replication has thus

been a fertile ground for optimization research [66, 60] that explores the tradeoffs between

replication frequency, application RPO demands, financial outlay by application owners,

and possibly even multi-site replication as outlined above. Fundamentally, however, async

replication exposes applications to a risk of inconsistency: clients may be notified of a re-

quest having completed even though it has not yet been preserved at the backup and may

be lost in the case of a disaster. Further, the number of these “unsafe replies” increases as

latency rises since the backup lags farther behind the primary.

7.2.2 Client RPO Guarantees

To better illustrate the impact of replication algorithm on application consistency, we

formalize here our notion of Client RPO guarantees. We define three views of the applica-

tion state: the primary site view (PV), the secondary site view (SV), and the external clients

view (CV), and we illustrate their relationship in Figure 7.3.

In both synchronous and asynchronous replication, the SV is a subset of the PV: the

SV lags in time behind the PV, and reflects a past state of the application data. For asyn-

chronous replication the delta between SV and PV can be arbitrarily large. For synchronous

replication, the delta is at most one write (or one logical write, if we consider a set of scatter-
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Figure 7.3. Relationship between application views under different replication algorithms.
In particular, SV and CV relations define the RPO guarantees upon disaster.

gather DMA writes issued concurrently as one single logical packet): an application cannot

make further progress until that write is made durable at the secondary. In all cases, the

CV is also a subset of the PV, since the primary performs local processing before updating

clients.

The key difference resides in the delta between CV and SV. In asynchronous replication,

clients are acknowledged before writes are made durable, and thus the SV is a subset of

the CV, reflecting the non-zero RPO. In synchronous replication, clients are acknowledged

only after writes have been persisted remotely, and thus the CV is a subset of the SV. As

shown in Figure 7.3, Pipelined Synchrony, which we present in Section 7.3, maintains the

same client RPO guarantees as synchronous replication.

7.2.3 System Model

Our work assumes an enterprise primary site that is a modern virtualized data cen-

ter and a secondary site that is a cloud data center; the cloud site is assumed to support

Infrastructure-as-a-Service (IaaS) deployments through the use of system virtualization.

The primary site is assumed to run multiple applications, each inside virtual machines. Ap-

plications may be distributed across multiple VMs, and one or more of these VMs may

write data to disks that require DR protection. Data on any disk requiring DR protection

is assumed to be replicated to the secondary site while ensuring the same client RPO guar-

antees as sync replication. We assume that a small, non-zero RTO can be tolerated by the
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application, allowing us to leverage cloud automation services to dynamically start appli-

cation VMs after a disaster. We further assume that application VMs are black-boxes and

that we are unable to require specific software or source code changes for the purposes

of disaster recovery. While this makes our techniques broadly applicable and application-

agnostic, the price of this choice is the limited “black-box” visibility into the application

that can be afforded at the VM level. Our mechanisms are, however, general, and could be

implemented at the application level.

Despite adhering to a black-box methodology, we require applications to be well-

behaved with respect to durability. For example, we cannot support a MySQL database

configured with the MyISAM backend, which does not support transactions (and dura-

bility), and replies to clients while writes may still be cached in memory. More broadly,

applications should first issue a write to storage, ensure such write has been flushed from

memory to the disk controller, and only then reply to a client the result of an operation.

Synchronous replication cannot guarantee adequate data protection without this assump-

tion, and neither can our approach.

7.3 Pipelined Synchrony

Given the WAN latencies between the primary and a secondary cloud site, we seek to

design a replication mechanism, as part of an overall DR solution, that combines the per-

formance benefits of async replication with the consistency guarantees of sync replication.

145



To do so, we must somehow leverage the overlapping of replication and processing that is

typical of asynchrony, while retaining the inherent safety of synchronous approaches.

We make two primary observations. First, from the perspective of an external client

it does not matter if the transmission of the write and the processing overlap, as long as

the client is guaranteed that the data writes are durably committed to the backup before it

receives a reply. Second, the potential for performance improvements compared to syn-

chronous replication is substantial when there is a large delay to overlap, as is the case

of DR systems with high WAN latencies. The case becomes stronger for multi-tiered ap-

plications and, more generally, clustered applications or distributed systems interfacing

with external clients via some form of frontend. These applications often require complex

processing across multiple tiers or components. We apply these observations to realize a

technique called pipelined synchronous replication.

7.3.1 Pipelined Synchronous Replication

Pipelined synchronous replication is defined as blocking on an externally visible event

until all writes resulting from the (distributed) computation that generated the external event

have been committed to disk at the primary and the secondary. When processing a request,

pipelined synchronous replication allows overlapping of computation and remote writes—

i.e., writes to the secondary are asynchronous and pipelined with the remote writes, allow-

ing subsequent processing to proceed. Upon generating an externally visible event (such

as a network packet or a reply), however, the event must be blocked, and not released to

the client until all pending writes have finished. In essence, our approach mitigates the

performance penalties associated with speed-of-light delays by overlapping or pipelining

computation and remote writes, like in async replication, while ensuring the same relation

between client view and secondary view as synchronous replication. Figure 7.1 (b) depicts

an illustrated timeline of the pipelined synchronous approach.
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To contrast pipelined synchronous replication with existing replication strategies, con-

sider the illustrative example in Figure 7.4. Here a client, Alice, goes through the process

of buying a ticket from a travel website, by submitting her credit card information in step

1. As is common, Alice interacts with a frontend web server which may perform some

processing before forwarding the request on to a backend database (step 2) to record her

purchase. In step 3, the DB writes the transaction to disk. Since this is critical state of

the application, in step 4 the disk write is also replicated across a WAN link to the backup

site, to be preserved. Here the system behavior depends on the type of replication used.

With sync replication, the system would wait for the replication to complete (i.e., for the

acknowledgement from the remote site in step 7), before continuing processing (step 5)

and responding to the client (step 6). With async replication the system would immediately

continue with steps 5 and 6 after the DB write has succeeded locally, deferring the repli-

cation in step 4 for later. In contrast, with pipelined synchronous replication, the transfer

in step 4 is performed immediately yet asynchronously, allowing the database to return its

reply to the front tier server in step 5 concurrently. The front tier continues processing the

request, for example combining the ticket information with a mashup of maps and hotel

availability. Eventually, in step 6, the web tier produces a reply to return to Alice. In the

pipelined synchrony case, this reply cannot be returned to the client until the database write

it was based on has been persisted to the remote site. Only after step 7 completes and the

remote server has acknowledged the write as complete can the reply to the client be re-

leased (step 8) and returned to Alice’s web browser to show her the purchase confirmation

(step 9).

The use of pipelined synchrony means that steps 5 and 6, which may include significant

computation cost, can be performed in parallel with the propagation of the disk write to the

backup site. This can provide a substantial performance gain compared to synchronous

replication which must delay this processing for the length of a network round trip. Since
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Pipelined Synchrony defers replying to Alice until after the write is acknowledged in step

7, she is guaranteed that the data her reply is based on has been durably committed.

Thus the key challenge is to track which durable write requests, i.e., those that need

to be persisted to the secondary site, are causally related (dependent) on which externally-

visible network packets. In other words, Pipelined Synchrony replication must guarantee

a causal ordering between externally-visible and durable events as defined by Lamport’s

happened-before→ relation [74]: if any write request→ a network packet, then the write

must complete before the packet is released.

To intuitively understand how such dependencies can be tracked, first assume a global

clock in the system. Further assume that every write is timestamped using this global

clock. In this case, a total ordering of all events is obtained. Hence, if a network packet is

generated at time t, then it is sufficient to hold this packet until all disk writes that have a

timestamp ≤ t have finished at the secondary site. Observe that not all of these writes are

causally related to the network packet; however, by waiting for all previously issued writes

to complete at the secondary, we ensure that all causally related writes will also finish,

thereby ensuring safety.

In practice, a multi-tier application does not have the luxury of a global clock and tech-

niques such as Lamport’s logical clocks only yield a partial, rather than a total, ordering of

events. Thus we must devise a scheme to perform this timestamping, using logical clocks,

so as to identify and track causally dependent writes in multi-tier distributed applications.

The problem is further complicated by the fact that our approach provides black box pro-

tection of VMs.

7.3.2 PipeCloud

In this section we present the design of PipeCloud, our pipelined-synchronous disaster

recovery engine, while in Section 7.4 we elaborate on the implementation details. As

explained above, in a single VM application, the local machine clock may be used as a
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global clock, allowing a simple approach for tracking writes that are causally dependent on

a network packet. This can be easily extended to support multi-tier applications with only a

single protected writer, but becomes more complex for multi-tier multi-writer applications.

We first explain the case of providing DR protection to a multi-tier application with a

single writer in Section 7.3.2.1, and then generalize to the multi-tier, multi-writer case in

Section 7.3.2.2.

7.3.2.1 Single Writer Protection

Our primary target is the classical multi-tier web service, e.g., an Apache, application,

and database server setup (a.k.a. “LAMP” stack). Most services structured this way use

web servers as frontends to serve static content, application servers to manipulate session-

specific dynamic content, and a DB as a data backend. In this case, the only tier that is

necessary to protect in our model is the DB. This benefits our approach because further

work performed by the upper tiers can be overlapped with the replication of DB writes.

To protect application state while allowing computation to overlap, we must track which

outbound network packets (externally-visible events) depend on specific storage writes that

are made durable at a backup site. We assume that PipeCloud is running in the VMM of

each physical server and is able to monitor all of the disk writes and network packets being

produced by the VMs. PipeCloud must (i) replicate all disk writes to a backup server,

(ii) track the order of disk writes at the primary site and the dependencies of any network
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interaction on such writes and (iii) prevent outbound network packets from being released

until the local writes that preceded them have been committed to the backup.

The procedure described above relies on being able to propagate information about disk

writes between tiers along with all communication, and is depicted in Figure 7.5. We divide

the tiers along three roles, namely writer, intermediate and outbound; to simplify exposi-

tion, Figure 7.5 shows one intermediate and outbound tiers, but there could be multiple

tiers assuming those roles. Each tier maintains its own logical pending write counter, i.e.,

WCnt, ICnt and OCnt. Note that WCnt represents the true count of writes performed to

the disk, while OCnt and ICnt represent the (possibly outdated) view of the disk state by

the other tiers. In addition, the backup maintains a committed write count, CommitCnt.

These counters are essentially monotonically increasing logical clocks, and we use these

terms interchangeably.

Without loss of generality, assume all counters are zero when the system receives the

first client request, which propagates through the tiers, ultimately resulting in a DB update

at the writer tier. The writer tier increases the value of its pending counter after it has

performed a local write, and before that write is issued to the backup site. Each tier appends

the current value of its pending count to all communication with other elements in the

system. Thus the writer tier propagates its pending counter through the intermediate nodes

so they can update their local view: the pending counter at each non-writer tier is updated

to the maximum of its own pending clock, and any pending clocks it receives from other

tiers.

On receiving the write request from the writer tier at the primary site, the DR system at

the backup site will commit the write to disk and then increase its committed write counter.

The current value of the committed counter is then communicated back to the outbound

node(s) at the primary site.

The outbound tier implements a packet buffering mechanism, tagging packets destined

to external clients with its own version of the pending counter, OCnt, as this represents
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Figure 7.6. Multi-writer case with count vectors

the number of system writes which could have causally preceded the packet’s creation.

Packets can be released from this queue only when their pending clock tag is less than or

equal to the committed clock received from the backup site. This guarantees that clients

only receive a reply once the data it is dependent on has been saved. Finally, note that

protection of the single VM case is covered by this scheme: the single VM becomes both a

writer and outbound node.

7.3.2.2 Multiple Writer Protection

The most challenging case is when the application is in effect a distributed system:

multiple nodes cooperate, and more than one of the nodes issue writes that need to be

persisted. Examples include a LAMP stack with a master-master DB replication scheme or

a NoSQL-style replicated key-value store.

We cater to this case by extending the notion of a logical counter to a count vector

maintained by each node1. The pending write count for node i thus becomes the vector

Pi =< p1, ..., pn >, with an entry for each of the n writers in the system. When issuing

disk writes, node i increments its local counter in Pi[i]. All packets are tagged with the

count vector of pending writes, and local knowledge is updated with arriving packets by

merging the local and arriving vectors: each entry becomes the maximum of the existing

and arriving entry. By exchanging information about writes in this way, the entry Pi[j]

1Our count vector is similar to a vector clock [83], but vector clocks are traditionally updated on every
message send or receive, while ours only count disk writes events, similar to [73].
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indicates the number of writes started by node j that i is aware of. Thus at any given time,

the pending count vector represents the write frontier for node i—the set of writes at other

nodes and itself that any computation or network packet might be causally dependent on.

Note that non-writer nodes never increment write counts, only merge on packet reception,

and that the single-writer case equates to a single-entry count vector.

In this manner, causality spreads across the system in a gossiping or anti-entropy man-

ner [73, 120], all the way to outbound packets. As before, an outbound packet is tagged

with the pending count vector at the moment of its creation. Outbound nodes maintain

similar count vectors of committed writes Ci =< c1, ..., cn >, which represent the set of

writes known to have been safely persisted. A client-bound packet can only be released

once every entry in Ci is greater than or equal to the that in the packet’s tag. This approach

allows for a partial ordering of unrelated writes and network packets, but it guarantees that

no packet is released until any write it is causally related to has been committed.

Figure 7.6 illustrates a multi-writer system. The DB and Web tiers issue writes that

are persisted to the secondary in steps 3 and 4, respectively. The web tier generates an

outbound packet with no knowledge of the DB write (step 5), that is buffered. A causal

chain of communication emanates all the way from the DB to another outbound buffered

packet, in steps 6 to 8. Acknowledgement of write commits arrive out of order, with the

web tier write arriving first (step 9) and thus allowing the outbound packet dependent on

the web write (but not on the DB write) to leave the system in step 10. Finally, when the

DB write is acknowledged in step 11, the packet buffered in step 8 leaves the system in step

12.

7.3.3 Other DR Considerations

We end the design section by enumerating some aspects of a full disaster recovery

solution that lie outside the scope of this work.
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Detecting Failure: The usual approach to deciding that disaster has struck involves

a keep-alive mechanism, in which the primary has to periodically respond to a ping mes-

sage [78]. We note our system is no different from other DR solutions in this aspect.

Failure in the secondary: Failure of the secondary site, or a network partition, will

impede propagation of data writes. Without a suitable remedial measure, externally-visible

application response will be stalled waiting for replies. PipeCloud is no different from sync

replication in this aspect: a reverse keep-alive is usually employed to trigger a fallback to

async replication.

Memory Protection: We only protect the application state recorded to disk at the

primary site. We assume that applications can be fully restored from disk in the case of

disruption, as in standard database behavior. We do not attempt to protect the memory

state of applications as this entails a significant overhead in WANs. Remus [32] is able

to provide memory and disk protection within a LAN, but requires significant bandwidth

and minimal latency. Our experiments with Remus in an emulated WAN environment

with 100ms of RTT from primary to backup, show that average TPC-W response times

exceeded ten seconds and replication of both disk and memory consumed over 680 Mbps

of bandwidth. Providing Remus-like black-box memory protection over WAN remains an

open problem due to these performance issues.

Transparent handoff: Our focus is on ensuring that storage is mirrored to the backup

site and minimizing RPO. Techniques such as the virtual cloud pool infrastructure proposed

in the previous chapter must be used to enable seamless network redirection after failure.

7.4 Implementation

Our PipeCloud prototype is split between a replication-aware virtualization system that

is run at the primary site and a backup server at the cloud backup location. PipeCloud

requires modifications to the virtualization platform at the primary, but only needs to run
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a simple user space application at the backup. This allows PipeCloud to be used today on

commercial clouds which don’t give users control over the low level platform.

At the primary site, PipeCloud is based on the Xen Virtual Machine Monitor (VMM)

version 4.0.0. VMs in Xen perform IO using a split driver architecture with components

in the guest operating system (OS) and dom0, a privileged domain that runs hardware

drivers and a control stack. Frontend drivers in the VM’s OS issue requests through shared

memory and virtual interrupt lines to backend drivers. The backend drivers in dom0 unpack

the requests and re-issue them against the hardware drivers. As depicted in Figure 7.7, our

implementation only requires hooks at the level of virtual backend drivers; NetQueue and

DR Blocktap in the figure. While we chose Xen due to familiarity, we do not foresee any

problems porting our approach to VMMs like kvm or VMware ESX.

In keeping with the goal of a black-box approach, we do not mandate source code

changes within protected VMs. However, we benefit from information regarding appli-

cation deployment; we term this configuration gray box. We need a specification of the

topology of the multi-tier application being persisted: which VMs make up the system,

identified by their IP or MAC addresses; which VMs (or virtual disks) need to be persisted,

e.g., the data disk of the DB VMs; and which nodes are allowed to perform outbound com-

munications, e.g., the load-balancer gateway, or the Apache pool. We expect that VMs

for which storage needs to be persisted will be backed by two sets of virtual disks: one

storing critical application data, such as a DB bit store; and the other backing temporary

files, and other miscellaneous non-critical data. Given our black box nature, this setup al-

154



leviates replication overhead (and noise) by differentiating critical disk writes which must

be preserved to the backup site. All the information we require is deployment-specific,

and provided by the sys-admin who configured the installation (as opposed to a developer

modifying the code).

We structure this section following the nomenclature described in Section 7.3.2.1. We

first describe the implementation details for writer nodes, then intermediate and finish with

outbound nodes. We close with a discussion of the secondary site backup component.

7.4.1 Replicating Disks – VM Side

To track disk writes and replicate them to the backup server, PipeCloud uses a custom

virtual disk driver backend which we dub DR Blocktap. This is a user-space dom0 daemon

utilizing the blocktap Xen infrastructure. As a VM performs reads or writes to its protected

disk, the requests are passed to our disk driver. Read requests are processed as usual.

Writes, however, are demultiplexed: they are issued both to local storage and sent

through a socket to the remote site. After issuing each write, the local logical clock of

pending writes, maintained as a kernel data structure in dom0, is increased. Local writes

are then performed with caching disabled, so requests do not return until DMA by the local

hardware driver has succeeded. At this point, we indicate to the VM that the write has

completed, regardless of the status of the write traveling to the secondary site.

We note that typical OS behavior (Windows or UNIX) consists of issuing multiple

writes simultaneously to leverage scatter-gather DMA capabilities. There are no expec-

tations about ordering of writes in hardware, and a successful response is propagated up-

stream only after all writes in the batch have succeeded. In the absence of disk synchro-

nization barriers (a hardware primitive that is not yet supported in Xen virtual drivers), the

OS achieves sync()-like behavior by waiting for the batch to finish. We tag each indi-

vidual write in a batch with its own value, and thus need to respect write ordering, when

processing backup acknowledgements, to maintain the expected sync() semantics.
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7.4.2 Propagating Causality

In order to track causality as it spreads throughout a multi-tier system, we need to

propagate information about disk writes between tiers along with all communication. Our

implementation does this by injecting the value of the local logical clock into packet head-

ers of inter-VM communication, specifically through the addition of an IP header option in

IP packets.

Virtual networking in Xen is achieved by creating a network interface in dom0. This

interface injects in the dom0 network stack replicas of the Ethernet frames emanating from

the VM. It replicates a frame by first copying to the dom0 address space the Ethernet, IP

and TCP headers. By copying these bytes, dom0 can now modify headers (e.g., to realize

NAT or similar functionality). The remainder of the packet is constructed by mapping the

relevant VM memory pages read-only.

For our purposes, we split the copying of the header bytes right at the point of insertion

of an IP header option. We construct our option, relying on an unused IP header option

ID number (0xb). The IP header option payload simply contains the logical clock. We

then copy the remaining header bytes. We do not introduce any extra copying, mapping,

or reallocation overhead when expanding packets in this way. We modify length fields

in the IP header, and recalculate checksums. Typically, the VM OS offloads checksum

calculations to “hardware”, which in reality is the backend virtual driver. Therefore, we do

not incur additional overhead in the data path by computing checksums at this point.

Not all packets are tagged with the logical clock. Non-IP packets are ignored; in prac-

tice, non-IP packets (ARP, STP, etc) do not represent application-visible messages. Packets

that already contain an IP header option are not tagged. This was done to diminish im-

plementation complexity, but is not a hard constraint – in practice, we do not frequently

see packets containing an IP header option. Optionally, empty TCP segments may not be

tagged. These typically refer to empty TCP ACKS, which do not affect causality because

they do not represent application-visible events. Nagle’s algorithm and large bandwidth-
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delay products mean that success of a write() syscall on a TCP socket only guarantees

having copied the data into an OS buffer. Additionally, most application protocols include

their own application-level ACKs (e.g. HTTP 200). Empty TCP segments with the SYN,

FIN, or RST flags, which do result in application visible events, are tagged.

We also considered using a “tracer” packet to communicate logical clock updates to

other tiers. We ruled this out primarily due to the need to ensure correct and in-order

delivery of the tracer before any other packets are allowed to proceed. Our approach,

instead, does not introduce new packets, is resilient to re-ordering since logical clocks are

only allowed to increase, and ensures that as long as existing packets are delivered, logical

clock updates will propagate between tiers. We could not observe measurable overhead in

latency ping tests, or throughput netperf tests.

Our current space overhead is 20 bytes per packet, with 16 bytes dedicated to the log-

ical clock in the IP header option. In the case of vector clocks for multi-writer systems,

this limits the size of the vector to four 32 bit entries. This is not a hard limit, although

accommodating hundreds of entries would result in little useful payload per packet, and a

noticeable bandwidth overhead.

7.4.3 Buffering Network Packets

Outbound nodes maintain two local logical clocks. The clock of pending writes is

updated by either (or both of) the issuing disk writes or propagation of causality through

internal network packets. The second clock of committed writes is updated by acknowl-

edgments from the DR backup site. Comparing the two clocks allows us to determine if a

network packet produced by the VM can be released or if it must be temporarily buffered.

We achieve this by appending a queueing discipline to the network backend driver

(NetQueue), which tags outbound packets with the current pending write clock. Because

logical clocks increase monotonically, packets can be added at the back of the queue and
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taken from the front without the need for sorting. Packets are dequeued as updates to the

committed logical clock are received.

We make no assumptions on the behavior of disk IO at the secondary site, and thus

need to consider that write completion may be acknowledged out of order – this is partic-

ularly relevant given our previous discussion on sync()-like behavior. Out-of-sequence

acknowledgements are thus not acted upon until all intermediate acks arrive.

For vector clocks with two or more entries, we use a set of cascading queues, one for

each entry in the vector. As different entries in the committed vector clock are updated,

the affected packets at the front of the corresponding queue are dequeued and inserted in

the next queue in which they have to block. Insertion uses binary search to maintain queue

ordering. Once popped from the last queue, packets leave the system.

7.4.4 Storage in the Cloud Backup Site

At the secondary site, a Backup Server collects all incoming disk writes, commits them

to a storage volume which can be used as the disk of a recovery VM if there is a disaster,

and acknowledges write commits to the primary site. The Backup Server is a user level

process, and thus does not require any special privileges on the backup site; our evaluation

demonstrates how we have deployed PipeCloud using the Amazon Elastic Compute Cloud

and Elastic Block Store services.

When there is only a single disk to be protected, the Backup Server performs writes

directly to the backup storage volume. These writes should be performed in a durable

manner which flushes them past the OS level cache. For the multi-writer case, a single

Backup Server receives write streams from multiple protected VMs. Unlike the single disk

case, this means that writes from multiple disks must be preserved respecting total ordering,

if possible. Without special handling, the WAN link, the kernel and the disk controller at

the Backup Server may all reorder writes. If a failure occurred, this could result in a write

being preserved without causally-precedent writes having survived. We emphasize that no
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existing DR service addresses these concerns, as they preserve the contents of disks for

each server in a distributed application independently.

To avoid this problem, we use the vector clocks maintained at each primary server as

a guide for how writes to the backup disks should be ordered. When a primary sends a

disk write to the backup, it includes its current vector clock. Ordering of the vector clocks

indicates causality precedence and allows the Backup Server to enforce the same ordering

in its writes. Without having application-level hints, we allow any ordering for writes which

are considered to have concurrent vector clocks.

In the ideal case, the Backup Server maintains dedicated hardware (an SSD or a separate

log-structured rotating disk) to initially record the writes it receives, with metadata about

each write prepending the data. Writes are thus persisted, and acknowledgements returned

to the primary, with minimal latency. A separate consumer process then opportunistically

transfers the writes to the actual VM disk volumes. The vector clock-based ordering of

writes among tiers is performed at this later stage, outside of the critical acknowledgement

path. While we have not implemented this, we can preserve a causal history of each disk

by retaining all writes with their logical clocks. All storage volumes are backed by RAID

or hardware with similarly strong durability guarantees.

Unfortunately, the reality of cloud storage is removed from these requirements. Ser-

vices such as Amazon’s EBS, do not offer many necessary guarantees. There is no user

control to ensure disk writes are uncached, committed in-order, and have actually moved

from memory to the disk. In the event of infrastructure outages, there are loose availability

guarantees [102]—simultaneous use of multiple providers has been proposed to mitigate

this [12, 15]. Virtualization hides the details of hardware features which are relevant to

the performance of a backup server, such as availability of SSDs, or physical layout for

log-structured partitions.

Recent events indicate a shift in cloud providers toward providing SLAs in their storage

services [102]. This could be offered as a differential service, and would represent the ideal
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substrate for cloud-based DR. We believe DR makes for an extremely compelling case to

move forward on storage durability and availability guarantees. SLAs already in place by

many providers [9], point toward widely realizing these basic primitives in the short term.

7.5 Black-Box Causality and RPO

Guaranteeing that clients will experience the same recovery semantics upon disaster as

with synchronous replication is closely tied to our ability to introspect causality relations

on a black-box VM. We start analyzing the guarantees we provide, and our limitations,

with this basic building block.

As argued earlier, in a single-VM system, we can use the local machine clock as a

“global” clock to timestamp writes and network packets and derive a total ordering of

events; in this case, holding a packet until all writes with timestamps lower or equal to the

packet is sufficient to ensure all causally dependent writes have finished. Next consider the

multi-VM single-writer scenario.

Lemma 1 In a multi-VM single writer system, it is sufficient to hold a network packet until

the commit count at the secondary becomes greater than or equal to the local counter value

at the outbound node.

Proof Sketch: At the writer node, tagging internal messages with the local write counter

captures all writes that were issued prior to sending out this internal message (and thus,

all causally dependent writes as well). As shown in Figure 7.5, each node computes the

max of its local counter and the one on the arriving message; since the counter at other

nodes lag the writer node, doing so propagates the counter value from the writer node. At

the outbound node, holding the network packet until writes committed by the secondary

exceed this counter ensures that all causally dependent writes issued by the writer node

have been completed at the secondary.

Our PipeCloud implementation uses three additional mechanisms to ensure that this

property holds in practice even in multi-core environments: (i) the Xen backend driver
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Figure 7.8. Pipelined Synchrony determines dependency information from communication
between tiers. The replies R2 and W1 must be buffered because they are preceded by the
database write, but reply R1 can be sent immediately.

executes in a serialized manner for a given virtual device (ii) we limit VMs to a single

network interface and a single protected block device (iii) the clock is updated with atomic

barrier instructions.

Finally consider the general multi-VM multi-writer case. Here we resort to using count

vectors that track a “write frontier” of causally dependent writes at each writer. Like in

the single writer case, the dependencies are propagated by piggybacking count vectors on

internal messages. Upon message receipt, a node computes the max. of the local and

piggybacked count vector thereby capturing the union of all causally dependent writes that

need to be tracked. Thus, the following applies:

Lemma 2 In a multi-writer system, it is sufficient for PipeCloud to release a network

packet once all writes with a count vector less than or equal that of the network packet

have finished.

Proof Sketch: The count vector, m, that an outgoing message is tagged with, represents

the events at each writer node that happened-before the packet was created. If m[i] = k,

then all writes up to k at writer node i must have causally preceded packet m. Likewise,

any write with value greater than k at node i is considered to have happened concurrently

(or after) packet m. Hence, holding the packet until all writes in m have finished on all

machines ensures that all causally related writes complete before network output becomes

visible.
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Armed with these conclusions, we revisit client RPO guarantees from Section 7.2.2.

First, the Secondary view (SV) remains a subset of the Primary (PV): writes are propagated

to the secondary after issuance in the primary. Second, and most importantly, the Client

View (CV) remains a subset of the SV: the CV is only updated when client-bound packets

are released. Thus, PipeCloud is no worse than sync replication, and therefore yields a

client RPO of zero. Per lemma 2, clients will not receive updates that are not contained

in the secondary site, and therefore no inconsistencies will arise after disaster recovery.

Clients thus perceive synchronous replication and PipeCloud as indistinguishable.

One limitation of our black-box causality tracking is that our approach conservatively

marks all writes issued before an outgoing message as dependent; while this set of writes

contains all causally dependent writes, it may include other independent writes as well.

Since our black-box system has no application visibility, we are unable to discern between

dependent and independent writes, requiring us to conservatively mark all prior writes as

dependent for safety. To illustrate, consider two separate application threads processing

requests on different data items. PipeCloud cannot differentiate between these threads

and, as a result, may conservatively mark the network packets from one thread as being

dependent on the writes from the other thread which happened to precede them, regardless

of actual application level dependence. This is illustrated in Figure 7.8: while both reads are

independent from “Write 1”, “Read 2” is affected by communication between the middle

and DB tier after “Write 1” is propagated to the secondary. As a result, the reply to “Read

2” is unnecessarily delayed.

7.6 Evaluation

We have evaluated the performance of PipeCloud under normal operating conditions,

as well as its failure properties, using both a local testbed and resources from Amazon

EC2. On our local testbed, we use a set of Dell servers with quad core Intel Xeon 2.12GHz

CPUs and 4GiB of RAM. The servers are connected by a LAN, but we use the Linux tc tool
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to emulate network latency between the hosts; we have found that this provides a reliable

WAN network emulation of 50 or 100 ms delays. Our EC2 experiments use “Large” virtual

machine instances (having two 64-bit cores and 7.5GiB of memory) in the US East region.

Virtual machines in both the local testbed and EC2 use CentOS 5.1, Tomcat 5.5, MySQL

5.0.45, and Apache 2.23. We compare three replication tools: DRBD 8.3.8 in synchronous

mode, our pipelined synchrony implementation, and an asynchronous replication tool based

on our pipelined synchrony but without any network buffering.

Our evaluation focus is on client-server applications and we consider three test appli-

cations. 1) We use the MySQL database either by itself or as part of a larger web appli-

cation. We use the InnoDB storage engine to ensure that database writes are committed

to disk before replying to clients, and we store all of the InnoDB data and log files on

a protected disk partition. In single VM experiments, we communicate directly with the

MySQL database via a Java application running on an external client machine. 2) TPC-W

is an e-commerce web benchmark that emulates an online bookstore. TPC-W is composed

of two tiers, a Tomcat application server and a MySQL database, that each run in separate

virtual machines; we only protect the disk used for the database files. TPC-W includes

a client workload generator which we run on a server which is considered external to the

protected system. 3) We have also written a PHP based web application called CompDB

which allows us to more precisely control the amount of computation and database queries

performed when processing requests. The application can be deployed across one, two, or

three tiers, each of which runs an Apache server and a MySQL database. Requests are gen-

erated by the httperf tool and access a PHP script on the front-end server which performs

a configurable amount of computation and insert queries to the local database before being

propagated to the next tier which repeats the process. Together, these applications allow

us to emulate realistic application workloads and perform controlled analyses of different

workload factors.
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Figure 7.9. Clients must wait for multiple WAN delays with Sync, but PipeCloud has a
consistent response time just barely over the RTT of 50 ms. By reducing the time DB tables
must be locked for each transaction, PipeCloud is able to provide a much higher throughput
relative to Sync.

7.6.1 Single Writer Database Performance

We first measure the performance of PipeCloud when protecting the disk of a MySQL

database. We imposed a 50ms RTT from primary to backup in our local testbed; this limits

the minimum possible response time to 50ms for the non-asynchronous approaches.

Figure 7.9(a) shows how the response time changes as the client load on the database

increases. Each client connects to the database server and repeatedly inserts small 8 byte

records into a table. Since the protected application is a database that must ensure consis-

tency, the table must be locked for each individual transaction so they can be performed

serially. With Sync, the table must be locked for at least one RTT because a transaction

cannot complete until the remote disk acknowledges the write being finished. This means

that when a client request arrives, it must wait for a round trip delay for each pending re-

quest that arrived before it. This causes the response time, when using Sync, to increase

linearly with a slope based on the round trip delay to the backup.

In PipeCloud, the database table only needs to be locked until the local disk write com-

pletes, allowing for much faster request processing. This results in a much lower response

time and higher throughput because many requests can be processed during each round trip

delay to the backup. Figure 7.9(b) shows that PipeCloud achieves a maximum throughput

over twelve times higher than Sync. While using an asynchronous approach may allow
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Figure 7.10. PipeCloud has higher TPC-W throughput than synchronous, and performs
almost equivalently to an asynchronous approach when there is a 50 ms round trip delay.

for an even higher throughput, PipeCloud provides what asynchronous approaches cannot:

zero data loss.

7.6.2 Multi-Tier TPC-W Performance

We use PipeCloud to protect a set of virtual machines running the TPC-W online store

web benchmark to see the performance of a realistic application with a mixed read/write

workload.

We first measure the overall performance of TPC-W as we vary the latency between

the primary and backup site when using different replication mechanisms. Figure 7.10(a)

shows the maximum throughput achieved by the different replication schemes. PipeCloud’s

maximum throughput is nearly identical to that of an asynchronous scheme—the ability to

pipeline request processing and state replication effectively masks the overhead of disaster

recovery. When the round trip delay increases to 100 ms, the throughput of synchronous

drops even further, but PipeCloud’s performance is effectively unaffected. PipeCloud is

able to maintains a throughput two times better than the synchronous approach.

In Figure 7.10(b) we see that PipeCloud’s pipelining also reduces response times com-

pared to a synchronous approach, even for relatively low client loads where the throughput

of each approach is similar. The load-response time curve for PipeCloud closely follows

the asynchronous approach, offering a substantial performance benefit compared to syn-

chronous and the same level of consistency guarantees.
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Figure 7.11. With 100 ms RTT, the black-box network buffering in PipeCloud causes some
read-only requests to have higher response times, but it provides a significant performance
improvement for write requests compared to synchronous.

We next categorize the request types of the TPC-W application into those which involve

writes to the database and those which are read-only. The workload contains a mix of 60%

reads and 40% writes, and we measure the response times for each category. Figure 7.11(a)

shows a CDF of the response times for read-only requests when there are 50 active clients

and there is a 100 ms roundtrip time to the backup. PipeCloud has a slightly higher base

response time because some read-only requests are processed concurrently with requests

which involve writes. Since PipeCloud cannot distinguish between the packets related to

read-only or write requests, it must conservatively buffer both types. However, even with

some requests being unnecessarily delayed, PipeCloud’s overall performance for reads is

very close to synchronous DRBD.

PipeCloud’s greatest strength shows when we observe the response time of requests

that involve at least one database write in Figure 7.11(b). PipeCloud’s ability to overlap

work with network delays decreases the median response time by 50%, from over 600

ms to less than 300 ms. Only 3% of requests to PipeCloud take longer than one second;

with synchronous replication that rises nearly 40% . This improved performance allows

PipeCloud to be used with much more stringent performance SLAs.
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Figure 7.12. PipeCloud’s black box network buffering causes read requests to initially see
higher delay than Sync, but pipelining supports a much larger write workload than Sync.

7.6.3 Impact of Read and Write Rates

This experiment explores how the network buffering in PipeCloud can unnecessarily

delay read-only requests that are processed concurrently with writes. We use our CompDB

web application in a single-VM setup and send a constant stream of 100 read requests per

second as well as a variable stream of write requests that insert records into a protected

database. The read requests return static data while the writes cause a record to be inserted

to the database. There is a 50 ms RTT between primary and backup. Figure 7.12 shows how

the performance of read requests is impacted by the writes. When there is a very low write

request rate, the response time of Sync and PipeCloud are very similar, but as the write rate

rises, PipeCloud sees more read-only packets being delayed. However, the increased write

rate also has a performance impact on the read requests in Sync because the system quickly

becomes overloaded. PipeCloud is able to support a much higher write workload and still

provide responses to read requests within a reasonable time. We believe that the trade-

off provided by PipeCloud is a desirable one for application designers: a small reduction

in read performance at low request rates is balanced by a significant reduction in write

response times and support for higher overall throughput.

7.6.4 Multi-tier Sensitivity Analysis

To verify PipeCloud’s ability to hide replication latency by overlapping it with useful

work, we performed an experiment in which we arbitrarily adjust the amount of computa-

tion in a multi-tier server. We use the CompDB application split into two tiers; the front
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Figure 7.13. PipeCloud continues processing as writes are sent to the backup site, allowing
it to provide equivalent performance to asynchronous replication if there is sufficient work
to do.

tier performs a controlled amount of computation and the backend inserts a record into a

database. We also compare PipeCloud against a naı̈ve version that only applies pipelining

to the DB tier. The RTT for the backup site is 50ms.

Figure 7.13 shows how the average response time changes as a function of the con-

trolled amount of computation. As the computation cost increases, the synchronous and

naı̈ve PipeCloud approaches have a linear increase in response time since the front tier

must wait for the full round trip before continuing further processing. However, when

PipeCloud is applied across the two tiers, it is able to perform this processing concurrently

with replication, essentially providing up to 50 ms of “free computation”. For requests

that require more processing than the round trip time, PipeCloud provides the same re-

sponse time as an asynchronous approach, with the advantage of much stricter client RPO

guarantees.

7.6.5 Protecting Multiple Databases

With current approaches, often only a single tier of an application is protected with

DR because it is too expensive in terms of cost and performance to replicate the state

of multiple application tiers. To evaluate PipeCloud’s support for multiple servers with

protected storage we consider a 3-tier deployment of our CompDB application configured

so each tier includes both a web and database component. Figure 7.14 shows the average
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Figure 7.14. Each tier protected with synchronous replication increases response time by
at least one RTT. Pipelining the replication of writes provides a much lower response time.

response time of requests to this application when either one, two, or all three of the tiers

are protected by a DR system. There is a 50 ms RTT, and we use a single client in order

to provide a best case response time. With synchronous replication, the response time

increases by more than a round trip delay for every tier protected since the writes performed

at each tier must be replicated and acknowledged serially.

PipeCloud on the other hand, is able to pipeline the replication processes across tiers,

providing both better overall performance and only a minimal performance change when

protecting additional tiers. When protecting all three tiers, PipeCloud reduces the response

time from 426 ms to only 63 ms, a 6.7 times reduction. Being able to pipeline the replica-

tion of multiple application components allows PipeCloud to offer zero data loss guaran-

tees to applications which previously would have resorted to asynchronous replication ap-

proaches simply due to the unacceptable performance cost incurred by serial, synchronous

replication.

7.6.6 Failure evaluation

7.6.6.1 Comparing replication strategies

PipeCloud seeks to provide performance on-par with asynchronous, but it also seeks to

assure clients of the same consistency guarantee as a synchronous approach. Figure 7.15

compares the consistency guarantees provided by Sync, Async, and Pipelined Synchrony.

As in Section 7.6.1, a single MySQL database is backed up to a secondary site 50 msecs

away. Out of a set of 500 database inserts that occur immediately prior to a disaster, we
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Figure 7.16. When protecting multiple databases, PipeCloud still guarantees that clients
do not receive replies unless data has been durably committed to the backup.

examine the number of records recorded at the primary and secondary sites and the number

of confirmations received by the client. Sync guarantees that the secondary view (SV) is

almost identical to the primary (PV), but allows the client (CV) to lag behind the secondary.

With Async, the client is not limited by the rate of confirmations from the secondary site,

causing the client to receive many unsafe replies (CV ¿ SV). However, with Pipelined

synchrony, these unsafe replies do not occur because network packets are buffered until

the secondary’s acks are received; as a result, PipeCloud is able to provide clients with the

same guarantee as synchronous—the data for any response they receive will always have

been safely committed to the backup site.

7.6.6.2 Recovering to EC2

Next we emulate a disaster scenario in which the secondary site takes over request

processing for a CompDB stack, configured with a frontend node that performs database

insertions on a master-master database split between two backend nodes. We run the pri-
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mary site within our local testbed and use Amazon EC2 VMs to run both the Backup and

the failover servers. The network latency measured from our primary site in western Mas-

sachusetts to the backup server in EC2’s northern Virginia site was 16 ms. We use EBS

volumes for the two protected DB disks. Prior to the failure, a single EC2 VM acting as

the Backup Server applies the write streams received from both of the protected VMs to

the EBS volumes.

Upon failure, the Backup Server disables replication and unmounts the EBS volumes.

It uses the EC2 API to instantiate three new VM instances, and connects the two backup

volumes to the newly started VMs. During bootup, the database VMs perform a consistency

check by launching the mysqld process. Once this is complete, the application resumes

processing requests. The table below details the time (in seconds) required for each of these

steps; in total, the time from detection until the application is active and ready to process

requests took under two minutes.

Detach Reattach Boot Total

Time (s) 27 13 75 115

Figure 7.16 shows the consistency views for the last fifty requests sent to each of the

DB masters prior to the failure. As in the single writer case described in the previously,

PipeCloud’s multi-writer DR system is able to provide the consistency guarantee that client

view will never exceed what is safely replicated to the secondary.

This experiment illustrates the potential for automating the recovery process using

cloud platforms such as EC2. The API tools provided by such clouds automate steps such

as provisioning servers and reattaching storage. While the potential to reduce recovery

time using cloud automation is very desirable, it remains to be seen if commercial cloud

platforms can provide the availability and durability required for a disaster recovery site.
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7.7 Related Work

Disaster Recovery is a key business functionality and a widely researched field. We

have previously mentioned the work by Keeton and Wilkes on treating asynchronous repli-

cation as an optimization problem, and balancing the two primary concerns: financial ob-

jectives and RPO deltas [66]. In Seneca [60] the space of asynchronous replication of

storage devices is studied, with a focus on optimizations such as write and acknowledg-

ment buffering and coalescing. A similar study is carried out, although at the file system

level, in SnapMirror [96]. Recent studies show a large potential for high yield of write co-

alescing in desktop workloads [110]. We have not directly leveraged the insights of write

coalescing in our work due to our stringent zero-RPO objectives.

Another area of interest for storage durability is achieving survivability by architecting

data distribution schemes: combinations of striping, replication, and erasure-coding are

used to store data on multiple sites [147]. These concerns become paramount in cloud stor-

age, in which the durability and availability guarantees of providers are, to say the least,

soft. Two recent systems attack these deficiencies by leveraging multiple cloud providers:

DepSky [12] provides privacy through cryptography, erasure coding and secret sharing,

while Skute [15] aims to optimize the cost/response time tradeoff. We highlight that while

availability and durability are increased, so is latency—unfortunately. Replication chaining

techniques previously used in industry [38] may complement these techniques and amelio-

rate the latency overhead, possibly at much higher cost.

A long tradition of distributed systems research underpins our work. We use logical

clocks to track causality, originally introduced by Leslie Lamport [74]. Further, we use

techniques traditionally associated with eventual consistency [13, 73] to enforce pipelined

synchronous replication throughout the nodes that make up a distributed service. We em-

ploy a vector clock-style approach [83] to allow each node to represent its knowledge of

the system at the moment of producing data, and we allow nodes to propagate their knowl-

edge to peers, as in anti-entropy or gossiping protocols [120]. Previous work in inferring
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causality in a distributed systems of black-boxes [2] focused on performance diagnosis as

opposed to consistency enforcement during replication.

The concept of speculative execution has been used to reduce the impact of latency in

a variety of domains [136, 92]. These approaches typically require application support for

rolling back state if speculation must be cancelled. Pipelined synchrony also uses specula-

tive execution, but it must cancel speculated work only if the primary fails; since it is the

primary which performs the speculation, the roll back process is implicit in the failover to

the secondary site. This allows PipeCloud to perform speculation and rollback in a black

box manner without requiring any special support from clients, nor the protected applica-

tion or OS. External synchrony [92] is a related system, as it shows that in many cases

the benefits of synchronous and asynchronous IO can be simultaneously reaped by intelli-

gently overlapping IO with processing. Their treatment is focused on file system activity

in a single host, and requires operating system support for tracking dependencies between

processes. Remus [32] implements VM lockstep replication for LAN-based fault tolerance

using similar concepts. We expand these themes to WAN replication, disaster recovery, and

multi-tier causality tracking.

7.8 PipeCloud Conclusion

Cloud computing platforms are desirable to use as backup locations for Disaster Re-

covery due to their low cost. However, the high latency between enterprise and cloud data

centers can lead to unacceptable performance when using existing replication techniques.

This chapter has shown how pipelined synchronous replication overcomes the deleterious

effects of speed-of-light delays by overlapping or pipelining computation with replication

to a cloud site over long distance WAN links. Pipelined synchrony offers the much sought

after goal: performance of asynchronous replication with the same guarantees to clients

as synchronous replication. It does so by ensuring network packets destined for external

entities are only released once the disk writes they are dependent on have been committed
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at both the primary and the backup. Our evaluation of PipeCloud demonstrates dramatic

performance benefits over synchronous replication both in throughput and response time

for a variety of workloads. MySQL database throughput goes up by more than an order of

magnitude and the median response time for the TPC-W web application drops by a half.

Recreating failures also shows PipeCloud delivers on the promise of high performance cou-

pled with the proper consistency in the client’s view of storage. PipeCloud improves the

reliability of data centers by providing high performance disaster recovery services without

requiring any modifications at the OS or application levels.
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CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Thesis Summary

This thesis has explored how virtualization technologies can be used to improve re-

source management, simplify deployment, and increase the resilience of modern data cen-

ters. We have proposed a set of automated, application agnostic techniques that exploit

the speed and flexibility of virtualization to handle the scale and dynamics of data center

applications.

Transitioning to Virtualized Data Centers: First we proposed an automated mod-

eling technique to characterize the overheads of virtualization platforms. Our evaluation

demonstrates the importance of modeling multiple types of I/O and achieves an error rate

of less than 10%. Our approach showed how the overheads of a virtualization platform

can change dramatically based on workload, and in the future these models could be useful

for helping users compare different virtualization platforms to determine which will be the

best fit for a given application.

VM Placement and Memory Provisioning: We developed a memory sharing based

VM placement technique to help data center operators more effectively deploy applica-

tions into virtualized data centers. Our efficient memory fingerprinting technique is orders

of magnitude faster than a brute force comparison, and automatically detects VMs with

similar memory contents so they can be placed on a single machine. This work illustrates

how the hypervisor is capable of transparently gathering useful data about virtual machines

without making any assumptions about the applications or operating system running within.
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As the scale of data centers and the diversity of applications within them increases, these

application agnostic approaches will become even more important.

Dynamic Migration and Resource Management: Next we presented automated hotspot

detection and mitigation algorithms that utilize dynamic VM resource allocation and live

migration to prevent server overloads within a data center. This system effectively detects

and mitigates hotspots in less than 20 seconds, and explores the benefits of having addi-

tional OS or application level monitoring data. We demonstrated that in many cases, a fully

application agnostic approach is sufficient for responding to server overloads.

Cross Data Center Migration: We also have developed an optimized form of VM

migration which can be used over WAN links. Our optimizations eliminate transmission

of redundant data, reducing bandwidth consumption and migration time by as much as

fifty percent. Just as virtual machine migration within the LAN has expanded the scope of

resource provisioning within a data center from looking at a single server to considering

groups of server racks, we believe WAN migration will enable joint resource management

across groups of data centers, despite the low bandwidth and high latency links between

them.

High Performance Disaster Resiliency: Finally, we discussed how to improve data

center reliability in the face of unexpected disasters. We have proposed a new application

agnostic replication technique that allows cloud data centers to offer high performance,

economical disaster recovery services despite the high network latencies they typically

incur. Our approach pipelines computation and data replication to improve performance,

but guarantees consistency by delaying network packets bound for external clients until

disk state has been safely committed to the backup. This increases throughput by an order

of magnitude and lowers response times by half compared to synchronous approaches.

We have used a variety of approaches for dealing with the planning, management, and

reliability problems facing data centers. Our contributions include new modeling tech-

niques, high level, automated control systems, and low level mechanisms that improve the
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efficiency of virtualization platforms. In summary, this thesis has explored how virtualiza-

tion can make data centers more efficient and reliable without requiring any knowledge of

the applications running within them.

8.2 Future Work

In this section we discuss some future research directions that have emerged from the

work in this dissertation.

Cloud Transition Planning: The virtualization overhead models produced by MOVE

are useful for understanding how a single application’s needs will change when it is moved

to a virtual environment. Extending this to assist with the transition to a public cloud would

require additional models that account for the type and cost of resources available in the

cloud. A system which could determine the resource needs, expected cost, and performance

impact of moving into a cloud platform would be of great use to businesses considering this

transition.

The Changing Goals of Data Center Management: The resource management tech-

niques proposed in Sandpiper seek to optimize application performance by distributing

work across as many machines as possible. However, in some cases a data center operator

may be more concerned with minimizing operational costs than maximizing performance.

Further work is required to allow resource management systems such as Sandpiper and

Memory Buddies to jointly optimize potentially competing goals such as performance and

energy efficiency.

Modeling & Automating WAN Migrations: The optimized WAN VM migration tools

provided by CloudNet can significantly lower migration cost, but there is no way for users

to know in advance what the time and bandwidth cost of a migration will be. Having models

that could predict this cost would enable automated control systems such as Sandpiper to be

extended to manage pools of resources that span multiple data centers. Such a system could

support seamless “cloud bursting” by dynamically replicating and migrating applications
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into the cloud, while accounting for both the performance and monetary cost of such a

move.

Causal Storage: The replication system in PipeCloud enforces consistency across mul-

tiple components by requiring that causally related writes are performed in order (i.e., based

on their count vectors). Further work is required to better understand how application

level consistency requirements translate to the disk and network level events tracked by

PipeCloud. This is particularly important for applications which do not perform all writes

to storage synchronously, but may be able to provide application level notifications to the

DR system to know when state must be buffered and released. A further interesting ex-

tension would be to consider how the vector count tagged writes at the DR site could be

used as a “causal storage time machine” which would allow the disk state of distributed

applications to be rolled back in time in a consistent way.

Taint Tracking: The count vector packet injection performed in Pipe Cloud is useful

for tracking disk consistency across tiers, but it could also be used for other purposes. One

possibility is to use the messages injected at the virtualization layer as a way of tracking

potential intrusions. For example, the counters could track potential security violations;

as these messages spread between machines it could give forensic investigators a way of

tracking which machines might have been corrupted by an intrusion.
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Live wide-area migration of virtual machines including local persistent state. In
Proceedings of the 3rd international conference on Virtual execution environments
(San Diego, California, USA, 2007), ACM, pp. 169–179.

[18] Breitgand, David, Kutiel, Gilad, and Raz, Danny. Cost-aware live migration of
services in the cloud. In Proceedings of the 3rd Annual Haifa Experimental Systems
Conference (New York, NY, USA, 2010), SYSTOR ’10, ACM.

[19] Broder, Andrei, and Mitzenmacher, Michael. Network applications of Bloom filters:
A survey. Internet Mathematics 1, 4 (2003), 485–509.

[20] Brown, Aaron B., and Seltzer, Margo I. Operating system benchmarking in the
wake of lmbench: a case study of the performance of netbsd on the intel x86 archi-
tecture. In Proceedings of the 1997 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems (New York, NY, USA, 1997),
SIGMETRICS ’97, ACM, pp. 214–224.

[21] Bugnion, Edouard, Devine, Scott, and Rosenblum, Mendel. DISCO: Running Com-
modity Operating Systems on Scalable Multiprocessors. In SOSP (1997), pp. 143–
156.

[22] Buyya, Rajkumar, Ranjan, Rajiv, and Calheiros, Rodrigo N. Intercloud: Utility-
oriented federation of cloud computing environments for scaling of application ser-
vices. In International Conference on Algorithms and Architectures for Parallel
Processing (2010).

180



[23] Cecchet, Emmanuel, Chanda, Anupam, Elnikety, Sameh, Marguerite, Julie, and
Zwaenepoel, Willy. Performance Comparison of Middleware Architectures for Gen-
erating Dynamic Web Content. In 4th ACM/IFIP/USENIX International Middleware
Conference (June 2003).

[24] Chandra, Abhishek, Gong, Weibo, and Shenoy, Prashant. Dynamic resource allo-
cation for shared data centers using online measurements. In Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling
of computer systems (San Diego, CA, USA, 2003), ACM, pp. 300–301.

[25] Chase, J., Anderson, D., Thakar, P., Vahdat, A., and Doyle, R. Managing energy
and server resources in hosting centers. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP) (Oct. 2001), p. 103116.

[26] Chen, Xu, Mao, Z Morley, and Van der Merwe, Jacobus. ShadowNet: a platform for
rapid and safe network evolution. In USENIX Annual Technical Conference (2009).

[27] Cherkasova, L., and Gardner, R. Measuring CPU overhead for I/O processing in the
xen virtual machine monitor. In USENIX Annual Technical Conference (Apr. 2005).

[28] Church, K., Hamilton, J., and Greenberg, A. On delivering embarassingly distributed
cloud services. Hotnets VII (2008).

[29] Cisco Active Network Abstraction. http://www.cisco.com.

[30] Clark, Christopher, Fraser, Keir, Hand, Steven, Hansen, Jacob Gorm, Jul, Eric,
Limpach, Christian, Pratt, Ian, and Warfield, Andrew. Live Migration of Virtual
Machines. In Proc. of NSDI (Boston, MA, May 2005).

[31] Clidaras, Jimmy, Stiver, David, and Hamburgen, William. Water-Based data center
(patent application 20080209234).

[32] Cully, Brendan, Lefebvre, Geoffrey, Meyer, Dutch, Feeley, Mike, Hutchinson,
Norm, and Warfield, Andrew. Remus: High Availability via Asynchronous Virtual
Machine Replication. In Proc. of NSDI (2008).

[33] Dean, J., and Ghemawat, S. MapReduce: simplified data processing on large clus-
ters. In Symposium on Operating Systems Principles (2004).

[34] Draper, N. R., and Smith, H. Applied Regression Analysis. John Wiley & Sons,
1998.

[35] Drbd. http://www.drbd.org/.

[36] Duffield, N. G., Goyal, Pawan, Greenberg, Albert, Mishra, Partho, Ramakrishnan,
K. K., and Van der Merwe, Jacobus E. Resource management with hoses: point-to-
cloud services for virtual private networks. IEEE/ACM Transactions on Networking
10, 5 (2002).

181



[37] Amazon ec2 elastic load balancing. http://aws.amazon.com/elasticloadbalancing/.

[38] EMC. Symmetrix Remote Data Facility (SRDF) Product Guide. http://www.
scribd.com/doc/35959543/Symmetrix-SRDF-Product-Guide.

[39] Fraser, Keir, Hand, Steven, Neugebauer, Rolf, Pratt, Ian, Warfield, Andrew, and
Williamson, Mark. Reconstructing I/O. Technical Report (2004).

[40] Garfinkel, Tal, Pfaff, Ben, Chow, Jim, Rosenblum, Mendel, and Boneh, Dan. Terra:
a virtual machine-based platform for trusted computing. In Proceedings of the
nineteenth ACM symposium on Operating systems principles (Bolton Landing, NY,
USA, 2003), ACM, pp. 193–206.

[41] Gmach, Daniel, Rolia, Jerry, Cherkasova, Ludmila, and Kemper, Alfons. Capacity
management and demand prediction for next generation data centers. Web Services,
IEEE International Conference on 0 (2007), 43–50.

[42] Govil, K., Teodosiu, D., Huang, Y., and Rosenblum, M. Cellular Disco: Resource
Management using Virtual Clusters on Shared-memory Multiprocessors. In Pro-
ceedings of the ACM Symposium on Operating Systems Principles (SOSP’99) (De-
cember 1999), pp. 154–169.

[43] Grit, Laura, Irwin, David, , Yumerefendi, Aydan, and Chase, Jeff. Virtual machine
hosting for networked clusters: Building the foundations for autonomic orchestra-
tion. In Workshop on Virtualization Technology in Distributed Computing (VTDC)
(November 2006).

[44] Guo, Deke, Wu, Jie, Chen, Honghui, and Luo, Xueshan. Theory and Network Ap-
plications of Dynamic Bloom Filters. In INFOCOM (2006).

[45] Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A. Enforcing performance
isolation across virtual machines in xen. In Proceedings of the ACM/IFIP/USENIX
7th International Middleware Conference (Middleware’2006), Melbourne, Australia
(November 2006).

[46] Gupta, D., Gardner, R., and Cherkasova, L. XenMon: QoS monitoring and perfor-
mance profiling tool. Tech. Rep. HPL-2005-187, HP Labs, 2005.

[47] Gupta, Diwaker, Lee, Sangmin, Vrable, Michael, Savage, Stefan, Snoeren, Alex C.,
Varghese, George, Voelker, Geoffrey M., and Vahdat, Amin. Difference engine:
harnessing memory redundancy in virtual machines. Commun. ACM 53, 10 (2010),
85–93.

[48] Hajjat, M., Sun, X., Sung, Y., Maltz, D., Rao, S., Sripanidkulchai, K., and Tawar-
malani, M. Cloudward bound: Planning for beneficial migration of enterprise appli-
cations to the cloud. In Proceedings of SIGCOMM (2010).

182



[49] Harney, Eric, Goasguen, Sebastien, Martin, Jim, Murphy, Mike, and Westall, Mike.
The efficacy of live virtual machine migrations over the internet. In Proceedings of
the 3rd VTDC (2007).

[50] Holland, P. W., and Welsch, R. E. Robust regression using iteratively reweighted
least-squares. In Communications in Statistics - Theory and Methods (October
2007).

[51] HP Integrity Essentials Capacity Advisor. http://h71036.www7.hp.com/
enterprise/cache/262379-0-0-0-121.html.

[52] HP-UX Workload Manager. http://www.hp.com/products1/unix/
operating/wlm.

[53] Hsieh, Paul. Hash functions. http://www.azillionmonkeys.com/qed/ hash.html.

[54] Huang, Wei, Gao, Qi, Liu, Jiuxing, and Panda, Dhabaleswar K. High performance
virtual machine migration with RDMA over modern interconnects. In Proceedings
of the 2007 IEEE International Conference on Cluster Computing (2007), IEEE
Computer Society, pp. 11–20.

[55] Microsoft hyper-v server. www.microsoft.com/hyper-v-server.

[56] IBM Enterprise Workload Manager. http://www.ibm.com/
developerworks/autonomic/ewlm/.

[57] IBM Tivoli Performance Analyzer. http://www.ibm.com/software/
tivoli/products/performance-analyzer/.

[58] Isard, Michael, Budiu, Mihai, Yu, Yuan, Birrell, Andrew, and Fetterly, Dennis.
Dryad: distributed data-parallel programs from sequential building blocks. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007 (Lisbon, Portugal, 2007), ACM, pp. 59–72.

[59] Jain, Navendu, Dahlin, Michael, and Tewari, Renu. Using Bloom Filters to Refine
Web Search Results. In WebDB (2005), pp. 25–30.

[60] Ji, Minwen, Veitch, Alistair, and Wilkes, John. Seneca: Remote Mirroring Done
Write. In Proc. of Usenix ATC (2003).

[61] Jin, Hai, Deng, Li, Wu, Song, Shi, Xuanhua, and Pan, Xiaodong. Live virtual ma-
chine migration with adaptive memory compression. In Cluster (2009).

[62] Jones, Stephen T., Arpaci-Dusseau, Andrea C., and Arpaci-Dusseau, Remzi H.
Geiger: Monitoring the Buffer Cache in a Virtual Machine Environment. In
ASPLOS-XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems (New York, NY, USA,
2006), ACM Press, pp. 14–24.

183



[63] Juniper Networks, Configuration and Diagnostic Automation Guide. http://
www.juniper.net.

[64] Kamra, Abhinav, Misra, Vishal, and Nahum, Erich. Yaksha: A self-tuning controller
for managing the performance of 3-tiered web sites. In International Workshop on
Quality of Service (IWQoS) (June 2004).

[65] Katz, Randy. IEEE spectrum: Tech titans building boom.
http://www.spectrum.ieee.org/green-tech/buildings/tech-titans-building-boom.

[66] Keeton, Kimberly, Santos, Cipriano, Beyer, Dirk, Chase, Jeffrey, and Wilkes, John.
Designing for Disasters. In Proc. of FAST (2004).

[67] King, Samuel T., Dunlap, George W., and Chen, Peter M. Operating system support
for virtual machines. In Proceedings of the annual conference on USENIX Annual
Technical Conference (San Antonio, Texas, 2003), USENIX Association, pp. 6–6.

[68] Kleinrock, L. Queueing Systems, Volume 2: Computer Applications. John Wiley
and Sons, Inc., 1976.

[69] Kloster, Jacob, Kristensen, Jesper, and Mejlholm, Arne. On the Feasibility of Mem-
ory Sharing: Content-Based Page Sharing in the Xen Virtual Machine Monitor. Mas-
ter’s thesis, Department of Computer Science, Aalborg University, June 2006.

[70] Kozuch, M., and Satyanarayanan, M. Internet suspend and resume. In Proceed-
ings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications,
Calicoon, NY (June 2002).

[71] Kulkarni, Purushottam, Shenoy, Prashant J., and Gong, Weibo. Scalable Techniques
for Memory-efficients CDN Simulations. In WWW (2003).

[72] Kernel based virtual machine. http://www.linux-kvm.org/.

[73] Ladin, Rivka, Liskov, Barbara, Shrira, Liuva, and Ghemawat, Sanjay. Providing
High Availability Using Lazy Replication. ACM TOCS 10, 4 (1992).

[74] Lamport, L. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21, 7 (July 1978).

[75] Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A., and Youssef, A.
Performance Management for Cluster Based Web Services. In IFIP/IEEE Eighth
International Symposium on Integrated Network Management (2003), vol. 246,
pp. 247–261.

[76] libvirt. The Virtualization API. http://libvirt.org.

[77] Lim, K., Ranganathan, P., Chang, J., Patel, C., Mudge, T., and Reinhardt, S. Under-
standing and designing new server architectures for emerging warehouse-computing
environments. In Computer Architecture, 2008. ISCA’08. 35th International Sympo-
sium on (2008), pp. 315–326.

184



[78] Linux-HA. Heartbeat. http://linux-ha.org/wiki/Heartbeat.

[79] Liu, Jiuxing, Huang, Wei, Abali, Bulent, and Panda, Dhabaleswar K. High perfor-
mance VMM-bypass I/O in virtual machines. In Proceedings of the annual confer-
ence on USENIX ’06 Annual Technical Conference (Boston, MA, 2006), USENIX
Association, pp. 3–3.

[80] Lu, Pin, and Shen, Kai. Virtual machine memory access tracing with hypervisor
exclusive cache. In Usenix Annual Technical Conference (June 2007).

[81] Luo, Xucheng, Qin, Zhiguang, Geng, Ji, and Luo, Jiaqing. IAC: Interest-Aware
Caching for Unstructured P2P. In SKG (2006), p. 58.

[82] Magenheimer, Daniel J., and Christian, Thomas W. vblades: optimized paravirtu-
alization for the itanium processor family. In Proceedings of the 3rd conference on
Virtual Machine Research And Technology Symposium - Volume 3 (Berkeley, CA,
USA, 2004), USENIX Association, pp. 6–6.

[83] Mattern, Friedemann. Virtual Time and Global States of Distributed Systems. In
Parallel and Distributed Algorithms (1989).

[84] McVoy, Larry, and Staelin, Carl. lmbench: portable tools for performance analy-
sis. In Proceedings of the 1996 annual conference on USENIX Annual Technical
Conference (Berkeley, CA, USA, 1996), USENIX Association, pp. 23–23.

[85] Menasce, Daniel A., and Bennani, Mohamed N. Autonomic Virtualized Environ-
ments. In IEEE International Conference on Autonomic and Autonomous Systems
(July 2006).

[86] Menon, Aravind, Santos, Jose Renato, Turner, Yoshio, Janakiraman, G. (John), and
Zwaenepoel, Willy. Diagnosing performance overheads in the xen virtual machine
environment. In Proceedings of the 1st ACM/USENIX international conference on
Virtual execution environments (Chicago, IL, USA, 2005), ACM, pp. 13–23.

[87] Milos, Grzegorz, Murray, Derek G., Hand, Steven, and Fetterman, Michael. Satori:
Enlightened Page Sharing. In Proceedings of the USENIX Annual Technical Con-
ference (2009).

[88] Mosberger, David, and Jin, Tai. httperf: A tool for measuring web server per-
formance. In First Workshop on Internet Server Performance (June 1998), ACM,
pp. 59—67.

[89] MySQL. http://www.mysql.com.

[90] Nahum, E. Deconstructing specweb. In Proceedings of 7th International Workshop
on Web Content Caching and Distribution (2002).

[91] Nelson, Michael, Lim, Beng-Hong, and Hutchins, Greg. Fast Transparent Migration
for Virtual Machines. In USENIX Annual Technical Conference (2005).

185



[92] Nightingale, Edmund B., Veeraraghavan, Kaushik, Chen, Peter M., and Flinn, Jason.
Rethink the Sync. In Proc. of OSDI (2006).

[93] Osman, Steven, Subhraveti, Dinesh, Su, Gong, and Nieh, Jason. The design and
implementation of zap: A system for migrating computing environments. In In Pro-
ceedings of the Fifth Symposium on Operating Systems Design and Implementation
(OSDI) (2002).

[94] Padala, Pradeep, Zhu, Xiaoyun, Wang, Zhikui, Singhal, Sharad, and Shin, Kang G.
Performance evaluation of virtualization technologies for server consolidation. Tech.
rep., HP Labs, 2007.

[95] Parallels. www.parallels.com.

[96] Patterson, Hugo, Manley, Stephen, Federwisch, Mike, Hitz, Dave, Kleiman, Steve,
and Owara, Shane. SnapMirror: File System Based Asynchronous Mirroring for
Disaster Recovery. In Proc. of FAST (Monterey, CA, Jan. 2002).

[97] Pinheiro, Eduardo, Weber, Wolf-Dietrich, and Barroso, Luiz André. Failure trends
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