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ABSTRACT

RESOURCE MANAGEMENT IN COMPLEX AND
DYNAMIC ENVIRONMENTS

SEPTEMBER 2009

MOHAMMAD SALIMULLAH RAUNAK

B.S., NORTH SOUTH UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Leon J. Osterweil

Resource management is at the heart of many diverse science and engineering

research areas. Although the general notion of what constitutes a resource entity

seems similar in different research areas, their types, characteristics, and constraints

governing their behavior are vastly different depending on the particular domain of

research and the nature of the research itself. Often research related to resource

modeling and management focus on largely homogeneous resources in a relatively

simplified model of the real world. The problem becomes much more challenging to

deal with when working with a complex real life domain with many heterogeneous

resource types and intricate constraints. In this dissertation, we have looked at the

modeling and management of resource instances and tried to develop a better sense

of what makes them different from other objects in a system. As part of this work,

We formally define the general resource management problem, identify its major sub

vii



problem areas and their associated complexities, and look at the problem in the

context of a particularly complex and dynamic environment, namely the emergency

department (ED) of a hospital. We propose an approach to the problem and some of

its complexities by presenting an overall unifying view, as well as tools and methods

for dealing with, this pervasive, yet surprisingly under examined, type of entity, i.e.

resources.

We have discovered that one of the discerning characteristics of resource instances

in complex and dynamic environments seem to be their dynamic capability profile that

may changes depending on system context. This, in turn, often results in complex

substitutability relationship amongst resource instances.

We have identified four major sub-problem areas that can provide a holistic view of

any resource management service. These separate, yet interconnected, areas of con-

cerns include resource modeling, resource request specification, resource constraint

management, and resource allocation. Resource modeling involves capturing of re-

source characteristics and their potentially dynamic behavior. Request definitions

describe how resource users specify requirements for resources in a particular do-

main. In most domains, there are constraints that need to be satisfied while serving

resources to fulfill specific requests. The fourth area of concerns, the allocation of

resources, is a complex component with multiple subcomponents that closely inter-

act with each other. In this thesis, we have described an architecture for a flexible

resource management service based on the above described separation of concerns.

We have proposed some simple, yet effective, techniques for modeling resource in-

stances, specifying resource requests, specifying and managing resource constraints,

and allocating resource instances to meet a resource demand characterized by a con-

tinuous stream of requests. Using our proposed design, we have developed ROMEO,

a resource management service and customized it to serve a task coordination frame-

work based on Litlle-JIL process definition language. Our work then concentrated
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on evaluating the effectiveness of ROMEO in supporting simulations and executions

of complex processes. For this evaluation purpose, we developed a simulation infras-

tructure named JSim on top of Juliette, Little-JIL’s execution environment. We ran

a variety of simulations of patient care processes in EDs using our ROMEO-JSim

infrastructure. We also used ROMEO to support the actual execution (rather than

just the simulation) of a large mediation process.

A central premise, hypothesized and explored in this thesis, is a novel way of

thinking about resource instances in dynamic domains, namely defining them with a

set of guarded capabilities, some of which may be dependent on the execution state

of the system. This has led us to think about how to represent execution states of

a running system and what types of system state information might be important

for representing the guard functions on the capabilities of a resource instance that

define the resource instance’s ability to satisfy a request at a given execution state

of the system. We have also identified a small set of common types of attributes of

resource instances that seem able to support specification of a large variety of resource

instances in complex domains. We believe that our research supports our hypothesis

that specifying resource instances as having sets of guarded capabilities provides a

useful abstraction for modeling many of the complex dynamic behaviors of resource

instances in such domains as hospital EDs.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computer Scientists, as well as researchers in other domains as diverse as engineer-

ing, management, and the natural sciences, frequently require an (often simplified)

model of the world as part of their research. Some important yet common elements in

these models are entities that have often been referred to as resources. Many studies

in diverse research areas have focused on the effective utilization of these resources

in different domains. Although the general notion of what constitutes a resource

seems similar in different research areas, their types, characteristics, and constraints

governing their behavior are vastly different depending on the particular domain of

research and the nature of the research itself. This dissertation aims to subsume the

many different and fragmentary models of resources and present an overall, unifying

view of, as well as tools and methods for dealing with, this pervasive, yet surprisingly

underexamined, type of entity.

To get a better sense of the diversity of the projects that have dealt with resources,

consider a representative sample of studies from a few different domains. Urgaonkar

and Shenoy [80] studied “resource overbooking and application profiling in a shared

hosting platform”. This study focused on optimizing only two resources: CPU and

network interface bandwidth of shared hosting servers in the Internet. The resource

structure was primarily static and the requests for resources were kernel level system

calls specified by the operating system of the hosting platform. Mailler et al. [52]

studied “cooperative negotiation for soft real-time distributed resource allocation”.
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This multi-agent system study looked at the problem of allocating only one resource,

namely a set of sensors for tracking targets in a real time environment. Kulkarni

et al. [48] studied a system in which the resources were networked cameras. These

resources were structured in tiers. While they had varying power and functionality,

all of these resources were cameras and were thus relatively homogeneous.

In the manufacturing domain, Monch et al. [60] studied the modeling and allo-

cation requirements for resources required to control functionality on a shop floor.

Resources in this study were far more heterogeneous, and were structured hierarchi-

cally. The main goal of this model of resources was to support optimization through

simulation. But the simulations assumed that the resources had statically defined

sets of capabilities, although considerable flexibility in capabilities typically charac-

terizes actual shop floor activities. Du and Shan [28] presents a resource management

system whose aim is the efficient use of resources by a workflow management system.

This work incorporates some of the generality and rigor that we aim to achieve in

our own proposed research, as it includes a resource definition language (RDL) to

describe the structure of resources, a resource query language (RQL) for specifying

resource requirements, and a resource policy language (RPL) for specifying additional

constraints. This study, however does not address the need for resource allocation

capabilities, which we regard as a primary reason for modeling resources in many of

the applications we are encountering in our own work. This dissertation goes beyond

these works, using the need for resource allocation as a driving requirement in creating

a holistic approach to resource specification and management, and the architecture

of a resource management service to support resource specification and management.

The work presented in this dissertation is focused on identifying the separation

of concerns in a resource management architecture that addresses resource specifica-

tion and management needs in complex dynamic environments encompassing a wide

variety of resource types and complex domain policies. The dissertation provides a

2



basis for suggesting how resource specification and management needs might be met

in other domains as well. Although the applicability of this work to a few different

domains is presented here, the driving and motivating example in this research has

been resource management in the emergency department (ED) of a hospital. Ac-

cording to a recent survey from the National Center for Health Statistics [54], the

average amount of time that a patient spends in the ED is 3.3 hours. For larger

hospitals, such as the Bay State Hospital in Western Massachusetts, this time can be

significantly higher (close to 7 hours). A large part of an ED visit involves waiting

for patient care services. Depending on the acuity level of the patient, 60% to 90% of

the time of an ED visit is spent waiting [54]. A primary reason for this considerable

amount of waiting seems to be the suboptimal use of scarce resources. We believe

that it is not hard to find other important applications domains in which suboptimal

or inefficient use of resources is a core problem, and in which the inherent complexity

of the resources themselves hampers the successful approach to that problem. We

believe successful approaches to the problems in specification and management of

resources in the hospital emergency department domain could effect improvements

in the situation in this domain. It could then also serve as an example of how to

approach similar problems in other domains. The following elaboration of some of

the complicating issues in dealing with resources in the hospital ED domain should

help to further motivate the value of careful examination of this domain.

A hospital ED is an extremely complex domain in which resources are usually

scarce and their utilization is typically constrained by a wide range of relations that

arise from such considerations as the patient care processes as well as the inherent

nature of the resources themselves. Emergency departments contain many types

of resources. Many of the most important types of resources are humans such as

doctors, nurses, registration clerks, orderlies, and patients. Equipment, such as X-ray

or CT-scan machines, constitutes another important type of resources. Other types
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of resources, such as beds, blood, and medicines are also crucially important. In

contrast to the situation in most of the studies of resources described earlier in this

section, these ED resources are very heterogeneous. The broad types just enumerated

are very different from each other, and yet have important relations to each other.

The inherent complexity of the resources in this domain is further complicated by

the considerable use of aliasing in describing these resources, with many different

names being attached to the same ED resource. For example, the names ‘doctor’,

‘pediatrician’, ‘surgeon’, ‘attending MD’, ‘director’, and ‘primary care giver’ may all

be attached to the same individual. Further complicating the situation, we note

that the use of these different names is often in response to different circumstances,

with the specific circumstances sometimes influencing either the name used or the

functionality required or both. Thus, the dynamism of this application domain makes

such tasks as capturing the structure of its resources and disambiguating requests for

these resources quite complex.

Indeed, there are additional ways in which dynamism makes resource management

in this domain very complex. We note, for example, that in an emergency situation

an ED resource may provide services or perform functions that it would ordinarily not

perform. For example, a physician assistant may perform an activity such as writing

an order (i.e. prescribing medication) for a patient with chest pain in an extraor-

dinary situation, whereas this is a task that would only be performed by a doctor

under ordinary circumstances. Such possible changes in resource capabilities require

modeling and managing them in special ways that bear investigation. In addition, ED

resources often have complex substitution relationships amongst themselves. For ex-

ample, in most hospitals, a patient usually waits until a bed becomes available inside

the main ED where treatment is performed. However, under extraordinary conditions

in some EDs, a bed located in a hallway can sometimes be treated as though it were

a bed in the main ED. On the other hand, in many EDs a trauma bed can never be
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allocated to a non-trauma patient even if the ED is badly overloaded with patients.

Requests for ED resources are highly dependent on many different parameters. For

example, incoming patients get an acuity level attached to them during initial triage.

This acuity level dictates the type of priority resource requests for this patient should

receive. But, there are times in the ED care-giving process when the patient’s acuity

level can change and the patient’s priority for resource allocation would thus need

to change accordingly. Further complicating ED resource allocation is the fact that

resources in EDs are frequently preempted. Thus, for example, a doctor who is su-

pervising the treatment of a patient having a low acuity level, may be preempted in

order to supervise the treatment of a patient who is acutely ill. This, in turn, might

then entail preemption of a bed or a place on the queue of patients waiting for a

device such as an X-ray machine. Thus, resource priority and preemption are issues

that must be addressed in order to cope with the hospital ED domain. Resource al-

location decisions in an ED are often subject to multiple constraints, and may indeed

create others. For example, many EDs are divided into multiple sections, such as the

main ED, the ED fast track, and ED pediatric care. Pediatric patients are ordinarily

constrained to be assigned to a bed in ED pediatric care. Under emergency circum-

stances, however, a pediatric patient may be assigned to a bed in the main ED. A

patient in the main ED, however, may never be allowed to be treated in the pediatric

section under the policies in force at some hospitals.

Still another challenging aspect of resource management is the need to allocate

resources in response to streams of requests while meeting constraints resulting from

domain policies. This dissertation has studied the usefulness of flexibility in mod-

eling such complex domain policies that drive the allocation decision in a resource

management framework.

The above discussion illustrates just some of the dimensions of complexity and

special needs for resource management in hospital EDs. We argue that a flexible
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resource management framework that can support the specification and management

of ED resources, taking into account many of these sorts of complexities is likely to

be quite useful in dealing with resources in other, less demanding, domains. Thus, we

expect that this research will lead us to some fundamental understandings regarding

how to model and manage resources in these sorts of highly complex and dynamic

environments. There are many software engineering challenges in developing such

a resource management framework. Thus, this work should also lead us to develop

architectures, tools, and techniques that are of general use for dealing with resource

issues in other domains.

1.2 Research Contributions

This research was aimed at improving some fundamental understandings about

what resources are and how to deal with them in a consistent way across different

domains. In particular, there seems to be an intuitive sense that resources are differ-

ent in some basic way from such other sorts of entities as the objects that are found

in systems modeled in traditional programming languages. But attempts to define

precisely what this difference is have been frustrating and largely unsuccessful. In

this dissertation, we have looked at resources and their management in a particularly

complex and dynamic environment. This has forced us to address resource manage-

ment issues that have often tended to get oversimplified in many other applications,

thereby complicating efforts to understand the basic nature of what might make them

different. As part of this dissertation, we present an examination of what is needed in

order to be effective in specifying resources in complex and dynamic domains. Based

on the insights we have gained from this investigation, we have proposed and demon-

strated an engineering approach and a generic architecture for developing systems

that can provide complex management services for resource instances. Although the

primary motivating domain for this research has been the hospital ED, we have eval-
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uated the effectiveness of the approach in such diverse domains as computer-aided

negotiation and composition of web-service resources to accomplish a complex task

online.

To study the larger problem of resource management we have developed ROMEO,

a prototype resource management service. We have evaluated ROMEO and the re-

source management architectures and approaches that it implements by using ROMEO

as a key component of a larger system for supporting discrete event simulation. In

using ROMEO to support resource management issues posed by the various domains

whose demands we have simulated, we have gained insights into some of the larger

issues of resource management. It is important to note here that we do not represent

that ROMEO is a ‘one size fits all’ solution to all problems of resource specifica-

tion and management. Rather ROMEO represents the results of exploring different

engineering approaches to dealing with resource management issues. This research

suggests a promising approach to an overall resource management framework and

interactions between such a framework and other systems (e.g., a simulation engine

or a process guided execution environment) that would use it.
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CHAPTER 2

RELATED WORK

Resource management is a very broad and pervasive research area. There have

been numerous studies looking at different aspects of managing resource entities in

a wide variety of different domains. In this section, we present the works that are

relevant to our proposed approach and the application areas we have focused on.

2.1 Resource Management in Hospital Emergency Depart-

ment

Since our motivating domain is the hospital EDs, we first look at the resource

management related works researchers have done in this domain. Connelly and Bair

[22] presents development and use of a discrete event simulation (DES) platform

named EDSim to investigate the ability to predict actual patient care times using

simulation. They also looked at the effect of two different triage methods on patient

service time in the ED. The authors collected patient data from a five day period of

an academic ED and ran simulation of their modeled ED activities using those data.

They modeled the ED activities by defining patient paths, the series of activities that

had to be done on a patient while she was in the ED. These activities include history

and physical examination, nursing activity, imaging studies, laboratory studies, con-

sulting and bedside procedures such as suturing, casting, and intubation. In addition

to individual patient care paths, the EDSim model of this study also considered con-

tinually updated job queue prioritization and mid-task preemption capabilities of ED
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staff activity. All staff activities were prioritized according to patient acuity. Accord-

ing to the study, this model was able to predict average patient service time within

10% of actual values. However, for individual patient paths, only 28% of individual

patient treatment times had an absolute error of less than one hour. According to the

paper, one of the reasons for their results not accurately producing the values of the

real events was because their model did not include the changes in the staffing level

at different times of the day. They also had to make many generalizations, which

could have contributed to the inaccuracies.

From the discussion of the study, we understood that their model did not include

the substitutability information of resources. It also was not clear whether the model

accurately captured the constraints of different resource utilizations. The study also

did not include any discussion about possible allocation optimization or its effect in

their simulation results.

There have been many simulation studies on staff scheduling in hospitals in

general and ED in particular. Kumar and Kapur [49] used simulation to analyze

nurse-scheduling alternatives for ED services at Georgetown University Hospital.

Draeger [26] developed simulation modeling for three EDs at Bethesda Hospitals

to assess present nurse staffing concerns and to assess alternatives for improvements.

McGuire [57] discusses the use of simulation to test process improvement alternatives

to select and alternative to reduce to reduce the length of stay (LOS) for ED patients.

Rossetti [66] looks at the use of computer simulation to test alternative ED attend-

ing physician-staffing schedules and to analyze the corresponding impacts on patient

throughput and resource utilization.

As one would expect, many of these DES based ED studies have focused on some

basic ‘what-if’ scenarios that relate a particular resource mix to its impact on average

LOS and waiting time for patients in the EDs [58, 68, 69, 78, 7, 29, 72]. Samaha et.

al. [68] shows the use of ED simulation studies to perform ‘what-if’ analysis regarding
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the effect of process change and staff level change on patient LOS. Their study found

that based on the ED model and patient flow they created, there was no significant

impact of additional beds and space on average LOS. Similarly, Duguay [29] showed,

based on their simulation model of a Canadian ED, that there was no real impact of

adding more examination rooms in the ED. However, the study did report improved

LOS with increased care providers. Saunders [69] showed the impact of triage acuity

level of incoming patients along with the number of nurses and doctors available

for care on average LOS. Takakuwa et. al [78] presented a mechanism for stepwise

adjustment of available rerource instances (doctors, nurses etc.) based on the the

places where patients were waiting the most. Khare et. al [46] used DES to study

the impact of boarding time of admitted patients (the time it takes for the admitted

patients to actually leave ED) on overall LOS in ED. They identified boarding delay

to be one of the major reasons for ED overcrowding. Storrow [77] studied the impact

of lab turnaround times on the patient flow in an ED.

Some ED simulation studies have been aimed at predicting required resource level

for an estimated demand. Wiinamki et. al.[82] used DES to project bed requirements

for the proposed extension of an existing ED. Baesler [7] used simulation to estimate

the maximum demand an existing ED can handle. Like other studies mentioned

above, they also investiaged the impact of inscreasing different types of resource in-

stances on patient LOS. There are other ED studies using DES, where the researchers

have focused on the impact of certain process chages. One such study is by Garcia

et. al [36], where the authors studies the impact of introducing a fast-track lane for

patients and reported favorable results. Similar results were reported in [68], and

[57].

All these simulation studies have taken a factory view of the ED, where patients

come in like orders on factory floor with fixed priority and drive the process by

requesting resources. Many of these studies were concerned with only one type of
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resource, i.e. either the attending physician or nurse and focused on only one issue

of resource management, such as scheduling. Hay et. al [?] identifies this issue in

their study and proposes a different way of modeling and studying ED processes. The

argue that with only a factory view of the world, low acuity patients will continually

starve and many will not receive treatment. They also argued in favor of modeling

the skill hierarchy of ED staff, skill based request specification, and the ability for

an ED agent to decide on what task to deal with next. By modeling the changing

request priorities and resource mapping based on requested skill sets, they were able

to produce simulation results that align more closely with how resources in a real ED

operation get utilized. They were also able to reduce the maximum length of stay

(LOS) for patients using their modeling approach. We should note that our proposed

approach includes all these modeling techniques and more.

Another area of research that has received attention lately is that of scheduling

ED staff under different constraints. Chun et al. [20] describes a ”Staff Rostering

System (SRS)” for creating nurse rosters for The Hong Kong Hospital Authority that

manages over forty (40) public hospitals in Hong Kong. The system defines different

constraints to be satisfied while creating the roster. For example, it ensures that

an adequate number and mixture of skilled staff is present all the time to maintain

a committed level of service quality. On the other hand, the constraints are used

to make sure that each staff member is assigned an appropriate number of working

hours in accordance with their terms of appointment i.e. they are not overworked or

underutilized. The SRS generates the rosters using constraint programming. This

type of scheduling is done at macro level of shift assignment, where as we are primarily

concerned with more micro level task based resource assignment in our work.
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2.2 Resource Management in Networking and Operating Sys-

tems

Managing resources is at the heart of many operating systems and networking

research. Most of these studies, however, are concerned with primarily the allo-

cation strategies and resource scheduling. The modeling of resource entities, their

constraints, and the request language for resources do not get much attention. This

is due to the fact that most of the resource type objects in systems research are rela-

tively static in nature and the systems are built on top of fixed protocols that define

the request language for that particular system. In this section, we present a sample

of the system’s area studies concerning resource management.

Systems’ area researchers are mostly concerned with hardware resources like pro-

cessor time, memory/disk space, network bandwidth, Internet hosting servers etc.

Shenoy [74] describes a disk scheduling framework, cello, that studies algorithms for

supporting applications with different requirements, e.g., real-time applications like

audio stream and best effort application like a file transfer. Cello proposes an appli-

cation class based scheduling and servicing of the resource requests on two different

timescale. The proposed mechanism in this study can be mapped to our approach

by grouping resource requests into classes and attaching different levels of priorities

to the different classes of requests. The Resource Allocation Component (RAC) will

take into account the priorities associated with different classes and apply different al-

location algorithms to achieve response time constraints associated with the requests.

As described in chapter 1, Urgaonkar, Shenoy et al. [80] presents techniques for

provisioning CPU and network resources in shared hosting platforms using controlled

overbooking of resources. With a similar approach, [19] has studied the effectiveness

of dynamic resource allocation for handling Internet flash crowds. These studies have

focused on coming up with intelligent allocation mechanism and assumed fixed re-

source structure with no dynamism in their behavior. The resource requests were also
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fixed and often based on well defined system calls to a fixed application programming

interface (API) of the operating systems.

Banga, Druschel, and Mogul [8] looked at one of the shortcomings of performing

resource management based on a fixed operating system API. The authors argue such

an assumption restricts server scaling and effective control over resource consumption.

This is because existing APIs do not allow applications to directly control resource

consumption throughout the host (e.g. a web server) system. The paper presents a

new operating system abstraction called resource containers and its use in fine grained

resource management in monolithic kernels. The resource container represents all the

resources required or used by a particular independent activity, such as servicing a

client connection in a web server system. Aron, Druschel, and Zwaenepoel [5] extends

this work to apply into a cluster of web servers by enhancing the concept of resource

containers to cluster reserves, which can be thought of as a cluster wise resource

container. These approaches validate our claim that a flexible resource management

service needs to provide abstraction for bundled requests and transactional allocation.

2.3 Resource Management in Distributed Computing

Distributed computational platforms like grid computing and server clusters are

primarily concerned with managing distributed and possibly heterogeneous types of

resources. Managing such resources can be very challenging due to many factors. In

this section, we present relevant studies aimed at providing effective resource man-

agement for applications running on such platforms.

Raman, Livny and Solomon [64] argues that conventional resource management

systems use a system model to describe resources and a centralized scheduler to con-

trol their allocation, which does not adapt to distributed high throughput systems.

The authors point out the issues associated with heterogeneity of resources and their

distributed ownership, which make it difficult to formulate uniform allocation algo-
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Request ClassAd:

[Type = Job; Owner = user1;

Constrint = other.Type == Machine && Arch == INTEL

&& OpSys == Solaris251 && Disk >= 1000;

Rank other.Memory]

Resource ClassAd:

[Type = Machine; Name = m1; Disk = 30000; Arch = INTEL;

OpSys Solaris251; ResearchGrp = user1, user2;

Constraint = member(other.Owner.ResearchGrp) && DayTime > 18*60*60;

Rank member(other.Owner.ResearchGrp)]

Figure 2.1: Example of Condor classads

rithm for varying allocation policies. They present the design and implementation of a

resource management framework based on Matchmaking of classified advertisements

(ClassAds). The framework was used in deploying a high throughput computing sys-

tem named Condor. Matchmaking uses a semi-structured data model the classified

advertisements data model to represent the resource objects of a system. The query

(requests for resources) language is folded into the data model. This way both re-

source users and resource entities can specify their requests and offered services in the

same way through ClassAds. The framework also distinguished between matching

and claiming (assignment) as two distinct operations of the resource manager.

The type of resources that were modeled using the matchmaking framework in-

cluded workstations, tape drives, network links, application instances, and software

licenses. The ClassAd description of resources used a semi-structured data model,

meaning that no fixed predefined schema was used by the matchmaker. Constraints

(queries in case of their system) were part of the ClassAd description of resource. This

way the resources could describe both their attributes and policies in one data struc-

ture. When multiple resource entities match a request, the resource manager uses

a ranking function to return the highest ranked resource. Raman, Livny et al. [65]

extended the Condor Matchmaking framework to include gang matching where Clas-
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Request RedLine:

[user = globus-user;

group = dsl-uc;

Computation ISA SET [type=computation]

Storage ISA [type=storage; space >100]

Foall x in computation;

x.cpuspeed > 150;

x.bandwidth[storage.hn] > 30;

x.accesstime > 18;

Sum (computation.memory) > 300;

Storage.space > 80;

Storage.accesstime > 18]

Resource RedLine:

R1 = [Type = computation;hn=ucsd1;cpuspeed=200;

Bandwidth=DICTIONARY[{s1,20},{s2,40}];accesstime>17];

Figure 2.2: Example of Request Description

sAds could specify multiple resources. Liu and Foster [51] extended this concept

of matching semi structured data even further by modeling it as a generalized con-

straint satisfaction problem. The paper identified limitations of ClassAd system and

designed a symmetric description language called RedLine for both resource entities

and requests. The RedLine grammar allows specification of requests for resource sets

with aggregate characteristics (e.g., a set of nodes with more than 10GB of combined

memory) and provided way to specify preferences to guide the matching outcome.

Condor ClassAds were designed to perform only exact matches on properties. Red-

Line enhanced it to include resource descriptions with varying levels of generality and

complexity. RedLine was designed to also match advertisements based on policies

as well as properties. This allowed RedLine to specify and match requests like “find

all machines that allow access between 7:00 pm and 9:00 pm”. Figure 2.2 shows an

example of request and resource description using RedLine.
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Decker, Tangmunarunkit, and Kesselman [25] extended the matchmaking line

of work even further by designing an ontology-based resource matching in the grid

environment. The authors of this study argued that Condor Matchmaker type of

symmetric, attribute-based matching of resources to requests is highly constrained

as it requires resource providers and consumers to agree upon attribute names and

values. Such system, they also argue, is inflexible and is difficult to extend to new

characteristics. To reduce the coupling between resource and request description,

instead of exact syntax matching, they opted for semantic matching based on ontolo-

gies. An ontology is a structured representation of knowledge about the concepts of

a domain. It describes the concepts in a domain and the relationship amongst those

concepts [39]. Most ontological frameworks use some sort of logic languages like first

order logic or description logic [6] to express these concepts and their relationships

and more importantly, to infer knowledge from the structured information captured

within the ontologies. [25] developed three different ontologies for their matchmaker:

a resource ontology, a resource request ontology and a policy ontology. The ontolo-

gies were developed using Resource Description Framework (RDF) schema, an XML

based World Wide Web Consortium (W3C) standard for describing web resources.

They also used TRIPLE [24], a rule system based on deductive database techniques to

represent background knowledge in a domain. The rules were used to add additional

axioms on the ontological concepts, which could not be expressed by the Ontology

language.

We argue the service type structure in our modeling approach will work as the

semantic layer for resource objects of a domain. The substitution and composition

relationships are exactly the type of domain knowledge Decker et al. [25] tried to

capture by using TRIPLE. We believe our approach is more flexible as it allows for

specification of predicates on the relationships.
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Kee, Yocum, and Chien [45] argues against approaches that, like the ones described

above, separate the resource selection (discovery) and resource binding (acquisition)

tasks in the resource management architecture. The authors point out that resource

binding may fail in the real world due to inaccurate resource information, authen-

tication failure, and contention amongst applications for resources. They argue a

separate resource selection and binding approach cannot deal with binding failures

efficiently. In this study, they propose an integrated selection and binding approach

by grouping resource requests into independent resource allocation components.

Foster and Kesselman [32] identifies five challenging issues of resource manage-

ment for metacomputing environment and presents the design and implementation

of a resource management architecture addressing these concerns. Metacomputing

systems have been defined as platforms that allow applications to assemble and use

collection of computational resources on an as needed basis, without regard to physical

location. The five challenging problems described in this paper are: site autonomy,

heterogeneous substrate, policy extensibility, co-allocation and online control. Site

autonomy refers to the problem of managing resources that are owned by multiple

institutions. The heterogeneous substrate problem is caused by site autonomy and

different sites using different local resource management systems. The problem of pol-

icy extensibility refers to the fact that metacomputing applications are drawn from

diverse domains and a resource management architecture supporting them need to

frequently adapt to new domain specific management structure. Many applications

may need to use resources simultaneously that are located at several sites. This gives

rise to the problem of co-allocation of resources. Finally, the problem of online control

refers to the need for real time negotiation between application requirements and re-

source availability, especially when the characteristics of resource or requirements are

dynamic. [32] presents a resource management architecture built around components

like resource brokers, resource co-allocators and resource managers. It also defines
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specification := request

request := multirequest|conjunction|disjunction|parameter

multirequest := + request-list

conjunction := & request-list

disjunction := | request-list

request-list := (request) request-list | (request)

parameter := parameter-name op value

op := = | > | < | >= | <= | !=

value := ([a..Z][0..9][_])+

Figure 2.3: Syntax of an RSL Request

a resource specification language, RSL, which the components use to communicate

amongst themselves. Information about resource characteristics and their availability,

on the other hand, is obtained from a directory service based on LDAP (lightweight

directory access protocol). Figure 2.3 shows the syntax of RSL:

An RSL specification defines requests for resources and it gets refined by multiple

resource brokers and co-allocators before ending up at appropriate resource managers

of a particular site. Transformations effected by resource brokers generate a specifica-

tion in which the locations of the required resources are completely specified. There

is a global Metacomputing Directory Service (MDS), which is just an ensemble of all

the resource servers.

2.4 Resource Management in Workflow and Process Lan-

guages

Workflow languages are primarily used to define business workflows that describe

task coordination, flow of documents and responsibilities of who is doing what [4, 63].

Process languages are more general in nature, which are designed to define a variety

of processes including business, software and other processes. Both these sets of

languages provide mechanism for resource utilization in a coordinated task structure
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to accomplish some goal or higher level task. Naturally managing resources is an

important part of workflow and process based systems.

Different software process programming languages like APEL [23], MVP-L [13],

ALF [15], Statemate [41], Little-JIL [84]) and Process Weaver [12] have developed

some resource management capabilities to facilitate process execution. However, the

modeling capabilities in these languages are restrictive and the support for describing

resource relationships, constraints, request specification and resource allocation are

minimal. Amongst these process languages, Little-JIL and APEL have taken a more

detailed and explicit look at modeling and managing resource objects. We shall

discuss Little-JIL in detail at a later section. Here we only provide a very high level

overview of APEL’s resource management.

APEL is a process language designed to model software processes. It has a graph-

ical process representation for intuitive understanding of the process. The primary

static concepts of APEL include agent, activity and product. There are also two other

concepts named measure and version. An activity is represented by a rectangle in a

workflow like diagram. There are inputs and outputs to the activity. And there is also

an agent with role constraints associated with every activity. The dynamic aspect of

the process is described using control flow, data flow, and the state diagram. APEL’s

resource management only concerns the human resources of an organization. This is

modeled in terms of teams, positions, roles and agents. A team consists of positions

that are required for the team tasks. A position represents a place holder for a person

(e.g., project manager, software engineer etc.) in the organization structure. A role

defines the function or responsibility of a resource in the realization of a specific task.

Performers holding the same position (e.g., software engineer) may play different roles

(e.g. coder or tester). Finally agents are human individuals who are actually per-

forming activities during the process execution. An agent has a single position in

an organization; but can play many roles. This concept of role associated with an
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activity and agents binding to those roles according to their capabilities address some

of our concerns related to managing dynamic behavior of resource objects. APEL

does not consider automated agents or non-agent resources in their model. Moreover,

APEL does not provide any support for specifying constraints on resources and avoids

addressing anything related to resource request specification or resource allocation.

There are many workflow languages and infrastructures that have been developed

over the years. Some prominent ones include Business Process Execution Language

for Web Services (BPEL4WS), Business Process Modeling Notation (BPMN) [1, 2]

and Yet Another Workflow Language (YAWL) [3]. Vasko and Dustdar [81] provides

a comparative study of these languages. BPEL4WS is an XML based standard no-

tation for describing business processes involving web services. The web services are

described with an XML notation standard known as WSDL (Web Services Description

Language). The goal of BPEL4WS is to provide inter-operation of loosely coupled

system primarily over the web. It is layered on top of several XML specifications like

SML Schema 1.0, SPath 1.0, WSDL 1.1 and BPEL. Business Process Execution Lan-

guage (BPEL), as its name suggests, provides process notation to specify common

business protocols. BPMN is also another such standard language. However, the

focus of BPMN has been to provide user-friendly notations readily understandable

by all business users. BPMN supports an internal model that enables the generation

of executable BPEL4WS. YAWL, on the other hand, is a petri-net based modeling

notation that provides support for formal analysis of workflows. All these languages

have the implicit understanding of resources and the need to specify them. However,

like many of the process languages discussed earlier, BPMN is primarily concerned

with organizational human resources. On the other hand, in BPEL4WS, one can

consider the web services to be resource objects and WSDL provides an XML based

description language to specify the capability, location and communication protocol

to these services. However, human user interaction is not covered in BPEL4WS. It is
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primarily designed to support automated business processes based on Web services.

To include the user interactions in business processes, extensions have been proposed

under the standard BPEL4People [53].

All of the above mentioned languages seem to have taken an assumption of infinite

supply (no contention) when modeling resource objects. YAWL is a work in progress

where the authors have been actually working on providing a rich support for spec-

ifying resource objects and requests for these objects in the modeled workflow. Yet,

like many other workflow languages, they do not discuss anything about non-active

or non-agent resources. There is also no mention of issues related to allocation of

resources.

Russell, Aalst et. al. [67] presents a nice work on categorizing resource specifi-

cation in workflow languages. The authors have termed them as “workflow resource

patterns”. They have categorized resource specification and management issues re-

lated to workflow languages into seven pattern groups namely creation patterns, push

patterns, pull patterns, detour patterns, auto start patterns, visibility patterns and

multiple resource patterns. The characterization of resource modeling specified at

the beginning of this paper is akin to our notion of resources with a subtle difference.

They define resources to be something capable of carrying out work. Like YAWL,

this notion restricts the definition of resources within the boundary of what we call

active or agent resources. The work mentions a lot of the characterization like human

and non-human resources, consumable and reusable resources etc. It also discusses

the issue of resources playing multiple roles in different contexts. We believe that this

work is most relevant to our resource request specification issues we have discussed

in section 3.3. Some of the patterns specified in [67] might be useful in evaluating the

expressiveness of our resource specification language.
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2.5 Resource Scheduling in Artificial Intelligence

A large area of artificial intelligence is concerned with scheduling of scarce entities,

i.e., resource objects. Prof. Stephen F. Smith is one of the leading researchers on

scheduling in AI. In his ‘research direction’ paper [76], Prof. Smith argues that al-

though significant milestones have been achieved in scheduling research, there is still a

lot to be done in this area. One major problem identified in [76] is that all the existing

solution techniques so far seem to define scheduling as a static, well-defined optimiza-

tion task like some sort of puzzle solving activity. In real life, scheduling is rarely

a static, well-defined activity. It is typically an ongoing iterative process and there

seems to be considerable room for improvement in the heuristics and other scheduling

techniques developed to approximate solutions for this set of NP-hard problems. As

part of the major challenges, the author identifies the need for generating schedules

under complex constraints, objectives and preferences directly mapped to some prac-

tical domain. A second major challenge area is identified as adapting to changes in

schedules due to the dynamic nature of the system that the scheduling algorithm is

supporting. We feel that our techniques of resource modeling, request specification

and allocation of resources should provide a flexible framework to develop systems to

perform systematic studies in these directions.

Another area of AI that is focused on resource scheduling is that of mutli-agent

systems. Monch [60] presents simulation studies on modeling for dynamic resource

allocation problems in a manufacturing setting. Mailler, Vincent et al. [52] describes a

cooperative negotiation technique for solving distributed resource allocation problem.

2.6 Resource Allocation in Operations Research

Resource management, specifically allocation or scheduling of resources, has re-

ceived a lot of attention over the last four decades in operations research (OR) commu-

nity. The type of resources OR researchers are primarily concerned with are machines,
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equipments etc. in a factory setting and humans in an organizational environment.

The problem that has received the most attention in this research area is that of task

scheduling under limited resource availability. Litsios [50] presents the early work

where the author discusses the problem of task sequencing with reusable and con-

sumable resources under discrete and overlapping time periods. The paper provides

a formulation of the problem as a resource allocation problem and provides solutions

using a combination of dynamic programming and combinatorial approach. This

problem of task scheduling under constraints and scarce resources is broadly known

as job-shop scheduling problem. Mellor [59] advocated the use of heuristics to find

centralized solutions to this problem. Numerous centralized algorithms with many

different heuristics have been tried on this resource allocation problem since Mellor’s

work. Panwalkar and Iskander [61] and Gere [37] provides a survey of all the different

scheduling rules studied with this problem.

Our interest in these resource allocation works in operations research area is to

primarily identify the different strategies and algorithms our modeling and manage-

ment approach should be able to support. We are also quite interested in studying

some additional allocation algorithms to find out the impact of novel scheduling on

resource objects.

2.7 Resource Management in Knowledge Based Systems

The research area that works with knowledge representation and development of

ontologies is quite relevant to our proposed work. The primary goal of knowledge

representation work has been to organize concepts or objects of a domain into cat-

egories. There are usually class-subclass relations amongst categories that organize

them into a taxonomy or taxonomic hierarchy. Knowledge Based Systems (KBS)

use such taxonomies to infer information about objects that are not directly associ-

ated with the objects. Over the years, researchers in KBS area have come up with
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many modeling frameworks and approaches. One prominent knowledge engineer-

ing approach is KADS [70] and its further development to CommonKADS [71]. In

CommonKADS, there are five different distinct models that are developed namely or-

ganizational model, task model, agent model, communication model, expertise model

and design model. The task model provides a hierarchical description of the tasks

which are performed in the organizational unit in which a Knowledge Based System

will be used. The task model also holds specification as to which agents are assigned

to different tasks. The agent model, on the other hand, specifies the capabilities of

each agent involved in the execution of tasks at hand. In general, an agent can be

a human or some kind of software system like a KBS. Agents, as defined here, are

commonly found as resource objects in many systems. In commonKADS agents are

primarily modeled according to organizational hierarchy and they perform some well

defined functional roles associated with the task model.

2.7.1 Related Work in Ontology

The primary approach KBS researchers have taken to model agents and tasks

are through developing onotologies. An ontology is a structured representation of

knowledge about the concepts of a domain. It describes the concepts in a domain

and the relationship amongst those concepts [39]. Most ontological frameworks use

some sort of logic languages like first order logic or description logic [6] to express

these concepts and their relationships and more importantly, to infer knowledge from

the structured information captured within an ontology. This structured information

has become the standard for sharing and reuse of components in knowledge based

systems.

Another research area that is increasingly using ontologies heavily is the semantic

web [10]. The objective of the semantic web work is to provide meaning and structure

to the vast information available through web pages to facilitate communication and
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inference for web based applications. Many languages like DAML (DARPA Agent

Markup Language) [42], DAML+OIL (Ontology Inference Layer) [9] and OWL (web

ontology language) [56] have been developed progressively one extending another to

achieve this goal. All of these languages have originated on top of the the eXtensi-

ble Markup Language (XML) and the Resource Description Framework (RDF) [47]

standards proposed by the World Wide Web Consortium (W3C). RDF is a frame-

work for representing information in the web about web resources. Resources in RDF

have a narrow scope that includes entities such as web page meta-information like

content rating, capability descriptions, privacy preferences, etc. DAML, OIL and

finally OWL have taken the work gradually further and provided us with a language

for describing not only web resources but also web based applications (web services),

organizational processes, annotation of web resources etc. More importantly OWL

provides rich vocabulary for describing properties and classes of resource entities. It

describes relations between classes (e.g. disjointness), cardinality (e.g. exactly one),

equality, characteristics of properties (e.g. symmetry), enumerated classes and so on

as one would expect from a standard ontological language.

An ontology language like OWL can be useful in describing some of the structures

and relationships of the resource objects we are concerned with. However, they fall

short while describing constraints associated with the resources’ characteristics. For

example, OWL is not suitable for specifying substitutability relationships amongst re-

source classes. It is also difficult to capture other dynamic characteristics or behavior

of resource objects using just the existing syntax of an ontology language.

Hobbs, Lassila et al. [43] presents an informal study on creating an ontology of

resources. This unpublished work from DAML+OIL initiative is very relevant to

our approach. The authors here propose an ontology with high enough abstraction

to cover physical, temporal, computational and other sorts of resources. The paper

describes the principal classes of properties resource objects can have. It approaches
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resource objects with the differentiation of ’resource types’ and ’resource tokens’ (in-

stances). Resource objects have been categorized as either consumable or reusable

type. Resources have also been categorized based on their capacity (discrete capac-

ity vs. continuous capacity) and composition type (atomic resources vs. aggregate

resources). The work was only concerned with modeling resource objects and did not

look into other parts of resource management like request specification and allocation.

We shall take close look at Fadel and Fox’s work [31, 34], which presents a very

relevant work on developing generic enterprise resource ontology for a manufacturing

enterprise environment. The work also includes a first order logic implementation of

the resource definitions and constraints as axioms in prolog. The ontology developed

in this study could deductively answer common sense questions about the enterprise

knowledge. The focus has been to reason about how properties of resources change as

the result of activities, and also to reason about allocation of resources in a schedul-

ing task through capacity recognition. The ontology was developed as part of the

TOVE (Toronto Virtual Enterprise 1992) [33] project and it included the following

competency questions for evaluating the effectiveness of the ontology:

• Divisibility : Can the resource be divided and still be usable?

• Quantity : What is the stock level at time t?

• Location: Where is resource R?

• Consumption: Is the resource consumed by the activity? If so, how much?

• Commitment : What activities is the resource committed to at time t?

• Structure: Can the resource be shared with other activities?

• Trend : What is the capacity trend of a resource based on the machine usage

history? In TOVE model, a resource has always a role with respect to an activ-

ity. The roles specified in the ontology are: raw material, product, facility, tool,
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and operator. There are three types of divisibility defined on resource entities:

physical, functional and temporal. The ontology also defines the following terms

and predicates to specify different aspects of resource entities: Unit of mea-

surement: Specifies a default measurement unit for a resource, when associated

with activity.

• Component of : Specifies a resource being composed of one or more sub re-

sources. A resource can be a physical or functional component of another re-

source with respect to an activity and each does not share the same role with

the original resource.

• Quantity : A resource point (rp) specifies a resources quantity at a point in time.

• Continuous vs. discrete resource: A continuous resource is uncountable whereas

a discrete resource is countable.

• Capacity : Defines the maximum set of activities that can simultaneously use/-

consume a resource at a specific time.

• Simultaneous use restriction: Prohibits use/consumption of a resource by two

activities simultaneously.

• Activity history : This predicate specifies the history of usage or consumption

of a resource before a specified time point.

• Set up constraint : Specifies the duration required to set-up a resource for usage

by an activity.

• Alternative resource: Specifies an alternative resource(s) to be used or consumed

by an activity.

[31] showed how the developed ontology coded in first order logic could be used

to answer the competence questions about resource they had defined earlier. This
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work provides a nice approach to model resource objects. However, like the other

works described in this section, the study is confined only within the modeling part

of resource management and does not discuss issues with request specification and

allocation.

2.8 Programming language support for dynamic objects

It has been our claim in this dissertation that resource type objects manifest some

special dynamic characteristics while responding to requests for them. The interplay

of resource requests and actual assignment of resources to requests brings forth these

special features of resource objects. We have also claimed that existing object oriented

design and programming languages don’t provide any direct way of supporting the

special characteristics of these objects. It is thus important to first look at what

support is available in existing programming languages to model and manage objects

that seem to have system state dependent dynamic behavior.

There have been studies to incorporate some of the dynamic features of objects in

languages like Smalltalk [38], Common Lisp Object System (CLOS) [11], Objective-C

[62] etc. These languages are commonly known as dynamic languages. There are also

specialized languages like Dylan [73] and SELF [79] focused on some specific dynamic

aspects of objects. Some dynamic features that are found in these languages include:

• Variables can be of unrestricted type; e.g. Smalltalk and Dylan.

• Objects can be used interchangeably if they implement compatible methods.

In smalltalk-80 [38] and other dynamic languages, this is known as “structural

conformance”.

• Methods on instances can be wrapped by other methods defined by program-

mers to get executed before and/or after a method of the target instance.

CLOS [11] provides ‘hooks’ to achieve this capability.
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• Instances can be created of classes that “mix” multiple parent classes dynami-

cally allowing for multiple-inheritance.

In addition to the above features, some languages have even done away with class

based specification. SELF [18] is such a language. It is similar to Smalltalk in terms

of its syntax, typelessness, blocks (objects which behave like procedures) and incre-

mental exploratory environment. However, there are no classes; rather SELF is a

prototype based language and there is object level inheritance. One of the limita-

tions of class based languages is that if one needs to change an object’s behavior

or structure, one needs to change the class. Changing the class dynamically may

have far reaching implications as there could be many instances of that class. To

address this issue, SELF has introduced prototypes. To create a new object, the

programmer finds an existing similar object and copies it. The programmer then can

safely change the copy without affecting anything else. Almost all object oriented

languages provide some level of polymorphism through method overloading and dy-

namic dispatching of methods. Some of the dynamic languages mentioned above

also provide multiple-inheritance. Dylan (Shalit) and CLOS [11], for example, al-

low classes to be direct subclass of multiple super classes. The conflicts of inherited

variables or values are disambiguated through an additional mechanism called class

precedence list. This precedence list also allows for correct method dispatch in the

case of multiple-inheritance. Some dynamic languages like CLOS also provide what

is known as generic functions. An ordinary Lisp function has a single body of code

that is always executed when the function is called. A generic function, on the other

hand, has a set of bodies of code of which a subset is selected for execution. The

selected bodies of code and the manner of their combination are determined by the

classes or identities of one or more of the arguments to the generic function and by its

methods combination type. This is also similar to method overloading. CLOS also

provides some added feature like dynamic invocation of wrapper functions before and
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after a function call. There have also been efforts to add some dynamic features like

multiple inheritance and structural conformance to popular object oriented languages

like Java using dynamic code generation [14].

Some of the language features discussed above will certainly be helpful in describ-

ing and manipulating the dynamic nature of resource type objects. The ability to

define multiple-inheritance is needed to describe resource objects that need to provide

services apparently inherited from different ancestry. As we have discussed above, dis-

ambiguating behavior of an object that inherits from multiple classes is usually done

by keeping a precedence list of classes in the class hierarchy. This may not be sufficient

in describing some resource objects’ behavior. For example, a natural class hierarchy

of resource objects may have two subclasses of the root class resource namely active

resource and passive resource. In a task coordination framework, the former may rep-

resent resources that can be made responsible for carrying out a task (often known

as agents) and the latter may represent resources that an agent resource instance

requires to carry out the task assigned to it. In a hospital ED simulation application,

for example, the patient resource can be a subclass of both active resource and passive

resource. A patient is an active resource (or agent) when it needs to perform active

tasks like giving consent or confirming his or her identity. The patient is a passive

resource when he or she is required for the task of performing some lab tests. There

is not necessarily a fixed precedence class list that can be applied for disambiguating

the methods of this class. More importantly, none of the dynamic language features

are directly applicable to describe an object that has methods that becomes active

or inactive under different situations.
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CHAPTER 3

APPROACH

Chapter 1 has provided some examples that should lead to intuitions about the

causes and nature of researchers’ interest in resource management. These examples

have also pointed out some specific challenges that can be expected to arise in deal-

ing with resources in highly complex environments. In chapter 2, we have presented

some of the most relevant work from widely different domains that have investigated

different aspects of the resource management problem. In this dissertation, we have

tried to take a systemic and holistic approach to the resource modeling, request spec-

ification and resource allocation problems and have developed techniques capable of

supporting studies of complex real world scenarios. We then explored how success-

fully our approach can be applied to the overall handling of resource-related issues in

the highly complex domain of ED resource management. We were also interested in

exploring the applicability of our work to other domains with very different resource

and request models as well as domain policies. This work reemphasizes that this prob-

lem space is very large, and that care must therefore be taken to be precise about the

problem subspaces that we are approaching. Accordingly we suggest that the overall

holistic resource specification and management problem can be decomposed into four

related sub-problems, namely:

1. How can we represent resources? Are there characteristics of resources that

are dynamic, i.e., dependent on the state of system in which resources are to

be used? What effect do dynamic characteristics have on the eligibility of a

resource instance to fulfill a request?
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2. How should we specify requests for resources? What information should be

captured as part of a resource request? How should resource requests represent

any constraints that might be relevant in making allocation decisions?

3. How can we represent and deal with constraints arising from such considerations

as domain policies? How do we model the state of a running system so that it

can be effective in supporting the computation of applicable dynamic constraints

related to resource allocation? How should the constraints and system state be

modeled in order for them to best be taken into consideration in the assignment

of resource instances in that domain?

4. How should the matchmaking between resource requests and resource entities be

performed in order to determine which resources are eligible to fulfill a request

based on resource suitability and availability, and yet subject to constraints?

Once a set of eligible resources is found, how can we identify which is the best

match to the request?

3.1 Specification of the General Problem

In this section, we define some useful notation and then use the notation to state

some of the central resource management issues and problem precisely. We also use

the notations to describe how we approach to some of these problems. Let D be some

domain of interest. Let T represent the set of all of the different activities that are

carried out in performing any of the processes in D. Let Σ be a specific application

process in D. Now let R = {r1, r2, ..., rk} be the set of all resource instances that are

available for use by Σ.

Definition 1 A task instance t ∈ T is an atomic activity in D that requires a set

of resource instances, all of which are needed in order for the task instance to be

performed.
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Thus, every task instance t ∈ T has associated with it a corresponding collection

of nt resource requests: Q(t) = [qt
1, q

t
2, . . . , q

t
nt

], where it should be noted that Q(t)

is a collection, rather than a set. This is because a task instance t ∈ T may require

more than one instance of a requested resource, in which case there would be two or

more identical requests, whose satisfaction would then require two or more resource

instances each capable of satisfying a different one of the requests. Let S be the

set of all possible execution states that application Σ in domain D can assume. We

assume that any particular execution of the system can be discretized by time units

and time is one of the components that characterizes a specific system state s ∈ S.

Other components that may be used to define a specific s ∈ S include states of

various artifacts being manipulated by Σ and the configuration of active tasks. One

component of particular interest to us is the set of bindings of resource instances to

active activities. The following definitions are useful in defining this more carefully.

In a given system state s ∈ S, there is a subset of T , Ts, consisting of ms task

instances Ts = {t1, t2, . . . , tms} that are ready and waiting to get started. Thus, we

define the total demand for requests at system s, Q(s) or Q(Ts), by the following

collection of requests.

Q(s) ≡ Q(Ts)

≡ [[Q(t1)], [Q(t2)], · · · , [Q(tms)]]

≡ [qt1
1 , q

t1
2 , · · · , qt1

nt1

qt2
1 , q

t2
2 , · · · , qt2

nt2

...

q
tms
1 , q

tms
2 , · · · , qtms

ntms
]

We use the notation [ ] to represent the request collection. Each element, qti
j , inside

the collection represents a request for a resource instance. The request qti
j ∈ Q(s) is

associated with the task instance ti at some state s and 1 ≤ j ≤ nti . Let us denote

Q(Σ) to represent the set of all possible requests the application Σ may produce.
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We define that each resource request, q ∈ Q(Σ), specifies some requirements on the

resource instances that can be used to fulfill the request. Later we shall discuss how

requests may define such requirements by using required resources’ attributes and

capabilities and additional constraints on allocation. For any request q ∈ Q(Σ) at

some specific system state s, we define R(q, s) ⊆ R to be the set of resource entities

eligible to fulfill the request at that state. This includes resources that fulfill the

requirement and are available for assignment. Given the requirements specified in

the requests, we are interested in the problem of finding allocations of resources to

fulfill the requests. This entails mapping requests to eligible resource entities.

Definition 2 A resource allocation at some state s, ALLOC, is a set of ordered

pairs, (q, r), where q ∈ Q(s) and r ∈ R(q, s). We define ALLOCS(s) to be the set of

all possible such allocations in state s.

We note that for some system state s, it may be the case that there is no possible

allocation; i.e. ALLOCS(s) = {}. This would happen if there is no r ∈ R that can

satify an of the q ∈ Q(s). We also note that according to the above definition, an

allocation ALLOC (s) ∈ ALLOCS (s), may not map all the requests defined in Q(s).

In some domain D, there may be constraints upon resource allocations in Σ re-

sulting from domain policies or from the inherent nature of resources in D. Let

C(D) represent the set of all constraints on resource assignments in the domain.

At any system state s, we define a subset of constraints, C(D, s) ⊆ C(D), as the

set of active constraints. We consider each constraint c ∈ C(D, s) at some state s

to be a predicate defined on ALLOC (s). The purpose of each c ∈ C(D, s) is to

determine whether or not the entire set of all ordered pairs defined by an alloca-

tion ALLOC (s) ∈ ALLOCS (s) conforms to this active constraint. If it does, then

c(ALLOC (s)) = True, otherwise c(ALLOC (s)) = False.
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Definition 3 A resource allocation at system state s, ALLOC(s) ∈ ALLOCS(s), is

a valid resource allocation if and only if

∀c ∈ C(D, s); c(ALLOC(s)) = True

Even after filtering out allocations that are not valid, there will often be mulit-

ple possible valid resource allocations for a collection of requests Q(s) and a set of

constraints C(D, s). The objective of many resource allocation problems is to find a

valid allocation that optimizes some function, often known as a utility function.

Definition 4 A utility function, UTIL, maps a set of resource allocations at a par-

ticular state, s, into the set of real numbers, R. Thus,

UTIL : ALLOCS(s)→ R

Definition 5 Given a utility function UTIL defined over a set of allocations,

ALLOCS(s), a specific allocation ALLOC(s) ∈ ALLOCS(s) is an optimal allocation

if UTIL(ALLOC(s)) produces a value that is optimal (maximal or minimal) compared

to other allocations in ALLOCS(s). We say that ALLOC(s) is optimal with respect

to UTIL at state s.

An example of a utility function could be the number of tasks that can get started

with a resource allocation, ALLOC (s) (i.e. the number of tasks all of whose requests

are met). The optimal resource allocation would be the one that maximizes this

function; i.e., enables the maximum number of tasks to get started. It is conceivable

that in some state s, there will be multiple allocations producing the optimum utility

value. If each ALLOC (s) ∈ ALLOCS (s) finds assignments for all requests, Q(s),

then, according to the above defined utility function, all valid allocations in state s

will evaluate to the same possible optimum value. In such scenarios, the objective

could be just to find or choose one optimal allocation.

35



Many other optimality metrics are possible. Thus, for example, let us assume that

there is a cost associated with the failure of a task t ∈ T (s) to get started at state s

due to resource unavailability. Under this assumption, another utility function could

be the aggregate cost of the tasks whose resource requirements remain unfulfilled in

some state s. An optimum resource allocation in this example would be one that

minimizes this utility function. Again, it is possible to have multiple allocations

that optimize this utility function by producing the minimum value of the function.

Zhang [85] has looked at this problem with the assumption that each task-resource

binding is exclusive. The problem, termed by the author as bundled exclusive resource

allocation problem or BERAP, has been shown to be NP-Hard when there are more

than two requests per task.

The above definitions have helped provide the basis for being rigorous in defining

some classes of resource allocation problems. In order to define any specific resource

allocation problem, a number of additional details and complicating factors must also

be specified. Thus, to specify a specific resource allocation problem, one typically

needs to provide:

1. A clear definition of R, the set of resource instances available in a domain and

information about the circumstances (e.g. the specific system execution states)

under which each will be available.

2. A precise definition of Q(s), the resource requests that will be issued at all of

the different system execution states, as these are the requests against which

resources will have to be allocated.

3. An articulation of all of the constraints C(D, s) of a particular domain D that

will have to be satisfied when the system execution is in each of its different

specific state s, and
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4. Algorithms for finding or approximating the optimum values with respect to a

well defined utility function UTIL.

This brings us back to the four sub-problem areas that we identified earlier as key

parts of a resource management service. These are the separate concerns based on

which we develop our solution approaches and the overall Resource Manager architec-

ture. Next we look more closely at each of these concerns.

3.2 Resource Model

We noted in chapter 1 that in some domains, such as operating systems, network-

ing, and multi-agent systems, the resources that are managed are usually homoge-

neous, and their characteristics are often static. The specification of the task instance

by itself is often sufficient in some of those domains to identify and assign resources.

Modeling such resources can be relatively straightforward. However, resources in a

highly complex environment like a hospital ED are usually more difficult to model, as

they can be highly heterogeneous, they are often constrained by various constraints

and their composition can change dynamically. It is crucially important to model

such complex resources effectively; as such a resource model will be a key basis for

subsequent efforts to identify and assign resource entities in response to resource re-

quests. The requests in such complex environments specify the need for resource

instances by specifying some static and/or dynamic characteristics, possibly defined

by the attributes, capabilities and even capability associated service-quality of the

required resource. We shall shortly provide definitions of these terms. The specified

requirements in the resource request may sometimes uniquely identify the resource

being asked for. A more common case, however, is the situation where the required

characteristics identify more than one resource instance, any one of which can fulfill

the request at a certain system state. Thus, the identification and assignment of

resources to requests are dependent on the attributes, capabilities along with their
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service-quality measures of the required resource entities specified in the requests, as

well as the context provided by the application system’s state, which determines their

eligibility and availability for satisfying a request. Often, but not always, attributes

specify static characteristics of a resource instance that remain unchanged in all sys-

tem states. Job-Title or Degree can be examples of attributes for resource instances

that are human in a hospital ED domain. Typically the values of these attributes

do not change during the execution of a process. In some cases, however, (e.g. a

promotion) the values might indeed change. Capabilities are dynamic characteristics

of resource instances that specify a resource instance’s ability to satisfy a resource

request at a specific system state. Examples of capabilities for resources in the ED do-

main may include ability to perform ECG or ability to perform suturing for laceration

repair or the ability to perform triage for incoming patients. We suggest that often a

request may adequately specify requirement simply by means of the specification of a

required capability or service, while in other cases an attribute-name, attribute-value

pair may be more appropriate way of requesting a resource instance. Service-quality

is basically the quality information associated with each of the capabilities of resource

instance. In the following discussion, we provide rigorous definitions of these terms.

Definition 6 Resource Attribute: We define a resource attribute, ATT, to be a func-

tion that maps the set of resource entities R of some domain D to some predefined set

of elements, denoted as VATT. We assume that the value null is an element of VATT.

Any attribute function ATT that is not meaningful for a resource r ∈ R evaluates to

null for that resource. Thus,

ATT : R → VATT where ∀ ATT null ∈ VATT

Definition 7 Let us suppose that ATTRS(D) represent the set of all ATT functions

associated with resources of domain D. We define ATTRS(r) as the set of ATT func-
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tions that are meaningful for resource instance r. We say that an attribute function

ATT is meaningful for a resource instance r if ATT(r) returns a non-null value.

Definition 8 Capability and Capability Set: We define a capability, CAP to be

a service that may be required, and assume that each service in a domain will be

identified by a name that will be known and mutually understood by both the resource

instances and resource clients. Examples of service names might be triage-patient,

assess-patient etc. We say that a resource instance r ∈ R possesses a capability,

CAP, if it is able to satisfy a request seeking that service. Let CAPS(D) be all such

service names that can be included in requests for resources in a domain D. We define

CAPS(r, s), a subset of CAPS(D) to be the set of services the resource entity r is

capable of providing at some execution state s in D, and CAPS(r) to be the union of

CAPS(r, s) across all possible execution states s in D:

CAPS(r) =
⋃
s∈S

CAPS(r, s)

As the definition suggests, while a request may ask for a resource instance through

the specification of required attribute-names and corresponding attribute-values in

some cases, we assume that there are other cases in which a request may instead

specify a capability. This seems important, for example in the ED domain, because

we note that a given capability may be offered by many different resource instances

that potentially may have combinations of attribute-names and attribute-values that

may vary considerably from each other, and indeed may vary over time as a process

executes. Thus supporting only requests for specified resource instances defined by

their attributes (which are relatively static) may be too restrictive. We note that it

must be possible for tasks to request resource capabilities as well. In this case, the

resource management service must match resources offering the requested capability

to the request seeking it. As an example from the ED domain, all nurse resource
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instances may have the capability to perform tasks like ‘Perform ECG’, ‘Draw Blood’,

‘Triage Patient’. However other resource instances (e.g. a medical technician) may

also offer some of these capabilities. In some cases, a request (or requester) specifying

one of these capabilities may care which category of resource provides it, and would

thus specify an attribute-name attribute-value pair that characterizes this category.

In other cases, the request (or requester) specifying one of these capabilities may not

care (or may not even know, or want to know) which category of resource offers a

required capability. In these cases the requesting entity should be able to simply

request the capability. We note that in domains such as the hospital ED, not all of

the capabilities defined by the set, CAPS(r), of a resource entity r, can be accessed or

utilized under every system state to provide the services specified by resource requests.

This is because access to some capabilities of resource instances may be determined

dynamically, with some resource instances making some capabilities available only

under unusual circumstances, represented by a subset of system states. Depending

on the current execution state, s, resource instances will always possess a set of active

capabilities. These are the capabilities of r that can be used to fulfill a request under

the current execution state of the system. Thus we define:

Definition 9 Active Capabilities: At any specific system state s ∈ S, a resource

instance r ∈ R has a set of capabilities, ACTCAPS(r, s) ⊆ CAPS(r), that can be used

to fulfill requests. We denote ACTCAPS(r, s) to be the set of active capabilities of

resource r at execution state s.

Resource instances that possess the same capability may not be equally suitable

for fulfilling a request seeking that capability. For example, many resource instances

in the ED domain may be capable of providing the service of patient triage. However,

there may be different levels of service-quality (e.g. low, medium or high) associated

with the triage capability of different resource instances. We call this measurement

40



information the service-quality of a resource instance with respect to a specific capa-

bility in its capability set.

Sometimes requests may not only specify a capability but also the required level

of service-quality as part of the request. There are many different ways one can

concretely define this quality measure, a particularly straightforward example of which

is presented below:

Definition 10 Service-Quality: The service-quality for a resource entity r, denoted

as SRQL(r), is a function that maps capabilities of CAPS(r) to the enumerated set:

{low, medium, high}. Thus,

SRQL(r) : CAPS(r)→ {low,medium, high}

We note that it is possible, and in some domains necessary, to model service-

quality with more precision, perhaps using a numeric scale. In addition there are

circumstances under which the service-quality value might be computed only by tak-

ing the execution state of the system into consideration. This would mean that given

a specific state s, a capability c of resource instance r, (c ∈ CAPS (r)) will have dif-

ferent values for its associated service-quality depending on the state of the system s,

where s includes such information as the availability and utilization level of r. This

would lead to modification of the above function in the following way:

SRQL(r, s) : CAPS (r)× s→ {low,medium, high}

Again note that the range of the SRQL function can be other domains such as

the set of all real numbers (R) instead of the simplified enumerated set (low, medium,

high) that we have used in the example definition given above.

For the purpose of allocating resources, there are three attributes that we explicitly

specify in our resource model: consumability, capacity and cost.
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• Consumability : This is a Boolean valued attribute that defines if a resource

instance’s ability to satisfy a request is consumable or not. If a resource instance

r is not consumable (i.e. it is reusable), it can satisfy multiple requests one after

another.

• Capacity : This attribute is used to quantify the amount of effort that can

be provided by a resource instance in fulfilling requests. For consumable re-

sources, this attribute is simply a measure of available quantity of a resource.

For reusable resource instances (i.e. the ones that are not consumable), this

attribute specifies the number of requests a resource instance can simultane-

ously satisfy. In the most straightforward case, every capability would require

the resource instance to use the same quantity of capacity to fulfill a request

for that capability. But it is also possible that some capabilities may require

greater quantities of capacity than others. In such domains, each capability

will require a specification of the quantity of capacity it requires. This quantity

may indeed even vary depending upon the state of the execution of the system.

For some reusable resource instances in some domains, it might be necessary

to elaborate capacity with two separate attributes, namely reservation-capacity

and allocation-capacity. For example, in a task coordination system, an impor-

tant category of resource instances are the ones that are made responsible for

carrying out the tasks. In such systems, it is often required to make a distinc-

tion between the reservation-capacity and the allocation-capacity of a resource

instance that is assigned to carry out some task.

– Reservation Capacity : This quantity specifies the amount of capacity that

a resource instance has available to fulfill requests.
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– Allocation Capacity : This quantity specifies the maximum amount of ca-

pacity that a resource instance can make available to support simultaneous

execution of assigned tasks.

• Cost : There is usually a cost associated with the usage of resource instances.

Even thought cost may not be an important attribute for systems in all dif-

ferent domains, it is nevertheless a characteristic of resource instances that is

ubiquitously present all the domains we have looked at.

In addition to capturing the resource characteristics (attributes, capabilities, service-

quality, capacity, cost etc.), we suggest that it is useful for a resource model to also

classify resources into different groups like doctors, nurses, beds etc. In particular, we

note that this may facilitate the specification of resource requests (to be discussed

shortly). For example, it might be most convenient to allow a request for a doctor,

which is a label for a specific group of resources rather than requiring the request to

specify an instance of a resource such as resource-instance-21 or resource with intuba-

tion capability, which, according to an ED resource model, may refer to a particular

doctor or a group of doctors and other such resources in the ED. Thus, we note

that it would be useful for a resource model to also have a number of named groups

G = {g1, g2, · · · gz} and a membership criterion function MEM gy associated with each

group that defines which resources are members of which group. For a group name

gy, MEM gy(r) defines whether a resource entity r belongs to this group or not:

MEM gy(r)→ {true, false}

It is important to note here that some of these group membership functions may

define de facto type structures. However, we intentionally leave out the definition

and discussion of possible resource type structures in our research. We argue that

this notion of groups and group-membership seems to provide a more flexible way
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to model resource entities than a more rigidly defined type structure. This research

looks into the use of various mechanisms for grouping resources.

Based upon the above discussion, we suggest that the purpose of resource modeling

is to capture the resource instances’ characteristics, some of which can be context

dependent, and perhaps some categorization (group-membership) information. We

suggest that a resource instance in the context of a specific domain can be described as

an object defined by a set of attribute functions, and a set of capabilities (or services)

each of which may have associated with it service-quality specification. Thus, a

resource instance r in some domain D can be defined as:

r = {ATTRS(r), CAPS(r), SRQL(r)}

At any specific system state, s, a resource entity can be defined as the following:

r(s) = {ATTRS(r), ACTCAPS(r, s), SRQL(r, s)}

We also propose some attributes, namely consumability, capacity, and cost that

are common to almost all resource instances:

∀r ∈ R {CONS,CAPACITY,COST} ∈ ATTRS(r)

As one can immediately see that this definition of a resource instance is dependent

on the execution state of a system i.e. a specific context. This particular notion has

important consequences in understanding one of our fundamental research questions:

’what is a resource?’ As this proposed definition would suggest, many resource in-

stances can only be defined according to a given context. It also provide at least a

partial explanation of why the specification of a resource model can be very challeng-

ing.
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3.3 Request Model

We indicated in section 3.1 that we propose to model requests as predicates de-

fined over a resource model. Thus we model requests that are defined using required

attribute-name, attribute-value relations, or required capability and service-quality. In

our model, an important part of a request specification is a specification of the re-

quired capacity. These specifications allow for specifying the required characteristics

of resource instances. In addition to the required characteristics, a request may need

to specify some required protocol for fulfilling the request. Also, a request may often

point to constraints that resource instances must satisfy in fulfilling the request. We

shall discuss the constraints specification separately in our discussion about modeling

constraints in section 3.4. In our model, a request for a resource instance is composed

of four types of information:

• Specification of required attributes or capabilities

• Specification of required capacity or quantity

• Specification of protocol to be followed in satisfying the request

• Specification of constraints based on runtime information

Next we elaborate each of these modeling constructs.

3.3.1 Specification of Required Characteristics

The most common criteria specified in a request are a set of requirements regard-

ing the characteristics of resource instances that can be used to fulfill the request.

Formally, this set of required characteristics in some request q is a predicate Pq over

the set of attributes (ATTRS (D)) or capabilities (CAPS (D)) as has been defined

earlier in definition 7 and 8. The set of resources that would be eligible to satisfy the

request q is specified by Pq(r) or {r|Pq(r)}.
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Often such a request may specify a list of preferences in addition to also specifying

required characteristics. In this case, a request q would specify multiple predicates,

P 1
q , P

2
q , . . . P

n
q in some preferential order. Let us denote PREF (P 1

q , P
2
q , . . . P

n
q ) to

be the function that provides a specific order to the predicates. Each predicate P i
q

represents a set of resources such that

{r|P i
q(r)} ⊆ R

The Resource Manager is expected to satisfy the request using these predicates in

turn starting from the beginning of the preferential order. Thus, if no satisfiable and

available resource instance is found using the first predicate in the preferential list,

Resource Manager will use the second predicate in identifying resource instances that

can be used to satisfy the request.

3.3.2 Specification of Required Capacity

This part of the request model can be very simple depending on the domain

for which requests are being modeled. This specification of amount is primarily

dependent on the nature of resource instances in terms of their consumability. If a

resource instance is consumable, the specified amount is going to refer to the quantity

that is being requested. The definition of quantity can be different for different types

of consumable resource instances. On the other hand, for reusable resources this

measure would refer to the capacity that is being requested. Also depending on the

type of request (for example, request for reserving a resource or request for allocating

a resource), this required capacity might indicate whether the request is for a specific

category of capacity such as reservation capacity or allocation capacity. We allow such

detail in the specification of a request in order to enable a high degree of flexibility in

modeling assignment of resource instances to requests in some domains. For example,

if a request seeks to reserve a resource instance and if it requires its full reservable
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capacity, that allows us to model the scenario where a resource instance is completely

reserved and thus cannot be reserved by anyone else.

3.3.3 Specification of the Protocol While Satisfying the Request

In addition to specifying the required attributes and capacity, a request for resource

instances often needs to specify protocol-related requirements that would dictate the

way a resource management service needs to satisfy the request. In many domains

and applications, the protocol for satisfying all the requests is same and may be well

established as part of the application specification. However, in our approach we

allow the protocol to be modeled explicitly as part of the request.

3.3.3.1 Blocking and Nonblocking Requests

Although the specification of protocols for satisfying requests can be quite com-

plex, we use the example of the need to specify whether or not a resource request

is blocking or non-blocking to show that some of these protocols may actually be

relatively simple to specify.

Definition 11 A non-blocking request qnb requires that the resource management

service immediately notifies the requesting entity if a request cannot be satisfied at

that time.

Definition 12 A blocking request qb is a request that does not require an immediate

response in case the Resource Manager cannot satisfy it right away. Under such cir-

cumstances, the Resource Manager places the request in a queue of pending requests

and tries to satisfy it once resource instances that meet the requirements in qb becomes

available.

3.3.3.2 Atomic Assignments

In addition to the blocking and non-blocking protocol requirements for satisfying

resource requests, we also model grouping of resource requests that need to be satisfied
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atomically. If acquisition of a set of requests is specified to be atomic, the Resource

Manager is expected to acquire the resource instances only when each of the requests

within an atomic group is satisfiable. In our model, as defined at the beginning of this

chapter, a request group Q(t) ≡ [qt
1, q

t
2, · · · , qt

nt
] associated with some task instance

t is considered to be atomic for the purpose of getting t activated and completed.

In such a case, the Resource Manager needs to wait until it can satisfy each of the

requests qt
i ∈ Q(t) before making an allocation. Chapter 4 discusses how our resource

management service supports this protocol requirement.

3.4 Constraint Model

Our research indicates that constraints on resource allocation primarily originate

from domain policies. Consequently, we have modeled this as an important separate

concern in our approach. Different application domains may have different policies

that dictate or at least influence which resource instances can satisfy which request.

Often such restrictions are dependent on the execution state of a running system.

Even if a resource instance ri is eligible for satisfying a request qj, i.e., ri ∈ Pqj
(r),

there may be additional constraints that make ri ineligible for satisfying qj. We

approach the modeling of these constraints in two primary ways: as additional re-

quirements on top of the requests and as part of the resource model.

3.4.1 Constraints as Requests

At the beginning of section 3.3, we discussed the different components of a request

in our model. In some domains, required resource instances can have additional

requirements that are not dependent on the mostly static attributes or often dynamic

capabilities of a resource instance, but instead are based on run time assignments,

i.e. allocation of resource instances at some specific execution state of the system.

As presented in definition 2, this would mean that any such constraint specifies some
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predicate P over the allocation of resource instances, ALLOC(s), at system state s.

To specify some of these constraints, we create a special type of request for identifying

a group of resource instances. In our model, we denote such requests as qgc, where

gc indicates that this is a request for group-constraint. Like a regular request for

a resource instance, a request specifying a group-constraint also describes a set of

resource instances that satisfy some required criteria.

Definition 13 A group-constraint request, qgc, is a predicate Pqgc over all resource

instances R of a domain D.

To put it simply, a group-constraint just specifies a group of resource instances.

Next we augment the group-constraint definition by limiting the size of the group

that can be instantiated to satisfy a specific group-constraint request.

In our model, we call such a constraints a restricted-group-constraint. Like a group-

constraint request, a restricted-group-constraint specifies which resource instances can

be part of an instantiated group that can satisfy the constraint; and it also specifies

the maximum allowed cardinality of such a group.

Definition 14 Let Pqgc define a set of resource instances where Pqgc is a predicate de-

fined over all resource instances R of a specific domain. A restricted-group-constraint

request, qgc
n , specifies a set of resource-instance sets Rqgc = {R1, R2, R3 . . . Rn} where

each Ri represents a set of resource instances and Ri is an element of the power set

Pqgc and cardinality of Ri is less than or equal to n. More concisely:

qgc
n = {Ri} where Ri ∈ 2Pqgc and |Ri| ≤ n

In our resource request model, we allow specification of a request q optionally

augmented by the specification of a group-constraint or a restricted-group-constraint.

If a resource request qi ∈ Q is accompanied with (i.e. constrained by) a group-

constraint qgc, the Resource Manager needs to first instantiate a group of resource
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instances that satisfies qgc and then limit the set of eligible resource instances that

can satisfy qi by making sure that all eligible resource instances are members of that

group. Thus, a request qi constrained by a group-constraint qgc can only be satisfied

by a resource instance r such that

r ∈ Pqi
and r ∈ Pqgc

Corresponding to the group-constraint and restricted-group-constraint, we have

two more constraints: iterator-constraint and restricted-iterator-constraint. An iterator-

constraint is exactly same as the group-constraint with the added restriction that each

resource instance in an instantiated group that represents that iterator-constraint can

be used only once to satisfy a request that is constrained by the iterator-constraint.

In other words, if a resource instance from an instantiated iterator-constraint is used

to satisfy a request, that resource instance is marked to be used and is taken out of

the group (collection) that got instantiated from the iterator-constraint. Restricted-

iterator-constraint augments the iterator-constraint by placing a maximum cardinal-

ity for any group or collection of resource instances instantiated from the iterator-

constraint specification.

In chapter 6, we present examples of how such constraints in requests can allow for

flexible modeling of various complex domain policies regarding resource assignments.

As an example, consider the case of two requests associated with two separate task

instances both of which must be satisfied by using the same resource instance. We

can specify this by using a restricted-group-constraint as defined above.

3.4.2 Constraints as Part of the Resource Model

The second way we model constraints on resource assignments is by using the

specification of guard functions on active capabilities of resource instances r in system

state s, ACTCAPS(r, s). In this case, we model a set of system states Sr
CAP such
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that a capability CAP of resource instance r (CAP ∈ CAPS (r)) is active if and only

if system state s ∈ Sr
CAP . Thus we have the following definition:

Definition 15 A guard function Gr
CAP is a mapping from the domain of all resource

instances R and all capabilities CAPS(R) (i.e. R × CAPS(R)) to a set of systems

states Sr
CAP such that

CAP ∈ ACTCAPS(r, s)⇔ s ∈ Sr
CAP

To define the set of system states Sr
CAP in which capability CAP is active for

resource instance r, we may need a number of pieces of dynamic state information

from a running system. It is worthwhile to specify some examples of the types of

information we model and use as part of defining the guard functions.

• Available Capacity Information: A guard function can use the available capacity

information of a resource instance r at state s. Sometimes for example, there

is a need for such information as the number of resource instances that are

available from a group of resource instances. This allows us to specify if none

of the members of a group is available at some system state s.

• Pending Requests Information: When blocking requests are used, a very useful

way to model the state of the system is by specifying a Boolean function over the

number of pending requests. These pending requests can be for a type of task

(i.e. for a set of task instances {t1, t2, . . . tn}), for a specific resource instance r,

or for a set of resource instances.

• Stages of the Tasks : Let us suppose the task instances generating resource

requests go through a life-cycle that contains states such as: ready to be worked

on (instantiated), getting worked on (started), getting completed (completed)

etc. Under such a scenario, it is also important to model a set of system states
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based on the state that a specific task instance t is in or a set of task instances

{t1, t2, . . . , tn} are in.

Our research shows that capturing system states in that ways suggested by the

above examples is remarkably powerful. Chapter 6 will present some specific examples

of guard functions defined using this approach.

3.5 Allocation Decision

This dissertation explores the resource allocation scenario where the Resource

Manager receives a stream of requests for resource instances and tries to satisfy the

requests as they are received. In section 3.3 and 3.4, we presented our approach

for modeling the specification of required characteristics, capabilities, capacity, and

constraints as part of a resource request. We also specified additional constraints

that can be specified as part of the resource model and restrictions on the required

protocol for satisfying the resource requests. The last major component of a resource

management service that we model is the approach to making the decision about

assigning a resource instance to fulfill a request. While describing the generic resource

management problem at the beginning of this chapter, we presented the primary

objective that forms the basis upon which such allocation decisions are made. Here

we present the high level process we propose for making these allocation decisions.

Given a request q, to make a decision to bind a resource instance r to q, we follow

a three step process: 1) Matchmaking, 2) Filtering, and 3) Selecting:

1. Matchmaking : This step refers to the identification of all the resource instances

that can satisfy q based on only the required characteristics of resource in-

stances in q. If required characteristics of resource instances are specified using

a predicate defined over the static attributes of resource instances, then this

matchmaking is a simple exercise of evaluating that predicate regardless of the
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current state of system s. On the other hand, if the requirements in q are

specified in terms of the dynamic characteristics of potential resource instances,

this matchmaking would entail evaluation of the predicate given the current

system state. At the end of the match making exercise, we shall have a set of

potential resource instances that matches the required characteristics criteria in

q. Let us denote this set of eligible resources as Rq
m ⊆ R, where R is the set of

all resource instances of a domain under consideration. We note that Rq
m may

be empty at a particular system state s. In that case the following two steps

would become unnecessary and the resource manager will respond based on the

protocol specification for satisfying requests.

2. Filtering : This is a two step process. In the first step of filtering, we remove from

Rq
m the resource instances that do not have the required capacity requested by

q. In the second step we apply the additional constraints (e.g. group-constraint

or restricted-group-constraint) that may be associated with q and remove any

resource instance that does not satisfy the additional constraint. This filtering,

we shall see in chapter 6, allows us to model some interesting domain policies.

Let us denote the set of resource instances at the end of this step by Rq
mf . We

note that Rq
mf ⊆ Rq

m

3. Selecting : If the cardinality of the set Rq
mf is more than one, this final step

of allocation decision process comes into play. Our approach to the selection

process is to model it as an auction. Each resource instance r ∈ Rq
mf will

compute a bid based on such information as its cost, service-quality for satisfying

q, required capacity as a fraction of available capacity etc. We would model

the winning criteria for the bids based on the specific utility function UTIL

that we are trying to optimize for any specific execution of a system for which

the resource management service is being provided. In our Resource Manager
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architecture this selection process is cleanly separated so that it can be easily

customized for different domains and applications.
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CHAPTER 4

RESOURCE MANAGER ARCHITECTURE

The general resource management problem incorporates a number of complex ar-

eas with challenging issues. An architecture in which the various components are

assigned clear responsibilities thus would seem to provide an attractive basis upon

which to develop a comprehensive and flexible resource management service. This

chapter first presents the high level architecture of such a proposed resource man-

agement service. The discussion then elaborates the architecture by focusing on each

of the different separate concerns. We then describe our Resource Manager proto-

type and the application programming interface (API) specifications of its different

components.

4.1 Overall Architecture

Figure 4.1 shows the overall architecture of our proposed resource management

service. There are four major components:

• Request management component

• Repository management component

• Allocation management component, and

• Constraint management component

In addition to these four major components, there is also a System State compo-

nent that interacts with the different components to maintain an accurate and current
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representation of the execution state of the Resource Manager while it is meeting the

needs of the currently executing system. This state information is also used by some

of the other components. Figure 4.1 also shows an abstract representation of a Re-

source Client component, which is not part of the core Resource Manager, but is shown

to help represent the nature of the interactions between the resource manager and a

client whose resource needs are being met. Additionally, there are two important sets

of data objects in the described system architecture:

• Resource Requests, and

• Resource Instances

In figure 4.1, dashed-line boxes represent the major components, while solid-line

boxes inside the components represent different sub-components of the resource man-

agement service. The directed edges represent calls from one sub-component to an-

other. The edges have been labeled with phrases to describe the purposes of the

calls. Component names are shown in bold faced and sub-component names have

been italicised. Both component and sub-component names have been capitalized.

A Resource Client sends requests to the Request Management component for re-

source related services. We view the resource client shown here as an abstract repre-

sentation of a task for which resources are required. Thus the Resource Client com-

ponent represents the user of the resource management service, and as such is not

part of the Resource Manager itself. In our abstract architecture we assume that the

client may request such services as identification, reservation, acquisition, or release

of resources. Details of this component are discussed in section 4.2.2.1

The Request Processor is one of the major sub-components of Request Manage-

ment component. It receives requests from clients, processes these raw requests into

meaningful resource queries, and places the queries into a pool of Outstanding Re-

quests. The Request Scheduler sub-component decides which request or set of re-
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Figure 4.1: Resource Manager Architecture
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quests to satisfy next and picks them up from the pool of Outstanding Requests.

Requests from this pool are selected based on the requests’ priority information. The

priority of a request can be dependent on a number of factors including the priority of

the requesting entity, i.e. the specific Resource Client, the parameters associated with

the request, such as the request arrival time, how long the request is waiting in the

queue etc. Note that the requests in the Outstanding Requests pool can be individual

requests or sets of requests grouped together. Often such groups of requests would

need to be fulfilled atomically to ensure that all resource requirements of a Resource

Client are satisfied such that the task instance represented by this Resource Client

can move forward. By deciding the order of the processing of requests, the Request

Scheduler essentially decides on the schedule by which task instances are enabled, and

thus is a major factor in deciding the overall progress of execution of the system that

is issuing resource requests.

The Allocation Management component is composed of three sub-components: an

Assignment Manager, a Resource Selector and a Match Maker. The Request Sched-

uler sends to the Assignment Manager selected requests that are to be fulfilled. The

Assignment Manager responds by creating an assignment, which is a binding of a

resource instance to the client’s request. Requests can be for such services as finding

out about the satisfiability of a request, for making an assignment, or for releasing

an assignment. The Assignment Manager performs a number of operations in or-

der to fulfill a request and return its responses. To fulfill requests asking for new

assignments, the Assignment Manager passes the requests to the Match Maker sub-

component. The Match Maker treats each request sent to it as a query against

the information contained within the resource repository in order to find out which

resource instances are able to satisfy the request. As discussed in chapter 3, in our re-

source model, the ability of a resource instance to provide a service to fulfill a request

is often dependent on the dynamic state of the running system. Thus determining if
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a resource instance is able to satisfy a request may require, among other considera-

tions, evaluation of the System State, in order to ascertain which of the capabilities of

a resource instance (i.e. the resource instance’s services) is available given the current

state of the system.

The System State consists of such information as the current allocation of re-

sources, the different types of outstanding requests waiting to be fulfilled, past as-

signments during the current execution of the system etc. Once the Assignment

Manager has identified a set of resource instances that are candidates to fulfill a re-

quest, it passes the set through the Constraint Manager to filter out the resource

instances that do not satisfy whatever constraints on resource allocation might cur-

rently be in place. We will discuss constraints and their role in resource management

in more details in section 4.2.5. Finally, the Assignment Manager takes the set of

resource instances that match the initial requirements specified by a request, and

also satisfy any additional constraints, and sends them to the Resource Selector sub-

component. This sub-component chooses a resource instance based on some sort of

‘best-fit’ criteria.

The Repository Management component is composed of four sub-components. The

Resource Characteristics Model defines the attributes, capacity, capabilities or offered-

services, cost, etc. of resource instances in the domain being served. This component

is assumed to have been specified with the help of a system modeler having knowledge

of the resource management system, and especially knowledge of modeling language

in use. This model describes all the resource instances of concern in the domain of in-

terest. The second sub-component inside the Repository Management component, Re-

source Allocation Table, holds the complete set of all current assignments of resource

instances to requests. The Resource Allocation Table sub-component also assists in

gathering such derived information as the state of all resource instances, including

their availability at any point during system execution. The third sub-component is
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the Resource Repository Manager. This sub-component uses the information held

within other sub-components and updates them as necessary. All resource alloca-

tion related communication to and from the Repository Management component is

performed through the Resource Repository Manager sub-component. The Resource

Repository Manager can be thought of as a facade over each repository that is defined

for a domain that is being served by the Resource Manager. There is one more sub-

component named Resource Modifier which is responsible for providing an interface

to enable external inputs to be used to effect the addition, removal, or modification of

resource instances in the repository. The Resource Allocation Table sub-component

keeps two types of assignment information: reservation and allocation. Both reser-

vation assignments and allocation assignments bind resource instances to requests.

This architecture of Repository Management allows multiple resource repositories to

work concurrently and serve requests as a single resource management service.

In order to support resource allocation, this high level component architecture

considers resource assignment to be items to be auctioned. Thus, in this conceptual

framework, Resource Client’s requests for specific services are considered to be items

put up for bids, and resource instances place bids. We expect that a bid placed

by a resource instance is to be computed by using such information as the resource

instance’s suitability, availability, and cost. If a resource instance is not currently

available or does not meet the criteria specified in the request, its bid for that request

will be zero. Similarly, if a resource instance is able to satisfy a request, it will

send a bid corresponding to its appropriateness (service-quality, cost etc.) for serving

the request. The Resource Selector sub-component can thus be thought of as an

auctioneer that considers different possible resource assignments (i.e. bids) for a

request or set of requests and makes an assignment based on some bid-measurement

metric.
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Once an allocation decision is made by the Allocation Management component, the

Resource Repository Manager is updated to reflect the new assignments. The new

resource assignments are also sent back to Request Scheduler, which makes a call back

to the Resource Client to report the assignment decisions. When a Resource Client

no longer requires any reusable resources that it has been assigned, it sends notifica-

tions with usage information back to the Repository Management so that they can be

released. The released resource instances’ allocation and availability information are

updated accordingly by Resource Repository Manager.

4.2 Resource Manager Modules

In earlier discussions, we established that the primary responsibilities of a resource

management service include to create and manage a model of resource instances of

a domain, to provide a structure and an interface for specifying resource-requests, to

make decisions about which resource instances are to be bound to which requesting

entities, which are abstract instances of tasks, and to keep track of resource states in

a runtime environment. The binding decisions often need to satisfy some constraints

and are usually intended to optimize some utility function. With these objectives,

and considering the suggestions of our overall architecture presented in section 4.1, we

have developed a prototype resource management service, ROMEO, centered on the

following architectural components, each of which is designed to focus on a following

key resource management concern:

• Resource model

• Request model

• Repository management

• Allocation decision
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• Constraint management

The following sections elaborate the responsibilities of these concerns and discusses

the application programming interface (API) specification of different components

that are used to address each of these concerns.

4.2.1 Resource Model

The Resource Model defines the static structure of the collection of resource in-

stances available for use by processes defined in a particular domain. It captures at

least a partial specification of the dynamic behavior of each resource instance. In

our approach, we have defined resource instances broadly; our view is that they are

uniquely identifiable objects, each of which has a set of Attributes. An Attribute is

a name-value pair that describes some characterizing information about the resource

instance. Figure 4.2 shows the class diagram of a simple resource instance and its

attributes.

Figure 4.2: Class diagram of a simple resource instance
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Note in particular that this view does not treat resource instances as comprising

a type hierarchy. Our experience has indicated that simple type hierarchies are not

sufficient to clearly and completely represent the complex relations among resource

instances in domains such a hospital ED. Multiple inheritance schemes proved quite

ungainly as well. Accordingly we have settled upon the above definition, which pro-

vides a flat structure for the resource instances in a domain. This definition also

makes minimal assumptions about what attributes are most appropriate for describ-

ing different resource instances in the domain. While there seems to be a need to

allow some resource instances to be described with the help of special purpose at-

tributes, our research has also indicated that there are certain attributes that seem to

be needed in common by all resource instances of many domains. We have captured

these common attributes explicitly in our model. Following is a list that describes

these attributes:

• Consumability : A resource instance can be either reusable or consumable. We

have added an explicit method, isConsumable(), to the base ResourceInstance

class that identifies whether a resource instance is consumable or not. The

allocation and management of these two categories of resource instances differ

from each other substantially.

• Offered Services: In our model, each resource instance is capable of offering a set

of services. These services corresponds to the resource capabilities or CAPS (r)

that we defined in chapter 3. The set of services is used to determine which

resource requests a particular resource instance can satisfy. This determination

may depend upon such factors as the resource client that generated the request

and the dynamic state of the executing system. We have designed getServices-

(SystemState) to be a method that can be applied to all resource instances.

This method accepts a SystemState object as an argument and returns the set
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of services offered by the resource instance depending on the current state of

the running system.

• Cost: The use of a resource instance usually has some cost associated with it.

We have modeled cost as a common attribute of resource instances by adding

a getCost() method that can be applied to all resource instances.

• Capacity : The notion of capacity represents a resource instance’s ability to

satisfy a number of requests simultaneously. As discussed in chapter 3, this

notion is used to specify the quantity of consumable resource that a resource

instance can make available. As the resource instance is assigned to a task, the

quantity of available resource declines by an amount that may depend upon

the task, the system dynamic state, and the nature (e.g. the skill level) of the

resource instance itself. When the capacity of the resource instance drops to

zero, the resource instance is no longer available for allocation, at least until

one or more of its current tasks has been completed.

There are clearly other possible attributes that are likely to be useful in supporting

the specification of some resource instances in a specific domain. In the API design

of our resource management service, we have tried to be explicit about only the most

common methods. But we have also provided the capability to attach additional

attribute types to individual resource instances, and to both set and get the values

of these attributes.

4.2.2 Request Model

Modeling requests for resources is closely related to, but a separate concern from,

the modeling of resource instances. The purpose of a request model is to support

the expression of the request for (i.e. the requirements for) a resource instance. An

important part of the ‘request model concern’ is the requesting entity, i.e. the resource
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client. The following section describes the application programming interface (API)

for resource clients.

4.2.2.1 Resource Client

In the architecture presented in this dissertation, the client of a resource man-

agement service (i.e. the requesting entity) has been considered to be an abstract

representation of a task instance. Resources are required for activation and comple-

tion of instances of tasks and resource instances get bound to a task instance as a

result of requests communicated to the Resource Manager. In the following discussion,

the term resource client has been used to represent such a requesting task instance.

Figure 4.3 shows the abstract interface of such a resource client.

Figure 4.3: Resource Client API

• getName(): This method returns the name of the requesting resource client.

Since we have defined a resource client to correspond to an instance of a task,

this method may return the task name. Thus it might be the case that, different

resource clients may have the same name (e.g. if a given task instance requires

more than one resource instance).

• getClientPriority(): This method returns the priority associated with a resource

client relative to other clients sending requests to the resource manager. This

priority corresponds to the priority associated with a task type as opposed to a

task instance. Note that different resource clients that corresponds to different

instances of the same type of task will nevertheless have the same priority, as
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this is associated with the criticality of the type of task to be done. For example,

in the hospital ED domain, suppose that Assess-Patient and Discharge-Patient

can both be done by the same resource instance (e.g. a doctor). In this case,

the client priority may turn out to be useful in influencing the order in which

requests originating from these task types are considered for assignment to

resource instances. The higher priority task type will be considered first, and

may result in delay in being able to assign a resource instance to the lower

priority task.

• getTaskInstance(): This method returns the instance of the task that this re-

source client represents. In this framework, two resource clients are defined to

be the same if they represent the same task instance.

4.2.2.2 Specification of the Required Resource

To provide additional flexibility in modeling resource requests, we also provide a

mechanism that can be used to allow a resource client to specify as part of a request

some characteristics that are desired in the resource instance that is being sought.

Thus, for example, this feature can be used to specify that a surgeon to be assigned

to a task should have more than some specified number of years of experience. In

addition to specifying these desired characteristics, additional requirements, in the

form of constraints can be associated with a resource request. We discuss this in

more detail in section 4.2.5 (constraint discussion section). Figure 4.4 shows the

application programming interface we have used in our prototype implementation for

supporting these specifications of a required resource instance.

There are two ways we allow specification of required resource instances:

1. Through queries that specify the characteristics of resource instances, and

2. Through specification of a required service
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Figure 4.4: Required resource specification class diagram

For query based specification, we allow a resource client to specify a preferential

order. When a request is processed, our resource management service attempts to

satisfy the request with preferred characteristics. If it is unable to do so, any resource

instance that can provide the required service is then considered. Figure 4.4 shows

the API for specification of required characteristics of a resource instance that is being

requested.

• getPreferredResourceQueries(): This method returns an ordered set of preferred

queries specified by a resource client. Each query is a specification of a set of

required characteristics that is being requested. An example of a preferred list

of queries in an ED domain would look like the following: prefer(AttendingMD,

Resident, PhysicianAssistant).

• getRequestedService(): This method specifies the service or capability that is

being sought. Any resource instance capable of providing this service at the

time when it is being requested is eligible for satisfying this request.

• getRequestedCapacity)(): This method specifies the available capacity require-

ment of the resource instance that is being requested.

67



• getPriority(): This method returns the priority associated with a request. This

priority is associated with a specific task instance that is generating the re-

quest. Note that it is different than the Resource Client based priority. In

chapter 5, we will discuss the utility of allowing these two different forms of

priority specification. When both sorts of priority information are available,

either the instance level priority (i.e. the one returned by this method) takes

precedence or a weighted average of the two priorities can be used. The deci-

sion about which approach to use is determined as part of the specification of

a specific resource management implementation.

• getResourceClient(): This method returns the resource client (task instance)

that has generated this request.

• getEstimatedUseTime(): This method holds an estimation of the time a re-

source instance is likely to require in order to satisfy this request. This infor-

mation is presumed to be useful in guiding the Resource Selector subcomponent

of our resource manager architecture in making allocation decisions.

4.2.3 Repository Management

Section 4.1 presented the overall high-level architecture of our proposed resource

management service. Resource Repository Manager was shown there as a primary

component. In this section, we present the corresponding API for the prototype imple-

mentation of Resource Repository Management and other sub-components it interacts

with in our prototype implementation.

Figure 4.5 shows the classes that make up the interface of a Resource Repository

Manager. These classes represents the operations provided by Resource Repository

Manager for adding, removing, modifying, and assigning resource instances that are

located in the repository that it represents. The following list elaborates these oper-

ations:
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Figure 4.5: Resource Repository Manager Class Diagram
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• public abstract String getRepositoryName()

This method returns the name of the repository it represents. In our prototype

implementation, we implemented this repository as a relational database. Thus,

for this implementation, this method returns the name of the database that

holds the resource instance descriptions.

• public abstract AllocationInfo getAllocationInfo()

This method returns the AllocationInfo object, which is a complete summary

of the current state of the allocation of all resource instances in the resource

repository.

• public abstract ResourceCollection getAllResources()

This method returns all resource instances defined in this repository as a col-

lection of SimpleResourceInstance objects.

• public abstract ResourceCollection getAvailableResources()

This method finds out and returns all resource instances that are currently

available for allocation and returns them as a collection of ResourceInstance

objcects. A resource instance can be partially or fully available. This method

returns the set of resources that have any available capacity.

• public abstract ResourceCollection getReservableResources()

This method returns all resource instances that are currently available for reser-

vation assignments. We have designed an API that supports the reservation of

a resource instance, in addition to other facilities for the allocation of a resource

instance. We provide both facilities in order to support the additional flexibility

of allowing a resource instance to be held out of consideration for allocation by

clients other than the one that has previously reserved the resource instance.

Accordingly, a resource instance can have reservation capacity that is different

(usually higher) than its allocation capacity.
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• public abstract ResourceCollection findMatchingResource(Query)

Given a query that describes required characteristics of resource instances, this

method returns a collection of resource instances that matches the query and

are currently available in the repository.

• public abstract ResourceCollection findResourcesOfferingAService(serviceName, sys-

temState)

This method returns a collection of resource instances that are capable of offer-

ing a service under the given system state.

• public abstract void reserveResource(resourceInstance, resourceClient, Reservation-

Capacity)

This method creates a binding between a given resource instance and a resource

client for the purpose for reserving the resource.

• public abstract void cancelReservation (resourceInstance, resourceClient)

This method breaks the reservation binding between a resource instance and a

client and consequently frees up some reservation capacity of a resource instance.

• public abstract void assignResource(resourceInstance, resourceClient, assignment-

Capacity)

This method creates an allocation binding between a resource instance and a

resource client for a given capacity.

• public abstract void releaseAssignment(ResourceInstance)

This method releases an allocation binding between the given resource instance

and resource client and records the binding information in the assignment his-

tory.

• public abstract void unassignResource(resourceInstance, resourceClient)

This method releases an allocation binding between a given resource instance
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and resource client but does not keep any record of the assignment. It is, as if

the assignment never took place.

In addition to the operations listed above, the resource repository component

provides some additional operations through other classes that it contains such as

the ResourceModel and AllocationInfo.

• public abstract void addResourceInstance(resourceInstance)

Given a ResourceInstance object, this method adds it to the repository.

• public abstract void removeResourceInstance(resourceInstance)

Removes a resource instance from the repository.

• public abstract void updateResourceInstance(resourceInstance, attrName, attrValue)

Updates some characteristics of an already defined resource instance based on

the given attribute name and attribute value.

• public abstract void addResourceQuery(queryName, queryDefinition)

Adds a new resource query into the repository. A request specifying the required

characteristics of a resource instance needs to specify only the name of a query.

A query-definition associated with this query is assumed to have been pre-

defined and stored in the repository. An example of a query for ED domain could

be an AttendingMD that is defined to be a specific collection of attribute-names

and attribute-values that is considered essentially to comprise the definition of

what this term means in this domain. Intuitively this capability supports the

specification of something that serves some of the purposes of a type definition.

• public abstract void removeResourceQuery(queryName, queryDefinition)

Removes an existing resource query and definition from the repository.

• public abstract void updateAvailability(resourceInstance, availableCapacity)

Sets the availability of a resource instance to the given amount. This method
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is required to update the current availability of a resource instance whenever a

resource instance is assigned or released.

• public abstract void makeAvailable(resourceInstance)

Makes a given resource instance available with default available capacity.

• public abstract void makeUnavailable(resourceInstance)

Makes a given resource instance completely unavailable for any assignment.

• public abstract boolean isResourceAvailable(ResourceInstance, requiredCapacity)

Given a ResourceInstance object, this method returns a Boolean value depending

on whether or not the resource instance is both available and has the required

capacity for an allocation assignment.

4.2.3.1 Managing Multiple Repositories

ROMEO is architected to support managing multiple repositories of resource in-

stances. There is a simple interface that allows requests for resource instances to

be sent to a MultipleRepositoryManager. This class, as shown in figure 4.6, receives

requests, identifies which repository a request is for, and forwards the request to the

appropriate repository. Since the primary responsibility of the MultipleRepository-

Manager class is to forward requests to the appropriate repository, its interface also

defines all the operations that are specified in ResourceRepository class.

4.2.4 Allocation Decision

As discussed in section 4.1, the final allocation decision is made by the Resource

Selector subcomponent. The abstract API for this class is quite simple. Figure 4.7

shows the operations we have defined in the ResourceSelector class of our prototype

resource manager implementation.

• public abstract SelectionPolicy getSelectionPolicy()

This method returns the current selection policy used by the Resource Manager
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Figure 4.6: Multiple Repository Manager

to make resource selection decisions. The selection policy could be as simple as

being random or as complex as an elaborate auction mechanism.

• public abstract ResourceInstance selectOneResource (ResourceCollection, Resource-

Request)

Given a collection of candidate resource instances (ResourceCollection), this

method selects one resource instance to satisfy the resource request using the

current selection policy.

• public abstract ResourceInstance selectOneResource (ResourceCollection, ResourceRequest,

SelectionPolicy)

As in the case of the previous method, given a collection of candidate resource

instances, this method selects one resource instance from the collection based

on the given selection policy.

Figure 4.7: Resource Selector API
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4.2.5 Constraint Management

Our research indicates that many and varied types of constraints may constrain

the ways in which resource instances may need to be selected in satisfying clients’

requests. Some constraints may be best specified in a resource characteristics model,

others might be best specified as additional requirements that are included as part of

a request specification. Many constraints encountered in this dissertation work are

de-facto representations of domain-specific policies that are intended to govern the

overall allocation of resources in a running system.

In section 3.4, we discussed our approach to capturing constraints as additional

requirements associated with requests. We introduced and defined the notion of

group-constraint and restricted-group-constraint. Here we present the API for im-

plementing those constraint specifications. Here, ResourceCollectionSpec represents a

class for implementing both types of constraints mentioned above.

Figure 4.8: Resource Collection Constraint Specification

Earlier we noted that it seems convenient to use a set of attribute-name, attribute-

value pairs to define something that is somewhat similar to a type. This is done by

treating this set of pairs as a set membership constraint that can then also function

as a query on the resource repository. Thus, we create a set of constraints that
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are predefined resource queries, name them, and store them in the repository of

resources. By naming one of these resource queries in a resource request we thereby

constrain the resource instances returned to all be members of the set defined by

this query/constraint. There is a one-to-one mapping for each query name to its

definition. Some example query names from the ED domain could be AttendingMD,

Resident, MainEDBed etc. There is a query definition associated with each of these

query names.

According to the API shown in figure 4.8, you can specify a set of such query

names to define a constraining resource collection. The resource instances that make

up the constraining collection when the group-constraint is instantiated at run time

is the union of resource instances resulting from each of the queries. An important

feature of this constraint specification is that we have designed it have a recursive

structure where a ResourceCollectionSpec constraint can be constrained by another

RsourceCollectionSpec constraint. The following list elaborates the methods we have

defined for ResourceCollectionSpec.

• getResourceQueryNames(): This method returns a set of one or more resource

query names. If there is only one resource query specified in the set (e.g. Nurse),

the resource instances that result from running that query over the repository

constitute the constraining collection when the constraint is instantiated. When

more than one query is specified, the union of the query results is used. For

example, if two query names {AttendingMD, Resident} are specified as the query

names, the resulting resource collection from this constraint would include all

the AttendingMDs and Residents defined in the resource repository.

• getRepositoryName(): This method returns the name of the repository on which

this constraint is defined.
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• getInnerConstraint(): This method returns either null or another ResourceCol-

lectionSpec. If this constraint specification is constrained by another constraint

specification, then this method returns that constraining ResourceCollectionSpec

object. This is the way in which this method uses the recursive nature of this

constraint specification.

• getMaximumCardinality(): This method returns the value that is used to place

an upper limit on the size of the resource collection resulting from this con-

straint. If the resource collection is larger than the specified maximum car-

dinality, an implementation specific strategy is used to filter out additional

resource instances from the collection.

• getResourceCollection(): This method, when invoked, instantiates the collection

of resource instances that meet the specifications of the specified resource queries

as well ass other constraining ResourceCollectionSpec that might be present as

part of this specification. Until this method is invoked, the constraint remains

only a specification of group-constraint or restricted-group-constraint without

any resource instances getting identified and becoming explicitly a member of

the resource collection represented by this constraint.

While using constraint specification as part of the request model, we have aug-

mented the resource requests specified using RequiredResourceSpec to optionally refer

to a ResourceCollectionSpec constraint, which in turn my have reference to other

ResourceCollectionSpec objects that are recursively defined as inner constraints. Fig-

ure 4.9 shows the class diagram illustrating this design.

An example of how this constraint can be used will make the design specification

clearer to understand. Let us suppose we have two sections of an ED: a MainED,

where all patients can be treated and a FastTrackED where only patients with low

acuity levels are treated. Let us suppose there are two query names referring to two
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Figure 4.9: Specification of required resource with additional constraint

groups of resource instances in the resource repository: AttendingMD, and Resident.

Let us also suppose that we define a resource constraint with query FastTrackRe-

sources which refers to a query that results in resource instances that are part of the

fast track area of an ED. Let us now define a resource constraint composed of two

query names: AttendingMD and Resident and a reference to FastTrackResources as an

inner constraint specification. Let us name the constraint as FastTrackMDConstraint.

With these definitions is place, if we specify a request for a Doctor constrained by

FastTrackMDConstraint, it would specify a request for a doctor resource instance who

is either an attending MD or a resident and who is currently working in the fast track

section of the ED. In chapter 6, we shall present some additional examples of using

such resource constraints and demonstrate their effectiveness in specifying complex

domain policies.
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4.3 Resource Manager API to support a task coordination

framework

Earlier sections of this chapter have provided discussions about descriptions of

the low-level components, along with their application programming interfaces(APIs),

for our Resource Manager architecture. We have used these low-level APIs to design

higher level resource management services that are suitable for use in supporting the

execution of processes defined using a relatively generic task coordination framework.

These higher level services offered by our Resource Manager make certain assumptions

about the life-cycle of a task instance and the corresponding resource utilization life-

cycle in such a task coordination framework. Next we discuss the notion of binding

resource instances to task instances in the context of these life-cycle assumptions.

4.3.1 Agent and Non-agent resources

For this work we have adopted the assumption that there are two distinct ways

in which a task instance may need to use a resource instance:

1. As an agent resource

Definition 16 We assume that every task in a task coordination framework re-

quires one resource instance to serve as the entity that is responsible for effecting

the performance of the task. This resource instance ra that is made responsible

for carrying out the task instance t is said to be bound to t as its agent. For

every task instance, there is exactly one agent resource instance.

2. As a non-agent resource

Definition 17 We assume that any task in our task coordination framework

may require resource instances in addition to the agent resource instance. Such

a non-agent resource is any resource instance ri that is used by the agent resource
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ra in carrying out a task instance t. For every task instance t, there can be zero

or more non-agent resource instances.

We assume that it is possible that there can be resource instances in a domain

that cannot be made responsible for carrying out tasks and thus may not be allowed

to be bound to task instances as agents. For example, in the hospital ED domain, a

bed resource may never be made agent of a task instance. On the other hand, any

resource instance r that can be bound to a task instance as an agent resource can

also be bound to a task instance as a non-agent resource.

We also assumed that a task coordination framework would specify the temporal

relationships among the tasks. In addition it is assumed that the task coordination

framework would incorporate a task interpreter facility to supervise the execution of

a task model, which would entail, among other things, assigning tasks to agent re-

sources. In this model, an agent resource would, in turn, be responsible for notifying

the task interpreter when it starts executing a task, when it completes the task, or

when it terminates unsuccessfully its attempts to execute the task. For this arrange-

ment to work, participating agent resources are expected to register themselves with

the Resource Manager and agree to perform the assigned tasks following some estab-

lished protocol of communication between the task interpreter and the agent resource

instances.

It is further assumed that information about the agent resource instances and their

capabilities are available to the Resource Manager. Further it is assumed that each

agent resource instance maintains a ‘To Do’ list (we shall call them agendas) where

task instances are placed once the Resource Manager has bound an agent resource

instance to a task instance. Figure 4.10 illustrates this concept.

Here a Task Coordination Model is provided to the Task Interpreter, which is

a central component of such a framework. The Task Interpreter instantiates tasks

according to the coordination model specification, identifies the agent and other re-

80



Figure 4.10: Resource Manager API for a Task Coordination Framework

source requirements for a task instance and uses that requirements information to

invoke different resource management services. These resource management services

are provided by components of our Resource Manager that implements the high-level

API to support such task coordination.

Figure 4.11 shows the life cycle of a task instance in this framework. Once a

task is instantiated, a suitable agent is identified, the Task Interpreter places the

instantiated task on the ‘To do’ list of the agent resource that has been bound to the

task instance. The Resource Manager provides this identification as a service, making

the assignment of the task instance to the resource instance that will be working as

the agent resource for this task. The task instance transitions into a posted state

once it has been placed on the ‘To do’ list of the selected agent resource. It is then

the responsibility of the agent resource to notify the Task Interpreter once it starts

working on the task instance. At that time, the task instance transitions into the

started state. The agent resource then either successfully completes the execution

of the task instance, in which case it transitions into the completed state, or, in

case the agent resource fails to complete the task instance and terminates it, the
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task instance then transitions into the terminated state. Figure 4.11 shows the state

diagram illustrating this life cycle of a task instance.

Figure 4.11: Life cycle of a Task instance

In this scenario, a set of potential agent resource instances is identified as a result

of instantiating a task instance. If there is no identifiable resource instance that meets

the specified requirements for a task instance, then the Task Interpreter can go no

further with the instantiation process.

To support the execution of such a task instance life cycle, there needs to be a

corresponding resource usage life cycle. The high level task coordination framework

described above thus suggests that the resource usage life cycle be slightly different

depending on whether the resource instance is bound to a task instance as an agent

resource or as a non-agent resource.

In case a resource instance is bound to a task instance as an agent resource, one

possible life cycle for the use of that resource instance is shown in figure 4.12. We shall

use this usage life-cycle as an example to define a higher level API for our prototype

resource management service.

As shown in figure 4.12, an agent resource instance, as part of its usage cycle,

first becomes a member of a set of resource instances that has been identified as the

set of candidates for becoming the agent for a given task instance. This transition

happens as a result of an identify operation performed by the Resource Manager.

Once the client has identified a set of potential agent resource candidates, it sends a
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Figure 4.12: Life cycle for the usage of an agent resource instance

request to reserve one of these candidate resource instances. A successful reservation

results in a binding between an agent resource instance and the task instance. In this

scenario, a reservation is followed by an acquisition of the reserved agent. There is a

subtle difference between a reservation and an acquisition in this task coordination

framework. A reservation binding between a task instance and an agent resource

indicates that the agent resource is willing to work on the task at some point. An

acquisition binding refers to the scenario where an agent resource is bound to a task

instance with the expectation that the agent is going to start working on it in the

immediate future. The underlying assumption for making this difference is that an

agent resource may have different capacity for reservation allocation and acquisition

allocation. An agent may be willing to get reserved for m tasks, while it is capable of

performing n tasks simultaneously. Here m refers to reservation capacity and n refers

to allocation capacity and often m > n. When a resource instance is not getting

bound to a task instance as an agent resource, it does not need to go through the

reservation state. Figure 4.13 illustrates the state diagram that depicts the life cycle

of a non-agent resource instance.
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Figure 4.13: Life cycle for the usage of a non-agent resource instance

Figure 4.14 illustrates the relationship between the life cycle of a task instance

and the usage of an agent resource instance by combining the state diagrams shown

in figure 4.12 and figure 4.11. To distinguish the states of the two entities, the states

of a task instance is shown in shaded rectangles whereas states of an agent resource

instance have been shown in clear rectangles.

Figure 4.14: Combined state diagram of a task instance and an agent resource instance
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The state transition events shown in figure 4.11 also defines the Resource Man-

ager abstract API that would be needed to support such a task coordination model.

The following discussion describes these operations. The API is primarily based on

the agent and non-agent related operations between a Task Instance object and the

Resource Manager. The protocol between the resource client (Task Instance) and the

resource server (Resource Manager) is illustrated using a message sequence chart in

figure 4.15. For a non-agent resource instance, the Task Instance sends the requests:

identify, acquire, and release. For an agent-resource, the task instance sends the re-

quests: identify, reserve, acquire, and release. There is also a request named share,

which is mostly used for notification purposes from resource clients to the resource

management service. Each message from a Task Instance to the Resource Manager

results in a corresponding message back to the caller. All communication between

the two entities are asynchronous.

Figure 4.15 captures the interactions between a resource client and the resource

management service. The task coordination framework presented here expects the

resource management service to process multiple resource requests together. Accord-

ingly, we have specified the high level Resource Manager API such that it will process

as a group all of the requests that have been sent once it has received a message from

the client that all the requests in the group have indeed been sent.

• public abstract void identify(TaskInstance, RequiredResourceSpec, ResourceCollection-

Spec)

This method describes a request to the Resource Manager to check for the exis-

tence of a resource instance, as specified in the resource request (using Required-

ResourceSpec class). A request constraint can also be specified using the param-

eter ResourceCollectionSpec, which places additional requirements on the spec-

ification of the required resource instance. The first parameter of this method

identifies the instance of the task that is the client for this request.
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Figure 4.15: Message Sequence Chart defining the protocol between Task Instance
and the Resource Manager
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• public abstract void reserveAgent(TaskInstance, IdentifiedResource)

This method describes the reservation operation used to reserve an agent re-

source from an already identified set of resource instances. The resource man-

ager notifies the Task Instance with a reservation successful or reservation failed

message depending on the type of the call. If the method call is a blocking call,

the Task Instance blocks until Resource Manager returns with an agent resource

instance reserved to carry out this task.

• public abstract void acquire(TaskInstance, IdentifiedResource)

This method represents the operation of acquiring a resource instance that

has already been identified. In the case of an agent resource instance, this

acquisition happens after the reservation process, as shown in figure 4.15. The

parameter passed to this method is a Task Instance object and an identified or

reserved resource object that has been returned by the Resource Manager as a

result of earlier method calls.

• public abstract void share(TaskInstance, AcquiredResource)

Once a resource instance has been acquired, it may be shared among multi-

ple task instances. This method specifies that such a sharing operation of an

Acquired Resource can be taken advantage of by a Task Instance.

• public abstract void release (TaskInstance, AcquiredResource)

This method is invoked at the end of a Task Instance’s life cycle and effects the

release of a resource instance that had been allocated to the Task Instance. It

is particularly important that the release method be used conscientiously at the

end of execution of a task that has had any reusable resource instances allocated

to it.

• public void close(ThreadGroup)

This method represents the closing of a set of requests that are to be processed
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atomically (i.e. as a group). A parameter of type ThreadGroup is provided

as part of this method. This parameter represents the thread group all these

requests are a part of.

4.3.2 Request Structure to Support a Task Coordination Framework

To support the resource management services required by the task coordination

framework introduced in section 4.3, we modeled a set of classes to represent different

types of resource requests originating from a resource client. Figure 4.16 shows the

set of classes we have defined for this purpose. The top level class is named Resource-

Request. It has five direct subclasses: IdentifyRequest, AcquireRequest, ReserveAgent-

Request, ShareRequest, and ReleaseRequest. There are two subclasses of Acquire-

Request class: AcquireIdentifiedRequest and AcquireReservedRequest. The classes have

been structured to support the command [35] design pattern.

Figure 4.16: Resource Request Class and its subclasses

Each of these request classes represents a specific type of request enumerated in the

task coordination model described in section 4.3. The base class’s process() method

is the primary operation that each of the subclasses implement. In the above context,
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each request for a resource management service could be blocking or non-blocking.

To support processing of both these categories of request processing, each request

class also implements two private methods: processBlocking() and pocessNonBlock-

ing(). There is priority information associated with request classes. The classes also

implement an interface that allows the priorities of two ResourceRequest objects to

be compared to each other.

4.3.3 Support for Blocking Reservation and Acquisition

The preceding section introduced five different types of request classes capturing

the different resource management services corresponding to the usage life cycle of

an agent or non-agent resource instance. These requests are generated from the

different resource clients in the course of execution of a task structure specified with

the task coordination framework we have specified. We noted that some of these

requests can be sent to the Resource Manager as blocking requests, and some as non-

blocking requests. For identify and share, the processing is same for both blocking

and non-blocking requests. It is the reserve agent, acquire, and release operations

that require different processing depending upon whether the requests are blocking

or non-blocking. To support blocking requests, we have designed a Singleton [35]

class named PendingRequests that keeps track of all pending requests for the Resource

Manager and processes the requests at appropriate times. Figure 4.17 shows the

design of this class. There are two groups of requests maintained by PendingRequests

that are waiting to be processed. The first one is a group of agent reservation requests

and the second one is a group of acquisition requests. Since the task coordination

framework described here requires only one agent resource instance but may require

multiple non-agent resource instances for every task instance, the list of acquisition

requests has been modeled as a group of acquisition request groups. This design also
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supports atomic acquisition of resource instances. The following list elaborates the

operations we have defined for this class:

Figure 4.17: Resource Request Class and its subclasses

• public void addAcquireRequestGroup(AcquireRequestGroup)

The parameter AcquireRequestGroup represents a group of AcquireRequests as

discussed in section 4.3.2. This method adds an AcquireRequestGroup to the

group of acquisition requests that are waiting to be processed.

• public void removeAcquireRequestGroup(AcquireRequestGroup)

This method removes an AcquireRequestGroup from the group of waiting acqui-

sition requests.

• public void addReserveAgentRequest(ReserveAgentRequest)

This method adds a new ReserveAgentRequest to the list of agent reservation

requests that are waiting to be processed.

• public void removeReserveAgentRequest(ReserveAgentRequest)

This method removes an existing ReserveAgentRequest from the list of agent

reservation requests that are waiting to be processed.
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• public void processNewRequests(List<ResourceRequest>)

The parameter of this method is a list of ResourceRequest objects. This method

processes a set of new requests sent by a ResourceClient.

• public void processReserveAgentRequests()

This method processes the set of agent reservation requests that are currently

in the pending queue waiting to be processed. The order in which the pending

requests are processed is implementation dependent.

• public void processAcquireRequestGroups()

This method processes the set of acquisition request groups that are currently

in the pending queue waiting to be processed. An AcquireRequestGroup is made

up of a set of resource acquisition requests originating from a single resource

client. There are two important things to note about the implementation of

this method. First, like the agent reservation requests, the order in which the

acquisition request groups are processed is implementation dependent. Sec-

ond, a specific implementation of this method will determine whether atomic

acquisition of resource instances in a group are supported or not.

• public void processReleaseRequests()

This method specifies the operation of processing a set of requests for releasing

resources. Depending on specific implementation, the release operation of a

resource instance may result in the processing of a set of pending requests.

• public int getPendingAcquireRequests()

This method returns the number of acquisition request groups waiting to be

processed by the Resource Manager at any point in time.
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• public int getPendingReserveAgentRequests()

This method returns the number of agent reservation requests that are waiting

to be processed by the Resource Manager at any point in time.
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CHAPTER 5

EVALUATION SETUP

As part of this dissertation, we have developed a prototype resource management

framework following the architecture we described in chapter 4. To evaluate this pro-

totype, we looked for a execution platform to test the flexibility and effectiveness of

our approach. The ideal candidate for such a platform would be a generic one that

can model and possibly support execution and/or simulation of real world system

that require resource management services. We intended to also identify an eval-

uation platform that has a clean and explicitly separate concern for requesting and

using resources. Having such a clean interface for resource requests and use would en-

able us to model resource entities separately and provide a clear focus to examine the

interaction amongst issues related to resource management services and other require-

ments that are fundamental to system execution. To this end, we decided to work

with a framework that supports such clean separation of the resource management

concern, namely the Little-JIL process definition language [84] and its execution envi-

ronment [17]. Processes, workflow and many multi-agent systems are primarily task

coordination systems that define the coordination of resource usage, which includes

both agent and non-agent resources, to enable execution of a set of interdependent

tasks. The Little-JIL process definition and execution framework provides a vehicle

for defining the coordination of agent and other types of resources, the flow of ar-

tifacts and resource instances for achieving a complex goal. As such the Little-JIL

framework creates a particularly appropriate platform for developing and evaluating

new resource management services. The following sections provide a introduction to
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the Little-JIL process definition language, its execution infrastructure, Juliette, and

the simulation framework named JSim we have developed on top of Juliette.

5.1 Little-JIL Process Programming Language

Little-JIL is a process definition language [84] that, along with its interpreter Juli-

ette [16], supports specification and execution of processes involving different agent

and non-agent resources. Here agent resource instances are the ones that are capable

of carrying out tasks by themselves. Non-agent resources, on the other hand, are the

resource instances that are required and used by an agent resource instance to carry

out an assigned task.

The Little-JIL process program includes thre orthogonal components: a) a coordi-

nation specification, b) a resource requirement specification including constraints, and

c) specification of artifacts and their flow. The most immediately noticeable aspect

of a Little-JIL process program is the visual depiction of the coordination specifica-

tion of the process. This component of the Little-JIL process program looks initially

somewhat like a task decomposition graph, in which processes are decomposed hier-

archically into steps. The steps are connected to each other with edges that represent

both control flow and artifact flow. Each step contains a specification of the type of

agent resource needed in order to perform the task associated with that step. Thus,

for example, in the context of an emergency department process, the agents would

be entities such as the doctors, nurses, registration software etc. The collection of

steps assigned to an agent resource defines the interface that the agent must satisfy

to participate in the process. It is important to note that the coordination specifica-

tion includes a description of the external view and observable behavior of such agent

resources. But a specification of how the agent resources themselves perform their

tasks (their internal behaviors) is NOT a part of the coordination specification. The

behaviors of agents can be defined in a separate specification component. It is impor-
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(a) A Little-JIL step construct (b) Control flow and han-
dler badges

Figure 5.1: Little-JIL iconography

tant to note that Little-JIL enforces a sharp separation of concerns, separating the

internal specification of what resource is capable of performing what work and how

agent resources carry out their work, from the specification of how they coordinate

with each other in the context of carrying out the overall process.

The central construct of a Little-JIL process is a step. Steps are organized into a

hierarchical tree-like structure. The leaves of the tree represent the smallest specified

units of work, each of which is assigned to an agent resource that has characteristics

consistent with those defined as part of the definition of the step. The tree structure

defines how the work of these agent resources will be coordinated. In particular, the

agent assigned responsibility for executing a parent node is responsible for coordinat-

ing the activities of the agents assigned to execute all of the parent’s children. Figure

5.1a shows the graphical representation of a Little-JIL step with its different badges

and possible connections to other steps. The interface badge is a circle on the top of

the step name that connects a step to its parent. The interface badge represents the

specification of any and all artifacts that are either required for, or generated by, the

step’s execution. Of greater importance for the work described in this dissertation,

the interface badge also represents the specification of any and all resources needed
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in order to support the execution of the step. Chief among these resources is the

single resource designated as the step’s execution agent. Below the circle is the step

name. A step may also include pre-requisite and/or post-requisite badges, which are

representations of steps that need to be executed before and/or after (respectively)

this step for the proper performance of the step’s execution. A simple form of pre

and post-requisites can be simple predicates that need to be evaluated by the process

execution engine. A pre-requisite is shown with an upside down triagle on the left of

a step bar. Similarly a post-requisite is shown with a regular triangle on the right of

a step bar. Inside the central black box of the step structure, there are three more

badges. On the left is the control flow badge, which specifies the order in which the

child sub-steps of this step are to be executed. A child (substep) of a step is connected

to the parent by an edge emanating from the parent and terminating at the child.

Artifact flows between the parent and child are indicated by annotations on this edge.

On the right of the step bar is an X sign, which represents the exception handler

capabilities of the step. Attached to this badge by red-colored exception edges are

any and all handlers defined to deal with exceptions that may occur in any of the

descendants of this step. Each handler (with the exception of simple handlers) is

itself a step, and is annotated to indicate the type of exception that it handles. Here

too, artifact flow between the parent and the exception handler step is represented

by annotations on the edge connecting them. This edge also bears an annotation

indicating the type of exception handled. In the middle of the step bar is a lightning

sign, which represents the message handling capabilities of the step. Attached to this

badge by message handling edges (also known as reaction handling edges) are any

and all handlers defined to deal with messages that may emanate from any step in

the process definition. A message can be generated from outside the process as well.

The message handling capability is quite similar to the exception handling capability,

but, while exception handlers respond only to exceptions thrown from within their
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substep structure (a scoped capability), message handlers can respond to message

thrown from anywhere (an unscoped capability). If there are no child steps, message

handlers, or exception handlers, the corresponding badges are not depicted in the

step bar.

One of the important features of the language is its ability to define control flow.

There are four different non-leaf step kinds, namely sequential, parallel, try and

choice. Children of a sequential step are executed one after another from left to

right. Children of a parallel step can be executed in any order, including in parallel,

depending on when the agents actually pick up, and begin execution of, the work

assigned in those steps. A try step attempts to execute its children one by one

starting from the leftmost one and considers itself completed as soon as one of the

children successfully completes. Finally a choice step allows only one of its children to

execute, with the choice of which child being made by the agent assigned to execute

the step.

The pre-requisites and post-requisites associated with each step act essentially as

guards, defining conditions that need to hold true for a step to begin execution or

to complete successfully. Exceptions and handlers are control flow constructs that

augment the step kinds. The exceptions and exceptions handlers work in a manner

that is similar in principle to the way in which they work in well known contemporary

application programming languages. Exceptions indicate an exceptional condition or

error in the process execution flow, and handlers are used to recover from, or fix,

the consequences of those situations. When an exception is thrown by a step, it is

passed up the tree hierarchy until a matching handler is found. There are control flow

semantics involved with handler steps to indicate how the program flow will continue

once a raised exception has been handled by the defined handler. Figure 5.1 shows

four different types of continuation semantics for handlers. With these semantics,

a process definer can specify whether a step will continue execution, successfully
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complete, restart execution at the beginning, or rethrow the exception for a higher

level parent step to handle.

As noted above, a complete Little-JIL process definition also contains definitions

of artifacts and resources to complement this coordination definition. Artifacts are

entities such as data items, files, or access mechanisms that are passed between parent

and child steps. The resource management capability is expected to provide language

to specify resource requests that are required for the completion of a step. Section 5.3

discusses the request language supported by ROMEO. A process programmer uses

this resource request language to define the required resources for every step. Juliette

is the execution framework that is used to execute processes written in Little-JIL.

Section 5.4 discusses the architecture of Juliette. Juliette executes Little-JIL programs

by interpreting steps according to their specified sequences. While interpreting a

step, Juliette makes requests to the Resource Manager for first reservation and then

allocation of the designated agent resource followed by allocation requests of other

resources that are required for that step to get executed. The Juliette interpreter

then notifies the selected agent by putting the tasks to be done in the agent’s agenda,

which is an abstraction for something akin to a ‘to do’ list for agents. This is done

by the using a distributed Agenda Management System [55]. Agents, in turn, decide

which work to pick up from their list of tasks waiting in their agenda and to start

working on. It is expected that agents know how to do the tasks and when to notify

back the interpreter that it has been completed. The resource (and thus agent)

definition, as mentioned above, is separate from, and orthogonal to, the Little-JIL

coordination definition. How an agent carries out a particular task is independent

of the coordination dictated by the process. Of course, however, the outcome of a

process is dependent on the assignment decisions of tasks to agents, which is provided

by the resource management service.
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The Little-JIL framework provides us with a very useful and apposite setup to

study the effectiveness of our approach for modeling resource objects, specifying the

resource requests, defining the constraints, and performing the matchmaking and

selection operation to assign resources to tasks. Being able to study these aspects of

resource management carefully should allow us to evaluate our approach of modeling

and managing resource instances in a complex and dynamic environment.

5.2 Modeling an ED Process using Little-JIL

To illustrate how the Little-JIL language can be used to define a process, we

present a simplified process of how care is provided to patients that arrive in a hospital

ED. In subsequent discussions, we shall refer to this process as the ‘VerySimpleED’

process. In figure 5.2, TreatPatientsAsTheyArrive, is the root step of the process.

Hanging from the root step is a sub-process structure defined as a reaction handling

scope. The root step is modeled to receive a message of type PatientArrivalMessage.

Each such message, when received, results in the instantiation of the process sub-tree

TreatOnePatient. This sub-tree defines the process of providing patient care to each

of the patients arriving at the ED. When a new patient arrives, a triage nurse comes

and performs triage on the patient. This activity is captured by the (TriagePatient

step). The required resource characteristic for the agent that can be assinged the

TriagePatient task is defined as part of the step, but, is not visible in the figure. To

view the agent and other resource requirements as well as parameters that are used

or produced by a step, one has to select the step and explicitly look at its interface.

This has been done to reduce the visual clutter while modeling or reading a process

definition. Later we will discuss the exact interface and the request language that

allows a process programmer to specify the required resource characteristics. Let us

suppose a triage-nurse is required to carry out this task. As part of performing triage,

a triage-nurse assigns a acuity level for the patient. At this point, according to the
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process definition of figure 5.2, the patient goes for registration. The RegisterPatient

step requires an agent resource of type Clerk. Here the patient’s insurance and other

information is collected and an id-band is generated and placed in the patient’s arm.

The patient then goes inside the ED for treatment. However, the required resource

for placing the patient inside an ED is a bed resource. If all the beds inside the ED

is occupied, the patient waits in the waiting room until a bed becomes available.

Once a bed becomes available, the waiting patient is placed in it and a nurse

first comes to do an assessment (RNAssessment step), followed by a visit by the

doctor (MDInitialAssesmment step). After assessing the patient, according to the

above defined process, the doctor orders some tests for the patient. Consequently,

the patient will go through the step Tests, which represents the activities of tests

being performed on the patient. In a more complete process, this step is elaborated

and a patient only goes through the test related steps that have been ordered for

the patient. In addition to the tests, there are bedside procedures performed on the

step. These include activities such as ‘suturing’, ‘casting’ or ‘intubation’. There are

some procedures that could be done by a nurse (RN) and there are other procedures

that need to be done by a doctor (MD). The RNProcedure and MDProcedure refer to

these tasks. Once the patients have been treated, tested and performed procedures

on, the attending doctor performs a final assessment (MDFinalAssessmentAndDecision

step) and makes a decision about either discharging the patient or admitting the

patient. Consequently an ED nurse needs to perform some paperwork for admitting

or discharging the patient (RNPaperwork step). Throughout this process, there is a

parameter named patientInfo (not explicitly shown in the figure) that passes through

each step. This parameter carries information related to the current state of the

patient for whom treatment is being provided. As agents carry out different steps,

they may use information carried in the patientInfo parameter coming into a step

as well as a set of values inside the parameter that are then available to latter steps
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Figure 5.2: A Little-JIL definition of a very simple ED process
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(and their agents) subsequently. In chapter 6, we present more elaborate processes

with examples of how state information within the patientInfo parameter can be used

to determine if a step needs to be carried out or not. The above process is largely

sequential and abstracts out some of the complexities of the patient care process in

a hospital ED. Nevertheless, it introduces the basic activities involved in providing

patient care in a hospital ED as well as illustrates how processes are modeled using

Little-JIL. In section 5.4, we shall introduce an execution infrastructure that can take

such a process model and execute it.

5.3 Resource Request Specification in Litlle-JIL

In this section, we present the syntax and symantics of specifying required resource

instances as part of defining a step in a Little-JIL process. We note that a Little-JIL

step defines either a scope (non-leaf step) for a set of tasks or an actual unit of work

(leaf-step) that needs to be performed by an agent resource. In either case, each step

needs to declare specification of the required agent resource instance. The resource

requirements related declarations are attached to a Little-JIL step in what is known

as the interface of a step. The declaration of the agent requirement for a step gets

attached to a parameter associated with each step. This special parameter is given

the name agent. Thus agent is a keyword in Little-JIL that can not be used to name

a parameter that specifies a non-agent resource requirement or an artifact associated

with the step.

5.3.1 Resource Acquisition and Resource Use

During a process execution, each step instance can get access to a resource instance

either by explicitly acquiring the resource instance or inheriting it from and thus

sharing it with its parent step instance. Resource sharing between parent and child

step instances is modeled in the static process by binding the parameters representing
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the resource instance at the parent and the child over the edge connecting them.

In Little-JIL this binding is represented the same way an artifact flow from parent

to child [84] is modeled. For agent resource instances, Little-JIL allows implicit

specification of a step instance inheriting its agent from parent. In this case, if there

is no agent resource specified for a step, it is assumed to be coming for its parent.

The syntax for specifying explicit resource acquisition (as opposed to sharing from

parent) of in a Little-JIL step is to use a filled circle in a step’s interface.

Figure 5.3: Resource acquisition syntax

Figure 5.3 shows a Little-JIL step interface with resource acquisition specifica-

tion. Here, the step MDInitialAssessment’s resource acquisition specification includes

a preferred list of queries and some additional information regarding the protocol to

be used while acquiring the resource and the relative priority of the step. Note that

the parameter name for this resource is agent, which indicates that this resource is

required as an agent to carry out the task instantiated out of the MDInitialAssessment

step. Each item in the preference list refers to a resource query that is to be specified

in the resource model with which the process will be executed. The specification of

‘blocking’ as part of the request specifies the requirement that if there is no resource

instance available to satisfy the request, the resource management service should wait

until such resource becomes available and return with the assignment of the requested

resource instance.
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The syntax for specifying a resource use is an empty circle © with a parameter

name representing the resource instance for that step. As noted earlier, a resource

use specifies the sharing of the resource instance with its parent. Figure 5.4 shows

how a resource use request is specified in a step’s interface. Here the non-leaf step

AssessAndTreat is specifying the use of a ‘Bed’ resource instance that has been acquired

in one of its predecessor steps.

Figure 5.4: Resource use syntax

If a Little-JIL step instance declares a agent acquisition requirement, the agent

is first identified and then reserved through the resource management service before

the step instance is posted to the assigned agent’s agenda. This is done to ensure the

existence of available agent resources that match the steps agent requirements. For

non-agent resources, a step instance first sends identification requests to the resource

manager and then sends acquisition requests once its agent resource that has already

been reserved decides to start the step. This resource usage life cycle is very much

the same as what we illustrated using figure 4.11 and 4.12 in chapter 4.

5.3.2 Request Constraints

Little-JIL allows specification of additional constraints that augments the decla-

rations of required resource specifications in Little-JIL steps. The syntax of these

request constraints are such that they can be declared independently in any scoping

(i.e. non-leaf) step. Resource requirements in any step can be specified to be ad-
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ditionally constrained by a resource request constraint specified in its parent step.

There are two groups of request constraints that can be specified in Little-JIL lan-

guage: a) Resource-Collection constraint ( ) , and b) Resource-Iterator constraint

( )

5.3.2.1 Resource Collection Constraint

The Resource Collection constraint is specified by using an icon composed of two

overlapping circles ( ). Like all other resource related declarations, there are two

parts in specifying a Resource Collection constraint: a parameter and a specification

of the query that defines the constraint. In our request language for specifying such

constraints, we allow one or more query names separated by commas. For exam-

ple, a Resource Collection constraint with a parameter name caregiver may declare

“doctor, nurse” as its specification. ROMEO will take this specification and in-

stantiate the constraint into a collection of resource instances that includes both the

doctor resource instances and the nurse resource instances.

The Resource Collection constraint can optionally have a maximum cardinality

specification associated with it. For example, the declaration of “doctor,nurse,5”

specifies that the constraining collections cardinality, when instantiated, may not ex-

ceed 5. Similar to the resource acquisition and resource use declarations we discussed

in section 5.3.1, there are two separate icons for Resource Collection constraint dec-

laration ( ) and Resource Collection Use declaration ( ). These declarations and

icons appear as annotations attached to the interface of Little-JIL steps. A Resource

Collection constraint can be copied from a parent step to any of its child steps if the

child step has a parameter declared as a Resource Collection Use and that parameter

is bound to the parent step’s constraint declaration.
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When a resource acquisition at a step is constrained by a Resource Collection

constraint specified in its parent step, the edge connecting the two steps carries an

explicit annotation capturing the constraining relationship.

5.3.2.2 Resource Iterator Constraint

The iconography used for declaring a Resource Iterator constraint looks like two

overlapping circles with an arrow through them ( ). The Resource Iterator con-

straint has the exact same syntax as the Resource Collection constraint. The request

language supported by ROMEO accepts declaration of a single query name or a set

of query names separated by commas as the specification of a Resource Iterator con-

straint. Like Resource Collection constraint, Little-JIL language allows specification

of copying a parameter declared as a Resource Iterator constraint at a parent step

to a parameter declared as a Resource Collection Use in any of its child step. Like

before, When a resource acquisition at a step is constrained by a Resource Iterator

constraint specified in its parent step, the edge connecting the two steps carries an

explicit annotation capturing that constraining relationship.

5.3.3 Resource Exceptions

If a resource identification or acquisition for a step instance fails, it may result in

termination of the step instance and consequently an exception may get thrown. In

Little-JIL execution environment, when a step instance is instantiated for execution,

all its required resources are first identified, the agent resource is then reserved and

when the reserved agent decides to start the task, acquisition requests for the agent

and other identified resources are sent to the Resource Manager. While processing the

identification requests, if the Resource Manager fails to find any matching resource

instances for any of the requests, it replies to requesting entity with a ResourceIden-

tificationFailed message, which results in a ResourceUnknown exception being thrown

by the step.
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Figure 5.3 showed an example of specifying agent resource requirement for a step,

where the resource acquisition has been specified to be blocking. Requests for re-

sources can also be ‘non-blokcing’. When the Resource Manager fails to acquire a

resource blocking resource instance, it places it in the queue of pending requests to

satisfy it once resources become available. If, however, the request is ‘non-blocking’,

the resource manager returns a ResourceAcquisitionFailed message, which results in the

termination of the step instance by throwing ResrouceUnavailable exception. In the

execution framework of Little-JIL (Juliette), both ResourceUnknown and Resource-

Unavailable are subtype of ResourceException class.

5.4 Juliette: the Little-JIL Process Execution Environment

We have noted earlier in this chapter that Little-JIL, our chosen process mod-

eling language, has rigorous semantics that allow enactment of a coordinated set of

activities by participating agent resources. Such process execution is achieved by

facilitating the communication among agent resources that are made responsible for

and who, in turn, carry out the activities defined in the process model. The execu-

tion engine ensures that the temporal constraints specified in the process definition

is maintained. It also provides mechanism for acquisition of resource instances and

the flow of artifacts needed to enable and complete an activity. Figure 5.5 provides a

high-level depiction of the Little-JIL execution architecture. The Step Sequencer is a

central feature of this system, receiving requests for execution of the process (for ex-

ample, a notification of a patient arrival), and then supervising the forward progress

of process execution as steps complete.

The Step Sequencer performs its work by accessing the Little-JIL process to de-

termine which step(s) are to be executed next (based upon information about step(s)

that have completed), and then assembles the items needed to get the step executed.

Most specifically, the Step Sequencer consults the Resource Manager to convey requests
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Figure 5.5: Architecture of Juliette

for resources (an agent resource and other supporting resources) that are instances

of the types defined as being needed by the step being executed. The Resource

Manager is responsible for searching its internal repository of resource instances and

selecting those that seem particularly well-suited for meeting the needs of the request-

ing step. Determination of which resource is best suited often requires understanding

the circumstances under which the step is being performed. Information about cir-

cumstances is generally obtained through an inquiry about the state of the process

execution. Once the Resource Manager has identified the needed resource instances,

the step is placed as an item on the agenda of the selected agent resource. This

agenda item also includes the input and output arguments for the step. These argu-

ments are accessed through a Parameter Manager. During execution each agent must

monitor its agenda, select a step to be performed, perform the step, and signal step

completion once result values have been bound to the appropriate output arguments.
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Note that the monitoring of an agenda of a non-human agent (e.g. an MRI or an

electronic health record system) is likely to be done by automatic polling. Live agents

(e.g. doctors, nurses, and registration clerks) must monitor their agendas themselves.

In all cases, an agent may have the capacity to perform more than one step at a

time, and so may have multiple agenda items open simultaneously. An agent signals

completion of a step by placing an annotation in the step instances agenda item, and

passing the agenda item through the Agenda Management system back to the Step

Sequencer, which proceeds with execution of subsequent steps.

5.5 JSim: The Simulation Environment

We have primarily evaluated our resource management service, ROMEO, in an

environment that can simulate process models defined in Little-JIL. For this purpose,

we have developed a simulation engine on top of the Juliette execution framework

described in section 5.4. This simulation capability, named JSim, has been built by

making relatively modest additions and modifications to Juliette. Figure 5.6 shows

the simulation system architecture. This architecture allows any combination of hu-

man and non-human agents to be simulated. In Figure 5.6 workstation icons indicate

the human and non-human agents to be simulated. Note that the main additions to

the execution system are a simulation TimeLine, facilities for simulating the behaviors

of all of those agents that are being simulated (Agent Behaviors), and a facility for

collecting the results of a simulation run. In addition, the Step Sequencer has been

modified (e.g. so that it accepts instructions about when to proceed to the next step

from the TimeLine), and the user now provides information about the distribution of

external messages (e.g., patient arrival messages). The following description provides

a brief description of how JSim works using the example of simulating a hospital ED

process.
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A simulation begins with the user providing an arrival distribution specification,

and specifications of agent behaviors, through the Agent Behaviors module. To begin,

JSim initializes the TimeLine to zero to start off a simulation run, initializes the root

step of the Little-JIL process to be the step currently being executed, and places a

start event for that step in the TimeLine. The simulation then proceeds as an iterative

loop in which the most proximate event in the TimeLine is picked up and simulated.

An event can represent posting, starting or completion of a step instance, arrival of an

external message etc. The perpetuation of the simulation results from the fact that

each step is responsible for placing in the TimeLine one or more events that represent

such key activities as step completion, spawning of substeps, etc. Each such event

has a designated simulated time at which it is to occur. Thus, for example, a step

completion event is generated at the start of the simulation of the step, and the time

of this event reflects how long it is expected to take for the steps agent to complete

the performance of the step. The TimeLine module keeps all events in sorted order,

so that the Step Sequencer can easily determine which event is to be simulated next.

The Step Sequencer then proceeds very much as it does when executing the pro-

cess. In particular, it picks up the events to be simulated in order and for each event,

consults the Resource Manager to obtain the needed resources (including the agent)

and the Parameter Manager to obtain the needed input arguments. Once all needed

resources and arguments have been obtained, the Step Sequencer packages them into

an agenda item and delivers the agenda item to the Agenda Manager for placement

on the agenda of the agent assigned to perform the step. Performance of the step, in

turn, results in more events being placed in the TimeLine. To determine the times at

which different events, such as starting or completion of a task, are to be performed by

an agent, JSim uses the Agent Behaviors module, which has been initialized with in-

formation about how to model agent behaviors. To specify simulated agent behaviors

in a flexible way, we have developed an XML based rule language [83] called the JSim
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Figure 5.6: Architecture of JSim

Agent Behavior Specification (JABS) language. Examples of how agent behaviors are

specified using JABS is briefly discussed in section 5.5.1. This Agent Behaviors spec-

ification replaces the actual interaction with live agents in a JSim simulation. JSim

allows the specification of agent behavior to be done primarily in two ways:

• Stepwise: There is a specification for how a step execution is to be simulated,

and the specification does not vary with different instantiations in the process

or for different agents that may perform the step.

• Agentwise: There is a specification for how to simulate the behavior of each

different agent that may be assigned to carry out each of the steps to which

it might be assigned. Thus, for example, this type of specification allows the

possibility that different agent instances may require different amounts of time

to perform the same step.
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JABS also allows nested specification of agent behavior in order to allow combi-

nations of the above two approaches. In both cases, if the step uses input parameters

or produces output parameters, the Agent Behavior Specification must define how

the agent uses and converts its input arguments into outputs. It is important to note

here that JABS also allows for specification of simple statistical distributions when

defining how long an agent takes to complete a task. Thus we can simulate statis-

tical variations in the amount of time an agent may take while performing different

instances of the same task. In addition to modeling execution time, JSim also allows

for estimation and modeling of the lag time between step assignment and initiation

of step execution. In case of simulating the patient care process in an ED, these esti-

mates have been developed based on interviews with ED professionals, and analysis

of statistical data.

5.5.1 JSim Agent Behavior Specification (JABS)

Figure 5.7 shows an example of part of an Agent Behavior specification. This

specification is provided as part of the configuration of a specific simulation. It is

assumed that the Little-JIL process for which this agent behavior is specified has

steps named PlacePatientInBed, CompleteRegistration, and MDAssessment. Some of

these steps receives a parameter name patientInfo that carries characteristics and

state information. An agent who is made responsible for such a state can modify

fields of that parameter.

In Little-JIL, each step is formally defined using a finite state automaton. During

the execution or simulation of a Little-JIL process, a step goes through the states

posted, started, completed, and/or terminated. Although not required, for very fine-

grained control, JABS supports specification of the behavior of an agent upon entry

into each of these states. Figure 5.7 shows examples of how such behaviors can be

specified upon entry into the started execution state for some of the steps in the
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<s tep name=” PlacePatientInBed ”>
<s ta r ted >

<complete>
<f i x e d value=”10” />

</complete>
</s tar ted >

</step>
<s tep name=” CompleteReg is t rat ion ”>

<s ta r ted >
<group>

<set− f i e l d parameter=” p a t i e n t I n f o ”>
< f i e l d name=” i sReg i s t ra t i onDone ”>

<boolean value=” true ” />
</ f i e l d >

</set−f i e l d >
<complete>

< l i n e a r−range min=”10” max= 2 0 />
</complete>

</group>
</s tar ted >

</step>
<agent name=”ha001−doctor ”>

<s tep name=”MDAssessment”>
<s ta r ted >

<complete>
< l i n e a r−range min=”10” max=”20”/>

</complete>
</s tar ted >

</step>
</agent>

Figure 5.7: Example of Agent Behavior Specification
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process shown in figure 5.2. For example, for the step PlacePatientInBed, the first

rule in the example specifies that once started, this step will get completed after

10 time units regardless of which agent resource instance is assigned this task. The

second rule in the example specifies the time it takes for any agent assigned to the

step CompleteRegistration to be computed using a uniform distribution between 10

and 20 simulation time units. The agent behavior specified as part of completing the

CompleteRegistration step also sets the value of a boolean field inside the patientInfo

parameter to become true. The third rule, which is a nested rule, specifies that a

specific doctor agent, with id ‘HA001’ takes somewhere between 10 to 20 simulation

time units when assigned the task of performing MDAssessment.

5.5.2 Simulation Outputs

As an output of the simulation, JSim produces a trace file, which holds the fol-

lowing information:

• Which agent resource instance was assigned to which task at what time

• When did the agent resource instance start working on that task

• When did the agent complete the task

In the trace output, an instance of a task needs to be differentiated from other task

instances that are generated out of the same Little-JIL step. In the case of ED

simulations, we have done that differentiation based on the patientInfo parameter

that carries an id for the patient it represents. Additionally ROMEO prints out an

allocation file that lists which resource instance and with what capacity was assigned

againt each request generated during a simulation run. ROMEO also prints out

another trace file that describes the utilization level of each resource instance that

was active during a particular simulation.
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CHAPTER 6

CASE STUDIES AND EXPERIENCES

Our primary evaluation vehicle has been JSim, a discrete event simulation infras-

tructure that was developed on top of the Little-JIL execution engine, Juliette. We

have discussed the architecture of both Juliette and JSim in chapter 5 where the dis-

cussion focused on describing how a resource management service is central to both

process execution and simulation. This chapter now discusses the case studies we

have performed using ROMEO, our prototype Resource Manager implementation, in

conjunction with JSim and Juliette. In the following discussion, we use the term

ROMEO-JSim to refer to our simulation infrastructure. All the process models and

many of the experiments presented here are results of many discussions with a do-

main expert, an emergency department physician and ex-director of a large ED in

the United States. The experiments are described in the following subsections.

6.1 Validating Simulation Results

We have built considerable flexibility into our simulation infrastructure through

its factored architecture. This architecture affords expedited access to each of the

key architectural components, and many different points at which the parameters

used to configure these components can be tuned and adjusted quickly. This has

been useful in facilitating the tuning and setup of specific simulations or sets of

simulations. These experience have reinforced our view that resource management

facilities such as ROMEO can be critical components of a discrete event simulation

infrastructure. In fact, we have observed that it is not uncommon for the output of a
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simulation to be strongly affected by how ROMEO assigns resource instances to tasks

in the simulation. Thus correct behavior of ROMEO should be expected to be closely

connected to the validity of the results produced by JSim. The first set of steps we

took to gain some confidence in the simulation results produced by ROMEO-JSim

included modeling a simplified hospital ED process and running simulations with

a scenario where patients arrive at a fixed interval (constant rate). We performed

a number of sanity checks on the results of these simulations. For example, we

manually inspected output traces of the initial ED simulations to establish that each

simulated patient was processed by the steps that it was supposed to go through, the

agent resource instances were assigned to the ED tasks as expected, and each agent

started and completed steps according to the behavior specified in the simulation

input configuration. The following subsections describe some other sanity checks we

performed to gain confidence on our simulation results.

6.1.1 Impact of Varying a Bottleneck Resource

After the initial inspection of the outputs of some ED simulations, we ran some

more simulations using a simplified ED process. Our objective was to look at the

trends in simulation results with some specific changes in the resource mix. For the

purpose of these simulation runs, we used the process shown in figure 6.1. We refer

to this process as ‘SimpleED’ in the following discussion.

In the ‘SimpleED’ process, when a patient arrives at the ED, s/he first gets seen

by a triage-nurse (TriagePatient step) and consequently gets a triage acuity level as-

signed. The patient then goes to the registration clerk for registration (RegisterPatient

step). The registration clerk collects information from the patient including insur-

ance information and puts it in the patient’s record. The registration clerk also

generates and places an id-band on the patient. The patient then goes inside the

treatment area of the ED (often referred to as main-ED) if a bed is available. If all
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Figure 6.1: A Simple ED process in Little-JIL

beds inside the main-ED are occupied, the patient waits in the waiting room until

a bed becomes available. This is modeled by a blocking acquisition request for a

bed resource instance in PatientInsideEDScope step. Once a bed is successfully ac-

quired, the patient is placed in a bed (PlacedInBed step) inside the main-ED. The

bed placement activity also includes the activity of having the patient change into

hospital clothing. Usually a nurse resource instance is made responsible (i.e. made

the agent) for the bed placement step. Inside the main-ED, the patient is first seen

by a nurse in the RNAssessment step, followed by an assessment by the attending

doctor (MDInitialAssessment step). The doctor assessment may result in some tests.

These test related activities have been represented as a single abstract step named

TestsScopeAbstract. There are also some bedside procedures that may be performed

on the patient as shown by the step reference named ProceduresScope. Figure 6.2

shows the elaboration of DischargeOrAdmitScope. Once all the tests and procedures
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are done, the attending doctor makes a final assessment of the patient and decides

whether to admit the patient or to discharge her/him. This is represented by the

MDFinalAssessmentAndDecision step, which is depicted in a diagram (figure 6.2) that

is shown separately from the one shown in figure 6.1. At the end of this ‘SimpleED’

process, RNPaperWork step is performed. Usually this step is performed by a nurse

resource instance.

Figure 6.2: Discharge part of ‘SimpleED’ process

Both this description, and actual observed experiences, suggest that in the ‘Sim-

pleED’ process, beds are potentially bottleneck resources. Thus we decided to study

the actual criticality of bed resources by contriving a set of simulations where the

numbers of beds was varied. In doing so we hoped to both gain better understanding

of the importance of bed resources, and also validate the accuracy of our simulations.

Thus, we ran simulations of patient flow through this process using different numbers

of available beds, and, we collected data about the length-of-stay (LOS) for each

patient for each such simulation. These simulations were repeated with a resource

mix that varied only in the number of available bed resource instances. With fewer

beds, we expected to see many of the patients spending more time waiting and thus a

high average LOS. With more beds added to the resource mix, the simulation output

was expected to show reduced average LOS. We plotted the average LOS against

the increased number of beds and the graph did demonstrate the expected behavior.
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Figure 6.3a, shows the output of this experiment. As more and more beds were added

into the resource mix, the LOS metric improved (i.e. reduced). However, the improve-

ment diminished with the increase of this one resource only and there was no impact

of adding that resource after a certain point. This graph is basically demonstrating

a simple case of the ‘law of diminishing returns’. Of course these results apply only

to a scenario in which patients arrive at fixed time intervals. Different patient arrival

distributions might lead to different results. But this set of simulations did increase

our confidence in the soundness of the simulation system, thus also suggesting that

similar simulation runs be tried with different patient arrival patterns and different

resource mixes.

(a) Avg. LOS with increased beds (b) Avg. doctor util. with increased beds

Figure 6.3: Validating Simulation Results

Thus, in particular, it seemed reasonable that if more beds are added to the re-

source mix, the utilization levels of other resource instances might increase. This

is because having more beds seems to result in more patients simultaneously get-

ting treatment inside the main-ED and thus requiring services from other resource

instances such as doctors, nurses, etc. Consequently, that suggests that these other

resources would be utilized more heavily with increases in the number of beds in the

simulation. Further, we conjectured that this improvement would be less and less as

we continue to increase only the bed resource instances keeping the quantities of all the

119



other resources fixed. To further validate the behavior of ROMEO-JSIM, we collected

utilization levels of all resource instances (not just the bed resource instances) used

in the previously described set of simulations. This set of simulations used a resource

mix that contained 2 triage nurses, 2 registration clerks, 4 doctors and 4 nurses. We

took the utilization levels of each of the doctors as determined by the ROMEO-JSim

simulation runs, and computed average doctor utilization for each. Figure 6.3b shows

the graph of these results. As we expected, the average doctor utilization improved

as more and more patients were allowed inside the ED simultaneously as a result of

adding more beds. However, the improvement in the utilization was diminishing and

gradually flattened out as the number of beds continued to increase.

6.1.2 Little’s Law

In queuing theory, there is an intuitive, yet remarkably simple, equation that

describes the steady state behavior of a resource utilization based system known as

Little’s law. It states that the long term average number of customers in a stable

system L is equal to the long term average arrival rate λ multiplied by the long term

average time the customer spends in the system (i.e. length-of-stay), W .

L = λ×W

A system is considered to be stable if it is non-preemptive and if the rate at

which the customers arrive at the beginning service station is the same as the rate

at which they go on to the next service station and so on such that the customers

leave the overall system at the same rate as well. In other words, in this definition of

a stable system, there should not be any queue occurring in any part of the system

that continues to grow larger as the simulation proceeds. It is possible to create such

a situation with our simulation infrastructure, ensuring that we have enough resource

instances for each of the service stations (triage, registration, assessment, procedures,
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etc.) of our ‘SimpleED’ process to assure that arriving patients do not have to wait

anywhere as a result of resource contention. By doing this we wanted to determine

whether our ROMEO-JSim systems behavior was consistent with the predictions of

Littles Law.

To do this, we configured the arrival of one hundred (100) patients to the ED

following a Poisson distribution. We set the mean of the distribution to be thirty

(30), which translates to roughly two (2) patients arriving per hour. We set up the

simulation with fixed service times (step times) for each of the services and loaded

the simulation set up with a large number of resource instances:

• Beds: 100

• Nurse: 100

• Doctor: 100

• TriageNurse: 100

To keep track of the number of patients in the system at any point in time, we

incremented a variable each time the first step of the process (TriagePatient) was

started, and decremented the variable each time the last step of ‘SimpleED’ process

(RNPaperwork) was completed. An output recording the value of this variable was

produced in addition to the simulation trace. At the end of the simulation, we

computed the mean number of patients in the ED from this output. The result of

the simulation shows the following:

• Average LOS (W ): 137.42 = 2.29 hours

• Mean number of patients in the ED (L) : 4.58

• Patient arrival rate (λ ): 2 per hour
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So, we can see that in this particular stable system, as simulated by our infras-

tructure, the following holds:

λ ∗W = 2 ∗ 2.29 = 4.58 = W

We note this is a very special case of a stable system. Ideally, we need to run

a system for a very long time such that the arrival rate for each service station

stabilizes to a fixed rate and compute the parameter values under such a simulation.

Nevertheless this exercise provided us with one more sanity check on the validity of

our simulation infrastructure.

6.1.3 Comparing with a Commercial Simulation Product

To gain more confidence in the inner workings of the ROMEO-JSim infrastructure

and simulation results produced by it, we decided to compare our results with a well

established commercial discrete event simulation product: Arena [27, 40]. Arena is

an object-based, hierarchical modeling tool that has been used in a wide range of

simulation applications. Of particular relevance to our studies is the fact that many

ED simulation studies have used Arena as their modeling tool [30, 68, 7, 29].

(a) Arena vs. Little-JIL (50 patieints) (b) Arena vs. Little-JIL (100 patieints)

Figure 6.4: Comparing Little-JIL based simulations with Arena

For purposes of comparison, we modeled a very simple ED process using both

ROMEO-JSim and Arena and ran simulations with patients arriving at a fixed rate.
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The process we used for this study is very similar to the one showed in figure 5.2.

The task times were kept fixed and only one type of resource was varied, namely the

bed resource. Figure 6.4 shows the comparison graphs. We plotted both how long the

simulation ran in total time as well as the average LOS for each patient. We simulated

fifty (50), one hundred (100) and two hundred (200) patients. Here we have shown

the simulation results produced by scenarios with fifty (50) and one hundred(100)

patients. We went through a couple of iterations of simulations and inspections to

ensure that details of both the Arena and the ROMEO-Jsim models were describing

the exact same process. As one can see, the simulation tools produced exactly the

same results for the different numbers of patients.

6.2 Capturing ED Domain Policies

This dissertation aims to evaluate the usefulness of our approach of resource and

request modeling as well as our proposed overall resource management architecture.

One evaluation exercise that seemed particularly challenging was to see if our ap-

proaches were effective in expediting the evaluation of complex domain policies. We

expected that such studies might sharpen an evaluative focus on identifying the effec-

tiveness of the flexibility derived from our proposed separation of concerns, and from

the various tuning parameters incorporated. Our hypothesis has been that the correct

separation of concerns and apposite resource and request modeling mechanism would

allow one to model a wide variety of simulations quickly, thus speeding the cycle

of asking interesting what-if questions, getting back answers, and then formulating

follow-up what-if questions suggested by the answers. Consequently, we have tried to

model a number of different policies from the ED domain. One of the first policies

we modeled is the following:

In a hospital ED, the doctor who performs InitialAssessment on the
patient must be the same doctor who performs the FinalAssessment and
makes the decision regarding discharging or admitting the patient.
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We have used the notion of restricted-group-constraint that we introduced through

definition 14 in section 3.4 to support simulations that implement this policy. We

introduced the syntax for implementing this notion as a constraining request in sec-

tion 5.3.2. In ROMEO-Jsim, a Little-JIL resource-collection constraint is used to

implement this type of constraining request. Using this, we have specified in the ‘Sim-

pleED’ process that the resource requirements specified for steps MDInitialAssessment,

MDProcedure, and MDFinalAssessmentAndDecision not only require a doctor, but that

the doctor required for each of these steps has to be the same as for the other steps.

We specified this by declaring a resource-collection constraint in the PatientInsideED-

Scope non-leaf step.

Figure 6.5: Declaration of the same-doctor constraint

The constraint, as shown in figure 6.5, is specified using a parameter named

DoctorConstraint. This parameter is copied down the tree from parent step to

child step through binding annotations on the edges. At the leaf step level, where

agent acquisition is specified, the edge connecting the leaf step (MDInitialAssessment)

to its parent AssessAndTreatScope needs to declare the constraining annotation be-

tween the parameter (agent) specifying the request at the leaf step to the parameter

specifying the constraint (DoctorConstraint) in the parent step. ROMEO, when

passed the request for maintaining such constraints and resource instances for steps,

ensures that all requests for resource instances that are returned actually do satisfy

the constraint. When the constraining collection (e.g. the set of resource instances
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instantiated out of the DoctorConstraint) is given a maximum cardinality of 1,

it amounts to specifying that both the steps whose resource requirements are con-

strained by this resource-collection constraint, must get the same resource instance

assigned to them.

6.2.1 Impact of Same-Doctor Constraint

While running experiments with ROMEO-Jsim for comparison with Arena, we

ran a number of simulations using our model and varying the mix of resources. We

were trying to determine the optimum resource mix for a given set of patients and a

specific arrival rate of n patients per hour where n = 1, 2, · · · , 20.

Table 6.1: Optimum resource mix for different patient arrivals

Arrival Rate Number Number Number Number Number
pts/hr MDs RNs TNs Clerks Beds

1 1 1 1 1 2
2 1 2 1 1 5
3 2 2 1 1 5
4 2 2 1 1 10
5 3 3 1 1 9
6 3 3 1 1 13
7 4 4 2 2 13
8 4 4 2 2 16
9 5 5 2 2 16
10 5 5 2 2 20
11 5 5 2 2 21
12 5 5 2 2 23
13 5 5 2 2 22
14 6 6 2 2 20
15 6 6 2 2 20
16 6 6 2 2 21
17 6 6 2 2 22
18 7 7 3 3 43
19 7 7 3 3 43
20 7 7 3 3 37
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Figure 6.6: The impact of adding doctor constraint

Table 6.1 shows the result of that experiment where one hundred (100) patients

were simulated being treated using the ‘VerySimpleED’ (figure 5.2) process. From

these results we found that for the ‘VerySimpleED’ process, with seven (7) patients

arriving per hour, the optimum resource mix is a combination thirteen (13) beds,

four (4) doctors, four (4) nurses, two (2) triage-nurses, and two (2) clerks. We then

repeated this experiment by using this same resource configuration but with a slightly

elaborated ‘SimpleED’ process that has just a few additional steps that simply shift

the simulation by a fixed time interval.

We ran simulations of patients going through the ‘SimpleED’ process with and

without the doctor constraint. For this particular experiment we simulated three

hundred (300) patients arriving at a constant rate and flowing through the process.

Figure 6.6 shows the average LOS for the two simulation configurations. As intuitively

expected, this experiment shows that adding the constraint increases the average

LOS. In this particular setup, having the constraint maintained all the time adds on

average 25.85% time to each patient’s stay in the hospital ED. We were interested in

discovering the impact of such policy change through simulation, but were particularly

interested to note how easy it was to perform such studies by setting up the different
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simulations. In this particular example, the additional effort to specify the constraints

throughout the process took a Little-JIL process definer about thirty-five (35) minutes

of extra modeling time. To set up the simulation where there were no constraints,

it was only a matter of removing the constraint annotations on the edges between

the steps where resource-acquisitions were declared (e.g. MDAssessment and Final-

MDAssessmentAndDecision etc.). To set up the new simulation without the doctor

constraints thus needed only a few minutes. Placing the constraint specification as

part of the request model thus made it remarkably easy to set up these different

simulations, and supported our sense of the power obtained through the separation

of concerns and flexibility built into our approach to resource management.

6.2.2 Dynamic Substitution

Another focuses of this dissertation has been to determine the value of providing

strong support for the modeling of complex situations where resource instances’ be-

haviors may change dynamically. More specifically, we were interested in capturing

and supporting scenarios where a resource instance can be used to satisfy a request

only under some specific execution state, but not under other execution states. Such

state-dependent behavior of resource instances might, for example enable them to

dynamically substitute for each other, depending upon contexts established by the

execution state of the process. To study the effectiveness of our resource manage-

ment service in specifying and simulating scenarios with dynamic substitutability, we

again considered the ‘SimpleED’ process shown in figure 6.1. We set up a simulation

experiment with the following resource substitutability scenario:

• PlacePatientInBed and RNPaperwork for discharging a patient do not always

have to be done by a regular registered nurse (RN). The triage nurses who are

specified as the performers of triage operations can substitute for an RN for

performing the placement of a patient in a bed or for performing discharge pa-
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perwork when the ED is overcrowded, all RNs are busy, and a resource instance

of type TriageNurse is available.

• RNPaperwork can also be performed by a registration clerk when the ED is

overcrowded, the clerk is idle, and there is no nurse available for performing the

discharge paperwork.

We measure the crowdedness of the ED based on the number of patients who have

gone through TriagePatient and RegisterPatient and are waiting for a bed to become

available inside the main-ED. This scenario, in the real world, describes the patients

who are sitting in the waiting room of an ED after being triaged and registered. To

simulate this scenario, we changed the agent resource request for PlacePatientInBed

and RNPaperwork from Nurse to default. In ROMEO, a request for a default agent

resource means whichever resource instance is capable of providing the service. Here

the service is the activity, i.e. placing a patient in bed (PlacePatientInBed) or doing

the paper work for discharging a patient (RNPaperwork). As part of the repository

that holds descriptions of the resource instances of a domain, ROMEO maintains a

table named GuardFunction that defines the services a resource instance is capable of

offering under various system execution states.

ServiceName ResourceGroup Condition
PlacePatientInBed Nurse true
PlacePatientInBed TriageNurse StateServer.PendingRequests(“bed”) > N
RNPaperwork Nurse true
RNPaperwork TriageNurse StateServer.PendingRequests(“bed”) > N
RNPaperwork Clerk StateServer.PendingRequests(“bed”) > N

Table 6.2: Guard function defining services offered by resource instances

Table 6.2 shows how ROMEO defines the guard function on the capabilities or

offered-services of a group of resource instaces such as nurses or registration clerks.

In rows 2, 4, and 5 of table 6.2, the N gets replaced with a specific number for a
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particular simulation run. In most of our simulation experiments presented here, we

have worked with N = 3. In performing this simulation experiment, we kept the

resource mix from our last set of experiments (i.e. 13 beds, 4 doctors, 4 nurses, 2

triage nurses and 2 clerks). However, we added a little more variability in our ED

process model. Instead of fixed step execution times, we specified the time taken to

perform each step execution as being provided by a triangular distribution. Moreover,

we generated patient arrivals using a Poisson distribution with a mean inter-arrival

time of nine (9) minutes, which translates to roughly seven (7) patients per hour.

With these additions to the simulation specification, we ran each simulation five (5)

times with three hundred (300) patients and looked at the average of the simulation

results. To study the impact of such dynamic substitution, we computed the number

of patients waiting in the waiting room (i.e. waiting for a bed to become available)

every time a new patient arrived. We plotted this data in figure 6.7.

Figure 6.7: The impact of dynamic substitution in the waiting room.

As one would expect, allowing dynamic substitution impacts the LOS of the pa-

tients positively as evidenced by the level of crowdedness in the ED. It is our conjec-
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ture that such dynamic substitution allows us to model complex resource usage is a

real world dynamic environment more accurately.

Like the last experiment, here again, we were interested in studying the ease

of setting up such simulations using our ROMEO-JSim infrastructure. We found

once we decided on the substitution we wanted to experiment with, all the changes

in the setup to devise the new simulation experiment took us less than thirty (30)

minutes. However, we did not stumble upon an interesting substitution at our first

attempt. A few hours of trying different combinations led to the substitution rules we

presented here. But it seems important to note that the power and flexibility of our

approach to resource specification and management enabled us to try many different

combinations in the space of a few hours, thereby materially facilitating the progress

of this experimentation.

The above dynamic substitution scenarios point to a domain policy where a nurse

dedicated to performing Triage is given the responsibility of some other tasks when

the ED gets overcrowded. The initial results reported in figure 6.7 led to the question

of whether it might not actually be more realistic to model a somewhat more complex

domain policy stating that a triage nurse is allowed to substitute for a regular nurse

in some activities only when there is at least one triage nurse left available to attend

to a newly arrived patient. To model this more complex domain policy, all we had to

do was to add the following condition in the GuardFunction table. This table, in the

ROMEO resource repository, keeps track of the execution state dependent dynamic

capabilities of resource instances. The time for changing this setup was less than five

(5) minutes.

ServiceName ResourceGroup Condition
PlacePatientInBed TriageNurse StateServer.PendingRequests(“bed”) > N

&& StateServer.Available(“TriageNurse”) > 1

Table 6.3: Elaboration of substitution condition for triange nurses
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We repeated the experiment with this additional constraint governing the dynamic

substitution of resource instances. Figure 6.8 shows the impact on average LOS of

patients as a result of allowing dynamic substitutability of resource instances following

different domain policies.

Figure 6.8: Impact on LOS with dynamic substitutions.

6.2.3 Dynamically Changing Process based on Resource Availability

In articulating his ideas regarding the potential future direction for research re-

lated to resource scheduling [76], Prof. Stephen Smith suggested that one of the

most promising and least explored areas of resource scheduling research is the com-

bination of adaptive planning and dynamic provisioning of resources. His paper also

indicated that existing tools are not very effective in studying such dynamic com-

bination. In this section we explore the ability of our resource management and

simulation framework to support some dynamic changes in the process flow based on

the runtime availability of resource instances and its impact on LOS for patients. In

this experiment, we have used a more elaborate ED process than the ones presented

earlier (‘VerySimpleED’ and ‘SimpleED’). We shall refer to this process as ‘EDCare’.
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This process, as shown in figure 6.9, models exceptional situations and handling of

exceptional flow. It also captures more parallelism, specifies more detail using more

steps, and uses pre and post requisites in Little-JIL language all in attempting to get

closer to the real world patient care process in an actual hospital ED.

Figure 6.9: The root diagram of ‘EDCare’ process

Consultation with our ED domain expert (an ED physician and ex-director of

a large ED in the United States) resulted in investigating the simulation of an ED

process in which different incoming ED patients follow different paths depending on

the degree of availability of bed resource instances. In particular, the domain expert

was interested in looking at the impact of a policy where after going through triage, a

patient is placed immediately into the main-ED without waiting for registration to be

done. In some large hospitals, there are facilities to perform a two step registration

inside the treatment area of the ED, known as quick registration. In a quick regis-

132



tration scenario, a clerk collects minimal information about the patient to generate

an id-band and then the rest of the registration, which includes collecting of such

information as insurance etc., is completed in parallel with the treatment process. In

other words, the treatment of the patient is started immediately after triage if beds

are available and the registration is completed at some point during the patient’s stay

at the ED. This scenario is modeled in figure 6.9. The nominal flow of this process

takes a patient through the TriagePatient step, and then immediately tries to acquire

a bed through the AcquireBedNonblock step. If the bed acquisition is successful, the

flow of the process continues to the process sub-tree rooted at TreatPatientInsideED.

In case the step AcquireBedNonblock fails to acquire a bed immediately it throws a Re-

sourceUnavailable exception which propagates up to TreatOnePatientScope step, where

a separate process (BedNotAvailableScopoe) is defined to handle the ResourceUnavail-

able exception. The handler process, starts by performing the step RegisterOutside

and then tries to acquire a bed with a blocking request call.

Figure 6.10: The patient care process inside the treatment area in EDCare
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Figure 6.10 shows the process inside the treatment area of the ED once a bed has

been acquired and the patient has been placed inside the main-ED. The process is

largely self-explanatory with comments placed using yellow ‘post-it’ notes regarding

resource acquisition and resource usage. Like other ED processes presented in this

study, there is a parameter named patientInfo that is instantiated with the informa-

tion about each patient and flowed through the process from step to step as an artifact.

There is a Boolean field in the patientInfo object named isRegistrationComplete that

describes whether registration has been completed for a patient or not.

Figure 6.11: The impact of blocking and nonblocking bed acquisition

If a patient goes through the RegisterOutside step, we specify the agent behavior

such that after successful completion of the test, the patientInfo parameter flowing

out of this step will have the value true for patientInfo.isRegistrationComplete field.

We specify this behavior using JABS [83] syntax in the JSim input configuration

file. While executing InsideEDScope, JSim will check to see if the pre-requisite is

satisfied. In this process, the pre-requsite checks that registration for this patient

has been completed. If the pre-requisite fails, it will throw a RegistrationNotDone

exception, which will propagate to its parent step, InternalRegistrationScope, where
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the exception will be handled. The handler subtree will then specify that the patient

go through QuickRegistration, with registration being completed in parallel with other

treatment related steps. We ran the simulation a number of the times with the

following configurations:

• Patients: 100

• Beds: 20

• Doctor: 4

• Nurse: 4

• Clerk: 2

• TriageNurse: 2

For this set of simulation runs, the patient arrivals were generated using a Poisson

distribution with mean inter-arrival time of six (6), which translates into roughly ten

(10) patients per hour. The execution times of the steps were specified using a

triangular distribution. We ran each configuration of the process five (5) times and

looked at the average of all the average LOS measures from the simulation runs.

Figure 6.11 summarizes the output of these simulations. As intuitively expected,

the situation where a patient is immediately placed inside the ED when a bed is

available results in improved patient flow. However, like earlier experiments, our

focus was also on observing how easy or difficult it is to set up our simulation and

resource management infrastructure for such an experiment. So, we timed ourselves

in doing the simulation setup. The process augmentation required about 2 hours

and 24 minutes. Once we had the process model elaborated, switching from a non-

blocking request scenario to the blocking request scenario required less then twenty

(20) minutes to complete.
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6.2.4 Impact of Request Priority

In this experiment, we looked at the impact of specifying relative priorities for

resource requests, based on the step from which a request is generated. We used the

‘VerySimpleED’ process shown in figure 5.2 as the basis for this set of simulations.

We were interested in simulating what impact, if any, is observed if the simulation

specifies the order in which an agent does tasks based upon their specified priority.

We were also interested in illustrating how our model would specify such an ordering

based on the relative priorities of the process steps. To illustrate the scenario with

an example, consider the case where there are two tasks for two different patients,

patient-1 and patient-2, that can be assigned to a doctor. Let us suppose the task

of MDFinalAssessmentAndDecision for patient-1 and the task of MDInitialAssessment

for patient-2 are both ready for the doctor to perform. If a doctor who can perform

both the tasks becomes available, and if both tasks are assigned to such a doctor,

what impact does it have if the doctor always does one task before the other. For

example, if we put a relative higher priority on MDFinalAssessmentAndDecision over

MDInitialAssessment, this means the doctor always gives higher priority to discharge-

related tasks over attending to a new patient. The intuitive idea behind experimenting

with such a domain policy would be to investigate if such a policy can improve patient

flow in a crowded ED.

Task Groups Step Name Agent Resource
Group 1 MDInitialAssessment Doctor

RNInitialAssessment Nurse
Group 2 MDProcedure Doctor

RNProcedure Nurse
Group 3 MDFinalAssessmentAndDecision Doctor

RNPaperwork Nurse

Table 6.4: Task groups for relative priority experiment
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Step Name Min Mode Max
TriagePatient 3 5 10
RegisterPatient 5 7 10
RNAssessment 5 7 10
MDInitialAssessment 5 10 15
PerformTests 30 30 30
RNProcedure 5 15 30
MDProcedure 5 15 30
MDFinalAssessmentAndDecision 5 7 10
RNPaperwork 5 10 15

Table 6.5: Triangular distribution of the step execution times in VerySimpleED

To assign relative priorities, we identified three task (step) groups. Table 6.4 shows

these groups and the agent resource requirement specified in each Little-JIL step.

The requests associated with each of the above steps also declares a numeric value for

its priority specification. We set up three different scenarios with different priority

combinations for the task groups. For this set of simulations, we used a triangular

distribution for the step execution times. Table 6.5 shows the step execution times

we used.

We ran each simulation configuration five (5) times and computed the average

LOS each time. Table 6.6 shows the average of all runs for each different priority

combination. Although small, the simulation results show a modest improvement in

the average LOS when we gave discharge related tasks higher priorities than other

tasks. The results also show that for this particular process and patient arrival sce-

nario, the best priority combination was to have higher priority for discharge related

tasks (MDFinalAssessmentAndDecision, followed by tasks that are performed toward

the beginning of the patient care process (MDInitialAssessment and RNInitialAssess-

ment), followed by tasks that are performed on patients at the middle of their stay

at the ED (MDProcedure and RNProcedure).

This experiment, like the other presented in this chapter, was not meant to sug-

gest that we have succeeded in obtaining definite answers to questions about which
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prioritization policies produce reduced LOS results in the ED. Rather, our focus was

to demonstrate that such interesting ‘what-if’ questions can lead to interesting ob-

servations. As usual, we also tried to get a sense of how easy or difficult it was for us

to set up this experiment using ROMEO-JSim. We used a novice user of ROMEO-

JSim to setup this experiment and clocked how long it took for the user to set up

the required configuration. We found that changing the relative priorities to set up

each configuration of the experiments took a small number of minutes (less than 10

minutes in each case).

RNAssessment RNProcedure RNPaperwork
MDInitialAssessment MDProcedure MDFinalAssessment Length of Stay

AndDecision
No Priority No Priority No Priority 699.26

Low Priority Low Priority High Priority 684.00
Medium Priority Low Priority High Priority 663.77

Table 6.6: Impact on LOS based on different priority combination

6.3 Resource Sharing in a Multi-department ED

The final simulation related case study we present was performed on an elaborate

patient care process that modeled two separate departments within an ED, namely

main-ED and fast-track-ED. In this experiment, we modeled patients with different

acuity levels and used that acuity information to decide at run time which depart-

ment a patient was going to be placed in. ROMEO modeled resource instances that

included information such as which department (main-ED or fast-track-ED) the re-

source instance was a part of. This process also elaborately modeled different tests

and bedside procedures that are usually ordered on patients visiting an ED. Fig-

ure 6.12 shows the root diagram of this process. For the purposes of this discussion,

we shall refer to this process by the name ‘EDCare2’.
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Figure 6.12: Root diagram of EDCare2 process

The ‘EDCare2’ process was developed by elaborating the ‘EDCare’ process intro-

duced in section 6.2.3. The immediately noticeable difference in the root diagram is

the presence of two separate sub-trees rooted at the MainED step and the FastTrack

step. The edges connecting these two steps to their parent have predicates associated

with them that evaluate the patientInfo parameter’s triageAcuity value. If the pa-

tient’s acuity is less than or equal to two (2), the patient is placed in fast-track-ED,

otherwise the patient is placed in the main-ED.

Figure 6.13 shows what steps a patient goes through once s/he is placed inside the

main-ED. This is similar to the main-ED part of the ‘EDCare’ process. However, the

‘EDCare2’ processes, PerformTests and BedsideProcedureMainED refer to elaborated

process structures shown in another diagram. The primary difference between the

main-ED and fast-track-ED subprocesses are that the former has more tests, bedside

procedures, and assessment steps than the latter. Figure 6.14 shows some elabora-
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Figure 6.13: Patient care inside main-ED in EDCare2 process

tion of the PerformTests subprocess. Each test in this process model is guarded by

predicates depending on the Boolean valued fields within the patientInfo parame-

ter object. Note that PerformTests is a parallel non-leaf step, which indicates that

the tests ordered on a patient can take place in any order including simultaneously.

However, there is a PatientConstraint resource collection constraint specified with a

maximum cardinality of one (1). Each of the testing steps (i.e. ObtainSample, Per-

formXray, PerformECG, PerformCTScan), although not PerformLab, needs to acquire a

Patient resource instance constrained by this constraining collection. ROMEO, when

presented with the acquisition request for a Patient resource with the constraining

collection of maximum cardinality one (1), ends up only allowing one of the steps to

be successful in acquiring the patient. Thus, this constraining mechanism allows us

to model the constraint that all the steps that require the patients physical presence

may occur in any order but no combination of them may take place concurrently.
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Figure 6.14: Elaboration of step PerformTests

Figure 6.15 shows the bedside procedures that have been modeled in the ‘EDCare2’

process for patients going into the main-ED. We show the rest of the processes in

appendix ??. With this detailed ‘EDCare2’ process, we were interested in running a

set of simulations that respected the following domain policy:

If a patient is waiting in the main-ED to be seen by a doctor and if
all doctors in the main-ED are busy but a doctor in the fast-track-ED
area is available, that doctor can be assigned to see the patient in the
main-ED. However, main-ED doctor is not allowed to see a fast-track-ED
patient even if the doctor is available while all fast-track-ED doctors are
occupied.

We specified this constraint by using a preference specification in the resource

request. Specifically, in all the steps where a doctor is required in the main-ED, we

used the query, prefer(doctormained, doctorfasttrack). Figure 6.16 shows an example

of the resource requirement specification for step MDAssessmentMainED. ROMEO,

when presented with this preferential list of queries, tries to fulfill the request with

the leftmost query. If no resource instance can be found to be available to satisfy the

preferred query, ROMEO, goes through the preferential order attempting to satisfy

the request. For the steps in fast-track-ED process that require a doctor, we did not

specify any such preferential request.
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Figure 6.15: Elaboration of step BedsideProcedureMainED

Figure 6.16: Resource requirement specification for the MDAssessmentMainED step

With the above-described process, we set up some simulation runs. Table 6.7 lists

the different resource mixes used for these simulation runs. The patient characteristic

inputs to these steps were all distributed according to a triangular distribution based

on expert opinion provided by our ED domain expert. The patient arrival scenario was

generated using a Poisson distribution with an inter-arrival mean time of 9 minutes.

Patients’ acuities were determined randomly upon arrival. In the generated mix, 10%

of patients were given an acuity of 1, 20% were given an acuity of 2, 30% were given

an acuity of 3, 20% were given an acuity of 4, 10% were given an acuity of 5, and 10%
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Resource Group Available
Patients 100
MainED Beds 25
FastTrack Beds 5
MainED Doctors 4
FastTrack Doctors 1
MainED Nurses 4
FastTrack Nurses 1
Clerks 2
TriageNurses 2

Table 6.7: Resource mix for running simulations with ‘EDCare2’ process

were given an acuity of 6. We simulated the process first with the preferential resource

requirements and then ran them again by removing the preferential specification from

the requests. Like other experiments, we studied the impact of this change in the

process to patient LOS. The average of the output of all simulation runs is shown in

figure 6.17

Figure 6.17: The impact of allowing fast-track doctor in main-ED

Initially, this result may seem to be somewhat counter intuitive. One might ex-

pect the results to show that if a doctor is brought in from the fast-track-ED when

the doctor is sitting idle, it should improve the patient flow and reduce LOS. How-

ever, figure 6.17 shows the opposite. One root cause of this behavior might be the
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same-doctor constraint that we have specified in the ‘EDCare2’ process. Note that

when a patient is placed in the main-ED s/he goes through more steps involving a

doctor than if s/he is placed in the the fast-track-ED. Because of the same-doctor con-

straint, however, the fast-track-ED doctor becomes responsible for the patient for all

subsequent treatments. Since we had only one fast-track doctor in these simulations,

this means that one fast-track-ED doctor might potentially wind up being assigned

relatively more work than others. Examination of the resource utilization outputs

produced by ROMEO showed that this is indeed what had happened. Doctors in the

main-ED had an average 13.54% utilization level, but the fast-track-ED doctor had

an average utilization level of 31.39%.

Once again, with this case study, we did not aim to find a definitive answer regard-

ing the impact of some specific domain policies on an ED. We were more interested in

studying how easy or difficult it is for someone to set up such an experiment and to

run the simulation. We gave a novice user (someone who has been acquainted with

Little-JIL, JSim, and ROMEO for less than two months) of ROMEO-JSim the task

of setting up and running these simulations. Elaboration of the process, setting up

of the new resource model, and specifying the resource requirements for the process

steps were all done by this user in a little less than four hours and thirty minutes.

This indeed was a very encouraging sign regarding the usability and flexibility of our

simulation infrastructure.

6.4 Experiences with Processes in Other Domains

The primary evaluation vehicle for the studies presented in this dissertation has

been the ROMEO-JSim simulation infrastructure, especially as it has been applied

in a particular domain, namely the patient care processes in a hospital ED. We de-

veloped ROMEO, however, to be incorporated as a key component of a generic archi-

tecture that is capable of supporting other types of applications in different domains,
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running on different platforms. To evaluate ROMEO and the resource management

approaches it implements in such other applications, domains, and platforms, we

integrated ROMEO into Juliette, an execution engine for the Little-JIL language.

We then tested ROMEO’s effectiveness in modeling resource instances, requests, and

constraints, and in supporting execution-time resource allocation, in a completely dif-

ferent domain supporting execution of a large process. To this end, we chose a process

that has been developed to drive an Online Dispute Resolution (ODR) activity.

The specific dispute resolution, or mediation, process we have experimented with

was developed in collaboration with the National Mediation Board (NMB), the U.S.

government agency charged with resolution of all labor-management disputes in the

U.S. transportation industries (principally airlines and railroads). The need for medi-

ating disputes has been growing steadily without commensurate increases in human

resources at NMB. Thus NMB was very interested in incorporating process-based

ODR into their activities. [44, 21, 75] describe work that has been done in develop-

ing, using and analyzing these mediation processes. In this work, the ODR processes

were developed with the aim of gaining a better understanding of NMB mediation

process requirements, training new mediators, and supporting NMB’s process with

automation. It is the required support of the resource management service in facil-

itating the automation of this mediation process is what we have focused on. The

mediation process we experimented with is a very large and complex one with more

than 100 steps, and with numerous instances of parallelism and numerous instances

of exception handling. Of particular interest to us was the fact that there are some

types of resource requirements in this ODR process that were not present the ED

processes we have discussed so far, notably the use of a Resource Iterator constraint.

The primary agent resource instances specified in NMB’s dispute resolution pro-

cess are a Mediator and a number of Participants (disputants). The process as-

sumes that there are two sides in every dispute, with each side being represented by
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Conduct Mediation Session

Present Issue and Interests Option Solicitation Phase Display Categories To Participants Identify Common Set of Acceptable Options

Figure 6.18: High level view of the mediation process

one or more disputing Participants. The resource requirements declared for some

steps specified such constraints as that the agent resource instance for the step needed

to be a Participant from a side that is the same as, or opposite to, the side of a

Participant that performed some other step. This was modeled by specifying cer-

tain parts of the process as many times as instances of the Participant resource type

was available at run time. Figure 6.19 shows an example of how this was specified

using the Little-JIL process definition language, which was a key part of the platform

for our experimentation with the ODR process.

Conduct Mediation Session

Iterate
Change Phase

Contribute Options Ask Questions

MediateParticipate

Participant+

[contributionsAllowed]

*

[questionsAllowed]

Figure 6.19: Elaboration of a part of the mediation process

Figure 6.18 shows the high level definition of the The Little-JIL process definition,

which can be viewed as a carefully structured multi-party conversation. The nominal
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process defines a set of sequential steps where the issues underlying a dispute are

first elucidated by the mediator, followed by submission of ideas by the disputants,

then summarization of these ideas by the mediator, and finally iteration by the

mediator through all of the suggestions for a resolution that had been submitted by

the disputants. This process defines this iteration to continue until agreement on a

resolution has been reached, or until it is agreed that agreement cannot be found.

For reasons described in [75], the high-level process shown in figure 6.18 was elab-

orated and refactored to a process that describes a more role-oriented view of how

this sort of mediation is performed by NMB. Figure 6.19 shows an important portion

of that process model. In this process, the Participate step requires a Participant

type of agent resource instance and the Mediate step requires a Mediator type of

resource instance. For the Participate step, the annotation Participant+ on the in-

coming on edge to that step specifies that a request for a Participant type of agent

resource instance will be sent to the Resource Manager iteratively for as long as the

Resource Manager continues to succeed in assigning an instance of the Participant

resource in response to the previous one of these requests. The execution engine (Juli-

ette), in turn, will instantiate the sub-tree of the process rooted at step Participate

for each agent resource instance assigned by the Resource Manager. This is internally

accomplished by Juliette sending a request to ROMEO to declare a Resource Iter-

ator constraint using the query name Participant. Each subsequent agent resource

acquisition request for step Participate is sent to ROMEO with this Resource Iterator

constraint.

Once initial systems work required to integrate ROMEO with the the Little-JIL

execution environment had been accomplished, the configuration of ROMEO to sup-

port execution of the mediation process was simple and quick. It took us less than

half a day’s work to define the resource instances, and their attributes and capa-

bilities required for the mediation process. We note that this process also required
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the specification of a number of non-human agent resource instances (e.g. agents to

manage a data repository, anonymize participant contributions, etc.) in addition to

the Participants and Mediator. Our success in being able to support the execution

of a large process such as the above described mediation process using our prototype

Resource Manager, ROMEO, gives us additional confidence about the effectiveness of

both our resource management architecture and the ROMEO prototype implemen-

tation as well.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Modeling and managing entities that we commonly refer to as resources seems

to be a ubiquitous problem in systems in many different domains. This dissertation

aimed to identify some basic, as well as special, problems encountered in managing

resources in environments that are quite complex and dynamic. We also intended to

find out the separate concerns software engineers need to consider while developing re-

source management services that are able to address these problems in such domains.

We also wanted to study ways to support the implementation and enforcement of

complex domain policies regarding resources in such highly dynamic environments.

We proposed to develop a generic resource management service architecture, build a

prototype, and evaluate our approach by primarily driving simulations of patient care

service in a large and busy hospital ED. The evaluation was also aimed at looking

at the applicability of our approach to other domains that are very different from a

hospital ED.

7.1 Summary of the Research

In this dissertation, we have first articulated the generic resource management

problem we decided to study. We have proposed a set of definitions to precisely de-

fine such notions as resource instances, request structures, domain-specific resource

management constraints, and objectives of resource allocation activities. We have

enunciated our proposed ideas about representing the dynamic nature of some re-

source instances in a complex environment. We have identified a set of separate con-
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cerns that need to be addressed by software engineers who need to develop systems

that provide resource management services in such complex and dynamic environ-

ments. We have also proposed a generic resource management service architecture

and developed a prototype following this architecture. We have presented in detail

the major components of this prototype and specified their interactions in a generic

Resource Manager. Using our proposed design, we have developed ROMEO, a resource

management service and customized it to serve a task coordination framework based

on Litlle-JIL process definition language. Our work then concentrated on evaluating

the effectiveness of ROMEO in supporting simulations and executions of complex pro-

cesses. For this evaluation purpose, we developed a simulation infrastructure named

JSim on top of Juliette, Little-JIL’s execution environment. We ran a variety of sim-

ulations of patient care processes in EDs using our ROMEO-JSim infrastructure. We

also used ROMEO to support the actual execution (rather than just the simulation)

of a large mediation process.

A central premise, hypothesized and explored in this thesis, was a novel way of

thinking about resource instances in dynamic domains, namely defining them with a

set of guarded capabilities, some of which may be dependent on the execution state

of the system. This led us to think about how to represent execution states of a

running system and what types of system state information might be important for

representing the guard functions on the capabilities of a resource instance that define

the resource instance’s ability to satisfy a request at a given execution state of the

system. We have also identified a small set of common types of attributes of resource

instances that seem able to support specification of a large variety of resource in-

stances in complex domains. We believe that our research supports our hypothesis

that specifying resource instances as having sets of guarded capabilities provides a

useful abstraction for modeling many of the complex dynamic behaviors of resources

instances in such domains as hospital EDs.
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One important component of our work was to look closely at what is needed in

order for a resource request language to specify complex resource requirements, many

of which are often dependent on the run time state of an executing system. One of

the contributions of this research has been to come up with a relatively simple request

model, which has turned out to be remarkably powerful in describing complex runtime

requirements on the allocation of resource instances. Our research made it clear that

domain policies in dynamic and complex environments can usually be translated into

constraints on resource allocation. Our request specification language has allowed us

to model a wide variety of interesting domain policies in the ED domain. We believe

that our approach and tools are capable of modeling many more domain policies than

the ones we have demonstrated in our case studies.

We have found that the separate concerns we identified have helped us to develop

a flexible resource management architecture. These concerns not only helped us to

identify the components of a Resource Manager, but also facilitated the discovery

of an effective interaction model among the components. Our experience has also

shown that the architecture proposed in this dissertation can nicely support a task

coordination framework such as the Little-JIL technology that was used in our exper-

imentation. Our experience with ROMEO, the prototype Resource Manager we built,

has been quite gratifying. We have successfully developed a simulation infrastructure

that is supported by ROMEO. This simulation environment, ROMEO-JSim, has been

successfully used to simulate a number of different ED scenarios. Due to the factored

architecture of the environment, there are many well defined mechanisms for support-

ing the specification of detailed configuration information. Our experimentation has

indicated that these mechanisms were sufficient to support rapid tuning of resource

management behavior need to quickly set up interesting ‘what if’ question regard-

ing ED simulations. This in turn supported expedited iterations among simulation
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runs, thereby facilitating the study of relative effectiveness of different resource mixes,

policy decisions, and process configurations in meeting needs in the ED domain.

It is important to note that in designing and implement our ROMEO-JSim infras-

tructure our emphasis was on expressive power and flexibility. As a result ROMEO-

JSim is not optimized for performance, and executes considerably more slowly than

commercial tools such as Arena. Consequently, simulation runs can take a lot longer

with ROMEO-JSim than with Arena. This seems to represent yet another instance

of a situation in which there is probably a software engineering trade off that can be

made for flexibility vs. performance. We suggest that having the capabilities to sup-

port quickly setting up different simulation scenarios facilitates the investigation of

interesting questions. In situations where rapid setup of very diverse and demanding

simulations is desired, foregoing speed is probably a tolerable trade-off. Moreover, we

believe that the speed of our prototype can almost certainly be improved considerably

with additional engineering effort.

Besides simulating hospital EDs, we have successfully integrated ROMEO to test

its ability to support live execution of a mediation process. The resource requirements

in the executable mediation process led us to exercise some more features of our

resource and request modeling capabilities.

7.2 Future Directions for the Research

This dissertation has produced a useful baseline from which exciting future re-

search in a few different directions can be pursued. Some continuations of this work

may require long term research, while some might be much more immediate. The

following discussion includes a few promising and important future directions.

152



7.2.1 More validation of ROMEO-JSim

Discrete event simulation (DES) is an effective and highly popular method for per-

forming ‘what if’ type of analyses of complex systems. Almost all DES environments

focus on the resource usage patterns of the systems under simulation. However, the

model of the real world and its use of resources, especially under complex constraints,

often has to be simplified in order to support these studies. In the simulation stud-

ies we have discussed in our related work section in chapter 2, contained very few

attempts to validate model and simulation results by matching them with input and

output data from the real world. The ones that have attempted to perform such

validation often failed to do so. Connelly and Bair’s [22] work is a good example of

that failure.

We conjecture that the types of detailed modeling capabilities, such as dynamic

resource substitutability and resource constraint specification, that we have incorpo-

rated into ROMEO-JSim infrastructure should provide a better basis for recreating

complex real world scenarios more closely, thereby offering a better chance that sim-

ulation results might be more successful in matching observed real world behaviors.

Evaluating this conjecture seems to require elaborating such (e.g ED) processes in

more detail and running simulations based on actual data collected from real world

processes. Such evaluation will also require elaboration of the specifications of re-

source instance characteristics, specifications of incoming patient mixes, and ED op-

erational scenarios such as shift changes. We believe that ROMEO incorporates

facilities for supporting the detailed specifications of all of these types of information.

Thus, one interesting direction for future work is to design simulation experiments

that exercise these capabilities, and determine the degree to which they can be suc-

cessful in supporting simulations that match actual observed behavior. Invariably we

expect that detailed specifications of some types will be of more value than others in

supporting replication of real-world behaviors. Identification of the relatively more
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effective types of specification could then be important in suggesting which types of

specification warrant further research.

7.2.2 Infrastructure Improvement

Although ROMEO-JSim is capable of modeling and simulating complex processes

quickly, the specification of input configurations and organization of simulation out-

puts are still largely done manually. There is considerable need, and ample opportu-

nity, for improving the simulation infrastructure so that it becomes more user-friendly

and convenient to use. Taking the lead from commercial products, we have added

some convenience features to ROMEO-JSim. There is still much to be done, how-

ever. An important part of this improvement is to create a useful user interface for

setting up and running new simulations. Our initial exploration in this direction has

suggested that this task can be a lot more complex than it initially appears to be. In

fact, there is likely to be some very interesting user-interface research in this area.

Another closely related area of future work is to investigate how best to organize

and present simulation results to users. Presenting the simulation results in the right

way should lead to the formulation of more interesting questions. Thus it can be a

worthwhile to investigate how best to capture and represent the outputs of ROMEO-

JSim simulations.

7.2.3 Experimenting with Intelligent Scheduling

Stephen Smith, one of the leading researchers on scheduling in recent times, argues

that although significant milestones have been achieved in scheduling research, there

is still a lot to be done in this area [76]. In his invited paper regarding the future of

scheduling research, he pointed out many advances of scheduling research in different

domains. However, Prof. Smith suggested that most solution techniques studied

so far defined scheduling as a static, well-defined optimization task like some sort

of puzzle solving activity. But scheduling is typically an ongoing iterative process,
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and thus there seems to be considerable room for improvement in the heuristics and

other scheduling techniques that have been developed to derive schedules that can

be expected to come close to matching results obtained from exhaustive searches.

Indeed our observation of the ED domain is consistent with the observation that

scheduling is best done dynamically, as the demands and constraints of the domain

can be expected to change dramatically and quickly.

As one of the major challenges of this research area, Prof. Smith identified the

need for generating schedules under complex constraints, objectives, and preferences

that arise directly from the actual domain. We observed this to be the case in the ED

domain, and we believe that our resource management approach and ROMEO have

been designed to meet these challenges, and should be able to deliver encouraging

results. Thus the JSim-ROMEO infrastructure should be a promising vehicle for

exploring integration of different intelligent scheduling techniques. This, we believe,

would be a fruitful direction of future research.
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